
An Active Learning Framework with a Class

Balancing Strategy for Time Series Classification

by

© Shemonto Das

A Thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Supervisors: Dr. Amilcar Soares and Dr. Vinicius P. da Fonseca

Department of Computer Science

Memorial University of Newfoundland

February 2024

St. John’s Newfoundland

Abstract

Training machine learning models for classification tasks often requires labeling nu-

merous samples, which is costly and time-consuming, especially in time series analysis.

This research investigates Active Learning (AL) strategies to reduce the amount of

labeled data needed for e↵ective time series classification. Traditional AL techniques

cannot control the selection of instances per class for labeling, leading to potential bias

in classification performance and instance selection, particularly in imbalanced time

series datasets. To address this, we propose a novel class-balancing instance selection

algorithm integrated with standard AL strategies. Our approach aims to select more

instances from classes with fewer labeled examples, thereby addressing imbalance in

time series datasets. We demonstrate the e↵ectiveness of our AL framework in select-

ing informative data samples for two distinct domains of tactile texture recognition

and industrial fault detection. In robotics, our method achieves high-performance

texture categorization while significantly reducing labeled training data requirements

to 70%. We also evaluate the impact of di↵erent sliding window time intervals on

robotic texture classification using AL strategies. In synthetic fiber manufacturing,

we adapt AL techniques to address the challenge of fault classification, aiming to

minimize data annotation cost and time for industries. We also address real-life class

imbalances in the multiclass industrial anomalous dataset using our class-balancing

instance algorithm integrated with AL strategies. Overall, this thesis highlights the

potential of our AL framework across these two distinct domains. .

i

Acknowledgments

I would like to express my profound gratitude to my supervisors Dr. Amilcar

Soares and Dr. Vinicius P. da Fonseca, for their relentless e↵ort to the completion of

my research. It was a privilege to have their expertise and support throughout the

journey.

Secondly, I would thank Instrumar Limited for their support as an Industry part-

ner for the Mitacs Accelerate Internship Program IT29753.

And finally, I want to thank my parents, without whom I wouldn’t be here, my

family and friends, for their continuous support throughout the program.

ii

Co-authorship Statement

Chapter 3 is the published version of the manuscript in the journal Frontiers in

Robotics and AI. This is the first work where we proposed our AL framework tactile

robotics dataset for texture classification. I designed and performed all the necessary

experiments and tests suggested by supervisors Dr. Amilcar Soares and Dr. Vinicius

P. da Fonseca. They both provided continuous feedback and editorial input in the

initial submission phase as well as in the peer review rounds.

Chapter 4 is the accepted manuscript in the IEEE International Systems Confer-

ence. In this phase, we worked on the industrial dataset provided by our industrial

partner Instrumar Limited. I performed all the necessary experiments suggested by

supervisors Dr. Amilcar Soares and Dr. Vinicius P. da Fonseca. Moreover, I also

performed the necessary data analysis and preprocessing according to Instrumar Lim-

ited’s feedback. My supervisors, along with Instrumar, provided continuous editorial

input for the initial submission.

iii

Contents

Abstract i

Acknowledgments ii

Co-authorship Statement iii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Research Goals and Questions . 3

1.4 Contributions . 4

1.5 Thesis Outline . 6

2 Literature Review 7

iv

2.1 Analyzed Aspects . 8

2.2 Time Series Classification and Analysis 9

2.3 Summary . 20

3 Active Learning Strategies for Robotic Tactile Texture Recognition

Tasks 23

3.1 Introduction . 23

3.2 Materials and Methods . 33

3.2.1 Experimental Setup and Texture Data Collection 34

3.2.2 Data Preprocessing and Feature Extraction 37

3.2.3 Active Learning Strategies and Class-Balancement Instance Se-

lection Algorithm . 39

3.2.4 Classification Models and Evaluation Metric 44

3.3 Results . 48

3.3.1 Sliding Window Size and Overlap Percentage Analysis 49

3.3.2 Uncertainty Sampling Strategy on 3 and 6 seconds windows . 52

3.3.3 QBC Strategy on 3 and 6 seconds windows 56

3.3.4 EMC Strategy on 3 and 6 seconds windows 56

3.3.5 Comparing Window Sizes and Active Learning Strategies Per-

formances . 59

3.4 Discussion . 62

v

4 Unbalanced Fault Classification using Active Learning in Synthetic

Fiber Manufacturing Process 68

4.1 Introduction . 68

4.2 Literature Review . 71

4.3 Methodology . 76

4.3.1 Data Collection, Preprocessing and Feature Extraction 76

4.3.2 Data Class Imbalance . 79

4.3.3 Active Learning Strategies and Class-Balancement Instance Se-

lection Algorithm . 80

4.3.4 Classification Models and Evaluation Metric 84

4.4 Results . 85

4.4.1 Uncertainty Sampling Strategy 86

4.4.2 QBC Strategy . 87

4.4.3 Comparing AL strategies at steps 750 and 2000 89

4.5 Discussion . 91

5 Conclusion and Future Works 94

vi

List of Figures

3.1 The pipeline for tactile data used for texture classification. 1) Data col-

lection from exploratory movements; 2) time series data is partitioned

into temporal; 3) statistical attributes extraction; 4) using AL strate-

gies to rank instances; 5) the AL strategy selects top-ranked instances;

6) Machine-learning model built with the instances in the labeled pool;

7) classify all instances in the processed tactile data pool 34

3.2 Multi-modal bio-inspired sensor and MARG frames of reference [1]. . 35

3.3 XY-recorder setup with a texture under exploration [1]. 35

3.4 The set of textures explored in the dataset [1]. 35

3.5 Window-based statistical features extraction for the 6 seconds with 3

seconds overlap. 39

3.6 f1-score plots of the uncertainty sampling strategy for the 3-second

window. 54

3.7 f1-score plots of the uncertainty sampling strategy for the 6-seconds

window. 55

vii

3.8 f1-score plots of the query by committee strategy for the 3-second window. 57

3.9 f1-score plots of the query by committee strategy for the 6-second window. 58

3.10 f1-score plots of the expected model change strategy for the 3-second

window. 60

3.11 f1-score plots of the expected model change strategy for the 6-second

window. 61

4.1 Instrumar’s fiber quality monitoring sensor. 74

4.2 Instrumar’s fiber quality monitoring sensor at a production plant. . . 74

4.3 Active Learning pipeline for fault classification. 74

4.4 f1-score plots of the UNC strategy. 88

4.5 f1-score plots of the QBC strategy. 89

viii

List of Tables

2.1 Comparision of this thesis with previous works 21

3.1 Models’ hyperparameter settings. 47

3.2 The total number of instances generated by our sliding window proce-

dure when using the 11 sliding window size and overlap combinations. 51

3.3 Average f1-score values for all 11 combinations of sliding window sizes

and overlaps. 51

3.4 f1-score of AL strategies for di↵erent windows and models. 63

4.1 Comparison of machine learning models’ performances using AL strate-

gies and the balancing algorithm at step 750. 91

4.2 Comparison of machine learning models’ performances using AL strate-

gies and the balancing algorithm with the total budget of 2000. 92

ix

Chapter 1

Introduction

1.1 Background

In today’s data-dependent industries, the widespread integration of sensors has led

to unprecedented volumes of data requiring labeling for performing machine learning

tasks. Several areas involving human economic activities produce inherent temporal

ordered information organized in time series data requiring classification. According

to Gamboa et al. [2], any classification issue that uses data registered while account-

ing for an ordering concept can be formulated as a time series classification problem.

Such time series data analysis has applications in many real-world industries, in-

cluding healthcare, financial markets, industrial manufacturing, and environmental

monitoring. In all these domains, using time series data is intrinsic to their opera-

tions for informed decision-making. For instance, in healthcare, time series data from

1

patient monitoring devices provide valuable insights into e↵ective disease treatment.

Similarly, time series data on stock prices and market trends are necessary in the

financial markets to enable informed investment decisions. Time series data from

sensors are used in industrial manufacturing to monitor equipment performance and

production processes, ensuring operational e�ciency and quality control. In these

situations, precise predictions and classifications depend critically on e�cient data

labeling and management. However, labeling such data can be time-consuming and

biased, especially when the data is imbalanced, where certain events or conditions are

rare compared to others.

1.2 Problem Statement

Applying traditional supervised learning techniques to classify time series data en-

counters significant limitations regarding access to labeled data. The lack of anno-

tated data for training is a significant obstacle that prevents the creation of precise

classification models [3, 4, 5, 6, 7, 8]. In contrast to structured datasets, time se-

ries data necessitate complex and frequently expensive labeling procedures, which

makes it impossible to gather a su�ciently extensive and varied annotated dataset

[9]. The process of labeling time series data is labor-intensive and time-consuming,

which further makes the process more challenging. It takes a lot of time and human

labor to annotate large amounts of sensor readings or manufacturing process data [9].

This resource-intensive labeling process can cause delays, impede the development

2

of timely decision-making systems [10, 11, 12, 13, 14], and raise operating costs in

real-world applications where time is frequently of the essence.

Adding to the complexity, real-life time series data frequently exhibits class im-

balance, where certain events or conditions are significantly less frequent than oth-

ers. Imbalanced datasets are prevalent in these domains due to the rarity of specific

scenarios in unstructured environments for the robots to learn or defects in indus-

trial processes. Traditional supervised techniques, which typically assume balanced

class distributions, struggle to learn from imbalanced data e↵ectively, often resulting

in biased and inaccurate classification models. This thesis explores handling these

limitations and enhancing the development of classification strategies using Active

Learning that can address the challenges posed by the unique characteristics of time

series data in industrial fiber manufacturing and tactile robotics. The fundamental

idea behind Active Learning is that the learning algorithm will perform better with

less training data if it has the ability to select the data from which it learns [15].

1.3 Research Goals and Questions

This work aims to enhance the use of time series in pursuit of improved decision-

making across real-life scenarios, thus minimizing resource-intensive e↵orts while max-

imizing e�ciency. Therefore, the goals guiding this research work are the following:

• Develop an active learning pipeline for e�ciently classifying time series with

less annotated data.

3

• Design a technique to handle the imbalance within the time series data and

improve the overall classification of all classes.

With these goals in mind, we therefore formulate the following Research Questions

(RQ) we aim to answer through this thesis:

• RQ1. Can active learning strategies be e↵ectively integrated into time series

classification models to minimize the need for annotated data while maintaining

classification performance?

• RQ2. How to design an algorithm within an active learning framework to

mitigate class imbalances within time series data?

1.4 Contributions

Our work advances the domain of time series classification through the following

contributions.

• The preprocessing step in Figure 3.5 (Chapter 3) included in our pipeline per-

forms necessary time interval processing based on overlapping windowing of the

raw data to generate the desired features set for the machine learning models

to get trained on. We analyzed the e↵ect of temporal features by evaluating

the impact of the sliding window’s length and size in Table 3.3 (Section 3.1 of

Chapter 3). This procedure is generic; it was tested in two real-world time-series

4

datasets (e.g., robotics and manufacturing) and generates features capable of

representing the underlying phenomena.

• We implement and compare the performances of several active learning strate-

gies with baseline strategies. The results show that the active learning strate-

gies surpass the baseline classification f-scores for all the classification models in

tactile texture classification (Section 3.2, 3.3 of Chapter 3) and industrial fault

classification (Section IV-A, IV-B of Chapter 4).

• We propose a class balancing instance selection algorithm that has been devel-

oped and integrated with the active learning strategies (Section 2.3 of Chapter

3 and Section III-C of Chapter 4) to analyze the e↵ect of class imbalance on

the active learning strategies and classification models. We show that active

learning strategies with the balancement algorithm have enhanced performance

compared to those without the balancement algorithm, mainly in the early

stages of the training pipeline.

Chapters 3 and 4 describe all these contributions and the outcomes this thesis

has produced. We believe our proposed framework to be generalizable in all real-

life domains involving time series classification. Firstly, we designed the framework

for classifying robotic tactile textures, and the work was published in the journal

Frontiers in Robotics and AI [16]. The accepted paper is described in Chapter 3.

Later, we used the framework for fault classification on real-world industrial data,

5

and the work was accepted at the IEEE International Systems Conference. Chapter

4 is the draft of the accepted paper.

1.5 Thesis Outline

This work is presented with a thesis by articles format. In Chapter 2, we o↵er a

thorough literature review of previous studies on time series classification and dis-

cuss how the novel aspects of our work progress the field, particularly in industrial

fiber manufacturing and tactile robotics. In Chapter 3, we include the paper enti-

tled Active Learning Strategies for Robotic Tactile Recognition Tasks published in the

journal Frontiers in Robotics and AI [16]. Chapter 4 includes the draft of the pa-

per entitled Unbalanced Fault Classification using Active Learning in Synthetic Fiber

Manufacturing Process, accepted at the IEEE International Systems Conference. We

conclude the thesis in Chapter 5, summarizing our findings and providing the details

of possible future works.

6

Chapter 2

Literature Review

Time series classification tasks present a great need for methods to address the lack

of labeled data; however, the use of AL for time series annotation still needs to be

improved. The need for labeled time series data has emerged as a significant obstacle,

especially for supervised learning techniques that rely heavily on well-annotated data

for e↵ective training and classification. There has been enormous research on time

series classification, but integrating AL techniques to optimize and enhance classifi-

cation e�cacy has been rare.

Moreover, the complex nature of time series also poses many challenges to having

a unique framework that generalizes any classification problem for informed decision-

making. Due to their inherent complexities, including data imbalance, temporal

dependencies, varying patterns, and irregularities, specialized methodologies are re-

quired for accurate time series classification. Classifying time series emphasizes the

7

need for solid and flexible frameworks capable of handling the unique characteristics

of time series data. Overcoming these obstacles requires innovative solutions that go

beyond traditional classification techniques.

In the following sections, we investigate the prior works in this field to determine

their contribution and what can be added to our research to advance the field of time

series classification. We start by identifying the aspects of the literature that interest

us most to analyze in Section 2.1. In Section 2.2, we delve deeper into these works.

Finally, we summarize the works discussed and compare this thesis with the existing

literature regarding contributions in Section 2.3.

2.1 Analyzed Aspects

Here, we highlight a few aspects that will serve as the foundation for our analysis

of the contribution to the field of time series classification. The first aspect of our

analysis involves exploring existing works that propose various methods for time se-

ries classification. This step aims to scrutinize whether the paper under consideration

adopts a feature-based time series classification method. This is a crucial foundation

for understanding the technical approach taken in the research, as di↵erent meth-

ods may have distinct implications for performance and e�ciency in classifying time

series data. Next, we verify the focus on labeling methods; that is, does the paper

address the requirement of labeling abundance of time series? Specifically, we seek

to determine whether the paper adequately addresses the need for e�cient and accu-

8

rate labeling processes in the context of time series classification. The third aspect is

whether the work uses AL techniques. Investigating whether the paper utilizes AL

techniques provides insights into the adaptability and dynamic nature of the proposed

time series classification approach. Lastly, we identify if the paper handles class im-

balance within the time series pipeline. Identifying whether the paper tackles this

issue evaluates the robustness and fairness of the proposed methodology. In sum-

mary, by thoroughly examining these four aspects, we aim to understand the paper’s

contribution to the field of time series classification comprehensively.

2.2 Time Series Classification and Analysis

The increasing use of sensors is the driving force behind the abundance of time series

in di↵erent domains, which also necessitates the need for classification to benefit

decision-making [17, 18, 19, 20, 21, 22]. Time series classification involves learning a

function that maps a series into a class from a set of predefined classes [23]. According

to Lin et al. [24], feature-based and whole series-based methods are two prominent

time series classification techniques. Whole series-based methods compare the entire

time series point-wise, whereas feature-based methods depend on features generated

from the time series’ substructure.

In [23], Nanopoulos et al. verified the e↵ectiveness of feature-based classification

over whole series-based classification and suggested using statistical features for time

series classification. The major drawbacks of whole series-based classification are its

9

sensitivity to the length of the time series and its associated noise, as it depends on

the actual values of the time series for the classification task. The authors argued that

the mentioned drawbacks can be handled by classification based on the fixed number

of features extracted from the time series. This allows the classification models to

learn from a fixed feature set, representing the time series’ inherent pattern. This

paper applies only to the feature-based classification aspect among all of our analyzed

aspects as it focuses on classifying time series based on generated features using a

multi-layer perceptron neural network.

Susto et al. [25] reviewed the existing data-driven time series classification ap-

proaches: feature-based and distance-based. They favor distance-based methods in

the power sector that first eliminates the need to extract features from the raw time-

series data to perform classification directly. To the authors, the preprocessing step

of extracting relevant features from time series is additional complexity and can be

avoided. They review the distance-based methods and apply them to power sector

time series data. The distance-based methods are clustered into three groups: Pure

distance-based, reduction distance-based, and parametric distance-based. The di-

rect computation of ad hoc defined distances over raw time series is the foundation

of purely distance-based techniques. Reduction distance-based methods calculate

strategically defined distances across a condensed representation of raw time series.

A mixture of basis signals represents raw signals in parametric distance-based tech-

niques. The computation of ad hoc defined distances uses the coe�cients of various

10

representations, which are parameters. Though most power system applications rely

on feature-based techniques, the authors review existing works using distance-based

anomaly and fault detection methods. This paper also uses the aspect of feature-based

classification.

In [26], Xing et al. highlight the concept of early classification for time series

instead of traditional methods that extract features from the whole length of time

series. They focus on extracting interpretable features from time series and tackle the

problems associated with e↵ective feature extraction by introducing local shapelets

as features. They proposed a framework called EDSC that consists of two steps

named Feature Extraction and Feature Selection. During the first stage, unique local

shapelets are identified from the time series data of the training set by taking into

account all subsequences up to a predetermined length and simultaneously learn-

ing robust distance thresholds. This procedure produces an extensive collection of

unique characteristics essential for e�cient time series categorization. In the Feature

Selection step, a rule-based classifier approach was used to carefully select a small

subset of local shapelets based on criteria emphasizing early classification and avoid-

ing overfitting. This results in interpretability and thus increases the overall e�cacy

of classification. Through this two-fold framework, they align with our feature-based

classification aspect.

Deep learning techniques were also investigated to enhance the e↵ectiveness of

conventional feature-based methods. Zhao et al. [27] proposed a novel CNN frame-

11

work for time series classification. Unlike other feature-based classification techniques,

they use CNN’s convolution and pooling operations to automatically find and extract

the appropriate internal structure to generate deep features of the raw time series

instead of using features designed by humans. The results suggested the performance

to be better than traditional techniques. Though this work generates deep features

using CNN, it di↵ers from generating features from raw time series to fit into the

models and thus does not fall under any of our analyzed aspects. The authors also

pointed out the limitations of their work, which include the fixed length of time se-

ries during training and testing, which is mandated by the CNN architecture, and

the time-consuming CNN training resulting from parameter determination through

multiple experiments.

Utilizing deeper architectures capable of comprehensively autonomously learning

from annotated data makes deep learning an extremely promising methodology [28].

These deep learning-based methodologies bring us to the issue of having enough la-

beled data and required computation resources to train such architectures. Gómez

et al. [29] prioritized balancing time series classification between su�cient accuracy

and the best use of available resources. Schafer et al. [17] mention that existing

classification methods cannot scale with such a high volume of time series at an

acceptable accuracy. Scalability and classification accuracy often remain a trade-

o↵ for these classification methods. To address this, the authors have proposed a

framework named WEASEL, which, using a sliding window, converts time series to

12

feature vectors, which are then analyzed through a machine learning classifier. To

produce discriminative features, WEASEL builds a bag-of-patterns model and uses

a supervised symbolic representation to produce a discriminative feature vector. The

process starts with taking time series data and extracting normalized windows of dif-

ferent lengths. Then, it uses the Fourier transform to approximate each window and

the ANOVA F-test to determine which Fourier values best distinguish between the

classes. These values are discretized using information gain binning to help achieve

the best possible class separation. These features, neighboring features, and all win-

dow lengths are combined to create a unified bag of patterns. The Chi-squared test

is used to remove features that aren’t relevant. A quick linear time logistic regression

classifier uses the highly discriminative feature vector, this process produces to clas-

sify data. This framework addressed the computational e�ciency and accuracy and

the time series feature extraction problem. Therefore, the paper [17] applies to the

feature-based classification aspect of ours.

In [30], Polge et al. implemented the WEASEL method in an industrial con-

text to increase flexibility in production lines. Still, modifications have been made

to the preprocessing method used in WEASEL to tackle the robustness reduction

problem in dynamic settings. The modified preprocessing method takes the absolute

values of the elements produced after standardizing time series by subtracting their

mean values. Through the intentional shifting of series from di↵erent classes and the

preservation of amplitude di↵erences, this process aligns series within the same class,

13

producing unique references as characteristics. Despite the modification, the authors

are doubtful about applying such a method in real-life manufacturing processes. As

the authors used WEASEL methods for classifying time series, this work falls under

our analyzed aspect of feature-based classification.

A Window-based Time series Feature Extraction (WTC) method has been pro-

posed by Katircioglu-Ozturk in [31]. The e�cient extraction of definitive time do-

main features from time series datasets was the primary goal of this work. The

authors developed a way to generate an overall similarity score by summarizing class-

dependent behaviors in successive time windows. To distinguish instances in a target

class from those in other classes, the method finds temporal features that charac-

terize those instances. The findings show that, in comparison to its shapelet-based

alternatives, WTC achieves better classification performance with noticeably shorter

execution times, which makes the method more robust. Therefore, prioritizing ex-

tracting features, this work only aligns with one of our aspects, which is feature-based

classification.

Another essential challenge with time series classifications is labeling an abundance

of time series instances. According to Woodward et al., [32], labeling is an essential

step in pre-processing data that can be particularly di�cult, primarily when used with

real-time sensor data collection approaches that use one or more models. The paper

[32] proposes a new framework named LabelSens for real-time labeling sensor data at

the point of collection, which pairs sensor data with a physical labeling method inside

14

a tangible user interface. The authors advocate against o✏ine labeling of time series

as they feel it is impossible to label raw data without real-time context. I would argue

that labeling at the point of collection may not always be feasible for many fields as

the job will get tedious and expensive, potentially requiring much more human e↵ort.

Moreover, the work focused on labeling interfaces and experiences for annotators to

label the data, but that does not address challenges related to the need for massive

data labeling. The fact that human annotators need to label high amounts of data

still persists despite how good the labeling interface is. The results show that while

touch interfaces produce high labeling rates and model accuracy, users find them to be

the least preferred because of the increased attention demand while using the device.

This eventually aligns the paper with our second aspect of a labeling method.

Langer et al. [33] propose an extended version of their semi-automatic label-

ing tool named Gideon-TS with an active learning component integrated that splits

the dataset into windows and performs unsupervised clustering to detect anomalies

in them. Following a similarity search, these anomalous windows are identified as

possible error candidates, compared to patterns from previously labeled errors, and

recommended for labeling to the user. Once the user creates an initially labeled

dataset, the labeling is continued with an active learning-based technique until the

desired accuracy is reached. By doing this, the user can finish the process with a

trained model and avoid the need to label the complete data set. Thus, it satis-

fies the requirements for including AL and the labeling method, two of our analyzed

15

aspects.

To lower the label cost for time series classification, two important directions,

namely semi-supervised learning approach and heuristics-based algorithms, are high-

lighted in [34]. The authors suggest automatically generating labels for unlabelled

time series using a small number of representative labeled time series. The technique

utilizes Auto Encoded Compact Sequence (AECS) for representation learning and

selects an optimal distance measure. Through iterative self-correction and learning

of latent structures, it employs a variational auto-encoder (VAE) to enhance repre-

sentative time series and improve label quality, which is a critical function. Given

the work performed, this paper applies to our analyzed aspect of a labeling method

for time series. This methodology reduces the amount of data to be labeled but does

not necessarily surpass the benchmark.

Addressing the labeling challenge associated with time series validates the need

to study AL for time series classification. Peng et al.[35] have considered our as-

pect of using AL in the domain of time series classification. The authors introduce

ACTS, a novel active learning technique based on the Nearest-Neighbor (NN) classi-

fier for time series classification. The technique leverages shapelet discovery to find

discriminative patterns in the training set and iteratively adds new examples to these

patterns. A probabilistic model with instances, patterns, and labels is built to create

the question selection criterion. It combines uncertainty and utility metrics to assess

a time series instance’s informativeness. While utility takes advantage of instance

16

correlations, uncertainty measures classifier confidence, considering label distribution

diversity and instance patterns. These metrics have been designed to solve the prob-

lem of evaluating the informativeness of time series instances and thus resulted in

higher classification accuracy.

Another nearest neighbor-based AL approach was proposed by Gweon et al. in

[36] that works with incredibly sparse labeled data. This approach uses highly local

information for active learning sampling, where the nearest neighbor principle is used

to measure the prediction uncertainty and the utility of an unlabeled sample. The

suggested method enables batch sampling, in which a new batch of samples is chosen

from unlabeled data at each sampling iteration. Since the informativeness metric is

based on distance, the result of the work demonstrates how noise variables a↵ect the

measurement of the informativeness of unlabeled instances. Given the limitation, the

work aligns with our analyzed aspect of using AL for time series classification.

Though the above nearest neighbor-based processes can be used for classifying

time series data, there are limitations. According to Lines et al., [37], there are a lot

of patterns in time series data that show the decision boundary among classes, which

decreases the number of instances used in training. This makes it di�cult for the

nearest neighbor classifier-based method to analyze these patterns.

One of the most common problems with time series in various domains is imbal-

anced time series classification. In real-life skewed time series datasets, it becomes

di�cult for the classifiers to identify events represented by the minority class [38].

17

The three standard techniques for resolving imbalances are downsampling, upsam-

pling, and class weighting [39]. The original distribution of the data is changed due

to these sampling techniques. When too many samples are discarded, downsampling

results in subpar classifier performance, whereas upsampling causes overfitting by

reusing data from the minority class. SMOTE and other data augmentation tech-

niques are parametric models that are limited by computation time and do not adapt

well to high-dimensional datasets [40, 41].

Deng et al. [42] explored the aspect of imbalance in time series. The authors

presented a novel technique based on Generative Adversarial Networks (GAN) called

IB-GAN, which uses an imputation-balancing strategy to combine data augmentation

and multivariate time series classification in a single step. The framework integrates

seamlessly with various GAN architectures and deep learning classifiers, consisting

of a triplet of generator, discriminator, and classifier models. The novel method

of imputation and balancing uses the available training data to produce synthetic

samples of higher quality for under-observed classes. Here, the direct feedback from

classification and imputation losses improves the data quality. The results show that

training improves classification performance in under-observed classes.

Though CNN-based networks have been used for time series classification, most

cannot classify imbalanced time series because standard networks assign the same

class weights to the majority and minority classes [38]. To tackle this, the authors

of [38] modified traditional CNN to a cost-sensitive CNN (CS-CNN), which utilizes

18

a class-dependent cost matrix that can penalize the misclassified samples. Penalties

are automatically modified based on the general distribution of classes and CNN’s

training results. The proposed technique changes the loss function and optimizes the

process of traditional CNN, and the cost-sensitive learning assigns distinct weights to

majority and minority classes. Even though CS-CNN produced convincing results,

the work can only classify binary imbalanced time series as it lacks multi-classification

considerations. This work also aligns with our aspect of addressing imbalance in time

series.

Jiang et al. [43] addressed the imbalanced time series in the industrial domain.

They suggested a GAN-based anomaly detection method that, in particular, uses

feature extraction from normal samples to train an encoder-decoder-encoder three

sub-network generator. This makes the network independent of rare abnormal sam-

ples in an industrial context. Three components make up the network structure: a

discriminator, a generator, and a feature extractor. The encoder-decoder-encoder

three-subnetwork is developed during the generator design process. A feature extrac-

tor is intended to help shorten the training period by extracting distinctive features

before supplying data to the generator. The authors used a discriminator to deter-

mine if input data is generated or real. As the feature extraction step is involved in the

process, this work addresses two of our aspects, namely feature-based classification

and data imbalancement.

19

2.3 Summary

This section summarizes the time series classification literature discussed in the pre-

vious section. Table 2.1 compares this thesis with the existing works discussed. From

the table, it is evident that this thesis combines the vital aspects of time series clas-

sification, namely feature-based classification, labeling method, Al techniques, and

class imbalance altogether.

While extensive research has been conducted in time series classification, my inves-

tigation reveals that the utilization of active learning remains limited in this domain.

Moreover, the existing techniques showcased certain limitations within each approach,

failing to o↵er comprehensive solutions across all identified aspects. This leads to a

vital necessity of having such a framework that does not limit its hypothesis to any

particular characteristics of time series.

As we can see regarding data labeling, conventional methodologies involve manual

annotation or semi-supervised techniques, which are labor-intensive, time-consuming,

and may introduce biases. This leads to a significant bottleneck in e↵ectively utiliz-

ing large-scale real-life time series datasets. AL techniques have shown promise in

streamlining labeling e↵orts in various domains, yet their adoption remains limited

in practical domains. We believe implementing AL e�ciently to annotate time series

data across diverse domains has notable possibilities.

Moreover, class imbalance in time series datasets is a problem that exists in dif-

ferent domains. While there are several methods for addressing imbalance, such as

20

Table 2.1: Comparision of this thesis with previous works

Work Feature-based Labeling AL Imbalancement

classification method inclusive

A. Nanopoulos [23] ✓
G.A. Susto [25] ✓
Z. Xing [26] ✓
B. Zhao [27]

P. Schafer [17] ✓
J. Polge [30] ✓

D.K. Ozturk [31] ✓
K. Woodward [32] ✓
T. Langer [33] ✓ ✓

S. Bandyopadhyay [34] ✓
W. Jiang [43] ✓ ✓
G. Deng [42] ✓
Y. Geng [38] ✓
F. Peng [35] ✓
H. Gweon [36] ✓
This Thesis ✓ ✓ ✓ ✓

21

algorithmic techniques or oversampling, these approaches are frequently inflexible and

have di�culty handling imbalances unique to real-world situations. More flexible and

adaptable approaches are required because time series data in real-world domains

often show imbalances that di↵er in size and distribution.

This thesis aims to not only e↵ectively classify time series but also to develop

robust and e�cient classification strategies that overcome the limitations posed by

particular characteristics of time series, given the ever-increasing abundance and com-

plexity of time series data in diverse domains. We focus on tactile robotics and in-

dustrial manufacturing to validate our findings and results. The main objective is

to develop a framework that can handle the complexities of real-world time series

datasets while guaranteeing robustness, e�ciency, and adaptability across di↵erent

domains.

22

Chapter 3

Active Learning Strategies for

Robotic Tactile Texture

Recognition Tasks

3.1 Introduction

Tactile perception in robots refers to their capability to detect and comprehend phys-

ical contact, pressure, and vibration information using dedicated sensors integrated

into their bodies or end-e↵ectors. Robots can use tactile sensing to augment their per-

ception and interaction capabilities, enabling them to perform tasks with increased

precision. E↵ective tactile perception allows the estimation of crucial information

about the surrounding environment in various scenarios, especially under reflection,

23

cluttered environments, challenging light conditions, and occlusion. When relying

solely on vision, robots can only identify familiar surface materials and cannot es-

timate their physical properties independently [44]. Robots can comprehend and

actively engage with their surroundings when receiving static and dynamic sensory

information during tactile sensing [45]. Tactile perception empowers robots to adapt

their joints, links and reactions based on tactile feedback, resulting in improved ma-

nipulation, object recognition, and social interactions. Tactile sensing works harmo-

niously with other sensing modalities like vision and proximity sensing, creating a

comprehensive and versatile robot perception system.

Touch is a vital modality while sensing the physical engagement of robots with

their environments [46]. Luo et al. [44] pointed out the importance of utilizing the

sense of touch to discern material properties, as it allows robots to determine essen-

tial characteristics such as surface texture (friction coe�cients and roughness) and

compliance, which play a vital role in object manipulation. On the other hand, fine

textures need to be slid across a surface to produce micro-vibrations that may then be

analyzed and categorized. Luo et al. [44] emphasized the significance of incorporat-

ing the sense of touch to perceive material properties. This capability enables robots

to discern essential characteristics like surface texture, including friction coe�cients

and roughness, and compliance, which are crucial for e↵ective object manipulation.

Moreover, tactile-enabled manipulation can improve robot tasks when incorporat-

ing exploratory strategies. When analyzing and categorizing fine textures, the robot

24

needs to slide across a surface, producing micro-vibrations that can be analyzed and

categorized.

Tactile sensors such as capacitive [47, 48] and magnetic sensors [49, 50] have been

developed for robots to recognize their environment better. In [51], the profile of

a surface was recognized by dynamic touch using a robotic finger. The motor and

inertial measurement unit (IMU) feedback provided was passed through a neural

network to classify shapes. The authors of [52] pointed out six di↵erent exploratory

movements to identify the properties of an object. Authors of [53] proposed a data-

driven analysis for shape discrimination tasks using a robotic finger that performs

the sliding movement. Previous works developed an experiment and data evaluation

with a sliding tactile-enabled robotic fingertip to explore textures dynamically. The

robotic fingertip’s design contains a multimodal tactile sensor that makes contact

with the surface[54, 55, 22].

Then, supervised machine learning models were used on this collected data to

classify textures. Due to the nature of several textures to have essential features

in di↵erent directions, this work was further developed by doing a two-dimensional

exploration of surfaces [1, 21, 20, 56]. Here, the authors also investigated the clas-

sification accuracy of machine learning models on tactile data from a multimodal

sensing module in a dynamic exploration environment at three di↵erent velocities.

Drigalski et al. [57] also classified texture on the data collected by a 3-axis force

tactile sensor attached to a robot’s gripper. Huang et al. [58] classified texture col-

25

lected by a tactile sensor using a convolutional neural network. Gao et al. [59] used

the BioTac sensor and auto-encoders to improve material Classification Performance.

While achieving good results, the sensor used in Gao et al. [59] work does not measure

non-normal forces and changes in exploration direction, which represents a significant

di↵erence from the sensor employed in our study. Similarly, the iCub RoboSkin in

[60] incorporates a non-compliant fixture, introducing substantial di↵erences in the

data characteristics compared to the information we target using the current dataset.

Numerous studies have focused on gathering more detailed tactile data for recogniz-

ing texture, resulting in abundant data for performing experiments in tactile sensing.

Also, the data in those works are the means of teaching the robots to recognize tex-

tures. Thus, a su�ciently labeled dataset is required for texture classification using

machine learning models.

The e↵ectiveness of a classification model heavily depends on the data used for

training. In [61], the authors state that robotic manipulation using machine learn-

ing in unstructured environments is computationally expensive and time-consuming.

However, despite the advantages of having abundant data in tactile sensing, the

rapidly increasing volume of data also brings specific challenges and drawbacks that

require attention. In particular, the scarcity of annotated training data has become

a significant challenge for supervised learning techniques since they rely on well-

annotated data for e↵ective training. Labeling a large amount of data is costly and

time-consuming and often necessitates the expertise of domain specialists [6]. To ad-

26

dress this challenge, researchers have introduced the concept of Active Learning (AL)

[15, 62]. AL o↵ers a solution by enabling the model to actively select and acquire

the most informative data points for annotation, thus reducing the need for large

amounts of labeled data. The core concept of AL is that if the learning algorithm can

choose the data from which it learns, it will perform better with less training data

[15]. In scenarios where the strategy asks an expert for labels, di↵erent kinds of query

strategies pave the way for deciding which instances are the most informative to be

labeled. There have been many proposed ways of formulating such query strategies in

the literature [15]. Among the query strategies, Uncertainty (UNC) sampling is the

simplest and most commonly used [63]. The AL system queries the expert to label

the most informative instance (i.e., the instance(s) that a machine learning model

is most uncertain about its class) in UNC. There are numerous metrics to calcu-

late uncertainty, some of which are Least Confident [64], Margin Sampling [15], and

Entropy [65]. Another popular query strategy is Query By Committee (QBC) [15].

This AL strategy selects the most informative data points for labeling by querying

regions in the input space where the models in a committee disagree. Moreover, to

implement QBC, a measure of disagreement among the committee members must be

established to identify the data points where the models disagree and are uncertain

[15]. Finally, the Expected Model Change (EMC) [66] strategy, predicts the influence

of an unlabeled example on future model decisions and if the unlabeled example is

likely to change future decisions of the model when being labeled, it is regarded as

27

an informative sample.

Over the last decade, studies have started incorporating AL strategies into robotics,

realizing the necessity and importance of well-annotated data to teach the robots

better. In [67], a robot conducts unsupervised discovery to get the data it needs in

dynamic settings where labeled datasets are absent. The authors of [68] termed AL

a process in which agents make decisions to collect the most relevant data to achieve

the desired learning objective. They also pointed out that informative samples are

usually sparse and believed AL could fetch those samples to the robots for training,

thus reducing the labeling cost and time. Chao et al. [69] discussed that AL is a

transparent approach to machine learning as the algorithm queries an expert that

provides information about areas of uncertainty in the underlying model. In their re-

search, they implemented AL on the Simon robot and found potential improvement

in the learning process’s accuracy and e�ciency. AL has also been used for robotic

grasping. For instance, in [70], authors developed a Discriminative Active Learn-

ing (DAL) framework, evaluated real-world grasping datasets, and performed better

with less annotated data. Moreover, they showed a model trained with fewer data

selected by this AL framework could handle the task of real-world grasp detection.

Another framework was suggested for recognizing objects and concept acquisition in

[71]. This framework’s combination of few-shot learning and AL reduced the need for

robot data annotation. In their study, Sheikh et al.[72] addressed AL in the context

of semantic segmentation to reduce the human labeling e↵ort of image data obtained

28

from a mobile robot. Their strategies resulted in achieving higher accuracy with a

reduced number of samples.

To enhance object detection with limited annotated data, the authors of [73]

focused on exploiting canonical views through an active sampling approach named

OLIVE. This method selects optimal viewpoints for learning using a goodness-of-

view (GOV) metric, combining model-based object detection consistency and infor-

mativeness of canonical visual features. Samples chosen by OLIVE, along with data

augmentation, are used to train a faster regions with convolutional neural networks

(R-CNN) for object detection. It is crucial to underscore that including data aug-

mentation in their pipeline introduces an additional processing cost. While such a

strategy e↵ectively alleviates the burden of labeling data, it necessitates higher-cost

robotic hardware for optimal performance. Their study validates the principle of

active sampling in the context of robot learning for object detection, and it aligns

with our goal of minimizing annotated data required for robot training. In contrast

to OLIVE, which uses the GOV metric, we utilize traditional AL strategies, namely

UNC, QBC, and EMC, along with their uncertainty metrics to identify informative

samples. This reduces the labeled data requirement and, like OLIVE, enhances train-

ing e�ciency, improving texture recognition performance. Notably, the additional

processing entailed by data augmentation in OLIVE is not present in our pipeline,

rendering our strategy better suited for scenarios where lower-cost robotic hardware

and less complex models are preferred.

29

Our work focuses on the potential significance of Active Learning (AL) in tactile

sensing for texture recognition, particularly in the context of future robotic manipu-

lation in unstructured environments. Recent studies [74, 75] highlight the significance

of learning from demonstration (LfD) as the paradigm in which robots acquire new

skills by imitating an expert. In addition, labeling objects from daily activities with

the help of a human specialist will become fundamental for integrating robotic ma-

nipulation in unstructured environments, such as homes, universities, hotels, and

hospitals. In this work, we have utilized AL to enhance the texture classification

process by considerably reducing the training size of machine learning models.

Additionally, the data obtained from tactile sensors consists of time series, result-

ing in a large dataset to be processed. The volume of the collected data increases with

the frequency at which it is collected, making tactile data more complex and increas-

ing the labeling cost. It is worth mentioning that there have been previous studies

where AL has been successfully applied to time series data. In [76], AL performed

better using fewer samples on real and synthetic time series datasets. Authors in [77]

used AL to get adequate, reliable, annotated training data for multivariate time se-

ries classification. Often, time series data have a very imbalanced data distribution.

This may result in bias in the AL strategies while selecting the most informative

data points and, thus, in the whole training process. He et al. [77] have addressed

the need to balance the training data among di↵erent classes while performing the

classification task and believe this a↵ects the model’s generalization. Moreover, while

30

analyzing or classifying time series, temporal features play an essential role. Wang

et al. [78] have pointed out how rarely the time variable’s e↵ect is considered. Their

study shows that by using more temporal information, the partitioning method re-

sults in greater forecasting accuracy for sensor inputs at the feature extraction stage,

and the data should be segmented into smaller segments at the feature extraction

stage for sensor inputs. For the recognition task, the authors in [79] mentioned that

when the window size is too short, some actions may be split into numerous consecu-

tive windows, activating the recognition task too frequently without producing high

recognition results. According to [80], it is not always necessary to have large sliding

windows to achieve higher performance. In the current paper, we aimed for a tradeo↵

between the information required for recognition and the cost of processing.

This study investigates the e↵ects of using AL strategies for texture classifica-

tion using tactile sensing. We envision a future where automated systems operate in

uncertain and unstructured environments, lacking access to reliable analytic models

or extensive historical datasets. In such scenarios, active learning and data-driven

control could become paramount. In practical scenarios, a robot capable of obtaining

labels from a specialist could apply active learning strategies to select the most infor-

mative samples and obtain precise information to update its world model. However,

without such a strategy, the sheer volume of data queries might render it unfeasible

for a human specialist to assist the robotic platform e↵ectively.

Due to the multi-class classification (12 classes) nature of our problem, we pro-

31

pose a class-balancing instance selection algorithm to address the imbalance issues

that may arise from standard AL strategies when selecting instances for labeling.

This algorithm is integrated into standard AL strategies (UNC, QBC and EMC) to

improve the performance of texture classification models, allowing them to achieve

competitive or superior performance with fewer training instances when compared to

a baseline using the entire dataset. Additionally, we use a sliding window approach

to extract features from time-series data. We compare the e↵ects of temporal fea-

tures using two di↵erent window sizes, aiming to reduce further the training data size

for robots’ texture classification tasks. In summary, our proposed strategy combines

a sliding window strategy, time-series feature extraction, and active learning with a

class-balancing instance selection algorithm to reduce the number of training instances

for classifying textures with supervised learning models. Our research significantly

contributes to tactile texture recognition and robotic exploration in unstructured envi-

ronments. We introduce a pipeline for data pre-processing and novel class-balancing

technique within the context of active learning, addressing the challenge of imbal-

anced datasets in tactile texture classification. Our approach enhances classification

performance and demonstrates the potential for robots to adapt and learn e�ciently

from limited human supervision, paving the way for future autonomous robotic ma-

nipulation in diverse and uncertain real-world settings.

32

3.2 Materials and Methods

The entire pipeline developed in this work is presented in Figure 3.1. First, in step 1,

the data used in this work was collected through exploratory movements of a tactile

sensor-equipped robotics finger. The data is available in [81, 82], and the experimental

setup is explained in Section 3.2.1. The time series data is subsequently partitioned

into more manageable temporal windows in step 2. Extracting an array of statistical

attributes from these shorter windows generates the features and processed tactile

data for our machine-learning models in step 3. After, we use AL strategies to rank

instances based on how informative they are for requesting labels (step 4), and the

top-ranked instances are selected by the AL strategy (step 5). Subsequently, these

instances are attributed their appropriate labels, as already encoded in the processed

data, and are consequently included in the annotated data pool (step 5). Then,

we build a machine-learning model with the instances in the labeled pool (step 6)

and classify all instances in the processed tactile data pool (step 7). As the pipeline

unfolds iteratively, steps 4 through 7 are recurrently executed until a predefined upper

limit of instances is achieved, which is constrained by a pre-established budget (i.e.,

a maximal budget). Ultimately, our approach’s outcome is a machine learning model

trained by an AL strategy and a maximal budget smaller than the total number of

instances available in the original dataset. All essential processes described in Figure

3.1 of the entire pipeline are detailed in the following subsections.

33

Figure 3.1: The pipeline for tactile data used for texture classification. 1) Data col-

lection from exploratory movements; 2) time series data is partitioned into temporal;

3) statistical attributes extraction; 4) using AL strategies to rank instances; 5) the

AL strategy selects top-ranked instances; 6) Machine-learning model built with the

instances in the labeled pool; 7) classify all instances in the processed tactile data

pool

3.2.1 Experimental Setup and Texture Data Collection

In this study, we used the tactile data available in [81, 82], which was collected from

a robotics finger from a previous study by Lima et al. [1] and represents step 1 in

Figure 3.1. The fingertip of the robotic finger was equipped with a fixed miniaturized

tactile sensor, which was developed by Alves de Oliveira et al. [83, 84]. This minia-

turized sensor was also used in a previous study by Lima et al. [54]. The scaled-down

34

version of this module is depicted in Figure 3.2.

Figure 3.2: Multi-

modal bio-inspired

sensor and MARG

frames of reference

[1].

Figure 3.3: XY-recorder

setup with a texture un-

der exploration [1].

Figure 3.4: The set of

textures explored in the

dataset [1].

Di↵erent from [54], the tactile sensing module used in this study has a rounded

profile and flexible materials that enable exploratory motions, resembling the shape

of a human fingertip. During experiments, the sensor was securely held in place by an

articulated robotic finger mounted on a plastic base. The rounded form of the fingertip

aims for a more straightforward exploration of 2D textures. The module incorporates

a Magnetic, Angular Rate, and Gravity (MARG) system with nine degrees of freedom,

providing valuable information about the exploration vibrations. Additionally, the

module features a base-mounted barometer that captures deep-pressure data. Even

though this unique sensor setup also allows us to record the module’s deformation, in

the present work, we focus on classifying textures based on the pressure data from the

35

barometer. Figure 3.3 shows the sensing module holder intended to mimic the index

finger’s natural probing. The motor housing serves as a permanent representation

of the intermediate phalange. The motor axis is used to represent the intermediate-

distal joint, and the tactile module holder is used to describe the distal phalange.

The distal phalange moves to bring the sensor module into touch with the surface as

the intermediate-distal joint rotates.

The data [81, 82] used here contain readings of 12 textures as shown in Figure

3.4. More details regarding the textures are available in [1]. The surface containing

the textures was explored in a square orientation (i.e., exploring X and Y directions),

as depicted in Figure 3.3. Each experimental trial involved completing a square for

each texture, with 100 experimental runs conducted at three di↵erent velocities (30,

35, and 40 mm/s). The dynamic exploration began by lowering the fingertip until it

made contact with the textured surface. A small torque was applied to the fingertip to

ensure consistent contact throughout the experiment. An empirically chosen pressure

threshold determined when the fingertip torque would end. The total run time for

each experiment was 12 seconds, with 3 seconds required to travel each side of the

square. The dataset uses a unique compliant multi-modal tactile sensor comprising a

deep pressure sensor and inertial measurements, which provides the interesting ability

to detect micro-vibrations and changes in pressure non-normal to the surface while

changing directions, as performed in this dataset, which is expected from robots

exploring daily textures. More details regarding the experimental setup and data

36

collection approach can be found in [1].

3.2.2 Data Preprocessing and Feature Extraction

Based on the findings of [1], the barometer feature achieved the best classification

results, exhibiting 100% accuracy for most texture classification cases. Therefore,

we decided to rely solely on the barometer sensor to conduct our experiments to

investigate dimensionality reduction. For our work, we utilized 1200 samples (cor-

responding to 12 textures) collected solely using the barometer at a velocity of 30

mm/s. Each sample contains data collected at 350 Hz while exploring the respective

textures. Subsequently, we applied our preprocessing pipeline to these raw samples.

The pipeline involves using an overlapping sliding window with a configurable win-

dow size, where the overlap was set to 50% of the window size. We believe setting

higher overlapping thresholds could result in excessively similar examples within the

sequence, potentially reducing diversity in the training set and increasing the process-

ing time required to transform readings into machine-learning-ready examples. The

consequence of such higher overlapping thresholds is that it could pose challenges in

resource-constrained environments. We experimented with two window sizes (3 and 6

seconds) to explore the impact of temporal features on our texture classification task.

The values of 3 and 6 seconds used in this work were set mainly because of the setup

of how the data was collected. A sliding window of 3 seconds corresponds to 25%

exploration, while 6 seconds corresponds to 50% exploration. In the experiments, we

37

aim to capture distinct dimensions of exploration within these time slices, and ex-

tending the exploration beyond 6 seconds would lead the module to revisit dimensions

already explored in the initial 3 seconds, resulting in redundant data collection For

each window, the pipeline generates a scaled instance (i.e., a MinMax scaler with val-

ues ranging from 0 to 1) comprising 11 statistical features, including mean, median,

variance, skewness, standard deviation, quantiles (10, 25, 76, 90), min, and max. In

this way, a resultant statistical features data frame is generated for each time window

on which the machine learning models are trained.

This generation of features uses the window strategy depicted in Figure 3.5 and

described below. Given as input a time window of 6 seconds and an overlap of 3

seconds, the first instance i1 generated from one experiment would start on time t = 0
and end time t = 6. From all the barometer data collected from this time window,

we extract the 11 statistical features and add such features to a data frame, storing

the texture label of that particular instance. For the second instance of the same

experiment with a texture, we move the window by 3 seconds (i.e., start on time t = 3
and end time t = 9) and repeat the process of extracting features and adding a label to

the texture. This entire procedure is repeated until the end of each experiment with

the textures. Such an approach generated two datasets, one for a 3 seconds window

with 50% overlap consisting of 6718 instances, and another for a 6 seconds window

with 50% overlap and 2878 instances. The processed data (step 3) referred to in this

subsection is the processed tactile data discussed in Figure 3.1.

38

Figure 3.5: Window-based statistical features extraction for the 6 seconds with 3

seconds overlap.

3.2.3 Active Learning Strategies and Class-Balancement In-

stance Selection Algorithm

AL strategies aim to select the most uncertain instances classified by a model to be

labeled by an expert so that the model can learn better with less data. Our research

compares three standard AL approaches, Uncertainty sampling (UNC) [15], Query by

Committee (QBC) with bagging [15] and Expected Model Change (EMC). The UNC

strategy selects for labeling the most informative instances from an unlabeled data

pool in an iterative manner. It measures the model’s uncertainty about its predictions

using metrics such as entropy, margin sampling, or least confident predictions [15].

The labeled data is then used to improve the model through training updates. QBC

with Bagging is an active learning strategy combining QBC with a bagging ensemble.

It generates diverse models using bootstrapped sampling and identifies uncertain in-

39

stances by assessing disagreement among the committee of models. These instances

with a high degree of uncertainty are labeled, and the ensemble is continually up-

dated with the new labeled data. The EMC strategy identifies instances expected to

induce the maximum positive change in the model’s performance when labeled. This

approach estimates the potential improvement by evaluating the impact of each un-

labeled instance on the model’s behavior, and the instance with the highest expected

positive change is selected for labeling.

In our experiments, we split 80% of our processed data as a training set and 20%

into a test set for validation purposes. In our AL strategy, the training set is used as

an unlabelled pool (i.e., the Processed Tactile Data in Figure 3.1) from which the most

uncertain labeled instances are queried for being labeled. The labels are extracted

from the raw data obtained by the robotic arm with tactile sensors, and therefore,

we do not involve a user annotating the data in our experiments. Once an instance

is labeled, it is added to the pool of labeled data on which a machine-learning model

can be trained. As AL is an iterative process, we fix a maximum annotation budget

(i.e., a maximum number of instances that can be queried throughout the process)

and a step size that defines the number of instances to be labeled at each batched

query we make on the unlabeled pool. The whole experiment was controlled and

repeated 20 times. We used 20 seed values for experimental reproducibility. The seed

generation procedure used the decimals of ⇡ selected four by four (i.e., seed1 = 1415,
seed2 = 9265, etc). Such a decision avoids an arbitrary choice of seeds. At the first

40

iteration of the AL strategies, instances are queried randomly (step 4 in Figure 3.1).

After we obtain the first subset of labeled training data, and then the AL strategy is

executed (step 5 in Figure 3.1), ranking and selecting the most informative instances

to be labeled. For UNC, we used Least Confidence [64] as a metric for evaluating the

uncertainty of instances defined in Equation 3.1. Using Equation 3.1 will query the

instances with the lowest confidence and the highest uncertainty for getting labeled.

Here, y∗ is the most likely class label assigned by a machine learning model, and ✓ is

the parameters of the model.

�LC(x) = 1 − P (y∗�x; ✓) (3.1)

While implementing QBC with bagging, we have created a committee with base

models trained on di↵erent subsets of labeled data using bagging. The committee of

models collectively predicts the labels for unlabeled instances or candidate samples.

Each model in the committee provides its prediction for each instance, and the level

of disagreement among the committee members is measured to assess the uncertainty

or informativeness of each candidate sample. For our case, we have used vote entropy

[64], shown in Equation 3.2, to calculate the disagreement among the committee

members. Using Equation 3.2, the most informative samples were queried from the

unlabelled pool and added to the labeled pool for training. In Equation 3.2, V (yt,m)
is the number of votes a particular label n receives from the committee of classifiers,

C and T is the total number of instances.

41

�V E(x) = − 1
T

T�
t=1

N�
n=1

V (yt,n)
C

logV (yt,n)
C

(3.2)

We instantiated the Expected Model Change (EMC) through Equation 3.3, which

quantifies the performance di↵erential resulting from the incorporation of an unla-

beled instance. This instance is assigned a potential label that maximizes the expected

impact on performance. In Equation 3.3, x is the instance to be evaluated, yi are all

labels possible in a given data set, and M is a performance metric. In this work, we

used the f1-score as our performance metric to calculate the EMC.

�MC(x) = max{yi∈[l1,lk]}(M(x, yi) −M) (3.3)

This paper presents a novel class-balancing instance selection algorithm that ef-

fectively addresses the class imbalance issue in the data. The main objective is to

query the unlabeled instance pool in a manner that ensures a balanced representa-

tion of classes in the labeled data. This approach aims to prevent bias in the model’s

classification performance, which may occur when certain classes have a dispropor-

tionate number of instances selected by an active learning (AL) strategy. The core

idea behind our algorithm is to modify the class frequencies in the training set by

inverting their occurrences. Consequently, we prioritize selecting more instances from

classes with fewer instances in the training set while reducing the number of instances

chosen from classes with more instances. To illustrate, consider a problem with four

classes, where the instance frequencies in the training set from an AL strategy are

42

f class1 = 0.4, f class2 = 0.15, f class3 = 0.2, and f class4 = 0.25. In the next round

of instance selection to be labeled by an expert, we would invert these frequencies,

leading to the selection of 15% of instances from class 1, 40% from class 2, 25% from

class 3, and 20% from class 4. By employing this strategy, we endeavor to achieve

a balanced training set. However, it is essential to acknowledge that perfect balance

cannot be guaranteed, given uncertainties associated with the class label of the se-

lected instance, which the expert will ultimately resolve. In summary, our proposed

class-balancing instance selection algorithm o↵ers a promising approach to address a

class imbalance in active learning, mitigating potential bias and enhancing the overall

classification performance by striving for a more equitable representation of classes

in the training data.

A pseudo-code of our strategy is given in Algorithm 1. In summary, the method

selectively adjusts the class frequencies to emphasize classes with lower representation

while reducing the prevalence of classes with higher representation. This process

enhances the balance in class distribution, which is crucial for the better performance

of various machine-learning algorithms. In line 1, the algorithm starts by computing

the frequency of each class in the training data. The bincount() function is used to

count the occurrences of unique labels in current train y, resulting in an array named

freq. In line 2, the frequency values obtained in the first step are normalized to a

range between 0 and 1. Each frequency value is divided by the number of examples

in the training set (len(current train y)) to yield a new array named norm freq.

43

To achieve an inverted probability distribution, the norm freq array is sorted in

descending order using the sort() function, and the [∶∶ −1] slicing is applied to reverse

the order of the sorted array. The resulting array is named sorted freq (line 3).

Next, to determine the mapping that would invert the probabilities, an auxiliary array

named sorted indices is created (line 4). This array stores the indices that would

sort the norm freq array in ascending order when sorted twice using the argsort()
function. Then, a loop (lines 5 to 7) is executed, iterating over each element in

sorted indices. For each index i, the corresponding value in sorted freq is assigned

to the inverted freq list at the position i. After all iterations, the algorithm has

constructed the inverted freq list, which now contains the inverted frequency values

for each class in the training set that is returned as the result of the algorithm in

line 8. This algorithm was integrated with both AL strategies, and its impact on AL

strategies is presented in the Results section.

3.2.4 Classification Models and Evaluation Metric

In our active learning approach, we can integrate any classifier as a model to predict

the instance classes (step 6 in Figure 3.1). For our experiments, we opted for widely-

used classifiers available in the sklearn package, including Decision Trees [85], Extra

Trees [86], XGBoost [87], and Random Forest [88]. A decision tree recursively splits

the dataset into subsets based on the most significant feature at each level of the tree,

making decisions along the way until it reaches a decision at the leaf nodes. A Random

44

Algorithm 1: Compute Inverted Example Frequency
Input: current train y: all label values used in the current training set

Output: inverted freq: The inverted frequency of the class distribution

1: freq ← bincount(current train y)
2: norm freq ← freq

len(current train y)
3: sorted freq ← sort(norm freq)[∶∶ −1]
4: sorted indices← argsort(argsort(norm freq))
5: for i in sorted indices do

6: inverted freq[i]← sorted freq[i]
7: end for

8: return inverted freq

45

Forest is an ensemble model that collects weak learners’ predictions and aggregates

their individual predictions to produce a final and more robust forecast. The Extra

Trees (i.e., Extremely Randomized Trees) model is also an ensemble algorithm that

builds multiple decision trees, but it introduces additional randomness on the section

of the feature and thresholds in the tree-building process. Finally, the XGBoost (i.e.,

Extreme Gradient Boosting) is an ensemble model that is trained sequentially and

uses the gradient descent optimization technique to minimize a loss function while

adding weak learners to the ensemble. Throughout our experiments, we used the base

version of these classifiers from the scikit-learn package [89], employing their standard

hyperparameters detailed in Table 3.1. All ensemble techniques (i.e., Random Forest,

Extra Trees, XGBoost) used a Decision Tree as the weak learner.

This choice ensures the classifiers are utilized in their default configurations, allow-

ing for fair and consistent comparisons during our evaluations. By employing these

standard classifiers, we aim to comprehensively assess their performance in the con-

text of active learning for texture classification tasks. In this work, we chose to employ

shallow models because one of the primary considerations is that processing e�ciency

is paramount in the context of embedded systems. Therefore, using deep models can

introduce significant computational burdens that may not align with the expected

processing capabilities of robotic platforms operating in unstructured environments.

Our work adopted a di↵erent evaluation metric than the approach used in [1].

Instead of using accuracy, we utilized the f1-score as our evaluation metric. The choice

46

Model Hyperparameters

Decision Tree
split criterion: gini index

minimal samples to split: 2

Extra Trees

split criterion: gini index

minimal samples to split: 2

number of estimators: 100

Random Forest

split criterion: gini index

minimal samples to split: 2

number of estimators: 100

XGBoost

learning rate: 0.3

max depth: 6

number of estimators: 100

Table 3.1: Models’ hyperparameter settings.

of f1-score as the evaluation metric is supported by [90], where it was highlighted that

accuracy, although commonly used for classification performance evaluation, may not

adequately address class imbalance issues. While our data may be balanced, our active

learning (AL) strategies could still su↵er from the e↵ects of class imbalance while

selecting instances from di↵erent classes in its iterative process. Hence, we deemed

it necessary to consider the f1-score as our evaluation metric. Unlike accuracy, the

47

f1-score considers precision and recall, making it a more balanced and informative

evaluation metric, especially in scenarios involving imbalanced class distributions.

By incorporating both precision and recall, the f1-score provides a comprehensive

assessment of the classifier’s performance, ensuring a more robust evaluation of our

texture classification task. The models produced at this step are iteratively trained

in the labeled data pool. At every training cycle (steps 4 to 7 in Figure 3.1), the

number of labeled data inside the pool is increased and we record the model’s achieved

performances for an in-depth evaluation of our entire proposed pipeline.

3.3 Results

In this section, we conduct a comprehensive analysis of the performance of our AL

strategies using four di↵erent classifiers, employing f1-score as the evaluation metric.

To establish the baseline performance of each classifier considered in this work, we

train and test them using repeated (4 times) 5-fold cross-validation. The baseline f1-

score values are a reference for comparing all combinations of machine learning models

and AL strategies used in this work since they represent an average performance of

the models using the entire dataset for building a model. It is essential to point out

that the baseline value is not a ceiling value for the problem discussed in this paper

since changing the training data will likely change the decision surface of a machine

learning model and, as a consequence, there is a possibility of obtaining a better model

than simply using more data to train a model. In this section, we start by exploring

48

the influence of temporal features in the texture classification task by comparing

the results obtained using di↵erent window sizes (e.g., 3 and 6 seconds) and window

overlaps (e.g., 75%, 50%, 25%). Furthermore, we investigate the impact of our class-

balancing instance selection algorithm on the AL strategies by generating results both

with and without such an algorithm. This comparison allows us to assess the e↵ect of

the class-balancing approach on the performance of the AL strategies. The figures in

this section present the number of instances queried for labeling at each Step (x-axis)

against the evaluation metric f1-score values (y-axis). For each step in the querying

process, we present two box plots. The blue box plot shows the performance of the AL

strategy (e.g., UNC or QBC) with the class-balancing algorithm, while the red box

plot presents the performance without the algorithm. We apply a sliding overlapping

window with several durations and overlaps on the raw data to prepare the data

for analysis. This preprocessing pipeline generates processed datasets of statistical

features, as discussed in Section 2.2. The AL strategies are then executed on these

processed datasets, allowing us to examine their e↵ectiveness in texture classification.

3.3.1 Sliding Window Size and Overlap Percentage Analysis

We start by assessing the influence of the size and duration of the sliding window. We

have tested several combinations of parameter values to understand how these values

a↵ect our experiments. The sliding window size was tested for 1, 3, 6, and 9 seconds,

as these values are su�cient to test robots exploring the axis of objects in one (e.g.,

49

1 and 3 seconds) or two directions (6 and 9 seconds). We also tested overlaps of

75%, 50%, and 25%, aiming at generating more or less data for the machine learning

models and evaluating how their performances would be a↵ected by those di↵erent

amounts of training data. We tested all combinations of these parameter values (4

sliding window sizes and 3 overlapping values). A sliding window of 9 seconds with

an overlap of 25% cannot be obtained in our experiments since the robot exploration

is of at most 12 seconds, and a 25% overlap would start the next window with 6.75

seconds and therefore could not obtain a total window size of 9 seconds (i.e., starting

at 6.75 seconds and ending at 15.75 seconds). Therefore, we test 11 combinations

of sliding window sizes and overlaps. The details of the datasets generated by all

these 11 combinations can be seen in Table 3.2. Finally, we have used a repeated (4

times) 5-fold cross-validation for all the machine learning models (e.g., Decision Tree,

Extra Trees, Random Forest, and XGBoost), and the average f1-scores are reported

in Table 3.3.

The results presented in Table 3.3 show that a window of 1 second is not enough to

distinguish the textures. This means that using a window of 1 second cannot extract

meaningful features to classify the textures since the f1-scores are in a range between

51% to 67%. Higher performances are achieved when the robot starts exploring the

texture for 3 to 9 seconds.It is essential to point out that the objective of our work

is to learn with as little data as possible, and we relied on Table 3.3 to decide on the

proper values for the window size and overlap. We discarded 9-second windows mainly

50

Sliding window size
Overlapping percentage

75% 50% 25%

1 second 53,997 27,598 17,999

3 seconds 15,599 8,399 5,999

6 seconds 5,999 3,599 2,400

9 seconds 2,400 1,200 -

Table 3.2: The total number of instances generated by our sliding window procedure

when using the 11 sliding window size and overlap combinations.

Window size 1 second 3 seconds 6 seconds 9 seconds

Overlap 75% 50% 25% 75% 50% 25% 75% 50% 25% 75% 50%

Decision Tree 51.21 51.62 55.64 70.78 72.82 75.33 80.90 80.90 79.43 87.82 88.55

Extra Trees 64.73 63.66 67.04 82.99 83.89 84.63 90.64 89.75 88.36 94.40 93.80

Random Forest 64.24 63.66 66.80 82.31 83.18 83.92 89.51 88.83 87.54 92.81 91.03

XGBoost 65.50 64.87 67.41 83.50 84.01 84.29 90.56 89.45 87.56 93.60 92.63

Table 3.3: Average f1-score values for all 11 combinations of sliding window sizes

and overlaps.

because the number of instances to be chosen for an AL strategy would be low (i.e.,

1,200 to 2,400 instances) when compared with other setups, and this could decrease

the advantage of selecting high-yield instances from the unlabeled pool. In addition,

51

a robot should explore the surface as little as possible to predict the proper label for

the texture and using 9 seconds would make the robot explore a direction (i.e., x or

y axis) a second time. It is important to highlight that higher performance values

with longer windows are expected since the robot would explore them for a longer

time on the surface and have a higher chance of correctly classifying the texture.

Finally, we discarded the overlapping windows of 25% and 75% since the di↵erences

between them, when compared to a 50% window, were not statistically significant

for 3 and 6 seconds windows. Therefore, we decided to provide a balance between

performance and a reasonable pool of instances to be given to the AL strategies, which

is obtained by using the 50% overlap. As a result from this experiment, we conclude

that using windows of 3 and 6 seconds with an overlap of 50% is a reasonable choice

(i.e., obtaining higher performances while maintaining a reasonable pool of instances

for the AL strategies) of parameters for the data set used in our experiments and,

therefore, we use this result to proceed with our AL strategies analysis.

3.3.2 Uncertainty Sampling Strategy on 3 and 6 seconds win-

dows

In this experiment, we adopted the uncertainty sampling (UNC) strategy to min-

imize the number of instances requiring expert annotation and to enhance texture

classification performance. Figure 3.6 illustrates the results obtained using a win-

dow size of 3 seconds and an overlap of 50%. All classifiers using the UNC strategy

52

managed to achieve and surpass their respective baseline f1-score values within an

annotation budget of approximately 5880 out of a total of 8399 instances (equivalent

to 70% of the data). This finding suggests that we could reduce the training set for

these classifiers by 30% while achieving comparable or even improved performance

compared to utilizing the entire dataset for training. Notably, for the ExtraTrees,

Random Forest, and XGBoost classifiers, the total budget could be reduced to only

3920 instances (equivalent to 47% of the data) to achieve baseline performance. It is

also noticeable that UNC with the class-balancement algorithm performed similarly

to the standard UNC algorithm, and therefore, no substantial gains were observed by

using our class-balance instance selection algorithm.

In Figure 3.7, we present the results obtained using the uncertainty sampling

(UNC) strategy with a window size of 6 seconds. For this configuration, all classifica-

tion models achieved performance exceeding the baseline with an annotation budget

of 2016 instances (equivalent to 56% of the total 3599 instances in the dataset). This

finding indicates that a substantial reduction of 44% in instances is possible when

employing the UNC strategy to train machine learning models in this texture classi-

fication task without compromising performance. Again, in the case of Extra Trees,

Random Forest, and XGBoost a further reduction for 1176 instances (33% of all

training data) is enough to surpass the baseline, indicating a reduction of 67% of

the training data is possible and still achieve the baseline value. Furthermore, when

combined with the class-balancing instance selection algorithm (shown in blue), we

53

Figure 3.6: f1-score plots of the uncertainty sampling strategy for the 3-second win-

dow.

observed that the UNC strategy demonstrated performance similar to the standard

UNC algorithm (shown in red). This suggests that no significant improvements were

achieved by balancing the selection of the next round of instances when using UNC

54

as the active learning strategy.

Figure 3.7: f1-score plots of the uncertainty sampling strategy for the 6-seconds win-

dow.

55

3.3.3 QBC Strategy on 3 and 6 seconds windows

In the case of the QBC strategy, all classification models reach at least their base-

line score for a window of 3 seconds, as shown in Figure 3.8 with a budget of 5880

instances from a total of 8399 instances (70% of the entire data set). It is essen-

tial to observe from the experiments depicted in Figure 3.8 that the class-balancing

algorithm indeed increased the performance of the QBC strategy compared to the

standard QBC implementation, mainly in the early cycles of the QBC strategy. For

a window of 6 seconds (Figure 3.9), the QBC strategy reaches at least the baseline

performance with 1512 instances (42%, out of the 3,599 total) for all classification

models using the class-balancing algorithm. This represents a reduction of 58% in the

training data used to achieve at least a similar performance. Moreover, a distinction

is noticed between the QBC strategy with and without the balancement technique in

its initial cycles, as the class-balancement algorithm shows considerable improvements

compared to the standard QBC strategy at most steps evaluated in this experiment.

Finally, it is essential to point out that using QBC, a window of 6 seconds, and the

balancing strategy surpasses all baseline models’ performances for this setup.

3.3.4 EMC Strategy on 3 and 6 seconds windows

In the case of the EMC strategy, all classification models reach at least their baseline

score for a window of 3 seconds, as shown in Figure 3.10 with a budget of 5880

instances from a total of 8399 instances (70% of the entire data set). It is essential

56

Figure 3.8: f1-score plots of the query by committee strategy for the 3-second window.

to observe from the experiments depicted in Figure 3.10 that the class-balancing

algorithm indeed increased the performance of the EMC strategy compared to the

standard EMC implementation, mainly in the early cycles of the EMC strategy. For

57

Figure 3.9: f1-score plots of the query by committee strategy for the 6-second window.

a window of 6 seconds (Figure 3.11), the EMC strategy reaches at least the baseline

performance with 2,016 instances (56%, out of the 3,599 total) for all classification

models using the class-balancing algorithm. This represents a reduction of 44% in the

58

training data used to achieve at least a similar performance. Similarly to the QBC

strategy, a distinction is noticed between the EMC strategy with and without the

balancement technique in its initial cycles, as the class-balancement algorithm shows

improvements compared to the standard EMC strategy at most steps evaluated in

this experiment. Finally, it is essential to point out that using EMC, a window of 6

seconds, and the balancing strategy surpasses all baseline models’ performances for

this setup.

3.3.5 Comparing Window Sizes and Active Learning Strate-

gies Performances

In this experiment, first, we evaluate the statistical significance of the di↵erence be-

tween the window sizes (3 and 6 seconds) per model and AL strategy. Here, the

objective is to ensure that the di↵erences are statistically significant to a�rm that

one window size is better than the other for our problem. Therefore, we created

Table 3.4 as follows. We used all experiments with the class-balanced strategy for

both UNC and QBC, for all models and window sizes with the maximal budgets of

5880 (represents a total of 70% of the processed data using our pipeline) for 3 seconds

windows and 2520 (represents a total of 70% of the processed data using our pipeline)

for 6 seconds windows. These budget values were chosen to ensure all combinations

of AL strategies and machine-learning models could have enough data to at least

reach the baseline performance and, therefore, have a more fair comparison between

59

Figure 3.10: f1-score plots of the expected model change strategy for the 3-second

window.

all combinations. We averaged all these experiments and also reported the standard

deviations.

60

Figure 3.11: f1-score plots of the expected model change strategy for the 6-second

window.

As seen in Table 3.4, using a window of 6 seconds always surpasses a window of

3 seconds regardless of the machine learning models and AL strategy adopted, with

average f1-score di↵erences at most 8%. We conducted a Wilcoxon signed rank test

61

between each model’s average for a 3 and 6-second window and per AL strategy first.

We verified that all these averages are indeed statistically significantly di↵erent for

the window sizes of 3 and 6 seconds per AL strategy as the p-values were all below the

threshold (i.e., with p−value < 0.05, we reject the null hypothesis that those averages
come from the same distribution). Therefore, we can a�rm that using a window size

of 6 seconds is the best choice for our problem for all AL strategies.

Using Table 3.4, we also verified which combination of a machine learning model, 6-

second window, and AL strategy (using the balanced strategy) would perform best in

our problem. As seen in Table 3.4, an Extra Tree trained with Uncertainty Sampling

and a 6-second window reached a 90.25% f1-score, and therefore, it is the best result

achieved. We executed a Wilcoxon signed rank again, comparing this best average

value with all other combinations of the 6-second window and AL strategy (using

the balancing strategy), and the statistical values showed that this choice was better

than all others. Therefore, we conclude that Extra Tree trained with Uncertainty

Sampling and the class-balance technique are our problem’s best machine-learning

model choices for our tactile sensing classification problem for a total budget of 70%

of the training data given to our entire data pipeline.

3.4 Discussion

In this paper, we tested and improved three standard AL strategies for a texture

classification task. To the best of our knowledge, this is the first work on using AL

62

Models

UNC QBC EMC

Window size Window size Window size

3 seconds 6 seconds 3 seconds 6 seconds 3 seconds 6 seconds

Decision Tree 72.60 ±1.26 80.67 ±1.39 72.94 ±1.00 81.12 ±1.34 72.81 ±0.98 80.52 ±1.14
Extra Tree 84.24 ±0.71 90.25 ±0.92 84.21 ±0.58 90.13 ±1.03 83.72 ±0.78 89.71 ±0.95
Random Forest 83.53 ±0.79 89.13 ±1.24 83.44 ±0.66 89.15 ±1.09 83.10 ±0.48 88.86 ±1.13
XGBoost 83.76 ±0.86 89.80 ±1.08 84.02 ±0.87 89.58 ±1.46 83.52 ±0.81 89.48 ±1.41

Table 3.4: f1-score of AL strategies for di↵erent windows and models.

for tactile texture classification. Although we used the same sensor and experimental

process as in [1], we worked on some limitations of their methodology. The authors

in [1] had to undergo an expensive training process as they used 12 seconds of data

exploration and trained their model on such a massive amount of data. Despite this

significant e↵ort, the training approach seemed to lack attention to the temporal

features that could play a crucial role in the final outcome as they used each value

from the sensor as a feature.

Our work advances existing texture classification methodologies by proposing a

novel pipeline for tactile data used for texture classification. This pipeline includes

a time window approach for extracting features and using AL with a class balancing

algorithm. Therefore, we addressed a significant issue in tactile data for texture clas-

sification: training a high-performance machine learning model with a limited number

63

of training data. Building such a high-performance machine learning model has sev-

eral implications, including the possibility of deployment of low-complexity models in

low-cost robotic hardware and the time reduction for the robotic arm exploration for

classifying textures using tactile sensors. Our proposed pipeline achieved competitive

and even better classification performance than an established baseline, with less an-

notated data, making the learning process faster and more e�cient. We show that

using at most 70% of the data available is enough to achieve and surpass the baseline

performances using our proposed pipeline and algorithms. Moreover, we considered

the e↵ect of temporal features using our sliding overlapping windows and extracting

the sensors’ data distributions. This gave the machine learning models detailed in-

formation regarding the robotic exploration, improving the performance of machine

learning models learned from the tactile data. The AL strategies applied to the pro-

cessed data further reduced the need for labeling training instances, as they selected

only the most valuable ones to be labeled and given to the classifiers. As observed

in the plots for 6-second windows, the learning process achieved the baseline results

faster (with a lower budget for instances selected) and more e�ciently (achieving an

average f1-score of 90.21%) compared to 3-second windows. We believe that such a

result was because a window of 6 seconds in the conducted experiments ensures that

the robot explores the texture in the two axes. Therefore, changes in texture in both

axes could be better characterized by the extracted features. The results also show

that in some of our 3-second-window experiments, the baseline method outperforms

64

specific active learning configurations, specifically the Decision Tree with uncertainty

sampling and all Query by Committee (QBC) combinations. We believe this can be

attributed to several key factors. Firstly, the discrepancy in performance between the

baseline and active learning for the 3-second window experiments can be linked to

the unique characteristics of our dataset and the duration of tactile exploration. Our

dataset is tailored to focus on textures that primarily exhibit variations along the

x and y axes. A 3-second window, however, typically encompasses only one dimen-

sion of exploration, resulting in limited diversity in the captured data. Consequently,

when the entire labeled dataset is available for model training, simpler models like

the Decision Tree may not perform better due to the absence of all data points. To

optimize labeling e↵orts, we imposed a maximal budget of 70% for active learning,

beyond which further labeling would yield diminishing returns. In contrast, the more

complex models employed in active learning demonstrate superior performance with

a lower labeling budget. Moreover, the specific approach of bagging with randomly

selected elements employed in QBC for creating the voting committee may inadver-

tently limit diversity in the committee models, a↵ecting the method’s performance in

3-second-window experiments. In contrast, our 6-second window experiments demon-

strate a di↵erent pattern, with active learning methods consistently outperforming

the baseline. This can be attributed to the extended exploration duration covering

at least two texture dimensions. This aligns more closely with the inherent char-

acteristics of our dataset and showcases the e�cacy of active learning strategies in

65

scenarios where exploration durations o↵er a more comprehensive view of the tactile

data’s complexity.

Furthermore, our balancement algorithm makes our AL strategies robust to the

distribution imbalance from queries performed by standard AL strategies. The bal-

ancing algorithm showed a marginal e↵ect on the UNC strategy, but it improved the

results for the QBC and EMC strategies, mainly in the early stages of our process.

Finally, combining a standard UNC strategy with the balancing algorithm and an Ex-

traTree as the machine learning model produced the best result for our tactile texture

classification dataset. In conclusion, this work made the process of texture classifica-

tion using tactile sensors more precise and e�cient for real-world unstructured and

dynamic environments by surpassing the results obtained by previous works.

We intend to expand this work in several directions. First, we would like to test

and adapt our proposed pipeline for di↵erent types of tactile sensors and other sen-

sory data. This approach would involve understanding how it performs with varying

factors associated with di↵erent sensors. Extending this work to other dynamic real-

world environments, such as industrial ones, would provide insights into the robust-

ness of the pipeline. This work mainly focused on UNC, QBC, and EMC as active

learning strategies. Future research endeavors include exploring alternative Active

Learning (AL) strategies to assess their potential advantages and insights within tac-

tile texture classification. Another path we intend to explore is how AL would perform

in scenarios with incomplete data, such as those caused by partial contact between

66

the tactile sensor and the examined object. We believe AL has the potential to select

those instances that a model deems more uncertain and, therefore, learn from them

and adapt over time, gradually becoming proficient in handling such scenarios.

67

Chapter 4

Unbalanced Fault Classification

using Active Learning in Synthetic

Fiber Manufacturing Process

4.1 Introduction

Automation, data analytics, machine learning, and artificial intelligence breakthroughs

are driving a significant upheaval in manufacturing. Recently, industrial processes

have become more intelligent and data-driven, strongly emphasizing quality control

and production e�ciency. Such systems rely upon real-time monitoring of industrial

processes and products. The standard method utilizes industrial sensors within the

production process, e.g., [91]. These sensors generate large volumes of time-series

68

data, which must be processed and interpreted.

Synthetic fiber is manufactured using polymers obtained from petroleum or natu-

ral gas. In principle, the process involves extruding a liquified polymer through small

openings and solidifying it into fiber filaments through cooling, followed by complex

post-processing to impart the properties downstream customers require. Moreover,

several variations and customizations to the generic process outlined above exist,

depending on the manufactured product. For producers in this industry, ensuring

product quality, eliminating faulty fiber, and reducing production downtime are es-

sential. Fiber defects in the manufactured product can result in costly claims from

downstream customers. Therefore, reducing customer claims becomes critical to long-

term success in the industry.

To assist fiber manufacturers in achieving these aims, Instrumar Limited has de-

veloped a polymer fiber monitoring system [92], currently known as the Instrumar

Fiber System (IFS). IFS uses electromagnetic sensors developed by Instrumar Limited

to monitor the properties of the polymer fiber as it is being produced. Each sensor

measures the physical properties of the fiber being produced and generates a stream

of time-series data. These data are then analyzed to detect patterns corresponding

to the fiber’s or production processes’ physical faults. IFS currently relies on man-

ually identifying data patterns corresponding to physical problems and looking for

such patterns in the data. As this process is labor intensive and susceptible to inac-

curacies, an automated data analysis and fault detection process will help increase

69

e�ciency and reduce costs.

Detection of industrial production faults and manufactured product defects using

machine learning and artificial intelligence based classification techniques have been

used and proposed in [93, 53, 94, 95, 96, 1]. However, identifying and classifying faults

in time-series data from sensors monitoring synthetic fiber production poses several

unique challenges. Firstly, most of the data represents the normal functioning of the

production process. Only a tiny fraction of the data represents defective products,

which must be identified. Secondly, there are several product defects, each with its

own pattern. Moreover, unidentified and anomalous data patterns often do not cause

product defects and are not of interest to the customer. Consequently, labeling these

datasets is labor intensive, requiring a substantial time commitment from domain

experts, and hence costly. Finally, due to the variety of defect types with varying

frequencies, labeled datasets will likely su↵er from severe class imbalance.

In this work, we investigate using AL [15] strategies for fault classification. AL

is based on the assumption that a machine-learning (ML) algorithm could perform

better using a smaller number of labeled instances if we carefully choose only the

most informative ones for the model to learn from. This reduces the need for a large

volume of labeled data and hence saves data annotation time for industries, thereby

reducing costs and enhancing e�ciency.

The AL techniques we implement are integrated into the specific dynamics of

synthetic fiber production and the various fault types that arise in its production

70

process. We use time-series data from Instrumar sensors installed at a fiber manu-

facturing plant operated by one of their customers. These data serve as a valuable

resource for analyzing patterns and classifying the diverse data patterns represent-

ing faults of significant concern to the manufacturer. Our goal is to enable e↵ective

classification of fault situations, minimize production disruptions, and ultimately im-

prove fiber products’ quality and reliability by utilizing AL’s power. This research

proposes an integrated approach, employing Active Learning techniques and a spe-

cialized class-balancing instance selection algorithm, to significantly reduce labeled

data requirements, enhance accuracy, and e↵ectively address class imbalance issues in

fault classification for synthetic fiber manufacturing. Through this study, we hope to

positively impact the Synthetic Fiber Industry’s continuous transition to intelligent

manufacturing and quality control procedures. This project aligns with the Fourth

Industrial Revolution [95] objective of developing data-driven, intelligent manufac-

turing processes.

The present paper provides a literature review in Section 4.2. Our methodol-

ogy and pipeline are presented in Section 4.3 followed by results and discussion in

Sections 4.4 and 4.5, respectively.

4.2 Literature Review

Rapid industrial evolution in fiber manufacturing necessitates increasingly accurate

and e↵ective fault classification techniques. Over the past few decades, model-based

71

approaches and data-driven methodologies have made substantial progress in fault di-

agnostics. With the ever-increasing use of sensors and IOT in the production process,

data-driven approaches have gained popularity [97]. This literature review delves into

data-driven methodologies that promise to transform fault classification in industrial

production.

The authors of [98] have identified data-driven approaches as supervised and unsu-

pervised, with the former requiring labeled training datasets while the latter does not.

Regression and classification are the most commonly used ML tasks in manufactur-

ing, and supervised learning tends to be the dominant approach, with unsupervised

learning being far less used [99, 53]. Moreover, abundant production line data has

also led industries to focus more on supervised techniques. Angelopoulos et al. [95]

highlighted the necessity of vast amounts of data for machine learning algorithms to

be adequately trained for use in many industrial decision-making processes. Fernan-

des et al. [100] point out that Decision Trees tend to be suitable for applications in

an industrial context. In [101, 102], Random Forest models were used because of the

e�ciency and e↵ectiveness of ensemble tree models. Sacco et al. [103] presented a

cutting-edge inspection method for Automated Fiber Placement (AFP) that uses a

deep convolutional neural network to classify defects on a per-pixel basis. However,

due to the need for large, clearly annotated training datasets, these supervised learn-

ing techniques may not be suitable for application in industrial projects using AFP

[104]. According to [105], the lack of labeled training data is primarily caused by the

72

high cost and inconvenience of gathering real-world data from production machines,

the rarity of defects that necessitate extensive data collection, and the absence of stan-

dardized guidelines for human inspectors to identify, document, and label anomalies

and defects for machine learning. It is di�cult to translate the multiplicity of stan-

dards and practices into a clear labeling strategy for training models [104]. To detect

and classify faults, supervised models need to be trained on faulty instances, which

are rare in manufacturing. To address this issue, research has been done on creating

synthetic datasets in [106] for detecting and classifying the wielding of carbon fiber

and in [107] to detect defects in AFP. According to the authors of [104], although

such techniques of data generation have shown e↵ectiveness, they still need suitably

large and representative datasets. Furthermore, it takes a lot of computational power

for industries to thoroughly process enormous volumes of data to arrive at a solution

that is close to ideal [95]. Because of this, supervised learning models are infeasible

in actual industrial settings.

Although labeled data is scarce, there is still a lot of unlabeled data available in the

industry. To utilize these unlabeled data, research has been conducted to incorporate

labeled and unlabeled data to train the models, a technique known as semi-supervised

learning [108]. In [109, 110], the authors studied the e↵ect of semi-supervised methods

for fault diagnosis. Although these semi-supervised methods yield good performance,

significant limitations are associated with them. One of them is the complexity of the

training process, which results in increased training time and a higher requirement

73

for computational resources. Besides, it remains unclear how well the results, such as

those of [111], generalize to other types of fault signals.

Figure 4.1: Instrumar’s

fiber quality monitoring

sensor.

Figure 4.2: Instrumar’s

fiber quality monitoring

sensor at a production

plant.

Figure 4.3: Active Learn-

ing pipeline for fault clas-

sification.

Problems with data-based modelling are frequently encountered because the train-

ing process is hampered by data loss, redundancy, mislabeling and class imbalance

That is why the authors have prioritized improving the e�ciency and processing time

of learning algorithms and creating learning strategies that can successfully adjust

to di↵erent levels of uncertainty. To achieve such control, AL can be a solution that

merits further exploration by industry. The use of AL substantially reduces the need

for labeled data by allowing the model to actively choose the most informative data

points to be labeled (i.e., annotation) by an expert. The core concept of AL is that if

the learning algorithm can choose the data from which it learns, it will perform bet-

ter with less training data [15]. AL techniques have employed many di↵erent query

74

strategies, which are ways of choosing the most informative data points for labeling,

with Uncertainty (UNC) sampling and Query By Committee (QBC) [15] being the

most commonly used. In [97], the authors develop a cost-sensitive AL framework

that reduces data wastage. Additionally, the authors attempted to tackle the imbal-

ance between normal and fault-type samples. The authors in [112] have also used

AL to classify industrial process time series data consisting of vibration waveforms

or process control data. Authors in [76] obtained su�cient annotated training data

for multivariate time series classification using AL.

Although the imbalance between normal and defective samples in manufacturing

datasets has been addressed in the literature, the imbalance among di↵erent classes

of defective samples must be explored. This study investigates using AL strategies on

real-life fiber industry time-series data to classify di↵erent types of faults in the pro-

duction process under the constraint of a substantial imbalance between the numbers

of di↵erent fault types.

Our research introduces a pioneering approach to fault classification within in-

dustrial fiber manufacturing by devising a novel class-balancing instance selection

technique integrated with Active Learning strategies. This innovation stands as a

significant progression beyond existing studies, which predominantly focus on Active

Learning in fault classification. Our method addresses the crucial industry challenge

of class imbalance among production fault types, which is a critical aspect for fault

classification methodologies, thus enhancing fault classification accuracy while no-

75

tably reducing labeled data requirements.

4.3 Methodology

In this section, we present our comprehensive framework for enhancing fault classifi-

cation within the domain of industrial fiber manufacturing. This methodology begins

with a detailed exploration of data collection, followed by preprocessing and feature

extraction techniques, ensuring data quality and readiness for analysis. Here, we in-

troduce AL strategies, showcasing their potential in optimizing the fault classification

process. We also present our novel class-balancing instance selection algorithm that

aims to mitigate the impact of data imbalance on AL strategies and improve classi-

fication accuracy. Finally, we discuss the selected classification models and relevant

metrics for evaluation.

4.3.1 Data Collection, Preprocessing and Feature Extraction

Here, we delve into the critical foundation of our study, where we leverage real-world

factory data provided by our industry partner, Instrumar Limited. The time series

dataset utilized in this work originates from Instrumar’s proprietary sensors, shown in

Figure 4.1, specifically designed to monitor industrial fiber manufacturing processes.

The Instrumar Fiber Sensor Unit (SU), installed on a production line, measures

the electrical impedance of fiber as it passes through an electromagnetic field. In

e↵ect, the sensor is sensitive to the electrical properties and the geometry of the fiber.

76

The electrical impedance response signal is measured at 20 kHz to 40 kHz. These

data are then processed through Instrumar’s Sensor Processing Unit (SPU), which

calculates and outputs four fiber properties every 200ms: (i) magnitude, (ii) phase,

(iii) node quality, and (iv) node count. The magnitude is related to the denier or the

density of the fiber. Nodes in the fiber cause a drop in the electrical response signal.

The frequency of such drops is the node count, while the amplitude of the drops is

the node quality. The phase measures the time delay in the response signal. It is

sensitive to conductivity and hence the amount of finish applied to the fiber.

The four fiber properties described above are measured every 200ms and are then

used to detect defects in the fiber and infer the underlying process issues that could

have produced such defects. Besides serving as the input for Instrumar’s current

system, they represent a valuable resource that enables us to explore and implement

our proposed research for fault classification in this industrial context.

Instrumar’s current data analysis system matches the data to known patterns cor-

responding to fiber defects or physical events. Instrumar’s engineers identify these

data patterns and build heuristic algorithms to catch them, known as custom fault alarms.

This process tends to be labor-intensive and error-prone. Additionally, setting the

parameters for these algorithms is challenging. They often need to be fine-tuned

and adjusted to minimize false positives or capture missed events based on customer

feedback. Moreover, they are blind to large data fluctuations with a previously un-

known or unidentified pattern. This could potentially result in products that do not

77

meet specifications being passed o↵ as normal, leading to costly customer claims and

substantial financial loss.

Instrumar aims to replace this system with a more robust two-stage process. In

the first stage, data are processed through an unsupervised learning algorithm to

identify abnormal or anomalous data. These anomalous data are then classified by a

multiclass classification algorithm into specific faults, which are then communicated

to the customer to initiate further feedback actions. Neither of these algorithms can

be run on the raw time-series data. Instead, the time-series data must be further

processed. The data are divided into time windows, and a set of features is extracted

for each window for each fiber property. The set of features consists of the mean,

median, standard deviation, variance, chi-square, 25th percentile, 75th percentile,

minimum and maximum values, kurtosis, skewness, and stability (i.e., the ratio of

current fiber property level to average level over last 24 hours) totalling 12 features

that are extracted for each of the four fiber properties. Thus, the total number of

features extracted is 48. Each window with its set of features constitutes a data

instance.

Our goal in this study is to examine and evaluate the use of AL techniques to

classify anomalous fiber property data into various fault types. For the training and

evaluating our models, we use the labels provided by the custom fault alarms. While

these labels are not necessarily perfectly valid, they serve as a valuable control sample

to evaluate and validate our results against and inform Instrumar’s business decisions

78

about the feasibility of deploying the new fault identification system. This work

uses four di↵erent custom faults, namely crossover, entanglement, godetwrap, and

major crossover. The crossover is a condition where a small number of filaments

from one fiber bundle migrate to another fiber bundle. An entanglement is a limit-

based alarm that fires if the number of knots expected deviates past a minimum and

maximum limit. A godetwrap event is when several filaments break and wrap around

one part of the machine, the godet. A major crossover is like crossover except

that it causes the line to break very quickly, so a large migration of filaments causes

significant issues.

4.3.2 Data Class Imbalance

The distribution of fault types in our dataset shows a substantial disparity, with

specific fault categories being far more common than others. The number of instances

for crossover is 2485, entanglement is 35, godetwrap is 860 and major crossover

has 221. That is, the number of crossovers is 70 times higher than the number of

entanglement events in our sample. This class imbalance arises because of significant

di↵erences in the frequencies of di↵erent types of faults in the manufacturing process.

79

4.3.3 Active Learning Strategies and Class-Balancement In-

stance Selection Algorithm

AL techniques aim to choose the most uncertain examples the model has identified

and have them labeled by an annotator. Our study compares Uncertainty sampling

(UNC) [15] and Query by Committee (QBC) with bagging [15] for the purpose of fault

detection in the fiber industry. The UNC approach iteratively chooses from a pool

of unlabeled data the instances that will be most useful for labeling. Using metrics

like entropy, margin sampling, or least confident predictions, it assesses how unsure

the model is about its predictions. The model is then updated during training using

the labeled data. Another AL technique, QBC with Bagging, combines QBC with a

bagging ensemble. Employing bootstrapped sampling to produce various models also

detects unclear labels by analyzing model committee disagreement. The examples

with a high level of uncertainty are labeled, and as new labeled data is added, the

ensemble is updated.

Figure 4.3 shows the pipeline developed for this work. In our work, we split the

processed data into two sets: a training set with 80% of the data and a test set

with 20% of the data for validation. The processed fiber data in Figure 4.3 serves

as the unlabelled pool in our AL method from which the most ambiguous labeled

instances are queried for labeling by the AL strategies (step 1). We do not use a

human annotator to annotate the data in our tests because the labels are retrieved

from the Instrumar custom fault alarms. Once an instance has been labeled, it is

80

added to the collection of labeled data, as in step 2. Then, we train a machine learning

model using the instances in the labeled pool (step 3) and use the trained model to

classify the instances present in the processed pool of fiber data (step 4). Given

that AL is an iterative process, we establish a maximum annotation budget, i.e., the

maximum number of instances that can be queried throughout the process and a step

size that specifies the number of instances from the unlabeled pool to be labeled at

each AL iteration. Following these steps, steps 1 to 4 are iteratively executed until the

annotation budget is reached. To ensure experimental reproducibility, we employed

20 seed values. Our seed generation technique uses the successive decimal digits of ⇡

in sets of four (seed1 = 1415, seed2 = 9265, etc.). Such a choice prevents the selection

of seeds at random. Instances are randomly queried during the first iteration of the

AL techniques (step 1 in Figure 4.3). For UNC, we employ the Least Confidence

metric to assess the degree of uncertainty of instances in Equation 1, where y∗ is the

class label that a machine learning model most likely assigned.

�LC(x) = 1 − P (y∗�x; ✓) (4.1)

We have developed a committee with basic models trained on various subsets of

labeled data while performing QBC with bagging. The committee of models collec-

tively predicts the labels for unlabeled instances. The level of disagreement among

the committee members is assessed to determine the uncertainty or informativeness

of each candidate sample, and each model in the committee o↵ers its forecast for each

81

occurrence. To determine the degree of disagreement among the committee members

in our instance, we employed the vote entropy, depicted in Equation 2 where V (yt,m)
is the number of votes a specific label m obtains from the committee of classifiers, C.

�V E(x) = − 1
T

T�
t=1

M�
m=1

V (yt,m)
C

logV (yt,m)
C

(4.2)

The class imbalance problem in the data is addressed by the novel class-balancing

instance selection algorithm presented in this paper. The primary goal is to query the

unlabeled instance pool so that the labeled data has a balanced representation of all

classes. This strategy seeks to avoid bias in the model’s classification performance,

which could happen if some classes receive an excessively high number of instances

from an AL strategy. Our algorithm mainly aims to modify the training set’s class

frequencies by inverting their occurrences. As a result, we reduce the number of in-

stances picked from classes with more occurrences while prioritizing selecting more

instances from classes with fewer instances in the training set. Integrating this al-

gorithm with the AL strategies, we look to provide a balanced training set for our

classifiers to train on. By aiming for a more fair representation of classes in the

training data, our proposed class-balancing instance selection algorithm provides a

viable technique to resolve a class imbalance in AL, limiting bias, which results in

increased classification performance, as discussed in the Results section. It is essential

to understand that, given the class label of the chosen instance’s uncertainties, which

the expert will finally resolve, perfect balance cannot be guaranteed. The pseudo

82

algorithm for the balancement technique is described in Algorithm 2.

Algorithm 2: Computation of inverted example frequency.
Input: current train y: all label values used in the current training set

Output: inverted freq: The inverted frequency of the class distribution

1: freq ← bincount(current train y)
2: norm freq ← freq

len(current train y)
3: sorted freq ← sort(norm freq)[∶∶ −1]
4: sorted indices← argsort(argsort(norm freq))
5: for i in sorted indices do

6: inverted freq[i]← sorted freq[i]
7: end for

8: return inverted freq

This procedure improves class distribution balance, which is essential for improved

machine-learning algorithm performance. The algorithm begins in line 1 by deter-

mining how frequently each class appears in the training set. An array called freq

is produced by counting the instances of unique labels in the current train y us-

ing the bincount() function. Line 2 normalizes the frequency values acquired in

the first step to a range of 0 to 1. A new array called norm freq is produced by

dividing each frequency value by the total number of examples in the training set

83

(len(current train y)). The norm freq array is sorted in descending order using the

sort() function, and the [∶∶ −1] slicing is then used to reverse the order of the sorted

array to produce an inverted probability distribution. The array that is produced

is called sorted freq (line 3). Afterward, an auxiliary array called sorted indices

is created to identify the mapping that would cause the probabilities to be reversed

(line 4). When the argsort() function is used twice to sort the norm freq array, the

indices that would result are stored in this array and would be sorted in ascending

order. After that, a loop that iterates over each element in the sorted indices is run

(lines 5 through 7). The corresponding value from the sorted freq is assigned to

the inverted freq list at position i for each index i. The inverted freq values for

every class in the training set are now included in the inverted freq list, which the

algorithm has created after all iterations and is returned as the algorithm’s output in

line 8.

To summarize the algorithm, the technique reduces the prevalence of classes with

higher representation while selectively adjusting the class frequencies to emphasize

classes with lower representation.

4.3.4 Classification Models and Evaluation Metric

As AL is a strategy rather than a specific model by itself, we can integrate any clas-

sifier as a machine-learning model for the purpose of training and prediction. For our

work, we have used the existing classifiers from the python scikit-learn package, such

84

as XGBoost [87], Random Forest [88], and Gradient Boosting [113]. We have used

the default version of these classifiers and have not performed any hyperparameter

tuning. The reason for using the default version of these classifiers is to keep the

models simple. Hyperparameter tuning can be considered as a further refinement if

necessary.

Moreover, we have used the f1-score as our evaluation metric. Although accuracy

is a commonly used metric for evaluating the performance of classification algorithms,

it is not well suited for cases where the data su↵er from class imbalance [90]. In

scenarios like ours, where the class distribution is heavily imbalanced, the f1-score

considers precision and recall, making it a more informative evaluation metric for

fault classification.

4.4 Results

This section thoroughly examines the performance of our AL techniques, utilizing

three di↵erent classifiers and the f1-score as the evaluation metric. We train and test

each classifier using 5-fold cross-validation to determine their baseline f1-score perfor-

mance. Since the baseline scores indicate an average performance of the models using

the complete dataset for model building, they can be utilized as a benchmark when

evaluating the machine learning models and AL techniques employed in this work.

In this section, we also analyze the e↵ect of our class-balancing instance selection on

the AL strategies and evaluate them with and without the class-balancing algorithm.

85

The description and analysis of these experiments are shown in Section 4.4.1 and Sec-

tion 4.4.2. In Figure 4.4 and Figure 4.5, the horizontal axis (labeled Step) shows the

number of instances queried to the annotator for labeling at each AL iteration, and

the vertical axis shows the corresponding f1-score. For each step, we have two box

plots. The red box plot represents the AL strategy’s performance without the class

balancing algorithm, and the blue box plot represents the Al strategy with the class

balancing algorithm. In Section 4.4.3, we first compare the results of the AL strate-

gies with the balancing technique using only 750 instances since we observed that all

baselines were achieved at this step. Last, we compare and discuss the results of the

AL strategies using the total budget of 2000. The main objective of Section 4.4.3 is

to determine if there is indeed a combination of AL strategy and machine-learning

model for this problem that achieves high performance with fewer instances.

4.4.1 Uncertainty Sampling Strategy

In our research, we implemented the Uncertainty Sampling (UNC) strategy on the

processed anomaly data to reduce the number of instances labeled for a satisfactory

fault classification performance. In Figure 4.4, we show the results of the UNC

strategy. We noticed that within a fixed annotation budget, all classifiers using the

UNC strategy were able to outperform their respective baseline f1-score values. The

results suggest that the number of training instances for all the classifiers can be

reduced to 750 out of a total of 3601 instances. That is, the required number of

86

training instances to surpass the baselines is only around 21% of the total training data

we have, and thus, the need for annotation can be reduced by 79%. It is also noticeable

that UNC with the class-balancement algorithm performed considerably better than

the one without the balanced strategy. This e↵ect is particularly prominent during the

early stages of the AL process (i.e., using 500 to 1000 selected by the UNC strategy),

where the benefits of class balancing become more noticeable.

4.4.2 QBC Strategy

For the QBC strategy, the results are illustrated in Figure 4.5. Notably, all classifiers

using this strategy could outperform their respective baseline score with a budget

of around 750 instances from a total of 3601 instances. This also results in a 79%

reduction of the required labeled training set to classify faults. Moreover, we also

see a di↵erence in the performance of the class-imbalancement algorithm for di↵erent

classifiers. Notably, for the Gradient Boosting classifier, QBC with the balancement

algorithm performs better than QBC without the balancement technique at all steps.

For XGBoost, the impact of the class-balancing technique is evident throughout all

stages except the final step, whereas, for Random Forest, gains are observable by

using the balancement algorithm in the early stages (i.e., 500, 750 and 1000 instances

selected by QBC).

87

Figure 4.4: f1-score plots of the UNC strategy.

88

Figure 4.5: f1-score plots of the QBC strategy.

4.4.3 Comparing AL strategies at steps 750 and 2000

This section compares the performances of the two AL strategies UNC and QBC, per

model, at steps 750 and 2000. For both AL strategies, we employ the class-balancing
89

strategy in all of our experiments. The purpose of selecting these steps is to examine

the performances of AL strategies when they outperform baseline results and after

they have reached the annotation budget. Tables 4.1 and 4.2, respectively, show the

outcome of the comparisons for steps 750 and 2000. Each row represents a specific

machine learning model, showcasing the respective average f1-scores and standard

deviations achieved when employing both UNC and QBC strategies. The results in

Tables 4.1 and 4.2 show that the machine-learning models perform nearly similarly

for UNC and QBC.

In Table 4.1, a statistical analysis was conducted to assess the significance of the

average di↵erences among various combinations of Active Learning (AL) strategies

and Machine Learning (ML) models, employing the Wilcoxon signed-rank test. A

p-value threshold of 0.05 was utilized to determine statistical significance. Rejection

of the null hypothesis that the averages originate from the same distribution implies

a statistically significant di↵erence. The best outcome was observed with the Uncer-

tainty Sampling (UNC) strategy combined with the XGBoost algorithm, yielding an

average f1-score of 68.18%. Therefore, we can conclude that with a budget of 750

instances, we could use any AL strategy with the XGBoost algorithm to achieve the

best performance.

Further examination of the entire budget of 2000 instances (refer to Table 4.2)

revealed that the QBC and XGBoost combination outperformed all others, yielding

an average f1-score of 69.24%. A subsequent Wilcoxon signed rank test established

90

its superiority over most configurations, though not reaching statistical significance

compared to Uncertainty Sampling with the same ML algorithm.

In summary, the comprehensive analysis of Tables 4.1 and 4.2 leads to the conclu-

sion that both AL strategies, UNC and QBC, e↵ectively diminish the necessity for an

extensive labeled dataset, achieving best performance in fault classification with the

XGBoost algorithm using 2000 instances. While a considerable performance is attain-

able with a reduced budget of 750 instances, statistically significant enhancements are

noticeable with the larger budget of 2000 instances.

Table 4.1: Comparison of machine learning models’ performances using AL strategies

and the balancing algorithm at step 750.

UNC QBC

Model f1-score std. f1-score std.

Gradient Boosting 66.97 2.35 66.78 3.00

Random Forest 65.72 3.27 66.08 2.24

XGBoost 68.18 2.75 67.92 2.40

4.5 Discussion

Our research shows the potential of AL techniques applied to real-world problems

relevant to industry, such as classifying faults in fiber manufacturing using Instru-

91

Table 4.2: Comparison of machine learning models’ performances using AL strategies

and the balancing algorithm with the total budget of 2000.

UNC QBC

Model f1-score std. f1-score std.

Gradient Boosting 67.47 2.66 67.35 3.67

Random Forest 66.63 2.70 66.13 3.15

XGBoost 69.08 2.57 69.24 2.30

mar’s fiber monitoring data. The central insight from our findings is that AL, in

conjunction with our class-balancing technique, provides a measurable and valuable

advantage over conventional supervised machine learning techniques for fault clas-

sification, mainly by decreasing the need of a vast number of instances from which

machine learning models can be trained.

Application of these techniques will likely help increase e�ciency and reduce costs

incurred due to fiber manufacturing faults. Our work emphasizes tackling the inherent

imbalance between di↵erent types of faults in datasets related to industrial fiber man-

ufacture. Conventional machine learning approaches face significant challenges due

to the magnitude of the required labeling e↵ort and the strong class imbalance in the

labeled datasets. However, AL can tackle such real-life scenarios by judiciously select-

ing data points for labeling, especially with the incorporation of our class-balancing

technique. It made it possible for the classifiers to adjust and perform exceptionally

92

well when categorizing even the rarest error types. Our study’s optimization of the

fault classification procedure while minimizing processing and annotation expenses

is a noteworthy accomplishment. Through a proactive search for useful samples and

class balance, our suggested methods improved e�ciency and helped find faults at a

reasonable cost. The AL process achieved the baseline results with five times fewer la-

beled instances, resulting in substantial gains in training e�ciency and optimization.

This result has enormous practical implications for sectors such as the fiber manufac-

turing industry, where operating costs are a significant concern. Our study presents

a potential method that emphasizes data-driven and e↵ective production processes in

line with the Industry 4.0 goal. We have shown how to e�ciently utilize the potential

of existing data resources by applying AL and class balancing. The findings pave

the way for better fault classification, fewer production interruptions, fewer customer

claims, and higher-quality products—essential for maintaining competitiveness in the

industrial fiber manufacturing industry with lower operational costs for data labeling

and training classification models.

Looking ahead, it is clear that our results set the stage for a more thoughtful and

adaptive approach to multiclass classification, both in the context of fiber manufacture

and in more general industrial settings. Further investigation and adaptation of the

active learning and class balancing concepts to other production contexts promise

increased productivity, lower costs, and better product quality.

93

Chapter 5

Conclusion and Future Works

First and foremost, the goal of our research was to lower the quantity of labeled data

needed for time series classification and the associated expenses and e↵orts. Our

proposed AL framework, which is discussed in depth in Chapters 3 and 4, successfully

addresses this problem. We observe a notable reduction in the quantity of labeled

data needed to outperform the classification benchmark in the context of both tactile

robotics and real-world industrial manufacturing. Chapter 3’s discussion of temporal

feature generation for tactile robotics makes clear the sliding window method and its

outcomes regarding multiple window times and overlap percentages.

Furthermore, we have achieved promising results in addressing the problem of

class imbalance in time series datasets. Significant gains were achieved by adding a

class balancing instance selection algorithm to the AL strategies, as is described in

detail in Chapters 3 and 4 for tactile robotics and fiber manufacturing, respectively.

94

This integration led us to conclude that both the AL strategies UNC and QBC can

be robust in e�ciently querying instances for labeling, especially in cases of highly

imbalanced distributions.

Moreover, our existing results serve as a stepping stone for further exploration

and enhancement of our AL framework. A crucial future direction is to extend our

work into additional real-life domains, especially those where dynamic environments

pose challenges for traditional classification techniques. Expanding beyond the UNC,

QBC, and EMC strategies, we aim to integrate and evaluate additional active learning

methodologies to evaluate their performance in the context of time series classification.

95

Bibliography

[1] Bruno Monteiro Rocha Lima, Thiago Eustaquio Alves de Oliveira, and Vini-

cius Prado da Fonseca. Classification of textures using a tactile-enabled finger

in dynamic exploration tasks. In 2021 IEEE Sensors, pages 1–4. IEEE, 2021.

[2] John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv

preprint arXiv:1701.01887, 2017.

[3] Amı́lcar Soares Júnior, Bruno Neiva Moreno, Valéria Cesário Times, Stan

Matwin, and Lućıdio dos Anjos Formiga Cabral. Grasp-uts: an algorithm for

unsupervised trajectory segmentation. International Journal of Geographical

Information Science, 29(1):46–68, 2015.

[4] Vladimir Nasteski. An overview of the supervised machine learning methods.

Horizons. b, 4:51–62, 2017.

[5] Baifan Zhou, Tim Pychynski, Markus Reischl, and Ralf Mikut. Comparison of

machine learning approaches for time-series-based quality monitoring of resis-

96

tance spot welding (rsw). Archives of Data Science, Series A (Online First),

5(1):13, 2018.

[6] Amı́lcar Soares Júnior, Chiara Renso, and Stan Matwin. Analytic: An ac-

tive learning system for trajectory classification. IEEE computer graphics and

applications, 37(5):28–39, 2017.

[7] Martha Dais Ferreira, Gabriel Spadon, Amilcar Soares, and Stan Matwin. A

semi-supervised methodology for fishing activity detection using the geometry

behind the trajectory of multiple vessels. Sensors, 22(16):6063, 2022.

[8] Amilcar Soares Junior, Valeria Cesario Times, Chiara Renso, Stan Matwin, and

Lucidio AF Cabral. A semi-supervised approach for the semantic segmentation

of trajectories. In 2018 19th IEEE International Conference on Mobile Data

Management (MDM), pages 145–154. IEEE, 2018.

[9] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong

Kwoh, and Xiaoli Li. Label-e�cient time series representation learning: A

review. arXiv preprint arXiv:2302.06433, 2023.

[10] Amı́lcar Soares, Jordan Rose, Mohammad Etemad, Chiara Renso, and Stan

Matwin. Vista: A visual analytics platform for semantic annotation of tra-

jectories. In Proceedings of the 22nd International Conference on Extending

Database Technology (EDBT), 2019.

97

[11] Fernando HO Abreu, Amilcar Soares, Fernando V Paulovich, and Stan Matwin.

A trajectory scoring tool for local anomaly detection in maritime tra�c using

visual analytics. ISPRS International Journal of Geo-Information, 10(6):412,

2021.

[12] Fernando Henrique Oliveira Abreu, Amilcar Soares, Fernando V Paulovich, and

Stan Matwin. Local anomaly detection in maritime tra�c using visual analytics.

In In EDBT/ICDT Workshops, 2021.

[13] Salman Haidri, Yaksh J Haranwala, Vania Bogorny, Chiara Renso, Vini-

cius Prado da Fonseca, and Amilcar Soares. Ptrail—a python package for

parallel trajectory data preprocessing. SoftwareX, 19:101176, 2022.

[14] Yaksh J Haranwala, Salman Haidri, Terrence S Tricco, Vinicius P da Fonseca,

and Amilcar Soares. A dashboard tool for mobility data mining preprocessing

tasks. In 2022 23rd IEEE International Conference on Mobile Data Manage-

ment (MDM), pages 278–281. IEEE, 2022.

[15] Burr Settles. Active learning literature survey. Technical report, University of

Wisconsin-Madison, 2009.

[16] Shemonto Das, Amilcar Soares, and Vinicius Prado Da Fonseca. Active learning

strategies for robotic tactile texture recognition tasks. Frontiers in Robotics and

AI, 11:1281060, 2024.

98

[17] Patrick Schäfer and Ulf Leser. Fast and accurate time series classification with

weasel. In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, pages 637–646, 2017.

[18] Gabriel Spadon, Martha D Ferreira, Amilcar Soares, and Stan Matwin. Un-

folding ais transmission behavior for vessel movement modeling on noisy data

leveraging machine learning. IEEE Access, 11:18821–18837, 2022.

[19] Emanuele Carlini, Vinicius Monteiro de Lira, Amilcar Soares, Mohammad

Etemad, Bruno Brandoli, and Stan Matwin. Understanding evolution of mar-

itime networks from automatic identification system data. GeoInformatica,

pages 1–25, 2021.

[20] Vinicius Prado da Fonseca, Xianta Jiang, Emil M Petriu, and Thiago Eu-

staquio Alves de Oliveira. Tactile object recognition in early phases of grasping

using underactuated robotic hands. Intelligent Service Robotics, 15(4):513–525,

2022.

[21] Humberto Navarro de Carvalho, Lucas Pontes Castro, Tháıs G Do Rego,

Telmo M Silva Filho, Yuri de AM Barbosa, Leonardo Vidal Batista, Amil-

car Soares, and Vinicius Prado Da Fonseca. Evaluating data representations

for object recognition during pick-and-place manipulation tasks. In 2022 IEEE

International Systems Conference (SysCon), pages 1–6. IEEE, 2022.

99

[22] V Naga Sai Siddhartha Danyamraju, Tahsin Ahmed Prottoy, SM Shahriar

Jobayer, and Vinicius Prado da Fonseca. Comparing data representation tech-

niques for tactile sensing in classification tasks. In 2023 IEEE SENSORS, pages

1–4. IEEE, 2023.

[23] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-based clas-

sification of time-series data. International Journal of Computer Research,

10(3):49–61, 2001.

[24] Jessica Lin, Rohan Khade, and Yuan Li. Rotation-invariant similarity in time

series using bag-of-patterns representation. Journal of Intelligent Information

Systems, 39:287–315, 2012.

[25] Gian Antonio Susto, Angelo Cenedese, and Matteo Terzi. Time-series classi-

fication methods: Review and applications to power systems data. Big data

application in power systems, pages 179–220, 2018.

[26] Zhengzheng Xing, Jian Pei, Philip S Yu, and Ke Wang. Extracting interpretable

features for early classification on time series. In Proceedings of the 2011 SIAM

international conference on data mining, pages 247–258. SIAM, 2011.

[27] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya

Wu. Convolutional neural networks for time series classification. Journal of

Systems Engineering and Electronics, 28(1):162–169, 2017.

100

[28] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification:

a review. Data mining and knowledge discovery, 33(4):917–963, 2019.

[29] Cristina Gómez, Joanne C White, and Michael A Wulder. Optical remotely

sensed time series data for land cover classification: A review. ISPRS Journal

of photogrammetry and Remote Sensing, 116:55–72, 2016.

[30] Julien Polge, Jérémy Robert, and Yves Le Traon. A case driven study of the use

of time series classification for flexibility in industry 4.0. Sensors, 20(24):7273,

2020.

[31] Deniz Katircioglu-Öztürk, H Altay Güvenir, Ursula Ravens, and Nazife Baykal.

A window-based time series feature extraction method. Computers in biology

and medicine, 89:466–486, 2017.

[32] Kieran Woodward, Eiman Kanjo, Andreas Oikonomou, and Alan Chamber-

lain. Labelsens: enabling real-time sensor data labelling at the point of col-

lection using an artificial intelligence-based approach. Personal and Ubiquitous

Computing, 24:709–722, 2020.

[33] Tristan Langer, Viktor Welbers, Yannik Hahn, Mark Wönkhaus, Richard

Meyes, and Tobias Meisen. Visual interactive exploration and labeling of large

volumes of industrial time series data. In International Conference on Enter-

prise Information Systems, pages 85–108. Springer, 2022.

101

[34] Soma Bandyopadhyay, Anish Datta, and Arpan Pal. Automated label gener-

ation for time series classification with representation learning: Reduction of

label cost for training. arXiv preprint arXiv:2107.05458, 2021.

[35] Fengchao Peng, Qiong Luo, and Lionel M Ni. Acts: an active learning method

for time series classification. In 2017 IEEE 33rd International Conference on

Data Engineering (ICDE), pages 175–178. IEEE, 2017.

[36] Hyukjun Gweon and Hao Yu. A nearest neighbor-based active learning method

and its application to time series classification. Pattern Recognition Letters,

146:230–236, 2021.

[37] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. A shapelet trans-

form for time series classification. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 289–

297, 2012.

[38] Yue Geng and Xinyu Luo. Cost-sensitive convolutional neural networks for

imbalanced time series classification. Intelligent Data Analysis, 23(2):357–370,

2019.

[39] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of

the class imbalance problem in convolutional neural networks. Neural networks,

106:249–259, 2018.

102

[40] Damien Dablain, Bartosz Krawczyk, and Nitesh V Chawla. Deepsmote: Fusing

deep learning and smote for imbalanced data. IEEE Transactions on Neural

Networks and Learning Systems, 2022.

[41] Lara Lusa et al. Evaluation of smote for high-dimensional class-imbalanced

microarray data. In 2012 11th international conference on machine learning

and applications, volume 2, pages 89–94. IEEE, 2012.

[42] Grace Deng, Cuize Han, Tommaso Dreossi, Clarence Lee, and David S Matte-

son. Ib-gan: A unified approach for multivariate time series classification under

class imbalance. In Proceedings of the 2022 SIAM International Conference on

Data Mining (SDM), pages 217–225. SIAM, 2022.

[43] Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A gan-

based anomaly detection approach for imbalanced industrial time series. IEEE

Access, 7:143608–143619, 2019.

[44] Shan Luo, Joao Bimbo, Ravinder Dahiya, and Hongbin Liu. Robotic tactile

perception of object properties: A review. Mechatronics, 48:54–67, 2017.

[45] Sriramana Sankar, Darshini Balamurugan, Alisa Brown, Keqin Ding, Xingyuan

Xu, Jin Huat Low, Chen Hua Yeow, and Nitish Thakor. Texture discrimination

with a soft biomimetic finger using a flexible neuromorphic tactile sensor array

that provides sensory feedback. Soft Robotics, 8(5):577–587, 2021.

103

[46] Qiang Li, Oliver Kroemer, Zhe Su, Filipe Fernandes Veiga, Mohsen Kaboli, and

Helge Joachim Ritter. A review of tactile information: Perception and action

through touch. IEEE Transactions on Robotics, 36(6):1619–1634, 2020.

[47] Tasbolat Taunyazov, Hui Fang Koh, Yan Wu, Caixia Cai, and Harold Soh. To-

wards e↵ective tactile identification of textures using a hybrid touch approach.

In 2019 International Conference on Robotics and Automation (ICRA), pages

4269–4275. IEEE, 2019.

[48] Amir Pagoli, Frédéric Chapelle, Juan-Antonio Corrales-Ramon, Youcef

Mezouar, and Yuri Lapusta. Large-area and low-cost force/tactile capacitive

sensor for soft robotic applications. Sensors, 22(11):4083, 2022.

[49] Youcan Yan, Yajing Shen, Chaoyang Song, and Jia Pan. Tactile super-

resolution model for soft magnetic skin. IEEE Robotics and Automation Letters,

7(2):2589–2596, 2022.

[50] Raunaq Bhirangi, Tess Hellebrekers, Carmel Majidi, and Abhinav Gupta.

Reskin: versatile, replaceable, lasting tactile skins. arXiv preprint

arXiv:2111.00071, 2021.

[51] Thiago Eustaquio Alves De Oliveira, Ana-Maria Cretu, Vinicius Prado Da Fon-

seca, and Emil M Petriu. Touch sensing for humanoid robots. IEEE Instru-

mentation & Measurement Magazine, 18(5):13–19, 2015.

104

[52] Susan J Lederman and Roberta L Klatzky. Hand movements: A window into

haptic object recognition. Cognitive psychology, 19(3):342–368, 1987.

[53] Thiago Eustaquio Alves de Oliveira, Vinicius Prado da Fonseca, Emanuil Hu-

luta, Paulo FF Rosa, and Emil M Petriu. Data-driven analysis of kinaesthetic

and tactile information for shape classification. In 2015 IEEE International

Conference on Computational Intelligence and Virtual Environments for Mea-

surement Systems and Applications (CIVEMSA), pages 1–5. IEEE, 2015.

[54] Bruno Monteiro Rocha Lima, Vinicius Prado da Fonseca, Thiago Eu-

staquio Alves de Oliveira, Qi Zhu, and Emil M Petriu. Dynamic tactile explo-

ration for texture classification using a miniaturized multi-modal tactile sen-

sor and machine learning. In 2020 IEEE International Systems Conference

(SysCon), pages 1–7. IEEE, 2020.

[55] Vinicius Prado da Fonseca. Tactile sensor analysis during early stages of manip-

ulation for single grasp identification of daily objects. Engineering Proceedings,

6(1):56, 2021.

[56] Ana-Maria Cretu, Thiago Eustaquio Alves De Oliveira, Vinicius Prado Da Fon-

seca, Bilal Tawbe, Emil M Petriu, and Voicu Z Groza. Computational intelli-

gence and mechatronics solutions for robotic tactile object recognition. In 2015

IEEE 9th international symposium on intelligent signal processing (WISP) pro-

ceedings, pages 1–6. IEEE, 2015.

105

[57] Felix Von Drigalski, Marcus Gall, Sung-Gwi Cho, Ming Ding, Jun Takamatsu,

Tsukasa Ogasawara, and Tamim Asfour. Textile identification using fingertip

motion and 3d force sensors in an open-source gripper. In 2017 IEEE Inter-

national Conference on Robotics and Biomimetics (ROBIO), pages 424–429.

IEEE, 2017.

[58] Shiyao Huang and Hao Wu. Texture recognition based on perception data from

a bionic tactile sensor. Sensors, 21(15):5224, 2021.

[59] Ruihan Gao, Tasbolat Taunyazov, Zhiping Lin, and Yan Wu. Supervised au-

toencoder joint learning on heterogeneous tactile sensory data: Improving ma-

terial classification performance. In 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 10907–10913. IEEE, 2020.

[60] Danfei Xu, Gerald E Loeb, and Jeremy A Fishel. Tactile identification of objects

using bayesian exploration. In 2013 IEEE international conference on robotics

and automation, pages 3056–3061. IEEE, 2013.

[61] Aude Billard and Danica Kragic. Trends and challenges in robot manipulation.

Science, 364(6446):eaat8414, 2019.

[62] Christo↵er Lö✏er and Christopher Mutschler. Iale: Imitating active learner

ensembles. Journal of Machine Learning Research, 23(107):1–29, 2022.

[63] David D Lewis and William A Gale. A sequential algorithm for training text

classifiers. In SIGIR’94, pages 3–12. Springer, 1994.

106

[64] Burr Settles and Mark Craven. An analysis of active learning strategies for

sequence labeling tasks. In proceedings of the 2008 conference on empirical

methods in natural language processing, pages 1070–1079, 2008.

[65] Claude Elwood Shannon. A mathematical theory of communication. The Bell

system technical journal, 27(3):379–423, 1948.

[66] Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential

examples: Active learning with expected model output changes. In Computer

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-

ber 6-12, 2014, Proceedings, Part IV 13, pages 562–577. Springer, 2014.

[67] Samuel C Stanton. Situated experimental agents for scientific discovery. Science

Robotics, 3(24):eaau4978, 2018.

[68] Annalisa T Taylor, Thomas A Berrueta, and Todd D Murphey. Active learning

in robotics: A review of control principles. Mechatronics, 77:102576, 2021.

[69] Crystal Chao, Maya Cakmak, and Andrea L Thomaz. Transparent active learn-

ing for robots. In 2010 5th ACM/IEEE International Conference on Human-

Robot Interaction (HRI), pages 317–324. IEEE, 2010.

[70] Boyan Wei, Xianfeng Ye, Chengjiang Long, Zhenjun Du, Bangyu Li, Baocai

Yin, and Xin Yang. Discriminative active learning for robotic grasping in clut-

tered scene. IEEE Robotics and Automation Letters, 8(3):1858–1865, 2023.

107

[71] Dimitra Gkatzia and Francesco Belvedere. ” what’s this?” comparing active

learning strategies for concept acquisition in hri. In Companion of the 2021

ACM/IEEE International Conference on Human-Robot Interaction, pages 205–

209, 2021.

[72] Rasha Sheikh, Andres Milioto, Philipp Lottes, Cyrill Stachniss, Maren Ben-

newitz, and Thomas Schultz. Gradient and log-based active learning for se-

mantic segmentation of crop and weed for agricultural robots. In 2020 IEEE

International Conference on Robotics and Automation (ICRA), pages 1350–

1356. IEEE, 2020.

[73] Qianli Xu, Fen Fang, Nicolas Gauthier, Liyuan Li, and Joo-Hwee Lim. Active

image sampling on canonical views for novel object detection. In 2020 IEEE

International Conference on Image Processing (ICIP), pages 2241–2245. IEEE,

2020.

[74] Jinda Cui and Je↵ Trinkle. Toward next-generation learned robot manipulation.

Science Robotics, 6(54):eabd9461, 2021.

[75] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Bil-

lard. Recent advances in robot learning from demonstration. Annual review of

control, robotics, and autonomous systems, 3:297–330, 2020.

[76] Tong Wu and Jorge Ortiz. Rlad: Time series anomaly detection through rein-

forcement learning and active learning. arXiv preprint arXiv:2104.00543, 2021.

108

[77] Guoliang He, Yong Duan, Yifei Li, Tieyun Qian, Jinrong He, and Xiangyang

Jia. Active learning for multivariate time series classification with positive

unlabeled data. In 2015 IEEE 27th International Conference on Tools with

Artificial Intelligence (ICTAI), pages 178–185. IEEE, 2015.

[78] Lizhu Wang, Xiaodong Liu, Witold Pedrycz, and Yongyun Shao. Determination

of temporal information granules to improve forecasting in fuzzy time series.

Expert Systems with Applications, 41(6):3134–3142, 2014.

[79] Congcong Ma, Wenfeng Li, Jingjing Cao, Juan Du, Qimeng Li, and Ra↵aele

Gravina. Adaptive sliding window based activity recognition for assisted livings.

Information Fusion, 53:55–65, 2020.

[80] Milagros Jaén-Vargas, Karla Miriam Reyes Leiva, Francisco Fernandes,

Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, and José

Javier Serrano Olmedo. E↵ects of sliding window variation in the performance

of acceleration-based human activity recognition using deep learning models.

PeerJ Computer Science, 8:e1052, 2022.

[81] Bruno Monteiro Rocha Lima, Thiago Eustaquio Alves de Oliveira, and Vinicius

Prado da Fonseca. Multimodal tactile texture dataset, 2023.

[82] Bruno Monteiro Rocha Lima, Venkata Naga Sai Siddhartha Danyamraju, Thi-

ago Eustaquio Alves de Oliveira, and Vinicius Prado da Fonseca. A multimodal

109

tactile dataset for dynamic texture classification. Data in Brief, page 109590,

2023.

[83] Thiago Eustaquio Alves De Oliveira, Ana-Maria Cretu, and Emil M Petriu.

Multimodal bio-inspired tactile sensing module. IEEE Sensors Journal,

17(11):3231–3243, 2017.

[84] Thiago Eustaquio Alves de Oliveira and Vinicius Prado da Fonseca. Bioin-tacto:

A compliant multi-modal tactile sensing module for robotic tasks. HardwareX,

16:e00478, 2023.

[85] Lior Rokach and Oded Maimon. Decision trees. Data mining and knowledge

discovery handbook, pages 165–192, 2005.

[86] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized

trees. Machine learning, 63:3–42, 2006.

[87] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

[88] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[89] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

110

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12:2825–2830, 2011.

[90] Marina Sokolova and Guy Lapalme. A systematic analysis of performance mea-

sures for classification tasks. Information processing & management, 45(4):427–

437, 2009.

[91] Sebastian Meister, Mahdieu AM Wermes, Jan Stüve, and Roger M Groves.

Review of image segmentation techniques for layup defect detection in the au-

tomated fiber placement process: A comprehensive study to improve afp in-

spection. Journal of Intelligent Manufacturing, 32(8):2099–2119, 2021.

[92] M Chan. New online fiber sensor technology unlocks value in fiber manufactur-

ing. International Fiber Journal, 2000.

[93] Long Wen, Xinyu Li, Liang Gao, and Yuyan Zhang. A new convolutional

neural network-based data-driven fault diagnosis method. IEEE Transactions

on Industrial Electronics, 65(7):5990–5998, 2017.

[94] Wenjin Yu, Tharam Dillon, Fahed Mostafa, Wenny Rahayu, and Yuehua Liu. A

global manufacturing big data ecosystem for fault detection in predictive main-

tenance. IEEE Transactions on Industrial Informatics, 16(1):183–192, 2019.

[95] Angelos Angelopoulos, Emmanouel T Michailidis, Nikolaos Nomikos, Panagiotis

Trakadas, Antonis Hatziefremidis, Stamatis Voliotis, and Theodore Zahariadis.

111

Tackling faults in the industry 4.0 era—a survey of machine-learning solutions

and key aspects. Sensors, 20(1):109, 2019.

[96] Bruno Monteiro Rocha Lima, Vinicius Prado da Fonseca, Thiago Eustaquio

Alves de Oliveira, Qi Zhu, and Emil M. Petriu. Dynamic tactile exploration

for texture classification using a miniaturized multi-modal tactile sensor and

machine learning. In 2020 IEEE International Systems Conference (SysCon),

pages 1–7, 2020.

[97] Peng Peng, Wenjia Zhang, Yi Zhang, Yanyan Xu, Hongwei Wang, and Heming

Zhang. Cost sensitive active learning using bidirectional gated recurrent neural

networks for imbalanced fault diagnosis. Neurocomputing, 407:232–245, 2020.

[98] Bianca Caiazzo, Mario Di Nardo, Teresa Murino, Alberto Petrillo, Gianluca

Piccirillo, and Stefania Santini. Towards zero defect manufacturing paradigm:

A review of the state-of-the-art methods and open challenges. Computers in

Industry, 134:103548, 2022.

[99] Ziqiu Kang, Cagatay Catal, and Bedir Tekinerdogan. Machine learning ap-

plications in production lines: A systematic literature review. Computers &

Industrial Engineering, 149:106773, 2020.

[100] Marta Fernandes, Juan Manuel Corchado, and Goreti Marreiros. Machine learn-

ing techniques applied to mechanical fault diagnosis and fault prognosis in the

112

context of real industrial manufacturing use-cases: a systematic literature re-

view. Applied Intelligence, 52(12):14246–14280, 2022.

[101] Ido Amihai, Ralf Gitzel, Arzam Muza↵ar Kotriwala, Diego Pareschi, Sub-

anataranjan Subbiah, and Guruprasad Sosale. An industrial case study using

vibration data and machine learning to predict asset health. In 2018 IEEE 20th

Conference on Business Informatics (CBI), volume 1, pages 178–185. IEEE,

2018.

[102] Adrian Binding, Nicholas Dykeman, and Severin Pang. Machine learning pre-

dictive maintenance on data in the wild. In 2019 IEEE 5th World Forum on

Internet of Things (WF-IoT), pages 507–512. IEEE, 2019.

[103] Christopher Sacco, Anis Baz Radwan, Andrew Anderson, Ramy Harik,

and Elizabeth Gregory. Machine learning in composites manufacturing: A

case study of automated fiber placement inspection. Composite Structures,

250:112514, 2020.

[104] Assef Ghamisi, Todd Charter, Li Ji, Maxime Rivard, Gil Lund, and Homayoun

Najjaran. Anomaly detection in automated fibre placement: Learning with

data limitations. arXiv preprint arXiv:2307.07893, 2023.

[105] Falk Heinecke and Christian Willberg. Manufacturing-induced imperfections

in composite parts manufactured via automated fiber placement. Journal of

Composites Science, 3(2):56, 2019.

113

[106] Lei Sun, Changbai Tan, S Jack Hu, Pingsha Dong, and Theodor Freiheit. Qual-

ity detection and classification for ultrasonic welding of carbon fiber composites

using time-series data and neural network methods. Journal of Manufacturing

Systems, 61:562–575, 2021.

[107] Sebastian Meister, Nantwin Möller, Jan Stüve, and Roger M Groves. Synthetic

image data augmentation for fibre layup inspection processes: Techniques to

enhance the data set. Journal of Intelligent Manufacturing, 32:1767–1789, 2021.

[108] Teodor Fredriksson, Jan Bosch, Helena Holmström Olsson, and David Issa Mat-

tos. Machine learning algorithms for labeling: Where and how they are used?

In 2022 IEEE International Systems Conference (SysCon), pages 1–8. IEEE,

2022.

[109] Bingxu Li, Fanyong Cheng, Xin Zhang, Can Cui, and Wenjian Cai. A novel

semi-supervised data-driven method for chiller fault diagnosis with unlabeled

data. Applied Energy, 285:116459, 2021.

[110] Xinya Wu, Yan Zhang, Changming Cheng, and Zhike Peng. A hybrid classi-

fication autoencoder for semi-supervised fault diagnosis in rotating machinery.

Mechanical Systems and Signal Processing, 149:107327, 2021.

[111] Xinyu Li, Zhao Zhang, Liang Gao, and Long Wen. A new semi-supervised

fault diagnosis method via deep coral and transfer component analysis. IEEE

114

Transactions on Emerging Topics in Computational Intelligence, 6(3):690–699,

2021.

[112] Sergio Martin del Campo Barraza, William Lindskog, Davide Badalotti, Oskar

Liew, and Arash Toyser. Active learning framework for time-series classification

of vibration and industrial process data. In Annual Conference of the PHM

Society, volume 13, 2021.

[113] Jerome H Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.

115

	Abstract
	Acknowledgments
	Co-authorship Statement
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Goals and Questions
	Contributions
	Thesis Outline

	Literature Review
	Analyzed Aspects
	Time Series Classification and Analysis
	Summary

	Active Learning Strategies for Robotic Tactile Texture Recognition Tasks
	Introduction
	Materials and Methods
	Experimental Setup and Texture Data Collection
	Data Preprocessing and Feature Extraction
	Active Learning Strategies and Class-Balancement Instance Selection Algorithm
	Classification Models and Evaluation Metric

	Results
	Sliding Window Size and Overlap Percentage Analysis
	Uncertainty Sampling Strategy on 3 and 6 seconds windows
	QBC Strategy on 3 and 6 seconds windows
	EMC Strategy on 3 and 6 seconds windows
	Comparing Window Sizes and Active Learning Strategies Performances

	Discussion

	Unbalanced Fault Classification using Active Learning in Synthetic Fiber Manufacturing Process
	Introduction
	Literature Review
	Methodology
	Data Collection, Preprocessing and Feature Extraction
	Data Class Imbalance
	Active Learning Strategies and Class-Balancement Instance Selection Algorithm
	Classification Models and Evaluation Metric

	Results
	Uncertainty Sampling Strategy
	QBC Strategy
	Comparing AL strategies at steps 750 and 2000

	Discussion

	Conclusion and Future Works

