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Abstract
Developing swarms of robots as simple agents without any central controller is a chal-

lenging task. We focus on simple robots with limited capability which do not have a

localization system to show them where they are. Termite construction activity inspires

our work; although they have poor vision, they can construct a massive termite mound,

build a royal chamber and communicate with each other by observing the changes in

the environment, sensing vibrations and detecting chemical substances (pheromones).

In our work, we used scalar fields as a global level of guidance for the robots. A

scalar field associates a value with every point in the working region. We show how

scalar fields can be used to guide a low-cost and limited-capability swarm of robots to

execute a specific task. We present four examples of tasks using the scalar field, such

as constructing shapes from ambient objects, finding the largest coverage-connected

network among the robots, aggregating to a predefined area and foraging by finding and

collecting ambient objects to the collection area.

This work is divided into three parts; first, we show how the scalar field with different

resolutions can help divide labour among the robots and guide them in their movements.

Second, we investigate combining a scalar field with reinforcement learning to find the

largest coverage network. Finally, we design a coloured scalar field and use it as a road

network for the swarm to reduce spatial interference among the robots. We practically

build our robots based on the Zumo robot kit to perform the aggregation task.
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Chapter 1

Introduction

Developing swarm robots is challenging, especially when these robots are simple agents

with limited capability to adapt themselves to achieve a given mission. These robots

have simple low-level actions and produce collective high-level results like aggregating

in a specific goal, finding the largest coverage area in the working environment, or

constructing shapes from ambient objects.

The robots in our swarm depend only on their local sensing without any central

controller. The coordination among them was achieved indirectly by observing the

shared environment (stigmergy). Relying on simple agents makes our system robust

because there is no single-point failure, and is scalable (we can increase/decrease the

number of robots without any modifications).

We are inspired by social insects like ants, termites, wasps, and bees because these

insects use pheromones and other cues to guide them to perform different activities in

their societies [1]. For example, in building the royal chamber for the queen termite,

the queen discharges a particular type of pheromone as a template to guide the worker

termites to deposit the mud at a specific distance around it [2]. Similar to pheromones

in insects, we present the scalar field as a global signal to guide a robot swarm in their

work. Assigning each point in the working area with a singular value, like measuring the

1
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temperature at every point in the room, indicates where the heater is. These measure-

ments are considered a static scalar field; incorporating scalar fields to guide the robots’

movements would more closely resemble pheromone use in social insects. The difference

is that the insects produce pheromones, but in robots, the scalar field will be provided

to them.

1.1 Problem Statment

Carvalho et al. [3] analyze different global localization systems for a robot swarm, making

it easier for the robots to locate themselves and finish their task. But the drawback of

that system is its cost.

In our proposed work, we present simple and cheap robots without any ability to

localize. Using scalar fields could be used as the labour division technique, indirectly

guiding them to accomplish their mission with independently identical simple rules with-

out any central control or solving spacial interference among robots.

1.2 Research Motivation

The advantage of using a swarm of simple robots is that they can solve the given problem

without central control with simple and local behavior. Using a swarm of robots is robust

and scalable and can quickly adapt to environmental changes. Another advantage of such

a system is that it consists of many individuals; there is no single point of failure, and

a problem could be solved with any number of these simple robots. Still, the number

of working robots affects the overall time required to solve the given task but does not

affect solving the problem itself.

Over the years, swarm robotics researchers presented different systems to solve some

basic swarm behaviors like pattern formation, aggregation, self-assembly, collective ex-
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ploration, etc [4–7]. The main contribution of solving any proposed behavior is how to

divide the work and reduce the spatial interference among the robots in the swarm and

handle the communication between the individuals if required.

We are also motivated to design simple behaviors to run on low-cost, simple agents,

which allow us to increase the number of robots with a reasonable budget.

1.3 Research Objectives

• Develop a low-cost localization alternative for robot swarms: This objective in-

volves presenting a system where simple and inexpensive robots perform tasks

without the ability to localize themselves. Scalar fields are utilized to guide robots

in a decentralized manner, allowing them to accomplish missions using simple,

identical rules without central control.

• Optimize work division and reduce spatial interference: A significant focus is placed

on developing methods to efficiently divide labour among the swarm and minimize

spatial interference. This involves creating strategies for effective work distribution

and studying various communication protocols among robots.

• Explore applications of scalar fields: The research aims to investigate how scalar

fields can be utilized to organize work within the swarm and apply these fields in

various tasks, such as shape construction, finding largest coverage area, aggrega-

tion, and foraging.

• Enhance swarm robustness and adaptability: The use of a swarm of simple robots

aims to create a system that is robust, scalable, and capable of adapting quickly

to environmental changes.
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1.4 Research Questions

• How can scalar fields be used to divide the work among the swarm? (Chapter 3)

• Can scalar fields serve as a low-cost localization alternative and aid in movement

guidance? (Chapter 4)

• How does the resolution of the scalar field affect the swarm’s performance? (Chap-

ter 4)

• Does the performance of the swarm improve if we apply machine learning tech-

niques such as reinforcement learning in the presence of high and low-resolution

scalar fields? (Chapter 4)

• How can we design a road network to act as the scalar field for the swarm, reducing

spatial interference among the robots? (Chapter 5)

1.5 Thesis Structure

The thesis is structured as follows: Chapter 2 provides the related work and background

for the thesis. We address the research questions in the subsequent chapters. Chapter 3

presents the use of the scalar field for labour division. Chapter 4 shows the movement

guidance using different resolutions of the scalar field and the enhancements when we

apply reinforcement learning. Chapter 5 presents how we handle spatial interference

among the robots. Conclusions and future work are presented in Chapter 6.



Chapter 2

Related Work

In this chapter, we present how social insects inspired swarm robotics researchers in their

work to build artificial systems using a swarm of robots. We show different guidance

communication in nature and how researchers mimic it in their work. In addition, we

introduce the scalar field, which we will use in the rest of our work.

2.1 Social Insect Inspiration

There are many research papers focusing on how termites’ complex, massive structure

has different functions as a nest, nursery, and food storage from the soil [8]. Fig. 2.1

shows one of these fascinating mounds with amazing thermoregulation and ventilation

systems. Despite the termites have poor vision, they are using indirect communication

(stigmergy) for colony communication. Stigmergy is a type of indirect communication

that allows agents to communicate with each other by noticing the modifications to their

environment [9].

Heyde et al. [11], want to understand how the labyrinthine architecture of the African

termite Apicotermes Lamani is built. They studied the recurring designs of the physical

structure of ant nests or colonies, called structural motifs. Based on the environmental

5
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Fig. 2.1: Sculpted morphology of a termite colony of Odontotermes Obesus species [10].
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observations of the structural motifs of MeMo13, MeMo14 and MeMo80 (Fig. 2.2),

they formulated a minimal model of the spatiotemporal evolution of mud, termites, and

pheromones. They found a mathematical model by analyzing the 3d model of the motif,

which was assembled using a series of 359 and 177 vertical slices. They measured the

floor thickness in every slice and the vertical spacing between floors. Fig. 2.3 shows one

of these vertical slices for MeMo80 and MeMo14. After that, the artificial model has

generated, as shown in Fig. 2.4, the parallel floors connected by linear and helical ramps

that mimic observations of natural nests.

Because of the large number of termites in the colony, termites use active chemical

substances called pheromones to regulate social behavior. There are different types of

pheromones, such as trail-following, aggregation, and alarm. The trail-following phero-

mones are used when the workers find new food; they deposit these pheromones on their

way back to the nest to guide others to the food source. The aggregation pheromone used

to attract individuals to the pheromone source, which the foraging workers discovered.

In case there is a presence of danger, the termites use alarm pheromones combined with

vibrations to alarm their nestmates. Hence, the soldier termites face the disturbance

source, and the workers run away and spread the alarm signal to the others [1].

2.2 Bio-Inspired Swarms of Robots

Social insects inspire researchers because their colonies are robust and flexible; they can

adapt to changes in their environment despite their limitations.

In [12], the researchers dealt with the chemical pheromones in insects as a transmit-

ted optical signal from each robot and identified them as "virtual pheromones". These

signals propagated through the neighbors and were implemented using directional sen-

sors on each robot sending simple beacons. These virtual pheromones act as messages

between robots and have three main parts: the message type, the hop-count field, and
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Fig. 2.2: 3D digital reconstruction of x-ray computer tomography of nests of Apicoter-
mes Lamani species. A) Memo14 and b) MeMo13, C) MeMo80; These nests have linear
ramps represented by red dots in (C, i) and helicoidal ramps shown as red and cyan dots
in (C, ii) [11].
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Fig. 2.3: Vertical slices of Memo80 and MeMo14 nests’ structures with labelled floors
[11].

Fig. 2.4: Helicoidal ramps that have been smoothed and extracted from model simu-
lation. To emphasize the regularity of the helicoid, two exemplary helicoidal ramps are
presented (A) left-handed and (B) right-handed were taken from numerically generated
nests. [11]
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the data field. When the robot receives this signal, it modifies and retransmits it to

its neighbor. In their proposed system, the swarm of robots is treated as a grid of dis-

tributed computation nodes. The authors use the grid to get the global information

about the environments, like the shortest paths between different points. The differ-

ence between chemical and virtual pheromones is that the proposed virtual pheromones

connect robots to themselves instead of tying them to the environment.

Arvin et al. [13] define another artificial pheromone system and call it COSΦ. They

try to simulate the natural pheromones from the insect’s colony and change the phero-

mones’ parameters like diffusion and evaporation. To do their experiments, they es-

tablished a low-cost setup that included a visual localization system that captured the

robot’s position. They released the artificial pheromones on the LCD screen based on

the robots’ positions. The robots were equipped with light sensors to detect these phero-

mones, as shown in Fig. 2.5 . The authors are interested in studying how changes in

the parameters of the pheromones affects the robot’s behavior, so they targeted four

parameters. The first parameter is an injection which means how fast a given robot re-

leases the artificial pheromone. The second parameter is the evaporation half-life which

shows the time it needs for the pheromone to fade. Diffusion is defined as the spreading

rate of the artificial pheromone. Finally, the fourth parameter is the influence, which

measures how much the displayed image on the LCD is influenced by the pheromones.

They implemented a swarm scenario; one leader robot moves forward with a constant

speed and leaves a pheromone trail for the follower robots to follow. When the follower

robots find the trail, they randomly choose to take a left or a right direction to follow

this trail. The conclusion from this work is increasing the evaporation half-life leads to

increases the stability of the pheromone trail, and the follower robots can easily find the

trail and follow it.

Like the termite’s mound, built by using millimeter-scale insects, Werfel et al. [14] are
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Fig. 2.5: COSΦ artificial pheromone system. [13]

interested in collectively constructing a 3d large-scale structures using climbing robots by

placing passive building blocks in a specific design to form the final construction. They

introduced a system called TERMES 3D collective construction system in which robots

are decentralized and dependent only on local information and implicit coordination.

Their robots can only climb or descend one step of a block, and they target handling

large structures, so they placed the blocks as staircases to climb and reach the higher

levels, as shown in Fig. 2.6. The user provides the target structure as an occupancy

grid and marks which sites they want to be occupied by the blocks. This occupancy

grid should not have overlapped blocks or curved surfaces, and other blocks or the

ground must support all building blocks. The authors made a compiler that takes this

occupancy grid as input and generates a data structure that encodes information about

the structure’s height and allowable travel directions at each point in the grid to avoid

any deadlock. They called this data structure a "struct path" as shown in Fig. 2.7, which

is distributed to robots and used in construction. Using this struct path for robots is like

a guide similar to pheromones which the termites used in royal chamber construction. In

this system, they can construct any 3D user-specified and find simple rules to discover
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Fig. 2.6: Overview of the TERMES System, robots gather building bricks from a
cache (at left) and start with a marker block (with a red face) to construct a desired
structure [14].

Fig. 2.7: Blocks will be added to the structure in the way specified; robots enter from
the left and depart to the right, as seen in this side view of a linear structure [14].

the intermediate deadlock structures or detect the structures the robots can not traverse.

In PheroCom [15], the authors designed a pheromone-inspired model and used it as a

decentralized navigation decision-making process for robots to handle the coordination

among them. PheroCom controls pheromones’ dynamics by distributing and storing

local virtual maps on each robot. The robots propagate their local pheromone map

with the others. They are inspired by the Vibroacoustic communication in ants in

which ants communicate through the sounds reproduced from the vibrations. Ants

produce that sound through the friction of body parts and the drumming of the abdomen

against the environment. The researchers introduced their communication as a hybrid
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Fig. 2.8: PheroCom system; a) A FSM for the decision-making process has eight states
to explain each robot’s behaviour. b) and c) Examples of virtual grids/maps used by
the FSM. [15]

communication of Gossip protocal and local storage of phermone and physical map on

each robot. They called their communication technique Vibroacoustic Based Indirect

Transmission (ViBIT). Fig. 2.8, shows how the robots get the global pheromone grid by

asynchronously involving local grids, as each robot may be at a different time step of its

internal finite state machine.

There is another robotics task called the shape formation problem in which the rel-

atively simple group of robots should construct a desired shape or pattern, such as a

straight line, circle, or another geometric shape; the robots try to move and reposition

themselves to achieve that shape. Researchers try to develop robust and scalable al-
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gorithms to control the robots to form that specific shape while working together to

accomplish complex tasks. In [16], Wang et al. tackled this shape formation problem

by proposing a fully distributed and leaderless method requiring local communication

among the swarm, and a grid showed the desired locations to form the shape. They di-

vided the problem into two main subproblems: First, they assigned distinct locations for

the robots in the shape. The second subproblem was finding collision-free and deadlock-

free paths for the robots to reach their places. To find the robot’s goal location, they

provide a robot with a set of desired target points as a set of nodes on a grid, and all

the robots have the same global reference frame. Their algorithm distributed the target

points among the individuals and tried to find a collision-free path for the robots to

form the desired shape using peer-to-peer communication. Each robot can communicate

with other robots if they exist in its communication range, so they can decide whether

that path is free. If they find there is a deadlock, the robots can swap their goals, so

they can also reduce the total distance travelled by them. Fig. 2.9, shows how their

goal selection algorithm and robot communication work to solve the same goal assigned

to 2 robots. Each robot is coloured with the same colour as its destination goal, and it

holds its id, hop count and next candidate goal. So in frame 1, robot #1 and robot #3

have the same blue goal, but in frame 3, robot #3 reached the position first, so robot

#1 changed its destination to the green goal after they communicated and found that

its id is smaller than robot #3.

2.3 Guidance Communication

As we explained in section 2.2, researchers use virtual pheromones, data structures like

struct path and pheromone grid, or peer-to-peer communication to guide the robots in

their tasks. All these methods help robots to make use of information relevant to the

task that is not available locally. It is worth studying the guidance communication used
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Fig. 2.9: Example of how robots re-assign their goal based on peer-to-peer communi-
cation. [16]

by social insects and finding the equivalent in the virtual systems. In Fig. 2.10, natural

communication shows different types of communication inside various colonies, either

animals or insects. However, virtual communication demonstrates how the existing

models for the swarm of robots can mimic natural communications. We explain both in

the following subsections.

2.3.1 Natural Communication

Intracolony communication is not limited to chemical pheromones; several communica-

tion techniques exist in the same colony. For example, as shown in Fig. 2.11, termites

can send messages through antenna touch and produce vibrations in exocrine glands

located at the end of ants’ abdomen [17]. Wasps and bees can use vibroacoustic signals

(vibrations and sounds) among their colony, including body movements like wing move-

ments, high-frequency muscle contractions, or tapping body parts. Honey bees use the

waggle dance to inform others about profitable food sources [18]. This dance is consid-

ered a multi-component signal because it can encode different information, for example,

1) attract other bees to receive the information, 2) show the distance and the direction

of the good food source. Fig 2.12 shows how the waggle run performed.

On the social animal side,(e.g. fish,bats,and mammals), they use chemical signals like

pheromones by producing them. Also, males can use it to signal their territory [19] [20].
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Fig. 2.10: Guidance Communication for Multi-agent System.
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Fig. 2.11: Communication mechanism of ants; Antenna touch acts as vibration and
pheromone detection. [17]

Fishes and birds use visual displays and perform different postures and movements to

communicate. Besides the typical vocalizations, communication exists in mammals,

frogs [19], and birds [21].

2.3.2 Virtual Communication

As mentioned, researchers mimic natural communications and present virtual commu-

nications to guide robots in pathfinding, avoiding obstacles, or finding the goal. These

virtual pheromones are the artificial version of chemical pheromones and significantly

guide swarm movements. Also, gossip signals as intercommunication among robots and

using a data structure to store information locally on a swarm are used separately or in

hybrid mode.

2.3.3 Reactive Robotic Paradigm

The robot’s behaviour is defined as a direct mapping between the sensory data to ap-

propriate motor action to accomplish the required task as shown in Fig. 2.13. In order

to build a real-time, responsive and simple robotic system, this robotic system should
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Fig. 2.12: A dancer honey bee performs a waggle run, then turn to one side and circles
back to the first point of the waggle run. After that, it starts another waggle run on the
other side. The more waggle runs done by the bee, the more profitable the food source
it finds. While dancing, the bee releases chemicals and produces vibrations, so followers
use their antennas to touch the dancer. [18]

follow a reactive robotic paradigm in which the robot senses the environment and then

acts directly without the need for planning [22]. The reactive system has some important

characteristics [22] such as:

• Every robot has its goals, and the environment is changed based on its actions.

The robot adaptively senses the change and adjusts its goals to meet the task

requirements.

• Behaviours are considered building blocks for the robot’s actions. The system

should define how these behaviours got triggered.

• Only local sensing is permitted.
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Fig. 2.13: Sense - Act design of behaviours in reactive paradigm [22].

2.3.3.1 Potential Field

In physics, a potential field is used to represent the potential energy connected to a spe-

cific force. The electric potential, for instance, in electrostatics, describes the potential

energy per unit charge at a particular location in space. Similarly, gravitational potential

quantifies the potential energy per unit mass at a specific location. Defining forces in

different locations helps distinguish between these locations and helps agents find their

way through the environment. A potential field assign a value to all points in the space.

For example, if we are taking inspiration from an electromagnetic field, we can specify

that the goal has a positive charge, the agents have a negative one, and any obstacles

have a negative charge. So, the agents can easily be attracted to the goal using that

attractive potential field and avoid the obstacles using the repulsive potential fields, as

shown in Fig. 2.14 . Therefore, the potential fields can regulate the robot movements in

the environment without local storage or extra communication among the swarm [23].

A potential field method is a well-known method that fits in the reactive paradigm

due to its reactive nature and simplicity in generating robot behaviours. Potential

fields allow robots to react immediately to local sensory information. This aligns with
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Fig. 2.14: (a) Demonstrates the attractive potential field to the goal (b) The repulsive
potential field shows the highest value in the presence of the obstacles (c) The final
potential field is a combination of the attractive and repulsive fields that the robot uses
to navigate and avoid obstacles. [23].

the reactive paradigm’s focus on using local sensory data to guide immediate actions

rather than relying on a global understanding of the environment. The behaviour of

the potential field is described as a vector representation, and it can combine multiple

behaviours using vector summation. Fig. 2.15 shows examples of vector fields of the

primitive potential fields: (a) uniform field, the robot has the same force everywhere. (b)

perpendicular field: The robot is directed to move towards or away from the wall. (c)

attractive field: robots get attracted and move toward light or food. (d) In a repulsive

field, the robots avoid and move away from the obstacles. (e) Tangential field: The

robot rotates clockwise around an object. We can combine multiple potential fields, as

shown in Fig. 2.16, so the robots are attracted to the goal and avoid obstacles [22].

2.3.3.2 Scalar Field

A scalar field is defined as a function that associates a scalar value with each point in

a given space. In other words, it is a function that assigns a single numerical value (or

scalar) to every point in a region of space [24]. Scalar fields could represent different

quantities like temperature or light intensity. As we mentioned earlier, the primary
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Fig. 2.15: Vector fields that result from computing the gradient of primitive potential
fields: (a) uniform, (b) perpendicular, (c) attraction, (d) repulsion, and (e) tangen-
tial. (f) a potential field combined two primitive potential fields: attraction (goal) and
repulsion (obstacle) [22].

Fig. 2.16: The robot takes this path to avoid the obstacle and be attracted to the
goal [22].
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(a) (b)

Fig. 2.17: The right figure shows the scalar field for the lasso method for the foraging
task. The left figure shows the robots looking up for the scalar field based on their
position [25].

communication in the termite colony is depositing chemical substances (pheromones),

which are volatile substances that will evaporate over time. So if the termite detects a

greater amount of pheromones, it indicates this site has been visited by another termite

recently. However, if the pheromones concentration is lower, this place is less important

than the other places [15].

2.3.4 Providing Potential field to Robots:

Researchers provide potential fields to robots in various ways, depending on the specific

application and the robots’ capabilities. Here are some ways used to provide a potential

field to robots.

Vardy [25] calculated the scalar field based on the goal position and the boundary’s

geometry for the foraging task. In this work, the author assumed robots can localize,

and they use their position to get the associated scalar field values. Fig. 2.17(a) shows

the generated scalar field and Fig. 2.17(b) shows the robots in action.
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(a) (b)

Fig. 2.18: The right figure shows the vector field for constructing a planar Shape. The
left figure shows the robots sensing the scalar field using their local sensors [26].

However, in this work [26], the robots rely on local sensing, So they provide the scalar

field as a static image to robots, which are equipped with phototransistors to measure

the image and use it as guidance in their movement. Fig. 2.18(a) and 2.18(b) shows the

vector field and the real robots operated on the projected scalar field image on TV.

The potential field could be calculated based on the robot’s surroundings. Martínez

et al. [27] implemented a decision-making algorithm for autonomous vehicles operated

in unknown environments. Their proposed path planning was based on the potential

field, which was calculated given lanes, the other vehicles’ position, and the existence of

surrounding obstacles.



Chapter 3

Using Scalar Fields as a Division of

Labour Technique for Robot

Swarms

In this chapter, we demonstrate the use of the scalar field to regulate work among a

swarm of robots. We present a planar construction task as an example of collective be-

havior. Additionally, we explore different communication techniques among the robots.

This chapter presents parts of the work published in my papers:

• Dalia S. Ibrahim, and Andrew Vardy. "Adaptive task allocation for planar con-

struction using response threshold model." Theory and Practice of Natural Com-

puting: 8th International Conference, TPNC 2019, Kingston, ON, Canada, De-

cember 9–11, 2019, Proceedings 8. Springer International Publishing, 2019.
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https://www.springerprofessional.de/en/adaptive-task-allocation-for-planar-construction-using-response-/17416768
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3.1 Planar Construction using Response Threshold

Model

The objective for the planar construction task is to form a desired shape from ambient

objects existing in the robot’s plane of operation in a distributed behavior approach using

a swarm of robots. We assume robots can do simple arithmetic operations and sense

the projected scalar field, which guides a swarm of robots in their construction task. We

are using fixed thresholds in this scalar field to specify the contour of the desired shape.

The specific shape targeted is an annulus (ring shape); we need to allocate resources and

distribute tasks among the robots. We present three communication techniques besides

the scalar field to show how coordination is done in the swarm. Robots switch between

tasks autonomously based on a calculated response function.

3.1.1 Introduction

Using swarms in collective construction tasks have exciting applications. They may be

used to build a wall around a chemical or radiation leak [28]. Also, they can be used in

many automated applications, like sorting recycling or floor cleaning.

The author in [29] uses the pheromone idea in swarm robots to construct enclosed

shapes like circles, oblongs, and crosses. They used the pheromone as a static template

of the desired shape and implemented it by projecting a scalar field with a combination

of fixed thresholds to guide the robots to the desired shape’s contour. The formation

of two-dimensional shapes is called planar construction. The author introduces an

algorithm called orbital construction (OC) in which the swarm of simple robots orbit

in a clockwise direction and push pucks inwards and outwards to form a specific shape.

Robots consist of two different types: innies and outies. Firstly, innies work inside the

desired shape and pushing pucks outwards. Secondly, outies work outside the shape and
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pushing the pucks inwards.

These robots have three basic behavior characteristics [29]: Firstly, periphery seeking,

in which robots move to the outside of the region occupied by pucks. Secondly, they push

these pucks by nudging them inwards. Thirdly, the robots orbit around the environment

in a clockwise direction, so their paths are called orbitals. These orbitals are defined

by the light intensity of the projected scalar field. In the proposed work, we divide

the environment into 10 orbitals with different light intensities τ ∈ [0.1, 1]. Explorers

work in outer orbitals searching for detached pucks, operating where τ ≤ 0.6. Outties

maintain the shape contour and exist on 0.6 < τ ≤ 0.7. Innies work inside the annulus

where τ ≥ 0.75.

Fig. 3.1 shows our implementation of the OC algorithm to form an annulus with

a projected scalar field. This algorithm has promising results. Most of the pucks are

pushed and placed in the annulus, but there were still some pucks detached from the

constructed shape, especially when these pucks were near to environment borders.

In this work, we introduce the role of explorers. The task of an explorer is to

scan the environment and push pucks towards the annulus. Outies still take care of the

annulus’ boundary, and innies work inside the shape to keep it empty by pushing the

pucks outwards to the annulus’ contour. The main challenges here are knowing which

orbital has pucks and the regulation of the division of labor between exploring robots.

3.1.2 Using Response Threshold in Orbital Construction

The general idea of the response threshold to stimuli in social insect society is these

insects should be highly responsive to their surroundings and communicate efficiently.

That requires a high level of sensitivity to the stimuli. For example, ants’ response

threshold to stimuli is low, allowing them to detect the pheromones quickly. Another

example is a household analogy of a person who resists doing a task until the stimuli
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(a) (b)

(c)

Fig. 3.1: Sequence of snapshots show our implementation of the OC algorithm at 0,
1000, and 5000 time steps. The simulation is done with 30 robots consisting of 13 innies
(yellow) and 17 outies (blue) with 100 red pucks.
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associated with the task exceed a threshold; for example, he resists throwing out the

garbage until its smell exceeds his ability to handle it. His ability to tolerate the smell

represents his threshold, and smell represents the stimuli.

In this work, we use the exponential response threshold function to help the explorers

know if their orbital is empty or occupied. Theraulaz et al. [30] proposed a model based

on the concept of response thresholds to divide labor in insect societies. Their definition

of response threshold is a model of how the insects react to task-associated stimuli.

Every worker has its response threshold for every task. This worker will be engaged to

perform the task if the task stimuli, s, exceeds its response threshold, θ. Therefore, they

are calculating the response function Tθ(s), which determines if they can do this task

or not [31]. After they have engaged in this task, they will have a low task stimulus, so

they will switch to another task.

In our work, the threshold is θ, the time a robot takes to circumnavigate the orbital.

This threshold represents the maximum time required for the robots to circumnavigate

any empty orbital, so it will be used later to calculate the response threshold function.

The following Equation 3.1 shows how threshold θ is calculated where C is the orbital

circumference, ω is the robot’s angular velocity, and ith represent orbital number.

θi = Ci
ω

(3.1)

In this equation, ∆T is the difference in time between two consecutive actual pushes

in the same orbital, as shown in Fig. 3.2.

Algorithm 1 shows how the simple moving average for time (Avg∆T ) is calculated

with a subset size of 2. In general, if Avg∆T is very small compared with θ, this orbital

is occupied with pucks, and the robot should stay on this orbital and keep pushing the

pucks to the next orbital. In contrast, if Avg∆T is equals θ, that means this orbital is

empty. To summarize the relationship between the task stimulus and response threshold,
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Fig. 3.2: The left image shows the initial environment configurations; the orbital width
Rw, θi is the elapsed time to circumnavigate the orbital i, and P1 is the point where
robot number 8 pushes the red puck. On the right, this image shows the next point P2
where robot number 8 pushes another puck in the same orbital. So, the ∆T will be the
difference between the moments where these points were visited. Also, this figure shows
the three types of robots innies (yellow), outies (blue) and explorers (green).

we calculate Fθ, which represents the local Response function for each robot at the given

time. If Fθ equals zero, that means this orbital is empty. If Fθ equals 1, this orbital is

highly occupied with pucks. We use equation 3.2 and multiply the exponent by −40 to

ensure the Fθ(Avg∆T ) ∈ [0, 1] .

Fθ(Avg∆T ) = e
−40·Avg∆T

θ (3.2)

3.1.3 Proposed Methods

In this section, we present the common configuration for the three proposed communi-

cation methods, and after that, the differences among them are discussed.

The robots N are randomly assigned to one of three categories: innies Ni, outies No,

and explorers Ne.

N = Ni +No +Ne (3.3)
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Algorithm 1 Measure simple moving average time for two consecutive pushes
1: function MeasureConsecutivePushes(Last∆T, θ, PrevT ime )
2: CurrT ime = System.getT ime()

3: if CurrT ime− PrevT ime >= θ then . Empty Orbital

4: Avg∆T = θ

5: else if Robot.Push then . Robot pushes a puck now

6: Avg∆T = Last∆T+(CurrT ime−PrevT ime)
2

7: PrevT ime = CurrT ime

8: return Avg∆T, PrevT ime

The robots have sets of sensors. An obstacle sensor (obsl), which indicate the presence

of a wall or another robot in the robot’s left region. Three floor sensors (floorl , floorc

and floorr) can measure the light intensity of the projected scalar field. Robots are also

equipped with two puck sensors located on the robot’s left and right regions (Pucksl and

Pucksr). In addition, there is a lamp that can be switched on or off to indicate if this

robot needs help or not and a light sensor (Lightl) that detects the existence of lights

for the other closest robots on its left. The innies’ and outies’ movement follows the

OC algorithm in [29] which takes these sensor readings as inputs and produces angular

speed. The explorers’ movement follows Algorithm 2.

Explorers start their work by choosing a random orbital, because if they start from

the environment boundary, after some time, it will be difficult for the robot to push

multiple pucks at the same time. During their work, the explorers communicate with

each other as described in the following subsections. Finally, when they have entirely

scanned all of the environment, the explorers will start to scan the environment again

from the beginning in order to not miss any detached pucks and keep searching for any

new pucks added to the environment.

Innies will be trapped after some time; that is why their group is very small compared
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Algorithm 2 Orbital Construction for Explorers
1: function ExplorerOrbitalConstruction(obsl, f loorl, f loorc, f loorr, pucksl,
pucksr)

2: if obsl then

3: return ωmax . Robots avoid obstacle by veering to the right

4: if floorr >= floorc ∧ floorc >= floorl then . Robots alignment for
clockwise movements

5: if Explorer ∧ pucksl then

6: return −ωmax . Explorers steer outwards to collect remaining pucks

7: if floorc < τ then . Steering inwards

8: return 0.3ωmax

9: else . Steering outwards

10: return −0.3ωmax

11: else if floorc >= floorr ∧ floorc >= floorl then . Robots is aligned uphill

12: return −ωmax . Turn left

13: else . Robots is aligned downhill

14: return ωmax . Turn Right
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with the other two groups, and their rule is to keep the area inside the desired shape

empty. The outies operate outside the shape and keep maintaining the shape’s boundary.

In case any explorers push pucks towards an annulus, the outies will catch them and

push the pucks towards the boundary.

In the following subsections, we present three alternatives for the communication of

explorers.

3.1.3.1 Global Communication

As stated in Section 3.1.3, the explorer chooses its orbital randomly, calculates its re-

sponse threshold, and works in this orbital until it is cleaned. While it works, it broad-

casts its calculated value and others, who are finished working, listen, calculate global

response threshold for all orbitals, and choose the orbital with the highest puck capacity

and start their work in that orbital.

Every explorer robot has an array initialized with ones, and its size is equal to six,

which is the number of orbitals that the explorer could work on. When any robot receives

the response threshold values for a specific orbital X, it updates the X orbital’s response

threshold value in its array based on equation 3.4. The explorer trusts in its calculation

more than the received values. Hence, we weight these two thresholds at α and (1− α)

respectively, where α = 0.7, as shown in Equation 3.4.

ResponseArr[X] = 0.7ResponseArr[X] + 0.3RecievedResponseThreshold (3.4)

Random distribution of the robots allows the measuring of the response threshold

over the whole environment at the same time. By exchanging this information, the

robots determine which orbital is the most occupied.
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Fig. 3.3: Screenshots of simulation environment using 100 pucks and thirty robots con-
sisting of five innies (yellow), eight outies (blue) and seventeen explorers (green). The
explorers use global communication approach to form the annulus.
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3.1.3.2 No-direct Communication

In this approach, the exploring robots calculate their response function based on Equa-

tion 3.2. They do not directly communicate. Once an explorer senses its orbital is

empty, it switches to the next orbital towards the annulus. When an explorer reaches

the annulus’ boundary, it goes back to the environment boundary and starts scanning

again.

The benefit of this approach is that there is no requirement for direct communication

among the swarm.

3.1.3.3 Local Communication

In a case where the orbital is fully occupied with pucks, the explorer multicasts this

orbital’s status to its neighbors by setting its light on to attract other robots to come

and help it in this orbital. If any of the others finish working on their orbital, they look

for any light on their left side using their left light sensor, (see Fig. 3.4). If there are no

detected lights on its left, It increases its orbital towards the shape contour, searching

for detached pucks. However if they find the light on, they go towards this orbital by

decreasing their τ and turn on their lights. After they push these pucks from this orbital,

they will switch off the light and go to the next orbital, and so on. The displayed light

could be designed as an LED light strip placed around the robot’s chassis. The left light

sensor could be an RGB omnidirectional camera mounted on the top of the robot, and

we analyze the left half of images searching for the respecified lights. The pseudocode

is presented as Algorithm 2.

The advantage of this approach is that the robot searches for help from the very

closest neighbors, and they will come directly and help it.
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Algorithm 3 Local Communication
1: OrbitalNum = RandomInteger(1 to 6) . Select random Orbital number
2: PrevT ime = System.getT ime()
3: while OrbitalNum < 7 do
4: τ = 0.1 OrbitalNum . Convert to the corresponding scalar field

5: ωavg = ExplorerOrbitalConstruction(obsl, f loorl, f loorc, f loorr, pucksl, pucksr)

6: Radius = H
2 − (Rw(τiRn − 1)) . H environment height, Rw orbital width

and Rn Total number of orbitals
7: ci = 2πRadius . The circumference for each region

8: θi = Ci
|ωavg | . The intensity threshold for each orbital

9: Avg∆T, PrevT ime= MeasureConsecutivePushes(∆T, θi, PrevT ime)

10: Fθ(Avg∆T ) = e
−40Avg∆T

θ . Local Response function for each robot

11: if Fθ(Avg∆T ) < 0.1 then . Orbital is empty

12: Robot.Light = ”Off”

13: PrevT ime = System.getT ime()

14: if Lightl then . Detecting Lighting on robot’s left side

15: OrbitalNum = OrbitalNum− 1 . Moving to its left orbital
to help the robot there.

16: else

17: OrbitalNum = OrbitalNum+ 1 . Increasing its orbital to search for
available pucks.

18: else if Fθ(Avg∆T ) > 0.7 then . Highly occupied orbital

19: Robot.Light = ”On”

20: OrbitalNum =1 . Robot starts scanning from beginning



36

Fig. 3.4: Explorer’s Sensors.

3.1.4 Experiments and Results

We addresses the challenge in [29] when trying to construct an annulus with 100 pucks.

The author found some pucks near to the border environment were unreached by outies,

as shown in Fig. 3.1. Our proposed methods were performed over ten trials with thirty

robots and 100 pucks. The results were generated from a javascript simulator called

Waggle [32].

Following the original algorithm [29], the scalar field has a single point source at the

center and is used to split the environment into ten equal orbitals which are uniquely

identified by their light intensities τ ∈ [0.1,1]. Innies and outies operate on τ ≥ 0.75 and

0.6 < τ ≤ 0.7, respectively, while explorers operate in τ ∈ {0.1K|K ∈ {1, 2, 3, 4, 5, 6}}.

We use the average Euclidean distance between pucks and desired annulus’ contour as

a performance metric to show how this distance decreases over time steps across these

approaches and OC algorithm. The heavy traces in Fig. 3.5 show the average distance
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over ten trials for each approach separately. Fig. 3.5(a) shows the Euclidean distance

decreased, but after some time steps it becomes stable, meaning that the outies can

not reach the remaining pucks. However, Fig.3.5(b), Fig.3.5(c) and Fig.3.5(d) show

Euclidean distances of the proposed methods decreased until they reach zero, which

means all pucks are pushed and form the annulus.

Fig. 3.6 shows a comparison between OC, global, no-direct, and local communication.

The OC algorithm has the worst performance; the average distance is stable after some

time steps, and if the pucks are placed far away from the shape, the robots will not

be able to push them. In the case of the global communication approach, the highest

average distance is at the beginning of the simulation; then it significantly decreased at

the end. This is because, in the beginning, all robots distributed randomly to discover

the environment and exchange their response threshold values. Once they found the

most occupied orbital, their movement may cause two problems: firstly, it may nudge

the pucks outwards, especially if some of the explorers are working near to the annulus

and the others notify them to go and help in outer orbital. Secondly, robots waste

their time in switching between their orbitals and other far away orbitals. On the other

hand, near the end of the simulation, most of the pucks have already been pushed

toward the desired orbital contour, so the environment is quite clean. In this case, when

robots go towards the most occupied orbital, it helps to push these pucks quickly. As

a result, the average Euclidean distance is significantly decreased. For instance, the

global-communication approach has the lowest value for the average Euclidean distance

after 7000 steps.

In the case of the no-direct communication approach, it consumes more time to

push all pucks because every robot works alone, and they only depend on their local

calculations.

On the other hand, local communication takes advantage of sharing environment
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information between nearby robots and solves the global communications problems by

only switching to the very closest orbital. Therefore, local communication outperforms

the two communication strategies in terms of execution time, but all can form the

annulus correctly.

3.2 Conclusion

In this chapter, we present the use of the scalar field as a division of labour to distribute

the pucks among the robots. Additionally, the scalar field defines the shape contour,

and the robots push the pucks toward that contour.

We show how these robots coordinate to construct an annulus shape. Three different

communication techniques are discussed; local communication can outperform global

and no direct communication. The working environment is split into six orbitals with

different τ , and the robots use the response threshold function to guide them on when

they should switch their orbital to the next. Compared to the OC algorithm, these

techniques successfully construct the annulus, and all pucks are attached.
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(a) OC Algorithm (b) Global Communication

(c) No-Direct Communication (d) Local Communication

Fig. 3.5: The average distance between pucks and the annulus over ten individual trials
as well as the average across trials in the thicker trace with 100 puck using the OC
algorithm and different communicating approaches: Global Communication, no-direct
communication and local communication.
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Chapter 4

Guiding Robot Movement with

Scalar Fields and Enhancing

Performance Through

Reinforcement Learning

In this chapter, we demonstrate how scalar fields are used as movement guidance for

robots. We take the largest coverage network (LCN) as an example of collective behavior.

Additionally, we explore the application of reinforcement learning (RL) to enhance the

performance of the Largest Coverage Network in the presence of high and low-resolution

scalar fields. We then compare the RL results with those of hard-coded implementation

algorithms. This chapter presents parts of the work published in my paper:

• Dalia S. Ibrahim, and Andrew Vardy. "Largest coverage network in a robot swarm

using reinforcement learning." Artificial Life and Robotics 27.4 (2022): 652-662.
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https://link.springer.com/article/10.1007/s10015-022-00804-4
https://link.springer.com/article/10.1007/s10015-022-00804-4
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4.1 Finding the Largest Coverage Network among

Robots

The objective of establishing the largest coverage network among the robots is to allow

them to gather more data and exchange it. This could be done by controlling the physical

proximity between a swarm of robots. We present how the scalar field helps the robots

to find their largest coverage network even with a low-resolution scalar field.

4.1.1 Introduction

Finding the largest coverage network can be helpful in many ways like each robot could

be responsible for a specific territory, and if it faces a threat or needs help, it will send

that information to its connected robots. Also, if there are some obstacles in front

of some robots, they can propagate that information to others to avoid them. In the

Largest Covering Network (LCN) task, the robots should be connected to one cluster

with the least possible overlap to cover the largest possible working area. Each robot

can detect another robot if the other robot is in its range. These swarm robots work

independently in a distributed manner with very simple computational power.

We address the spatial coverage of mobile robots to achieve global connectivity with

minimum overlapping sensing range. The robots are placed randomly without any cen-

tral control. They collectively explore the environment and use the scalar field as guid-

ance to build one connected network of robots. The scalar field resolution to be provided

to the robots is an interesting quantity to explore. If a high-resolution scalar field (HRSF)

is required, then this places certain constraints on the robots ability to sense this field.

On the other hand, if a low-resolution scalar field (LRSF) suffices, it may be possible to

implement our technique on simpler robots with fewer and less accurate sensors.
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4.1.2 Related Work

In mobile robots swarm, Panerati et al. [33] select a master robot, and the swarm

performs a rendezvous around that master robot as an essential step to establish the

connectivity of the swarm inside the coverage area. In [34], Francesca at al. presented an

automatic control design for a robot swarm. They tested their controller on five different

robotics tasks with LCN as one of these tasks. Mitaka et al. use static templates to

help the robots to perform the required behavior [1].

Solving LCN is also useful in the initial deployment of fixed sensors, such as a wireless

sensor network. Based on the specific target wanted to be covered, the users calculate

the sensors’ locations to be sure that target is fully covered. The sensors can be deployed

in an unstructured or structured way, depending on the application. In the structured

deployment, the place of the sensors are predetermined with the advantage of less cost

of maintenance and good coverage. However, the sensors are randomly distributed in

the environment in the unstructured deployment, so more sensors may cover the same

area [35]. Also, in [36], they show how the overlapped sensors can form a disjoint cover

set, and the only disjoint sensor should be active at a time to save battery life.

4.2 Proposed Methods

The operated robots are equipped with five sensors, as shown in Fig. 4.1. The C, L

and R sensors measure the intensity of light projected on the floor, which we named

center, left, and right sensors, respectively. These sensors return the scalar value in a

range from zero to one. The Obs sensor is the obstacle sensor to detect the presence of

the walls and other robots. The Com sensor is the communication sensor that covers

a circular region of the space around the robot. The Pos sensor is the position sensor

that returns the robot’s x and y coordinates and is used only in the low resolution scalar
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Fig. 4.1: Robot’s sensors. C, L, and R are floor sensors. Obs is the obstacle sensor.
Com is the communication range sensor. Pos is the position sensor.

field environment.

4.2.1 Low-Resolution Scalar Field (LRSF)

The robots depend on the readings of their communication range sensor and obstacle

sensors. Using the scalar field guides the robots and gives them an idea of where they

are.

In our proposed solution LRSF, we divided the working environment into four quad-

rants (Q1, Q2, Q3 and Q4). With this division, the robots could explore the whole

environment, switch among different quadrants, and take random positions in these

quadrants, giving them more options to find their best positions. At the beginning of

the simulation, each robot is placed randomly in a random quadrant.

The robot moves to a random position in the lower integer number. For example, if

a robot is placed in the third quadrant, it will move to a random position in the second

quadrant. Any robot located in the first quadrant keeps selecting positions randomly

and waiting for any other robot to join its cluster. Once two robots or more form a

small cluster in the first quadrant, the robots in this cluster start to move backward to
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reduce the intersection area among them using the backward speed as shown in Equation

4.1. We added a random floating number ]0,1[ to the backward speed to ensure the two

intersected robots take different values to reduce their intersection areas.

BackwardSpeed(t) = −1
(
e
MaxIntersectedArea(t)

Robot′sRange +RandF loat(0, 1)
)

(4.1)

If they are connected with less than or equal to 2% of their connected range (maxi-

mum allowed intersection), they stop moving and wait for other robots to reach them,

whether the coming robots reach the first quadrant or are on their way. We use the first

quadrant as an anchor, so the robots’ goal is to reach the first quadrant and start to

form the cluster from it.

The control algorithm is presented as Algorithm 4 with the function getNextMove

provided separately. This function calculates the forward speed and angular velocity

required for the robot to move from its current position to the selected random position

in the low integer quadrant.

Fig. 4.2 provides an example which demonstrates the robot’s movements to establish

the one connected network. The colors of robots show which quadrants it belongs to,

the yellow color means this robot stop moving, and the black arrows indicate the robot’s

actions on the next move. In Fig. 4.2 (A), robots in Q2 to Q4 choose to decrease their

quadrant number, hoping it might find any other robots. Robot #1 in Q1 waits for

other robots to come to its quadrant, so it selects a random position; perhaps it finds

other robots. In (B), robot #2 reaches the Q1 and finds robot #1, but their intersection

area is greater than 2% of the robot’s range size. Therefore, they choose to move back to

reduce their intersection area with backward speed, as shown in the Equation4.1. Robot

#3 and #4 are still reducing the number of their quadrants searching for other robots.

In (C), robots #2, #3, and #4 are connected with big intersection areas, so they choose
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Algorithm 4 Hard-Coded for LRSF
Input: Robot’s Position, −−→Pos

Obstacle sensor’s reading , obs
Number of neighbors, Neighbors
Max intersection with neighbors, AMax

Robot’s steer angle, currAngle
Output: Forward velocity, v

Angular velocity, ω
State variables: Robot’s quadrant, Qid

1: ρ← 0.02×Robot′sRange . Minimum Intersection
2: if obs then . Avoid Obstacles
3: return ωmax

4: if t is 1 then . Beginning of the simulation
5: Qid← getRandomQuadrant()

6: else if AMax > ρ then . robot constructs sub cluster
7: if ( (Qid == 1 ∧Neighbors ≥ 2 ) ∨ Neighbors ≥ Robots

2 ) then

8: v← BackwardSpeed . move backwards

9: return v, ω

10: else if AMax ≤ ρ ∧Neighbors ≥ Robots
2 then

. robot connected with min intersection
11: v, ω ← 0 . Stop movement

12: return v, ω

13: else if Qid 6= 1 then
14: Qid← Qid− 1 . Assign Qid to the lower integer

15:
−−−−−→
NewPos← getRandPos(Qid,−−→Pos)

16: v, ω ← getNextMove(−−→Pos,−−−−−→NewPos, currAngle)
17: return v, ω
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Function getNextMove
Input: Robot's Position, −−→Pos

Destination's Position, −−−−−→NewPos
The robot's steer angle, currAngle

Output: Forward velocity, v
Angular velocity, ω

1: ∆X ← −−−−−→NewPos.x−
−−→
Pos.x

2: ∆Y ← −−−−−→NewPos.y −
−−→
Pos.y

3: Kv ← 0.01
4: v← Kv ×

√
∆X2 + ∆Y 2

5: Angle← Atan2(∆Y,∆X)
6: Kh← 0.5
7: ∆Angle← Angle− CurrAngle
8: ω ← −Kh×∆Angle
9: return v, ω

to move backwards. However, robot #1 is connected with a good intersection area, so

it stops moving, and its color changes to yellow. Based on the actions in (C), robots #2

and #3 are still connected with a good intersection area as shown in (D), but the total

number of robots in their range is less than the total operated robots. Also, robot #1

and #4 are disconnected. So, robots #2, #3 , and #4 decrease their quadrant numbers,

and robot #1 gets a new random position in Q1. In (E), robots #3 and #4 are connected

with a good intersection area, but robots #1 and #2 need to move back to adjust their

intersection areas. In (F), all robots stop moving and establish one connected cluster

with minimum intersections.

4.2.2 High-Resolution Scalar Field (HRSF)

In the previous section, we discuss the LRSF, where the environment is divided into

four quadrants. However, in this section, we introduce the HRSF, where we divide the

working environment into ten different parts (orbitals) where each orbital has different

light intensity. We projected the scalar field on the working environment with a central

light source. The grid value is between one and zero based on the intensity of the
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.2: The sequence of snapshots shows the hard-coded implementation in the pres-
ence of a low-resolution scalar field; the colored robots indicate which quadrants they
are; the black arrows show the robots’ next decision based on these situations.
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projected light on the floor. The robots use the three floor sensors readings, which

measure the scalar field value projected on the environment. With the scalar field’s

guidance, the robots move towards the lower scalar values. Once the robots reach the

lowest scalar value, they save this value τ as the desired contour line to use in their

circular movement. The robots follow the orbiting algorithm illustrated in [37], so all

robots are aligned and orbit in a clockwise direction in the same contour line. The initial

value of the forwarding speed is calculated based on the number of connected robots in

its range Equation (4.2). If any robot detects another robot in its range using the

communication range sensor, the robot’s forward speed is reduced based on the number

of robots in its range as shown in Equation (4.2). The more robots in a cluster, the less

forward speed for the robots, which helps the other robots catch them. If the number of

connected robots in its cluster equals the number of operated robots, the forward speed

equals zero, and the robot stops moving.

ForwardSpeed(t) = MaxForwardSpeed

1− RobotsInRange(t)
OperatedRobots

 (4.2)

Fig. 4.3 shows how the hard-coded algorithm works. The red, green, and yellow

robots indicate the robots move clockwise, anticlockwise, or stop, respectively. The black

arrows show the actions that the robots decide to take based on the current situation.

In (A), all robots are distributed randomly in the environment and look to decrease the

sensing scalar field projected on the ground. So that helps them to go to the orange

outer ring (just for demonstration). In (B) and (C), the robots orbit clockwise and try to

align with the lowest scalar value. The robots’ speeds are based on the number of robots

in their range, as shown in Eq (4.2). In (D), robot #3 connects to all other robots, and

its intersection area is smaller than or equal to 2% of its communication range, so it

stops moving. However, robots #1, #2, and #3 connect with a big intersection area, so
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they try to reduce this intersection by orbiting anticlockwise with speed, as shown in the

Equation 4.1. In (E), All robots should move anticlockwise to reduce their intersection

area. In (F), all robots are connected and stop moving.

4.2.3 Experiments and Results

We used the C++ open-source simulator CWaggle 1. This simulation is inspired by the

Javascript robot simulator Waggle2. CWaggle was used before in [38] and [26].

The circular robots move in a rectangle space 900×900 and we use two performance

metrics to evaluate the proposed methods. Firstly, the number of clusters constructed

by the robots. Secondly, calculating the axis-aligned bounding box around the coverage

area. We simulated all experiments over ten trials; the thick lines are the average

performance for each proposed method, and the shaded areas are the confidence interval

for the 90% confidence level.

Low-Resolution Scalar Field: The sequence of screenshots from the hard-coded

algorithm with the presence of LRSF can be seen in Fig. 4.4. At t = 1, robots are

distributed randomly over the four quadrants. At t = 19, Robots reaches their positions

in their quadrants; robots #1, #2, #3, and #4 are connected with some intersection

areas between them, so they move back to reduce these intersections. At t = 26, robots

#1 and #4 have a good intersection area, so they stop moving, and their colors turn

to yellow; however, robots #2 and #3 are still moving back, aiming to reduce their

intersection and keep connecting to that cluster. As a consequence of robot #3 ’s

movements, it has a big intersection with robot #4, so both starts moving back to reduce

this intersection. After a while at t = 6000, robots #2 and #3 fix there intersections.

Robots #5 and #6 move from their initial fourth quadrant to the third one and then

reach the second quadrant. After that, they connect with the cluster, but they still
1https://github.com/davechurchill/cwaggle
2https://github.com/BOTSlab/waggle
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.3: The sequence of snapshots illustrates the hard-coded implementation in the
presence of a high-resolution scalar field. The orange ring shows the lowest scalar field
in the environment. The colored robots indicate the motion of the robots, either for-
ward, backward, or stop; the black arrows show the robots’ next decision based on the
intersection between robots’ communication range.
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have an intersection that needs to be reduced. Robot #8 changes its quadrant to the

second quadrant and connects with the cluster with the acceptable intersection, so it

stops moving. Robot #7 reaches the second quadrant but with a big intersection with

robot #8, so it moves back and disconnects from the cluster, so it moves to the first

quadrant and intersects with robot #4. Finally, at t = 10000, all robots are connected

with the smallest intersection except robots #4 and #7; they still move backward and

forward to reduce the intersection and keep connecting with the cluster.

High-Resolution Scalar Field: Fig. 4.5 presents the screenshots of hard-coded

implementation with the HRSF environment. At t = 1, the robots detect the scalar

values and move with the guidance of the scalar field to reduce the sensing values.

According to this motion, robots are aligned to the outer orbital near the border as

shown in t = 290. The robots orbit in a clockwise motion, and some of them construct

small clusters. So, robots in that cluster decrease their speed with the same ratio based

on the number of robots in their cluster. At t = 290, the first group are consisting of

robots #6, #7, and #8; and the second group has the robots #1, #3, and #4. Robots

#5 and #2 are orbiting alone, so their speed is faster than the other robots so that

they can catch them. After a while, robot #2 connects with robot #8, so their cluster

speed is decreased, which allows robots #3, #4, and #1 to catch them as shown at t

= 1862. At t = 1868, all robots in green color start to move anticlockwise to reduce

their intersections, and robot #1 successfully gets a minimum intersection, so it stops

moving. On the other hand, robot #5 in its moves clockwise to reach that cluster. At t

= 2498, all robots construct one cluster, but they still fix the intersections among them

by orbiting anticlockwise. Finally, at t = 10000, robots in yellow color stop motion while

the green robots keep moving anticlockwise, aiming to fix their intersection area.
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(a) t = 1 (b) t = 19

(c) t = 26 (d) t = 50

(e) t = 6000 (f) t = 10000

Fig. 4.4: Screenshots from the CWaggle simulation in different time steps. The working
environment is divided into four quadrants. The colored robots indicate the destination
quadrant the robots choose to go there. The colors are red, green, purple, and blue for
the four quadrants respectively starting from the upper left corner. The yellow color
indicates the robot chooses to stop.
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(a) t = 1 (b) t = 290

(c) t = 1862 (d) t = 1868

(e) t = 2498 (f) t = 10000

Fig. 4.5: Screenshots from a CWaggle simulation in different time steps. Eight robots
are randomly distributed at t = 1, sharing the same orbital with different, forward
speeds. The robots’ colors are red, green, or yellow, indicating that robots orbit with
forwarding, backward speed, or stop, respectively.



55

4.2.4 Discussion

Fig 4.6 shows the performance of Hard-coded implementation in HRSF and LRSF. Fig.

4.6(a) presents the obtained coverage area in both implementations over ten trials. The

area in HRSF reaches nearly 500000 by the end of the simulation; however, in LRSF,

the coverage area is nearly 300000. The HRSF helps robots find the furthest orbital,

and they keep orbiting in that orbital and adjusting their speed based on the number

of the robots in their cluster so they construct a larger area faster than the LRSF. On

the other hand, in LRSF, the robots have only four quadrants and try to enlarge their

cluster size by moving back to reducing the intersections. The advantage of LRSF is it

gives us different coverage shapes in every run, so it could be used if we want robots to

cover other territories. Fig. 4.6(b) shows the number of clusters versus the simulation

time. In HRSF, the robots create one or two groups earlier than the LRSF and focus

on decreasing the area of their intersections, shown at t = 3800.

4.3 Using Reinforcement Learning to Enhance LCN

Performance

As mentioned earlier in Section 4.2, LCN aims to maximize the coverage area by a

swarm of robots while maintaining the connection among these robots. Robots try

to form one connected cluster with minimum intersection areas among them. In this

section, we propose to use Q-Learning as an RL algorithm for solving LCN in two

different environments; low-resolution scalar field (LRSF) and high-resolution scalar field

(HRSF). We prefer to study tabular Q-learning over any other reinforcement learning

algorithms because we can discretize the state and action space into small and discrete

spaces. Tabular Q-learning will be simpler and converge to the optimal policy with fewer

training samples because it stores Q-values for each state-action pair in a table, making
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Fig. 4.6: Hard Coded implementation in the presence of low and high resolution scalar
field.
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the update quicker. Also, tabular Q-learning is easy to interpret how the agent makes

decisions, which helps in understanding the agent’s behaviour [39].

In RL, where some agents interact and modify the environment, tabular Q-Learning

shows promising results when applied in a dynamic environment [38], [40]. Its goal is

to find the best sequence of actions to get the maximum outcome as much as possible.

the agent can explore and get some observations from the environment. It will interact

with the environment by using a specific action and learn by getting a reward and a new

observation from the environment based on that action. Based on that new observation,

the agent decides to repeat or avoid that action. It keeps doing this learning process

until it has a good action sequence to achieve its goal. This policy can be iteratively

enhanced through multiple simulation runs.

4.3.1 Low-Resolution Scalar Field (LRSF)

As mentioned in Section 4.2.1, which presents the hardcoded implementation for LCN,

we use the same configurations in which we divide the working environment into four

quadrants. In this section, we use the RL to handle the switching between these quad-

rants. The states for the Q-Learning algorithm are determined based on a robot’s point

of view and how many neighbors are in its range. Besides, the robots have limited mem-

ory and computation capabilities; we tried to find the minimum possible representation

for state and action space. Therefore, we discretize the many states into four states S ,
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where n is number of neighbors and TR is the number total robots.

Si =



n = 0

n 6= 0 ∧ n < 2
3TR

n ≥ 2
3TR ∧ n < TR

n = TR

The robot chooses between eight actions:

• Normal movement in which it goes to a random spot in the lower integer quadrant

(1 action).

• Selecting any other quadrant from the environment (Q1, Q2, Q3, Q4) (4 actions).

• Increasing or decreasing its forward speed (2 actions).

• Stop (1 actions).

In the reward function, we focus on maximizing the number of connected robots and

increasing the coverage area as much as possible by minimizing the intersection area

between neighbors.

Ri(t) = ConnectedNeighbors(t)
OperatedRobots

+ CoverageArea(t)
MaxCoverageArea

− 1 (4.3)

As shown on Equation (4.3), in the worst scenario, when a robot moves alone and

does not belong to any cluster, the reward function approximately equals -1. When all

robots are connected, the reward value is directly proportional to the coverage area.
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Fig. 4.7, shows screenshots from the RL implementation in the presence of LRSF in

operation. At t = 1, the robots are on their way to their quadrants. At t = 859, some

of the robots (yellow color) achieve their goal by connecting to others with minimum

intersection areas. All other robots suffer from significant intersection areas, so they

decide to continue searching for the best position for them. When these robots move

away from that cluster, it reflects in the others’ reward function, so all the robots continue

working again, as shown at t = 2507. After some tries, they can form a cluster with a

different shape at t = 3805. But there are still three robots that have a big intersection

area. At t = 4795, based on their learning policy, they can take actions that increase

their reward; in this case, they decided to move to Q4. Finally, all robots fix their

intersections and connect to one cluster at t = 6097.

4.3.2 High-Resolution Scalar Field (HRSF)

We use the same configuration presented in Section 4.2.2 for hardcoded implementation

in which we projected the scalar field with to central light source on the working environ-

ment. Then, we discretize the scalar field to ten values ∈ [0.1, 1] representing different

light intensities; the area has the same light intensity called orbitals. The robots go

towards the furthest orbital τ = 0.1 to achieve the largest coverage network. But the

robots share the same orbital so that the robots can be connected at any time because

they move with different forward speeds based on the number of their connected neigh-

bors. Therefore, the states for Q-learning are defined based on the maximum intersection

areas between the robots and their connected neighbors. The states are discretized into

four states: (1) there is no intersection between this robot and the others; (2) the max-

imum intersection area between this robot and its neighbors is greater than two-thirds

of its coverage range; (3) the maximum intersection is greater than one-third; or (4) the

maximum intersection is less than one-third of its coverage range.
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(a) t = 1 (b) t = 859

(c) t = 2507 (d) t = 3805

(e) t = 4795 (f) t = 6097

Fig. 4.7: Screenshots in different time steps show how the robots perform in the Cwaggle
simulation using RL.
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The robots choose between three actions: (1) Moving with the calculated forward

speed as shown in Equation (4.2); (2) increasing their forward speed by 0.3 to catch the

other robots; (3) stopping their movement. We used the same reward function defined

in Equation (4.3) in the LRSF environment.

Fig. 4.8 shows screenshots of the RL algorithm with HRSF from the CWaggle sim-

ulator in different simulation time steps. At the beginning of the simulation t = 1, all

robots are distributed randomly in the environment. After that, they reach the lowest

scalar value. These robots choose between actions: some increase their forward speeds,

moving with the calculated forward speed Equation 4.2 or stop movement, and the

robots are colored purple, red, or yellow, respectively. According to their learned policy,

at t = 1000, the purple robots that move alone try to increase their speed to catch other

robots. Also, the robots with the maximum intersection with its neighbor try to increase

their speed to reduce the intersection area. At t = 4100, and t = 4200 the red robots

have a minimum intersection, but the number of connected robots in their cluster is less

than the total number of connected robots. So, they move with the calculated forward

speed, while the purple robots increase their speed to reduce their intersection areas.

At t = 4500, the yellow robots have a minimum intersection area, and the number of

robots in their cluster equals operated robots, so they get a high reward and choose

to stop their movement. Simultaneously, some robots are still moving to reduce their

intersection areas, as shown in red. Finally, all robots stop and form one cluster with a

minimum intersection area at t = 4560.

4.3.3 Experiments and Results

We follow the same simulation environment described in the previous Section 4.2.3. For

all RL experiments in LRSF and HRSF, we use a discount factor equal to 0.9 with

learning rate varying between experiments.
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(a) t = 1 (b) t = 1000

(c) t = 4100 (d) t = 4200

(e) t = 4500 (f) t = 4560

Fig. 4.8: Screenshots show a CWaggle simulation in different time steps. The eight robots
are using RL to form LCN and working on a central source point scalar field. The colors
of the robots indicate the action they choose; the red color means the robots move with
the calculated forward speed; the purple color indicates that the robots increase their
speed and the yellow color means the robot chooses to stop.
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Fig 4.9 shows the RL results in both environments, the LRSF and HRSF. The top

figure presents the number of formed clusters versus the simulation time steps; the results

depict that using RL in both LRSF and HRSF constructs one cluster after t = 7500.

However, in the coverage area plot, we can note that the RL–HRSF can achieve a larger

coverage area than RL–LRSF at most time steps. This is because, in HRSF, all robots

move in a narrow orbital, which helps the robots decrease the intersections among them;

reducing the intersections leads to achieving more coverage area.

Fig. 4.10 shows the comparison between RL and hard-coded implementation, which

is presented in the Section 4.2.1, with LRSF regarding the number of connected clusters

and the maximum area achieved. The RL implementation can construct one cluster

faster than the hard-coded implementation, and that cluster is more stable from t =5700.

Unlike the hard-coded implementation, it can build one connected cluster, but due to its

several backward movements to fix the intersections, this cluster is not stable like RL.

Regarding coverage area, the RL can outperform the hard-coded implementation,

and its average coverage area equals 290000. However, in hard-coded implementation,

the average coverage area equals 270000 by the end of the simulation time.

Fig. 4.11 presents the differences in the performance between both implementations.

The top figure shows that most of the trials in the RL implementation can construct one

cluster around t = 3000 simulation step, which is faster than the hard-code. However,

In some trials, robots destroy this cluster while moving to minimize the intersection

areas, and others keep it because it has minimum intersection areas among the robots.

Regarding the average coverage area, the RL implementation got a larger coverage area

than the hard-coded implementation.

The comparison between all the proposed solutions is shown in Fig. 4.12. Regarding

number of clusters, all proposed algorithms start with high number of clusters and by the

end of the simulation they can establish one cluster. However, the RL implementation
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Fig. 4.9: Comparison between Reinforcement learning implementation using Low and
high Resolution Scalar Field.
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Fig. 4.11: Comparison between Hard-Coded and RL using High-Resolution Scalar Field.
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with LRSF takes the lowest simulation steps to form one stable cluster. Also, in LRSF,

every trial produces different shapes that depend on the initial position of the robots.

Therefore, this solution will be preferable if the application wants to divide the working

environment into arbitrary territories. In respect of the average coverage area, RL with

HRSF achieved a higher coverage area compared to the other implementations.

4.4 Conclusion

In this chapter, we show the scalar field in two resolutions to guide the robots in finding

the largest coverage area. The high-resolution scalar field (HRSF) helps the robot to

find the furthest orbital and align into the same orbital, so they focus on reducing

the intersection among them. Also, we introduce the low-resolution scalar field (LRSF),

which could be used for robots with limited sensing capability; the robots can successfully

construct one cluster in a reasonable time compared with the HRSF. Based on the results,

the more resolution the scalar field is provided to the robots, the more coverage they

can achieve.

We also used RL to improve the LCN performance in the presence of scalar fields. We

compared four approaches, either hard-coded or reinforcement learning using Low and

High-Resolution Scalar Fields. The obtained simulation shows that using the benefits of

reinforcement learning to find the best policy to maximize the coverage area is preferable

to the hard-coded approach in both low and high-resolution scalar fields. Moreover, using

RL combined with HRSF gives the largest coverage area, as HRSF guides the robots into

alignment in the same orbital, making it much easier to construct one large, connected

network.
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Chapter 5

Addressing Spatial Interference

using Scalar Fields

In this chapter, we address the following question: Can access to a scalar field guide

a set of robots in executing tasks that require them to visit specific positions in the

environment, all while avoiding collisions with each other? We explore a scalar field

inspired by the city road network and examine our scalar field design using aggregation

and foraging tasks. This chapter presents parts of the work published in my submitted

paper:

• Dalia S. Ibrahim, and Andrew Vardy. "Swarm in the City: Inspirations from Urban

Street Networks for Swarm Robotic Guidance"

5.1 Introduction

When robots work in the same environment, there may be destructive interactions among

the robots. Spatial interference between robots means that a robot’s movements affect

the performance or behaviour of another robot in the same space. When we add more

robots to accelerate the required performance time to finish the given task, interference

69
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between the robots could badly affect the performance because robots waste time to

avoid collisions. Spatial interference can also be defined as a competition for resources;

for example, collecting the same object in space, accessing a doorway at the same time or

from opposite directions [41]. The robots could also block and bump each other, which

might cause harm to the robots’ bodies. Some applications using robots in the real world

that might encounter spatial interference, like mail [42] and warehouse delivery [43]

or assisted operator wheelchairs [44, 45]. There are several ways to help the robots

reduce their spatial interference. For example using extra sensors like cameras and

LIDAR (Light Detection and Ranging) to detect obstacles, either robots or objects,

so they can adjust their movements to avoid a collision [46, 47]. Also, robots could

have force feedback, called aggressive behaviour, so they are equipped with force sensors

to detect and respond to physical contact with their surroundings [44]. In addition,

machine learning algorithms could be used to analyze sensory data and adjust the robot’s

behaviour based on the patterns in these data [48,49].

Another way is using path planning algorithms [50], which means finding the optimal

feasible paths and allocating paths to each robot, considering the robots’ tasks and

overall mission. Some aspects of path planning should be handled, such as collision

avoidance [51], maximizing the overall system efficiency, and cooperation among the

robots so they can work together to accomplish the tasks, and scalability to accommodate

an increasing number of robots.

As shown in Fig. 5.1, artificial potential fields (APF) and sampling-based are consid-

ered classical approaches in path planning algorithms. In APF, the robots are attracted

to the goal and avoid obstacles by following the designed path from the attractive and

repulsive fields. In sampling-based methods, instead of searching for the optimal path

in the entire configuration space, these methods randomly sample points and construct

paths through the sampled points [52]. An example of the sampling-based method is
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Fig. 5.1: Classification of path planning algorithms for mobile robots [52].

Rapidly-exploring Random Trees (RRTs) [53]. RRT builds a tree from the start position

and incrementally grows towards the goal point.

Our work combines a sampling-based algorithm (RRT*) with the artificial potential

field. We design the scalar field from the selected optimal paths by RRT*. We provide

the scalar field to the robots as a projected coloured scalar field that fits the robot’s

capabilities in that it can sense the colour of the working environment.

In real life, designing roads in the city follows some safety evaluation to be sure the

cars can be safely driven through the town. Road evaluation is divided into two parts:

the first one is related to engineering design, and the second evaluation is the behavior

of the drivers [54], as shown in Fig 5.2. To mimic this strategy for a swarm of robots,

we design roads for robots and control the robots’ behaviour by providing them with a

Road-Following controller to traverse the environment.

In this chapter, we study two collective behaviours: aggregation and foraging. We

chose these particular tasks because the principles learned from these behaviours could

be applied to various multi-agent system applications, including exploration [55–58],

surveillance [59–61], transport objects [62–65], information sharing [66–69], and search
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Fig. 5.2: Generalized causal chain model for how road safety is measured [54].

and rescue missions [70–74]. In addition, the foraging task shows how the multi-agent

system can collectively retrieve shared accessed objects within the environment and

enhance the overall system performance [75–77].

5.2 Designing Streets

5.2.1 Urban Street Design for Cities

Urban street design is the process of organizing and planning the layout of streets within

the city and shaping the overall functionality of accessing different places in cities [78].

Effective urban street design enhances connectivity and makes it easier for people to

move around the city. Street design can foster social interactions, encourage active

lifestyles, and contribute to a sense of community [79]. There are several street layouts,

such as circular, grid, crescent, and star-shaped designs [80].

The circular street layouts follow the curve pattern, do not have sharp angles, and

allow for smoother turns and navigation [81]. The cities that follow the circular design

have a central focal point, such as a central park or a great building [82]. For example,

in Saudi Arabia, there is an "Al Masjid an Nabawi" in the city of Madinah; this mosque

is the focal point in the city, as shown in Fig.5.3 in that all streets in a circular shape

around it.

The grid street layout is characterized by a network of streets that create a rectan-
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(a) Virtual map of Madinah city [82]

(b) A map of Madinah city [83].

Fig. 5.3: Circular street layout.
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Fig. 5.4: Street networks for Manhattan and Boston [84].

gular or square pattern in urban areas, and all streets intersect at right angles. The

advantage of this design is the ability to divide the city into easily organized blocks

and predictable direct routes for vehicles. Examples of grid street designs include the

Manhattan grid in New York city, the Boston grid system as shown in Fig. 5.4 and the

Chicago grid system shown in Fig 5.5.

5.2.2 Street Design for Swarm of Robots

In this chapter, we design streets for robots to help them move around the environment

and accomplish their task. We designed our swarm city layout inspired by the grid

layout of Chicago because it is well-organized and has predictable routes. Fig. 5.6 is a

sketch to describe our layout design. We assume the blue spot is the desired place the

robots will visit frequently; it could be an aggregation area, charging, communication, or

collection station. The diagonal line (direct street) connects the environment’s furthest
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Fig. 5.5: A map of Chicago in 1830 [85].
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point, intersects with all streets, and ends at the desired area. Then, we divided the

environment into blocks of approximately equal size using horizontal streets (streets A

- H). These blocks represent the position where the robot could be placed, as sketched

in block 6. By using this street layout, the robots can reach the desired station if it is

placed on any street or the direct one. Also, if the robot is placed in any position inside

the block, it can use simple movement to find and follow the streets. For example, we

represent the robot with the red x. If it moves left, right or straight, it finds the desired

area, street A or direct street, respectively.

We will refer to this diagonal line with a highway as a metaphor. It is the fastest way

for robots to reach the desired area. We call horizontal streets main roads as a metaphor;

they divide the environment into main parts and are connected to the highway. Our

road design should be task-oriented, meaning the roads are designed based on the robots’

required mission. For example, in the foraging task, the robots should have a return path

to continue searching for objects after their delivery to the collection area. However, in

the sorting task, the highway should have a roundabout so the robot delivers the carried

item to the desired location.

5.2.3 Designing Roads

In our design of roads for robots, all roads will be one-way to improve the overall efficiency

of traffic flow and reduce the conflict points compared it two-way streets in which the

vehicles may cross paths [86]. Also, one-way can have high road capacity, work well in

heavily congested areas [87], and a streamlined flow of vehicles in one direction is more

efficient use of road space, has safer turning movement and reduces collisions [88–90]. We

assume our robots do not know their orientation, so our one-way roads will be defined

by two colours: white and green. Robots will keep the green colour on their right to

help them figure out the direction of the goal.
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Fig. 5.7: Tree expansion process in RRT* algorithm [92].

In our work, we design the roads using a sampling-based path planning algorithm,

Rapidly-exploring Random Trees (RRT*) because it has a low computational cost and

is probabilistic complete, which means if there is a path, it will find it [91]. RRT*

randomly samples the free configuration space by getting the optimal collision-free path

between the initial and goal points. This path is organized in a tree structure; the tree’s

head is the starting point, and the tree gradually expands and improves with iterations.

In each iteration, we select a random point. If it belongs to an obstacle-free region, we

search in the tree for the nearest point to that random point. Based on the step size,

the local planner connects the random point to the nearest point, or the local planner

returns a new node to the nearest point, as shown in Fig. 5.7. Also, RRT* finds the

least cost parent and then rewires the tree to find the optimal path [91–94], as shown in

Fig.5.8.

5.2.3.1 Our Road Design using RRT*:

We design the highway by connecting the goal to the furthest point of the environment

using RRT*, as shown in Fig. 5.9(a). The road connects that furthest point directly to

the blue goal area so the robots can reach the goal faster if it is placed on this highway.
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Fig. 5.8: The blue paths show the edges constructed by RRT*, starting from the yellow
square to reach the goal region in the upper left (magenta colour). The tree snapshots
are presented in different iterations: (a)-(d) have 250, 500, 2500, and 10000 vertices,
respectively. The optimal path is highlighted with a thick red colour. [94]
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Also, we design main roads using RRT*, starting from both sides of the highway to

the working environment side borders. The main roads are plotted using RRT* and

interpolated to avoid sharp curves. To connect main roads with the highway, we use

Bezier curves to act as ramps to enter the highway as shown in Fig. 5.9(c). A task

like foraging requires the robots to return to the environment after reaching the goal to

continue working; we added a return path as showed in Fig. 5.9(d), and the robots drive

through this path to enter the environment again. Also, this return path will be used

in the aggregation task if the robots get nudged out by other robots. Using this design,

the robots follow any road, and eventually, these roads will lead them to the highway,

and they can reach their destination quickly.

5.3 Software implementation using city road net-

work

This section presents solutions for two collective tasks: aggregation and foraging in the

presence of a city road network. We compare our results vs random walks, which act as

a simple baseline benchmark for evaluating the performance of our controller [95]. The

robots’ positions and orientations are drawn from a uniform distribution, and we present

the performance with a differing numbers of robots. In the foraging task, we show the

results for two placements of the pucks: in the center and the bottom-right corner of

the environment with a differing numbers of robots.

5.3.1 Aggregation task

The aggregation of robots can be achieved through different strategies, including self-

organizing approaches [96–99] and goal-prespecified (cue-based) methods [100–103]. In

this work, we provided the prespecified area (coloured blue) for the robots to aggregate
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(a) Highway road and the blue destination. (b) Adding the main roads on both sides of the
highway and yellow turning points.

(c) Using Bezier curves to connect the main roads
with the highway.

(d) The return path is added.

Fig. 5.9: The city road network is designed to guide the collective execution of tasks
for a swarm of robots.
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Fig. 5.10: The sensors used in the aggregation task. Left sensor (L_S), left center
sensor (LC_S), right center sensor (RC_S) and right sensor (R_S) are colour sensors
that detect ground colours. Obs is an obstacle sensor to detect walls. Rob_S indicates
that there is a front robot ahead or not.

there and designed the roads to lead to this area. The robots are equipped with four

colour sensors to detect the blue aggregation area, as shown in Fig. 5.10, and the robots

can detect the front obstacles, either walls or other robots. We present our controller

to a swarm of robots using our design for the swarm city road network and call it the

Road-Following Controller. Then we use the Random-Walk controller as a benchmark

for performance comparison.

5.3.1.1 Aggregation using city road network design and Road-Following

controller:

Using the road network makes it easier for the robots to reach the aggregation area

by following main roads which lead them to the highway, and at its end is the desired

location to aggregate. As we mentioned, all roads are coloured with two colours: green

and white. The robot can know the direction of this road by keeping the green line all

the time on its right side. If it does not sense the green at any time, it rotates until the

right center sensor (RC_S) detects the green, and the left center sensor (LC_S) sees
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the white colour.

We implement our control structure using a finite state machine because it is com-

monly used [104–106] due to its readabilty and modularity [107]. Also, we can decompose

any complex behaviour into simple behavoiurs represented by different states a robot can

be in and the transitions between these states based on its sensory inputs and internal

logic.

Fig. 5.11 presents the state machine for aggregation task using the Road-Following

controller. The controller starts with the Follow_Road state in which the robots detect

the direction of the road and move over it. If the robot detects a yellow turn, it turns
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left to enter the main roads. If the robot is off the road, we assume it is between roads;

the robot starts to search for the road by driving straight for some random time and

then spinning and repeating that behaviour until it finds any route and follows it. At

any time, if the robot encounters any obstacles, either walls or other robots, it attempts

to avoid them. If there is a robot ahead, the robot stops for a random time to give that

robot a chance to move. After that, if the collision is resolved, it starts to follow its

road again, but if the collision is still there, it starts to move backwards and turn left

to avoid that robot. In the case of the facing a wall, the robot moves backward and

then turns left. Once the robot approaches the aggregation area, it turns left to enter

it. The robot turns right with a random angle so that the robots drive straight through

different directions in the aggregation area until they reach the edge of the aggregation

area and stop there to leave room for the following robots. If there is any collision in the

aggregation area, the robot solves by turning right and moving straight. If the collision

is not solved, or it reaches the edge of the aggregation area, it stops. At any moment,

if the robot is nudged out, it follows the return path and enters the aggregation area

again.

The simulation of the following experiments was implemented in C++ using Cwaggle

CWaggle. It is an open-source software simulator for robotics for circular-based physics

agents. CWaggle has a very high update rate and allows both static and dynamic circle-

circle and circle-line collision resolution.

Fig. 5.12, shows screenshots of Cwaggle simulator for the aggregation task using our

city road network design and the Road-Following controller. The robots’ positions and

orientations are drawn from a uniform distribution. At the beginning of the simulation,

45 robots are deployed and searching for the nearest road to follow. At t = 1800, robot

#7 is the first to reach the aggregation area, then robot #4. Both of them drove with

different angles and moved straight to the edge of the aggregation area, so they were
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(a) Screenshots of CWaggle simulator for 45
robots at t = 1800.

(b) Screenshots for robots at t = 3000, some
robots stop moving when they reach the end of
the aggregation area (blue area) such as robots
#7, #12, #7 and #1.

(c) t = 5400, some robots reach the aggregation
area.

(d) t= 34500 all robots reach the aggregation
area.

Fig. 5.12: Screenshots of 45 robots aggregating using city road network and Road-
Following controller.
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Fig. 5.13: Aggregation using city road network and Road-Following controller.

placed in different spots as shown at t = 3000 and the same happened for robot #1 and

robot #12. At t = 5400, 26 robots reached the aggregation area, and the others were on

their way. Robots #3 and #13 are about to be nudged out, so they will take the return

path and follow the highway to enter the goal area again. Finally, all robots aggregated

successfully at t = 34500.

The experiments are performed over ten trials for different numbers of robots; the

results are generated from CWaggle simulator.

We studied the performance of the Road-Following controller for aggregation task

for different numbers of robots, n, chosen from the set {5, 10, 15, 20, 25, 30, 40, 45, 50}.

In Fig. 5.13, the thick line shows the average performance of certain robots, and the

shaded areas present the confidence interval for a 90% confidence level. As shown, at

the end of the simulation for all trials, all robots fit smoothly in the aggregation area.

When the total number of robots n is smaller, such as n ∈ {5, 10, 15, 20}, the robots

aggregate faster than the larger number of robots because of the number of collisions
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either outside or inside the aggregation area. When we increase the number of robots,

and the robots try to find an empty spot in the aggregation, this can cause some robots

to be nudged out, as shown by the blue arrow with 50 robots after 20000 time steps, at

which time most of the robots have reached the aggregation area.

5.3.1.2 Aggregation using Random-Walk controller:

The robots are equipped with the same sensors described in Fig. 5.10; the coloured

sensors are used to detect the blue aggregation area. No environmental information can
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be obtained except if the robots are in the blue aggregation area and if the robots collide

with other robots or walls. Random search is a basic strategy for the robots to explore

the environment and find the blue aggregation area, especially for these simple robots,

who depend only on their local sensing and low computational power [108, 109]. There

are commonly used methods for random walks, such as Brownian Motion [110–112]

and Lévy Flight [113–116]. Brownian motion is named after botanist Robert Brown,

who observed the random motion of pollen grains suspended in water and changed

their direction randomly. Brownian motion is a continuoustime process, meaning it is

defined for all points in time. Additionally, it is a Markov process, implying that the

future movements of the particle depend only on its current position and not on its

past trajectory [117]. The motion of the particle can be modeled as a random walk,

where the particle takes random steps in different directions at discrete time intervals.

Lévy flight introduces long steps derived from Lévy probability distribution, unlike the

usaul random walk, which has a fixed step size [114]. In our random walk controller, we

use random step size derived from the uniform distribution and random direction also

derived from uniform distribution. This approach works well within our state machine

design.

Fig. 5.14, shows the state machine of the Random-Walk controller. The robots’

positions and orientations are drawn from a uniform distribution. The robots start

moving straight and then spin repeatedly. They do this random walks till they find the

aggregation area. They solve any collision either with the wall or other robots in the

same way as Road-Following controller. Once they approach the aggregation area, they

move straight to reach the end of the aggregation area to leave spots for the coming

robots.

Screenshots of CWaggle simulator of the Random-Walk controller are shown in Fig.

5.15. At the beginning of the simulation, all robots are distributed randomly and start
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(a) t = 600. Robot #1 approaching the aggre-
gation area (blue area).

(b) Screenshots for robots at t = 1100, Robot
#1 reached the end of the aggregation area and
stopped.

(c) t = 26800, some robots reach the aggregation
area.

(d) t= 32400 Some robots are traped outside
and can not reach the aggregation area.

Fig. 5.15: Screenshots CWaggle simulato of 45 robots aggregating using Random-Walk
controller.
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Fig. 5.16: Aggregation task using Random-Walk controller.

applying Random-Walk controller to avoid colliding with each other. At t = 600, robot

#1 is the first to reach the aggregation area, and it keeps moving straight to the end of

the aggregation area and stops there at t = 1100. At t = 26800, Robot #1 is nudged

out and enters the aggregation area again with other robots. At t = 32400, 36 robots

are in the aggregation area, some blocking other robots from entering the aggregation

area like robots #5, #8, #10, #19, #29 and #43.

Fig. 5.16, shows the performance of different numbers n ∈ {5, 10, 15, 20, 25, 30, 35,

40, 45, 50} of robots applying a Random-Walk controller; for each robot, the experiment

is performed over ten trials, and the shaded areas are the confidence interval for 90%

confidence level. All the smaller number of robots n ∈ {5, 10, 15, 20, 25} are aggregated

at the end of the simulation steps. On the other hand, the large number of robots n ≥ 30

robots are achieved 90% of the total number of robots. With the increasing number of

robots, the performance decreased to 83% in 50 robots because the robots entered the

aggregation area from different locations. They reached the end of aggregation based
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Fig. 5.17: Comparison between two controllers: Road-following and Random-Walk con-
trollers for aggregation task.

on their entry location, which caused a collision in the aggregation area. The robots

stopped around the aggregation area’s boundary, which blocked others from reaching it.

5.3.1.3 Discussion

Fig. 5.17, presents the comparison between Road-following and Random-Walk con-

trollers for 10 robots used as representatives of a small number of robot groups and 50

robots as an example of a large number of robot groups.

With a small number of robots, at the beginning of simulation before t = 5000, the

robots in Random-Walk controller have the freedom to move in the environment, and

the number of collisions is small, so they aggregate faster than Road-Following controller

in which robots try to find the roads and follow them to the aggregation area. However,

after t = 5000, the robots in the Road-Following controller find their roads and approach

the aggregation area from the same entry location, organizing their entry faster than

the Random-Walk controller.
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Fig. 5.18: Robot’s sensors are used in foraging tasks. L_S, LC_S, RC_S and R_S are
colour sensors that detect roads and collection station colours. Obs is a wall detector
sensor. Rob_S indicates whether a robot is ahead. L_puck and F_Puck sensors sense
the pucks on the robot’s left and front, respectively.

That also happened with a larger number of robots, in our case 50 robots; the

freedom of movement of the Random-Walk controller achieves good performance before

t = 10000 compared with the Road-Following controller. However, at the end of the

simulation, the robots in Road-Following are all found a place within the aggregation

area. Unlike robots that applied the Random-Walk, some are blocked from entering the

aggregation area.

5.3.2 Foraging task

In the foraging task, robots are required to collect pucks through the environment and

deliver them to the predefined location known as a collection station. The robots have

four floor-coloured sensors to detect the collection station, which is coloured blue and

also can see the projected roads in the city road network environment. Robots push the

pucks using their passive gripper and can see pucks on the front and left. Also, they can
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detect front obstacles, either walls or other robots, as shown in Fig. 5.18. We present

our Follow-Road controller using the city road network and we use the Random-Walk

controller as benchmark to evaluate the performance of our controller.

5.3.2.1 Foraging using the city road network and Road-Following controller

In this implementation, we use our city road network design to help robots collect and

deliver pucks to the collection station. As we mentioned earlier in Section 5.2.2, all roads

use two colours, green and white; the robot keeps the green on its right and follows the

roads to know the direction of the collection station. In the foraging task, robots count

the yellow turns to know roughly where they are with respect to the collection station;

unlike the aggregation task, robots turn left once they encounter any yellow turns.

Fig. 5.19, shows the state machine of the Road-following controller for the foraging

task. In the beginning, robots are placed randomly, so they try to follow a road if it is

placed on a road; otherwise, they search for the nearest road by moving straight and

spinning repeatedly till they find a road. We placed the passive gripper in front of the

robot, so by default, it pushes any puck in front of it. At any moment, if the robot

detects if there are any left pucks and it does not push a front puck, the robot will turn

to face this puck and then undo that turn to return to its road. When the robot reaches

the end of the highway, it will sense the blue collection station; if the robot is pushing

any pucks, it will turn left and go straight to deliver the puck, then move backward

and follow the return path. However, if the robot does not have any pucks, it will take

the return path, and in both cases, it will reset its yellow turn counter and increment

the reference counter to know its following target location. On the robot’s way, once it

detects the yellow turn and its yellow counter does not equal the reference counter, it

increments its counter and moves straight. However, if the robot has a puck, the priority

is to deliver it, so it will take this turn and deliver it, then start over.

Besides the yellow turn helping the robot to turn left to find the highway, we also



94

Aggregation

Discover_between_Roads

Searching_For_Roads

Facing_LeftPuck Puck_Delivery Solving_Collision

Follow_Road

Stop Backup 

Turn_Left

Time_out

Time_out

Collision 
&

Time_out

Turn_Left

Approaching_Collection_station

Straight

Recover_Turn

In_collection_Station

Turn_Face_Puck

Recover_Turn

! Left_puck

Sensing_Collection_Station 
&  

FrontPuck

Departure_Collection_Station 
/ 

Var_Ref_Turn++
Var_YellowTurn=0

LeftPuck &  ! FrontPuck

Time_out

Turn_left

Var_YellowTurn == Var_Ref_Turn
Or 

(YellowTurn &  FrontPuck)

Straight

Discovery

Time_out

OnRoad

 ! OnRoad

Search_Straight

Search_Spin

Time_out! 0nRoad &  time_out

OnRoad

Circulate three laps 
&  ! FrontPucks &  ! LeftPuck
&  Sense_Collection_Station

Turn_Left

Straight

In_Collection_Station

Stop

Approaching_End_Collection_Station

Collision

Robot_Ahead Wall_Ahead

Straight

Time_out

Time_out
 /

Var_YellowTurn++

! Discovery

! Collision

! OnRoad

Straight

Yellow_Turn
&  !FrontPuck

&  Var_YellowTurn != Var_Ref_Turn

Var_YellowTurn ++

Fig. 5.19: State diagram of the pucks delivery using the city scenario controller.



95

use it to discover between roads. We set a random variable drawn from a uniform

distribution, and based on this value, even or odd, we set the discovery boolean variable

to true or false, respectively. If the discovery variable is true, the robot moves straight,

takes a left between two yellow turns, and then moves straight. The purpose of discovery

between roads is that some pucks might be placed between two roads so the robots can

reach these pucks. Eventually, if the robot circulates the whole environment three times

and does not detect any front or left pucks, it indicates that the job is done, so the robot

will reach the collection station and stop there.

We use the Cwaggle simulator, and the puck positions are drawn from a uniform

distribution where Width
4 < x < 3×width

4 , and Hight
4 < y < 3×Hight

4 , so that the pucks

will be placed around the center of the environment at the beginning of the simulation.

The pucks will disappear when pushed and placed in the blue area. In Fig. 5.20(a), the

robots are randomly distributed over the working area; robots #5 and #8 are placed on

the road, so they follow this road, but the others move straight then spin, looking for the

nearest road to follow. Fig. 5.20(b), shows that robots #1 and #4 are pushing pucks

and will take the nearest yellow turn to reach the collection station. While robots #6

and #3 are moving on the highway to deliver their pucks. Robot #7 is in the collection

station delivered its pucks, and is about to leave. Robots #8, #2 and #5 take the return

path after reaching the collection station. Fig. 5.20(d), shows that around 70% of pucks

are delivered. Also, there is a collision about to happen between robots #6 and #1;

robot #6 detects there is a robot in front of it, so robot #6 will stop for a time to give

robot #1 a chance to clear its way.

We tested the Road-Following controller for foraging tasks by placing 200 pucks in

the center and bottom-right corner of the working environment. We ran ten trials with

different numbers of robots n ∈ {1, 2, 4, 6, 8, 10, 12, 14}. In Fig. 5.21(a), and 5.22(b), the

shaded area is the confidence interval for 90% confidence level. The thick lines are the
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(a) t = 100, robots are searching for the nearest
road to follow.

(b) t = 16200, robots are collecting pucks and
deliver them to the collection station (blue area).

(c) t = 143800, the pucks are partially delivered. (d) t = 294200, 95% of the pucks are delivered.

Fig. 5.20: Screenshots of 8 robots delivering pucks to the collection station using Road-
Following controller. The pucks disappear when they hit the blue area.
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average collected pucks over the simulation time steps.

When the pucks were placed around the center (see Fig. 5.21(a)), the performance

increased when we increased the number of robots. A single robot can collect over 87%

of pucks. For robots n ∈ {4, 6, 8}, 95% of the pucks are collected. However, robots n

∈ {10, 12, 14}, when some of them deposit the pucks in the collection station and turn

to take the return path, this movement causes collisions happened near the collection

station and at the beginning of the return path. We can enhance the performance for

these robots if we design multiple entries for the collection station and multiple return

paths as well.

When we placed the pucks in the bottom-right corner, the robots took time to find

their roads and scan the environment until they reached the pucks’ location. Also,

pushing these pucks long distances compared to the centred placement, consumes time.

In Fig. 5.22(b), when one robot collects pucks alone, it collects 75% of the pucks, and

when we increase the number of robots to 2 , they collect 90% of the pucks. For robots

n ∈ {4, 6, 8}, 93% of the pucks are collected.

Fault tolerance in Road-following controller:

To study the fault tolerance for this system, we present two case studies of the two

robots’ failure during the execution and measure the overall performance of the swarm

to collect the pucks and deliver them to the collection station.

The first case study is when the fault occurs on the main roads. At the beginning of

simulations, all robots work together, as explained earlier, but at t = 10000, robot #1

and robot #2 are stopped on the main roads on both sides of the highway, as shown in

Fig. 5.23. The other robots keep working on their roads and delivering pucks until they

reach the main road where the robot is stopped; they consider that robot an obstacle

and perform avoiding collision behaviour. For example, at t = 300000, robot #6 has
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Fig. 5.21: Performance with different numbers of robots; The dashed red line shows
the performance at t= 300000. Pucks are positioned in center of the environment; the
Road-Following Controller is applied.
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(a) t = 300000 (b) t = 600000

Fig. 5.23: Screenshots of the CWaggle simulator. Robots #1 and #2 stopped on two
main roads on both sides of the highway.

robot #1 in its way, so it stops for a time and then turns left. At t = 600000, most

pucks are collected except the very closest to that faulty robot.

The second case study is these two robots stopped in the return path right after

delivering their pucks, as shown in Fig. 5.24. This is a critical problem because this is

the only way for the robots to return to the environment and continue collecting pucks

from following main roads. At the beginning of the simulation, all robots are operating

normally, but at t = 10000, robot #1 and robot #2 delivered their pucks and they

were triggered to stop in the return path at this time specifically for this case study.

The following robots detect these robots and perform collision avoidance behaviour. For

example, at t = 300000, robot #4 collide with robot #2, so it stops and turns left. Then

it will detect it is in the wrong direction, so robot #4 will fix its direction and follow

the return path until it detects robot #1, so robot #4 will turn left to avoid it and go

straight and turn to find any road again. At t = 600000, the pucks are partially collected
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(a) t = 300000 (b) t = 600000

Fig. 5.24: Screenshots of two different time steps where robot one and robot two stopped
on the return path after leaving the collection station.

even when the return path is congested because of the faulty robots.

Fig. 5.25, compares the performance of a swarm with no fault, two faults on main

roads, and two faults on the return path. In the three scenarios, all robots are operating

normally at the simulation’s beginning until t= 10000, shown as a red circle.

When the faulty robots stop on the main path, it directly affected the performance

compared with the no-failure scenario because the robots avoided these main roads,

which was reflected in their counting of the yellow turn and kept switching between the

main roads. At the end of the simulation, they collected 96% of the total pucks. The

other pucks are unreachable either in the faulty robot region or near the borders.

When the failure occurs on the return path, the performance equals the no failures

scenario before t= 20000 because the robots are still collecting the pucks on the main

roads. The performance degrades gracefully that due to the congestion, and the robots

tried to avoid collision and find a road as much as possible. At the end of the simulation,
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Fig. 5.25: Performance with different failure scenarios; the dashed red line shows the
performance at t = 300000. The red circle indicates the time when the failure happened
at t = 10000

the robots successfully collected 90% of the pucks.

5.3.2.2 Foraging using Random-Walk controller

In the Random-Walk controller, the collection station’s position or the puck locations

are unknown to the robots. They can detect the pucks if they are in front of them or on

their left. Also, they can sense the blue collection station using their floor colour sensors.

Figure 5.26 shows the state diagram of the robots running Random-Walk controllers to

deliver pucks to the collection station. The main part of the controller is as follows: the

robot moves straight for a random time, then spins and repeats that until it senses the

collection station. The robot deposits the puck and continues searching for other pucks.

If a robot collides with a wall, it moves backward and turns left. Additionally, if the

robot detects another robot in front of it, it stops to give the other robot a chance to

get away from it; if that collision has not been solved, it moves backward and turns left.

Fig. 5.27 shows the screenshots of the Random-Walk controller to collect 200 pucks
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(a) t = 100, robots are searching for the pucks.
There is a collision between robots #4 and #8.

(b) t = 200, collision is solved.

(c) t = 10600, The pucks are pushed all over the
environment by robots.

(d) t = 294200, 75% of the pucks are delivered.

Fig. 5.27: Screenshots of 8 robots delivering pucks to the collection station using
Random-Walk controller. The pucks disappear when they hit the blue area.
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(a) Pucks start position at t= 0
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Fig. 5.28: Pucks are positioned in center of the environment; the Random-Walk
controller is applied.

placed in the center of the environment. At t = 100, robots walk through the envi-

ronment searching for pucks. Robots #4 and #8 detect each other, so they wait for

different random times for anyone to take action and rotate away from the other. At the

same time, robot #6 detects pucks on its left and front, so it decides to move straight

and push the front pucks. At t = 200, robot #4 moves first backward and turns left

away from robot #8. Robot #1 is about to approach the blue station and deliver five

pucks there. At t = 10600, some pucks are delivered, but the other pucks are pushed all

over the environment due to the random movement of the robots. At t = 294200, 75%

of the pucks are successfully delivered to the collection station.

Fig. 5.28 and 5.29 present the results for varying numbers of robots for the 200

pucks placed in the center and bottom-right of the environment, respectively. In Fig.

5.28, increasing the number of robots increases the performance, while in Fig. 5.29,

performance starts declining after 10 robots. Although the robots follow the Random-
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(a) Pucks start position at t= 0
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Fig. 5.29: Pucks are positioned in the bottom-right corner of the environment; the
Random-Walk controller is applied.

Walk controller, increasing collisions among robots and avoiding these collisions give

them a good chance to explore the environment better than a small number of robots.

When the pucks are placed in the center, it is easy for the robot to find them and

collect them faster than the pucks placed bottom-right in a specific position. That

clearly appears in the performance of one robot in both graphs; the one robot collects

around 153 and 120 pucks in the center and bottom-right environments, respectively.

5.3.2.3 Discussion

We present Fig. 5.30 and 5.31 as a comparison between the Road-Following and Random-

Walk controllers for the two puck placements in the center and bottom-right of the

environment, respectively.

In Fig. 5.30, at the beginning of the simulation, when the pucks are placed in the

center, robots in the Random-Walk can find them quickly, so sometimes performance is
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Fig. 5.30: Comparison between Random-Walk and Road-Following controllers with
pucks placed in the center of the environment; the dashed red line shows the per-
formance at t=300000.
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Fig. 5.31: Comparison between Random-Walk and Road-Following controllers with
pucks placed in the bottom-right of the environment; the dashed red line shows the
performance at t=300000.
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equal to the obtained from the Road-Following controller, even better in the case of one

robot (in green), because the robot has freedom in their movement. Unlike the one robot

in the Road-Following controller it searches for a road first and follow it. However, after

t = 300000 in the Random-Walk, the pucks are pushed over the environment due to

their random walk. So, the performance is significantly reduced compared to the Road-

Following controller, in which robots know their roads and have organized movement

towards the collection station. Hence, the performance of 4 robots in Road-Following

can outperform 8 robots applied Random-Walk controller.

In Fig. 5.31, placement of the pucks bottom-right is challenging for the robots to

find in both controllers. When one robot operates alone, it collects 60% of pucks using

Random-Walk and 74% using the Road-Following controller. Increasing the number of

robots in both controllers increases the controller’s performance because there are more

chances to find and collect these pucks. In the case of using 8 robots, at the beginning of

the simulation, Random-Walk outperforms the Road-Following due to the large number

of robots and randomness that can easily find the pucks. However, the 8 robots in the

Road-Following took some time to organize their movements and set their yellow turn

counters, but it outperformed the Random-Walk after 180000-simulation steps.

5.4 Hardware Implementation

As we mentioned in Section 2.3.4, there are different ways to provide the potential field to

the robots. The potential field could be sent to the robots based on their position, robots

can sense the potential from the environment, or robots could calculate the potential

field based on their surroundings.

In our implementation, the robots rely on local sensing only, so we precalculated

the scalar field and generated the coloured image representing the roads the robots

will follow. The generated image is projected on the LCD television to evaluate our
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(a) Top view

(b) Side view

Fig. 5.32: Working environment, 75-inch diagonal LCD television.
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controllers, and our robots equipped with colour sensors are built to detect the image

colours. We use a 75-inch diagonal LCD television as a working environment to project

that image, as shown in Fig. 5.32.

5.4.1 Candidate Robots for Hardware Experiment

We have two available robots in our lab, OZOBOT and Zumo 32U4 OLED; they are

potential candidates for evaluating our proposed controllers. The OZOBOT [118] is a

simple, small programmable robot. It is primarily used as an educational tool in schools

and homes to teach programming. Its sensors can detect lines, colours, and codes drawn

on paper or digital screens. The drawback is that it has only a single colour sensor,

so the robots will not know the direction of the line. However, there is a solution if

we redesign the roads as a pattern of colour dots line, for example (red, green, then

white) dots,and the radius of these dots should be a function of the robot’s speed, so

at every simulation step, the robot should encounter a new dot. OZOBOT can follow

that pattern and know the direction of the road as shown in the left part of Fig. 5.33.

The robot can distinguish between the left and right sides of the highway if the robot

detects two consecutive red dots, which means the robot is coming from the left side. It

should turn left to follow the highway. However, if it sees two consecutive green dots, it

indicates the robot is coming from the right. It should turn right to follow the highway.

After the OZOBOT deposits the puck, it takes the return path declared as two white

colours, the turning places coloured yellow. The other problem is the need for a gripper

for the foraging task, so we 3D printed its passive gripper as shown in the right part of

Fig. 5.33. Another challenge is that we could not form a swarm of OZOBOT due to its

availability on the market at that time.

The second candidate is the Zumo 32U4 OLED robot [119] (Fig. 5.34(a)). It is a

programmable robot kit developed by Pololu Robotics and Electronics. The robot is
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(a) (b)

Fig. 5.33: Using OZOBOT to perform Road-Following controller in foraging task. Left
figure is sketch of the city roads when we use one colour sensor. Right figure is OZOBOT
with and without the passive gripper.
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(a) Zumo 32U4 OLED robot (b) Front Sensor Array

(c) Front Sensor Array with two colour
sensors.

(d) Zumo robot with two colour sensors.

Fig. 5.34: The first robot design adds two colour sensors to the Front Sensor Array.
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based on the ATmega32U4 microcontroller, which provides a wide range of input and

output options and is programmable using the Arduino development environment. Zumo

supports various sensors and actuators that can be easily integrated into the robot’s plat-

form, allowing for customization and expansion of its capabilities. Also, Zumo provides

a separate board called Front Sensor Array [120], shown in Fig. 5.34(b). This board has

five line sensors and three proximity sensors connected to Zumo’s microcontroller and it

incorporates I2C lines for communication with the existing sensors on that board. The

five-line sensors attached to the Zumo chassis face downward and can help the Zumo

distinguish between light and dark surfaces.

5.4.2 I2C Protocol to Communicate with Extra Sensors

I2C (Inter-Integrated Circuit) is a serial communication protocol used for connecting

low-speed peripherals to a motherboard or microcontroller. I2C uses two wires for bidirc-

tional communication SDA (Serial Data Line) and SCL (Serial Clock Line), as shown in

Fig. 5.35. The Master (ATmega32U4) initiates the communication and generates the

clock signal, while the slave responds to the master’s command. Each device on the I2C

bus should have a unique address; in our case, we use two colour sensors: RGB Color

Sensor (TCS34725) [121] and Proximity, RGB, and Gesture Sensor (APDS-9960) [122].

TCS34725’s address is 0x29, and APDS-9960 ’s address is 0x39.

5.4.3 Building Robot with Color Sensors

5.4.3.1 First Prototype

In order to use Zumo 32U4 OLED in our experiment, we should add colour sensors to

detect the coloured scalar field projected on TV. We connected two I2C colour sensors,

TCS34725 [121] and APDS-9960 [122] to the Front Array sensor as shown in Fig. 5.36.

Our first prototype has two colour sensors mounted over the front sensor array, as shown
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Fig. 5.35: I2C communication protocol.

in Fig. 5.34(c).

5.4.3.2 Second Prototype

In the first prototype, there was sometimes a latency in reading the colour for one sensor,

which affected the robot’s movements. In the second prototype, we provided the robot

with additional information and improved its moving accuracy, especially when the robot

encountered curves or intersections; we added 4 colour sensors facing downward to give

more information about the robot’s position relative to the line. If one sensor fails or

encounters an issue (e.g., due to changes in lighting conditions), the other sensors can

compensate.

For the second prototype, we added four colour sensors APDS-9960 and designed

a 3D model as a sensor holder instead of using the front sensor array board as shown

in Fig. 5.37(a). Also, we added three extra APDS-9960 sensors, to work as proximity
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Fig. 5.36: The first prototype scheme for the robot used Fritzing software.

and colour sensors to detect the distance and the colour of any obstacles in front of this

romultiplexerbot. Because all of these sensors are the same type and have a fixed I2C

address (0x39), we connected all sensors to a multiplexer (PCA9548 ) [123], and then

this multiplexer connected to the I2C ports on Zumo. The multiplexer has an address

0x70. We also extended this design by attaching a gripper to collect the objects in

case we use these robots in foraging task. The motorized gripper was connected to the
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(a) 3D model for 4-floor sensor holder. (b) Front View

(c) Side View (d) 3D model for
an object to be col-
lected by the robot.

Fig. 5.37: Prototype 2 incorporates 4 floor-coloured sensors (APDS-9960), 3 proximity
sensors (APDS-9960) and a gripper.
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servo driver (PCA9685) [124] as shown in Fig. 5.37(b) and 5.37(c). The servo driver

also used the I2C protocol; its address was 0x40. We used the Raspberry Pi 4B single-

board computer [125] (RPi) to upload the control program to the Zumo’s microcontroller

remotely. We installed Arduino CLI package on a Raspberry Pi, and we sent our arduino

sketch from our computer to Raspberry; then Raspberry uploaded the program to Zumo

using Arduino CLI. Arduino CLI is a software for uploading our Arduino sketch from

the command line [126].

5.4.3.3 Third Prototype

We decided to switch to the passive gripper, as shown in Fig. 5.38, instead of the mo-

torized (active) gripper due to the simplicity of the passive gripper design and to reduce

the cost of the active gripper and its servo driver (PCA9685). We added three proximity

sensors (VL53L4CD) to increase the robot’s sensing coverage of its environment, partic-

ularly the ability to sense and distinguish pucks, other robots, and walls. Fig. 5.39 shows

the final 3D design for our robots to carry the sensors and two multiplexers. Fig. 5.40

shows our robot in its final version. This design incorporates four-floor colour proximity

sensors (APDS-9960) facing downwards, three proximity sensors (VL53L4CD), and three

coloured proximity sensors (APDS-9960). We placed a proximity sensor (VL53L4CD)

up and a colour proximity sensor (APDS-9960) under it to distinguish between walls,

robots and pucks by their colour and distance.

We define walls, robots and pucks in different colours: green, red and blue, respec-

tively. The height of the puck should be lower than the proximity sensors (VL53L4CD),

so the pucks will be detected only by the colour proximity sensors (APDS-9960). Fig.

5.41 shows the high-level visual representation of the interaction of robots and other

objects (pucks, walls, other robots). We represent the VL53L4CD as a yellow block and

APDS-9960 as a purple block. Robot #1 detects the right green walls, blue puck and

red robot #2. Robot #2 detects the left green walls and the puck placed on its left.
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(a) Front view (b) Top view

Fig. 5.38: 3D model for floor colour sensor holder horizontally aligned.

(a) Front view (b) Side view

Fig. 5.39: 3D model for colour and proximity sensors and Raspberry Pi holder (Third
robot prototype).
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(a) Front view (b) Side view

Fig. 5.40: The final design for the third robot prototype.

Fig. 5.41: A high-level visual representation of how we used and placed the proximity
sensors (VL53L4CD). This is represented by yellow blocks, and the colour proximity
sensors (APDS-9960), represented by purple blocks.
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We connect these I2C sensors with two I2C Multiplexers (PCA9548) which connected

to the Zumo extension ports as shown in Fig. 5.42.

5.4.4 Experiments

We used the third prototype for real-world experiments. The robots operate on the

75-inch LCD television. We projected the coloured scalar field, our Road-city network

design, on the screen, and the robots followed the Follow-Road controller, which was

used in the simulation implementation and presented in Fig. 5.11. Fig. 5.43 shows

overhead images captured when one robot is placed on one of the main roads. The

robot keeps moving on the roads until it reaches the aggregation area. Fig. 5.44 shows

one robot starting from 10 different positions and showing its trajectories. For example,

in trials #1,#2, #4, #9, and #10, robots started on one of the main roads and then

took the highway to the blue area. In trial #8, the robot was placed on the black area,

so it moved randomly until it found the main road and moved on it. In trial #5 was

placed the robot in the black area, it moved randomly until it found the return path,

followed it, then took the yellow turn to one of the main roads.

To show how the robot handles collisions, we used one robot as an obstacle and placed

our robot in three different positions facing that obstacle. We repeated this experiment

four times with different obstacle positions. Fig. 5.45 shows the red robot, which is

used as an obstacle and the other robot trajectories to avoid the red robot and reach the

aggregation area. Fig. 5.45(a) shows the first experiment in which we placed the static

obstacle represented by the red robot in the blue area, and our robot in the trial #1 and

#3 avoided the collision by moving backward then turning left. In trial #2, the robot

was placed on the right of the highway; it did not face the obstacle because it entered

the blue area with a different angle. Fig. 5.45(c) and 5.45(e) show the second and third

experiments, where we placed the obstacle in a black area on the right and left of the
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Fig. 5.42: The third prototype scheme for the robot used Fritzing software.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.43: Overhead image of one robot homing using city road network and Road-
Following controller.
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(a)

(b)

Fig. 5.44: Aggregation to blue destination using one robot from different start positions.
The colour circles are the start points.
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highway, respectively. In the fourth experiment, we put the robot on a main road, as

shown in Fig. 5.45(g).

We conducted four trials to show the performance of 2 robots together in the en-

vironment as shown in Fig. 5.46 and 5.47. We attached an AprilTag to the robots;

then, we tracked the robots using an overhead camera to show their trajectories while

they performed the aggregation task. The printed numbers on the figures are the frame

numbers to indicate which robot reached the aggregation area earlier.

Fig. 5.48, shows overhead images of two robots in operation to find the aggregation

area. We started our experiment by placing the robots in the collision position to see how

they handled this situation, as shown in Fig. 5.48(a). Both robots detected the collision,

moved backward, then turned left. Eventually, they reached the blue aggregation area

by following the roads. A video showing 1, 2, 3 and 4 robots aggregating in real-world

trials is available at https://youtu.be/Ljkx7Itc_YQ.

https://youtu.be/Ljkx7Itc_YQ
https://youtu.be/Ljkx7Itc_YQ
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.45: The overhead image for the two robots is in red and black colours. The red
robot was used as a static obstacle to test the collision behaviour of the second robot.
For each position, we have 3 trials represented in orange, pink and green colours. In
each trial, we placed the black robot facing the red robot in different directions.
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(a) (b)

(c) (d)

Fig. 5.46: The first two trials for two robots aggregate to a blue area. The red and
orange trajectories belong to red and black robots, respectively. The numbers depicted
on the images are the frame numbers to show which robot reaches the blue area quicker.
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(a) (b)

(c) (d)

Fig. 5.47: The third and fourth trials for two robots aggregate to a blue area. The
fourth trial collides around frame = 27 in orange trajectories (black robot) and frame =
53 in red trajectories ( red robot) at the beginning of the experiment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.48: The overhead image for the fourth trial of two robots aggregated to the blue
area using a city road and a Road-Following controller.
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5.4.5 Discussion

We presented three prototypes to build our robots for real-world experiments. Our

robots depend only on their local sensing to detect the scalar field and the surrounding

obstacles without external help. Our Follow-Road controller is executed directly on

ATmega32U4 (Zumo’s microcontroller). We performed an aggregation task using two

robots, and our experiment results show that robots could aggregate using our scalar

field and handle collision situations.



Chapter 6

Conclusion and Future work

This chapter summarises the accomplished work to guide simple robots relying only on

their local sensing to achieve different tasks like planar construction, finding the largest

covering network, aggregation and foraging tasks. Future work directions are presented

on how to generate the scalar field automatically.

6.1 Summary

In our work, we guided a swarm of simple robots to achieve various tasks using a scalar

field by designing the scalar field for the given task and projecting it onto the environ-

ment. The robots detected that scalar field using their local sensing and accomplished

that task with scalar field guidance. Also, we showed that the scalar field could be used to

help divide labour among the swarm in the shape construction task (Section 3.1). With

the presence of the scalar field, the control algorithm for the robots could be simple,

like we presented in the shape construction (Section 3.1.2), finding the Largest Coverage

Network (Section 4.1), aggregating and foraging tasks (Sections 5.3.1 and 5.3.2). Also,

reinforcement learning was presented to find alternative solutions for the Largest Cov-

erage Network task (Section 4.3). In addition to providing a scalar field for the robots,

129
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we investigated different communication techniques among the robots to construct the

annulus shape as described in Section 3.1.3. Finally, we presented prototypes (Section

5.4.3) and built robots to perform real-world experiments using a decentralized approach

relying on local sensing (Section 5.4.4).

6.1.1 Publications

Our research has led to the following publications:

• Dalia S. Ibrahim, and Andrew Vardy. "Adaptive task allocation for planar con-

struction using response threshold model." Theory and Practice of Natural Com-

puting: 8th International Conference, TPNC 2019, Kingston, ON, Canada, De-

cember 9–11, 2019, Proceedings 8. Springer International Publishing, 2019.

• Dalia S. Ibrahim, and Andrew Vardy. "Largest coverage network in a robot swarm

using reinforcement learning." Artificial Life and Robotics 27.4 (2022): 652-662.

• Dalia S. Ibrahim, and Andrew Vardy "Swarm in the City: Inspirations from Urban

Street Networks for Swarm Robotic Guidance." Submitted.

6.2 Contributions

The primary focus of this thesis is how to guide simple robots that rely only on their local

sensing by using the scalar field to achieve the required task. The conducted research

formed four main contributions:

• We presented the response threshold function along with the scalar field to guide

and help in the division of labour among the swarm of robots while they create an

annulus shape. We also incorporated different communication techniques among

the swarm.

https://www.springerprofessional.de/en/adaptive-task-allocation-for-planar-construction-using-response-/17416768
https://www.springerprofessional.de/en/adaptive-task-allocation-for-planar-construction-using-response-/17416768
https://www.springerprofessional.de/en/adaptive-task-allocation-for-planar-construction-using-response-/17416768
https://www.springerprofessional.de/en/adaptive-task-allocation-for-planar-construction-using-response-/17416768
https://link.springer.com/article/10.1007/s10015-022-00804-4
https://link.springer.com/article/10.1007/s10015-022-00804-4
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• We designed the low/high-resolution scalar field with reinforcement learning to

find the Largest Coverage Network by the swarm of robots.

• We designed a novel scalar field inspired by a road street network to reduce the

spatial interference among robots. Using this scalar field, we presented a simple

reactive system used by robots to perform aggregation and foraging tasks.

• We designed and built simple real robots that rely on their local sensing and tested

these robots on the aggregation task.

6.3 Future work

6.3.1 Introduction

In this work, we generated the scalar field in a task-dependent manner as we presented

in Chapters 3 and 4. For the planar construction task, we projected light onto the

center of the environment. Robots detected the intensities of the light as a scalar value

to guide them in their movement. Using this scalar field, we guided the robots to

construct an annulus shape within certain bounds of light intensities. Also, we helped

the robots establish the Largest Coverage Network by finding the least light intensity and

establishing a coverage network there. For aggregation and foraging tasks, we generated

the scalar field using one of the sample-based methods (RRT*) to attract the robots to

the desired area as described in Chapter 5.

For future work, we propose calculating a scalar field in a task-independent man-

ner. The proposed system could take the task description and the configuration space

and generate a scalar field for the given task. The scalar field generator monitors the

robot’s performance and updates the generated scalar field until it reaches the accepted

performance.
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We could extend this proposed system to handle dynamic task allocation for multi-

robot systems. If the required task can be divided into N independent sub-tasks, the

proposed system will generate the N scalar fields for these independent sub-tasks. Fig.

6.1 shows the proposed block diagram for the dynamic task allocation using the scalar

field to guide the robots. We will feed the text description for the required task to the

‘Task Decomposition’ function as depicted, which analyzes and decomposes it into inde-

pendent sub-tasks (N). The ‘Task Allocation’ function takes information about system

constraints such as resources or time constraints, environmental constraints, information

about the robots’ locations or moving obstacles, and the sub-tasks description. Then, it

divides a group of robots into subgroups to perform separate tasks. The ‘Task Assign-

ment’ function will be responsible for assigning subtasks to the robot given its execution

abilities and based on the chosen task assignment algorithm, such as the Random-Choice

algorithm, in which robots randomly select the tasks. Another task assignment is the

Extreme-Comm Algorithm, in which the robot communicates with all robots in its range

and assigns tasks based on its position [127]. Once the robot knows the exact task re-

quirement, the ‘Scalar Field Generator’ function is invoked to provide a scalar field for

this task. It sends the generated scalar field to the control execution, which gives it

feedback about the robot’s performance. The ‘Scalar Field Generator’ keeps updating

the scalar field until the robots achieve the accepted performance. Then, the robot can

take another task using the ‘Reassignment’ and ‘Task Assignment’ functions.

This proposed system is also helpful if we have a heterogeneous swarm of robots;

the scalar field generator can provide a suitable scalar field for each robot based on its

capabilities, which are taken as input, as shown in Fig. 6.1.
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Task Decomposition

Task Description 

Task Assignment

Scalar Field 
Generation  

Independent Sub-Tasks (N)

( Ri ,  Tk)

Constraints

Environmental Constraints

Configuration space 

( SFj, Ri ,  Tk)

Control Execution 

Execution Results

Reassignment ( Ri ,Old_Tk , Res I)

Robot  Ri

Task Allocation

(Robots Subgroups, nk) 

Environmental updates

Numbe Of Robots

Fig. 6.1: The proposed block diagram for dynamic task allocation using an online scalar
field generator to guide a swarm of robots.
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6.3.2 Scalar Field Generation:

The previous subsection addressed the overall proposal system to generate a scalar field

in a task-independent manner. This subsection will consider the specific sub-task of

scalar field generation.

6.3.2.1 Using Deep Reinforcement Learning:

Haung et al. [128], teach a machine how to paint human portraits by decomposing the

target image and learning the sequence of the strokes as shown in Fig. 6.2. Their

training process used deep reinforcement learning to make a long-term plan to get the

correct order and position of the strokes to paint the target image.

Proposed Research Direction

We can adapt the approach of Haung et al. to teach the machine the rules for generating

the scalar field. We could start with the primitive vector fields, as shown in Fig. 2.15,

and our system will learn the correct order and position for the vector field that enhances

the robot’s performance to achieve the given task. The generated scalar field will be

calculated from different vector fields. The vector fields could also be automatically

generated by utilizing artificial intelligence and optimization techniques. One common

approach is to employ machine learning algorithms, such as reinforcement learning or

evolutionary algorithms, to automatically learn the optimal potential field based on the

swarm’s sub-objectives and the environment’s characteristics.

6.3.2.2 Using Generative Adversarial Networks (GANs):

Elhoseiny et al. [129] aims to generate unseen categories without any training examples

of these categories. They started their model with seen categories associated with class

description. They try to generate unseen, realistic classes, as shown in Fig. 6.3. They
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Fig. 6.2: This figure shows the printing process for four images. The target images are
placed in the first column [128].

try to deviate from the seen classes and produce novel generations, which should still

be realistic. Their distribution exhibits high entropy across existing classes and has

variations in the loss function. Fig. 6.4 describes their system. They fed the generator

with hallucinated text to trick the discriminator with an unseen image descriptor, and

they adjusted the loss function in the discriminator to accept the generated image only

if it is an unseen image created from all seen classes but not from one category.

Proposed Research Direction

We can utilize some of the ideas from Elhoseiny et al. to automatically build a database

with the labelled vector fields, as mentioned in the previous research direction, using

artificial intelligence and optimization techniques such as evolutionary algorithms. The

database should be split into well-described categories. Then, we can use Generative

Adversarial Networks (GANs) [130] as a scalar field generator for a given task’s descrip-

tion. The discriminator can evaluate the generated scalar field by sending it to the

swarm robot simulator for feedback.
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Fig. 6.3: This curve shows the novelty verus seen classes [129] and inspired from Wundt
Curve when he discribe the Human Creativity literature [131].

Fig. 6.4: The top figure shows how they fed hallucinated text th with the noise vector
to the generator to trick the discriminator to believe that the generated image was real.
That helped the generator maximize the entropy over seen classes and deviate from
them. Unlike the bottom figure, the generator has the text form seen class ts, so the
guarantees images have low entropy over classes [129].
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