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Abstract

K. Shimizu has proved that, in a braided finite tensor category over an algebraically closed

field, the triviality of the Müger centre implies that a certain Hopf pairing is non-degenerate.

It is an open question whether the hypothesis that the base field is algebraically closed is

necessary. In this thesis, we show, following some unpublished notes of Y. Sommerhäuser

and his coauthors, that this hypothesis is indeed not necessary in the case of the category of

finite-dimensional modules over a finite-dimensional quasitriangular ribbon Hopf algebra H.

In this category, the coend can be constructed as the dual space of H.

We first review some basics of category theory, the construction of a coend as a categorical

Hopf algebra, and duals and homomorphic images of categorical Hopf algebras. We then

prove the result mentioned above. We conclude by constructing an example of a similar

category where the dual space fails to be a coend.
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Statement of contribution

The material in Chapter 1 is standard and can be found in many textbooks, for example

in [5], [9], and [13]. The material in Chapter 2 is more recent, but can now also be found in

textbooks, for example in [6]. In Chapter 3, we provide a detailed proof of a frequently needed

fact for which we are not aware of a reference in the literature, namely Theorem 3.2.3. This

result was obtained during joint sessions with my supervisor. The main result of Chapter 4

is Theorem 4.6.1, which is taken from unpublished notes of the authors of [7]. In Chapter 5,

I supplied the proof of Proposition 5.2.2. This result plays a role in the construction of the

non-example in 5.3, which was again obtained during joint sessions with my supervisor.
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Chapter 1

Category theory

This chapter provides a review of the basics of category theory, along with some related

preliminary concepts.

1.1 Categories, functors, and natural transformations

We begin with the formal definition of a category.

Definition 1.1.1. A category C consists of a class Ob(C), whose elements are called the

objects of C; a class Hom(C), whose elements are called the morphisms of C; and maps

id : Ob(C) → Hom(C)

dom: Hom(C) → Ob(C)

cod: Hom(C) → Ob(C)

◦ : Hom(C)×Ob(C) Hom(C) → Hom(C),

where

Hom(C)×Ob(C) Hom(C) = {(f, g) ∈ Hom(C)× Hom(C) : dom f = cod g},

satisfying the following axioms:

1. For all objects X ∈ Ob(C),

dom(idX) = cod(idX) = X.
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2. For all morphisms f ∈ Hom(C) with dom f = X and cod f = Y ,

idY ◦ f = f ◦ idX = f.

3. For all morphisms f, g, h ∈ Hom(C) with dom f = cod g and dom g = codh,

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Note that id(X) is denoted by idX . For any objects X, Y ∈ Ob(C), we denote by

Hom(X, Y ), or HomC(X, Y ) if the category is to be emphasized, the class of all morphisms

f ∈ Hom(C) with dom f = X and cod f = Y . We also write f : X → Y to indicate that

f ∈ Hom(X, Y ). We call these classes hom-sets, despite the existence of categories for which

the hom-sets are proper classes. See, for instance, functor categories in [9, Ch. II.4, p. 41].

We will refer to the objects in Ob(C) simply as objects in C, and the morphisms in Hom(C)

as morphisms in C.

One immediate example of a category is the category Set of sets together with functions

between sets. Categories are particularly useful for describing sets with a mathematical

structure, together with morphisms that preserve the structure. Some examples include the

category of groups together with group homomorphisms; the category of vector spaces over a

field K together with K-linear maps; the category of left A-modules, where A is an algebra,

together with A-linear maps; the category of topological spaces together with continuous

functions; and so on. The composition in each of the above categories is simply composition

of functions.

Every category C gives rise to a second category, known as the opposite category Cop. Its

objects are the objects of C, and its morphisms are obtained by “reversing the arrows.” In

other words, it is defined by taking Ob(Cop) = Ob(C) and, for all objects X and Y in C,

HomCop(X, Y ) = HomC(Y,X).

The composition ◦Cop in this category is defined by

g ◦Cop f = f ◦ g,

for all pairs (f, g) ∈ Hom(C)×Ob(C) Hom(C).

Another construction of a category from a given category C is the product category C×C,

whose objects are pairs (X, Y ) of objects in C and whose morphisms are pairs (f, g) of
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morphisms in C. Its composition is defined by

(h, k) ◦ (f, g) = (h ◦ f, k ◦ g)

and id(X,Y ) = (idX , idY ).

We call a morphism f : X → Y in a category C an isomorphism if there exists a morphism

g : Y → X in C such that

g ◦ f = idX and f ◦ g = idY .

Observe that this notion generalizes, and unifies, the usual notions of isomorphism for various

mathematical structures.

We now define the notion of a functor, which can be viewed as a morphism of categories.

Definition 1.1.2. A functor F : C → D from a category C to a category D consists of a

map F : Ob(C) → Ob(D) and a map F : Hom(C) → Hom(D), both denoted by F , satisfying

the following axioms:

1. For any object X ∈ Ob(C),

F (idX) = idF (X).

2. For any morphism f ∈ Hom(C),

dom(F (f)) = F (dom(f))

cod(F (f)) = F (cod(f)).

3. For any pair (f, g) ∈ Hom(C)×Ob(C) Hom(C),

F (f ◦ g) = F (f) ◦ F (g).

The second axiom in the above definition can be restated by saying that for any morphism

f : X → Y in C, the morphism F (f) is a morphism F (X) → F (Y ) in D.

A related concept is that of a contravariant functor F : C → D, which assigns to each

morphism f : X → Y in C a morphism F (f) : F (Y ) → F (X) in D and satisfies

F (f ◦ g) = F (g) ◦ F (f)

for all pairs (f, g) ∈ Hom(C) ×Ob(C) Hom(C). Note the reversal of order. A functor as in

Definition 1.1.2 is then called a covariant functor.
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An important example of covariant and contravariant functors comes from hom-sets.

Example 1.1.1. For each object X in a category C, we have the covariant hom-functor

Hom(X,−) : C → Set

Y 7→ Hom(X, Y )

f 7→ Hom(X, f),

where Hom(X, f) ∈ Hom(Set) is the map

Hom(X, f) : Hom(X, dom f) → Hom(X, cod f)

g 7→ f ◦ g.

We call this map post-composition with f .

We also have, for each object Y in C, the contravariant hom-functor

Hom(−, Y ) : C → Set

X 7→ Hom(X, Y )

f 7→ Hom(f, Y ),

where Hom(f, Y ) ∈ Hom(Set) is the map

Hom(f, Y ) : Hom(cod f, Y ) → Hom(dom f, Y )

g 7→ g ◦ f.

We call this map pre-composition with f . Observe that for composable morphisms f and g

in C, the map

Hom(f ◦ g, Y ) : Hom(cod f, Y ) → Hom(dom g, Y )

is defined by

h 7→ h ◦ (f ◦ g),

and the map

Hom(g, Y ) ◦ Hom(f, Y ) : Hom(cod f, Y ) → Hom(dom g, Y )

is defined by

h 7→ h ◦ f 7→ (h ◦ f) ◦ g = h ◦ (f ◦ g).
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Hence

Hom(f ◦ g, Y ) = Hom(g, Y ) ◦ Hom(f, Y )

so that Hom(−, Y ) is indeed contravariant.

The following concept can be viewed as a morphism of functors.

Definition 1.1.3. Let F,G : C → D be functors. A natural transformation η from F to G

is a function that assigns to each object X in C a morphism ηX : F (X) → G(X) in D such

that for any morphism f : X → Y in C, the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

F (f)

ηX

G(f)

ηY

If ηX is an isomorphism in D for every object X in C, then η is called a natural isomorphism;

two functors are said to be isomorphic if there exists a natural isomorphism between them.

The concept of a natural isomorphism allows us to define the notions of equivalent and

isomorphic categories.

Definition 1.1.4. Let C and D be categories. Then C and D are said to be equivalent

(respectively, isomorphic) if there exists functors F : C → D and G : D → C such that the

functor G ◦ F : C → C is isomorphic (respectively, equal) to the identity functor idC : C → C

and the functor F ◦ G : D → D is isomorphic (respectively, equal) to the identity functor

idD : D → D.

1.2 Tensor categories and braidings

A tensor category is a category equipped with a tensor product:

Definition 1.2.1. A tensor category is a category C together with a functor ⊗ : C × C → C

(for which we denote ⊗(X, Y ) = X ⊗ Y and ⊗(f, g) = f ⊗ g), a unit object I, and

i) a natural isomorphism λ, called the left unit constraint, from the functor defined by

X 7→ I ⊗X

f 7→ idI ⊗ f,
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for all objects X in C and morphisms f in C, to the identity functor idC : C → C;

ii) a natural isomorphism ρ, called the right unit constraint, from the functor defined by

X 7→ X ⊗ I

f 7→ f ⊗ idI ,

for all objects X in C and morphisms f in C, to the identity functor idC : C → C; and

iii) a natural isomorphism α, called the associativity constraint, from ⊗ ◦ (⊗ × idC) to

⊗ ◦ (idC ×⊗),

satisfying the following axioms:

1. Pentagon Axiom: For all objects X, Y, Z,W in C, the following diagram commutes:

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W )

αX,Y,Z⊗WαX⊗Y,Z,W

αX,Y,Z⊗idW

αX,Y ⊗Z,W

idX⊗αY,Z,W

(1.1)

2. Triangle Axiom: For all objects X, Y in C, the following diagram commutes:

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

ρX⊗idY

αX,I,Y

idX⊗λY

(1.2)

The naturality of the left unit constraint λ means that for all morphisms f : X → Y in C,

the diagram

I ⊗X X

I ⊗ Y Y

idI⊗f

λX

f

λY

commutes; the naturality of the right unit constraint ρ is analogous. The naturality of the
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associativity constraint α means that the diagram

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

(X ′ ⊗ Y ′)⊗ Z ′ X ′ ⊗ (Y ′ ⊗ Z ′)

(f⊗g)⊗h

αX,Y,Z

f⊗(g⊗h)

αX′,Y ′,Z′

commutes for all morphisms f : X → X ′, g : Y → Y ′, and h : Z → Z ′ in C.

As a consequence of the axioms in Definition 1.2.1, the diagrams

(I ⊗X)⊗ Y I ⊗ (X ⊗ Y )

X ⊗ Y

λX⊗idY

αI,X,Y

λX⊗Y

and

(X ⊗ Y )⊗ I X ⊗ (Y ⊗ I)

X ⊗ Y

ρX⊗Y

αX,Y,I

idX⊗ρY

commute, and we have

λI = ρI .

For a proof, see [5, Lem. XI.2.2, p. 283] and [5, Lem. XI.2.3, p. 284].

Note also that, since ⊗ is a functor, we have

(f ◦ f ′)⊗ (g ◦ g′) = (f ⊗ g) ◦ (f ′ ⊗ g′)

whenever this composition is defined. We will use this interchange property extensively.

Tensor categories are also known as monoidal categories (cf. [9, Ch. XI, p. 252]). Our

terminology follows [5, Def. XI.2.1, p. 282]. In [2], these terms have different meanings

(cf. [2, Def. 2.1.1, p. 21] and [2, Def. 4.1.1, p. 65]).

The category of vector spaces over a field is the prototypical example:

Example 1.2.1. For any two vector spaces V and W over a field K, there exists a vector

space V ⊗W , called the tensor product of V andW , with a bilinear map ⊗ : V ×W → V ⊗W

that is universal in the sense that, for any vector space U and bilinear map ϕ : V ×W → U ,

there is a unique linear map f : V ⊗W → U such that f ◦ ⊗ = ϕ. The category of vector
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spaces over K, equipped with this tensor product, is a tensor category. The unit object is

the base field K. The left unit constraint λ is defined on V as the isomorphism

λV : K ⊗ V → V

λ⊗ v 7→ λv,

and the right unit constraint ρ is the defined on V as the isomorphism

ρV : V ⊗K → V

v ⊗ λ 7→ λv.

The associativity constraint α is defined on spaces U , V , and W as the isomorphism

αU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).

We also have the following basic example.

Example 1.2.2. Let C = Set and let ⊗ = × be the Cartesian product. This means that

X ⊗ Y = X × Y and f ⊗ g = f × g for all sets X and Y and functions f and g. Then C

is a tensor category with the unit object being any set with exactly one element, which we

denote by

I = {∗}.

The left and right unit constraints are defined on each set X as

λX : {∗} ×X → X

(∗, x) 7→ x

and

ρX : X × {∗} → X

(x, ∗) 7→ x,

respectively, and the associativity constraint is defined on sets X, Y , and Z by

αX,Y,Z : (X × Y )× Z → X × (Y × Z)

((x, y), z) 7→ (x, (y, z)).
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We say that a tensor category is strict if each λX , ρX , and αX,Y,Z is an identity morphism.

Every tensor category is tensor equivalent to a strict tensor category by [2, Thm. 2.8.5, p. 36]

and [5, Prop. XI.5.1, p. 289]. Therefore, we will usually assume that the category is strict.

Strictness requires in particular that X ⊗ I = X = I ⊗ X and f ⊗ idI = f = idI ⊗ f for

all objects X and morphisms f , and that parentheses can be ignored in tensor products of

several objects.

Example 1.2.3. Let G be a group (or a monoid). Let C be the category whose objects are

the elements of G and whose morphisms are defined by Hom(g, h) = {∗} for all g, h ∈ G.

Then composition is the unique map

Hom(g, h)× Hom(h, k) → Hom(g, k)

(∗, ∗) 7→ ∗.

Now define the functor

⊗ : C × C → C

(g, h) 7→ gh

(∗, ∗) 7→ ∗.

Observe that for all g, h, k ∈ G,

(g ⊗ h)⊗ k = (gh)k = g(hk) = g ⊗ (h⊗ k)

and hence we can define an associativity constraint

αg,h,k = idghk = ∗.

The corresponding unit object must be I = e, the identity element of G, and if we define

the left and right unit constraints as λg : e ⊗ g → g and ρg : g ⊗ e → g, respectively, then

this makes C a tensor category. Notice also that

λg = ρg = idg = ∗

and hence C is an example of a strict tensor category.

A tensor category can also carry the structure of a braiding. We define a braided tensor

category as follows.
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Definition 1.2.2. Let C be a tensor category with tensor product ⊗ and associativity

constraint α. A braiding on C is a natural isomorphism σ from the functor ⊗ to the functor

⊗rev : C × C → C, defined by (X, Y ) 7→ Y ⊗X, such that the diagrams

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

Z ⊗ (X ⊗ Y ) X ⊗ (Z ⊗ Y )

(Z ⊗X)⊗ Y (X ⊗ Z)⊗ Y

αX,Y,Z

σX⊗Y,Z idX⊗σY,Z

α−1
Z,X,Y

α−1
X,Z,Y

σX,Z⊗idY

(1.3)

and

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z

(Y ⊗ Z)⊗X (Y ⊗X)⊗ Z

Y ⊗ (Z ⊗X) Y ⊗ (X ⊗ Z)

σX,Y ⊗Z

α−1
X,Y,Z

σX,Y ⊗idZ

αY,Z,X αY,X,Z

idY ⊗σX,Z

(1.4)

commute.

Every braiding σ on C gives rise to a second braiding σ̃ on C, defined as σ̃X,Y = σ−1
Y,X .

The braiding axioms (1.3) and (1.4) are simply interchanged with respect to σ̃. From these

axioms, one can also deduce the so-called Yang-Baxter equation:

(idZ ⊗ σX,Y ) ◦ (σX,Z ⊗ idY ) ◦ (idX ⊗ σY,Z)

= (σY,Z ⊗ idX) ◦ (idY ⊗ σX,Z) ◦ (σX,Y ⊗ idZ) (1.5)

The following example is known as the trivial braiding ; for a non-trivial braiding, see (4.24).

Example 1.2.4. For vector spaces V and W over a field K, consider the map

ϕ : V ×W → W ⊗ V

(v, w) 7→ w ⊗ v,
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which can be expressed as ⊗ ◦ τ , where

τ : V ×W → W × V

(v, w) 7→ (w, v).

This map is bilinear, so by the universal property of the tensor product there is a linear map

σV,W : V ⊗W → W ⊗ V with

σV,W (v ⊗ w) = ϕ(w, v) = w ⊗ v.

We call σV,W the flip map. The collection of these linear maps σV,W , indexed by vector spaces

V and W , defines a braiding on the category of vector spaces over K.

We will frequently make use of the result proved in [5, Prop. XIII.1.2, p. 316], which,

when interpreted in a strict category, states that every braiding σ on a tensor category C

satisfies

σI,X = idX = σX,I (1.6)

for all objects X in C.

1.3 Dual objects

Let V be a finite-dimensional vector space over a field K and denote by V ∗ = HomK(V,K)

its dual space. The map

ψ : V ∗ × V → K

(ϕ, v) 7→ ϕ(v)

is bilinear, so by the universal property there exists a linear map evV : V
∗ ⊗ V → K, called

the evaluation map, such that the diagram

V ∗ × V K

V ∗ ⊗ V

ψ

⊗ evV

commutes, i.e., evV (ϕ⊗ v) = ψ(ϕ, v) = ϕ(v).
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Since V is finite-dimensional, it also has the coevaluation map

coevV : K → V ⊗ V ∗

λ 7→ λ

n
∑

i=1

vi ⊗ v∗i ,

where {v1, . . . , vn} is a basis for V and {v∗1, . . . , v
∗
n} is the corresponding dual basis. This

is often denoted by dbV and called the dual basis map. In Appendix A, we prove that

coevV = dbV does not depend on the choice of basis.

Proposition 1.3.1. The diagram

V V

K ⊗ V (V ⊗ V ∗)⊗ V V ⊗ (V ∗ ⊗ V ) V ⊗K

λ−1
V

idV

coevV ⊗idV αV,V ∗,V idV ⊗evV

ρV

commutes.

Proof. Let v ∈ V . Under the composition, we have

v 7→ 1K ⊗ v 7→
(

n
∑

i=1

vi ⊗ v∗i

)

⊗ v =
n

∑

i=1

(vi ⊗ v∗i )⊗ v

7→

n
∑

i=1

vi ⊗ (v∗i ⊗ v) 7→
n

∑

i=1

vi ⊗ v∗i (v) 7→
n

∑

i=1

v∗i (v)vi

= v

and hence the composition is equal to idV .

Proposition 1.3.2. The diagram

V ∗ V ∗

V ∗ ⊗K V ∗ ⊗ (V ⊗ V ∗) (V ∗ ⊗ V )⊗ V ∗ K ⊗ V ∗

ρ−1
V ∗

idV ∗

idV ∗⊗coevV α−1
V ∗,V,V ∗ evV ⊗idV ∗

λV ∗

commutes.
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Proof. Let ϕ ∈ V ∗. Under the composition, we have

ϕ 7→ ϕ⊗ 1K 7→ ϕ⊗
(

n
∑

i=1

vi ⊗ v∗i

)

=
n

∑

i=1

ϕ⊗ (vi ⊗ v∗i )

7→

n
∑

i=1

(ϕ⊗ vi)⊗ v∗i 7→

n
∑

i=1

ϕ(vi)⊗ v∗i 7→
n

∑

i=1

ϕ(vi)v
∗
i

= ϕ

and hence the composition is equal to idV ∗ .

The above properties for the evaluation and coevaluation maps for a finite-dimensional

vector space and its dual space are taken to be the defining properties of the notion of a left

dual object in a tensor category. We also have an analogous notion of a right dual object.

Definition 1.3.1. Let C be a tensor category and let X be an object in C. A left dual of X

is an object X∗ in C together with morphisms evX : X∗ ⊗X → I and coevX : I → X ⊗X∗

in C such that the diagrams

X X

I ⊗X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X ⊗ I

λ−1
X

idX

coevX⊗idX αX,X∗,X idX⊗evX

ρX

and

X∗ X∗

X∗ ⊗ I X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ I ⊗X∗

ρ−1
X∗

idX∗

idX∗⊗coevX α−1
X∗,X,X∗ evX⊗idX∗

λX∗

commute. A right dual of X is an object ∗X in C together with morphisms ev′X : X⊗ ∗X → I

and coev′X : I → ∗X ⊗X in C such that the diagrams

X X

X ⊗ I X ⊗ ( ∗X ⊗X) (X ⊗ ∗X)⊗X I ⊗X

ρ−1
X

idX

idX⊗coev′X
α−1
X,X∗,X ev′X⊗idX

λX
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and

∗X ∗X

I ⊗ ∗X ( ∗X ⊗X)⊗ ∗X ∗X ⊗ (X ⊗X∗) ∗X ⊗ I

λ−1
∗X

id ∗X

coev′X⊗id ∗X
α−1

∗X,X, ∗X id ∗X⊗ev′X

ρ ∗X

commute.

Unlike dual vector spaces, dual objects need not be unique. We will see, however, that left

and right duals are unique up to isomorphism. It follows immediately from the definitions

that if X∗ is a left dual of X, then X is a right dual of X∗; and if ∗X is a right dual of X,

then X is a left dual of ∗X. Thus, we have

∗(X∗) ∼= X ∼= (∗X)∗.

If C is a tensor category in which every object has a left (respectively, right) dual, we say

that C has left duality (respectively, right duality).

In a braided category C with braiding σ and left duality, we have the following relations:

(idX ⊗ σ−1
Y,X∗) ◦ (coevX ⊗ idY ) = (σY,X ⊗ idX∗) ◦ (idY ⊗ coevX) (1.7)

(idY ⊗ evX) ◦ (σ
−1
Y,X∗ ⊗ idX) = (evX ⊗ idY ) ◦ (idX∗ ⊗ σY,X) (1.8)

To verify (1.7), for example, we apply (1.6), the naturality of σ, and the axiom (1.4) of a

braiding to obtain

(coevX ⊗ idY ) = (coevX ⊗ idY ) ◦ σY,I

= σY,X⊗X∗ ◦ (idY ⊗ coevX)

= (idX ⊗ σY,X∗) ◦ (σY,X ⊗ idX∗) ◦ (idY ⊗ coevX),

which is equivalent to (1.7). These relations are true for any braiding σ, so in particular they

are true for the braiding defined by σ̃X,Y = σ−1
Y,X . Thus we have the equivalent relations:

(idX ⊗ σX∗,Y ) ◦ (coevX ⊗ idY ) = (σ−1
X,Y ⊗ idX∗) ◦ (idY ⊗ coevX) (1.9)

(idY ⊗ evX) ◦ (σX∗,Y ⊗ idX) = (evX ⊗ idY ) ◦ (idX∗ ⊗ σ−1
X,Y ) (1.10)
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1.4 Dual morphisms

Let C be a tensor category with left duality, and let f : X → Y be a morphism in C. For

respective left dual objects X∗ and Y ∗ of X and Y , we define a morphism f ∗ : Y ∗ → X∗ by

the following diagram:

Y ∗ X∗

Y ∗ ⊗ I I ⊗X∗

Y ∗ ⊗ (X ⊗X∗) (Y ∗ ⊗X)⊗X∗ (Y ∗ ⊗ Y )⊗X∗

ρY ∗

f∗

idY ∗⊗coevX

λX∗

α−1
Y ∗,X,X∗ (idY ∗⊗f)⊗idX∗

evY ⊗idX∗

(1.11)

Note that, since

((idY ∗ ⊗ f)⊗ idX∗) ◦ α−1
Y ∗,X,X∗ = α−1

Y ∗,Y,X∗ ◦ (idY ∗ ⊗ (f ⊗ idX∗))

by the naturality of α, we can also define f ∗ by the diagram

Y ∗ X∗

Y ∗ ⊗ I I ⊗X∗

Y ∗ ⊗ (X ⊗X∗) Y ∗ ⊗ (Y ⊗X∗) (Y ∗ ⊗ Y )⊗X∗

ρY ∗

f∗

idY ∗⊗coevX

λX∗

idY ∗⊗(f⊗idX∗ ) α−1
Y ∗,Y,X∗

evY ⊗idX∗

The morphism f ∗ is called the left dual morphism of f .

The following theorem gives equivalent characterizations of the dual morphism f ∗.

Theorem 1.4.1. The following are equivalent for morphisms f : X → Y and g : Y ∗ → X∗

in a tensor category C with left duality.

1. g = f ∗.
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2. evX ◦ (g ⊗ idX) = evY ◦ (idY ∗ ⊗ f), i.e., the diagram

Y ∗ ⊗X Y ∗ ⊗ Y

X∗ ⊗X I

idY ∗⊗f

g⊗idX evY

evX

(1.12)

commutes.

3. (f ⊗ idX∗) ◦ coevX = (idY ⊗ g) ◦ coevY , i.e., the diagram

I Y ⊗ Y ∗

X ⊗X∗ Y ⊗X∗

coevY

coevX idY ⊗g

f⊗idX∗

(1.13)

commutes.

Proof. We use the defining properties in Definition 1.3.1 of the left duals X∗ and Y ∗. First,

we prove that g = f ∗ is equivalent to (1.12). If g = f ∗, then

evX ◦ (g ⊗ idX)

= evX ◦ (f ∗ ⊗ idX)

= evX ◦ (evY ⊗ idX∗ ⊗ idX) ◦ (idY ∗ ⊗ f ⊗ idX∗ ⊗ idX) ◦ (idY ∗ ⊗ coevX ⊗ idX)

= evY ◦ (idY ∗ ⊗ idY ⊗ evX) ◦ (idY ∗ ⊗ f ⊗ idX∗ ⊗ idX) ◦ (idY ∗ ⊗ coevX ⊗ idX)

= evY ◦ (idY ∗ ⊗ f) ◦ (idY ∗ ⊗ idX ⊗ evX) ◦ (idY ∗ ⊗ coevX ⊗ idX)

= evY ◦ (idY ∗ ⊗ f).

Conversely, if

evX ◦ (g ⊗ idX) = evY ◦ (idY ∗ ⊗ f),

then

f ∗ = (evY ⊗ idX∗) ◦ (idY ∗ ⊗ f ⊗ idX∗) ◦ (idY ∗ ⊗ coevX)

= (evX ⊗ idX∗) ◦ (g ⊗ idX ⊗ idX∗) ◦ (idY ∗ ⊗ coevX)

= (evX ⊗ idX∗) ◦ (idX∗ ⊗ coevX) ◦ g

= g.
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Next, we prove that g = f ∗ is equivalent to (1.13). If g = f ∗, then

(idY ⊗ g) ◦ coevY

= (idY ⊗ evY ⊗ idX∗) ◦ (idY ⊗ idY ∗ ⊗ f ⊗ idX∗) ◦ (idY ⊗ idY ∗ ⊗ coevX) ◦ coevY

= (idY ⊗ evY ⊗ idX∗) ◦ (idY ⊗ idY ∗ ⊗ f ⊗ idX∗) ◦ (coevY ⊗ idX ⊗ idX∗) ◦ coevX

= (idY ⊗ evY ⊗ idX∗) ◦ (coevY ⊗ idY ⊗ idX∗) ◦ (f ⊗ idX∗) ◦ coevX

= (f ⊗ idX∗) ◦ coevX .

Conversely, if

(f ⊗ idX∗) ◦ coevX = (idY ⊗ g) ◦ coevY ,

then

f ∗ = (evY ⊗ idX∗) ◦ (idY ∗ ⊗ f ⊗ idX∗) ◦ (idY ∗ ⊗ coevX)

= (evY ⊗ idX∗) ◦ (idY ∗ ⊗ idY ⊗ g) ◦ (idY ∗ ⊗ coevY )

= g ◦ (evY ⊗ idY ∗) ◦ (idY ∗ ⊗ coevY )

= g.

This proves the theorem.

Although dual objects are not unique in general, any two left duals or right duals of an

object X are isomorphic. We prove this in the case of left duals.

Lemma 1.4.1. If f : X → Y and g : Y → Z are morphisms in a tensor category C with left

duality, then

(g ◦ f)∗ = f ∗ ◦ g∗.

Proof. By applying Theorem 1.4.1 first to f and then to g, we have

evX ◦ ((f ∗ ◦ g∗)⊗ idX) = evX ◦ (f ∗ ⊗ idX) ◦ (g
∗ ⊗ idX)

= evY ◦ (idY ∗ ⊗ f) ◦ (g∗ ⊗ idX)

= evY ◦ (g∗ ⊗ idY ) ◦ (idZ∗ ⊗ f)

= evZ ◦ (idZ∗ ⊗ g) ◦ (idZ∗ ⊗ f)

= evZ ◦ (idZ∗ ⊗ (g ◦ f)).

Thus, applying Theorem 1.4.1 to g ◦ f , we have (g ◦ f)∗ = f ∗ ◦ g∗.
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Proposition 1.4.1. If X is an object in a tensor category C with left duality, then any two

left duals of X are isomorphic.

Proof. Let X∗ be a left dual of X, and let Y ∗ be another left dual of Y = X. Then

f = idX : X → Y has a dual f ∗ : Y ∗ → X∗ and g = idX : Y → X has a dual g∗ : X∗ → Y ∗.

By Lemma 1.4.1,

g∗ ◦ f ∗ = (f ◦ g)∗ = (idY )
∗ = idY ∗

and

f ∗ ◦ g∗ = (g ◦ f)∗ = (idX)
∗ = idX∗ .

This means that f ∗ and g∗ are inverse morphisms, and hence X∗ and Y ∗ are isomorphic.

Note that, by Theorem 1.4.1, the isomorphism g∗ in the above proof is characterized by

the property

evY ◦ (g∗ ⊗ idX) = evX .

For each X and Y in C, the object X⊗Y has a left dual object (X⊗Y )∗ with evaluation

evX⊗Y and coevaluation coevX⊗Y , but it also has the left dual Y ∗ ⊗X∗ with evaluation

evX⊗Y = evY ◦ (idY ∗ ⊗ evX ⊗ idY ) (1.14)

and coevaluation

coevX⊗Y = (idX ⊗ coevY ⊗ idX∗) ◦ coevX . (1.15)

Proposition 1.4.1 then implies the existence of an isomorphism γX,Y : Y
∗ ⊗X∗ → (X ⊗ Y )∗,

which is dual to idX⊗Y . By Theorem 1.4.1, the morphism γX,Y is characterized by the

properties

evX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) = evY ◦ (idY ∗ ⊗ evX ⊗ idY ) (1.16)

and

coevX⊗Y = (idX⊗Y ⊗ γX,Y ) ◦ (idX ⊗ coevY ⊗ idX∗) ◦ coevX . (1.17)

Furthermore, the collection of morphisms γX,Y defines a natural isomorphism, as shown in

the following proposition.

Proposition 1.4.2. In a tensor category C with left duality, the isomorphisms γX,Y dual to

idX⊗Y , and characterized by (1.16) and (1.17), define a natural isomorphism from the functor

(X, Y ) 7→ Y ∗ ⊗X∗, (f, g) 7→ g∗ ⊗ f ∗ to the functor (X, Y ) 7→ (X ⊗ Y )∗, (f, g) 7→ (f ⊗ g)∗.
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Proof. Let f : X → X ′ and g : Y → Y ′ be morphisms in C. Naturality of γ means that

γX,Y ◦ (g∗ ⊗ f ∗) = (f ⊗ g)∗ ◦ γX′,Y ′ . (1.18)

With respect to evX⊗Y , the morphism (f ⊗ g)∗ is the dual morphism of f ⊗ g, and with

respect to the evaluation evX⊗Y defined in (1.14), the morphism g∗⊗f ∗ is the dual morphism

of f ⊗ g. By Theorem 1.4.1, this means that

evX⊗Y ◦ ((f ⊗ g)∗ ⊗ idX⊗Y ) = evX′⊗Y ′ ◦ (id(X′⊗Y ′)∗ ⊗ f ⊗ g) (1.19)

and

evX⊗Y ◦ (g∗ ⊗ f ∗ ⊗ idX⊗Y ) = evX′⊗Y ′ ◦ (idY ′∗⊗X′∗ ⊗ f ⊗ g). (1.20)

By (1.16), we can rewrite (1.20) as

evX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (g
∗ ⊗ f ∗ ⊗ idX⊗Y )

= evX′⊗Y ′ ◦ (γX′,Y ′ ⊗ idX′⊗Y ′) ◦ (idY ′∗⊗X′∗ ⊗ f ⊗ g)

= evX′⊗Y ′ ◦ (id(X′⊗Y ′)∗ ⊗ f ⊗ g) ◦ (γX′,Y ′ ⊗ idX⊗Y )

and, by (1.19), this further equals

evX⊗Y ◦ ((f ⊗ g)∗ ⊗ idX⊗Y ) ◦ (γX′,Y ′ ⊗ idX⊗Y ).

In other words, we have

evX⊗Y ◦ ((γX,Y ◦ (g∗ ⊗ f ∗))⊗ idX⊗Y ) = evX⊗Y ◦ (((f ⊗ g)∗ ◦ γX′,Y ′)⊗ idX⊗Y ).

Composing both sides with γ−1
X′,Y ′ ⊗ idX⊗Y yields

evX⊗Y ◦ ((γX,Y ◦ (g∗ ⊗ f ∗) ◦ γ−1
X′,Y ′)⊗ idX⊗Y ) = evX⊗Y ◦ ((f ⊗ g)∗ ⊗ idX⊗Y ).

Applying Theorem 1.4.1 again, this shows that both γX,Y ◦ (g∗⊗ f ∗)◦γ−1
X′,Y ′ and (f ⊗ g)∗ are

the dual morphism of f ⊗ g with respect to evX⊗Y and, in particular, they are equal. This

proves (1.18).

In a tensor category with right duality, there is also the notion of a right dual morphism
∗f : ∗Y → ∗X, defined as

∗f = ρ ∗X ◦ (id ∗X ⊗ ev′Y ) ◦ (id ∗X ⊗ f ⊗ id ∗Y ) ◦ (coev
′
X ⊗ id ∗Y ) ◦ λ ∗Y .
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A similar treatment to that given for left dual morphisms shows that ∗f is characterized by

the properties

ev′X ◦ (idX ⊗ ∗f) = ev′Y ◦ (f ⊗ idY ) (1.21)

and

(id ∗X ⊗ f) ◦ coev′X = ( ∗f ⊗ idY ) ◦ coev
′
Y , (1.22)

analogously to Theorem 1.4.1, and that any two right duals of an object X are isomorphic.

Furthermore, we have a natural isomorphism γ′X,Y :
∗Y ⊗ ∗X → ∗(X ⊗Y ) that is right dual

to idX⊗Y . It is characterized by the property

ev′X⊗Y ◦ (idX⊗Y ⊗ γ′X,Y ) = ev′X ◦ (idX ⊗ ev′Y ⊗ id ∗X). (1.23)

1.5 Abelian and linear categories

We now discuss abelian and linear categories. First, we need several definitions, which can

also be found in [9, Ch. VIII] and [3, Ch. 2].

We define a monomorphism as a morphism f that is left-cancellable, which means that

f ◦ g = f ◦ h =⇒ g = h,

and we define an epimorphism as a morphism f that is right-cancellable, which means that

g ◦ f = h ◦ f =⇒ g = h.

A product of a set {Xi}i∈I of objects in a category C, indexed by a set I, is defined as

an object X in C together with morphisms {pi : X → Xi}i∈I , called projections, with the

following universal property: For any object Y in C and morphisms {fi : Y → Xi}i∈I in C,

there exists a unique morphism f : Y → X such that fi = pi ◦ f for all i ∈ I. A coproduct

of a set {Xi}i∈I of objects in C, indexed by a set I, is defined as an object X in C together

with morphisms {qi : Xi → X}i∈I , called injections, with the following universal property:

For any object Y in C and morphisms {fi : Xi → Y }i∈I in C, there exists a unique morphism

f : X → Y such that fi = f ◦ qi for all i ∈ I.

A zero object in a category C is defined as an object, denoted by 0, such that for all objects

X in C, the sets Hom(0, X) and Hom(X, 0) each contain exactly one morphism. It can be

shown that any two zero objects in a category are isomorphic, and therefore each Hom(X, Y )
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contains a distinguished morphismX → 0 → Y , which we call the zero morphism and denote

by 0X,Y , or simply 0.

If C is a category with a zero object, then we define a kernel of a morphism f : X → Y

in C as an object ker(f) in C together with a morphism i : ker(f) → X such that f ◦ i = 0,

and i is universal in the sense that for any other morphism j : W → X such that f ◦ j = 0,

there is a unique morphism j0 : W → ker(f) such that j = i ◦ j0. We also have the notion of

a cokernel of f . This is an object coker(f) together with a morphism π : Y → coker(f) such

that π ◦ f = 0, and π has the analogous universal property.

If C is a category for which every morphism has a kernel and a cokernel, we define an

image of f , denoted by im(f), as a kernel of a cokernel of f . That is, if π : Y → coker(f) is

a cokernel of f , then an image of f is defined as a kernel i : im(f) = ker(π) → Y . Note that,

since π ◦ f = 0, there exists a unique morphism g : A → im(f) such that f = i ◦ g, by the

universal property of the kernel of π. Thus we can view i as a generalized inclusion map.

The notions of kernel and cokernel can be generalized to the notions of equalizer and

coequalizer, respectively. An equalizer of two morphisms f, f ′ : X → Y in C is a morphism

g : Z → X in C such that f ◦g = f ′ ◦g, and g is universal in the sense that for any morphism

g′ : Z ′ → X with f ◦ g′ = f ′ ◦ g′, there exists a unique morphism h : Z → Z ′ such that

g = g′ ◦h. A coequalizer of f and f ′ is a morphism g such that g ◦f = g ◦f ′ that is universal

in the analogous way. Notice that the kernel and cokernel of a morphism f are, respectively,

the equalizer and coequalizer of f and the zero morphism 0.

If C is a category with a zero object and a product defined for any two objects, then we

say that C is an additive category if each of its hom-sets Hom(X, Y ) has an abelian group

structure and the composition map ◦ : Hom(X, Y ) × Hom(Y, Z) → Hom(X,Z) is additive

in each component, i.e., it is Z-bilinear. If K is a field, then we say that C is a K-linear

category if each of its hom-sets is a K-vector space and the composition map is K-bilinear

(cf. [21, Ch. 4, p. 65]).

We are now ready to define an abelian category.

Definition 1.5.1. An abelian category C is an additive category such that

1. Every morphism has a kernel and a cokernel.

2. Every monomorphism is the kernel of its cokernel and every epimorphism is the cokernel

of its kernel.

3. Every morphism is the composition of an epimorphism and a monomorphism.
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We have the following lemma about the unique morphism g induced by an image.

Lemma 1.5.1. If f : X → Y is a morphism with image i : im(f) → Y in an abelian category,

then the unique morphism g such that f = i ◦ g is an epimorphism.

Proof. We first establish the existence of a morphism h : coker(ker(f)) → ker(coker(f)) that

makes the following diagram commutative:

ker(f) X coker(ker(f))

coker(f) Y ker(coker(f))

i′ π

f
g

h

π′ i

We have f ◦ i′ = 0, since i′ is the kernel of f , and therefore i ◦ g ◦ i′ = 0. This implies that

g ◦ i′ = 0, because i is a monomorphism by [13, Lem. 1, 1.9]. Therefore, by the universal

property of π, there exists a unique morphism h : coker(ker(f)) → ker(coker(f)) such that

g = h ◦ π, as required. Abelian categories can be characterized by the property that this

uniquely determined h is an isomorphism, as in [13, Ch. 4, p. 164]. It is also a fact that π is an

epimorphism, and since isomorphisms are in particular epimorphisms and the composition

of epimorphisms is an epimorphism, this implies that g is an epimorphism.

We also have the notions of additive and K-linear functors. If C and D are additive

(respectively, K-linear) categories, then a functor F : C → D is called an additive functor

(respectively, a K-linear functor) if for all objects X and Y in C, the map

F : HomC(X, Y ) → HomD(F (X), F (Y ))

is a homomorphism of groups (respectively, of K-vector spaces). See [3, Ch. II, Prop. 9.5]

and [21, Ch. 4, p. 65]. Two K-linear categories are said to be equivalent (respectively,

isomorphic) if there exists a K-linear equivalence (respectively, a K-linear isomorphism)

between them. We then say that a category is finite if it is K-linearly equivalent to a

category of modules over a finite-dimensional K-algebra.

When we speak of an abelian tensor category, we mean an abelian category with a tensor

product that is Z-bilinear; when we speak of a K-linear tensor category, we mean a K-linear

category with a tensor product that is K-bilinear.
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1.6 Dinatural transformations and coends

The notion of a dinatural transformation is defined as follows.

Definition 1.6.1. Let S, T : Cop ×C → D be functors. A dinatural transformation ι from S

to T is a function that assigns to each object X in C a morphism ιX : S(X,X) → T (X,X)

in D such that for any morphism f : X → Y in C, the following diagram commutes:

S(X,X) T (X,X)

S(Y,X) T (X, Y )

S(Y, Y ) T (Y, Y )

ιX

T (idX ,f)S(f,idX)

S(idY ,f)
ιY

T (f,idY )

(1.24)

We are interested in the case where T : Cop × C → D is a constant functor, defined by

T (X, Y ) = A and T (f, g) = idA for some object A in D. In this case, (1.24) reduces to

S(Y,X) S(X,X)

S(Y, Y ) A

S(f,idX)

S(idY ,f) ιX

ιY

We will often denote the dinatural transformation ι from S : Cop × C → D to a constant

functor T : Cop × C → D, defined by T (X, Y ) → L, as ιX : S(X,X) → L, where it is

understood that X varies over all objects in C.

If g : A → B is a morphism in D, then jX = g ◦ ιX : S(X,X) → B is again a dinatural

transformation. This follows from the commutativity of the following diagram:

S(X,X) A

S(Y,X) S(Y, Y )

S(X,X) B

S(Y,X) S(Y, Y )

ιX

idS(X,X)

g

S(f,idX)

S(idY ,f)

idS(Y,X)

ιY

idS(Y,Y )

jX

S(f,idX)

S(idY ,f)

jY
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This leads us to the following definition.

Definition 1.6.2. A coend for a functor S : Cop ×C → D is an object L in D together with

a dinatural transformation ιX : S(X,X) → L that is universal in the sense that for every

dinatural transformation jX : S(X,X) → M , there is a unique morphism g : L → M in C

such that jX = g ◦ ιX for all objects X in C.

As with other universal properties, the above definition implies that any two coends are

isomorphic, and that the isomorphism is unique.

If we have another functor S ′ : Cop × C → D with a universal dinatural transformation

ι′X : S ′(X,X) → L′, and we have a natural transformation ηX,Y : S(X, Y ) → S ′(X, Y ), then

jX = ι′X ◦ ηX,X : S(X,X) → L′ is also a dinatural transformation because the diagram

S(X,X) S ′(X,X)

S(Y,X) S ′(Y,X) L′

S(Y, Y ) S ′(Y, Y )

ηX,X

ι′X
S(f,idX)

S(idY ,f)

ηY,X

S′(f,idX)

S′(idY ,f)

ηY,Y

ι′Y

commutes as a consequence of [7, Lem. 2.2, p. 39], which is a version of [9, Prop. 1, p. 228]

for coends.

Now let C be aK-linear category with left duality and consider the functor S : Cop×C → C

defined by

(X, Y ) 7→ X∗ ⊗ Y

(f, g) 7→ f ∗ ⊗ g. (1.25)

If C is finite, then it follows from [6, Cor. 5.1.8, p. 267] that there exists a coend L for this

functor with universal dinatural transformation ιX : X∗ ⊗ X → L. Henceforth, when we

speak of a coend without further qualification, we will mean the coend for this functor.

We now show that ιX ⊗ ιY is a dinatural transformation. Let E = C ×C and consider the

functor S ′ : Eop × E → C defined by

(X ′, Y ′, X, Y ) 7→ X ′∗ ⊗X ⊗ Y ′∗ ⊗ Y

(f ′, g′, f, g) 7→ f ′∗ ⊗ f ⊗ g′∗ ⊗ g. (1.26)
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Note that if we have a morphism

(f ′, g′, f, g) : (X ′, Y ′, X, Y ) → (X̃ ′, Ỹ ′, X̃, Ỹ )

in Eop × E , then f ′ is a morphism X̃ ′ → X ′ and g′ is a morphism Ỹ ′ → Y , and therefore

S ′(f ′, g′, f, g) = f ′∗ ⊗ f ⊗ g′∗ ⊗ g

is a morphism

X ′∗ ⊗X ⊗ Y ′∗ ⊗ Y → X̃ ′∗ ⊗ X̃ ⊗ Ỹ ′∗ ⊗ Ỹ ,

as required. Then ιX ⊗ ιY : S
′(X, Y,X, Y ) → L⊗ L is dinatural, i.e., the diagram

X̃∗ ⊗X ⊗ Ỹ ∗ ⊗ Y X∗ ⊗X ⊗ Y ∗ ⊗ Y

X̃∗ ⊗ X̃ ⊗ Ỹ ∗ ⊗ Ỹ L⊗ L

f∗⊗idX⊗g∗⊗idY

id
X̃∗⊗f⊗id

Ỹ ∗⊗g ιX⊗ιY

ι
X̃
⊗ι

Ỹ

commutes, because for all objects (X, Y ) in E and morphisms (f, g) : (X, Y ) → (X̃, Ỹ ) in E ,

(ιX ⊗ ιY ) ◦ (f
∗ ⊗ idX ⊗ g∗ ⊗ idY ) = (ιX ◦ (f ∗ ⊗ idX))⊗ (ιY ◦ (g∗ ⊗ idY ))

= (ιX̃ ◦ (idX̃ ⊗ f))⊗ (ιỸ ◦ (idỸ ⊗ g))

= (ιX̃ ⊗ ιỸ ) ◦ (idX̃ ⊗ f ⊗ idỸ ⊗ g)

by the dinaturality of ιX and ιY .

It is explained in [7, p. 39] that ιX ⊗ ιY is in fact universally dinatural:

Theorem 1.6.1. Let ιX : X∗ ⊗ X → L be the universal dinatural transformation for the

functor defined by (1.25). Then the dinatural transformation

ιX ⊗ ιY : X
∗ ⊗X ⊗ Y ∗ ⊗ Y → L⊗ L

is universal, and hence L⊗ L is a coend for the functor (1.26).
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1.7 Hopf algebras in categories

The notions of an algebra, a coalgebra, a bialgebra, and a Hopf algebra can be generalized

to the categorical setting. We begin with the definition of an algebra in a tensor category C.

Definition 1.7.1. Let C be a tensor category. An algebra in C is an object A in C; a

morphism mA : A⊗A→ A, called the product of A; and a morphism uA : I → A, called the

unit of A, such that the diagrams

(A⊗ A)⊗ A A⊗ (A⊗ A) A⊗ A

A⊗ A A

αA,A,A

mA⊗idA

idA⊗mA

mA

mA

(1.27)

and

I ⊗ A A⊗ A

A

λA

uA⊗idA

mA

A⊗ I A⊗ A

A

ρA

idA⊗uA

mA
(1.28)

commute. The property expressed in (1.27) is called the associativity ofmA, and the property

expressed in (1.28) is called the unitality of mA.

A homomorphism of algebras in C is defined as follows.

Definition 1.7.2. Let A and B be algebras in a tensor category C. A morphism f : A→ B

is called an algebra homomorphism if

f ◦mA = mB ◦ (f ⊗ f)

and

f ◦ uA = uB.

The definition of a coalgebra in a tensor category C is obtained by reversing the arrows

in the definition of an algebra in C. In other words, a coalgebra in C is an algebra in the

opposite category Cop:

Definition 1.7.3. Let C be a tensor category. A coalgebra in C is an object C in C; a

morphism ∆C : C → C ⊗ C, called the coproduct of C; and a morphism εC : C → I, called



27

the counit of C, such that the diagrams

C C ⊗ C

C ⊗ C (C ⊗ C)⊗ C C ⊗ (C ⊗ C)

∆C

∆C idC⊗∆C

∆C⊗idC αC,C,C

(1.29)

and

I ⊗ C C ⊗ C

C

εC⊗idC

λ−1
C

∆C

C ⊗ I C ⊗ C

C

idC⊗εC

ρ−1
C

∆C
(1.30)

commute. The property expressed in (1.29) is called the coassociativity of ∆C , and the

property expressed in (1.30) is called the counitality of εC .

The definition of a coalgebra homomorphism in a tensor category C is then obtained by

reversing the arrows in the definition of an algebra homomorphism in C; that is, a coalgebra

homomorphism in C is an algebra homomorphism in Cop:

Definition 1.7.4. Let C andD be coalgebras in a tensor category C. A morphism f : C → D

is called a coalgebra homomorphism if

∆D ◦ f = (f ⊗ f) ◦∆C

and

εD ◦ f = εC .

If A and B are algebras in a braided category C with braiding σ, then we can define an

algebra structure on the tensor product A⊗B. Suppressing α, we define the product mA⊗B

by the diagram

A⊗ B ⊗ A⊗ B A⊗ A⊗ B ⊗ B

A⊗ B

mA⊗B

idA⊗σB,A⊗idB

mA⊗mB
(1.31)
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and we define the unit uA⊗B by the diagram

I I ⊗ I

A⊗ B

uA⊗B

λ−1
I

=ρ−1
I

uA⊗uB (1.32)

With an algebra structure on the tensor product of algebras, we can consider whether a

coproduct is an algebra homomorphism. The notions of an algebra and a coalgebra can then

be combined.

Definition 1.7.5. Let C be a braided tensor category. A bialgebra in C is an object B in C

that is both an algebra and a coalgebra in C, such that the coproduct ∆B and and counit εB

are algebra homomorphisms. If B and B′ are bialgebras in C, then a morphism f : B → B′

is called a bialgebra homomorphism if it is both an algebra and coalgebra homomorphism.

By Definition 1.7.2, the coproduct ∆B being an algebra homomorphism means that

∆B ◦mB = mB⊗B ◦ (∆B ⊗∆B) = (mB ⊗mB) ◦ (idB ⊗ σB,B ⊗ idB) ◦ (∆B ⊗∆B)

and

∆B ◦ uB = uB⊗B = (uB ⊗ uB) ◦ ρ
−1
I .

Note that, for εB : B → I to be an algebra homomorphism, we need to have an algebra

structure on I. Assuming strictness (so that I ⊗ I = I), we take λI = ρI = idI to be both

the multiplication mI : I ⊗ I → I and the unit uI : I → I.

Exactly as in the vector space case, ∆B and εB are algebra homomorphisms if and only

if mB and uB are coalgebra homomorphisms [5, Thm. III.2.1, p. 45], so a bialgebra can be

equivalently defined in terms of the latter requirement.

We can now define the notion of a Hopf algebra in a braided category C.

Definition 1.7.6. Let C be a braided tensor category. A Hopf algebra in C is a bialgebra H

in C with a morphism SH : H → H, called the antipode, such that the diagrams

H I H

H ⊗H H ⊗H

∆H

εH uH

SH⊗idH

mH (1.33)
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and
H I H

H ⊗H H ⊗H

∆H

εH uH

idH⊗SH

mH (1.34)

commute. If H and H ′ are Hopf algebras in C, then a bialgebra homomorphism f : H → H ′

is called a Hopf algebra homomorphism if

SH′ ◦ f = f ◦ SH .

The properties expressed in (1.33) and (1.34) are called the antipode equations for H.

Note that the ordinary notion of a Hopf algebra over a field K is a Hopf algebra in the

category of vector spaces over K, braided with the flip map. It can be shown, exactly as in

the vector space case (cf. [20, Lem. 4.0.4, p. 81f], [5, Exerc. III.8.9, p. 69]), that every bialgebra

homomorphism between Hopf algebras is automatically a Hopf algebra homomorphism.



Chapter 2

The coend as a Hopf algebra

In this chapter, we show that the coend for the functor (1.25) in a braided finite tensor

category C is a Hopf algebra in C. This was first shown in [8], and also summarized in [6].

2.1 Product

Let C be a braided finite tensor category with braiding σ, and let L be the coend of the

functor (1.25), with universal dinatural transformation ι. We mentioned in Theorem 1.6.1

that

ιX ⊗ ιY : X
∗ ⊗X ⊗ Y ∗ ⊗ Y → L⊗ L

is a universal dinatural transformation. We can define another dinatural transformation

ξX,Y : X
∗ ⊗X ⊗ Y ∗ ⊗ Y → L by

ξX,Y = ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ) (2.1)

where γX,Y : Y
∗ ⊗X∗ → (X ⊗ Y )∗ is the natural isomorphism characterized by the property

(1.16). The dinaturality of ξ means that the diagram

X ′∗ ⊗X ⊗ Y ′∗ ⊗ Y X∗ ⊗X ⊗ Y ∗ ⊗ Y

X ′∗ ⊗X ′ ⊗ Y ′∗ ⊗ Y ′ L

f∗⊗idX⊗g∗⊗idY

idX′∗⊗f⊗idY ′∗⊗g ξX,Y

ξX′,Y ′
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commutes for all morphisms f : X → X ′ and g : Y → Y ′ in C. By the naturality of σ, we

have

ξX,Y ◦ (f ∗ ⊗ idX ⊗ g∗ ⊗ idY )

= ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ) ◦ (f
∗ ⊗ idX ⊗ g∗ ⊗ idY )

= ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (g
∗ ⊗ f ∗ ⊗ idX ⊗ idY ) ◦ (σX′∗⊗X,Y ′∗ ⊗ idY ),

and, by the naturality of γ proved in Proposition 1.4.2, this equals

ιX⊗Y ◦ ((f ⊗ g)∗ ⊗ idX ⊗ idY ) ◦ (γX′,Y ′ ⊗ idX ⊗ idY ) ◦ (σX′∗⊗X,Y ′∗ ⊗ idY ).

By the dinaturality of ι, we have

ιX⊗Y ◦ ((f ⊗ g)∗ ⊗ idX⊗Y ) = ιX′⊗Y ′ ◦ (id(X′⊗Y ′)∗ ⊗ f ⊗ g),

and therefore the above expression is equal to

ιX′⊗Y ′ ◦ (id(X′⊗Y ′)∗ ⊗ f ⊗ g) ◦ (γX′,Y ′ ⊗ idX ⊗ idY ) ◦ (σX′∗⊗X,Y ′∗ ⊗ idY )

= ιX′⊗Y ′ ◦ (γX′,Y ′ ⊗ idX′ ⊗ idY ′) ◦ (idY ′∗ ⊗ idX′∗ ⊗ f ⊗ g) ◦ (σX′∗⊗X,Y ′∗ ⊗ idY )

= ιX′⊗Y ′ ◦ (γX′,Y ′ ⊗ idX′ ⊗ idY ′) ◦ (σX′∗⊗X′,Y ′∗ ⊗ idY ) ◦ (idX′∗ ⊗ f ⊗ idY ′∗ ⊗ g)

= ξX′,Y ′ ◦ (idX′∗ ⊗ f ⊗ idY ′∗ ⊗ g).

This proves that ξ is dinatural. By the universality of ιX⊗ ιY stated in Theorem 1.6.1, there

exists a unique morphism mL : L⊗L→ L such that mL ◦ (ιX ⊗ ιY ) = ξX,Y for all objects X

and Y in C.

We now prove that this mL is associative, i.e., that

mL ◦ (mL ⊗ idL) = mL ◦ (idL ⊗mL).

We will use a more general version of Theorem 1.6.1, which states that

ιX ⊗ ιY ⊗ ιZ : X
∗ ⊗X ⊗ Y ∗ ⊗ Y ⊗ Z∗ ⊗ Z → L⊗ L⊗ L

is a universal dinatural transformation. Since ιX ⊗ ιY ⊗ ιZ is dinatural, each of

mL ◦ (mL ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ιZ)
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and

mL ◦ (idL ⊗mL) ◦ (ιX ⊗ ιY ⊗ ιZ)

also define a dinatural transformation. Therefore, by the uniqueness in the universal property

of ιX ⊗ ιY ⊗ ιZ , it is sufficient to prove that

mL ◦ (mL ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ιZ) = mL ◦ (idL ⊗mL) ◦ (ιX ⊗ ιY ⊗ ιZ). (2.2)

On the one hand,

mL ◦ (mL ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ιZ)

= mL ◦ (ξX,Y ⊗ ιZ)

= mL ◦ (ιX⊗Y ⊗ ιZ) ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= ξX⊗Y,Z ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= ιX⊗Y⊗Z ◦ (γX⊗Y,Z ⊗ idX⊗Y⊗Z) ◦ (σ(X⊗Y )∗⊗X⊗Y,Z∗ ⊗ idZ) ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z)

◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= ιX⊗Y⊗Z ◦ (γX⊗Y,Z ⊗ idX⊗Y⊗Z) ◦ (idZ∗ ⊗ γX,Y ⊗ idX⊗Y ⊗ idZ)

◦ (σY ∗⊗X∗⊗X⊗Y,Z∗ ⊗ idZ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z),

where we have used the naturality of σ in the last step, and, on the other hand,

mL ◦ (idL ⊗mL) ◦ (ιX ⊗ ιY ⊗ ιZ)

= mL ◦ (ιX ⊗ ξY,Z)

= mL ◦ (ιX ⊗ ιY⊗Z) ◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= ξX,Y⊗Z ◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= ιX⊗Y⊗Z ◦ (γX,Y⊗Z ⊗ idX⊗Y⊗Z) ◦ (σX∗⊗X,(Y⊗Z)∗ ⊗ idY⊗Z)

◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= ιX⊗Y⊗Z ◦ (γX,Y⊗Z ⊗ idX⊗Y⊗Z) ◦ (γY,Z ⊗ idX∗⊗X ⊗ idY⊗Z)

◦ (σX∗⊗X,Z∗⊗Y ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ).

Now, by the axioms (1.3) and (1.4) of a braiding, we have

(σX∗⊗X,Z∗⊗Y ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (idZ∗ ⊗ σX∗⊗X,Y ∗ ⊗ idY⊗Z) ◦ (σX∗⊗X,Z∗ ⊗ idY ∗ ⊗ idY⊗Z)

◦ (idX∗⊗X ⊗ σY ∗,Z∗ ⊗ idY ⊗ idZ) ◦ (idX∗⊗X ⊗ idY ∗ ⊗ σY,Z∗ ⊗ idZ),



33

and, by the Yang-Baxter equation (1.5), this equals

(σY ∗,Z∗ ⊗ idX∗⊗X ⊗ idY⊗Z) ◦ (idY ∗ ⊗ σX∗⊗X,Z∗ ⊗ idY⊗Z)

◦ (σX∗⊗X,Y ∗ ⊗ idZ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ idY ∗ ⊗ σY,Z∗ ⊗ idZ)

= (σY ∗,Z∗ ⊗ idX∗⊗X ⊗ idY⊗Z) ◦ (idY ∗ ⊗ σX∗⊗X,Z∗ ⊗ idY⊗Z)

◦ (idY ∗⊗X∗⊗X ⊗ σY,Z∗ ⊗ idZ) ◦ (σX∗⊗X,Y ∗ ⊗ idY⊗Z∗⊗Z)

= (σY ∗,Z∗ ⊗ idX∗⊗X ⊗ idY⊗Z) ◦ (idY ∗ ⊗ σX∗⊗X⊗Y,Z∗ ⊗ idZ)

◦ (σX∗⊗X,Y ∗ ⊗ idY⊗Z∗⊗Z)

= (σY ∗⊗X∗⊗X⊗Y,Z∗ ⊗ idZ) ◦ (σX∗⊗X,Y ∗ ⊗ idY⊗Z∗⊗Z),

where we have applied axiom (1.3) twice at the end. Thus, if we can show that

(γX⊗Y,Z ⊗ idX⊗Y⊗Z)◦ (idZ∗ ⊗γX,Y ⊗ idX⊗Y⊗Z) = (γX,Y⊗Z ⊗ idX⊗Y⊗Z)◦ (γY,Z ⊗ idX∗⊗X⊗Y⊗Z),

then (2.2) will follow. It is sufficient to prove that

γX⊗Y,Z ◦ (idZ∗ ⊗ γX,Y ) = γX,Y⊗Z ◦ (γY,Z ⊗ idX∗),

and, letting f = γX⊗Y,Z ◦ (idZ∗ ⊗ γX,Y ) and g = γX,Y⊗Z ◦ (γY,Z ⊗ idX∗), it is further sufficient

to prove that

evX⊗Y⊗Z ◦ (f ⊗ idX⊗Y⊗Z) = evX⊗Y⊗Z ◦ (g ⊗ idX⊗Y⊗Z).

This holds because, on the one hand,

evX⊗Y⊗Z ◦ (f ⊗ idX⊗Y⊗Z) = evX⊗Y⊗Z ◦ (γX⊗Y,Z ⊗ idX⊗Y⊗Z) ◦ (idZ∗ ⊗ γX,Y ⊗ idX⊗Y⊗Z)

= evZ ◦ (idZ∗ ⊗ evX⊗Y ⊗ idZ) ◦ (idZ∗ ⊗ γX,Y ⊗ idX⊗Y⊗Z)

= evZ ◦ (idZ∗ ⊗ evY ⊗ idZ) ◦ (idZ∗ ⊗ idY ∗ ⊗ evX ⊗ idY ⊗ idZ),

and, on the other hand,

evX⊗Y⊗Z ◦ (g ⊗ idX⊗Y⊗Z) = evX⊗Y⊗Z ◦ (γX,Y⊗Z ⊗ idX⊗Y⊗Z) ◦ (γY,Z ⊗ idX∗ ⊗ idX⊗Y⊗Z)

= evY⊗Z ◦ (id(X⊗Y )∗ ⊗ evX ⊗ idY⊗Z) ◦ (γY,Z ⊗ idX∗ ⊗ idX⊗Y⊗Z)

= evY⊗Z ◦ (γY,Z ⊗ idY⊗Z) ◦ (idZ∗⊗Y ∗ ⊗ evX ⊗ idY⊗Z)

= evZ ◦ (idZ∗ ⊗ evY ⊗ idZ) ◦ (idZ∗ ⊗ idY ∗ ⊗ evX ⊗ idY ⊗ idZ).

This establishes the associativity of mL.
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We remark here that there is an alternative way to express this multiplication. We arrived

at the multiplication by means of the dinatural transformation

ξX,Y = ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ).

We could instead begin by defining

ηX,Y = ιY⊗X ◦ (γY,X ⊗ idY⊗X) ◦ (idX∗⊗Y ∗ ⊗ σX,Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ). (2.3)

We show that this is in fact equal to ξX,Y . This will follow if

ιY⊗X ◦ (γY,X ⊗ idY⊗X) ◦ (idX∗⊗Y ∗ ⊗ σX,Y ) = ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ).

Observe that

ιY⊗X ◦ (γY,X ⊗ idY⊗X) ◦ (idX∗⊗Y ∗ ⊗ σX,Y ) = ιY⊗X ◦ (id(Y⊗X)∗ ⊗ σX,Y ) ◦ (γY,X ⊗ idX⊗Y )

= ιX⊗Y ◦ (σ∗
X,Y ⊗ idX⊗Y ) ◦ (γY,X ⊗ idX⊗Y )

by the dinaturality of ι, so it is sufficient to prove that

σ∗
X,Y ◦ γY,X = γX,Y ◦ σX∗,Y ∗ . (2.4)

Using the dual objects X∗⊗Y ∗ and Y ∗⊗X∗ of Y ⊗X and X⊗Y , respectively, one can show

that σX∗,Y ∗ = σ∗
X,Y by Theorem 1.4.1. Then, via γX,Y : Y

∗ ⊗ X∗ → (X ⊗ Y )∗, this can be

transported to other versions of the dual object so that we arrive at (2.4). Thus ηX,Y = ξX,Y

and, in particular, η is a dinatural transformation, so by the universality of ιX ⊗ ιY there is

a unique morphism mL such that mL ◦ (ιX ⊗ ιY ) = ηX,Y . The uniqueness implies that this

is the same morphism mL obtained from ξX,Y .

2.2 Unit

We now discuss the unit of L. In this section, we will not assume that the unit constraints

are identities. First, we show that the unit object I is both a left and right dual of itself.

Recall that λI = ρI , and observe that

idI ⊗ λI = λI⊗I = λI ⊗ idI
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by naturality. Therefore

λI ◦ (idI ⊗ λI) ◦ (λ
−1
I ⊗ idI) ◦ λ

−1
I = λI ◦ (idI ⊗ λI) ◦ (λI ◦ (λI ⊗ idI))

−1

= λI ◦ λI⊗I ◦ (λI ◦ λI⊗I)
−1

= idI ,

and

λI ◦ (λI ⊗ idI) ◦ (idI ⊗ λ−1
I ) ◦ λ−1

I = λI ◦ (λI ⊗ idI) ◦ (λI ◦ (idI ⊗ λI))
−1

= λI ◦ λI⊗I ◦ (λI ◦ λI⊗I)
−1

= idI .

These relations show that the object I, together with the morphisms

evI = λI = ρI

and

coevI = λ−1
I = ρ−1

I ,

satisfies the conditions of both a left dual and a right dual in Definition 1.3.1.

Now, using the left dual I∗ = I, we can define the unit of L as

uL = ιI ◦ λ
−1
I : I → L, (2.5)

where ι is the universal dinatural transformation associated to L. We prove the left unitality

of uL, i.e.,

mL ◦ (uL ⊗ idL) = λL. (2.6)

By the universality of ι, it is sufficient to prove that

mL ◦ (uL ⊗ idL) ◦ λ
−1
L ◦ ιX = ιX .

By the naturality of λ, we have λ−1
L ◦ ιX = (idI ⊗ ιX) ◦ λ

−1
X∗⊗X , and hence

mL ◦ (uL ⊗ idL) ◦ λ
−1
L ◦ ιX = mL ◦ (ιI ⊗ idL) ◦ (λ

−1
I ⊗ idL) ◦ (idI ⊗ ιX) ◦ λ

−1
X∗⊗X

= mL ◦ (ιI ⊗ ιX) ◦ (λ
−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= ξI,X ◦ (λ−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X ,
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where ξ is the dinatural transformation defined as in (2.1). Inserting the definition of ξI,X ,

and applying the naturality of σ, this equals

ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (σI∗⊗I,X∗ ⊗ idX) ◦ (λ
−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (idX∗ ⊗ λ−1
I ⊗ idX) ◦ (σI,X∗ ⊗ idX) ◦ λ

−1
X∗⊗X .

Now by [5, Lem. XI.2.2, p. 283], we have

λ−1
X∗⊗X = (λ−1

X∗ ⊗ idX),

and by [5, Prop. XIII.1.2, p. 316], we have

σI,X∗ = ρ−1
X∗ ◦ λX∗ ,

so the above expression reduces to

ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (idX∗ ⊗ λ−1
I ⊗ idX) ◦ (ρ

−1
X∗ ⊗ idX)

= ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (idX∗ ⊗ ρ−1
I ⊗ idX) ◦ (ρ

−1
X∗ ⊗ idX).

By another application of [5, Lem. XI.2.2, p. 283] and the naturality of ρ, this equals

ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (ρ
−1
X∗⊗I ⊗ idX) ◦ (ρ

−1
X∗ ⊗ idX)

= ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (ρ
−1
X∗ ⊗ idI ⊗ idX) ◦ (ρ

−1
X∗ ⊗ idX).

To complete the proof, we need the following relation:

γI,X ◦ ρ−1
X∗ = λ∗X . (2.7)

By Theorem 1.4.1, this is equivalent to

evX ◦ (idX∗ ⊗ λX) = evI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (ρ
−1
X∗ ⊗ idI⊗X).

When the unit constraints are not assumed to be identities, the characterization (1.16) of γ

says that

evI⊗X ◦ (γI,X ⊗ idI⊗X) = evX ◦ (idX∗ ⊗ λX) ◦ (idX∗ ⊗ evI ⊗ idX)

= evX ◦ (idX∗ ⊗ λX) ◦ (idX∗ ⊗ λI ⊗ idX),
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and, as a consequence of the Triangle Axiom (1.2), we have

ρ−1
X∗ ⊗ idI = idX∗ ⊗ λ−1

I .

Therefore

evI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (ρ
−1
X∗ ⊗ idI⊗X)

= evX ◦ (idX∗ ⊗ λX) ◦ (idX∗ ⊗ λI ⊗ idX) ◦ (ρ
−1
X∗ ⊗ idI⊗X)

= evX ◦ (idX∗ ⊗ λX) ◦ (idX∗ ⊗ λI ⊗ idX) ◦ (idX∗ ⊗ λ−1
I ⊗ idX)

= evX ◦ (idX∗ ⊗ λX),

and this establishes (2.7).

Thus, continuing the calculation,

ιI⊗X ◦ (γI,X ⊗ idI⊗X) ◦ (ρ
−1
X∗ ⊗ idI ⊗ idX) ◦ (ρ

−1
X∗ ⊗ idX)

= ιI⊗X ◦ (λ∗X ⊗ idI⊗X) ◦ (ρ
−1
X∗ ⊗ idX)

= ιX ◦ (idX∗ ⊗ λX) ◦ (ρ
−1
X∗ ⊗ idX)

= ιX ◦ (ρX∗ ⊗ idX) ◦ (ρ
−1
X∗ ⊗ idX)

= ιX ,

where we have used the dinaturality of ι and another application of (1.2). This establishes

the left unitality of uL; the right unitality is proved similarly.

2.3 Coproduct

To define the coproduct of L, we begin with a dinatural transformation ζX : X∗⊗X → L⊗L

defined by

ζX = (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX). (2.8)

The dinaturality of ζ means that the diagram

Y ∗ ⊗X X∗ ⊗X

Y ∗ ⊗ Y L⊗ L

idY ∗⊗f

f∗⊗idX

ζX

ζY
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commutes for all morphisms f : X → Y in C. By the dinaturality of ι and Theorem 1.4.1,

we have

ζX ◦ (f ∗ ⊗ idX) = (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX) ◦ (f
∗ ⊗ idX)

= (ιX ⊗ ιX) ◦ (f
∗ ⊗ idX ⊗ idX∗ ⊗ idX) ◦ (idY ∗ ⊗ coevX ⊗ idX)

= (ιY ⊗ ιX) ◦ (idY ∗ ⊗ f ⊗ idX∗ ⊗ idX) ◦ (idY ∗ ⊗ coevX ⊗ idX)

= (ιY ⊗ ιX) ◦ (idY ∗ ⊗ idY ⊗ f ∗ ⊗ idX) ◦ (idY ∗ ⊗ coevY ⊗ idX)

= (ιY ⊗ ιY ) ◦ (idY ∗ ⊗ idY ⊗ idY ∗ ⊗ f) ◦ (idY ∗ ⊗ coevY ⊗ idX)

= (ιY ⊗ ιY ) ◦ (idY ∗ ⊗ coevY ⊗ idY ) ◦ (idY ∗ ⊗ f)

= ζY ◦ (idY ∗ ⊗ f),

and this proves that ζ is dinatural. By the universality of ι, there is a unique morphism

∆L : L→ L⊗ L such that ∆L ◦ ιX = ζX for all objects X in C.

We now prove the coassociativity of ∆L, which means that

(∆L ⊗ idL) ◦∆L = (idL ⊗∆L) ◦∆L.

Since ι is dinatural, each of (∆L ⊗ idL) ◦ ∆L ◦ ιX and (idL ⊗ ∆L) ◦ ∆L ◦ ιX also define a

dinatural transformation. Therefore, by the universality of ι, it is sufficient to prove that

(∆L ⊗ idL) ◦∆L ◦ ιX = (idL ⊗∆L) ◦∆L ◦ ιX .

We have

(∆L ⊗ idL) ◦∆L ◦ ιX

= (∆L ⊗ idL) ◦ ζX

= (∆L ⊗ idL) ◦ (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= (ζX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= (ιX ⊗ ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idX∗⊗X) ◦ (idX∗ ⊗ coevX ⊗ idX)

= (ιX ⊗ ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ coevX ⊗ idX),

and a similar calculation shows that

(idL ⊗∆L) ◦∆L ◦ ιX = (ιX ⊗ ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ coevX ⊗ idX).

This establishes the coassociativity of ∆L.
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We now prove that ∆L is an algebra homomorphism, which means that

∆L ◦mL = mL⊗L ◦ (∆L ⊗∆L)

and

∆L ◦ uL = uL⊗L.

For the multiplicativity of ∆L, it is sufficient by the universality of ιX ⊗ ιY to prove that

∆L ◦mL ◦ (ιX ⊗ ιY ) = mL⊗L ◦ (∆L ⊗∆L) ◦ (ιX ⊗ ιY ),

i.e.,

∆L ◦ ξX,Y = (mL ⊗mL) ◦ (idL ⊗ σL,L ⊗ idL) ◦ (ζX ⊗ ζY ),

where ξ is the dinatural transformation defined as in (2.1). For the left-hand side of this

equation, we have

∆L ◦ ξX,Y

= ∆L ◦ ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= ζX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (id(X⊗Y )∗ ⊗ coevX⊗Y ⊗ idX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ coevX⊗Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ).

For the right-hand side, we have

(mL ⊗mL) ◦ (idL ⊗ σL,L ⊗ idL) ◦ (ζX ⊗ ζY )

= (mL ⊗mL) ◦ (idL ⊗ σL,L ⊗ idL) ◦ (ιX ⊗ ιX ⊗ ιY ⊗ ιY )

◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗ ⊗ coevY ⊗ idY ),

which, by the naturality of σ, equals

(mL ⊗mL) ◦ (ιX ⊗ ιY ⊗ ιX ⊗ ιY ) ◦ (idX∗⊗X ⊗ σX∗⊗X,Y ∗⊗Y ⊗ idY ∗⊗Y )

◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗ ⊗ coevY ⊗ idY )

= (ξX,Y ⊗ ξX,Y ) ◦ (idX∗⊗X ⊗ σX∗⊗X,Y ∗⊗Y ⊗ idY ∗⊗Y )

◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗ ⊗ coevY ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ σX∗⊗X,Y ∗ ⊗ idY )

◦ (idX∗⊗X ⊗ σX∗⊗X,Y ∗⊗Y ⊗ idY ∗⊗Y ) ◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗ ⊗ coevY ⊗ idY ).
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By the braiding axioms (1.3) and (1.4), we have

σX∗⊗X,Y ∗⊗Y = (idY ∗ ⊗ σX∗,Y ⊗ idX) ◦ (σX∗,Y ∗ ⊗ idY ⊗ idX)

◦ (idX∗ ⊗ idY ∗ ⊗ σX,Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ),

and hence the above expression becomes

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ σX∗⊗X,Y ∗ ⊗ idY )

◦ (idX∗⊗X⊗Y ∗ ⊗ σX∗,Y ⊗ idX⊗Y ∗⊗Y ) ◦ (idX∗⊗X ⊗ σX∗,Y ∗ ⊗ idY⊗X⊗Y ∗⊗Y )

◦ (idX∗⊗X⊗X∗⊗Y ∗ ⊗ σX,Y ⊗ idY ∗⊗Y ) ◦ (idX∗⊗X⊗X∗ ⊗ σX,Y ∗ ⊗ idY⊗Y ∗⊗Y )

◦ (idX∗ ⊗ coevX ⊗ idX⊗Y ∗ ⊗ coevY ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ σX∗⊗X,Y ∗ ⊗ idY )

◦ (idX∗⊗X⊗Y ∗ ⊗ σX∗,Y ⊗ idX⊗Y ∗⊗Y ) ◦ (idX∗⊗X ⊗ σX∗,Y ∗ ⊗ idY⊗X⊗Y ∗⊗Y )

◦ (idX∗ ⊗ coevX ⊗ idY ∗ ⊗ σX,Y ⊗ idY ∗⊗Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ coevY ⊗ idY ).

Applying (1.9) to the morphism (idX⊗σX∗,Y ∗)◦ (coevX⊗ idY ∗) and the braiding axiom (1.3)

to σX∗⊗X,Y ∗ , this equals

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ⊗ σX∗,Y ∗ ⊗ idX⊗Y )

◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY⊗X∗ ⊗ σX,Y ∗ ⊗ idY ) ◦ (idX∗⊗X⊗Y ∗ ⊗ σX∗,Y ⊗ idX⊗Y ∗⊗Y )

◦ (idX∗ ⊗ σ−1
X,Y ∗ ⊗ idX∗⊗Y⊗X⊗Y ∗⊗Y ) ◦ (idX∗⊗Y ∗ ⊗ coevX ⊗ σX,Y ⊗ idY ∗⊗Y )

◦ (idX∗ ⊗ σX,Y ∗ ⊗ coevY ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ⊗ σX∗,Y ∗ ⊗ idX⊗Y )

◦ (idX∗⊗Y ∗⊗X ⊗ σX∗,Y ⊗ σX,Y ∗ ⊗ idY ) ◦ (idX∗⊗Y ∗⊗X⊗X∗ ⊗ σX,Y ⊗ idY ∗⊗Y )

◦ (idX∗⊗Y ∗ ⊗ coevX ⊗ idX ⊗ coevY ⊗ idY ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ).

Then, applying (1.7) to the morphism (σX,Y ⊗ idY ∗) ◦ (idX ⊗ coevY ), we obtain

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ⊗ σX∗,Y ∗ ⊗ idX⊗Y )

◦ (idX∗⊗Y ∗⊗X ⊗ σX∗,Y ⊗ σX,Y ∗ ⊗ idY ) ◦ (idX∗⊗Y ∗⊗X⊗X∗⊗Y ⊗ σ−1
X,Y ∗ ⊗ idY )

◦ (idX∗⊗Y ∗ ⊗ coevX ⊗ coevY ⊗ idX⊗Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY )

= (ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ⊗ σX∗,Y ∗ ⊗ idX⊗Y )

◦ (idX∗⊗Y ∗⊗X ⊗ σX∗,Y ⊗ idY ∗⊗X⊗Y ) ◦ (idX∗⊗Y ∗⊗X⊗X∗ ⊗ coevY ⊗ idX⊗Y )

◦ (idX∗⊗Y ∗ ⊗ coevX ⊗ idX⊗Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ).
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Applying (1.7) again, to the morphism (σX∗,Y ⊗ idY ∗) ◦ (idX∗ ⊗ coevY ), we obtain

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (σX∗,Y ∗ ⊗ idX⊗Y ⊗ σX∗,Y ∗ ⊗ idX⊗Y )

◦ (idX∗⊗Y ∗⊗X⊗Y ⊗ σ−1
X∗,Y ∗ ⊗ idX⊗Y ) ◦ (idX∗⊗Y ∗⊗X ⊗ coevY ⊗ idX∗⊗X⊗Y )

◦ (idX∗⊗Y ∗ ⊗ coevX ⊗ idX⊗Y ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ),

which simplifies, using the braiding axiom (1.3), to

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ idX⊗Y ⊗ γX,Y ⊗ idX⊗Y ) ◦ (idY ∗⊗X∗⊗X ⊗ coevY ⊗ idX∗⊗X⊗Y )

◦ (idY ∗⊗X∗ ⊗ coevX ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ).

Finally, by the characterization (1.17) of γ, this equals

(ιX⊗Y ⊗ ιX⊗Y ) ◦ (γX,Y ⊗ coevX⊗Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ).

This establishes the multiplicativity of ∆L. That ∆L preserves the unit follows from the

definitions of ∆L and uL, and the definition of uL⊗L as in (1.32):

∆L ◦ uL = ∆L ◦ ιI = ζI = ιI ⊗ ιI = uL⊗L.

2.4 Counit

We now obtain the counit of L. Observe that evX : X∗⊗X → I from Definition 1.3.1 defines

a dinatural transformation, since the dual morphism f ∗ of any morphism f : X → Y in C is

characterized by the commutativity of the diagram

Y ∗ ⊗X X∗ ⊗X

Y ∗ ⊗ Y I

f∗⊗idX

idY ∗⊗f evX

evY

(2.9)

by Theorem 1.4.1. Therefore, by the universality of ι, there is a unique morphism εL : L→ I

such that εL ◦ ιX = evX for all objects X in C.

The counitality of εL means that

(εL ⊗ idL) ◦∆L = idL = (idL ⊗ εL) ◦∆L.
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For the left equation, it is sufficient by the universality of ι to prove that

(εL ⊗ idL) ◦∆L ◦ ιX = ιX ,

i.e.,

(εL ⊗ idL) ◦ ζX = ιX ,

where ζ is the dinatural transformation defined as in (2.8). By Definition 1.3.1, we have

(εL ⊗ idL) ◦ ζX = (εL ⊗ idL) ◦ (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= (evX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= ιX ◦ (evX ⊗ idX∗ ⊗ idX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= ιX ,

as required. The right equation is proved similarly.

Next, we prove that εL is an algebra homomorphism. Recalling that mI = λI = idI , the

multiplicativity of εL means that

εL ◦mL = mI ◦ (εL ⊗ εL) = εL ⊗ εL.

It is sufficient by the universality of ιX ⊗ ιY to prove that

εL ◦mL ◦ (ιX ⊗ ιY ) = (εL ⊗ εL) ◦ (ιX ⊗ ιY ),

i.e.,

εL ◦ ξX,Y = evX ⊗ evY ,

where ξ is the dinatural transformation defined as in (2.1). By the characterization (1.16)

of γ, the naturality of σ, and the fact that σI,Y ∗ = idY ∗ by (1.6), we have

εL ◦ ξX,Y = εL ◦ ιX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= evX⊗Y ◦ (γX,Y ⊗ idX⊗Y ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= evY ◦ (idY ∗ ⊗ evX ⊗ idY ) ◦ (σX∗⊗X,Y ∗ ⊗ idY )

= evY ◦ (σI,Y ∗ ⊗ idY ) ◦ (evX ⊗ idY ∗ ⊗ idY )

= evX ⊗ evY ,

as required.
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That εL preserves the unit follows from the definitions of εL and uL, and the definitions

uI = λI = idI and evI = λI = idI :

εL ◦ uL = εL ◦ ιI = evI = uI .

2.5 Antipode

So far we have shown that L is a bialgebra in C. We now describe its antipode. We begin

once again by defining a dinatural transformation. Let

χX = (evX ⊗ ιX∗) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X) ◦ (coevX∗ ⊗ idX∗⊗X). (2.10)

The dinaturality of χ means that the diagram

Y ∗ ⊗X X∗ ⊗X

Y ∗ ⊗ Y I

f∗⊗idX

idY ∗⊗f χX

χY

commutes for all morphisms f : X → Y in C. By the naturality of σ, the characterizations

of dual morphisms given in Theorem 1.4.1, and the dinaturality of ι, we have

χY ◦ (idY ∗ ⊗ f)

= (evY ⊗ ιY ∗) ◦ (idY ∗ ⊗ σY ∗∗⊗Y ∗,Y ) ◦ (coevY ∗ ⊗ idY ∗ ⊗ idY ) ◦ (idY ∗ ⊗ f)

= (evY ⊗ ιY ∗) ◦ (idY ∗ ⊗ σY ∗∗⊗Y ∗,Y ) ◦ (idY ∗ ⊗ idY ∗∗ ⊗ idY ∗ ⊗ f) ◦ (coevY ∗ ⊗ idY ∗ ⊗ idX)

= (evY ⊗ ιY ∗) ◦ (idY ∗ ⊗ f ⊗ idY ∗∗ ⊗ idY ∗) ◦ (idY ∗ ⊗ σY ∗∗⊗Y ∗,X) ◦ (coevY ∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιY ∗) ◦ (f ∗ ⊗ idX ⊗ idY ∗∗ ⊗ idY ∗) ◦ (idY ∗ ⊗ σY ∗∗⊗Y ∗,X) ◦ (coevY ∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιY ∗) ◦ (idX∗ ⊗ σY ∗∗⊗Y ∗,X) ◦ (f
∗ ⊗ idY ∗∗ ⊗ idY ∗ ⊗ idX) ◦ (coevY ∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιY ∗) ◦ (idX∗ ⊗ σY ∗∗⊗Y ∗,X) ◦ (idX∗ ⊗ f ∗∗ ⊗ idY ∗ ⊗ idX) ◦ (coevX∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιY ∗) ◦ (idX∗ ⊗ idX ⊗ f ∗∗ ⊗ idY ∗) ◦ (idX∗ ⊗ σX∗∗⊗Y ∗,X) ◦ (coevX∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιX∗) ◦ (idX∗ ⊗ idX ⊗ idX∗∗ ⊗ f ∗) ◦ (idX∗ ⊗ σX∗∗⊗Y ∗,X) ◦ (coevX∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιX∗) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X) ◦ (idX∗ ⊗ idX∗∗ ⊗ f ∗ ⊗ idX) ◦ (coevX∗ ⊗ idY ∗ ⊗ idX)

= (evX ⊗ ιX∗) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X) ◦ (coevX∗ ⊗ idX∗ ⊗ idX) ◦ (f
∗ ⊗ idX)

= χX ◦ (f ∗ ⊗ idX),
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as required. Thus, by the universality of ι, there exists a unique morphism SL such that

SL ◦ ιX = χX for all objects X in C.

We now show that SL satisfies the antipode equations. Recall that this means that

mL ◦ (SL ⊗ idL) ◦∆L = uL ◦ εL = mL ◦ (idL ⊗ SL) ◦∆L.

For the left antipode equation, it is sufficient by the universality of ι to prove that

mL ◦ (SL ⊗ idL) ◦∆L ◦ ιX = uL ◦ εL ◦ ιX ,

i.e.,

mL ◦ (SL ⊗ idL) ◦ ζX = uL ◦ evX ,

where ζ is the dinatural transformation (2.8). By the braiding axiom (1.4), the naturality

of σ, the relation σX∗∗⊗X∗,I = idX∗∗⊗X∗ by (1.6), and Definition 1.3.1 of a left dual, we have

mL ◦ (SL ⊗ idL) ◦ ζX

= mL ◦ (SL ⊗ idL) ◦ (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= mL ◦ (χX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

= mL ◦ (evX ⊗ ιX∗ ⊗ ιX) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X ⊗ idX∗⊗X)

◦ (coevX∗ ⊗ idX∗⊗X ⊗ idX∗⊗X) ◦ (idX∗ ⊗ coevX ⊗ idX)

= ξX∗,X ◦ (evX ⊗ idX∗∗⊗X∗ ⊗ idX∗⊗X) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X ⊗ idX∗⊗X)

◦ (coevX∗ ⊗ idX∗ ⊗ coevX ⊗ idX)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (σX∗∗⊗X∗,X∗ ⊗ idX) ◦ (evX ⊗ idX∗∗⊗X∗ ⊗ idX∗⊗X)

◦ (idX∗ ⊗ σX∗∗⊗X∗,X ⊗ idX∗⊗X) ◦ (coevX∗ ⊗ idX∗ ⊗ coevX ⊗ idX)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (evX ⊗ idX∗⊗X∗∗⊗X∗ ⊗ idX) ◦ (idX∗⊗X ⊗ σX∗∗⊗X∗,X∗ ⊗ idX)

◦ (idX∗ ⊗ σX∗∗⊗X∗,X ⊗ idX∗⊗X) ◦ (coevX∗ ⊗ idX∗ ⊗ coevX ⊗ idX)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (evX ⊗ idX∗⊗X∗∗⊗X∗ ⊗ idX) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X⊗X∗ ⊗ idX)

◦ (coevX∗ ⊗ idX∗ ⊗ coevX ⊗ idX)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (evX ⊗ idX∗⊗X∗∗⊗X∗ ⊗ idX) ◦ (idX∗ ⊗ σX∗∗⊗X∗,X⊗X∗ ⊗ idX)

◦ (idX∗ ⊗ idX∗∗ ⊗ idX∗ ⊗ coevX ⊗ idX) ◦ (coevX∗ ⊗ idX∗⊗X)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (evX ⊗ idX∗⊗X∗∗⊗X∗ ⊗ idX)

◦ (idX∗ ⊗ coevX ⊗ idX∗∗⊗X∗ ⊗ idX) ◦ (idX∗ ⊗ σX∗∗⊗X∗,I ⊗ idX) ◦ (coevX∗ ⊗ idX∗⊗X)

= ιX∗⊗X ◦ (γX∗,X ⊗ idX∗⊗X) ◦ (coevX∗ ⊗ idX∗⊗X).
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Now by the dinaturality of ι,

ιX∗⊗X ◦ (ev∗X ⊗ idX∗⊗X) = ιI ◦ (idI∗ ⊗ evX) = uL ◦ evX ,

so if ev∗X = γX∗,X ◦ coevX∗ , then the result will follow. By Theorem 1.4.1, it is sufficient to

prove that

evI ◦ (idI∗ ⊗ evX) = evX∗⊗X ◦ ((γX∗,X ◦ coevX∗)⊗ idX∗⊗X),

and this follows from the characterization (1.16) of γ. If we express the multiplication mL in

the alternative form obtained from (2.3), then the proof that SL satisfies the right antipode

equation is analogous. This establishes that the coend L is a Hopf algebra in C.

2.6 The Hopf pairing

In this section, we consider the morphism ω : L ⊗ L → I that is induced by the dinatural

transformation defined by

ωX,Y = (evX ⊗ evY ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ).

By the universality of ιX ⊗ ιY , there exists a unique morphism ω : L ⊗ L → I such that

ωX,Y = ω ◦ (ιX ⊗ ιY ). We will prove that ω is a Hopf pairing, which means that it satisfies

the following identities:

ω ◦ (mL ⊗ idL) = ω ◦ (idL ⊗ ω ⊗ idL) ◦ (idL ⊗ idL ⊗∆L) (2.11)

ω ◦ (idL ⊗mL) = ω ◦ (idL ⊗ ω ⊗ idL) ◦ (∆L ⊗ idL ⊗ idL) (2.12)

ω ◦ (uL ⊗ idL) = εL = ω ◦ (idL ⊗ uL) (2.13)

See also [17, p. 10].

The dinaturality of ωX,Y means that for all morphisms f : X → X̃ and g : Y → Ỹ in C,

the following diagram commutes:

X̃∗ ⊗X ⊗ Ỹ ∗ ⊗ Y X∗ ⊗X ⊗ Y ∗ ⊗ Y

X̃∗ ⊗ X̃ ⊗ Ỹ ∗ ⊗ Ỹ L⊗ L

f∗⊗idX⊗g∗⊗idY

id
X̃∗⊗f⊗id

Ỹ ∗⊗g ωX,Y

ω
X̃,Ỹ
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By the naturality of σ and Theorem 1.4.1, we have

ωX,Y ◦ (f ∗ ⊗ idX ⊗ g∗ ⊗ idY )

= (evX ⊗ evY ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ) ◦ (f
∗ ⊗ idX ⊗ g∗ ⊗ idY )

= (evX ⊗ evY ) ◦ (idX∗ ⊗ idX ⊗ g∗ ⊗ idY ) ◦ (f
∗ ⊗ (σỸ ∗,X ◦ σX,Ỹ ∗)⊗ idY )

= (evX ⊗ evY ) ◦ (f
∗ ⊗ idX ⊗ g∗ ⊗ idY ) ◦ (idX̃∗ ⊗ (σỸ ∗,X ◦ σX,Ỹ ∗)⊗ idY )

= (evX̃ ⊗ evỸ ) ◦ (idX̃∗ ⊗ f ⊗ idỸ ∗ ⊗ g) ◦ (idX̃∗ ⊗ (σỸ ∗,X ◦ σX,Ỹ ∗)⊗ idY )

= (evX̃ ⊗ evỸ ) ◦ (idX̃∗ ⊗ (σỸ ∗,X̃ ◦ σX̃,Ỹ ∗)⊗ g) ◦ (idX̃∗ ⊗ f ⊗ idỸ ∗ ⊗ idY )

= (evX̃ ⊗ evỸ ) ◦ (idX̃∗ ⊗ (σỸ ∗,X̃ ◦ σX̃,Ỹ ∗)⊗ idỸ ) ◦ (idX̃∗ ⊗ f ⊗ idỸ ∗ ⊗ g)

= ωX̃,Ỹ ◦ (idX̃∗ ⊗ f ⊗ idỸ ∗ ⊗ g)

as required.

To prove (2.11), it is sufficient by the universality of ιX ⊗ ιY ⊗ ιZ to prove that

ω ◦ (mL ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ιZ) = ω ◦ (idL ⊗ ω ⊗ idL) ◦ (idL ⊗ idL ⊗∆L) ◦ (ιX ⊗ ιY ⊗ ιZ),

i.e.,

ω ◦ (ξX,Y ⊗ ιZ) = ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ζZ),

where ξ is defined as in (2.1) and ζ is defined as in (2.8). For the right-hand side of this

equation, we have

ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ζZ)

= ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ιX ⊗ ιY ⊗ ιZ ⊗ ιZ) ◦ (idX∗⊗X ⊗ idY ∗⊗Y ⊗ idZ∗ ⊗ coevZ ⊗ idZ)

= ω ◦ (ιX ⊗ ιZ) ◦ (idX∗⊗X ⊗ ωY,Z ⊗ idZ∗⊗Z) ◦ (idX∗⊗X ⊗ idY ∗⊗Y ⊗ idZ∗ ⊗ coevZ ⊗ idZ)

= ωX,Z ◦ (idX∗⊗X ⊗ evY ⊗ evZ ⊗ idZ∗⊗Z) ◦ (idX∗⊗X⊗Y ∗ ⊗ (σZ∗,Y ◦ σY,Z∗)⊗ idZ⊗Z∗⊗Z)

◦ (idX∗⊗X ⊗ idY ∗⊗Y ⊗ idZ∗ ⊗ coevZ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idZ) ◦ (idX∗⊗X ⊗ evY ⊗ evZ ⊗ idZ∗⊗Z)

◦ (idX∗⊗X⊗Y ∗ ⊗ idY⊗Z∗ ⊗ coevZ ⊗ idZ) ◦ (idX∗⊗X⊗Y ∗ ⊗ (σZ∗,Y ◦ σY,Z∗)⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idZ) ◦ (idX∗⊗X ⊗ evY ⊗ idZ∗⊗Z)

◦ (idX∗⊗X⊗Y ∗ ⊗ (σZ∗,Y ◦ σY,Z∗)⊗ idZ),

where we have used Definition 1.3.1 of a left dual Z∗. For the left-hand side, we have by the
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characterization (1.16) of γ and the braiding axioms (1.3) and (1.4) that

ω ◦ (ξX,Y ⊗ ιZ)

= ω ◦ (ιX⊗Y ⊗ ιZ) ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= ωX⊗Y,Z ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evX⊗Y ⊗ evZ) ◦ (id(X⊗Y )∗ ⊗ (σZ∗,X⊗Y ◦ σX⊗Y,Z∗)⊗ idZ) ◦ (γX,Y ⊗ idX⊗Y ⊗ idZ∗⊗Z)

◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evX⊗Y ⊗ evZ) ◦ (γX,Y ⊗ idX⊗Y⊗Z∗ ⊗ idZ) ◦ (idY ∗⊗X∗ ⊗ (σZ∗,X⊗Y ◦ σX⊗Y,Z∗)⊗ idZ)

◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evY ⊗ evZ) ◦ (idY ∗ ⊗ evX ⊗ idY ⊗ idZ∗⊗Z) ◦ (idY ∗⊗X∗ ⊗ (σZ∗,X⊗Y ◦ σX⊗Y,Z∗)⊗ idZ)

◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evY ⊗ evZ) ◦ (idY ∗ ⊗ evX ⊗ idY ⊗ idZ∗⊗Z) ◦ (idY ∗⊗X∗ ⊗ σZ∗,X⊗Y ⊗ idZ)

◦ (idY ∗⊗X∗ ⊗ σX⊗Y,Z∗ ⊗ idZ) ◦ (σX∗⊗X,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evY ⊗ evZ) ◦ (idY ∗ ⊗ evX ⊗ idY ⊗ idZ∗⊗Z) ◦ (idY ∗⊗X∗ ⊗ idX ⊗ σZ∗,Y ⊗ idZ)

◦ (idY ∗⊗X∗ ⊗ σZ∗,X ⊗ idY ⊗ idZ) ◦ (idY ∗⊗X∗ ⊗ σX,Z∗ ⊗ idY ⊗ idZ)

◦ (idY ∗⊗X∗ ⊗ idX ⊗ σY,Z∗ ⊗ idZ) ◦ (σX∗,Y ∗ ⊗ idX ⊗ idY ⊗ idZ∗⊗Z)

◦ (idX∗ ⊗ σX,Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

= (evY ⊗ evZ) ◦ (idY ∗ ⊗ evX ⊗ idY ⊗ idZ∗⊗Z) ◦ (σX∗,Y ∗ ⊗ idX ⊗ σZ∗,Y ⊗ idZ)

◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ).

An application of (1.10) to σX∗,Y ∗ , followed by an application of (1.8) to σZ∗,Y , yields

(evY ⊗ evZ) ◦ (evX ⊗ idY ∗ ⊗ idY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ σ−1
X,Y ∗ ⊗ σZ∗,Y ⊗ idZ)

◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evY ⊗ evZ) ◦ (evX ⊗ idY ∗ ⊗ idY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ σ−1
X,Y ∗ ⊗ σZ∗,Y ⊗ idZ)

◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ evY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ idX⊗Y ∗ ⊗ σZ∗,Y ⊗ idZ)

◦ (idX∗ ⊗ σ−1
X,Y ∗ ⊗ idZ∗⊗Y ⊗ idZ) ◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ idX ⊗ σ−1
Z∗,Y ∗ ⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ σ−1
X,Y ∗ ⊗ idZ∗⊗Y ⊗ idZ) ◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ).
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Applying (1.3) to σ−1
X⊗Z∗,Y ∗ , the naturality of σ−1, and then (1.3) again, this equals

(evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ σ−1
X⊗Z∗,Y ∗ ⊗ idY ⊗ idZ)

◦ (idX∗⊗Y ∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ∗ ⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ σ−1
X⊗Z∗,Y ∗ ⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ∗ ⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ idX ⊗ σ−1
Z∗,Y ∗ ⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ σ−1

X,Y ∗ ⊗ idZ∗ ⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ σX,Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idY ∗ ⊗ idY ⊗ idZ)

◦ (idX∗ ⊗ idX ⊗ σ−1
Z∗,Y ∗ ⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ idX⊗Y ∗ ⊗ σY,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idZ) ◦ (idX∗ ⊗ idX⊗Z∗ ⊗ evY ⊗ idZ)

◦ (idX∗ ⊗ idX ⊗ σ−1
Z∗,Y ∗ ⊗ idY ⊗ idZ) ◦ (idX∗ ⊗ idX⊗Y ∗ ⊗ σY,Z∗ ⊗ idZ).

Finally, we apply (1.8) to σ−1
Z∗,Y ∗ to obtain

(evX ⊗ evZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idZ) ◦ (idX∗ ⊗ idX ⊗ evY ⊗ idZ∗ ⊗ idZ)

◦ (idX∗ ⊗ idX ⊗ idY ∗ ⊗ σZ∗,Y ⊗ idZ) ◦ (idX∗ ⊗ idX⊗Y ∗ ⊗ σY,Z∗ ⊗ idZ),

which is equal to the right-hand side.

To prove (2.12), it is sufficient by the universality of ιX ⊗ ιY ⊗ ιZ to prove that

ω ◦ (ιX ⊗ ξY,Z) = ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ζX ⊗ ιY ⊗ ιZ).

For the right-hand side, we have

ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ζX ⊗ ιY ⊗ ιZ)

= ω ◦ (idL ⊗ ω ⊗ idL) ◦ (ιX ⊗ ιX ⊗ ιY ⊗ ιZ) ◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗⊗Y ⊗ idZ∗⊗Z)

= ω ◦ (ιX ⊗ ιZ) ◦ (idX∗⊗X ⊗ ωX,Y ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗⊗Y ⊗ idZ∗⊗Z)

= ωX,Z ◦ (idX∗⊗X ⊗ evX ⊗ evY ⊗ idZ∗⊗Z) ◦ (idX∗⊗X⊗X∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY⊗Z∗⊗Z)

◦ (idX∗ ⊗ coevX ⊗ idX ⊗ idY ∗⊗Y ⊗ idZ∗⊗Z)

= ωX,Z ◦ (idX∗⊗X ⊗ evX ⊗ evY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ coevX ⊗ idX⊗Y ∗ ⊗ idY ⊗ idZ∗⊗Z)

◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗⊗Z)

= ωX,Z ◦ (idX∗ ⊗ evY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗⊗Z),
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where we have applied Definition 1.3.1. For the left-hand side, we have

ω ◦ (ιX ⊗ ξY,Z)

= ω ◦ (ιX ⊗ ιY⊗Z) ◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= ωX,Y⊗Z ◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evY⊗Z) ◦ (idX∗ ⊗ σ(Y⊗Z)∗,X ⊗ idY⊗Z) ◦ (idX∗ ⊗ σX,(Y⊗Z)∗ ⊗ idY⊗Z)

◦ (idX∗⊗X ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evY⊗Z) ◦ (idX∗ ⊗ σ(Y⊗Z)∗,X ⊗ idY⊗Z) ◦ (idX∗ ⊗ γY,Z ⊗ idX ⊗ idY⊗Z)

◦ (idX∗ ⊗ σX,Z∗⊗Y ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evY⊗Z) ◦ (idX∗ ⊗ idX ⊗ γY,Z ⊗ idY⊗Z) ◦ (idX∗ ⊗ σZ∗⊗Y ∗,X ⊗ idY⊗Z)

◦ (idX∗ ⊗ σX,Z∗⊗Y ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ σZ∗,X ⊗ idY ∗ ⊗ idY⊗Z)

◦ (idX∗ ⊗ idZ∗ ⊗ σY ∗,X ⊗ idY⊗Z) ◦ (idX∗ ⊗ idZ∗ ⊗ σX,Y ∗ ⊗ idY⊗Z)

◦ (idX∗ ⊗ σX,Z∗ ⊗ idY ∗ ⊗ idY⊗Z) ◦ (idX∗⊗X ⊗ σY ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗⊗X ⊗ idZ∗ ⊗ evY ⊗ idZ) ◦ (idX∗ ⊗ σZ∗,X ⊗ idY ∗ ⊗ idY⊗Z)

◦ (idX∗ ⊗ idZ∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY⊗Z) ◦ (idX∗ ⊗ σX⊗Y ∗⊗Y,Z∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ σZ∗,X ⊗ idZ) ◦ (idX∗ ⊗ idZ∗⊗X ⊗ evY ⊗ idZ)

◦ (idX∗ ⊗ σX⊗Y ∗⊗Y,Z∗ ⊗ idZ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ σZ∗,X ⊗ idZ) ◦ (idX∗ ⊗ σX,Z∗ ⊗ idZ)

◦ (idX∗ ⊗ idX ⊗ evY ⊗ idZ∗ ⊗ idZ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗ ⊗ idZ)

= (evX ⊗ evZ) ◦ (idX∗ ⊗ (σZ∗,X ◦ σX,Z∗)⊗ idZ) ◦ (idX∗ ⊗ idX ⊗ evY ⊗ idZ∗ ⊗ idZ)

◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗ ⊗ idZ)

= ωX,Z ◦ (idX∗⊗X ⊗ evY ⊗ idZ∗⊗Z) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ⊗ idZ∗⊗Z),

as required, where we have used the characterization (1.16) of γ and several applications of

the naturality of σ and the braiding axioms (1.3) and (1.4).

Finally, we prove the left equality in (2.13); the right equality is proved similarly. For

this calculation, we do not assume that the unit constraint λ is the identity transformation.

It is sufficient by the universality of ι to prove that

ω ◦ (uL ⊗ idL) ◦ λ
−1
L ◦ ιX = εL ◦ ιX = evX .
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We have

ω ◦ (uL ⊗ idL) ◦ λ
−1
L ◦ ιX

= ω ◦ ((ιI ◦ λ
−1
I )⊗ idL) ◦ λ

−1
L ◦ ιX

= ω ◦ ((ιI ◦ λ
−1
I )⊗ idL) ◦ (idI ⊗ ιX) ◦ λ

−1
X∗⊗X

= ω ◦ (ιI ⊗ ιX) ◦ (λ
−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= ωI,X ◦ (λ−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= λI ◦ (evI ⊗ evX) ◦ (idI∗ ⊗ (σX∗,I ◦ σI,X∗)⊗ idX) ◦ (λ
−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= λI ◦ (λI ⊗ evX) ◦ (λ
−1
I ⊗ idX∗⊗X) ◦ λ

−1
X∗⊗X

= λI ◦ (idI ⊗ evX) ◦ λ
−1
X∗⊗X

= λI ◦ λ
−1
I ◦ evX

= evX ,

where we have used the naturality of λ, and the fact that σX∗,I ◦ σI,X∗ = idI⊗X∗ as a

consequence of [5, Prop. XIII.1.2, p. 316].



Chapter 3

Duals and homomorphic images of

categorical Hopf algebras

In this chapter, we show that a dual object of a Hopf algebra in a braided category C with

duality is again a Hopf algebra in C, and that, if C is an abelian tensor category, an image

of a Hopf algebra homomorphism in C is a Hopf algebra in C. We then consider morphisms

ω′ : H → H∗ and ω′′ : H → ∗H induced by the Hopf pairing. We see that these morphisms

are in fact Hopf algebra homomorphisms, so that their images are Hopf subalgebras.

3.1 Duals of categorical Hopf algebras

Let H be a Hopf algebra in a braided category C with left duality. We now discuss how

the left dual object H∗ is again a Hopf algebra in C. The structure morphisms on the dual

object are defined slightly differently than in the case of the dual vector space of an ordinary

Hopf algebra.

Recall that if H is a finite-dimensional Hopf algebra in the ordinary sense, then the dual

space H∗ is also a Hopf algebra, whose product can be expressed in Sweedler notation as

(ϕψ)(h) = ϕ(h(1))ψ(h(2)) (3.1)

and whose coproduct can be expressed as

ϕ(1)(h)ϕ(2)(h
′) = ϕ(hh′), (3.2)
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for ϕ, ψ ∈ H∗ and h, h′ ∈ H. Equation (3.1) means that

mH∗(ϕ⊗ ψ) = ∆∗
H(ϕ⊗ ψ),

where ϕ⊗ ψ ∈ H∗ ⊗H∗ is viewed as the element in (H ⊗H)∗ defined by

(ϕ⊗ ψ)(h⊗ h′) = ϕ(h)ψ(h′)

for h, h′ ∈ H; and (3.2) means that

∆H∗(ϕ) = m∗
H(ϕ),

where m∗
H(ϕ) is viewed as an element of H∗ ⊗H∗. These identifications are valid because,

in the finite-dimensional case, the vector space H∗ ⊗H∗ is isomorphic to (H ⊗H)∗.

In the categorical context, however, the objects X∗⊗Y ∗ and (X⊗Y )∗ are not isomorphic

in general. Instead, Y ∗ ⊗ X∗ is isomorphic to (X ⊗ Y )∗, by the natural isomorphism γ

characterized by (1.16). Thus, for a left dual object H∗ of a Hopf algebra H in C, we define

the product as

mH∗ = ∆∗
H ◦ γH,H (3.3)

and the coproduct as

∆H∗ = γ−1
H,H ◦m∗

H . (3.4)

The unit of the dual H∗ is defined as the dual of the counit of H:

uH∗ = ε∗H : I ∼= I∗ → H∗.

The counit of the dual H∗ is defined as the dual of the unit of H:

εH∗ = u∗H : H∗ → I∗ ∼= I.

The antipode of H∗ is the dual of the antipode of H:

SH∗ = S∗
H : H∗ → H∗.

We prove only that ∆H∗ is multiplicative, i.e., that

∆H∗ ◦mH∗ = (mH∗ ⊗mH∗) ◦ (idH∗ ⊗ σH∗,H∗ ⊗ idH∗) ◦ (∆H∗ ⊗∆H∗).
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Using the definition (1.11) of a dual morphism and Definition 1.3.1 of a left dual object,

∆H∗ ◦mH∗

= γ−1
H,H ◦m∗

H ◦∆∗
H ◦ γH,H

= γ−1
H,H ◦ (evH ⊗ id(H⊗H)∗) ◦ (idH∗ ⊗mH ⊗ id(H⊗H)∗) ◦ (idH∗ ⊗ coevH⊗H)

◦ (evH⊗H ⊗ idH∗) ◦ (id(H⊗H)∗ ⊗∆H ⊗ idH∗) ◦ (id(H⊗H)∗ ⊗ coevH) ◦ γH,H

= γ−1
H,H ◦ (evH⊗H ⊗ evH ⊗ id(H⊗H)∗) ◦ (id(H⊗H)∗⊗H⊗H ⊗ idH∗ ⊗mH ⊗ id(H⊗H)∗)

◦ (id(H⊗H)∗ ⊗∆H ⊗ idH∗ ⊗ idH⊗H⊗(H⊗H)∗) ◦ (id(H⊗H)∗ ⊗ coevH ⊗ coevH⊗H) ◦ γH,H

= γ−1
H,H ◦ (evH⊗H ⊗ id(H⊗H)∗) ◦ (id(H⊗H)∗ ⊗∆H ⊗ evH ⊗ id(H⊗H)∗)

◦ (id(H⊗H)∗ ⊗ coevH ⊗mH ⊗ id(H⊗H)∗) ◦ (id(H⊗H)∗ ⊗ coevH⊗H) ◦ γH,H

= γ−1
H,H ◦ (evH⊗H ⊗ id(H⊗H)∗) ◦ (id(H⊗H)∗ ⊗∆H ⊗ id(H⊗H)∗)

◦ (id(H⊗H)∗ ⊗mH ⊗ id(H⊗H)∗) ◦ (id(H⊗H)∗ ⊗ coevH⊗H) ◦ γH,H

= (evH⊗H ⊗ idH∗⊗H∗) ◦ (γH,H ⊗ idH⊗H ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗ (∆H ◦mH)⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗ γ−1
H,H) ◦ (idH∗⊗H∗ ⊗ coevH⊗H).

Since ∆H is an algebra homomorphism, we have

∆H ◦mH = (mH ⊗mH) ◦ (idH ⊗ σH,H ⊗ idH) ◦ (∆H ⊗∆H),

and, by the characterizations (1.16) and (1.17) of γ, we have

evH⊗H ◦ (γH,H ⊗ idH⊗H) = evH ◦ (idH∗ ⊗ evH ⊗ idH) (3.5)

and

(idH⊗H ⊗ γ−1
H,H) ◦ coevH⊗H = (idH ⊗ coevH ⊗ idH∗) ◦ coevH . (3.6)

Thus, the above expression is equal to

(evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗mH ⊗mH ⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ idH ⊗ σH,H ⊗ idH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗∆H ⊗∆H ⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ idH ⊗ coevH ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH)

= (evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗mH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H ⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗mH ⊗ idH⊗H ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗ idH ⊗ σH,H ⊗ idH ⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗∆H ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗ coevH ⊗ idH∗)

◦ (idH∗⊗H∗ ⊗∆H ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH).
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Applying Theorem 1.4.1 to mH and ∆H , this equals

(evH⊗H ⊗ idH∗⊗H∗) ◦ (m∗
H ⊗ idH⊗H ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH⊗H ⊗ idH⊗H ⊗ idH∗⊗H∗)

◦ (idH∗ ⊗m∗
H ⊗ idH⊗H ⊗ idH⊗H ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗ ⊗ idH ⊗ σH,H ⊗ idH ⊗ idH∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗ idH⊗H ⊗∆∗
H ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗ coevH⊗H ⊗ idH∗)

◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗∆∗
H) ◦ (idH∗⊗H∗ ⊗ coevH⊗H)

= (evH⊗H ⊗ idH∗⊗H∗) ◦ (id(H⊗H)∗ ⊗ evH⊗H ⊗ idH⊗H ⊗ idH∗⊗H∗)

◦ (id(H⊗H)∗ ⊗ id(H⊗H)∗ ⊗ idH ⊗ σH,H ⊗ idH ⊗ idH∗⊗H∗)

◦ (m∗
H ⊗m∗

H ⊗ idH⊗H ⊗ idH⊗H ⊗∆∗
H ⊗∆∗

H)

◦ (idH∗⊗H∗ ⊗ idH⊗H ⊗ coevH⊗H ⊗ id(H⊗H)∗) ◦ (idH∗⊗H∗ ⊗ coevH⊗H).

From (3.5) and (3.6), we have

evH⊗H = evH ◦ (idH∗ ⊗ evH ⊗ idH) ◦ (γ
−1
H,H ⊗ idH⊗H)

and

coevH⊗H = (idH⊗H ⊗ γH,H) ◦ (idH ⊗ coevH ⊗ idH∗) ◦ coevH ,

and hence the above expression equals

(evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (γ−1
H,H ⊗ idH⊗H⊗H∗⊗H∗)

◦ (id(H⊗H)∗ ⊗ evH ⊗ idH⊗H⊗H∗⊗H∗) ◦ (id(H⊗H)∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗)

◦ (id(H⊗H)∗ ⊗ γ−1
H,H ⊗ idH⊗H⊗H⊗H⊗H∗⊗H∗) ◦ (id(H⊗H)∗⊗(H⊗H)∗⊗H ⊗ σH,H ⊗ idH⊗H∗⊗H∗)

◦ (m∗
H ⊗m∗

H ⊗ idH⊗H⊗H⊗H ⊗∆∗
H ⊗∆∗

H) ◦ (idH∗⊗H∗⊗H⊗H⊗H⊗H ⊗ γH,H ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗(H⊗H)∗) ◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ γH,H) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH),

which further equals

(evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (γ−1
H,H ⊗ idH⊗H⊗H∗⊗H∗)

◦ (id(H⊗H)∗ ⊗ evH ⊗ idH⊗H⊗H∗⊗H∗) ◦ (id(H⊗H)∗⊗H∗ ⊗ σH,H ⊗ idH⊗H∗⊗H∗)

◦ (id(H⊗H)∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗) ◦ (id(H⊗H)∗ ⊗ γ−1
H,H ⊗ idH⊗H⊗H⊗H⊗H∗⊗H∗)

◦ (m∗
H ⊗m∗

H ⊗ idH⊗H⊗H⊗H ⊗∆∗
H ⊗∆∗

H) ◦ (idH∗⊗H∗⊗H⊗H⊗H⊗H ⊗ γH,H ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗(H⊗H)∗) ◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ γH,H) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH).
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Applying (1.8) to the morphism (evH ⊗ idH) ◦ (idH∗ ⊗ σH,H), we have

(evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (γ−1
H,H ⊗ idH⊗H⊗H∗⊗H∗)

◦ (id(H⊗H)∗⊗H ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (id(H⊗H)∗ ⊗ σ−1
H,H∗ ⊗ idH⊗H⊗H∗⊗H∗)

◦ (id(H⊗H)∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗) ◦ (id(H⊗H)∗ ⊗ γ−1
H,H ⊗ idH⊗H⊗H⊗H⊗H∗⊗H∗)

◦ (m∗
H ⊗m∗

H ⊗ idH⊗H⊗H⊗H ⊗∆∗
H ⊗∆∗

H) ◦ (idH∗⊗H∗⊗H⊗H⊗H⊗H ⊗ γH,H ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗(H⊗H)∗) ◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ id(H⊗H)∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ γH,H) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH)

= (evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (idH∗⊗H∗⊗H ⊗ evH ⊗ idH⊗H∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ σ−1
H,H∗ ⊗ idH⊗H⊗H∗⊗H∗) ◦ (idH∗⊗H∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗)

◦ (γ−1
H,H ⊗ γ−1

H,H ⊗ idH⊗H⊗H⊗H⊗H∗⊗H∗) ◦ (m∗
H ⊗m∗

H ⊗ idH⊗H⊗H⊗H ⊗∆∗
H ⊗∆∗

H)

◦ (idH∗⊗H∗⊗H⊗H⊗H⊗H ⊗ γH,H ⊗ γH,H) ◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗⊗H∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗)

◦ (idH∗⊗H∗ ⊗ coevH)

= (evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH∗⊗H⊗H⊗H∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ σ−1
H,H∗ ⊗ idH⊗H⊗H∗⊗H∗) ◦ (idH∗⊗H∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗)

◦ (∆H∗ ⊗∆H∗ ⊗ idH⊗H⊗H⊗H ⊗mH∗ ⊗mH∗) ◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗⊗H∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗)

◦ (idH∗⊗H∗ ⊗ coevH),

and, applying (1.10) to the morphism (evH ⊗ idH∗) ◦ (idH∗ ⊗ σ−1
H,H∗), we obtain

(evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗⊗H∗) ◦ (idH∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H∗⊗H∗)

◦ (idH∗ ⊗ σH∗,H∗ ⊗ idH⊗H⊗H⊗H∗⊗H∗) ◦ (idH∗⊗H∗⊗H∗ ⊗ evH ⊗ idH⊗H⊗H⊗H∗⊗H∗)

◦ (∆H∗ ⊗∆H∗ ⊗ idH⊗H⊗H⊗H ⊗mH∗ ⊗mH∗) ◦ (idH∗⊗H∗⊗H⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗⊗H∗)

◦ (idH∗⊗H∗⊗H⊗H ⊗ coevH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗⊗H ⊗ coevH ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH)

= (mH∗ ⊗mH∗) ◦ (evH ⊗ idH∗⊗H∗⊗H∗⊗H∗) ◦ (idH∗ ⊗ evH ⊗ coevH ⊗ idH∗⊗H∗⊗H∗)

◦ (idH∗⊗H∗ ⊗ evH ⊗ coevH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H∗⊗H∗ ⊗ evH ⊗ coevH ⊗ idH∗)

◦ (idH∗⊗H∗⊗H∗⊗H∗ ⊗ coevH) ◦ (idH∗ ⊗ σH∗,H∗ ⊗ idH∗) ◦ (∆H∗ ⊗∆H∗).

Finally, several applications of Definition 1.3.1 yields

∆H∗ ◦mH∗ = (mH∗ ⊗mH∗) ◦ (idH∗ ⊗ σH∗,H∗ ⊗ idH∗) ◦ (∆H∗ ⊗∆H∗).
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By similar calculations, one can show that the right dual ∗H of a Hopf algebra H in a

braided category C with right duality is again a Hopf algebra in C. Its product and coproduct

are defined similarly, by taking

m ∗H = ∗∆H ◦ γ′H,H

and

∆ ∗H = (γ′H,H)
−1 ◦ ∗mH ,

where γ′ is the natural isomorphism characterized by (1.23). The unit and counit of ∗H are

the right dual morphisms of the counit and unit of H, respectively.

3.2 Images of Hopf algebra homomorphisms

In this section, we prove that the image of a Hopf algebra homomorphism f : A → B in an

abelian tensor category C with left duality is a Hopf subalgebra of B. First, we need the

following lemma.

Lemma 3.2.1. If f : X → Y is an epimorphism in a tensor category C with left duality,

then both f ⊗ idZ and idZ ⊗ f are also epimorphisms, where Z is any object in C.

Proof. We prove that f ⊗ idZ is an epimorphism, the other assertion is proved similarly.

Suppose that

g ◦ (f ⊗ idZ) = h ◦ (f ⊗ idZ)

for some morphisms g : Y ⊗ Z → W and h : Y ⊗ Z → W . Then

(g ⊗ idZ∗) ◦ (f ⊗ idZ⊗Z∗) ◦ (idX ⊗ coevZ) = (h⊗ idZ∗) ◦ (f ⊗ idZ⊗Z∗) ◦ (idX ⊗ coevZ),

that is,

(g ⊗ idZ∗) ◦ (idY ⊗ coevZ) ◦ f = (h⊗ idZ∗) ◦ (idY ⊗ coevZ) ◦ f.

Since f is an epimorphism, this implies that

(g ⊗ idZ∗) ◦ (idY ⊗ coevZ) = (h⊗ idZ∗) ◦ (idY ⊗ coevZ).

Then

(idW ⊗ evZ) ◦ (g ⊗ idZ∗⊗Z) ◦ (idY ⊗ coevZ ⊗ idZ)

= (idW ⊗ evZ) ◦ (h⊗ idZ∗⊗Z) ◦ (idY ⊗ coevZ ⊗ idZ),
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that is,

g ◦ (idY⊗Z ⊗ evZ) ◦ (idY ⊗ coevZ ⊗ idZ)

= h ◦ (idY⊗Z ⊗ evZ) ◦ (idY ⊗ coevZ ⊗ idZ).

This implies that g = h, by applying Definition 1.3.1 of a left dual Z∗. Thus f ⊗ idZ is an

epimorphism.

It can be shown similarly that if f is a monomorphism, then both f ⊗ idZ and idZ ⊗ f

are also monomorphisms. This and the above lemma are actually parts of a more general

theorem [3, Theorem 7.7, Ch. 2, p. 68].

Next, we prove that if f is an algebra homomorphism, then C = im(f) is a subalgebra,

which means that there exists a multiplication mC : C⊗C → C for C such that the diagram

C ⊗ C B ⊗ B

C B

mC

i⊗i

mB

i

commutes, where i : im(f) → B is an image of f .

Theorem 3.2.1. Let C be an abelian tensor category with left duality. If f : A → B is an

algebra homomorphism in C, then C = im(f) is a subalgebra of B.

Proof. Since f is an algebra homomorphism, we have

mB ◦ (f ⊗ f) = f ◦mA.

Recall that there exists a unique morphism g : A→ im(f) such that f = i◦g by the universal

property of the kernel of the cokernel. Hence,

mB ◦ (i⊗ i) ◦ (g ⊗ g) = i ◦ g ◦mA.

Now since π ◦ i = 0, where π : B → coker(f) is the cokernel of f , we have

π ◦mB ◦ (i⊗ i) ◦ (g ⊗ g) = π ◦ i ◦ g ◦mA

= 0.
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But g ⊗ g is an epimorphism by Lemmas 1.5.1 and 3.2.1, so this implies that

π ◦mB ◦ (i⊗ i) = 0.

Now, by the universal property of π, there exists a unique morphism mC : C ⊗ C → C such

that

mB ◦ (i⊗ i) = i ◦mC .

Furthermore, it can be shown that mC satisfies the definition of a product on C, and hence

C is a subalgebra of B. Its unit satisfies i ◦ uC = uB.

The next task is to prove that C = im(f) is a subcoalgebra, which means that there

exists a coproduct ∆C : C → C ⊗ C such that the diagram

C ⊗ C B ⊗ B

C B

i⊗i

∆C

i

∆B
(3.7)

commutes, where i : im(f) → B is an image of f .

Theorem 3.2.2. Let C be an abelian tensor category with left duality. If f : A → B is a

coalgebra homomorphism in C, then C = im(f) is a subcoalgebra of B.

Proof. We first prove that there exists a morphism δC : C → C ⊗ B such that

(i⊗ idB) ◦ δC = ∆B ◦ i,

where i : im(f) → B is an image of f . Let π : B → coker(f) be a cokernel of f , and write

f = i ◦ g. Then, using the fact that f is a coalgebra homomorphism, and that π ◦ f = 0, we

have

(π ⊗ idB) ◦∆B ◦ i ◦ g = (π ⊗ idB) ◦∆B ◦ f

= (π ⊗ idB) ◦ (f ⊗ f) ◦∆A

= (0⊗ f) ◦∆A

= 0 ◦∆A

= 0.
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Since g is an epimorphism by Lemma 1.5.1, this implies that (π ⊗ idB) ◦∆B ◦ i = 0. It can

be shown by similar reasoning as in Lemma 3.2.1 that i⊗ idB is the kernel of π⊗ idB. Thus,

by the universal property of the kernel, there exists a unique morphism δC such that

∆B ◦ i = (i⊗ idB) ◦ δC ,

as asserted.

Next, we show that (idC ⊗ π) ◦ δC = 0. Letting D = coker(f), and again using the fact

that f is a coalgebra homomorphism, we have

(i⊗ idD) ◦ (idC ⊗ π) ◦ δC ◦ g = (idB ⊗ π) ◦ (i⊗ idB) ◦ δC ◦ g

= (idB ⊗ π) ◦∆B ◦ i ◦ g

= (idB ⊗ π) ◦∆B ◦ f

= (idB ⊗ π) ◦ (f ⊗ f) ◦∆A

= (f ⊗ 0) ◦∆A

= 0 ◦∆A

= 0.

Since g is an epimorphism, this implies that

(i⊗ idD) ◦ (idC ⊗ π) ◦ δC = 0,

and since i⊗ idD is a monomorphism, this further implies that

(idC ⊗ π) ◦ δC = 0.

Now, by the universal property of the kernel of idC⊗π, which is idC⊗ i, there exists a unique

morphism ∆C : C → C ⊗ C such that

δC = (idC ⊗ i) ◦∆C ,

and hence

(i⊗ i) ◦∆C = (i⊗ idB) ◦ δC = ∆B ◦ i.

Furthermore, it can be shown that ∆C satisfies the definition of a coproduct on C, and

therefore C is a subcoalgebra of B. Its counit is εC = εB ◦ i.
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Finally, we prove that im(f) has an antipode, which makes it a Hopf subalgebra of B.

Theorem 3.2.3. Let C be an abelian tensor category with left duality. If f : A → B is a

Hopf algebra homomorphism in C, then C = im(f) is a Hopf subalgebra of B.

Proof. Let π : B → coker(f) be a cokernel of f and let i : im(f) → B be an image of f ,

and write f = i ◦ g. First, we show that there exists a morphism SC : C → C such that

i ◦ SC = SB ◦ i. Since f is a Hopf algebra homomorphism, we have

π ◦ SB ◦ i ◦ g = π ◦ SB ◦ f

= π ◦ f ◦ SA

= 0 ◦ SA

= 0.

Since g is an epimorphism by Lemma 1.5.1, this implies that π ◦ SB ◦ i = 0. Therefore,

by the universal property of the kernel of π, there exists a unique morphism SC such that

i ◦ SC = SB ◦ i, as required. We prove that SC satisfies the left antipode equation

mC ◦ (SC ⊗ idC) ◦∆C = uC ◦ εC .

The right antipode equation is proved similarly. We have

i ◦mC ◦ (SC ⊗ idC) ◦∆C = mB ◦ (i⊗ i) ◦ (SC ⊗ idC) ◦∆C

= mB ◦ (SB ⊗ idB) ◦ (i⊗ i) ◦∆C

= mB ◦ (SB ⊗ idB) ◦∆B ◦ i

= uB ◦ εB ◦ i

= i ◦ uC ◦ εC ,

and since i is left-cancellable, the result follows.

3.3 The homomorphisms induced by the Hopf pairing

Let H be a Hopf algebra in an abelian tensor category C with left duality. For a Hopf pairing

ω : H ⊗H → I, we define the morphism

ω′ = (ω ⊗ idH∗) ◦ (idH ⊗ coevH). (3.8)
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The pairing ω is said to be non-degenerate when ω′ is an isomorphism. In this section, we

show that ω′ : H → H∗ is a Hopf algebra homomorphism. It then follows by Theorem 3.2.3

that im(ω′) is a Hopf subalgebra of H∗. First, we prove that ω′ is an algebra homomorphism.

Theorem 3.3.1. The morphism ω′ : H → H∗ defined in (3.8) is an algebra homomorphism.

Proof. We prove that

ω′ ◦mH = mH∗ ◦ (ω′ ⊗ ω′).

We have

mH∗ ◦ (ω′ ⊗ ω′)

= ∆∗
H ◦ γH,H ◦ (ω ⊗ idH∗ ⊗ ω ⊗ idH∗) ◦ (idH ⊗ coevH ⊗ idH ⊗ coevH)

= (evH⊗H ⊗ idH∗) ◦ (id(H⊗H)∗ ⊗∆H ⊗ idH∗) ◦ (id(H⊗H)∗ ⊗ coevH) ◦ γH,H

◦ (ω ⊗ idH∗ ⊗ ω ⊗ idH∗) ◦ (idH ⊗ coevH ⊗ idH ⊗ coevH)

= (evH⊗H ⊗ idH∗) ◦ (γH,H ⊗ idH⊗H⊗H∗) ◦ (idH∗⊗H∗ ⊗∆H ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH)

◦ (ω ⊗ idH∗ ⊗ ω ⊗ idH∗) ◦ (idH ⊗ coevH ⊗ idH ⊗ coevH)

= (evH ⊗ idH∗) ◦ (idH∗ ⊗ evH ⊗ idH⊗H∗) ◦ (idH∗⊗H∗ ⊗∆H ⊗ idH∗) ◦ (idH∗⊗H∗ ⊗ coevH)

◦ (ω ⊗ idH∗ ⊗ ω ⊗ idH∗) ◦ (idH ⊗ coevH ⊗ idH ⊗ coevH)

= (ω ⊗ idH∗) ◦ (idH⊗H ⊗ evH ⊗ idH∗) ◦ (idH ⊗ coevH ⊗ idH⊗H∗)

◦ (idH ⊗ evH ⊗ idH⊗H∗) ◦ (idH⊗H∗ ⊗∆H ⊗ idH∗) ◦ (idH⊗H∗ ⊗ coevH)

◦ (idH ⊗ ω ⊗ idH∗) ◦ (idH⊗H ⊗ coevH)

= (ω ⊗ idH∗) ◦ (idH ⊗ evH ⊗ idH⊗H∗) ◦ (idH⊗H∗ ⊗∆H ⊗ idH∗) ◦ (idH⊗H∗ ⊗ coevH)

◦ (idH ⊗ ω ⊗ idH∗) ◦ (idH⊗H ⊗ coevH)

= (ω ⊗ idH∗) ◦ (idH ⊗ ω ⊗ idH⊗H∗) ◦ (idH⊗H⊗H ⊗ evH ⊗ idH⊗H∗)

◦ (idH⊗H ⊗ coevH ⊗ idH⊗H⊗H∗) ◦ (idH⊗H ⊗∆H ⊗ idH∗) ◦ (idH⊗H ⊗ coevH)

= (ω ⊗ idH∗) ◦ (idH ⊗ ω ⊗ idH⊗H∗) ◦ (idH⊗H ⊗∆H ⊗ idH∗) ◦ (idH⊗H ⊗ coevH),

where we have used the characterization (1.16) of γ, and two applications of Definition 1.3.1

of a left dual H∗. Now, by applying property (2.11) of the Hopf pairing ω, this equals

(ω ⊗ idH∗) ◦ (mH ⊗ idH ⊗ idH∗) ◦ (idH⊗H ⊗ coevH) = (ω ⊗ idH∗) ◦ (idH ⊗ coevH) ◦mH

= ω′ ◦mH ,

as asserted.
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Next, we prove that ω′ is also a coalgebra homomorphism.

Theorem 3.3.2. The morphism ω′ : H → H∗ defined in (3.8) is a coalgebra homomorphism.

Proof. We prove that

∆H∗ ◦ ω′ = (ω′ ⊗ ω′) ◦∆H .

Inserting the definitions and applying (3.6),

∆H∗ ◦ ω′

= γ−1
H,H ◦m∗

H ◦ (ω ⊗ idH∗) ◦ (idH ⊗ coevH)

= γ−1
H,H ◦ (evH ⊗ id(H⊗H)∗) ◦ (idH∗ ⊗mH ⊗ id(H⊗H)∗) ◦ (idH∗ ⊗ coevH⊗H) ◦ (ω ⊗ idH∗)

◦ (idH ⊗ coevH)

= (evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗mH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H⊗H ⊗ γ−1
H,H) ◦ (idH∗ ⊗ coevH⊗H)

◦ (ω ⊗ idH∗) ◦ (idH ⊗ coevH)

= (evH ⊗ idH∗⊗H∗) ◦ (idH∗ ⊗mH ⊗ idH∗⊗H∗) ◦ (idH∗⊗H ⊗ coevH ⊗ idH∗)

◦ (idH∗ ⊗ coevH) ◦ (ω ⊗ idH∗) ◦ (idH ⊗ coevH)

= (ω ⊗ idH∗⊗H∗) ◦ (idH⊗H ⊗ evH ⊗ idH∗⊗H∗) ◦ (idH ⊗ coevH ⊗ idH⊗H∗⊗H∗)

◦ (idH ⊗mH ⊗ idH∗⊗H∗) ◦ (idH⊗H ⊗ coevH ⊗ idH∗) ◦ (idH ⊗ coevH)

= (ω ⊗ idH∗⊗H∗) ◦ (idH ⊗mH ⊗ idH∗⊗H∗) ◦ (idH⊗H ⊗ coevH ⊗ idH∗) ◦ (idH ⊗ coevH),

where we have also used Definition 1.3.1 of a left dual H∗. Now, applying the property (2.12)

of the Hopf pairing ω, this equals

(ω ⊗ idH∗⊗H∗) ◦ (idH ⊗ ω ⊗ idH⊗H∗⊗H∗) ◦ (∆H ⊗ idH⊗H⊗H∗⊗H∗)

◦ (idH⊗H ⊗ coevH ⊗ idH∗) ◦ (idH ⊗ coevH),

which further equals

(ω ⊗ idH∗⊗H∗) ◦ (idH ⊗ coevH ⊗ idH∗) ◦ (idH ⊗ ω ⊗ idH∗) ◦ (∆H ⊗ idH⊗H∗)

◦ (idH ⊗ coevH)

= (ω ⊗ idH∗⊗H∗) ◦ (idH ⊗ coevH ⊗ idH∗) ◦ (idH ⊗ ω ⊗ idH∗) ◦ (idH⊗H ⊗ coevH) ◦∆H

= (ω′ ⊗ idH∗) ◦ (idH ⊗ ω′) ◦∆H

= (ω′ ⊗ ω′) ◦∆H ,

as asserted.
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This establishes that ω′ is a bialgebra homomorphism. As mentioned in 1.7, it follows

that ω′ is a Hopf algebra homomorphism, i.e., that

ω′ ◦ SH = SH∗ ◦ ω′.

We also have the morphism ω′′ : H → ∗H defined in [17, p. 10, (3.4)] as

ω′′ = (id ∗H ⊗ ω) ◦ (coev′H ⊗ idH), (3.9)

where coev′ is the right dual coevaluation as defined in Definition 1.3.1. This morphism is

related to ω′ by

(ω′′)∗ = ω′

and non-degeneracy of ω can be equivalently defined in terms of ω′′. Furthermore, ω′′ is also

a Hopf algebra homomorphism.



Chapter 4

Category of modules over a

quasitriangular Hopf algebra

Following the conventions of [17, p. 3], we define the Müger centre of a braided abelian tensor

category C as the subcategory of C consisting of all objects X in C such that

σY,X ◦ σX,Y = idX⊗Y

for all objects Y in C. We say that the Müger centre is trivial if all of its objects are isomorphic

to the direct sum of finitely many copies of the unit object. In our context, a direct sum is

the same thing as a coproduct, as defined in 1.5. It is proved in [17, Theorem 1.1, p. 3] that

if C is a braided finite tensor category over an algebraically closed field, then triviality of the

Müger centre of C implies that the Hopf pairing ω in C is non-degenerate. In this chapter, we

prove this implication in the case where C is the category of finite-dimensional modules over

a finite-dimensional quasitriangular ribbon Hopf algebra H, without the hypothesis that the

base field is algebraically closed.

4.1 Quasitriangular Hopf algebras

Before we recall the definition of a quasitriangular Hopf algebra, we will need the following

notation. Let A be an algebra and let T =
∑n

i=1 ai ⊗ bi ∈ A⊗A. For a given integer k ≥ 2,

we denote by Tpq the tensor in A⊗k that has, for each i = 1, . . . , n, the element ai in the

p-th tensor factor and the element bi in the q-th tensor factor, and 1A in all remaining tensor

factors. For example, for k = 2 we have T21 =
∑n

i=1 bi ⊗ ai.
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Definition 4.1.1. A quasitriangular Hopf algebra is a Hopf algebra H with a bijective

antipode SH and an invertible element

R =
n

∑

i=1

ai ⊗ bi ∈ H ⊗H,

called a universal R-matrix, satisfying the following axioms for all h ∈ H:

1. ∆cop
H (h) = R∆H(h)R

−1

2. (∆H ⊗ idH)(R) = R13R23

3. (idH ⊗∆H)(R) = R13R12

where ∆H is the coproduct of H and ∆cop
H is the coopposite coproduct, defined by

∆cop
H (h) = h(2) ⊗ h(1)

in Sweedler notation.

By [5, Theorem VIII.2.4, p. 175], we have the following lemma.

Lemma 4.1.1. The universal R-matrix of a quasitriangular Hopf algebra H satisfies the

following properties:

1. (εH ⊗ idH)(R) = (id⊗ εH)(R) = 1

2. (SH ⊗ idH)(R) = (idH ⊗ S−1
H )(R) = R−1

3. (SH ⊗ SH)(R) = R

where εH is the counit of H.

If H is a quasitriangular Hopf algebra with R-matrix R =
∑n

i=1 ai ⊗ bi, then there is a

so-called quasisymmetry σX,Y : X ⊗ Y → Y ⊗X defined for all H-modules X and Y by

σX,Y (x⊗ y) =
n

∑

i=1

(bi · y)⊗ (ai · x), (4.1)

where · denotes the action by H. The first axiom in Definition 4.1.1 is equivalent to σX,Y

being H-linear for each pair X and Y , and the second and third axioms in Definition 4.1.1
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are equivalent to σX,Y satisfying the braiding axioms (1.3) and (1.4) for each X and Y . The

invertibility of R is equivalent to σX,Y being bijective. Thus, σ is a braiding in the category

of H-modules.

The notion of a ribbon element is defined as follows.

Definition 4.1.2. Let H be a quasitriangular Hopf algebra, and let R denote its universal

R-matrix. A ribbon element in H is a nonzero central element v ∈ H satisfying

∆H(v) = (R21R)(v ⊗ v) (4.2)

and

SH(v) = v. (4.3)

With a specified ribbon element, H is called a ribbon Hopf algebra.

A version of the above definition can be found in [16, p. 7]. In Proposition 4.1.2, we will

see that two of the axioms in that definition are in fact consequences of the above definition,

and that a ribbon element in [16, p. 7] is effectively the inverse of a ribbon element in

Definition 4.1.2.

In a braided category with duality, we also have the notion of a ribbon twist.

Definition 4.1.3. Let C be a braided category with braiding σ and left duality. A natural

isomorphism θ from the identity functor to itself is called a ribbon twist if it satisfies

θX⊗Y = σY,X ◦ σX,Y ◦ (θX ⊗ θY ) (4.4)

and

θX∗ = θ∗X . (4.5)

With a specified ribbon twist, C is called a ribbon category.

The naturality of θ means that for each morphism f : X → Y in C, the following diagram

commutes:

X Y

X Y

f

θX θY

f
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Note also that

(θX ⊗ θY ) ◦ σY,X ◦ σX,Y = σY,X ◦ (θY ⊗ θX) ◦ σX,Y = σY,X ◦ σX,Y ◦ (θX ⊗ θY )

by the naturality of σ, so the axiom (4.4) can be expressed in various ways.

If a quasitriangular Hopf algebra H has a ribbon element v, then we can define a ribbon

twist θ on the category of finite-dimensional modules over H. By finite-dimensional, we are

referring to the dimension of the vector space structure on the module induced by the base

field of H.

Proposition 4.1.1. Let H be a quasitriangular Hopf algebra with a ribbon element v. For

each finite-dimensional H-module X, define

θX : X → X

x 7→ v · x.

Then θ is a ribbon twist in the category of finite-dimensional H-modules.

Proof. First note that each θX isH-linear, which means that it is a morphism in the category:

For any h ∈ H, we have

θX(h · x) = v · (h · x) = vh · x = hv · x = h · (v · x) = h · θX(x)

by the associativity of the module action and the centrality of v. Now let X and Y be any

finite-dimensional H-modules and let x⊗ y ∈ X ⊗ Y . Then

θX⊗Y (x⊗ y) = v · (x⊗ y) = ∆H(v) · (x⊗ y)

by definition, and we have

(σY,X ◦ σX,Y ◦ (θX ⊗ θY ))(x⊗ y) = (σY,X ◦ σX,Y )((v · x)⊗ (v · y))

=
n

∑

i=1

σY,X(((biv) · y)⊗ ((aiv) · x))

=
n

∑

i,j=1

((bjaiv) · x)⊗ ((ajbiv) · y))

= ((R21R)(v ⊗ v)) · (x⊗ y)

= ∆H(v) · (x⊗ y),
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where we have used the axiom (4.2) for the ribbon element v. Thus, θ satisfies (4.4). Next,

we prove that θX∗ = θ∗X , where X
∗ is the dual space of the vector space structure on X

induced by the base field of H. For all ϕ ∈ X∗ and x ∈ X, we have

θ∗X(ϕ)(x) = ϕ(θX(x))

by the definition of the dual morphism of θX , and we have

θX∗(ϕ)(x) = (v · ϕ)(x) = ϕ(SH(v) · x) = ϕ(v · x) = ϕ(θX(x)),

where we have applied the definition of the module action

(h · ϕ)(x) = ϕ(SH(h) · x) (4.6)

of H on linear forms, and the axiom (4.3) for v. Thus, θ satisfies axiom (4.5). Note that the

naturality of θ simply follows from the fact that the morphisms in this category are H-linear.

Hence, θ is a ribbon twist.

The element

u =
n

∑

i=1

SH(bi)ai

is known as the Drinfel’d element. The Drinfel’d element has many interesting properties [5],

one of which is that it is invertible with inverse given by

u−1 =
n

∑

i=1

S−2
H (bi)ai. (4.7)

Lemma 4.1.1 allows us to rewrite this as

u−1 =
n

∑

i=1

biS
2
H(ai). (4.8)

Another property of the Drinfel’d element is that it satisfies

S2
H(h) = uhu−1 (4.9)

for all h ∈ H. The Drinfel’d element of H is related to a ribbon element in H by the following

proposition.
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Proposition 4.1.2. If v is a ribbon element in a quasitriangular Hopf algebra H, then

v2 = SH(u
−1)u−1, (4.10)

where SH is the antipode of H and u is its Drinfel’d element.

Proof. The definition of a ribbon element implies that

v ⊗ v = (R21R)
−1∆H(v)

= R−1R−1
21 ∆H(v).

Noting that R21 is an R-matrix for Hop, which has antipode S−1
H , and applying the second

property in Lemma 4.1.1, this equals

n
∑

i,j=1

SH(ai)bjv(1) ⊗ biSH(aj)v(2).

If we apply the antipode to the second tensor factor and then apply the multiplication, this

implies

vSH(v) =
n

∑

i,j=1

SH(ai)bjv(1)SH(biSH(aj)v(2))

=
n

∑

i,j=1

SH(ai)bjv(1)SH(v(2))S
2
H(aj)SH(bi).

Since v = SH(v), we have v2 = vSH(v). Hence, applying the antipode equation, the form

(4.8) of u−1, and the third property in Lemma 4.1.1,

v2 =
n

∑

i,j=1

SH(ai)bjv(1)SH(v(2))S
2
H(aj)SH(bi)

= εH(v)
∑

i,j

SH(ai)bjS
2
H(aj)SH(bi)

= εH(v)
∑

i

SH(ai)u
−1SH(bi)

= εH(v)
∑

i

aiu
−1bi.

Now, observe that (4.9) implies

u−1h = S−2
H (h)u−1
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for all h ∈ H. Therefore, using the form (4.7) of u−1 and the third property in Lemma 4.1.1,

v2 = εH(v)
∑

i

aiS
−2
H (bi)u

−1

= εH(v)SH(u
−1)u−1.

Thus, if we can show that εH(v) = 1, then the result will follow. By the counit equation,

the fact that εH ⊗ idH is an algebra homomorphism, and Lemma 4.1.1, we have

v = (εH ⊗ idH)(∆H(v))

= (εH ⊗ idH)(R21R(v ⊗ v))

= (εH ⊗ idH)(R21)(εH ⊗ idH)(R)εH(v)v

= εH(v)v.

Now since v 6= 0, this implies that εH(v) = 1.

4.2 The dual space as a coend

Following [22, 4.5] (see also [7, 2.4], [10, 7.4]), we now show that the dual space H∗ of a finite-

dimensional Hopf algebra H is a coend in the category of finite-dimensional H-modules. The

dual space H∗ is an object in this category (i.e., an H-module) when equipped with the

coadjoint action of H on H∗, defined for ϕ ∈ H∗ and h ∈ H by

(h · ϕ)(h′) = ϕ(SH(h(1))h
′h(2)) (4.11)

for all h′ ∈ H, where SH is the antipode of H. To see that this defines a module action on

H∗, we first consider the right module action on H defined by

h′ · h = SH(h(1))h
′h(2).

This is a right action because, for all h, h′, h′′ ∈ H, we have

h′′ · (hh′) = SH(h(1)h
′
(1))h

′′h(2)h
′
(2)

= SH(h
′
(1))SH(h(1))h

′′h(2)h
′
(2)

= (SH(h(1))h
′′h(2)) · h

′

= (h′′ · h) · h′,
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and the remaining module axioms are immediate. It then follows that

((hh′) · ϕ)(h′′) = ϕ((h′′ · h) · h′) = (h · (h′ · ϕ))(h′′), (4.12)

where we have used · for both actions. The remaining module axioms for H∗ are again

immediate. Thus h · ϕ, as defined by (4.11), defines a module action on H∗.

Now for each finite-dimensional H-module X, let X∗ denote its dual space and define

ιX : X∗ ⊗X → H∗ by

ιX(ϕ⊗ x)(h) = ϕ(h · x) (4.13)

for all h ∈ H. First, we show that ιX is H-linear, and therefore a morphism in the category.

For all h, h′ ∈ H, we have

ιX(h · (ϕ⊗ x))(h′) = ιX((h(1) · ϕ)⊗ (h(2) · x))(h
′)

= (h(1) · ϕ)((h
′h(2)) · x))

= ϕ((SH(h(1))h
′h(2)) · x),

where we have used the action (4.6) of H on X∗. Using the action (4.11) on H∗, we have

(h · ιX(ϕ⊗ x))(h′) = ιX(ϕ⊗ x)(SH(h(1))h
′h(2))

= ϕ((SH(h(1))h
′h(2)) · x)

also, and hence ιX is H-linear. Next, we show that ι is dinatural, i.e., that the diagram

Y ∗ ⊗X X∗ ⊗X

Y ∗ ⊗ Y H∗

idY ∗⊗f

f∗⊗idX

ιX

ιY

commutes for all finite-dimensional H-modules X and Y and all H-module homomorphisms

f : X → Y . For any ϕ⊗ x ∈ Y ∗ ⊗X and h ∈ H, we have

((ιX ◦ (f ∗ ⊗ idX))(ϕ⊗ x))(h) = (ιX(f
∗(ϕ)⊗ x))(h)

= f ∗(ϕ)(h · x)

= ϕ(f(h · x))

= ϕ(h · f(x))
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and

((ιY ◦ (idY ∗ ⊗ f))(ϕ⊗ x))(h) = ιY (ϕ⊗ f(x))(h)

= ϕ(h · f(x)).

Hence

ιX ◦ (f ∗ ⊗ idX) = ιY ◦ (idY ∗ ⊗ f)

so that ι is dinatural. Finally, we prove that ι is universally dinatural. Let ξX : X∗⊗X → Z

be another dinatural transformation, and define r : H∗ → Z, as in [22, Lem. 4.3, p. 498], by

r(ϕ) = ξH(ϕ⊗ 1H).

For any x ∈ X, consider the H-module homomorphism f : H → X defined by f(h) = h · x.

For any ϕ ∈ X∗, we have

f ∗(ϕ) = ιX(ϕ⊗ x)

by the definition (4.13) of ιX . Since f is a morphism in this category, we have

ξX ◦ (idX∗ ⊗ f) = ξH ◦ (f ∗ ⊗ idH)

by the dinaturality of ξ. Evaluating on ϕ⊗ 1H gives

ξX(ϕ⊗ x) = ξH(f
∗(ϕ)⊗ 1H) = r(f ∗(ϕ)) = r(ιX(ϕ⊗ x)).

This is true for any ϕ ⊗ x ∈ X∗ ⊗ X, and hence ξX = r ◦ ιX . Thus, H∗ is a coend with

universal dinatural transformation ιX : X∗ ⊗X → H∗ defined by (4.13).

4.3 The structure morphisms on the dual space

Let H be a finite-dimensional quasitriangular Hopf algebra with R-matrix R =
∑n

i=1 ai ⊗ bi

and ribbon element v. We have seen that H∗ is a coend in the category of finite-dimensional

H-modules. This category has the braiding (4.1), and therefore H∗ is a Hopf algebra in this

category with the structure morphisms discussed in Chapter 2. In this section, we show that

we can describe these structure morphisms explicitly. We will denote this coend by L, to

distinguish it from H∗ equipped with the usual dual Hopf algebra structure. We will see

that L = H∗ as a coalgebra, but L has a different multiplication and antipode.
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Recall that the multiplication on H∗ is defined for ϕ, ψ ∈ H∗ and h ∈ H by

mH∗(ϕ⊗ ψ)(h) = (ϕψ)(h) = ϕ(h(1))ψ(h(2)).

We prove that the multiplication mL : L⊗L→ L and antipode SL : L→ L for L are defined,

as in [6, p. 331], by

(mL(ϕ⊗ ψ))(h) =
n

∑

i=1

ϕ(h(2)ai)ψ(SH(bi(1))h(1)bi(2)),

where SH is the antipode of H, and

(SL(ϕ))(h) =
n

∑

i=1

ϕ(SH(ai)v
2SH(h)ubi) =

n
∑

i=1

ϕ(SH(ai)SH(h)SH(u
−1)bi),

where u =
∑n

i=1 SH(bi)ai is the Drinfel’d element of H. The two expressions for SL are equal

as a consequence of Proposition 4.1.2. We will make use of both forms in what follows.

We must first prove that mL is a morphism in the category, i.e., that it is H-linear. Let

ϕ, ψ ∈ L and let h, h′ ∈ H. Then

(mL(h · (ϕ⊗ ψ)))(h′) = (mL((h(1) · ϕ)⊗ (h(2) · ψ)))(h
′)

=
n

∑

i=1

((h(1) · ϕ)(h
′
(2)ai))((h(2) · ψ)(SH(bi(1))h

′
(1)bi(2)))

=
n

∑

i=1

ϕ(SH(h(1))h
′
(2)aih(2))ψ(SH(h(3))SH(bi(1))h

′
(1)bi(2)h(4))

=
n

∑

i=1

ϕ(SH(h(1))h
′
(2)aih(2))ψ(SH(bi(1)h(3))h

′
(1)bi(2)h(4))

and, using the fact that SH is both an algebra and coalgebra antihomomorphism,

(h · (mL(ϕ⊗ ψ))(h′) = (mL(ϕ⊗ ψ))(SH(h(1))h
′h(2))

=
n

∑

i=1

ϕ(SH(h(1))(2)h
′
(2)h(3)ai)ψ(SH(bi(1))SH(h(1))(1)h

′
(1)h(2)bi(2))

=
n

∑

i=1

ϕ(SH(h(1))h
′
(2)h(4)ai)ψ(SH(bi(1))SH(h(2))h

′
(1)h(3)bi(2))

=
n

∑

i=1

ϕ(SH(h(1))h
′
(2)h(4)ai)ψ(SH(h(2)bi(1))h

′
(1)h(3)bi(2)).
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These two expressions are equal as a consequence of the axiom of the R-matrix

n
∑

i=1

h(2)ai ⊗ h(1)bi =
n

∑

i=1

aih(1) ⊗ bih(2),

because it implies that

n
∑

i=1

h(1) ⊗ h(4)ai ⊗ h(2)bi(1) ⊗ h(3)bi(2) =
n

∑

i=1

h(1) ⊗ aih(2) ⊗ bi(1)h(3) ⊗ bi(2)h(4).

To prove that mL is the multiplication on L, it is sufficient by the universality of ιX ⊗ ιY ,

where ιX : X∗ ⊗X → L is defined by (4.13), to prove that

mL ◦ (ιX ⊗ ιY ) = ηX,Y ,

where η is the dinatural transformation (2.3). Let ϕ⊗ x⊗ ψ ⊗ y ∈ X∗ ⊗X ⊗ Y ∗ ⊗ Y , and

let h ∈ H. On the one hand,

(ηX,Y (ϕ⊗ x⊗ ψ ⊗ y))(h)

= ((ιY⊗X ◦ (γY,X ⊗ idY⊗X) ◦ (idX∗ ⊗ σX,Y ∗⊗Y ))(ϕ⊗ x⊗ ψ ⊗ y))(h)

=
n

∑

i=1

((ιY⊗X ◦ (γY,X ⊗ idY⊗X))(ϕ⊗ (bi · (ψ ⊗ y))⊗ (ai · x)))(h)

=
n

∑

i=1

((ιY⊗X ◦ (γY,X ⊗ idY⊗X))(ϕ⊗ (bi(1) · ψ)⊗ (bi(2) · y)⊗ (ai · x)))(h)

=
n

∑

i=1

ιY⊗X((bi(1) · ψ)⊗ ϕ⊗ (bi(2) · y)⊗ (ai · x))(h)

=
n

∑

i=1

((bi(1) · ψ)⊗ ϕ)(h · ((bi(2) · y)⊗ (ai · x)))

=
n

∑

i=1

((bi(1) · ψ)⊗ ϕ)((h(1)bi(2) · y)⊗ (h(2)ai · x))

=
n

∑

i=1

(bi(1) · ψ)(h(1)bi(2) · y)ϕ((h(2)ai · x)

=
n

∑

i=1

ψ(SH(bi(1))h(1)bi(2) · y)ϕ(h(2)ai · x),

where we have regarded γX,Y as a map Y ∗ ⊗ X∗ → X∗ ⊗ Y ∗, since (X ⊗ Y )∗ ∼= X∗ ⊗ Y ∗
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when H is finite-dimensional. On the other hand,

((mL ◦ (ιX ⊗ ιY ))(ϕ⊗ x⊗ ψ ⊗ y))(h)

= (mL(ιX(ϕ⊗ x)⊗ ιY (ψ ⊗ y))(h)

=
n

∑

i=1

((ιX(ϕ⊗ x))(h(2)ai)(ιY (ψ ⊗ y))(SH(bi(1))h(1)bi(2))

=
n

∑

i=1

ϕ(h(2)ai · x)ψ(SH(bi(1))h(1)bi(2) · y).

Thus mL ◦ (ιX ⊗ ιY ) = ηX,Y , so that mL is the product on L.

Next, we show that

∆L = m∗
H = ∆H∗

defines the coproduct on L. Again, we must first establish that ∆L : L→ L⊗L is H-linear.

Let ϕ ∈ L and h, h′, h′′ ∈ H. Then

(h ·∆L(ϕ))(h
′ ⊗ h′′) = ((h(1) · ϕ(1))⊗ (h(2) · ϕ(2)))(h

′ ⊗ h′′)

= ϕ(1)(SH(h(1))h
′h(2))ϕ(2)(SH(h(3))h

′′h(4))

= ϕ(SH(h(1))h
′h(2)SH(h(3))h

′′h(4))

= ϕ(SH(h(1))h
′h′′εH(h(2))h(3))

= ϕ(SH(h(1))h
′h′′h(2))

= (h · ϕ)(h′h′′)

= (m∗
H(h · ϕ))(h′ ⊗ h′′)

= (∆L(h · ϕ))(h′ ⊗ h′′),

as required.

To prove that ∆L is the coproduct on L, it is sufficient by the universality of ι to prove

that

∆L ◦ ιX = ζX ,

where ζ is the dinatural transformation defined in (2.8). Let ϕ ⊗ x ∈ X∗ ⊗ X, and let

h, h′ ∈ H. Then

((∆L ◦ ιX)(ϕ⊗ x))(h⊗ h′) = ιX(ϕ⊗ x)(hh′)

= ϕ(hh′ · x),
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and, noting that the coevaluation in this category is the dual basis map,

(ζX(ϕ⊗ x))(h⊗ h′) = (((ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX))(ϕ⊗ x))(h⊗ h′)

=
(

(ιX ⊗ ιX)
(

ϕ⊗
∑

i

(xi ⊗ x∗i )⊗ x
))

(h⊗ h′)

=
∑

i

(ιX(ϕ⊗ xi)⊗ ιX(x
∗
i ⊗ x))(h⊗ h′)

=
∑

i

ϕ(h · xi)x
∗
i (h

′ · x)

= ϕ
(

h ·
∑

i

x∗i (h
′ · x)xi

)

= ϕ(hh′ · x).

Therefore ∆L ◦ ιX = ζX , so that ∆L is the coproduct on L.

Next, we show that SL is the antipode of L. To see that SL is H-linear, observe that

SL(h · ϕ)(h′) =
n

∑

i=1

(h · ϕ)(SH(ai)v
2SH(h

′)ubi)

=
n

∑

i=1

ϕ(SH(h(1))SH(ai)v
2SH(h

′)ubih(2))

=
n

∑

i=1

ϕ(v2SH(aih(1))SH(h
′)ubih(2))

for all ϕ ∈ L and h, h′ ∈ H, and, using the property S2
H(h) = uhu−1 of the Drinfel’d element,

(h · SL(ϕ))(h
′) = SL(ϕ)(SH(h(1))h

′h(2))

=
n

∑

i=1

ϕ(SH(ai)v
2SH(SH(h(1))h

′h(2))ubi)

=
n

∑

i=1

ϕ(v2SH(ai)SH(h(2))SH(h
′)S2

H(h(1))ubi)

=
n

∑

i=1

ϕ(v2SH(h(2)ai)SH(h
′)uh(1)bi).

These two expression are equal as a consequence of the axiom of the R-matrix

n
∑

i=1

h(2)ai ⊗ h(1)bi =
n

∑

i=1

aih(1) ⊗ bih(2).



77

To prove that SL is the antipode for L, it is sufficient by universality of ι to prove that

SL ◦ ιX = χX ,

where χ is the dinatural transformation (2.10). For all ϕ⊗ x ∈ X∗ ⊗X and h ∈ H, we have

((SL ◦ ιX)(ϕ⊗ x))(h) = SL(ιX(ϕ⊗ x))(h)

=
∑

i

ιX(ϕ⊗ x)(SH(ai)SH(h)SH(u
−1)bi)

=
∑

i

ϕ(SH(ai)SH(h)SH(u
−1)bi · x).

Rewriting χX using the braiding axiom (1.3), we also have

χX(ϕ⊗ x)(h) = (((evX ⊗ ιX∗) ◦ (idX∗ ⊗ σX∗∗,X ⊗ idX∗) ◦ (coevX∗ ⊗ σX∗,X))(ϕ⊗ x))(h)

=
∑

i,j

((evX ⊗ ιX∗)((idX∗ ⊗ σX∗∗,X ⊗ idX∗)(x∗i ⊗ x∗∗i ⊗ (bj · x)⊗ (aj · ϕ))))(h)

=
∑

i,j,k

((evX ⊗ ιX∗)(x∗i ⊗ (bkbj · x)⊗ (ak · x
∗∗
i )⊗ (aj · ϕ)))(h)

=
∑

i,j,k

x∗i (bkbj · x)ιX∗((ak · x
∗∗
i )⊗ (aj · ϕ))(h)

=
∑

i,j,k

x∗i (bkbj · x)(ak · x
∗∗
i )(haj · ϕ)

=
∑

i,j,k

x∗i (bkbj · x)x
∗∗
i (SH(ak)haj · ϕ)

=
∑

i,j,k

x∗i (bkbj · x)(SH(ak)haj · ϕ)(xi)

=
∑

j,k

(SH(ak)haj · ϕ)
(

∑

i

x∗i (bkbj · x)xi

)

=
∑

j,k

(SH(ak)haj · ϕ)(bkbj · x)

=
∑

j,k

ϕ(SH(SH(ak)haj)bkbj · x)

=
∑

j,k

ϕ(SH(aj)SH(h)S
2
H(ak)bkbj · x)

=
∑

j

ϕ(SH(aj)SH(h)SH(u
−1)bj · x),

where we have used the property SH(u
−1) =

∑n

i=1 S
2
H(ai)bi. Hence SL◦ιX = χX , as required.
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Finally, we show that the unit and counit of L are those of H∗. The unit object in this

category is the base field K, equipped with the trivial action, defined by

h · λ = εH(h)λ

for h ∈ H and λ ∈ K. Recall that the unit element in H∗ is the counit εH of H, so that the

unit map uH∗ : K → H∗ for H∗ is the map λ 7→ λεH . We will denote this by uL. When L is

equipped with the coadjoint action (4.11), this map is H-linear, as

(uL(h · λ))(h′) = (uL(εH(h)λ))(h
′)

= εH(h)λεH(h
′)

= λεH(hh
′)

and

(h · uL(λ))(h
′) = λεH(SH(h(1))h

′h(2))

= λεH(SH(h(1))h(2))εH(h
′)

= λεH(hh
′)

for all λ ∈ K and h, h′ ∈ H.

Now recall that we defined the unit for the coend in (2.5) as ιI ◦ λ
−1
I , and hence the unit

for L in this category is the map ιK : K∗ ⊗K ∼= K → L, where ι is defined by (4.13). For

all λ ∈ K and h ∈ H, we have

(uL(λ))(h) = λεH(h)

= h · λ

= (ιK(idK ⊗ λ))(h),

and hence uL = uH∗ is the unit of L. The counit εH∗ : H∗ → K for H∗ is evaluation at the

unit element ϕ 7→ ϕ(1H). We will denote this by εL. This map is H-linear because

εL(h · ϕ) = (h · ϕ)(1H)

= ϕ(SH(h(1))1Hh(2))

= εH(h)ϕ(1H)

= h · εL(ϕ)
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for all λ ∈ K and h ∈ H. Now let ϕ⊗ x ∈ X∗ ⊗X and observe that

(εL ◦ ιX)(ϕ⊗ x) = εL(ιX(ϕ⊗ x))

= ιX(ϕ⊗ x)(1H)

= ϕ(x)

= evX(ϕ⊗ x),

and hence εL ◦ ιX = evX . By universality of ι, this implies that εL = εH∗ is the counit of L.

4.4 Coaction by the coend

The definition of a comodule over a coalgebra is obtained by reversing the arrows in the

commutative diagrams that define a module over an algebra. These diagrams are interpreted

in the category of vector spaces over a field K. This notion can be defined in an arbitrary

tensor category as follows.

Definition 4.4.1. Let C be a coalgebra in a tensor category C. A right comodule over C

(or right C-comodule) is an object X in C together with a morphism δX : X → X⊗C, called

the coaction, such that the diagrams

X ⊗ C ⊗ C X ⊗ C

X ⊗ C X

idX⊗∆C

δX⊗idC

δX

δX (4.14)

and

X ⊗ I X ⊗ C

X

idX⊗εC

∼=
δX

(4.15)

commute, where ∆C and εC are the coproduct and counit of C, respectively.

We know that the coend L in a braided finite tensor category C is a Hopf algebra in C

and, in particular, a coalgebra. The following coaction, found in [17, p. 13, (3.14)], makes

every object in C a right comodule over L.
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Proposition 4.4.1. If L is a coend in a braided finite tensor category C, with universal

dinatural transformation ι, then for each object X in C the morphism

δX = (idX ⊗ ιX) ◦ (coevX ⊗ idX), (4.16)

defines a right coaction on X by L.

Proof. We have to verify that

(idX ⊗∆L) ◦ δX = (δX ⊗ idL) ◦ δX (4.17)

and

(idX ⊗ εL) ◦ δX = idX . (4.18)

On the one hand, we have

(idX ⊗∆L) ◦ δX = (idX ⊗∆L) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (idX ⊗ ιX ⊗ ιX) ◦ (idX ⊗ idX∗ ⊗ coevX ⊗ idX) ◦ (coevX ⊗ idX)

= (idX ⊗ ιX ⊗ ιX) ◦ (coevX ⊗ coevX ⊗ idX)

because ∆L is the unique morphism satisfying ∆L ◦ ιX = (ιX ⊗ ιX) ◦ (idX∗ ⊗ coevX ⊗ idX)

for all X in C, as discussed in 2.3. On the other hand, we have

(δX ⊗ idL) ◦ δX = (δX ⊗ idL) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (idX ⊗ ιX ⊗ idL) ◦ (coevX ⊗ idX ⊗ idL) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (idX ⊗ ιX ⊗ ιX) ◦ (coevX ⊗ coevX ⊗ idX),

and this proves (4.17). For (4.18), observe that

(idX ⊗ εL) ◦ δX = (idX ⊗ εL) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (id⊗ evX) ◦ (coevX ⊗ idX)

= idX

because εL is the unique morphism satisfying εL ◦ ιX = evX , as discussed in 2.4.

The notion of a module over an algebra can also be defined in an arbitrary tensor category,

in the same way that we have for comodules. The arrows in the commutative diagrams that

define a module over an algebra in a tensor category are reversed relative to Definition 4.4.1.



81

The definition of a module homomorphism and that of a comodule homomorphism are also

reversed relative to one another: If X and Y are modules in a tensor category C, with actions

αX : X ⊗ A → X and αY : Y ⊗ A → Y by an algebra A in C, then a morphism f : X → Y

is a module homomorphism if it satisfies

f ◦ αX = αY ◦ (f ⊗ idA); (4.19)

and if X and Y are comodules in C, with coactions δX : X → X ⊗C and δY : Y → Y ⊗C by

a coalgebra C in C, then a morphism f : X → Y is a comodule homomorphism if it satisfies

δY ◦ f = (f ⊗ idC) ◦ δX . (4.20)

Proposition 4.4.2. With respect to the coaction (4.16), every morphism f : X → Y in C is

a comodule homomorphism, i.e.,

δY ◦ f = (f ⊗ idL) ◦ δX .

Proof. By the dinaturality of ι and Theorem 1.4.1,

δY ◦ f = (idY ⊗ ιY ) ◦ (coevY ⊗ idY ) ◦ f

= (idY ⊗ ιY ) ◦ (idY ⊗ idY ∗ ⊗ f) ◦ (coevY ⊗ idX)

= (idY ⊗ ιX) ◦ (idY ⊗ f ∗ ⊗ idX) ◦ (coevY ⊗ idX)

= (idY ⊗ ιX) ◦ (f ⊗ idX∗ ⊗ idX) ◦ (coevX ⊗ idX)

= (f ⊗ idL) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (f ⊗ idL) ◦ δX

as asserted.

Let C be a tensor category with duality. It is explained in [17, p. 12] that if C is a

coalgebra in C, then ∗C is an algebra in C; and if X is a right C-comodule with coaction δX ,

then X becomes a right ∗C-module with action αX : X ⊗ ∗C → X defined by

αX = (idX ⊗ ev′C) ◦ (δX ⊗ id ∗C).

Thus, since every object X in a braided finite tensor category C is a right comodule over the

coend L, with coaction (4.16), every X in C is also a right module over A = ∗L with action

αX = (idX ⊗ ev′L) ◦ (δX ⊗ idA). (4.21)
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It should be remarked that a standard result for finite-dimensional vector spaces states

that a right C-comodule becomes a left ∗C-module (cf. [12, Lem. 1.6.4], [15, Prop. 3.2.2]).

The apparent discrepancy arises from the dualization process of the coalgebra C: The usual

convention for finite-dimensional vector spacesX and Y is to identify ∗(X⊗Y ) with ∗X⊗ ∗Y ,

and then the product on ∗C is simply the dual of the coproduct on C. In the categorical

context, however, the dualization of the coproduct requires the isomorphism γ′ defined by

(1.23). Dualizing vector spaces in this way, identifying ∗(X ⊗ Y ) with ∗Y ⊗ ∗X, effectively

reverses the multiplication on ∗C and thus gives rise to a right ∗C-module.

Just as every morphism in the category becomes a comodule homomorphism with respect

to the coaction (4.16), every morphism becomes a module homomorphism with respect to

the action (4.21):

Proposition 4.4.3. With respect to the action (4.21), every morphism f : X → Y in C is a

module homomorphism, i.e.,

f ◦ αX = αY ◦ (f ⊗ idA).

Proof. By Proposition 4.4.2,

f ◦ αX = f ◦ (idX ⊗ ev′L) ◦ (δX ⊗ idA)

= (idY ⊗ ev′L) ◦ (f ⊗ idL ⊗ idA) ◦ (δX ⊗ idA)

= (idY ⊗ ev′L) ◦ (δY ⊗ idA) ◦ (f ⊗ idA)

= αY ◦ (f ⊗ idA)

as asserted.

In the special case, discussed in 4.2, of the dual space H∗ of a finite-dimensional Hopf

algebra H as a coend L in the category of finite-dimensional H-modules, we have that

every object X (i.e., every finite-dimensional H-module) is a right comodule over L with

coaction δX : X → X ⊗ L defined by (4.16) and a right module over A = ∗L with action

αX : X⊗A→ X defined by (4.21). For a right dual of L, we can take A = H equipped with

the (left) adjoint action

h · h′ = h(2)h
′S−1
H (h(1)).

Then A is a right dual of L with right evaluation

ev′L : L⊗ A→ K

ϕ⊗ a 7→ ϕ(a).
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To see that ev′L is a morphism in the category, i.e., H-linear, recall that L is equipped with

the coadjoint action (4.11) and observe that

ϕ(h · h′) = ϕ(h(2)h
′S−1
H (h(1)))

= ϕ(SH(S
−1
H (h(2)))h

′S−1
H (h(1)))

= ϕ(SH(S
−1
H (h)(1))h

′S−1
H (h)(2))

= (S−1
H (h) · ϕ)(h′)

for all ϕ ∈ L and h, h′ ∈ H. By the bijectivity of SH , this can equivalently be expressed as

(h · ϕ)(h′) = ϕ(SH(h) · h
′)

(cf. [5, Ch. XIV, p. 347]), from which it follows that

ev′L(h · (ϕ⊗ a)) = ev′L((h(1) · ϕ)⊗ (h(2) · a))

= (h(1) · ϕ)(h(2) · a)

= ϕ(SH(h(1))h(2) · a)

= εH(h)ϕ(a)

= h · ev′L(ϕ⊗ a),

where we have applied the counit equation for H. In this category, we can express the

coaction by L explicitly because ιX is given by (4.13) and the coevaluation in this category

is the dual basis map: Letting {xi}i be a basis for X and {x∗i }i be the corresponding dual

basis for X∗,

δX(x) =
∑

i

xi ⊗ ιX(x
∗
i ⊗ x).

This further gives an explicit expression for the action αX : X ⊗ A → X induced by this

coaction:

αX(x⊗ a) = (idX ⊗ ev′L)(δX(x)⊗ a)

=
∑

i

xi ⊗ ιX(x
∗
i ⊗ x)(a)

=
∑

i

xix
∗
i (a · x)

and hence

αX(x⊗ a) = a · x. (4.22)
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This shows that the right action of a ∈ A by αX coincides with the left action of a given

by the H-module structure of X. This is consistent with the following lemma, which shows

that A = Hop as an algebra.

Lemma 4.4.1. The multiplication mA : A⊗ A→ A on A = ∗L is given by

mA(a⊗ b) = ba

for all a⊗ b ∈ A⊗ A.

Proof. The multiplication on the right dual A = ∗L is given by

mA = ∗∆L ◦ γ′L,L,

where γ′ is the natural isomorphism characterized by (1.23). Thus, by the characterization

(1.21) of a right dual morphism, and the fact that the coproduct on L is the same as that

on H∗, we have

ϕ(mA(a⊗ b)) = ev′L(ϕ⊗mA(a⊗ b))

= (ev′L ◦ (idL ⊗mA))(ϕ⊗ a⊗ b)

= (ev′L ◦ (idL ⊗ ∗∆L) ◦ (idL ⊗ γ′L,L))(ϕ⊗ a⊗ b)

= (ev′L⊗L ◦ (∆L ⊗ id∗(L⊗L)) ◦ (idL ⊗ γ′L,L))(ϕ⊗ a⊗ b)

= (ev′L⊗L ◦ (idL⊗L ⊗ γ′L,L) ◦ (∆L ⊗ idA⊗A))(ϕ⊗ a⊗ b)

= (ev′L ◦ (idL ⊗ ev′L ⊗ idA) ◦ (∆L ⊗ idA⊗A))(ϕ⊗ a⊗ b)

= (ev′L ◦ (idL ⊗ ev′L ⊗ idA))(ϕ(1) ⊗ ϕ(2) ⊗ a⊗ b)

= ev′L(ϕ(1) ⊗ ϕ(2)(a)b)

= ϕ(1)(b)ϕ(2)(a)

= ϕ(ba).

Since this is true for an arbitrary ϕ ∈ L, this implies that mA(a⊗ b) = ba.

In the case X = L, the relation (4.22) shows that the right action αL : L ⊗ A → L is

given by

αL(ϕ⊗ a) = ϕ(1)(S(a(1)))ϕ(3)(a(2))ϕ(2),

because the coadjoint action (4.11) on L can be expressed as

a · ϕ = ϕ(1)(S(a(1)))ϕ(3)(a(2))ϕ(2).
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Similarly, (4.22) shows that the right action αA : A⊗ A→ A is given by

αA(a
′ ⊗ a) = a(2)a

′S−1(a(1)). (4.23)

4.5 Yetter-Drinfel’d Hopf algebras

We now study the concept of a Yetter-Drinfel’d Hopf algebra, which will play a role in the

proof of the theorem in the next section. Let H be a Hopf algebra over a field K, and let

X be a left H-comodule with coaction δX : X → H ⊗ X. We use the following Sweedler

notation for the coaction:

δX(x) = x(1) ⊗ x(2) ∈ H ⊗X.

As defined in [18, Par. 1.1, p. 7], a left H-comodule X that is also a left H-module and

satisfies the condition

δX(h · x) = h(1)x
(1)SH(h(3))⊗ h(2) · x

(2)

for all h ∈ H and x ∈ X is called a left Yetter-Drinfel’d module, and a right H-comodule X

that is also a right H-module and satisfies the condition

δX(x · h) = x(1) · h(2) ⊗ SH(h(1))x
(2)h(3)

for all h ∈ H and x ∈ X is called a right Yetter Drinfel’d module. There also exist notions of

left-right and right-left Yetter-Drinfel’d modules, but we will not need them in what follows.

Left Yetter-Drinfel’d modules overH together with morphisms that are bothH-linear and

H-colinear form a category, which we denote by H
HYD. This category is a tensor category:

The tensor product of two left Yetter-Drinfel’d modules X and Y over H is again a left

Yetter-Drinfel’d module over H, with the diagonal action αX⊗Y : H ⊗ X ⊗ Y → X ⊗ Y

defined by

αX⊗Y (h⊗ x⊗ y) = h(1) · x⊗ h(2) · y

and the codiagonal coaction δX⊗Y : X ⊗ Y → H ⊗X ⊗ Y defined by

δX⊗Y (x⊗ y) = x(1)y(1) ⊗ x(2) ⊗ y(2).

The unit object is the base field K, which, like every vector space, is a left Yetter-Drinfel’d

module when equipped with the trivial module action h · λ = εH(h)λ and trivial comodule
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coaction δK(λ) = 1H ⊗ λ. Moreover, the quasisymmetry σX,Y : X ⊗ Y → Y ⊗X defined by

σX,Y (x⊗ y) = x(1) · y ⊗ x(2) (4.24)

is bijective if H has a bijective antipode, and therefore defines a braiding on H
HYD.

If H is quasitriangular, with R-matrix R =
∑n

i=1 ai ⊗ bi, then any left H-module X is a

left Yetter-Drinfel’d module over H when equipped with the left coaction δX : X → H ⊗X

defined, as in [4, Par. 1.3, p. 94] and [12, Prop. 10.6.7, p. 211], by

δX(x) =
n

∑

i=1

bi ⊗ ai · x.

See also [11]. If we equip a second H-module Y with this H-comodule structure, then any

H-linear map from X to Y is also H-colinear with respect to this coaction. This coaction

defined on X ⊗ Y , viewed as an H-module with the diagonal action, coincides with the

codiagonal coaction on X ⊗ Y . Furthermore, the quasisymmetry (4.24) coincides with the

quasisymmetry (4.1) on the category of left H-modules. This assignment from left modules

over H to left Yetter-Drinfel’d modules over H thus defines a strict braided tensor functor,

which is a functor that preserves the tensor product and braiding.

A Hopf algebra in H
HYD is called a Yetter-Drinfel’d Hopf algebra. Since the functor

described above preserves the tensor product and braiding, the structure morphisms for a

Hopf algebra A in the category of left modules over a quasitriangular Hopf algebra H also

satisfy the axioms of a Hopf algebra in the category of left Yetter-Drinfel’d modules, and is

therefore a Yetter-Drinfel’d Hopf algebra.

As noted in [18, Lem. 1.2, p. 9], the fact that left Yetter-Drinfel’d modules over H are the

same as right Yetter-Drinfel’d modules over Hop cop implies that if A is a left Yetter-Drinfel’d

Hopf algebra over H, then Aop cop is a right Yetter-Drinfel’d Hopf algebra over Hop cop. Here,

the opposite multiplication and coopposite comultiplication of A are defined in the ordinary

sense, as

mAop(a⊗ b) = ba

and

∆Acop(a) = a(2) ⊗ a(1).

For the coaction on Aop cop, we use Sweedler indices with square brackets:

δAop cop(a) = a[1] ⊗ a[2] = a(2) ⊗ a(1)
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Now applying [18, Lem. 1.3, p. 10], we have that if H is finite-dimensional, then Aop cop is a

left Yetter-Drinfel’d module over (Hop cop)∗ with action

αAop cop(ϕ⊗ a) = a[1]ϕ(a[2]) = a(2)ϕ(a(1)), (4.25)

and coaction

δAop cop(a) = a{1} ⊗ a{2} =
∑

i

h∗i ⊗ a · hi, (4.26)

where {hi}i is a basis of Hop cop. Observe that we can equivalently express this coaction by

the equation

a{1}(h)a{2} = a · h,

which is dual to the action. Finally, we note that the assignment from right Yetter-Drinfel’d

modules over a finite-dimensional Hopf algebra to left Yetter-Drinfel’d modules over its dual

given in [18, Lem. 1.3, p. 10] again defines a strict braided tensor functor. This implies that

the left Yetter-Drinfel’d module Aop cop over (Hop cop)∗ is in fact a left Yetter-Drinfel’d Hopf

algebra in the category
(Hop cop)∗

(Hop cop)∗YD. In summary, we have the following lemma.

Lemma 4.5.1. If A is a Hopf algebra in the category of modules over a finite-dimensional

quasitriangular Hopf algebra H, then A is a left Yetter-Drinfel’d Hopf algebra over H and

Aop cop is a left Yetter-Drinfel’d Hopf algebra over (Hop cop)∗.

We will also need the following definitions: A left integral in a Yetter-Drinfel’d Hopf

algebra A is an element Λ ∈ A such that

aΛ = εA(a)Λ

for all a ∈ A, and a right integral in A is an element Γ ∈ A such that

Γa = εA(a)Γ

for all a ∈ A. It is proved in [19, Prop. 2.10, p. 432] that every finite-dimensional Yetter-

Drinfel’d Hopf algebra contains non-zero left and right integrals, which are unique up to scalar

multiples, and that there exists a character ιA : H → K (i.e., an algebra homomorphism to

the base field) and a grouplike element gA ∈ H, known respectively as the integral character

and integral group element of A, satisfying the following properties:

h · ΛA = ιA(h)ΛA, δA(ΛA) = gA ⊗ ΛA

h · ΓA = ιA(h)ΓA, δA(ΓA) = gA ⊗ ΓA
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4.6 Non-degeneracy and triviality of the Müger centre

We are now ready to prove the main result of this chapter. Let H be a finite-dimensional

quasitriangular ribbon Hopf algebra, with R-matrix R =
∑n

i=1 ai⊗ bi and ribbon element v.

Let C be the category of finite-dimensional left H-modules. Recall that the dual space H∗

is a coend in C, and hence a Hopf algebra in C with the structure morphisms discussed

in 4.3. We denote this coend by L to distinguish it from the usual dual Hopf algebra H∗.

Let A = ∗L, and note that A is again a Hopf algebra in C with the structure morphisms

defined as in 3.1. We know that the morphism ω′′ : L→ A defined by

ω′′ = (idA ⊗ ω) ◦ (coev′L ⊗ idL) (4.27)

as in (3.9) is a Hopf algebra homomorphism, and therefore B = im(ω′′) is a Hopf subalgebra

of A by the discussion in 3.2. We prove that if the Müger center of C is trivial, then ω′′ is

an isomorphism, which means by definition that the Hopf pairing ω is non-degenerate.

We first prove several lemmas. The first is a relation between the counits of ∗L and L,

which is true by virtue of ω′′ being a Hopf algebra homomorphism, but we give a direct

proof.

Lemma 4.6.1. Let A = ∗L and let ω′′ : L→ A be defined by (4.27). Then

εA ◦ ω′′ = εL.

Proof. The counit εA is the right dual of the unit uL of L. By the the characterization (1.21)

of a right dual morphism, this is equivalent to

ev′L ◦ (uL ⊗ idA) = ev′I ◦ (idI ⊗ εA) = εA,

where we have used the fact that ev′I is the left, and right, unit constraint. Thus

εA ◦ ω′′ = ev′L ◦ (uL ⊗ idA) ◦ (idA ⊗ ω) ◦ (coev′L ⊗ idL)

= ev′L ◦ (idL ⊗ idA ⊗ ω) ◦ (uL ⊗ coev′L ⊗ idL)

= ω ◦ (ev′L ⊗ idL⊗L) ◦ (idL ⊗ coev′L ⊗ idL) ◦ (uL ⊗ idL)

= ω ◦ (uL ⊗ idL),

where we have used Definition 1.3.1 of a right dual ∗L. This is equal to εL by the property

(2.13) of the Hopf pairing ω.
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From Lemma 4.6.1 we also obtain the following relation.

Lemma 4.6.2. Let Γ be a right integral of B = im(ω′′). Then for all a ∈ A and ϕ ∈ L,

Γaω′′(ϕ) = ΓaεB(ω
′′(ϕ)). (4.28)

Proof. For any a ∈ A and ϕ ∈ L we have

Γaω′′(ϕ) = Γa(2)εA(a(1))ω
′′(ϕ) = Γa(3)ω

′′(ϕ)S−1(a(2))a(1)

by the counit equation and skew-antipode equation. Recall from Proposition 4.4.3 that the

action defined by (4.21) makes every morphism in C an A-module homomorphism, and recall

that the action of A on itself is given by (4.23). Therefore, we have

Γaω′′(ϕ) = ΓαA(ω
′′(ϕ)⊗ a(2))a(1) = Γω′′(αL(ϕ⊗ a(2)))a(1).

But for any ϕ ∈ L, we have by Lemma 4.6.1 that

Γω′′(ϕ) = ΓεB(ω
′′(ϕ)) = ΓεA(ω

′′(ϕ)) = ΓεL(ϕ).

Therefore, using the fact that Γ is a right integral and the A-linearity of ω′′ and εB,

Γω′′(αL(ϕ⊗ a(2)))a(1) = ΓεB(ω
′′(αL(ϕ⊗ a(2))))a(1)

= ΓαK(εB(ω
′′(ϕ))⊗ a(2))a(1)

= Γ(a(2) · εB(ω
′′(ϕ))a(1)

= ΓεB(ω
′′(ϕ))εA(a(2))a(1)

= ΓaεB(ω
′′(ϕ)),

where we have also used the relation between the right action by A and the H-module

structure given in (4.22).

In Lemma 4.6.2 the multiplication was carried out in A. Recalling that A = Hop as an

algebra by Lemma 4.4.1, the result states that

ω′′(ϕ)aΓ = εH(ω
′′(ϕ))aΓ (4.29)

in terms of the multiplication in H.
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In the category that we are currently considering, we have the following expression for ω.

Lemma 4.6.3. The Hopf pairing ω for the coend L can be expressed by

ω(ϕ⊗ ψ) =
∑

i,j

ϕ(bjai)ψ(SH(ajbi)) (4.30)

for all ϕ, ψ ∈ L, where SH is the antipode of H.

Proof. Recall that ω is the unique morphism satisfying

ω ◦ (ιX ⊗ ιY ) = (evX ⊗ evY ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY )

and that, in this category, σ is the braiding defined by (4.1). The coend L has the universal

dinatural transformation ι defined by (4.13). Thus

(ω ◦ (ιX ⊗ ιY ))(ϕ⊗ x⊗ ψ ⊗ y)

= ((evX ⊗ evY ) ◦ (idX∗ ⊗ (σY ∗,X ◦ σX,Y ∗)⊗ idY ))(ϕ⊗ x⊗ ψ ⊗ y)

=
∑

i,j

(evX ⊗ evY )(ϕ⊗ (bjai · x)⊗ (ajbi · ψ)⊗ y)

=
∑

i,j

ϕ(bjai · x)(ajbi · ψ)(y)

=
∑

i,j

ϕ(bjai · x)ψ(SH(ajbi) · y),

where we have applied the action (4.6). But the map f : L⊗ L→ K defined by

f(ϕ⊗ ψ) =
∑

i,j

ϕ(bjai)ψ(SH(ajbi))

also satisfies

(f ◦ (ιX ⊗ ιY ))(ϕ⊗ x⊗ ψ ⊗ y) = f(ιX(ϕ⊗ x)⊗ ιY (ψ ⊗ y))

=
∑

i,j

(ιX(ϕ⊗ x))(bjai)(ιY (ψ ⊗ y))(SH(ajbi))

=
∑

i,j

ϕ(bjai · x)ψ(SH(ajbi) · y).

Since f and ω are in particular linear maps over K and every ϕ ∈ L can be expressed

as ιH(ϕ ⊗ 1H), where H has the left regular representation, this implies that f = ω by

universality of ιX ⊗ ιY .
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We now prove the main result.

Theorem 4.6.1. If the Müger centre of C is trivial, then ω is non-degenerate.

Proof. Let Γ be a right integral of B = im(ω′′). Then, by (4.29), we have

ω′′(ϕ)aΓ = εH(ω
′′(ϕ))aΓ (4.31)

for all a ∈ A and ϕ ∈ L. Making the identification L = ( ∗L)∗ = A∗, the right coevaluation

map coev′L : K → A⊗ L can be expressed as

coev′L(1) =
∑

i

xi ⊗ x∗i

where {xi}i is a basis of A and {x∗i }i is the corresponding dual basis of L. By Lemma 4.6.3,

we therefore have

ω′′(ϕ) =
∑

k

xkω(x
∗
k ⊗ ϕ)

=
∑

i,j,k

xkx
∗
k(bjai)ϕ(SH(ajbi))

=
∑

i,j

bjaiϕ(SH(ajbi))

for all ϕ ∈ L. Now substituting this expression for ω′′(ϕ) into (4.31), and using the fact that

εH is an algebra homomorphism and has the property

(εH ⊗ idH)(R) = (idH ⊗ εH)(R) = 1

by Lemma 4.1.1, we have

∑

i,j

bjaiϕ(SH(ajbi))aΓ =
∑

i,j

εH(bjai)ϕ(SH(ajbi))aΓ

= ϕ
(

SH

(

∑

i,j

ajεH(bj)εH(ai)bi

))

aΓ

= ϕ(SH(1))aΓ

= ϕ(1)aΓ.

This implies that
∑

i,j

bjaiaΓ⊗ SH(ajbi) = aΓ⊗ 1,



92

which further implies, by the bijectivity of SH , that

∑

i,j

bjaiaΓ⊗ ajbi = aΓ⊗ 1. (4.32)

Now consider the left H-module X = HΓ, and let Y be a finite-dimensional left H-module.

Then (4.32) implies that for any aΓ ∈ X and y ∈ Y ,

(σY,X ◦ σX,Y )(aΓ⊗ y) =
∑

ij

bjai · aΓ⊗ ajbi · y

= aΓ⊗ y

and hence σY,X ◦ σX,Y = idX⊗Y for all Y in C, which means that X is in the Müger centre

of C.

Now assume that the Müger centre is trivial. Then X is a direct sum of finitely many

copies of the unit object, which is the base field K equipped with the trivial action. By

linearity of the action, this means that for all a ∈ A and a′Γ ∈ X,

a · (a′Γ) = εH(a)a
′Γ.

In particular,

aΓ = εH(a)Γ

for all a ∈ A, which means that Γ is a left integral of H. It follows that Γ is a right integral

of A since A = Hop as an algebra and

εA = ∗uL = ∗(ε∗H) = εH .

Thus, every right integral of B is a right integral of A. Now recall that Aop cop is a left Yetter-

Drinfel’d Hopf algebra over (Hop cop)∗ by Lemma 4.5.1. Furthermore, every right integral of

A is a left integral of Aop cop, so by [19, Prop. 2.10, p. 432] any a ∈ A can be expressed as

a = ρAop cop(mop(a⊗ Γ[1]))ιAop cop(S(Hop cop)∗(Γ
{1}

[2] ))SAop cop(Γ[2]
{2}),

where ρAop cop is a right integral of (Aop cop)∗ and ιAop cop is the integral character of Aop cop, and

we have denoted the Sweedler indices for the coproduct with square brackets to distinguish

them from those for A. Now since SA = SAop cop and SH = SHop cop , and SH∗ = S∗
H , we have

a = ρAop cop(Γ(2)a)ιAop cop(SH∗(Γ
{1}

(1) ))SA(Γ
{2}

(1) ).
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Next, recall that Hop cop acts on Aop cop by (4.25). Thus, noting that Γ is a right integral

for A, we have as a consequence of [19, Prop. 2.10(2), p. 432], applied to both Aop cop and A,

that

ιAop cop(ϕ)Γ = ϕ · Γ = Γ[1]ϕ(Γ[2]) = Γ(2)ϕ(Γ(1)) = Γϕ(gA),

where gA is the integral group element of A. This implies that

ιAop cop(ϕ) = ϕ(gA).

Therefore, recalling (4.26), and the fact that SA is H-linear, we have

a = ρAop cop(Γ(2)a)(SH∗(Γ
{1}

(1) )(gA))SA(Γ
{2}

(1) )

= ρAop cop(Γ(2)a)
∑

i

(SH∗(h∗i )(gA))SA(Γ(1) · hi)

= ρAop cop(Γ(2)a)
∑

i

h∗i (SH(gA))SA(Γ(1) · hi)

= ρAop cop(Γ(2)a)SA

(

Γ(1) ·
∑

i

h∗i (g
−1
A )hi

)

= ρAop cop(Γ(2)a)SA(Γ(1) · g
−1
A )

= ρAop cop(Γ(2)a)SA(g
−1
A · Γ(1))

where {hi}i is a basis of H, and we have used the fact that the right action by Hop cop is

equal to the left action by H (using · for both actions). Since Γ is an element of B, and since

the antipode of B is SA restricted to B, the right hand side of this equation is an element

of B. This shows that A ⊆ B, and hence A = B. Since ω′′ is in particular a linear map

between finite-dimensional vector spaces, it follows that ω′′ is an isomorphism.



Chapter 5

A non-universal dual space

In this chapter, we construct an example of a braided finite tensor category containing a

Hopf algebra A whose dual A∗ with the coadjoint action fails to be a coend in the category

of A-modules. This non-example shows that there are certain hidden properties that are

automatically satisfied in the category discussed in 4.2. This construction involves the notion

of a C-category, which can be thought of as a category with an action by a tensor category.

5.1 Categories over a tensor category

Let C be a tensor category. We define, as in [14, 2.1, p. 94-96], a C-category as a category D

together with a functor

⊗ : C × D → D

and natural isomorphisms

βX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

and

πZ : I ⊗ Z → Z,

for objects X and Y in C and Z in D, where ⊗ also denotes the tensor product of C. For two

C-categories (D,⊗) and (D′,⊗), a functor ω : D → D′ together with a natural isomorphism

νX,Z : ω(X ⊗ Z) → X ⊗ ω(Z),
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for objects X in C and Z in D, is called a C-functor. For two C-functors (ω, ν) and (ω′, ν ′),

a natural transformation ϕ : ω → ω′ is called a C-transformation (or a C-morphism) if the

diagram

ω(X ⊗ Z) ω′(X ⊗ Z)

X ⊗ ω(Z) X ⊗ ω′(Z)

νX,Z

ϕ(X⊗Z)

ν′X,Z

idX⊗ϕ(Z)

commutes.

Any tensor category C is a C-category. Another example is the category CC of right

comodules over a coalgebra C in C. As explained in [14, 2.1.6, p. 95], the category CC is a

C-category because if X is an object in C and Y in an object in CC with coaction δY , then

X ⊗ Y is a right comodule over C with coaction δX⊗Y = idX ⊗ δY .

For two C-functors ω and ω′, we denote the set of natural transformations from ω to ω′

by Nat(ω, ω′), and the subset of C-transformations by NatC(ω, ω
′), as in [14, Def. 2.3, p. 96].

Let C be a tensor category and let C be a coalgebra in C. Let

ω : CC → C

denote the forgetful functor, which sends each right comodule over C to its underlying object.

We have the following proposition.

Proposition 5.1.1. Let Z ∈ C, and suppose that g : C → Z is a morphism in C. For each

object X in CC, let δX : X → X ⊗ C denote its coaction. Then the collection of morphisms

δ̃X : ω(X) → ω(X)⊗ Z defined by

δ̃X = (idX ⊗ g) ◦ δX (5.1)

is a natural transformation δ̃ : ω → ω ⊗ Z, where ω ⊗ Z : CC → C is the functor defined on

objects by X 7→ ω(X)⊗ Z.

Proof. Naturality of δ̃ means that the diagram

ω(X) ω(X)⊗ Z

ω(Y ) ω(Y )⊗ Z

ω(f)

δ̃X

ω(f)⊗idZ

δ̃Y
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commutes for any morphism f in CC . Since f is a comodule homomorphism, and ω(f) is

simply the morphism f viewed as a morphism in C, we have

δ̃Y ◦ ω(f) = (idY ⊗ g) ◦ δY ◦ ω(f)

= (idY ⊗ g) ◦ (ω(f)⊗ idC) ◦ δX

= (ω(f)⊗ idZ) ◦ (idX ⊗ g) ◦ δX

= (ω(f)⊗ idZ) ◦ δ̃X

as required.

Both ω and ω ⊗ Z are C-functors, as observed in [14, 2.1.8, p. 95] and [14, 2.1.9, p. 96].

The natural transformation δ̃ : ω → ω⊗Z, defined as in (5.1) for some morphism g : C → Z

in C, is a C-transformation because

δ̃X⊗Y = (idX⊗Y ⊗ g) ◦ δX⊗Y = (idX⊗Y ⊗ g) ◦ (idX ⊗ δY ) = idX ⊗ δ̃Y

for all X ∈ C and Y ∈ CC . The next proposition shows that the converse is also true.

Proposition 5.1.2. If δ̃ : ω → ω ⊗ Z is a C-transformation, then there exists a morphism

g : C → Z in C such that

δ̃X = (idX ⊗ g) ◦ δX (5.2)

for all X in CC.

Proof. Suppose that δ̃ : ω → ω ⊗ Z is a C-transformation. Note that C is in CC with

coaction δC = ∆C , the coproduct on C. Then X ⊗C is in CC for any X in C, with coaction

δX⊗C = idX ⊗ δC = idX ⊗ ∆C . With these coactions, δX : X → X ⊗ C is a comodule

homomorphism, because

δX⊗C ◦ δX = (idX ⊗ δC) ◦ δX = (idX ⊗∆C) ◦ δX = (δX ⊗ idC) ◦ δX

by the comodule axiom (4.14) for X, and hence δX is a morphism in CC . Therefore, by the

naturality of δ̃, we have that the diagram

X X ⊗ Z

X ⊗ C X ⊗ C ⊗ Z

δX

δ̃X

δX⊗idZ

δ̃X⊗C
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commutes. Since δ̃ is a C-transformation, we also have δ̃X⊗C = idX ⊗ δ̃C . Therefore

(δX ⊗ idZ) ◦ δ̃X = (idX ⊗ δ̃C) ◦ δX ,

which implies

(idX ⊗ εC ⊗ idZ) ◦ (δX ⊗ idZ) ◦ δ̃X = (idX ⊗ εC ⊗ idZ) ◦ (idX ⊗ δ̃C) ◦ δX .

Thus, letting

g = (εC ⊗ idZ) ◦ δ̃C ,

and applying the comodule axiom (4.15) for X, we have

δ̃X = (idX ⊗ g) ◦ δX

as asserted.

We now consider a braided category C, with braiding σ, and a Hopf algebra H in C.

Lemma 5.1.1. If X and Y are objects in CH with respective coactions δX and δY , then

δX⊗Y = (idX⊗Y ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

defines a right coaction on X ⊗ Y by H, and hence X ⊗ Y is an object in CH . Furthermore,

if f and g are morphisms in CH , then f ⊗ g is a morphism in CH , and hence CH is a tensor

category.

Proof. By the naturality of σ and the coassociativity comodule axiom (4.14) for δX and δY ,

(δX⊗Y ⊗ idH) ◦ δX⊗Y

= (idX⊗Y ⊗mH ⊗ idH) ◦ (idX ⊗ σH,Y ⊗ idH ⊗ idH) ◦ (δX ⊗ δY ⊗ idH) ◦ (idX⊗Y ⊗mH)

◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH ⊗ idH⊗H) ◦ (δX ⊗ δY ⊗ idH⊗H)

◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH ⊗ idH⊗H) ◦ (idX ⊗ idH ⊗ σH,Y⊗H ⊗ idH)

◦ (δX ⊗ idH ⊗ δY ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH ⊗ idH⊗H) ◦ (idX ⊗ idH ⊗ σH,Y⊗H ⊗ idH)

◦ (idX ⊗∆H ⊗ idY ⊗∆H) ◦ (δX ⊗ δY ).
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By the braiding axiom (1.4), this equals

(idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH ⊗ idH⊗H) ◦ (idX ⊗ idH ⊗ idY ⊗ σH,H ⊗ idH)

◦ (idX ⊗ idH ⊗ σH,Y ⊗ idH ⊗ idH) ◦ (idX ⊗∆H ⊗ idY ⊗∆H) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ idY⊗H ⊗ σH,H ⊗ idH) ◦ (idX ⊗ σH,Y ⊗ idH⊗H ⊗ idH)

◦ (idX ⊗ idH ⊗ σH,Y ⊗ idH⊗H) ◦ (idX ⊗∆H ⊗ idY ⊗∆H) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ idY⊗H ⊗ σH,H ⊗ idH) ◦ (idX ⊗ σH⊗H,Y ⊗ idH ⊗ idH)

◦ (idX ⊗∆H ⊗ idY ⊗∆H) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mH ⊗mH) ◦ (idX ⊗ idY⊗H ⊗ σH,H ⊗ idH) ◦ (idX ⊗ idY ⊗∆H ⊗∆H)

◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗∆H) ◦ (idX ⊗ idY ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗∆H) ◦ δX⊗Y ,

where we have also used braiding axiom (1.3), another application of the naturality of σ,

and the fact that ∆H is an algebra homomorphism. This shows that δX⊗Y satisfies the

coassociativity comodule axiom (4.14). Using the fact that εH is an algebra homomorphism,

the naturality of σ, and the counital comodule axiom (4.15) for δX and δY , we have

(idX⊗Y ⊗ εH) ◦ δX⊗Y

= (idX⊗Y ⊗ εH) ◦ (idX⊗Y ⊗mH) ◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mI) ◦ (idX⊗Y ⊗ εH ⊗ εH) ◦ (idX ⊗ σH,Y ⊗ idH) ◦ (δX ⊗ δY )

= (idX⊗Y ⊗mI) ◦ (idX ⊗ σI,Y ) ◦ (idX ⊗ εH ⊗ idY ⊗ εH) ◦ (δX ⊗ δY )

= idX⊗Y ,

where we have recalled that σI,Y = idY by (1.6). This shows that δX⊗Y also satisfies the

counital comodule axiom (4.15) and is therefore a right coaction on X ⊗ Y by H. Now let

f : X → Y and g : X ′ → Y ′ be morphisms in CH . Then,

δY⊗Y ′ ◦ (f ⊗ g)

= (idY⊗Y ′ ⊗mH) ◦ (idY ⊗ σH,Y ′ ⊗ idH) ◦ (δY ⊗ δY ′) ◦ (f ⊗ g)

= (idY⊗Y ′ ⊗mH) ◦ (idY ⊗ σH,Y ′ ⊗ idH) ◦ (f ⊗ idH ⊗ g ⊗ idH) ◦ (δX ⊗ δX′)

= (idY⊗Y ′ ⊗mH) ◦ (f ⊗ g ⊗ idH ⊗ idH) ◦ (idX ⊗ σH,X′ ⊗ idH) ◦ (δX ⊗ δX′)

= (f ⊗ g ⊗ idH) ◦ (idX ⊗ idX′ ⊗mH) ◦ (idX ⊗ σH,X′ ⊗ idH) ◦ (δX ⊗ δX′)

= (f ⊗ g ⊗ idH) ◦ δX⊗X′



99

by the defining property (4.20) of a comodule homomorphism and the naturality of σ, and

hence f ⊗ g is a morphism in CH .

We may regard H as a right comodule over itself via the coadjoint coaction

δH = (idH ⊗mH) ◦ (idH ⊗ SH ⊗ idH) ◦ (σH,H ⊗ idH) ◦ (idH ⊗∆H) ◦∆H , (5.3)

as defined in [14, 2.5.1, p. 106]. Thus, we may define the natural transformation δ̃ in (5.1) in

terms of a comodule homomorphism g : H → Z. The next lemma shows that each morphism

in this natural transformation is then a comodule homomorphism.

Lemma 5.1.2. Let Z ∈ CH and let g : H → Z be a morphism in CH . With the coaction

on X ⊗ Z defined as in Lemma 5.1.1, the morphism δ̃X = (idX ⊗ g) ◦ δX is a comodule

homomorphism for each X in CH , i.e., the diagram

X X ⊗ Z

X ⊗H X ⊗ Z ⊗H

δX

δ̃X

δX⊗Z

δ̃X⊗idH

commutes.

Proof. Using the fact that g : H → Z is a comodule homomorphism, the naturality of σ, and

the coassociativity comodule axiom (4.14) for X, we have

δX⊗Z ◦ δ̃X

= (idX⊗Z ⊗mH) ◦ (idX ⊗ σH,Z ⊗ idH) ◦ (δX ⊗ δZ) ◦ (idX ⊗ g) ◦ δX

= (idX⊗Z ⊗mH) ◦ (idX ⊗ σH,Z ⊗ idH) ◦ (δX ⊗ idZ⊗H) ◦ (idX ⊗ g ⊗ idH)

◦ (idX ⊗ δH) ◦ δX

= (idX⊗Z ⊗mH) ◦ (idX ⊗ σH,Z ⊗ idH) ◦ (idX⊗H ⊗ g ⊗ idH) ◦ (idX⊗H ⊗ δH)

◦ (δX ⊗ idH) ◦ δX

= (idX⊗Z ⊗mH) ◦ (idX ⊗ g ⊗ idH ⊗ idH) ◦ (idX ⊗ σH,H ⊗ idH) ◦ (idX⊗H ⊗ δH)

◦ (idX ⊗∆H) ◦ δX

= (idX ⊗ g ⊗ idH) ◦ (idX ⊗ idH ⊗mH) ◦ (idX ⊗ σH,H ⊗ idH) ◦ (idX⊗H ⊗ δH)

◦ (idX ⊗∆H) ◦ δX .
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As a consequence of [14, Lem. 2.13, p. 108], we have

(idH ⊗mH) ◦ (σH,H ⊗ idH) ◦ (idH ⊗ δH) ◦∆H = ∆H ,

and hence

δX⊗Z ◦ δ̃X = (idX ⊗ g ⊗ idH) ◦ (idX ⊗∆H) ◦ δX

= (idX ⊗ g ⊗ idH) ◦ (δX ⊗ idH) ◦ δX

= (δ̃X ⊗ idH) ◦ δX

as required.

Putting everything together, we have the following theorem.

Theorem 5.1.1. If H is a Hopf algebra in a braided category C, viewed as a comodule over

itself via the coadjoint coaction defined in (5.3), and Z is in CH , then the map

HomCH (H,Z) → NatC(idCH , idCH ⊗ Z)

sending each morphism g : H → Z in CH to the natural transformation δ̃ : idCH → idCH ⊗ Z

defined by

δ̃X = (idX ⊗ g) ◦ δX (5.4)

is a bijection.

Proof. By Lemma 5.1.2, we have that δ̃X is a comodule homomorphism for each X in CH . By

the same argument as in Proposition 5.1.1, we have that δ̃X defines a natural transformation,

and we have observed that it is in fact a C-transformation. Conversely, if δ̃ : idCH → idCH ⊗Z

is a C-transformation, then we know from Proposition 5.1.2 that

δ̃X = (idX ⊗ g) ◦ δX

for

g = (εH ⊗ idZ) ◦ δ̃H .

Thus, it remains to prove that g is a comodule homomorphism. We first observe that the

counit εH : H → I is a comodule homomorphism with respect to the coadjoint coaction (5.3)

on H and the trivial coaction δI : I → I ⊗H on I, defined as the unit uH : I → H = I ⊗H.
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We have

(εH ⊗ idH) ◦ δH

= (εH ⊗ idH) ◦ (idH ⊗mH) ◦ (idH ⊗ SH ⊗ idH) ◦ (σH,H ⊗ idH) ◦ (idH ⊗∆H) ◦∆H

= mH ◦ (SH ⊗ idH) ◦ (εH ⊗ idH ⊗ idH) ◦ (σH,H ⊗ idH) ◦ (idH ⊗∆H) ◦∆H

= mH ◦ (SH ⊗ idH) ◦ (σH,I ⊗ idH) ◦ (idH ⊗ εH ⊗ idH) ◦ (idH ⊗∆H) ◦∆H

= mH ◦ (SH ⊗ idH) ◦∆H

= uH ◦ εH

= δI ◦ εH ,

where we have used the naturality of σ, the fact that σH,I = idH , and the counit and antipode

equations for H. This implies that εH ⊗ idZ is a comodule homomorphism by Lemma 5.1.1.

Since δ̃H is a comodule homomorphism, it follows that g is a comodule homomorphism.

5.2 Coends over a tensor category

We now let C be a braided category with left duality, and show that the C-transformations

δ̃ : idCH → idCH ⊗ Z discussed in 5.1 are in bijection with certain dinatural transformations

ιX : X∗ ⊗ X → Z. This leads us to the notion of a C-coend (cf. [14, Def. 3.2, p. 111],

[1, Def. 3.1, p. 160]). We first prove the following.

Proposition 5.2.1. The set Nat(idCH , idCH ⊗ Z) is in bijection with the set of dinatural

transformations ιX : X∗ ⊗X → Z, for X in CH .

Proof. For each δ̃ ∈ Nat(idCH , idCH ⊗ Z) and X in CH , define

ιX = (evX ⊗ idZ) ◦ (idX∗ ⊗ δ̃X). (5.5)

Let f : X → Y be a morphism in CH . Then

ιX ◦ (f ∗ ⊗ idX) = (evX ⊗ idZ) ◦ (idX∗ ⊗ δ̃X) ◦ (f
∗ ⊗ idX)

= (evX ⊗ idZ) ◦ (f
∗ ⊗ idX⊗Z) ◦ (idY ∗ ⊗ δ̃X)

= (evY ⊗ idZ) ◦ (idY ∗ ⊗ f ⊗ idZ) ◦ (idY ∗ ⊗ δ̃X)

= (evY ⊗ idZ) ◦ (idY ∗ ⊗ δ̃Y ) ◦ (idY ∗ ⊗ f)

= ιY ◦ (idY ∗ ⊗ f),
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where we have used Theorem 1.4.1 and the naturality of δ̃. This shows that the collection

of morphisms ιX : X∗ ⊗X → Z, which is the image of δ̃ under this mapping, is a dinatural

transformation. The inverse map sends a dinatural transformation ιX : X∗ ⊗X → Z to the

collection of morphisms defined by

δ̃X = (idX ⊗ ιX) ◦ (coevX ⊗ idX) (5.6)

(cf. [5, Prop. XIV.2.2, p. 343]). It remains to prove that δ̃ is a natural transformation.

Naturality of δ̃ means that the diagram

X X ⊗ Z

Y Y ⊗ Z

f

δ̃X

f⊗idZ

δ̃Y

(5.7)

commutes for each morphism f : X → Y in CH . We have

(f ⊗ idZ) ◦ δ̃X = (f ⊗ idZ) ◦ (idX ⊗ ιX) ◦ (coevX ⊗ idX)

= (idY ⊗ ιX) ◦ (f ⊗ idX∗ ⊗ idX) ◦ (coevX ⊗ idX)

= (idY ⊗ ιX) ◦ (idY ⊗ f ∗ ⊗ idX) ◦ (coevY ⊗ idX)

= (idY ⊗ ιY ) ◦ (idY ⊗ idY ∗ ⊗ f) ◦ (coevY ⊗ idX)

= (idY ⊗ ιY ) ◦ (coevY ⊗ idY ) ◦ f

= δ̃Y ◦ f,

where we have used Theorem 1.4.1 and the dinaturality of ι. This establishes the desired

bijection.

If we restrict this bijection to the set NatC(idCH , idCH ⊗Z) of C-transformations, then we

have a bijection with some subset of the dinatural transformations ιX : X∗ ⊗X → Z. The

next proposition characterizes these dinatural transformations.

Proposition 5.2.2. Let δ̃ ∈ Nat(idCH , idCH ⊗ Z), and let ι be the corresponding dinatural

transformation under the bijection in Proposition 5.2.1. Then δ̃ is a C-transformation if and

only if

ιX⊗Y = ιY ◦ (idY ∗ ⊗ evX ⊗ idY ) ◦ (γ
−1
X,Y ⊗ idX⊗Y ). (5.8)
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Proof. We first show that δ̃ ∈ Nat(idCH , idCH ⊗ Z) is a C-transformation if and only if

ιX⊗Y = ιY ◦ (evX⊗Y ⊗ idY ∗⊗Y ) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ coevY ⊗ idY ). (5.9)

Suppose that δ̃ : idCH → idCH ⊗ Z is a C-transformation, and recall that this means that

δ̃X⊗Y = idX ⊗ δ̃Y .

Applying the bijection (5.5), we have

ιX⊗Y = (evX⊗Y ⊗ idZ) ◦ (id(X⊗Y )∗ ⊗ δ̃X⊗Y )

= (evX⊗Y ⊗ idZ) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ δ̃Y )

= (evX⊗Y ⊗ idZ) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ idY ⊗ ιY ) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ coevY ⊗ idY )

= ιY ◦ (evX⊗Y ⊗ idY ∗⊗Y ) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ coevY ⊗ idY ).

Conversely, suppose ι satisfies (5.9). Then, applying the bijection (5.6), we have

δ̃X⊗Y = (idX⊗Y ⊗ ιX⊗Y ) ◦ (coevX⊗Y ⊗ idX⊗Y )

= (idX⊗Y ⊗ ιY ) ◦ (idX⊗Y ⊗ evX⊗Y ⊗ idY ∗⊗Y )

◦ (idX⊗Y ⊗ id(X⊗Y )∗ ⊗ idX ⊗ coevY ⊗ idY ) ◦ (coevX⊗Y ⊗ idX⊗Y )

= (idX⊗Y ⊗ ιY ) ◦ (idX⊗Y ⊗ evX⊗Y ⊗ idY ∗⊗Y )

◦ (coevX⊗Y ⊗ idX ⊗ idY⊗Y ∗ ⊗ idY ) ◦ (idX ⊗ coevY ⊗ idY )

= (idX⊗Y ⊗ ιY ) ◦ (idX ⊗ coevY ⊗ idY )

= idX ⊗ δ̃Y ,

which means that δ̃ is C-transformation.

By applying (3.1), the condition (5.9) can equivalently be expressed as

ιX⊗Y = ιY ◦ (evY ⊗ idY ∗⊗Y ) ◦ (idY ∗ ⊗ evX ⊗ idY ⊗ idY ∗⊗Y ) ◦ (γ
−1
X,Y ⊗ idX⊗Y ⊗ idY ∗⊗Y )

◦ (id(X⊗Y )∗ ⊗ idX ⊗ coevY ⊗ idY )

= ιY ◦ (evY ⊗ idY ∗⊗Y ) ◦ (idY ∗ ⊗ coevY ⊗ idY ) ◦ (idY ∗ ⊗ evX ⊗ idY )

◦ (γ−1
X,Y ⊗ idX ⊗ idY )

= ιY ◦ (idY ∗ ⊗ evX ⊗ idY ) ◦ (γ
−1
X,Y ⊗ idX⊗Y ).

Thus, δ̃ is a C-transformation if and only if (5.8) holds.
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In the case Z = H with the coadjoint coaction and g = idH , the C-transformation δ̃

defined in (5.4) takes the form δ̃X = δX for X in CH , and δ̃ corresponds to a dinatural

transformation ιX : X∗ ⊗X → H satisfying (5.8) and (5.9) by Proposition 5.2.2. Explicitly,

ιX = (evX ⊗ idH) ◦ (idX∗ ⊗ δX). (5.10)

The next proposition shows that ι is universal among dinatural transformations satisfying

(5.8).

Proposition 5.2.3. Let ιX : X∗⊗X → H be the dinatural transformation defined by (5.10).

For any dinatural transformation jX : X∗ ⊗ X → Z satisfying (5.8), there exists a unique

comodule homomorphism g : H → Z such that

jX = g ◦ ιX . (5.11)

Proof. Under the bijection in Proposition 5.2.1, the dinatural transformation j corresponds

to a natural transformation δ̃ ∈ Nat(idCH , idCH ⊗ Z). Since j satisfies (5.8), this δ̃ is a

C-transformation by Proposition 5.2.2. By Theorem 5.1.1,

δ̃X = (idX ⊗ g) ◦ δX

for a unique comodule homomorphism g : H → Z. Hence, applying (5.5),

jX = (evX ⊗ idZ) ◦ (idX∗ ⊗ δ̃X)

= (evX ⊗ idZ) ◦ (idX∗ ⊗ idX ⊗ g) ◦ (idX∗ ⊗ δX)

= g ◦ (evX ⊗ idH) ◦ (idX∗ ⊗ δX)

= g ◦ ιX

as required.

In light of this result, we will refer toH as a C-coend. ThusH, together with the dinatural

transformation

ιX = (evX ⊗ idH) ◦ (idX∗ ⊗ δX),

is a C-coend in CH .
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5.3 The non-example

We are now ready to construct our example of a braided finite tensor category containing a

Hopf algebra A whose dual A∗ with the coadjoint action is not a coend in the category of

A-modules. We begin by constructing a Hopf algebra, in a category CC of comodules over a

coalgebra in a category C, that is a C-coend but not a coend. This can then be dualized.

Let G be the cyclic group of order 2 and H = K[G] be the group algebra over a field K.

We let C be the category of finite-dimensional H-modules. Note that H is quasitriangular

with R-matrix R = 1H ⊗ 1H , so that C is a braided category in which the braiding is the

flip map. The Hopf algebra H, which is a Hopf algebra in the category of vector spaces, is

in fact a Hopf algebra in C when endowed with the trivial action. We will denote H, viewed

as a Hopf algebra in C, by C. We now verify that the structure morphisms of C are indeed

H-linear and, hence, morphisms in C. Let h ∈ H and c ∈ C. For the coproduct ∆C = ∆H ,

we have

h ·∆C(c) = h(1) · c(1) ⊗ h(2) · c(2)

= εH(h(1))c(1) ⊗ εH(h(2))c(2)

= εH(h(1)εH(h(2)))c(1) ⊗ c(2)

= εH(h)∆C(c)

= ∆C(εH(h)c)

= ∆C(h · c),

and, recalling that the unit object in the category of H-modules is the base field K with the

trivial H-action, we have for the counit εC = εH that

h · εC(c) = εH(h)εC(c)

= εC(εH(h)c)

= εC(h · c).

This shows that ∆C = ∆H and εC = εH are H-linear. For the multiplication mC = mH , we

have for h ∈ H and c, c′ ∈ C that

mC(h · (c⊗ c′)) = mC(εH(h(1))c⊗ εH(h(2))c
′)

= εH(h(1)εH(h(2)))mC(c⊗ c′)

= εH(h)mC(c⊗ c′),
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and therefore mC is H-linear. Finally, SC = SH and uC = uH are H-linear as a consequence

of their K-linearity. Note that the coproduct ∆C = ∆H remains an algebra homomorphism

when viewed in C, since the braiding coincides with the flip map.

We now consider the category CC of comodules over C in the category C. Let a be the

non-identity element of G and, for each X in CC , define

δ̃X(x) = a · x.

Each δ̃X is an H-module homomorphism because, for all h ∈ H and x ∈ X,

δ̃X(h · x) = a · (h · x)

= ah · x

= ha · x

= h · (a · x)

= h · δ̃X(x)

since a is central in G and, therefore, in H. Each δ̃X is a C-comodule homomorphism because

for all x ∈ X,

(δX ◦ δ̃X)(x) = δX(a · x)

= a · δX(x)

= a(1) · x
(1) ⊗ a(2) · x

(2)

= a(1) · x
(1) ⊗ εH(a(2))x

(2)

= a(1)εH(a(2)) · x
(1) ⊗ x(2)

= a · x(1) ⊗ x(2)

= ((δ̃X ⊗ idH) ◦ δX)(x),

where we have used the fact that δX is H-linear, being a morphism in C. Next observe that

for any morphism f : X → Y in CC ,

(f ◦ δ̃X)(x) = f(a · x)

= a · f(x)

= δ̃Y (f(x))

= (δ̃Y ◦ f)(x)
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since f is, in particular, H-linear. Thus, we have constructed a natural transformation

δ̃ : idCC → idCC .

Now if δ̃ were a C-transformation, then by applying Theorem 5.1.1 with Z = K, there

would exist a unique morphism g : C → K in C such δ̃X = (idX⊗g)◦ δX for all X in CC . Let

X = H and equip it with the regular H-action and the trivial C-coaction δX(x) = x ⊗ 1C ,

and observe that X is in CC since the trivial C-coaction on X is H-linear:

h · (x⊗ 1C) = h(1) · x⊗ h(2) · 1C

= h(1) · x⊗ εH(h(2))1C

= h(1)εH(h(2)) · x⊗ 1C

= h · x⊗ 1C .

But

δ̃X(a) = a · a = a2 = 1G

while

((idX ⊗ g) ◦ δX)(a) = (idX ⊗ g)(a⊗ 1C) = g(1C)a,

and these are not equal since 1G and a are linearly independent. Therefore, δ̃ is not a

C-transformation.

We know from 5.2 that C, together with the coadjoint coaction (5.3), is a C-coend in CC ,

with the dinatural transformation

ιX = (evX ⊗ idC) ◦ (idX∗ ⊗ δX),

which is universal among dinatural transformations satisfying (5.8). If ι is universal among

all dinatural transformations i : X∗ ⊗X → Z in CC , then for the dinatural transformation

jX = evX ◦ (idX∗ ⊗ δ̃X)

corresponding to δ̃ under the bijection in Proposition 5.2.1, there exists a unique comodule

homomorphism g : C → K such that jX = g ◦ ιX . But then

jX = g ◦ ιX

= g ◦ (evX ⊗ idC) ◦ (idX∗ ⊗ δX)

= evX ◦ (idX∗ ⊗ idX ⊗ g) ◦ (idX∗ ⊗ δX)
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implies by the general adjunction from [5, Prop. XIV.2.2, p. 343] that

δ̃X = (idX ⊗ g) ◦ δX ,

which we have shown is a contradiction. This shows that ι is not universal among all

dinatural transformations in CC , and hence C together with ι is a C-coend in CC but not a

coend.

Now recall that left and right duals of a Hopf algebra in a category are again Hopf

algebras in that category, and that the left and right duals of the structure morphisms are

the structure morphisms for the left and right dual Hopf algebras, respectively. We can thus

view C as the dual Hopf algebra A∗ in C, where A = ∗C is a right dual of C. Hence A∗,

which has the trivial action by H and coadjoint coaction by A∗ = C, is a C-coend in the

category CC that is not a coend.

We now dualize this case. Recall that if C is a coalgebra in C then the category CC

of right C-comodules can be identified with the category C∗C of right ∗C-modules, by the

discussion in [17, p. 12]. The correspondence between the C-coaction and ∗C-action is given

by the adjunction in [5, Prop. XIV.2.2, p. 343]. If X is in C∗C with action αX : X⊗ ∗C → X,

then the corresponding coaction δX : X → X ⊗ C is given by

δX = (αX ⊗ idC) ◦ (idX ⊗ coev∗C). (5.12)

Thus, for the case C = A∗, we can identify the category CC with the category CA by this

correspondence. Since coends are preserved by an isomorphism of categories, it follows

that A∗, equipped with the action corresponding to the coadjoint coaction, is a C-coend

in CA that is not a coend.

This non-example is particularly interesting because, in the case where C is the category

of finite-dimensional vector spaces and H is a Hopf algebra in C, we have proved that H∗

together with the coadjoint action is a coend in the category of finite-dimensionalH-modules,

and we now prove that the the coadjoint action of H on H∗ is the action corresponding to

the coadjoint coaction of H∗ on H∗.

Proposition 5.3.1. Let H be a finite-dimensional Hopf algebra. Then the coadjoint action

of H on H∗ corresponds to the coadjoint coaction of H∗ on H∗ under the correspondence

given in (5.12).



109

Proof. The coadjoint coaction (5.3) of H∗ on H∗ is given by

δH∗ = (idH∗ ⊗mH∗) ◦ (idH∗ ⊗ SH∗ ⊗ idH∗) ◦ (σH∗,H∗ ⊗ idH∗) ◦ (idH∗ ⊗∆H∗) ◦∆H∗ .

Evaluating this on ϕ ∈ H∗, we obtain

δH∗(ϕ) = ϕ(2) ⊗ SH∗(ϕ(1))ϕ(3).

Recall that the coend L from 4.3 is equal to H∗ as a coalgebra. By Lemma 4.4.1, we have

A = ∗L = Hop as an algebra. Therefore, by the correspondence in [17, p. 12], the right

coaction δH∗ corresponds to the right action αH∗ : H∗ ⊗Hop → H∗ defined by

αH∗ = (idH∗ ⊗ evA) ◦ (δH∗ ⊗ idA).

Evaluating this on ϕ⊗ h ∈ H∗ ⊗Hop gives

αH∗(ϕ⊗ h) = (idH∗ ⊗ evH)(ϕ(2) ⊗ SH∗(ϕ(1))ϕ(3) ⊗ h)

= ϕ(2) ⊗ SH∗(ϕ(1)(h(1)))ϕ(3)(h(2))

= ϕ(1)(SH(h(1)))ϕ(3)(h(2))ϕ(2),

and evaluating on h′ ∈ H gives

αH∗(ϕ⊗ h)(h′) = ϕ(1)(SH(h(1))ϕ(2)(h
′)ϕ(3)(h(2))

= ϕ(SH(h(1))h
′h(2)).

Since a right action by Hop is the same as a left action by H, this shows that the right

coadjoint coaction of H∗ on H∗ corresponds to the left coadjoint action of H on H∗.

Thus, since we know that H∗ with the coadjoint action is a coend in the category of

finite-dimensional H-modules, it must be the case that every dinatural transformation in

this category satisfies the property (5.8).
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[18] Y. Sommerhäuser. Yetter-Drinfel’d Hopf algebras over groups of prime order, volume
1789 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
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Appendix A

Dual basis map

Here, we establish that the coevaluation map coevV = dbV : V
∗ ⊗ V → K in the category of

vector spaces over a field K, also known as the dual basis map, is independent of the choice

of basis. Recall from 1.3 that it is defined by

coevV : K → V ⊗ V ∗

λ 7→ λ

n
∑

i=1

vi ⊗ v∗i ,

where {v1, . . . , vn} is a basis for V and {v∗1, . . . , v
∗
n} is the corresponding dual basis.

Define ψ : V × V ∗ → End(V ) by

ψ(v, ϕ)(v′) = ϕ(v′)v

for all (v, ϕ) ∈ V × V ∗ and v′ ∈ V . Then ψ is bilinear, so by the universal property of the

tensor product there exists a linear map T : V ⊗ V ∗ → End(V ) such that the diagram

V × V ∗ End(V )

V ⊗ V ∗

ψ

⊗
T

commutes. In other words, for all (v, ϕ) ∈ V × V ∗ and v′ ∈ V

T (v ⊗ ϕ)(v′) = ϕ(v′)v.
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Now let v′ =
∑n

i=1 λivi be any vector in V , and observe that

T
(

n
∑

i=1

vi ⊗ v∗i

)

(v′) =
(

n
∑

i=1

T (vi ⊗ v∗i )
)

(v′) =
n

∑

i=1

T (vi ⊗ v∗i )(v
′)

=
n

∑

i=1

v∗i (v
′)vi =

n
∑

i,j=1

λjv
∗
i (vj)vi =

n
∑

i=1

λivi

= v′,

which means that

T
(

n
∑

i=1

vi ⊗ v∗i

)

= idV . (A.1)

Note that, in particular,

v′ =
n

∑

i=1

v∗i (v
′)vi.

By writing ϕ ∈ V ∗ as a linear combination of the v∗i , a similar calculation also shows that

ϕ =
n

∑

i=1

ϕ(vi)v
∗
i .

Now let T ′ : End(V ) → V ⊗ V ∗ be defined by T ′(f) =
∑n

i=1 f(vi) ⊗ v∗i for all f ∈ End(V ).

Observe that

(T ′ ◦ T )(v ⊗ ϕ) = T ′(T (v ⊗ ϕ)) =
n

∑

i=1

T (v ⊗ ϕ)(vi)⊗ v∗i

=
n

∑

i=1

ϕ(vi)v ⊗ v∗i =
n

∑

i=1

v ⊗ ϕ(vi)v
∗
i = v ⊗

n
∑

i=1

ϕ(vi)v
∗
i

= v ⊗ ϕ

for all v ⊗ ϕ ∈ V ⊗ V ∗, and hence T ′ ◦ T = idV⊗V ∗ . Furthermore,

(T ◦ T ′)(f)(v) = T (T ′(f))(v) = T
(

n
∑

i=1

f(vi)⊗ v∗i

)

(v)

=
n

∑

i=1

T (f(vi)⊗ v∗i )(v) =
n

∑

i=1

v∗i (v)f(vi) = f
(

n
∑

i=1

v∗i (v)vi

)

= f(v)

for all f ∈ End(V ) and v ∈ V , and hence T ◦ T ′ = idEnd(V ).
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This shows that T ′ is the inverse of T , and therefore T is a bijection. Now since coevV

is determined by coevV (1) =
∑n

i=1 vi ⊗ v∗i , the bijectivity of T and relation (A.1) show that

coevV is independent of the choice of basis.
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