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Abstract

‘This thesis presents the development and implementation of a Finite Volume Method (FVM)
to simuiate the sloshing behaviour of incompressible, constant density liquids in a two-

rigid tank. The of sloshing is of importance to
engineers involved in the design of all types of vehicles which transport confined liquids. This
paper reports on the research conducted in the context of the transport of liquids on the
ocean surface. The method presented has two immediate applications in this context: the

tranzport of petroleum products, and roll stabilization systems for ocean-going vessels.

The FVM is used to discretize the gt ling. and mass ion equations
using primitive variables in a fully Eulerian approach. The method is formulated by
the q over iate control volumes, and assembling

systems of linear equatiors. A fixed rectangular grid with variable spacing is utilized, and
‘momentum control volumes (CVs) are staggered relative to the continuity CVs. The inertial
accelerations caused by a specified tank motion are applied to the fluid by the inclusion of
additional source terms in the momentum equations. The method can accommodate the
simultaneous translation and rotation of the tank relative to an absolute reference frame, and

rotation of the tank about a frame attached to it.

The free surface boundary is handled using the Volume of Fluid (VOF) method, which



permits arbitrary movement of the surface, including the possibility of overlapping and
smaller regions breaking away. The VOF method is based on the assignment of a variable
F for each continuity CV, where F represents the average fraction of the cell volume which
is occupied by fluid. The VOF method, therefore, defines the shape of the fluid-occupied
calculation domain, and the free surface.

Results were obtained in the form of the free surface configuration, and velocity and pressure
distributions throughout the fluid domain. Results are presented for various prescribed tank
motions, chosen to verify the method’s stability, reliability, and conformance to behaviour
predicted by other established means. Prescribed tank motions were: (i) rotation to a constant
angle of inclination; (ii) excitation with the predicted natural period; (iii) excitation near the
natural period (producing a surface wave with a “beating” behaviour ); (iv) impulsive
translation; (v) continuous rotation; and (vi) arbitrary simultaneous rotation and translation.
All input tank motions are of a sinusoidal form. The method generated results in good
agreement with expected physical behaviour. In particular, the wave period characteristics
has been verified, and the ability of the method to accommodate a combined rotational and
l tank motion ing ship roll and sway) has been proven.

To fully develop and define the capabilities of the proposed method, it is necessary to conduct
further testing of the method to verify the surface heights calculated, and to optimize the use
of various calculation parameters. In addition, testing with general tank motion (i.e. roll,
sway, and heave), and with motions extreme in nature, is recommended. It is also

recommended that a version of this method be d to model a th

iii



rectangular tank, thus ensuring its applicability to the widest possible range of practical design

problems.
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a

Description

in discretized form of ing equati
acceleration of a fluid particle in the x- and y- directions, respectively

upwinding function

of discretized g ing equations, i ing constant terms
integrated convective fluid flux across a control volume face
intermediate value in VOF donor-acceptor algorithm
control volume
distance between the free surface and the center of the interpolation neighbour
cell, and between continuity CV centers, respectively
integrated diffusion fluid flux across a control volume face
differential surface area of a control volume
fractional volume of fluid contained in continuity CVs
acceleration due to gravity
average height of fluid in the tank
gravity unit directional vector
unit vector in the x-direction
unit vector in the y-direction
convection-diffusion flux vector
component of the convection-diffusion flux vector
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rnry

rr;

8,8
1, At

ut, v*

Vv

length of tank, measured in x-direction

unit vector, outward normal to a CV surface ds

origin of the (x,) frame of reference

origin of the (X,Y) frame of reference

pressure

grid Peclet number, or arbitrary point in the (x,) plane

VOF donor-acceptor algorithm maximum possible volume fluxed across a CV
face

position vector locating an arbitrary point in the moving frame in rclation to
the fixed frame of reference

position vector locating the origin of the moving reference frame in relation
to the fixed frame, and the length of the vector, respectively

position vector locating an arbitrary point in the moving frame, and the length
of the vector, respectively

source term vector, and its components, respectively

time, and time step, respectively

period of prescribed oscillatory tank motion

fluid velacity vector

fluid velocity in the x- and y

updated velocity based on explicit vatue and pressure gradient, x-direction and
y-direction respectively

explicit values of velocity, excluding pressure gradient, in x- and y-directions,
respectively

volume and surface area of an arbitrary CV, respectively



volume of a discretized control volume

xy co-ordinates of the moving (tank) reference frame

X, ¥, location of an arbitrary point P in the moving frame of reference

Xy co-ordinates of the fixed reference frame

Ax, Ay length of the sides of a rectangular continuity CV, in the x- and y-directions,
respectively

8x, 8y distance between main grid nodes, in the x- and y-directions, respectively

Greek Symbols

2 angular acceleration

B initial angle of inclination

¥ angle of inclination of a point on the grid, measured in the (x, y) frame

€ volume tolerance

n weight factor for pressure interpolation at surface CVs

] instantaneous angle of rotation

B dynamic viscosity of the fluid

P mass density of the fluid

z sum of i variables ied by respecti ients, in the
pressure correction equation

) defined angle ining i and initial rotation angles

%Y local surface height function used to determine surface orientation, in the x-
and y- direction, respectively

© angular velocity



Subscripis

AD VOF algorithm acceptor or donor cell selector
B beating wave phenomenon
D VOF algorithm donor cell indicator

VOF algorithm indicator for cell upstream of the donor cell

coefficients relating to the east, south, west, north, and center variable in the

discretized equation, respectively.

eff effective

FS free surface

int interpolation neighbour CV

ij calculation grid index, in the x- and y-direction, respectively
N natural period of wave motion

r relating to a changing position vector

xy in the x- and y-direction, I

(] relating to rotation

1 fixed reference frsme

2 moving reference frame

Superscripts

P relating to pressure

uv relating to the components of velocity in the x- and y-directions, respectively
n+l advanced time step level

" explicit value (of velocity)
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Chapter 1

Introduction

1.1 Background

Sloshing exists as a physical phenomenon wherever a confined liquid experiences dynamic
forces. A common example of sloshing occurs when a quantity of liquid is being transported,
and its container undergoes a motion which is changing, often on a continuous basis and
possibly in a random nature. This sloshing motion plays a significant role in the engineering
of transport vehicles, whether the mode of travel is by land, air, water, or even outside the
influence of the earth’s atmosphere. The reaction forces generated on a container by a
sloshing fluid are often greater than the static forces, and may be greater than reaction forces
determined by assuming an effectively rigid cargo on an accelerating vehicle. The reaction
forces found due to sloshing may also be in or out of phase with the vehicle accelerations.
The magnitude and phase of the reaction forces can contribute to vehicle instability, while the
phase relationship between the reaction forces and the vehicle motion may increase the
pliysical stability of the vehicle. The reaction forces, and the corresponding moments, must,

therefore, be taken into account in the design of the container and the transporting vehicle.

The analysis of sloshing behaviour first gained significant attention in the 1950s, when the
influence of the inertia of sloshing fuel was seen upon the trajectory of rockets. This led to

major research efforts into sloshing in micro gravity environments. A more down-to-earth



example of sloshing and its effect on public safety is in the transport of liquids by road
container, where the dynamic stability of a tanker truck can be significantly affected by

sloshing,

The importance of sloshing in ship tanks has long been known, and is particularly relevant
to cases in which ships operate with partly-filled tanks for significant periods of time, or
during occasions when extreme loading conditions may occur. The relevance of sloshing to
the design and operation of a particular ship depends entirely upon the type of ship, its cargo,
service, and the geographic region in which it operates. For instance, while most ocean-going
tankers normally travel with full holds (largely for economic reasons), there are instances
when travel with a partly-full hold is unavoidable. Floating production, storage and off-
loading (FPSO) vessels operate in such a way that sloshing is a very important consideration
for stability. Hamlin et al. [1] give a comprehensive discussion of sloshing in ships, and
present extensive test results and specific case applications. Both R.L. Bass et al. [2] and
Tanaka et al. [3] report on a considerable amount of work that has been done regarding the
design and operation of liquefied natural gas (LNG) carriers in particular. For many types
of ships, however, rol! stabilization has been achieved using a dedicated and purpose-
designed slosh tank with the out-of-phase motion of the liquid contents used to enhance the

of the vessels. Refe [4] and [5] provide considerable insight

into this area of marine vessel design.

The motivation of the author stems from experience in the design of structural supports for

being. at sea, and participation in the layout of a service

barge for a marine construction project. In the latter instance, a fuel system for temporary
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and emergency electric power generation was designed for the barge, including the use of fuel
storage tanks. The design of the barge general arrangement and equipment support
necessarily took into account an extreme condition wave-induced barge motion. The most
direct application of the research presented in this thesis is as a tool in the design of
rectangular (i.e. simple-shaped) petroleum containers, typical of those used to store jet fuel
on fixed offshore production platforms. These containers are transported to remote offshore

sites on the decks of supply vessels, and they can experience highly varying forces.

‘The study of sloshing has been undertaken by many people over the last four decades, and a
variety of approaches have been used. Theoretical investigations of the mathematical
equations governing liquid motions in free surface problems have led to a high degree of
understanding of their meaning. Linearized wave theory has effectively been applied to
sloshing in an enclosed boundary (no inflow or outflow) to allow prediction of natural
frequencies of cyclic surface wave motion. Potential flow theory has been used to study the
wave motion of ideal fluid flows, including sloshing in rectangular tanks [6]. Analytical
solutions of viscous flows for physical configurations that occur in real applications are

virtually impossible to obtain.

Many experimental studies of sloshing have also been performed. To conduct a
comprehensive experimental study is often costly (in material and time), limited by physical
constraints, and may often involve safety risks. Design processes are advanced by the
development of empirical relationships and formulae based on physical testing, however, and
experiments are the only means of determining the real behaviour of a sloshing fluid in a given

application.



A third approach in study and analysis is numerical modelling. This field of endeavour has
grownand developed steadily, with techniques evolving and computer capabilities increasing,

to the point where a variety of techniques have been applied to many configurations of the

free surface fluid problem. ical delling, along with ical back d, allows
a detailed study of sloshing, with the possibility of detailed information on the effects of
sloshing. Methods must be based on sound theory, and validated against experimental data,
and can then be used to advance the design process, both to enable one to prescribe model

tests cfficiently, and as input to final designs.

1.2 Aimsand Motivations of the Thesis
The aim of this research is to develop a method suitable for the simulation of the two-
dimensional sloshing of a viscous fluid contained in a tank that has been given a known

motion. To achieve this goal, the method must satisfy the following requirements:

(1) A time-dornain approach using primitive variables was desired. This would allow the
specification of input velocities, accelerations, and forces in a direct manner, and the
output would be fluid velocities, accelerations, and pressures. The forces and

moments acting upon the container may be directly calculated from this data.

(2)  The method must be capable of handling arbitrary liquid motions, and hence relatively

large motions, to ensure applicability to various real design problems.

(3)  The method must be suitable for extension to three-dimensional formulations, to allow

for application to more complex design problems. The current work is in two

e



dimensions only.

(4) A pre-disposition was held towards a method based on the Finite Volume Method
(FVM) of deriving the discretized equations. The FVM is well suited to the
simulation of fluid flow problems, and it aids the physical interpretation of results.

1.3 Literature Survey

A survey of the literature relating to numerical methods applied to sloshing problems showed
that many of the methods being used have had their basis in methods developed to deal with
fluid problems which may be considered more basic, or in some instances, are unique cases
of a free surface problem. Indeed, even some of the more recently-developed efforts are
presented in the context of unique or fundamental cases. Many methods are, however,
presented as being applicable to several forms of the free surfaice problem. The objectives of
this survey were: (i) to get a general overview of the types of approaches that have been used
1o date; (ii) to become familiar with how some of these approaches have been modified over
time; and (iii) to select an approach to modelling the sloshing problem for this research
project.

The literature indicates that methods have been developed based on either or both of the
Eulerian and Lagrangian views of the free surface problem, In Eulerian methods the mesh in
the calculation domain is fixed, and the fluid occupies parts of the mesh. The principal
problem is to determine which parts of the mesh are occpied by fluid at any point in time.
In Lagrangian methods, the mesh moves with the fluid, such that the edges of the mesh define
the fluid domain. The main task in these methods s to deform the mesh in accordance with

5



the motion of the fluid. The following two sub-sections discuss methods based on the

Eulerian and Lagrangian approaches, respectively.

1.3.1 Eulerian Methods

The development of methods using the Eulerian approach to free surface problems was
spearheaded by the Los Alamos Scientific Laboratory of the University of California.
Harlow and Welch published their landmark paper on the Marker and Cell (MAC) technique
in 1965 [7]. The MAC method employs “markers” to track and move the free surface through
the Eulerian grid of calculation cells. The location of these fictitious marker particles are
defined at the beginning of the calculation, and their location is continuously updated at each
time step. The original MAC method used a finite difference (FD) discretization of the
Navier-Stokes equations, applied to incompressible viscous flows. This paper was also the
first application of staggered grids to piimitive variable fluid flow problems. The boundary
condition of tangential stress at the surface is achieved by enforcing divergence of velocity

equal to zero at the free surface. Boundary conditions for both the free surface and solid

by the ification of fictitious velocity nodes outside the actual
boundary location. The paper presented the simulation of the collapse of a dam, and the

opening of a sluice gate as example problems.

There have been several efforts made to apply the MAC method to other free surface
problerns, several based upon, or resulting in, modifications to the original method. Among
them Viecelli’s 1969 paper [8] provided an improved procedure for including boundary
conditions which allowed the handling of arbitrarily-shaped boundaries, whether solid or free

surface. The procedure is based upon adjustment of pressure in a given cell to achieve the

-6-



desired flow at the boundary. Viecelli’s two-dimensional examples were a liquid column
falling (i) into acircular tank, and (ii) past a circular obstacle in a vertical channel. Nichols
and Hirt [9] proposed improvements to free surface boundary conditions which consisted of
specifying pressure at a surface cell center based upon an interpolation of the pressure at the
center of 2 neighbouring cell, and normal stresses, if the latter were to be specified for a
particular problem. This on required the of the orientation of the surface
within a surface cell, using the marker particles defining the surface. The sample problems

simulated by Nichols and Hirt [9] include the collapse of a fluid column, a rotating column
of fluid, a drop splashing into a deep pool, and a viscous bore. Amsden and Harlow [10]
presented a simplified method (SMAC) which attempted to deal with aspects of MAC which
the authors state were complicated. These aspects were: (i) the application of boundary

conditions for obstacles and inflow/outflow boundaries; and (ii) the solution of the Poisson

equation for any but the most simple i The simpli ion of the
technique was achieved using vorticity and a potential function to correct the velocity field
and isfy the continuity i without calculati explicitly. Example

problems in [10] are the collapsing column of fluid, waterfall over a step, reservoir flow-
through, flow over a step, and flow past a scow. Chan and Street [11] presented Stanford
University’s Modified MAC method of modelling water waves (SUMMAC), which omits
the viscous terms, but makes the following improvements in finite difference calculations:
(i) rigorous application of the pressure boundary condition at the free surface; and (ii)

of velocity from the interior to enable more accurate shifting of the

free surfice boundary. Further, a second-order explicit difference scheme was ustl for the

of the ive flux terms, as d to the first-order scheme in the original

MAC version. To promote greater stability for long-term calculations, a forward implicit

A



scheme was implemented in SUMMAC for the advancement of marker particles. The case

studies presented deal with waves encountering a sloping beach.

The MAC methods employ the marker particles either throughout the fluid, or only in the
surface cells, the latter resulting in a “string” of particles defining the location of the surface
boundary. In the latter approach, one can define the surface either by a set of poinis
connected by ordered line segments, or one can represent the surface by a single-valued
height function (ie. /1 = h(x, 1), where A isthe fluid height above the bottom of a stationary
two-dimensional grid). These schemes are simple to apply only when the surface remains
nearly horizontal, and neighbouring particles remain connected in the same sequence
throughout the process. To accommodate multi-valued surfaces (i.e. bubbles), parts of the

fluid breaking away, repeated changing from hori: lto vertical orientati or the surface

folding back upon itself, considerable accounting and adjusting is required with these two
schemes, rendering the understanding and programming of them tedious. In fact, in principle,
a height function cannot be used to model a bubble. The major advantage of the use of a
string of particles for suitable problems, however, is that less data storage is required, in
comparison to the approach of marker particles imbedded throughout the fluid-occupied

domain,

‘When the MAC method employs particles imbedded through all of the fluid cells, the
movement of the particles is a Lagrangian device used to define the spatial regions occupied
by the fluid, and this knowledge is used to perform the flux calculations in an Eulerian mesh.
The precise location of the free surface boundary requires an additional computation, based
on marker distribution. To enforce the surface boundary condition may require the use of one

8-



of the methods described above for surface tracking. A limitation inherent in these MAC
methods is that the markers can be transported out of the fluid domain, and one must
continuously replace them. Also, markers may be concentrated in narrow regions of the
domain, requiring the addition or deletion of markers to provide a suitable approximation to

the free surface.

In 1975 Nichols et al. [12] published a report on the SOLA method, which is a simplified
version of the MAC technique for confined flows (no free surface), SOLA (SOLution
Algorithm) does not use marker particles, and is not set up for internal obstacles. To simulate
free surface flows, Nichols et al. [13,14] developed the Violume of Fluid (VOF) method, used
in conjunction with SOLA. The VOF method offers the advantages of defining and
‘monitoring fluid regions in order to move fluid through the Eulerian grid, without the
disadvantages of having to define and monitor particle movement. It allows the possibility of
multi-valued or discontinuous free surface interfaces, while avoiding the large storage and
computing time required to monitor particle movement. The VOF methad assigns a value
to a variable F for each cell, where an F value of zero means a cell is empty, a value of one
‘means it is full, and an intermediate value indicates that the cell contains a free surface. A

d ptor algorithm was ped to allow ing the fluid from one cell to

another, thusallowing the surface to move through the Eulerian grid. The problem reduces

to solving for the distribution of F the ion domain, and thereby defining
the portion of the Eulerian mesh occupied by fluid. The SOLA-VOF method presented in
[13,14] can handle imregular surface motions, Cartesian and polar cylindrical co-ordinate

systems, varisble mesh spacings, obstacles, multi-fluid i and limited ibili

This method is a finite difference technique specifying pressure on the free surface boundary

-9.



by interpolation of the value at a neighbour cell, and setting velocity boundary conditions via
fictitious values outside the boundary. The versatility of SOLA-VOF was demonstrated in
[13,14] by application to the simulation of a breaking bore, the broken dam problem, the
collapse of a cylindrical column of fluid, perturbation of a thin cylindrical fluid column,

extrusion of an immiscible droplet, and gas bubble ejection from a submerged vent pipe.

Other authors have applicd the VOF technique to tank sloshing similar to the configuration
of interest in this research. Bridges [15] modelled sloshing of liquid in a rectangular
container, and presented results of experiments for comparison. Bridges’ approach was to

use a SOLA-VOF model (two-dimensional), with all motions defined in relation to the tank

itself; rotational motion of the tank was i as i i by the liquid
in the tank. Su and Kang [16] employed the SOLA-VOF method with an improvement made
in the flux transfer ion of the d ptor algorithm. In [16] the

sloshing in a tank undergoing a forced sinusoidal sway was simulated and compared to
experimental data. Su [17] also reports numerical results for many baffled and unbaffled
two-dimensi tank i and the influence of different baffle

arrangements and tank aspect ratios on the reaction forces. These numerical calculations
had also been done by T. J. Bridges using a VOF method. The details of the method used in

[17] were not discussed.

Several other researchers have reported on the use of variations in the MAC method for
sloshing problems. For example, Arai [18] modelled two-dimensional rectangular tanks with
baffles using the MAC method (inviscid fluid), giving the tank oscillatory pitching motion.
Physical experiments were also performed, and the results of numerical and physical tests

-10-



‘were compared for a pitching amplitude of 2 degrees. Cordonnier [19] employs TUMMAC

(Tokyo University Modified-MAC) to perform two-dimensional numerical studies, and

p these to i with a lar tank. ion on how MAC is
modified in this method were not given. Japan-based researchers Arai et al. [20] used a

MAC-based ths i i model, i ing solution i of SOLA, and

applying the method to the analysis of FPSO vessels. Results of experiments were also
given. Popov and others at Concordia have used SOLA to model sloshing in two-
dimensional rectangular tanks [21,22] and horizontal cylinders [23], in the context of road

transportation of liquids.

The VOF method has also been used to address research into other free surface problems.
For instance, Abdullah and Salcudean [24] apply the VOF method to the turbulent filling of
acylinder. Partom [25] applied the VOF algorithm to a three-dimensional problem involving

the motion of a wall of fluid in a partially-filled horizontal cylindrical container.

1.3.2 Lagrangian Methods

Consi work has also been done on Lagrangian ical methods for the simulation

of free surface flows, where it is necessary to move the computational mesh with the moving

fluid. M isti methods which can either or both of Lagrangian and

Eulerian calculations in a combination have also been developed. The latter are usually
labelled as Arbitrary Lagrangian-Eulerian (ALE) methods. In pure Lagrangian methods the
mesh moves with the fluid such that a nodal point would follow a particular fluid particle
path; this can lead to significant problems with mesh contraction and concentration. Also,
Lagrangian methods may require deletion or addition of nodes to provide sufficient nodes for

-11-



continued discretization of the problem. Lagrangian methods suffer significant penalties with
regard to gridding. In ALE methods, the grid is not necessarily moved with the fluid. For
example, a node does not necessarily move with the concurrent fluid particle, but may move
only a portion of the displacement of the particle. This helps to reduce meshing problems,
but results in more complicated discretization methods required to determine the appropriate

diffusion and convection terms to be used for cells of changing size and/or orientation.

In these areas of research, Finite Element Methods (FEMs) have generally dominated due to
geometry considerations. The published literature includes Huserta and Liu [26], who
developed a two-dimensional ALE Petrov-Galerkin FEM. The problems studied in [26] were
the impact of tsunamis on a continental shelf, dam breaking, and sloshing in a rectangular

container. and Kawahara developed a L ian Galerkin FEM [27], and

further an ALE ion [28], i l two-dimensional test problems, including
sloshing in a prismatic container. Ramaswamy and Kawahara [29] used a Lagrangian FEM
formulation, along with velocity correction borrowed from FD methods, to model two-
dimensional sloshing in a rectangular container. The forcing motion utilized was sinusoidal

pitching, with an angle amplitude of 0.2 degrees.

The ALE methods, while attempting to deal with large motions of fluid surfaces, require
arbitrary control of how and under what conditions the grid is to be re-meshed. This control
can only be achieved by trial-and-error, and/or a prior knowledge of how the fluid will
respond to the forces it experiences. There does not appear to be any recorded means of
accommodating discontinuous surface segments in the FEMs discussed in this literature

survey.

-12-



1.3.3 Summary

The review of available literature reveals that Eulerian methods offer distinctly attractive
features for the numerical modelling of free surface fluid motions in a partly-filled container.
The main advantage of methods which take the Eulerian viewpoint is that the surface is
permitted free movement according to its governing physical laws, and its configuration can

be itored, without iction on its shape or inuity. Among Eulerian methods, the

Volume of Fluid method was found to offer the capability to achieve this in the simplest and

most efficient manner. In particular, the VOF approach offers the ability to handle relatively

large fluid motions, di: i surface segments, multi-valued surfaces, and the surface
collapsing upon itself. This has enabled the development of methods with the potential to
simulate such behaviour as wave breaking and impacts on tank top covers, as well as large
wave heights. It should be noted, however, that in all of the methods applying the VOF
technique to sloshing, the specified tank motion has been restricted to either rotation or

translation; none have allowed a combination of both of these types of motion.

14 Definition of Research
The objectives of this research effort are to gain an understanding of both the physical
behaviour of the sloshing of liquids in rigid containers, and the numerical modelling of such

problems. Specifically, the goals of the numerical model development were as follows:
) Develop a two-dimensional FVM-based numerical procedure to calculate the motion
characteristics of an incompressible viscous liquid in a partially-filled rigid rectangular

container. The free surface will be handled by the application of the Volume of Fluid
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method.

Incorporate into the method the ability to specify a tank motion of any combination

of translation and rotation.

Verify the model against relevant theory, and available experimental and numerical

data.

Demonstrate the ability of the model to predict fluid motions, and calculate local fluid

pressures, for physically realistic tank motions.
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Chapter 2
Method

The formulation of a FVM for unsteady, viscous, incompressible fluid flows with a free
surface is presented in this chapter. The following topics are each addressed in a section: (1)
definition of the governing equations; (2) kinematics of the problem; (3) discretization of the

fluid domain; (4) integral conservation equations; (5) derivation of the discretized form of

the governing equations; (6) treatment of the boundary conditions for the free surface and
solid boundaries; and (7) the algorithms used to solve the discretized equations. A summary

of the method is presented in the final section of the chapter.

2.1 Governing Equations

The equations governing the unsteady, i ional motion of an i pressible, viscous

fluid are the Navier-Stokes equation

P+ pUVIU = - pgVh - Vp + 4 VAU @
and the continuity equation
vU=0 60(2-2)

where U is the velocity vector of the fluid, g is the body force acceleration (gravity),  is the
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gravity directional unit vector, p is the pressure, p is the mass density of the fluid (which

has been assumed constant), p is the dynamic viscosity of the fluid, and 7 is time.

The governing equations are solved using the Cartesian co-ordinate system (x,y) attached to
the container as shown in Figure 2-1. To produce sloshing, the tank is caused to move
relative to a fixed co-ordinate frame (X,¥ ). The motion of the tank produces inertial forces
on a fluid particle and this results in additional acceleration terms to be included in the
jgoveming momentum equations. These additional terms are described in section 2.2. When
the terms are inctuded in the Navier-Stokes equation, the x-component of equation (2-1) can
be written in the following compact form:

p% +V'I“=S'—gi—’ @
where J* is the convection diffusion flux vector, and §" is a source term. The source term
will incorporate body forces (gravity) and inertial forces caused by the tank motion. Using the
results of section 2.2, J* and S* are defined as follows:

JY = pUu - pVu , @4

st = —pg,—p{)',wsd:, - 2, @, sind, - u)f(qcow‘ +x,)
. 2-5
- o, (rsind, +y’) - 2ve, - Y, - w:xp - 2‘”":] @35

Equation (2-3) can represent the y-momentum equation when v replaces u in the unsteady

term, and J*, §* and 8p/ox are replaced by J*, $* and dp/dy, respectively, where J* and
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§" are defined as follows:
J' = pUy - pVv, (2-6)

Sri=-pg- p[flsin¢l + 2F @, cosd, - m?(rlsind), +yp)
+ oy (rcosd, +x,) + 20w + @x, - m:yp + 211(.),] @n

In equations (2-5) and (2-7) the g, and g, terms are the x and y components of the

gravitational acceleration respectively, which are defined as follows:

8 = gsin(P, + &,) (2-8)

8, = gcos(B, + b,) 29
‘where

$,=6,+0, (2-10)

as shown in Figure 2-1. The remaining terms in equations (2-5) and (2-7) are fully described

in the following section.

22 Kinematic Relationships

In this thesis the two-dimensional sloshing of a liquid in a moving container is simulated by
solving the goveming equations using an Eulerian method which employs calculation mesh
that is fixed to the moving tank. As illustrated in Figure 2-1, the Cartesian co-ordinate system

(x,) is attached to the moving tank. The tank can have an initial angle of inclination to the
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horizontal of B,. The tank (and the (x, y) frame) may rotate about the origin of the (x, y)
frame, o, with angular displacement, velocity, acceleration of 8 ,, w, and @ ,, respectively.
The location of a point P in the calculation mesh fixed to the tank can be referenced to the
origin of the (, y) frame by the vector r ; which is at an angle y to the x-axis. The
‘magnitude and direction of r ;, with respect to the (x, ) frame, remain fixed during the tank

motion.

‘The position of the origin of the (x, y) frame is located in a global, or fixed, frame of reference
(X,Y) by the vector r,. The position vector r, may have an initial angle of inclination to
horizontal (i.e. the X axis) of p,. To allow for motion of the tank relative to the fixed frame,

r yis permitted to rotate about origin O with angular di velocity, and

of 8, w,, and @, , respectively, and it is permitted to change length with velocity and

f ryandr’y, i This method, therefore, allows the specification of
truly arbitrary tank motion. Previous methods (e.g. [15,16,18,20]) have allowed only rotation
and/or translation in relation to the (X,} ) frame, whereas this research allows the rotation

of the (x, y) about its origin to be included as well.

The motion of the tank will lead to the generation of several terms which must be

for when ining the ion of a fluid particle at a point
P in the mesh at any instant in time. These additional terms must also be resolved into
components in the (x, y) frame, as the governing equations are solved in this co-ordinate

system. Defining the following co-ordinates of point P ;
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X, = cosy -1

Yp =1y siny (2-12)
and the angle:
& =B -P -8 8

the x- and y- components of the acceleration of a fluid particle located at point P, at a given
instant in time, may be written as follows:
Du 2 .
a, = — + fcosd; - wi(ricosd, +x,)~ @ (r;sind, +y,)

* Dt (2-14)
- 2F,@,sind, - 2ve, - w:xp Sy, - 2ve,

=DV, sing, - W3(rsi ¥ .
% = Dt Asing, - wj(rsind, +y,) + ¢ (r,cosd, +x,) @15

+ 20,7008, + 20w, - Wiy, + @x, + 20,

In equations (2-14) and (2-15) the first term is the total derivative defining the acceleration
of a fluid particle at point P in the (x, y) frame. The second through sixth terms are due to
the rotation and translation of the (x, y) frame relative to the (X, ) frame. The remaining
three terms are due to the rotation of (x, y) about its origin. The second term is due to the
translational acceleration of frame (x, y) relative to the absolute reference frame. The third
and fourth terms are the normal and tangential acceleration terms due to the rotation of the
tank about the origin of the (X, ) frame. The fifth and sixth terms are Coriolis accelerations
due to the rotation and translation of the (x, y) frame about the origin of (X,Y), and the
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rotation of a fluid particle with velocity U at point P about (X,Y') with angular velocity @,
respectively. The seventh and eighth terms are the normal and tangential acceleration terms,
respectively, at P due to the rotation of the (x, y) frame about its origin. The final term is the
Coriolis acceleration experienced by the moving fluid particle at point P, due to the rotation

of the (x, y) frame about its origin,

‘When the accelerations given by equations (2-14) and (2-15) are substituted into the
appropriate governing equations, the extra acceleration terms may be included in source
terms, as shown in equations (2-5) and (2-7). The actual accelerations terms that would be

present for a particular problem would depend upon the nature of the prescribed motion.

2.3 Discretization of the Domain

The governing equations are discretized using the finite volume approach, as described by
Patankar [30]. A staggered mesh, where pressure and velocity components are stored at
different locations, is used to prevent oscillatory solution fields. In this method, the

domain is discretized with control volumes (CVs), as outlined by the

dashed lines in Figure 2-2 . In this figure, i and j are indices in the x and y directions,
respectively, and the dimensions of a main grid CV are defined as 4 x, and 4, Following
Patankar’s Practice B, the main grid nodes are then placed at the geometric center of the main
grid CVs, and the distances between nodes are defined as 6x, and 8y,

The values of pressure, density, and viscosity are stored at the main grid nodes, while the

values of velocity (s and v ) are stored at the center of the control volume faces to which

-20-



they are normal. This results in the staggered storage arrangement shown in Figure 2-3,
where the v - CV is typical of those on the south and north boundaries of the domain, and the
u - CV is typical of intemal CVs (i.e. - CVs on the west and east boundaries are similar to
the v - CV shown).

The di ized forms of the g ing equati are obtained by integrating them over a
control volume, with the assumption that the fluxes across a CV face are uniform. Different

control volumes are utilized for each of the equations. The staggered momentum CVs are
chosen such that the velocity value under consideration is centered in, or best represents the

mean value for, the control volume.

2.4 Integral Conservation Equations
In the finite volume method used in this thesis, the Navier-Stokes equations are integrated
over the di | volumes in the ion domain and over a time interval. Using

Gauss’ divergence theorem, the integration of equation (2-3) over a control volume V' that
is fixed relative to the (x,) frame, and over a time interval 4 /, results in the following integral
equation for

PL"“[V%WJHL"“ [ Jeondsdi= ["Mf seav 'f.wfv%dm (2-16)

‘where 9V is the surface of the CV, and » is the unit outward normal to the differential surface
areads. A similar integral conservation equation may be obtained for y-momentum. The
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continuity equation is also integrated over a control volume to give the following integral

conservation equation:

[, Unds =0 @17
v

2.5 Derivation of the Discretized Equations

To obtain algebraic imations of the integral ion equations for the appropriate

control volume, approximations to the contributions of each CV must be derived and
assembled in a suitable manner.  The derivation of the discretized forms of the x- and y-

momentum, ana the continuity equations will be discussed in this section.

2.5.1 Momentum Equations

25.1.1 x- momentum

The convection diffusion flux in the integral ion form of the equation

(2-16), can be separated into components in the x and y directions as follows:

Jr= Ul J) (2-18)
where
S=pu) - uEE, @19

" ou
Jr = T
' = pv(u) "B

(2-20)

and i and j are the unit vectors in the x- and y- directions, respectively.
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To integrate these fluxes over the surface of the x - momentum CV (see Figure 2-3), the
fluxes are assumed constant over a face, and are evaluated using a power law scheme, as
described by Patankar [30]. The source term in equation (2-5) is assumed to be constant over
the control volume, and the equation is integrated explicitly in time. The resulting form of

the discretized x-momentum equation can be written as follows:

A

‘ &
pAV"

oby,  (22D)

ml oy ghy sqt W e
ut = [h + Gpuptayuytag ugag usm,,,u",]

+ Py Py)

The variable u , represents the velocity at node i,j. The superscript n+/ on velocity means
the next time step value, whereas all terms without this superscsipt are evaluated at the
current time value. The value uy is the neighbouring u-value to the north of the point being
considered (i.e. u , ,, ), the variable u; represents the value to the east (i.c. u,,,, ), and so
on for the four neighbouring u values. The variables a*yis the coefficient multiplying the east
neighbour. Similarly , a*;, a*;, and a*; are the coefficients multiplying the east, south, and
west neighbours respectively, ", is the center point coefficient. The pressures p,.,, and
., are those on the west and east CV faces for u, and A 1 is the time interval. The variable
AV * is the volume of the CV; taking the third dimension as a unity value, this value is
effectively the area of the CV for a two-dimensional problem. The b term is a constant
incorporating the body force term and appropriate terms from the kinematics of the tank
motion. The coefficients in equation (2-21) are defined as follows, in accordance with
Patankar [30]:

ay = D, A(IP)) +[-C,, 0] (2-228)
ag =D,A(IP)) +[C,0] (2-22b)
ay =D, A(P]) +[-C,, 01 (2-22¢)
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2.
ay =D,A(P)) +[C,0] @24

u AV
a = "A, -ay -af -a5 -ay (2:226)
b= s AV (2-226)

where the double square brackets mean the greater of the quantities contained within them.
The D terms represent the integrated diffusion flux over a face, and the C terms are the

integrated convection flux across a given face. These are determined as follows:

D,=p, &%,/ &y C,=pv, &, (2-231)
D, =p,é,/ 8, C,=pv, é&, (2-23b)
D,=p,4y,/4x, C.=pudy, (2-23¢)
D,=p,dy,/ ax , C,=pu,dy, (2-23d)
Defining the grid Peclet numbers,
P,=C,/D, (2-24a)
P,=C,/D, (2-24b)
P,=C,/D, (2-24c)
P,=C,/D, (2-24d)

allow the function A (| 2| ) for the Power Law scheme [30] to be specified as follows:

A4 (|P]) =10,(1-0.1|P|)] (225)

25.1.2 y- momentum

The approach taken in the discretization of the x - momentum is also used to discretize the

equation; the i on is on the v-velocity CV, as shown in Figure
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2-3. The flux terms are defined as follows

I =2li v J)j (2-26)
where the components are:

I = pu) - p% @27
9 =ove) - nl @28)

Integrating the fluxes over the CV surface results in the following expression for the updated

v-velocity value at point iy :

LI PR v v v v
v =|b +a,,v,,~a,,vN+aEvE¢a:vsfa,,,v,,,]

At
vy

+ (lh,-rﬂu)}—' (2-29)
pA Py,

In equation (2-29) the coefficients and variables are anal to those defined for equation

(2-21). The coefficients are evaluated as follows:

ay = D,A(IP,)y +[-C,, 01 (2-308)
ag =D,A(IP)) +1C,01 (2-30b)
ay =D A(IP)) +1-C, 01 (2-30¢)
ay=D,A(P))+IC, 01 (2-30d)
Gl PAVT . o8 oot ¥l (2-300)

At (@300
bY=S"AVY
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and the integrated fluxes are determined by.

D, =p,4Ax,/ 4y, C,=pv, A, (2-31a)
D, =pdx,/dy,, C,=pv,4x, (2-31b)
0,/ by C=pu &, @310
D, =p,dy,/ b, C,=pu,dy,. (2-31d)
The grid Peclet numbers are found using equations (2-24), and the A( |P | ) function is defined

in equation (2-25).

2.5.2 Continuity

‘The explicit equations for the velocities, equations (2-21) and (2-29), will yield values for the
advanced time step, but the new values will not in general satisfy continuity, since pressure
values used are those valid for the previous time level. Hence, what is really needed is «, v,
and p solved simultaneously for the advanced time level. This thesis uses a method of
discretizing the continuity equation which is similar to the method proposed by Hirt and
Nichols [13] in their SOLA method. In this method, the pressure at the advanced time level,

p™',,. is defined as the previous time level value plus a pressure correction dp:

py' =py +Op, (2-32)

If equation (2-32) is substituted into equations (2-21) and (2-29), the following expressions

can be obtained:

__ At
ut =+ (8, bp"’)pTx, (233)
) At
7+ (8P, 6P"’)_P5y; @34
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where

o At

p =y +(Pry,” Pry) Pox, (2-35)
_— _ At

5=y (B, p"’)_pﬂy, (236)

The values of ,*and v,* represent initial “guess” values based upon previous time step

velocity values and current source term influences, but omitting pressure, as shown below.

. At

u = [b“%a:ﬂp-ﬁﬂtyll”-i'a;lln*ﬂ;’ls-fﬂ;u”,]-m @237)
. v At

v = [b + a3V, AVt ag vt agvgr a;i'rv,,,]———pAVv 398

‘The integral form of the mass conservation equation is integrated over the main grid CV (as

illustrated in Figure 2-2). Performing this integration at time step n+1, yields:
iy - w8y, + G5l - v = 0 (2:39)

Substituting equations (2-33) and (2-34) into equation (2-39), and re-writing the resulting

expression in terms of the pressure correction dp, , at node ij gives the following:
a7, = aibp, ., + afdp,,, + afdp,., + agbp,.,, + b7 (240)
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‘where the coefficients are defined as follows:

Ax At Ay At
af = —— ; af = =— (2-41a,b)
YUeby, T pdx,

, BxA o, Ay e
Ay = ——aee L e 1o,

LT Y™ ( )

al =af +af + af +af, (2-41e)

bP = (i, =ity YAy + (T, -9, )4y (2416

The pressure correction equation (2-40) is solved for all full cells in the domain. Ifa given
full cell has all four neighbours that are also full, the coefficients of the equation are
determined by the use of equations (2-41). If one or more of its neighbours is a surface cell,
however, the coefficient corresponding to each of these neighbours must be modified. This
process enables the enforcement of the surface boundary condition, and is described in the

following section.

2.6 Boundary Conditions

To complete the specification of the discretized equations it is necessary to account for the
behaviour of the fluid at the boundary of its domain. One must include in the method a means
of incorporating boundary conditions that is both physically realistic and as simple as possible
to implement. The following sub-sections discuss how this is accomplished fot the free

surface and for rigid ies. For rigid boundaries the dure is y, but for

the free surface boundary, the procedure must take into account the fact that the surface

configuration changes from one time step to the next.
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2.6.1 Free Surface Boundary

In the modelling of fluid problems with a free surface interface, there are four requirements

‘which must be met. These are:

1 Allowing the free surface to move freely in a manner that is physically realistic:

2 Tracking the free surface continuously as it moves;

3. Defining the surface with a spatial resolution that is sufficient for the design problem
at hand; and

4, Imposing the boundary conditions applicable to the free surface.

‘The chosen approach is the Volume of Fiuid (VOF) method, as described by Hirt and Nichols
[13], and exemplified by the SOLA-VOF computer program [14]. As discussed in Chapterl,
the VOF method offers several advantages over alternative methods such as marker particles
and height functions. As will be evident in the following discussion, the VOF method satisfies

the needs stated above.

The VOF method is based upon the evaluation of a variable called / for each (main grid)
control volume. This value F gives the fraction of the total volume of the ceii that is occupied
by fluid. In other words, an empty cell has an F value equal to zero, a full cell has /* equal to
unity, and a partly-full cell has a value somewhere between these two limits. A partly-full cell

by definition contains a free surface. The ion domain for and continuity
at any point in time is defined by the sum of all those cells that are not empty. The set of

partly-full cells together form the free surface boundary, or boundaries, for the domain.
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Within the domain, the time dependence of F is governed by the following equation.

oF F oF

A )

a " a e 242y
To allow the free surface to move through the Eulerian grid, an algorithm to convect flux
from one cell to another is required. By first integrating equation (2-42) over the main grid

CV, one can obtain a donor-acceptor method. The method is described more thoroughly in

[13], and will only be stated here.

The amount of F fluxed in the x-direction across a cell face in one time step is 6F"* multiplied

by the face cross-sectional area (i.e. 4y), where

8F = MIN {F)p|Q*] + CF* , Fphxp) (2-43)
and
CF* = MAX {(Fpy, = Fip) |Q*] = (Fpy = Fp)Bx, , 00} . (2-44)

In these equations, the maximum possible flux volume per unit area across a cell face is 0,
where O* =u, , At The subeript 4 indicates the “acceptor” cell, D refers to the “donor”
cell, and subscript AD means that either 4 or D is selected, depending on the orientation of
the free surface in relation to the direction of flow. The subscript DM indicates the F value
of the cell upstream of the donor cell, and the use of this term tends to dampen the flux when
the upstream cell is not full. This term is only found in the SOLA-VOF code; textual
references in all articles use the value 1.0 in its place. This author experimented with both

approaches and found that the use of 7, causes no apparent weakness in the algorithm. The
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determination of which cell is the donor and which is the acceptor is a function only of the
direction of the flow. The MIN function prevents convecting more fluid from the donor cell
than it has to give, and the MAX function ensures that a donor cell fluxes only that amount

that exceeds the volume needed to fill it

Equations corresponding to (2-43) and (2-44) are obtained for the y-direction velocities as
well. A complete update of F values for the advanced time level consists of a pass over the
whole domain adding and/or subtracting changes in F value to the current F* values, first for

the x-direction fluxes, and then in the y-direction.

To accomplish the tracking of the free surface, the surface is defined as passing through the
cells which have an F value between zero and one, and which have at least one empty

neighbouring cell.

The method of specifying a boundary condition at the free surface is to specify the pressure
on the surface. For a vented tank with air as the fluid above the denser liquid, this value is
atmospheric pressure. Since pressure values are located at the cell centers, this is
accomplished by assigning surface cells a pressure that is an interpolation between the free

surface and the value at a selected neighbour cell, as shown in Figure 2-4. The formula is:

Prs = Pm(1 = M) * NPy, (2-45)
where
_ 4 (2-46)
g
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and p , is the pressure of the free surface cell, p,, is the pressure at the interpolation cell
center, and p,,, is the specified surface pressure. The variable 7 is the ratio of distances as
defined is Figure 2-4. For example, with a surface cell at nodei+/, j , and its interpolation
neighbour at cell , j , equations (2-45) and (2-46) become:

Py =P, (0= M) N Py s (2-47)
where

. 5x,.,
Mers ® OSEy v Fyy Be (2-48)

For a given free surface cell, it is necessary to determine which of its neighbouring cells will

act as the i i igh The neighbour for which a line connecting the two cell

centers forms an angle with the free surface that is closest to a right angle, is the cell

d d as the i ighb. To make this judgement, an estimation of the

orientation of the free surface in a given free surface cell must be made. This is done by
representing a local segment of the free surface in a cell centered at 7,/ by a single-valued
function (x), indicating the y-distance of the surface above a datum. The function is
calculated [14] as:

2-49
U, = V) = Fyy Ay By by, ¢ Fpuby, @)

and the change of  with increasing x can be most simply approximated by

[ %] _ (B - ¥ @-50)

(85 + 85,,)
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