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ABSTRACT

The p-version finite elemenr: method. offers a distinct advantage of savings in

computational time and effon in comparison with lIle conventional. h-version finite

element method. The h-version uses low order e1emenlS and convergence studies are

done by successive refinements of the mesh that imply analyzing the problem afresh. In

contrast, the: p-version uses a fixed discretization of the domain and higher order

elements are successively employed during convergence studies. The computational

advantage resultS from the usc of hierarchical shape fu.octions. coarse meshes and faster

raleS of convergence with decreased number of degrees of freedom. Consequently. the

use of hierarchical finite elements can be especially advantageous for stress concemration

and stress singularity problems that require very refined meshes in lhe h-version.

TIle accuracy of hierarchical finite elemems is demonstrated. with the use of coarse

meshes for beam and T-plate weld joint problems. A 20 Menriched hierarchical- [mite

element is developed for stress intensity factor evaluation lhat embodies the inverse

square root stress singularity by iocludiDg in its formulation the stress intensity factors

as additional degrees of freedom. Stress intensity factors for cracked specimens are

numerically evaluated quite accurately using very coarse meshes involving fewer degrees

of freedom in comparison with conventional analyses. This concept is then extended (0

3D crack: problems and favourable results are obtained.
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Chapter I

INTRODUCTION

1.1 Finite Element Method

Finite element melhod is the most popular and widely used teChnique for the

computational analysis of engineering problems. The procedures involved in the finite

element method are : The formulation of the problem in displacemeDl:. variational or

weighted residual form. the finite element discretization and. the effective solution of the

resulting system of equations. 1bese basic steps are the same for almost all kinds of

problems and the final result is a complete numerical process implemented on the digital

computer. 1be computational time and effort is involved in the following : The

formulation and the numerical integration of the fInite elemelll manices, the assemblage

of the element matrices into the complete fmi(e elemem system matrices and the

numerical solution of the system equilibrium equatiODS.

Finite elements are employed to represent, depending on the type of problem. beam.

lruSS members. regions of pla.ne stress, plane strain. and axisymmetric. three­

dimensional. plate or shell behaviour. A suitable division of the problem domain is



essential to any analysis. in addition. it becomes important for the analyst to refine [he

mesh of elements in some suitable manner to enhance and determine me accuracy of the

analysis dlrough convergence stUdies. For me analysis of complex problems. where

complexity is due to me geometty or stress raisers like streSS concentration regions and

cracks. a detailed mesh is required. This introduces a large number of unJcnown

variables which increases the computational effoIt required in the munerical process.

The procedure is repeated by remes.hing and reanajyLiu~ the problem for convergence

studies. Complex systemS also involve considerable human effort for design. verification

and refinements of the mesh. The overall time and effort required for a computer

analysis increases in proportion to tile number of unknown variables and complexity of

the required mesh. For any analysis it is desirable to reduce both the buman and the

computer time and effoIt as these resources are always limited.

Convergence studies. wbicb are essential to any analysis. can be undertaken in twO ways.

'The conventional method is the sub-division of the mesb into a finer mesh, wbich

decreases the size and increases the number of finite elemenB that represem the domain.

especially at areas of stress cOncentratiODS and streSS singularities. This is called h·

r¢n.emenJ. or simply ~h reji.noun.c. wbere h refers ro the size of the element and the

method is referred to as the h·version finite element method (FEM). The second

uncommon but powerful method is to increase the polynomial order of interpolation

functions for the unknown variables associated with the elements. selectively or over the

entire domain. This is Icnown as p-rejinement or simply tnl!sh enn·chment. where prefers

to the order of the element and the analysis is said to employ p-version FEM.



Convergence is said to be achieved as h ...... 0 (h-convergence) or as p ...... CXl (p­

convergence),

1.2 p-version FEM

In p-version FEM. p. the order of the element implies the order of the interpolation

function for the unknown variable over the elemental domain. Mesh enrichmenl can

further be performed in twO ways. viz., i) with elements that use regular (noD­

hierarchical) interpolation fiJ.octioQS of higber order, and itl with elements that use higher

order "hierarchical~ interpolation functions. Hierarcbical implies that the lower order

interpolation functions form. a subset of the interpolation functiODS of higher orders. The

use of higber order elements with IlOn~hierarchic interpolation functions does DOt reduce

the computational time and effort appreciably as additional data is required for the new

unkoowns or degrees of freedom and the entire system of higher order matrices needs

to be re-<:omputed and re-solved. With the use of hierarchical elements only the mauiees

that correspond to the ·additiona.l~ degrees of freedom Deed to be evaluated and

assembled, thus reducing the computational efron. In addition. less effolt is required in

the solution stage during convergence studies as lower order system maaices form. a

subset of higber order system mauices. The use of p-version FEM results in fewer

degrees of freedom for an analysis due to improved convergeoce rates that vary in a

geometric progression compared with algebraic progression for h-version. In this work.

p-version refers to the use of hierarchical finite elements unless otherwise mentioned.

[ :



Hierarchical elements thus employ hierarcbical basis or interpolation functions for the

unknowns. The: advantages of reduction in [be computational effort and time are due to

the foUowing: ConsttUCtion of coarse meshes sufficient to model the geometry of me

problem; lower order matrices need not be re-evaluated. re-assembled and uiangula.rized

as they remain unchanged due to the hierarchical naru.re and form pan of the higher order

maaices during convergeoce srodies. Also remesbiog can be avoided to a large extent

during convergence studies by selecting a suitable mesh for the initial analysis and

increasing the order of the elements keeping the size ftxed. Due to hieran:hical forms

the resulting matrices have improved conditioning that allows effective iterative solution

techniques to be adopted- The: p-venlon FEM also offers ease of error estimation which

incotpOrated suitably into the numerical analysis can lead to self adaptive selective mesh

enrichment.

Special problems of interest that fux1 immense use of the ftnite element method are those

that involve stress coocentrations due to geometry and stress singularities due to cracks.

etc. For such problems h-version FEM commonly employs a detailed mesh of quadratic

serendipity elements introducing a large number of degrees of freedom. The p-version

FEM can therefore be effectively employed to reduce the required effort significantly.

For stress coocentration problems. a detailed mesh of standard serendipity elements over

the domain and. a very detailed mesh in the stress concentration region is replaced by a

coarse mesh of hierarchical elements with a slight ref"mement at the stress concentration

region. The convergence of the solution is then achieved simply by, perhaps selective.

mesh enrichment. Stress singularity problems however are DOt so easy to deal with.

, 4



1.3 Computational Fracture Mechanics

Common problems of stress singularity behaviour are those comaining Dmcbes. cracks.

sharp changes in the geometry as in an L-shaped domain. etc. FractW'e mechanics deals

with such problems and its imponance in the analysis of scrucru.res with cracks bas

increased manifold over the recent years. In linear elastic stress analysis the stresses and

deflections in the crack tip region depend on a single parameter. known as the stress

intensity factor (Sm, K. The magnitude of K depends 00 the: struerural geometry and

the loading system. If K exceeds the fracnue toughness of the material crack: instability

occurs. Thus evaluation of K for any crack eonfigwatiOD is aU that is required to assess

whether failure will oc:cur or DOt. In most instances. closed form solutions are DOt

available and K must be de[ermined numerically. Special finite elements I'hat exhibit

inve~ square root stress singularity at me crack tip improve the accuracy and reduce

the need for a high degree of mesb refinement at the crack tip. A lot of effort bas gOne

in10 the development of special crack: tip elemelUS to deal with tbe singularities in h­

ve~iOD FEM. These elements still~ a large amount of computational effort and.

the evaluation of stress inteosity (actors for complex geometries. especially in three

dimensions. is quite cumbersome. 'The p-version FEM can reduce the effort and

therefore can be applied effectively to fracture mechanics problems wilh development of

an efficient crack tip element in some suitable fashion.



1.4 Objectives of the Thesis

A lot of reseatth advocating the advanr.ages of p-versioo FEM has been published.

however 00 commercial p-venion FE software is yet available. For fracOJ.re mechanics

problems the commonly used elements such as the <listened quadratic sererxlipity

elements require a very detailed mesh especially in the crack tip region and thus are not

compulatiooallyefficient. Moreover. in the knowledge of the aulhor. no special crack

tip element for efficient use in p-version FEM is available in literao.ue.

The objective of this work. is. thus. to obtain a practical insight intO the numerical

accuracy of p-version finite element method for plane elasticity problems aDd to develop

an efficient hierarchical crack tip element for lineae elastic fracture mechanics problems.

Due to the aaractive features of a 20 hierarchical crack tip element. it is also decided

to extend it to a 3D hierarchical crack tip element. An efficient 3D crack tip element is

required as rea.I life fraetuR: mechanics problems are essentially three dimensioaal in

nature and involve a large number of degrees of freedom. The reduction of degrees of

freedom mainly through the use of coarse meshes is a boon for any 3D analysis where

usually even the visual inspection of the mesb is a uemendous wk..

[n order to achieve the objectives. a ftnite element analysis program is developed using

hierarchical and hierarchical crack tip elements in conjunction with a suitable solution

strategy. The elemeots are first tested for commonly analyzed problems having analytical



results or refereoce values and men used to solve practical problems. As the p-version

is known to be compuwionally advantageous in comparison with the h-version FEM. in

this worle. me emphasis is on the performance of the elemems in lerms of aumerica1

1.5 Layout of the Thesis

Chapter OM gives an introduction [Q the h- and p-versioDS of the finite element method.

Chapter two provides a delailed literanue review on the relevant topics and defmes the

scope of this study. The formulation of the p-version fmite element method is given in

the chapter three along wim the formulation of the special crack tip element used for

fracture mechanics problems for both two-dimensional plane elasticity and three­

dimensional problems. The implemeOIatioo of the fonnulation is discussed in chapter

four vis-a-vis the development of a fmite e1eme01 program MUNSID. It also includes

a brief discussion of the computational effort for the p-version FE program. Choptufive

presems the numerical results obtained from the analysis of test problems for both 2D

and 3D analyses. The conclusions of this study and recommendations are presented in

chapter sU:.



Chapter II

BACKGROUND

AND SCOPE OF WORK

2.1 Literature Review

The finite element melbod in general includes three basic concepts. The coocepr. of

matrix and linear algebra (0 provide foundatiOD for a thorough understanding of the finite

element procedures. The formuJation of the finite element method and the numerical

procedures to evaluate the element mattices and the mauices of the complete elemem

assemblage. Lastly. methods of efficicm solution of the finite element equilibrium

equations. These fundamentals ace amply illustrated in me (eXt books by many authors.

namely, Zienkiewicz [11, Irons (2], Bathe [3]. etC. The following sections present the

relevant Uteramre review of the p-version FEM and the conventional techniques for

evaluation of fracture mechanics parameters.

2.1.1 p-version FEM

ODe of the fIrSt works on hierarc.b:ica.l p-version FFM is by Peano (4]. New families of



co and C t interpolation functions are presented complete up to an arbitrary polynomial

degree p. 1bese interpolation functions are formulated for triangular elements in area

coordinates. 'The fundamental cbaracteristics of this family of finite elements is : th~

shope functions corresponding to an inIerpoJarion oforrkr p COnstilUl~ a subset ofth~ s~t

of shape functions corruponding to an inurpoJarion of ord~r p+ 1 and th~refor~ rh~

snffnus matrix of th~ ~Jem~nt of ord~r p is a sub·matrix of the stiffness matrix of th~

~/~m~ntoford~r p+I. The nodal variables corresponding to the constant strain triangle

(element of order I) are the functional values at the venices. For the linear strain

triangle (element of order 2) the additional oodal variables are the second derivatives of

the approximating fuoction evaluated. along me sides at the mid-side points. The shape

functions corresponding to the mid-side nodes of the linear strain aiangle vanish at the

vertices of the triangle. These hierarchical finite elements are noted as indispensable

tools for realizing convergence with respect to increasing polynomial orders due to the

hierarchical nature of the resulting stiffness matrix. where the triangularization effort is

saved by utilizing the mady decomposed lower order maaices. With respect to the

problem of using different order elements in the same mesh, the higher order derivatives

associated with edges in common with a lower order element are set to zero. Peaoo

proposed the selection of tbe shape functions as closely onbogonal to one another as

possible.

Rossow and Katz [5] presented. two dimensional C' hierarchic triangular fInite elements

of arbitral)' polynomial order. It is shown that elemental arrays for high polynomial

order may be efficiently computed by using hierarcbal elements together with

n,9



precomputed arrays. For polynomial oroer p =1. the nodal variables are the value of the

functional variable at each vertex. For p?:.2. the nodal variables are the ones for p-l in

addition to the pth order tangential derivatives at the mid·sides of the element. For a

complete polynomial order p. with (p+l)(p+2)12 coefficients. (p-l)(p-2)n additiooal

nodal variables are defined for p2:3. 1bese additiooal oodaI variables are taken as

mixed partial derivatives of the function evaluated at the origin. When transformed to

the global coordinates. these variables do DOt equate across inrer-element boundaries.

hence have no effect external to the element and are called inrernal nodal variables. [n

a mixed mesh. higher order elements are demoted to lower order elements along the

common edges by equating the common oodaI variables and eliminating the higher order

variables. Relative efficieocy of h- and p<onvergence with respect to the computational

time is compared and p-convergeoce is observed both globally and at particular points.

The technique of employing hierarchical elements. precomputed arrays. and p.

convergence appeared competitive in terms of computational efficiency with the

conventioaal finite element approach. Also. the use of large elements simplified the

presentation of input data and interpretation of results.

Babuska, Szabo and Katz [6] discuss concepts of p-<:oavergeoce of the finite element

method. the singularity problem, numerical examples and computer implememation of

the p-version. The shape functions chosen for a one dimensional bar problem are the

integrals of the Legendre's polynomials which form. an orthogonal family with respect

to the energy inner pnxluct. For the computer implementation precomputed arrays based

on bieran:hic families are utilized. It is noted that as the number of degrees of freedom

II 10



increase progressively. major computational effort occurs in the solution phase. For the

asympwtic rate of convergence with respect w the NDOF: for STnf)()(h solutiofU, Jr

convergence is not limited by an upper bound polynom.ia.l degree as in h~version; and in

case of non-smooth solutions. when a singularity is caused by comers. the rate of Jr

convergence is almost twice that of h<onvergeo::e. As p-version can be used in

conjunction with optimally designed meshes. the mesh design seemed much less critical

for the p-version than for the h-version. Observations include: Reduction in volume of

input data; less critical nature of roundoff problems in p-version; no major difference in

the solution times for p-version and h-version for the same NDOF; and adaptivity in p­

version seems simpler by proposing mesh grading on a prior basis. either manually or

with standard mesh generamrs. and then making adaptive changes by adjusting p.

Zienkiewicz. Gago and Kelly [7] discuss the merits of hierarchical forms in utilizing

previous solutions and computation as well as pcrmining a simple iteration when

attempting a refinement. The bienrc:hical degrees of freedom appear as perw.rbations

on the original solution rather I.ha..n its substiwte and the resulting matrices have a more

dominantly diagonal form than that obtainable from identical number of non-hierarchic

degrees of freedom. This ensures an improved conditioning of the matrix and a faster

rate of ileration convergence than would be possible with non-hieran:b.ic forms. The

penurbation narure of hierarchic forms also provides an immediate estimate of the error

in the solution. The paper discusses the error estimates and addresses the issue of

adaptive refinement. It is recommended to limit the order p to a maximum of 4 and start

from a reasonable mesh not calling for p>4, since the use of very high polynomial

n 11



orders could lead to local oscillation.

Szabo [8] presents general guidelines for prior design of mesbes. It is DOted that with

the use of properly designed mesbes. the performance of p-cnrichmem is very close to

the best performance attainable by the finite element method. lbe estimation and

conttol of the error in rmite element analysis are based on h- or p-reflnements and p­

refinement makes it convenient and inexpensive to obtain information about the quality

of the finite element solutions. The proposed mesh design is the coarsest possible mesh

controUed entirely by the geomeuy of the domain wben the exact solution is smooth.

The only restriction on the mesh is the smooth mapping of the elements. In case of non­

smooth exact solutions. the points of singularity and areas of .stress concentration need

to be isolated by one or more layers of small elemeDls and the mesb is graded sucb that

the element sizes are in geomeaic progression with the smallest element(s) located where

the stress gradients are the largest. The geomeaic progression with a common factor of

about 0.15 is found suitable. In the case of structures with many singularities it is found

not oecessary to refine the mesh in the neighbourhood of e"'eI}' singular point with care

being taken that overall and local equilibrium conditions are satisfied. Babuska [9] also

gives reference to optimal design of meshes.

Wieberg and Moller [10] describe hierarchical FE-formulation and adaptive procedures

for static and dynamic problems. The sequence of nested equation systems that resultS

from a hierarchical finite element formulation is examined. Due to the special structure

of the matrices formulated using hierarchic basis functions and ease of developing error
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indicators for funber refinements, iterative solution procedures are used when an

increasing number of variables are introduced into the approximations. New possibilities

are presented for iterative solution of nested equation systems for elastic static problems

resulting from hierarchic basis functions. Out of the four algorithms outlined, three are

based on the pre-conditiooed conjugate gradiem method and the founh is a two-level

multigrid method.

Babuska, Griebel and Pitkaranta [11] address the question of optimal selection of the

shape functions for p-type finite elements and discusses the effectiveness of the conjugate

gradient and multilevel iteration method for solving che corresponding linear system. A

unit squ.a.re master element is considered and the three groups of shap.. functions

associated wim me element are, namely, the nodal shape functions, the side shape

functions and the internal shape functions. A nodal shape function is associated with a

venex of the element and is zero on the opposite sides of the venex it is associated with.

A side shape function is associated with a side and is zero on all three other sides of the

element. An internal shape function is zero on all four sides and bas the clwacter of a

'bubble' function. Various sets of these shape functions are considered along wiLh the

oon·hierarchic shape functions and bigonomeaic shape functions. These sets are then

compared for optimal selection of shape functions through computational analysis. Only

two dimensional cases are addressed in the paper.

Morris, Tsuji and CamevaH [121 proposed and implemented a solution strategy for taking

advantage of the hierarchical structure of linear equation sets. The key novelty of the
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algorithm is the ability to choose dynamically between iterative and direct solution

techniques based on a set of heuristics. The iterative solver is based on the conjugate

gradient method and me combination of the direct and iterative solvers allow for an

efficient solution path. having the robustness of a direct: solution algorithm. and the

efficiency of an iterative solver in utilization of both CPU and storage.

A valuable discussion on the state of the art of the p-version of the finite element method

is given in Babuska [9]. Various theorems are presented to define the p- and hp-version

of the FEM. A numerical example illustrates the performance ofp-version with different

number of layers at the stress singularity point (graded mesh) and compares it co a

uniform mesh. For implementation the three kinds of shape functions discussed are

aodal. side and internal shape functions. For the computation of the local stiffness

mattix the rule for number of Gauss points is 2[inleger(pn») + 2. The p- and hp­

versions for two-dimensional problems were implemented in the commercial software

PROBE by Noetic Tech.• St. Louis with the first release in 1985 and the secoDd in 1986

and it was tested and used extensively in the industry. The fe.awres considered imporwu.

by the engineering users were increased level of confidence in the computation. lower

human time requirement due to simplicity and flexibility of input, rapid convergence and

flexibility including th~ use of large aspect ratios. flexibility of mesh design. easy

learning and robust perfonnance.
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2.1.2 Computational fracture mechanics

Chan. Tuba and Wilson (13] used me finite element method for the evaluation of stress

intensity factors. The displacement FEM is used and first order displacement functions

for triaDgular elemeots are assumed, in which. the displacemems vary lioearly over the

elemem resulting in constam strains and stresses in the elemenL A very detailed mesh

is considen:d. wbere me smallest elements are difficull to see with the oaked eye. For

the computation of stress intensity factors. thIec: approaches outlined are the displacement

method. stresS method and lhe line integral (eaergy) method. The stress intensity factOrs

in the displacement method are determined from the coaelation of lhe finite element

nodal point displacements with the well known crack tip displacement equations. The

stress method is similar to the displacement method and the nodal point streSses are

correlated with the known crack tip stress equatioDS. In the line integral method, the line

integral J given by Rice [14] is numerically integrated along an arbitrary contour

surrounding the crack tip and the stress inIecsity factor is evaluaced as a function of J.

modulw of elasticity and the Poisson's raCo. The elemenrs however do Il()( represellt me

singular Dear tip deformation and the analyses included a very large number of degrees

of freedom. They proposed potential improvemeots by including higher order

displacement functions.

Tracey (15] introduced a new type of two-dimensional finite element which incorporates

the inverse square root singularity in stresses near a crack tip in an elastic medium.

Triangular ·singular· elements that are proposed embody the singular stresS fields

coaesponding to the crack tip. The crack: tip serves as the centre of a whole ring of
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triangular elements and joined in the radial direction with quadriiareraJ isoparametric

elements of order ODe. 'These triangular elemems are four nIXIe quadrilaterals with two

oodes coincident at the crack tip but distiDguishable by their angular rotation. Tracey

(16] also descnbed a special three-dimensional element aoaJogous 10 the two-dimensional

element for evaluation of suess intensity factors. In this formulation a six node wedge

shaped singularity element with special displacement interpolation functions is focussed

around the crack front and is surrounded by eight noded isoparametric brick elements.

An eight point Gaussian quadrature is used to evaluate the stiffness matrix.

Hellen [17] proposed a virtual crack extension method where the eoergy release rates are

computed using vinua.l crack extensions. lbe stress intensity factors are evaluated using

their known relationship with eoergy release rate for a virtual amount of crack growth.

An algorithm is devised to calculate the energy difference for two crack positions. close

together. using only one mesh. and altering the tip stiffnesses to assess the energy

difference. To increase the accuracy of results. quadratic special crack tip elements

developed by Blackburn [20] are used in conjunction with the proposed method. The

special elements are triangular in twO dimensions with,-Yo displacement variation radiating

from the crack tip. wilere r is the radial distance from the crack tip.

Heosbell and Shaw [18] inttoduced the required singularity at the comer of a

quadrilateral isoparametric ftnite element by moving the mid-side nodes to the quarter

point towards the crack tip. For determination of stress intensity factors in cracked

bodies it is suggested to use the standard quadratic isoparametric elements with the
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distorted isoparamet:ric elements at the crack tip. However the resu1ts obtained by

displacement melhods depended on the point chosen for displacemenr: evaluation and

reliable results were obtained by using displacements at points along the free surface of

!he end.

Barsoum [19] individually developed siogular elements based on the same technique used

by HensheU and Shaw [l81 for the evaluation of saess intensity factors. Eight ooded

quadrilateral. six-ooded aiangular elements and three dimensional twenry noded cubic

and prism elements are distorted by moving mid-side nodes closest to the crack at the

quaner points. This results in a ,.'h stress singularity at the crack tip corresponding [0

the I:beoretical stress singularity of linear fracture mechanics. The elemems are sbown

to have rigid body motion and CODStanl strain modes and satisfy the palCh leSt. 10 both

cases [18.19) a sizeable number of elements are required. 10 model the crack tip as well

as the rest of the problem domain.

Blackburn [201 p~nted a Iriangular element with vertex and mid-edge nodes with

special displacemeOl functiOQS [() represent the singularity behaviour in two-dimensional

problems. Blackburn and HeUen [21] extended the special tw<Kiimensional element 10

three-dimensional problems as a 15 noded wedge shaped special crack tip elemem. The

stress intensity factors are calculated by displacement methCKl., line integral method and

also by the method of vinual crack ex.tensions.

Benzley [22] developed a special crack tip element from a linear isoparametric element,
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wilh one COrDer correspooding to the crack: tip. and enriching the conventional

displacement assumption with the displacement field correspooding to lhe singulac portion

of the elasticity solution. In addition to DOdaI displacements. ~ and Kg become basic

unknowns in sucb elements and an: c:al0llatM direct1y in the finite element analysis. A

linear zeroing function is used for the emicbcd elementS to make them compatible with

the adjacenr: oon-cnriched elemenIS.

Gifford and Hilton [23] enriched a conventional quadratic isoparamet:ric element as

suggested by Beazley. However the element formulation is of the non-conforming type

and no zeroing function is considered. 8x8 numerical quadrature is required for the

accurate numeric:al integration of the enriched element.

bju and Newman [241 presented stress intemity factors for sballow and deep semi­

elliptical surface cracks in plateS subjectm to uniform temion. 1be stress intemity

factors are evaluated using nodal fora: method and the finile element models coDSUUcted

using singular and isoparameaic elements involve a vo=ry large number of degrees of

freedom. The results presented in lhis paper are widely used for refen:oce as well as for

comparison studies.

Heppler and Hansen [2S] utilized Gifford and Hillon's twelve node enriched serendipity

element for the calculation of linear elastic planar stress inlemity faclors for rectilinear

anisotropic materials subjected lO biaxial loading. In addition. conforming formulatiom

using three different zeroing functions, linear. super-ellipse and polynomial. are studied
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and compared with non-conforming formulatioos. For the non-confanning case high

accuracy is achieved wilh a few elements and they lX>ted a substantial stiffening of the

finite element model for the conforming cases. Among the three zeroing functiol1S. the

polynomial function which reinforces the expected singular behaviour Dear the cnck tip

performed the best.

2.2 Scope of the Study

Asiatic p-version fInite element analysis program that employs quadrilateral hierarchical

finite elements is developed for plane elasticity problems. The interpolation functioos

for P..elements are enriched to derive special crack tip elements (enriched hierarchical

elements) for use in linear elastic fracture mechanics problems. All analyses srudy p­

convergence thereby eliminating the need for redesign of mesh for convergence srudies.

2.2.1 Formulation of 2D-bierarcbical element

The shape functions for quadrilateral hienucb..ica.l elements are derived from LegeDdre's

polynomials. The interpolation functions are incomplete polynomials in a fashion similar

to that of standard serendipity elements. For an elemeOl of order p there are 4p nodes

each having two degrees of freedom. The nodal variables corresponding to lhe comer

nodes are the physical degrees of freedom, the displacements u and v. in the global

cartesian coordinates. x and y respectively. The higher order nodal variables for the pm

order element are the pth derivatives of the displacements along the side at the mid-side
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node. For evaluation of the stiffness matrices. P+1 gauss quadratutt is adopted for an

element of order p.

2.2.2 Formulation of 2D..,nriched hierarchical element

The enrichment of the hic:rarcbica1 element is based on Benz1ey's [22] principle due to

simplicity of the formulation and as the stress intensity factors are presented directly in

the output. For the compatibility of adjacent P- and EH--e(ements a zeroing function is

required for the EH-element. bowever it bas been sbown in (25) that the zeroing function

stiffens the system. 1berefore DO zeroing function for the EH--element is considered, the

formulation is a non-conforming one and is similar (0 that used by Gifford and Hilton

[23] for a serendipity element. 1be crack: element stiffness matrices are numerically

integrated by using 8 point gauss quadrature.

2.2.3 Formulation of 3D P- and EH..,lements

TIle shape functions used for the P--element and the principle for enricbment to the crack

tip element for a two-dimensional case are simply extended to three-dimensions.

2.2.4 Solution strategy

The elemental stiffness malrices are assembled into the global stiffness matrix in a

skyline fonnat. The global stiffness matrix for high order elements is panitione<i, the

block diagonal matrices are triaogularized by gaussian elimination and a combination of

direct and iterative techniques is used for the solution.
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2.2.5 Numerical verification and results

The test problems selected for verification of 2D P..elemcot are the: commonly used shan

cantilever beam problem and the Cook's membrane problem. The tests for 2D EH­

elements are a double edge cracked tensile specimen and a slant cracked tensile specimen

with mixed mode SIF solution.

The practical problem selected is aT-plate weld joint analyzed by Bell [26] for stress

cooceotration and sttess intensity factors. The SCF's are evaluated for 450 and AWS

weld profiles and the fatigue Life of a 450 weld joint is also estimated. The results are

then compared with those obtained by Bell.

The test problems for the 3D EH-elemeDlS are double edge cracked tensile and compact

tension specimens. The double edge crack tensile specimen is an extension of tbc: 20

problem. am the selected compact tension specimen is lbat soLved by Tracey [16]. A

semi-drcular surface crack: in a plate subjected to teosion is then analyzed and results are

compared with those given by Raju and Newman (24}.
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Chapter ill

FINITE ELEMENT FORMULATION

3.1 Generalized FE Formulation

The displacement finite element approach used in this study is derived from the principles

of virtual work. 'This formulation can also be derived using the variational principle or

GaJerkin's weighted residual approach. For (wo dimensional plane elasticity problems

the unknowns are the displacements u and v in the global X and Y coordinate system.

The displacements are first interpolated

over lhe domain of an element

represented by a local coordinate system.

The standard procedures given in [1.2.31

are then used to determine the shape

functions. The quadrilateral mastc:r

element in local ~ and 'I coordinate

system is represented in Fig. 3.1. The

values of local coordinates for the element

lie between ±1. The interpolation of

Figure 3.1 Quadrilateral master element



displacements u aDd v in teans of nodal variables. by appropriate shape functions N. in

any region of the local element is given by :

.0 = (N(~.~»)(uOI

v· = (N(~.~»)(v·1

.• (3.1)

where {ue} aDd {V"} are £be nodal values for the local elemenL The strains in me

element are given by :

(cOl' tJ =
• [Blldol •• (3.2)

where (8) is a matrix conWning derivatives of shape functions in the global coordinates

and {de} is the nodal displacement vecmr given by :

Ut deDOtes u at node I, aDd P is me order of the imerpolation function.

.. (3.3)

The mapping of the local element to the global element required for the evaluation of

global sttesses and strains is done by the Jacobian I, that depends on the geomeuy of the

global element. The geometry of the element is approximated in terms of the nodal

coordinates (X;,yJ by suitable geometric shape functions, G :
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..
x = ~GI~

..
y = EG, y,

i-I

• • (3.4)

1be formulation is sub-. iso- or super-parametric if the order of G (given as p in

Eqn.(3.4» is less than. equal to or greater than the order of N respectively. The

Jacobian J is given by :

Using Eqn.(3.4) we have:

.• (3.5)

· . (3.6)

1be £B) maai:t is partitioned into sub-matrices corresponding to each node. and is given

by:

lB] = (•••18,1. . -)

aN,
lB,] = 0 ay

aNI aNI
aya;:
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where the sub-matrix [BJ correspoDds to the ith node. Since the displacement shape

functions are fonnulated in local coordinates. to determine the elements of matrix [BJ.

the foUowing relatioosbip is used :

The elemeotal stresses ace obtained by the constiwtive law:

\o'} • tJ = /Dllo'} • /D1[Blld'}

where [01. the constitutive matrix given for plane strain (pe) is :

•. (3.8)

•. (3.9)

1;'] •• (3.10)

aDd for plane stress (po) is :

[

1 •

[D]:~vl

per I-v2 0 0
.• (3.11)

The stiffness matrix and the load vector (considering only surface forces) for an elemen[

are given by :
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[K '] • f [BIT (OJ [BJ dO.
[F']' [(N)Tf,dl'

• • (3.12)

where Q represents the domain of die element and a surface load C. acts on the boundary

r. The stiffness matrix is formulated in the local coordinate system. beDce it is written

, ,
[K '] • [, [, [BJT(OJ[BJ d( d~ 111 · • (3.13)

where IJ I is the determinant of the Jacobian. Gauss quadrature rule is applied to

numerically integrate the element stiffness matrix given in Eqn.(3.13). Gauss imegration

using NGxNG points is given as :

NO NO

[K'] • LL [B((,,";lJT (OJ [B((,,";lJ 11«(,,";l1 w, w; .. (3.14)
I-'J-'

Wi and wj are the weights correspooding to ith and fth gauss points respectively.

Once the stiffness matrices of all the elements representing the domain are evaluated as

descnDed above. the global stiffness and load maaices are obtained by the summation

or assembly of the elements of local matrices to the correspoDding elements of global

matrices :

[K"] = L [K'l

[F"] • L [F']
· . (3.15)

1be system of equations in the displacement formulation of the FFM is given as :
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[K "I(dl • {Fol

where {d} is the global vector of nodal displacements.

•. (3.16)

The displacement shape functions. N. in p-version FEM are hierarchical in aacure and

are d.iscu.ssed in the DeXt. section. The geometric shape functions, QP. are chosen as the

linear and quadratic sereodipity shape functions correspollding to a quadrilateral master

element for order (P) oae and two respectively :

i = 1,2,3,4

.• (3.17)

• ~(l-<'J<h~~),

= ~(l'«;XI-~'l,

i = 5,7

i = 6,8

The geometric shape functions given in Eqn.(3.17) att also used as displacement shape

functions for h-type elements in the h-version FEM and are an entirely different set for

different orders.

3.2 p-version FE Formulation

This section presents lhe hierarchical shape functions used in this work. For the

ilIusttation purposes the derivation for a second order hierarchical element is discussed
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in particular. In addition only the derivatioDS for displacement u are provided aod are

obtained for v in an analogous manner.

1be displacement interpolation for u over the local quadri1aleraI element is given by :

.. (3.18)

• (P)(ol

wbere {a} is the coefficient vector. The nodes corresponding to a hierarchical elemen[

are the four corner ocx1es for the first order and for eacb incremen[ in order a se[ of four

hierarchical nodes is placed. one 8[ each of me (our mid-sides. Thus. for a second order

P-elemem there are four comer nodes and four hierarchical mid-side nodes. Evaluating

u in Eqn.(3.18) a[ me four corner nodes we have:

•• (3.19)

~ degree of freedom at: me mid-side node is the hier.ln:.hical degree of fn:edom defmed

as lbc: double derivative of the displacemen[ along me side on which the oode lies. aDd

is evaIuared a[ mal node. Thw tllis pseudo -disptacemem- a[ me mid-side oode 5 is

given by:

where 1, is the length of the side on which oode 5 lies. Similarly the hierarchical
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variables at the oodes 6, 7 and 8 are evaluated. The coefficient macrix {a} is obtained

in terms of the nodal variables and is used in Eqn.(3.18) to ob<a.in the displacements in

terms of oodal variables via shape functiom. 1be operation is given as :

· . (3.21)

u" = [PJ[q-l[u"1 • (N)[u"[

The shape functions N obtained in this fashion are hierarc.b.ical in nature. The

hierarchical shape functions however are not unique. The first order P-shape functions

correspood to the corner nodes and are equal to the first order sereooipity shape

functions. QI, given in Eqn.(3.17). To reduce coupling between successive solutions the

higher order shape functions are derived from Legendre's polynomials that are

orthogonal in the -I to + 1 range. A one dimemional polynomial term. LP, for the pth

order shape function for a line element corresponding to a side of Lhe master element

having two comer nodes and one mid-side node is obtained as :

· . (3.22)

where P, is the Legendre's polynomial of order p. The polynomial expression for the

second order. U. is :

L' = «'-1) · . (3.23)

and polynomial expression for the shape function for the mid-side oode 5 (along '7--1)

is obtained as :
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· . (3.24)

For me secoDd order hierarchical variable the double derivative of this shape function.

Eqn.<J.24) must equal unity at Dade 5. Thus

· . (3.25)

and the compleu: set of 2nd order hierarchical shape functions for a quadratic P-element

corresponding to me four mid-side nodes is :

Hi = ~(l"U('l2-1{~r

NJ • i«'-l)(l+"{~r

N; .. ~(1-~)(111_l)(~r

· . (3.26)

For a third order element out of a total of (Welve shape functions. the four corner shape

functiODS remain the same Le. equal to G1, and four mid-side shape functions are the

same as given in Eqo.(3.26). The remaining four additional shape functions correspond

to the new hierarchical degrees of freedom (the third derivative of the displacement along

the side) and are similarly derived. [a this study only nodal and side shape functions are

comidc:red thus an element of order p has 4p nodes (4 corner and 4p4 mid-side) and 4p
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correspoDding shape fwJctions.

3.3 20 EH-Element

For a body containing a crack the local coordinate syStem at the crack tip is illUStrated

in Fig. 3.2. x' aDd y' are the local

axes cemred at lhe crack tip with x'

axis oriented along the crack plane. r

and e are the polar coordinates of a

point in the crack tip region w.r.L the

loc:al x'. y' axes. 4> is the orientation

of the crack tip w.r.t. the global X

axis. mea.sured +ve counter·

clockwise. The displacements in the

vicinity of the cnck tip given by rtgUre 3.2 Coordinate system at crack tip

Gifford and Hilton [23J are :

.. (3.27)

where fl. g10 etc. are functions that depend on r, e and q, in the crack tip coordinate

system. G the shear modulus and II the Poisson's ratio. ~ and Kn are the mode I

(tension) and mode II (shear) stress intensity factors. The functions flo etc. ale given as
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who«

f • -.!- rp..!.-)l~ [(2y-l) """~ - cos~J
1 4G~l2;"J 2 2

- sinq [(2y.1) siu-i - siu-TII

g, • -.!- rp..!.-)l~ [(2y.3) siu~ •sin~J
4G~lbJ 2 2

• sin~ [(2y-3) COS-i • """-Til

f, • -.!- rp..!.-) (sinq [(2y-l) """~ - cos~J
4G~lhJ 2 2

• ~ [(2y.1) siu-i - siu-TII

g, • -.!- rp..!.-) (sin~ [(2y .3) sin~ • sin~J
4G~lhJ 2 2

- ~ [(2y-3) """-i •"""-Til

• • (3.28)

· . (3.29)

{

3-4.

y" 3-v
I ••

plane strain

plane stt=
• . (3.30)

The hierarchical element displacemem assumption. Eqn.(3.18), is enriched by me crack

tip displacement as :

u~ '" u· .. u"
• • (3.31)

Proceeding in a Standard sequence, Eqn.(3.18) to Eqn.(3.21). for evaluating the
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displacements in an element in rerms of the nodal variables. the displacement

imerpolation of the "eruicbed~ second order P-clement is given by :

u,;. • (N)(u"- K, If, - tN, f,,- tN, f{j
i-I i_5

• (N)(u" - K, P, - Kg Q,

. .
v';' • (N)(v")+ K, If,- EN, f,;- EN, r;{J

I-I i-5

• (N)(v'l • K, P, • Kg Q,

• • (3.32)

· • (3.33)

f([ is similar to the definition of hierarchic nodal variables and is given by :

• • (3.34)

and is evaluated at the ith node. The displacement interpolation u for an enricbed

hieran:bica1 element of arbitrary order p is given by :

. ..
u,;. (N)(u"l- K, [f,- EN, fu- EENt f{,'J

I-I p-1j-1. ..
• K. [g,- EN, g,,- EEN,' g{,'J

I-I p_1j_1

where i and j correspond to the comer and mid-side nodes respectively.
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TIle strains in a second order P-elemem ace given by :

" • ~("I + .. aI', +.. ilQ,• ax -';ax ""1I ax

" = ~(v"1 + K aI', +.. ilQ,
'ay lay .... ay

y' • (~lv'l+ ~lu"l
'" ax ay

(aP, aP,) (ilQ, ilQ,)
+ It, ay+ a;: +K. ay +a;:

whicb in matrix form arc :

(,'I = lB",llcS,;.1

1cS,;.IT
• (u, v, ., v, ...u, v, K, K,,)

· . (3.36)

· . (3.37)

In this formulation Kl and Ku ace included as additional degrees of freedom and the

corner node corresponding to local coordinates of e=-1 and 1'1 =-1 is located at the crack

tip. For dle evaluation of functions fl' etc., the value of tb for the nodes lying on one

surface of the crack face is + 180° while for me node on the other surface the value is

_180°. The (BJ matrix is partitioned and given as :

[B!=(B, .. B, .. B,B,.)

[B,.! =

· • (3.38)
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where [B.J is given in Eqn.(3.7) and [BJ corresponds to the degrees of freedom 0Ci. Ka>

of the ·pseudo· node at the crack tip. The evaluation of the local and global stiffness

marrix is the same as descnOed in section 3.2.

3.4 3D P- & EH-Elements

The <levelopmenr: of the 3D hieruchi.c

e1emenl is a simple extension of the

2D P~lemeD1. lbe master elemem is

defined in the local ~. 71. r coordinates

as shown in Fig. 3.3. The

displacement shape functions for a

2nd order 3D hierarchic element are

given in appendix A. The geometric

shape functions. G. for order 1 and. 2

are the serendipity shape functions

Figure 3.3 3D master elemem

associated with an 8-noded and a 2Q..nCKied serendipity brick element respectively. The

Jacobian for the 3D P~lement is given by :

[1] •

ax '!:L Ur.a. a, a.
~'!:L~
a., a., a.,
ax iJy Ur.
a.acac
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The derivatives of shape functions in global coordinates for the evaluation of (B) matrix

are given by :

•• (3.40)

The (B] matrix for a second order 3D P-elemeat is partitioned into 20 sub-matrices

(corresponding to 8 comer aodes and 12 mid-side hierarchic oodes) and along with a

panitionec1 matrix is given in Eqn.(3.41). Eqn.(3.42) depicts the constitutive relationship

which relates the stresses and strains. The steps for fonnulation and evaluation of the

stiffness matrix are the same as for a 2D element.

[B] : (. 18.1 .)

aN,
0

: 1
ax

aN,
ay-

aN,
•• (3.41)ax

[BJ :
aN, aN,
ay ax

aN, aN,

~ ay-
aN,

0
aN,

ax a;;-
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la'( : [011.'(

1-. a a

I'
1-. . a a

~:
a, 1-. a a .• (3.42)

a, : __E__ 1-2v E,

2

"
(1-tvXl-2v)

"1-2v,. 2 ,.
1-2v

symm
2

3.4.1 Enriched 3D P-..Lement

As shown by Sib and Liebowitz [27], the displacements u.:. v: and w; near the edge

of the crack in directioos x', yl and Zl (Fig. 3.4) parallel to the normal. me binormal and

the wrgent to the crack froot are exp~ as :

u.: '" KJ f1 Ka &1

v: '" ~ C:z Kg &:1

w;: K", f,

where fl , etc. are given as :

m 37

•• (3.43)



z

~x

)L,..-J'---,.

f'ieure 3.4 Coordinate system at lhe crack front (3D)

l+VJ¥ 6 36f • - - [(5-8v_-- cos-I
I 4E 1: 2 2

g '"~ ~ [(9-8v)sin!. sin~]
I 4E ~-; 2 2

t, • ~;, ~ ~ [(7-8V)siD~- smT1
g, • -~ ~ [(3-8v_~. cos~l

4E ~ • 2 2

(, .. 2 (l+v) ~ sin~
E ~ -; 2

.. (3.44)

The displacements u:, etc. are in the local CfclCk coordinate system (x', y~ Z/). For

enrichment of the displacement assumption of the P-element. lhese are transformed intO

displacements in the global coordinate system, Ue. etc. The transformation matrix. T. is
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• • (3.45)

a 3x3 matrix of direction cosines formed between the local and global coordinate axes.

[11 • [~;: ~;: ~;:j
T z'.. Tz'y Tz'l;

where Til = T•.• = the cosiDe of the angIe between the local x I and global X axes.

1be displacemeDlS \1,;. etc. in the global coordinateS ace determined from the relationship

and are given as :

Uc '" K1 (flit+ T2tiz)-+ Kn (Tugl+ T21Ct)+ Km [T'tt;}

• K t Pt + Ka Q t + Km R1

• . (3.46)

• • (3.47)

TIle displ.acemeot interpolation of the enriched 3D P~lement is then given by :

• • (3.48)

Using the standard procedure. the second order displacement interpolation in the element

in terms of the nodal variables is given by :
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. .
u.; • (N)lu'} + K, lP,- ~N, Pu- ~N; p:tJ

... Ku [Ql- tN; Qu- tN; Q~l

+K,. [R,- tN, R.,;- tN, R~~
i-I I·'

•. (3.49)

In the 20 enrichment. the additional nodal degrees of freedom are mode I and mode II

mess imc:nsity factolS. In the 3D case there are three nodes along the crack front. [wo

comer and one mid-side node. Each node is associated with three unknowns. mode I.

mode II and mode ill~ intensil:y facrors. thus there are 9 additional DOF for a 3D

enriched elemem:. The SIP's are assumed to have a quadratic variation along the crack

front and this variation is given as :

K" • M, K,,+ M, K,,+ M, K"

K,. • M, K" + M, K,,+ M, K"

",he",

M, • ~';~

M, = I-~'

M,'~

.. (3.50)

•. (3.51)



~ in Eqn.(3.S0) denotes '" at. node i. The local axes fJ is equal to the master element

axis r and lies along the crack front and me z' axis of the crack tip coordinate system.

Combining equations (3.49) and (3.50) the dispLtcemem interpOlation for me enriched

element is written as :

>K"A.,. >K"A." >K"A.,.

""KU~7 +Kn~. +KnAu

· . (3.52)

For the derivation of the [B} matrix let the displacement interpolation for Y and w be

given by :

Y~ ... (N){V
C) ... K ll ~I ... ~l Au ... K,I An

>K" A,. >K" Au >K" A,.

>K" A." , K" Au ' K" A"

w'; ... (N)(WC) .... K ll A,l .... ~1 An ~ 1',1 An

>K" A,. , K" Au ' K" A"

, K" A." >K" A" , K" A"

Using equations (3.52) to (3.54), the strains are evaluated as :

• • (3.53)

• • (3.54)

{,'I = [BJ(d"1 .. (3.55)

IdC)T .. (~ VI WI ... 11m v20 Wzo Kn ~1 IC:lI K12 ~ Kn Ku KzJ K.,3)
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and the [8] matrix is given by :

ilA" aAu aA"
~ ax aA,
aA" aA" aA"
ay ay aA,
aA" aA" aA"

[B,.,J •
ax ax aA,

aA21 + aAu aA". aAu aA". aA"
ax ay ax ay ax ay

aA". aA" aA". aA" aA". ilA"
ax ay ax ay az ay

dA.,1+ dA,,1 a~+aAu aA". aA"
ax ax ax ax ax ax

•. (3.56)

The stiffness matrix for the second order 3D EH-element is then evaluated using the

standard procedure described in previous sections.
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Chapter IV

COMPUTER IMPLEMENTATION

4.1 Computer Program

A .static p-venion finite element analysis program MUNSID is developed in C language.

The capabilities include analysis of plane elasticitY and LEFM problems in two and three

dimensions. One of the primary aims of this study is [0 develop and determine the

numerical accuracy of the enriched hierarchical elements. The fmile elements are

quadrilateral shaped so a quadrilateral mesh generator with automatic node numbering

and elemental connectivity data generation is also developed (or ease of input. The

program utilizes p-cnricbmem and me mesh Deed not be refmed for convergence stUdies.

The three main segmentS of the program are : Elemental stiffness matrix formulation.

global assembly of the elemental matrices and the solution routine. Various aspects of

MUNSID are discussed in the foUowiog sections.

4.1.1 Input

Besides the srandaId input parameters such as geometrical and pbysical properties of the

problem. the order of the elements, the order of geometric shape fu.octions, plane suess



or plane strain analysis option. the number of ileratioas aDd an option for crack tip

analysis are also required as inpUl. For 20 crack problems the value of!p. orieruation

of the craclc plane W.r.l. the global coordinale axes. aDd for 3D problems the Vecoor

normal 00 the crack: plane are additiooal input parameters required.

4.1.2 Elemental stiffness matrix evaluation

For most of the analyses the sub-parametric element formulation is utilized. The order

of the element is almost always greater than unicy as p is successively increased while

the element edges are generally straight and therefore the order of the geometric shape

functions is one. A maximum geometric order of cwo is used for problems having

curved boundaries. The elements are not defined as iso- or sub-parametric in the strictest

sense as the geomeaic shape fu.nl:tioos are DOt hierarchical but standard serendipity shape

functions. Gaussian integration is employed for the evaluation of the stiffness matrices.

Tbe (p + 1) Gauss integration ruJe is used to integrate a partitioned sub-matrix ~. where

p is the higher order of the matrix Le. p = rnax(iJ). To avoid zero eigenvalues in the

stiffness matrices the reduced integration rule is DOt used. however. reduced integration

for the second order is found valid as long as the elemen[ is DOl enriched further.

4.1.3 Assembly and solution of global stiffness matrix

Since me elements of the global stiffness matrices lie predominantly along lhe diagonal.

to avoid Storing a large number of zero elements. each global partitioned matrix is

assembled in a skyline format. The Gaussian elimination is used to decompose the

diagonal partitioned matrices into the LDLT form (Bathe[3} Chap. 8). and the off-
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diagonal partitioned mattices are utilized for lhe iter:!tive solution.

4.2 Computational Ease

The use of hierarchical elemems results in an improved stiffness matrix that contains

lower order stiffness matrix as a sub-mattix. The improved stiffness matrix differs from

the previous lower order stiffness matrix in that it contains rows and columns

conesponding (0 the additional nodal variables. Heoce the effott spent in triangularizing

the previous stiffness matrix is entirely saved and improved solutions are obtained by ad

hoc iterative procedures. Tbe computatioaaJ effon. required for elemem matrix

generation also depends on the number of integration points and therefore on the degree

of the polynomial to be integrated. Usually all shape functions have the same polynomial

order and the burden of numerical integration rapidly increases with the order of the

polynomial. [n the hierarchical approacb the number of integration points depends on

the order of the (partitioned) stiffness matrix (0 be computed and in many cases is much

lower than that of conventional analysis.

Consider a plane elasticiry problem with overall global stiffness maaices K •• K1 and K)

corresponding (0 flISt order. secocd order and third order analysis respectively:

••(4.1)

The stiffness matrix Kil is evaluated by me (p+l-) 2 point Gauss quadrature rule. It

is then decomposed into the toLT form and direcr: solution is obtained for ooda1

IV 45



[
C,' K"j(C,l • r" K" • .(4.2)

• .(4.3)

variables corresponding to £he fll'St oroer. K1 contains K1 as a sub-matrix and due to lhe

symmetry of the matrix only K11 and Kn need be evaluated, which is done using 3 point

Gauss quadnuure rule. Similarly for K} only Ko • K-:J and K}) oeed ro be evaluated. The

system of equations required to be solved for the third order mesh is :

[
K

U

Ir" K.,j t'l ~'lc" K" K., U, • ,

~I Kn. ~] U, 3

· .(4.4)

where U I are me (comer) nodal degrees of freedom and V2• UJ are the hierarchic nodal

degrees of rrec:dom. Fl' Fz and F} ace the load vectors corresponding to the degrees of

freedom. The iterative solution scheme adopled. for higher order matrices is as foUows:

Step 1

Step 2

Vz = (Kn-Il {F! • KIZ
T VI}

V\ '"" [KU"I] {FI - K l1 VI}

Iteratioas ace performed until the values of VI converge.



Step 3

U, := (Kn"] {F] - KU
T U, - Kn

T Uz}

U1 ::II: £K:!:2:'] {Fz - "-tIT U, - K:!J U,}

U, = [KlI-IJ {F, - K,:! Uz - K 13 UJ }

Sufficient number of iterations are performed for the convergence of solution with the

last step being that for U I-

There are two observations associated with the use of a higher gauss imegration rule.

Firstly. only the sub-matrix correspoading to the higher order is evaluated at a higher

munber of gauss points and secondly. the size of the overall roattix is small compared

with that of a mesh using staDdard elements for the same problem due to l:he use of

coarse meshes in p-versiOD FEM. In addition. due to faster JH:onvergence rates. high

values of p are not required reducing the number of degrees of freedom involved.
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Chapter V

NUMERICAL STUDIES AND

DISCUSSIONS

5.1 Numerical Application

In Ibis chaplet' the hierarchical and the enriched hierarchical formulations ace numerically

examined via the program MUNSID. The sbort cantilever beam problem and Cook's

membrane: problem baving analytical and reference values ace analyzed for verification

of the 20 P-<:Iemeru:. A double edged crack: specimen and a slant cracked tensile

specimen ace used as tests for the 20 EH~lement. Different geomctties of T--plate

welded joints ace analyzed for stress concentration factors. Sb'eSS intensity factors for

differem cr.ac:k depths at the weld toe of a 45 0 weld profile T·plate joint are obtained and

finally the fatigue life of the specimen is estimated. A double edge cracked specimen.

a compact tensile specimen and a plate with a semi-circular embedded surface crack: ace

analyzed using 3D EH-elemcots. The results obtained with very coarse meshes and a

small number of degrees of. freedom are in remarlc.able agreement with the reference

values for all cases.



5.2 Tests for 2D P-Element

1be cantilever beam and Cook's membrane problems ace analyzed and the results

obtained validate the formulation of the P-elements and the progmn MUNSID.

5.2.1 Short cantilever beam problem

A shear loaded cantilever beam. is

I I
selected as I. test problem by many

autbon [28.29.3O.31J. The

elasticity solution (fomisbeoko

and Goodier (32]) for the tip

displacement of the problem

shown in Fig. 5.1 is:

v - 0.15 P - 40.0
E _ JOOOOO h - 12

L - ..

Fi~re S.l Cantilever beam problem

v. "" PL' .. (4"Sv) PL "" 0.3558
tIf 38 2fJ::L

•• (5.1)

The finite element solution is obtained for a mesh of one element. a coarse mesh of four

square elements and successively finer meshes constructed by bisection. A distorted four

elemenr. mesh after MacNeal and Harder [30J is also studied. The resuhs are prcsenred.

for the tip displacement as well as for bending stress at A (x=12. y""6) for increasing

order p till convergence is achieved, where p is the order of the entire mesh. In addition

the reduced integration (R1) results for p=2 using 2x2 gauss points are also presented.

1be meshes are shown in Fig. 5.2 and results in Table 5.1 and Table 5.2.
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ITIIJ
4x1 regul.r mesh

4)[1 distorted mesh

8)[2 mesh

16x4mesh

F"lpR 5.2 Meshes for cantilever beam

Table 5.1 Cantilever Beam Problem (reference and comparison values)

AIlman lbrahimbegovic Allman
Mesh size

v~ u. (x_12,y_61

4xl 0.3026 0.3445 52.7

8x2 0.3394 0.3504 58.4

16x4 0.3512 0.3543 59.7

4x1-<1 0.3066

Reference 0.3558 60.0
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Table S.2 Cantilever beam problem (resullS)

M~h v. CT. Ix-12.V-6)
Size

RI I RIp-2 p-3 p;4 p_2 p_3 p_4

'" 0.3393 0.2989 0.3414 0.3415 59.99 49.53 60.35 60.35

4" 0.3500 0.3495 0.3522 0.3522 60.0 59.85 60.32 60.13

8" 0.3558 0.3554 0.3559 0.3559 60.0 59.96 58.66 58.94

16x4 0.3556 0.3557 0.3557 0.3557 59.98 60.0 60.00 60.00

4x1-11 0.3520 0.3534 0.3562 0.3562 57.99 59.0 58.91 58.46

1. For any given mesh. the NDOF involved in the analysis by Allman [28J and

Ibrahimbegovic [31] is nearly the same as that in MUNSID for p=2 and p=3

respectively. In comparison. considerably improved results are obtained with MUNSID.

2. For P...dements (Table 5.2). reduced integration results are better than full

integration. except for the 16x4 and the distorted 4xl mesh (4xl-d). Therefore for real

life situations involving i.aegular shaped elements. l'iJ1l integration is preferable.

3. Convergence of results is observed at higher orders for coarse meshes and vice--

4. Even the single element mesh performs quite accurately with a final error of only

4% in displacement and 0.6% in stress. For the 4xl and 8x2 meshes. the error in tip

displacement for both the meshes is I % and the error in stress is 0.2% and 1%

respectively. "Exact" value of stress and a high accuracy of 99.97% in displacement is

obcained with the 16x4 mesh for all orders. For a reasonable accuracy. the 4xl mesh

with p=3 is sufficient for the analysis.
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5.2.2 Cook's membrane problem

A trapezoidal membr.me with a shear dominated behaviour proposed by Cook (33] shown

in Fig. 5.3 is a teSt problem for the

accuracy of quadrilateral elements.

'The results for the tip displacement at

point C are compared with a reference

value of 23.91. obtained by Bergan

and Fellipa (29] using a 32 x 32

mesh. The various meshes considered

are given in Fig. 5.4 and the results

for the tip displacement and the values

of stress at the lower (A) and upper

(B) mid-sections of the membrane are

presented in Table 5.3 and Table S.4.

r- ..- I

EO'· c[,o}
•• 1/3 I

M

_--JL
Figure 5.3 Cook's membrane problem

Table S.3 Cook's membrane problem (refereoce and comparison values)

Mesh size Allman Ibcahimbe90vic Allman

v. "-
2><2 20.27 20.68 0.1825 -0.1716

4x4 22.78 22.99 0.2261 -0.1921

exe 23.56 23.66 0.2340 -0.2004

Reference 23.91 0.2359 -0.2012
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2x2 mesh

FlI'UJ"e 5.4 Meshes for Cook's membrane

Table 5.4 Cook's membrane problem (results)

Mesh v. a_ :(1_
Size

RI I RIp-2 p-3 p.4 p_2 p=3 p_4

2x2 23.17 23.06 23.47 23.47 0.262 0.250 0.224 0.228
·0.234 -0.234 -0.217 .Q.221

4x4 23.73 23.73 23.75 23.75 0.244 0.242 0.235 0.235
.Q.202 .0.201 ·0.201 ·0.201

8x8 23.88 23.88 23.88 23.88 0.239 0.239 0.236 0.236
·0.204 ·0.204 -0.204 .Q.204

4x4-d 23.57 23.82 23.83 0.232 0.232 0.232
-0.203 ·0.202 ·0.202
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1. Improved dispIacemeo.ts results are obtained for all meshes compan:d with those

by Allman and Ibrahimbegovic. The accur.u:y oftbe 2x2 mesh withp=3 is nearly equal

to, and that oftbe 4x4 mesh withp=2 is grealer than. the displacement results by (28]

and (311 for an 8x8 m~h. This results in a major decrease in the NDOF involved.

2. The error in the tip displacement is less than 2% for a coarse 2x2 mesh. A high

accuracy of 99.87% in displacement results is achieved with an 8x8 mesh. It is also

observed for the rermed (8x8) mesh that the values of displacement do not vary with

increasing order. suggesting convergence of the results.

3. Improved results are also obtained for the maximum principal stress at locations

A and B. 1be 2x2 mesb with p=2 performs slightly bener than the same mesh by

Allman and the accuracy increases considerably as p is increased to 4. The errors for

0"1IWtA are only 0.60% and 0.25%, and for O"...wI are only 0.10% and 1.30%. for the 4x4

and 8x8 meshes respectively. It is nmed however that the refereace values are also

numerically computed and that Ibrahimbegovic did DOt provide results for stresses which

are quile critical for this shear dominated test.

4. The 4x4-d distorted mesh is grackd. to improve results. towards points A and B

in a geometric: progression with a ratio of 0.15 and it includes large aspect ratio

elements. Improved displacement results and similar stress results are obtained compared

with the 4x4 mesh. It is also analyzed to show the relative flexibility of mesh design in

p-version FE aDalysis.
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5.3 Tests for 2D EH-Element

5.3.1 Double edge cracked tensile specimen

The test problem. is shown in Fig. 5.5 along with the physical and geometticaJ properties

and the loading conditions. In the coDStruction of meshes. the crack tip is surrot1Dded

by EH~lemems and the

rest of the geometty is
I I

modelled by P-elements.

=1
J12:.00~o

1=The symmeny of the

problem is considered and
E_30xla- .=0.3

ooly the upper two
Figure 5.5 Double edge cracked tensile specimen

modelled.

UtiliziIlg the symmetry

about me crad:: tip gives slightly er:rooeous results hence is not considered. Tbe meshes

consisting of 4, 8. 12 and 18 elemcms are shown in Fig. 5.6 along with the results

obtained. This problem is also solved by Gifford and Hilton (23J and the plaDe strain

reference value for ~ equa1lO 2.00 is taken from Brown and Sb'awley [34].

A mesh for the same problem by Barsoum. [l9l using 11S elements and employing

distorted triangular serendipity isoparametric flnite elements to represent the crack tip

region is shown in Fig. 5.7 for comparison.
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8 element mesh

2.62

2.02

2.06

2.09

2.10

..--~l~:~l~
p ..

1 1.70

2 2.03

3 2.09
4 2.01

5 1.98

1.90

2.00
2.02

2.05

2.06

12 element mesh

2.09

1.95
1.91 ' 8 element mesh

1.93

1.94

F"apre 5.6 Meshes and rt:SU1ts for double edge cracked specimen

1. The maximum order required

for convergeo::e for all meshes is 4.

2. The error in the value of scress

intensity factor obtained from the four Figure 5.7 Mesh of distoned serendipity
elements (Barsoum)

different meshes is less than ±SlJ,

which is reasonably accurate
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considering the Dl1IIlber of degrees of freedom involved, 220. compared (0 a 700 degree

of _ model by Barsown (Fig. 5.7).

5.3.2 Slant cracked tensile specimen

The teSt problem is given in Fig. 5.8.

Four different finite element

idealizations also considered by

Gifford &. HiltoD [23] are shown in

Fig. 5.9 and the plaDe strain refereoce

values for K, and K" lakeo from

grapbs provided by Bowie [35] are

1.86 and 0.88 respectively. The

results are presemcd along with the

meshes in Fig. 5.9.

Figure 5.8 Slant cracked tensile specimen

1. The values of Kt and Kn for each mesh converge at p=4. A DOte for all mesh

enrichments is that the order of the elements is not increased selectively rather over the

entire domain.

2. For the 4,7 and 10 element meshes the error is less than 5% in ~ and

less than 11 % in Ku. The 18 element mesh gives quite accurate results with errors of

only 2.2% and 1.13% in ICc and K ll respectively.

3. The apparent reason for the better performance of the 18 elemcru mesh is the use
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of small and regular sized EH-elements at the crack tip .

• .. ..., 2.05 0.98

2 1.82 0.81

3 1.77 0.81

4 1.77 0.80

5 1.78 0.80

4 element mesh

1.51 0.91

1.85 0.91

1.90 0.95

1.93 0.96

1.94 0.97

1.28 0.84

1.52 0.91

1.17 0.89

1.81 0.95

1.84 0.97

2.03 0.97

1.84 0.88

1.82 0.87

1.82 0.87

1.82 0.87

Fipre 5.9 Meshes and results for slant cracked [ensile specimen
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5.4 Analysis of T-Plate Weld Joint

'lbe T-plale joint having base plate: thickness. T. and attachment plate dticlcness. t. with

4S a and AWS weld profiles is shown in Fig 5.11. TIle finite element idealization is dooc

utilizing the symmetry of the problem and the weld joint is (cs(t;(f for suess coocemration

factors at me weld toe and stress intensity factors for a cracked weld roe. TIle results

are compared with those obWned by Bell [26] using 8·00ded isoparameaic elemems.

Various mesbes were considered but results presented are for meshes d1at are the coarsest

possible for a reasonable accuracy.

1 t - 78
l,. 584
A - 457

I
AWS weld profile

Fip.re 5.10 Geometry of T-plate weld joint
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5.4.1 Stress concentration factors

Suess concentration factors are evaluated for the 45" and AWS weld profiles for two

differem base-plate to attaehm.em·plate t:hic.kness ratios. tfT. of 1.0 and 0.75 with the

attachment plate thickness of 78 mm. Tests are daDe for both I:hree point beading and

tensile loadings. The topology is disc:retized by coarse meshes with dutt layers of

elemems graded in geometric progression [Qwards the suess COIlCeIUr.ition region (the

weld toe). The meshes considered for 45" and AWS weld profJ.le with tff ratio of L.O

are shown in Fig. 5.12. The value of me weld toe radius. r. is kept equal to 0.5 mm. the

same as that selected by Bell. The stress profiles along the base plare: thickness direction

at the weld toe are also compared with those obtained by Bell. The stress profiles are

obtained for loads applied such that the maximum DOminal stress has a value of 1.0 at

the weld toe. The SCF results are given in Table 5.5a &: b and Table S.6a &: b and the

stresS profiles are plotted in Fig. 5.12 to Fig. 5.19.

Table S.Sa Stress concentration factor. 45" weld profile. bending load

tiT Bell MUNSID

p_l p_2 p=3 p_4 p=5 p_6

1.0 4.66 6.205 4.99 4.69 4.52 4.56 4.61

0.75 5.08 6.64 5.42 5.10 4.94 4.98 5.05

Table S.Sb

tiT Bell

1.0 1.475

0.75 1.561

Suess concentration factor. AWS weld profile. beDding load

MUNSIO

2.25 1.802 1.675 1.62 1.605 1.605

2.38 1.93 1.79 1.74 1.73 1.73
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45" ••Id pn3fihl

22 element mesh 21 element mesn

Figure 5.11 Meshes for suess concenmtion factor evaluation

Table S.6a

tIT Bell

1.0 3.588

0.75 3.912

Table 5.6b

tIT Bell

1.0 1.341

0.75 1.394

Suess concennation factOr. 4S· weld profile. tensile load

MUNSID

5.07 4.12 3.94 3.78 3.81 3.87

5.63 4.47 4.27 4.11 4.145 4.22

Sttess concennation factor, AWS weld profile, tensile load

MUNSID

1.75 1.52 1.49 1.44 1.43 1.43

1.91 1.63 1.58 1.54 1.53 1.53
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Bell 1--........... 1

-.
I.'002 0.4 0.' 0.'

Dilrta.ace from Weld Toe lY/T)

""L-_~__~__~__-'-__~_--'

•

MUNSID
-6-Bending

• SCF(:Jen)

•.. ...
_.L..- --'

Distance rrom~ to. (ylT)

Figure S.U SIn.· distribution through thickness
t=78mm t1T=1.0 4S G weld proitle
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Bell 1----.;.1

'.2
... '-----'----'----'--_.........__........_---'

o 0.. 0.4 0.' 0.'
DiNDc< from ....Id Toe (yIT)

MUNSID --.......
• SCF(Belf)

12

.. .l...- .....J

,fT

Ftaure 5.13 Sttess distribution through lhickncss
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FIgure 5.16 Stress distribution through thickness
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1. The meshes used for the 45" and AWS weld profiles (for both lfI' ratios) contain

22 and 21 elements respectively. The meshes an: very coarse in the overall domain and

graded in a geomeaic progression at and towards the stress coocentration n:gion with a

ratio of about 0.15. Reasonably accurate results are obtained with a few degrees of

freedom. typically about 600. for a 20-22 e1emem mesh with p=6. Bell states in his

repon ~t~ joinls wer~ rnotkLkd using qULIdratic isoparamnric donenrs and ch~ m6h

was highly refined aI the weld roe region to insure a smooth radius aJ the root of the

notch and (0 obtain an accurale value afmess in this region~. In the present study. twO

P-elements are used to model the root notch radius with geometric shape functions of

order two. Reference (36] used a refined mesh for stress concentration factors of a

welded joint with about a 100 elements ( - 680 degrees of freedom) in a 1 m,ml area at

just the weld toe region.

2. TIle SCF's obtained in this stUdy (Tables 5.5 and 5.6) are comparable [(J those

obWned by Bell.

3. 1be stress profiles (Fig. 5.12 to Fig 5.19) are remarkably similar to lbose given

by Bell. and are obtained using only five P-elemeots along the thickness direction of the

base plate at the weld toe. The stresses ~ obtained by nodal averaging.

5.4.2 Stress intensity factors

The crack growth curve for a T-plate joint with 45 0 weld profile and tiT ratio of 1.0

with t=78 nun has a 2D reference solution in [26]. Hence this geometry is analyzed

for SIF's for different cnck depths at the weld toe under lhree point bending load. The
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initial crack depth is taken as 0.5 mm and the ,mal crack deplh is taken as T/2 (39 rum).

The meshes used for the analysis are giver. in Fig. 5.20.

T/4sasT/20.5sa<T/4

19 element mesh

I-­
1--)-...

II I I

25 element mesh

Figure 5.20 Meshes for SIF for 45° weld proftle, tIT=l.O

Table 5.7 SIF (MPaVnun) vs crack depth

Crack Depth !mm) p-' p·3 p-'

0.' 3.11 3.81 4.01

1.0 3.80 4.59 4.64

'.0 5.22 6.34 6.34

10.0 6.90 7.56 7.62

20.0 11.62 9.61 9.63

30.0 13.62 12.92 12.95

39.0 16.57 17.95 18.02

An empirical relationship is established for the SIP versus crack depth and are plotted
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in Fig. 5.21. This empirical value ofK (in MPav'm) as a function of crack depth a (in

metres) is determined by polynomial curve fining as :

K(a) =- 12409.65 a 3 - 618.903 a 2 ... 16.n9 a ... 0.1243 •• (5.2)

Eqn.(S.2) is used to evaluate the crack propagation curve (Fig. 5.23) and the fatigue life

of lhe specimen. The constants C and m used in the Paris' equation are those used by

Bell. The crack growth rate (paris equation) and fatigue life (N cycles) are given by:

,
1 . f <fa

N = C (aa}1Il Ij Kill .• (5.3)

0.03'

= (5.36 . lO~U) (100)' •.L K:,'

The fatigue life is evaluated and compared with that obtained by BeU for a sttaight

fronted crack (SFC) analysis (Fig. 5.22).

20

.0'010
0+----_-_--_-_

o

Figure 5.21 Stress intensity factor vs crack depth
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L Tbe sttess intensicy factor.; are obtained by using coarse meshes of 20-25

elements. However to have regular sized elementS for small crack depths of 0.5 mm and

1.0 mm.. a slightly refined mesh of 38 elements is used.

2. The fatigue crack growth curve obtained from Paris crack propagation equation

has quite the expected prome and is similar co that given by Bell for a straight fronted

crack. The fatigue life of 442 Kcycles obtained in this sOJdy is in close agreement with

the value, -480 Kcycles. obtained from the graph provided by Bell for the same

problem. The use of coarse meshes for SIF evaluation is thus also validated by a

practical example.

5.5 3D EH-Element

5.5.1 Double edge cracked specimeo

1bis problem is an extensioD of the 20 case (§S.2.1. Fig. 5.5) having 20 SIF refereocc

value as 2.00. 1be tb.iclcoess of the specimen, t. in the lhird dimension is lakeD as 2.0

and the meshes analyzed are a simple 4 element and a 24 element mesh sbown in Fig.

5.24. The results are preseoted in Table 5.8 and Table 5.9 for values of K[, for p

varying from one to three and at locations dt, where z=O at the free surface and z=O.Sc

at the middle of the crack front.
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I

~ 24 element meshE3:fftE:3Y

Figure 5.24 Meshes for 3D double edge cracked specimen

Table 5.8 ~IK:ID for double edge cracked specimen. 4 element mesh

zft ".0 zft = 0.5

p=l

p=2

0.87

0.84

0.80
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Table 5.9 K/Kw for double edge cracked specimen, 24 element mesh

zIt .. 0 ZIt = 0.5

p_l

p-3

0.87

0.74

0.70

0.84

0.78

0.75

1. An average accuracy of 80-90% is achieved in the SIF value for third order

coarse meshes of 4 and 24 elements, The NDOF involved are only 257 and 959

respectively

2. The refinement of the mesh, however, does not seem to influence the overall

result.

5.5.2 Compact tension fracture specimen

The specimen selected is a plare wil:h through-thickness edge crack of depl:h a wilh

thickness, half-width and half-height taken equal to a. A uniformly distributed force of

P/unit length through the lhickness is applied at the crack ends and normal to them. The

geometry of this problem, also solved by Tracey [16], is illustrated in Fig. 5.25. The

Poisson's ratio is laken as 0.3. The reference solution is taken as a 2D SIF value given

by K10 = 7.20 P a'Oh. The meshes used for the analysis are simple 4 element and 32

element meshes given in Fig. 5.26. Table 5.10 and Table 5.11 give me values of K1KlD
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along the crack front where zla=O is the free surface and da=O.5 is the middle of the

crack: froD!. From experience in lhe 20 cases. the symmetty about the crack front is not

considered and the crack: is modelled as a whole.

FIgure 5.25 Compact tension fracture specimen

Table 5.10 KlKw for compact tension specimen, 4 clemen[ mesb

p_l

z/a "" 0

0.76

0.99

0.83

V 77

z/a = 0.5

0.73

1.08

0.97



~
~

4 element mesh

m
~

32 element mesh

Figure 5.26 Meshes for compact tension fracrure specimen

Table 5.11 KlKm for compact tension specimen, 32 element mesh

z/s oa 0 zla 2 0.5

1.02

0.82

0.77

1.13

0.99

0.93

1. The average results along the crack front are within 18% of the 20 reference

value for both the meshes. Again the mesh refinement does not influence the overall

result.

2. Tracey used a S22 element (660 node, about 20CK> OOF) mesh to solve this
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problem. Tracey bas noted from lirerarure an expected elevation of results by 10% at

zJa=0.5 and lower K equal to 0.72Kw at the free surface. He obtained results within

1% of KID at zJa=O.5. and at the free surface the results obtained are O.79KID and

0.67KID from displacement and mess data respectively.

3. The 4 and 32 element meshes (Fig. 5.26). with p_=3. involve 273 and 1317

DOF respectively. The results at the mid point of crack: front are within 3 % and 7% of

KID and at the free surface are O.83KID and O.77Kro for the 4 and 32 element meshes

respectively. The additional advantage observed is the ease in construction of meshes

using P- and EH-e(ements.

5.5.3 Semi-circular surface crack in a plale

A plate with a semi-circular surface crack subjected to tension is analyzed for stress

inrensity factors. The geometry of the problem is shown in Fig. 5.27. The Poisson's

ratio is raken as 0.3. The dimensions of the model selected are sucb that bla =h/a =

5. Two all ratios of 0.2 and 0.8 are selected and the meshes constructed using 3D p·and

EH-elemeats are shown in Fig. 5.28. Symmetry of the crack: is taken into account and

balftbe specimen is modelled. Fig. 5.28 depicts the meshes (of 13 and 16 elements) for

one quarter of the specimen on one side of the crack: plane. the other side is similarly

modeUed (to give a (OW of 26 and 32 elements). The SIF are evaluated along the crack

front from the free surface (q,=OO) to the deepest interior point (q,=900
). The results

are compared with those given by Raju and Newman [241 and are presented in Fig. 5.29

as a ratio of results obtained via MUNSID <Kex> to the reference results 0Cw).
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Figure 5.27 Semi-circular crack in a plate

~

1. The results obtained for air ratios of 0.8 and 0.2 are within 10% and 13% of the

reference values respectively. The results are obtained for a maximum order of lhree.

The NDOF involved for the two analyses are 1072 and 1161 compared to refined 6000

OOF models used in [24].

2. The significance of the results obtained in this study is highlighted by the decrease

in the NDOF involved by as much as 80%. As regards lhe error, [24} has noted for 3D

semi-elliptical crack analyses. the closest result obtained in the literature as 10-25%

lower and a disagreemenr: of 50-100% in the results among some of the authors. The

results obtained using EH-elemeots, within 13% afthe reference values ([24]), are thus

in good agreement.
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Chapter VI

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusions

A practical insight of p-versiOD FEM is obtained in this study for plane elasticity

problems. An effective 20 Enriched Hieruchical element for LEFM problems is

developed and is extended to 3D crack problems. The cooclusions of the stUdy presented

in the roUowing sectiODS~ for the coarsest meshes with reasonable numerical accuracy

in comparison with ~fereoc.e values. Higher degree of oumerical accuracy is and can

be acbieved with refiDcd meshes. This stUdy bas shown the use of coarse meshes (wilh

large aspect ratio elemems) for stress concenttation and stress singularity problems that

eliminates a large amount ofuser and computer time for mesh generation and refinement.

More imponamly. there is a sizable reduction in the number of degrees of freedom

involved for a significantly accurate analysis. Due (0 the complex nature of three

d.iu:temionaJ problems. especially involving cracks. funher investigations of the

application of the EH-elemem vis·a-vis mesh design are required.



6.1.1 P-elements

1. Cantilever beam

A third order 4xl mesh for the 2D problem gives an error of only 1CJi in displacement

and 0.2% in stress and is thus sufficient for the analysis. The results for lhe 3D problem

are comparable to the 2D problem and hence are not presented.

2. Cook's membrane

The 20 results, using a third order 4x4 mesh. compared with we reference values have

an accuracy of greater than 99% for bom displacements and stresses. The results for the

3D problem. are again comparable to the 20 problem. and are not presented.

3. I -plate welded ioim

The SCF and stress prames through base plate thickness at the weld toe obtained for 45·

and AWS weld profl1es with tIT ratios of 1.0 and 0.75 are in close proximity (0 those

obtained by Bell. The results obtained are for very coarse meshes (maximum 22

elements) including large aspect ratio elements and a maximum ordcr of six. There is

a substantial reduction in the number of degrees of freedom involved compared with

those in h-version FE analyses.

6.1.2 EH-elements

1. Double edge cracked specimen

The 2D results obtained from fifth order meshes of 4 to 18 elements with 4 EH-elements

centred at the crack tip are within ±5% of the reference solution. The e(ements in lhe

4 element mesh have an aspect ratio of 1:10. The results obtained for the 3D specimen
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bave an accuracy of an average of 85% for coarse 4 element and a 24 element meshes.

The accuracy of lbe results bas significant imponance wben compared to me large

number of degrees of freedom oormally involved in standard 3D analyses.

2. Slant cracked leJlSiJe specimen

A t:hird order L8 elemem mesh with four 20 EH..elements cenued at the crack tip gives

an error of less than 2.2% for K. and Ka which is quite accurate for the mixed mode SIF

problem. considered.

3. 4S D weld profile T-plate

The T-plate joint selected for analysis bas t=78 mm with a tIT ratio of 1.0. The SIF

solution is obtained for varying crack depths at the weld toe with coarse 20 to 38 element

meshes and a maximum order of five. The fatigue life of 442 Kcycles estimated from

the SIF results is compared to that given by BeU and bas an accuracy of 90%.

4. 3D compact £ensi~n specimen

The values of the SIF obtained from third order 4 element and 32 element meshes are

compared [0 the 20 reference value and bave an average accuracy of 88% and 96%

respet:tively. The decrease in the number of degrees of freedom is about 2S % compared

to me h-version aoalysis in literaOJre. The additioaal advantage is the relative ease in the

consuuction of me meshes.

S. 3D semj-circular surface crack in a plate

For the two air crack ratios analyzed using EH-elements, the results are within 13% of

the reference values. This close agreement of the results is obtained utilizing only one·

fifth the DUmber of degrees of freedom involved in the analyses for the reference values.

The relative ease in the construction of meshes using p. and EH-elements is very



significant as an enormous amount of time is usually spent by the human user to prepare

the meshes (in h-version) for such analyses.

6.2 Recommendations

l.~

This work was undertaken considering DO internal shape functions for the hierarchical

elements. The results obtained show that it bad no effect on the solution of the problems

analyzed. bowever. the inclusion of internal oodes especially for shell and plate problems

involving beDding is n:commeDded. In that case the elemental stiffuess mauix is to be

assembled into the global matrix after static cooclensation.

2. SWocxhing function

For the EH-elemern: used to determine stress intensity factors in problems involving

cracks. the non--conformal formulation is used that employs no zeroing function in the

EH~lement for compatibilitY with adjacent P-elemeots. This had no significant effect

00 the results obtained. however various zeroing functions can be tested and a suitable

ooe can be included in the formulation to further enhance the accuracy.

3. Error estimation aDd adaptive schemes

Mesh design using P-elem.eots does not playa critical role in the final results, however

optimal results can be achieved by employing a proper balance between h-refmement and

p-refinement. The hierarchical formulation also affords an ease in error estimation that

combined with p-refinemeDt can provide efficient adaptive solution strategies.
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APPENDIX A

Shape functions for a 2nd order 3D P-elemeDt

, I (I.)'N, '"8 (I+(,() (1+",") (I+(,'l i

N,' • i «('-1) (1+",") (1+(,q (il'
Nt' = i (1+(,() ("'-1) (1+(,q (il'
N,' = i (I+(,() (1+",") «'-I) (~r

90

i - 9. 11, 17, 19

i - 10, 12. 18. 20

i • 13, 14, 15, 16
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