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Abstract

Terminator is a region in the DNA that ends the transcription process. Knowing the

location of bacterial terminators will lead to a better understanding of how bacte-

ria’s transcription works. This might facilitate bio-engineering and support bacterial

genomic studies. Currently, multiple tools are available for predicting bacterial ter-

minators. However, most methods are specialized for certain bacteria or terminator

types. In this work, we developed BacTermFinder, a tool that utilized Deep Learn-

ing models, specifically an ensemble of Convolutional Neural Networks (CNNs), with

four different genomic representations trained on 46,386 bacterial terminators iden-

tified using RNA-seq technologies. Based on our results, BacTermFinder’s average

recall score is significantly higher than the next best approach (0.56 ± 0.19 vs 0.45

± 0.20) in our diverse test set of five different bacteria while reducing the number of

false positives. Moreover, BacTermFinder’s model identifies both types of terminators

(intrinsic and factor-dependent) and even generalizes to Archea. BacTermFinder is

publicly available at https://github.com/BioinformaticsLabAtMUN/BacTermFinder
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Chapter 1

Introduction

In response to environmental changes, bacterial cells continuously adjust transcrip-

tion. Transcription is the process of copying DNA into RNA. Certain RNAs will then

be translated into proteins. Transcription starts at the point the promoter sets, and

terminators will stop the transcription. A terminator in DNA is a stretch of nucleic

acid that indicates the end of a gene or operon[2].

The termination of transcription is a process crucial for the accurate synthesis of

RNA. In prokaryotes, such as Escherichia coli, termination can occur through either

factor-dependent or factor-independent mechanisms, with the latter known as Rho-

independent termination or intrinsic termination. In E. coli intrinsic terminator is

predominant, constituting approximately 70-80% of all terminations[3].
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1.1 Intrinsic Terminator

Intrinsic termination involves forming a distinctive RNA hairpin structure followed

by a uridine sequence, which acts as an intrinsic terminator, as shown in Figure

1.1. This terminator structure plays an important role in preventing backtracking, a

phenomenon that stabilizes the elongation complex during transcription [2].

Specific sequences in the DNA template strand mark the Rho-independent termi-

nators. When the RNA polymerase reaches the end of the transcribed gene, it reaches

a region rich in Cytosine (C) and Guanine (G) nucleotides. The RNA created from

this region binds with itself, and the C and G nucleotides pair together. A stable

hairpin structure is the result of this process. The hairpin causes the polymerase to

stall. The weak base pairing between the Adenine nucleotides of the DNA template

and the uridine nucleotides of the RNA transcript let the transcript to detach from

the template thus, terminating the transcription[1].

Extensive studies on termination mechanisms have revealed critical elements in

the termination process. The 3’-terminal U of U-tract has been identified as essential

for pausing at the termination site and the overall termination process. Mutations in

this region not only prevent pausing but also eliminate termination. This emphasizes

the crucial role of pausing at the U-tract for terminator formation [4].

Further analysis of terminator structures in vivo has shown that the most robust

terminators possess near-perfect U-tracts associated with AT-rich downstream DNA

sequences [5]. Additionally, A-tracts immediately upstream of the terminator con-

2







Rho binds RNAP and forms a pre-termination complex (PTC) with NusA and NusG

[8]. PTC samples nascent transcripts continuously for a termination signal to trap

the elongation complex before dissociating. In a strong intrinsic termination, Rho’s

presence did not change the efficiency of the termination, meaning that Rho does not

affect strong intrinsic terminators [3].

Rho Utilization Site (RUT) sequences are upstream of the termination site and are

approximately 80–90 nt long, allowing RNA to bind to each of Rho’s six monomers

[2]. Nearly all bacteria, with the exception of Cyanobacteria, Negativicutes, and

Streptococcaceae, utilize the transcription termination factor Rho for the purpose of

separating transcription units and regulating global gene expression [8, 9, 10, 11].

Recent research on the model Gram-positive bacterium B. subtilis produced an

atlas of terminators. Mandell and co-authors found that NusA and NusG encourage

some of the intrinsic terminators, and they also participate in Rho-dependent termi-

nations. Their in-vitro research, merged with computational methods, showed that

intrinsic terminators with weak hairpin secondary structure or weak T-tail are af-

fected by Rho in a way that Rho helps the termination by preventing unhelpful RNA

secondary structures. They also found some intrinsic terminators more effective when

stimulated by Rho [12].

The accuracy of predicting terminators for genome annotation is crucial for biotech-

nology applications. Traditional biological experiments to identify terminators are

time and labour-intensive. So, machine learning has been adopted as an efficient

methodology for identifying terminator sequences [13].
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Chapter 2

Related Works

This Chapter describes some of the existing computational approaches for bacterial

terminator prediction. These works are sorted in reverse chronological order. For

an approach to be included in our search, it should be focused on finding bacterial

terminators computationally (in-silico) using machine-learning algorithm or any sort

of dynamic programming to find the terminators. Additionally, we restrict our litera-

ture search to works published from 2007 onwards, as most transcription terminator

prediction software was published after this year.

2.1 TermNN

TermNN [14] is a neural-network-based approach focused on intrinsic terminator pre-

diction. TermNN introduced a pre-training approach to mitigate the lack of high-

volume data. The pre-training approach utilizes inverse folding to pre-train a neural

network and then continue training on intrinsic terminator data consisting of 1175
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terminators from 2 species. The inverse folding technique in DNA involves com-

putationally predicting the nucleotide sequence that, when folded, forms a desired

three-dimensional structure or shape. Brandenburg and co-authors showed that their

pre-training on inverse fold data can increase the model’s performance in intrinsic

terminator prediction, and the trained model can explain the role of different parts of

the intrinsic terminator structure in termination. TermNN uses deep learning meth-

ods such as Convolutional Neural Network (CNN) and Long Short-term Memory

networks (LSTM) with one-hot feature encoding and base-pair matching encoding or

matrix encoding (Figure 2.1). Matrix encoding is a 2D matrix (L x L) of the base

pairs of sequences with a length of L. It represents the Watson-Crick pairing between

different nucleotides by assigning normalized numbers for each pairing (like the A-U

pair or C-G pair in RNA). TermNN outperformed decision rule-based software Arnold

[15] by 0.04 points in F1-score in validation data of Monte-Carlo Cross Validation,

on E. coli and B. subtilis intrinsic terminators. Arnold performed 0.88 F1-score, and

the pre-trained matrix encoding TermNN scored 0.92 F1-score.

2.2 ITT prediction

In Intrinsic Transcription Termination (ITT) prediction, Gupta and colleagues [16]

utilized Mfold software [17] to look for clusters of single hairpin structures at the end

of transcripts identified by RNA-seq from 13 bacterial species. Gupta and co-authors’

study shows hairpins concerted in clusters to form a highly effective ITT unit. They

validated 81% of the ITT predictions with sequences from RNA-Seq-derived sites.

8



Figure 2.1: Graphical abstract of TermNN [14] indicates two CNN

models pre-trained with inverse-folded sequences and fine-tuned on

intrinsic terminators with two methods, one-hot encoding and matrix

encoding. Figure is taken from [14] (CC-by 4.0).

Their identified locations and RNA-seq-derived locations overlap with an accuracy of

72%, with 98% of sites being located ≤ 80 bases downstream of the translational stop

codon. They verified their method on 143 E. coli experimentally verified terminators

in the inter-operon region, and 83 of these terminators were found. E. coli was not

included in the 13 bacterial species of interest initially used for training.

2.3 iterb-PPse

Based on PseKNC I [18] and PseKNC II [19], Fan and co-authors [13] developed the

“iterb-PPse” method for predicting terminators. PseKNC I & II are feature gener-

ation techniques which were used in iterb-PPse. PseKNC can generate 38 physico-

chemical properties for 2-mer and 12 physicochemical properties for 3-mer. iterb-PPse

9



was trained on E. coli and B. subtilis.

To enrich the data, they applied three new methods of feature extraction: K-

PWM, base-content, and NucleotidePro, as well as a two-step feature selection method.

The pipeline of their study is presented in Figure 2.2.

Five single models were compared with 16 ensemble models to identify terminators

based on optimized features. They achieved 99.88% accuracy on 1615 E. coli intrinsic

and factor-dependent terminators with their XGboost classifier. They improved over

iTerm-PseKNC in accuracy by 3.8 % on average.

2.4 iTerm-PseKNC

iTerm-PseKNC [18] is a support-vector-machine-based approach to identify transcrip-

tion terminators using pseudo-k-tuple nucleotide composition (PseKNC) as features.

PseKNC is a feature-generation technique. Their training data consisted of 280 ter-

minator and 560 non-terminator sequences from E. coli.

iTerm-PseKNC was evaluated by examining independent datasets representing

experimentally confirmed intrinsic terminators for E. coli and B. subtilis. The anal-

ysis correctly identified all terminators in E. coli and 87.5% in B. subtilis. Their

statistical results showed that the average lengths of terminators are around 50 bp.

They published their software online (http://lin-group.cn/server/iTerm-PseKNC/).
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2.6 OPLS - DA

Nadiras and colleagues[21] used a 104 set of in-vitro termination data of E. coli

MG1655 and S. enterica LT2 to develop an Orthogonal Projections to Latent Struc-

tures Discriminant Analysis (OPLS-DA) prediction method for Rho-dependent ter-

minators. Using jackknife cross-validation, they trained a 3-class classifier of “None”,

“Weak”, and “Strong” terminators. Nadiras and co-authors identified new factor-

dependent signals and quantitative sequence descriptors with significant predictive

value in biochemical and OPLS-DA analysis of previously uncharacterized genomic

sequences. Descriptors relevant to Rho-RNA interaction include C>G skewness, sec-

ondary structure, and richness in 6’-carbons and 5’-cysteine dinucleotides regularly

spaced. A collection of OPLS-DA descriptors yielded 85% accuracy in predicting

factor-dependent termination on 7-fold jackknife cross-validation on E. coli MG1655

and S. enterica LT2.

2.7 PASIFIC

PASIFIC (Prediction of Alternative Structures for the Identification of Cis-regulation)[22]

is an algorithm based on Machine Learning that predicts if a gene has the two alter-

native structures characteristic of riboregulators employing conditional termination,

given a 5’UTR of a gene. Effectively, it searches for terminator-antiterminator alter-

native structures. An anti-terminator will fold with one stem of the terminator and

hinder the terminator’s secondary structure from forming. An anti-antiterminator

13



Figure 2.4: Structures of anti-antiterminator and terminator. 2.7.

Figure by [22] (CC-BY 4.0).

will cripple the anti-terminator by folding with it. It frees up the terminator stem to

form a secondary structure that ends with poly U.

Their positive class included 312 regulators that had an intrinsic terminator be-

longing to 89 bacteria from Term-Seq [23]. Millman and co-authors achieved a high

specificity of 80.6% and sensitivity of 82.5% with their Random Forest classifier on

test data, which was 20% of the whole data. With the PASIFIC web application, new

riboswitches and attenuators can be identified within the bacterial pangenome.

2.8 RNIE

RNIE [24] is a probabilistic approach to predict intrinsic termination. RNIE perfor-

mance is 0.75 in Matthews Correlation Coefficient (MCC) against 485 terminators

of experimentally verified E. coli and B. subtilis. RNIE’s M. tuberculosis intrinsic

terminator predictions comprise 80-90% of all highly structured regions near M. tu-

berculosis gene termini. The software, predictions, and alignments are open-source
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and available at https://github.com/ppgardne/RNIE.

2.9 TransTermHP

TransTermHP [25] is a dynamic programming intrinsic terminator finder in bacteria.

The program goes through the genome and uses folding techniques to find a stable

secondary structure followed by a thymine-rich region. They calculate a score for each

hairpin secondary structure based on structural features like the length of the T-rich

and A-rich regions and feed that information into another function that outputs the

terminator quality.

2.10 Summary

This section reviewed different methods for predicting terminators in bacteria to find

what research gaps and limitations existed in the current approaches. Table 2.1

overviews the approaches reviewed in this section. Most of these tools focused on a

few bacterial species or were only suitable for predicting one of the terminator types:

factor-dependent or intrinsic terminators.
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Methods Year Factor Dep. (e.g. Rho) Method Software Avail. # of Exp. Terms. # of species

2.1 - TermNN [14] 2022 Intrinsic DL Yes 1175 2

2.2 - ITT pred [16] 2021 Intrinsic Statistical No 137 1

2.3 - iterb-PPse [13] 2020 Both ML No 928 2

2.4 - iTerm-PseKNC [18] 2019 Both ML Yes 852 1

2.5 - RhoTermPredict [20] 2019 Rho-dep. DP Yes 1298 3

2.6 - OPLS-DA [21] 2018 Rho-dep. ML Yes 104 2

2.7 - PASIFIC [22] 2017 Intrinsic ML Yes 330 89

2.8 - RNIE [24] 2011 Intrinsic DP Yes 1062 2

2.9 - TransTermHP [25] 2007 Intrinsic DP Yes N/A N/A

Table 2.1: Software for predicting prokaryotic terminators. The number

before the method name is the section in this chapter where that method is

discussed. # of Exp. Terms. indicates how many experimentally verified

terminators their software is trained/evaluated on. The # of species

indicates how many prokaryotes species were involved in their studies. DL

means Deep Learning, ML is Machine Learning, and DP is Dynamic

Programming.
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Chapter 3

Methodology

In this chapter, we first explain the data collection process. Then, we describe differ-

ent feature generation methods explored to represent the data. Lastly, we describe

alternative modelling techniques used to learn from the data.

3.1 Collecting BacTermFinder Dataset

The first step for our study was to collect genomic locations of bacterial terminators,

including both intrinsic and factor-dependent terminators. We call the resulting bac-

terial terminator dataset BacTermData. This section describes in detail the steps

taken to accomplish this.

3.1.1 Data Collection Pipeline

Figure 3.1 depicts our data collection pipeline. The following sections will provide

more details on each step.
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[33], DBTBS [34], and BSGatlasDB [35]. For each study, using the IPython Notebook

[36] and pandas data manipulation library [37], we stored the genomic locations of

identified TTSs (provided in the supplementary material of the corresponding pub-

lication) as Browser Extensible Data (BED) files [38]. With bedtools’ [39] slopeBed

and FastaFromBed commands, we extracted the genomic sequences corresponding

to 50 nts flanking the TTSs on either side into a FASTA file. In each operation,

strandedness was taken into account. Plasmids were disregarded from the terminator

data because plasmids can be transferred between bacterial species or taken from

the environment [40]. We also collected archaeal TTSs during this process and kept

these for testing the generalizability of the final terminator finder model. The most

challenging aspect during data collection was the lack of genome accession IDs in

the corresponding publications and of standardization in file formats and terminator

classification.

The studies included in our data set are listed in Table 3.1, and the corresponding

species with their number of experimentally verified terminators are listed in Table

3.2.

3.1.3 Hold-out For Comparative Assessment

The five bacteria shown in Table 3.3 are used as a hold-out for comparative assess-

ments of existing approaches. The held-out data were chosen because they have

diverse GC content, and a relatively small number of terminators were identified in

the corresponding study.
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3.1.4 Non-Terminator Data Generation

To train machine-learning-based models, instances of non-terminators of the same

length as the terminator-containing sequences are needed. We used bedtools shuffle

to randomly generate genomic coordinates different from the TTSs to obtain these

negative examples. We allowed a maximum sequence overlap between positive and

negative sequences of 20 nts. A ratio of 1-10 positive to negative was used. Chevez-

Guardado and Pena-Castillo [41] showed that there should be more negatives for each

positive to lower the false-positive rate during genome scan. Furthermore, the termi-

nator detection problem imposes a natural imbalance between terminator and non-

terminator sequences, as the estimated number of terminators in a bacterial genome

is relatively tiny compared to the number of possible non-terminator sequences of the

same length.

3.1.5 Confirming The ROI For Terminator Identification

To confirm that the terminator sequence pattern was within the 100 nts extracted, we

used relative nucleotide frequency graphs to visualize whether a distinct pattern was

present within this region. The relative nucleotide frequency for a specific position

was calculated by dividing the total count of each nucleotide in that position by

the number of terminators in that set and then applying a log function. The log2

ratio of the relative nucleotide frequency in the ROI vs random genomic regions for

each position and nucleotide was obtained by subtracting from the relative nucleotide

frequency in the ROI the relative nucleotide frequency in randomly selected genomic
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BacTermData consists of different types of bacteria terminators (intrinsic and

factor-dependent). Table 3.1 shows that BacTermData includes 22 species with vary-

ing GC content from three phyla (Pseudomonadota, Bacillota, Actinomycetota) ob-

tained from 26 studies. The total number of bacterial terminators is 46,386.

Test Data

We selected test data with diverse GC content and factor-dependent terminator ratio

(see Table 3.3). We call this dataset BacTermBench.

Two archaeal datasets were also used for testing BacTermFinder and TermNN to

compare the generalizability of these software on archaea.
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Study name PMC ID or DOI GEO or SRA or ENA project # Sequencing Tech.

Dar and colleagues [23] PMC5756622 PRJEB12568 Term-Seq

Dar and colleagues [42] 10.1038/nmicrobiol.2016.143 PRJEB12568 Term-Seq

Lee and colleagues [43] PMC8780764 GSE118597 Term-Seq

Lee er. al. [44] PMC6742748 PRJEB31507 Term-Seq

Hwang and colleagues [45] PMC8269248 GSE138325 Term-Seq

Ju and colleagues [26] PMC6814526 GSE117737 Send-Seq

Yan and colleagues [27] PMC6131387 GSE117273 SMRT-Cappable-seq

Adams. and colleagues [46] PMC7815308 PRJNA640168 Term-Seq

Choe and colleagues [47] PMC9023263 PRJEB36932 Term-Seq

Takada and colleagues [48] PMC9226507 GSE67058 Term-Seq

Mandel and colleagues [49] PMC8060035 GSE154522 Term-Seq

Johnson and colleagues [50] PMC7483943 GSE53767 GSE95211 Rend-seq

GSE108295

Hwang and colleagues [51] PMC8914203 PRJEB40918 Term-Seq

Vera and colleagues [52] PMC7566282 GSE139939 Term-Seq

Lee and colleagues [53] PMC7738537 PRJEB40918 PRJEB31507 Term-Seq

PRJEB36379 SRX6937123

SRX6937124 PRJEB36379

Thomason and colleagues [54] PMC6786874 PRJEB31965 Term-Seq

Mediati and colleagues [55] PMC9217812 GSE158830 Term-Seq

Warrier and colleagues [56] PMC6296669 SRP136114 Term-Seq

Lalanne and colleagues [57] PMC5978003 GSE95211 Rend-seq

Fuchs and colleagues [58] PMC8237595 GSE155167 RNAtag-Seq

Bastet and colleagues [59] PMC8745188 Available upon Request RNA-Seq

Slager and colleagues [60] PMC6212727 SRP063763 SMRT-Cappable-seq

Dar and colleagues [61] PMC6061677 GSE109766 Term-Seq

Al kadi and colleagues [62] PMC8577284 prjna775855 Direct RNA-seq

Table 3.1: PubMed Central (PMC) identifiers, data accession numbers and

sequencing technology per study used during data collection.
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Study Specie - Strain - Substrain Genome Accession # # of terminators GC content %

Dar and colleagues [23] and [42] Bacillus subtilis - 168 AL009126.3 1445 42.90%

Takada and colleagues [48], Mandel and colleagues [49] Bacillus subtilis - 168 NC 000964.3 4863 42.90%

Lalanne and colleagues [57], Geissler and colleagues [35]

Johnson and colleagues [50], de Hoon and colleagues [63]

Lalanne and colleagues [57] Caulobacter crescentus - NA1000 CP001340.1 341 66.22%

Fuchs and colleagues [58] Clostridioides difficile - 630 CP010905.2 1620 28.63 %

Forquet and colleagues [64] Dickeya dadantii - 3937 NC 014500.1 1782 55.50 %

Dar and colleagues [61] Escherichia coli - K-12 - BW25113 CP009273.1 631 50.06 %

Lalanne and colleagues [57], Johnson and colleagues [50] Escherichia coli - K-12 - MG1655 NC 000913.3 4083 50.07 %

Ju and colleagues [26], Santos-Zavaleta and colleagues [65]

Yan and colleagues [27], Adams. and colleagues [46]

Choe and colleagues [47]

Thomason and colleagues [54] Pseudomonas aeruginosa - PAO1 NC 002516.2 805 65.61 %

Mediati and colleagues [55] Staphylococcus aureus - JKD6009 LR027876.1 970 32.41 %

Bastet and colleagues [59] Staphylococcus aureus - NCTC 8325 NC 007795.1 320 32.40 %

Slager and colleagues [60] Streptococcus pneumoniae - D39V CP027540.1 686 39.14 %

Warrier and colleagues [56] Streptococcus pneumoniae - TIGR4 NC 003028.3 1783 39.13 %

Lee and colleagues [43] and [53] Streptomyces avermitilis - MA-4680 BA000030.4 2004 69.72 %

Hwang and colleagues [45] and Lee and colleagues [53] Streptomyces clavuligerus - ATCC27064 CP027858.1 1581 71.64 %

Lee and colleagues [53] Streptomyces coelicolor - M145 NC 003888.3 1308 71.10 %

Lee and colleagues [53] and Hwang and colleagues [51] Streptomyces griseus - NBRC13350 NC 010572.1 2722 71.21 %

Lee and colleagues [44] and [53] Streptomyces lividans - TK24 CP009124.1 1735 71.22 %

Lee and colleagues [53] Streptomyces tsukubaensis - NBRC108819 CP020700.1 1283 70.85 %

Lalanne and colleagues [57] Vibrio natriegens - ATCC 14048 CP009977.1 905 44.66 %

Lalanne and colleagues [57] Vibrio natriegens - ATCC 14048 CP009978.1 257 44.10 %

Al kadi and colleagues [62] Vibrio parahaemolyticus - O3:K6 - RIMD 2210633 NC 004603.1 1849 44.74 %

Vera and colleagues [52] Zymomonas mobilis - ZM4 = ATCC 31821 CP023715.1 2040 45.67 %

D’Halluin and colleagues [66] Mycobacterium tuberculosis - H37Rv AL123456 2202 64.69 %

Table 3.2: Number of experimentally verified terminators per species. The

number of terminators is the deduplicated number of Terminators. See Section

3.1.7 for more details.
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Study Specie - Strain Genome Accession # # of terminators GC % Seq. Tech.

Bacteria

Rosinski-Chupin and colleagues [67] Streptococcus agalactiae - NEM316 NC 004368.1 655 35.12 % dRNA-Seq

Lee and colleagues [53] Streptomyces venezuelae - ATCC15439 CP059991.1 870 70.73 % Term-Seq

Cho and colleagues [68] Synechocystis - PCC 6803 NC 000911.1 553 47.04 % Term-Seq

Jeong and colleagues [69] Synechocystis PCC 7338 CP054306.1 346 47.14 % Term-Seq

Halluin and colleagues [70] Mycobacterium tuberculosis H37Rv AL123456.3 2202 64.69 % Term-Seq

Archaea

Berkemer and colleagues [71] Haloferax volacno - DS2 NC 013967 1227 65.69 % Term-Seq

Li and colleagues [72] Methanococus maripaludis - S2 NC 005791 2354 32.63 % Term-Seq

Table 3.3: Selected bacteria and archaea for comparative assessment

3.2 Feature Generation and Engineering

There are several libraries or software (e.g., MathFeature [73], iLearnPlus [74], RepDNA

[75]) to generate features from DNA sequences. We decided to use ILearnPlus [74]

because it allows us to extract and analyze various sequence-based features. This

section describes how we generate and select the features used in our final model.

The ILearnPlus software was slightly modified to better generate features for large

amounts of data.

3.2.1 How To Represent Sequences For Machine-learning

The BacTermData consists of DNA sequences that are made up of ATCG charac-

ters. However, machine-learning methods expect to receive a numerical representation

of the sequences as input. There are many approaches to numerically representing

sequences, such as one-hot encoding, k-mer frequencies, etc. As it is not feasible
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to determine a priori which representation would generate the “best-performing”

machine-learning model, one needs to try out several distinct representations. Here,

the best-performing model refers to a model that maximizes a specific performance

metric, such as the f1-score or area under the precision-recall curve.

3.2.2 ILearnPlus

ILearnPlus is a comprehensive software for sequence analysis. It can generate fea-

tures, use unsupervised and supervised machine learning approaches and is user-

friendly. ILearnPlus feature generation capabilities were utilized to create features

from BacTermData. With ILearnPlus, we generated 6208 features. Some of these

features might not be informative to detect bacterial terminators and thus reduce the

signal-to-noise ratio in the data. We applied feature engineering and feature selection

methods to identify the informative features.

3.2.3 Feature Engineering And Selection

To measure the importance of the features, we used two methods together, SHapley

Additive exPlanations (SHAP) [76] and Gini measure of Light Gradient Boosting

Machine (LightGBM) [77]. We used an iterative algorithm to drop features if both

feature importance methods agree on dropping them (i.e. for both feature impor-

tances, the features should be in the bottom 20% after sorting the features based

on their importance). Then, we trained a new model with a smaller feature set to

recalculate the feature importance values and remove features in the bottom 20%.
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SHAP

SHAP (SHapley Additive exPlanations) [76] is a method used to explain the output

of any machine learning model. Shapley values are an assessment method used in

cooperation theory; each player is given a value equal to the amount they contribute

individually toward the overall goal. In machine learning, SHAP assigns a value to

each feature that corresponds to its importance in making predictions. By observ-

ing the behaviour of a model, we can learn what features drive its output and how

important each feature is in making a specific prediction. In addition to offering a

more intuitive way of comparing different models, SHAP can also measure the relative

importance of features across different models. Unlike traditional feature importance

methods (such as permutation and gain), SHAP is accurate at determining local fea-

tures [76]. We used the SHAPTreeExplainer function to assess how each feature is

helping to detect terminators. The function would result in a real number of positive

and negative effects for each class. We used the absolute of those values for each

MCCV’s test set.

LightGBM Feature Importance

LightGBM [77] is an efficient and scalable gradient-boosting framework that uses tree-

based learning algorithms. LightGBM can calculate the feature importance by using

gain (Gini index) or split. Gain calculates how much information is gained in each

when splitting. In the split, the frequency of the features is counted and reported as

important. We used the split to calculate the importance. The split method presumes
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that the more frequent feature is the more important one.

Figure 3.5: Average precision (an estimate of AUPRC) as a function of the

number of features included in the training set. Each dot indicates an iteration of

the algorithm used to remove unimportant features. The shaded area is the

standard deviation of 10 folds.

Six-Feature-set and Full-Feature-set

Generating the 1696 features with ILearnPlus is computationally intensive (roughly,

it processes 30 sequences/second in a High-Performance Computing Cluster (High

Performance Computing (HPC) cluster). Intending to reduce the computational re-

quirements, we selected the most important feature sets even after filtering out the
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Feature set Descriptor group # of important features Description

Geary Autocorrelation 255 The distribution of amino acid

properties throughout the sequence [78].

NMBroto Autocorrelation 255 The distribution of amino acid

properties throughout the sequence [79].

ENAC Nucleic acid composition 251 Computes the frequency of each nucleic acid type

using a sliding sequence window [80].

PseKNC Pseudo nucleic acid composition 181 K-tuple nucleotide composition [81, 82].

SCPseDNC Pseudo nucleic acid composition 104 Series correlation pseudo dinucleotide

composition information [81, 82].

TACC Autocorrelation and cross-covariance 100 The relationship between either the same or different

physicochemical indices for trinucleotides separated by

a lag distance along the sequence [81].

SCPseTNC Pseudo nucleic acid composition 70 Correlation pseudo trinucleotide composition [81, 82].

PCPseTNC Pseudo nucleic acid composition 60 Considers parallel correlation pseudo

trinucleotide composition information [81, 82].

DACC Autocorrelation and cross-covariance 57 The relationship between either the same or different

physicochemical indices for dinucleotides separated by

a lag distance along the sequence [81, 83, 84].

Z curve 144bit Nucleic acid composition 56 Frequencies of phase-specific tri-nucleotides [85].

Mismatch Nucleic acid composition 43 The occurrence of kmers, allowing at most m mismatches [86].

PS2 Residue composition 41 Encoded 16 pairs of adjacent

pairwise nucleotides (dinucleotides) [86, 87].

CKSNAP Nucleic acid composition 39 K-spaced nucleic acid pairs [80].

NCP Nucleic acid composition 35 Nucleotide chemical property [88].

ANF Nucleic acid composition 28 Accumulated nucleotide frequency [88].

MMI Mutual information 26 Multivariate mutual information [89].

binary Residue composition 22 Each amino acid is represented

by a 4-dimensional binary vector [90, 91].

RCKmer Nucleic acid composition 19 Reverse complement kmer [92, 93].

Z curve 48bit Nucleic acid composition 18 Frequencies of phase independent tri-nucleotides [85].

PCPseDNC Pseudo nucleic acid composition 17 Parallel correlation pseudo dinucleotide composition [75, 82].

Z curve 9bit Nucleic acid composition 9 Phase-specific mononucleotides [85].

LPDF Nucleic acid composition 8 Local position-specific dinucleotide frequency [94].

Table 3.4: Table of selected important features based on SHAP and Feature

Importance of LightGBM
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unimportant features. A feature set contains the features created by one feature gen-

eration method. For example, the PS2 method generates 16 features per nucleotide,

and all 64 generated features comprise the PS2 feature set. Figure 3.6 shows the PS2

embedding and the nucleotide frequency of all terminators side by side. Initially, we

were computing 28 feature sets, and after feature selection, 22 feature sets remained.

We selected the six feature sets that comprised 60% of the 1696 features and called

it the Six-Feature-set.

3.3 Machine Learning Modelling

This section describes how we trained ML methods, what methods were used, and

how we did the validation and comparative assessments with existing approaches.

3.3.1 Training Methods

We used Stratified Monte Carlo cross-validation (SMCCV) [95] to select the opti-

mal hyperparameters of the models. Monte Carlo cross-validation is a method that

will randomly determine the training and validation set in different iterations. The

positive-to-negative data ratio is maintained in each iteration as it is stratified. We

used SMCCV with 100 folds and 10 iterations to find the optimal hyper-parameters

for the models. With 100 folds, 99 % of the data would be for training and the

remaining for testing. With 10 iterations, different test sets were chosen each time,

resulting in a better representation of the whole data for the test set.
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a)

b)

c)

Figure 3.6: Nucleotide frequency and PS2 embedding side by side. A) shows

nucleotide frequency of all of BacTermData. B) shows the PS2 embedding

normalized row-wise, and C) shows the same, but normalized column-wise, for

visualization purposes.
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3.3.2 Machine-learning Approaches Used

Deep learning models were utilized as they have been shown to perform well in various

domains [96]. We also used Boosting models because of their ability to handle tabular

data better than other techniques [97].

Deep Learning Models

Deep Learning (DL) models are Neural Networks with many layers. As a rule of

thumb, ML practitioners call a Neural Network with more than three layers a Fully

Connected Neural Network (FCNN). Different Neural Network architectures can be

leveraged to classify sequences, such as Convolutional Neural Networks (CNN) [96],

Recurrent Neural Networks (RNNs) [96], and Transformers [98].

FCNN: A Fully Connected Neural Network FCNN, often called a Deep Learning

model, is a class of artificial neural networks designed to model and analyze complex

relationships in data. Unlike traditional neural networks, FCNNs are characterized by

their depth, comprising multiple hidden layers between the input and output layers.

CNN: A Convolutional Neural Network (CNN) is a deep learning architecture

designed primarily for processing structured grid-like data, such as images. CNNs

use sliding learnable kernels in their core to find patterns inside the data and often

utilize some dense layer to classify the results. In 1D convolution, a 1D data vector

is used as input to the model to process the numerical encoding of a sequence.

We started by trying PromotechCNN [99] architecture out of the box. Pro-

motechCNN [99] architecture is designed to tackle separated patterns with its dilated
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CNN layers. Then, we added dense layers after the dilated CNNs to improve classi-

fication. We also tried a simple CNN such as the one used in TermNN and scaled it

up by adding more layers and filters. We varied the sequence encodings, kernel sizes,

pooling layers, regularization strategies, and ways to combine CNNs to find the ar-

chitecture that maximized AUPRC through trial and error. The list below describes

the various architectures that were tried.

• CNN

– Single: A series of CNNs layers followed by multiple layers of FCNN,

using a single feature set, either One Hot, ENAC, PS2, PS3, or NCP.

– Append: Different feature sets appended together as input of a series of

CNNs, followed by multiple layers of FCNN.

– Fusion: Combining the results of different feature set’s CNNs during the

training.

∗ Single CNN: Four different embeddings (One Hot, ENAC, PS2,

NCP) were fused to a 6-Feature-set, one at a time, resulting in 4

different models: One CNN per Feature set connected to layers of

FCNN.

∗ All CNNs: Features (One Hot, ENAC, PS2, NCP) as inputs to CNNs

then concatenated to fed into FCNN layers.

– Ensemble: The outputs of single CNNs (one per feature set) trained

separately were averaged to obtain an aggregated output. One CNN block
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out of 4 blocks is described in Figure 3.7.

• FCNN

– Cat-1696: 1696 features as input of layers of FCNN. The code for the

architecture is available in Figure 3.8.

– 6-Features-set: A multi-layer FCNN is trained with the 6-Feature-set as

input.

Boosting models

LightGBM [77] is a gradient-boosting framework that has gained popularity due to its

efficiency and high performance. It combines multiple decision trees with the gradient

boosting technique and is well-suited for large datasets. LightGBM [77] introduces

innovative features like histogram-based learning and leaf-wise growth, making it

faster and more memory-efficient than traditional gradient-boosting algorithms [97,

101].

Figure 3.9 shows the range of the hyperparameters considered to optimize Light-

GBM models. We used Randomized Cross-validation with 50 iterations to find the

best hyper-parameters. We used the Python LightGBM implementation version 3.3.3.
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x = Conv1D(filters=64, kernel_size=10, activation=’PReLU’,

input_shape=shape,)(input)

x = AveragePooling1D(pool_size=(2))(x)

x = Conv1D(filters=64, kernel_size=10, activation=’PReLU’,)(x) #

going every ten bases

x = AveragePooling1D(pool_size=(2))(x)

bn_2 = tf.keras.layers.BatchNormalization()(x)

x = Conv1D(filters=64, kernel_size=10, activation=’PReLU’,)(bn_2) #

going every ten bases again to have a wide view of the sequence

d_3 = Dropout(0.1)(x)

x = Flatten()(d_3)

h_1 = Dense(500, activation=’PReLU’)(x)

d_3 = Dropout(0.3)(h_1)

h_2 = Dense(600, activation=’PReLU’)(x)

d_3 = Dropout(0.3)(h_2)

output = Dense(600,activation="PReLU")(d_3)

output = Dropout(0.3)(output)

output = Dense(200, activation=’PReLU’)(output)

output = Dropout(0.4)(output)

output = Dense(200, activation=’PReLU’)(output)

output = Dropout(0.4)(output)

output = Dense(1, activation=’sigmoid’)(output)

Figure 3.7: The code describing a single CNN block out of many CNN blocks

followed by FCNNs in Python3 Keras [100]
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h_3 = Dense(400, activation=’relu’)(categorical_input)

d_4 = Dropout(0.3)(h_3)

h_4 = Dense(400, activation=’relu’)(d_4)

d_5 = Dropout(0.3)(h_4)

h_4 = Dense(400, activation=’relu’)(d_5)

d_5 = Dropout(0.3)(h_4)

h_4 = Dense(400, activation=’relu’)(d_5)

d_5 = Dropout(0.3)(h_4)

h_4 = Dense(400, activation=’relu’)(d_5)

d_5 = Dropout(0.3)(h_4)

h_4 = Dense(400, activation=’relu’)(d_5)

d_5 = Dropout(0.3)(h_4)

h_4 = Dense(400, activation=’relu’)(d_5)

d_5 = Dropout(0.3)(h_4)

output = Dense(200, activation=’PReLU’)(d_5)

output = Dropout(0.4)(output)

output = Dense(200, activation=’PReLU’)(output)

output = Dropout(0.4)(output)

output = Dense(1, activation=’sigmoid’)(output)

Figure 3.8: The code describing single FCNNs in Python3 Keras [100]
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’n_estimators’: [1000, 2000, 3000],

’max_depth’: list(set([randint(3, 12) for _ in range(5)])),

’learning_rate’: [0.1, 0.01, 0.001],

’num_leaves’: [2**i for i in range(4, 8)],

’boosting’ : [’gbdt,’ ’goss’],

’subsample’: [0.5, 0.7, 1],

’min_child_weight’: [1, 3, 5],

’feature_fraction’: [0.7, 0.8, 0.9, 1],

’n_jobs’: [-1],

’random_state’: [42],

Figure 3.9: Hyperparamter ranges for the LightGBM model.

3.3.3 Performance Data Analysis

We used SMCCV to assess the models’ performance. Then, different metrics were

extracted per species, studies, strands, and GC content. We calculated score thresh-

olds for classification that maximize the F0.5, F1, and F2 scores. The performance

metrics used are described below.

Average Precision

AP = ∑n(Rn −Rn−1)Pn

where Rn and Pn are the precision and recall at the nth threshold. Recall measures

the proportion of actual positive instances correctly identified by a model, while
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precision measures the proportion of predicted positive instances that are actually

true positives.

F-score

FScore = (1 + β2) 2∗Precision∗Recall
β2
∗Precision+Recall

where β can be 0.5, 1, or 2 for the corresponding F Score.

Recall

Recall is used for comparative assessment (Section 3.3.4) of selected existing meth-

ods. The recall formula is as follows:

Recall = TP
TP+FN

Where TP is True Positive, and FN is False Negative

3.3.4 Comparative Assessment

We compared BacTermFinder’s performance with state-of-the-art approaches for bac-

terial terminator identification. We selected these approaches based on software avail-

ability, number of citations, publication year and ability to find different kinds of

terminators. Table 3.5 lists the approaches used for the comparative assessment.

Performance Metrics In Comparative Assessment

As there is no set of experimentally verified non-terminators across whole bacterial

genomes, we assessed each existing method’s performance with the average recall

over different overlapping thresholds between the actual and predicted terminator
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Methods Year Factor Dep. (eg. Rho) Method Software Avail. # of Exp. Terms. # of species

2.1 - TermNN [14] 2022 Intrinsic DL Yes 1175 2

2.4 - iTerm-PseKNC [18] 2019 Both ML Yes 852 2

2.5 - RhoTermPredict [20] 2019 Rho-dep. DP Yes 1298 3

2.9 - TransTermHP [25] 2007 Intrinsic DP Yes N/A N/A

Table 3.5: Methods used for the comparative assessment. “# of Exp. Terms.”

is the number of experimental terminators used to train the algorithm, if

applicable, and the “# of species” is the number of species the algorithm was

trained on.

locations. The method that generates fewer predictions with higher recall would

have fewer false positives among its predictions. We averaged the recall over ten

thresholds of percentage sequence overlap between the predicted and experimentally

verified terminators in the hold-out data. The overlap thresholds ranged from 10

percent to 100 percent overlap.

3.4 Summary

This chapter covered data collection, feature generation, and machine learning mod-

elling. At first, the BacTermFinder dataset is explained, including genomic locations

of bacterial terminators from various sources, and a detailed data collection pipeline

is outlined. Then, a hold-out dataset is designated for comparative assessments, and

non-terminator data is generated for machine learning training. Data quality control

measures involving nucleotide frequency analysis and deduplication were described.
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Following data preparation, the chapter goes into feature generation and engineer-

ing using ILearnPlus, emphasizing the numerical representation of DNA sequences for

machine learning. Feature engineering involves selecting informative features and re-

ducing the initial set of 6208 features to 1696 using SHAP and LightGBM feature

importance measures. The chosen features are then utilized for training machine

learning models.

The machine learning section introduces Stratified Monte Carlo cross-validation

for hyperparameter optimization and explores deep learning models such as Fully

Connected Neural Networks (FCNN) and Convolutional Neural Networks (CNN).

LightGBM, as a statistical machine learning method, was also employed for its ef-

ficiency in handling tabular data. The evaluation metrics encompass Average Pre-

cision, F0.5, F1, and F2 scores, while the comparative assessment involves bench-

marking BacTermFinder against existing approaches, considering recall over various

sequence overlap thresholds between the experimentally determined terminators and

the predicted terminators.
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Chapter 4

Results and Discussion

This section shows the results of our data processing and modelling. Additionally, we

provide the results of the comparative assessment of our method (BacTermFinder)

and other approaches. Finally, we interpret these results and discuss some limitations

of our method.

4.1 Finding The Region Of Interest To Identify

Terminators

Based on the nucleotide frequency plot (Figure 4.1) explained in section 3.1.5, we

observe that after 20nts downstream of the Transcription Termination Site (TTS),

there is no observable pattern. That enabled us to select 100 base-pair long sequences

with the TTS in the middle as the regions of interest.
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Figure 4.1: Log2 Ratio of the nucleotide frequency aggregated on all terminator

sequences in BacTermData

4.2 Model Selection

We comprehensively assessed various Machine Learning (ML) approaches and se-

quence encodings combinations. This assessment involved training these models using

Stratified Monte-Carlo Cross Validation (SMCCV). The outcomes of this evaluation

are presented in Table 4.1, and they indicate that an ensemble consisting of different

Convolutional Neural Networks (CNNs) achieves an average precision of 0.7080 ±

0.0248, outperforming individual CNNs and LightGBM classifiers.

While the Light Gradient Boosting Machine (LightGBM) demonstrated perfor-

mance comparable to that achieved by single CNNs, LGBM requires 1696 features

to achieve this performance. Acquiring and processing such a large feature set is

resource-intensive and costly. In contrast, some DL models outperformed LGBM

models using a single feature set.

In our assessment, we observed the effect of network architectures. For example,
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ML Method Model Name Features Average Precision (± STD)

CNN Fusion all PS2, ENAC, OH, and 6-feature-set 0.5955 ± 0.0232

CNN Fusion single OH and 6 feature set 0.6553 ± 0.0252

CNN Append PS2, ENAC, OH, and 6 feature set 0.5949 ± 0.0257

CNN Single PS2 0.6738 ± 0.0253

CNN CNN Single PS3 0.6128 ± 0.0213

CNN Single OH 0.6775 ± 0.0214

CNN Single ENAC 0.6544 ± 0.0284

CNN Single NCP 0.6730 ± 0.0243

CNN Ensemble Mean of PS2, ENAC, OH, NCP 0.7080 ± 0.0248

FCNN FCNN Cat 6 feature set 0.5012 ± 0.0319

LGBM LGBM Feature set 6 feature set 0.5933 ± 0.0269

LGBM Full 1696 features 0.6476 ± 0.0217

Table 4.1: The table of SMCCV results on training data.

the models CNN Fusion all and CNN Ensemble use similar feature sets and differ

in their architecture. CNN Fusion all concatenates the outputs of CNNs on each

feature while training, while CNN Ensemble trains a separate CNN per feature set

and then averages their output after training is done. This difference resulted in

an approximate 0.11 improvement in average precision (from 0.59 to 0.70). As the

CNN Ensemble model has the highest average precision, we selected this as our final

model (referred to as BacTermFinder).

We investigated the performance of the BacTermFinder per bacterium. We ag-

gregated all SMCCV results across all iterations for each bacterium and visualized

the results (Figure 4.2). As can be seen from this figure, there is a wide range ([0.49,
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Figure 4.2: BacTermFinder performance per bacterium. Colouring indicates

performance ranking where dark red means the highest average precision, dark

blue means the lowest average precision and white means closer to the overall

average precision. Table 3.1 has the mapping of genome accession to the

corresponding species name.

0.97] and [0.36, 0.94]) in performance per bacterium in terms of average precision and

F1 score, respectively. Figure 4.3 shows the Precision-Recall curve and Receiver Op-

erating Characteristic Receiver-Operating-Characteristic curve (ROC) curve of Bac-

TermFinder over all iterations of SMCCV. Clearly, BacTermFinder’s performance is

well above a random classifier’s performance (dashed lines in Figure 4.3).

To look further into the variation in performance across bacterial species, we vi-

sualized the average precision per bacterium vs their GC content and coloured it by

the phylum to see if there was any pattern. A linear regression line in Figure 4.4

indicates a relationship between GC content and average precision. As the GC con-

tent in different genomes increases, the performance decreases slightly. For a 10 %
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increase in GC content, the average precision decreases by 0.038. This indicates that

BacTermFinder tends to achieve higher average precision in bacteria with lower GC

content. Bacteria with high GC content tend to have more factor-dependent termi-

nators [66] and the rut site is likely outside our ROI. Factor-dependent terminators

do not always have the hairpin structure of intrinsic terminators [102], and thus, their

sequence motif is weaker, which might explain why BacTermFinder’s performance is

lower on this type of bacteria. In Figure 4.4, we also observe that BacTermFinder’s

performance is more consistent (with less variation) for Bacilota and Actinomycetota

than for Pseudomonadota. Further investigation is needed to understand the reasons

for this. Figure 4.5 shows the same plot as 4.4 but is coloured based on individual

genome accession numbers.

4.3 Finding The Threshold For Classification

We established our model selection criteria, primarily focusing on threshold-independent

metrics, such as the Average Precision score. This strategic choice ensured that our

model selection process remained impartial and not inclined toward any specific class

within the imbalanced classification. However, a set probability threshold is usually

desired to decide whether a sequence is a terminator.

Consequently, we adopted the F1 score to determine a decision threshold to classify

sequences into terminators and non-terminators. We examined our Stratified Monte-

Carlo Cross Validation SMCCV results to identify an optimal threshold, seeking

thresholds that maximized the F1, F0.5, and F2 scores. We opted for an F1 score
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with a maximum threshold of 0.30 to balance precision and recall.

To assess the biological validity of our prediction with this threshold, we generated

a visual representation; a sample of it is shown in Figure 4.6, where our predictions

are represented in blue and actual genes are depicted in solid red across the lines

of the genome. The horizontal red dashed line represents the 0.30 threshold. An

IPython notebook is available on our GitHub repository for those interested in ex-

ploring these predictions in greater detail. Our observation revealed terminators with

high probabilities located at the end and middle of genes. Terminators in the middle

of genes might be due to the existence of small unannotated transcripts. However,

further investigation is needed to explain this observation. For instance, one could

look at codon usage frequency before terminators in the middle of genes vs similar

regions in genes without terminators in the middle.

4.4 Interpreting BacTermFinder Model

Once we have chosen the BacTermFinder final model (i.e., CNN Ensemble), we tested

this model on an independent set of terminators from bacteria not included in the

training data (Table 3.3). First, we looked at whether predicted terminators have a

nucleotide frequency similar to experimentally verified terminators. As it can be seen

from Figure 4.7 for Streptococcus agalactiae, the nucleotide frequency of predicted

terminators is very similar to that of experimentally verified terminators. The line

smoothness of Figure 4.7(b) is due to being a larger number of predicted terminators

(12,813) vs experimentally validated terminators (655).
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The saliency map (Figure 4.7(c)) shows how each nucleotide is responsible for the

model’s decision. Negative numbers reduce the probability of being a terminator,

while positive numbers increase the probability of being a terminator. Figure 4.8

shows the same analysis for the archaea Methanococus maripaludis, suggesting that

BacTermFinder can detect archaeal terminators.

These results indicate that BacTermFinder prediction has similar sequence motifs

to experimentally determined terminators and that BacTermFinder is also suitable

for finding archaeal terminators.

4.5 Comparative Assessment

We tested several Bacterial Terminator Finder programs on BacTermBench data to

compare BacTermFinder’s performance with that of existing methods. These software

were executed for the whole genome of each bacterium, and the results were compared

with the experimentally determined data of BacTermBench. The intersection of the

predicted results and BacTermBench was used to calculate a recall score. We ran

bedtools intersect with ten different overlap thresholds between predicted terminators

and actual terminators to calculate recall at different overlaps and reported the mean

recall in Table 4.2.

We then used the best two programs as per the results shown in Table 4.2 (TermNN

and BacTermFinder) and RhoTermPredict to predict terminators of Mycobacterium

tuberculosis. RhoTermPredict was included in this comparison because M. tuberculo-

sis is reported to have a large proportion (up to 54%) of factor-dependent termina-
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tors [66]. As RhoTermPredict was designed to predict factor-dependent terminators,

we expected it would work well for this bacterium. Table 4.3 shows the results of

this comparison. This result indicates that BacTermFinder’s performance in finding

factor-dependent terminators is comparable to RhoTermPredict, which was developed

specifically to identify factor-dependent terminators. Finally, we used TermNN and

BacTermFinder to predict archaea terminators to test the generalizability of these

models (Table 4.4).

Bacteria Specie RhoTermPredict ITerm-PseKNC TransTermHP TermNN BacTermFinder

Streptococcus agaletea 0.0188 ± 0.0062 0.2402 ± 0.1256 0.5596 ± 0.2656 0.7715 ± 0.3196 0.8209 ± 0.3002

NC 004368.1 - GC=35.12 %

Streptomyces venezuela - (gardneri) 0.2499 ± 0.1263 0.0101 ± 0.0042 0.1709 ± 0.1035 0.3690 ± 0.2227 0.6029 ± 0.2177

CP059991.1 - GC=70.73 %

Synechocytis 6803 0.1210 ± 0.0789 0.1012 ± 0.0544 0.2226 ± 0.1035 0.4817 ± 0.2427 0.5450 ± 0.1818

NC 000911.1 - GC=47.04 %

Synechocytis 7338 0.1040 ± 0.0443 0.1178 ± 0.0523 0.2786 ± 0.1488 0.5136 ± 0.2643 0.6361 ± 0.2206

CP054306.1 - GC=47.14 %

Table 4.2: Average of recall over ten overlap threshold for the existing

approaches running with bacterial data.

Bacteria Specie RhoTermPredict TermNN BacTermFinder

Mycobacterium tuberculosis H37Rv 0.2424 ± 0.164 0.1396 ± 0.0927 0.2306 ± 0.1191

AL123456.3 - GC=64.69 %

Table 4.3: Average of recall over ten overlap threshold for the best

factor-dependent and intrinsic terminator finder as per Table 4.2 compared with

BacTermFinder for Mycobacterium tuberculosis.
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Archaea Specie TermNN BacTermFinder

Haloferax volacno 0.1536 ± 0.1067 0.3158 ± 0.1969

NC 013967 - GC=65.69 %

Methanococus maripaludis 0.4000 ± 0.2235 0.5712 ± 0.2468

NC 005791 -GC=32.63%

Table 4.4: Average recall over ten overlap threshold for the best two approaches

trained on bacterial data.

4.6 Comparative Assessment Discussion

Some of the software included in this comparative assessment was designed to identify

only one type of terminator, and some of their low recall scores in Table 4.2 can be

caused by this. We observed that RhoTermPredict performs better in the higher GC

bacteria, which tend to have a larger proportion of factor-dependent terminators [66].

ITerm-PseKNC and BacTermFinder are the only software that predicts both types

of terminators. ITerm-PseKNC has low recall across all bacteria on BacTermBench,

but its recall is an order of magnitude lower on Streptomyces venezuelae with the

highest GC content (70.7%). Our performance also decreases in higher GC bacteria.

One of our limitations could be that we are not finding factor-dependent terminators

effectively. TransTermHP achieves its highest recall in the low GC bacteria because

they would have more intrinsic terminators. As shown in Table 4.4, we perform better
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Figure 4.9: Recall as a function of percentage overlap between predicted and

actual terminators. All sequences are 100 nts long. The dotted lines are TermNN,

and the solid lines are BacTermFinder. Each colour represents a bacterial species

in the test dataset. The area under the curves is shown in the legend.

than TermNN in predicting archaeal terminators. This indicates that our software

is not only bacteria agnostic, but it could be prokaryote agnostic as well. Including

archaeal terminators in the training, data could aid in improving the performance of

BacTermFinder in these prokaryotic organisms.

We assessed the precision of our predictions by averaging various overlaps between

predicted and experimental terminators. This allowed us to gauge the preciseness of

our predictions and determine how closely they aligned with the actual terminator

location. To visualize these results, we plotted the recall rate as a function of the

overlap percentage of the predicted terminators with the actual terminators (Figure

4.9). We hypothesized that we would observe a declining trend as we moved towards

stricter overlap thresholds. In Figure 4.9, we compared our overlap vs recall with that
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Figure 4.10: Box plot of predicted terminator per gene on BacTermBench. The

horizontal line inside each box indicates the median value, and the bottom and

top of each box indicate the 25 and 75 percentile, respectively

of TermNN. Figure 4.9 shows that 1) on every overlap threshold, BacTermFinder has

a higher recall than TermNN, and 2) BacTermFinder’s recall drops at higher over-

laps than TermNN’s recall. The latter indicates that BacTermFinder can find the

location of terminators more accurately than TermNN. However, BacTermFinder’s

recall sharply decreases at overlap thresholds of 0.9 and 1.0, which suggests the po-

tential need for a nucleotide-wise segmentation approach to achieve accuracy at the

nucleotide level.

As we have an incomplete annotation of all terminators in any given bacterial

genome, it is not easy to estimate the false positive rate of the software since a predic-
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tion might indeed be correct even though a terminator might not have yet been deter-

mined experimentally in that location. However, the number of predicted terminators

per gene can provide an estimate of the number of false positives. Figure 4.10 shows

the distribution of number of terminators predicted per gene for bacterial species

included in BacTermBench data by TermNN, RhoTermPredict and BacTermFinder.

BacTermFinder displays less variation in the number of predicted terminators per

gene across bacterial species. BacTermFinder predicts, on average, 6.62 ± 1.18 ter-

minators per gene, while TermNN and RhoTermPredict predict 8.89 ± 3.52 and 4.30

± 3.20, respectively. This result and the results provided in Table 4.2 suggest that

BacTermFinder’s false positive rate is lower than that of TermNN while achieving a

higher recall rate.

Figure 4.11: Recall versus top n percent of predictions.
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that BacTermFinder-predicted terminators are closer to the end of the genes than

TermNN-predicted terminators.

4.7 Running Time And Hardware Specifications

The computational requirements and efficiency of BacTermFinder are as follows:

• CPU - Efficiency with eight cores = 40.13%

• RAM - with 10k batches for feature generation: Less than 27.65 GB

• Disk - 2.5 GB for 2 Million base pairs

• Time - 3285 seconds for 2 million base pairs with 10k batch size.

• Average speed 530 100nt-sequences per second
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Chapter 5

Conclusion

In this chapter, we list the main contributions of this research project, then discuss

the limitations of BacTermFinder, pointing out avenues for future work.

5.1 Summary of Contributions

1. BacTermData: BacTermData is, to our knowledge, currently the largest data set

of experimentally verified terminators in bacteria gathered from high-throughput

sequencing technologies. This comprehensive dataset includes various sequenc-

ing technologies and terminators from diverse bacteria as the data source. We

expect this data to be valuable for further developments and analyses.

2. Insights into relevant features for identifying bacterial terminators: We have

ranked features based on their relevance for identifying bacterial terminators.

This ranking provides insights into the features one should explore for this task.
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3. BacTermFinder: BacTermFinder is a general model for finding bacterial ter-

minators, and we have shown that it performs better in terms of recall than

other existing software in an independent validation data set containing bacte-

rial and archaeal terminators (BacTermBench). BacTermFinder’s average recall

over bacterial datasets is 0.5671 ± 0.1919, and TermNN (the second-best soft-

ware) recall is 0.4550 ± 0.2055. BacTermFinder recall in all prokaryotic data

(bacterial and archaeal) is 0.5317 ± 0.1846, and TermNN’s is 0.4041 ± 0.2024.

4. Insights into terminator motifs: With the saliency maps of our BacTermFinder

model, we could see what nucleotides and positions are more important to

recognize a bacterial terminator.

5. Generalizability of BacTermFinder to Archaea: Our BacTermFinder can classify

terminators in Archaea, a separated domain of prokaryotes. This suggests simi-

larities between bacterial terminators and archaeal terminators, and our model

can find both even though archaeal data was not included in the training.

5.1.1 Limitations

Our work has limitations, but it opens new research doors for BacTermFinder2. Some

of those limitations are:

• Small region of interest (100 bp) that does not include factor binding sites, like

the Rho binding site.

• Computational efficiency could be improved. New methods like quantization
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and knowledge extraction could be done to make the prediction faster. Also,

feature generation can be done more efficiently by utilizing GPUs.

• Inability to determine the terminator type: BacTermFinder can find both ter-

minator types but does not indicate which type is found. With new data or

different AI explainability methods, this could be achievable.
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Sánchez-Pérez, Laura Gómez-Romero, Daniela Ledezma-Tejeida, Jair San-
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