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ABSTRACT

The p-version finite element method offers a distinct advantage of savings in
computational time and effort in comparison with the conventional, h-version finite
element method. The A-version uses low order elements and convergence studies are
done by successive refinements of the mesh that imply analyzing the problem afresh. In

contrast, the p-version uses a fixed discretization of the domain and higher order

are i mp during 44 studies. The computational
advantage results from the use of hierarchical shape functions, coarse meshes and faster
rates of convergence with decreased number of degrees of freedom. Consequently, the

use of hi ical finite can be i for stress

and stress singularity problems that require very refined meshes in the A-version.

The accuracy of hi ical finite el is with the use of coarse
meshes for beam and T-plate weld joint problems. A 2D "enriched hierarchical” finite

element is developed for stress intensity factor evaluation that embodies the inverse

square root stress si ity by including in its ion the stress intensity factors
as additional degrees of freedom. Stress intensity factors for cracked specimens are
numerically evaluated quite accurately using very coarse meshes involving fewer degrees
of freedom in comparison with conventional analyses. This concept is then extended to

3D crack and results are obtained
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Chapter I
INTRODUCTION

1.1  Finite Element Method

Finite element method is the most popular and widely used technique for the
computational analysis of engineering problems. The procedures involved in the finite
element method are : The formulation of the problem in displacement, variational or
weighted residual form, the finite element discretization and the effective solution of the
resulting system of equations. These basic steps are the same for almost all kinds of

problems and the final result is a ical process i on the digital

computer. The computational time and effort is involved in the following : The
formulation and the numerical integration of the finite element matrices, the assemblage
of the element matrices into the complete finite element system matrices and the

numerical solution of the system equilibrium equations.

Finite are emp o ing on the type of problem, beam,
truss members, regions of plane stress, plane strain, and axisymmetric, three-

dimensional, plate or shell behaviour. A suitable division of the problem domain is



essential to any analysis, in addition, it becomes important for the analyst to refine the
mesh of elements in some suitable manner to enhance and determine the accuracy of the
analysis through convergence studies. For the analysis of complex problems, where
complexity is due to the geometry or stress raisers like stress concentration regions and
cracks, a detailed mesh is required. This introduces a large number of unknown
variables which increases the computational effort required in the numerical process.
The procedure is repeated by remeshing and reanaiyciuy the problem for convergence
studies. Complex systems also involve considerable human effort for design, verification
and refinements of the mesh. The overall time and effort required for a computer
analysis increases in proportion to the number of unknown variables and complexity of
the required mesh. For any analysis it is desirable to reduce both the human and the

computer time and effort as these resources are always limited.

Convergence studies, which are essential to any analysis, can be undertaken in two ways.
The conventional method is the sub-division of the mesh into a finer mesh, which
decreases the size and increases the number of finite elements that represent the domain,
especially at areas of stress concentrations and stress singularities. This is called A-
refinement or simply mesh refinement, where h refers to the size of the element and the
method is referred to as the A-version finite element method (FEM). The second

uncommon but powerful method is to increase the poly ial order of i

for the variables i with the i or over the
entire domain. This is known as p-refinement or simply mesh enrichment, where p refers

to the order of the element and the analysis is said to employ p-version FEM.



Convergence is said to be achieved as # - 0 (h-convergence) or as p - o« (p-

convergence).

1.2  p-version FEM

In p-version FEM, p, the order of the element implies the order of the interpolation
function for the unknown variable over the elemental domain. Mesh enrichment can

further be performed in two ways, viz., i) with elements that use regular (non-

) i i ions of higher order, and ii) with elements that use higher

order "hi ical” i i i Hi ical implies that the lower order

interpolation functions form a subset of the interpolation functions of higher orders. The

use of higher order with non-hi ic i i ions does not reduce

the computational time and effort appreciably as additional data is required for the new
unknowns or degrees of freedom and the entire system of higher order matrices needs
to be re-computed and re-solved. With the use of hierarchical elements only the matrices
that correspond to the "additional” degrees of freedom need to be evaluated and
assembled, thus reducing the computational effort. In addition, less effort is required in
the solution stage during convergence studies as lower order system matrices form a
subset of higher order system matrices. The use of p-version FEM results in fewer
degrees of freedom for an analysis due to improved convergence rates that vary in a

geometric i with i ion for A- ion. In this work,

p-version refers to the use of hierarchical finite elements unless otherwise mentioned.



Hi i thus employ hi ical basis or i i ions for the

The of ion in the i effort and time are due to

the following: Construction of coarse meshes sufficient to model the geometry of the

problem; lower order matrices need not be " and

as they remain unchanged due to the hierarchical nature and form part of the higher order
matrices during convergence studies. Also remeshing can be avoided to a large extent
during convergence studies by selecting a suitable mesh for the initial analysis and

increasing the order of the elements keeping the size fixed. Due to hierarchical forms

the resulting matrices have imp: itioning that allows effective iterative solution
techniques to be adopted. The p-version FEM also offers ease of error estimation which
incorporated suitably into the numerical analysis can lead to self adaptive selective mesh

enrichment.

Special problems of interest that find immense use of the finite element method are those

that involve stress concentrations due to geometry and stress singularities due to cracks,

etc. For such h- ion FEM employs a detailed mesh of quadratic
serendipity elements introducing a large number of degrees of freedom. The p-version
FEM can therefore be effectively employed to reduce the required effort significantly.
For stress concentration problems, a detailed mesh of standard serendipity elements over
the domain and a very detailed mesh in the stress concentration region is replaced by a
coarse mesh of hierarchical elements with a slight refinement at the stress concentration
region. The convergence of the solution is then achieved simply by, perhaps selective,

mesh enri Stress si i however are not so easy to deal with.




1.3 Computational Fracture Mechanics

Common problems of stress singularity behaviour are those containing notches, cracks,
sharp changes in the geometry as in an L-shaped domain, etc. Fracture mechanics deals
with such problems and its importance in the analysis of structures with cracks has
increased manifold over the recent years. In linear elastic stress analysis the stresses and
deflections in the crack tip region depend on a single parameter, known as the stress
intensity factor (SIF), K. The magnitude of K depends on the structural geometry and
the loading system. If K exceeds the fracture toughness of the material crack instability
occurs. Thus evaluation of K for any crack configuration is all that is required to assess
whether failure will occur or not. In most instances, closed form solutions are not
available and K must be determined numerically. Special finite elements that exhibit
inverse square root stress singularity at the crack tip improve the accuracy and reduce
the need for a high degree of mesh refinement at the crack tip. A lot of effort has gone
into the development of special crack tip elements to deal with the singularities in A-
version FEM. These elements still require a large amount of computational effort and

the evaluation of stress intensity factors for complex geometries, especially in three

is quite The p ion FEM can reduce the effort and

can be applied i to fracture i with of

an efficient crack tip element in some suitable fashion.



1.4  Objectives of the Thesis

A lot of research cating the of p ion FEM has been published,
however no ial p ion FE software is yet avai For fracture mechanics
the used such as the distorted quadratic serendipity

elements require a very detailed mesh especially in the crack tip region and thus are not

efficient. , in the ige of the author, no special crack

tip element for efficient use in p- ion FEM is avail in L

The objective of this work is, thus, to obtain a practical insight into the numerical
accuracy of p-version finite element method for plane elasticity problems and to develop
an efficient hierarchical crack tip element for linear elastic fracture mechanics problems.
Due to the attractive features of a 2D hierarchical crack tip element, it is also decided

to extend it to a 3D hierarchical crack tip element. An efficient 3D crack tip element is

required as real life fracture i are i three di i in
nature and involve a large number of degrees of freedom. The reduction of degrees of
freedom mainly through the use of coarse meshes is a boon for any 3D analysis where

usually even the visual inspection of the mesh is a tremendous task.

In order to achieve the objectives, a finite element analysis program is developed using

and hi ical crack tip in junction with a suitable solution

strategy. The elements are first tested for analyzed p having [yt




results or reference values and then used to solve practical problems. As the p-version

is known to be i in ison with the k-version FEM, in
this work the is is on the of the in terms of
accuracy.

1.5 Layout of the Thesis

Chapter one gives an i ion to the k- and p- ions of the finite element method.

Chapter two provides a detailed literature review on the relevant topics and defines the
scope of this study. The formulation of the p-version finite element method is given in
the chapter three along with the formulation of the special crack tip element used for

fracture for both two-di i plane elasticity and three-

The i ion of the ion is di in chapter
four vis-a-vis the development of a finite element program MUNSID. It also includes
a brief discussion of the computational effort for the p-version FE program. Chapter five
presents the numerical results obtained from the analysis of test problems for both 2D
and 3D analyses. The conclusions of this study and recommendations are presented in

chapter six.



Chapter I1
BACKGROUND
AND SCOPE OF WORK

2.1 Literature Review

The finite element method in general includes three basic concepts. The concept of

matrix and linear algebra to provide ion for a ing of the finite
element procedures. The formulation of the finite element method and the numerical
procedures to evaluate the element matrices and the matrices of the complete element
assemblage. Lastly, methods of efficient solution of the finite element equilibrium
equations. These fundamentals are amply illustrated in the text books by many authors,
namely, Zienkiewicz [1], Irons [2], Bathe [3], etc. The following sections present the

relevant literature review of the p-version FEM and the conventional techniques for

of fracture

2.1.1 p-version FEM

One of the first works on hierarchical p-version FEM is by Peano [4]. New families of



C%and C' i i ions are up to an arbitrary polynomial

degree p. These interpolati ions are for triangular in area

The istics of this family of finite elements is : the
shape ions ¢ ing to an interp ion of order p itute a subset of the set
of shape i P ing to an interpolation of order p+1 and therefore the

stiffness matrix of the element of order p is a sub-matrix of the stiffness matrix of the
element of order p+1. The nodal variables corresponding to the constant strain triangle
(element of order 1) are the functional values at the vertices. For the linear strain
triangle (element of order 2) the additional nodal variables are the second derivatives of

the approximating function evaluated along the sides at the mid-side points. The shape

to the mid-side nodes of the linear strain triangle vanish at the
vertices of the triangle. These hierarchical finite elements are noted as indispensable
tools for realizing convergence with respect to increasing polynomial orders due to the

nature of the ing stiffness matrix, where the triangularization effort is

saved by utilizing the already decomposed lower order matrices. With respect to the
problem of using different order elements in the same mesh, the higher order derivatives

with edges in with a lower order element are set to zero. Peano

proposed the selection of the shape functions as closely orthogonal to one another as

possible.

Rossow and Katz [5] two di i C° hi ic tri finite el
of arbitrary polynomial order. It is shown that elemental arrays for high polynomial

order may be i by using hi together with

I¥ 5 9



arrays. For ial order p=1, the nodal variables are the value of the

functional variable at each vertex. For p=2, the nodal variables are the ones for p-1 in
addition to the pth order tangential derivatives at the mid-sides of the element. For a
complete polynomial order p, with (p+1)(p+2)/2 coefficients, (p-1)(p-2)/2 additional
nodal variables are defined for p=>3. These additional nodal variables are taken as
mixed partial derivatives of the function evaluated at the origin. When transformed to
the global coordinates, these variables do not equate across inter-element boundaries,
hence have no effect external to the element and are called internal nodal variables. In
a mixed mesh, higher order elements are demoted to lower order elements along the
common edges by equating the common nodal variables and eliminating the higher order
variables. Relative efficiency of /- and p-convergence with respect to the computational

time is compared and p-convergence is observed both globally and at particular points.

The technique of employing hi i elements, p p arrays, and p-
convergence appeared competitive in terms of computational efficiency with the
conventional finite element approach. Also, the use of large elements simplified the

presentation of input data and interpretation of results.

Babuska, Szabo and Katz [6] discuss concepts of p-convergence of the finite element

method, the singularity problem, numerical and i ion of
the p-version. The shape functions chosen for a one dimensional bar problem are the
integrals of the Legendre’s polynomials which form an orthogonal family with respect

to the energy inner product. For the i ion p arrays based

on hierarchic families are utilized. It is noted that as the number of degrees of freedom

o: 10



increase ively, major i effort occurs in the solution phase. For the

asymptotic rate of convergence with respect to the NDOF: for smooth solutions, p-

convergence is not limited by an upper bound polynomial degree as in k-version; and in

case of h i when a si ity is caused by corners, the rate of p-
convergence is almost twice that of h-convergence. As p-version can be used in

ion with opti i meshes, the mesh design seemed much less critical

for the p-version than for the h-version. Observations include: Reduction in volume of
input data; less critical nature of roundoff problems in p-version; no major difference in
the solution times for p-version and A-version for the same NDOF; and adaptivity in p-
version seems simpler by proposing mesh grading on a prior basis, either manually or

with standard mesh generators, and then making adaptive changes by adjusting p.

Zienkiewicz, Gago and Kelly [7] discuss the merits of hierarchical forms in utilizing

previous i and ion as well as itting a simple iteration when

a The hi ical degrees of freedom appear as perturbations

on the original solution rather than its substitute and the resuiting matrices have a more

di: form than that i from identical number of non-hierarchic

degrees of freedom. This ensures an improved conditioning of the matrix and a faster
rate of iteration convergence than would be possible with non-hierarchic forms. The
perturbation nature of hierarchic forms also provides an immediate estimate of the error

in the solution. The paper di the error esti and the issue of

adaptive refinement. It is recommended to limit the order p to a maximum of 4 and start

from a reasonable mesh not calling for p>4, since the use of very high polynomial

o: 11



orders could lead to local oscillation.

Szabo (8] presents general guidelines for prior design of meshes. It is noted that with

the use of properly desi meshes, the of p-enri is very close to
the best performance attainable by the finite element method. The estimation and
control of the error in finite element analysis are based on k- or p-refinements and p-

makes it jent and i ive to obtain i ion about the quality

of the finite element solutions. The proposed mesh design is the coarsest possible mesh
controlled entirely by the geometry of the domain when the exact solution is smooth.
The only restriction on the mesh is the smooth mapping of the elements. In case of non-
smooth exact solutions, the points of singularity and areas of stress concentration need
to be isolated by one or more layers of small elements and the mesh is graded such that
the element sizes are in geometric progression with the smallest element(s) located where
the stress gradients are the largest. The geometric progression with a common factor of
about 0.15 is found suitable. In the case of structures with many singularities it is found
not necessary to refine the mesh in the neighbourhood of every singular point with care
being taken that overall and local equilibrium conditions are satisfied. Babuska [9] also

gives reference to optimal design of meshes.

‘Wieberg and Moller [10] describe hi ical FE- ion and adaptive
for static and dynamic problems. The sequence of nested equation systems that results

from a hierarchical finite element formulation is examined. Due to the special structure

of the matrices using hi ic basis ions and ease of ping error

o: 12



for further iterative solution procedures are used when an

number of vari: are i into the imati New possibilities

are presented for iterative solution of nested equation systems for elastic static problems
resulting from hierarchic basis functions. Out of the four algorithms outlined, three are
based on the pre-conditioned conjugate gradient method and the fourth is a two-level

multigrid method.

Babuska, Griebel and Pitkaranta [11] address the question of optimal selection of the

shape functions for p-type finite and di the i of the

gradient and multilevel iteration method for solving the corresponding linear system. A
unit square master element is considered and the three groups of shapu fuictions
associated with the element are, namely, the nodal shape functions, the side shape
functions and the internal shape functions. A nodal shape function is associated with a
vertex of the element and is zero on the opposite sides of the vertex it is associated with.
A side shape function is associated with a side and is zero on all three other sides of the
element. An internal shape function is zero on all four sides and has the character of a

‘bubble’ function. Various sets of these shape functions are considered along with the

ic shape ions and tri ic shape i These sets are then

for optimal ion of shape ions through i analysis. Only

two dimensional cases are addressed in the paper.

Morris, Tsuji and Carnevali [12] proposed and implemented a solution strategy for taking
of the hi i of linear equation sets. The key novelty of the

om: 13



algorithm is the ability to choose dynamically between iterative and direct solution
techniques based on a set of heuristics. The iterative solver is based on the conjugate
gradient method and the combination of the direct and iterative solvers allow for an
efficient solution path, having the robustness of a direct solution algorithm, and the

efficiency of an iterative solver in utilization of both CPU and storage.

A valuable discussion on the state of the art of the p-version of the finite element method
is given in Babuska [9]. Various theorems are presented to define the p- and /p-version
of the FEM. A numerical example illustrates the performance of p-version with different
number of layers at the stress singularity point (graded mesh) and compares it to a
uniform mesh. For implementation the three kinds of shape functions discussed are
nodal, side and internal shape functions. For the computation of the local stiffness

matrix the rule for number of Gauss points is 2[integer(p/2)] + 2. The p- and hp-

fr

versions for two-di i were i in the
PROBE by Noetic Tech., St. Louis with the first release in 1985 and the second in 1986

and it was tested and used extensively in the industry. The features considered important

by the engineering users were i level of in the ion, lower

human time i due to simplicity and ility of input, rapid convergence and

flexibility including the use of large aspect ratios, flexibility of mesh design, easy

learning and robust performance.



2.1.2 Computational fracture mechanics

Chan, Tuba and Wilson [13] used the finite element method for the evaluation of stress
intensity factors. The displacement FEM is used and first order displacement functions
for triangular elements are assumed, in which, the displacements vary linearly over the
element resulting in constant strains and stresses in the element. A very detailed mesh
is considered where the smallest elements are difficult to see with the naked eye. For
the computation of stress intensity factors, three approaches outlined are the displacement
method, stress method and the line integral (energy) method. The stress intensity factors
in the displacement method are determined from the correlation of the finite element
nodal point displacements with the well known crack tip displacement equations. The
stress method is similar to the displacement method and the nodal point stresses are
correlated with the known crack tip stress equations. In the line integral method, the line
integral J given by Rice [14] is numerically integrated along an arbitrary contour
surrounding the crack tip and the stress intensity factor is evaluated as a function of J,
modulus of elasticity and the Poisson’s ratio. The elements however do not represent the

singular near tip deformation and the analyses included a very large number of degrees

of freedom. They potential imp: by i ing higher order

displacement functions.

Tracey [15] introduced a new type of two-dimensional finite element which incorporates
the inverse square root singularity in stresses near a crack tip in an elastic medium.
Triangular "singular" elements that are proposed embody the singular stress fields

corresponding to the crack tip. The crack tip serves as the centre of a whole ring of

) | T ¢



triangular elements and joined in the radial direction with

elements of order one. These triangular elements are four node quadrilaterals with two
nodes coincident at the crack tip but distinguishable by their angular rotation. Tracey
[16] also described a special three-dimensional element analogous to the two-dimensional
element for evaluation of stress intensity factors. In this formulation a six node wedge

shaped singularity element with special di: interpolation ions is focussed

around the crack front and is surrounded by eight noded isoparametric brick elements.

An eight point Gaussian quadrature is used to evaluate the stiffness matrix.

Hellen [17] prop a virtal crack ion method where the energy release rates are

computed using virtual crack extensions. The stress intensity factors are evaluated using
their known relationship with energy release rate for a virtual amount of crack growth.
An algorithm is devised to calculate the energy difference for two crack positions, close
together, using only one mesh, and altering the tip stiffnesses to assess the energy
difference. To increase the accuracy of results, quadratic special crack tip elements
developed by Blackburn [20] are used in conjunction with the proposed method. The

special elements are triangular in two dis ions with 7* di

from the crack tip, where r is the radial distance from the crack tip.

Henshell and Shaw [18] introduced the required singularity at the corner of a
quadrilateral isoparametric finite element by moving the mid-side nodes to the quarter
point towards the crack tip. For determination of stress intensity factors in cracked

bodies it is suggested to use the standard quadratic isoparametric elements with the

o: 16



distorted isoparametric elements at the crack tip. However the results obtained by
displacement methods depended on the point chosen for displacement evaluation and
reliable results were obtained by using displacements at points along the free surface of

the crack.

Barsoum [19] indivi ped singular based on the same technique used

by Henshell and Shaw [18] for the evaluation of stress intensity factors. Eight noded

quadrilateral, six-noded tri: and three di i twenty noded cubic

and prism elements are distorted by moving mid-side nodes closest to the crack at the
quarter points. This results in a r* stress singularity at the crack tip corresponding to
the theoretical stress singularity of linear fracture mechanics. The elements are shown
to have rigid body motion and constant strain modes and satisfy the patch test. In both
cases [18,19] a sizeable number of elements are required to model the crack tip as well

as the rest of the problem domain.

Blackburn [20] presented a triangular element with vertex and mid-edge nodes with
special di ions to the singularity behaviour in two-dimensional

problems. Blackburn and Hellen [21] the special h i element to
three-dimensional problems as a 15 noded wedge shaped special crack tip element. The
stress intensity factors are calculated by displacement method, line integral method and

also by the method of virtual crack extensions.

Benzley [22] developed a special crack tip element from a linear isoparametric element,
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with one cormer corresponding to the crack tip, and enriching the conventional

with the di field ing to the singular portion

of the elasticity solution. In addition to nodal displacements, K; and K; become basic

in such and are directly in the finite element analysis. A

linear zeroing function is used for the enriched els to make them with

the adjacent non-enriched elements.

Gifford and Hilton [23] enriched a i ic i ic element as

by Benzley. the element ion is of the ing type
and no zeroing function is considered. 8x8 numerical quadrature is required for the

accurate numerical integration of the enriched element.

Raju and Newman [24] presented stress intensity factors for shallow and deep semi-
elliptical surface cracks in plates subjected to uniform tension. The stress intensity
factors are evaluated using nodal force method and the finite element models constructed
using singular and isoparametric elements involve a very large number of degrees of
freedom. The results presented in this paper are widely used for reference as well as for

comparison studies.

Heppler and Hansen [25] utilized Gifford and Hilton’s twelve node enriched serendipity
element for the calculation of linear elastic planar stress intensity factors for rectilinear
anisotropic materials subjected to biaxial loading. In addition, conforming formulations

using three different zeroing functions, linear, super-ellipse and polynomial, are studied

o: 18



and with i i For the ming case high
accuracy is achieved with a few elements and they noted a substantial stiffening of the
finite element model for the conforming cases. Among the three zeroing functions, the

polynomial function which rei the exp: singular iour near the crack tip

performed the best.

2.2 Scope of the Study

A static p-version finite element analysis program that employs quadrilateral hierarchical

finite is ped for plane icity p The interpolation functions

for P-elements are enriched to derive special crack tip elements (enriched hierarchical
elements) for use in linear elastic fracture mechanics problems. All analyses study p-

convergence thereby eliminating the need for redesign of mesh for convergence studies.

2.2.1 Formulation of 2D-hierarchical element

The shape functions for quadrilateral hierarchical elements are derived from Legendre’s

p The interpolati ions are ii P ials in a fashion similar
to that of standard serendipity elements. For an element of order p there are 4p nodes
each having two degrees of freedom. The nodal variables corresponding to the corner
nodes are the physical degrees of freedom, the displacements « and v, in the global
cartesian coordinates, x and y respectively. The higher order nodal variables for the pth

order element are the pth derivatives of the displacements along the side at the mid-side
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node. For evaluation of the stiffness matrices, p+1 gauss quadrature is adopted for an

element of order p.

2.2.2 Formulation of 2D-enriched hierarchical element

The enrichment of the hierarchical element is based on Benzley’s [22] principle due to
simplicity of the formulation and as the stress intensity factors are presented directly in
the output. For the compatibility of adjacent P- and EH-elements a zeroing function is
required for the EH-element, however it has been shown in [25] that the zeroing function
stiffens the system. Therefore no zeroing function for the EH-element is considered, the
formulation is 2 non-conforming one and is similar to that used by Gifford and Hilton
[23] for a serendipity element. The crack element stiffness matrices are numerically

integrated by using 8 point gauss quadrature.

2.2.3 Formulation of 3D P- and EH-elements
The shape functions used for the P-element and the principle for enrichment to the crack

tip element for a two-dimensional case are simply extended to three-dimensions.

2.2.4 Solution strategy
The elemental stiffness matrices are assembled into the global stiffness matrix in a

skyline format. The global stiffness matrix for high order elements is partitioned, the

block diagonal matrices are tri: ized by gaussian elimination and a ination of

direct and iterative techniques is used for the solution.



2.2.5 Numerical verification and results

The test problems selected for verification of 2D P-element are the commonly used short
cantilever beam problem and the Cook’s membrane problem. The tests for 2D EH-
elements are a double edge cracked tensile specimen and a slant cracked tensile specimen

with mixed mode SIF solution.

The practical problem selected is a T-plate weld joint analyzed by Bell [26] for stress
concentration and stress intensity factors. The SCF's are evaluated for 45° and AWS
weld profiles and the fatigue life of a 45° weld joint is also estimated. The results are

then compared with those obtained by Bell.

The test problems for the 3D EH-elements are double edge cracked tensile and compact
tension specimens. The double edge crack tensile specimen is an extension of the 2D
problem and the selected compact tension specimen is that solved by Tracey [16]. A
semi-circular surface crack in a plate subjected to tension is then analyzed and results are

compared with those given by Raju and Newman [24].



Chapter III

FINITE ELEMENT FORMULATION

3.1

Generalized FE Formulation

The displacement finite element approach used in this study is derived from the principles

of virtual work. This formulation can also be derived using the variational principle or

Galerkin’s weighted residual approach. For two dimensional plane elasticity problems

the unknowns are the displacements « and v in the global X and Y coordinate system.

The

are first interp
over the domain of an element
represented by a local coordinate system.
The standard procedures given in [1.2.3]
are then used to determine the shape
functions.  The quadrilateral master
element in local § and 5 coordinate
system is represented in Fig. 3.1. The
values of local coordinates for the element

lie between +1. The i ion of

Figure 3.1 Quadrilateral master element




displacements « and v in terms of nodal variables, by appropriate shape functions N, in
any region of the local element is given by :
u® = (NEn)(u°} .G
vE = (NE)(vL
where {u} and {v} are the nodal values for the local element. The strains in the

element are given by :

= B}{d°} .. (3.2)

2y gl
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= |du, oy
3y ox

where [B] is a matrix containing derivatives of shape i in the global
and {d°} is the nodal displacement vector given by :
{d = (ll| Vie--UVy. g V‘P)T . 3.3)

u, denotes « at node 1, and p is the order of the interpolation function.

The mapping of the local element to the global element required for the evaluation of
global stresses and strains is done by the Jacobian J, that depends on the geometry of the
global element. The geometry of the element is approximated in terms of the nodal

coordinates (x;,y;) by suitable geometric shape functions, G :



“
x =§I:G‘x|
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=

The formulation is sub-, iso- or super-parametric if the order of G (given as p in
Eqn.(3.4)) is less than, equal to or greater than the order of N respectively. The

Jacobian J is given by :

& &
R .69
S FAY
on on
Using Eqn.(3.4) we have :
X6
o =] 2 o #+(3:8).
X8
an

The [B] matrix is partitioned into sub-matrices corresponding to each node, and is given
by :

B] = (.. .[B]. ..

~

M)

B
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where the sub-matrix [B] corresponds to the ith node. Since the displacement shape

are in local i to ine the

the following relationship is used :

The elemental stresses are obtained by the constitutive law :

ux

{0} = {o,t = DI{e°} = [DIBI{d°}

xy)

where [D], the constitutive matrix given for plane strain (pe) is :

1-v v 0
_ E v 1-v 0
Ol (1+v)(1-2v) o L2
2
and for plane stress (po) is :
o
1 0
I, = IE, v L
= 4 B )
00 —
2

of matrix [B],

.. (3.8

.. (3.9

.. (.10

.. @1y

The stiffness matrix and the load vector (considering only surface forces) for an element

are given by :



K = [ BI" D] [B] 42
° ..G12)
F9=[@Tfd
r
where Q represents the domain of the element and a surface load f, acts on the boundary
T'. The stiffness matrix is formulated in the local coordinate system hence it is written

as:
11
K = [ [ BIDIB] d dn [3] ~+/013)
-1 -1

where |J| is the determinant of the Jacobian. Gauss quadramre rule is applied to
numerically integrate the element stiffness matrix given in Eqn.(3.13). Gauss integration

using NGxNG points is given as :

NG NG
K=Y ¥ BET D] BE FEn)| ww - - (19
i1 1
w; and w; are the weights corresponding to ith and jth gauss points respeciively.
Once the stiffness matrices of all the elements representing the domain are evaluated as
described above, the global stiffness and load matrices are obtained by the summation

or assembly of the elements of local matrices to the corresponding elements of global

matrices :
K=Y K1
° .. 315
F9- % F1
The system of equations in the di: for ion of the FEM is given as :
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K(d} = (F% o 15-10)

where {d} is the global vector of nodal displacements.

The disp shape i N, inp ion FEM are hi ical in pature and
are discussed in the next section. The geometric shape functions, G?, are chosen as the
linear and i ipity shape i ing to a quadrilateral master

element for order (p) one and two respectively :

G' = %(1.55_')(“““9 i=1234

6! = Laeee)a nn)@e nn-D, i = 1234
4 RS E ERL)

= 30-E ), i=57
= JAEE)A-T, i-68

The geometric shape functions given in Eqn.(3.17) are also used as displacement shape
functions for A-type elements in the 4-version FEM and are an entirely different set for

different orders.

3.2 p-version FE Formulation

This section presents the hierarchical shape functions used in this work. For the

illustration purposes the derivation for a second order hierarchical element is discussed



in particular. In addition only the derivations for displacement « are provided and are

obtained for v in an analogous manner.

The displacement interpolation for z over the local quadrilateral element is given by :

u° = @yt af+ et o Ent a b et alfin+ agn’
= @)a}

. (3.18)

where {a} is the coefficient vector. The nodes corresponding to a hierarchical element
are the four corner nodes for the first order and for each increment in order a set of four
hierarchical nodes is placed, one at each of the four mid-sides. Thus, for a second order
P-element there are four corner nodes and four hierarchical mid-side nodes. Evaluating

u in Eqn.(3.18) at the four corner nodes we have :

L e A R R e A

.. (.19

e
L S R A A L

The degree of freedom at the mid-side node is the hierarchical degree of freedom defined
as the double derivative of the displacement along the side on which the node lies, and
is evaluated at that node. Thus this pseudo "displacement” at the mid-side node 5 is
given by :

o _ |4 . L 2\ _ 2\ .. (3.20)
ot = [E(u (E,—l))L - L—?(u (E,Aml [Ts] i (s &) [Z)

where I is the length of the side on which node 5 lies. Similarly the hierarchical



variables at the nodes 6, 7 and 8 are evaluated. The coefficient matrix {o} is obtained
in terms of the nodal variables and is used in Eqn.(3.18) to obtain the displacements in

terms of nodal variables via shape functions. The operation is given as :
v’} = [Cl{e}

{e} = [C1'{u’} .. @32

u® = PICT ' (u} = (N){u°}
The shape functions N obtained in this fashion are hierarchical in namre. The
hierarchical shape functions however are not unique. The first order P-shape functions
correspond to the corer nodes and are equal to the first order serendipity shape

functions, G', given in Eqn.(3.17). To reduce ing between i ions the

higher order shape functions are derived from Legendre’s polynomials that are
orthogonal in the -1 to +1 range. A one dimensional polynomial term, L?, for the pth
order shape function for a line element corresponding to a side of the master element
having two corner nodes and one mid-side node is obtained as :

1 et
@-D! 27 dgr

L*t = f P(8) d§ = [E*-17 --G22)

where P, is the Legendre’s polynomial of order p. The polynomial expression for the
second order, L?, is :
L% = (£2-1) .. (3.23)

and polynomial expression for the shape function for the mid-side node 5 (along n=-1)

is obtained as :



N} = L%(1-n) .. (.29
For the second order hierarchical variable the double derivative of this shape function,

Eqn.(3.24) must equal unity at node 5. Thus

&
s e

and the complete set of 2nd order hi ical shape ions for a ic P-element
corresponding to the four mid-side nodes is :
L

2
NP =Nf - %(ELIXI —n)[;)

1 Ly
Ng = 2(1‘5)(11’-1)[3)
. (3.26)

1 LY
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2 1o pm2op[lt
Ng 4(1 E)(n l)[ 2]

For a third order element out of a total of twelve shape functions, the four corner shape

functions remain the same i.e. equal to G', and four mid-side shape functions are the

same as given in Eqn.(3.26). The ining four additi shape
to the new hierarchical degrees of freedom (the third derivative of the displacement along
the side) and are similarly derived. In this study only nodal and side shape functions are

considered thus an element of order p has 4p nodes (4 corner and 4p-4 mid-side) and 4p



corresponding shape functions.

3.3 2D EH-Element

For a body containing a crack the local coordinate system at the crack tip is illustrated

in Fig. 3.2. x’ and y’ are the local
axes centred at the crack tip with x’
axis oriented along the crack plane. r
and © are the polar coordinates of a
point in the crack tip region w.r.t. the
local x/, y’ axes. ¢ is the orientation
of the crack tip w.r.t. the global X
axis, measured +ve counter-
clockwise. The displacements in the
vicinity of the crack tip given by

Gifford and Hilton [23] are :

u =K f +Kyg

X

Figure 3.2 Coordinate system at crack tip

.. @327

ve =K f, v+ K g

where f,, g, etc. are functions that depend on r, © and ¢ in the crack tip coordinate

system, G the shear modulus and » the Poisson’s ratio. K; and Kj are the mode I

(tension) and mode II (shear) stress intensity factors. The functions f,, etc. are given as

e |



f,=-—-( ](M[(ZY D cos? - cosZ

- sing [2y+1) sin; = -in%n

. 3.28)
- Lifr +3) sin® + sin39)
e (2,‘] {cosp [(2y+3) sin> smzl
+ sing [27-3) cos + cos21}
£ - —, (smnb (@r-D) eos? - cos3
+ cost [2y+1) sind - sin3y)
. (3.29)
6w [ ) (sind (@y+3) sin + sin 2]
8, coud®
cosd [(2y-3) oos; cos21}
where
3-4v plane strain
ol 2L . 3.30
Y { 3> plane stress 630
1+v
The element di: i Eqn.(3.18), is enriched by the crack
tip displacement as :
Bee= . 331

= [Flel + K £, +Kpg

Proceeding in a standard sequence, Eqn.(3.18) to Eqn.(3.21), for evaluating the
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displacements in an element in terms of the nodal variables, the displacement

interpolation of the "enriched” second order P-element is given by :
4 8
ugy = M{ul+ K G- LN, - PN, £l
i=l =S
4 8 P 6.32)
+Kﬂml';Nl3u'§NiSu’] -
= M) {u} + K, P, + Kz Q
4 8 P
v = Q) K - BN, - 3N, 6]
= i
4 8 s (3 33)
*K'ﬂ[h'?;Nx&i'nggzd S

=M{v + K P, + Kp Q
£/ is similar to the ition of hi ic nodal vari and is given by :

f,’{:a"_‘;" .. 339
a i

and is evaluated at the ith node. The displacement interpolation # for an enriched

hierarchical element of arbitrary order p is given by :
4 P 4
ug = MO+ K G- N f- B3NS 677
i1 P2 =l .. 339
4 P&
Kl BN - RN 8

where i and j correspond to the corner and mid-side nodes respectively.



The strains in a second order P-element are given by :

M g B X
s W kg Ky

vy = (‘%“Z(v‘h %’f’-(u‘»)

which in matrix form are :

(2%} = Bl {dgg}

‘daz‘T:(“n":“zvz'”“l"nKlKu)

..63n

In this formulation K; and Ky are included as additional degrees of freedom and the

corner node corresponding to local coordinates of £ =-1 and n=-1 is located at the crack

tip. For the evaluation of functions f;, etc., the value of ¢ for the nodes lying on one

surface of the crack face is +180° while for the node on the other surface the value is

-180°. The [B] matrix is partitioned and given as :

Bl B ..B B

.. (3.38)



where [B] is given in Eqn.(3.7) and [B,] corresponds to the degrees of freedom (K, Ky)
of the "pseudo” node at the crack tip. The evaluation of the local and global stiffness

matrix is the same as described in section 3.2.

3.4 3D P- & EH-Elements

The development of the 3D hierarchic

4
element is a simple extension of the ] n
2D P-element. The master element is [ |‘2 /
2@, - Z.
defined in the local £, 9, { coordinates = 8/18
1
s
as shown in Fig. 3.3. The —
131 1410
displacement shape functions for a 3
Y _ %10
s

2nd order 3D hierarchic element are 1
given in appendix A. The geometric )—"
shape functions, G, for order 1 2

R and Figure 3.3 3D master element

are the ipity shape

associated with an 8-noded and a 20-noded ipity brick element respecti . The

Jacobian for the 3D P-element is given by :

. (339

i
Sy Iy 2w
2y 2le 2o
g 2lr e

B
&



The derivatives of shape ions in global il for the ion of [B] matrix

are given by :

.. (3.40)

The [B] matrix for a second order 3D P-element is partitioned into 20 sub-matrices
(corresponding to 8 corner nodes and 12 mid-side hierarchic nodes) and along with a
partitioned matrix is given in Eqn.(3.41). Eqn.(3.42) depicts the constitutive relationship
which relates the stresses and strains. The steps for formulation and evaluation of the

stiffness matrix are the same as for a 2D element.

Bl=( .. Bl ..}
ON.
—— 0 0
ax
0 o 0
dy
0o o il
B = .. (3.41)
J - m\ aNl )
oy &
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{o°} = [D]{e°}

1I-v v v o 0 0
£ I-v v 0 0 0 &
%y 1= 0 o L & ..G4)
ol  E L % o o |«
Av)(1-2v)
xy| -2v xy|
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= symm . . . . 12v) g

3.4.1 Enriched 3D P-element
As shown by Sih and Liebowitz [27], the displacements u, v/ and w, near the edge

of the crack in directions x”, y’ and z’ (Fig. 3.4) parallel to the normal, the binormal and

the tangent to the crack front are expressed as :

“=I=Klfl'xn§x
v =Kf-Kg .. (.43
w =Kaf,

where f,, etc. are given as :



Figure 3.4 Coordinate system at the crack front (3D)

£, = ”'\J—[(s 8v)cos - cos3%, 1

=1 120 g gvxeind+ sin3;
8 4EE[(9 8v)sm2+sm2]

=lov, 0_ .__ .. (G.49)
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The displacements u/, etc. are in the local crack coordinate system (x’,y/ z’). For
.

of the di ion of the P-element, these are transformed into

displacements in the global coordinate system, u,, etc. The transformation matrix, T, is
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a 3x3 matrix of direction cosines formed between the local and global coordinate axes.

Tex Toy Tog

’ M = [T,e T,y Ty .. 349
Tz Toy Tae

where Ty, = T,, = the cosine of the angle between the local x’ and global X axes.

The displacements u,, etc. in the giobal i are ined from the
u u,
vl =[mq{v. .. (3.46)
WI W‘
and are given as :
u, = K [Tyfy+ Tyfl+ Ky [Ty,8,+ T8+ Ky [Tyf5] 641
“K P +KyQ +KgR
The di: i ion of the enriched 3D P-clement is then given by :
u® = Ple} +K P, +K; Q + K R, .. (3.48)

Using the standard procedure, the second order displacement interpolation in the element

in terms of the nodal variables is given by :
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+
*Eg By~ 3N, Ry~ 3N, Ry
= MN){u’} + K LP, + Ky LQ, + Ky LR,

In the 2D enrichment, the additional nodal degrees of freedom are mode I and mode IT
stress intensity factors. In the 3D case there are three nodes along the crack front, two
corner and one mid-side node. Each node is associated with three unknowns, mode I,
mode II and mode III stress intensity factors, thus there are 9 additional DOF for a 3D
enriched element. The SIF’s are assumed to have a quadratic variation along the crack

front and this variation is given as :
K =M, K+ M, K+ M; Ky
Ky =M, Ko M, Ko M Ky - .50
Ky = M, K+ M, Kype M Ky

where

_ BB
Me=3
M, - 1p? .. (.51
- BB
2



K; in Eqn.(3.50) denotes K; at node j. The local axes 8 is equal to the master element
axis { and lies along the crack front and the z’ axis of the crack tip coordinate system.
Combining equations (3.49) and (3.50) the displacement interpolation for the enriched

element is written as :

v = MU} ~ Ky Ay = Ky Ay - Ky Ay
“Kohy +KyAy ~Kphy, -GS
*Ky Ay + Ky Ay + Ky Ay

For the derivation of the [B] matrix let the displacement interpolation for v and w be

given by :

Ver = MOV}~ Ky Ay + Ky Ay ~ K Ay
+ Ky, Ay + Ky Ay + Ky Ay .. (3.53)
*Kp Ay + Ky Ay + Ky Ay

v = Q)W) < Ky Ay + Ky Ay - Ky Ay
TKphy Ky Ay v Kphy, oGS
* Ky Ay + Ky Ay + Ky Ay

Using equations (3.52) to (3.54), the strains are evaluated as :

{e} = BN} .. (3.55)
(d°FT = (o vy Wy - g Vg Wy K Ky Ky Ky Ky Ky Ky Ky Ky)



and the [B] matrix is given by :

Bl=( .. Bl .. ByByBy

Ay Ay Ay .. (3.56)
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The stiffness matrix for the second order 3D EH-element is then evaluated using the

standard procedure described in previous sections.



Chapter IV
COMPUTER IMPLEMENTATION

4.1 Computer Program

A static p-version finite element analysis program MUNSID is developed in C language.
The capabilities include analysis of plane elasticity and LEFM problems in two and three
dimensions. One of the primary aims of this study is to develop and determine the
numerical accuracy of the emriched hierarchical elements. The finite elements are
quadrilateral shaped so a i mesh with ic node numbering
and ivity data ion is also ped for ease of input. The

program utilizes p-enrichment and the mesh need not be refined for convergence studies.
The three main segments of the program are : Elemental stiffness matrix formulation,
global assembly of the elemental matrices and the solution routine. Various aspects of

MUNSID are discussed in the following sections.

4.1.1 Input

Besides the standard input such as ical and physical ies of the

problem, the order of the elements, the order of geometric shape functions, plane stress



or plane strain analysis option, the number of iterations and an option for crack tip
analysis are also required as input. For 2D crack problems the value of ¢, orientation
of the crack plane w.r.t. the global coordinate axes, and for 3D problems the vector

normal to the crack plane are additional input parameters required.

4.1.2 Elemental stiffness matrix evaluation

For most of the analyses the sub ic element jon is utilized. The order
of the element is almost always greater than unity as p is successively increased while
the element edges are generally straight and therefore the order of the geometric shape
functions is one. A maximum geometric order of two is used for problems having

curved boundaries. The elements are not defined as iso- or sub-parametric in the strictest

sense as the ic shape ions are not hi ical but standard ipity shape

Gaussian i ion is emp for the ion of the stiffness matrices.
The (p+1) Gauss integration rule is used to integrate a partitioned sub-matrix K;, where
p is the higher order of the matrix i.e. p = max(i,/). To avoid zero eigenvalues in the
stiffness marrices the reduced integration rule is not used, however, reduced integration

for the second order is found valid as long as the element is not enriched further.

4.1.3 Assembly and solution of global stiffness matrix
Since the elements of the global stiffness matrices lie predominantly along the diagonal,
to avoid storing a large number of zero elements, each global partitioned matrix is

assembled in a skyline format. The Gaussian elimination is used to the

diagonal partitioned matrices into the LDLT form (Bathe[3] Chap. 8), and the off-
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diagonal partitioned matrices are utilized for the iterative solution.

4.2 Computational Ease

The use of hierarchical elements results in an improved stiffness matrix that contains
lower order stiffness matrix as a sub-matrix. The improved stiffness matrix differs from
the previous lower order stiffness matrix in that it contains rows and columns
corresponding to the additional nodal variables. Hence the effort spent in triangularizing
the previous stiffness matrix is entirely saved and improved solutions are obtained by ad
hoc iterative procedures. The computational effort required for element matrix
generation also depends on the number of integration points and therefore on the degree
of the polynomial to be integrated. Usually all shape functions have the same polynomial

order and the burden of numerical integration rapidly increases with the order of the

poly jal. In the hi i the number of integration points depends on

the order of the (partitioned) stiffness matrix to be computed and in many cases is much

lower than that of conventional analysis.

Consider a plane elasticity problem with overall global stiffness matrices K|, K, and K,

corresponding to first order, second order and third order analysis respectively :
&1 = [k, - .41
The stiffness matrix K,, is evaluated by the (p+1=) 2 point Gauss quadrature rule. It

is then decomposed into the LDLT form and direct solution is obtained for nodal

v : 45



= K K ..4.2)
L KJ
K, K, K,
&) - |y Ky Ky el
‘.ﬂ Kﬂ KJJ

variables corresponding to the first order. K, contains K, as a sub-matrix and due to the
symmetry of the matrix only K, and K,, need be evaluated, which is done using 3 point
Gauss quadrature rule. Similarly for K; only K,;, K; and K;; need to be evaluated. The

system of equations required to be solved for the third order mesh is :

Ky Ky Ky Uy 1

Ky K Kyl {Upf = i e

x!l xﬂ. KJJ U) 3)
where U, are the (corner) nodal degrees of freedom and U,, U, are the hierarchic nodal
degrees of freedom. F,, F, and F; are the load vectors corresponding to the degrees of
freedom. The iterative solution scheme adopted for higher order matrices is as follows:
Step 1

U, = Kyl {Fi}

Step 2
U, = [Kx"] {F, - K" U}
U, = Kyl {F, - K, U}

Iterations are performed until the values of U, converge.



Step 3
U; = [Ky' {F; - K" U, - K5" Uz}
U, = [Kx'l {F;-K," U, - K5 Us}
U, = K" {F, -Kp Uz - K5 Us}
Sufficient number of iterations are performed for the convergence of solution with the

last step being that for U,.

There are two observations associated with the use of a higher gauss integration rule.
Firstly, only the sub-matrix corresponding to the higher order is evaluated at a higher
number of gauss points and secondly, the size of the overall matrix is small compared
with that of a mesh using standard elements for the same problem due to the use of
coarse meshes in p-version FEM. In addition, due to faster p-convergence rates, high

values of p are not required reducing the number of degrees of freedom involved.



Chapter V
NUMERICAL STUDIES AND
DISCUSSIONS

5.1 Numerical Application

In this chapter the hierarchical and the enriched hierarchical formulations are numerically
examined via the program MUNSID. The short cantilever beam problem and Cook’s
membrane problem having analytical and reference values are analyzed for verification
of the 2D P-element. A double edged crack specimen and a slant cracked tensile
specimen are used as tests for the 2D EH-element. Different geometries of T-plate
welded joints are analyzed for stress concentration factors. Stress intensity factors for
different crack depths at the weld toe of a 45° weld profile T-plate joint are obtained and
finally the fatigue life of the specimen is estimated. A double edge cracked specimen,
a compact tensile specimen and a plate with a semi-circular embedded surface crack are

analyzed using 3D EH-elements. The results obtained with very coarse meshes and a

small number of degrees of freedom are in with the

values for all cases.



5.2 Tests for 2D P-Element

The cantilever beam and Cook’s membrane problems are analyzed and the results

obtained validate the formulation of the P-elements and the program MUNSID.

5.2.1 Short cantilever beam problem

A shear loaded cantilever beam is

selected as a test problem by many

X T
authors [28,29,30,31].  The I“ h
o [
solution (Tomi v = 025 P = 40.0
€ = 300000 h =12
L =48

and Goodier [32]) for the tip

disp o, of: e problem, Figure 5.1 Cantilever beam problem

shown in Fig. 5.1 is :

_ PL® (4+5v) PL _
Ve = 3prt oEm - 03558 (5.1

The finite element solution is obtained for a mesh of one element, a coarse mesh of four

square ek and i finer meshes by bisecti A di: d four

element mesh after MacNeal and Harder [30] is also studied. The results are presented
for the tip displacement as well as for bending stress at A (x=12, y=6) for increasing
order p till convergence is achieved, where p is the order of the entire mesh. In addition
the mduwd integration (RI) results for p=2 using 2x2 gauss points are also presented.

‘The meshes are shown in Fig. 5.2 and results in Table 5.1 and Table 5.2.
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Figure 5.2 Meshes for cantilever beam

Table 5.1 Cantilever Beam Problem (reference and comparison values)

Aliman Allman
S Ve g, (x=12,y=6)
ax1 0.3026 0.3445 52.7
8x2 0.3394 0.3504 58.4
16x4 0.3512 0.3543 §9.7
axi-d - 0.3066 -
Reference 0.3558 60.0
VvV : 50




Table 5.2 Cantilever beam problem (results)

Mesh Vi g, (x=12,y=6)
Size

Rl p=2  p=3 p=4] RI p=2 p=3 p=4
1x1 03393 0.2989 0.3414 0.3415 59.99 49.53 60.35 60.35

4x1 0.3500 0.3495 0.3522 0.3522 60.0 59.85 60.32 60.13
8x2 0.3558 0.3554 0.3559 0.3559 60.0 59.96 58.66 58.94
16x4 0.3556 0.3557 0.3557 0.3557 59.98 60.0 60.00 60.00
4x1-d  0.3520 0.3534 0.3562 0.3562 57.99 59.0 58.91 58.46

ions
1. For any given mesh, the NDOF involved in the analysis by Allman [28] and
Ibrahimbegovic [31] is nearly the same as that in MUNSID for p=2 and p=3
respectively. In comparison, considerably improved results are obtained with MUNSID.
2. For P-clements (Table 5.2), reduced integration results are better than full

integration, except for the 16x4 and the distorted 4x1 mesh (4x1-d). Therefore for real

life situations involving irregular shaped full i ion is

3. Convergence of results is observed at higher orders for coarse meshes and vice-
versa.

4. Even the single element mesh performs quite accurately with a final error of only
4% in displacement and 0.6% in stress. For the 4x1 and 8x2 meshes, the error in tip
displacement for both the meshes is 1% and the error in stress is 0.2% and 1%
respectively. "Exact" value of stress and a high accuracy of 99.97% in displacement is
obtained with the 16x4 mesh for all orders. For a reasonable accuracy, the 4x1 mesh

with p=3 is sufficient for the analysis.



5.2.2 Cook’s membrane problem

A idal with a shear i i by Cook [33] shown

in Fig. 5.3 is a test problem for the

accuracy of quadrilateral elements.
The results for the tip displacement at

|

point C are compared with a reference I"" e
value of 23.91, obtained by Bergan
and Fellipa [29] using a 32 x 32
mesh. The various meshes considered
are given in Fig. 5.4 and the results
for the tip displacement and the values

of at the lower (A) and upper Figure 5.3 Cook’s membrane problem

(B) mid-sections of the membrane are

presented in Table 5.3 and Table 5.4.

Table 5.3 Cook’s problem ( and ison values)
iaaia Allman Ibrahimbegovic Allman
Voo [N [N
2x2 20.27 20.68 0.1825 -0.1716
4x4 22.78 22.99 0.2261 -0.1921
8x8 23.56 23.66 0.2340 -0.2004
Reference 23.91 0.2359 -0.2012
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2x2 mesh

Figure 5.4 Meshes for Cook’s membrane

4x4 distorted mesh

OO A

4x4 mesh

NN

8x8 mesh

Table 5.4 Cook’s membrane problem (results)

Mesh Ve Tmaen © Tt
Size

RI p=2 p=3 p=4 RI p=2 p=3 p=4

2x2 23.17 23.06 23.47 2347 0.262 0.250 0.224¢ 0.228

-0.234 -0.234 -0.217 -0.221

4x4 23.73 23.73 23.75 23.75 0.244 0.242 0.235  0.235

-0.202  -0.201 -0.201  -0.201

8x8 23.88 23.88 23.88 23.88 0.239 0.239 0.236 0.236

-0.204  -0.204 -0.204 -0.204

4x4-d 23.57 23.82 23.83 0.232 0.232 0.232

-0.203  -0.202 -0.202

b ]
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1.  Improved displacements results are obtained for all meshes compared with those
by Allman and Ibrahimbegovic. The accuracy of the 2x2 mesh with p=3 is nearly equal
to, and that of the 4x4 mesh with p=2 is greater than, the displacement results by [28]
and [31] for an 8x8 mesh. This results in a major decrease in the NDOF involved.

2. The error in the tip displacement is less than 2% for a coarse 2x2 mesh. A high

y of 99.87% in di: results is achieved with an 8x8 mesh. It is also

observed for the refined (8x8) mesh that the values of displacement do not vary with

increasing order, suggesting convergence of the results.

3. Improved results are also obtained for the i incipal stress at

A and B. The 2x2 mesh with p=2 performs slightly better than the same mesh by

Allman and the y i i aspisi to 4. The errors for
Opmaxa are only 0.60% and 0.25%, and for g, are only 0.10% and 1.30%, for the 4x4

and 8x8 meshes respectively. It is noted however that the reference values are also

numerically and that i ic did not provide results for stresses which
are quite critical for this shear dominated test.
4. The 4x4-d distorted mesh is graded, to improve results, towards points A and B

in a geometric progression with a ratio of 0.15 and it includes large aspect ratio

p it results and similar stress results are obtained compared
with the 4x4 mesh. It is also analyzed to show the relative flexibility of mesh design in

p-version FE analysis.



5.3 Tests for 2D EH-Element

5.3.1 Double edge cracked tensile specimen
The test problem is shown in Fig. 5.5 along with the physical and geometrical properties
and the loading conditions. In the construction of meshes, the crack tip is surrounded

by EH-clements and the

rest of the geometry is

8
o

modelled by P-elements.

The symmetry of the

problem is considered and
E=30x10" »=0.3
only the upper two
Figure 5.5 Double edge cracked tensile specimen
quadrants are modelled.

Utilizing the symmetry
about the crack tip gives slightly erroneous results hence is not considered. The meshes

consisting of 4, 8, 12 and 18 elements are shown in Fig. 5.6 along with the results
obtained. This problem is also solved by Gifford and Hilton [23] and the plane strain

reference value for K| equal to 2.00 is taken from Brown and Strawley [34].

A mesh for the same problem by Barsoum [19] using 115 elements and employing

distorted triangular ipity i ic finite to the crack tip

region is shown in Fig. 5.7 for comparison.
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4 element mesh
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8 element mesh

12 element mesh
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18 element mesh

Figure 5.6 Meshes and results for double edge cracked specimen

Discussi

1. The maximum order required
for convergence for all meshes is 4.

2. The error in the value of stress
intensity factor obtained from the four

different meshes is less than +5%

1
s

G |

e

115 slements

Figure 5.7 Mesh of distorted serendipity

elements (Barsoum)

which is reasonably accurate
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considering the number of degrees of freedom involved, 220, compared to a 700 degree
of freedom model by Barsoum (Fig. 5.7).

5.3.2 Slant cracked tensile specimen

The test problem is given in Fig. 5.8.

.

Four different finite element

idealizations also considered by E=30x10°
" - B »=0.3 )4/3

Gifford & Hilton [23] are shown in 2 % 7

Fig. 5.9 and the plane strain reference —l-

values for K, and K; taken from 23

graphs provided by Bowie [35] are —|- ¥

1.86 and 0.88 respectively. The Figure 5.8 Slant c; tensile speci

results are presented along with the

meshes in Fig. 5.9.

Di .
L The values of K; and Ky for each mesh converge at p=4. A note for all mesh

enrichments is that the order of the is not i ively rather over the
entire domain.

Z. For the 4, 7 and 10 element meshes the error is less than 5% in K; and

less than 11% in Ky. The 18 element mesh gives quite accurate results with errors of
only 2.2% and 1.13% in K; and K, respectively.

3. The apparent reason for the better performance of the 18 element mesh is the use

v : .57



of small and regular sized EH-elements at the crack tip.

K,

K

O wN o

1.82
1.77
1.77
1.78

0.98
o.81
0.81
0.80
0.80

4 element mesh

1.28 0.84
1.52 0.91
1.77 o0.89
1.81 0.95
1.84 0.97

7 element mesh

1.57

2.03 0.97
1.84 0.88
1.82 0.87
1.82 0.87
1.82 0.87

18 element mesh

Meshes and results for slant cracked tensile specimen

: 58




5.4  Analysis of T-Plate Weld Joint

The T-plate joint having base plate thi T, and plate thi t, with

45° and AWS weld profiles is shown in Fig 5.11. The finite element idealization is done
utilizing the symmetry of the problem and the weld joint is tested for stress concentration
factors at the weld toe and stress intensity factors for a cracked weld toe. The results
are compared with those obtained by Bell [26] using 8-noded isoparametric elements.
Various meshes were considered but results presented are for meshes that are the coarsest

possible for a reasonable accuracy.

4 L

| bending

(W
~
o

&

v e =%
f . i ===

45" weld profile AWS weld profile

Figure 5.10 Geometry of T-plate weld joint




5.4.1 Stress concentration factors

Stress ion factors are for the 45° and AWS weld profiles for two

different base-plate to attachment-plate thickness ratios, UT, of 1.0 and 0.75 with the
attachment plate thickness of 78 mm. Tests are done for both three point bending and
tensile loadings. The topology is discretized by coarse meshes with three layers of
elements graded in geometric progression towards the stress concentration region (the
weld toe). The meshes considered for 45° and AWS weld profile with U'T ratio of 1.0
are shown in Fig. 5.12. The value of the weld toe radius, 7, is kept equal to 0.5 mm, the
same as that selected by Bell. The stress profiles along the base plate thickness direction
at the weld toe are also compared with those obtained by Bell. The stress profiles are
obtained for loads applied such that the maximum nominal stress has a value of 1.0 at
the weld toe. The SCF results are given in Table 5.5a & b and Table 5.6a & b and the

stress profiles are plotted in Fig. 5.12 to Fig. 5.19.

Table 5.5a  Stress concentration factor, 45° weld profile, bending load

uT Bell MUNSID
p=1 p=2 p=3 p=4 p=5 p=6

1.0 466  6.205 4.99 4.69 452 456 461
0.75  5.08 6.64 5.42 5.10 4.94 4.98 5.05

Table 5.5  Stress concentration factor, AWS weld profile, bending load

uT Bell MUNSID

p=1 p=2 p=3 p=4 p=5 p=6
1.0 1.475 226 1.802 1.675 1.62 1.605 1.605
0.75 1.561 2.38 1.93 1.79 1.74 1.73 1.73




45 weld profile

22 element mesh

AWS weld profile

21 element mesh

Figure 5.11 Meshes for stress concentration factor evaluation

Table 5.6a  Stress concentration factor, 45° weld profile, tensile load

uT Bell MUNSID
p=1 p=2 p=3 p=4 p=5 p=6
1.0 3.588 5.07 412 3.94 3.78 3.81 3.87
0.75 3.912 5.63 4.47 4.27 4.11 4.145 4.22

Table 5.6b  Stress concentration factor, AWS weld profile, tensile load

uT Bell MUNSID

p=1 p=2 p=3 p=4 p=5 p=6
1.0 1.341 1.75 1.52 1.49 1.44 1.43 1.43
0.75 1.394 1.91 1.63 1.58 1.54 1.53 1.53
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Figure 5.13 Stress distribution through thickness
t=78mm tT=1.0 AWS weld profile
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Figure 5.14 Stress distribution through thickness
t=78mm vT=1.0 45° weld profile
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Figure 5.15 Stress distribution through thickness
t=78mm t/T=1.0 AWS weld profile
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Figure 5.16 Stress distribution through thickness
t=78mm UT=0.75 45° weld profile
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Discussions

2 ‘The meshes used for the 45° and AWS weld profiles (for both t/T ratios) contain
22 and 21 elements respectively. The meshes are very coarse in the overall domain and
graded in a geometric progression at and towards the stress concentration region with a
ratio of about 0.15. Reasonably accurate results are obtained with a few degrees of

freedom, typically about 600, for a 20-22 element mesh with p=6. Bell states in his

report “the joints were using q ic isop ic elements and the mesh
was highly refined at the weld toe region to insure a smooth radius at the root of the
notch and to obtain an accurate value of stress in this region". In the present study, two
P-elements are used to model the root notch radius with geometric shape functions of
order two. Reference [36] used a refined mesh for stress concentration factors of a
welded joint with about a 100 elements (~ 680 degrees of freedom) in a 1 mm’ area at
just the weld toe region.

2. The SCF's obtained in this study (Tables 5.5 and 5.6) are comparable to those
obtained by Bell.

3. The stress profiles (Fig. 5.12 to Fig 5.19) are remarkably similar to those given

by Bell, and are obtained using only five P-el along the thi direction of the

base plate at the weld toe. The stresses are obtained by nodal averaging.

5.4.2  Stress intensity factors

The crack growth curve for a T-plate joint with 45° weld profile and /T ratio of 1.0
with t=78 mm has a 2D reference solution in [26]. Hence this geometry is analyzed
for SIF’s for different crack depths at the weld toe under three point bending load. The

vV:7



initial crack depth is taken as 0.5 mm and the final crack depth is taken as T/2 (39 mm).

The meshes used for the analysis are given in Fig. 5.20.

D— Dr—
0.5<a<T/4 T/4<a<T/2
R
19 element mesh 25 element mesh
Figure 5.20 Meshes for SIF for 45° weld profile, vT=1.0

Table 5.7  SIF (MPav'mm) vs crack depth

Crack Depth (mm} p=1 p=3 p=5
0.5 3an 3.81 4.01
1.0 3.80 4.59 4.64
5.0 5.22 6.34 6.34
10.0 6.90 7.56 7.62
20.0 11.62 9.61 9.63
30.0 13.62 12.92 12.95
39.0 16.57 17.95 18.02

An empirical relationship is established for the SIF versus crack depth and are plotted



in Fig. 5.21. This empirical value of K (in MPav/m) as a function of crack depth a (in

metres) is determined by polynomial curve fitting as :
K(a) = 12409.65 a? - 618.903 a? + 16.729 a + 0.1243 -(5-2)
Eqn.(5.2) is used to evaluate the crack propagation curve (Fig. 5.23) and the fatigue life

of the specimen. The constants C and m used in the Paris’ equation are those used by

Bell. The crack growth rate (Paris equation) and fatigue life (N cycles) are given by:

% - C (4K = C (Ac)® K™
T da
i (M) {F .(5.3)
_ 1 P @

(5.36 . 107%) (100)* gg00s K(a)®

The fatigue life is evaluated and compared with that obtained by Bell for a straight

fronted crack (SFC) analysis (Fig. 5.22).
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Figure 5.21 Stress intensity factor vs crack depth
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Figure 5.23 Fatigue crack growth using EH-elements
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1.  The stress intensity factors are obtained by using coarse meshes of 20-25
elements. However to have regular sized elements for small crack depths of 0.5 mm and
1.0 mm, a slightly refined mesh of 38 elements is used.

2 The fatigue crack growth curve obtained from Paris crack propagation equation
has quite the expected profile and is similar to that given by Bell for a straight fronted
crack. The fatigue life of 442 Kcycles obtained in this study is in close agreement with
the value, ~480 Kcycles, obtained from the graph provided by Bell for the same
problem. The use of coarse meshes for SIF evaluation is thus also validated by a

practical example.

5.5 3D EH-Element

5.5.1 Double edge cracked specimen

This problem is an extension of the 2D case (§5.2.1, Fig. 5.5) having 2D SIF reference
value as 2.00. The thickness of the specimen, ¢, in the third dimension is taken as 2.0
and the meshes analyzed are a simple 4 element and a 24 element mesh shown in Fig.
5.24. The results are presented in Table 5.8 and Table 5.9 for values of K, for p
varying from one to three and at locations z/¢, where z=0 at the free surface and z=0.5¢

at the middle of the crack front.



>

-?..__3—/
4 element mesh

24 element mesh

Figure 5.24 Meshes for 3D double edge cracked specimen

Table 5.8 K/K,, for double edge cracked specimen, 4 element mesh

zt =0 z/t = 0.5
p=1 0.87 0.83
p=2 0.84 1.13
p=3 0.80 1.10




Table 5.9 K/K,;, for double edge cracked specimen, 24 element mesh

z/t = 0 z/t = 0.5
p=1 0.87 0.84
p=2 0.74 0.78
p=3 0.70 0.75

Discussions

L An average accuracy of 80-90% is achieved in the SIF value for third order
coarse meshes of 4 and 24 elements. The NDOF involved are only 257 and 959
respectively

2 The refinement of the mesh, however, does not seem to influence the overall

result.

5.5.2 Compact tension fracture specimen

The specimen selected is a plate with through-thickness edge crack of depth a with
thickness, half-width and half-height taken equal to a. A uniformly distributed force of
P/unit length through the thickness is applied at the crack ends and normal to them. The
geometry of this problem, also solved by Tracey [16], is illustrated in Fig. 5.25. The
Poisson’s ratio is taken as 0.3. The reference solution is taken as a 2D SIF value given
by Kyp = 7.20 P @™®. The meshes used for the analysis are simple 4 element and 32

element meshes given in Fig. 5.26. Table 5.10 and Table 5.11 give the values of K/K,;,



along the crack front where z/a=0 is the free surface and z/a=0.5 is the middle of the
crack front. From experience in the 2D cases, the symmetry about the crack front is not

considered and the crack is modelled as a whole.

Figure 5.25 Compact tension fracture specimen

Table 5.10 K/K,, for compact tension specimen, 4 element mesh

z/la =0 z/a = 0.5
p=1 0.76 0.73
p=2 0.99 1.08
p=3 0.83 0.97
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Figure 5.26 Meshes for compact tension fracture specimen

Table 5.11 K/K,, for compact tension specimen, 32 element mesh

2/a=0 2/a = 0.5
p=1 1.02 113
p=2 0.82 0.99
p=3 0.77 0.93

Discussions
1. The average results along the crack front are within 18% of the 2D reference
value for both the meshes. Again the mesh refinement does not influence the overall

result.

2. Tracey used a 522 element (660 node, about 2000 DOF) mesh to solve this

V.78




problem. Tracey has noted from literature an expected elevation of results by 10% at
Z/a=0.5 and lower K equal to 0.72K,;, at the free surface. He obtained results within

1% of Ky, at Za=0.5, and at the free surface the results obtained are 0.79K,, and

0.67K,, from di: and stress dara resp
3: The 4 and 32 element meshes (Fig. 5.26), with p,=3, involve 273 and 1317
DOF respectively. The results at the mid point of crack front are within 3% and 7% of

K,p and at the free surface are 0.83K,; and 0.77K,;, for the 4 and 32 element meshes

The it observed is the ease in construction of meshes

using P- and EH-elements.

5.5.3 Semi-circular surface crack in a plate

A plate with a semi-circular surface crack subjected to tension is analyzed for stress
intensity factors. The geometry of the problem is shown in Fig. 5.27. The Poisson’s
ratio is taken as 0.3. The dimensions of the model selected are such that b/a = h/a =
5. Two a/t ratios of 0.2 and 0.8 are selected and the meshes constructed using 3D P-and
EH-elements are shown in Fig. 5.28. Symmetry of the crack is taken into account and
half the specimen is modelled. Fig. 5.28 depicts the meshes (of 13 and 16 elements) for
one quarter of the specimen on one side of the crack plane, the other side is similarly
modelled (to give a total of 26 and 32 elements). The SIF are evaluated along the crack
front from the free surface (¢=0°) to the deepest interior point (¢=90°). The results
are compared with those given by Raju and Newman [24] and are presented in Fig. 5.29

as a ratio of results obtained via MUNSID (Kgy) to the reference results (Kg,).



Figure 5.27 Semi-circular crack in a plate

Discussions

1. The results obtained for a/r ratios of 0.8 and 0.2 are within 10% and 13% of the
reference values respectively. The results are obtained for a maximum order of three.
The NDOF involved for the two analyses are 1072 and 1161 compared to refined 6000
DOF models used in [24].

p 1= The significance of the results obtained in this study is highlighted by the decrease
in the NDOF involved by as much as 80%. As regards the error, [24] has noted for 3D
semi-elliptical crack analyses, the closest result obtained in the literature as 10-25%
lower and a disagreement of 50-100% in the results among some of the authors. The
results obtained using EH-elements, within 13% of the reference values ([24]), are thus

in good agreement.
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Figure 5.28 Meshes for semi-circular crack
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Figure 5.29 SIF results along the crack front




Chapter VI
CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions

A practical insight of p-version FEM is obtained in this study for plane elasticity
problems. An effective 2D Enriched Hierarchical element for LEFM problems is

developed and is extended to 3D crack The ions of the study

in the following sections are for the coarsest meshes with reasonable numerical accuracy
in comparison with reference values. Higher degree of numerical accuracy is and can
be achieved with refined meshes. This study has shown the use of coarse meshes (with

large aspect ratio elements) for stress concentration and stress singularity problems that

eliminates a large amount of user and time for mesh ion and
More importantly, there is a sizable reduction in the number of degrees of freedom

involved for a significantly accurate analysis. Due to the complex nature of three

ing cracks, further investigations of the

application of the EH-element vis-a-vis mesh design are required.



6.1.1 P-elements

1. Cantilever beam

A third order 4x1 mesh for the 2D problem gives an error of only 1% in displacement
and 0.2% in stress and is thus sufficient for the analysis. The results for the 3D problem
are comparable to the 2D problem and hence are not presented.

2. Cook’s membrane

The 2D results, using a third order 4x4 mesh, compared with the reference values have
an accuracy of greater than 99% for both displacements and stresses. The results for the
3D problem are again comparabie to the 2D problem and are not presented.

3. T-plate welded joint

The SCF and stress profiles through base plate thickness at the weld toe obtained for 45°
and AWS weld profiles with T ratios of 1.0 and 0.75 are in close proximity to those
obtained by Bell. The results obtained are for very coarse meshes (maximum 22
elements) including large aspect ratio elements and a maximum order of six. There is
a substantial reduction in the number of degrees of freedom involved compared with

those in A-version FE analyses.

6.1.2 EH-elements

L. bl cracl imen

The 2D results obtained from fifth order meshes of 4 to 18 elements with 4 EH-elements
centred at the crack tip are within +5% of the reference solution. The elements in the

4 element mesh have an aspect ratio of 1:10. The results obtained for the 3D specimen



have an accuracy of an average of 85% for coarse 4 element and a 24 element meskes.
The accuracy of the results has significant importance when compared to the large
number of degrees of freedom normally involved in standard 3D analyses.

2. Slant ile imen

A third order 18 element mesh with four 2D EH-elements centred at the crack tip gives
an error of less than 2.2% for K; and K;; which is quite accurate for the mixed mode SIF
problem considered.

3. 45° weld profile T-plate

The T-plate joint selected for analysis has t=78 mm with a T ratio of 1.0. The SIF
solution is obtained for varying crack depths at the weld toe with coarse 20 to 38 element
meshes and a maximum order of five. The fatigue life of 442 Kcycles estimated from
the SIF results is compared to that given by Bell and has an accuracy of 90%.

4. 3D compact tension specimen

The values of the SIF obtained from third order 4 element and 32 element meshes are
compared to the 2D reference value and have an average accuracy of 88% and 96%
respectively. The decrease in the number of degrees of freedom is about 25% compared

to the A- ion analysis in li The additi ge is the relative ease in the

construction of the meshes.

5. 3D ji-circular ina

For the two a/t crack ratios analyzed using EH-elements, the results are within 13% of
the reference values. This close agreement of the results is obtained utilizing only one-
fifth the number of degrees of freedom involved in the analyses for the reference values.

The relative ease in the construction of meshes using P- and EH-elements is very

VI : 8



significant as an enormous amount of time is usually spent by the human user to prepare

the meshes (in A-version) for such analyses.

6.2 Recommendations

1. Internal nodes

This work was undertaken considering no internal shape functions for the hierarchical
elements. The results obtained show that it had no effect on the solution of the problems
analyzed, however, the inclusion of internal nodes especially for shell and plate problems

ing bending is In that case the elemental stiffness matrix is to be

assembled into the global matrix after static condensation.

2. Smoothing function

For the EH-element used to determine stress intensity factors in problems involving
cracks, the non-conformal formulation is used that employs no zeroing function in the

EH-element for compatibility with adjacent P- This had no signi effect

on the results obtained. however various zeroing functions can be tested and a suitable
one can be included in the formulation to further enhance the accuracy.

3.  Emor estimation and adaptive schemes

Mesh design using P-elements does not play a critical role in the final results, however
optimal results can be achieved by employing a proper balance between k-refinement and

P The hi i ion also affords an ease in error estimation that

combined with p-refinement can provide efficient adaptive solution strategies.
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APPENDIX A

Shape functions for a 2nd order 3D P-element
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