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Abstract

Efficient utilization of wireless resources is mandated to fulfill the requirements of the

sixth-generation (6G) wireless networks, such as high data rates, low latency, and ubiq-

uitous connectivity. The word "resource" implies quantities such as bandwidth, power,

and time. Efficiently allocating such limited resources is an effective means to enhance

the wireless systems’ performance. Specifically, resource allocation intends to assign lim-

ited resources to users, maximizing the utilization of these resources, and attaining the

best system performance. In this line, in this dissertation, low-complexity and efficient

resource allocation strategies in networks assisted by various technologies, including non-

orthogonal multiple access (NOMA), reconfigurable intelligent surface (RIS), full-duplex

(FD), cell-free massive multiple-input multiple-output (CFmMIMO), and integrated sens-

ing and communication (ISAC) are developed and investigated. The first part of the

dissertation focuses on analyzing the outage and throughput performances, as well as

optimizing the sum rate for an FD NOMA-assisted cooperative spectrum-sharing net-

work. The second part develops novel user clustering and resource allocation algorithms

to boost the sum spectral efficiency of a CFmMIMO-NOMA system. Besides, novel low-

complexity resource allocation algorithms for optimizing the energy efficiency and total

transmit power of RIS-aided CF and RIS-enabled federated learning (FL) networks are

proposed. The third part examines the application of RIS and FD in ISAC networks

to improve the transmission rate and sensing performance. Finally, the last part draws
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concluding remarks and discusses several topics for future investigation.
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Chapter 1

Introduction and Overview

1.1 Background and Motivation

Within the last decade, mobile communication systems have significantly evolved to meet

the escalating demand for high data rates [1]. Such demand has ever-increased with the

recent epidemic of COVID–19 to support remote data sharing and high-quality video

conferencing. Fulfilling such high data rates is, however, challenging due to the scarcity

of wireless resources, i.e., bandwidth, power, frequency, and time [2]. To cope with this

scarcity, diverse resource allocation schemes are provided as an efficient means to enhance

the system’s performance [3]. Resource allocation strategies intend to assign limited

resources to users, maximizing the utilization of these resources, and attaining the best

system performance.

In future communication networks, e.g., sixth-generation (6G) wireless, resource al-

location techniques have to be integrated with novel emerging communication technolo-

gies to help satisfy the demands for emerging services [4]. For instance, 6G networks

are expected to reach a 100-fold peak data rate (Tb/s) growth, a 10-fold latency de-

crease, and a 99.99 % end-to-end reliability requirement compared to the fifth-generation
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(5G) networks [5]. These service requirements have stimulated upcoming communica-

tion scenarios to replace the conventional 5G enhanced mobile broadband (eMBB), mas-

sive machine type communication (mMTC), and ultra-reliable and low latency commu-

nications (URLLC) with their improved 6G counterparts: further eMBB, ultra mMTC,

and URLLC diverse variants [5]. Further, several technologies including cell-free massive

multiple-input multiple-output (CFmMIMO) [6], full-duplex (FD) [1], integrated sensing

and communication (ISAC) [7], non-orthogonal multiple access (NOMA) [7], and recon-

figurable intelligent surface (RIS) [8] have been proposed to fulfill the increased service

requirements of 6G networks. CFmMIMO has the potential to provide all users in a net-

work with uniform quality-of-service (QoS) [6]. FD has the ability to theoretically double

the spectral efficiency (SE) by allowing transceivers to simultaneously transmit and re-

ceive data in the same frequency band [1]. NOMA ensures that multiple users are served

within the same spectrum resources, thus enhancing the SE and user fairness [7]. RIS

can improve the capacity and coverage of wireless communication networks by smartly

reconfiguring the wireless propagation environment through software-controlled reflec-

tions [8]. ISAC enables the combination of sensing and communication systems in order

to efficiently utilize resources and make use of their mutual advantages [7]. Reaping the

benefits of the above technologies can be further expanded by integration with resource

allocation techniques. Motivated by the above, this dissertation aims to optimize resource

allocation and propose optimal or low-complexity sub-optimal solutions to enhance the

system performance for CFmMIMO, FD, ISAC, NOMA, and RIS-assisted networks.

1.2 Key 6G Communication Technologies

In order to obtain the target 6G performance, enabling technologies such as RIS, NOMA,

CFmMIMO, ISAC, and FD have been introduced [9]. Details of such technologies are
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presented in the following subsections.

1.2.1 Reconfigurable Intelligent Surface (RIS)

Recently, RIS has been considered as a promising technology to improve the capacity

and coverage of wireless communication networks by smartly reconfiguring the wireless

propagation environment through software-controlled reflections [10]. Specifically, RIS

is a planar array structure that consists of a large number of low-cost passive reflect-

ing elements. These elements, independently adjusted by the RIS controller, cause am-

plitude and/or phase modifications to the electromagnetic incident signals in order to

be coherently added toward specific positions. Hence, RIS can be able to intelligently

change the channel conditions between the transmitter and the receiver via controllable

and smart signal reflections [10, 11]. Owing to its potential to achieve fine-tuned chan-

nel gains, enhanced QoS, and improved coverage range of wireless networks, integrating

RIS with other emerging technologies, such as NOMA, CFmMIMO, ISAC, and FD has

attracted considerable research attention. For example, RIS can significantly boost the

SE for NOMA systems [12, 13], enhance the SE and the energy efficiency (EE) for CFm-

MIMO systems [12, 14], improve communication, sensing and localization precision for

ISAC systems [8, 12], and decrease the effect of self-interference (SI) at the FD systems’

receivers [15].

1.2.2 Non-Orthogonal Multiple Access (NOMA)

NOMA has been recognized as a technology which has the potential to enhance the SE

and user fairness for 5G and beyond wireless networks [16]. In NOMA, multiple user

equipments (UEs) are allowed to simultaneously transmit and receive their signals in

the same time-frequency resources by using different signal signatures (i.e., code-domain

NOMA) or power levels (i.e., power-domain NOMA). Power-domain NOMA has been
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Fig. 1.1: An illustration of the downlink power-domain NOMA model with two UEs.

Fig. 1.2: An illustration of the uplink power-domain NOMA model with two UEs.
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shown to have the potential to considerably enhance the SE and realize massive con-

nectivity [17]. NOMA1 has been demonstrated to outperform conventional orthogonal

multiple access (OMA) schemes in many aspects, e.g., by providing lower latency, higher

spectrum efficiency, and massive connectivity [18].

In downlink NOMA, the key benefit is attributed to the fact that UEs with better

channel conditions are able to cancel the interference caused by UEs with poorer channel

conditions using the successive interference cancellation (SIC) technique. User fairness

is then achieved by allocating a large portion of the total power budget to the weak

UEs, which also guarantees SIC’s feasibility at the strong UEs. Fig. 1.1 illustrates an

example of downlink power-domain NOMA scenario with two UEs. The UE with weak

channel conditions, i.e., UE2, is allocated more power to decode its signal by considering

UE1’s signal as noise. By implementing the SIC technique, the UE with strong channel

conditions, i.e., UE1, can decode the UE2’s signal, subtract the UE2’s signal from the

superimposed signal, and then decode its own signal.

In uplink NOMA, the base station (BS) conducts successive decoding and cancellation

of different UE signals, ranked by their channel strength. Fig. 1.2 illustrates an example

of uplink power-domain NOMA scenario with two UEs. The BS firstly decodes the UE1’s

signal by considering the UE2’s signal as noise. Secondly, SIC is performed by the BS to

subtract the UE1’s signal and then decode the UE2’s signal.

Thus so far, many research works have been performed to solve the resource allocation

problems for both downlink and uplink NOMA transmission schemes, and some examples

are provided as follows. With regard to downlink NOMA, Si et al. [19] proposed a power

allocation algorithm to maximize the strong user’s transmission rate in a NOMA system.

An energy-efficient power allocation scheme was developed in [20] to maximize the EE

of a NOMA system. With regard to uplink NOMA, a joint time switching and power
1NOMA refers to power-domain NOMA in the rest of this dissertation.
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Fig. 1.3: An illustration of the CFmMIMO system.

allocation strategy was proposed in [21] to maximize the uplink data rate for an uplink

NOMA system. A three-step resource allocation optimization strategy, including equalizer

optimization, power allocation, and RIS beamforming, was developed in [22] to maximize

the sum rate for a uplink NOMA system.

1.2.3 Cell-Free Massive Multiple-Input Multiple-Output (CFm-

MIMO)

CFmMIMO is one of the major technological enablers for 6G wireless networks [6]. As

illustrated in Fig. 1.3, a large number of spatially distributed access points (APs) are

connected to a central processing unit (CPU) and coherently serve multiple UEs in the

same time-frequency resources [23]. The CFmMIMO technology has received increased

research attention in recent years due to (i) its potential to offer all UEs in a network with

uniform QoS, (ii) the possible compatibility with recent developments in radio-access net-

work, (iii) the great improvement of the network performance in various aspects, such as
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superior SE and EE, as compared to the co-located mMIMO and conventional small-cell

systems, and (iv) the flexible integration with various emerging technologies for 5G and

beyond networks in order to enhance the network performance in different perspectives,

such as enhancing the network coverage, SE, EE, and massive connectivity [6, 23]. Thus

so far, research works have been carried out to handle the resource allocation problems for

CFmMIMO operation with enabling technologies, i.e., NOMA, RIS, and FD. With regard

to the CFmMIMO integration with NOMA, UEs are grouped into spatial clusters, and

all UEs in each cluster are served on the same time-frequency-spatial resources, while the

transmitted data messages to/from different UEs are assigned various power levels [6].

In [24], an optimum power allocation design was proposed to maximize the SE for a

NOMA-based CFmMIMO system. The authors in [25] developed an optimal method for

user pairing in a RIS-NOMA-assisted CFmMIMO system. By integrating NOMA with

CFmMIMO systems, the number of concurrently served UEs becomes higher than that

of OMA-assisted CFmMIMO systems. Also, such integration can lead to a significant

performance improvement for system models with low path-loss exponents and high AP

density. With regard to the CFmMIMO operation with RIS, utilizing RIS can enhance

the SE and EE of the CFmMIMO systems due to an extra degree-of-freedom (DoF) pro-

vided by RIS. In [26], the sum rate of a RIS-assisted CFmMIMO system is maximized

by optimizing the APs’ transmit beamforming and RIS coefficients. The authors in [27]

considered the EE maximization problem of RIS-assisted CFmMIMO system. Results

showed that the RIS-based CFmMIMO systems achieve higher sum data rate and EE

than the conventional CFmMIMO systems. With regard to the CFmMIMO integration

with FD, APs operating in FD mode can boost the SE of CFmMIMO systems since they

are able to serve both downlink and uplink UEs on the same spectrum resource [28, 29].

Also, low-cost and low-power APs are well-suited for short-range transmissions between

APs and UEs [30]. In [28], the sum SE of an FD-CFmMIMO system was maximized by
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optimizing the AP duplex mode selection. The authors in [29] considered the SE max-

imization problem of an FD-CFmMIMO system by optimizing the AP selection, power,

and subcarrier allocation.

1.2.4 Integrated Sensing and Communication (ISAC)

Sensing is considered an important task of the next-generation cellular networks [31].

Many emerging mobile applications, such as smart manufacturing and industrial Internet-

of-Things, not only need high-rate transmission with low latency and high reliability, but

also require location information with high accuracy [32]. In order to offer better per-

formance and efficiently utilize the spectrum, energy and hardware resources, integrating

sensing and communication functions into a single network has become a favorable ap-

proach. By jointly optimizing wireless resources, waveform and signal processing flow,

a significant performance gain can be achieved in ISAC networks [31, 32]. Research has

been conducted to deal with the resource allocation problems for ISAC integrated with

enabling technologies, e.g., RIS, NOMA, and FD. With regard to the ISAC integration

with RIS, the latter can be used to simultaneously modify the communication and sensing

channels, thus improving both communication and sensing performance [33]. In [34], the

sum rate maximization problem of a RIS-assisted ISAC system was addressed by jointly

optimizing the transmit beamforming at the BS and the phase shifts of RIS. Simulation

results showed that the proposed system considerably decreases the mutual interference

between radar and BS, and enhances the sum rate for the communication system. In [35],

the minimum beampattern gain was maximized by jointly optimizing transmit beamform-

ing at BS, power allocation coefficients among NOMA UEs, and reflection coefficients at

the RIS for a NOMA-assisted RIS-ISAC system. NOMA can be beneficial for the pro-

posed RIS-ISAC system due to i) its potential to offer extra DoFs by multiplexing UEs

in the power domain and utilizing SIC to mitigate the inter-user interference, and ii) its
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capability to allow more UEs to be served than the conventional OMA. With regard to

the ISAC integration with FD, working in the FD mode can allow the transceivers to

concurrently transmit a dual-functional signal, receive the echo signal, and remove the SI

due to the leakage of the transmit signal to the receiver [36]. In [37], a two-criteria opti-

mization problem, i.e., power consumption minimization and sum rate maximization, was

addressed by jointly optimizing the downlink dual-functional transmit signal, the uplink

receive beamformers at the BS, and the transmit power at the uplink UEs. Simulation

results showed that FD communication-assisted ISAC outperforms the half-duplex (HD)

communication-based ISAC in terms of SE and EE.

1.2.5 Full-Duplex (FD)

FD can theoretically double the SE of wireless networks due to its ability to enable simul-

taneous transmission and reception in the same frequency band. This is in contrast to the

traditional HD systems that require the use of distinct orthogonal links for downlink and

uplink transmissions. FD systems, however, suffer from the SI, where the received signal

is interfered by the transmitted signal. Recent advancements in SI suppression techniques

have been introduced to reduce the SI problem and enable FD communication [30]. With

proper SI suppression techniques, FD can be a catalyst for boosting other emerging wire-

less technologies, such as NOMA, CFmMIMO, RIS, and ISAC. These integrated technolo-

gies can further enhance the SE and EE, and reduce latency of future wireless networks.

Thus so far, research works have been performed to solve the resource allocation problems

for FD operation with enabling technologies, i.e., NOMA, CFmMIMO, RIS, and ISAC.

With regard to the FD integration with NOMA, using NOMA can help reduce latency

and enhance massive connectivity by serving multiple UEs on the given radio resources

at the same time [38–40]. In [38], the authors analyzed various FD NOMA-based models,

including cooperative, cellular, and cognitive networks, and provided insights on resource
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allocation problems. The authors in [39] addressed the resource allocation problem to

maximize the sum rate for a RIS-aided FD multi-channel NOMA network. In [40], the

total transmit power minimization problem for a RIS-aided FD-NOMA network was for-

mulated and solved by jointly optimizing the power allocation coefficients, the active and

the passive beamformings. The authors in [39, 40] showed that incorporating RIS with

FD communication-based networks is profitable as it can help increase the SE and EE,

and expand the network coverage. With regard to the CFmMIMO and ISAC integration

with FD, it is of practical interest to employ FD in CF-mMIMO and ISAC systems in

order to reap all their combined benefits for achieving higher SE and EE [28, 29], and

enabling sensing and communication simultaneously [30,36,37].

1.3 Thesis Contribution

In this thesis, I have identified and investigated the following research points:

1. I have studied the application of FD, simultaneous wireless information and power

transfer (SWIPT), and NOMA in cooperative spectrum-sharing networks. The out-

age probability and throughput have been derived in tight closed-form approximated

expressions and used to evaluate the system performance. The power allocation

problem has been formulated and solved by a proposed rapid convergent iterative

algorithm to maximize the sum rate of the primary and secondary networks [41].

2. I have devised novel and efficient unsupervised machine learning-based user cluster-

ing (UC) algorithms to effectively cluster UEs into disjoint clusters for a CFmMIMO-

NOMA system. The sum SE maximization problem, taking into account power

constraints at APs, necessary conditions for implementing SIC, and required SE

constraints at UEs, has been formulated and solved by a proposed simple yet effi-

cient iterative algorithm [42].
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3. I have investigated the integration of RIS in a cell-free (CF) network. The EE

maximization problem, considering a joint design of transmit beamformers at APs

and reflecting coefficients at RISs of RIS-CF network, has been formulated and

addressed by a proposed simple yet efficient alternating algorithm [43].

4. I have developed a framework that applies RIS-aided wireless power transfer (WPT)

in a federated learning (FL) network. The participating mobile users’ total transmit

power minimization problem, taking into account a joint design of the transmission

time, power control, and the RIS’s phase shifts, has been formulated and solved by

a proposed simple yet efficient iterative algorithm [44].

5. I have explored the application of RIS in an ISAC network. The optimization

problem, involving a joint design of the BS’s transmit beamforming, UE’s transmit

power, and RIS’s phase shifts, has been formulated and addressed by a proposed

block coordinate ascend (BCA)-based iterative algorithm to maximize the UE’s

transmission rate [45].

1.4 Thesis Organization

In the remainder of this dissertation, each of the above-mentioned research contributions

is discussed as follows. Chapter 2 develops an outage analysis and an optimization algo-

rithm for sum rate maximization of FD, SWIPT, and NOMA-assisted spectrum sharing

networks. Chapter 3 introduces efficient UC approaches and proposes an optimization

framework for sum rate maximization of NOMA-based CFmMIMO networks. Chapter 4

focuses on RIS-assisted CF networks and presents an optimization framework to maximize

the EE performance. Chapter 5 considers RIS-enabled FL networks and develops an op-

timization algorithm to minimize the total transmit power of MUs. Chapter 6 introduces

RIS-assisted FD ISAC networks and proposes an optimization algorithm to maximize the
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transmission rate of UE. Finally, Chapter 7 draws conclusions and presents the directions

for future research.
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Chapter 2

Outage Analysis and Sum Rate

Maximization of Full-Duplex,

Simultaneous Wireless Information

and Power Transfer, Cooperative

NOMA-Aided Overlay

Spectrum-Sharing Networks

2.1 Abstract

This chapter proposes a novel NOMA assisted cooperative spectrum-sharing network, in

which one of the FD secondary transmitters (STs) is chosen among many for forwarding

the primary transmitter’s and its own information to primary receiver and secondary re-

ceivers, respectively, using NOMA technique. To stimulate the ST to conduct cooperative
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transmission and sustain its operations, the SWIPT technique is utilized by the ST to har-

vest the primary signal’s energy. In order to evaluate the proposed system’s performance,

the outage probability and system throughput for the primary and secondary networks

are derived in tight closed-form approximations. Further, the sum rate optimization prob-

lem is formulated for the proposed cooperative network and a rapid convergent iterative

algorithm is proposed to obtain the optimized power allocation coefficients. Numerical

results show that FD, SWIPT, and NOMA techniques greatly boost the performance of

cooperative spectrum-sharing network in terms of outage probability, system throughput,

and sum rate compared to that of half-duplex NOMA and the conventional orthogonal

multiple access-time division multiple access networks.

2.2 Introduction

NOMA has been recognized as a potential SE improving technique for the fifth-generation

(5G) and beyond wireless networks [1–4]. Its underlying principle enables multiple users to

concurrently access and transmit their signals in the same spectrum resource block (i.e.,

time/frequency/code domain) by using different signal signatures for the case of code-

domain NOMA (CD-NOMA) or power levels for the case of power-domain NOMA (PD-

NOMA). Message passing algorithm and successive interference cancellation (SIC) are

used to separate the superimposed signals for CD-NOMA and PD-NOMA, respectively.

Since NOMA can enhance the SE, user fairness, and realize massive connectivity compared

to the conventional OMA scheme, it can greatly enhance the performance of wireless

networks [1, 5]. In [5], a cooperative relaying system in a device-to-device-NOMA was

proposed and its performance was evaluated in terms of scaled system capacity. The

proposed system achieved much higher ergodic capacity compared to the conventional

OMA system.
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For 5G and beyond networks, in addition to the prerequisite of high SE, providing

energy-efficient communications is also an important goal. Further, since wireless users

are battery-operated, it is more likely that performing cooperative transmisison task will

lead to rapid energy exhaustion of their batteries. In order to help mobile users maintain

their operations, SWIPT [6, 7] has come out as an efficient way to provide energy and

extend the lifetime of energy-constrained wireless devices. In [6], the authors proposed

a SWIPT-based NOMA network in which near users being close to the source acted as

energy scavenging relays to help the source forward the data to far users. Closed-form

expressions for the outage probability and system throughput were obtained to assess

the system performance. The authors in [7] developed the system model where the relay

user scavenged energy from the base station (BS)’s NOMA signal and used harvested

power to forward the information to the destination. The outage probability was used

as a performance metric to evaluate their proposed system’s performance. However,

the work in [5–7] considered half-duplex (HD) relaying mode, where relay nodes cannot

simultaneously receive and transmit information in the same frequency band.

With the advancement in antenna and signal processing technologies, FD communica-

tion mode has attracted much research interest due to its ability in doubling the spectral

efficiency by allowing users to simultaneously receive and transmit data in the same fre-

quency band [8–10]. In [11], the authors proposed the user-assisted cooperative NOMA

system in which the strong user operating in FD or HD mode forwarded the information

message to the weak user. By analysing the system outage probability and ergodic sum

rate, the authors concluded that FD NOMA was superior to HD NOMA in the low signal-

to-noise ratio (SNR) region. In [12], the authors considered SWIPT in a cooperative FD

NOMA system where the near user relayed the message to the far user by harvesting the

radio frequency (RF) energy. The result showed that the effect of self-interference (SI)

signal in FD communications was mitigated thanks to SWIPT since additional gain could
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be achieved. Besides, cognitive radio (CR) is another potential technology that signifi-

cantly improves the spectrum efficiency by allowing unauthorized secondary users (SUs)

to access authorized primary users’s (PUs) spectrum. Hence, integrating NOMA to CR

networks has a highly conceivable possibility to provide an efficient spectrum use, so that

the requirements of 5G and beyond wireless networks, i.e., high spectral efficiency, low

latency, and massive connectivity, can be readily achieved [13,14]. Considering multiple-

input multiple-output (MIMO) CR-NOMA system, the authors in [15] proposed a novel

joint antenna selection algorithm to further enhance the system performance. In [16], a

cooperative multicast for CR-NOMA scheme was developed to improve the outage prob-

ability of PU. In order to maximize the harvested energy of SUs and based on a practical

non-linear energy harvesting (EH) model, the authors in [17] proposed an optimal resource

allocation strategy in a SWIPT-CR-NOMA network, where SUs shared the licensed spec-

trum with PUs under the condition that the interference caused by SUs was acceptable.

In [18], the cooperative NOMA relay-supported CR network was investigated where SU

helped PU by acting as relays and exploited NOMA technique to transmit the PU’s and

its own messages together to the destination using the licensed spectrum band. Under

the same system model as in [18], [19] focused on user scheduling schemes to improve the

outage performance for both primary and secondary systems.

Unlike the existing works [15–17], [20] which considered NOMA underlay CR networks,

this chapter proposes a novel FD NOMA assisted cooperative overlay spectrum-sharing

system with SWIPT that encourages the cooperation between primary and secondary net-

works. Given that FD, SWIPT, and NOMA are potential spectral and energy efficiency

improving technologies for the beyond 5G wireless networks, applying such technologies

will not only boost the system performance, but also showcase that they can be oper-

ated in tandem in future networks. Although there exist a few works [18, 19] which also

considered the application of NOMA to overlay CR network, the major differences of our
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work compared with the existing ones are as follows. Firstly, besides spectrum sharing

to secondary transmitters (STs), in order to stimulate STs to perform cooperative relay-

ing functions and sustain their operations in terms of energy, SWIPT is applied in our

proposed system where STs can harvest RF energy from the primary transmitter (PT)’s

signal and use it for their relaying operations. Secondly, STs operate in FD mode, which

allows them to concurrently receive and transmit signals in the same transmission time.

As a result, significant increase in the spectral and energy efficiencies of the system is

readily achieved. Thirdly, the effect of STs scheduling on the system performance is con-

sidered, where the best ST is selected to maximize the harvested power and improve the

reception quality of primary and secondary networks. The main contributions of this

chapter are summarized as follows:

• This chapter proposes an opportunistic ST selection method to choose one best FD

ST, which has the best channel connection to the PT, among multiple ones. Besides,

this is the first work considering the application of FD, SWIPT, and NOMA in

cooperative spectrum-sharing networks.

• This chapter characterizes the performance of primary and secondary networks in

terms of outage probability and system throughput over Rayleigh fading channels.

To this end, the tight closed-form approximation expressions are obtained for out-

age probability and system throughput of both primary and secondary networks.

Through numerical results, it is shown that the application of FD, SWIPT, and

NOMA techniques significantly improve the proposed system performance compared

to HD and the conventional OMA-time division multiple access (OMA-TDMA)

schemes.

• This chapter proposes an efficient algorithm which solves the power allocation prob-

lem to maximize the sum rate of primary and secondary networks. The obtained
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Fig. 2.1: Illustration of FD NOMA-supported cooperative overlay CR network.

results show the superior performance of FD compared to its HD counterpart.

The remainder of this chapter is organized as follows. Section 2.3 describes the system

model. In Section 2.4, the outage probability and system throughput for both primary

and secondary networks are successfully derived. In Section 2.5, a novel power allocation

optimization algorithm is proposed to maximize the sum rate of primary and secondary

networks. Numerical results and discussions are shown in Section 2.6. Finally, the chapter

is concluded in Section 2.7.

Notations: Bold lowercase letters denote vectors and lowercase characters stand for

scalars. || · ||, (·)H and | · | correspond to the Euclidean norm, the Hermitian operator, and

the absolute value, respectively. E[·] represents the expectation operation, Pr(·) denotes

probability, and C is the set of complex-valued numbers.
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2.3 System Model

2.3.1 System Description

As illustrated in Fig. 2.1, this chapter considers a cooperative overlay spectrum-sharing

system consisting of one pair of primary transceivers denoted by PT and PR, K STs

denoted by STk, k = 1, 2, . . . ,K, and M secondary receivers (SRs) denoted by SRm,

m = 1, 2, . . . ,M. All STs operate in FD mode and others operate in HD mode. The PT is

equipped with N antennas, n = 1, 2, . . . , N , while the PR and M SRs are equipped with

one transmitting/receiving antenna. Each ST has two antennas, one for receiving and

the other one for transmitting [12, 21]. The direct link between the PT and the PR does

not exist since the PR is far away from the PT [19, 22, 23]. Hence, in order to establish

communication between PT and PR, we consider an overlay spectrum-sharing scenario

where the PT allows STs to access its spectrum resources as a reward for improving the

primary reception by cooperative relaying. The best ST (denoted henceforth by STb) is

selected among K STs to concurrently transmit the primary information together with its

own data to the PR and M SRs by employing the NOMA technique. The aim of selecting

the STb is to obtain the best primary and secondary outage performances. Besides, in

order to further encourage the STb to conduct the cooperative relaying function, SWIPT

is utilized in the model where the STb can harvest energy from the PT signal and use it

for relaying purpose [22].

The transmission time is partitioned into equal transmission time slots of duration T .

All wireless channels undergo Rayleigh block fading with coherence time of T . The channel

coefficients are independent and identically distributed (i.i.d.) from one slot to the next.

The channel coefficients from the STb to the PR and the SRm are denoted by complex

scalars hsbp and hsbrm , respectively. Under Rayleigh fading model, the channel gains

|hsbp|2 and |hsbrm |2 are exponential random variables (RVs) with mean E[|hsbp|2] = λsp
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and E[|hsbrm |2] = λsr, respectively. The channel vector from the PT to the STk is denoted

by hpsk
∈ CN×1, where each element follows the Rayleigh distribution. Therefore, the

channel gain ||hpsk
||2 follows the Gamma distribution with parameter (N , λps), where

λps denotes the mean. Transmit beamforming is used for PT-STb link to enhance the

reception quality of the STb. The noise at each receiver is modeled as additive white

Gaussian noise (AWGN) with zero mean and variance σn [18, 19]. Further, all nodes are

assumed to have perfect channel state information (CSI) to other nodes [18,19,22,23].

2.3.2 Signal Model

At the start of the transmission time slot T , the STb is selected by the PT according to

the following selection criterion:

STb = arg max
k=1,2,...,K

||hpsk
||2. (2.1)

Practically, the PT can obtain the CSIs from the K STs by first sending the pilot

signals to STs, then STs will estimate and feedback their CSIs to the PT. Thereafter, the

PT will select a ST (STb) which has the best connection to it.

After choosing the STb, the PT beamforms its signal to the STb. The received RF

signal sent by the PT at the STb is given by

yp,sb = hHpsb
wp

√
Psx0 + hsbsb

√
Psbxs + nsb , (2.2)

where wp = hpsb/||hpsb || denotes the transmit beamforming vector, x0 is the PT’s infor-

mation signal with E[|x0|2] = 1, xs is the composite transmit signal1 of the STb including

signals of the PR and M SRs with E[|xs|2] = 1. Psb denotes the transmit power of the
1This chapter assumes that the FD STs decode the received signal without any delay, and hence, the

decoded PT’s signal x0 is included in xs.
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Fig. 2.2: Block time T for the FD STb.

STb, hsbsb represents the SI channel, and nsb is the AWGN antenna noise at the STb.

Fig. 2.2 describes the transmission time slot T at the STb, where the fraction β

(0 < β < 1) of the received RF signal power from the PT is used for EH and the

remaining (1-β) fraction of the received RF signal energy for information decoding (ID).

Thus, according to (2.2), the harvested power at the STb is given by [24,25]

PH = ηβ
(
Ps||hpsb ||

2︸ ︷︷ ︸
RF EH

+Psb |hsbsb |2︸ ︷︷ ︸
Self-EH

)
, (2.3)

where η denotes the energy conversion efficiency, 0 < η ≤ 1. The STb harvests both the

dedicated energy from the PT and its own energy from the SI channel [25,26].

From (2.3), since the energy harvested from the PT is much larger than that of the

receiver noise, this chapter ignores the negligible energy harvested from the receiver noise

[24]. Next, the transmit power and the harvested power of the STb should satisfy Psb =

ξψPH [24], where Psb refers to the transmit power of the STb, ξ denotes the portion of

the harvested power consumed by the power amplifier of the STb, and ψ is the energy

utilization efficiency, 0 ≤ ξ ≤ 1 and 0 < ψ < 1. Thus, the available transmit power of the
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STb is expressed as:

Psb = ξψPH

= ηβξψ
(
Ps||hpsb ||

2 + Psb |hsbsb |2
)

= ρPs||hpsb ||
2, (2.4)

where ρ = ηβξψ
1−ηβξψ|hsbsb |2 .

The sampled baseband signal at the STb is shown as:

yID
p,sb

= hHpsb
wp

√
(1− β)Psx0 + hsbsb

√
(1− β)Psbxs +

√
(1− β)nsb + nc,sb , (2.5)

where nc,sb denotes the AWGN circuit noise due to RF to baseband signal conversion.

We ignore the antenna noise nsb since its strength is much lower than that of the circuit

processing noise nc,sb [24]. Hence, (2.5) can be rewritten as:

yID
p,sb

= hHpsb
wp

√
(1− β)Psx0 + hsbsb

√
(1− β)Psbxs + nc,sb . (2.6)

From (2.4) and (2.6), the achievable data rate at the STb to decode x0 is given by

Rsb,x0 = log2

(
1 + (1− β)γ̄||hpsb ||

2

(1− β)ργ̄|hsbsb |2||hpsb ||2 + 1

)
, (2.7)

where γ̄ = Ps/σn denotes the transmit SNR.

The STb first decodes x0. If x0 is successfully decoded, the STb superimposes x0

with xi, i = 1, 2, . . . ,M, according to the NOMA principle and broadcasts the composite

signal xs =
M∑
i=0

√
αiPsbxi to all M + 1 receivers, where xi denotes the information signal

intended to the PR (i = 0) and SRi (i = 1, . . . ,M), and αi denotes the corresponding

power allocation coefficient with condition
M∑
i=0

αi = 1. Accordingly, the composite received
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signal at the receiver ri, 0 ≤ i ≤M , from the STb can be expressed as:

ysb,ri
=

M∑
i=0

√
αiPsbhsbri

xi + nri
, (2.8)

where hsbr0 is also denoted as hsbp.

This chapter considers the pessimistic case when the PR is grouped with M SRs whose

channel gains are stronger.2 Hence, the channel gain of the STb-PR link is always smaller

than the channel gains of the STb-SRm links. Henceforth, we assume that channel gains

are sorted as |hsbp|2 ≤ |hsbr1 |2 ≤ . . . ≤ |hsbrM
|2 at the STb [18, 19]. Based on the NOMA

principle, the power allocation coefficients used at the STb should fulfil the following

condition α0 ≥ . . . ≥ αM [18, 19].

Each SRm performs SIC to distinguish the superimposed signals. The SRm first de-

codes x0 followed by x1, . . . , xm according to the order of the STb-SRm channel gains.

Using (2.4) and (2.8), the achievable data rate at the SRm to decode xm is expressed as:

Rrm = Rrm,xm = log2 (1 + SINRrm,xm) , (2.9)

where SINR represents signal-to-interference-plus-noise ratio.

The rate (2.9) is achievable provided that the condition Rrv ,xm ≥ R̄m, ∀v > m, v =

m+ 1, . . . ,M , is met, where R̄m denotes the predefined target data rate set for SRm, and

Rrv ,xm is the achievable data rate at the SRv to decode xm with v > m, which is expressed

as:

Rrv ,xm = log2 (1 + SINRrv ,xm) , (2.10)

2Note that this is a worst case for PR in terms of outage probability, system throughput, and sum
transmission rate. This will be showed later in this chapter. For the other cases when the channel gain
of the PR is stronger than M SRs, the analysis of these cases can be similarly obtained.
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where

SINRrv ,xm = log2

1 + αmργ̄||hpsb ||
2|hsbrv |2

M∑
i=m+1

αiργ̄||hpsb ||2|hsbrv |2 + 1

 . (2.11)

The SRv then successfully subtracts xm from the received composite signal. The SIC

process will last until its own signal xv is successfully decoded. Similarly, the achievable

data rate at the PR to decode x0 is expressed as:

Rp = Rr0,x0 = log2

1 + α0ργ̄||hpsb ||
2|hsbp|2

M∑
i=1

αiργ̄||hpsb ||2|hsbp|2 + 1

 , (2.12)

where hsbp = hsbr0 , and the achievable data rate at the SRM to decode xM is expressed

as:

RrM
= RrM ,xM

= log2

(
1 + αMργ̄||hpsb ||

2|hsbrM
|2
)
. (2.13)

Note that if STb fails to decode x0, it will not transmit any signals. This can be

explained by the sole purpose that PT grants STb the permission to access primary

spectrum only if STb is able to help it send its message to the PR. Thus, the achievable

data rates at the PR and the SRm in both cases are shown as:

Rp = Rrm = 0. (2.14)

2.4 Performance Analysis

This section will provide the performance analysis for primary and secondary networks in

terms of outage probability and system throughput for the proposed system. The outage
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analysis is useful for practical purposes, as it offers information about the minimum data

rate over which a wireless link or a communications system can operate as desired.

2.4.1 Primary Network

2.4.1.1 Outage Probability

In order to calculate the outage probability for the primary network, this section needs

to obtain the cumulative distribution function (CDF) and probability density function

(PDF) of ||hpsb ||2, which are given in Lemma 2.1.

Lemma 2.1. The CDF and PDF of ||hpsb ||2 are derived as:

F||hpsb ||2(x) =
K∑
l=0

 K

l

(−1)l exp
(
− lx

λps

) l(N−1)∑
j=0

Cjx
j

λps
j , (2.15)

f||hpsb ||2(x) =
K∑
l=1

 K

l

(−1)l exp
(
− lx

λps

) l(N−1)∑
j=0

Cj

λps
j

(
jxj−1 − l

λps
xj
)
. (2.16)

Proof: See Appendix A.

Next, this section derives the outage probability for the primary network, where the

outage event occurs under two circumstances. The first situation is when the STb can not

successfully decode x0. The second one occurs when the PR can not decode x0 provided

that the STb is able to decode x0. Accordingly, the outage probability of the primary

network is expressed as:

Pp = Pr
(
Rsb,x0 < R̄0

)
+ Pr

(
Rsb,x0 ≥ R̄0, Rp < R̄0

)
, (2.17)

where R̄0 is the target data rate of the primary signal x0.
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Remark. Recalling (2.4) and (2.7), it is obvious that when the power splitting (PS)

coefficient β increases, the transmit power (Psb) and the achievable data rate (Rsb,x0) of

the STb readily rise. It is also straightforward to see that the achievable data rates of the

PR and SRs, which are illustrated in (2.12) and (2.13), go up with the increase in β. Thus,

the increase in Rsb,x0 leads to the decrease in outage probability of the primary network in

(2.17) and the secondary network in (2.20). However, when β reaches the optimal value at

which the lowest outage probability of primary and secondary networks is obtained, and if

β continues increasing to 1, the achievable data rate of STb in (2.7) decreases and reaches

to 0. This is due to the fact that less power is left for the STb to decode x0; hence, the

outage probability of both networks, as given in (2.17) and (2.20), increases and attains

1, which results in the worst performance. This result is also corroborated in Fig. 2.6.

Theorem 2.1. The outage probability of the primary network can be approximated as:

Pp ≈
K∑
l=0

 K

l

(−1)l exp
(
− lµ

λpsγ̄

) l(N−1)∑
j=0

Cj

(
µ

λpsγ̄

)j
+ ιq

∑̃(
∼
)(−1)c+n+l

q + c

Cj
lj

×
[(

j + nΘ0l

λspλpsγ̄

)
Γ
(
j,

lµ

λpsγ̄

)
− Γ

(
j + 1, lµ

λpsγ̄

)
− nΘ0jl

λspλpsγ̄
Γ
(
j − 1, lµ

λpsγ̄

)]
,

(2.18)

where ιq = Q!
(q−1)!(Q−q)! , Q = M+1, ∑̃ =

Q−q∑
c=0

q+c∑
n=0

K∑
l=1

l(N−1)∑
j=0

, and
(
∼
)

=

 Q− q

c


 q + c

n


 K

l

. γ0 = 2R̄0 − 1, |hsbsb |2 = ISI, µ = γ0
(1−β)(1−γ0ρISI)

, Θ0 = γ0

ρ

(
α0−

M∑
i=1

αiγ0

) , and Γ(·, ·)

is the incomplete gamma function [28, Eq. (8.350.2)]. Note that q = 1 for the PR and

q = m + 1 for the SRm. Pp is derived in (2.18) when γ0 < min
[
1/(ρISI), α0/

(
M∑
i=1

αi

)]
,

otherwise Pp = 1.

Proof: See Appendix B.
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2.4.1.2 Throughput

Given that the STb transmits information to the PR at a constant rate R̄0 bps/Hz, the

throughput of the primary network in the delay-limited transmission mode is computed

as [11]:

νp = (1− Pp) R̄0, (2.19)

where Pp is shown in (2.18).

Remark. From (2.19), since Pp is smaller than or equals to 1 and as the transmit SNR γ̄

increases, the outage performance of the primary network greatly improves (Pp decreases

as shown in Fig. 2.3). Hence, the throughput of the primary network νp goes up with the

rise in the transmit SNR γ̄ and converges to a throughput floor which equals to R̄0 at high

γ̄. Note that the throughput of the secondary network νs given in (2.22) also enhances

with the increase in the transmit SNR γ̄ and attains a throughput floor which equals to
M∑
m=1

R̄m at the high γ̄. These results are also verified in Fig. 2.8.

2.4.2 Secondary Network

2.4.2.1 Outage Probability

This section derives the outage probability for the secondary network. The outage event

of the SRm occurs either when the STb can not successfully decode x0 or when the SRm

fails to decode any xm′ , 0 ≤ m′ ≤ m, as long as STb successfully decodes x0. Based on

this, the outage probability of the SRm is shown as:

Prm = Pr
(
Rsb,x0 < R̄0

)
+ Pr

(
Rsb,x0 ≥ R̄0, P rm

)
, (2.20)

where P rm denotes the outage probability that the SRm fails to decode any xm′ , 0 ≤ m′ ≤

m.
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Theorem 2.2. The outage probability of the SRm can be approximated as:

Prm ≈
K∑
l=0

 K

l

(−1)l exp
(
− lµ

λpsγ̄

) l(N−1)∑
j=0

Cj

(
µ

λpsγ̄

)j
+ ιq

∑̃(
∼
)(−1)c+n+l

q + c

Cj
lj

×
[(

j + nΘl
λsrλpsγ̄

)
Γ
(
j,

lµ

λpsγ̄

)
− Γ

(
j + 1, lµ

λpsγ̄

)
− nΘjl
λsrλpsγ̄

Γ
(
j − 1, lµ

λpsγ̄

)]
,

(2.21)

where γm′ = 2R̄m′ − 1, R̄m′ denotes the target data rate of xm′, Θ = max (Θ0, . . . ,Θm),

Θm′ = γm′

ρ

(
αm′ −

M∑
i=m′+1

αiγm′

) , 0 ≤ m′ ≤ m. Note that, q = m+ 1 for SRm.

Proof: See Appendix C.

2.4.2.2 Throughput

The system throughput of the secondary network is given by:

νs =
M∑
m=1

(1− Prm) R̄m, (2.22)

where Prm is obtained from (2.21).

2.5 Sum Rate Maximization

In the previous section, the power allocation coefficients were kept fixed, which are not

optimal. Thus, to further improve the performance of the system, this section formulates

the sum rate maximization problem to obtain the optimal power allocation coefficients at

the STb and develop a solution method and algorithm.
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2.5.1 Problem Formulation

Recalling (2.9) and the condition Rrv ,xm ≥ R̄m, ∀v > m, v = m+1, . . . ,M , the achievable

data rate to decode xm at the SRm is expressed as:

Rxm = log2 (1 + min (SINRrm,xm , . . . , SINRrM ,xm)) . (2.23)

Lemma 2.2. From (2.23), the achievable data rate to decode xm by the SRm is rewritten

as

Rxm = log2 (1 + SINRrm,xm) . (2.24)

Proof: It is proved by contradiction. Let us first assume that SINRr0,x0 ≥ SINRr1,x0 .

Then, we have

SINRr0,x0 ≥ SINRr1,x0

⇔
α0ργ̄||hpsb ||

2|hsbp|2
M∑
i=1

αiργ̄||hpsb ||2|hsbp|2 + 1
≥

α0ργ̄||hpsb ||
2|hsbr1 |2

M∑
i=1

αiργ̄||hpsb ||2|hsbr1 |2 + 1

⇔ α0

M∑
i=1

αi
(
ργ̄||hpsb ||

2
)2
|hsbp|2|hsbr1 |2 + α0ργ̄||hpsb ||

2|hsbp|2

≥ α0

M∑
i=1

αi
(
ργ̄||hpsb ||

2
)2
|hsbp|2|hsbr1 |2 + α0ργ̄||hpsb ||

2|hsbr1 |2

⇔ |hsbp|2 ≥ |hsbr1 |2.

The above result violates the condition of channel gain order that is set earlier.

Hence, SINRr0,x0 ≤ SINRr1,x0 . Following similar derivation steps as previously mentioned,

SINRr0,x0 ≤ SINRrm,x0 , ∀m. Thus, min (SINRr0,x0 , SINRr1,x0 , . . . , SINRrM ,x0) = SINRr0,x0 .

By generalizing the above result, the achievable data rate to decode the SRm’s data
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xm, 1 ≤ m ≤M , by all SRm′ , m ≤ m′ ≤M , is given by

Rxm = log2 (1 + min(SINRrm,xm , . . . , SINRrM ,xm))

= log2 (1 + SINRrm,xm) . (2.25)

Using Lemma 2.2, the sum rate maximization problem is formulated as follows:

maximize
α

Rx0 +
M−1∑
m′=1

Rxm′ +RxM
(2.26a)

s.t. Rxi
≥ R̄i, 0 ≤ i ≤M, (2.26b)

α0 ≥ . . . ≥ αi ≥ . . . ≥ αM , (2.26c)
M∑
i=0

αi ≤ 1, (2.26d)

where α = [α0, α1, . . . , αM ] denotes the power allocation coefficients vector. The con-

straint (2.26b) ensures that the QoS requirement R̄i of each link is guaranteed, the con-

straint in (2.26c) represents the necessary conditions related to fairness among the users,

and the constraint in (2.26d) puts limit on the total transmit power at the STb.

It can be observed that the original problem (2.26) is non-convex because of the

objective function, and it is difficult to solve it quickly to obtain a global solution. Instead,

this section aims to solve it for suboptimal solution with faster convergence. To this

end, this section invokes several useful steps, such as its equivalent transformation and

approximation, as described in the next subsection, to solve (2.26).
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2.5.2 Proposed Solution

By noting that the logarithmic function is a monotonically non-decreasing function, (2.26)

is equivalently written as:

maximize
α


M∏
i=0

(1 + SINRri,xi
) | (2.26b), (2.26c), and (2.26d)

. (2.27)

By introducing a new vector of slack variables t = [t0, . . . , tM ], the problem (2.27) can

be equivalently recast as:

maximize
α,t

M∏
i=0

ti (2.28a)

s.t. SINRr0,x0 ≥ t0 − 1, (2.28b)

SINRrm′ ,xm′ ≥ tm′ − 1, 1 ≤ m′ ≤M − 1, (2.28c)

SINRrM ,xM
≥ tM − 1, (2.28d)

α0ργ̄||hpsb ||
2|hsbp|2 ≥

(
2R̄0 − 1

)( M∑
i=1

αiργ̄||hpsb ||
2|hsbp|2 + 1

)
, (2.28e)

αm′ργ̄||hpsb ||
2|hsbrm′ |2 ≥

(
2R̄m′ − 1

) M∑
i=m′+1

αiργ̄||hpsb ||
2|hsbrm′ |2 + 1


, 1 ≤ m′ ≤M − 1, (2.28f)

αMργ̄||hpsb ||
2|hsbrM |2 ≥

(
2R̄M − 1

)
, (2.28g)

(2.26c) & (2.26d). (2.28h)

By noting that the constraints (2.28b)-(2.28d) are active at optimality, then (2.28) is

the equivalent formulation of (2.27). Further, note that the objective function (2.28a)

is the product of optimization variables ti, ∀i, and hence, admits a second-order cone

(SOC) representation. However, (2.28) is still intractable because of the non-convexity

involved in constraints (2.28b) and (2.28c). Next, the constraints (2.28b) and (2.28c) are
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considered and reformulated as follows:

(2.28b)⇔


M∑
i=1

αiργ̄||hpsb ||
2|hsbp|2 + 1 ≤ z0, (2.29a)

α0ργ̄||hpsb ||
2|hsbp|2 ≥ z0t0 − z0, (2.29b)

(2.28c)⇔


M∑

i=m′+1
αiργ̄||hpsb ||

2|hsbrm′ |2 + 1 ≤ zm′ , (2.30a)

αm′ργ̄||hpsb ||
2|hsbrm′ |2 ≥ zm′tm′ − zm′ , (2.30b)

where 1 ≤ m′ ≤ M − 1 and z = [z0, z1, . . . , zM−1] represent newly introduced variables.

After replacing (2.28b) and (2.28c) with (2.29a) and (2.29b), and (2.30a) and (2.30b),

respectively, we get an equivalent formulation of (2.28). However, this is still non-convex

because of (2.29b) and (2.30b). To this end, this section approximates them by using

the first-order Taylor series expansion. Firstly, this section considers (2.29b) and rewrites

the multiplicative terms z0t0 in the form of the difference of convex (d.c.) functions as

follows:

z0t0 = 1
4
[
(z0 + t0)2 − (z0 − t0)2

]
. (2.31)

Then, approximating (z0− t0)2 by using the first-order Taylor series around the point

(z(τ)
0 , t

(τ)
0 ), which is obtained at the τth iteration, (2.29b) can be replaced with the follow-

ing convex constraint:

α0ργ̄||hpsb ||
2|hsbp|2 ≥ 0.25 (z0 + t0)2 − z0 − 0.25

[ (
z

(τ)
0 − t

(τ)
0

)2
+ 2

(
z

(τ)
0 − t

(τ)
0

)
×
(
z0 − z(τ)

0 − t0 + t
(τ)
0

) ]
. (2.32)

37



Similarly, (2.30b) can be replaced with the following convex constraint:

αm′ργ̄||hpsb ||
2|hsbrm′ |2 ≥ 0.25 (zm′ + tm′)2 − zm′ − 0.25

[ (
z

(τ)
m′ − t(τ)

m′

)2
+ 2

(
z

(τ)
m′ − t(τ)

m′

)
×
(
zm′ − z(τ)

m′ − tm′ + t
(τ)
m′

) ]
. (2.33)

Finally, the convex problem to be solved at the τth iteration can be written as:

maximize
α,t,z

M∏
i=0

ti (2.34a)

s.t.


M∑
i=1

αiργ̄||hpsb ||
2|hsbp|2 + 1 ≤ z0,

(2.32),
, (2.34b)


M∑

i=m′+1
αiργ̄||hpsb ||

2|hsbrm′ |2 + 1 ≤ zm′ ,

(2.33),
, 1 ≤ m′ ≤M − 1, (2.34c)

αMργ̄||hpsb ||
2|hsbrM |2 ≥ tM − 1, (2.34d)

(2.28e)− (2.28h). (2.34e)

After solving (2.34), the involved optimization variables are updated and the procedure

is repeated until convergence. The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed iterative algorithm to solve (2.26).

Initialization: Set τ = 0 and generate an initial feasible point (t(0)
i , z

(0)
m′ ), 0 ≤ i ≤M, 0 ≤

m′ ≤M − 1.
1: repeat
2: Solve the convex program (2.34) to obtain the optimal solution: (t(τ),⋆

i , z
(τ),⋆
m′ ), 0 ≤

i ≤M, 0 ≤ m′ ≤M − 1.
3: Update (t(τ+1)

i , z
(τ+1)
m′ ) := (t(τ),⋆

i , z
(τ),⋆
m′ ), 0 ≤ i ≤M, 0 ≤ m′ ≤M − 1.

4: Set τ = τ + 1.
5: until Convergence
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2.5.3 Convergence and Complexity Analysis

The proposed algorithm begins with a random initial feasible point for the updated vari-

ables (t(0)
i , z

(0)
m′ ), 0 ≤ i ≤M, 0 ≤ m′ ≤M−1. In each iteration, the convex program (2.34)

is solved to produce the next feasible point (t(τ+1)
i , z

(τ+1)
m′ ), 0 ≤ i ≤ M, 0 ≤ m′ ≤ M − 1.

This procedure is successively repeated until convergence, which is stated in the following

proposition.

Proposition 1. Initialized from a feasible point (t(0)
i , z

(0)
m′ ), 0 ≤ i ≤ M, 0 ≤ m′ ≤ M − 1,

Algorithm 1 produces a sequence (t(τ)
i , z

(τ)
m′ ), 0 ≤ i ≤ M, 0 ≤ m′ ≤ M − 1, of improved so-

lutions to problem (2.34), which satisfy the Karush-Kuhn-Tucker (KKT) conditions. The

sequence
{∏M

i=0 t
(τ)
i

}∞

τ=1
is monotonically increasing and converges after a finite number

of iterations for a given error tolerance ϵ > 0.

Proof: See Appendix D.

An SOC programming (SOCP) is solved in each iteration of the procedure illustrated

in Algorithm 1. Hence, the worst case of the complexity is regulated by the SOCP in

each run. To assess the complexity estimate, the worst case complexity of the SOCP in

(2.34) is estimated. As shown in [29], for general interior-point methods, the complexity

of the SOCP relies on the number of constraints, variables, and the dimension of each

SOC constraint. The total number of constraints in (2.34) is 3M + 4 + a, where a is a

non-negative integer constant and denotes the SOC constraints with different M . This is

because the objective function in (2.34) represents the equivalent SOC of the geometric

mean [29]. Hence, the number of iterations required to decrease the duality gap to a

small constant is upper bounded by O
(√

3M + 4 + a
)

[29]. The per iteration worst

case complexity estimate of the interior-point method is O
(
(3M + 2 + a)2 (3M)

)
, where

3M + 2 + a and 3M represent the number of optimization variables and the dimension of

the SOC constraints in (2.34), respectively.
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Fig. 2.3: Outage probability of primary and secondary networks operating in FD and
HD modes, where β = 0.8, N = 5, and K = 3. ana: analytical results; sim: simulation
results.

2.6 Numerical Results

In this section, simulation results are presented to verify the findings presented in Sections

2.4 and 2.5. Without loss of generality, we set M = 2, λps = 5, and λsp = λsr = 50.3

The target data rates of primary and secondary signals are R̄0 = R̄1 = R̄2 = 0.5 bps/Hz.

The residual SI channel hsbsb is modeled as described in [30, 31], and its variance is set

to |hsbsb |2 = ISI =
√
ζ, where ζ = -1 dB [30]. The energy conversion efficiency is set

to be η = 0.75, ξ = 1, and ψ = 0.75 [24]. For the results corresponding to the outage

probability analysis, the power allocation coefficients are set as α0 = 0.6, α1 = 0.3, and

α2 = 0.1.
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2.6.1 Outage Probability

Fig. 2.3 compares the outage probability performance between primary and secondary

networks operating in FD and HD modes. The conventional OMA-TDMA scheme is

considered as a benchmark. In OMA-TDMA scheme, the first κ fraction of the block

time T , where κ denotes the time allocation parameter, is used for the transmission from

the PT to the STb, whereas the remaining (1-κ) fraction of T is equally divided into

(M+1) time slots for the transmission from the STb to the PR and M SRs. In this figure,

the block time allocation parameter κ is set to 1/2. Further, PRFD, SR1FD, and SR2FD

curves denote the outage performance of the PR, the SR1, and the SR2 when the STb

operates in FD mode, respectively. PRHD, SR1HD, and SR2HD curves represent the

outage performance of the PR, the SR1, and the SR2 when the STb operates in HD mode,

respectively, while PROMA, SR1OMA, and SR2OMA curves are the outage performance

of the PR, the SR1, and the SR2 in OMA-TDMA scheme, respectively. As can be seen

from Fig. 2.3, for both FD and HD cases, the outage performance of the primary network

is worse than that of the secondary network4. This can be explained that even though the

PR is assigned larger power allocation coefficient compared to the SR1 and the SR2, the

quality of STb-PR channel is worst compared to that of STb-SR1 and STb-SR2 channels

and since the PR suffers interference from SRs when it decodes its information, which lets

the achievable data rate of the PR in (2.12) be smaller than that of SRs in (2.9). Hence,

outage probability obtained at the PR is higher than that at SRs. In addition, it can

be seen that outage probability of both networks in FD case is much smaller than that

in HD mode, confirming the benefit of FD compared with HD technique. This makes

sense since with FD, the STb can simultaneously receive the signal from the PT and
3This chapter considers the network scenario where STs are located near the PR and SRs, but they

are far from PT.
4Note that, if the PR is grouped with SRs whose channel gains are weaker, the outage performance

of the PR and SRs will swap.
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Fig. 2.4: Impact of the number of STs K on the outage performance of primary and
secondary networks operating in FD and HD modes, where β = 0.8, N = 5, and γ̄ = −9
dB.

forward its signal to the PR and SRs, whereas with the HD technique the STb has to

separate the time used for receiving the PT’s signal and the time for its transmission

to the PR and SRs. Furthermore, the performance of the proposed FD-NOMA scheme

is obviously better than OMA-TDMA scheme for both primary and secondary networks

since the proposed scheme enhances the use of primary spectrum resource, i.e., the PR and

SRs are concurrently served in the same resource block, while the OMA-TDMA scheme

requires separated resource blocks. From Fig. 2.3, it can be seen that the tight closed-

form approximate expression curves, which are shown in (2.18) and (2.21), match well

with simulation results. Hence, this verifies the correctness of the mathematical analysis.

Fig. 2.4 shows the impact of the number of STs K on the outage probability of primary

and secondary networks operating in FD and HD modes. It can be observed that when

K increases, the outage performance of both primary and secondary networks in FD and

HD modes is greatly improved. This is because the growth in the number of STs increases
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Fig. 2.5: Effect of the number of transmit antennas N on the outage performance of
primary and secondary networks operating in FD and HD modes, where β = 0.8, K = 3,
and γ̄ = −9 dB.

the probability of choosing the optimal STb.

Next, the effect of the number of transmit antennas N on the outage probability of

primary and secondary networks operating in FD and HD modes is shown in Fig. 2.5. It

can be seen that for both FD and HD cases, the larger the number of transmit antennas at

the PT, the better the outage performance can be obtained. The reason is that a larger

number of antennas provide higher spatial diversity, which in turn leads to improved

signal reception quality at the STb.

Fig. 2.6 depicts the impact of PS ratio β on the outage performance of the FD and HD

primary and secondary networks. As β increases, the outage probability of both networks

significantly reduces and attains the minimal values. The reason is that the growth in β

allows the STb to harvest more energy and in turn enhances the STb’s transmit power

and the achievable data rate at the STb as shown in (2.4) and (2.7), respectively, which

improves the information reception at the PR and SRs. Nevertheless, as β continues
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Fig. 2.6: Impact of the PS β on the outage performance of primary and secondary networks
operating in FD and HD modes, where N = 5, K = 3, and γ̄ = −5 dB.

increasing and reaches 1, the outage probability of both networks goes up and attains

1 since more power is given for energy harvesting and less power is left for the STb to

decode x0. Hence, outage occurs since the STb is unable to decode the PT’s signal.

Fig. 2.7 illustrates the outage performance of primary and secondary networks in the

FD and HD modes when the mean of STb-PR (λsp) channel varies, respectively. It is

clear that the outage performance of primary and secondary networks greatly improves

for better channel quality (higher channel mean) of STb-PR link for both FD and HD

modes. Note that similar results of the outage performance of primary and secondary

networks in FD and HD modes are obtained with the increase in the mean of PT-STb

(λps) or STb-SRs (λsr) channels as a result of the improvement in channel quality.
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2.6.2 System Throughput

The system throughput of primary and secondary networks in FD and HD modes is il-

lustrated in Fig. 2.8. It is clear that the proposed scheme obtains much higher system

throughput than HD and the conventional OMA-TDMA schemes due to its lower outage

probability. Besides, for all schemes, as the transmit SNR increases, the system through-

put of primary and secondary networks goes up and reaches the system throughput floor,

as presented in Remark 2.4.1.2.

2.6.3 Sum Rate

Fig. 2.9 illustrates the convergence behavior of our proposed sum rate maximization al-

gorithm for the network when the STb operates in FD and HD modes, respectively. It

can be observed that the proposed sum rate maximization algorithm only requires a small

number of iterations to converge in both modes. Besides, increasing the number of SRs
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M can significantly augment the sum rate of the proposed network in both modes.

Fig. 2.10 demonstrates the impact of STb-PR (λsp) channel mean on the average sum

rate of the network when the FD and HD operation modes are used, respectively. It is

obvious that the average sum rate greatly enhances with better channel quality (higher

channel mean) of the STb-PR link for both modes. Note that similar results of the

average sum rate in FD and HD modes are obtained with the increase in the mean of PT-

STb (λps) or STb-SRs (λsr) channels as a result of the enhancement in the channel quality.

Furthermore, the average sum rate achieved by the proposed system using NOMA is higher

than that in OMA-TDMA scheme. Moreover, this figure also compares the performance

of Algorithm 1 with the exhaustive search (ES), which is the method to find the globally

optimal solution by searching all possible combinations of power allocation values. It can

be seen that the average sum rate achieved by Algorithm 1 is very close to the globally

optimal solution found by the ES method. Therefore, the proposed iterative algorithm is

able to achieve near-optimal performance with low complexity.
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Next, the effect of the PS coefficient β on the average sum rate in the FD and HD

cases is examined in Fig. 2.11. It is seen that as β increases, the average sum rate of the

network operating in both FD and HD modes considerably grows for different number of

SRs. The achieved results are reasonable since the rise in β enables the STb to scavenge

more energy and in turn improves the transmit power of the STb, and hence, enhances

the achievable data rates of the PR and SRs. However, when β reaches 1, all RF power is

harvested and no power is available for the PT to the STb information processing. Hence,

the sum transmission rate of primary and secondary networks equals to 0 as the STb is

unable to decode the PT’s signal.

2.7 Conclusion

In this chapter, a novel NOMA assisted cooperative spectrum-sharing network has been

proposed to encourage the collaboration between primary and secondary networks. In
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particular, the PT needs the help from the STb to relay its information and as an incentive,

the STb has access to primary network’s spectrum and uses it to transmit primary and

secondary messages concurrently by using NOMA. The outage probability of primary

and secondary networks has been derived in tight closed-form approximate expressions,

and used to evaluate the system performance. Besides, the power allocation coefficients

at STb have been optimized to maximize the sum transmission rate of the primary and

secondary networks. Numerical results have showed the superior performance of the FD-

NOMA system compared to the HD-NOMA and the conventional OMA-TDMA systems.

Furthermore, it has been seen that several system design parameters, i.e., number of

ST transmit antennas N , number of STs K, number of SRs M , the power allocation

coefficients α, power splitting ratio β, which have high impact on the system performance,

should be carefully chosen in order to optimize the performance of the FD-SWIPT-NOMA

cooperative spectrum-sharing network when applied in practice.

Appendix A: Proof of Lemma 2.1

By using that ||hpsk
||2 has the Gamma distribution and the PT-STk links are independent,

the CDF of ||hpsb ||2 = max
k=1,2,...,K

||hpsk
||2 can be derived as in (2.15), where Cj = 1 for j = 0,

Cj = l for j = 1, and Cj = 1
j

q∑
p=1

pl−j+p
p! Cj−p for 2 ≤ j ≤ l(N − 1). q = min(j,N − 1). By

differentiating (2.15), the PDF of ||hpsb ||2 can be obtained as in (2.16).

Appendix B: Proof of Theorem 2.1

By denoting the first term Pr
(
Rsb,x0 < R̄0

)
and the second term Pr

(
Rsb,x0 ≥ R̄0, Rp < R̄0

)
in (2.17) as Φ1 and Φ2, respectively, and substituting (2.7) and (2.15) into Φ1, Φ1 can be
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rewritten as:

Φ1 = Pr
[

(1− β)γ̄||hpsb ||
2

(1− β)ργ̄ISI||hpsb ||2 + 1 < γ0

]

= Pr
[
||hpsb ||

2 <
γ0

γ̄ (1− β) (1− γ0ρISI)

]

= Pr
(
||hpsb ||

2 <
µ

γ̄

)

=
K∑
l=0

 K

l

(−1)l exp
(
− lµ

λpsγ̄

) l(N−1)∑
j=0

Cj

(
µ

λpsγ̄

)j
, (2.35)

where γ0 < 1/(ρISI); otherwise Φ1 = 1, which leads to Φ2 in (2.17) equalling to 0 and

hence Pp = 1.

Next, this appendix derives the term Φ2 in (2.17). Substituting (2.7) and (2.12) into

(2.17), Φ2 can be rewritten as:

Φ2 = Pr
||hpsb ||

2 ≥ γ0

γ̄ (1− β) (1− γ0ρISI)
, ||hpsb ||

2|hsbp|2 <
γ0

γ̄ρ
(
α0 −

M∑
i=1

αiγ0

)


= Pr
(
||hpsb ||

2 ≥ µ

γ̄
, ||hpsb ||

2|hsbp|2 <
Θ0

γ̄

)
, (2.36)

where γ0 < min
[
1/(ρISI), α0/

(
M∑
i=1

αi

)]
. If γ0 > α0/

(
M∑
i=1

αi

)
, Pp = 1.

With the use of the binomial theorem [27, Eq. (1.111)] and order statistics [18], the

CDF of |hsbp|2 is shown as follows:

F|hsbp|2(x) = ιq

Q−q∑
c=0

 Q− q

c

(−1)c
q + c

[
F|h̄sbp|2(x)

]q+c

= ιq

Q−q∑
c=0

 Q− q

c

(−1)c
q + c

q+c∑
n=0

 q + c

n

(−1)n exp
(
−nx
λsp

)
, (2.37)
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where |h̄sbp|2 is the unsorted channel gain of STb-PR link and F|h̄sbp|2(x) = 1−exp
(
− x
λsp

)
.

Besides, q = 1 for PR and q = m+ 1 for SRm.

In the case that γ0 < min
[
1/(ρISI), α0/

(
M∑
i=1

αi

)]
and using (2.16) and (2.37), (2.36)

can be further derived as:

Φ2 =
∞∫

µ/γ̄

Pr
(
|hsbp|2 <

Θ0

γ̄x

)
f||hpsb ||2(x)dx

=
∞∫

µ/γ̄

ιq

Q−q∑
c=0

q+c∑
n=0

 Q− q

c


 q + c

n

(−1)c+n
q + c

exp
(
− nΘ0

λspγ̄x

)
K∑
l=1

 K

l

(−1)l

× exp
(
− lx

λps

) l(N−1)∑
j=0

Cj

λps
j

(
jxj−1 − l

λps
xj
)
dx

=
∞∫

µ/γ̄

ιq
∑̃(

∼
)(−1)c+n+l

q + c
exp

(
− nΘ0

λspγ̄x

)
exp

(
− lx

λps

)
Cj

λps
j

(
jxj−1 − l

λps
xj
)
dx,

(2.38)

where ∑̃ =
Q−q∑
c=0

q+c∑
n=0

K∑
l=1

l(N−1)∑
j=0

and
(
∼
)

=

 Q− q

c


 q + c

n


 K

l

.

Since the integral in (2.38) can not be further simplified, this appendix uses the fol-

lowing approximation e−α/x ≈ 1 − α/x for large values of |x| [26]. Hence, (2.38) can be

further given by

Φ2 ≈
∞∫

µ/γ̄

ιq
∑̃(

∼
)(−1)c+n+l

q + c
exp

(
− lx

λps

)
Cj

λps
j

(
jxj−1 − l

λps
xj
)
dx

−
∞∫

µ/γ̄

ιq
∑̃(

∼
)(−1)c+n+l

q + c

nΘ0

λspγ̄x
exp

(
− lx

λps

)
Cj

λps
j

(
jxj−1 − l

λps
xj
)
dx. (2.39)

With the help of [27, Eq. (3.381.3)] and after some manipulation steps, (2.39) can be
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further solved as:

Φ2 ≈ ιq
∑̃

(∼) (−1)c+n+l

q + c

Cj

λps
j

[
j

(
l

λps

)−j

Γ
(
j,

lµ

λpsγ̄

)
−
(
l

λps

)−j

Γ
(
j + 1, lµ

λpsγ̄

)]

− ιq
∑̃

(∼) (−1)c+n+l

q + c

nΘ0

λspγ̄

Cj

λps
j

[
j

(
l

λps

)−j+1

Γ
(
j − 1, lµ

λpsγ̄

)
−
(
l

λps

)−j+1

Γ
(
j,

lµ

λpsγ̄

)]

≈ ιq
∑̃

(∼) (−1)c+n+l

q + c

Cj
lj

[(
j + nΘ0l

λspλpsγ̄

)
Γ
(
j,

lµ

λpsγ̄

)
− Γ

(
j + 1, lµ

λpsγ̄

)

− nΘ0jl

λspλpsγ̄
Γ
(
j − 1, lµ

λpsγ̄

)]
. (2.40)

Finally, substituting (2.35) and (2.40) into (2.17), this appendix obtains the desired

result as in (2.18).

Appendix C: Proof of Theorem 2.2

Denote the second term Pr
(
Rsb,x0 ≥ R0, P rm

)
in (2.20) as Υ. Since the first term in (2.20)

is already derived in (2.35), we will derive the second term Υ. P rm in Υ can be written

as:

P rm = 1− Pr
(
Ec

rm,0 ∩ . . . ∩ Ec
rm,m

)
, (2.41)
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where Ec
rm,m′ = Rrm,xm′ ≥ R̄m′ , 0 ≤ m′ ≤ m, denotes the event that SRm successfully

decodes xm′ . From (2.9) and (2.10), Pr
(
Ec

rm,m′

)
is expressed as:

Pr
(
Ec

rm,m′

)

= Pr

 αm′ργ̄||hpsb ||
2|hsbrm |2

M∑
i=m′+1

αiργ̄||hpsb ||2|hsbrm |2 + 1
≥ γm′



= Pr

||hpsb ||
2|hsbrm |2 ≥

γm′

γ̄ρ

(
αm′ −

M∑
i=m′+1

αiγm′

)


= Pr
(
||hpsb ||

2|hsbrm |2 ≥
Θm′

γ̄

)
, (2.42)

when γm′ ≤ αm′/

(
M∑

i=m′+1
αi

)
; otherwise, SRm suffers from the outage. According to

(2.41) and (2.42), P rm is revised as:

P rm = 1− Pr
[
||hpsb ||

2|hsbrm |2 ≥
max (Θ0,Θ1, . . . ,Θm)

γ̄

]

= Pr
(
||hpsb ||

2|hsbrm |2 ≤
Θ
γ̄

)
. (2.43)

Next, substituting (2.43) into Υ in (2.20), Υ is rewritten as:

Υ = Pr
(
||hpsb ||

2 ≥ µ

γ̄
, ||hpsb ||

2|hsbrm |2 ≤
Θ
γ̄

)
. (2.44)

Following the same steps to derive Φ2 in Appendix B, Υ is lastly obtained as follows:

Υ ≈ ιq
∑̃(

∼
)(−1)c+n+l

q + c

Cj
lj

[(
j + nΘl

λsrλpsγ̄

)
Γ
(
j,

lµ

λpsγ̄

)
− Γ

(
j + 1, lµ

λpsγ̄

)

− nΘjl
λsrλpsγ̄

Γ
(
j − 1, lµ

λpsγ̄

)]
. (2.45)
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Finally, substituting (2.35) and (2.45) into (2.20), the final result is obtained as in

(2.21).

Appendix D: Proof of Proposition 1

Let define F(t) ≜
∏M
i=0 ti. Note that F(t) ≥ F (τ)(t), ∀t, and F(t(τ)) = F (τ)(t(τ)).

Further, F (τ)(t(τ+1)) > F (τ)(t(τ)) whenever (t(τ+1)) ̸= (t(τ)) since the former and the latter

are the optimal solution and a feasible point for (2.34), respectively. Hence, F(t(τ+1)) ≥

F (τ)(t(τ+1)) > F (τ)(t(τ)) = F(t(τ)), presenting that (t(τ+1)) is a better feasible point than

(t(τ)) for problem (2.28). The sequence (t(τ)) of improved feasible points for (2.28) thus

converges at least to a locally optimal solution which satisfies the KKT conditions [28].

As a result, the objective value of (2.34) is monotonically increasing, i.e., ∏M
i=0 t

(τ)
i ≥∏M

i=0 t
(τ−1)
i .
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Chapter 3

Efficient User Clustering Approaches

and Sum Rate Maximization in

NOMA-CFmMIMO Networks

3.1 Abstract

The superior SE and user fairness feature of NOMA systems are achieved by exploiting

UC more efficiently. However, a random UC certainly results in a suboptimal solution

while an exhaustive search method comes at the cost of high complexity, especially for

systems of medium-to-large size. To address this problem, this chapter develops two

efficient unsupervised machine learning based UC algorithms, namely k-means++ and

improved k-means++, to effectively cluster users into disjoint clusters in CFmMIMO

system. Adopting full-pilot zero-forcing at APs to comprehensively assess the system

performance, we formulate the sum SE optimization problem taking into account power

constraints at APs, necessary conditions for implementing successive interference cancella-

tion, and required SE constraints at UEs. The formulated optimization problem is highly
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non-convex, and thus, it is difficult to obtain the global optimal solution. Therefore, this

chapter develops a simple yet efficient iterative algorithm for its solution. In addition, the

performance of collocated massive MIMO-NOMA (COmMIMO-NOMA) system is also

characterized. Numerical results are provided to show the superior performance of the

proposed UC algorithms compared to baseline schemes. The effectiveness of applying

NOMA in CFmMIMO and COmMIMO systems is also validated.

3.2 Introduction

The tremendous growth in the number of emerging applications will certainly pose enor-

mous traffic demands with ultra-high connection density for next-generation wireless net-

works. It is approximated that more than 20 billion devices were connected to the Internet

in 2020, and this number is predicted to exceed 35 billion devices by 2025 [1]. The global

data traffic of mobile devices is expected to reach 226 exabytes per month by 2026 [2], and

will further increase over the next decade. However, traditional OMA techniques seem

to reach their fundamental limits in the near future, and therefore are no longer suitable

to meet these requirements. Consequently, it calls for innovative techniques that utilize

radio resources more efficiently to attain the optimal performance.

NOMA has been envisaged as a key enabling technology that significantly enhances

SE and user fairness of traditional wireless communication systems [3–5]. In NOMA,

multiple UEs are allowed to simultaneously transmit and receive their signals in the same

time-frequency resource by using different signal signatures (i.e., code-domain NOMA) or

power levels (i.e., power-domain NOMA) [6–8]1. In particular, in a downlink system the

key benefit of NOMA is attributed to the fact that UEs with better channel conditions

are able to cancel the interference caused by UEs with poorer channel conditions using
1This chapter will focus on power-domain NOMA; henceforth, it is referred to NOMA.
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the SIC technique. User fairness is then achieved by allocating a large portion of the total

power budget to weak UEs, which also guarantees the SIC’s feasibility at strong UEs.

Recently, CFmMIMO, which is a scalable version of massive MIMO networks, has been

introduced to overcome the large propagation losses as well as provide better quality-of-

experience services for cell-edge UEs [9–11]. CFmMIMO comprises a large number of

APs that are spatially distributed over a wide area to coherently serve multiple UEs in

the same time-frequency resources. All APs are coordinated by a CPU through fronthaul

links. Each AP performs beamforming based on its local CSI only, and this feature thus

greatly reduces the complexity in terms of the fronthaul overhead. Since each UE is

coherently served by all APs, the effect of cell boundaries can be effectively removed. It

was shown in [9] and [12] that CFmMIMO is superior to small-cell and COmMIMO in

terms of SE and EE, respectively. However, the key advantages of favorable propagation

and channel hardening properties to multiplex numerous UEs are only achieved in the case

of multiple antennas at APs and/or low propagation losses [13]. For the aforementioned

reasons, it is of pivotal interest to study the combination of NOMA and CFmMIMO to

reap all their benefits, towards fulfilling the conflicting demands on high SE, massive

connectivity with low latency, and high reliability with user fairness of future wireless

networks [14].

3.2.1 Related Work

Despite its potential, there are only a few research works investigating the benefit of

NOMA in CFmMIMO systems in the literature. NOMA for downlink CFmMIMO was

first studied in [15], where the closed-form expression of the achievable sum rate was

derived. Numerical results showed the superior performance of NOMA compared to

OMA. The authors in [16] investigated the impact of NOMA in the uplink CFmMIMO

system and derived a closed-form approximation for the sum SE (SSE). Simulation re-
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sults demonstrated that CFmMIMO-NOMA is capable of utilizing the scarce spectrum

more efficiently. In [17], different types of precoding techniques such as maximum ratio

transmission (MRT), full-pilot zero-forcing (fpZF), and modified regularized ZF (mRZF)

at APs were considered in downlink CFmMIMO-NOMA. It was shown that downlink

CFmMIMO-NOMA with mRZF and fpZF precoders significantly outperforms the OMA

with MRT in terms of the achievable sum rate. These existing works mainly focused on

characterizing the performance analysis in CFmMIMO-NOMA, but did not show how

UEs are paired/grouped.

To be spectrally-efficient, it is crucial to group a sufficiently large number of UEs

with distinct channel conditions that performs NOMA jointly [3–5,18]. In the context of

CFmMIMO-NOMA, the authors in [19] proposed three distance-based pairing schemes

including near pairing, far pairing, and random pairing to group UEs into disjoint clusters.

It is not surprising to see that the close pairing, where two UEs with the smallest distance

between them are paired, provides the worst performance, which is also aligned with the

NOMA principle [3,4]. Another interesting study is to group a large number of UEs into

one cluster [20], referred to as UC, in which a low complexity suboptimal method based

on the Jaccard distance coefficient was developed to find the most dissimilar UEs in the

CFmMIMO-NOMA system. Nevertheless, the UC algorithms in the above-cited works

were developed based on the distances among UEs only, without considering any learning

features.

Recently, unsupervised machine learning (ML) techniques have been considered as an

effective means for different optimization targets, which exploit adaptive learning fea-

tures. In this regard, the authors in [21] proposed a kernel-power-density based algorithm

to cluster multipath components of MIMO channels into disjoint groups. A cluster-based

geometrical dynamic stochastic model was introduced in [22], where scattered nodes were

grouped into different clusters according to the density of nodes in MIMO scenarios.
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In [23], a clustered sparse Bayesian learning algorithm was developed for channel esti-

mation in a hybrid analog-digital massive MIMO system by using the sparsity charac-

teristic of angular domain channel. The authors in [24] proposed a clustering scheme

for machine-to-machine communications in a hybrid time-division multiple access-NOMA

system in order to increase the battery lifetime of machines, using the popular k-means

algorithm [25]. This work was extended in [26] to improve the network sum through-

put by considering an enhanced k-means algorithm. Further, the k-means algorithm was

used to cluster UEs in mmwave-NOMA [27] and CFmMIMO [28]. Although these works

demonstrated the effectiveness of applying unsupervised ML to clustering tasks for var-

ious wireless communication systems, its application for UC in CFmMIMO-NOMA has

not been previously studied.

On the other hand, the k-means has also been considered as the most well-known

data clustering algorithm due to its simple implementation, that allows to provide more

insight into the underlying nature and structure of the data. There are several variants of

the k-means algorithm based on choosing different representative points for the clusters,

including the k-medoids [29], k-medians [30], k-modes [31], and employing feature trans-

formation techniques, including weighted k-means [32] and kernel k-means [33]. Different

from the k-means algorithm where the representative point for each cluster is the mean

of all the points within each cluster, the representative point for each cluster in the k-

medoids, k-medians, and k-modes algorithms is the actual data point inside each cluster,

the median of each cluster, and the mode of each cluster, respectively. Although the k-

medoids and k-medians are more robust to outliers than the k-means, their computational

complexity is much higher and therefore not suitable for large datasets. Moreover, the

k-modes is designed to handle categorical data, and thus not appropriate for numerical

data. Given that the k-means algorithm considers all features equally important, the

weighted k-means introduces a feature weighting mechanism, where different features are
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assigned different weights [32]. In [33], the kernel functions are applied in the k-means

in order to find non-linearly separable clusters. However, both the weighted and kernel

k-means algorithms are computationally more expensive than the k-means.

3.2.2 Motivation and Main Contributions

In CFmMIMO-NOMA systems, the effect of network interference is increasingly abnormal

and acute as the APs become denser. Most existing works on CFmMIMO-NOMA systems

[15–17] focused on the performance analysis while they neglect the importance of UC,

which has been shown to significantly improve the performance of NOMA-based systems

[3,4,34]. A direct application of random UC schemes [4,18] to CFmMIMO-NOMA systems

would result in poor performance, even worse than the traditional linear beamforming

without NOMA. In addition, a joint UC and beamforming design [5], which clusters

UEs by means of the tensor model, is not very practical for CFmMIMO-NOMA due to

excessively high complexity in terms of computational and signalling overhead. Although

the k-means algorithm has been widely adopted for different clustering tasks [24–28], its

main drawback is sensitivity to the initialization of centroids.

Taking into account all these issues, this chapter devises novel UC algorithms along

with an efficient transmission strategy such that the SSE of CFmMIMO-NOMA systems

is remarkably enhanced. In particular, our main contributions are summarized as follows:

• This chapter proposes two efficient unsupervised ML-based UC algorithms, includ-

ing k-means++ and improved k-means++, to effectively cluster UEs into disjoint

clusters in CFmMIMO-NOMA. The proposed k-means++ algorithms further ad-

dress the limitation of k-means due to the randomness of initial centroids. In addi-

tion, they are able to ensure the maximum number of UEs per cluster, which can

not be achieved by the conventional k-means.
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• By adopting the fpZF precoding at APs, this chapter formulates optimization prob-

lems for both CFmMIMO-NOMA and COmMIMO-NOMA systems by incorporat-

ing power constraints at APs, necessary conditions for implementing SIC at UEs,

and the minimum SE requirement at UEs; these belong to the difficult class of non-

convex optimization problems. Towards appealing applications, two low-complexity

iterative algorithms based on the inner approximation (IA) method [35] are devel-

oped for their solutions, which are guaranteed to converge to at least a locally

optimal solution.

• Extensive numerical results are provided to confirm the effectiveness of the proposed

UC algorithms on the SSE performance over the current state-of-the-art approaches,

i.e., close-, far- and random-pairing schemes [19], and Jaccard-based UC scheme [20].

They also show the significantly achieved SSE gains of CFmMIMO-NOMA over

COmMIMO-NOMA.

3.2.3 Chapter Organization and Notations

The remainder of this chapter is organized as follows. Section 3.3 describes the system

model. In Section 3.4, two unsupervised ML-based UC algorithms are presented. The

proposed iterative algorithms for CFmMIMO-NOMA and COmMIMO-NOMA are intro-

duced in Sections 3.5 and 3.6, respectively. Numerical results are given in Section 3.7,

while Section 3.8 concludes the chapter.

Notations: Bold uppercase letters, bold lowercase letters, and lowercase characters

stand for matrixes, vectors, and scalars, respectively. | · |, (·)H , (·)T , (·)∗, and || · ||2

correspond to the cardinality, the Hermitian transpose, the transpose, the conjugate, and

the l2−norm operators, respectively. E[·] represents the expectation operation. CN (µ, σ2)

stands for circularly symmetric complex Gaussian random variable (RV) with mean µ and
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Fig. 3.1: An illustration of the CFmMIMO-NOMA system.

variance σ2.

3.3 System Model

3.3.1 System Description

This chapter considers an CFmMIMO-NOMA system, where the set M ≜ {1, 2, · · · ,M}

of M APs is connected to the CPU through perfect wired fronthaul links to serve the set

N ≜ {1, 2, · · · , N} of N UEs via a shared wireless medium, as shown in Fig. 3.1. Each

AP is equipped with K antennas, while each UE has a single antenna. APs and UEs

are assumed to be randomly distributed in a wide coverage area. The communication

between APs and UEs follows the time division duplex (TDD) mode. Each coherence

interval, denoted by τc, includes two phases: uplink training τp (τp < τc) and downlink
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data transmission (τc − τp). The total N UEs are grouped into L clusters and each UE

belongs to one cluster only. We denote the set of L clusters by L ≜ {1, 2, · · ·L}. The set

of UEs in the l-th cluster is defined as Nl ≜ {1l, · · · , nl, · · · , Nl} with |Nl| = Nl, where⋃
l∈L |Nl| = N and Nl

⋂Nl′ = ∅ for l ̸= l′.

3.3.2 Signal Model and Sum Spectral Efficiency (SSE)

3.3.2.1 Uplink Training

In the uplink training phase, all UEs send their training pilots to APs for channel es-

timation. Then, downlink channels are achieved by leveraging the channel reciprocity

property of the TDD mode. With the aim of minimizing the channel estimation overhead

in CFmMIMO-NOMA, UEs in the same cluster share the same pilot sequence, and the

pilot sequences among different clusters are pairwisely orthogonal [15, 19] which requires

τp ≥ L. This chapter assumes that τp = L. Let denote the pilot sequence sent from the

UEs in the l-th cluster by ϕl ∈ Cτp×1 with l ∈ {1, 2, . . . , τp}, satisfying the orthogonality,

i.e., ∥ϕl∥2
2 = τp and ϕHl ϕl′ = 0 if l ̸= l′. The channel vector from UE nl to APm is defined

as hm,nl
∈ CK×1. This chapter focuses on slowly time-varying channels, and assumes that

the channel coefficients are static during the τc interval. The channel hm,nl
is generally

modeled as follows:

hm,nl
=
√
βm,nl

h̄m,nl
, (3.1)

where βm,nl
represents the large-scale fading coefficient accounting for path loss and shad-

owing, and h̄m,nl
∈ CK×1 is the small-scale fading vector in which the components are

independent and identically distributed (i.i.d.) CN (0, 1) RVs. The training signals re-
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ceived at APm can be written as follows:

Yp
m =

∑
l∈L

∑
nl∈Nl

√
ρnl

hm,nl
ϕHl + Wp

m, (3.2)

where ρnl
and Wp

m ∈ CK×τp are the normalized transmit power of UE nl and the additive

noise matrix at APm whose elements follow CN (0, 1), respectively.

Given Yp
m, APm estimates hm,nl

using the minimum mean square error (MMSE)

criterion. The projection ŷpm ∈ CK×1 of Yp
m at APm onto ϕl can be derived as follows:

ŷpm = Yp
mϕl = τp

∑
nl∈Nl

√
ρnl

hm,nl
+ Wp

mϕl. (3.3)

Hence, the MMSE estimate of hm,nl
is given as

ĥm,nl
= E{hm,nl

(ŷpm)H}
(
E{ŷpm(ŷpm)H}

)−1
ŷpm

= υm,nl
ŷpm, (3.4)

where υm,nl
=

√
ρnl

βm,nl

τp

∑
n′

l∈Nl

ρn′
l
βm,n′

l
+1 . The estimation error vector of hm,nl

is given as

em,nl
= hm,nl

− ĥm,nl
, (3.5)

where the elements of em,nl
and ĥm,nl

are i.i.d. RVs distributed as CN (0, (βm,nl
− γm,nl

) IK)

and CN (0, γm,nl
IK), respectively, with γm,nl

= τpρnl
β2

m,nl

τp

∑
n′

l∈Nl

ρn′
l
βm,n′

l
+1 . Note that there is no

cooperation among APs to exchange the channel estimate information.

Remark. The so-called pilot contamination exists when APs estimate the channels of

UEs belonging to the same cluster. The relationship of channel estimates of UE nl and
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UE n′
l in the l-th cluster with nl ̸= n′

l and nl, n′
l ∈ Nl, at APm is expressed as follows:

ĥm,nl
=
√
ρnl
βm,nl√

ρn′
l
βm,n′

l

ĥm,n′
l
. (3.6)

3.3.2.2 Downlink Data Transmission

Under TDD operation, this chapter considers the channel reciprocity to acquire CSI

to precode the transmit signals in the downlink [9, 12]. This chapter adopts the fpZF

precoding [36] to cancel inter-cluster interference, but still take into account intra-cluster

interference. Compared with the pure ZF [37], each AP computes fpZF precoding using

its local CSI only, leading to a distributed implementable algorithm. From (3.2), the

full-rank matrix H̃m ∈ CK×τp of fpZF precoder at APm is given by [36]

H̃m = Yp
mϕ, (3.7)

where ϕ = [ϕ1,ϕ2, · · · ,ϕτp
] ∈ Cτp×τp denotes the collection of τp orthogonal pilot se-

quences. Hence, from (3.4) and (3.7), the channel estimate ĥm,nl
is rewritten as

ĥm,nl
= υm,nl

H̃mφl, (3.8)

where φl is the l-th column of the identity matrix Iτp . From (3.7) and (3.8), the beam-

forming vector wm,l ∈ CK×1 oriented to the l-th cluster at APm can be expressed as

follows:

wm,l =
H̃m

(
H̃H

mH̃m

)−1
φl√

E
{∥∥∥H̃m

(
H̃H

mH̃m

)−1
φl
∥∥∥2

2

} . (3.9)
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The transmitted signal xm ∈ CK×1 from APm is given by

xm =
∑
l∈L

∑
nl∈Nl

√
ρmnl
wm,lxnl

, (3.10)

where xnl
is the symbol intended for UE nl, and ρmnl

is the normalized transmit power

(normalized by the noise power at APm) allocated to UE nl at APm. Besides, xnl
and

xn′
l′

for l, l′ ∈ L and nl, n
′
l′ ∈ N must satisfy the following condition

E
{
xnl

(xn′
l′
)∗
}

=


1, if l = l′ and n = n′,

0, otherwise.
(3.11)

Then, the received signal at UE nl in the l-th cluster can be written as

ynl
=

∑
m∈M

hHm,nl
xm + znl

=
∑
m∈M

√
ρmnl

hHm,nl
wm,lxnl︸ ︷︷ ︸

Desired signal

+
∑
m∈M

∑
n′

l∈Nl\{nl}

√
ρmn′

l
hHm,nl

wm,lxn′
l︸ ︷︷ ︸

Intra-cluster interference before SIC

+
∑
m∈M

∑
l′∈L\{l}

∑
nl′ ∈Nl′

√
ρmnl′

hHm,nl
wm,l′xnl′︸ ︷︷ ︸

Inter-cluster interference

+znl
, (3.12)

where znl
∼ CN (0, 1) is the additive white Gaussian noise (AWGN) at UE nl.

Without loss of generality, in the l-th cluster this chapter considers a descending order

of channel gain, i.e., UEs 1l and Nl are the users with strongest and weakest channel gains,

respectively. By NOMA principle [3,4], UE nl in the l-th cluster first decodes the signals

of UEs n′
l > nl with poorer channel conditions, and then its own signal is successively

decoded after removing the interference from those UEs. Denote by SINRn′
l

nl
and SINRn′

l
n′

l

the signal-to-interference-plus-noise ratios (SINRs) in decoding the signal of UE n′
l by

UE nl and itself, respectively. Towards an efficient and implementable SIC, the following
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necessary condition is considered [19]

E
{
log2

(
1 + SINRn′

l
nl

)}
≥ E

{
log2

(
1 + SINRn′

l
n′

l

)}
, (3.13)

∀nl < n′
l, ∀l ∈ L.

Remark. We note that perfect SIC is practically unattainable owing to the effects of intra-

cluster pilot contamination and channel estimation errors. Consequently, the received

signal at UE nl in the l-th cluster after SIC processing can be written as follows:

ȳnl
=

∑
m∈M

√
ρmnl

hHm,nl
wm,lxnl︸ ︷︷ ︸

Desired signal

+
∑
m∈M

nl−1∑
n′

l=1

√
ρmn′

l
hHm,nl

wm,lxn′
l︸ ︷︷ ︸

Intra-cluster interference after SIC

+
√

ζnl

∑
m∈M

Nl∑
n′′

l=nl+1

√
ρmn′′

l
hHm,nl

wm,lxn′′
l︸ ︷︷ ︸

Intra-cluster interference due to imperfect SIC

+
∑
m∈M

∑
l′∈L\{l}

∑
nl′ ∈Nl′

√
ρmnl′

hHm,nl
wm,l′xnl′︸ ︷︷ ︸

Inter-cluster interference

+znl
, (3.14)

where ζnl
is a general SIC performance coefficient at UE nl in the l-th cluster. In

particular, ζnl
= 1 (ζnl

= 0) indicates no SIC (perfect SIC), while 0 < ζnl
< 1 means

imperfect SIC.

3.3.2.3 Downlink Performance Analysis

Given the UC algorithms that will be introduced in Section 3.4, we first derive the SSE

of CFmMIMO-NOMA. From (3.14), the SINR of UE nl in the l-th cluster is given by

SINRnl
= |DS|2

E {|BU|2}+
nl−1∑
n′

l=1
E {|ICI|2}+

Nl∑
n′′

l=nl+1
E {|RICI|2}+ ∑

l′∈L\{l}

∑
nl′ ∈Nl′

E {|UI|2}+ 1
,

(3.15)
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where DS = E
{ ∑
m∈M

√
ρmnl

hHm,nl
wm,l

}
, BU =

( ∑
m∈M

√
ρmnl

hHm,nl
wm,l−E

{ ∑
m∈M

√
ρmnl

hHm,nl
wm,l

})
,

ICI = ∑
m∈M

√
ρmn′

l
hHm,nl

wm,l, RICI =
√
ζnl

∑
m∈M

√
ρmn′′

l
hHm,nl

wm,l, and UI = ∑
m∈M

√
ρmnl′

hHm,nl
wm,l′

are the coherent beamforming gain (desired signal), beamforming gain uncertainty, intra-

cluster interference after SIC, residual interference due to imperfect SIC, and inter-cluster

interference, respectively.

To simplify (3.15), we first compute the expectation term in the denominator of (3.9)

[38]:

E
{∥∥∥H̃m

(
H̃H

mH̃m

)−1
φl
∥∥∥2

2

}
=

υ2
m,nl

γm,nl
(K − τp)

, ∀nl ∈ Nl. (3.16)

From (3.8), (3.9), and (3.16), we have

ĥ
H

m,ni
wm,l = υm,ni

υm,nl

φHi φl

√
γm,nl

(K − τp)

=


√
γm,nl

(K − τp), if i = l,

0, if i ̸= l.

(3.17)

Lemma 3.1. The closed-form expression for the SE of UE nl in the l-th cluster is given

by

Rnl
=
(

1− τp
τc

)
log2

(
1 + SINRnl

)
=
(

1− τp
τc

)
log2

(
1 + min

n′
l=1,...,nl

SINRnl
n′

l

)
, ∀nl. (3.18)

With ρ ≜ {ρmnl
}m∈M,nl∈Nl,l∈L, SINRnl

nl
and SINRnl

n′
l
, ∀n′

l < nl, are derived as follows:

SINRnl
nl

=
(K − τp)

( ∑
m∈M

√
ρmnl
γm,nl

)2

Inl
nl (ρ) + 1 , (3.19)
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SINRnl
n′

l
=

(K − τp)
( ∑
m∈M

√
ρmnl
γm,n′

l

)2

Inl
n′

l
(ρ) + 1 , (3.20)

where Inl
nl

(ρ) and Inl
n′

l
(ρ) are defined as

Inl
nl

(ρ) ≜
∑

n′′
l∈Nl\{nl}

ηn′′
l′
(K − τp)

( ∑
m∈M

√
ρmn′′

l
γm,nl

)2

+
∑
l′∈L

∑
n′′

l′ ∈Nl′

∑
m∈M

ηn′′
l′
ρmn′′

l′
(βm,nl

− γm,nl
) ,

Inl
n′

l
(ρ) ≜

∑
n′′

l∈Nl\{nl}
ηn′′

l′
(K − τp)

( ∑
m∈M

√
ρmn′′

l
γm,n′

l

)2

+
∑
l′∈L

∑
n′′

l′ ∈Nl′

∑
m∈M

ηn′′
l′
ρmn′′

l′
(βm,n′

l
− γm,n′

l
) ,

with

ηn′′
l′

=


1, if l′ ̸= l or l′ = l and n′′

l ≤ nl,

ζnl
, otherwise.

Proof. We follow similar steps as in [17] to derive (3.19) and (3.20), by taking into account

the residual interference due to imperfect SIC.

We define the virtual channel of UE nl in the l-th cluster as hnl
= [γ1,nl

, . . . , γM,nl
]T ,

∀nl ∈ Nl. We assume that UEs in the l-th cluster are sorted based on their virtual

channels, such as ∥h1l
∥2 ≥ ∥h2l

∥2 ≥ . . . ≥ ∥hNl
∥2, ∀l ∈ L. From (3.18), the SSE of

CFmMIMO-NOMA is expressed as

RΣ =
∑
l∈L

∑
nl∈Nl

Rnl

=
(

1− τp
τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRnl

)
. (3.21)
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3.4 Clustering Cell-Free Massive MIMO-NOMA Sys-

tem

In CFmMIMO systems, a large number of APs are deployed in the area, which leads to the

heterogeneous locations between UEs and different APs. In this section, we propose two

unsupervised ML-based UC algorithms to effectively divide all UEs into separate clusters,

which are implemented at the CPU by exploiting the large-scale fading coefficients and

considering all the APs. Similar to [19] and [28], large-scale fading coefficients of UEs are

assumed to be collected and shared with the CPU before performing the UC algorithm.

We note that it is only necessary to estimate the large-scale fading coefficients once every

40 τc intervals [15], and thus, conveying these coefficients via the fronthaul links occurs

much less frequently than data transmission. Denote by βn ≜ [β1,n, β2,n, . . . , βM,n]T ∈

RM×1 the set of large-scale fading coefficients from all APs associated to UE n, ∀n ∈ N .

The vector βn can be considered as an effective feature-vector denoting the location of

UE n.

3.4.1 The k-means Algorithm

The k-means algorithm for UC studied in [27] and [28] is one of the simplest unsupervised

ML algorithms to partition UEs in the coverage area into separate groups. The key idea

is to find a user-specified number of clusters L, which are represented by L centroids, one

for each cluster. The number of clusters L in the k-means algorithm is predetermined.

The principle of k-means algorithm is given as follows. Firstly, L initial centroids are

randomly selected. Secondly, each point is assigned to the nearest centroid, and each

mass of points assigned to the same centroid creates a cluster. Then, the centroid of each

cluster is updated according to the points associated to the cluster. The assignment and

update processes of centroids are repeated until either there is no change in the clusters
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or centroids remain similarly.

In the context of NOMA systems, it should be noted that the k-means algorithm

studied in [27] results in clusters that have unlimited number of UEs, which may not be

applicable to NOMA systems because of the increase in SIC computational complexity and

the degradation of the decoding performance. As the number of UEs per group increases,

it also becomes more challenging to achieve suitable receive power ratios among NOMA

UEs, especially under practical setups where the SIC is imperfect and error propagation

can be significant. Hence, this chapter imposes a constraint to limit the number of UEs

per cluster. In the context of CFmMIMO-NOMA, the procedure of k-means can be

summarized as follows:

• Step 1: L initial centroids are randomly selected from N UEs, where L is a predefined

number. The set of L cluster centroids is defined as follows:

C = {cl, l ∈ L} , (3.22)

where cl represents the centroid of the l-th cluster.

• Step 2: Each UE n ∈ N is grouped to the nearest centroid, and hence, UEs assigned

to the same centroid creates a cluster:

l′ = arg min
∀l∈L

fd
(
βn,βcl

)
, (3.23)

where fd
(
βn,βcl

)
= ∥βn − βcl

∥2 represents the Euclidean distance from UE n to

centroid cl [27]. As shown in (3.23), UE n is grouped to l′-th cluster (denoted by

centroid cl′) since the distance from UE n to centroid cl′ is nearest.

• Step 3: The centroid of each cluster is recalculated under given UEs assigned to this
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cluster:

βcl
= 1
|Nl|

∑
n∈Nl

βn, ∀l ∈ L, (3.24)

where βcl
represents the updated centroid for the l-th cluster, which can be calcu-

lated by the mean of all UEs belonging to the l-th cluster.

• Step 4: Steps 2-3 are repeated until convergence, i.e., there is no change in the

clusters or the centroids remain the same.

• Step 5: If ∃l′′ ∈ L such that |Nl′′ | > ι, where ι denotes the maximum number of

UEs in each cluster, and with L′′ denoting the set of clusters with size exceeding ι,

i.e., L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι}, the UEs from the oversized clusters in L′′ are

pooled as:

N ′ =
⋃

∀l′′∈L with |Nl′′ |>ι
Nl′′ . (3.25)

Repeat Steps 1-4 to N ′ targeting |L′′|+ 1 clusters.

Update the number of clusters L ← L+ 1.

• Step 6: Step 5 is repeated until |Nl| ≤ ι, ∀l ∈ L.

Note that Steps 5-6 are performed iteratively to ensure that all clusters are bounded

above. The k-means algorithm for UC in CFmMIMO-NOMA is given in Algorithm 2.

Note that k-means is a greedy algorithm, which can converge to a local minimum since

its performance highly depends on the predefined number of clusters L and the centroid

initialization process, i.e., how to select L initial centroids.
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Algorithm 2 The k-means Algorithm for UC in CFmMIMO-NOMA
1: Input: L and βn, ∀n ∈ N .
2: //**Identify L cluster centroids at random cl, ∀l ∈ L (Step 1)**//
3: Set C = ∅ and l = 1, where C denotes the set of cluster centroids.
4: while l ≤ L do
5: cl = generateRandom[1,N];
6: if cl ̸∈ C then
7: C ← cl;
8: l = l + 1;
9: end if

10: end while
11: //**Main process (Steps 2-4)**//
12: while C changes do
13: //**Identify Nl′, ∀l′ ∈ L, containing the subset of UEs that are closer to cl′ than

cl, with l′ ̸= l (Step 2)**//
14: for n ∈ N\C do
15: l′ = arg min

∀l∈L
fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
= ||βn − βcl

||2;
16: Nl′ ← n;
17: end for
18: //**Recalculate cl of cluster Nl, ∀l ∈ L (Step 3)**//
19: for l = 1 : L do
20: βcl

= 1
|Nl|

∑
n∈Nl

βn;
21: end for
22: end while
23: //**Ensure |Nl| ≤ ι, ∀l ∈ L (Steps 5-6)**//
24: L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι};
25: L = L \ L′′;
26: while L′′ ̸= ∅ do
27: N ′ = ⋃

∀l′′∈L′′
Nl′′ ;

28: Repeat Steps 2-22 to N ′ with |L′′′| = |L′′| + 1 clusters, where L′′′ denotes the set
of |L′′|+ 1 clusters;

29: L = L ∪ {l′′, l′′ ∈ L′′′ with |Nl′′ | ≤ ι};
30: L′′ = {l′′, l′′ ∈ L′′′ with |Nl′′ | > ι};
31: end while
32: Output: Nl and cl, ∀l ∈ L.
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3.4.2 Proposed k-means++ Algorithm

One drawback of the k-means algorithm is that it is sensitive to the initialization of the

centroids [39,40]. If an initial centroid is a far point, it might not associate with any other

points. Equivalently, more than one initial centroids might be created into the same cluster

which leads to poor grouping. In this section, the k-means++ algorithm is developed to

resolve this issue. It aims at providing a clever initialization of the centroids that improves

the quality of the grouping process. Besides, the proposed k-means++ algorithm is able

to control the maximum number of UEs per cluster. Except for the improvement in the

centroid initialization process, the remainder of k-means++ algorithm is the same as in

the k-means. In the context of CFmMIMO-NOMA, the proposed k-means++ can be

summarized as follows:

• Step 1: The first initial centroid c1 is randomly selected from N UEs.

• Step 2: For each UE n (with n ∈ N and n ̸∈ C), its distance from the nearest

centroid is calculated as follows:

fd
(
βn,βct

)
= ∥βn − βct

∥2, (3.26)

where ct = arg min
∀cl∈C

fd
(
βn,βcl

)
.

• Step 3: The next centroid is selected from UEs (∀n ∈ N\C) such that the probability

of selecting a UE as a centroid is in direct proportion to its distance from the nearest

and previously selected centroid, i.e., the UE having the maximum distance from

the nearest centroid is virtually to be chosen next as a centroid:

cl = arg max
∀n∈N \C

fd
(
βn,βct

)
. (3.27)
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• Step 4: Steps 2-3 are repeated until L− 1 centroids are selected.

• Step 5: The process continues following Steps 2-6 in the k-means algorithm.

The centroid initialization process of the proposed k-means++ (from step 1 to step 4)

ensures that chosen centroids are far away from each other. This increases the opportunity

of initially selecting centroids that are located in different clusters. The proposed k-

means++ algorithm for UC in CFmMIMO-NOMA is described in Algorithm 3.

3.4.3 Proposed Improved k-means++ Algorithm

As shown in Sections 3.4.1 and 3.4.2, the performance of the k-means algorithm can be

enhanced by selecting the L initial centroids more effectively. Based on the characteristics

of CFmMIMO-NOMA, we propose the improved k-means++ algorithm which includes a

new approach to cleverly select L initial centroids. Since initial centroids are chosen as

UEs that have highest large scale fading coefficients to the largest number of APs, the

resulting clusters are served by more APs with better signal quality. The procedure of

improved k-means++ is summarized as follows:

• Step 1: Each AP identifies an associated UE, denoted by Λm, which has the best

connection, i.e., highest large-scale fading coefficient βm,n:

Λm = arg max
∀n∈N

βm,n, ∀m ∈M. (3.28)

• Step 2: The CPU then selects a subset of APs, denoted by Υn, which have best

connections to UE n:

Υn = {APm : UE n == Λm} , ∀n ∈ N . (3.29)
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Algorithm 3 The k-means++ Algorithm for UC in CFmMIMO-NOMA
1: Input: L and βn, ∀n ∈ N .
2: //**Identify the first cluster centroid cl (Step 1)**//
3: Set C = ∅ and c1 = generateRandom[1,N];
4: C ← c1 and set f = 0;
5: //**Identify L− 1 cluster centroids, cl, l = 2, . . . , L (Steps 2-4)**//
6: for l = 2 : L do
7: for n = 1 : N do
8: for t = 1 : l − 1 do
9: if n ̸= ct then

10: dis (1, t) = fd
(
βn,βct

)
, where fd

(
βn,βct

)
= ∥βn − βct

∥2;
11: else
12: dis (1, t) = NaN;
13: f = f + 1;
14: end if
15: end for
16: if f == 0 then
17: dist (1, n) = max dis;
18: else
19: dist (1, n) = NaN;
20: f = 0;
21: end if
22: end for
23: cl = arg max

∀n∈N \C
dist;

24: C ← cl;
25: end for
26: //**Main process (Step 5)**//
27: while C changes do
28: for n ∈ N\C do
29: l′ = arg min

∀l∈L
fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
= ∥βn − βcl

∥2;
30: Nl′ ← n;
31: end for
32: for l = 1 : L do
33: βcl

= 1
|Nl|

∑
n∈Nl

βn;
34: end for
35: end while
36: //**Ensure |Nl| ≤ ι, ∀l ∈ L (Step 5)**//
37: L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι};
38: L = L \ L′′;
39: while L′′ ̸= ∅ do
40: N ′ = ⋃

∀l′′∈L′′
Nl′′ ;

41: Repeat Steps 2-35 to N ′ with |L′′′| = |L′′| + 1 clusters, where L′′′ denotes the set
of |L′′|+ 1 clusters;

42: L = L ∪ {l′′, l′′ ∈ L′′′ with |Nl′′ | ≤ ι};
43: L′′ = {l′′, l′′ ∈ L′′′ with |Nl′′ | > ι};
44: end while
45: Output: Nl and cl, ∀l ∈ L.
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• Step 3: The CPU selects a UE having the highest number of serving APs as a

centroid:

cl = arg max
∀n∈N \C

|Υn|, (3.30)

where |Υn| denotes the cardinality of Υn.

• Step 4: Step 3 is repeated until L centroids are chosen.

• Step 5: The process continues following Steps 2-6 in the k-means algorithm.

The centroid initialization process of the improved k-means++ for UC in CFmMIMO-

NOMA (Steps 1-4 above) is described in Algorithm 4.

Algorithm 4 Centroid Initialization Process of the Improved k-means++ Algorithm for
UC in CFmMIMO-NOMA

1: Input: L and βn, ∀n ∈ N .
2: //**Identify UE that has the best connection to each AP (Step 1)**//
3: for m = 1 : M do
4: Λm = arg max

∀n∈N
βm,n;

5: end for
6: //**Identify the subset of APs that have best connections to each UE (Step 2)**//
7: for n = 1 : N do
8: for m = 1 : M do
9: if n == Λm then

10: Υn ← m;
11: end if
12: end for
13: end for
14: //**Identify L cluster centroids, cl, ∀l ∈ L, that have large number of serving APs

(Steps 3-4)**//
15: C = ∅, where C denotes the set of cluster centroids.
16: for l = 1 : L do
17: cl = arg max

∀n∈N \C
|Υn|;

18: C ← cl;
19: end for
20: Output: C.
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3.5 The SSE Maximization

From (3.19) and (3.20), it is clear that the SSE of CFmMIMO-NOMA highly depends on

the power allocation (PA) at all APs. Thus, it is necessary to optimize the transmit power

at APs so that the SSE of CFmMIMO-NOMA can be enhanced. In this section, we aim

at optimizing the normalized transmit power ρ ≜ {ρmnl
}m,nl,l to maximize the SSE under

the constraints of the transmit power budget at the APs, SIC conditions, and minimum

required SE at UEs. The optimization problem can be mathematically expressed as

max
ρ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRnl

)
(3.31a)

s.t.
∑
l∈L

∑
nl∈Nl

ρmnl
≤ Pm

max, ∀m ∈M, (3.31b)

ρmnl
≤ ρmnl+1, nl ∈ [1, Nl − 1] , ∀m ∈M, l ∈ L, (3.31c)(

1− τp
τc

)
log2

(
1 + SINRnl

)
≥ R̄nl

, ∀nl. (3.31d)

Herein, constraint (3.31b) indicates that the total transmit power at APm is limited

by the normalized maximum power Pm
max, constraint (3.31c) is the necessary condition to

implement SIC in the l-th cluster, ∀l ∈ L, and constraint (3.31d) denotes the minimum

SE requirement R̄nl
of UE nl, ∀nl. We note that SINRnl

in (3.31a) is a nonconvex and

nonsmooth function with respect to ρ, making problem (3.31) intractable. Therefore,

it may not be possible to solve the problem directly. In addition, the globally optimal

solution (e.g., exhaustive search) comes at the cost of high computational complexity, and

may not be suitable for practical implementation. In what follows, we develop newly ap-

proximated functions using the IA framework [35,41], and then propose a fast converging

and low-complexity algorithm.

Equivalent Optimization Problem: To apply the IA method, several transformations

are necessary to make (3.31) tractable. To do so, we introduce the auxiliary variables
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r ≜
{
rnl

}
∀nl

and φ ≜
{
φnl

}
∀nl

to rewrite (3.31) equivalently as

max
ρ,r,φ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl
(3.32a)

s.t. ln (1 + φnl
) ≥ rnl

ln 2, ∀nl ∈ Nl, (3.32b)

SINRnl
n′

l
≥ φnl

, ∀n′
l < nl, ∀nl ∈ Nl, (3.32c)

SINRnl
nl
≥ φnl

, ∀nl ∈ Nl, (3.32d)(
1− τp

τc

)
rnl
≥ R̄nl

, ∀nl, (3.32e)

(3.31b), (3.31c). (3.32f)

It is clear that the objective function becomes linear. The equivalence between (3.31)

and (3.32) is verified by the following lemma.

Lemma 3.2. Problems (3.31) and (3.32) share the same optimal solution set and the

same optimal objective value. In particular, let (ρ⋆, r⋆,φ⋆) be the optimal solution to

problem (3.32), then ρ⋆ is also the optimal solution to problem (3.31) and vice versa.

Proof. The proof is done by showing the fact that constraints (3.32b)-(3.32d) will hold

with equality at the optimum. This statement is proved by contradiction. Suppose that

constraints (3.32c) and (3.32d) are inactive at the optimum for some users, i.e., there

exists φ′
nl
> 0 such as min

(
SINRnl

n′
l
, SINRnl

nl

)
= φ′

nl
> φ⋆nl

. It is clear that φ′
nl

is also a

feasible point to (3.32b), and r′
nl

= ln
(
1 + φ′

nl

)
/ ln 2 > ln

(
1 + φ⋆nl

)
/ ln 2 = r⋆nl

. As a

consequence, this results in a strictly larger objective value, i.e.,
(
1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r′
nl
>(

1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r⋆nl
, which contradicts the assumption that (ρ⋆, r⋆,φ⋆) represents the

optimal solution to problem (3.32).

Inner Approximation (IA) for Problem (3.32): The nonconvex parts include (3.32c)

and (3.32d). The direct application of IA method is still not possible due to the com-
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plication of SINRnl
n′

l
and SINRnl

nl
. In the following, the change of variable is made as

ρmnl
= (ρ̂mnl

)2, ∀nl ∈ Nl. Firstly, (3.32c) can be handled by rewriting SINRnl
n′

l
as

SINRnl
n′

l
=

(K − τp)
( ∑
m∈M

ρ̂mnl

√
γm,n′

l

)2

Inl
n′

l
(ρ̂) + 1 , (3.33)

where ρ̂ ≜ {ρ̂mnl
}∀nl

and

Inl
n′

l
(ρ̂) ≜

∑
n′′

l∈Nl\{nl}
ηn′′

l′
(K − τp)

( ∑
m∈M

ρ̂mn′′
l

√
γm,n′

l

)2

+
∑
l′∈L

∑
n′′

l′ ∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2 (
βm,n′

l
− γm,n′

l

)
. (3.34)

By introducing the slack variables ϖ ≜ {ϖnl
n′

l
}∀nl

, τ ≜ {τn
′
l

n′′
l
}∀nl

, and θ ≜ {θnl
n′

l
}∀nl

,

constraint (3.32c) can be equivalently rewritten as

(3.32c)⇔



∑
m∈M

ρ̂mnl

√
γm,n′

l
≥ ϖnl

n′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (3.35a)
∑
m∈M

ρ̂mn′′
l

√
γm,n′

l
≤ τn

′
l

n′′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (3.35b)

Inl
n′

l
(ρ̂, τ ) ≤ θnl

n′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (3.35c)

(K − τp)

(
ϖnl
n′

l

)2

θnl
n′

l
+ 1 ≥ φnl

, ∀n′
l < nl, ∀nl ∈ Nl, (3.35d)

where

Inl
n′

l
(ρ̂, τ ) ≜

∑
n′′

l∈Nl\{nl}
ηn′′

l′
(K − τp)

(
τn

′
l

n′′
l

)2
+
∑
l′∈L

∑
n′′

l′ ∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2(
βm,n′

l
− γm,n′

l

)
(3.36)

is a quadratic function. Here, constraint (3.35d) remains nonconvex. We note that

(ϖnl
n′

l
)2/(θnl

n′
l

+ 1) is the quadratic-over-linear function, which is convex with respect to

(ϖnl
n′

l
, θnl
n′

l
). Let (ϖnl,(κ)

n′
l
, θ
nl,(κ)
n′

l
) be a feasible point of (ϖnl

n′
l
, θnl
n′

l
) at the κ-th iteration of
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an iterative algorithm and by the IA principle, constraint (3.35d) can be convexified as

(K − τp)
( 2ϖnl,(κ)

n′
l

θ
nl,(κ)
n′

l
+ 1

ϖnl
n′

l
−

(
ϖ
nl,(κ)
n′

l

)2

(
θ
nl,(κ)
n′

l
+ 1

)2 (θnl
n′

l
+ 1)

)
≥ φnl

, (3.37)

∀n′
l < nl, ∀nl ∈ Nl. Similarly, constraint (3.32d) can be iteratively approximated as

(3.32d)⇔



∑
m∈M

ρ̂mnl

√
γm,nl

≥ ϖnl
nl
, ∀nl ∈ Nl, (3.38a)∑

m∈M
ρ̂mn′′

l

√
γm,nl

≤ τnl
n′′

l
, ∀nl ∈ Nl, (3.38b)

Inl
nl

(ρ̂, τ ) ≤ θnl
nl
, ∀nl ∈ Nl, (3.38c)

(K − τp)
( 2ϖnl,(κ)

nl

θ
nl,(κ)
nl + 1

ϖnl
nl
−

(
ϖnl,(κ)
nl

)2

(
θ
nl,(κ)
nl + 1

)2 (θnl
nl

+ 1)
)
≥ φnl

, ∀nl ∈ Nl, (3.38d)

where

Inl
nl

(ρ̂, τ ) ≜
∑

n′′
l∈Nl\{nl}

ηn′′
l′
(K − τp)

(
τnl
n′′

l

)2
+
∑
l′∈L

∑
n′′

l′ ∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2
(βm,nl

− γm,nl
) .

In summary, the convex approximate program of (3.32) solved at iteration κ + 1 is

given as

max
ρ̂,r,φ,ϖ,τ ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl
(3.39a)

s.t. (3.32b), (3.32e), (3.35a)−(3.35c), (3.37), (3.38a)−(3.38d), (3.39b)∑
l∈L

∑
nl∈Nl

(ρ̂mnl
)2 ≤ Pm

max, ∀m ∈M, (3.39c)

ρ̂mnl
≤ ρ̂mnl+1, nl ∈ [1, Nl − 1] , ∀m ∈M, l ∈ L. (3.39d)

Conic Quadratic Program: Problem (3.39) is a mix of exponential and quadratic

constraints, resulting in a generic convex program. The major complexity in solving such
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a program is due to the logarithm function in (3.32b), making the use of convex solvers

(e.g., SeDuMi [42] and MOSEK [43]) inefficient. To bypass this issue, we use a lower

bound of ln
(
1 + φnl

)
as [4, Eq. (66)]

ln
(
1 + φnl

)
≥ ln(1 + φ(κ)

nl
) +

φ(κ)
nl

φ
(κ)
nl + 1

−
(φ(κ)

nl
)2

φ
(κ)
nl + 1

1
φnl

, (3.40)

∀φ(κ)
nl

> 0, φnl
> 0, which is a concave function. We note that (3.40) holds with equality

at the optimum, i.e., φ(κ)
nl

= φ(κ+1)
nl

. Next, by introducing new variables φ̄ ≜ {φ̄nl
}∀nl

, the

conic quadratic approximate program of (3.39) is given as

max
ρ̂,r,φ,φ̄,ϖ,τ ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl
(3.41a)

s.t. (3.32e), (3.35a)−(3.35c), (3.37), (3.38a)−(3.38d), (3.39c), (3.39d), (3.41b)

F (κ)(φ(κ)
nl
, φ̄nl

) ≥ rnl
ln 2, ∀nl ∈ Nl, (3.41c)

0.25 (φnl
+ φ̄nl

)2 ≥ 0.25 (φnl
− φ̄nl

)2 + 1, ∀nl ∈ Nl, (3.41d)

where F (κ)(φ(κ)
nl
, φ̄nl

) ≜ ln(1 + φ(κ)
nl

) + φ
(κ)
nl

φ
(κ)
nl

+1
− (φ(κ)

nl
)2

φ
(κ)
nl

+1
φ̄nl

. We note that (3.41d) is a

second-order cone constraint and must hold with equality at the optimum. The proposed

IA-based iterative algorithm is summarized in Algorithm 5.

Algorithm 5 Proposed IA-based Iterative Algorithm to Solve Problem (3.31)
Initialization: Set κ := 0 and generate an initial feasible point (ϖ(0),θ(0),φ(0)).

1: repeat
2: Solve the conic quadratic approximate program (3.41) to obtain the optimal solu-

tion, denoted by (ρ̂⋆, r⋆,φ⋆, φ̄⋆,ϖ⋆, τ ⋆,θ⋆);
3: Update (φ(κ+1),ϖ(κ+1),θ(κ+1)) := (φ⋆,ϖ⋆,θ⋆);
4: Set κ := κ+ 1;
5: until Convergence, i.e.,

(∑
l∈L

∑
nl∈Nl

r(κ)
nl
− ∑

l∈L

∑
nl∈Nl

r(κ−1)
nl

)/∑
l∈L

∑
nl∈Nl

r(κ−1)
nl

< ϵ

6: Ouput: ρ⋆ with ρm,(⋆)
nl

= (ρ̂m,(⋆)
nl

)2, ∀nl ∈ Nl.

Convergence and Complexity Analysis: The proposed algorithm starts by randomly
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generating an initial feasible point for the updated variables (ϖ(0),θ(0),φ(0)). In each

iteration, we solve the convex program (3.41) to produce the next feasible point

(φ(κ+1),ϖ(κ+1),θ(κ+1)). This procedure is successively repeated until convergence, which

is stated in the following proposition.

Proposition 2. Initialized from a feasible point (ϖ(0),θ(0),φ(0)), Algorithm 5 produces

a sequence {φ(κ),ϖ(κ),θ(κ)} of improved solutions to problem (3.41), which satisfy the

Karush-Kuhn-Tucker (KKT) conditions. In light of the IA principles, the sequence
{(

1−
τp

τc

) ∑
l∈L

∑
nl∈Nl

r(κ)
nl

}∞

κ=1
is monotonically increasing and converges after a finite number of

iterations for a given error tolerance ϵ > 0.

Proof. Please see Appendix A.

The computational complexity of Algorithm 5 mainly depends on solving the approx-

imate problem (3.41), which is polynomial in the number of constraints and optimization

variables. Problem (3.41) has v = NM + 3N + 3∑L
l=1

Nl(Nl−1)
2 scalar real variables and

c = 8∑L
l=1

(
Nl(Nl−1)

2 + M(Nl − 1)
)
+M quadratic and linear constraints. As a result, the

worst-case computational cost of Algorithm 8 in each iteration is O(v2c2.5 + c3.5) [44].

3.6 COmMIMO-NOMA System

This section considers a COmMIMO-NOMA system, which serves as a benchmark for

CFmMIMO-NOMA. The main differences between CFmMIMO-NOMA and COmMIMO-

NOMA systems are as follows: i) in CFmMIMO-NOMA, in general βm,nl
̸= βm′,nl

, for

m ̸= m′, whereas in COmMIMO-NOMA, βm,nl
= βm′,nl

; and ii) in CFmMIMO-NOMA,

a power constraint is applied at each AP individually, whereas in COmMIMO-NOMA,

a total power constraint is applied at the collocated AP equipped with MK antennas.

Unless otherwise specified, all notations and symbols given in the previous sections will

be reused in this section.
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3.6.1 Performance Analysis

Similar to Lemma 3.1, the closed-form expression for the SE of UE nl in the l-th cluster

is given by

Rnl
=
(

1− τp
τc

)
log2

(
1 + SINRnl

)
=
(

1− τp
τc

)
log2

(
1 + min

n′
l=1,...,nl

SINRnl,
n′

l

)
, ∀nl ∈ Nl. (3.42)

By replacing ρmnl
with ρnl

, ∀nl, SINRnl,
nl

and SINRnl,
n′

l
, ∀n′

l < nl, are derived as follows:

SINRnl,
nl

= (K − τp)ρnl
γnl

Inl
nl (ρ) + 1 , (3.43)

SINRnl,
n′

l
= (K − τp)ρnl

γn′
l

Inl
n′

l
(ρ) + 1 , (3.44)

where

Inl
nl

(ρ) ≜
∑

n′′
l∈Nl\{nl}

ηn′′
l′
(K − τp)ρn′′

l
γnl

+
∑
l′∈L

∑
n′′

l′ ∈Nl′

ηn′′
l′
ρn′′

l′
(βnl
− γnl

) , (3.45)

Inl
n′

l
(ρ) ≜

∑
n′′

l∈Nl\{nl}
ηn′′

l′
(K − τp)ρn′′

l
γn′

l
+
∑
l′∈L

∑
n′′

l′ ∈Nl′

ηn′′
l′
ρn′′

l′
(βn′

l
− γn′

l
) , (3.46)

and γnl
= τpρnl

β2
nl

τp

∑
n′

l∈Nl

ρn′
l
βn′

l
+1 ; ηn′′

l′
is defined as

ηn′′
l′

=


1, if l′ ̸= l or l′ = l and n′′

l ≤ nl,

ζnl
, otherwise.

(3.47)
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The SSE of the COmMIMO-NOMA system is expressed as follows:

RΣ =
∑
l∈L

∑
nl∈Nl

Rnl
=
(

1− τp
τc

)
log2

(
1 + SINRnl

)
. (3.48)

The SSE maximization problem for COmMIMO-NOMA is stated as

max
ρ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRnl

)
(3.49a)

s.t.
∑
l∈L

∑
nl∈Nl

ρnl
≤ Pmax, (3.49b)

ρnl
≤ ρnl+1, nl ∈ [1, Nl − 1] , ∀l ∈ L, (3.49c)(

1− τp
τc

)
log2

(
1 + SINRnl

)
≥ R̄nl

, ∀nl. (3.49d)

3.6.2 Proposed Solution to Problem (3.49)

By making the change of variable as ρnl
= (ρ̂nl

)2, ∀nl ∈ Nl and following similar steps

from (3.32) to (3.39), problem (3.49) is equivalently transformed to the following tractable
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form

max
ρ̂,r,φ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl
(3.50a)

s.t. ln (1 + φnl
) ≥ rnl

ln 2, ∀nl ∈ Nl, (3.50b)

Inl
n′

l
(ρ̂) ≤ θnl

n′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (3.50c)

Inl
nl

(ρ̂) ≤ θnl
nl
, ∀nl ∈ Nl, (3.50d)

(K − τp)(ρ̂nl
)2γn′

l

θnl
n′

l
+ 1 ≥ φnl

, ∀n′
l < nl, ∀nl ∈ Nl, (3.50e)

(K − τp)(ρ̂nl
)2γnl

θnl
nl + 1 ≥ φnl

, ∀nl ∈ Nl, (3.50f)

∑
l∈L

∑
nl∈Nl

(ρ̂nl
)2 ≤ Pmax, (3.50g)

ρ̂nl
≤ ρ̂nl+1, nl ∈ [1, Nl − 1] , ∀l ∈ L, (3.50h)(

1− τp
τc

)
rnl
≥ R̄nl

, ∀nl, (3.50i)

where

Inl
n′

l
(ρ̂) ≜

∑
n′′

l∈Nl\{nl}
ηn′′

l′
(K − τp)(ρ̂n′′

l
)2γn′

l
+
∑
l′∈L

∑
n′′

l′ ∈Nl′

ηn′′
l′
(ρ̂n′′

l′
)2 (βn′

l
− γn′

l
) , (3.51)

Inl
nl

(ρ̂) ≜
∑

n′′
l∈Nl\{nl}

ηn′′
l′
(K − τp)(ρ̂n′′

l
)2γnl

+
∑
l′∈L

∑
n′′

l′ ∈Nl′

ηn′′
l′
(ρ̂n′′

l′
)2 (βnl

− γnl
) . (3.52)

The nonconvex constraints are (3.50e) and (3.50f). Let (ρ̂(κ)
nl
, θnl,(κ)
nl

) be a feasible point

of (ρ̂nl
, θnl
nl

) at iteration κ. By (3.40), the conic quadratic approximate program for solving
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(3.50) is given as

max
ρ̂,r,φ,φ̄,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl
(3.53a)

s.t. (3.41c), (3.41d), (3.50c), (3.50d), (3.50g)−(3.50i), (3.53b)

(K − τp)γn′
l
G(κ)(ρ̂nl

, θnl
n′

l
) ≥ φnl

,

∀n′
l < nl, ∀nl ∈ Nl, (3.53c)

(K − τp)γnl
G(κ)(ρ̂nl

, θnl
nl

) ≥ φnl
, ∀nl ∈ Nl, (3.53d)

where G(κ)(ρ̂nl
, θnl
n′

l
) ≜ 2ρ̂(κ)

nl

θ
nl,(κ)
n′

l
+1
ρ̂nl
−

(
ρ̂

(κ)
nl

)2(
θ

nl,(κ)
n′

l
+1
)2 (θnl

n′
l
+ 1) and G(κ)(ρ̂nl

, θnl
nl

) ≜ 2ρ̂(κ)
nl

θ
nl,(κ)
nl

+1
ρ̂nl
−

(
ρ̂

(κ)
nl

)2(
θ

nl,(κ)
nl

+1
)2 (θnl

nl
+ 1). The solution to problem (3.49) can be found by using Algorithm

5, in which we replace problem (3.41) by problem (3.53) in Step 2. The worst-case

computational complexity of solving (3.53) in each iteration is O(v̄2c̄2.5 + c̄3.5) [44], where

v̄ = 4N+∑L
l=1

Nl(Nl−1)
2 and c̄ = ∑L

l=1

(
Nl(Nl−1)+ (Nl−1)2

2

)
+2N+1 are scalar real variables

and constraints, respectively.

3.7 Numerical Results

This section quantitatively assesses the performance of the proposed unsupervised ML-

based UC algorithms in CFmMIMO-NOMA system.

3.7.1 Simulation Parameters

A CFmMIMO-NOMA system including M = 32 APs and N = 20 UEs is considered as

shown in Fig. 3.2, where all APs and UEs are uniformly distributed within a circular

region with a radius of 1 km. The large-scale fading coefficient of all channels is modeled
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Table 3.1: Simulation Parameters.
Parameter Value
System bandwidth (B) 20 MHz
Number of APs (M) 32
Number of UEs (N) 20
Number of antennas per AP (K) 16
Total power budget for all APs 40 dBm
Power budget at UEs 23 dBm
Noise power at receivers -104 dBm
SIC performance coefficient at UEs 0.05
Maximum number of UEs in each cluster (ι) 2
Minimum SE requirement of UE nl (R̄nl

) 0.5 bps/Hz

as [9] βm,nl
= 10

PL(dm,nl
)+σshz

10 , ∀m ∈M, nl ∈ Nl, where dm,nl
is the distance from APm to

UE nl. The shadow fading is modeled as an RV z, which follows CN (0, 1) with standard

deviation σsh = 8 dB. The path loss PL(dm,nl
) is calculated based on the three-slope path

loss model in [9,37,45]. Unless otherwise stated, other key parameters are shown in Table

3.1, where all APs are assumed to have the same power budget [9, 37]. The used convex

solver is SeDuMi [42] in the MATLAB environment.

3.7.2 Selection of the Initial Number of Clusters

The performance of the k-means based UC algorithms is highly affected by the initial

value of number of clusters L [27, 28]. Thus, it is essential to investigate the particular

feature of the UEs’ distribution in CFmMIMO-NOMA system to choose a proper number

of clusters, such that the SSE is maximized. A reliable and precise approach to validate

the initial optimal number of clusters L is the silhouette score [46], which is the mean

silhouette coefficient of all UEs. The silhouette coefficient of an UE is calculated as
c−b

max(c,b) , where b denotes the mean distance to other UEs in the same cluster (so-called

the mean intra-cluster distance), and c represents the mean distance to UEs of the next

closest cluster which is the one that minimizes b, excluding the UE’s own cluster (so-called
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Fig. 3.2: A system topology with M = 32 APs and N = 20 UEs is used in numerical
examples.

Table 3.2: Silhouette Score for CFmMIMO-NOMA and COmMIMO-NOMA.
Number of clusters L 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Silhouette Score CFmMIMO-NOMA 0.72 0.15 0.23 0.31 0.35 0.37 0.63 0.78 0.99 0.25 0.40 0.47 0.53 0.64
COmMIMO-NOMA 0.75 0.06 0.17 0.30 0.39 0.47 0.64 0.85 0.98 0.30 0.38 0.50 0.56 0.58

mean nearest-cluster distance). The value of the silhouette coefficient ranges from -1 to

+1. A coefficient close to +1 means that the UE is well matched to its own cluster and

far from other clusters. A coefficient close to 0 indicates that the UE is near a cluster

boundary, whereas a coefficient close to -1 implies that the UE is assigned to the wrong

cluster. Table 3.2 shows the silhouette score versus the number of clusters L. It is observed

that the inital optimal number of clusters for this setting is L⋆ = 10. Note that this is

the initial value of the number of clusters to execute the modified k-means and k-means

based UC algorithms, and not the total number of clusters obtained after implementing

the corresponding algorithms.

In what follows, L = 10 is set to verify the performance analysis in Section 3.7.3 and

to evaluate the performance of the proposed algorithms in Section 3.7.4.
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Fig. 3.3: The SSE of CFmMIMO-NOMA versus the total power budget of all APs for the
k-means, k-means++, and improved k-means++ algorithms.

3.7.3 Numerical Results for the Performance Analysis

We now investigate the performance of the two proposed unsupervised ML-based UC

algorithms with fixed PA. The transmit power at each AP allocated to a specific UE

follows the fixed PA scheme. Each AP allocates equal power to each cluster, and then,

the fractional transmit PA [47] is used to allocate the power to a specific UE in each cluster

based on the virtual channel gains presented in subsection 3.3.2.3. As a benchmark, we

also consider the COmMIMO-NOMA system, which is presented in Section 3.6.

Fig. 3.3 illustrates the SSE performance of CFmMIMO-NOMA versus the total power

budget of all APs for different UC algorithms. For comparison, the performance of the

k-means algorithm and the CFmMIMO-NOMA without UC is also plotted. For the

CFmMIMO-NOMA without UC, SIC is implemented at all UEs. It can be seen that

the proposed UC algorithms significantly outperform the conventional k-means algorithm

and without UC. This confirms the effectiveness of UC in CFmMIMO-NOMA systems.
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Fig. 3.4: The SSE of CFmMIMO-NOMA and COmMIMO-NOMA versus the total power
budget of all APs.

Furthermore, the improved k-means++ achieves the best SSE among all algorithms, which

can be attributed to the fact that the effective initialization of centroids is capable of

improving the quality of the clustering process, and thus, of NOMA for CFmMIMO.

Next, the SSE performance of the CFmMIMO-NOMA and COmMIMO-NOMA sys-

tems using the improved k-means++ algorithm versus the total power budget of all APs

is shown in Fig. 3.4. It can be observed that the performance of the CFmMIMO-NOMA

system is better than that of COmMIMO-NOMA. This is attributed to the fact that CFm-

MIMO with many distributed APs brings the service antennas closer to UEs which not

only reduces path losses but also provides higher degree of macro-diversity, compared to

COmMIMO. In the following numerical results, unless otherwise specified, the improved

k-means++ algorithm is used for UC.
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Fig. 3.5: Convergence behavior of Algorithm 5 with different number of AP antennas, K.

3.7.4 Numerical Results for Optimal Power Allocation

Fig. 3.5 evaluates the convergence speed of Algorithm 5 for CFmMIMO-NOMA and

COmMIMO-NOMA with different values of K. The proposed algorithm converges within

three iterations and the convergence speed of both systems is not sensitive to the number

of AP antennas, K. As expected, the SSE is monotonically increasing after each iteration.

Compared to the results in Figs. 3.3 and 3.4 with fixed PA at the power budget of 40

dBm, Algorithm 5 yields a significantly better performance in terms of SSE.

Fig. 3.6 shows the impact of the proposed k-means++ and improved k-means++

algorithms on the system performance of CFmMIMO-NOMA. For comparison, we also

plot the SSE of the k-means (i.e., Algorithm 2) and the recently proposed UC approaches,

including near pairing, far pairing, random pairing [19], and the Jaccard-based UC [20].

The main result observed from the figure is that the proposed unsupervised ML-based

UC algorithms achieve better SSE performance compared to the baseline ones, and the

performance gaps are wider when Pmax increases. This implies that the two proposed
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Fig. 3.6: The SSE of different UC algorithms.

UC schemes are capable of exploiting UC more effectively, so that the SSE is remarkably

enhanced.

Fig. 3.7 demonstrates the benefit of optimizing PA for CFmMIMO-NOMA and COmMIMO-

NOMA systems. The SSE of both systems is significantly enhanced with optimal PA

compared to the fixed PA (FPA) scheme. Hence, this shows the necessity of optimizing

PA for both systems, especially for CFmMIMO-NOMA.

Next, the effect of the SIC performance coefficient ζnl
on the SSE of CFmMIMO-

NOMA and COmMIMO-NOMA is examined in Fig. 3.8. It is noted that ζnl
= 1 (ζnl

= 0)

indicates no SIC (perfect SIC), while 0 < ζnl
< 1 means imperfect SIC. The system

performance without NOMA/SIC is plotted. It is clear that the SSE of CFmMIMO-

NOMA degrades when ζnl
, ∀nl increases. It implies that the SIC performance coefficient

is required to be small enough to exploit the full potential of NOMA in CFmMIMO.

Nevertheless, the SSE achieved by CFmMIMO-NOMA and COmMIMO-NOMA systems

is much higher than their counterparts without NOMA/SIC.
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Fig. 3.9: The joint effect of the numbers of antennas K and APs M on the average SSE
of different UC algorithms, for MK = 512.

Fig. 3.9 shows the joint effect of the numbers of antennas K and APs M on the

average SSE of different UC algorithms. MK = 512 is fixed and M is selected from the

set M ∈ [1, 2, 4, 8, 16, 32]. When M = 1, then K = 512, which represents COmMIMO-

NOMA. From the figure, it can be seen that the SSE increases with the increase in M ,

which translates into a lower number of AP antennas, K. As such, this not only reduces

path losses, but also increases the degree of macro-diversity.

Lastly, the impact of the number of UEs on the SSE of the proposed k-means++ and

improved k-means++ algorithms in CFmMIMO-NOMA system is illustrated in Fig. 3.10.

It can be observed that the SSE significantly increases with the number of UEs.

3.8 Conclusion

This chapter has investigated a downlink CFmMIMO-NOMA system, for which two ef-

ficient unsupervised ML-based UC algorithms have been proposed to effectively cluster
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Fig. 3.10: Effect of the number of UEs L on the SSE for the k-means, k-means++, and
improved k-means++ algorithms.

the users. Using the fpZF precoding at APs, this chapter has considered the problem

of power allocation to maximize SSE. Since the formulated problem is intractable, this

chapter has developed a low-complexity iterative algorithm based on the IA framework

for its solution. Numerical results have confirmed the effectiveness of the proposed UC

algorithms, and show their superior performance compared to the baseline schemes. The

proposed PA algorithm converges fast, and significantly outperforms CFmMIMO-NOMA

without optimizing PA and COmMIMO-NOMA in terms of SSE.

Appendix A: Proof of Proposition 2

By contradiction and IA principles, we can easily prove that constraints (3.35a)-(3.35c),

(3.37), (3.38a)-(3.38d) and (3.41d) must hold with equality at optimum. Let us define
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F(φnl
) ≜ ln(1 + φnl

). From (3.40), we have

F(φnl
) ≥ F (κ)(φ(κ), φ̄nl

), (3.54)

and

F(φ(κ)
nl

) = F (κ)(φ(κ), φ̄nl
). (3.55)

Thus, it is true that

F(φ(κ)
nl

) ≥ F (κ−1)(φ(κ), φ̄nl
)

≥ F (κ−1)(φ(κ−1), φ̄nl
) = F(φ(κ−1)

nl
). (3.56)

These results imply that (ϖ(κ),θ(κ),φ(κ)) is an improved solution to problem (3.41),

compared to (ϖ(κ−1), θ(κ−1),φ(κ−1)). By [35, Theorem 1], the sequence {ϖ(κ),θ(κ),φ(κ)}

converges to at least local optima which satisfy the KKT conditions. As a result, the

objective value of problem (3.41) is monotonically increasing, i.e.,
(
1− τp

τc

) ∑
l∈L

∑
nl∈Nl

r(κ)
nl
≥(

1− τp

τc

) ∑
l∈L

∑
nl∈Nl

r(κ−1)
nl

. In addition, the sequence of the objective values is upper bounded

due to power constraints (3.39c), which completes the proof.
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Chapter 4

Energy Efficiency Maximization in

RIS-Aided Cell-Free Network with

Limited Backhaul

4.1 Abstract

Integrating the RIS in a cell-free (RIS-CF) network is an effective solution to improve

the capacity and coverage of future wireless systems with low cost and power consump-

tion. The reflecting coefficients of RISs can be programmed to enhance signals received

at users. This chapter addresses a joint design of transmit beamformers at access points

and reflecting coefficients at RISs to maximize the EE of RIS-CF networks, taking into

account the limited backhaul capacity constraints. Due to a very computationally chal-

lenging nonconvex problem, this chapter develops a simple yet efficient alternating descent

algorithm for its solution. Numerical results verify that the EE of RIS-CF networks is

greatly improved, showing the benefit of using RISs.
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4.2 Introduction

Ultra-dense networks (UDNs) have been advocated as a key enabler for beyond fifth-

generation wireless networks to further increase network capacity [1]. The underlying

principle of UDN is to densely deploy a large number of APs and small cells in cellular

networks. However, the high density of APs and small cells comes at a cost of severe

inter-cell interference [2].

In order to address this bottleneck, CF networks have been recently proposed as

a promising technology to effectively resolve the interference issues in existing cellular

networks [3, 4]. Since each UE in the network is coherently served by a large number of

APs coordinated by a CPU with no cell boundaries, inter-cell interference can be efficiently

reduced, and thus the network capacity can be enhanced accordingly [4]. Nonetheless,

the performance of CF networks is heavily constrained by the limited backhaul capacity

between APs and CPU [5,6]. Further, the dense deployment of APs in CF networks results

in an increase in the network energy consumption [7]. Therefore, an efficient scheme to

improve the network EE, which will be considered as a major figure-of-merit in the design

of future networks, is of crucial importance.

Fortunately, the new revolutionary technology called RIS has been identified as a

spectral efficient solution with low cost and power consumption [8]. An RIS consists of

a large number of low-cost passive elements, where each element can be adjusted with

an independent phase shift to reflect the electromagnetic incident signals, to be added

coherently at UEs. It is not too far-fetched to envision a wireless system integrating

RIS in a CF network, referred to as RIS-CF, reaping all key advantages of these two

technologies. Despite its potential, only some attempts have been made to characterize

the performance of RIS-CF in the literature [9,10]. Unlike these works, which are mainly

focusing on maximizing the sum-rate with infinite backhaul capacity links, our goal is to

achieve an optimal tradeoff between the total sum-rate and power consumption, taking
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into account the impact of limited backhaul capacity.

Naturally, the beamformers at APs and RIS reflecting coefficients need to be jointly

optimized to maximize the EE of RIS-CF, which results in a computationally intractable

problem since the optimization variables are strongly coupled. To efficiently solve this

problem, the alternating descent-based iterative algorithm is proposed, which converges

at least to a locally optimal solution. In each iteration of alternating optimization, new

approximate functions are developed to tackle the nonconvex parts by leveraging the

IA framework [11] and introducing a novel penalty function. Simulation results confirm

that the proposed algorithm greatly improves the EE of CF networks over the existing

approaches.

Notation: XT and XH are the transpose and Hermitian transpose of a matrix X,

respectively. ∥ · ∥ and | · | denote the Euclidean norm of a vector and the absolute value

of a complex scalar, respectively. ℜ{·} returns the real part of an argument.

4.3 System Model

This chapter considers an RIS-CF network as illustrated in Fig. 4.1, where the sets M ≜

{1, 2, · · · ,M} of M APs and N ≜ {1, 2, · · · , N} of N RISs are distributedly deployed to

coherently serve the set L ≜ {1, 2, · · · , L} of L single-antenna UEs. Each AP is equipped

with K antennas, and each RIS is composed of the set R ≜ {1, 2, · · · , R} of R passive

reflecting elements. A CPU is deployed for control and planning purposes, to which all

APs are connected by wired limited-capacity backhaul links. The backhaul link between

APm and CPU has the predetermined maximum capacity Cmax
m , ∀m ∈ M. All RISs are

controlled by the CPU or APs by wired or wireless links.
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Fig. 4.1: Illustration of an RIS-CF network.

4.3.1 Transmission Model

The transmitted complex baseband signal xm ∈ CK×1 at APm can be written as xm =∑
l∈Lwm,lsl, where sl with E{|sl|2} = 1 and wm,l ∈ CK×1 are the transmitted symbol

and beamforming vector intended for UE l, respectively. Due to the directional reflection

supported by N RISs, the channel between an AP and a UE includes two parts: the AP-

UE (direct) link and N AP-RIS-UE (reflected) links. The equivalent channel ĥHm,l ∈ C1×K

from APm to UE l can be expressed as

ĥ
H

m,l(ψ) = hHm,l +
∑

n∈N
gHn,lΦnHm,n

= hHm,l +
∑

n∈N
ψT
n

(
gHn,l

)
Hm,n (4.1)

where hHm,l ∈ C1×K , Hm,n ∈ CR×K , and gHn,l ∈ C1×R denote the channels from APm to UE

l, from APm to RISn, and from RISn to UE l, respectively. Φn ∈ CR×R represents the

phase shift matrix of RISn, which can be written as [8]: Φn ≜ (ejθn,1 , ejθn,2 , . . . , ejθn,R),

112



where θn,r ∈ [0, 2π) denotes the phase shift of the r-th reflecting element on the RISn.

Further, Φn can be rewritten as Φn = (ψn,1, ψn,2, . . . , ψn,R), with |ψn,r| = 1, ∀n ∈ N ,

r ∈ R. Let define ψ ≜ {ψn}∀n with ψn =
[
ψn,1, ψn,2, . . . , ψn,R

]T
.

The signal received at UE l can be expressed as

yl =
∑

m∈M
ĥ
H

m,lxm + nl (4.2)

where nl ∼ CN (0, σ2) is the additive white Gaussian noise (AWGN) at UE l. The

achievable data rate (nats/s/Hz) of UE l is given as

Rl(w,ψ) = ln (1 + γl(w,ψ))

= ln
1 +

∣∣∣∑m∈M ĥ
H

m,l(ψ)wm,l

∣∣∣2∑
j∈L\l

∣∣∣∑m∈M ĥ
H

m,l(ψ)wm,j

∣∣∣2 + σ2



= ln
1 +

∣∣∣ĥHl (ψ)wl

∣∣∣2∑
j∈L\l

∣∣∣ĥHl (ψ)wj

∣∣∣2 + σ2

 (4.3)

where w ≜ {wm,l}∀m,l, ĥl =
[
ĥ
H

1,l, ĥ
H

2,l, . . . , ĥ
H

M,l

]H
, and wl =

[
wH

1,l,w
H
2,l, . . . ,w

H
M,l

]H
.

4.3.1.1 Optimization Problem Formulation

Power consumption model: The total power consumption of the proposed RIS-CF

network is modeled as

PΣ(w) =
∑

m∈M
ξm
∑

l∈L
∥wm,l∥2 +

∑
m∈M

Pm +
∑

l∈L
Pl +

∑
n∈N ,r∈R

Pn,r

+
∑

m∈M,l∈L
PBH
m,l (4.4)

where Pm and Pl denote the circuit power consumption of APm and UE l, respectively.

ξm regulates the ineffectiveness of the power amplifier at APm, and Pn,r represents the
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low-power consumption of the r-th reflecting element in the n-th RIS [12]. The power

consumption for conveying the data and beamformers related to the transmission from

APm to UE l via backhaul transmission is represented by PBH
m,l .

Backhaul constraint: The data rate transmitted by the m-th backhaul link should

be ωm times greater than or equal to the total achievable rate at APm, with ωm ≥ 1,

∀m ∈M [5, 6]. Then, the per-backhaul capacity constraints can be expressed as:

∑
l∈L

Rl(w,ψ) ≤ Cmax
m

ωm
, ∀m ∈M. (4.5)

Our goal is to maximize the EE of the RIS-CF network by jointly optimizing the

beamformers at APs w and the reflecting coefficients of RISs ψ, stated as

max
w,ψ

E(w,ψ) ≜ B
∑
l∈L Rl(w,ψ)
PΣ(w) (4.6a)

s. t.
∑

l∈L
∥wm,l∥2 ≤ Pmax

m , ∀m ∈M, (4.6b)

Rl(w,ψ) ≥ Rmin
l , ∀l ∈ L, (4.6c)∑

l∈L
Rl(w,ψ) ≤ Cmax

m

ωm
, ∀m ∈M, (4.6d)

|ψn,r| = 1, ∀n ∈ N , r ∈ R (4.6e)

where (4.6b) indicates the power constraint at APm with the maximum transmit power

Pmax
m and constraint (4.6c) is imposed to guarantee the minimum achievable rate re-

quirement Rmin
l of UE l. Problem (4.6) is nonconvex since the objective is nonconcave

and constraints (4.6c)-(4.6e) are nonconvex. The complex rate function in (4.3) and the

nonconvex constraint on the reflecting coefficients (4.6e) make this problem even more

challenging to solve jointly.
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4.4 Proposed Alternating Descent-based Iterative Al-

gorithm

In an iterative algorithm based on the IA framework [11], let (ψ(κ),w(κ)) be the feasible

point of (4.6) obtained at the (κ− 1)-th iteration. In this section, an alternating descent

algorithm with low complexity is proposed to solve (4.6), i.e. at iteration κ + 1 solving

(4.6) to find the optimal solution w⋆ := w(κ+1) for given ψ(κ), and then solving (4.6) to

find the optimal solution ψ⋆ := ψ(κ+1) for given w(κ+1).

4.4.1 Beamforming Descent Iteration

At iteration κ+ 1, problem (4.6) for given ψ(κ) can be expressed as

max
w,ρ

F(w,ψ(κ)) ≜ B
∑
l∈L Rl(w|ψ(κ))

ρ
(4.7a)

s. t. PΣ(w) ≤ ρ, (4.7b)

Rl(w|ψ(κ)) ≥ Rmin
l , ∀l ∈ L, (4.7c)∑

l∈L
Rl(w|ψ(κ)) ≤ Cmax

m

ωm
, ∀m ∈M, (4.7d)

(4.6b) (4.7e)

where ρ is a slack variable to represent the soft power consumption of RIS-CF. The

objective (4.7a) is nonconcave, and constraints (4.7c) and (4.7d) are nonconvex in w. To

tackle the nonconcavity of (4.7a), following inequality is used:

1
z

ln
(
1 + x2/y

)
≥ A(κ) − B(κ) y

x2 − C
(κ)z, ∀x, y, z ∈ R+ (4.8)

where A(κ) ≜ 2
ln
(

1+(x(κ))2/y(κ)
)

z(κ) + (x(κ))2/y(κ)

z(κ)(1+(x(κ))2/y(κ)) , B
(κ) ≜

(
(x(κ))2/y(κ)

)2

z(κ)(1+(x(κ))2/y(κ)) , and C(κ) ≜

ln
(

1+(x(κ))2/y(κ)
)

(z(κ))2 . The proof of (4.8) is given in Appendix A. For w̄l = e−j arg(ĥH
l (ψ(κ))wl)wl
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with j =
√
−1, it follows that |ĥHl (ψ(κ))wl| = ĥ

H

l (ψ(κ))w̄l = ℜ{ĥHl (ψ(κ))w̄l} ≥ 0 and

|ĥ
H

l (ψ(κ))wl′ | = ĥ
H

l (ψ(κ))w̄l′ for all l′ ̸= l. Thus, Rl(w,ψ(κ)) can be rewritten as

Rl(w|ψ(κ)) = ln
(

1 +

(
ℜ{ĥ

H

l (ψ(κ))wl}
)2

φl(w|ψ(κ))

)
(4.9)

under the condition that ℜ{ĥHl (ψ(κ))wl} ≥ 0, where φl(w|ψ(κ)) ≜ ∑
j∈L\l |ĥ

H

l (ψ(κ))wj|2+

σ2. Applying inequality (4.8), we obtain

Rl(w|ψ(κ))
ρ

≥ A(κ)
l − B

(κ)
l

φl(w|ψ(κ))(
ℜ{ĥ

H

l (ψ(κ))wl}
)2 − C

(κ)
l ρ (4.10)

where A(κ)
l ≜ 2 ln

(
1 + Γ(κ)

l

)
/ρ(κ) + Γ(κ)

l /
(
ρ(κ)(1 + Γ(κ)

l )
)
, B(κ)

l ≜ (Γ(κ)
l )2/

(
ρ(κ)(1 + Γ(κ)

l )
)
,

C(κ)
l ≜ ln

(
1 + Γ(κ)

l

)
/(ρ(κ))2, and Γ(κ)

l =
(
ℜ{ĥ

H

l (ψ(κ))w(κ)
l }

)2
/φl(w(κ)|ψ(κ)). As a result,

the concave lower bound of Rl(w,ψ(κ))/ρ is found as

F (κ)
l (w, ρ|ψ(κ)) := A(κ)

l − B
(κ)
l

φl(w|ψ(κ))
Ω(κ)
l (w|ψ(κ))

− C(κ)
l ρ (4.11)

with the condition Ω(κ)
l (w|ψ(κ)) ≜ 2ℜ{ĥHl (ψ(κ))w(κ)

l } ℜ{ĥ
H

l (ψ(κ))wl}−
(
ℜ{ĥ

H

l (ψ(κ))w(κ)
l }

)2

> 0. We note that F (κ)
l (w, ρ|ψ(κ)) is a concave lower bound of Rl(w|ψ(κ))/ρ, satisfying

F (κ)
l (w(κ), ρ(κ),ψ(κ)) = Rl(w(κ),ψ(κ))/ρ(κ).

Following the steps (4.9)-(4.11) with ρ = 1, constraint (4.7c) can be directly convexified

by

R(κ)
l (w|ψ(κ)) ≥ Rmin

l , ∀l ∈ L (4.12)

where R(κ)
l (w|ψ(κ)) ≜ Ā(κ)

l − B̄
(κ)
l

φl(w|ψ(κ))
Ω(κ)

l
(w|ψ(κ))

, with Ā(κ)
l ≜ ln

(
1 + Γ(κ)

l

)
+ Γ(κ)

l /(1 + Γ(κ)
l )

and B̄(κ)
l ≜ (Γ(κ)

l )2/(1 + Γ(κ)
l ).
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Finally, (4.7d) is rewritten as

(4.7d)⇔



∑
l∈L

ln(1 + rl) ≤
Cmax
m

ωm
, ∀m ∈M, (4.13a)(

ℜ{ĥ
H

l (ψ(κ))wl}
)2

rl
≤ φl(w|ψ(κ)), ∀l ∈ L (4.13b)

where r ≜ {rl}l∈L are newly introduced variables. It is noted that ln(1 + rl) is a concave

function and φl(w|ψ(κ)) is a convex function. Following the IA principle, constraints

(4.13a) and (4.13b) are innerly convexified as

∑
l∈L

(
ln(1 + r

(κ)
l )− r

(κ)
l

1 + r
(κ)
l

+ 1
1 + r

(κ)
l

rl

)
≤ Cmax

m

ωm
, ∀m ∈M, (4.14)

(
ℜ{ĥ

H

l (ψ(κ))wl}
)2

rl
≤ φ

(κ)
l (w|ψ(κ)), ∀l ∈ L (4.15)

where φ
(κ)
l (w|ψ(κ)) ≜

∑
j∈L\l

(
2ℜ{(w(κ)

j )H ĥl(ψ(κ))ĥHl (ψ(κ))wj} −|ĥ
H

l (ψ(κ))w(κ)
j |2

)
+ σ2.

The approximate convex problem of (4.7) solved at iteration κ+ 1 is given as

max
w,r,ρ

F (κ)(w,ψ(κ)) ≜ B
∑

l∈L
F (κ)
l (w, ρ|ψ(κ)) (4.16a)

s. t. ℜ{ĥHl (ψ(κ))wl} ≥ 0, ∀l ∈ L, (4.16b)

Ω(κ)
l (w|ψ(κ)) ≥ 0, ∀l ∈ L, (4.16c)

(4.6b), (4.7b), (4.12), (4.14), (4.15). (4.16d)

For given ψ(κ), the per-iteration computational complexity of solving (4.16) is O
(
(4L +

M)2.5(L2(MK + 1)2 + 4L+M)
)

[13].
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4.4.2 Phase Descent Iteration

For given w(κ+1), by solving (4.16), the total power consumption PΣ(w(κ+1)) is fixed and

then problem (4.6) with regard to ψ can be expressed as

max
ψ

G(w(κ+1),ψ) ≜ B
∑
l∈L

Rl(ψ|w(κ+1)) (4.17a)

s. t. Rl(ψ|w(κ+1)) ≥ Rmin
l , ∀l ∈ L, (4.17b)∑

l∈L
Rl(ψ|w(κ+1)) ≤ Cmax

m

ωm
, ∀m ∈M, (4.17c)

|ψn,r| = 1, ∀n ∈ N , r ∈ R. (4.17d)

The main difficulty for solving (4.17) is due to the unit-modulus constraint (4.17d),

which is also a nonconvex constraint. To overcome this issue, (4.17d) is relaxed by the

following convex constraint:

|ψn,r|2 ≤ 1, ∀n ∈ N , r ∈ R (4.18)

which also implies that ∑n∈N
∑
r∈R |ψn,r|2 − NR ≤ 0. To ensure that constraint (4.17d)

holds true at optimum, the following theorem is introduced.

Theorem 4.1. The optimality of (4.17) is guaranteed by the following penalized opti-

mization problem:

max
ψ

B
∑
l∈L

Rl(ψ|w(κ+1)) + η
(∑
n∈N

∑
r∈R
|ψn,r|2 −NR

)
(4.19a)

s. t. (4.17b), (4.17c), (4.18) (4.19b)

where η > 0 is a constant penalty parameter making the objective and penalty terms

comparable.

Proof. Due to constraint (4.18), the penalty term ∑
n∈N

∑
r∈R |ψn,r|2 − NR is always
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negative. This allows the uncertainties of the unit-modulus constraint to be penalized,

which ensures ψn,r = 1 at optimum. For a sufficiently large value of η, problems (4.17) and

(4.19) share the same optimal solution. A detailed proof can be found in [14, Appendix

C].

It can be seen that the developments presented in Section III-A are very useful to

approximate Rl(ψ|w(κ+1)) in the objective (4.19a) and constraints (4.17b) and (4.17c).

It is also noticed that ∑n∈N
∑
r∈R |ψn,r|2 is the sum of quadratic functions, which can be

convexified by directly applying the IA method. As a result, the following approximate

convex problem of (4.17) is solved at iteration κ+ 1:

max
ψ,r

G(κ)(w(κ+1),ψ) ≜

B
∑

l∈L
R(κ)
l (ψ|w(κ+1)) + η

(
P (κ)(ψ)−NR

)
(4.20a)

s. t. R(κ)
l (ψ|w(κ+1)) ≥ Rmin

l , ∀l ∈ L, (4.20b)
|ĥ
H

l (ψ)w(κ+1)
l |2

rl
≤ φ

(κ)
l (ψ|w(κ+1)), ∀l ∈ L, (4.20c)

(4.14), (4.18) (4.20d)

where P (κ)(ψ) ≜ ∑
n∈N

∑
r∈R

(
2ℜ{

(
ψ(κ)
n,r

)∗
ψn,r} − |ψ(κ)

n,r |2
)

and φ
(κ)
l (ψ|w(κ+1)) ≜∑

j∈L\l

(
2ℜ{(w(κ+1)

j )Hĥl(ψ(κ))ĥHl (ψ) w(κ+1)
j }−|ĥ

H

l (ψ(κ))w(κ+1)
j |2

)
+σ2. The per-iteration

computational complexity of solving (4.20) is O
(
(2L + NR + M)2.5((L + NR)2 + 2L +

NR +M)
)
.

The proposed alternating descent-based iterative algorithm for solving problem (4.6)

is summarized in Algorithm 6.

Convergence analysis: From (4.16), it is clear that F(w(κ+1),ψ(κ)) ≥ F (κ)(w(κ+1),ψ(κ)) ≥

F (κ)(w(κ),ψ(κ)) = F(w(κ),ψ(κ)). Similar to (4.20), we have G(w(κ+1),ψ(κ+1)) ≥

G(κ)(w(κ+1),ψ(κ+1)) ≥ G(κ)(w(κ+1),ψ(κ)) = G(w(κ+1),ψ(κ)). As a result, it is true that

E(w(κ+1),ψ(κ+1)) ≥ E(w(κ),ψ(κ)). In other words, Algorithm 6 generates a sequence
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Algorithm 6 Proposed Alternating Descent-based Iterative Algorithm to Solve Problem
(4.6)
Initialization: Set κ := 0 and generate an initial feasible point (ψ(0),w(0))

repeat
Given ψ(κ), solve the convex problem (4.16) to find the optimal solution w⋆ and
update w(κ+1) := w⋆

Given w(κ+1), solve the convex problem (4.20) to find the optimal solution ψ⋆ and
update ψ(κ+1) := ψ⋆

Set κ := κ+ 1
until Convergence
Ouput: (ψ(κ),w(κ))

{(w(κ),ψ(κ))} of improved points that converges at least to a locally optimal solution [11].

Choice of η: In practice, a very small η does not make much difference, leading to a slow

convergence. A very large η results in an early convergence of Algorithm 6 and a subop-

timal solution ψ∗. Given the simulation setup in Section 4.5, it is numerically observed

that η = 103 ensures the convergence of Algorithm 6 with the highest performance.

4.5 Numerical Results

An RIS-CF network including M = 4 APs, N = 4 RISs, and L = 8 UEs is considered as

illustrated in Fig. 4.2, where all APs, RISs, and UEs are uniformly distributed within a

circular region with 1 km radius. The large-scale fading of all channels is modeled as [4]:

βa,b = 10
PL(da,b)+σshz

10 , where a = {m,n}, b = {n, l}, ∀m ∈ M, n ∈ N , l ∈ L, and da,b is

the distance (in km) from a to b. The shadow fading is modeled as a random variable

z, which follows CN (0, 1) with standard deviation σsh = 8 dB. The three-slope path loss

model (in dB) is considered as [4]: PL(da,b) = −140.7−35log10(da,b)+20a0log10

(
da,b/d0

)
+

15a1log10

(
da,b/d1

)
, where dj, with j = {0, 1}, represents the reference distance and aj =

max
{
0, di−da,b

|di−da,b|

}
. Unless otherwise stated, the key parameters are provided in Table 4.1,

following studies in [3, 5, 12]. The used convex solver is SeDuMi [13] in the MATLAB
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Fig. 4.2: System layout with M = 4 APs, N = 4 RISs, and L = 8 UEs.

Table 4.1: Simulation Parameters.

Parameter Value Parameter Value
PBH
m,l 0 dBW B 20 MHz
Pm 9 dBW Pn,r 10 dBm
Pl 10 dBm ξm 1.2

Cmax
m ≡ Cmax, ∀m 500 b/s/Hz Pmax

m ≡ Pmax 35 dBm
Rmin
l 0.5 b/s/Hz K 8
R 8 σ2 -104 dBm

(d0, d1) (10,50) m η 103

environment. The performance of Algorithm 6 is compared with three existing resource

allocation schemes: i) CF network without RISs, ii) Collocated network with RISs, and

iii) Collocated network without RISs. For collocated network, an AP is located at the

center of the considered area to serve all UEs. It is equipped with MK antennas and has

a maximum transmit power of MPmax
m .

Fig. 4.3 plots the typical convergence behavior of Algorithm 6 for a random channel

realization. On average, Algorithm 6 requires about 6 iterations to reach the almost

optimal value of EE in all cases. As expected, increasing K results in better EE, but also
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Fig. 4.3: Convergence of Algorithm 6 with different number of antennas per AP.

requires slightly more iterations.

Fig. 4.4 depicts the average EE versus the maximum transmit power per AP for

different resource allocation schemes. It can be seen that the average EE of all considered

schemes significantly enhances when Pmax increases. Further, the EE of the CF network

with and without RISs is much better than that of the collocated network with and

without RISs, respectively. This is attributed to the fact that the CF network with

distributed APs brings the service antennas closer to UEs, which not only reduces path

losses but also provides higher degree of macro-diversity, compared to the collocated

network. Moreover, both CF and collocated networks with RISs achieve much higher EE

compared to the networks without RISs. This observation confirms that RIS boosts up

the EE of CF and collocated networks. Notably, the proposed RIS-CF network provides

the best EE among all considered schemes.

In Fig. 4.5, the average EE is depicted versus the maximum backhaul capacity, Cmax.

As can be seen, the EE of all networks greatly increases when Cmax increases. This is
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because the higher the maximum backhaul capacity, the more data can be conveyed over

the backhaul links. Increasing Cmax also leads to a remarkable gain in the EE by the

proposed RIS-CF over other networks.

4.6 Conclusion

This chapter has considered the EE maximization problem of CF networks with the

assistance of multiple RISs. The problem involves a joint optimization of transmit beam-

formers at APs and reflecting coefficients at RISs subject to the limited backhaul capacity

constraints, which is formulated as a nonconvex problem. To address this problem, this

chapter has developed a low-complexity alternating descent algorithm based on the IA

framework, which converges at least to a locally optimal solution. Numerical results have

confirmed the fast convergence of the proposed algorithm. Further, they have revealed

the advantages of CF and RIS over collocated network.

Appendix A

Proof of Inequality (4.8)

First, it is noted that f(t, z) ≜ ln(1 + 1/t)/z is a concave function on the domain (z >

0, t > 0) [15]. By the first-order Taylor approximation, it follows that

f(t, z) ≥ f(t(κ), z(κ))−∇tf(t(κ), z(κ))(t− t(κ))−∇zf(t(κ), z(κ))(z − z(κ))

= 2f(t(κ), z(κ)) + 1
z(κ)(t(κ) + 1) −

1
z(κ)t(κ)(t(κ) + 1)t−

f(t(κ), z(κ))
z(κ) z. (4.21)

By replacing t = y/x2 and t(κ) = y(κ)/(x(κ))2, we obtain the inequality (4.8).
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Chapter 5

Transmit Power Minimization of

RIS-Enabled Federated Learning

Networks

5.1 Abstract

Federated learning (FL) has recently emerged as a novel technique for training shared

machine learning models in a distributed fashion while preserving data privacy. However,

the application of FL in wireless networks poses a unique challenge on the mobile users

(MUs)’ battery lifetime. This chapter aims to apply RIS-aided wireless power transfer to

facilitate sustainable FL-based wireless networks. The objective is to minimize the total

transmit power of participating MUs by jointly optimizing the transmission time, power

control, and the RIS’s phase shifts. Numerical results demonstrate that the total transmit

power is minimized while satisfying the requirements of both minimum harvested energy

and transmission data rate.
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5.2 Introduction

With the recent industrial and research activities devoted to the 6G wireless networks, the

uniqueness of the future 6G networks—compared to previous wireless network generations—

lies in the realization of ubiquitous intelligence. In this sense, the artificial intelligence

(AI) will be exploited to orchestrate wireless networks from the core to the edge [1]. To

this end, ML, which is a subfield of AI, is anticipated to be an indispensable tool in

future 6G networks. ML will operate on the data collected from all network segments in

order to enable smart resource management, access control, multi-layer communication,

etc. The evolution of the ML paradigm was initially fueled by the huge amount of data

generated from a wide range of emerging applications, including smart cities, autonomous

vehicles, haptics, and augmented reality services, to name a few. Accordingly, the ML

algorithms are key to leverage such data with the aim of training wireless networks, and

therefore, enabling truly self-optimized and self-organized networks. Since their initial

development, classical ML algorithms demonstrated a superior performance in handling

complicated tasks pertaining to channel estimation, spectrum sensing, resource allocation,

etc. Nevertheless, given that the underlying principle of ML is the collection of raw data

generated at end-devices and stored at a centralized server for model training purposes, a

number of concerning issues have been flagged. First, in cloud-based ML algorithms, users

privacy is compromised due to the exchange of their local datasets, exposing participat-

ing MUs to potential security attacks. Second, the long propagation delay in centralized

ML algorithms limits their applications in real-time scenarios. Finally, the centralized

ML paradigm suffers from the increased network overhead, rendering it unsuitable for

power-constrained MUs [2].

Recently, federated learning (FL) has been identified as an efficient decentralized learn-

ing mechanism, in which improved data privacy, reduced latency, and network overhead

can be achieved [3, 4]. FL is a collaborative learning mechanism, in which the on-board
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computing and storage capabilities, in addition to the local datasets of participating MUs

(clients), are leveraged to perform local model training. The locally trained model updates

are then shared with a cloud-based server for aggregation and global model evaluation.

These steps are repeated until a desired level of accuracy is attained. Given that less infor-

mation is required to be shared with the central server, compared to classical cloud-centric

ML algorithms, FL features enhanced user privacy and offers a better utilization for the

network resources. Inspired by its promising potentials, extensive research attempts have

been initiated to investigate the advantages of the interplay of FL and other enabling

technologies, including RIS, blockchain, aerial/satellite communications, and mobile edge

computing [3–8].

Despite the several advantages of FL, only few attempts have explored the problem

of executing energy-consuming computing and communication tasks at MUs with limited

energy budget. In [9], the problem of joint delay and energy minimization in an IoT

network was investigated by using a three-tier offloading scheme. The authors in [10]

minimized the overall energy consumption at participating MUs using the NOMA scheme

at the uplink transmission. This was accomplished by optimizing the number of iterations

a client is requested to update its local model, under a particular global model accuracy

threshold.

On the other hand, the work in [11–14] considered the adoption of the wireless power

transfer (WPT) concept as a mean to supply power-limited MUs and enable them to

participate in the training process. In particular, in [11], a hybrid radio frequency

(RF)/visible light communication (VLC) scenario was considered, in which the VLC link

over the downlink is leveraged for energy harvesting (EH) purposes, while the RF is used

for the local model updates transmission. From a similar perspective, the authors in [12]

applied the time-switching paradigm of WPT to an FL system, in which they studied the

trade-off between learning and WPT, and further optimized the MU clock frequency for
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improved utilization of harvested energy for model evaluation. From a similar point of

view, the authors in [14] minimized the mean squared error (MSE) by optimizing the ag-

gregation beamforming and consumed energy in a vehicular energy-limited network. The

authors in [13] leveraged RIS for WPT and developed an improved local model updates

transmission. In particular, they formulated an optimization problem to obtain the RIS

phase shift (PS) vector that minimizes the MSE.

Unlike the works in [10–12, 14], which considered the application of WPT in FL,

motivated by the intertwined benefits of RIS and FL paradigms, this chapter considers

leveraging RIS for WPT purposes, to enable power-constrained MUs meet the computing

and communication requirements imposed by the FL process. Instead of focusing on min-

imizing the MSE, as in [13], the proposed framework aims to minimize the total transmit

power of the participating MUs, while satisfying particular computing and communica-

tion requirements. This is achieved by jointly optimizing the RIS and MUs operational

parameters.

Notation: XT denotes the transpose of a matrix X, E[·] represents the expectation

operation, | · | represents the absolute value of a complex scalar, and ℜ{·} returns the real

part of an argument.

5.3 System Model

This chapter considers a FL model, in which the downlink transmission is utilized to

recharge K EH-enabled MUs, while the uplink is dedicated for communicating the FL

local model parameters to a BS, as depicted in Fig. 5.1. During the downlink transmission,

a BS1 communicates with the K MUs through the assistance of an RIS, comprising N

reflecting elements (REs). This is motivated by the assumption that the direct links

between BS1 and the K devices are unavailable. Therefore, the RIS is exploited to extend
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Fig. 5.1: System model.

the signal coverage and to enhance the received signal strength, and thus, to enhance

the harvested energy [15]. Without loss of generality, we assume that each node in the

network is equipped with a single antenna.

5.3.1 Wireless Power Transfer (WPT) Model

In the underlying system model, BS1 sends the RF signal, xE with E{|xE|2} = 1, to the

K MUs through the RIS. The average transmit power at BS1 is represented by PBS1 . The

baseband signal received at the k-th MU can be written as

yBS1,k =
√
PBS1hHk ΦgxE + nk

=
√
PBS1ψ

T
(
gH
)
hkxE + nk

=
√
PBS1qk (ψ) xE + nk, (5.1)
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where g ∈ CN×1 and hHk ∈ C1×N denote the channels from BS1 to RIS, and from RIS

to the k-th MU, respectively. Φ ∈ CN×N represents the PS matrix of RIS, which can be

written as: Φ ≜ (ejθ1 , ejθ2 , . . . , ejθN ), where θn ∈ [0, 2π) denotes the PS of the n-th RE

on the RIS. Further, Φ can be rewritten as Φ = (ψ1, ψ2, . . . , ψN), with |ψn| = 1, ∀n ∈ N .

ψ ≜
[
ψ1, ψ2, . . . , ψN

]T
and qk (ψ) ≜ ψT

(
gH
)
hk. nk ∼ CN(0, σ2) represents the additive

white gaussian noise (AWGN) over the downlink transmission.

Assuming all K MUs are equipped with EH devices, the harvested power at the k-th

MU can be written as

PEH = ηPBS1 |qk (ψ) |2, (5.2)

where η accounts for the energy conversion efficiency. This chapter considers that the

harvested power is the only source of power. In particular, the harvested power is di-

vided into two parts, namely µPEH and (1− µ)PEH , which are dedicated for local model

transmission and computation, respectively, with µ denoting the power splitting factor.

5.3.2 Distributed Federated Learning (FL) Model

Consider that all K MUs are selected by BS2 to perform a particular on-device distributed

FL task, which aims at optimizing the model parameter z that minimizes the local loss

function fk (z):
minimize

z∈Rd
fk (z) = 1

Sk

∑
i∈Dk

fi(z), (5.3)

where Sk denotes the size of the local data set Dk of device k and fi(z) represents the loss

function associated with the data pair i. Without loss of generality, it is assumed that

all local data sets have uniform size, i.e., Sk = S. To maintain higher spectral efficiency

and reduce the total number of communication rounds between BS2 and devices, a model

averaging scheme [16] is utilized. In particular, BS2 broadcasts the global model update
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z to the selected K MUs. At each MU, a local update algorithm is executed to generate

the local updated model z̄k, relying on the local data set and the received global model.

Then, the selected MUs send K weighted local models, which are aggregated at BS2 to

compute the updated global model, as ẑ = ξ (∑k∈K ϕk (z̄k)) , where ξ denotes the post-

processing function at BS2, while ϕk represents the pre-processing function at the k-th

MU. Since the harvested energy from the RF signal constitutes the only source of energy

at the K MUs, it is assumed that all local model parameters at each MU are transmitted

over a single transmission period. Therefore, by setting xk = ϕk (z̄k) to represent the

transmitted signal at the k-th MU, the target function to be estimated at BS2 can be

written as χ = ∑
k∈K xk. Note that the CPU energy consumed to process all data at the

k-th MU over a single local iteration can be expressed as [17]

E(k)
cp = νkckS

2 ω2
k, (5.4)

where νk denotes the effective capacitance coefficient of the computing chipset at the k-th

MU, and ck represents the number of CPU cycles required to process one sample data at

the k-th MU. Also, ωk accounts for the k-th MU’s CPU cycle frequency. The computation

time for one local iteration is Tcp,k = ckS/ωk. It is worth highlighting that the energy

required for model transmission at the k-th MU can be evaluated as [18]

E(k)
cm = PT,kTcm,k, (5.5)

where PT,k and Tcm,k denote the transmission power and the transmission time at the

k-th MU, respectively. Considering that the uplink channel between the k-th MU and the

second BS is Υk, which follows the Rayleigh distribution, and based on the time division
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multiple access (TDMA), the received signal at BS2 for the k-th MU is given by

yBS2,k =
√
PT,kΥkxk + nBS2 , (5.6)

where nBS2 ∼ CN(0, σ2) represents the AWGN over the uplink transmission. At BS2,

the target function is estimated by utilizing aggregation beamforming, υ, and thus, the

achievable rate of the k-th MU at BS2 can be evaluated as

Rk = log2

(
1 + PT,k|υΥk|2

σ2

)
. (5.7)

5.4 Problem Formulation

Defining PT ≜
[
PT,1, PT,2, . . . , PT,K

]T
, Tcm ≜

[
Tcm,1, Tcm,2, . . . , Tcm,K

]T
, ω ≜

[
ω1, ω2, . . . , ωN

]T
,

and δ = 1 − µ. Our goal is to minimize the total transmit power of MUs by jointly op-

timizing the transmit power of MUs PT , CPU cycle frequency of MUs ω, PS of RIS

ψ, the transmission time of MUs Tcm, power splitting ratios δ and µ, and aggregation

beamforming υ, stated as
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min
PT ,ω,δ,ψ,
Tcm,µ,υ

∑
k∈K

PT,k (5.8a)

s. t. E(k)
cp (ωk) ≤ δPEH(ψ)τ, ∀k ∈ K, (5.8b)

E(k)
cm(PT,k, Tcm,k) ≤ µPEH(ψ)τ, ∀k ∈ K, (5.8c)

Tcm,kBRk(PT,k, υ) ≥ Θk, ∀k ∈ K, (5.8d)

MkTcp,k(ωk) + Tcm,k = τ, ∀k ∈ K, (5.8e)

ωmin ≤ ωk ≤ ωmax, ∀k ∈ K, (5.8f)

δ + µ = 1, (5.8g)

|υ|2 = 1, (5.8h)

|ψn| = 1, ∀n ∈ N . (5.8i)

In the above problem, (5.8b) and (5.8c) imply that the energy consumed by local

model computation and communication at the k-th MU should be less than its corre-

sponding harvested energy. Eq. (5.8d) ensures that the transmission rate of the k-th MU

is greater than or equal to the required data size Θk. Constraint (5.8e) ensures that each

global round should be finished within the time frame τ , where Mk denotes the required

number of local iterations at the k-th MU. The CPU frequency of the k-th MU is specified

in (5.8f), where ωmin and ωmax denote the minimum and maximum CPU frequency of the

k-th MU, respectively. Finally, (5.8h) and (5.8i) imply that the aggregation beamforming

has unit power and unit-modulus constraint at the RIS, respectively. It is worth noting

that problem (5.8) is non-convex and challenging to solve, due to the non-convexity na-

ture of constraints (5.8c)-(5.8e), (5.8h), (5.8i) and the coupling of multiple optimization

variables.
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5.5 Proposed Solution

Assuming an iterative algorithm based on the inner approximation (IA) framework, let

(PT (κ),ψ(κ),Tcm
(κ), υ(κ)) be the feasible point for (5.8) that is obtained from the (κ−1)-th

round. In this section, an alternating algorithm is proposed to solve (5.8), i.e., at the iter-

ation (κ+1) solving (5.8) to find the optimal solutions PT ⋆ := PT
(κ+1),ω⋆ := ω(κ+1), δ⋆ :=

δ(κ+1),Tcm
⋆ := Tcm

(κ+1), µ⋆ := µ(κ+1) for given (PT (κ),ψ(κ),Tcm
(κ), υ(κ)), then finding the

optimal solution υ⋆ := υ(κ+1) for given (PT (κ+1),Tcm
(κ+1), υ(κ)), followed by finding the

optimal solution ψ⋆ := ψ(κ+1) for given (PT (κ+1),ψ(κ),Tcm
(κ+1),ω(κ+1), δ(κ+1), µ(κ+1)).

5.5.1 Transmit Power Optimization

At iteration (κ+ 1), problem (5.8) for given (PT (κ),ψ(κ),Tcm
(κ), υ(κ)) can be expressed as

min
PT ,ω,δ,Tcm,µ

∑
k∈K

PT,k (5.9a)

s. t. (5.8b)− (5.8g). (5.9b)

It is noted that the constraints (5.8c), (5.8d), and (5.8e) are non-convex. In the

following, (5.8c) is convexified as follows:

0.5
T (κ)

cm,k

P
(κ)
T,k

P 2
T,k +

P
(κ)
T,k

T
(κ)
cm,k

T 2
cm,k

 ≤ µηPBS1

∣∣∣qk (ψ(κ)
)∣∣∣2 τ, (5.10)

where PT,kTcm,k ≤ 0.5
(
T

(κ)
cm,k

P
(κ)
T,k

P 2
T,k + P

(κ)
T,k

T
(κ)
cm,k

T 2
cm,k

)
, ∀k ∈ K.
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Next, (5.8d) is rewritten as follows:

T
(κ)
cm,k ln

1 +

∣∣∣υ(κ)Υk

∣∣∣2 P (κ)
T,k

σ2


2−

T
(κ)
cm,k

Tcm,k

+
T

(κ)
cm,k

∣∣∣υ(κ)Υk

∣∣∣2 P (κ)
T,k

σ2 + |υ(κ)Υk|2 P (κ)
T,k

1−
P

(κ)
T,k

PT,k

 ≥ Θk ln 2
B

,

(5.11)

∀k ∈ K, which is equivalent to

(5.11)⇔



T
(κ)
cm,k ln

1 +

∣∣∣υ(κ)Υk

∣∣∣2 P (κ)
T,k

σ2

(2− T (κ)
cm,kT̃cm,k

)
+
T

(κ)
cm,k

∣∣∣υ(κ)Υk

∣∣∣2 P (κ)
T,k

σ2 + |υ(κ)Υk|2 P (κ)
T,k

×
(
1− P (κ)

T,k P̃T,k
)
≥ Θk ln 2

B
, (5.12a)

Tcm,kT̃cm,k ≥ 1, (5.12b)

PT,kP̃T,k ≥ 1, (5.12c)

where T̃cm ≜
[
T̃cm,1, T̃cm,2, . . . , T̃cm,K

]T
and P̃T ≜

[
P̃T,1, P̃T,2, . . . , P̃T,K

]T
are new intro-

duced variables, with T̃cm,k ≥ 1
Tcm,k

and P̃T,k ≥ 1
PT,k

, ∀k ∈ K. Constraints (5.12b) and

(5.12c) can be further expressed as the following second-order cone (SOC) constraints,

for ∀k ∈ K,

0.25
(
Tcm,k + T̃cm,k

)2
≥ 0.25

(
Tcm,k − T̃cm,k

)2
+ 1, (5.13)

0.25
(
PT,k + P̃T,k

)2
≥ 0.25

(
PT,k − P̃T,k

)2
+ 1. (5.14)

Similarly, constraint (5.8e) can be equivalently rewritten as

(5.8e)⇔


MkckSω̃k + Tcm,k = τ, (5.15a)

0.25 (ωk + ω̃k)2 ≥ 0.25 (ωk − ω̃k)2 + 1, (5.15b)
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where ω̃ ≜
[
ω̃1, ω̃2, . . . , ω̃K

]T
is a new introduced variable, with ω̃k ≥ 1

ωk
, ∀k ∈ K.

The equivalent convex problem of (5.9) for iteration (κ+ 1) is given by

min
PT ,ω,δ,

Tcm,µ,P̃T ,

T̃cm,ω̃

∑
k∈K

PT,k (5.16a)

s. t. νkckS

2 ω2
k ≤ δηPBS1

∣∣∣qk (ψ(κ)
)∣∣∣2 τ, ∀k ∈ K, (5.16b)

(5.8f), (5.8g), (5.10), (5.12a), (5.13), (5.14), (5.15a), (5.15b), (5.16c)

0 < δ, 0 < µ, 0 ≤ PT,k, 0 ≤ Tcm,k, ∀k ∈ K. (5.16d)

5.5.2 Aggregation Beamforming Optimization

Since (5.8h) is a non-convex constraint, it is relaxed as |υ|2 ≤ 1.

At iteration (κ + 1), the following approximate convex problem is solved for given

(PT (κ+1),Tcm
(κ+1), υ(κ)):

max
υ

(
2ℜ

{(
υ(κ)

)∗
υ
}
− |υ(κ)|2

)
− 1 (5.17a)

s. t.

(
2ℜ

{(
υ(κ)

)∗
Υk

}
ℜ{υ∗Υk} −

∣∣∣(υ(κ)
)∗

Υk

∣∣∣2)P (κ+1)
T,k

σ2 ≥ 2
Θk

BT
(κ+1)
cm,k − 1, (5.17b)

|υ|2 ≤ 1. (5.17c)

5.5.3 Phase Shift Optimization

Since (5.8i) is a non-convex constraint, it is relaxed as |ψn|2 ≤ 1, ∀n ∈ N .

At iteration (κ + 1), the following approximate convex problem is solved for given
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(PT (κ+1),ψ(κ),Tcm
(κ+1),ω(κ+1), δ(κ+1), µ(κ+1)):

max
ψ

∑
n∈N

(
2ℜ

{(
ψ(κ)
n

)∗
ψn
}
− |ψ(κ)

n |2
)
−N (5.18a)

s. t.
νkckS

(
ω

(κ+1)
k

)2

2 ≤ δ(κ+1)ηPBS1φ
(κ)
k (ψ) τ, ∀k ∈ K, (5.18b)

P
(κ+1)
T,k T

(κ+1)
cm,k ≤ µ(κ+1)ηPBS1φ

(κ)
k (ψ) τ, ∀k ∈ K, (5.18c)

|ψn|2 ≤ 1, ∀n ∈ N , (5.18d)

where φ(κ)
k (ψ) =

(
2ℜ

{
qHk
(
ψ(κ)

)
qk (ψ)

}
−
∣∣∣qk (ψ(κ)

)∣∣∣2).

The proposed alternating-based iterative algorithm for solving problem (5.8) is sum-

marized in Algorithm 7.

Algorithm 7 Proposed Alternating-based Iterative Algorithm to Solve Problem (5.8)
Initialization: Set κ := 0 and generate an initial feasible point (PT (0),ψ(0),Tcm

(0), υ(0)).
repeat

Given (PT (κ),ψ(κ),Tcm
(κ), υ(κ)), solve the convex problem (5.16) to find the set

of optimal solutions {PT ⋆,ω⋆, δ⋆,Tcm⋆, µ⋆} and update PT (κ+1) := PT
⋆,ω(κ+1) :=

ω⋆, δ(κ+1) := δ⋆,Tcm
(κ+1) := Tcm

⋆, µ(κ+1) := µ⋆;
Given (PT (κ+1),Tcm

(κ+1), υ(κ)), solve the convex problem (5.17) to find the optimal
solution υ⋆ and update υ(κ+1) := υ⋆;
Given (PT (κ+1),ψ(κ),Tcm

(κ+1),ω(κ+1), δ(κ+1), µ(κ+1)), solve the convex problem
(5.18) to find the optimal solution ψ⋆ and update ψ(κ+1) := ψ⋆;
Set κ := κ+ 1;

until Convergence
Ouput: (PT ⋆,ω⋆, δ⋆,ψ⋆,Tcm

⋆, µ⋆, υ⋆)

The per-iteration computational complexity of solving (5.16), (5.17), and (5.18) is

O
(
(6K+2)2(8K+1)2.5 +(8K+1)3.5

)
, O

(
(K+1)3.5

)
, and O

(
(2K+N)3.5

)
, respectively.
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Fig. 5.2: Convergence of Algorithm 7 with different values of Θk.

5.6 Numerical Results

This section considers a 2-D scenario, in which two BSs and one RIS are located at (0, 20

m), (50 m, 20 m), and (20 m, 0), respectively. The total number of MUs K is 8, which

are randomly distributed within a circular disc with the center (30 m, 10 m) and a radius

of 1 m. Without loss of generality, it is assumed that the system bandwidth B is 20 MHz,

the transmit power of BS1 is 10 W, the energy harvesting efficiency η is 0.9, and the

number of RIS REs N is 64. For local computation, the maximum and minimum CPU

frequencies ωmax and ωmin are 1.5 GHz and 0.3 GHz, respectively, for all users [11]. The

required data size Θk is set to 30 kbits, the coefficient of computing chip νk is 2× 10−28,

and the local data S and the number of CPU cycles ck are assumed to be 1000 bits and

104, respectively. The maximum number of local iterations at the k-th MU Mk is 4, and

the time frame τ is set to 8 s. All simulation results are generated by averaging over 1000

different random channel realizations.

Fig. 5.2 shows the convergence behavior of Algorithm 7. It is clear that Algorithm 7

140



4 5 6 7 8 9 10 11 12

Number of MUs

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

T
o

ta
l 

T
ra

n
sm

it
 P

o
w

e
r 

[m
W

]

Random PS

Discrete PS,  b = 1

Discrete PS,  b = 2

Continuous PS

Fig. 5.3: Total transmit power of participating MUs versus the numbers of MUs.

needs around 5 iterations to reach the optimal value of the total transmit power of partic-

ipating MUs. Besides, increasing Θk requires more total transmit power of participating

MUs.

In Fig. 5.3, this power is illustrated versus the number of MUs, for different phase

selection schemes, i.e., optimized, discrete, and random PS. Not surprisingly, the total

transmit power of the participating MUs increases with the number of MUs. Additionally,

optimized continuous PS achieves a better performance compared to the discrete and

random PS cases.

Figs. 5.4 and 5.5 plot the total transmit power versus the number of RIS elements. As

expected, increasing N results in lower total transmit power of all devices. This is because

more power can be harvested by all devices, which increases the harvested power used

for model computation and transmission. The increase in the harvested power leads to

the decrease in the time required for model computation at all devices, which allows the

devices have more time for model transmission. Further, increased total transmit power
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Fig. 5.4: Total transmit power of participating MUs versus the number of RIS REs with
different values of Θk.
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Fig. 5.5: Total transmit power of participating MUs versus the number of RIS REs with
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of participating MUs is needed for higher Θk.

5.7 Conclusion

This chapter has considered the total transmit power minimization problem of FL-based

wireless networks with the assistance of the RIS. It involves a joint optimization of the

transmission time, power control, and the RIS’s phase shifts, and is formulated as a

non-convex problem. To solve this problem, this chapter has developed an alternating

descent algorithm based on the IA framework, which converges at least to a locally optimal

solution. Numerical results have verified the quick convergence of the proposed algorithm

and the benefit of using RIS.
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Chapter 6

Transmission Rate Maximization in

RIS-Assisted FD ISAC Networks

6.1 Abstract

In this chapter, we explore the application of RIS in the ISAC network, where a FD

multi-antenna BS concurrently detects a target and communicates with a UE. The ob-

jective is to maximize the UE’s transmission rate by jointly optimizing the BS’s transmit

beamforming, UE’s transmit power, and RIS’s phase shifts, while satisfying the condi-

tion on the minimum required sensing power. This chapter develops a block coordinate

ascend-based iterative algorithm to solve the formulated problem, which guarantees the

convergence to at least a local optimum. Numerical results show the efficiency of the

proposed solution as well as the trade-off between the UE’s transmission rate and the

required sensing power, along with the efficiency of employing RIS.
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6.2 Introduction

Sensing is considered an important task of the next-generation cellular networks [1]. Many

emerging mobile applications, such as smart manufacturing and industrial Internet-of-

Things, not only need high-rate transmission with low latency and high reliability, but

also require location information with high accuracy. In order to offer better performance

and efficiently utilize spectrum, energy and hardware resources, integrating sensing and

communication functions into a single network has become a favorable approach. By

jointly optimizing wireless resources, waveform and signal processing flow, a significant

performance gain can be achieved in ISAC networks [2].

In addition to the ISAC technology, the RIS has also received significant attention

from both academia and industry [3]. By fine-tuning the phase shift matrix, RIS is able

to concurrently modify communication and sensing channels, which is beneficial for ISAC

networks [4, 5]. Specifically, RIS can be used to decrease the interference between the

radar and communication systems [6, 7].

Incorporating FD radio into RIS-ISAC networks can provide great benefits owing to

its potential to doubling the spectral efficiency by enabling transceivers to concurrently

transmit and receive data in the same frequency band [4, 8]. In [8], RIS was leveraged

to enhance the performance of localization and information retrieval for the FD-ISAC

system, in which a FD-BS simultaneously communicates and senses the position of UE.

To reap all the above benefits, this chapter studies the joint active and passive beam-

forming (BF) design for a RIS-assisted ISAC system, where a FD multi-antenna BS

simultaneously communicates with a single antenna UE and detects a target. The BS’s

transmit beamforming, UE’s transmit power, and RIS’s reflection coefficients are jointly

optimized to maximize the UE’s transmission rate subject to the minimum sensing power

constraint, transmit power budgets of BS and UE, and unit modulus property of the

reflecting elements. The ensuing problem is strongly non-convex and the strong coupling
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Fig. 6.1: The RIS-ISAC system.

between variables makes it NP-hard. To solve this problem more effectively, this chapter

adopts a block coordinate ascend (BCA) algorithm to transform it into two tractable sub-

problems and develop newly approximated functions to solve them in an iterative fashion.

The proposed solution is compared with the maximum ratio transmission (MRT) case,

which serves as a benchmark. Simulation results show the notable performance gain

achieved with the assistance of RIS, the trade-off between the UE’s transmission rate

and the required sensing power, and the enhanced performance of the proposed solution

compared to the MRT.

6.3 System Model and Problem Formulation

6.3.1 System Model

This chapter considers an RIS-ISAC system, as depicted in Fig. 6.1, which consists of a

dual-functional radar communication (DRC)-BS equipped with Mt transmit antennas and

Mr receive antennas; a single-antenna user; an RIS composed of the set K ≜ {1, 2, · · · , K}

149



ofK elements; and a sensing target. It is supposed that the BS and UE have the knowledge

of the location of the RIS [9]. The UE’s location can be either obtained by global posi-

tioning system or estimated by uplink signals [9]. Let denote by f ∈ CMr×1, h ∈ C1×K ,

Au ∈ CMr×K , bd ∈ CMt×1, Ad ∈ CMt×K , dd ∈ CK×1, bu ∈ CMr×1, du ∈ CK×1, and

H ∈ CMr×Mt the channels (matrix/vector) from UE to DRC-BS, from UE to RIS, from

RIS to DRC-BS, from DRC-BS to target, from DRC-BS to RIS, from RIS to target,

from target to DRC-BS, from target to RIS, and the self-interference link of DRC-BS,

respectively. The phase shift matrix of RIS is represented by Φ ∈ CK×K . ξ ∈ R+ and

v ∈ CMt×1 are also denoted as the transmit power of the UE and the transmit beam-

forming of DRC-BS, respectively. The signal received at the DRC-BS can be expressed

as

y (θ, ξ,v) =
(
f + AuΦhH

)√
ξxc + Hvxs + (bu + AuΦdu)

(
bHd + dHd ΦAH

d

)
vxs + nn

= (f + Au (h)θ)
√
ξxc + (bu + Au (du)θ)

(
bHd + θT (dd) AH

d

)
vxs + Hvxs + nn,

(6.1)

where xc and xs are the communication and sensing signals, respectively, and nn ∼

CN (0, σ2) is the additive white Gaussian noise (AWGN) with zero-mean and variance σ2.

To simplify the mathematical notations, this section denotes Φ ≜ (ejψ1 , ejψ2 , . . . , ejψK ) =

(θ1, θ2, . . . , θK), θ =
[
θ1, θ2, . . . , θK

]T
, f̂(θ) = f + Au (h)θ, and b̂

H(θ) = (bu + Au (du)θ)

×
(
bHd + θT (dd) AH

d

)
= b̂u(θ)b̂Hd (θ). As a result, (6.1) is rewritten as y (θ, ξ,v) =

f̂(θ)
√
ξxc + b̂

H(θ)vxs + Hvxs + nn. The signal-to-interference-plus-noise ratio (SINR) of

UE at DRC-BS is given as

γc (θ, ξ,v) =

∥∥∥̂f(θ)
∥∥∥2
ξ∥∥∥b̂H(θ)v

∥∥∥2
+
∥∥∥Hv∥∥∥2

+σ2
. (6.2)
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6.3.2 Problem Formulation

This chapter is interested in maximizing the UE’s transmission rate subject to the required

sensing power at the DRC-BS by jointly optimizing the involved variables (ξ,v,θ). The

optimization problem is formulated as

max
ξ,v,θ

R(ξ,v,θ) ≜ ln (1 + γc (θ, ξ,v)) (6.3a)

s. t. ξ ≤ Pmax
UE (6.3b)

∥v∥2 ≤ Pmax
BS (6.3c)∥∥∥b̂H(θ)v
∥∥∥2
≥ Psense (6.3d)

|θk| = 1, ∀k ∈ K, (6.3e)

where (6.3b) and (6.3c) indicate the power constraints at the UE and DRC-BS with the

maximum transmit powers Pmax
UE and Pmax

BS , respectively. Constraint (6.3d) describes the

required sensing power at the DRC-BS with Psense being the minimum sensing power.

Finally, (6.3e) presents the RIS phase shift constraint. From (6.3d), the target’s location

can be estimated by the BS as long as the received signal strength of the echo probing

signal is larger than or equal to the required sensing power.

6.4 Proposed Solution

The BCA approach is adopted and decoupled (6.3) into two sub-problems corresponding

to (ξ,v) and θ, each of which will be solved by the inner approximation (IA) method [10].

At iteration η, let (ξ(η),v(η),θ(η)) be the feasible point for (6.3) that is found from the

(η−1)-th round. By BCA, problem (6.3) is solved to obtain the optimal solutions (ξ⋆, v⋆)

for given θ(η), and then update (ξ(η+1) := ξ⋆, v(η+1) := v⋆) to solve (6.3) with respect to

θ.
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6.4.1 Transmit Power and Beamforming Iteration

For a given θ(η), (6.3) is rewritten at iteration η + 1 as:

max
ξ,v

R(ξ,v,θ(η)) ≜ ln
(

1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ∥∥∥b̂H(θ(η))v

∥∥∥2
+
∥∥∥Hv∥∥∥2

+σ2

)
(6.4a)

s. t. ξ ≤ Pmax
UE (6.4b)

∥v∥2 ≤ Pmax
BS (6.4c)∥∥∥b̂H(θ(η))v
∥∥∥2
≥ Psense, (6.4d)

where the objective (6.4a) is non-concave while (6.4d) is the non-convex constraint. The

concave lower bound of (6.4a) can be found as [11, Eq. (62)]:

ln
(

1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ∥∥∥b̂H(θ(η))v

∥∥∥2
+
∥∥∥Hv∥∥∥2

+σ2

)
≥ ln

(
1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η)∥∥∥b̂H(θ(η))v(η)

∥∥∥2
+
∥∥∥Hv(η)

∥∥∥2
+σ2

)

+

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η)∥∥∥b̂H(θ(η))v(η)

∥∥∥2
+
∥∥∥Hv(η)

∥∥∥2
+σ2 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η)

×

2− ξ(η)

ξ
−

∥∥∥b̂H(θ(η))v
∥∥∥2

+
∥∥∥Hv∥∥∥2

+σ2∥∥∥b̂H(θ(η))v(η)
∥∥∥2

+
∥∥∥Hv(η)

∥∥∥2
+σ2


:= R(η)(ξ,v|θ(η)). (6.5)

Next, the left-hand side (LHS) of (6.4d) is a quadratic function which can be innerly

approximated as

2ℜ{(v(η))Hb̂(θ(η))b̂H(θ(η))v} −
∥∥∥b̂H(θ(η))v(η)

∥∥∥2
≥ Psense. (6.6)

In summary, the approximate convex program of (6.4) solved at iteration η + 1 is

expressed by
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max
ξ,v

R(η)(ξ,v|θ(η)) (6.7a)

s. t. (6.4b), (6.4c), (6.6). (6.7b)

6.4.2 Phase Shift Iteration

For given (ξ(η+1),v(η+1)), (6.3) is rewritten at iteration η + 1 as:

max
θ

R(ξ(η+1),v(η+1),θ) ≜ ln
(

1 +

∥∥∥̂f(θ)
∥∥∥2
ξ(η+1)∥∥∥b̂H(θ)v(η+1)

∥∥∥2
+
∥∥∥Hv(η+1)

∥∥∥2
+σ2

)
(6.8a)

s. t.
∥∥∥b̂H(θ)v(η+1)

∥∥∥2
≥ Psense (6.8b)

|θk| = 1, ∀k ∈ K, (6.8c)

where the objective (6.8a) is non-concave, while constraints (6.8b) and (6.8c) are non-

convex. According to the Cauchy-Schwarz inequality, the first term in the denominator

of (6.8a) can be upper bounded as

∥∥∥b̂H(θ)v(η+1)
∥∥∥2

=
∥∥∥b̂u(θ)b̂Hd (θ)v(η+1)

∥∥∥2

≤
∥∥∥b̂u(θ)

∥∥∥2∥∥∥b̂Hd (θ)v(η+1)
∥∥∥2

≤ tζ, (6.9)

where t ∈ R+ and ζ ∈ R+ are newly introduced optimization variables, satisfying∥∥∥b̂u(θ)
∥∥∥2
≤ t and

∥∥∥b̂Hd (θ)v(η+1)
∥∥∥2
≤ ζ. The product tζ is convexified as tζ ≤ t(η)ζ2

2ζ(η) + ζ(η)t2

2t(η) .
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Accordingly, the concave lower bound of (6.8a) is

ln
(

1 +

∥∥∥̂f(θ)
∥∥∥2
ξ(η+1)

tζ +
∥∥∥Hv(η+1)

∥∥∥2
+σ2

)
≥ ln

1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η+1)

t(η)ζ(η) +
∥∥∥Hv(η+1)

∥∥∥2
+σ2


+

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η+1)

t(η)ζ(η) +
∥∥∥Hv(η+1)

∥∥∥2
+σ2 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η+1)

×

2−

∥∥∥̂f(θ(η))
∥∥∥2

∥∥∥̂f(θ)
∥∥∥2 −

t(η)ζ2

2ζ(η) + ζ(η)t2

2t(η) +
∥∥∥Hv(η+1)

∥∥∥2
+σ2

t(η)ζ(η) +
∥∥∥Hv(η+1)

∥∥∥2
+σ2


≜ R(η)(θ|ξ(η+1),v(η+1)). (6.10)

To convexify (6.8b), its LHS is firstly approximated as

∥∥∥b̂H(θ)v(η+1)
∥∥∥2
≥ 2ℜ

{(
b̂
H(θ(η))v(η+1)

)H
b̂
H(θ)v(η+1)

}
−
∥∥∥b̂H(θ(η))v(η+1)

∥∥∥2
. (6.11)

Then, the first term of the right-hand side of (6.11) is further rewritten as

2ℜ
{(

b̂
H(θ(η))v(η+1)

)H
b̂
H(θ)v(η+1)

}
= 2ℜ

{(
b̂
H(θ(η))v(η+1)

)H
bubHd v(η+1)

}

+ 2ℜ
{(

b̂
H(θ(η))v(η+1)

)H
buθT (dd) AH

d v
(η+1)

}

+ 2ℜ
{(

b̂
H(θ(η))v(η+1)

)H
Au (du)θbHd v(η+1)

}

+ 2ℜ
{(

b̂
H(θ(η))v(η+1)

)H
Au (du)θθT (dd) AH

d v
(η+1)

}

≜ X (η)(θ|v(η+1))

+ 2ℜ
{
θT (dd) AH

d v
(η+1)

(
b̂
H(θ(η))v(η+1)

)H
Au (du)θ

}

= X (η)(θ|v(η+1)) + 2ℜ
{
θTYθ

}
, (6.12)

where Y ≜ (dd) AH
d v

(η+1)
(

b̂
H(θ(η))v(η+1)

)H
Au (du). The last term of (6.12) is convexi-

154



fied as

2ℜ
{
θTYθ

}
≥ 2ℜ

{
(θ(η))TYθ + θTYθ(η) − (θ(η))TYθ(η)

}
. (6.13)

From (6.11), (6.12) and (6.13), constraint (6.8b) is innerly approximated as follows:

X (η)(θ|v(η+1)) + 2ℜ
{

(θ(η))TYθ + θTYθ(η) − (θ(η))TYθ(η)
}
−
∥∥∥b̂H(θ(η))v(η+1)

∥∥∥2
≥ Psense.

(6.14)

Further, the unit-modulus constraint (6.8c) is relaxed by the following convex con-

straint:

|θk|2 ≤ 1, ∀k ∈ K, (6.15)

which means that ∑k∈K |θk|
2 −K ≤ 0. To guarantee that constraint (6.8c) is satisfied at

optimum, the following theorem is established.

Theorem 6.1. The following penalized optimization problem is used to ensure the opti-

mality of (6.8):

max
θ

R(ξ(η+1),v(η+1),θ) + ϱ
(∑
k∈K
|θk|2 −K

)
(6.16a)

s. t. (6.8b), (6.15), (6.16b)

where ϱ > 0 denotes a penalty parameter such that the objective and penalty terms become

comparable.

Proof. Owing to constraint (6.15), the penalty term ∑
k∈K |θk|2−K is always negative. A

positive value of ϱ enables the uncertainties of the unit-modulus constraint to be penalized,

which guarantees θk = 1 at optimum. If ϱ is sufficiently large, (6.8) and (6.16) have the

same optimal solution. The steps of a similar proof are found in [12, Appendix C].
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Summing up, the approximate convex program of (6.8) solved at iteration η + 1 is

expressed by

max
θ,t,ζ

R(η)(ξ(η+1),v(η+1),θ) ≜ R(η)(θ|ξ(η+1),v(η+1)) + ϱ
(
P (η)(θ)−K

)
(6.17a)

s. t.
∥∥∥b̂u(θ)

∥∥∥2
≤ t (6.17b)∥∥∥b̂Hd (θ)v(η+1)
∥∥∥2
≤ ζ (6.17c)

|θk|2 ≤ 1, ∀k ∈ K (6.17d)

(6.14), (6.17e)

where P (η)(θ) ≜ ∑
k∈K

(
2ℜ{

(
θ

(η)
k

)∗
θk} − |θ(η)

k |2
)
.

Algorithm 8 summarizes the BCA-based algorithm for solving (6.3).

Algorithm 8 Proposed BCA-based Iterative Algorithm to Solve (6.3)
Initialization: Set η := 0. Generate an initial feasible point (ξ(0),v(0),θ(0), t(0), ζ(0));

1: repeat
2: Given θ(η), solve (6.7) to obtain (ξ⋆,v⋆) and update (ξ(η+1),v(η+1)) := (ξ⋆,v⋆);
3: Given (ξ(η+1),v(η+1)), solve (6.17) to obtain θ⋆ and update θ(η+1) := θ⋆;
4: Set η := η + 1;
5: until Convergence
6: Ouput: (ξ⋆,v⋆,θ⋆)

Complexity and convergence analysis: The computational complexity of solving

(6.7) and (6.17) isO
(
(Mt+1)232.5+33.5

)
andO

(
(K+2)2(K+3)2.5+(K+3)3.5

)
for each iter-

ation, respectively. On the other hand, from the IA principles, it is obvious from (6.7) that

R(ξ(η+1),v(η+1),θ(η)) ≥ R(η)(ξ(η+1),v(η+1)|θ(η)) ≥ R(η)(ξ(η),v(η)|θ(η)) = R(ξ(η),v(η),θ(η)).

As in (6.17), we have R(ξ(η+1),v(η+1),θ(η+1)) ≥ R(η)(ξ(η+1),v(η+1),θ(η+1))

≥ R(η)(ξ(η+1),v(η+1),θ(η)) = R(ξ(η+1),v(η+1),θ(η)). Accordingly, it holds true that

R(ξ(η+1),v(η+1),θ(η+1)) ≥ R(ξ(η),v(η),θ(η)). Thus, Algorithm 8 yields a sequence

{(ξ(η),v(η),θ(η))} of points that converges at least to a locally optimal solution [13].

156



6.4.3 Sub-Optimal Design based on Maximal Ratio Transmis-

sion (MRT)

To reduce the complexity of the active beamforming, we adopt the MRT by v =
√
βbd

∥bd∥ ,

where β is the power level. The MRT-based optimization problem is re-formulated as

follows

max
ξ,β,θ
R(ξ, β, θ) ≜ ln

(
1 +

∥∥∥̂f(θ)
∥∥∥2
ξ

β
∥∥∥b̂H(θ) bd∥∥∥bd

∥∥∥
∥∥∥2

+β
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2

)
(6.18a)

s. t. ξ ≤ Pmax
UE (6.18b)

β ≤ Pmax
BS (6.18c)

β
∥∥∥b̂H(θ) bd∥∥∥bd∥∥∥

∥∥∥2
≥ Psense (6.18d)

|θk| = 1, ∀k ∈ K. (6.18e)

Based on (6.5), the convex problem of transmit power and beamforming solved at

iteration η + 1 is given by

max
ξ,β

R(η)(ξ, β|θ(η)) (6.19a)

s. t. (6.18b), (6.18c), (6.18d), (6.19b)
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where

R(η)(ξ, β|θ(η)) ≜ ln
1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η)

β(η)
∥∥∥b̂H(θ(η)) bd∥∥∥bd

∥∥∥
∥∥∥2

+β(η)
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2



+

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η)

β(η)
∥∥∥b̂H(θ(η)) bd∥∥∥bd

∥∥∥
∥∥∥2

+β(η)
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2 +
∥∥∥̂f(θ(η))

∥∥∥2
ξ(η)

×

2− ξ(η)

ξ
−

β
∥∥∥b̂H(θ(η)) bd∥∥∥bd

∥∥∥
∥∥∥2

+β
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2

β(η)
∥∥∥b̂H(θ(η)) bd∥∥∥bd

∥∥∥
∥∥∥2

+β(η)
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2

.

Based on (6.9), (6.10) and (6.14), the convex problem of phase shift iteration solved

at iteration η + 1 is expressed by

max
θ,t,ζ

Q(η)(ξ(η+1), β(η+1),θ) ≜ Q(η)(θ|ξ(η+1), β(η+1)) + ϱ
(
P (η)(θ)−K

)
(6.20a)

s. t.
∥∥∥b̂u(θ)

∥∥∥2
≤ t (6.20b)∥∥∥b̂Hd (θ) bd∥∥∥bd∥∥∥
∥∥∥2
≤ ζ (6.20c)

β(η+1)2ℜ
{
(θ(η))TYθ + θTYθ(η) − (θ(η))TYθ(η)

}
+ X (η)(θ|β(η+1))

− β(η+1)
∥∥∥b̂H(θ(η)) bd∥∥∥bd∥∥∥

∥∥∥2
≥ Psense (6.20d)

|θk|2 ≤ 1, ∀k ∈ K, (6.20e)
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where

Q(η)(θ|ξ(η+1), β(η+1)) ≜ ln
1 +

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η+1)

β(η+1)t(η)ζ(η) + β(η+1)
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2



+

∥∥∥̂f(θ(η))
∥∥∥2
ξ(η+1)

β(η+1)t(η)ζ(η) + β(η+1)
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+σ2 +
∥∥∥̂f(θ(η))

∥∥∥2
ξ(η+1)

×

2−

∥∥∥̂f(θ(η))
∥∥∥2

∥∥∥̂f(θ)
∥∥∥2 −

t(η)ζ2

2ζ(η) + ζ(η)t2

2t(η) +
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+ σ2

β(η+1)

t(η)ζ(η) +
∥∥∥H bd∥∥∥bd

∥∥∥
∥∥∥2

+ σ2

β(η+1)

,

X (η)(θ|β(η+1)) ≜ β(η+1)2ℜ


(

b̂
H(θ(η)) bd∥∥∥bd∥∥∥

)H
bubHd

bd∥∥∥bd∥∥∥


+ β(η+1)2ℜ


(

b̂
H(θ(η)) bd∥∥∥bd∥∥∥

)H
buθT (dd) AH

d

bd∥∥∥bd∥∥∥


+ β(η+1)2ℜ


(

b̂
H(θ(η)) bd∥∥∥bd∥∥∥

)H
Au (du)θbHd

bd∥∥∥bd∥∥∥


and Y ≜ (dd) AH
d

bd∥∥∥bd

∥∥∥
(

b̂
H(θ(η)) bd∥∥∥bd

∥∥∥
)H

Au (du).

The computational complexity of solving (6.19) and (6.20) is O
(
2232.5 + 33.5

)
and

O
(
(K + 2)2(K + 3)2.5 + (K + 3)3.5

)
for each iteration, respectively.

6.5 Numerical Results

This section considers a 2-D scenario, in which the BS, target, UE, and RIS are located

at (5 m, 0), (5 m, 50 m), (20 m, 10 m), and (10 m, 10 m), respectively. Unless otherwise

stated, the bandwidth is 20 MHz, the BS’s maximum transmit power is 1 W, and the

UE’s maximum transmit power is 5 mW. The number of RIS elements K is 8, the noise
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Fig. 6.2: Convergence rate of Algorithm 8 with different values of K.

power σ2 at the BS is -80 dBm, and the BS is equipped with Mt = Mr = 5 antennas. We

utilize the distance-dependent path-loss model [14]; the path-loss exponents of the BS-

RIS, RIS-target, RIS-UE, BS-target, and BS-UE links are set to 2.5, 2.8, 2.8, 3, and 3,

respectively [15,16]. All simulation results are obtained over an average of 1000 simulation

runs.

Fig. 6.2 presents Algorithm 8’s convergence pattern. It is clear that Algorithm 8

needs about 4 iterations to attain the optimal value of the UE’s transmission rate. Also,

increasing K leads to enhanced transmission rate of the UE.

Fig. 6.3 shows the transmission rate versus the UE’s transmit power. Not surprisingly,

the UE’s transmission rate increases with the UE’s transmit power. This is because in-

creasing the UE’s transmit power results in higher received signal strength at BS. Further,

the transmission rate of the proposed transmit BF case is much higher than that of the

MRT case regardless if the RIS is utilized or not.

Fig. 6.4 plots the UE’s transmission rate versus the BS’s receive antennas. As expected,
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Fig. 6.3: Transmission rate of the UE versus the UE’s transmit power.

5 6 7 8 9 10 11 12 13

BS's Receive Antennas

2.5

3

3.5

4

4.5

5

T
ra

n
sm

is
io

n
 R

at
e 

[b
p

s/
H

z]

Proposed BF

MRT

without RIS

with RIS

Fig. 6.4: Transmission rate of the UE versus the BS’s receive antennas.
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Fig. 6.5: Transmission rate of the UE versus the required sensing power.

increasing Mr results in higher transmission rate of the UE. This is attributed to the fact

that the higher the value of Mr, the better the received diversity can be obtained, which

in turn improves the signal reception quality at BS.

Fig. 6.5 depicts the trade-off between the UE’s transmission rate and the required

sensing power. As expected, increasing the required sensing power leads to a decrease in

the UE’s transmission rate. This is because a higher transmit power at BS is needed to

enhance the received sensing signal power, but it conversely degrades the SINR of UE at

BS.

6.6 Conclusion

The transmission rate maximization problem of a FD-ISAC network with the assistance

of the RIS was considered in this chapter. A non-convex problem was formulated, which

involved a joint optimization of the BS’s transmit beamforming, UE’s transmit power,
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and RIS’s phase shifts. It was solved with a proposed BCA algorithm that relies on

the IA framework. Simulation results showed the fast convergence and effectiveness of

the algorithm, the trade-off between the UE’s transmission rate and the required sensing

power, and the advantage of employing RIS. The extensions considering multiple targets

or multiple UEs are interesting topics for our future works.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the main contributions of the dissertation and discusses several

areas of considerable interest for future work.

7.1 Conclusions

A brief summary of the work and conclusions that can be drawn from the dissertation

are presented as follows:

• Chapter 1 discussed the basics and importance of efficient resource allocation strate-

gies in future wireless networks incorporating CFmMIMO, RIS, NOMA, ISAC, and

FD technologies.

• Chapter 2 illustrated the applicability of FD, NOMA, and SWIPT in cooperative

spectrum-sharing networks. Numerical results showed that the FD-NOMA system

outperforms the HD-NOMA and the conventional OMA-TDMA systems in terms

of the outage probability and sum transmission rate.

• Chapter 3 proposed unsupervised ML-based UC algorithms and developed a low-

complexity iterative algorithm based on the IA framework for solving PA problems
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in a CFmMIMO-NOMA system. Numerical results confirmed the effectiveness of the

proposed UC algorithms and the superior performance of the proposed PA algorithm

compared to CFmMIMO-NOMA without optimizing PA and COmMIMO-NOMA

in terms of SSE.

• Chapter 4 addressed the EE maximization problem of CF networks with the help of

multiple RISs and developed a low-complexity alternating descent algorithm based

on the IA framework for its solution. Numerical results verified the fast convergence

of the proposed algorithm and the benefits of CF and RIS over collocated networks.

• Chapter 5 focused on the total transmit power minimization problem of FL-assisted

wireless networks with the help of the RIS and developed an alternating descent

algorithm based on the IA framework for its solution. Numerical results confirmed

the quick convergence of the proposed algorithm and the advantage of using RIS.

• Chapter 6 considered the problem of maximizing the transmission rate for an FD-

ISAC network with the help of the RIS and proposed a BCA algorithm based on

the IA framework for its solution. Numerical results showed the rapid convergence

of the algorithm, analyzed the trade-off between the UE’s transmission rate and the

required sensing power, and highlighted the benefit of deploying RIS.

7.2 Possible Directions for Future Research

This section highlights other potential research problems in developing efficient resource

allocation schemes for future wireless networks, which are worth of being investigated in

the future.

• Sensing-assisted secure communications for FD-ISAC networks with RIS: Certainly,

transmission security needs to be considered in FD-ISAC networks where designing
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the waveform as dual-functional signal can be intercepted in case there exists an

eavesdropper or the target is malicious, i.e., a potential eavesdropper.

• RIS-assisted unmanned aerial vehicle (UAV)-based ISAC: A virtual line-of-sight link

can be set up between blocked UEs and a UAV with the help of RIS. Hence, RIS as-

sists in extending the coverage area and offers flexibility for designing the trajectory

of UAV in order to obtain higher communication and sensing performances.

• Integration of ISAC and RIS with CFmMIMO systems: The distributed essence

of CFmMIMO systems can be exploited to implement ISAC, as geographically dis-

tributed APs can cooperatively conduct communication and sensing tasks concur-

rently. Furthermore, RIS helps to adjust the power and direction of the reflected

signals and decreases the interference between communication and sensing signals,

thus enhancing the overall system performance.

• Secure RIS-assisted CFmMIMO systems: Eavesdroppers pose huge challenges for

CFmMIMO systems as they can conduct pilot contamination attacks to spoil the

channel estimation phase at the APs. Since RIS can smartly manipulate the wire-

less propagation environment by reconfiguring the phase and/or amplitude of the

incident signals, the reflected signals can be added constructively in the desired posi-

tions and destructively in undesired ones. On this context, RIS has the potential to

improve the performance of CFmMIMO systems in terms of security and reliability.

• Orthogonal time frequency space (OTFS)-assisted ISAC systems: Recently, OTFS

has emerged as a promising modulation technology for high-mobility and high fre-

quency cases due to its potential to tackle high delay and Doppler spreads. Resource

allocation, e.g., delay-Doppler resource block, power, and bandwidth, and joint opti-

mization for communication and sensing for OTFS-assisted ISAC systems are crucial

problems that are worth of being investigated to maximize the communication or
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sensing performance metrics, and analyze the trade-off between communication and

sensing performance.
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