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Abstract

This thesis presents the devdopment and :mplementation ora Finite Volume Method (FYM)

to simulate the sloshing behaviour of incompressible, constant density liquids in a two

dimensional, rigid rectangular tank. The phenomenon of sloshing is of importance to

engineers involved in the design orall types ofvehicles which transport confined liquids. This

paper reports on the research conducted in the context of the transport of liquids on the

occan surface. The method presented has two immediate applications in this context: the

trtri2port of petroleum products, and roll stabilization systems for ocean-going vessels.

The FVM is used 10 discretiz.e the governing momentum and mass constfVltion equations

using primitive vari.bles in a fully Eulerian approach. The method is fennulated by

integrating the governing equations over appropriate control volumes, and assembling

S'jstems oflinear equatiota. A fixed rectangular grid with variable spacing is utiliud, and

momentum control \'OIumes (CVs) are staggered relative to the continuity CVs. The inertial

accelerations caused by a specified tlnk motion are applied to the fluid by Ihe inclusion of

additional source terms in the momentum equations, The method can accommodate the

simultaneous tnnsIarion and rotation oflhe tank relative 10 an absolute reference frame, and

rOlation ofthe tank about a frame anached to it.

The free surface boundary is handled using the Volume of Fluid (VOF) method, which



pennits arbitrary movement of the surface, including the possibility of ovt'rlapping and

smaller regions brealcing away. The VOF method is bued o:llhe assignment ora variable

Fror each continuity CV, where F represents the average fta~ion oflile (:ell volume which

is occ.upied by fluid. The VQF method, therefore, defines the shipe of the fluid-occupied

calculation domain, and the free surface:.

ResuJts were obtained in the form ofthe free surface configuration, and velocity and pressure

distributions throoghout Ihe fluid domain. Results are presented for various prescribed tank

motions, chosen to verify the method's stability, reliability, and confonnance to behllvioUf

predicted by other established means. Prescribed tank motions were: (i) rotation to I constant

llJIgIe of inclination; (ii) excitation with the predicted natural period; (iii) excitation near the

natural period (producing a SUrfllCC wave with a "beating" behaviour ); (iv) impulsive

tJans1ation; (v) continuous rotation; and (vi) arbitrary simultaneous rotation and translation.

All input tank motions are of a sinusoidal fonn. The method genen.ted results in good

agreement with expected physical behaviour. In particular, the wave period characteristics

has been verified, and the ability oflhe method to accommodate a combined rotational and

trans1ational tank JTlOlion (representing ship roll and sway) has been proven.

To fully develop and define the capabilities ofthe proposed method, it is necessary 10 conduct

furthertesring of the method 10 verify the surface ~ghts calculated, and to optimize the usc

of various calculation parameters. In addition, testing with general tank motion (i.e. roll,

sway, and heave), and with motions extreme in nature, is recommended. It is aJso

recommended that a version of this method be developed 10 model a three-dimensional
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rectangular tank, thus ensuring its app~cabiJity to the widest possible range ofpraetical design

problems.



Acknowledgements

I would like to express gratitude to my supervisor, Dr. N. A. Hookey, for his astute guidance

and untiring assistance during this research effort, including the process of editing this

document. I would also like to thank my family fortheir support and encouragement in many

ways over the course Oflhis work. Specifically, I would like to give recognition to my wife

Gail, my two daughters, Jillian and Kayla, and my mOlher·jn-law Emma Thompson, all of

whom helped make this possible through their practical llUpport. and understanding

1must gratefully acknowledge the financial assistance of the Government of Newfoundland.

which sponsored this work through an Atlantic Accord Career Development Award.

Additional financial support was received from the School of Graduate Studies and the

Faculty ofEngineering and Applied Sciences Ilt Memorial University ofNewfoundland. The

u::e ofcomputer facilities and the assistance of the staffof the Center for Computer-Aided

Engineering were also appreciated.



Table of Contents

Conlenls

Abstract

Acknowledgements

Contents

List of Figures

Nomenclature

Introdudion

I. I Background

1.2 Aims and Motivations of the Thesis

1.3 Literature Survey .

1.3.1 Eulerian Methods

1.3.2 Lagrangian Methods

1.3.3 Summary

1.4 Definition of Research

Method

2.1 Governing Equations

2.2 Kinematic Relationships ..

2.3 Discretization of the Domain

2.4 lnlegral Conservation Equations

,;

viii

i,

.. 6

.11

13

13

I'
IS

. .. 17

20

... 21



2.5 Derivation of the Discretized Equations

2.5.\ Momentum Equations.

2.5,1.2 x-nvJmentum

2.5.1.2 y·momentum.

2.5.2 Continuity

2.6 Boundary Conditions .

2.6.1 Free Surface Boundary

2.6.2 Rigid Boundaries

2.7 Solution Algorithm

2." Summary ..

Results

3.1 Rotation oftheTank to a Specified Angle ..

3.2 Tank Translation at Natural Period

3.3 Impulsive Translation ofthe Tank .

3.4 Tank Translation Near the Natural Period.

3.5 Tank Rotation

3.6 Tank Rotation and Translation

3.7 Summary

CondusicDs

4.1 A Review oftbe Thesis and its Contributions

4.2 Proposed Extensions ofThis Work

Rererenus

Figura

vii

22

22

22

24

2.

2"
2g

34

.35

JR

41

41

43

45

4.

.47

48

... 49

51

.5\

52

55

58



List of Figures

2·1 Co-ordinate Systems . 59

2·2 Domain Discretization Details . . ..... 60

2·3 Staggered Grid Control Volumes . 61

2-4 Interpolation Neighbour Cells 62

3-1 Fluid Heights at Left and RighI Walls for Tank Rotation to P2 c 2.0·

and6 2 ""O· .. . .. 63

3-2 Free Surface after 120. s for Tank Rotation to P2 = 2.0· and 6 2 =0·. .64

3·3 Fluid Heights at Left and Right Walls for Tank Translation

at Natural Period. . .... 65

3-4 Fluid Heights at the Right Wall for Impulsive Tank Translation.. .66

3-5 Fluid Heights at Left and Right Walls for Tank Translation with a Period

Ncar the Natural Period. 67

3-6 Fluid Heights at Left and Right Walls with Tank Rotation..

3-7 Fluid Heights at Left and Right Walls with Combined Tank Rotation

and Translation

. ..... 68

69

]-8 Free Surface at D.S s Intervals for the Time Span from 60.0 5 to 65,0 5 with

Combined Tank Rotation and Translation.

)-9 Velocity Vectors at t '" 62.5 s with Combined Tank Rotation

and Translation..

70

..71

]·10 Velocity Vectors at t '" 67.5 s with Combined Translation and Rotation. . .... 72

viii



Nomenclature

Symbol Description

coefficient in discretized form of governing equations

a ~,a}. acceleration ofa fluid particle in the x- and y- directions, respectively

A upwinding function

coefficient of discrttized governing equations, incorporating constant terms

C integrated convective fluid flux across a control volume face

CF intennediate value in VOF donor-acceptor algorithm

CV control volume

d, de distance between the free surface and the center ofthe interpolation neighbour

cell, and between continuity CV cenlers, respectively

D integrated dilfusion fluid nUlt across a control volume face

ds differential surface area ofa control volume

F fractional volume offluid contained in continuity CV,

g acceleration due to gravity

h average height of fluid in the lank

gravity unit dire<:tional vector

unit vector in the x-direction

unit vector in the y.direction

c.onvection-diffusion flux vector

J component ofthe convection-diffusion flu" vector
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length of tank. measured in x-direction

unit vector, outward nonnalto a CV surface df

origin of the (xJ') frame of reference

o origin of the (X,}') frame of reference

pressure

I' grid Peclet number, or arbitrary point in the (xJ') plane

Q VOF donor-acceptor algorithm maximum possible volume fluxed across a CV

face

R position vector locating an arbitrary point in the moving frame in rdation to

the fixed frame oheference

r /, r I position vector locating the origin of the moving reference frame in relation

to the fixed frame, and the length of the vector. respectively

'I, r, position vector locating an arbitraly point in the moving frame, and the length

of the vector, respectively

S. S source term vector, and its components, respectively

10 iiI time, and time step, respectively

T period of prescribed oscillatory tank motion

U fluid velocity vector

u, v fluid velocity components, in the x- andy-directions. respectively

u·, v· updated velocitybased on explicit value and pressure gradient, .r-direction and

y-directionrespectively

u·, v· explicit values ofvetoc:ity, excluding pressure gradient. in r- and Y-directions,

respectively

V. tJV volume and surface area of an arbitrary CV, respectively



JV volume ofa discretized control volume

x, y co-ordinates ofthe mo\ing (tank) reference frame

x,. Y p location ofan arbitrary point P in the moving frame of reference

X, Y co-ordinates ofthe fixed reference frame

tu,.6.y length ofthe sides ofa rectangulu continuity CV. in the x- and.v-directions,

respectively

ax, by distance betWeen main grid nodes, in the x- and y-direetions, respectively

Greek Symbols

an80lu acceleration

initial angle ofinclination

angle ofinclination ofa point on the grid. measured in the (r,Y) frame

volume tolerance

weight factor for pressure interpolation at surface CVs

instantaneous angle of rotation

dynamic viscosity ofthe fluid

mass density of the fluid

sum of independent variables multiplied by respective coefficients. in the

pressure correction equation

4t arbitrarily defined angle combining instantaneous and initial rotation angles

X, .. local surface height function used to determine surface orientation, in the x

and y. direction, respectively

an80lu velocity



SubsCrilllS

AI) VOF algorithm acceptor or donor cell selector

B beating wave phenomenon

/) VOF algorithm donor cell indicator

/JM VOF algorithm indicator for cell upstream ofthe donor cell

F, S, W. N. P coefficients relating 10 the east, soulh, west, north, and center vllriable in the

cliscretized equation, respC(:tively.

cff effective

I':\' free surface

illt interpolation neighbour CV

i,j calculation grid index. in thex· andy-direction, respectively

N natural period of wave motion

relating to a changing position vector

r, y componentJ in the x- andy-direction. respectively

relating 10 rotation

fixed reference fume

moving reference frame

Superscrill!s

p relating 10 pressure

II, v relating to the components of velocity in the x- and y-directions, respectively

"+ / advanced time step level

explicit value (of velocity)
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Chapter 1

Introduction

1.1 Background

Sloshing exists as a physical phenomenon wherever a confined liquid experiences dynamic

forces. Acommon e:wnple ofsloshing occurs when a quantity ofliquid is being transported,

and its container undergoes a motion which is changinG. oRen on a continuous basis and

possibly in a random nature. This sloshing motion plays a significant role in the engineering

oftranspOT1 vehicles, whether the mode of travel is by land, air, water, or even outside the

influence of the earth's atmosphere. 1be reaction forces generated on a container by a

sloshing fluid are often greater than the static forces, and may be greater than reaction forces

determined by assuming an effectively rigid cargo on an accelerating vehicle. The reaclion

forces found due to sloshing may also be in or out of phase with the vehicle accelerations.

The magnitude and phase ofthe reaction forces can contribute 10 vehicle instability, while the

phase relationship between the reaction forces and the vehicle motion may increase Ihe

pll}'Sica1 stability ofthe vehicle. The reaction forces, and the corresponding moments, must,

therefore, be taken into account in the design ofthe container and the transporting vehicle.

The analysis or sloshing behaviour first gained significant attention in the 1950s, when the

inBuence orthe inertia ofsloshing fuet was seen upon the trajectory ofrockets. This led to

major research efforts into sloshing in micro gravity environments. A more down-to-earth

-1-



eKample of sloshing and its effect on public safety is in the transpon of liquids by road

container, where the dynamic stability of a tanker truck can be significantly affected ;Y

sloshing

The imponance of sloshing in ship tanks has long been known, and is particularly relevant

to cases in which ships operate with partly-filled tanks for significant periods of time, or

during occasions when elCtreme loading conditions may occur. The relevance of sloshing to

the design and operation ora particular ship depends entirely upon the type of ship, its targo.

service, and the geographic region in which it operates. For instance, while most ocean-going

tankers normally travel with full holds (largely for economic reasons), there are instances

when travel with a panly-full hold is unavoidable. Floating production. storage and off

loading (FPSO) vessels operate in such a way that sloshing is a very important consideration

for stability. Hamlin et al. [I] give a comprehensive discussion of sloshing in ships, and

present extensive test results and specific case applications. Both R.L. Bass et aI. [2] and

Tanaka et aI. (3] report on a considerable amount ofwork that has been done regarding the

design and operation of liquefied natural gas (LNG) carriers in panicular. For many types

of ships. however, rol! stabilization has been achieved using a dedicated and purpose-

designed slosh tank with the out-of-phase motion ofthe liquid contents used to enhance the

seakeeping capabilities ofthe vessels. References [4] and [5] provide considerable insight

into this area of marine vessel design

The motivation of the author SIerns from experience in the design ofstructural supports for

mechanical equiprncnt being transJKlrted at sea, and participation in the layout ofa service

barge for a marine construction project. In the latter instance, a fuel system for temporary
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and emergency electric power generation was designed for the barge. including the use offuel

storage tanks. The design of the barge general arrangement and equipment support

necessarily took into account an extreme condition wave-induced barge motion. The mosl

direct application of the research presented in this thesis is 8S a 1001 in the design of

rectangular (i.e. simple-shaped) petroleum containers, typical ofthose used to store jet fuel

on fixed offshore production platfonos. These containers are transported to remote offshore

sites on the decks of supply vessels, and they can experience highly varying forces.

The study ofsloshing has been undertaken by many people over the last four decades, and a

variety of approaches have been used. Theoretical investigations of the mathematical

equations governing liquid motions in free surface problems have led to a high degree of

understanding of their meaning. Linearized wave theory bas effectively been applied to

sloshing in an enclosed boundary (no inflow or outflow) to allow prediction of natural

frequencies ofcyclic surface wave motion. Potential flow theory has been used to study lhe

wave motion of ideal fluid flows, including sloshing in rectangular tanks (6). Analytical

solutions of viscous flows for physical configurations that occur in real applications are

virtually impossible 10 obtain.

Many experimental studies of sloshing have also been performed. To conduct a

comprehensive experimental study is often costly (in material and time), limited by physical

constraints, and may often involve safety risks. Design processes llte advanced by the

developmerr. ofempirical relationships and formulae bued on physical testing, however, and

experiments are the only means ofdetermining the real behaviour of a sloshing fluid in B given

application.
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A third approach in study and analysis is numerical modelling. This field of endeavour has

grown and devdoped steadily, with techniques evolving and computer capabilities increasing,

to the point where a variety of tethniques have been applied to many configurations ofthe

free surface fluid problem. Numerical modelling, along with theoretical background, allows

a detailed study of sloshing, with the possibility of detailed infonnation on the effects of

sloshing. Methods must be based on sound theory, and validated against experimental data,

and can then be used to advance the design process, both to enable one to prescribe model

tests efficiently, and as input to final desiglls.

1.2 Aimsand Motivations orlbe Tbesis

The aim of this research is to develop a method suitable for the simulation of the two

dimensional sloshing of a viscous fluid contained in a tank that has been given a known

motion. To achieve this goal, the method must satisfy the following requirements'

(1) Atirne-domain approach using primitive variables was desired. This would allow the

specification ofinput velocities, accelerations, and forces in a direct manner, and the

output would be fluid velocities, accelerations. and pressures. The forces and

moments acting upon the container may be directly calculated from this data.

(2) The method must be capable ofhandling arbitrary liquid motions, and hence relatively

larse motions, to ensure applicability to various real design problems.

(3) The method must be suitable for extension to three-dimensional formulations, to allow

for application to more complex design problems. The CUllent work is in two
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dimensions only.

(4) A prc-disposition was Idd toward! a method baKd on the Finite Volume Method

(FVM) of deriving the discrelized equations. The FVM is well suited to lhe

simulation offluid flow problems, and it aids the physical interpretatioa of r-CSUI15.

1.3 Literature Survey

A SUM:y oftlle literature relating 10 numerical me1hod:1 applird to slosbing problems showed

that many oftlle methods being used have had their basis in methods developed to deal with

fluid problems which may be considered more basic, or in some instlllCes, are unique cues

of a free surface problem. Indeed, even some of tile more recently-developed efforts arc

presented in the context o)funique or fundamental castS. Many methods are, howtVer,

presented as being appbblc to several forms of1he free SUffice problem. The objectives of

ttUsurveyVrm: (i) 10 get a gmeral overview ofthe types ofapprOlChesthat have been used

to date; (u) to becomefamiliar with how some ofthese approaches have been modified over

time; and (Iii) to seled an approach to modelling the sloshing problem for this r-esrarch

proj<a

The literature indicates that methods have been de\'cloprd based on tither or both aflhe

Eulerian and L.agranpn views ofthc free surface problem. In Eulerian methods Ihe mesb in

the calculation domain is fixed, and the fluid (lCCU1,ies parts of the mesh. The principal

problem is to dctennine which parts ortne mesh are occ"pied by fluid at any point in time.

In lagrangian methods, the mesh moves~ the lluid, such that the edges oftne mesh define

the lIuid domain. The main wk in these methods is to deform the mesh in aa:ordance with
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the molion of Inc fluid. The following two sub-sections discuss methods based on the

Eulerian and L88rangian approaches, respl~cli\'ely,

1.l.1 Eulerian Metbods

Tbe development of rnethods using Ihe Eulerian approach to free surface problems wa~

spearheaded by the Los Alamos Scientific Laboratory of the University of California.

Harlow and Welch piblishaJ their landmark paper on the Marker and CeU (MAC) technique

in 1965 (7). The MAC 1lM.1hod employs "markers" to track and move the free surface through

the Eulerian grid ofCll1culalion cells. The location of these fictitious marker particles are

defined at the beginning ofthe calculation, and their location is continuously updated at each

lime step. The original MAC method used a finite difference (FD) discretization of the

Navier·Stokes equations, applied to incompressible viscous flows. This paper was also the

first apl)lication ofstaggered grids to lJ;imitive variable fluid flow problems. The boundary

condition of tangential stress at the surface is achieved by enforcing divergence ofvelocity

equal to UfO at tbe free surface. Boundary collditions for both the free surface and solid

boundariesare established by the specification offictitious velocity nodes outside the actual

boundary location. The paper presented the simulation of the collapse ofa dam, and the

opening ora sluice gate as cltlmple problems.

There have been several efforts made 10 apply the MAC method to other free surface

problems, several based upon, or resulting in. modifications to the original method. Among

them Viecelli's 1969 paper (8] provided an improved procedure for including boundary

conditions which allowed the hmdIing ofarbitrarily·shaped boundaries, whether solid or free

surflce. The procedure is based upon adjustment ofpressure in agiven cell to achieve the
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desired flow at the boundary. VleCdli"s two-dimensional examples were a liquid column

faIling (I) into a circular unk. and (Ii) past a circular obstacle in I vertical channel.. Nichols

and Hirt (9] proposed ~ements to free surface boundary conditions which consisted or

specifyins:pressure at a SlJlface ceDomter based upon an interpolation orlhe pressure at the

center of a neighbourins cell. and norma] stresses, if the latter were to be specified for a

panicularproblem. This calculation~ired the assessment oftile orienlltion oflne surface

within a 5Urface cell, usinglhe marker particles defining the surface. The sample problems

simulated by Nichols and Hirt [9] include the coUapst of a fluid column, a rotating column

of fluid, a drop splashing into a deep pool, and a viscous bore. Amsden and H~rlow [101

presented a simplified method (SMAC) which attempted to deal with aspects of MAC which

the authors state were complicated. These &!pects were: (i) the application of boundary

conditions for obstacles and inflow/outflow boundaries; and (i) the solution ortne Poisson

equation for any but the most simple configurations. The simplification of the cak:ulation

techrUque was achieved using vorticity and. potential function to correct the velocity field

and hence satisfytbe contirllity~ without cabiJating pressures explicitly. Example

problems in (10) are the collapsing cclumn ofOuid, waterfall over a step, rescrwir flow

through, flow ovtr a step, and flow past a scow. Chan and Sireet [111 presented Stanford

Univeoity's Mocified MAC method ofmodelting waler wam (SUMMAC). which omits

the viswls terms, but makes the following improvcments in finite difference calculations:

(i) rigorous application oflhe pressure boundary condition It the free surface; and (ii)

extrapolation ofvdocity components from the interior 10 mabie more acwrate shifting of the

free surface boundary. Further. a second-order explicit difference scheme was uSl.~ ;"or the

calculation of the convective nux tams. as compared to the first-order scheme in the original

MAC version. To promote greater stability for Ions-term calculations, I forward implicit
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scheme was implemented in SUMMAC for the advancement ofmarker particles, The case

studies presented deal with waves encountering a sloping beach

The MAC methods employ the marker particles either throughout the fluid, or only in the

surfaoeceUs, the latter resulting in a "string" of particles defining the location ofthe surface

boundary. In the latter approach, one can define the surface either by a set of poi~L~

connected by ordered line segments, or one can represent lhe surface by a single-valued

height function (t.e. h - h(r, /), where h is the fluid height above the bottom ofastatiolW)'

two-dimensional grid). These schemes are simple to apply only when the surface remains

nearly horizontal, 8Jld neighbouring particles remain cOMecled in the same sequence

thr()lJghout the process. To accommodate multi-valued surfaces (Le. bubbles), pms ofthe

8uid breakingaW8Y, rcpealod changing from horiz:ontal to vertical orientations. orthe surface

folding back upon itself, considerable accounting and adjusting is required with these two

schemes, rendering the understanding and prognunrningofthem tedious. In faet, in principle,

a height function cannot be used to model a bubble, The major advantage orthe use of a

string of particles for suitable problems, however, is that less data storage is required, in

comparison to the approach of marker particles imbedded throughout the fluid-occupied

domain.

When the MAC method employs particles imbedded through all of the fluid ceUs. the

movenent of the panicles is a Lagrangian device used 10 define the spatial regiol1ll occupied

by the Duid. and this knowledge is used to pmorm. the flux calculations in lID Eulerian mesh.

The precise location ofthe free surface boundary requires an additional computation, based

on nwier distn'hrtion. To enforoe the surface boundary condition may require the use ofone
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of the methods descnlled above for surface tracking. A limitation inherent in these MAC

methods is that the markers can be transported out of the fluid domain. and one must

continuously replace them. Also, markers may be concentrated in narrow regions of the

domain, requiring the addition or deletion of markers to provide a suitable approximation to

the free surface.

In 1975 Nichols et ai, [12] published a report on the SOLA method, which is a simplified

version of the MAC technique for confined flows (no lTee surface); SOLA (SOLution

Algoritlun) does not use marker particles, and is not set up for internal obstacles. To simulate

free surface flows, Nichols et al. (13,14] developed the Volume of Fluid (VOF) method, used

in conjunction with SOLA. The VOF method offers the advantages of defining and

monitoring fluid regions in order to move fluid through the Eulerian grid, without the

disadvantages ofhaving to define and monitor particle movement. It allows the possibility of

multi·va!ued or discontinuous free surface interfaces, while avoiding the large storage and

computing time required to monitor particle movement. The VOF meth::ld assigns a value

to a variable Ffor each cell, where an Fvalue ohero means a cell is empty, a value ofone

means it is full, and an intennediate value indicates that the cell contains a free surface. A

donor-acceptor algorithm was developed to allow convecting the fluid from one cell to

another, thus allowing the surface to move through the Eulerian grid. The problem reduces

to solving for the distribution ofF throughout the calculation domain, and thereby defining

the portion of the Eulerian mesh occupied by fluid. The SOLA-VOF method presented in

{13,14] can handle irregular surface motions, Cartesian and polar cylindrical co-ordinate

systems. variable mesh spacings, obstacles, multi-fluid interl'aces, and limited compressibility.

This method is a finite difference technique specifying pressure on tile free SUrflce boundary
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by interpolation ofthe value at a neighbour cell, and setting velocity boundary conditions via

fictitious values outside the boundary. The versatility of SOLA-VOF was demonstrated in

(13, 14J by application to the simulation of a breaking bore, the broken dam problem, the

collapse of a cylindrical column of fluid, perturbation of a thin cylindrical fluid column,

~rusion ofan inuniscible droplet, and gas bubble ejection from a submerged vent pipe.

Other authors have applied the VOF technique to tank sloshing similar to the configuration

of interest in this research. Bridges [IS] modelled sloshing of liquid in a rectangular

container, and presented results ofexperiments for comparison. Bridges' approach was to

use a SOLA-VOF model (two-dimensional), with all motions defined in relation to the lank

itself; rotational motion ofthe tank was introduced as accelerations experienced by the liquid

in the tank. Su andKang (16]ernployed the SOLA-VOF method with an improvement made

in the flux transfer calculationof the donor..acceptor algorithm. In [16] the two--dimensional

sloshing in a tank undergoing a forced sinusoidal sway was simulated and compared to

experimental data. Su [17) also reports numerical results for many baffled and unbaftled

twD-dimensionai tank configurations, and compares t"~e influence of dilferent baftle

arrangements and tank aspect ratios on the reaction forces. These numerical calculations

had also been done by T. J. Bridges using a VOF method. The details ofthe method used in

117] were not discussed.

Several other researchers have reported on the use of variations in the MAC method for

sloshing problems. For example. Ani [18] modelled two-dimensional rectangular tanks with

barnes using the MAC method (inviscid fluid), giving the tank oscillatory pitching motion.

Physical experiments were also performed., and the results ofnumerical and physical tests
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were compared for a pitching amplitude of2 degrees. Cordonnier [191 employs TUMMAC

(Tokyo University Modilied·MAC) to JX:rform two-dimensional numerical studies, and

compares these to experiments with a rectangular tank. Information on how MAC is

modified in this method were not given. Japan·based researchers Arai et al. (20] used a

MAC-based three-dimensional model, incorporating solution techniques of SOLA, and

applying the method to the analysis of FPSO vessels. Results of cxJX:riments were also

given. Popov and others at Concordia have used SOLA to model sloshing in two

dimensional rectangular tanks {21,22] and horizontal cylinders [23], in the context ofroad

transportation of liquids

The VOF method has also been used to address research into other free surface problems.

For instance, Abdullah and Salcudean [24] apply the VOF method to the turbulent filling of

a cylinder. Pattorn (25) applied the VOF a1gorittun to a three-dimensional problem involving

the motion ora wall offluid in a panially-fi1led horizontal cylindrical container.

1.3.2 Lagrangia. Methods

Considerable work has also been done on Lagrangian numerical methods for the simulation

offree surfilce flows, where it is necessary to move the computational mesh with the moving

Ouid. More sophisticated methods which can accommodate either or both ofLagrangian and

Eulerian calculations in a combination have also been developed. The latter are usually

labelled as Arbitrary Lagrangian-Eulerian (ALE) methods. In pure Lagrangian method. the

mesh moves with the Ouid such that a nodal point would follow a particular fluid particle

path; this can lead to significant problems with mesh contraction and concentration. Also,

Lagrangian methods may require deletion or addition of nodes to provide sufficient nodes for



continued discretization of the problem. Lagrangian methods sutTer significant penalties with

regard to gridding. In ALE methods, the grid is not necessarily moved with the fluid. For

example, a node does not necessarily move with the concWTCllt fluid particle, but may move

o.nly a portion of the displacement of the particle. This helps to reduce meshing problems,

but results in more compliC'.ated discretization methods required to determine the appropriate

diffusion and convection terms to be used for cells ofchanging size and/or orientation.

In these areas ofresearch, Finite Element Methods (FEMs) have generally dominated due to

geometry considerations. 1be published literature includes H'..!erla and Liu [26], who

developed a two-dimensional ALE Petrov-Galerkin FElvl. The problelll5 studied in [26] were

the impact oflsunamis on a continental shelf, dam breaking, and sloshing in a rectangular

container. Ramaswamy and Kawahara developed a Lagrangian GaJerkin FEM [27], and

further an ALE formu1ation (28), to caunine several two-dimensional test problems, including

sloshing in 8 prismatic container. Ramaswamy and Kawahara [29] used a Lagrangian FEM

formulation, along with velocity correction borrowed from FO methods, to model two

dimensional sloshing in a rectangular container. The forcing motion utilized was sinusoidal

pitching, with an angle amplitude of 0.2 degrees.

The ALE methods, while attempting 10 deal with large molions offluid surfaces, require

lUbttrary control of how and underwhat conditions the grid is to be re-meshed. This control

can only be achieved by trial·and-errOf, and/or a prior knowledge of how the fluid will

respond to the forces it experiences. There does not appear to be any recorded means of

accommodating discontinuous surface segments in the FEMs discussed in lhis literature

survey.
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1.3.3 Summary

The review of available literature reveals thaI Eulerian methods offer distinctly attractive

features for the numerical modelling offree surface fluid motions in a par1ly-filled container.

The main advantage of methods which take the Eulerian viewpoint is thai the surface is

permitted free movement according to its governing physical laws, and its configuration can

be monitored, without restriction on its shape or continuity. Among Eulerian methods, the

Volume ofAWd method was found to offer the capability to achieve this in the simplesl and

most: efficient manner. In particular, the VOF approach offers the ability to handle relatively

large fluid motions, discontinuous surface segments, multi-valued surfaces. and the surface

collllPSing upon itself. This has enabled the development of methods with the potential to

simulate such behaviour as wave breaking and impacts on tank top covers, as well as large

wave heights. It should be noted, however, that in all of the methods applying the VOF

technique to sloshing, the specified tank motion has been restricted to either rotation or

translation; none have allowed a combination of both of these types of motion.

1.4 Definitiun of Research

The objectives of this research effort are to gain an understanding of both the physical

behaviour ofthe sloshing ofliquids in rigid containers, and the numerical modelling of auch

problems. Specifically, the goals ofthe numerical model development were as follows:

(1) Ikvelop a two-dimensional FVM-based nurneric:aJ procedure to calculate the motion

characteristic:s oran incompressible viscous liquid in a panially-filled rigid rectangular

c::ontainer. The free surface will be handled by the application oflne Volume of Fluid

-13-



method.

(2) Incorporate into the method the ability to specify a tank motion ofany combination

oflranslction and rotation.

(3) Verify the model against relevant theory, and available experimental and numerical

data.

(4) Demonstrate the ability ofthe model to predict fluid motions, and calculate local fluid

pressures, for physically realistic tank motions.
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Chapter 2

Method

The formulation of a FVM for unsteady, viscous, incompressible fluid flows with B free

surface is presented in this eMpler. The follo\Ving topics are each addressed in a section: (I)

definition ofthe governing equations; (2) kinematics of the problem; (3) discretization of the

fluid domain; (4) integral conservation equations; (5) derivation of the discretized form of

the governing equations; (6) treatment of the boundary conditions for the free surface and

solid boundaries; and (7) the algorithms used to solve the discrettted equations. A summary

ofthe method is presented in the final section of the chapter.

2.1 Governing Equations

The equations governing the unsteady, two-dimensional motion oran incompressible, viscous

fluid are the Navier-Stokes equation

and the continuity equation

v·u = 0

(2-1)

60(2-2)

where U is the velocity vector ofthe fluid, g is the body force Be«Jeration (gravity),. is the
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gravity directional unit vector, p is the pressure, p is the mass density ofthe fluid (which

has been assumed constant), )l. is the dynamic viscosity of the fluid, and t is time.

The governing equations are solved using the Cartesian co-ordinate system (x,y) attached to

the container as shown in Figure 2·1. To produce sloshing, the tank is caused to move

relative to a fixed co-ordinate frame (X,Y). The motion oftbe tank produces inertial forces

on a fluid particle and this results in additional acceleration terms to be included in the

governing momentum equations. These additional terms are described in section 2.2. When

the terms are included in the Nam-Stokes equation, the x~mponent ofequation (2-1) can

be written in the foUowing compact fonn:

(2-3)

where J" is the convection diffusion flux vector, and S~ is a source term. The source term

will incorporate body forces (gravity) and inertial forces caused by the tank motion. Using the

results of section 2.2, J" and S· are defined as roUows:

J":: flUu - JlVU,

S·:: -pg,,-phcos~\ - U 1w.sin4'1 - w;(rlcosepl+Xp )

- o:\(r1sincf!1 +Yp ) - 2vw1 - u 2Yp - ~xp - 2VW2 ]

(2-4)

(2-5)

Equation (2-]) can represent they-momentum equation when v replaces u in the unsteady

term, and J", S· and iJpli3x are replaced by J" •S· and iJplUy, respectively, where J" and
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S' are defined as follows'

]V :: pUv - ~Vv. (2.6)

sv::-pgy-P[f\Sin<!Jl .2ftw1cos<!J. -w7(r, sin<!J•• )'p)

• "l(r1co5<!J\ .:rp ). 2uwl .;. "2r, - ~Y,.;. 21/(,,)2} (2·7)

In equations (2-5) and (2-1) the g ~ and gy terms are the :r and y components of the

gravitational acceleration respectively, which are defined 85 follows:

g.: g ,i.(P, • $,)

g,. :: g COS(P2 .;. 412 )

where

(2·8)

(2.9)

(2.10)

asshovm in Figure 2·1. The remaining terms in equations (2·5) and (2-7) are fully described

in the following section.

2.2 Kinematie Relationships

ln tms thesis the two-dimensional sloshing ofa liquid in a moving container j~ simulated by

solving the governing equations using an Eulerian method which employs calculation mesh

that is fixed to the movingtank. As illustrated in Figure 2·1. the C8f1csian co-ordinale system

(r,y) is attached to the moving tank. The tank can have an initial angle of inclination to the



horizontal of P2' The tank (and the (r, y) frame) may rotate about the origin of the (.... y)

frame, 0, with angular displacement, velocity. acceleration ofa]. w1. and tt], respectively.

The location of a point P in the calculation mesh fixed to the tank can be referenced to the

o(igin of the (r. y) frame by the vector " which is at an angle y to the r·axis. The

magnitude and direction of , " with respect to the (r,Y) frame, remain fixed during the tank

motion.

The position of the origin of the (r,y) frame is located in a global, or fixed, frame of reference

(X,Y) by the vector ',. The position vector 'I may have an initial angle of inclination to

horizontal (i.e. theXaxis) ofp,. To allow for motion ofthe tank relative to the fixed frame,

r 1 is pennittcd to rotate about origin 0 with angular displacement, velocity, and acceleration

of a h WI' and ~ , respectively, and it is permitted to change length with velocity and

accderationof ,." and ,M" respectively. This method, therefore, allows the specification of

truly arbitraJy tank motion. Previous methods (e.g. [15,16,18,20]) have allowed only rotation

and/or translation in relation to the (X,Y) frame, whereas this research allows the rotation

of the (r,Y) about its origin to be included as well.

The motion of the tank will lead to the generation of several tenns which must be

appropriately accounted for when determining the acceleration ofa fluid particle at a point

P in the mesh at any instant in time. These additional lenns must also be resolved into

components in the (r, y) frame, as the governing equations are solved in this co-ordinate

system. Defining the following co-ordinates ofpoint P:
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Yp :: r~ siny

and the angle:

(2-11)

(2-12)

(2-13)

thex· andy- componenlS of the acceleration ofa fluid particle localed II point P, II a given

instant in time, may be written as follows:

a~::!JJ7 + f,cos41. - (a)~(rlcoscltt ,,"1",)- "l(rlsin4>l +Y,)

- 2f.(a).sincltt - 2v(a)l - (,)ixp - «,;Yp - 2"(a)~

OJ':: ~ "" "sin., - (a)~('lsin.t ""Y,) "" "l(,lcos411 ,,".1',,)

"" 2w,;.cos.l ,," 2uw\ - ~Yp "" «';.1'" "" 2u(a)~

(2.14)

(2.1S)

In equalions(2-14) and (2-15) the first term is the total derivative defining the acceleration

ofa fluid particle at point P in the (.I', y) frame. The second through sixth terms are due 10

the rotation and translation of the (r,y) frame relative to the (X,r) trame. The remaining

three terms are due to the rotation of (x, y) about its origin. The second tmn is due to the

trutSlational acceleralion offramc (x,y) relative to the absolute reference frame. The third

and fourth terms ue the nonnal and tangential acceleration ttrms due to the ratltion ofttlc

tank about the origin oftbe (X,Y) trame. The fifth and sixth terms are Coriolis accelerations

due to the rotation and translation of the (.I', y) &arne about the origin of (X,f), and the
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rotation ofa fluid particle with velocity U at point P about (X.Y) with angular velocity WI,

respectively. The seventh and eighth tenns are the nonnal and tangential acceleration trons,

respectively, at P due to the rotation of the (r,Y) frame about its origin. The finaltenn is the

Coriolis acceleration experienced by the moving fluid particle at point P, due to the rotation

of the (x, y) frame about its origin.

When the accelerations given by equations (2-14) and (2-15) are substituted into the

appropriate governing equations, the extra acceleration teons may be included in source

terms, as shown in equations (2-5) and (2-7). The actual accelerations terms that would be

present for a particular problem would depend upon the nature of the prescribed motion.

1.3 DiscretlzatioD of the DomliD

The governing equations are discretized using the finite volume approach, as described by

Patankar pO]. A staggered mesh, where pressure and velocity components are stored at

different locations, is used to prevent oscillatory solution fields. In this method, the

calculation domain is discretized with rectangular control volumes (CVa), as outlined by the

dashed lines in Figure 2·2 In this figure, i and j are indices in the x and y directions,

respectively, and the dimensions ofa main grid CV are defined as.1 x, and 4~. FoUowing

Patankar'sPractice B. the main grid nodes are then placed at the geometric center of the main

grid evs, and the distances between nodes are defined as BXj and By)'

The values of pressure. density, and viscosity are stored at the main grid nodes. while the

values of velocity (u and v) are stored at the center of the control volume faces to which

-20-



they are normal. This results in the staggered storage arrangement shown in Figure 2-3.

where the v- CV isl)pical oflhose on !he south and north boundaries of the domain. and the

11- CV is typical ofinlemal CVs (i.e. 11- CVs on the west and easl boundaries are similar to

the v - CV shown).

The discretized forms of the governing equations are obtained by integn.ting them over I

control volume. with the assumption that the Ruxes across a CV face are unifonn. Different

control volumes are utilized for each of the equations. The staggered momentum CVs are

chosen such that the velocity value under consideration is centered in, or best represents the

mean value for, the control volume.

2.4 Integnl Con.ervation Equation.

In the finite volume method used in this thesis, the Navier-Stokes equations are integrated

over the discrete control volumes in the ca1cu1a1ion domain and over a time interval. Using

Gauss' divergence theorem., the integration ofequation (2-3) over a control volume V that

is fixed relative to !he (rJl) frame, and over a time interval.d I, results in !he following integral

conservation equetion for r-momcntum:

where av is the SJlface ofthe CV, and If is the unit outward normal to the differential surface

area ds. A similar integral conservation equation may be obtained for y-momentum. The
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continuity equation is also integrated over a control volume to give the following integral

conservation equation:

( V-ods =0
J"

2.5 Derivation oftbe Diseretized Equations

(2-17)

To obtain algebrait: approximations ofthe integral conservation equations for the appropriate

control volume, approximations to the contributions of each CV must be derived and

usembled in a suitable manner. The derivation of the discretized fonns of the x- and y

momentum, an~ the continuity equations will be discussed in this section.

2.5.1 Mnmentum Equations

2.5.1.1 x-momentum

The convection difliJsion flux in the integral conservation form of the x-momentum, equation

(2-16), can be separated into components in thex and)' directions as foUows:

where

J~" = pu(u) - 11* '

and i and) are the unit vectors in thex- andy- directions, respectively.
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To integrate these fluxes over the surface of the r - momentum CV (see Figure 2-3), the

fluxes are assumed conSlant over a face, and are evaluated using a power law scheme, as

described by Patankar (30). The source term in equation (2-5) is assumed to be constant over

the control volume, and the equation is integrated explicitly in time. The resulting fonn of

the discretized x·momenrum equation can be written as follows:

The variable up represents the velocity at node iJ. The supmcript n+ J on velocity means

the nelet time step value, whereas all terms without this super.st.tipt are evaluated at the

current time value. The value UN is the neighbouring u·vaIue to the north of the point being

considered (i.e. u t)+1 ), the variable u£ represents the value to the east (i.e. U"'.J ), and so

on forthe four neighbouring u values. The \'8riables a"His the coefficient multiplying the eut

neighbour. Similarly, a"£, d's. and a"1f' are the coefficients multiplying the east, south, and

west neighbours respectively; d'p is the center point coefficient. The pressures p, ./.} and

P'.J are those on the west and east CV faces for Up, and .::II is the time interval. The variable

.::IV· is the volume of the CV; taking the third dimension as a unity value, this value is

effectively the area of the CV for a two-dimensional problem. The b" term is a constant

incorporating the body force tenn and appropriate terms from the kinematics of the tank

motion. The coefficients in equation (2-21) are defined as follows, in accordance with

Patanlw [30J:

Q; = D.A(IP.I) • I-C., 0 )

a; ::: D,A(IP,t) + [C, ' 0]

a:::: D.A(IP.I) -+ [-C•• 0)
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a; '" D .. A(IP...I) + (C... 0)

a; .. 4F -a; - a; - as· - a:.

(2-22d)

(2.22e)

(2-220

where the double square brackets mean the greater ofthe quantities contained within them.

The 0 terms represent the integrated diffusion flux over a face, and the C tenns are the

integrated convection flux across a given face. These are detennined as follows:

D.-Il.ax,/Oyj'/ C.-pv.ax, (2.23a)

D. -P. &-,I0y1 C.-pv.&-, (2-23b)

D."p.J1y/odr, C.-pll.iJYj (2~23c)

D.. -p,.J1Yj/odr,./ C.. -pu,.LJYj (2-23d)

Defining the grid Peclct numbers,

p. - C./D. (2-24a)

P, =C,ID, (2-2'b)

P,-C./D. (2·24c)

P,.""C.. /D,. (2-2'd)

allow the function A ( IPI) for the Power Law scheme (30) to be specified as follows:

A (IPI)· [0,(1 -O,IIPI}',

2.5.1.2 y. momentum

(2-2S)

The approach taken in the discretization ofthex - momentum is also used to discretize the

y.rnomentum equation; the integration is performed 011 the v-velocity CV, as shown in Figure
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2·3. The nux tenns are defined as follows:

(2-26)

where the components are:

J/ = pv(v) - P~

(2-27)

(2-28)

Integrating the fluxes over the CV surface results in the following expression for the updated

v.velocity value at point ij :

In equation (2-29) the coefficients and variables are analogous to those defined for equation

(2-21). The coefficients are evaluated as follows:

a;. D.A(IP.I) + I-C., 0 I
a; :: D,A(IP,I) + [el • 0 J
a;:: D,A(IP.I) + [-C,. 0 J
a; :: D..A(IP...I) + [C•• 0 J

ap = p:~w _a; _a; - a; - a;
b"· S"AV"
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(2-30<1)

(2-30e)
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and the integrated fluxes are detennined by:

D~ ""1J~iJx,l.dYj

D.-p,iJx,/.dY,_1

C.-pv.iJx,

C. -pv.iJx,

(2-3Ia)

(2-3Ib)

D.-p.6)'J I6.r", C.-pu.6)'j (2-3Ic)

D.. -p.. Oyjlrk, C.. -pu.. Oyj' (2-3td)

The grid Peele! numbers are found usinB equations (2-24), and the A( IF I)function is defined

in equation (2_25).

2.5.2 Continuity

Theexp6cit equations forthevelociries. equations (2-21) and (2-29), will yield values for the

advanced time step, but the new values will not in general satisfy continuity, since pressure

values used are those valid for the previous time level. Hence, what is reaUy needed is u, v,

and p solved simultaneously for the advanced time level. This thesis uses a method of

discretizing the continuity equation which is similar to the method proposed by Rirt and

Nichols [13] in their SOLA method. In this method, the pressure at the advanced time level,

p~'1 '.j' is defined as the previous time level value plus. pressure correction q,:

(2-32)

Ifequation (2-32) is substituted into equations (2-21) and (2-29), the following expressions

can be obtained:

(2.33)

(2.34)
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where

(2-35)

(2-36)

The values of up· and "p • represent initial "guess" values based upon previous time step

velocity values and current source term influences, but omitting pressure, as shown below.

(2-37)

(2-")

The integral form ofthe mass conservation equation is integrated over the main grid CV (as

illustrated in Figure 2-2). Performing this integration at time step 11+ I, yields

(2.39)

Substituting equations (2-33) and (2-34) into equation (2-39), and re-writinglhe resulting

expression in terms ofthe pressure correction 4",J at node iJ giveJ the following:

(2-40)
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where the coefficients are defined as follows

a:"'~
p6xj • 1

a&"'~
p{,x,

at '" a% 'I- at 'I- at 'I- a%-

(2-4Ia.b)

(2-41c.d)

(2-41 e)

(2-41~

1be pressure correction equation (2-40) is solved for all full cells in the domain. If a given

full cell has all four n(ighbours that are also full. the coefficients of the equation are

detennined by the use ofequations (2-41). Ifone or more of its neighbours is a surface cell,

however. the coefficient corresponding to each of these neighbours must be modified. This

process enables the enforcement ofthe surface boundaty condition, and is described in the

following section.

2.6 Boundary Condition.

To complete the specification ofthe discretized equations it is necesSlty to account for the

behaviour ofthe fluid at the boundary of its domain. One must include in the method a means

ofincorponu:ing boundary conditions that is both physically realistic and as simple as possible

to implement. The following sub-sections discuss how this is accomplished fOI the free

surface and for rigid boundaries. For rigid boundaries the procedure is elementary, but for

the free surface boundary. the procedure must take into account the fact that the surface

configuration changes from one time step to the next
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2.6.\ Free Surface Boundary

In the modelling of fluid problems with a free surface interface, there are four requirements

which must be met. These are

Allowing the free surface to move freely in a manner that is physically rea1i5ti~:

2. Tracking the free surface continuously as it moves;

3. Defining the surface with a spatial resolution that is sufficient for the design problem

at hand; and

4. Imposing the boundary conditions applicable to the free surface.

The chosen approach is the Volume oCFluid (VOF) method, as described by Hirt and Nichols

(13), and exemplified by the SOLA·VOF computer program [14]. A3discussed in Chapler!,

the VOF method offers several advantages over alternative methods such as marker particles

and height functions. As will be evident in the following discussion, the VOF method satisfies

the needs stated above.

The VOF method is based upon the evaluation ofa variable called F for each (main grid)

control volume. This value F gives the fraction of the total volume ofthe ceii that is occupied

by fluid. In other words, an empty cell has an F value equal to zero, a full cell has F equal to

Wlity, and a partIy.fuIl cell has a value somewhere between these two limits. Apanly-full cell

by definition contains a free surface. The calculation domain fer momentum and continuity

at any point in time is defined by the sum of all those cells that are not empty. The set of

partly-full cells together fonn the free surface boundary, or boundaries, for the domain.
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Within the domain, the time dependence ofF is governed by the following equation

of of of
-+II-+V-"'Oat Ox av (2-42)

To allow the free surface to move through the Eulerian grid, an algorithm to convect flux:

from one etIJ to another is required. By first integrating equation (2-42) over the main grid

CY, one can obtain a donor-acceptor method. The method is described more thoroughly in

(13]. and will only be stated here.

The amount orFf1uxed in thex-ditection across a cell race in one time step is dF- multiplied

by the face cross-sectional area (i.e. ..1 YJ)' where

(2-43)

.00

(2-44)

In these equations, the maximum possible flux volume per unit area across a cell face is Q",

where Q. = U I.J ..1/. The subcript A indicates the "acceptor" cell, D refers 10 the "donor"

cell, and subscript AD means thai either A or D is selected, depending on the orientation of

the tree surface in relation to the direction of flow. The subscript DM indicates the Fvalue

ofille Ildl UpMeam ofthe donor cell, and the use oftms term tends to dampen the flux: when

the upstream cell is not full. This teoo is only found in the SOLA-VOF code; textual

references in all articles use Ihe value 1.0 in its place. This author experimented with both

approaches and found thai the use ofF0\/ causes no apparent weakness in the algorithm. The
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determination of which cell is the donor and which is the acceptor is a function only ortlle

direction ofthe Row. The MIN function prevents convecting more fluid from the donor cell

than it has to give, and the MAX function ensures thai a donor cell fluxes only thai amount

that exceeds the volume needed to fill it

Equations corresponding to (2-43) and (2-44) are obtained for the y-direction velocities as

well. Acomplete update of Fvalues for the advanced time level consists ofa pass over the

whole domain adding and/or subtracting changes in Fvalue to the current F values, first for

the x-direction fluxes, and then in they-direction.

To accomplish the tracking ofthe free surface, the surface is defined as passing through the

cells which have an F value between zero and one, and which have at least one empty

neighbouring cell.

The method ofspecif)ring a boundary condition at the free surface is to speciFy the pressure

on the surface. For a vented tank with air as the fluid above the denser liquid, this value is

atmospheric pressure. Since pressure values are located at the cell centers, this is

accomplished by assigning surface cells a pressure that is an interpolation between the free

surface and the value at a selected neighbour cell, as shown in Figure 2-4. The formula is:

(2-45)

where

(2-46)
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and p~ is the pressure ofthe free surface cell, p.... is the pressure at the interpolation cell

center, andP-t is the specified surface pressure. Thevariable 1/ is the ratio ofdistances as

defined is Figure 24. Fore:wnple, with a surface cell at nodei+/,} • and its interpolation

neighbour at cell i,} • equations (2-45) and (2-46) beoome:

(2-47)

where

(2-48)

For a given free surface cell, it is necessary to determine which ofits neighbouring cells will

act as the interpolation neighbour. The neighbour for which 8 line connecting the two cell

centers forms an angle with the free surface that is closest to a right angle, is the cell

designated as the interpolation neighbour. To make this judgement, an estimation of the

orientalion of llle free surface in a given free surface cell must be made. This is done by

representing a local segment of the free surface in a cell centered at iJ by a single-valued

function vCr), indicating the y-distance 0: the surface above a datum. The function is

calculated [14Ju:

and the change of '" with increasing x can be most simply approximated by

(~).~dr, (6), • &.<",)

~ J2-

(2-49)

(2-50)
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