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Abstract 
Amidst the rapid environmental change occurring in northern marine environments, baseline 

ecological knowledge is essential for implementing effective management measures. Through 

the development of an adaptive marine management initiative, called Imappivut, the Nunatsiavut 

government has prioritized various marine species and habitats of cultural, ecological, and 

economic importance for dedicated research. Among these priorities are two iconic fish species, 

iKaluk / Arctic charr (Salvelinus alpinus) and ogak / Greenland cod (Gadus ogac), valued highly 

throughout communities in Nunatsiavut for supporting Inuit subsistence and economic 

opportunities. Despite rich local ecological insights, regional data on these species and their 

habitat associations in the changing marine environment are limited. Recognizing the importance 

of further understanding these species, this study describes and maps the seafloor habitats 

occupied by these fish and investigates the ecological and environmental relationships within 

these habitats. Using local harvester fishing locations, acoustic telemetry and video surveys, 

chapter 2 assesses the habitat use of tagged iKaluk during their marine residency period, while 

gathering baseline ecological knowledge on the available seafloor habitats throughout Nain, 

Nunatsiavut. Chapter 3 employs a habitat mapping approach within and around local ogak 

fishing locations to produce a full-coverage habitat map of species assemblages across Nain’s 

nearshore marine environment. The research integrated traditional ecological knowledge with 

Western scientific methods, offering insights into critical habitats and aiding conservation efforts 

amid climate change challenges in Nunatsiavut. Together, the findings of this research 

established a baseline understanding of the seafloor habitats in Nain's marine waters and their 

association with two culturally important fish species. 
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1 Introduction  
1.1 Coastal & benthic habitats 

Coastal and benthic ecosystems are vital in providing and protecting a variety of services that 

hold economic, ecological, cultural, and social value (Woollett 2010; Wynja et al. 2015). These 

services may vary from access to resources (i.e., subsistence), to cultural or spiritual traditions, 

employment opportunities, shipping routes, and recreation (Barbier et al. 2011; Bell et al. 2015; 

Swiderska et al. 2018). The coast harbors a rich diversity of flora and fauna that contribute 

significantly to the health of the ecosystem and its services (Barbier et al. 2011). These areas are 

highly productive and have pivotal roles in activities like feeding, functioning as nurseries, 

supporting spawning, and facilitating migration for species of both commercial and ecological 

significance (Seitz et al. 2014; Jokinen et al. 2015; Henseler et al. 2019). Benthic organisms, 

which live on or in the seabed, are paramount in maintaining the functionality and health of 

coastal ecosystems. Their activities (i.e., bioturbation, feeding, defecation) significantly 

contribute to organic matter remineralization, nutrient recycling, and energy cycling between 

benthic and pelagic zones (Levin et al. 2001; Henseler et al. 2019; Lam-Gordillo et al. 2021). 

Moreover, many benthic invertebrates (e.g., sponges, mussels) act as effective biofilters, filtering 

the water of pollutants and excess nutrients (Barbier et al. 2011; Snelgrove et al. 2014; Lam-

Gordillo et al. 2021; Wyness et al. 2021). Several species comprising the coastal seafloor are 

deemed ‘ecosystem engineers’ which alter the physical structure of the environment (Jones et al. 

1994; Jones et al. 1997; Bagur et al. 2016). For example, tube-dwelling organisms (e.g., 

polychaete worms, cerianthid anemones) form burrows of varying depth and complexity, re-

working and stabilizing the sediment (Volkenborn et al. 2009; De Backer et al. 2011; Hale et al. 

2015). Organisms that build three-dimensional (3D) structures in dense aggregations, such as 

mussels, oysters, and corals offer shoreline protection, help control coastal erosion, and 
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positively influence species richness (Borthagaray & Carranza 2007; Joy & Gopinath 2021). By 

modifying and stabilizing substrates, these species encourage habitat heterogeneity, boosting 

biodiversity (Gutiérrez et al. 2003).  

Benthic habitats represent the combination of "physical and environmental conditions that 

support a biological community, together with the community itself" (MESH 2008; Brown et al. 

2011). These habitats include a variety of bottom types (e.g., sediment attributes), as well as 

diverse geomorphological features, hydrodynamic patterns, and varying levels of structural and 

biological complexity (McArthur et al. 2010). The varying environmental features manifest 

themselves in an uneven distribution over space (Robert et al. 2014) thereby affecting the 

distribution of species across the seabed (Törnroos et al. 2013; Henseler et al. 2019; Loke & 

Ryan 2022). As such, an increase in habitat structural complexity and heterogeneity generally 

leads to an increase in biodiversity compared to homogeneous habitats on the seafloor (Buhl-

Mortensen et al. 2010; Robert et al. 2014; Zeppilli et al. 2016; Henseler et al. 2019). The faunae 

living within these seafloor habitats are typically long-lived, immobile, or sessile, and sensitive 

to disturbances (Bilyard 1987), and as a result, can act as effective indicators for the health of the 

ecosystem (Lennon & Sullivan Sealey 2023). Characterized by their diversity, structural 

complexity and fragility, the benthos can contribute to the classification of Vulnerable Marine 

Ecosystems (VMEs). Generally, VMEs are distinguished by the presence of certain indicator 

taxa that are sensitive, physically fragile, and slow to recover from anthropogenic disturbances 

(FAO 2009). These organisms enhance the complexity and heterogeneity of the seafloor, 

ultimately boosting diversity. For instance, fields composed of large, structurally complex 

sponges can provide shelter and substrate for a variety of organisms, including commercially 

important fish, as seen in the Northwest Atlantic (Beazley et al. 2013; Kenchington et al. 2013). 
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However, the ongoing pressures of climate change pose significant threats to the coast and its 

benthic habitats, potentially disrupting their unique structure and function, ultimately affecting 

their ability to support unique benthic assemblages and ecosystem services.  

1.2 Northern environmental change 
In Canada, northern coasts are undergoing significant environmental change along with their 

services. As a result of anthropogenically-induced warming, sea-ice development is occurring 

later in the season, and the extent and thickness of this ice is diminishing at a rapid rate (Furgal et 

al. 2002; Ford et al. 2018; Bird 2021; Jenkins & Dai 2021). This reduction in sea-ice cover has 

presented great concerns, particularly for coastal Arctic regions since warming is occurring up  

to four times faster than the rest of the planet (Rantanen et al. 2022) – a phenomenon known as 

Arctic amplification (Holland & Bitz 2003; Serreze & Barry 2011; Previdi et al. 2021). This 

phenomenon has various direct consequences in the Arctic, including glacier melting, rising sea 

levels, heightened coastal erosion, increased storm surges, and more frequent and intense coastal 

storms (Hoegh-Guldberg & Bruno 2010; Wassmann et al. 2011; Duarte et al. 2012; Previdi et al. 

2021). Some recent models suggest that Arctic benthic invertebrates may not exhibit higher 

vulnerability compared to taxa with southerly distributions in response to habitat changes 

resulting from the broader impacts of climate change (Renaud et al. 2019). However, the 

combination of warming conditions, shifts in ocean circulation, and ecological alterations, 

including changes in migration patterns, prey availability, and reproduction, continue to cause 

profound transformations to northern fish (Christiansen et al. 2014; Côté et al. 2021), benthic 

ecosystems (Kortsch et al. 2012), and the services they provide (Bianchi et al. 2023).  

Warming conditions make it easier for southern species, like Atlantic cod (Gadus morhua), 

to move into Arctic waters where they may outcompete and prey on Arctic species or offer a less 

nutritious food source (Secretariat 2017). For example, warmer conditions led to the northward 
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expansion of capelin (Mallotus villosus) in the Canadian Arctic, with unknown consequences for 

biological interactions (e.g., competition, predation) (Secretariat 2017). Due to the loss of certain 

northern habitats (e.g., sea-ice) from warming, food resources are becoming increasingly scarce 

in northern marine environments, forcing northern species to travel farther and expend more 

energy to feed (Orlova et al. 2009; McNicholl et al. 2016; Secretariat 2017; Panikkar & 

Lemmond 2020). Overall, these changes collectively pose a significant threat to the well-being 

of coastal ecosystems, individual organisms, and their associated populations. 

Inuit Nunangat (Inuit homeland in Canada), which encompasses communities throughout 

four northern regions (Inuvialuit Settlement Region, Nunavut, Nunavik, and Nunatsiavut) has 

garnered national and global concern with respect to climate change (ITK 2019). The livelihoods 

of communities throughout Inuit Nunangat are deeply connected to the coastal marine 

environment for sustenance, cultural identity, and overall well-being (Kirmayer et al. 2000; 

Cunsolo Willox et al. 2013), yet climate change continues to pose a significant threat. 

Nunatsiavut is one region at the forefront of rapid environmental change by way of rising 

temperatures and shifting weather patterns, sea ice thickness and seasonality, and species 

distributions (Bush & Lemmen 2019; Bishop et al. 2022).  

Covering approximately 72,000 km² of land and 48,690 km² of coastal and marine areas, 

Nunatsiavut is the Inuit settlement region in the northern part of the Labrador Peninsula, 

established by the Labrador Inuit Land Claims Agreement (LILCA). This agreement, voted by 

Labrador Inuit, led to self-governance and the establishment of the Nunatsiavut Government 

(NG) in 2005. Communities throughout Nunatsiavut continue to voice a spectrum of concerns 

(e.g., sea-ice, harvesting, mental health) regarding their local marine waters, all in the context of 

confronting the challenges of a changing climate (Durkalec et al. 2015; MacDonald et al. 2015; 
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Bishop et al. 2022). While the communities of Nunatsiavut are well-aware of the challenges 

posed by climate change in their homeland, it is crucial to highlight the existing knowledge gaps 

for effective management of the coastal marine ecosystems of northern Canada.  

1.3 Coastal knowledge gap 
Coupled with environmental change is a coastal knowledge gap, particularly significant in 

the North. Although Canada is home to the longest coastline in the world, much of its coastline 

has yet to be fully explored through high resolution mapping. As of 2023, nearly 25% of the 

global ocean was mapped at a resolution of around 1 km according to the Seabed 2030 project 

(GEBCO compilation group 2023). The 'white ribbon,' referring to the empty space nearshore on 

many nautical charts (Mason et al. 2006), poses a challenge for conventional bathymetric 

surveys. This challenge arises from potential hazards such as rocks, reefs, and waves, coupled 

with limitations on survey time (Carvalho et al. 2017). This specific difficulty in mapping the 

coastal zone exacerbates the prevailing knowledge gap, as these regions are not adequately 

represented in current mapping initiatives. Therefore, information on depth, terrain (i.e., 

geomorphic features), and biological community composition (i.e., species assemblages) is 

notably deficient in many coastal areas, especially in the North. Due to high operating costs and 

seasonal or perennial ice cover, the sampling seasons are short, causing surveys to be highly 

constrained, compounding the already spatially limited and time-consuming biological and/or 

sediment sampling process (Wynja et al. 2015; Coad and Reist 2017). As such, there is a limited 

understanding of the spatial distributions, abundances and functional roles of many species and 

habitats in northern waters.  

1.4 Management & Inuit research priorities 
 To address the environmental changes in Nunatsiavut, the northern coastal knowledge 

gap, and the concerns voiced by community members, the NG launched the Imappivut – ‘Our 
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Oceans’ Marine Planning Initiative in September 2017. Given the commitments made by NG 

and the Canadian government to establish a marine management plan encompassing the northern 

Labrador coastline, this initiative’s objective revolves around managing and safeguarding the 

interests and rights of Labrador Inuit in the coastal and marine areas of Labrador (ITK 2019). 

Imappivut is guided by the principles, wisdom, and priorities of Labrador Inuit, as well as the 

current understanding of the marine environment. The marine plan aims to represent the full 

diversity of species, habitats, and community interests while implementing marine protected 

areas (MPAs) to safeguard their marine waters. Two species designated as top priorities for the 

Imappivut initiative include iKaluk, Inuktitut for Arctic charr (Salvelinus alpinus) (Linnaeus 

1758) and ogak, Inuktitut for Greenland cod (Gadus ogac) (Richardson 1836).  

1.5 Study species 
iKaluk - Arctic charr and ogak – Greenland cod (locally called rock cod) are two fish 

species that are valued highly within Nunatsiavut communities, as they have traditionally been a 

large part of Inuit subsistence, cultural identity, and economic opportunities. 

1.5.1 Study species: iKaluk / Arctic charr  
Arctic charr are cold-water salmonid fish that inhabit a broad latitudinal range (Johnson 

1980), spanning from Arctic to north temperate regions (Reist et al. 2013). These fish exhibit 

remarkable phenotypic diversity across various life histories, encompassing both freshwater 

resident and anadromous forms (Klemetsen et al. 2003). Undergoing a summer sea residency of 

1-4 months (Dempson & Kristofferson 1987; Klemetsen et al. 2003; Spares et al. 2015), 

anadromous charr migrate to the sea in early spring when the rivers are ice-free until they must 

return to fresh water in the fall to overwinter (Klemetsen et al. 2003). Arctic charr typically 

remain in estuarine waters for extended periods during a transition phase to and from the marine 

environment to capitalize on optimal temperatures, salinities, and high productivity for foraging 
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(Dempson & Kristofferson 1987; Klemetsen et al. 2003; Spares et al. 2015; Harris et al. 2020). 

While the preference for estuarine habitats during the marine phase of charr migration is well-

documented (Harwood & Babaluk 2014; Moore et al. 2016; Harris et al. 2020; Cote et al. 2021), 

it is worth noting that these fish have been observed in other habitats (e.g., fjords, coastal 

headlands) during transit to estuarine systems (Moore et al. 2016) or for enhanced feeding 

opportunities (Cote et al. 2021; Nordli et al. 2023). These fish consume a variety of marine prey, 

including pelagic fish, plankton, and benthic organisms (Davidsen et al. 2020; Cote et al. 2021). 

Overall, the migration period serves to increase or restore somatic growth, fecundity, and lipid 

reserves as charr spend the summer feeding (Dempson & Kristofferson 1987; Spares et al. 2015; 

Moore et al. 2016). The baseline knowledge surrounding marine charr habitat associations in 

Nunatsiavut is lacking, particularly with respect to their ecological makeup and trophic levels, 

which ultimately hinders the conservation of this data-poor fishery (Kourantidou et al. 2022).  

The anadromous form stands as one of the most crucial subsistence fisheries for Inuit 

communities in Arctic Canada, due to its wide distribution and relative abundance in northern 

regions (Murdoch 2012; Kourantidou et al. 2022). In fact, the charr fishery out of Nain Bay is 

seen by community members as one of the most important marine resource from a social and 

cultural standpoint across Nunatsiavut (Kourantidou et al. 2022) despite its small contribution to 

fishery revenues, employment, and the broader economic landscape of the region (Kourantidou 

et al. 2020; Kourantidou et al. 2021). This fishery dates to the 1860s (Dempson et al. 2008), has 

a deep cultural connection to Inuit communities in the region, and is still utilized for both 

commercial and subsistence purposes (Kourantidou et al. 2022). Despite the recognized 

adaptability of Arctic charr, as highlighted in previous studies (Dempson et al. 2002; Klemetsen 

et al. 2003; Cote et al. 2021), recent research has indicated that declines in southern Labrador 
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charr populations are anticipated to persist for many decades due to the pressures of climate 

change (Layton et al. 2021). The reduced genetic diversity observed in southern Labrador charr 

populations limits their ability to respond to rapid environmental change. Currently, numerous 

populations of anadromous charr are declining in subarctic and Arctic regions of Norway 

(Svenning et al. 2021; Nordli et al. 2023). These findings are also anticipated in northern 

Labrador as drastic environmental shifts continue (Layton et al. 2021). Furthermore, local 

harvesters in Nain, Nunatsiavut, have reported observing smaller and less abundant charr 

(Dempson et al. 2008; Cote et al. 2021) which may be indicative of a less sustainable fishery due 

to the deteriorating environmental conditions in the region. 

1.5.2 Study species: Ogak / Greenland cod 
Ogak, also known as rock cod or Greenland cod (Gadus ogac), holds significant 

importance as a demersal fish species in the subsistence practices of Inuit communities 

throughout Nunatsiavut. Initially believed to be distributed from Alaska to Greenland and down 

to Cape Breton, Nova Scotia (Scott & Scott 1988), recent evidence suggests that ogak is, in fact, 

a subspecies of Pacific cod (Gadus macrocephalus) (Stroganov 2015; Mecklenburg & Steinke 

2015) as once proposed (Carr et al. 1999). This discovery implies an expansion of their range 

from the western and eastern Pacific through the Bering, Chukchi, and Beaufort Seas across the 

Arctic to eastern Canada and Greenland (Mecklenburg & Steinke 2015). Ogak is primarily a 

coastal species and is seldom encountered in deep or offshore waters (Nielsen & Andersen 2001; 

Knickle 2013). This fish does not engage in extensive migrations and in coastal Newfoundland 

and Labrador, ogak maintains a benthic opportunistic lifestyle, feeding primarily on crustaceans, 

annelids, mollusks, echinoderms, and various fish species such as capelin and Arctic cod 

(Boreogadus saida) (Nielsen & Andersen 2001; Knickle 2013; Knickle & Rose 2014). Due to 

the limited ecological knowledge on ogak in Nunatsiavut, their resiliency to environmental 
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change is largely unknown. A decrease in the abundance of rock cod has been reported by NG in 

recent years, with some communities reporting smaller fish sizes, and rock cod with empty 

stomachs (NG 2018; ASLP 2021).  However, to determine the sustainability of this fishery, more 

baseline ecological knowledge of this species is required. While they tend to remain in proximity 

to the coast throughout their lifespan (Mikhail & Welch 1989), research on the habitat 

associations of ogak is limited. In Nain, fishers actively seek out ogak in the vicinity of eroded 

cobbles and boulders lining cliffsides. Despite the importance of these habitats, detailed 

descriptions of ogak associated habitats have yet to be described in the region (but see Knickle & 

Rose 2014; Schornagel 2015; Dalley et al. 2017 for habitat associations in coastal Newfoundland 

and Labrador).  

1.6 Benthic habitat mapping 
The development of detailed maps of seabed habitats has become a useful tool for managing 

and protecting marine ecosystems. Using a multitude of various technological equipment, 

benthic habitat mapping characterizes distinct areas of the seabed based on physical (e.g., depth, 

bottom-type) and biological variables (e.g., species composition) (Brown et al. 2011). The 

process involves linking spatially limited biological samples, obtained through methods like 

sediment grabs and visual recordings (e.g., videos, underwater imagery), with environmental 

datasets gathered through remote sensing tools (Brown et al. 2011). The linkage is facilitated 

through a variety of modeling techniques, enabling the creation of versatile maps with 

applications across a wide range of research domains, including biology, geology, conservation, 

marine management, marine spatial planning, navigation, and geography (Cogan et al. 2009; 

Brown et al. 2011; Baker & Harris 2020). Furthermore, it has proven highly valuable in 

establishing foundational information for various purposes, like conservation initiatives (Buhl-

Mortensen et al. 2015), and marine spatial planning (Schill et al. 2011). 
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The goal of habitat mapping is to uncover biophysical patterns and processes that allow 

simplified representations of the seafloor. These simplified depictions help us better comprehend 

the functioning of benthic ecosystems, and these representations are continuously being 

improved (Brown et al. 2011). Advancements in acoustic survey technologies, including the use 

of multibeam echosounders (MBES), have allowed marine scientists to achieve similar mapping 

quality and resolution as terrestrial efforts, resulting in highly accurate seafloor images (Mayer 

2006; Brown et al. 2011). The use of these sonar instruments provides essential physical 

information such as bathymetry, describing seabed depth and topography, and backscatter, which 

acts as an indicator of seabed texture and sediment composition. To further describe and 

characterize the seabed, secondary terrain features (e.g., slope, roughness, curvature) can be 

derived from these sonar data (Wilson et al. 2007; Lecours et al. 2017). Although these features 

may not be direct drivers of biological spatial patterns, they offer a measurable proxy for other 

influential variables which are harder to measure directly (e.g., seabed hydrodynamics, food 

supply) (Wilson et al. 2007; Lecours et al. 2017; Mackin-McLaughlin et al. 2022; Nemani et al. 

2022).  

The spatial scale, or spatial resolution and geographic extent, of explanatory features 

mentioned above are important to consider due to the complex dynamics and ecological 

processes within a benthic ecosystem. Most habitat mapping studies apply either single or 

multiscale approaches for the derivation of the attributes mentioned above (Lecours et al. 2015; 

Misiuk et al. 2018; Misiuk et al. 2021; Shang et al. 2021). Single scale approaches use a constant 

analysis scale (e.g., 3 X 3 window) across all features; however, studies have shown that this 

method often fails to consider the scale at which the species-environment relationship is most 

pronounced, and ultimately overlooks important relationships (MacMillan & Shary 2009; Shang 
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et al. 2021). Multiscale approaches are more desirable to help ensure that the most important 

scale-dependent patterns and processes are captured (Porskamp et al. 2018; Shang et al. 2021; 

Nemani et al. 2022; Mackin-McLaughlin et al. 2022). Overall, considering terrain characteristics 

at both finer and broader spatial scales provides a more complete understanding of the benthic 

ecosystem (Dolan 2012; Lecours et al. 2015), especially when considering the underlying 

biological composition of these physical seabed features. 

To visually examine and characterize seafloor biology, underwater imagery and videos are 

commonly used. A variety of underwater video techniques (e.g., towed cameras, baited cameras, 

drop cameras) can be used to observe megafauna (>2 cm) and habitats in marine ecosystems 

(Mallet & Pelletier 2014). These visualizations of the seabed are called ground-truthing, and on 

their own have proven highly useful in identifying and monitoring ecologically important 

habitats and species (Rangeley et al. 2022; Boulard et al. 2023; Zhao et al. 2023). This 

information holds substantial value, particularly in regions where comprehensive acoustic 

mapping is lacking (see Devine et al. 2019; Rangeley et al. 2022). Analysis of video data 

involves meticulous annotations and identifications of species' presence and abundance. These 

observations can then be correlated with features derived from acoustic sonar data through a 

range of statistical modeling techniques (Ferrier & Guisan 2006; Brown et al. 2011; Misiuk et al. 

2019B). Relationships between physical seafloor characteristics (e.g., depth, topography) and 

their influence on the spatial distribution of benthic communities can then be explored and used 

to derive full-coverage habitat maps. 

Numerous demersal fish species, including those of commercial significance, exhibit 

strong associations with various benthic habitat parameters. These parameters encompass factors 

such as the type of substratum, the relief or topography of the seabed, and the presence and 
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density of habitat-forming species (Stephens et al. 2006; Anderson et al. 2009). Our knowledge 

surrounding the distribution of benthic habitats in Nain and their critical role in supporting two 

highly valued species within Nunatsiavut communities is severely lacking. This deficiency in 

information puts local fisheries and the conservation of these fish and their habitats at risk, 

especially in the face of rapid environmental changes. Therefore, there is an urgent need to 

provide more detailed descriptions of these vital benthic habitats, along with their connections to 

the focal fish species. Such information is essential for informing resource management 

strategies and making decisions regarding protected areas in the region. 

1.7 Mapping for marine management 
Benthic habitat mapping plays a crucial role in ecological conservation, pinpointing areas 

with high biological or conservation significance. Notably, it contributes to the establishment of 

baseline information, supporting ongoing monitoring and assessment of temporal changes (Buhl-

Mortensen et al. 2015; Novaczek et al. 2017B; Lacharite & Brown 2019; Proudfoot et al. 2020). 

These maps have also been used to support MPA planning (Lacharite & Brown 2019; Proudfoot 

et al. 2020), promote sustainable fisheries management (Lacharite & Brown 2019) and locate 

commercial fish habitat (Le Pape et al. 2014). Benthic habitat mapping aligns well with 

ecosystem-based management (EBM) strategies, focusing on conserving ecosystem function, 

services, and biodiversity by recognizing intricate ecological linkages across different scales 

(O’Higgins et al. 2020). The maps produced are valuable for understanding the overall 

dispersion of ecosystems, which holds significant importance for both resource managers and 

scientists. Mapping techniques can also be enhanced using local and traditional knowledge 

systems, where knowledge of marine habitat and/or individual species’ distributional patterns are 

passed down for generations (Lauer & Aswani 2008; Teixeira et al. 2013; Misiuk et al. 2019A).  
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Indigenous and Traditional Ecological Knowledge (IEK/TEK) represents the empirically 

accumulated knowledge held by local communities whose livelihoods are closely intertwined 

with natural resources (Berkes 1993). These knowledge systems can serve a comparable function 

to ground-truthing techniques in the context of marine habitat mapping, where it offers firsthand 

observations of marine ecology (Lauer & Aswani 2008; Misiuk et al. 2019A). In Nunatsiavut, 

IEK and TEK have been used extensively to guide Imappivut research goals. Fishing locations 

for Arctic charr and rock cod, passed down through generations, hold immense importance for 

community members in Nain, Nunatsiavut and were the focal points of this research. These 

locations, where community members have historically found great success in fishing for these 

species, were generously shared to deepen our understanding of their habitats. Mapping the 

benthic habitats of these fishing sites will unveil the biological communities that underpin the 

benthic ecosystem, supplying vital ecological baseline information about the habitat preferences 

and associations of these fish species. By integrating IEK/TEK and habitat mapping, important 

knowledge gaps relative to seafloor habitats and the ecology of important species can be filled 

(Misiuk et al. 2019A). Furthermore, this holistic approach has been shown to bolster credibility 

and reduce criticism from diverse stakeholder groups (Silver & Campbell 2005).  

1.8 Rationale 
Understanding the benthic habitat use and associations of charr and ogak through the 

insights from both Inuit and Western scientific perspectives, is crucial for developing co-

management recommendations. These recommendations are essential for the sustainable 

management of these species and their ecosystems in a rapidly changing environment. Indeed, 

this approach fosters stronger community engagement in initiatives such as the planning of 

MPAs and other coastal management interventions (Aswani & Lauer 2006; Lauer & Aswani 

2008; Teixeira et al. 2013). The knowledge derived from this research will help bridge existing 
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gaps in our shared understanding of charr and ogak habitats, contributing to the identification of 

potential threats to these fish and their associated habitats in the region. Moreover, the collection 

of baseline ecological knowledge of Nain’s nearshore benthic environment will contribute to the 

identification of vulnerable and critical habitats for future conservation efforts. Ultimately, this 

collaborative approach, blending traditional knowledge systems with scientific insights, will help 

inform effective co-management strategies and ensure the long-term health and resilience of 

valuable species and their associated habitats.  

1.9 Thesis overview 
The research questions and objectives in this thesis were shaped in collaboration with 

project partners from Imappivut and NG, reflecting the questions and concerns of the local 

community of Nain, Nunatsiavut. The primary objective is to enhance our comprehension of the 

benthic habitats that charr and ogak inhabit, thereby advancing our understanding of the ecology 

of these crucial fish species.  

1.9.1 Associations between iKaluk/Arctic charr (Salvelinus alpinus) and estuarine benthic 
diatom habitats in nearshore Nunatsiavut waters  
Chapter 2 identified the biological makeup of Arctic charr associated habitats, ecological 

relationships within these habitats, and assessed the use of habitat by charr using previously 

collected acoustic telemetry data, harvester-identified fishing locations, and benthic video 

surveys. The main question of this research was which marine benthic habitats do charr associate 

with in Nain, Nunatsiavut? The objectives of the study were to interpret the habitat-use of charr 

by: 

1) Representing benthic biological patterns within charr acoustic receiver locations. 

2) Exploring benthic species-environment relationships. 

3) Calculating charr habitat suitability and habitat availability indices. 
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1.9.2 Association of Ogak/Greenland cod (Gadus ogac) with complex habitats: Insights 
from traditional fishing locations in nearshore Nunatsiavut waters  

Chapter 3 used ogak fishing locations identified by local harvesters to describe and map the 

ecological composition and distribution of benthic habitats in nearshore Nain, Nunatsiavut. The 

study aims to establish a baseline understanding of the benthic habitats in Nain's nearshore 

waters and their relationship with ogak habitat use through habitat mapping. The question lying 

at the foundation of this research was which marine benthic habitats do ogak associate with in 

Nain? The objectives of the study were to interpret the habitat-use of ogak by: 

1) Describing & mapping the distribution of benthic habitats within Nain’s nearshore 

marine environment. 

2) Inferring benthic relationships within rock cod habitats. 

3) Establishing a baseline for future conservation efforts relative to ogak and other 

important benthic species. 

1.9.3 Conclusions 
Chapter 4 of this thesis delves into the conclusions drawn from the study and outlines 

potential avenues for future research. This chapter highlights important findings from this 

research and recommendations for management. This section is targeted towards the Nunatsiavut 

Government and residents of Nain. Its purpose is to support resource users in identifying critical 

habitats for conservation, tackling the difficulties presented by changing environmental 

conditions, and determining the subsequent actions required to safeguard the region's valuable 

marine resources. 
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Abstract 
 iKaluk, Inuktitut for Arctic charr (Salvelinus alpinus), holds significant commercial and 

cultural value for Inuit communities throughout Nunatsiavut. Studies evaluating charr habitat 

associations in freshwater are plentiful; however, there is limited information on the ecological 

makeup and sediment characteristics of anadromous charr habitats in marine environments. This 

study investigated the available habitat and habitat use of Arctic charr during their marine 

residency period in Nain, Nunatsiavut using underwater videos, harvester-identified fishing 

locations, and acoustic telemetry. Drop-camera surveys were deployed on previously placed 

hydrophone acoustic receivers and within harvester-identified fishing locations to describe and 

quantify available benthic habitats in the study area. Telemetry information was used to identify 

charr presence hotspots, track movements between receivers and calculate habitat suitability 

indices. A total of 248,056 organisms belonging to 63 morphotaxa were identified within the 125 

video drops used for benthic community analyses and these represented five faunal assemblages. 

The assemblage prevalent in the majority of charr hotspots, characterized by homogeneity and 

extensive brittle star (Ophiuroidea spp.) coverage, was frequently observed in Nain estuaries 

with fine sediments covered by benthic diatom mats. These habitats likely offer abundant 

foraging opportunities. The highest habitat suitability values for tagged charr were observed on 

these diatomaceous sediments, where they were detected the most and spent the most time 

cumulatively. The results of this study serve to fill gaps in ecological knowledge relative to the 

benthic habitats present in Nain, as well as the habitat associations of the iconic Arctic charr, a 

species of paramount importance to Inuit communities. Moreover, these findings aim to support 

management strategies for the charr fishery in Nain, which faces increasing threats from the 

accelerated environmental perturbations taking place in the North. 

 

 



2-2 
 

2.1 Introduction 
In the context of widespread global concerns about climate change, Arctic and subarctic 

regions serve as critical indicators of profound environmental transformations. This is evident in 

the case of northern fish populations, where trophic dynamics are being disrupted, geographic 

ranges are in flux, and critical life history traits are being lost due to warming temperatures 

(Falardeau et al. 2017; Layton et al. 2021; Wight et al. 2023). Nunatsiavut, situated in Inuit 

Nunangat (Inuit homeland in Canada), stands at the forefront of these rapid environmental 

changes. Nunatsiavut is an Inuit self-governed area located in the northern part of Labrador, 

Canada where heightened Arctic warming, and climate-driven environmental changes have 

caused shifts in the distribution of marine species and a loss of habitat (Cunsolo Willox et al. 

2013; Ford et al. 2012). Since 1993, consistent annual warming has led to reduced ice coverage 

on both land and sea, accompanied by a notable alteration in fjord salinity in the region (Allard 

& Lemay 2012). These impacts are poised to intensify in the near future due to the current rate of 

climate change (Post et al. 2019), and important species for Inuit communities, like iKaluk - 

Arctic charr (Salvelinus alpinus) (Linnaeus 1758), are becoming increasingly vulnerable (Layton 

et al. 2021). 

Arctic charr exhibit high variability in habitat selection with a circumpolar distribution, 

ranging from the Arctic to north temperate regions (Johnson 1980; Reist et al. 2013). Across 

their range, anadromous charr play a significant role in the economies and livelihoods of 

northern communities by supporting commercial fisheries (Day & Harris 2013; Roux et al. 

2019), and holding profound cultural, and food security significance (Friesen 2002; Dubos et al. 

2023). The Arctic charr fishery out of the Nain region in Nunatsiavut, Labrador, Canada, is 

perceived as the most significant marine resource, holding critical social and cultural importance, 

throughout Nunatsiavut (Kourantidou et al. 2022). In the sea, charr inhabit a range of habitats 
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stretching from protected estuaries to coastal headlands, but a clear preference for estuarine 

environments is reported in the literature (Spares et al. 2015a; Moore et al. 2016; Cote et al. 

2021). These estuaries host a diverse range of prey for charr, including benthic invertebrates and 

fish, which are integral components of the Arctic charr diet (Dempson et al. 2002; Spares et al. 

2012). Supporting the preference for estuaries, community members and harvesters in Nain have 

traditionally been successful in catching charr within local estuaries during the summer (Mary 

Denniston, personal communication). These fishing locations are vital for community members 

and have been passed down for generations for subsistence and economic gain. The combination 

of intermediate salinities (Thorpe 1994), optimal temperatures (Harris et al. 2020), and high 

productivity, leading to rich foraging opportunities (Miller & Sadro 2003), allows for a gradual 

transition into the marine environment after spawning, and makes estuaries highly attractive for 

anadromous salmonids. The timing and duration of estuarine residency can vary (Dempson & 

Kristofferson 1987; Klemetsen et al. 2003; Spares et al. 2015a; Harris et al. 2020), but 

anadromous charr typically reside within and near estuarine systems, and may venture along the 

coastline to other habitats (e.g., fjords, coastal headlands) while in transit to estuarine systems 

(Moore et al. 2016) and/or for increased feeding opportunities (Cote et al. 2021; Nordli et al. 

2023). The motivation to journey beyond these estuarine systems has been linked to variations in 

sex, size, maturation, local environmental conditions, the availability of food resources, and the 

proximity to other river systems (Dempson & Kristofferson 1987; Spares et al. 2012; Spares et 

al. 2015a; Cote et al. 2021).  

The preferences and use of habitat by charr have been extensively studied in freshwater 

environments (Sandlund et al. 2010; Sinnatamby et al. 2012; Murdoch & Power 2013), and 

studies on their movements are also plentiful (Spares et al. 2015a; Moore et al. 2016; Harris et al. 
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2020); however, there is limited information about the ecology of anadromous charr habitats in 

marine environments. Refuges for charr, like estuaries, along with other critical habitat used for 

foraging, are threatened by changing environmental conditions, particularly in northern regions 

which are experiencing more accelerated and pronounced impacts of climate change relative to 

the rest of the world (Bush & Lemmen 2019). Understanding charr-associated marine habitats 

can help us assess changes in charr habitat associations and the ecosystems that are key to their 

survival (Harris et al. 2020). 

A lack of comprehensive biological knowledge about a species can severely hinder its 

sustainable management, potentially resulting in collapse (Hutchings 1996; Walters & Maguire 

1996; Foley et al. 2011). The significance of this challenge is especially pronounced in the 

context of studying Arctic charr habitats. The lack of sufficient data and a solid grasp of both the 

biotic and abiotic characteristics of these habitats limits our ability to fully comprehend the 

consequences of environmental changes. It also hinders the establishment of a clear link between 

habitat health and the productivity of the fishery, and makes it difficult to assess the impacts of 

present harvesting levels on future harvesting opportunities (Kourantidou et al. 2021; 

Kourantidou et al. 2022). Due to high operating costs and seasonal or perennial ice cover in the 

North, sampling seasons are short, causing scientific surveys to be highly constrained (Coad and 

Reist 2017; Wynja et al. 2015). As such, there is a limited understanding of the spatial 

distributions, abundances and functional roles of many species and habitats in northern waters. In 

addition, knowledge on baseline coastal information such as bathymetry, and biological 

community composition is sparse within the habitats occupied by valuable species, like charr. 

Investigating the biological makeup of these marine ecosystems (e.g., estuaries, fjords) will 
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enable the understanding of habitat associations of commercially and culturally important 

species in the region.  

The lack of ecological knowledge on charr stocks, combined with coastal knowledge 

gaps and the threat of climate change in the region have sparked the development of the 

Imappivut – ‘Our Oceans’ Marine Planning Initiative. This initiative was developed by the 

Nunatsiavut Government through consultation and collaboration with communities in order to 

manage and protect Labrador Inuit interests in the coastal and marine areas of Labrador. Further 

understanding habitat associations for fish like charr can inform management strategies, assess 

the quantity and health of fish habitat, and aid in forecasting and observing the effects of habitat 

changes on fish populations (Rudolfsen et al. 2021). The primary objective is to fill ecological 

knowledge gaps within the marine habitats of Arctic charr, a species of social, commercial, and 

cultural importance to northern communities. In this study, 1) epifaunal-habitat associations were 

investigated using drop-camera surveys within charr acoustic receiver locations and local 

harvester-identified fishing locations; 2) benthic species-environment relationships were 

explored; and 3) benthic habitat availability and suitability was assessed using habitat suitability 

indices for Arctic charr in Nain, Nunatsiavut.  

2.2 Methods 
2.2.1 Study Area 

This study focuses on the marine charr habitats in Nain, Labrador, Canada. Nain is a 

remote coastal community nestled within Nunatsiavut (56◦N, 61◦W; Fig 2.1), a region at the 

transition between subarctic and polar climates. Its coast is open to the Labrador Sea and is 

characterized by rocky islets and deep fjords, forming an expansive archipelago teeming with 

marine biodiversity (Rangeley et al. 2022). Nain stands as the largest Inuit community in 

Nunatsiavut and holds the distinction of being one of the oldest permanent Inuit settlements in 
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Canada. The marine environment is a cultural cornerstone and plays a crucial role for Inuit 

communities, providing subsistence and economic opportunities through species like Arctic 

charr. Despite the rich baseline ecological data derived by local knowledge holders throughout 

the community, Nain's coastline remains largely unmapped, lacking comprehensive bathymetric 

and Western scientific data. Consequently, there exists a limited understanding of the spatial 

distributions and roles of various habitats on its seafloor.  

 

Figure 2.1  Drop-camera (n=125) and hydrophones (n=25) sites in the Nain region of Newfoundland and 

Labrador, Canada. Hydrophones are positioned in Nain Bay (Estuary: n=5), Tikkoatokak Bay (Estuary: 

n=3, Fjord: n=2), Ocean Channel (Fjord: n=4), Anaktalak Bay (Estuary: n=1), Webb Bay (Estuary: n=1, 

Fjord: n=3), and coastal headlands (Coastal: n=4). Hydrophones are located in the center of each cluster 

of 4 drop camera stations. Canadian Hydrographic Service Non-Navigational (NONNA) bathymetric 

coverage with a spatial resolution of 100 metres is shown in the background. The sites in Anaktalik Bay 

did not contain a hydrophone, but were community-identified as important fishing locations for Arctic 

charr.  
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2.2.2 Site selection 
Drop-camera deployments were placed surrounding the sites of previously deployed 

hydrophones. Hydrophone acoustic receivers (n=24) deployed by Fisheries and Oceans Canada 

(DFO) were positioned in river estuaries, fjords, and coastal headlands to record movements of 

tagged Arctic charr in the summer of 2018 and 2019, using a method designed to replicate charr 

migratory pathways (i.e., anadromy) (Klemetsen et al. 2003; Cote et al. 2021). Video drift 

surveys were conducted at every hydrophone location. Within these locations, we observed an 

overlap with traditionally important Arctic charr fishing areas. These fishing spots, identified by 

local community members and provided by the NG for our study, were among the hydrophone 

estuary locations (Fig 2.1). We also conducted surveys at an additional fishing location in 

Anaktalik Bay, despite the absence of a hydrophone. This site was treated as if a hydrophone 

were present for the survey. 

2.2.3 Video surveys 
Most sites were surveyed in September 2021; however, coastal hydrophones, and sites in 

Anaktalak and Anaktalik Bays were surveyed in October 2022. Video surveys were performed 

using five replicate video camera drops positioned north, south, east, west, and within the center 

of each charr hydrophone site from September 9 - 15, 2021, on the local M/V Safe Passage, for a 

total of 95 video samples (5 videos X 19 sites). Video surveys were employed using the DTPod 

drop camera system manufactured by Deeptrekker inc. DTPod specifications include an LED 

light (1000 Lumens), two red-light scaling lasers 2.5 cm apart, and high-definition video (1920 x 

1080, 30 fps) recording capabilities. From October 3 – 12, 2022, thirty additional drop-camera 

surveys were conducted (5 videos X 6 sites) on the local M/V Inuttatik with the same camera 

system. These surveys were conducted around the four coastal hydrophone locations, a 

community identified location in Anaktalik Bay, and an additional hydrophone location in 
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Anaktalak Bay. Videos spanned a total of five minutes while drifting at each drop site. Overall, 

125 videos were collected within 24 hydrophone locations and one community identified fishing 

location.  

In addition to these video surveys, photographic transects were performed on the 2022 

R/V William Kennedy to collect additional benthic community data on the two coastal sites near 

Paul Island (sites 24 & 25). The custom drop-camera, built by Natural Resources Canada, was 

triggered to take a photograph every time the attached hanging weight touched the seafloor 

(Normandeau et al. 2018; Campbell & Normandeau 2019). A Canon Rebel Digital SLR and 

Canon flashes were used, powered by a 12 volt/80 Amphr Deep Sea Power & Light pressure-

compensated sea battery. Transects were performed taking approximately 20 photos with a 12 

kHz OIS pinger mounted on the camera sled being monitored for bottom trigger closure using 

the Knudsen 12 kHz in Pinger mode.  

2.2.4 Video analysis 
Using the Monterey Bay Aquarium Research Institute’s (MBARI) Video Annotation and 

Reference System (VARS) (Schlining & Stout 2006), videos were annotated based on a 

randomized order to reduce human annotation biases (Durden et al. 2016). Every organism 

greater than 2 cm was counted and identified to the lowest taxonomic level. Due to poor video 

quality, suspended sediment, or camera drift speed, species-level identification was not always 

possible; therefore, identification was done using morphotypes (Howell et al. 2019) based on the 

production of an image catalogue for the Nain region (Supplementary material). Taxa 

identification was performed with aid from experts and published species identification guides 

(Nozères et al. 2014A; Nozères et al. 2014B; Salvo et al. 2018; Lacasse et al. 2020). Similarly, 

photographic transects were annotated using the same method in ImageJ, an open source image 

processing program. 
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All substrates (Fig 2.2) observed in the survey were identified and classified with 

guidance from the Coastal and Marine Ecological Classification Standard (Federal Geographic 

Data Committee 2012). The substrate classes documented in this survey included: a) fine 

sediments, b) fine sediments with pebbles, c) gravel mix with algal turf, d) diatomaceous 

sediment, e) gravel, f1) scallop shell hash, and f2) mussel shell hash. The majority of sites were 

dominated by substrate classes A – E and only had patches of shell hash (F1, F2) (Fig 2.2); 

therefore, sites were categorized within the dominant substrate classes only. However, reliance 

on video for substrate identification meant that differentiating between mud and sand could not 

be reliably achieved (combined into fine sediments) while hard substrate under a veneer of soft 

substrate was unidentifiable. Using the software Blender, 1 frame for every 10 second intervals 

was extracted from each video and overlayed with 30 randomly placed points in ImageJ.  Each 

of the randomly placed points were then assigned to a substrate category and the percentage 

cover of sediment in each image was calculated. The distance between the two reference lasers 

was measured and used to estimate sediment grain size.  
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Figure 2.2  Images of the different substrate classes identified during video annotation: A) fine sediments, 

B) fine sediments with pebbles, C) gravel mix with algal turf, D) diatomaceous sediment, E) gravel, F1) 

scallop shell hash, and F2) mussel shell hash. White bar for scale is 2.5 cm. 

 

2.2.5 Epibenthic community analyses 
All epibenthos abundance data obtained from the 125 video surveys were aggregated per 

hydrophone site. Taxa with three or fewer observations in all 25 sites were removed from the 

data set prior to analysis to reduce the variability caused by these low abundances (Brown et al. 

2012). The visual footprint (area 𝑚2) of each image extracted for the substrate classification was 

computed using Biigle’s laser point detection tool (Schoening et al. 2015; Langenkämper et al. 

2017). The summed visual footprint was used to estimate the approximate area (m2) of each 

transect and the total number of organisms per morphotype per transect was converted into 
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densities. Using Bray-Curtis (Bray & Curtis 1957) similarities, the distance for the species 

matrix was calculated. The species matrix was Hellinger transformed to reduce the effect of 

higher abundances (e.g., Ophiuroidea spp.) (Legendre & Gallagher 2001). 

 Cluster analyses (i.e., Hierarchical Clustering Analysis) were performed in R using the 

hclust function in the ‘cluster’ package. These clustering techniques were used to identify 

discontinuities and groupings of organisms within the data (Legendre & Legendre 2012; Brown 

et al. 2012; Van Der Reijden et al. 2021). An average hierarchical clustering method 

(‘Unweighted Pair-Group Method using arithmetic Averages’ – UPGMA) was selected to derive 

faunal assemblages from the Hellinger-transformed species density data (Sokal & Michener 

1958; Borcard et al. 2018). To determine the size and cutoff of each cluster, fusion level values, 

silhouette widths and matrix correlations were optimized (Borcard et al. 2018). Analysis of 

similarity (ANOSIM), is a non-parametric statistical test, and was used to identify significant 

differences between and within clusters. To investigate the number of observed species relative 

to the sampling effort, species accumulation curves were derived (Gotelli & Colwell 2001). 

Species accumulation curves were created for each hydrophone site and cluster.  

To describe the biological composition of each assemblage the dominant taxa were 

derived. Dominant taxa consist of the most abundant species within a community that may 

influence the occurrence and distribution of other species and overall community structure (Smee 

2010; Nemani 2022). These organisms have abundances that are greater than the individual 

group assemblage mean (Borcard et al. 2018). Additionally, an Indicator Value approach was 

used to determine indicator taxa of each assemblage (Dufrêne and Legendre 1997). These values 

were derived using the indval function from the ‘labdsv’ package in R and are used to measure 

the association between a species and assemblage by assessing the relative abundance and 



2-12 
 

frequency of each species per grouping. The function aims to identify an ideal indicator species 

found exclusively for each assemblage (Mouillot et al. 2002; Dufrene and Legendre 1997). 

Because the indicator species are determined based on their specificity to one grouping, they are 

useful for monitoring changes to the sites associated with those specific groupings (McGeoch & 

Chown 1998; Kubosova et al. 2010).     

2.2.6 Modelling of benthic species-environment relationships  
Prior to modelling the influence of environmental variables (Appendix: Table 2.2) on 

assemblages, a data exploration protocol was performed using methods from Zuur et al. (2010). 

This exploration method consisted of (1) identifying any outliers in the response and explanatory 

variables; (2) assessing the homogeneity of variance in the response variables; (3) assessing 

normality in the response variables; (4) checking for zero inflation in the response variables; (5) 

assessing collinearity between all explanatory variables; (6) visualizing the relationship between 

response and explanatory variables; (7) checking for interactions; (8) checking for independence 

in the response variables. In addition to the substrate percentage cover described previously, 

from the 5 video drops at each hydrophone, depth was measured using the vessel’s depth sounder 

and the mean value was calculated. Each drop location was measured to the nearest river mouth 

on ArcGIS Pro using the Geodesic measurement tool which is calculated in a 3D spherical space 

as the distance across the curved surface of the world (Appendix: Table 2.2). A mean distance to 

freshwater variable was then calculated per hydrophone site.  

Using the Hellinger-transformed species matrix, a redundancy analysis (RDA) was 

performed using the Vegan package in R to summarize the variation in faunal density and to 

explain this variation using a set of explanatory variables. RDA is a canonical ordination 

approach that can be used to statistically test the relationships between environmental variables 

and species data (Legendre & Legendre 2012). To select the explanatory variables tested in the 
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RDA, linear dependencies were explored by computing the X variables’ variance inflation 

factors (VIF) and a forward variable selection procedure was performed (Borcard et al. 2018). 

The number of explanatory variables were reduced to achieve model parsimony and avoid strong 

correlations among the explanatory variables. Only taxa with a goodness-of-fit of at least 0.65 in 

the ordination plane formed by axes 1 and 2 were represented in the RDA. To test the 

significance of the RDA, along with the explanatory variables and canonical axes, permutation 

tests were performed (n=999). 

2.2.7 Telemetry 
The DFO hydrophone acoustic data on Arctic charr from 2018 to 2019 (see Cote et al. 

2021 for collection and tagging methodology) contained detection information for 18 receivers 

and 47 unique animal IDs. Of the 24 deployed acoustic receivers, two were lost (one in Nain Bay 

and one in Webb Bay) and unable to provide telemetry data, and the four coastal receivers did 

not have any detections throughout the duration of their deployment. Detection data was 

imported into R and the GLATOS package was used to identify and remove potential false 

detections from the dataset (Holbrook et al. 2019). A false positive detection (i.e., false 

detections) occurs when two or more transmitter signals collide and cause a different unique tag 

ID code by receiver (Simpfendorfer et al. 2015). The ‘false_detections’ function in GLATOS 

was used to identify false detections where the time between that detection and the next closest 

detection of any one transmitter on the same receiver (‘min_lag’) exceeds the threshold time (tf) 

(Binder et al. 2017), set as 45 minutes for the current study. Individual animals that were not 

detected at least twice by the same receiver at different times or were not detected by more than 

one receiver were removed (Binder et al. 2017; Murray 2022).  

To examine residency time, the ‘detection_events’ function was then used to distill 

20,332 detections down to 87 distinct detection events (i.e.  a period of a series of sequential 
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detections that occurred on the same receiver before being detected on a different receiver 

(Binder et al. 2017). The threshold time to distinguish an event was set to 5 days (432000 

seconds) to preserve the limited data available. Fish residency time at each receiver was derived 

to create a rasterized movement map of local hotspots. A comparison of residency time in 

estuaries, fjords and coastal headlands was made, and by extracting the substrate type and 

community information present at each assemblage, interpretations on the habitat associations of 

the focal fish species were made (Murray 2022). 

Fish movement was classified as either sedentary, where there are no movements 

between receivers, but are repeatedly detected at one location, or vagrant, where individuals were 

detected by at least two more distantly spaced receivers (Béguer‐Pon et al. 2015; Murray 2022). 

A two-sample t-test was then used to determine whether the total length and weights of sedentary 

charr were significantly different from vagrant charr, as larger charr are more likely to travel 

further from their natal river mouths (Dempson & Kristofferson 1987; Nordli et al. 2023). 

Movement between receivers was calculated using the ‘shortestPath’ function from the 

gDistance package in R, which calculates the least-cost distance between points in the water 

while using a land polygon as a boundary. The total estimated distance travelled, and the 

minimum distance dispersed from the release site was calculated for each individual fish and 

their movements were compiled to represent their pathways throughout the study sites in a heat 

map (see Hamoutene et al. 2018 for full methodology). The generated summary grid was 

smoothed for visual clarity by averaging each cell value with those in the surrounding two 

adjacent cells. Specifically, this involved considering values from a 5 × 5 grid centered on the 

point of interest, achieved through the ‘focal’ function in the Raster package. The density 
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calculations were determined by the frequency of overlap between an estimated track and each 

grid cell (Hamoutene et al. 2018). 

Habitat availability and suitability was calculated using a habitat suitability index (HSI) 

method outlined in Rudolfsen et al. (2021). The obtained value (0-1) estimates the suitability of 

habitat types for populations based on the species observed presence or absences within a dataset 

(Murray et al. 2022; Rudolfsen et al. 2021). HSI was calculated based on the number of 

individual detections that occurred on a given substrate. An average HSI was determined for 

each substrate class (Rudolfsen et al. 2021) throughout the duration of the telemetry data (2018-

2019). A chi-square goodness of fit test was used to determine if there was a significant 

difference in habitat use (observed) and available habitat (expected) based on the prediction that 

charr use all the habitat available to them. The mean proportions of availability and use of 

habitat, which are metrics within the HSI calculation (see Rudolfsen et al. 2021), were used to 

estimate the number of charr that were expected and observed to use a particular habitat, 

respectively. 

2.3 Results 
2.3.1 Charr hotspots & substrate types  

Of the 47 fish in the raw dataset, 3 were not detected by the same receiver at different 

times and were filtered out of the analysis leaving a total of 44 animals. Charr hotspots (i.e., high 

level of charr movement) around Nain showed that for the majority of this study’s duration, charr 

frequented estuarine habitats during their period of marine residency (Fig 2.3). Three movement 

hotspots were identified in Tikkoatokak Bay, Nain Bay, and Webb Bay; however, a charr 

movement hotspot was also observed in Anaktalak Bay where they remained sedentary. It should 

be noted that migration route coverage for Anaktalak Bay was limited to one receiver; therefore, 

charr may have used other habitats in proximity. The estuarine habitats were mostly dominated 
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by fine sediment overlain with diatom mats (Fig 2.3). Charr spent 61 % of their time near 

hydrophones positioned in diatomaceous substrates. Hydrophones located on fine sediment 

seafloors were used the second most at 16%. Sites with fine sediments covered in pebbles as well 

as gravel mix with algal turfs were not as frequently occupied by charr, at only 11% and 12%, 

respectively.  

Table 2.1  Cumulative residency time (days) spent at receivers positioned in four substrate classes. 

 

 

Figure 2.3  Arctic charr rasterized movement paths (5 x 5 grid) between acoustic receivers and substrate 

classes. Charr hotspots around Nain are highlighted in green and yellow. Density calculations are based 

on the number of times an estimated track overlaps with each grid cell (815 m × 387 m). Receivers are 

coloured by dominant substrate class identified during video annotation.   

 

Fine 

sediments

Diatomaceous 

sediments

Fine sediments 

with pebbles

Gravel mix 

with algal turf

Cumulative time (days) 70 265 49 52

Proportion (%) 16.0 60.8 11.3 11.9



2-17 
 

2.3.2 Community analyses  
A total of 248,056 organisms belonging to 63 morphotaxa were identified within the 125 

video drops used for community analyses and these were clustered into five faunal assemblages 

(Fig 2.4). The ANOSIM statistic (R = 0.976) indicated a significant difference in species 

composition between the clusters (p < 0.001), suggesting distinct taxonomic profiles. Species 

accumulation curves for each assemblage revealed that assemblages 2, 4 and 5 were not 

sufficiently sampled because of their limited spatial coverage (Fig 2.5). Assemblage 1 had the 

largest spatial extent, representing 56% of all video drops and occurring mainly in estuaries with 

fine sediments, diatom mats and evidence of bioturbation. This assemblage contained 223,700 

individuals across 60 morphotaxa; however, the most commonly observed organism, and also 

this assemblage’s indicator taxa (Appendix: Figure 2.10), was the brittle star (Ophiuroidea spp.) 

(n = 194,889) which created extensive agglomerations. The assemblage also contained 11 

dominant taxa (Fig 2.6) that included two potential local prey species (sculpin, Cottidae spp. and 

snake blennies, Lumpenus lampretaeformis) for Arctic charr. Assemblage 2 represented 8% of 

all video drops and occurred within fjords dominated by a mixed gravel substrate sparsely 

populated by large boulders, pebbles, and algal turf. This assemblage was characterized by 

epibenthic fauna that attached to the underlying hard substrate, like northern red anemones 

(Urticina felina) (n = 5,278) and sea stars (Leptasterias polaris & Asteroidea spp.). In addition to 

those indicator taxa, the assemblage contained 13 total dominant taxa. This assemblage 

contained 10,758 individual organisms across 48 taxa. Assemblage 3 had the second largest 

spatial extent, representing 28% of all video drops, occurring only in fjord and coastal habitats 

with fine sediments, pebbles, cobbles, boulders, and patches of algal turf. Characterized by 

scarlet sea cucumbers (Psolus fabricii) and bryozoans (Bryozoa spp.) as the indicator taxa, this 

assemblage held 27 dominant morphotaxa and 10,055 individual organisms across 57 taxa. 
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Assemblages 4 and 5 were represented by only one site each. Assemblage 4 was located in an 

estuarine habitat and was comprised of fine sediments that were mostly barren, but had small 

patches of epibenthic fauna. This assemblage contained 690 individual organisms across 26 taxa 

and was characterized by bivalves (Portlandia arctica), ascidians (Ascidiacea spp.) and 

bryozoans (Bryozoa spp.) as the indicator species. There were 16 dominant taxa within this 

assemblage, and the majority of these had low occurrences. Located near the estuarine habitat in 

Anaktalak Bay, Assemblage 5 was comprised of fine sediments with a diatomaceous cover and 

was characterized by tube-dwelling anemones (Ceriantharia spp.) as the indicator taxon. This 

assemblage contained 2,853 individuals across 18 taxa and showed similarities to Assemblage 1; 

however, it mostly lacked the presence of Ophiuroids (n = 1). There were 12 dominant taxa in 

this assemblage which included patches of sponges (Porifera spp.) and potential local prey 

species (sculpin & snake blennies) for Arctic charr. These prey items were dominant taxa in all 

other assemblages as well.
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Figure 2.4  Unique assemblages of epifauna found in surveyed habitats based on hierarchical clustering 

(UPGMA). Indicator taxa silhouettes represent each assemblage.  

 

Figure 2.5  Species accumulation curves for each epifaunal assemblage derived from clustering. Figure 

includes the summation of species observed across all sites included in analysis (in black).Y axes 

represent the number of morphotaxa observed; X axes are the total number of sites sampled. 
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Figure 2.6  Images of epifaunal assemblages and dominant taxa observed for each species assemblages observed around Nain. Sample size refers 

to the number of drop-camera stations.
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A redundancy analysis (RDA) was performed to investigate species-environment 

relationships. Six explanatory variables were retained after forward selection: depth, mean 

latitude (meanlat), and the four substrate classes (subclass). The selected environmental variables 

significantly explain 44% (R2adj) (p = 0.001) of the variation in benthic taxa abundances and the 

parsimonious model yielded two significant axes (RDA1: p = 0.001, df=1, F=18.230, RDA2: p = 

0.039, df=1, F= 3.243) (Fig 2.7). The proportions of accumulated constrained eigenvalues (i.e., 

proportions relative to the explained variance) showed that the first axis alone explains 24.4% 

variance, while both axes together explain 28.7%. Of the explanatory variables, a permutation 

test determined that substrate class (p = 0.001, df=3, F= 6.712) significantly influenced the 

variation in epifaunal density. 

Morphotaxa with a goodness of fit greater than 0.65 included green sea urchins 

(Strongylocentrotus droebachiensis), slime tube worms (Myxicola infundibulum), as well as two 

indicator taxa including scarlet sea cucumbers, and brittle stars (Ophiuroidea spp.) (Fig 2.7).  

Urchins were positively correlated with heterogeneous habitats, such as Gravel Mix with Algal 

Turf. In contrast, brittle stars were positively correlated with homogeneous habitats dominated 

by Fine Sediments at higher latitudes as well as Diatomaceous Sediments. Sites associated with 

the brittle star-dominated assemblage were mostly found to be correlated with depth, with 

shallower sites found mostly in Diatomaceous Sediments. Sites that were positively correlated 

with Fine Sediments with Pebbles were associated with a high abundance of scarlet sea 

cucumbers found attached to the larger pebbles and rocks. Slime tube worms, which were 

exposed above the fine sediments, were also associated with these sites (Fig 2.7).  
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Figure 2.7  Taxa (<0.65 goodness of fit) and environmental variable associations with assemblage types, 

based on parsimonious RDA. Points are coloured according to assemblage. Scaling shows the strength 

and effect of explanatory variables. 
 

2.3.3 Habitat associations & movement 
 Habitat associations were assessed for all charr detected in the study (n=44). Some charr 

were detected within all substrate classes identified; however, individual variability in substrate 

use was observed (Appendix: Table 2.3; Table 2.4). Sedentary charr represented 59% of the 

individuals in the study and predominantly remained within estuarine habitats, with the 

exception of one individual (ID: 2459) who remained in a fjord in proximity to an estuary for the 

duration of its receiver detections. Of the sedentary individuals, 23 were detected only on 

Diatomaceous Sediments while the other 2 were detected on Fine Sediments and Fine Sediments 

with Pebbles, respectively (Appendix: Table 2.4). Vagrant charr tended to frequent harder 

substrates, like Fine Sediments with Pebbles and Gravel Mix with Algal Turfs more often; 

however, on average vagrant charr were found to frequent Diatomaceous Sediments and Fine 
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Sediments the most (Fig 2.8). Overall, tagged charr in this study were detected 71% of the time 

in Diatomaceous Sediments found in estuaries. The mean weights and lengths of sedentary charr 

were not significantly different from the vagrant charr according to the two-sample t-test.  

 

Figure 2.8  Mean sedentary, vagrant, and total charr variability per substrate classification (% use) based 

on number of detections. Number of individuals (n) per substrate class is also indicated. 

2.3.4 Habitat availability & habitat use 
 On average, the most used substrate class by charr was Diatomaceous Sediments 

followed by Fine Sediments, Gravel Mix with Algal Turfs, and Fine Sediments with Pebbles. 

The mean HSI values exhibited the same pattern (Fig 2.9). The substrate class with the most 

availability in the survey area was Fine Sediments with Pebbles, followed by Fine Sediments, 

Diatomaceous Sediments, and Gravel Mix with Algal Turfs. There was a statistically significant 

difference in the mean habitat used (observed) and habitat available (expected) in the chi squared 

test (p<0.001, df=3, ꭓ2 = 58.270).   



2-24 
 

 

Figure 2.9  Habitat suitability indices (HSI) for Arctic charr (n=44) by substrate class based on telemetry 

detections from August 03, 2018 to September 10, 2019. Points indicate the average HSI value for each 

substrate for all charr. Error bars represent the 95% confidence intervals of the HSI values. Habitat 

availability was calculated using the number of receivers in each substrate class. Habitat use proportions 

were based on the telemetry detections of individual char. 
2.4 Discussion 

The spatial representation of epifaunal assemblages in community-identified charr fishing 

locations and telemetry information from the summer of 2018 and 2019 provides valuable 

information on charr habitat associations in the marine environment. The findings elaborate on 

the significance of estuarine habitats, identifying those dominated by fine sediment covered with 

diatom mats, as charr hotspots during their period of marine residency. Habitat associations of 

charr are important to establish in order to address critical knowledge gaps in the ecology of this 

iconic fish, and aid in the development of targeted conservation and management strategies. 

While the primary objective was to unveil Artic charr habitat associations, the video surveys 

concurrently addressed the scarcity of baseline ecological data in the region. Despite ongoing 

efforts to expand the protection of northern habitats, potential gaps in critical habitat information 

persist.  
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2.4.1 Charr habitat associations 
The utilization of non-estuarine habitats by charr in Nain exhibits variability year to year 

(Cote et al. 2021) and has been linked to biological characteristics (e.g., size, sex), local 

environmental conditions, foraging opportunities, and the proximity to other river systems 

(Dempson & Kristofferson 1987). However, the preference for estuarine habitats during charr 

marine residency has been well-documented in the literature (Spares et al. 2015a; Moore et al. 

2016; Cote et al. 2021). Several hypotheses have been proposed to explain this preference, 

including the presence of intermediate salinities in estuaries, optimal temperatures (Harris et al. 

2020), and rich foraging opportunities (Miller & Sadro 2003; Moore et al. 2016). While these 

factors have been studied, limited attention has been given to understanding the productivity 

patterns of coastal habitats within Nunatsiavut (McCarney et al. in press) or the intricacies of the 

food-web dynamics. 

Diet analyses conducted in Nain have revealed a preference for Arctic charr piscivory on 

capelin (Mallotus villosus) and sand lance (Ammodytes spp.) (Dempson et al. 2008; Cote et al. 

2021), with higher levels of piscivory in nearshore areas relative to offshore areas. It has been 

suggested that estuaries in Nain may attract a higher abundance of charr and limit their 

exploration of non-estuarine habitats in years when capelin and sand lance are more plentiful 

(Cote et al. 2021). Like 71 % of detections in this study, Harris et al. (2020) found that 72.6 % of 

charr detections in the Cambridge Bay region of Nunavut occurred in estuaries. The study also 

suggested a link between charr prey preferences and their estuarine habitat use, as capelin, which 

spawn in shallow-water, seem to be highly important in the diet of Cambridge Bay charr (Harris 

et al. 2020). Although substrate was not assessed in the study, their findings mirrored the 

importance of estuarine habitats for charr in Nain, where sedentary and vagrant charr 

predominantly occupied shallow estuarine habitats with diatomaceous sediments throughout the 
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entire summer of 2018 and 2019. Through commercial fisheries in Nain, associations between 

captured charr near coastal headlands (far from natal estuaries) and a diet shift away from 

capelin has been observed (Cote et al. 2021). It is possible that capelin abundance was high in 

Nain estuaries throughout the duration of this study (2018-2019), as they continue to recover 

from their low abundance in the 1990s (Cote et al. 2021). Diatom mats covering the sediments of 

these estuaries may support the abundance of this prey, although they were not observed in video 

footage from this survey. Despite this, the use of other prey taxa like sculpin and blennies in 

Arctic charr diets (Dempson et al. 2002; Spares et al. 2012) may also contribute to their common 

use of estuarine habitats covered in diatom mats. 

The role of benthic diatoms in estuarine ecosystems is crucial, influencing the carbon 

cycle in coastal environments and acting as a primary food source in estuarine food webs (Glud 

et al. 2002; Virta et al. 2020; Liu et al. 2022). These phytoplankton have been documented as an 

important component of the juvenile capelin and sand lance diet (Vesin et al. 1982; Robards 

1999). The significance of diatoms is further enhanced by the fact that copepods, which form a 

primary component of capelin and sand lance diet (Fortier et al. 1992; Dalpadado & Mowbray et 

al. 2013; Danielsen et al. 2016; McNicholl et al. 2016), rely heavily on diatoms for food (Irigoien 

et al. 2000; Michels & Gorb 2015; Hong & Tew 2023) and reproduction (Fortier et al. 1992; 

Irigoien et al. 2002). Consequently, the diatoms observed throughout the estuaries in Nain likely 

contribute to increased productivity. This, in turn, may lead to higher populations of calanoid and 

cyclopoid copepods that are most abundant in the region (Brown et al. 2012), followed by 

capelin and sand lance, and finally completing the short food web by sustaining Arctic charr. 

While acknowledging that the extensive coverage of diatom mats in estuarine habitats may 

indicate potential habitat suitability for charr, it is important to note that this hypothesis does not 
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imply a direct one-to-one correlation. The presence of diatom mats could suggest favorable 

conditions for charr habitat but does not guarantee their exclusive presence or all the necessary 

elements for char habitat suitability. Despite these complexities, chlorophyll a concentrations 

(Chl a), strongly linked to phytoplankton biomass, have been correlated with charr distributions 

and are proposed as a proxy for charr food availability (Finstad et al. 2012; Harris et al. 2020). It 

is hypothesized that the Chl a within Nain’s estuaries are high due to the extensive coverage of 

benthic diatom mats that may be contributing to the charr hotspots in the region.  

2.4.2 Epibenthic community & charr relationships 
 The benthic community analysis revealed the presence of five distinct faunal assemblages 

among different substrate classes. Located within a majority of charr hotspots identified in this 

study, Assemblage 1, characterized by extensive agglomerations of brittle stars, showed a strong 

association with fine sediments and diatomaceous sediments. A similar ophiuroid-dominated 

biotope was noted on fine sediments in Nain and regions farther north in Labrador, including 

Hebron and Okak (Rangeley et al. 2022). Similar occurrences and coverage of extensive benthic 

diatom mats over fine sediments were observed during drop camera surveys in fjords in Young 

Sound, Greenland (Glud et al. 2002) with brittle stars also listed as dominant. The high 

abundance of these taxa is crucial for the cycling of energy between benthic and pelagic habitats 

and for stabilizing soft substrates, yet their sole dominance in some sites may lead to low 

functional diversity, making these areas more vulnerable to food web disruptions (Cadotte et al. 

2011; Kędra et al. 2015; Rangeley et al. 2022). Of the 11 dominant species in this assemblage, 

two potential charr prey taxa were identified, including small sculpin and blennies (Lumpenus 

spp.) which have been observed in charr diet analyses (Magnan et al. 2002; Spares et al. 2015b; 

Cote et al. 2021). The association of charr with brittle star-dominated habitats is noteworthy, but 
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likely coincidental, since brittle stars are not an important component of charr diet according to 

the literature. 

Assemblages 2 and 3 were similar relative to their coverage of mixed, hard substrates 

(i.e., pebbles, cobbles, boulders) and shared a high abundance of various sea cucumber 

morphotaxa, such as Cucumaria frodosa and Psolus spp. as well as anemone (Actiniaria spp.) 

morphotaxa. The association of these holothuroids and anemones with hard substrates has been 

documented previously on the south coast of Newfoundland, Nain archipelago, and southeast 

part of the Hudson Bay (Salvo et al. 2018; Rangeley et al. 2022; Hamel et al. 2023). Vagrant 

charr tended to occupy sites in these assemblages more than sedentary charr; however, there was 

still a clear preference for sites with increased homogeneity. While these habitats farther from 

their natal estuaries could have been used to feed (Rikardsen & Amundsen 2005; Cote et al. 

2021), vagrant charr may have also been transiting through these heterogeneous habitats to other 

estuarine habitats in the region, as suggested by Moore et al. (2016).  

 Located in a less dense charr hotspot in the northwest corner of Webb Bay, Assemblage 

4 was comprised entirely of fine sediments with small patches of epibenthic fauna. Evidence of 

subsea permafrost was recently discovered in this area (Limoges et al. 2023), which may be 

significantly limiting the distribution of fauna within the bay. These frozen sediments can act as 

a barrier, restricting the availability of oxygen and nutrients in the bay (Vonk et al. 2015). The 

thawing of this permafrost may increase the mobility of metals to nearby waters (Vonk et al. 

2015; Costis et al. 2020; Marginson et al. 2023) and may impact the trophic structure and food 

web processes; however, the effect of the presence of subsea permafrost as well as its thawing on 

benthic epifauna remains poorly studied. It should be noted that the sampling effort for this 

assemblage was poor as indicated by the species accumulation curve; however, further drop-
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camera images were collected from this area in 2022 and 2023 where the same patterns were 

identified (Limoges et al. 2023; Normandeau et al. in press.). These photographic transects 

conducted in locations near the acoustic receiver and charr hotspot in Webb Bay were not 

included in this analysis; however, they revealed a high coverage of diatomaceous sediments, 

which further supported the charr habitat use findings in this study.  

The final assemblage, located in a charr hotspot in Anaktalak Bay was characterized by 

tube-dwelling anemones (Ceriantharia spp.), scattered along a seafloor covered by diatoms. This 

area is home to a nickel-copper-cobalt mine and concentrator operated by Vale NL (formerly 

Voisey's Bay Nickel Company) since 2005. Labrador Inuit have expressed concerns about 

potential environmental impacts arising from mining operations which include the effects of 

winter shipping activities from the dock facility at Edward's Cove along Anaktalak Bay to the 

Labrador Sea, and the discharge of treated effluent from the mine into the bay (Brown et al. 

2012). These concerns are particularly relevant due to the sensitive and complex nature of the 

characterizing taxon (i.e., cerianthids) for this assemblage (Fuller et al. 2008; Murillo et al. 2011) 

and the presence of a charr hotspot where local community members fish. The scarcity of brittle 

stars in this assemblage is also notable, as brittle star distribution patterns have been correlated 

with effluent sediment contamination (de Moura Barboza et al. 2015), where contaminated areas 

were found to have less ophiuroids than non-contaminated areas. The presence of diatom mats 

may also be correlated to higher sedimentation rates, effluent, and the influx of terrestrial erosive 

material into Anaktalak Bay (Kahlmeyer 2009; Richerol et al. 2014; Back et al. 2021).  

2.4.3 Environmental change & associated impacts 
As warming continues across Nunatsiavut, it is hypothesized that an earlier spring bloom 

will influence the dynamics of sympagic (ice-associated), benthic, and pelagic productivity 

which may have implications for the diet and habitat use of Arctic charr (Falardeau et al. 2022). 
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If the sea ice breaks up earlier and the onset of melting occurs sooner (Markus et al. 2009), it 

would lead to an earlier progression of the spring bloom. This progression begins with an algal 

bloom within the ice, where a significant portion of algal-derived biomass settles on the seafloor 

after the ice melts, becoming a critical food source for benthic organisms (Boetius et al. 2013; 

AMAP 2017). Subsequently, a phytoplankton bloom is initiated beneath the melting ice cover 

(Ardyna et al. 2020; Back et al. 2021; Falardeau et al. 2022), providing nourishment for the 

development of pelagic prey, including copepods. The diatom mats observed throughout charr 

hotspots in this study likely serve as a critical food source for benthic organisms, including 

copepods and other zooplankton, which are highly important in the marine food web. An earlier 

spring bloom, driven by rapid warming, could impact the timing and abundance of these prey 

(Daase et al. 2013) and cause breaks in the charr trophic web, as suggested for other high-latitude 

fish like Polar cod (Boreogadus saida) (McNicholl et al. 2016). Understanding the potential 

impact of an earlier spring bloom, becomes crucial, not only for the timing and abundance of 

prey but also for the marine residency periods of Arctic charr. Seasonal patterns in the use of 

marine habitats by Arctic charr, as highlighted in studies like Cote et al. (2021), further 

underscore the importance of considering the timing of environmental events. Even vagrant charr 

exhibit a notable preference for estuaries during a transition phase to and from the marine 

environment, aligning with specific phases of the spring bloom (Harris et al. 2020; Cote et al. 

2021). Climate change-induced disruptions in the timing of blooms and marine residency periods 

could have cascading effects, potentially forcing charr populations to adapt by altering their 

migration patterns, feeding behavior, and energy expenditure for optimal growth and survival 

(McNicholl et al. 2016; Secretariat 2017).  
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As environmental conditions change, there is a potential for Arctic charr in Nain to 

modify their behavior, possibly discontinuing their marine residency altogether. The loss of 

anadromy in fish populations is expected to occur in southern Labrador due to climate-driven 

range contractions (Layton et al. 2021), a trend also observed in other subarctic regions like 

Norway (Finstad et al. 2012; Nordli et al. 2023).  This shift could serve as an indicator of broader 

changes throughout Inuit Nunangat. Longer ice-free seasons and increases in precipitation under 

future climate change scenarios could lead to increased productivity in freshwater systems, 

supporting an abundance of prey, and reducing the importance of anadromous behavior during 

the summer (Reist et al. 2006; Layton et al. 2021; Anderson 2022). The high fidelity of one 

individual to an estuarine habitat (34 days of continuous presence) was suggested to be indicative 

of a low degree of charr anadromy, as observed in the Bay of Two Rivers, Nunavut (Dempson & 

Kristofferson 1987). The reduction in the diversity of Arctic charr life histories may pose a long-

term threat to Arctic charr as a species (Nordli et al. 2023), as well as the availability of this 

resource for commercial and subsistence fisheries throughout Inuit Nunangat. Further research 

and monitoring efforts are needed to verify whether the limited movements of charr throughout 

the duration of this study are due to a behavioural shift away from anadromy as well as the 

associated implications. Such a behavioral shift could pose a threat to the sustainability and 

stability of the fishery that is valued highly in communities of Nunatsiavut.  

2.4.4 Management & monitoring 
Management and monitoring efforts are crucial to address the potential impacts of 

changing environmental conditions on Arctic charr populations in Nain and to ensure the 

conservation and sustainability of this critical fishery. The following recommendations are 

proposed to better understand and protect the habitats and populations of Arctic charr: 

1. Long-term monitoring 
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Establishing a comprehensive, long-term monitoring program for Arctic charr populations in 

Nain is essential. This program should include regular surveys of abundance, size, distribution, 

diet, and habitat use, as well as monitoring of environmental variables such as water temperature, 

ice cover duration, and prey availability. Trends and potential changes in charr behavior and 

habitat use can then be identified, providing valuable insights for management decisions.  

Understanding the intricate food-web dynamics discussed earlier is crucial for 

comprehending the factors influencing charr habitat associations and ensuring the conservation 

and management of their critical habitats in the Nain region. To assess the significance of benthic 

diatoms in Nain’s charr food web, stable isotopes and fatty acids should be used as dietary 

tracers (Kelly & Scheibling 2012; Falardeau et al. 2022). Diatoms have rapid responses to 

environmental change due to their short life cycle; therefore, these microalgal communities have 

been regarded as an effective bio-indicator tool (Clark et al., 2020; Liu et al. 2022). Examining 

the long-term patterns of benthic diatom biomass in Nain estuaries and its potential implications 

for charr populations could provide valuable insights into the resilience of the species in the face 

of climate change.  

2. Engaging local harvesters 

Involve local community members and harvesters in monitoring efforts, research, and 

decision-making processes, considering their traditional and Indigenous knowledge systems and 

experiences with charr. By involving local community members and harvesters in monitoring 

efforts, research, and decision-making processes, we can integrate their traditional and 

Indigenous knowledge systems to enrich scientific understanding and ensure that management 

strategies for iKaluk are aligned with community needs and perspectives. 

3. Habitat protection 
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Safeguard critical habitats, particularly estuaries dominated by benthic diatom mats which 

may be essential foraging grounds for Arctic charr. Due to the importance of these habitats, they 

should be protected from potential threats such as pollution, habitat degradation, and coastal 

development. 

4. Impacts of climate change 

Continue modeling the impacts of climate-driven changes on charr populations as well as 

their prey. These model predictions can aid in developing adaptive management and adaptation 

strategies (Layton et al. 2021). 

5. Investigate non-estuarine habitats  

While estuarine habitats have been shown to be critical for charr during their marine 

residency period, non-estuarine habitats should not be overlooked. Additional research should 

collect further baseline benthic information surrounding Nain’s coastal and offshore 

environment. Moreover, the importance of these non-estuarine habitats, especially under 

changing environmental conditions, must be investigated to further understand their potential 

role as alternative or supplemental feeding areas for charr. Future research should develop 

additional habitat suitability indices (Rudolfsen et al. 2021), like this study, to describe changes 

in charr habitat associations over time and explore the availability of other habitats not covered 

in this survey. 

2.5 Conclusion 
With the use of community-identified fishing locations and acoustic telemetry, this study 

offers important insights on Arctic charr habitat associations in the marine environment. This 

study highlights the significance of estuarine habitats dominated by diatom mats as charr 

hotspots during their marine residency period which likely provide rich foraging grounds for 

these fish. The insights provided by this study aim to assist resource users in prioritizing critical 
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charr habitats to ensure the conservation and sustainability of Arctic charr populations in the face 

of climate change. This study’s findings and recommendations are geared towards supporting 

Imappivut and effectively managing Nain’s charr fishery, thus safeguarding the valuable marine 

ecosystem for the well-being of Nunatsiavut's Inuit communities. 
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2.6 Appendix 
Table 2.2  Full set of environmental variables per site. List includes cluster, visual footprint area (𝑚2), depth (m), distance to freshwater (m), 

substrate classification (subclass), habitat type, mean latitude (Lat), mean longitude (Lon), and percentage (%) of substrates: fine sediments, 

gravel, pebbles, cobbles, boulders, diatoms, coralline algae, red seaweeds (Porphyra spp.) and brown seaweeds (Laminaria spp.) (Algae), and 

shellhash. 
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1 1 19 226 20337 Estuary 56.592 -61.906 FS 94 0 0 0 0 0 0 0 0 0 6 
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10 1 21 69 713 Estuary 56.758 -62.495 DS 44 0 0 0 0 0 55 0 1 0 0 
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Table 2.3  Metadata associated with telemetered charr. Includes length (cm), weight (g), release date, date and time of first and last detection, 

number of days detected, number of days passed since their release, number of receivers, and hydrophone IDs. 
Fi

sh
 

L
en

gt
h.

cm
 

W
ei

gh
t.g

 

R
el

ea
se

 d
at

e 

D
at

e 
&

 ti
m

e 
(U

T
C

) o
f 

fir
st

 
de

te
ct

io
n 

D
at

e 
&

 ti
m

e 
(U

T
C

) o
f l

as
t 

de
te

ct
io

n 

# 
D

ay
s 

de
te

ct
ed

 

# 
D

ay
s s

in
ce

 
re

le
as

e 

# 
U

ni
qu

e 
re

ce
iv

er
 

St
at

us
 

H
yd

ro
ph

on
e 

Su
bs

tr
at

e 

Si
te

 

H
ab

ita
t 

2438 60.5 3855.54 2-Aug-18 
8/3/2018 

12:10 

8/3/2018 

14:13 
0 1 1 Sedentary 124358 FS 19 Estuary 

2441 48.7 1587.57 2-Aug-18 
8/3/2018 

2:33 

8/11/2018 

11:09 
8 9 1 Sedentary 124408 DS 10 Estuary 

2443 51 1814.37 2-Aug-18 
8/3/2018 

1:54 

8/3/2018 

11:40 
0 1 1 Sedentary 124408 DS 10 Estuary 

2445 50.8 1814.37 2-Aug-18 
8/3/2018 

2:08 

8/19/2018 

9:14 
16 17 1 Sedentary 124408 DS 10 Estuary 

2447 48 1814.37 2-Aug-18 
8/3/2018 

10:10 

8/4/2018 

9:35 
1 2 1 Sedentary 124408 DS 10 Estuary 

2449 53 2041.17 2-Aug-18 
8/3/2018 

1:17 

8/22/2018 

8:16 
19 20 1 Sedentary 124408 DS 10 Estuary 

2459 38.2 635.03 31-Jul-19 
8/10/2019 

11:51 

8/13/2019 

16:26 
3 13 1 Sedentary 547227 FSP 18 Fjord 

2465 45.5 1133.98 4-Aug-18 
8/6/2018 

19:21 

7/18/2019 

17:27 
346 348 1 Sedentary 547211 DS 20 Estuary 

2466 49 1587.57 4-Aug-18 
8/4/2018 

16:02 

7/14/2019 

8:59 
344 344 1 Sedentary 547211 DS 20 Estuary 

2467 45 1360.78 4-Aug-18 
8/4/2018 

18:54 

7/21/2019 

20:56 
351 351 1 Sedentary 547211 DS 20 Estuary 

2469 48 1587.57 4-Aug-18 
8/5/2018 

20:24 

8/13/2018 

18:39 
8 9 1 Sedentary 547211 DS 20 Estuary 

4364 53 2041.17 4-Aug-18 
8/4/2018 

15:05 

8/8/2018 

20:18 
4 4 1 Sedentary 547211 DS 20 Estuary 

4365 50 1360.78 4-Aug-18 
8/11/2018 

5:21 

8/11/2018 

5:29 
0 7 1 Sedentary 547211 DS 20 Estuary 
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4366 47.1 1360.78 4-Aug-18 
8/5/2018 

7:07 

7/16/2019 

6:58 
345 346 1 Sedentary 547211 DS 20 Estuary 

4367 49.5 1587.57 4-Aug-18 
6/2/2019 

15:37 

7/23/2019 

8:06 
51 353 1 Sedentary 547211 DS 20 Estuary 

4368 47.5 1814.37 4-Aug-18 
6/3/2019 

5:24 

7/10/2019 

6:35 
37 340 1 Sedentary 547211 DS 20 Estuary 

4369 41.5 1814.37 4-Aug-18 
8/4/2018 

14:08 

8/9/2018 

0:27 
5 5 1 Sedentary 547211 DS 20 Estuary 

4371 48.2 1133.98 4-Aug-18 
8/5/2018 

12:35 

6/25/2019 

14:53 
324 325 1 Sedentary 547211 DS 20 Estuary 

4372 45 1587.57 4-Aug-18 
8/4/2018 

20:09 

7/24/2019 

15:25 
354 354 1 Sedentary 547211 DS 20 Estuary 

4373 46 1360.78 4-Aug-18 
8/11/2018 

18:21 

8/11/2018 

18:32 
0 7 1 Sedentary 547211 DS 20 Estuary 

4375 48.3 1587.57 4-Aug-18 
8/4/2018 

18:13 

7/7/2019 

2:09 
337 337 1 Sedentary 547211 DS 20 Estuary 

4378 51.5 1814.37 3-Aug-18 
8/3/2018 

15:33 

8/3/2018 

15:39 
0 0 1 Sedentary 122386 DS 4 Estuary 

4383 58.5 2721.55 2-Aug-18 
8/3/2018 

4:26 

9/3/2018 

6:31 
31 32 1 Sedentary 124408 DS 10 Estuary 

4386 52 1814.37 2-Aug-18 
8/3/2018 

12:32 

8/3/2018 

12:52 
0 1 1 Sedentary 124408 DS 10 Estuary 

4388 63.5 3401.94 2-Aug-18 
8/3/2018 

7:00 

8/3/2018 

13:03 
0 1 1 Sedentary 124408 DS 10 Estuary 

2436 47 1814.37 31-Jul-18 
8/3/2018 

9:15 

7/24/2019 

21:27 
355 358 2 Vagrant 547227, 124358 

FS, 

FSP 

18, 

19 

Fjord, 

Estuary 

2437 58 3175.15 2-Aug-18 
8/3/2018 

9:11 

7/21/2019 

0:13 
352 353 2 Vagrant 547227, 124358 

FS, 

FSP 

18, 

19 

Fjord, 

Estuary 
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2439 52 1814.37 2-Aug-18 
8/3/2018 

11:09 

9/3/2019 

10:24 
396 397 8 Vagrant 

547207, 547209, 

547210, 547215, 

547216, 547225, 

547228, 124408 

FSP, 

FS, 

FS, 

FSP, 

DS, 

GMA, 

FSP, 

DS 

12, 

14, 

8, 

11, 

9, 6, 

13, 

10 

Fjord, 

Fjord, 

Estuary, 

Fjord, 

Estuary, 

Fjord, 

Fjord, 

Estuary 

2440 53 1814.37 2-Aug-18 
8/3/2018 

0:00 

7/31/2019 

18:03 
362 363 6 Vagrant 

547210, 547213, 

547216, 547225, 

547229, 124408 

FS, 

FSP, 

DS, 

GMA, 

FSP, 

DS 

8, 

17, 

9, 6, 

7, 10 

Estuary, 

Fjord, 

Estuary, 

Fjord, 

Fjord, 

Estuary 

2444 46.5 1360.78 2-Aug-18 
8/3/2018 

3:30 

8/7/2019 

21:09 
369 370 8 Vagrant 

547201, 547210, 

547216, 547221, 

547225, 547229, 

122386, 124408 

FS, 

FS, 

DS, 

FS, 

GMA, 

FSP, 

DS, 

DS 

2, 8, 

9, 1, 

6, 7, 

4, 10 

Estuary, 

Estuary, 

Estuary, 

Estuary, 

Fjord, 

Fjord, 

Estuary, 

Estuary 

2446 49.5 1587.57 2-Aug-18 
8/3/2018 

1:12 

8/4/2018 

15:04 
1 2 3 Vagrant 

547210, 547216, 

124408 

FS, 

DS, 

DS 

8, 9, 

10 

Estuary, 

Estuary, 

Estuary 

2455 34.5 NA 1-Aug-19 
8/4/2019 

15:23 

8/23/2019 

23:30 
19 22 4 Vagrant 

547210, 547216, 

547229, 124408 

FS, 

DS, 

FSP, 

DS 

8, 9, 

7, 10 

Estuary, 

Estuary, 

Fjord, 

Estuary 

2456 41.7 NA 1-Aug-19 
8/2/2019 

17:20 

8/3/2019 

19:26 
1 2 4 Vagrant 

547210, 547216, 

547229, 124408 

FS, 

DS, 

FSP, 

DS 

8, 9, 

7, 10 

Estuary, 

Estuary, 

Fjord, 

Estuary 
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2460 42.7 512.56 31-Jul-19 
8/1/2019 

11:25 

8/8/2019 

9:36 
7 8 6 Vagrant 

547210, 547213, 

547216, 547225, 

547229, 124408 

FS, 

GMA, 

DS, 

GMA, 

FSP, 

DS 

8, 

17, 

9, 6, 

7, 10 

Estuary, 

Fjord, 

Estuary, 

Fjord, 

Fjord, 

Estuary 

2461 49.5 952.54 31-Jul-19 
8/8/2019 

18:18 

8/9/2019 

18:34 
1 9 2 Vagrant 547213, 547221 

GMA, 

FS 
17, 1 

Fjord, 

Estuary 

2462 43.5 952.54 31-Jul-19 
8/5/2019 

21:25 

8/24/2019 

8:49 
19 24 5 Vagrant 

547201, 547213, 

547225, 122386, 

124881 

FS, 

GMA, 

GMA, 

DS, 

DS 

2, 

17, 

6, 4, 

5 

Estuary, 

Fjord, 

Fjord, 

Estuary, 

Estuary  

2463 47 961.62 31-Jul-19 
8/9/2019 

15:45 

8/18/2019 

14:43 
9 18 2 Vagrant 547213, 547227 

GMA, 

FSP 

17, 

18 

Fjord, 

Fjord 

2468 NA 680.39 31-Jul-19 
8/1/2019 

5:32 

8/12/2019 

22:18 
11 12 6 Vagrant 

547210, 547213, 

547216, 547225, 

547229, 124408 

FS, 

GMA, 

DS, 

GMA, 

FSP, 

DS 

8, 

17, 

9, 6, 

7, 10 

Estuary, 

Fjord, 

Estuary, 

Fjord, 

Fjord, 

Estuary 

4376 50 1133.98 2-Aug-18 
8/3/2018 

5:46 

8/4/2018 

11:20 
1 2 3 Vagrant 

547210, 547216, 

124408 

FS, 

DS, 

DS 

8, 9, 

10 

Estuary, 

Estuary, 

Estuary 

4377 58.5 2041.17 2-Aug-18 
8/3/2018 

2:17 

8/4/2018 

12:53 
1 2 3 Vagrant 

547210, 547216, 

124408 

FS, 

DS, 

DS 

8, 9, 

10 

Estuary, 

Estuary, 

Estuary 

4380 49.5 1360.78 3-Aug-18 
6/6/2019 

14:41 

6/12/2019 

12:37 
6 313 4 Vagrant 

547212, 547221, 

124881, 122386 

FSP, 

FS, 

DS, 

DS 

15, 

1, 5, 

4 

Estuary, 

Estuary, 

Estuary, 

Estuary 

4381 44.5 453.59 3-Aug-18 
8/4/2018 

15:28 

8/4/2018 

15:49 
0 1 2 Vagrant 122386, 124881 

DS, 

DS 
4, 5 

Estuary, 

Estuary 
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4382 43 2041.17 2-Aug-18 
8/3/2018 

2:33 

8/4/2018 

14:24 
1 2 3 Vagrant 

547210, 547216, 

124408 

FS, 

DS, 

DS 

8, 9, 

10 

Estuary, 

Estuary, 

Estuary 

4384 57.5 2267.96 2-Aug-18 
8/3/2018 

9:09 

9/10/2018 

10:08 
38 39 3 Vagrant 

547210, 547216, 

124408 

FS, 

DS, 

DS 

8, 9, 

10 

Estuary, 

Estuary, 

Estuary 
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Table 2.4  Individual charr variability per substrate classification (% use) based on number of detections. 
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2436 0.0 60.2 39.8 0.0 

2437 0.0 92.3 7.7 0.0 

2438 0.0 100.0 0.0 0.0 

2439 26.6 12.7 54.5 6.3 

2440 61.4 12.7 2.5 23.4 

2441 100.0 0.0 0.0 0.0 

2443 100.0 0.0 0.0 0.0 

2444 55.0 35.2 0.7 9.1 

2445 100.0 0.0 0.0 0.0 

2446 81.8 18.2 0.0 0.0 

2447 100.0 0.0 0.0 0.0 

2449 100.0 0.0 0.0 0.0 

2455 17.8 29.5 52.7 0.0 

2456 55.1 38.5 6.4 0.0 

2459 0.0 0.0 100.0 0.0 

2460 34.8 18.6 1.4 45.2 

2461 0.0 76.5 0.0 23.5 

2462 9.3 10.7 0.0 80.0 

2463 0.0 0.0 26.5 73.5 

2465 100.0 0.0 0.0 0.0 

2466 100.0 0.0 0.0 0.0 

2467 100.0 0.0 0.0 0.0 

2468 20.2 8.8 10.5 60.5 

2469 100.0 0.0 0.0 0.0 

4364 100.0 0.0 0.0 0.0 

4365 100.0 0.0 0.0 0.0 

4366 100.0 0.0 0.0 0.0 

4367 100.0 0.0 0.0 0.0 

4368 100.0 0.0 0.0 0.0  
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4369 100.0 0.0 0.0 0.0 

4371 100.0 0.0 0.0 0.0 

4372 100.0 0.0 0.0 0.0 

4373 100.0 0.0 0.0 0.0 

4375 100.0 0.0 0.0 0.0 

4376 52.2 47.8 0.0 0.0 

4377 63.3 36.7 0.0 0.0 

4378 100.0 0.0 0.0 0.0 

4380 82.9 10.5 6.6 0.0 

4381 100.0 0.0 0.0 0.0 

4382 44.1 55.9 0.0 0.0 

4383 100.0 0.0 0.0 0.0 

4384 97.7 2.3 0.0 0.0 

4386 100.0 0.0 0.0 0.0 

4388 100.0 0.0 0.0 0.0 

avg 70.5 15.2 7.0 7.3 
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Figure 2.10  Indicator taxa with associated indicator and probability values for 5 epifaunal assemblages.  
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Table 2.5  Total abundance of morphotaxa throughout survey in the Nain region of NL. Status denotes dominant (x) and indicator taxa (*). 

Status Morphotaxa Total 
abundance 

 Actiniaria spp. 17 
 Amphipoda spp. 16 

x * Ascidiacea sp.1 1044 
x Ascidiacea sp.2 129 
 Asterias forbesi 26 
x Asteroidea sp.11 22 
 Asteroidea spp.003 20 
x Boltenia ovifera 626 
 Bryozoa.sp.003 30 
x Bryozoa.sp.004 126 

x * Bryozoa.sp.1 678 
x Bryozoa.sp.2 98 

x * Bryozoa.sp.4 74 
x Bryozoa.sp.6 384 
 Buccinum spp. 19 

x * Ceriantharia spp. 11874 
 Chionoecetes opilio 78 
x Chlamys islandica 264 
x Cottidae spp. 376 
x Crossaster papposus 367 
 Ctenodiscus crispatus 10 
x Cucumaria frodosa 473 
 Halcampa arctica 56 
 Haliclona sp.2 50 
x Halocynthia pyriformis 109 
 Heliometra glacialis 242 
x Henricia sanguinolenta 172 
x Hyas araneus 146 
x Hyas coarctatus 77 

x * Leptasterias polaris 514 
  



2-45 
 

Status Morphotaxa Total 
abundance 

x Lumpenus lampretaeformis 360 
 Lycodes vahlii 88 
 Mya truncata 32 
 Myoxocephalus scorpius 58 
 Myoxocephalus spp. 30 
x Myxicola infundibulum 1845 
x Nephtheidae sp. 3 535 
 Nephtheidae sp.1 54 

x * Ophiuroidea sp.1 194993 
x Ophiuroidea sp.2 5633 
 Pagurus spp. 31 
x Pandalus spp. 540 
x Polinices heros 34 
 Polychaeta spp. 11 
 Porifera sp.11 72 
x Porifera sp.13 515 
 Porifera sp.21 38 
x Porifera sp.3 690 
 Porifera sp.5 14 
 Poriferasp 22 42 
* Portlandia arctica 22 

x * Psolus fabricii 2725 
x Psolus phantapus 9380 
x Psolus sp.1 394 
 Ptychogena lactea 19 
 Sabellida spp. 16 
x Sagittidae spp. 91 
 Scypha spp. 12 
x Stomphia coccinea 121 

x Stronglyocentrotus 
droebachiensis 6106 

x * Urticina felina 5412 
 Zoarcidae sp.1 5 
x Zoarcidae sp.2 21 
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Abstract 
In the face of rapid climate change impacting Canada's northern coastlines, northern fish, 

benthic ecosystems, and ecosystem services are being heavily impacted. The ongoing 

environmental pressures heavily influence the social, cultural, and physiological well-being of 

Labrador Inuit who are intrinsically linked with the marine environment. This research employs 

community-identified fishing locations to map benthic habitats in Nain, Nunatsiavut, and gain 

insights on the habitat associations of ogak, Inuktitut for Greenland cod (Gadus ogac), a 

demersal fish relied upon heavily for subsistence in the region. Collaborating closely with 

community members and the Nunatsiavut Government, 75 drop-camera transects were 

performed, unveiling a total of 44,809 organisms belonging to 50 morphotaxa which were 

clustered into three distinct faunal assemblages. Fishing locations were represented in two of 

three assemblages which were heterogeneous and composed mainly of pebbles, boulders, and 

rhodolith beds. The only assemblage not represented by a community fishing location was highly 

homogeneous and composed entirely of fine sediments. These results suggested an association of 

ogak to habitats with increased complexity, including rhodolith-dominated habitats which may 

serve as important foraging grounds and/or nurseries for juveniles. A variety of vulnerable 

marine ecosystem (VME) indicators were abundant throughout the survey, including fields of 

tube-dwelling anemones, large sea squirts, erect bryozoans and extensive rhodolith beds. These 

indicators aid in boosting biodiversity by providing structures and areas of suitable colonization 

to increase the heterogeneity of the seafloor. By pairing traditional ecological knowledge 

systems with habitat mapping, this research provides a baseline on the distribution and structure 

of benthic habitats in Nain, as well as habitat associations of a culturally iconic species. The 

identification of critical habitats and taxa aim to aid in conservation and management strategies 

under the pressures of climate change throughout Nunatsiavut. 
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3.1 Introduction 
Benthic habitats, comprising the ecological communities and physical structures on the 

seafloor, are vital for supporting marine ecosystems and organisms with high economic, cultural, 

and/or ecological importance (Kritzer et al. 2016; Griffiths et al. 2017; Flávio et al. 2023). Yet, 

the collection of data across vast stretches of the seabed remains highly constrained globally 

(Mayer et al. 2018), particularly in northern regions characterized by challenging environments, 

high operating costs, and seasonal ice cover (Coad & Reist 2017; Wynja et al. 2015). As such, 

benthic data collection has been disproportionately focused on southern regions, posing a lower 

priority in northern Indigenous areas, despite their crucial reliance on country foods for 

subsistence and economic benefit. These limitations hamper our understanding of the spatial 

distributions, abundances, and functional roles of many species and habitats in northern waters, 

posing challenges for successful self-governance efforts. 

As regions within the Circumpolar North continue to experience more accelerated and 

pronounced impacts of climate change relative to the rest of the world (Bush & Lemmen 2019), 

the concerns of local communities continue to grow. Located in a subarctic and polar climate 

region, Nunatsiavut is the settlement region in Labrador for Labrador Inuit, established by the 

Labrador Inuit Land Claims Agreement. The well-being of Labrador Inuit is intricately linked 

with the coastal marine environment encompassing Nunatsiavut. Communities throughout the 

region have voiced a spectrum of priorities and concerns regarding their local marine waters 

(e.g., navigation, over-harvesting), all in the context of confronting the challenges of a changing 

climate (Felt et al. 2012; Durkalec et al. 2015; MacDonald et al. 2015; Rangeley et al. 2022). The 

ongoing effects of climate change continue to influence subsistence activities, food security, and 

physical and mental health of northern communities (Cunsolo Willox et al. 2013; Ford et al. 

2012; Middleton 2020; Bishop et al. 2022). While traditional and local knowledge has resulted in 
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sustainable harvesting practices for generations, a changing environment is pushing the 

Nunatsiavut Government (NG) to seek multiple knowledge systems to improve their ability to 

manage their resources. Assessments on the spatial distribution and ecological roles of important 

marine habitats and species is hindered as the region faces limitations in specialized surveying 

equipment and advanced data collection tools, resulting in a scarcity of available data. Without 

this essential knowledge, protecting the resources and ecosystem services provided by the local 

marine environment becomes challenging. Given that Inuit rely on these marine resources, they 

must understand it well to sustainably harvest in a changing environment. To address the 

knowledge gap, the Imappivut – ‘Our Oceans’ Marine Planning Initiative was established by the 

NG. The initiative is guided by the values, knowledge, and interests of Labrador Inuit and the 

available knowledge of the marine environment. 

Benthic mapping, where ecological communities and physical structures present on the 

seafloor are characterized, is an important step in understanding and managing species, habitat, 

and harvesting interactions (Brown et al. 2012; Buhl-Mortensen et al. 2015; Baker & Harris 

2020). This process involves the utilization of full-coverage acoustic data (e.g., bathymetry – 

depth, backscatter – reflectivity) acquired through sonar systems, along with biological samples 

obtained through ground-truthing techniques (e.g., underwater videos, sediment grabs, dive 

surveys) (Brown et al. 2011). To characterize the physical morphology and seafloor composition 

of the seabed, additional features (e.g., slope, roughness) can be derived from the acoustic 

sources (Wilson et al. 2007). These physical characteristics act as measurable proxies of drivers 

behind species-environment relationships (Wilson et al. 2007; Lecours et al. 2015). Through the 

integration of these data via a variety of modeling techniques, a comprehensive map of seafloor 

habitats can be produced, aiding in the understanding of marine ecosystems and their drivers 
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(Brown et al. 2011). This approach allows scientists to pinpoint the habitat distribution for 

species at risk (Novaczek et al. 2017A), identify rare habitats, determine habitat vulnerability, 

and inform marine protected area planning and monitoring (Novaczek et al. 2017B; Proudfoot et 

al. 2020). The incorporation of local and traditional knowledge systems can enhance this process 

by integrating information about species presence in specific locations over longer time periods 

compared to the limited perspective provided by single snapshots from ground-truthing 

techniques. The collaboration, integration and engagement of local knowledge systems can 

contribute to identifying distributional patterns of ecologically significant habitats, species, and 

Vulnerable Marine Ecosystem (VME) indicators as demonstrated by the work of Misiuk et al. 

(2019), Rangeley et al. (2022), and Cote et al. (2023).  

The Imappivut initiative is actively engaged in uncovering and mapping the spatial extent 

of important benthic habitats and species to support resource management strategies and 

decisions regarding protected areas in the region. Following consultations with local Inuit, the 

inclusion of ogak / Greenland cod (Gadus ogac) (Richardson 1836), or locally called rock cod, 

as a high-priority species for the initiative was determined due to its cultural significance and 

substantial role in subsistence practices throughout Nunatsiavut. Ogak is a demersal fish species 

and as a subspecies of Pacific cod (Gadus macrocephalus), its distribution ranges from the 

western and eastern Pacific to West Greenland and south to the Gulf of St. Lawrence in the 

Canadian Atlantic. With rising ocean temperatures, species distribution model predictions 

indicate increases in habitat coverage conducive to ogak egg survival in the northwest Atlantic 

and Eastern Canadian Arctic (Cote et al. 2021). However, a substantial 63% decrease in the 

extent of suitable juvenile growth habitats for Greenland cod is also projected by 2100 (Cote et 

al. 2021). In coastal Newfoundland, these fish have been shown to maintain a benthic lifestyle, 
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feeding primarily on benthic organisms (e.g., Polychaeta) as evidenced by enriched 13C levels 

(Knickle & Rose 2014a). Though they tend to remain near the coast for the duration of their life 

(Mikhail and Welch 1989), studies on ogak habitat associations are lacking (but see Knickle & 

Rose 2014b; Schornagel 2015). Their association with shallow, complex, and vegetated habitats, 

such as cobble and eelgrass (Zostera marina) beds, have been reported for juveniles and adults 

(Mikhail & Welch 1989; Laurel et al. 2003; Knickle & Rose 2014b). The local community of 

Nain in Nunatsiavut has observed the most successful ogak fishing endeavors in proximity to the 

shoreline, where these fish are sought out among cobbles and boulders eroded from cliffsides 

(Mary Denniston and Liz Pijogge, personal communication). These fishing sites, handed down 

through generations, hold immense significance and have been vital for Indigenous community 

members. The addition of this traditional ecological knowledge offers a unique opportunity to 

incorporate Inuit interactions into conventional western scientific methods of establishing habitat 

interactions of this important species.  

 This study aims to address gaps in ecological understanding in the nearshore marine 

waters of Nain, Nunatsiavut, by comprehensively mapping benthic habitats, with specific 

emphasis on those pertinent to ogak fishing sites identified by local harvesters. Aligned with the 

Imappivut initiative, this research seeks to establish an understanding of the benthic habitats in 

Nain's nearshore waters and their relationship with ogak habitat use. Additionally, this study will 

demonstrate the effectiveness of habitat mapping integrated with local ecological knowledge to 

fill baseline ecological knowledge gaps in northern ecosystems. Through the combined 

perspectives of Inuit and Western science, the mapping and analysis of critical benthic habitats 

aims to contribute to conservation and management strategies in the face of climate change 

across Nunatsiavut. 
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3.2 Methods 
3.2.1 Study Area 

This research was conducted within the nearshore marine waters of Nain, Nunatsiavut 

(56◦N, 61◦W; Fig 3.1), a region at the border between a subarctic and polar climate (Roy et al. 

2021). Extending 20 km offshore and encompassing 48,690 km2, the coastal marine waters of 

Nunatsiavut are invaluable for Labrador Inuit who rely on a variety of marine species including 

ogak for subsistence. Situated as the northernmost and largest community in Nunatsiavut, Nain 

has a distinct landscape including an archipelago that has played an integral role in the region's 

history, boasting a legacy of abundant hunting and fishing grounds. Open to the Labrador Sea, 

Nain’s coastline encompasses extensive and seasonally-persistent land-fast ice, small and 

episodic areas of open water surrounded by sea ice (i.e., polynyas), and is composed of several 

islands, exposed headlands, extensive fjords, and protected inlets. Much of Nain’s coastline is 

unmapped; therefore, there is a limited understanding of the spatial distributions and roles of 

benthic habitats.  
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Figure 3.1  Communities within Nunatsiavut’s territory (orange). Study location is Nain, Nunatsiavut. 

Available bathymetric coverage in Labrador Sea from the Canadian Hydrographic Service’s Non-

Navigational Bathymetry data (NONNA) is also present. Inset displays Labrador coast. Common bays 

and fjords in northern Nunatsiavut are listed. 

3.2.2 Bathymetry 
A consolidation of digital non-navigational bathymetric sources managed by the 

Canadian Hydrographic Service was downloaded surrounding Nain’s nearshore and coastal 

marine ecosystem at a spatial resolution of 100 meters. The bathymetric data were patchy and 

contained multiple gaps in coverage (Fig 3.2). To fill these gaps, the interpolation of these data 

was performed using Empirical Bayesian Kriging (EBK) in ArcGIS Pro 2.8. Where classical 
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kriging methods are limited in accounting for errors introduced by estimating a singular 

semivariogram model, EBK achieves this by estimating the spatial relationship of the input data 

through multiple simulated semivariogram models (Krivorouchko 2012; Zou et al. 2015; 

Novaczek et al. 2019). The use of multiple simulated semivariograms allows for more precise 

bathymetric interpolations and estimations of standard error (Novaczek et al. 2019). In 

combination with the bathymetric data, a digital elevation model (DEM) from Natural Resources 

Canada within the area of interest was used for the interpolation process to define land areas, 

reduce artefacts, and reduce false bathymetric predictions. A gridded resolution of 50 m 

effectively reduced the number of interpolation artefacts in areas of low data density (Novazcek 

et al. 2019). Using 100 iterative semivariogram models, EBK simulated new data for each 

known depth value. Bayes’ Rule was used in this process, where a weight is assigned to each 

semivariogram, demonstrating how well the observed data can be generated from the respective 

semivariogram (Krivorouchko 2012; Novazcek et al. 2019). The weighted distribution of the 100 

semivariograms was then used to interpolate unknown depth values within the neighbourhood of 

each local model. Neighbouring models were assigned high overlap (overlap factor = 5) which 

requires more processing time, but produces a smoother output surface. The bathymetric raster 

was then clipped to remove all land data points (>0m).  
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Figure 3.2  Empirical Bayesian Kriging performed on non-navigational bathymetric data compiled by the 

Canadian Hydrographic Service. Original bathymetry (A) with selected areas of low density (red squares) 

interpolated after kriging (green squares; B). 

3.2.3 Site Selection & Ground-Truthing 
Residents of Nain who fish for ogak year-round in a subsistence fishery disclosed 

important locations near the community. These locations were provided for this study by the NG. 

Based on their expertise, ogak are commonly caught within Metre Bay (sometimes referred to as 

Meta Bay) and in proximity to Two-Mile Bay, with a few individuals venturing off into Nain 

Bay and Paul Island (Fig 3.3) (B. King & M. Denniston, personal communication). Using the 

newly derived bathymetric surface, a Generalized Random Tessellation Stratified (GRTS) survey 

design (Stevens & Olsen 2004) was employed to select ground-truthing locations. This method 

was chosen to ensure samples were distributed across the bathymetric range of the area. From 

October 3-12, 2022 on board the MV Inuttatik, a total of 75 ground-truthing points, including the 

five community-identified fishing locations, were sampled using drop-camera surveys and CTD 

casts (Star Oddi SeaStar 8.17). At each site, 5-minute video transects were employed using a 

SubC Imaging Coastal Rayfin camera (1920 x1080 pixels, 30 frames per second). Specifications 

for this camera include two Aquorea Mk3 LED (15000 lumens), two MantaRay parallel lasers 

spaced 10 cm apart, and 4K video recording capabilities.  

A) B) 
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Figure 3.3  Drop-camera video survey locations (n = 75) from GRTS design. Harvester-identified fishing 

locations are present, but remain undisclosed and grouped with additional sites in red. Insert represents 

study extent on Labrador coast. 

3.2.4 Environmental Data 
Bathymetric derivatives 

The continuous bathymetric surface of Nain’s nearshore was used to derive continuous 

terrain features to help explain faunal assemblage patterns (Appendix; Table B1). Based on 

recommendations from Lecours et al. 2017, this study used a set of local terrain attributes that 

can account for approximately 70% of the structure of a topographic surface. These attributes 

can act as effective proxies for other influential variables which are difficult to measure directly 

and impact faunal distributions (e.g., seabed hydrodynamics) (Lecours et al. 2017; Mackin-

Mclaughlin et al. 2022; Nemani et al. 2022). These attributes included eastness and northness 

(i.e., orientation), slope (i.e., steepness gradient) (Wilson et al. 2007), relative difference to mean 

value (RDMV) (i.e., topographic position), and standard deviation (SD) (i.e., roughness) of 

bathymetry. Additional attributes and measurements were also explored. Measures of curvature 

(mean, profile, and planar curvature) were derived to describe the rate of change of the seabed 
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and to identify contours (e.g., ridges, valleys, mounds) (Walbridge et al. 2018; Wilson et al. 

2007). To identify topographic highs and lows, relative seabed position was derived using the 

bathymetric position index (BPI) (Lundblad et al. 2006; Misiuk et al. 2018; Walbridge et al. 

2018; Wilson et al., 2007). Vector ruggedness measure (VRM) (Sappington et al. 2007) was also 

derived to provide further information on seafloor structure, as it quantifies seafloor roughness 

by incorporating slope and aspect into a single measurement (Mackin-Mclaughlin et al. 2022).  

The spatial scale, referring to the spatial resolution and geographic extent (Lecours et al. 

2015), of the explanatory features mentioned above is crucial for understanding the complex 

dynamics and ecological processes within a benthic ecosystem. To capture these dynamics, the 

Multi-Scale Geomorphometric Terrain Attributes (MultiscaleDTM) package in R was employed 

(Ilich et al. 2021). This package utilizes the 'k×k-window' or 'roving window' method, as defined 

in Misiuk et al. (2021), to calculate terrain attributes from the gridded digital bathymetry raster at 

multiple scales. The scale of these attributes is dependent on the source data resolution and the 

size of the window used for analysis. In this context, features were derived at 10 scales, using 

focal window sizes ranging from raster cells at 3×3 to 21×21, totaling 100 features, and 

capturing information from 150 to 1050 m (Appendix: Table 3.1). This multiscale approach 

ensures that scale-dependent patterns and processes are effectively captured (Porskamp et al. 

2018; Shang et al. 2021). 

Distance to coast, salinity, and temperature 

 A continuous layer measuring the distance from the coast was calculated relative to each 

pixel using the ‘Euclidean Distance’ tool in ArcGIS Pro 2.8. This layer describes variability in 

benthic faunal and grain size distribution (Misiuk et al. 2018; Vassallo et al. 2018; Nemani 

2022). To derive continuous layers of bottom temperature (°C) and salinity (ppu), similarly to 
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the continuous bathymetry layer, EBK was employed. Using 100 iterative semivariogram 

models, EBK simulated new data for all known temperature and salinity values from the CTD 

data (Krivorouchko 2012; Novazcek et al. 2019). The weighted distribution of the 100 

semivariograms was then used to interpolate unknown temperature and salinity values with 

neighbouring models assigned a high overlap (overlap factor = 5).  

3.2.5 Video Survey Data 
Video Analysis 

The Monterey Bay Aquarium Research Institute’s (MBARI) Video Annotation and 

Reference System (VARS) (Schlining & Stout 2006) was used to review and annotate all 75 

drop-camera video samples. All videos were annotated in a randomized order to reduce human 

annotation biases (e.g., fatigue) (Durden et al. 2016). For every organism greater than 5 cm (i.e., 

half the distance of the camera lasers) taxa identification was performed to the lowest taxonomic 

level possible. Species identification was not always possible due to suspended sediment, and 

rapid camera drift speed; therefore, identification required the use of morphotypes (Howell et al. 

2019). These morphotypes were based on the production of an image catalogue for the Nain 

region. Taxa identification was performed with aid from expert advice and published species 

identification guides (Nozères et al. 2014A; Nozères et al. 2014B; Salvo et al. 2018; Lacasse et 

al. 2020).  

Therefore, it is important to note that the reported taxa in this study may encompass multiple 

species, suggesting that the actual species count at these sites is likely higher than documented. 

Observed faunal abundances were compiled in a site by species matrix.  

Substrates were classified into six substrate classes (Fig 3.4) guided by the Coastal and 

Marine Ecological Classification Standard (Federal Geographic Data Committee 2012). The 

distance between the two reference lasers was measured and used to estimate grain size of the 
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sediment. There are limitations in using videos for substrate identification; differentiating 

between mud and sand cannot be reliably achieved and as such, were combined into the Fine 

Sediments category. Biophysical features were also used to help classify the substrates, such as 

the presence / absence of any sediment bedform features (e.g., bioturbation), and the presence of 

characterizing biological elements (e.g., diatom mats, coralline algae) based on similar 

methodology to the classification of terrestrial landscapes (Zajac et al. 2003; Zajac 2008; Brown 

et al. 2012; Proudfoot 2019). Rhodoliths with Mixed Gravel was a biogenic substrate class 

denoted by a high coverage of crustose algae that formed rounded calcareous nodules and 

branching patterns (rhodoliths; likely Lithothamnion glaciale) and contained a mixture of gravel 

substrates (i.e., pebbles, cobbles, boulders) enveloped by encrusting coralline algae. Fine 

Sediments was composed entirely of sand and mud with many indications of bioturbation. Fine 

Sediments with Mixed Gravel  was a class composed mostly of mud and/or sand, but had 

multiple patches of large pebbles, cobbles, and boulders often enveloped by encrusting coralline 

algae. Fine Sediments with Shellhash was a class composed of mud and/or sand, but had an 

extensive coverage of broken scallop and mussel shells. The Fine Sediments with Seaweeds class 

was composed mostly of mud and/or sand with a high density of seaweeds (Agarum clathratum, 

Saccharina longicruris, Lithothamnion spp., Rhodophyta spp.) dispersed overtop the sediment. 

Diatomaceous Fine Sediments was composed mostly of fine sediments overlain with microalgal 

mats. 
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Figure 3.4  Images of the substrate classes identified during video annotation: A) Rhodoliths with Mixed 

Gravel, B) Fine Sediments, C) Fine Sediments with Mixed Gravel, D) Fine Sediments with Shellhash, E) 

Fine Sediments with Seaweed, and F) Diatomaceous Fine Sediments. White bar for scale is 10 cm. 

3.2.6 Data Preparation & Analysis 
Cluster Analysis 

 Faunal abundances were classified into benthic faunal assemblages using a Hellinger 

transformation and a hierarchical cluster analysis approach. The ‘unweighted pair group method 

using arithmetic averages’ (UPGMA) algorithm (Borcard et al., 2018; Everitt et al. 2001; 

Legendre & Legendre 1998) was selected to derive faunal assemblages. Taxa with three or fewer 

observations in all 75 videos were removed from the data set prior to analysis to reduce the 

variability caused by these low abundances. To determine the size and cutoff of each cluster, 
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fusion level values and silhouette widths were optimized (Borcard et al. 2018). To assess the 

dissimilarities between clusters, an Analysis of Similarities (ANOSIM) test was performed using 

the Bray-Curtis dissimilarity index to calculate the dissimilarity matrix. 

 Dominant and indicator taxa were derived to demonstrate the biological composition of 

each assemblage. Dominant taxa consist of the most abundant species within a community that 

may highly influence the occurrence and distribution of other species and overall community 

structure (Smee 2010; Nemani 2022). These organisms have abundances greater than the 

individual group assemblage mean (Borcard et al. 2018). Indicator taxa were then used to 

measure the association between a species and assemblage by assessing the relative abundance 

and frequency of each species per grouping. The indicator value index (0-1) contains estimates 

on (1) the probability that the surveyed site belongs to the target assemblage given that a specific 

species was present (i.e., specificity) and (2) the probability of finding a species in sites 

belonging to the assemblage (i.e., fidelity or sensitivity) (Dufrêne and Legendre 1997; De 

Cáceres & Legendre 2009). A value closer to 1 would indicate a higher probability for both 

estimates. For this study, the threshold to assign significant indicator species to an assemblage 

was an indicator value greater than 0.75 due to the high number of potential candidates for some 

assemblages. Essentially, the method aims to identify ideal indicator species found exclusively 

for each assemblage (Mouillot et al. 2002; Dufrene and Legendre 1997) and is useful for 

monitoring changes to the sites associated with their specific assemblage (McGeoch & Chown 

1998; Kubosova et al. 2010).  

Feature Selection and Collinearity 

 To determine the level of importance the multi-scale bathymetric derivatives have on 

influencing each assemblage, a Boruta Feature Selection algorithm was employed (Kursa & 
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Rudnicki 2010; Kursa 2020). This algorithm assesses the importance of variables by using 

‘shadow attributes’, defined as randomly shuffled versions of the original variables with the 

same distribution of values (Kursa & Rucnicki 2010). The Boruta wrapper compares the 

originally inputted variable with its ‘shadow attribute’, wherein a variable is deemed more 

important if it reliably contributes more to the model than its respective shadow variable. All 

variables across 10 scales were inputted into the algorithm, and only variables identified by 

Boruta as “tentative” or “important” were selected for training. To further achieve model 

parsimony, and support model performance, these selected features were assessed for collinearity 

using Spearman’s rank correlation (Dormann et al. 2013). If the correlation coefficient was 

greater than 0.7 for two variables, the feature most collinear to all other features was rejected 

from the algorithm. Multiple studies have found success employing the Boruta algorithm for 

feature selection (Nemani et al. 2022; Mackin-McLaughlin et al. 2022; Diesing & Thorsnes 

2018), and it has outperformed other feature selection methods (e.g., Vita, Recurrent relative 

variable importance) (Degenhardt et al. 2019). After inputting all variables across 10 scales, the 

Boruta algorithm identified mean curvature (5x5), VRM (5x5), and SD (21x21) as relevant 

features to be included in the model. The Boruta algorithm was employed again using the 

selected features above in addition to bathymetry, distance to coast, temperature, and salinity. 

Statistical Modelling  

 Modelling species assemblages against environmental variables was achieved using a 

supervised machine learning approach to produce full-coverage habitat maps. The selected 

approach in the R package ‘caret’, known as random forest (RF), is a modelling technique that 

consists of multiple decision trees, like a ‘forest’, where predictions are obtained through 

majority voting (Breiman 2001; Franklin 2009). Comparisons between different techniques have 
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consistently demonstrated the reliable and accurate performance of RF (Robert et al. 2015; Pillay 

et al. 2020; Nemani et al. 2022) for mapping benthic habitats. Decision trees in RF are 

constructed using bootstrap aggregation (i.e., ‘bagging’), in which data are subsampled and split 

using random subsets of predictor features rather than the entire dataset. Final predictions (i.e., 

classes for the full-coverage area) are then decided based on a majority vote among individual 

trees (Breiman 2001; Franklin 2009). Observations not used for each bootstrap sample (i.e., ‘out-

of-bag’ samples) are then used to assess feature importance and estimate model error (Breiman 

2001; Franklin 2009; Diesing et al. 2014; Guisan et al. 2017).  The RF model was run with and 

without substrate classifications extracted from ground-truthing videos to assess whether fine-

scale substrate information improved model performance. Model parameters were optimized 

through a tuning grid search that systematically explored different mtry values. At each split 

when growing the individual trees (n = 500) in the random forest, two randomly selected 

predictor variables were determined to be the optimal choice for the mtry parameter (mtry = 2). 

Using the RF model and the environmental data layers, full-coverage predictive maps were 

produced to display the distribution of benthic assemblages. Since substrate classification was 

not a spatially continuous layer, full-coverage predictions were based on the model containing 

only bathymetric terrain features, distance to the coast, temperature, and salinity. 

Model Assessment 

A leave-one-out cross validation (LOOCV) approach was used to estimate model 

performance (Stone 1974; Shao & Er 2016). To assess prediction accuracy, a confusion matrix 

was computed containing the following measures:  

i) False positive errors: Number of times the model predicted a class was present, but it 

was not truly observed. 
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ii) False negative errors: Number of times the model predicted that a class would not be 

present, but it was truly observed. 

iii) Sensitivity & Specificity: Probability that a class is correctly predicted (i.e., true 

positive rate & true negative rate). 

iv) Precision score: number of correctly-identified members of a class divided by the 

number of times that class was predicted by the model. 

v) F1 score: Number of times the model made a correct prediction across the entire 

dataset (i.e., combination of precision and sensitivity scores). 

vi) Balanced accuracy: The average sensitivity score obtained for each class. 

vii) Overall accuracy: A general measure of accuracy calculated by summing and 

dividing correctly classified values by the total number of values (Congalton 1991). 

viii) Kappa statistic: Measures instances that may have been correctly classified by 

random chance (Cohen 1960). 

To rank the predictive importance of each variable in the model, a variable importance plot 

was derived. The Gini importance index was used for RF, which serves as a computationally 

efficient approximation to entropy. It calculates how frequently a specific variable was chosen 

for a split and the extent to which it contributes to distinguishing between different classes 

(Menze et al. 2009). Specifically, the decrease in Gini impurity from an optimal split is 

documented and summed up for every node across all trees in the forest (Nembrini et al. 2018). 

This process is carried out separately for each variable (Menze et al. 2009; Nembrini et al. 2018).  

3.3 Results 
3.3.1 Substrate classes 
 Rhodoliths with Mixed Gravel was a biogenic substrate class observed in 11 shallow sites  

distributed close to the shoreline (Appendix: Fig 3.14). Similarly, Diatomaceous Fine Sediments 
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was distributed in shallow sites near the coastline, often in sheltered bays, and was observed in 

nine sites. Fine Sediments was the most common substrate class and was observed in 31 deep 

sites that were mostly found within the fjord in the southern portion of the survey area. Fine 

Sediments with Mixed Gravel  was patchily distributed within 19 sites that were commonly 

found on the outskirts of deep basins and channels. Fine Sediments with Shellhash was only 

observed in three sites distributed in close proximity south of Paul Island. The Fine Sediments 

with Seaweeds class was found in two sites near the town of Nain and south of Paul Island 

(Appendix: Fig 3.14).  

3.3.2 Epifaunal assemblages  
 Across the 75 drift-videos, 44,809 individual organisms belonging to 50 morphotaxa 

were identified. The phyla with the largest representation throughout the entire survey were 

Echinoderms (40%) and Cnidarians (35%). Green sea urchins (Strongylocentrotus 

droebachiensis) (n = 8,495), brittle stars (Ophiuroidea spp.) (n = 3,298), and scarlet sea 

cucumbers (Psolus fabricii) (n = 2,594) were the most common echinoderms, while Cnidarians 

were mostly dominated by Cerianthus spp. with 14,768 individuals. In comparison, the 

remaining phyla (Chordata (8%), Annelida (7%), Arthropoda (5%), Bryozoa (2%), Porifera 

(2%), and Mollusca (1%)) were represented in smaller proportions throughout the survey.  

The benthic observations clustered into three faunal assemblages (Fig 3.5) explained a 

large (R=0.707) and significant (p=0.001) proportion of the variation observed. Comprised 

mostly of sites with Fine Sediments with Mixed Gravel (76%; Fig 3.6), and some classified as 

Fine Sediments (19%) and Rhodoliths with Mixed Gravel (5%), the first assemblage had the 

smallest spatial extent at 28% of all video surveys (n = 21). This assemblage was found 

predominately within intermediate depths of 35-55 m. In total, 8,558 individuals across 47 

morphotaxa were identified in Assemblage 1, where scarlet sea cucumbers were most common 



3-20 
 

and formed dense aggregations on large boulders and cobbles. The indicator taxa for this 

assemblage were organisms that typically attach themselves to harder substrates, including 

tunicates (Ascidiacea spp. & Halocynthia pyriformis) and erect bryozoans (Bryozoa spp. 2). 

There were 18 dominant species within this assemblage (Appendix: Fig 3.15), including scarlet 

sea cucumbers, sea potatoes (Boltenia ovifera), sponges (Porifera spp.), and Iceland scallop 

(Chlamys islandica). Three community-identified ogak fishing locations were grouped into this 

assemblage, located within Metre Bay and at the mouth of Ten-Mile Bay. An individual ogak 

was documented on video while surveying a site in this assemblage, located north of Metre Bay.   

Situated closest to the shoreline and found predominately in shallower depths (15-20 m), 

Assemblage 2 was comprised of 25 sites (33%) with a majority being classified in Rhodoliths 

with Mixed Gravel (40%; Fig 3.6). In addition, many sites in this assemblage also showed 

evidence of high primary productivity, with a considerable coverage of seaweeds (Agarum 

clathratum, Saccharina longicruris, Lithothamnion spp., Rhodophyta spp.) and diatom mats. 

Across 47 morphotaxa, 14,096 individuals were identified within Assemblage 2, with green sea 

urchins (Strongylocentrotus droebachiensis) being most common (n = 7,179) and the sole 

indicator taxon for this assemblage. Assemblage 2 consisted of 13 dominant taxa (Appendix: Fig 

3.15), including a variety of sea cucumbers (Psolus fabricii, Cucumaria frondosa, Psolus 

phantapus), scallops, anemones (Urticina felina) and sea stars (Leptasterias polaris). An 

individual ogak was also captured on camera occupying a site in this assemblage, located at the 

mouth of Two-Mile Bay. Furthermore, two community-identified ogak fishing locations were 

grouped into this assemblage, found in Two-Mile Bay and above Metre Bay. 

While the other assemblages shared the most similarities in the dendrogram, Assemblage 

3 was most unique and had the largest spatial extent of all video surveys at 39% (n = 29). Sites 
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within the third assemblage were mostly found further from the coastline at depths of 35-90 

meters and were composed entirely of Fine Sediments (Fig 3.6), with some sites overlain by 

diatoms. This assemblage contained 22,155 individuals across 41 morphotaxa. Tube-dwelling 

anemones (Ceriantharia spp.; likely Pachycerianthus borealis) were most common and formed 

extensive fields across the seabed, particularly within sites covered in benthic diatoms. 

Characterized by tube-dwelling anemones, tube worms (Sabellida spp.), and brittle stars, this 

assemblage was the most homogeneous compared to the other assemblages. There were 10 

dominant taxa (Appendix: Fig 3.15) in the third assemblage which included the indicator taxa 

mentioned above as well as shrimp (Pandalus spp.), snake blennies (Lumpenus lampretaeformis 

and Leptoclinus maculatus), green sea urchins, sea cucumbers (Psolus phantapus), sponges, and 

slime tube worms (Myxicola infundibulum). This assemblage did not contain any community-

identified ogak fishing locations or ogak video observations. 

 

Figure 3.5  Dendrogram, based on hierarchical clustering (UPGMA) with three epifaunal assemblages. 

Indicator taxa silhouettes represent each assemblage. 
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Figure 3.6  Percentage of sites relative to substrate classification for each epifaunal assemblage.  

 

Assemblage 1 exhibited the highest taxa richness, followed by Assemblage 2 and 3 

respectively. Species accumulation curves indicated that the taxa/morphotype richness of each 

assemblage were adequately represented (Fig 3.7). However, it is likely that the constraints of 

video surveys underrepresented the taxa richness of all or some of these assemblages.   
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Figure 3.7  Species accumulation curve for each faunal assemblage and for the total number of taxa 

observed across all sites included in the analysis (black). 

 

3.3.3 Model performance & predicted distribution  
There were 5 variables included in the epifaunal models succeeding the Boruta selection 

algorithm and assessment of collinearity, and 10 variables in the substrate model (listed in Figure 

3.10). Without substrate classifications, the RF model accuracy was 86.7% (kappa = 0.80); 

however, when substrate features were included, model accuracy was improved to 90.7% (kappa 

= 0.86) (Fig 3.8). The first assemblage was overestimated relative to the others in both RF 

models as displayed by the lower precision score (76.2% without substrate and 81% with 

substrate) and higher number of false positive predictions (n = 5 and 4, respectively). The model 

with substrate improved the sensitivity values for Assemblage 3 from 84.4% with 5 false 

negatives to 90% with 3 false negatives. Overall, the model without substrate accurately 

predicted the spatial extent of each assemblage with relatively high balanced accuracies, and 

both models predicted Assemblage 2 more confidently.  
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Figure 3.8  Confusion matrices for assemblage prediction accuracy assessment. Both Random 

Forest models with (above) and without (below) substrate features are shown. 
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Figure 3.9  Predicted spatial coverage of the three identified assemblages by the Random Forest model 

across the survey area in Nain, NL. Representative photographs of assemblages are included. Sample 

stations are coloured based on the observed associated assemblage. 

 

Assemblage-environment relationships 
 According to the RF model, bathymetry was the most important variable for predicting 

the distribution of the epifaunal assemblages (Fig 3.10). Intermediate depths were associated 

with Assemblage 1 (mean ± SD; 46.439 ± 20.271), while shallower areas distributed near the 

coastline were associated with Assemblage 2 (17.786 ± 9.086). Assemblage 3 was associated 

with deeper sites than both other assemblages (61.821 ± 31.898) and was mostly distributed 

farther from the coastline (e.g., the center of a fjord near the southern portion of the survey). 

Salinity was shown to be the second most important variable for predicting the distribution of 
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these assemblages for the model without substrate (Fig 3.10A). The first two assemblages were 

associated with intermediate to lower salinity values in contrast to Assemblage 3, which was 

associated with higher salinities.  

When substrate classifications were added to the RF model, Fine Sediments appeared to 

be more important than salinity for predicting assemblage distribution. Fine Sediments were 

associated mostly with Assemblage 3. Fine Sediments with Mixed Gravel was also highly 

important and was mostly associated with Assemblage 1. The remaining substrate classifications 

were ranked least important in the model, including Rhodoliths with Mixed Gravel found 

throughout the second assemblage.   
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Figure 3.10  Variable importance determined from the Random Forest (RF) model without (A) and with 

substrate (B) for the epifaunal assemblages. 

 

3.4 Discussion 
The spatial representation of epifaunal assemblages in Nain's nearshore marine 

environment serves as a crucial step in addressing key knowledge gaps identified by Labrador 

Inuit and the NG. This includes a deeper understanding of the environmental drivers shaping the 

distribution of the benthic community and the habitats associated with ogak, a fish relied upon 

for subsistence practices throughout Nunatsaivut. The study highlights the importance of 

structurally complex nearshore habitats, like rhodolith beds, within significant ogak fishing 
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locations, providing insights into the habitat associations of these fish. Additionally, the 

identification of various VME indicator taxa highlights the need for further exploration 

throughout the region to safeguard areas of high biodiversity. Overall, the habitat map generated 

in this study is intended to support the Imappivut initiative, contributing to the protection of vital 

habitats for local communities and to help resource users mitigate the impacts of a changing 

environment. 

3.4.1 Epifaunal assemblages, spatial distribution and environmental relationships 
 Distinct differences in taxa composition, richness and substrate were identified within the 

three epifaunal assemblages identified. Ascidians and erect bryozoans characterized Assemblage 

1, located in the center and northern part of the survey at intermediate depths, and were observed 

attached to large cobbles and boulders densely scattered on fine sediments. While this 

assemblage was not documented previously in the region, it featured a high abundance of sea 

cucumbers which were documented in video surveys as one of the most abundant organisms of 

Nain’s inner archipelago (Rangeley et al. 2022). Green sea urchins characterized Assemblage 2 

which was found close to the shoreline at shallow depths and included rhodolith beds. These 

urchins have been documented as a common occurrence in other coralline algae covered habitats 

due to their grazing behavior (Jørgensbye & Halfar 2017). In Greenland, Jørgensbye & Halfar 

(2017) described a rhodolith habitat within a sheltered fjord and observed green sea urchins in 

high abundance. In Nachvak fjord, farther north in Nunatsiavut, sea urchins were found to 

dominate coralline algae habitats throughout scuba surveys (Friedlander et al. 2023). Previous 

descriptions of epifaunal assemblages conducted on the Labrador coast have also indicated that 

in 40% of surveyed quadrats throughout the Nain archipelago, sea urchins were observed, 

typically found on harder substrates (Rangeley et al. 2022). Brittle stars, tube worms (Sabellida 

spp.) and cerianthids (Ceriantharia spp.) were found to have widespread distribution and high 
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abundance, especially in deep sites with fine sediment throughout Assemblage 3. These taxa 

were previously documented as a biotope in the region (Rangeley et al. 2022), specifically in 

fjords and fjards in Okak and Hebron. Consistent with our nearshore survey, this biotope was 

primarily observed within inner fjord and fjard sites, characterized by less exposure compared to 

coastal headlands. 

Various studies (Neves et al. 2014; Schückel et al. 2015; Bekkby et al. 2019; Nemani et 

al. 2022; Mackin-McLaughlin et al. 2022) consistently emphasize the significant role of depth in 

shaping the distribution of benthic biota. Bathymetry was observed as the most important 

variable in this study. However, depth acts as a proxy for other interconnected variables, such as 

light availability, temperature, salinity, and wave action, which are more complex to assess 

directly (Elith & Leathwick 2009). Shallowest sites, associated with Assemblage 2, had high 

substrate diversity (e.g., biogenic, rocky, fine sediments), yet higher taxa richness was observed 

for Assemblage 1 at intermediate depths. However, the species accumulation curve suggested 

that Assemblage 2 had not reached its asymptote and likely harbored higher taxa richness 

relative to Assemblage 1 which plateaued. Typically, the higher biogenic habitat complexity 

represented in Assemblage 2 would support more unique taxa as found in other Arctic studies 

(e.g., Włodarska-Kowalczuk et al. 2012; Davies et al. 2015; Carpenter et al. 2020; Rangeley et 

al. 2022); therefore, it is likely that the extensive coverage of rhodoliths and other seaweeds in 

this assemblage inhibited the visual observation of many benthic taxa, causing it to be 

underrepresented. Assemblage 3 was mostly found in deeper waters farther from the coastline 

with higher salinities, colder temperatures, and finer substrates. The assemblage displayed lower 

faunal richness than the shallower assemblages occurring on complex, harder substrates.  
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Substrate variability has a profound impact on the composition of benthic communities, 

as it influences benthic feeding modes and the survival of organisms from their larval to adult 

stages (Snelgrove & Butman 1994; Roy et al. 2014). Moreover, substrate type and complexity 

can act as a proxy for currents, with coarser and harder substrate often occurring in stronger 

seafloor current regimes (Snelgrove & Butman 1994; Roy et al. 2014; Rangeley et al. 2022). As 

seen in the variable importance plot, the addition of substrate classifications yielded important 

results for predicting the distribution of assemblages. Performance for RF improved in all cases 

when substrate features were included in the model; however, their discontinuous coverage 

rendered these variables unsuitable for continuous spatial prediction. Overall, there is value 

added by including fine-scale substrate information as previously underscored by Mackin-

McLaughlin et al. (2022), but this may not be needed for all applications. 

3.4.2 Ogak benthic habitat associations 
 The community-identified fishing locations fell within the assemblages (i.e., 

Assemblages 1 and 2) representing higher substrate complexity whose areas contained two 

observations of ogak within the video. In contrast, the most homogeneous assemblage (i.e., 

Assemblage 3) did not contain any ogak observations or fishing locations. These results 

suggested that ogak in Nain tend to associate with more structurally complex habitats, often 

characterized by an elevated coverage seaweeds and rhodolith beds. Previous studies have found 

that ogak to prefer shallow, productive waters with high macroalgal coverage, and rocky 

outcroppings (Morin et al. 1991; Knickle 2013; Knickle & Rose 2014b; Dalley et al. 2017; 

Devine 2018). Recent underwater scuba surveys in Nunatsiavut found that outside Nachvak 

Fjord, ogak dominated fish biomass in areas with high coverage of kelp and boulders with few 

megabenthic invertebrates present (Friedlander et al. 2023). Interestingly, these fish were not 

found in high abundance within the fjord, which lacked kelp.  
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The association with structural complexity may be due to a variety of benefits including 

increased shelter, protection from predators, reproductive success, and foraging opportunities. 

Studies have linked such associations more broadly with increased abundance, growth, and 

survival of various fish species (Heck et al. 2003; Dalley et al. 2017). Baited remote underwater 

video footage collected in Nain validate these associations and our results (B. King, personal 

communication). Here, a higher number of ogak were reported in sites with increased substrate 

complexity, including boulders, cobbles, and a high coverage of rhodolith beds and macroalgae 

(Fig 3.11). A previous study in southwest Scotland determined through scuba and fyke net 

surveys that gadoids consistently favor feeding above rhodolith beds rather than gravel, despite 

the greater vegetation cover provided by gravel (Kamenos et al. 2004b). The presence of 

rhodolith beds within Assemblage 2 likely provides abundant food resources particularly 

beneficial for supporting juvenile ogak and other gadoids, and may enhance the capacity of 

shallow-water nursery zones (Kamenos et al. 2004b).

 

Figure 3.11  Baited remote underwater video frames of sites with high reports of ogak. Sites are located 

near Metre Bay, Nain, Nunatsiavut. Image source: Benjamin King.   
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A study conducted in Alaska, focusing on the habitat associations of juvenile ogak, 

reported a positive correlation between ogak densities and the percent cover of sand mounds 

created by burrowing sea cucumbers (Abookire et al. 2007). While the sea cucumber species 

examined in our study differed from those in the Alaskan study, we observed that sea cucumbers 

in Nain formed large aggregations throughout Assemblages 1 and 2, which may similarly 

contribute to the habitat associations of ogak. Sea cucumbers, such as Psolus fabricii and 

Cucumaria frondosa, along with other megabenthic invertebrates, have recently been observed 

in underwater scuba surveys throughout Nachvak Fjord, in proximity to prime ogak habitats 

(Friedlander et al. 2023). Though this may be a coincidence, the abundance and dynamic habitat 

structure formed by sea cucumbers should be investigated further in relation to ogak habitat 

associations. 

A small sample size of ogak was observed in the survey (n = 2); however, the purpose of 

the study was not to validate the existence of ogak in the community fishing locations, as their 

presence in these areas is well-known throughout the community. For generations these fishing 

locations have been used as a main source of subsistence. The objectives of this study were to 

deepen our understanding of the benthic habitats at these locations and in the broader area, with a 

focus on identifying ogak habitat associations. It is important to acknowledge that ogak may 

occupy and/or prefer other habitats nearby that were not designated as an important fishing 

location by community members. A similar situation is reflected in the observations conducted in 

Frobisher Bay, Nunavut (Misiuk et al. 2019). Here, traditional/local/Indigenous knowledge 

played a vital role in providing information about areas where clams are regularly harvested, 

which are often not comprehensively studied through scientific surveys (Misiuk et al. 2019). 

These knowledge systems were shown to be complementary to Western scientific methods, 



3-33 
 

much like the fishing locations in this study. To further validate our findings, telemetry research 

being done in the region also indicate a tendency for ogak to remain in proximity to these fishing 

locations (Benjamin King, personal communication), reinforcing their association with these 

areas. Moreover, ogak exhibit a strong affinity for specific habitats, demonstrating a high degree 

of site fidelity (Knickle & Rose 2014a; Shapiera et al. 2014). This behavior can be advantageous 

and is not unique to ogak alone, as many fish species display limited movement and rely on 

familiarity with their preferred areas to locate productive feeding grounds, resting sites, and 

suitable shelter (Dodson 1997; Helfman et al. 2009; Knickle & Rose 2014a; Gatti et al. 2020).  

3.4.3 Vulnerable marine ecosystems  
 Vulnerable marine ecosystems (VMEs) are biodiversity hotspots characterized by 

assemblages of benthic fauna and/or flora that are sensitive to environmental disturbance, 

physically fragile, and slow to recover from damage (FAO 2009).  

Cerianthid fields 

 Cerianthid tube-dwelling anemones are considered indicators of VMEs due to their 

ecological significance, structural complexity, and vulnerability (Fuller et al. 2008; Murillo et al. 

2011). These anemones were observed throughout Assemblage 3, forming sizeable fields on the 

muddy seafloor. Similar to observations in eastern Atlantic fjords (Buhl-Mortensen & Buhl-

Mortensen 2014), associations between cerianthids and dominant taxa such as pandalid shrimps 

(Pandalus spp.), sea cucumbers (Psolus spp.), and sponges (Porifera spp.) were noted within this 

assemblage. Research has shown that cerianthid fields provided shelter and served as protective 

corridors while moving between habitats for juvenile redfish (Auster et al. 2003). Density 

thresholds have yet to be published relative to cerianthid field protection (Rangeley et al. 2022); 

however, the observation of 14,768 individuals forming fields within Assemblage 3 serves as a 

notable indication of a potential VME. These populations are highly susceptible to damage 
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caused by bottom-trawling, which can lead to disruptions of associated benthic communities 

(Fuller et al. 2008).  

Rhodolith beds & coralline crusts 

 Assemblage 2 should be considered carefully with respect to its management as it 

contained multiple sites with rhodolith beds (Fig 3.12). Based on the data observed in this study, 

rhodolith and other coralline algal communities are a widespread feature of Nain’s nearshore 

marine environment. The rhodolith habitats could be categorized as a VME according to their 

functional significance, structural complexity, extended lifespan, and vulnerability relative to 

their slow recovery post-disturbance (e.g., trawling, scalloping) (Jørgensbye & Halfar 2017; 

Chimienti et al. 2019). The importance of these habitats for nurseries, regional biodiversity, 

carbon sequestration, and commercial fishery yields have been well-documented in the literature 

(Barbera et al. 2003; Kamenos et al. 2004b; Mao et al. 2020; Tuya et al. 2023). The association 

of these beds with scallops in previous studies is also notable (Barbera et al. 2003; Kamenos et 

al. 2004a), as they were observed as a dominant taxon (C. islandica) throughout Assemblage 2. 

This association is especially important as the economic interest in the Icelandic scallop fishery 

grows, aiming to bring diversification to the fishing sector in Nunatsiavut (Kourantidou et al. 

2021; Schaible 2019; Barker 2019). Studies have highlighted the destructive effects of scallop 

dredging on rhodolith habitats, attributed to the physical disruption caused to the seafloor 

(Stewart & Howarth 2016). Notably, in one case, a >70% reduction in rhodolith beds was 

observed due to scallop dredging in Scotland, and recovery was absent over a four-year period 

(Hall-Spencer & Moore 2000). Furthermore, recent studies have revealed that rhodolith beds are 

recognized as refugias that enhance ecosystem resilience in the face of environmental stress 

(Fredericq et al. 2019; Voerman et al. 2022). The encrusting coralline algae, which was also 
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plentiful in Assemblage 2, is unlikely to be sensitive to impact due to its resilient and robust 

structure; however, the associated fauna that coexist with it may still possess varying levels of 

sensitivity (Ross et al. 2023). Gaining a deeper understanding of the spatial distribution of these 

ecosystems in high-latitude regions is of utmost importance because they may play critical roles 

as breeding and nurturing areas for commercially significant fish and invertebrate species 

(Jørgensbye & Halfar 2017).  

 

Figure 3.12  Approximate locations (red boxes) of rhodolith-dominated habitats based on drop-camera 

surveys. Representative photographs are shown on map.  

 

Orange-footed sea cucumber 

The orange-footed sea cucumber was observed as a dominant taxon throughout 

Assemblage 2 and formed large masses on boulders. Although this taxon is not considered a 

VME indicator on its own, it was recently documented in high abundance within an 

internationally listed conservation-relevant habitat in the Barents Sea, Norway (Ross et al. 2023). 

While our observations in Assemblage 2 share some similarities with the conservation-relevant 
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habitat identified by Ross et al. (2023), including the dominance of the orange-footed sea 

cucumber, distinctions such as the absence of certain hydroids and bryozoans, and the lack of 

direct assessments for chlorophyll a concentration, make it challenging to precisely align our 

findings with their detailed criteria. Nevertheless, our study underscores the ecological 

significance and taxonomic richness within Assemblage 2. 

Tunicates, erect bryozoans, sponges 

Erect bryozoans (Bryozoa spp. 2, Bryozoa spp. 1), sponges, large ascidians like sea 

peaches (H. pyroformis) and stalked tunicates (B. ovifera) were dominant in Assemblage 1 while 

the latter was also dominant in Assemblage 2. However, the ascidians, sponges and bryozoans 

did not form fields on the seabed in this survey, and as such, their presence alone may not be 

indicative of a VME (Murillo et al. 2011; Kenchington et al. 2014). Despite the lack of these 

VME characteristics, these taxa were found throughout assemblages 1 and 2 and may provide 

significant structure for other benthic epifauna (e.g., ophiuroids, small fish) (Kenchington et al. 

2007; Murillo et al. 2011; Beazley et al. 2013; Smith et al. 2001), ultimately enhancing species 

richness (Francis et al. 2014).  

3.5 Conclusion 
This study provides a benthic habitat map of the nearshore marine environment in Nain, 

Labrador, and describes habitats characteristics at ogak fishing locations to support the 

Imappivut initiative. The spatial representation of epifaunal assemblages and their environmental 

drivers can assist resource users in prioritizing habitats, mitigating environmental impacts, and 

preserving critical resources in the region. Habitats associated with local ogak fishing sites 

exhibited high substrate complexity, along with increased signs of productivity attributed to 

extensive rhodolith beds and macroalgal coverage. These conditions likely provided favorable 

opportunities for foraging, shelter, and reproductive success. Moreover, the identification of 
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potential vulnerable marine ecosystems and their associated indicator taxa within the region 

highlights the need for conservation and protection measures. The insights gained from this study 

can allow the NG to pinpoint habitats requiring strategic management and ongoing monitoring, 

particularly those associated with ogak. This proactive approach ensures the preservation of their 

traditional way of life and economic prospects while upholding the ecological integrity of the 

ecosystem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3-38 
 

3.6 Appendix 
Table 3.1  Environmental features calculated across multiple scales to model species assemblages. 

 

 

Figure 3.13  Indicator taxa with associated indicator and probability values for 3 epifaunal assemblages. 

Table 3.2  Total abundance of morphotaxa throughout survey in Nain, NL. Status denotes dominant (x) 

and indicator taxa (*). 
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Status Morphotaxa 
Total 

abundance 
 Actiniaria spp. 6 
 Actinostola callosa 41 

x Ascidiacea sp.1 561 
 Ascidiacea sp.2 55 

x *  Ascidiacea sp.3 474 
 Asterias sp.99 20 

x Boltenia ovifera 610 

x Bryozoa sp.004 234 

x Bryozoa sp.1 222 

x * Bryozoa sp.2 516 
 Bryozoa sp.6 120 
 Buccinum spp. 11 

x * Ceriantharia spp. 14768 
 Chionoecetes opilio 56 

x Chlamys islandica 649 

x Cottidae spp. 229 

x Crossaster papposus 263 
 Ctenodiscus crispatus 10 

x Cucumaria frodosa 714 
 Haliclona sp.2 19 

x  *  Halocynthia pyriformis 93 
 Henricia sanguinolenta 83 
 Hyas araneus 44 
 Hyas coarctatus 24 

x Leptasterias polaris 108 

x Leptoclinus maculatus 380 

x Lumpenus lampretaeformis 874 

 Lycodes vahlii 63 
 Myoxocephalus scorpius 36 
 Myoxocephalus spp. 44 

x * Myxicola infundibulum 2511 
 Neohela monstrosa 27 

x *  Ophiuroidea sp.1 3288 
 Ophiuroidea sp.2 128 
 Pagurus spp. 22 

x Pandalus spp. 2066 
 Polinices heros 4 

x Porifera sp.11 292 

x Porifera sp.13 424 
 Porifera sp.21 41 
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Status Morphotaxa 
Total 

abundance 
 Porifera sp.22 16 

x Porifera sp.3 319 

x Psolus fabricii 2594 

x Psolus phantapus 2072 

x Sabellida spp. 455 
 Solaster endeca 13 
 Stichaeus punctatus 5 
 Stomphia coccinea 249 

x * 
Stronglyocentrotus 

droebachiensis 
8495 

x Urticina felina 461 

 

 

Figure 3.14  Drop-camera video survey locations (n = 75) from GRTS design. Sites are colour coded by 

substrate type. Map includes bathymetric coverage compiled by the Canadian Hydrographic Service. 
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Figure 3.15  Images of epifaunal assemblages and dominant taxa observed for each species assemblages observed around Nain. Sample size refers 

to the number of drop-camera stations. 
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4 Conclusion 
 This chapter is meant to serve as a summary of the highlights and important findings in 

this research for community members in Nain and the Nunatsiavut Government. It is important 

to acknowledge that the new research avenues proposed upon concluding this study may not be 

the highest priority for local Inuit. Nevertheless, delving deeper into the intricacies of the benthic 

ecosystem contributes to the well-being of the broader marine environment. 

iKaluk – Arctic charr 

iKaluk associated habitats  

 We used underwater cameras, along with listening devices (acoustic receivers) from 

Fisheries and Oceans Canada, and fishing spots identified by local harvesters, to learn about the 

marine, benthic habitats of iKaluk. Within 125 videos, we identified 248,056 individual animals. 

We grouped sites into five categories by their dominant organism: 1) brittle stars; 2) a mix of 

northern red anemones and sea stars; 3) sea cucumbers and bryozoans; 4) a mix of clams, sea 

squirts, and bryozoans; and 5) tube-dwelling anemones. iKaluk with tags were often seen in 

estuarine habitats, especially in Tikkoatokak Bay, Nain Bay, Webb Bay, and Anaktalak Bay (Fig 

4.1). These estuaries were dominated by mud or sand and covered in microalgal mats (benthic 

diatoms). The ocean floor in these habitats was full of brittle stars and tube-dwelling anemones. 
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Figure 4.1  Arctic charr movement paths between acoustic receivers and substrate classes. Charr hotspots 

around Nain, highlighted in green and yellow. Receivers are coloured by dominant substrate class 

identified during video analysis. 

We think that a high coverage of benthic diatoms (Fig 4.2) can tell us that the habitat is 

suitable for iKaluk. These phytoplankton are important for the food-chain in estuaries and may 

serve as rich foraging areas for iKaluk and their preferred prey, including capelin and sand lance. 

Overall, iKaluk were detected 71% of the time in these habitats, where they also spent the most 

amount of time. When assessing habitat suitability, this substrate was highest for iKaluk 

compared to the other available substrates observed in the survey. Other available substrates 

included fine sediments, fine sediments covered in pebbles, and a mixture of gravel covered in 

algae. As warming continues across Nunatsiavut, it is likely that an earlier spring bloom of 

phytoplankton will influence the benthic productivity in Nain, which may impact the feeding 

habits and habitat use of iKaluk. The timing and abundance of prey may be impacted, causing 

breaks in the charr food-web. Future research could investigate the abundance of prey within 

available iKaluk habitats, as well as the significance of benthic diatoms in Nain’s iKaluk food 

web using stable isotopes and fatty acids.  
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Figure 4.2  Estuarine habitat with benthic diatoms covering the seafloor. Animals in the photo include a 

toad crab, sea cucumbers, and many brittle stars. Benthic diatoms serve as a primary food source in 

estuarine food webs, making their presence and productivity essential for the overall ecological balance of 

these delicate habitats. White bar for scale is 2.5 cm. 

 

Environmental change on iKaluk  

When comparing the sizes of individual iKaluk that left their natal estuary and explored 

other habitats (vagrant) with those that remained in one habitat for the entire summer 

(sedentary), we found no significant difference in size. Typically, larger iKaluk are shown to 

venture farther from their natal estuaries, exploring a variety of habitats for food, or passing 

through to get to a different estuary. The finding that vagrant charr are not significantly larger 

than sedentary charr may support the observations of a decline in iKaluk sizes throughout the 

region by local harvesters. However, future research is needed to verify the relationship between 

fish size and non-estuarine habitat use.   

 The restricted movements observed in both vagrant and sedentary charr during this study 

are likely linked to the abundance of preferred prey in diatom-covered estuary habitats. 

However, it is also possible that these limited movements are due to a shift away from anadromy. 

Toad crab 

Sea cucumber 

Brittle star 
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In the future, extended ice-free periods and increased rainfall due to climate change could 

enhance productivity in freshwater habitats, leading to greater availability of food. Consequently, 

there may be reduced reliance on migration between freshwater and saltwater for iKaluk during 

the summer. This reduction in life history diversity could pose a problem to iKaluk as a species 

and could also impact the availability of this fish for commercial and subsistence fisheries. 

Further research and monitoring should be done to confirm whether the limited movements 

observed in iKaluk during this study result from a shift away from anadromy and to understand 

the associated consequences. This may involve various research methods, including, but not 

limited to tagging, stable isotope analyses, and temperature and salinity monitoring. 

Ogak - Rock cod 

Ogak associated habitats   

We used underwater video surveys within and around local ogak fishing locations to map 

the seafloor habitats present in Nain and to see which of these habitats ogak tend to associate 

with. Across the 75 drift-videos, a total of 44,809 individual animals were identified. Ittiks or sea 

urchins (count = 8,495), sea cucumbers (count = 5,380) brittle stars (count = 3,298), tube worms 

(2,966) and tube-swelling anemones (count = 14,768) were some of the most common animals 

observed throughout the study area. Additional animals in high abundance relevant for fisheries 

and economic opportunities included shrimp (count = 2,072) and scallops (count = 649). Our 

habitat map resulted in three groups (assemblages) of seafloor animals dominant in the study 

area, and these included 1) sea squirts and bryozoans; 2) sea urchins; 3) and a mix of tube-

dwelling anemones, tube worms and brittle stars (Fig 4.3).  
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Figure 4.3  Seafloor animal assemblages in Nain, Nunatsiavut. Assemblages include: 1) Hard bottom, 

mid-depth with sea squirts and bryozoans; 2) Hard bottom, shallow with sea urchins (ittik); 3) and Soft 

bottom, deep with a mix of tube-dwelling anemones, tube worms and brittle stars. Number of sites 

surveyed shown (n). 

 

Assemblage 1 was found slightly further from land at 35-55 meters depth and was found 

on rocky substrates (e.g., cobbles, boulders) with patches of sand or mud (Fig 4.4). Sea squirts 

and bryozoans were often found attached to the rocks in this assemblage. Assemblage 2 was 

found in shallow areas, close to land with a seafloor full of rhodolith beds (live rock), coralline 

algae, and gravel (Fig 4.5). This assemblage was covered in urchins, which are often found 

grazing in algal habitats, as well as sea cucumbers and a high number of scallops. Assemblage 3 

was found in deeper areas further from land and had a seafloor entirely composed of sand and/or 

mud (Fig 4.6). This assemblage contained extensive fields of tube-dwelling anemones mixed 

with tube worms and brittle stars. 
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Figure 4.4  Example of a sea squirt and bryozoan habitat in Nain. Sandy and muddy seafloor covered in 

boulders and pebbles. Green lasers are distanced 10 cm for scale. Animals in photo are labelled. 

 
Figure 4.5  Example of an urchin dominated habitat in Nain. Branching rhodolith beds cover the seafloor. 

Green lasers are distanced 10 cm for scale.  

Urchins 
Sea cucumber 

Brittle star 

Sea squirts 

Bryozoan 

Sea cucumber 

Tube worm 

Shrimp 
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Figure 4.6  Habitat for a mix of tube-dwelling anemones, tube worms and brittle stars. Green lasers are 

distanced 10 cm for scale. 

 

 Based on our statistical models, ogak fishing locations shared by community members 

were grouped within assemblages 1 and 2. Assemblage 1 contained more fishing locations, while 

there were no fishing locations identified in Assemblage 3. Therefore, we believe that ogak in 

Nain may prefer habitats with more complexity and a high coverage of algae, which was shown 

in assemblages 1 and 2. Previous research have supported the findings here, where ogak were 

shown to prefer shallow productive waters, with a high coverage of algae, and rocky 

outcroppings and tended to remain near these habitats. The association with these complex 

habitats is likely because of the increased shelter, protection from predators, reproductive 

success, and foraging opportunities. Rhodolith and other coralline algal communities seem to be 

a widespread feature of Nain’s nearshore marine environment, based on the findings of this 

study. The presence of rhodolith beds within Assemblage 2 likely provides abundant food 

resources particularly beneficial for supporting juvenile ogak and other codfish. 

 

Tube-dwelling anemone 

Brittle star 
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Vulnerable marine ecosystems 

 Vulnerable marine ecosystems (VMEs) are regions with an unusually rich biodiversity. 

They consist of collections of plants and/or animals that are highly sensitive to environmental 

disruptions, physically delicate, and slow to rebound from damage. Many animals within each 

assemblage described in this study are considered indicators of VMEs, and these included large 

sea squirts, erect bryozoans, sponges, and tube-dwelling anemones. Although the spatial 

coverage of some of these animals (sea squirts, bryozoans, sponges) did not seem to meet the 

specified criteria for a VME (Fig 4.7), their numbers should be monitored closely throughout the 

region. Tube-dwelling anemones formed dense fields on muddy bottoms throughout assemblage 

3 in this study. Appropriate population densities at which protective measures should be applied 

to these animals have not been established yet. However, within Assemblage 3, 14,768 

individuals formed dense fields in multiple sites, indicating a potential VME that requires further 

investigation (Fig 4.8). Special attention should be given to Assemblage 2 in terms of its 

management. This area comprises several sites with rhodolith beds and could serve as crucial 

habitats for rock cod populations by offering rich foraging opportunities (Fig 4.9). Rhodolith 

beds provide a rich environment for fish like rock cod to find food. The structure of these beds 

creates hiding spots for smaller marine creatures, attracting the attention of fish searching for a 

meal. These habitats possess the characteristics necessary to be classified as VMEs due to their 

functional significance, structural complexity, prolonged lifespan, and slow recovery after 

disturbances such as trawling and scalloping. It is crucial to gain a comprehensive understanding 

of the spatial distribution of these ecosystems in northern regions to ensure their proper 

conservation and management as environmental conditions continue to change. 
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Figure 4.7  Sea potatoes, a type of sea squirt with long stalks, found on top of a boulder. These sea squirts 

are indicators of a vulnerable marine ecosystem. A field of tube-dwelling anemones is also seen in the 

photo. 

 

 

Figure 4.8  Tube-dwelling anemone field on a seafloor covered in benthic diatom mats. These anemones 

burrow into the mud and are indicators of a vulnerable marine ecosystem.  

 

Sea potatoes 
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Figure 4.9  Rhodolith bed (live rock) habitat. These seaweeds are free-living and remain unattached to the 

seafloor.   

 

Recommendations for management 

Establishing a baseline & monitoring  

Establishing a fundamental baseline on seabed species assemblages and habitats a is 

critical for management efforts. This baseline provides essential insights into marine ecosystem 

health, biodiversity conservation, sustainable resource management, and climate change impacts, 

forming the foundation for informed marine ecosystem management strategies. This should be 

done by integrating indigenous and local knowledge systems, targeting community-oriented 

research priorities, and incorporating traditional knowledge and perspectives into management 

strategies. Meaningful consultations and collaborations with communities are essential for 

culturally appropriate and effective management decisions. This integration allows for 

constructive dialogue and collaboration, leading to increased acceptance of conservation 

initiatives and the advancement of collaborative management approaches for coastal ecosystems.  
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Conservation of important habitats & taxa 

To safeguard crucial habitats and species, it is vital to prioritize the protection of iKaluk 

and ogak-associated habitats. In the case of iKaluk, the emphasis is on prioritizing estuaries 

characterized by an extensive coverage benthic diatom mats. For ogak, the focus is on 

prioritizing nearshore habitats that exhibit elevated structural complexity and productivity, such 

as rhodolith beds. Additionally, focusing on the VMEs pinpointed in the study is essential to 

maintain the ecological balance of the local marine environment. This includes the preservation 

of rhodolith beds and fields of tube-dwelling anemones, which are extremely vulnerable to 

commercial fishing activities, like trawling. Assessing the resiliency of VME indicators and 

habitat-forming taxa found within these assemblages, such as sea squirts, erect bryozoans, tube-

dwelling anemones, and other sensitive species, to disturbances and evaluating the effectiveness 

of current management measures are critical steps.  

Management measures for these important habitats may include depth limits for fishing, 

gear restrictions, and closed areas where fishing is prohibited. Specifically, if restrictions are 

applied to limit bottom trawling in regions where VMEs are identified, such as rhodolith beds 

and tube-dwelling anemone fields, it would decrease human impacts on these sensitive areas. 

Establishing marine protected areas (MPAs) specifically to conserve important habitats identified 

in the study would serve in safeguarding these ecosystems from harmful activities. These areas 

are designed to regulate or restrict human activities to protect the habitats. Overall, implementing 

sustainable fishing practices for newly developing fisheries in Nunatsiavut (e.g., Icelandic 

scallop, whelk, shrimp) and considering the protection of habitats associated with iKaluk and 

ogak will contribute to the preservation of benthic biodiversity, ecosystem functioning, and 

important fisheries in the region.
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Benthic Video Workshop in Nain, Nunatsiavut 2023 
Z. MacMillan-Kenny1, K. Ortenzi2, M. Graham1, A. Templeton3 

 

Introduction 
In Canada, northern coastlines are undergoing significant environmental change in  

response to the rapidly warming climate. Warmer conditions coupled with changes in ocean  

circulation and ecological processes (e.g., migration periods, prey availability) continue to  

cause profound changes to the ranges and ecology of northern fish, benthic ecosystems, and  

ecosystem services. These changes impact the social, cultural, and physiological well-being  

of Labrador Inuit within Nunatsiavut (Newfoundland and Labrador, Canada) whose  

livelihoods are intrinsically linked to the coastal marine environment. Establishing a baseline on 

information such as the distribution and composition of fauna, areas of high biodiversity, and 

sensitive habitats in the area is the first step to managing and adapting to the rapidly changing 

North. This benthic video workshop was organized as a community engagement activity to help 

highlight the importance of the seafloor and its connection to people. Moreover, the workshop 

emphasized the importance of imagery/video surveying methods that can help manage the local 

benthic ecosystem under the pressures of climate change.  
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Day 1 
 

The first day of the workshop was centered around getting 

to know the participants and leaders through a connection to 

the benthic environment. Led by Kate Ortenzi, a network of 

benthic flora and fauna was created with the help of 

participants from the community and Nain’s research 

center. This network showed the interconnections of the 

benthic environment and its importance to people of the 

community (Fig 1). Each participant shared the meaning of 

each benthic image to them and proceeded to connect the 

images together through a common theme of values which 

included stories, ecological relationships, and subsistence to 

name a few. 

 

 Determining project purposes was discussed 

extensively to assist Myrah Graham with her benthic video 

research project based across Inuit Nunangat (Inuit 

homeland in Canada). Common research questions (i.e., 

comparative, descriptive, relationships) were discussed 

among participants. Emphasis on community priorities was 

made relative to the research questions. This allowed 

participants to share their feedback on selecting research 

questions important to the community when planning large-

scale projects. Using the presented findings from Zach 

MacMillan-Kenny’s habitat mapping project for rock cod 

(Gadus ogac) habitats in Nain, participants discussed the 

implications of these results. Discussions revolved around 

marine spatial planning, areas of high biodiversity, and 

fisheries management to protect resources in Nain’s 

nearshore marine waters.  

  

 A full tutorial and demonstration on the underwater 

camera equipment was performed by Adam Templeton. 

Participants practiced using the equipment on land before 

using it to collect data in the field. Field safety protocols 

were also discussed to ensure that there was proper use of 

the equipment and that no one got hurt.  

 
 
 
Day 2 

Figure 1  Benthic connective network 

activity led by Kate Ortenzi 

Figure 2  ROV and drop-camera 

demonstration by Adam Templeton 
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Led by Zach MacMillan-Kenny 

and Myrah Graham, this part of the 

workshop was entirely focused on 

video data processing and analysis. To 

begin, identifications and annotations 

relative to seafloor imagery was 

explained. A species catalogue of the 

local area was developed to refer to 

during the annotation process. 

Participants first practiced annotating 

benthic imagery by hand using sticky 

notes and printed photographs of 

Nain’s benthos (Fig 3). A full tutorial 

of the annotation software called 
BioImage Indexing, Graphical Labeling 

and Exploration (BIIGLE), was demonstrated to 

the participants. Using a volume of seafloor 

images, participants formed groups 

and practiced annotating images using 

the species identification catalogue 

(Fig 4). Once images were completed, 

methods to perform video annotations 

were explained and participants 

worked in their groups to annotate 

drop-camera videos from Nain’s 

seafloor. A competition between 

groups was organized to identify 

which group was the fastest at 

annotating and which group was the 

most accurate. After practicing with 

annotations, participants and leaders 

discussed site selection and field 

preparation. Participants selected a 

local site to survey under the sea-ice 

using the DeepTrekker Pivot ROV. Completing 

the first 2 days allowed the participants to 

become familiar with the purpose and 

methodology behind benthic video surveys, so it was now time to take their knowledge into the 

field.  

 

Day 3 
 

The final day of the workshop, led by Adam Templeton and Zach MacMillan-Kenny, 

focused on video data collection. The field component was crucial for displaying the trials and 

Figure 3 Annotation practice using sticky 

notes and species catalogue  

Figure 4 Annotation practice using 

BIIGLE  
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tribulations of this type of field work 

and helped participants learn the 

science behind video data collection. 

On skidoos, over a dozen participants 

drove across the sea-ice to reach our 

site in Anaktalak Bay situated 

southwest of Nain. After cutting 

through the 4.5 ft thick ice with a 5-

foot chainsaw, the DeepTrekker 

DTPod drop-camera was deployed for 

an initial survey. Once the site was 

surveyed for hazards and participants 

had the chance to control the drop-

camera to see the benthos in real-time, 

the DeepTrekker Pivot ROV was 

deployed. Participants took turns flying the 

ROV and identifying benthic creatures. A 

transect was performed (north, 

south, east, and west) from the 

center of the ice hole to collect 

video data on the benthos in 

Anaktalak Bay. 

Additional Days 
 The workshop was 

comprised of 3 days of learning 

that were built upon each other. 

In addition to this, an event was 

held at the local Illusuak 

Cultural Centre to share this 

research with other members of 

the community. Over 20 adults 

and their children attended this 

event that displayed results from 

previous video surveys as well 

as many components of the workshop (e.g., 

ROV demonstration, seafloor videos, 

networks, annotation practice). Three 

classes consisting of grades 4, 5, 6, 7, 8 and 9 were also taught at the local school in Nain (Jens 

Haven Memorial School). These hour-long classes allowed children to participate in identifying 

and labelling benthic fauna in local waters, learn about camera equipment and understand the 

importance of the seafloor ecosystem.   

Summary 
 Overall, the benthic video workshop displayed the important connections between people 

and the seafloor. As climate change continues to threaten the marine ecosystem across Inuit 

Nunangat, understanding the importance of the benthic ecosystem is more pressing than ever. 

This workshop highlighted the importance of the benthic ecosystem for communities and 

Figure 5 ROV deployment 

Figure 6 Flying the ROV under sea-ice 
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demonstrated video and imagery survey methods to establish baselines, monitor changes, and 

target areas of importance to adapt to the rapidly changing North.  

 

 

 

Additional Field Photos 
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Outline

I. Annelida

II. Arthropoda

III. Bryozoa

IV. Chaetognatha

V. Chordata

VI. Ctenophora

VII.Cnidaria

VIII.Echinodermata

IX. Mollusca

X. Porifera

2



3

Myxicola infundibulum

• Phylum:  Annelida

• Class: Polychaeta

• Order:  Sabellida

• Family: Sabellidae

• Genus: Myxicola

• Species: Myxicola infundibulum

Annelida



4

Sabellida spp.

• Phylum: Annelida

• Class: Polychaeta

• Order:  Sabellida

• Family: Sabellidae

• Genus: 

• Species:

Annelida



5

Polychaeta spp.

• Phylum:  Annelida

• Class: Polychaeta 

• Order:  Errantia

• Family: Phyllodocidae

• Genus: Phyllodoce

• Species: 

Annelida



6

Amphipoda spp.

• Phylum: Arthropoda

• Class: Malacostraca

• Order:  Amphipoda

• Family: Hyalellidae

• Genus: Hyalella

• Species: 

Arthropoda
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Chionoecetes opilio

• Phylum:  Arthropoda

• Class: Malacostraca

• Order:  Decapoda

• Family: Oregoniidae

• Genus: Chionoecetes

• Species: Chionoecetes opilio

Arthropoda



8

Hyas araneus

• Phylum:  Arthropoda

• Class: Malacostraca

• Order:  Decapoda

• Family: Oregoniidae

• Genus: Hyas

• Species: Hyas araneus

Arthropoda



9

Hyas coarctatus

• Phylum:  Arthropoda

• Class: Malacostraca

• Order:  Decapoda

• Family: Oregoniidae

• Genus: Hyas

• Species: Hyas coarctatus

Arthropoda



10

Pagurus spp.

• Phylum: Arthropoda

• Class: Malacostraca

• Order:  Decapoda

• Family: Paguridae

• Genus: Pagurus

• Species: 

Arthropoda
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Pandalus spp. 

• Phylum: Arthropoda

• Class: Malacostraca

• Order:  Decapoda

• Family: Pandalidae

• Genus: Pandalus

• Species: Pandalus borealis / Pandalus montagui

Arthropoda



12

Neohela monstrosa

• Phylum: Arthropoda

• Class: Malacostraca

• Order:  Amphipoda

• Family: Unciolidae

• Genus: Neohela

• Species: Neohela monstrosa

Arthropoda
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Bryozoan sp.1

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa
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Bryozoan sp.2

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa



15

Bryozoan sp.4

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa
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Bryozoan sp.6

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa
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Bryozoan sp.003

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa



18

Bryozoan sp.004

• Phylum: Bryozoa

• Class: 

• Order:  

• Family: 

• Genus: 

• Species: 

Bryozoa
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Sagittidae spp.

• Phylum: Chaetognatha

• Class: Sagittoidea

• Order:  Aphragmophora

• Family: Sagittidae

• Genus: 

• Species: 

Chaetognatha
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Gadus morhua

• Phylum: Chordata

• Class: Actinopterygii

• Order: Gadiformes

• Family: Gadidae

• Genus: Gadus

• Species: Gadus morhua

Chordata
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Gadus ogac

• Phylum: Chordata

• Class: Actinopterygii

• Order: Gadiformes

• Family: Gadidae

• Genus: Gadus

• Species: Gadus ogac

Chordata
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Cottidae spp.

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Cottiidae

• Genus: Myoxocephalus

• Species:

Chordata
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Zoarcidae sp.1

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Zoarcidae

• Genus: 

• Species:

Chordata
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Zoarcidae sp.2

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Zoarcidae

• Genus: 

• Species:

Chordata
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Zoarcidae sp.3

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Zoarcidae

• Genus: 

• Species:

Chordata



26

Lycodes vahlii

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Zoarcidae

• Genus: Lycodes

• Species: L. vahlii

Chordata
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Myoxocephalus spp.

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Cottiidae

• Genus: Myoxocephalus

• Species:

Chordata



28

Myoxocephalus
Scorpius

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Cottidae

• Genus: 

• Species:

Chordata
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Liparis spp.

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Liparidae

• Genus: Liparis

• Species:

Chordata



30

Stichaeus punctatus

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Stichaeidae

• Genus: Stichaeus

• Species: S. punctatus

Chordata
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Boreogadus saida

• Phylum: Chordata

• Class: Actinopterygii

• Order: Gadiformes

• Family: Gadidae

• Genus: Boreogadus

• Species: Boreogadus saida

Chordata
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Lumpenus lampretaef
ormis

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Stichaeidae

• Genus: Lumpenus

• Species: Lumpenus lampretaeformis

Chordata
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Leptoclinus maculatus

• Phylum: Chordata

• Class: Actinopterygii

• Order: Scorpaeniformes

• Family: Stichaeidae

• Genus: Leptoclinus

• Species: Leptoclinus maculatus

Chordata
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Amblyraja radiata

• Phylum: Chordata

• Class: Chondrichthyes 

• Order: Rajiformes

• Family: Rajidae

• Genus: Amblyraja

• Species: Amblyraja radiata

Chordata
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Boltenia ovifera

• Phylum: Chordata

• Class: Ascidiacea

• Order: Stolidobranchia

• Family: Pyuridae

• Genus: Boltenia

• Species: B. ovifera

Chordata



36

Halocynthia pyriformis

• Phylum: Chordata

• Class: Ascidiacea

• Order: Pleurogona

• Family: Halocynthia

• Genus: Boreogadus

• Species: Halocynthia pyriformis

Chordata
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Ascidiacea sp.2

• Phylum: Chordata

• Class: Ascidiacea

• Order: 

• Family: 

• Genus: 

• Species: 

Chordata
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Ascidiacea sp.3

• Phylum: Chordata

• Class: Ascidiacea

• Order: 

• Family: 

• Genus: 

• Species: 

Chordata
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Ascidiacea sp.1

• Phylum: Chordata

• Class: Ascidiacea

• Order: 

• Family: 

• Genus: 

• Species: 

Chordata
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Ceriantharia spp.

• Phylum: Cnidaria

• Class: Ceriantharia

• Order: Spirularia

• Family: Cerianthidae

• Genus:

• Species: 

Cnidaria
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Urticina felina

• Phylum: Cnidaria

• Class: Anthozoa

• Order: Actiniaria

• Family: Actiniidae

• Genus: Urticina

• Species: Urticina felina

Cnidaria
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Stomphia coccinea

• Phylum: Cnidaria

• Class: Anthozoa

• Order: Actiniaria

• Family: Actinostolidae

• Genus: Stomphia

• Species: S. coccinea

Cnidaria
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Actiniaria spp.

• Phylum: Cnidaria

• Class: Anthozoa

• Order: Actiniaria

• Family: Actinostolidae

• Genus: Stomphia

• Species: 

Cnidaria



44

Actinostola callosa

• Phylum: Cnidaria

• Class: Anthozoa

• Order: Actiniaria

• Family: Actinostolidae

• Genus: Actinostola

• Species: A. callosa

Cnidaria



45

Halcampa arctica

• Phylum: Cnidaria

• Class: Anthozoa

• Order: Actiniaria

• Family: Halcampidae

• Genus: Halcampa

• Species: Halcampa arctica

Cnidaria



46

Cnidaria sp.1

• Phylum: Cnidaria

• Class: 

• Order: 

• Family: 

• Genus: 

• Species: 

Cnidaria
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Ptychogena lactea

• Phylum: Cnidaria

• Class: Hydrozoa

• Order: Leptothecata

• Family: Laodiceidae

• Genus: Ptychogena

• Species: Ptychogena lactea

Cnidaria



48

Gersemia fruticosa

• Phylum: Cnidaria

• Class: Octacoralia

• Order: Alcyonacea

• Family: Nephtheidae

• Genus: Gersemia

• Species: Gersemia fruticosa

Cnidaria



49

Gersemia rubiformis

• Phylum: Cnidaria

• Class: Octacoralia

• Order: Alcyonacea

• Family: Nephtheidae

• Genus: Gersemia

• Species: Gersemia rubiformis

Cnidaria
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Nephtheidae sp. 3

• Phylum: Cnidaria

• Class: Octacoralia

• Order: Alcyonacea

• Family: Nephtheidae

• Genus: 

• Species: 

Cnidaria
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Henricia
sanguinolenta

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Spinulosida

• Family: Echinasteridae

• Genus: Henricia

• Species: Henricia sanguinolenta

Echinodermata



52

Asterias forbesi

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Forcipulatida

• Family: Asteriidae

• Genus: Asterias

• Species: Asterias forbesi

Echinodermata



53

Leptasterias polaris

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Forcipulatida

• Family: Asteriidae

• Genus: Leptasterias

• Species: Leptasterias polaris

Echinodermata



54

Asterias sp.4

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Forcipulatida

• Family: Asteriidae

• Genus: Leptasterias

• Species: 

Echinodermata



55

Asteroidea sp.11

• Phylum: Echinodermata

• Class: Asteroidea

• Order: 

• Family: 

• Genus: 

• Species: *could be spawning

Echinodermata



56

Ctenodiscus crispatus

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Paxillosida

• Family: Ctenodiscidae

• Genus: Ctenodiscus

• Species: Ctenodiscus crispatus

Echinodermata



57

Asterias sp.99

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Forcipulatida

• Family: Asteriidae

• Genus: Asterias

• Species: 

Echinodermata



58

Asteroidea spp.003

• Phylum: Echinodermata

• Class: Asteroidea

• Order: 

• Family: 

• Genus: 

• Species:

Echinodermata
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Crossaster papposus

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Velatida

• Family: Solasteridae

• Genus: Crossaster

• Species: Crossaster papposus

Echinodermata



60

Solaster endeca

• Phylum: Echinodermata

• Class: Asteroidea

• Order: Velatida

• Family: Solasteridae

• Genus: Solaster

• Species: Solaster endeca

Echinodermata



61

Heliometra glacialis

• Phylum: Echinodermata

• Class: Crinoidea

• Order: Comatulida

• Family: Antedonidae

• Genus: Heliometra

• Species: Heliometra glacialis

Echinodermata



62

Stronglyocentrotus
droebachiensis

• Phylum: Echinodermata

• Class: Echinoidea

• Order: Echinoida

• Family: Stronglyocentrotidae

• Genus: Stronglyocentrotus

• Species: Stronglyocentrotus droebachiensis

Echinodermata



63

Cucumaria frondosa

• Phylum: Echinodermata

• Class: Holothuroidea

• Order: Dendrochirotida

• Family: Cucumariidae

• Genus: Cucumaria

• Species: Cucumaria frondosa

Echinodermata



64

Psolus sp.1

• Phylum: Echinodermata

• Class: Holothuroidea

• Order: Dendrochirotida

• Family: Psolidae

• Genus: Psolus

• Species: 

Echinodermata
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Psolus phantapus

• Phylum: Echinodermata

• Class: Holothuroidea

• Order: Dendrochirotida

• Family: Psolidae

• Genus: Psolus

• Species: Psolus phantapus

Echinodermata



66

Psolus fabricii

• Phylum: Echinodermata

• Class: Holothuroidea

• Order: Dendrochirotida

• Family: Psolidae

• Genus: Psolus

• Species: Psolus fabricii

Echinodermata
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Ophiuroidea sp.1

• Phylum: Echinodermata

• Class: Ophiuroidea

• Order: Ophiurida

• Family: Ophiuridae

• Genus: Ophiura

• Species: Likely Ophiura sarsii

Echinodermata



68

Ophiuroidea sp.2

• Phylum: Echinodermata

• Class: Ophiuroidea

• Order: Ophiacanthida

• Family: Ophiacanthidae

• Genus: Ophiacantha

• Species: Ophiacantha bidentata

Echinodermata
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Mya truncata

• Phylum: Mollusca

• Class: Bivalvia

• Order: Myida

• Family: Myidae

• Genus: Mya

• Species: Mya truncata

Mollusca



70

Portlandia arctica

• Phylum: Mollusca

• Class: Bivalvia

• Order: Nuculanida

• Family: Yoldiidae

• Genus: Portlandia

• Species: Portlandia arctica

Mollusca



71

Chlamys islandica

• Phylum: Mollusca

• Class: Bivalvia

• Order: Pectinida

• Family: Pectinidae

• Genus: Chlamys

• Species: Chlamys islandica

Mollusca
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Arctica islandica

• Phylum: Mollusca

• Class: Bivalvia

• Order: Venerida

• Family: Aecricidae

• Genus: Arctica

• Species: Arctica islandica

Mollusca
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Ischnochiton sp.1

• Phylum: Mollusca

• Class: Polyplacophora

• Order: Chitonida

• Family: Ischnochitonidae

• Genus: Ischnochiton

• Species: 

Mollusca
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Polinices heros

• Phylum: Mollusca

• Class: Gastropoda

• Order: Littorinimorpha

• Family: Naticidae

• Genus: Polinices

• Species: Polinices heros

Mollusca



75

Buccinum spp.

• Phylum: Mollusca

• Class: Gastropoda

• Order: Neogastropoda

• Family: Buccinidae

• Genus: Buccinum

• Species: 

Mollusca
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Cuthona gymnota

• Phylum: Mollusca

• Class: Gastropoda

• Order: Nudibranchia

• Family: Cuthonidae

• Genus: Cuthona

• Species: Cuthona gymnota

Mollusca



77

Haliclona oculata

• Phylum: Porifera

• Class: Demospongiae

• Order: Haplosclerida

• Family: Chalinidae

• Genus: Haliclona

• Species: Haliclona oculata

Porifera



78

Haliclona sp.2

• Phylum: Porifera

• Class: Demospongiae

• Order: Haplosclerida

• Family: Chalinidae

• Genus: Haliclona

• Species: 

Porifera
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Porifera sp.3

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera
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Porifera sp.5

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera



81

Porifera sp.11

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: *may be coralline algae

Porifera
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Porifera sp.55

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera



83

Porifera sp.13

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera



84

Porifera sp.21

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera



85

Porifera sp.22

• Phylum: Porifera

• Class: Demospongiae

• Order: 

• Family: 

• Genus: 

• Species: 

Porifera



86

Scypha spp.

• Phylum: Porifera

• Class: Calcarea

• Order: Leucosolenida

• Family: Sycettidae

• Genus: Scypha

• Species: 

Porifera
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