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Abstract

Order i i is an i field in istical science. The uti-

lization of ordering informations can increase the efficiency of statistical inference
procedures in several senses. see Ayer. Brunk, Ewing, Reid. and Silverman (1955),
Robertson and Wright (1974), Barlow and Ubhaya (1971), Lee (1981) and Kelly
(1989).

In this thesis we review some basic theories about the least squares regressions,

the isotonic i We give a si d proof of an iterative pro-

cedure proposed by Dykstra (1983) for least squares problems.

We i the ies of the ings of real-valued functions from sev-

eral aspects. Some itions are d and their ies are li: We

also show that the concept of closed convex cones and their duals is important in
estimating procedures as well as in testing procedures. We demonstrate that some
seemingly different problems have actually the same likelihood ratio test statistics
and critical regions.

We observe that the orders of real-valued functions and the orders of random
variables are closely related and statistical inference regarding these two orders be-

have similarly. A class of bivariate quantifications are defined based on these two

orders. This bivariate notion has direct i ion and
More important, it characterizes a degree of positive dependence among random
variables and therefore makes it possible to study the positive dependence of ran-

dom variables by using the theories of the orders of real-valued functions and the

orders of random varial

‘We consider several esti i under order icti ‘We propose an




algorithm that finds the i i likelihood esti ofa h

cally bounded survival function in finite steps, usually two or three steps. Simulation
study shows that in general, utilizing the prior knowledge of a lower bound and an
upper bound may reduce the point-wise MSE's and the amount of reduction in
MSE'’s could be substantial for small and moderate sample sizes for a pair of sharp

bounds. We obtain the esti of a multi ial under various order

for a general multinomial estimati dure defined by Cressie and

Read (1984).
We also consider the problem of simulating tail probabilities with a known
bound. The d di may increase the efficiency of simula-

tion significantly.

il
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Chapter 1

Introduction

Statistical inference under order restrictions is an important field in statistical sci-

ence. Many types of are with i ifying ingful structure

in real world situati h ized by order ictions arises in nu-

merous settings and has many useful applications. For example, the failure rate

of a component may increase as it ages: may be
dominated by a control. The books of Barlow, Bartholomew, Bremner and Brunk
(1972), and Robertson, Wright and Dykstra (1988) are two classical monographs on
this field and contain many important problems.

The utilization of ordering i i can increase the efficiency of statisti-

cal inference procedures in several senses. For example, ‘isotonizing’ estimates can
reduce total square error (Ayer, Brunk, Ewing, Reid, and Silverman 1955) and max-
imum absolute error (Robertson and Wright 1974, and Barlow and Ubhaya 1971).
Little was known about the pointwise properties of MLE’s under order restrictions
until Lee (1981) considered the problem of estimating linearly ordered normal means.
He showed that in this case mean square error is reduced for every individual mean

by using order restricted MLE’s. An even stronger result for the same problem was

1



obtained by Kelly (1989): the absolute error of each individual estimate under order
restriction is stochastically smaller than that of the sample mean. Lee (1988) also
observed that these pointwise properties do not hold, in general, for partial order
restrictions.

A number of i ions have inli to ize the order

of vectors in R*. The well known isotonic regression arises from the maximum like-

lihood estimation of normal means under an isotonic restriction with respect to a

quasi-order of the i Its useful is greatly by the fact that it

solves a wide variety of restricted esti i in which the objective func-
tion may take many different forms other than the sum of squares. Its application
include the maximum likelihood estimation of ordered normal variances, ordered
binomial parameters (bioassay), ordered Poisson means, ordered multinomial pa-
rameters as well as a variety of problems from other areas, such as inventory theory
and reliability analysis. In addition. the application of isotonic regression can be
readily extended to some other important problems by the theory of Fenchel's du-
ality. Other quantifications such as increasing on average and increasing on split
average are also often considered in applications.

These ifications of i to closed convex cones in a R

space. The concept of duals of closed convex cones and the associated duality

in finite di ional Euclidean space have proven to be useful in order

restricted problems. Several authors have made extensive use of the concept of
convex cones and their duals in R¥. Among these are Rockfellar (1970), Barlow and
Brunk (1972), Robertson and Wright (1981), and Dykstra (1984). See Robertson,
Wright and Dykstra (1988) for more details on the theory and applications of this



subject.

The idea of ordering random variables with respect to the considered property
is not very old. The (usual) stochastic ordering was first introduced by Mann and
‘Whitney (1947) and Lehmann (1955). Since then many new notions have been in-
troduced in the literature to characterize orders of random variables, such as the
uniform stochastic ordering and the likelihood ratio ordering. The (usual) stochas-
tic ordering, the uniform stochastic ordering and the likelihood ratio ordering are
three of the most well studied orderings in the literature and can be expressed

conveniently in terms of total positivity (TP) of

orderings between random variables can arise in numerous settings and have many
useful applications. For example, the simplest way of comparing two random vari-
ables is by comparing their means. However, such a comparison is based on only
two single numbers (the means), and sometimes it is not very informative, especially

in i istical infe ic orders can also be used to deduce

probability inequalities which are useful to obtain bounds for probabilities that are

tedious to or analytically i ible to handle. For example, Lehmann
(1959, P.112, Problem 11) showed that X is stochastically smaller than Y if and
only if Eu(X) < Eu(Y) for all increasing functions u. The reader is referred to
the newly published book by Shaked and Shanthikumar (1994) for an overview on

and their

Quanti ions of real-valued ions and ifications of random variable

are closely related and statistical inferences with regard to these two classes of quan-
tifications behave similarly. A class of bivariate quantifications are defined based

on these two orders. This bivariate notion has direct interpretation and appealing



More i it

a degree of positive dependence among

random variables and therefore makes it possible to study the positive dependence
of random variables by using the theories of the orders of real-valued functions and
the orders of random variables.

In Chapter 2 we introduce some basic results on least squares regression and

particularly, the isotonic ion. We will introduce three il that have

been used extensively in studying and computing the isotonic regressions, namely,

the pool-adj; ol i the minis 1 t: i and the

min-max formula. We will also give a simplified proof of the correct convergence of
an iterative procedure which was first proposed by Dykstra and Robertson (1982a)
for a matrix partial order and then extended by Dykstra (1983) and Dykstra and
Boyle (1987) to a very general setting.

In Chapter 3 we extend the notions of orders of real-valued vectors in R* space

to real-valued functions in a space and calculate the ding dual
cones. We exhibit an important property of duality in the problem of hypothesis

testing and that some ingly different probl have actually the

same likelihood ratio test statistics and critical regions.

In Chapter 4 we introduce the order of random variables in terms of total posi-

tivity of ility functi The ition of total positivity given in this chapter
is an extension of the usual one and can be readily used to define the quantification
of a sequence of random variables. We observe that the orders of real-valued func-
tions and the orders of random variables are closely related and statistical inference
regarding these two orders behave similarly.

In Chapter 5, we define the quantification of bivariate random variables based



on the ification of real-valued ions and the ificati of random
variables. We show that this quantification is closely related to the positive depen-

dence of random variables which has i icati in reliability analysis,

life sciences and many other fields. More specifically, we will show that the def-
initions of positive dependence of random variables in reliability analysis (Barlow
and Proschan 1975) and positive associations for ordinal random variables (Agresti
1984 and Grove 1984) are special cases of our bivariate notions. But the bivariate
notions defined in this chapter have direct i ions and nice ies and

the relations among them are readily revealed. In addition, it allows us to study
the positive dependence of random variables by using the theories of quantifications
of real-valued functions and random variables. Some aspects of estimation problem
are also considered in this chapter.

The remaining chapters are some applications of the above theories.

In Chapter 6, we consider the problem of estimating a

under various ordering constraints for a general multinomial estimation procedure
defined by Cressie and Read (1984).

In Chapter 7, we consider the problem of estimating a survival function that is
stochastically bounded both from below and from above, with right-censored data.
We extend the one-sided problems considered by Dykstra (1982) and propose an
efficient iterative algorithm to find bounded estimates in finite steps, usually two

or three steps. The proposed algorithm is an iterative procedure such that at each

step one needs only to solve several i ided 1 An example
involving survival times for heart transplant patients which appeared in Crowley and
Hu (1977) is given to illustrate the proposed algorithm. We also conduct a simulation



study to i iy the increase in iency obtained by using the stochastically

bounded constraints. Simulation study shows that in general, utilizing the prior
knowledge of a lower bound and an upper bound may reduce the point-wise MSE'’s
and the amount of reduction in MSE’s could be substantial for small and moderate
sample sizes for a pair of sharp bounds.

In Chapter 8, we consider the problem of simulating tail probabilities with a
known hastic bound. The d dure may increase the efficiency of

simulation significantly.




Chapter 2

Isotonic Regression and Least
Squares Problems

2.1 Introduction

Isotonic regression problem arises from the maximum likelihood estimation of nor-
mal means under an order restriction and it plays a very important role in the order

infe Its

is greatly enh 1 by the fact that it solves a
wide variety of restricted estimation problems in which the objective function may
take many different forms other than the sum of squares. Its application includes
maximum likelihood estimation of ordered normal variances, ordered binomial pa-
rameters (bioassay), ordered Poisson means, ordered multinomial parameters as well
as a variety of problems from other areas, such as reliability theory and density esti-
mation, (cf. sec 1.5 of Robertson, Wright and Dykstra (1988)). In addition, solutions

to many other imizati can be in terms of the isotonic re-

gression, see Barlow and Brunk (1972), Dykstra and Lee (1991), and Dykstra, Lee
and Yan (1995).
The application of isotonic regression can be readily extended to some other



important problems by the theory of Fenchel’s duality. Duality is an important
concept in order restricted inference. For one thing, it provides an alternative ap-
proach to a problem that may be more tractable, or provides additional insight into
the problem. It is also possible to use duality concepts to expand the collection of
problems for which one has solutions. The reader is referred to Robertson, Wright
and Dykstra (1988) for more details on this subject.
The problem of developing algorithms for the isotonic regressions has received
a great deal of attention, see Barlow et al. (1972). In fact, isotonic regression is a
quadratic programming problem and there is an extensive literature on the methods
of computing solutions. The problem of computing the isotonic regression is a special
case and a number of efficient algorithms have been proposed.
The most widely used algorithm for a simple order is the pool-adjacent-violators
(PAVA) first li by Ayer. Brunk, Ewing, Reid and Silverman

(1955). PAVA is a very efficient algorithm but it does not apply in general to
partially ordered isotonic regression. For general partially ordered isotonic regres-

sion the most well known is the minil 1 t i of Brunk
(1955). Several other algorithms have been developed for quasi or partial orders to

increase the effici of the ion, such as the mini violator alj

due to Thompson (1962), an algorithm due to Eeden (1958) and its improvement
due to Gebhardt (1970), and the min-max algorithm due to Lee (1983), among
others.

An iterative algorithm for the matrix partial order is developed by Dykstra and
Robertson (1982a). This type of iterative algorithm has been extended to a large
number of restricted optimization problems by Dykstra (1983) and Dykstra and



Boyle (1987).

In Section 2.2 we first review some concepts and preliminary results of the least

squares i Concepts of quasi-orders and isotonic regressions are given
in Section 2.3. In Section 2.4 we i d three i used algori for
isotonic ions, namely PAVA, mini 1 Igorithm and the min-max

formula. Most of the contents of Section 2.3 and 2.4 can be found in Robertson,
Wright and Dykstra (1988). In section 2.5 we give a simplified proof of the correct
convergence of the iterative procedure proposed by Dykstra and Boyle (1987) for a

general least squares problem.

2.2 Basic Concepts and Least Squares Regression

2.2.1 Convex Sets, Cones and Dual Cones

Let R* be a k-dimensional Euclidean space with the inner product defined by
(f.9)= gfxg‘wn Vf,g € R, (2.1)

where w = (wi,...,w) is a vector of weights such that w; > 0,i=1,2,...,k and

> w=1.

A subset C of R is said to be conver set if (1 — A)f + Ag € C whenever
f€C,geCand0< )<L Itis well known that the intersection of an arbitrary
number of convex sets is still convex.

A subset C of R¥ is called a cone if it is closed under nonnegative scalar multi-
plication, i.e. Af € C when f € C and A > 0. Note that a cone is not necessarily
“pointed.” For example, subspaces of R¥ are special cones. So are the open and

closed half-spaces corresponding to a hyperplane containing the origin.



For a convex cone C, the subset C* of R* defined by

C={geR:(@.N=3 afaun <0, VfeC)
=1

(2:2)

is called the Fenchel dual or polar of C. In particular, if C = S is a subspace of R¥,

then

S =S*={geR*:(9.f)=0,¥f€ S}.

(2.3)

It can be shown that C* is also a convex cone and furthermore, it is closed.

For any two subsets A, B of R¥, denote A + B the direct sum of sets A, B, i.e.,

A+B={f+glf € A, g€ B}. Let C, C, and C, be convex cones. We have the

following results,
(a) Cc(C*)",and C =(C")" ifC is closed;
(b) (=€)* =-C%;
() CicC; GG
@) (C+G) =Cincs;
(e) (CiNCy)" =Ci +C3 if the latter is closed,
see Rockafellar (1970, p.146).
2.2.2 Least Squares Regression and Projection
In the least squares regression, we are interested in the problem of

&
Minimize jec Y (9 — fi) wi.
=

(24)
(25)
(26)
@7

(2.8)

(2.9)

where g € R is a given vector and C C R* is a closed convex set. The solution to

the problem (2.9) exists and it is unique. This unique solution, denoted by E(g|C),

is called the least squares projection of g onto C.



Brunk (1965) showed that a vector g* € C is the solution if and only if

(9-9".f—97)<0, VfeC.

(2.10)

Furthermore, if C = C is a closed convex cone. then g* € C is the solution if and

only if
(9-9%9") =0
and
(9-g".f) <0, VfeC.
Barlow and Brunk (1972) showed that
E(glc) + E(gIC") = g.
It follows that
(E(g[C). E(glC")) = 0.
An affine transformation of a set C by a € R™ is defined to be the set
C+a={f+a:feC}.
Lemma 2.2.1 Let C C R* be a closed conver set. Then
E(g|C+a)=a+E(g-a|C).
Proof. Let g* = E(g|C + ). By (2.10), ¥f € C,
(9-9g"(f+a)—g")
= ((9-a)~(¢°—a)f-(9"—a) SO

Therefore, by (2.10) again, g* — « = E(g — a|C). The proof is complete.

(211)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



Corollary 2.2.1 Let C C R be a closed convez cone. Then
E(g|C+a)=g~—E(g-alC). (2.17)
Proof. By (2.16) and (2.13),

E(glIC+a) = a+ E(g—alC)

a+(g—a)-E(g—alC)

= g—E(g—alC?).
a
Let g* = E(g | C + a), where C is a closed convex cone. By (2.16), g* —a =
E(g—a|C) €C. By (2.17). g — g" = E(g — &|C"). It follows from (2.14) that
(¢"—a,g-g7)=0, (2.18)
and
(9" —a,z) <0, YzeC (2.19)

2.3 Quasi-order of Finite Sets and Isotonic Re-
gressions

2.3.1 Quasi-order
Let X be a finite set {z,Z2,...,Zx}. A binary relation < on X is a simple order if
1. it is reflezive: < z for = € X;

2. it is transitive: z,y,2 € X,z <y and y < z imply z < z;



3. it is antisymmetric: 2,y € X,z < yand y < z imply z = y:

4. it is comparable: z.y € X implies that either z < yory < z.

A binary relation < on X is called a partial order if it is reflexive, transitive, and
antisymmetric, but there may be noncomparable elements. A binary relation < is
called a quasi-order if it is reflexive and transitive, but it need not be antisymmetric
and it may admit noncomparable elements. A partial order usually arises when
vector comparison are involved. The following examples are some partial orders

that are fr 1 1 in

Example 2.2.1 (Simple order): z) <1 < ... < Tg.

Example 2.2.2 (Simple loop order): 7o < z; < Txs1,i=1,2,... k.
Example 2.2.3 (Simple tree order): zo <z, i =1,2,... k.

Example 2.2.4 (Umbrella order): T, < I3 < --- < Tig > Tigs1 > -=* > Tg-

Simple order is one of the most important orders and has many useful applica-
tions. This will be evident throughout this article. The simple tree order, the simple
loop order and the umbrella order are three partial orders that have found many
useful applications. The simple tree order is a subset of the simple loop order. These
two orders arise in sampling situations where one wishes to compare several treat-
ments with one or two extreme controls. For example, in a drug analysis, several
drugs may be compared to a zero-dose control and a most effective but expensive
drug control. The umbrella order is closely related to the unimodal property and

has found useful ications in estimating density i (see Rob et al.

1988 for some more details on this subject).



2.3.2 Isotonic Regression

A real-valued function, f. on X is said to be isotonic with respect to the quasi-
ordering < on X if z,y € X and z < y imply f(z) < f(y)-

Let g be a given function on X and w a given positive weight function on .X.
An isotonic function g* on X is called an isotonic regression of g with weight w if it
minimizes

3 lo(z) = f(@)]w(z)
z€X
in the class of all isotonic functions on X .

A real-valued function on a finite set X can be considered as a point of a Eu-
clidean space which has as its dimension the number of points in X. In this setting,
the collection, Z, of all isotonic functions on X with respect to a given quasi-order
is a closed convex cone and the isotonic regression g* is the closest point of Z to g

with distance induced by the inner product
k
(f.9) =3 figiw.
=

The existence and uniqueness then follow from the general theory of least squares

problem described earlier in this chapter.

2.3.3 Properties of Isotonic Regression
The isotonic regression has a number of important properties. Some of them are

given below.

Theorem 2.3.1 Suppose g, and g, are isotonic functions on X such that g\(z) <

g(z) < g2(z) for all z € X, and if g* is an isotonic regression of g, then also
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91(z) < 9°(z) < g2(z) for all z € X. In particular, if a and b are constants such
that @ < g(z) < b for all z € X, then also a < g*(z) < b forz € X. (Th. 1.3.4
RWD)

Suppose g and w are functions on X, set

_ Zzeaw(z)g(z)
S s Sy

for those 4 nonempty subsets of X. While Av(A) depends on g, this will not be
made explicit in the notation. Let [¢* = ¢| denote {z € X : g*(z) =c}.

Theorem 2.3.2 If ¢ is any real number and if the set [g° = c] is nonempty then
c= Aulg" =¢]). (Th 1.3.5, RWD)

Theorem 2.3.3 For an arbitrary real-valued function, ¥, defined on the reals,
(99" ¥(g%))=0.
(Th 1.3.6 RWD)

Theorem 2.3.2 reduces the problem of computing g* to finding the sets on which
g" is constant (i.e. its level sets). There are a number of algorithms in computing
isotonic regressions and we will introduce three of them in the next section that
have been extensively used, namely the pool-adjacent-violators algorithm (PAVA),

the minimum-lower-sets algorithm and the min-maz formula.



2.4 Algorithms for Isotonic Regression

2.4.1 Pool-Adjacent-Violators Algorithm for the Simple Or-
der

Let X be a finite set {z,.z,,..., 2} with a simple order z; < z; < ... < r;. Then

a real valued function f on X is isotonic if and only if f(z)) < f(z2) < ... < f(zk).
Let g be a given function on .X and w a given positive weight function on X. By
definition, the isotonic regression of g is an isotonic function that minimizes in the

class of isotonic functions f on X the sum of squares
3 l9(z) ~ f(2)Pu(z).
€X

The PAVA starts with g. If g is isotonic, then g* = g. Otherwise, there must
exist an index i such that g(z;_;) > g(z:). These two values are then replaced by
their weighted average. namely Av({i—1,i}) and the two weights w(z;_) and w(z,)
are replaced by w(z;_;) + w(z;). If this new set of k — 1 values is isotonic, then
9*(zi-1) = g*(z:) = Av({i — 1,i}) and g*(z;) = g(z;) otherwise. If this new set is
not isotonic then this process is repeated using the new values and weights until an

isotonic set of values is obtained.

2.4.2 Max-min Formulas

Let < be a given quasi-order on X. A subset L of X is called a lower set with
respect to the quasi-order < if y € L and z < y imply z € L. A subset U of X is
called an upper set if z € U and z < y imply y € U. We denote the class of all
lower sets by £ and the class of all the upper sets by U. A subset B of X is called

a level set if there exists a lower set L and an upper set U such that B=LNU.



Theorem 2.4.1 The isotonic regression of g is given by
g'(z) = R‘;?Evﬂ‘;’i'*"“””)

= min max 4u(LNU)
LxeL U=zeU

(Th. 1.4.4 RWD).

(2.20)
(2.21)

For illustration, let us consider the simple order defined on X by z; < 7, <

+++ < zx. The nonempty lower sets are of the form {r,z,...,z:}; i = 1,2,...,k,

and the nonempty upper sets are of the form {z;, zi1,...,7¢}; i = 1,...,k. For

the simple order, the max-min formula can be expressed by

g9'(z:) = n}gﬁgigflv((z,.z,ﬂ,mvrn))
= minmax Av({z;.2)1,-...2a})-

2.4.3 The Minimum-lower-sets Algorithm

(2.22)

(2:23)

Let B, denote the union of all lower sets of minimum average. B, is the level set on

which g* assumes its smallest value:

9°(z) = Av(By) = min{Av(L): L€ L} forz € B;.

Now consider the averages of level sets of the form L N B, level sets consisting of

lower sets with B, subtracted. Select again the union of these level sets of minimum

average, say B,. The level set B, is the set on which g* assumes its next smallest

value:

9°(z) = Av(By) = min{Au(LN Bf): L€ L} forz € By.

‘This process is continued until X is exhausted.
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2.5 A Proof of the Convergence of Dykstra’s Al-
gorithm for Restricted Least Squares Regres-
sion

Many important least squares problems can be expressed as
Minimize zeng(k,+a) | 9—Z | - (2.24)

where K. K>,....K, are closed convex cones in R™ and ;. a3, ...,a, € R™. Dyk-
stra and Robertson (1982a) and Dykstra (1983) proposed an iterative method for
the case a; = a; = ... = a, = 0, and showed that their procedure converges cor-
rectly. Later, Dykstra and Boyle (1987) extended this algorithm for arbitrary o;'s
and showed that the procedure also converges to the desired solution as long as the
feasible set is nonempty. In this section we consider the same problem of Dykstra
and Boyle (1987) and give a simpler proof of the convergence of the algorithm. First,
we rewrite their procedure as following.
Step 0. Initial settings: let go, =g, fo; =0,i=1,2,..,r,and n=1.

Step 1. Compute
nt = Elgn-1y — -l K1 + ),
Lt = gnt = (9n-1r = In1)- (2:25)
Ins = Elgns—1— In-14|Ks + ),
Lis = gns— (Gns-1t = In-1s), (2.26)

8=2,3,..iT:

Step 2. Replace n by n+ 1 and go to step 1.
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Note that as we cyclically project onto one of the convex sets, the last increment
for that set is removed prior to that projection and a new increment for that set is

always formed. It follows from the algorithm that
s v
Gua=g+ Y Lyt 30 Loty 8=12,...,% (2.27)
= et}

where the second summand is 0 if s = r. The utility of the algorithm is based
on the following theorem which has been proved by Dykstra and Boyle’s (1987).
The following is a simplified proof of the same theorem. The difference between
the two proofs is that we will use directly the basic property (2.10) of least squares

regressions to show the correct of each while
Dykstra and Boyle’s proof is not so straightforward.
Theorem 2.5.1 IfN[_,(K; + o) # 0. then

MNim_ ginn = E(g] N (Ki + )

Joreveryl=1,2,.... r.

Proof. Since K, + a; are closed convex sets, so is the nonempty set N;_,(K; + a:).
Therefore the projection of g onto N]_,(K; + a;) exists, say g" and this projection

is unique. Note that the key relationships:

Ini-t = Gni = Iori—hhy i=2..,7 (2.28)

netr = Gnyt = ooy — Iy (2.29)
hold among the projections and increments. It follows that

Il gnimt =9 IF = 1| (9ni—97) + Unmrs = Lni) I



= N gns =97 IP + |l Lacri = fni IP +2(9" — @4, Los = L)

+ 2gns — @i Jnors — i)

for i > 2. Note that the last term is nonnegative since by (2.11) and (2.12), (gn.i —

@, In;) =0 and (gns — @i, [n-1) 2 0. It follows that

[l gni-1 = 9" P2 gni = 9" I + | Zn-ri = I I* +2(9" — @i, s — [

for i > 2. In a similar fashion,
| gntr = g P20l gt = 0" I + | s = Lot I* +2(9" = @1, ot = L10)-
Noting the “telescoping property” of the term (¢* ~ ai, [n; — In—1,), we may write
No=5" P2l our =5 I+ 3 hecrs= f 42 300" ~ e o). (230

Since g* — o; € K; and [,,, € —K7, the last term is nonnegative. Therefore,

i z’j Wl femra = Tis |P< o0. (2.31)
k=1i=1
Thus,
I avs = Ina 1=l gaset = gns 10, (12 2)
and

Il fn-ta = Inp [1=M] ga-1.r = gn |+ 0, 2s n — co. (2.32)

By (2.30), gn,- are uniformly bounded. So there exists a convergent subsequence,
53y gn,, with the limit h. Of course, by (2.32), gn, also converges to h for each
i=1,2,...,r — 1. By the closeness of K; + &, h € N{(K; + ;). Now, for any
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z € NY(K; + ai),

(g~h,z—h) = Um(g—gn,rz—h)

=3
= Illrga(— ; Inj 1z — )

= =Y lim(fn, 4,7 — gn,0)

&0
= - Ellilg(ln,x.r —) + E}li}g(fn,,hgn,.l —ay). (2.33)

The first term of (2.33) is nonnegative because z — o € K; and I,y € —K by
(2:25). The last term of (2.33) is zero by (2.25) and (2.18). It follows that (g —
h,h —z) < 0. Thus by (2.10), h = g*. By symmetry, one can show that any
convergent subsequence {gn, s}, s = 1,2,...,7 will have the same limit g*. The

proof is complete. a



Chapter 3

Quantifications of Real-Valued
Functions and Their Duals

3.1 Introduction

In the previous chapter we have reviewed some basic results regarding isotonic regres-

sion. While isotonicity is one of the most i i ions for real-valued
functions, a number of other quantifications are also of great importance both in
theory and application. In this chapter we will introduce some notions that are
closely related to the notions for random variables in the next chapter.

These i ions of it to convex cones in [, or L, space .

The concept of convex cones and their duals in finite dimensional Euclidean space
has proven to be useful in order restricted problems. Several authors have made
extensive use of the concept of convex cones and their duals in R*. Among these
are Rockfellar (1970), Barlow and Brunk (1972), Robertson and Wright (1981), and
Dykstra (1984). In this chapter we investigate the dual cones of quantifications of
general real-valued functions. We also consider some applications of the concept of

dual cones in the problems of hypothesis testings.

22
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3.2 Quantifications of Discrete Functions
3.2.1 Definition and Properties

We first consider the simple case of discrete functions on a countable set of real num-
bers X. Without loss of generality. we assume that X = {...,-2,~-1,0,1,2,...}.

Let w(-) be a given nonnegative function on X such that ¥, x w(z) < oo.

Definition 8.2.1 Let f be a real-valued function on X such that ¥pex |f(z)w(z) <
+o00. The f is said to be (with respect to the weight function w)

monotonic increasing, or in the order of € m, if

f(@) < fy), for anyz < y € X with w(z) > 0,w(y) > 0;

increasing on left average, or in the order of <), if

Tice w(@)f() _ Ticy w(@)f(@) : 3 '
_W < —E-TW for any z < y € X with ISZ:u.r(:) >0;

increasing on right average, or in the order of (4, if

To:w@)f() o Toyw@f(G) g 1
SO < —Z,>,w(i) , foranyz <ye€ X with gm(;) >0;

increasing on split average, or in the order of <,, if

Zicz i) f(i)  Tinzw(@S()

o S anw for any z € X with lszxw(l),gw(z) >0.

There are several equivalence properties for the order of «(_) and <(4) that can

be conveniently used in applications.
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Lemma 3.2.1 The following are equivalent, ( ing the d
tors are not zero):
(a) f(z) is in the order of <(-y;

Sy Tyl

(b) ’f_;w{-) t——“(l“z o foranyz, <z, € X;
(C} Z(,/(-)-m Tcpsn S0 J ex;
T = T e o Joremwsed

(@ ‘Z‘—z< SO < fz+1), foranyz€ X anduw(z+1)>0;

(e) 'f' "3('.()—') < f(z), for any z € X and w(z) > 0.

Proof. The equivalence of (a) and (b) and the equivalence of (c), (d), (e) are straight
forward. We now prove the equivalence of (a) and (c). [t is trivial that (a) implies

(c). Conversely, suppose that (c) is true. Then for any z,, we have

i JO00) | Eucrren F0)
T S Sangu | AYIREX (o

By induction, one obtains

Tice, f@00) _ Ticen fR)w(i)
@ © Dgae@d ¢ wWEmSREL (3
i.e., f(z) is in the order of <(_). The proof is complete. a

It is easy to obtain the following analogs of the result regarding the order <(4).
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Lemma 3.2.2 The follows are equit ( ing the de
tors are not zero):
(a) f(z) is in the order of K(sy;

<rcen TS Z>../(-M.)

(b) _)i‘_:!:W B e Jorany 7, < 1 € X;
n<ise .
J(O0) 16)()
(o) Tl < Bl 5L forany 2 € X;

(d) f(z) < —f‘LM'—) for any z € X and w(z) > 0;

(e) f(z)< Zﬂ for any z € X and w(z) > 0.

If there are finitely many positive w(i), then the notions in Definition 3.2.1 are
reduced to the quantification of vectors in R* which have been well studied in the

literature. The relationship among these orders are given by the following theorem.
Theorem 3.2.1 (a) K implies () and K(4); (b) €(-) or K(4) implies &,.
Proof. By symmetry, it suffices to prove that (a) <, implies <(_). and (b) <()
implies <.
(a) Suppose f(z) is in the order of <, then by definition, f(i) < f(z), for all
i<z € X, w(i)w(z)>0. So
Sliyw(@) < f(z)w(), foralli<z. (3.3)

By summing both sides of (3.3) with respect i over i < z, one obtains

Tice fD)u(i)
Ticzw(i)

By Lemma 3.2.1, f(z) is in the order of <.

< f(@)- (3.4)
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(b) Suppose f(z) is in the order of <(.,. By Lemma 3.2.1, we have

Tice 00 _ Eorcigen G

T & Do) § o ANLSH @3)

By letting z, — +oc in (3.5) one obtains that f(z) is in the order of <,. a

3.2.2 Dual Cones of Quantifications of Discrete Functions
In the following discussion we will consider functions on X that lie in the space
b={f: Y fz)u(z) < +oo}.
z€X
For any two functions f(-) and g(-) € [, we define their inner product by
(f.9)u = X flz)g(z)w(z)-
z€X
Then by the Cauchy-Schwarz inequality, we have
1(£.9) € T 1f@)9@)e(z) < (X Fw) (T ¢ (z)w(z)'/? < +oo,
zEX zEX z€X
for any f,g € l,. The corresponding norm of f € [, is defined as
£ 1= (£, )" = (X F@)w(@)2
z€X

The dual of a convex cone A in /3 is defined to be the set

A ={geb: Y f(z)g(z)uw(z) <0, forall f € A}. (3.6)
zEX
Let
Amn = {f€l: fisin the order of <m};
Ay = {f€ly: fisin the order of <(,)};
Ay = {f€ly: fisinthe order of <}:
A, = {f€l:fisinthe order of <,}.
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Lemma 3.2.3 An, A(+), 4, and A, are convez cones in ly.

Proof. We shall first prove that A, is a convex cone. Suppose f, g € Ap. Then for
any z < y € X with w; > 0 and w, > 0, we have f(z) < f(y) and g(z) < g(y).
Therefore,
af(z) <af(y)
for any @ > 0 and
f@) +g(2) < fly) + 9()-
It follows that A, is a convex cone. By a similar argument one can prove that A_),

A¢+) and A, are also convex cone. a

We shall next find the duals of those convex cones. When there are only a finite
number of w(i) such that w(i) > 0, our problem is equivalent to the ones in R*
spaces which have been studied by Barlow and Brunk (1972) and Dykstra (1984).
Define

S={fehk:} f(zhu(z)=0} 3.7
zex

Lemma 3.2.4 If A C [, is a convez cone that contains all the constant functions,

then A*C S.

Proof. Suppose g € A*. Then for any f € A, we have (g, f) < 0. Since the constant

functions with values 1 and —1 are in A, it follows that g € S. a

Theorem 3.2.2 (a) Aj, = (—A4,)NS; (b) A} = (—Am) N S.



Proof. (a) We first prove that A7, C (—4,)NS. Let g € A;,. Then
(f.9) <0 forany f € Ap. (3.8)

Particularly. for r € X. define

_ [ U Eiwld), ify<z,
e"y"{ 1 Tosul), fy>z.

It is clear that e, € A, and hence

_Zica9(0w(d) | Fineg(i)w(i)
s () m <0, forallz € X.

(g:€2) =

It follows that g € —A,. In addition, since A,, contains all the constant functions,
by Lemma 3.2.4, 4;, C (—4,)NS.
Conversely, suppose g € (—A,)NS. For a given f € Ap, define f*(z) = f(z) V0
and f(z) = f(z) AO. Clearly, f = f*+f~ and f*, f~ € Apn. Now, forany z € X,
Z F*(D)g(i)w(i)
= ):l > (O = £7G = D)+ f* (= - D]g()u()

37 xS

Y s @w@(FFG) - FG - 1) + fHz - 1) Y g(w(i).
2z 425 2z

Since g € (=A,) N S, we have ¥;5, g(i)w(i) < 0 and therefore,
3 FH@gw() < fHz - 1) Y g@w(i).
= =

By taking the limit z — —oc one obtains (f*,g) < 0. By symmetry, one obtains
(f~,9) <0. It follows that (f,g) = (f*,9)+ (f~,9) < 0and so g € A;,. Therefore,
(=A,) NS C A;,. It follows that A}, = (=4,)NS.
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We now prove (b). For any pairs z,y € X such that r < y, w(z) > 0 and
w(y) > 0, define e(z) = —1, esy(y) = 1, and esy(z) = 0 if z #= z,y. Clearly,

ery € A,. If g € A}, then
(exy.9) = —g(z) + g(y) <0,

and hence g € —A,. I[n addition, since A, contains all the constant functions, by
Lemma 3.2.4, 4; C S. It follows that 4] C (—Am)NS.
On the other hand, by (a), (2.4) and (2.8), we have

Am C (A7) = ((-4,)N8)" = (-4)) + 5"
Consequently,
AnNS C((-4) +8)NS = (-4;) NS = —4;.

Therefore, (—An)NS C A;. It follows that A; = (—Am)NS. The proof is complete.
a

Corollary 3.2.1 (a) A = —A; +8*; (b) A, = —A;, + S*.

Proof. 1t is trivial that 4, = An NS +S* and 4, = A,N S + S*. By Theorem

3.2.2, the proof is complete. =]

Corollary 3.2.2 If T,ex w(z) = 1, then for any f € Am, g € A,,

2 fl@)g(zuw(z) 2 ¥ f(z)uw(z) 3 g(@)w(z)-
z€X z€X z€X
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Proof. Since g € A,. we have g — g € A, NS, where §(z) = Ticx g(i)w(i) for all

z € X. Therefore, by Theorem 3.2.2.

(f.9-3) =Y f(@(x)w(z) - ¥ flz)w(z) ¥ g(z)w(z) > 0.
zEX X zEX

The cones of 4(-) and A, are closely related to the positive orthant.

convenience, we shall assume that w(z) > 0 for all z € X and define

-1/W(z), ify<z;
ey) =4 Yuw(z+1), fy=z+1;
0 fy>z+1

and

) = ~1/w(z - 1), fy=z-1:

{ /(W(+o0) -W(z—1)), ify2z
0 fy<z~1

Lemma 3.2.5 (a) e{”) € A() forallz € X and (e{"),e{?) =0 if z #y.

(b) e) € Ay, for all € X and (e, e{)) =0 ifz # y.

Lemma 3.2.6 For any real-valued function f € l,, we have

o= fey e

(e -e. )
. .f+Z (e((f;) Eon e
where f = Tiex f()w(i)/ Tiex w(i)-
Proof. It suffices to prove (3.11). For any z € X,

{~)
7+ 5 A

i (el

For

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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(=)
= feUeed) "(z)+Z (e (z).

D) T T S T

= i+ [— ZI/(J)WU)/W(I— l)+l(1)]
<z

W(z-1)
W(z)

“E [—gfmwu‘)/wu) 16+ 1)] e e
Since £, f(G)w() = F Syex wli) = ;4 f(G)), we have
F e W(z—1)
[ I Jantiywiz-1) +f(z)] =
= e i _ W(z-1)
= {[; 16)wG) = F 3 wGl/Wz - 1) +f(z)} e
= N . 1 L _
= J@ - T S wiW e+ g 3 f0ve) @.15)
and
w(i+1)
{ GGG + [+ n} ey
=3 {[ 5 J6)0) - F S wG/W + 1+ 1)} ;}( - ‘1’)

-Fx W(])] > W(!)/W(')W(t +1)+
JEX 2z

It is trivial that the first term of (3.16) is equal to
=f(X wi@)/W(z) -1). (3.17)
jex

The second term of (3.16) can be written as

w(i+1)
Z_z W] fG)w() + Z

w(i + 1)
y2z42 [2<icy

fE+1)
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- T [ - o] f TG+
7, I 00 - ¥ gelsro +z - i)
= #GZZH FGReG)- @.18)
By combining equations (3.14) to (3.18), one obtains (3.11). o
Theorem 3.2.3
Aoy ={felb: _L+Za,“ L, >0} (3.19)
~'1(+1=(f€lz:f=c+2u.’ ,a; > 0} (3.20)

£33

where ¢ is a constant function in l.
Proof. It suffices to prove (3.19). Denote
A={feb:f=c+ Y ae”, a20}
iex
By the fact that f € Iy, each component of f is a limit of an absolute convergent

series. Since A(-) is a convex cone which contains all the real constant functions

and ¢{”) € A(_), we have A(_) D A. Conversely, by Lemma 3.10, for any f € A_),

o F (e o
P

It can be shown that (f,e{™’) > 0 and hence, A_) C A. The proof is complete. O

Theorem 3.2.4 (2) A7) = (—4))NS; (b) AL,y = (=4 NS.



33

Proof. By symmetry. it suffices to show (a). We shall first prove AL C (=A)nS.
Suppose g € 4;_). then
(f.9) <0 forany f € Ar). (3.21)

Particularly, since e; € A(-), we have

i o(uli)

iz w(i)

(g,€z) = +g(z+1)<0, forallze X.

By Lemma 3.2.1, ¢ € —4(.). In addition, since A(_) contains all the constant
functions, by Lemma 3.2.4, 4 c (=4 ns.

Conversely, suppose g € (—A(-)) NS. Since § =0, by Lemma 3.2.6,

It is trivial that (g, e{™") < 0 and (f.e{™) > 0 for any f € A-). Therefore, (g, f) <0
and hence. g € A7_,. Consequently, (—A))NS C A{_). The proof is complete. O

The proof of the following result is similar to that of Corollary 3.2.2.

Corollary 3.2.3 (a) A, =

A7)+ S84 (b) Ay = —Af,, + S5
Corollary 3.2.4 If T.cx w(z) =1, then for any f,g € Ay (or Ay)),
% restene) 2 (£ feu@) (£ stewta)).
z€X €X €X
3.2.3 Quantifications of Functions in a Restricted Space

In ications it is not that the functions of interest are i to

some boundary constraint. Let K be a closed convex cone in /; and S is a subspace



in . By (2.8) and (2.3) one obtains

(KNS)"=K"+S* (3.22)

and conversely.
K'=(KNnS)'nS, fK"CS. (3.23)

Particularly, if
S=8={f:Y fli)w(i) =0}, (3.24)

iEX
then

S =8 ={f:f(i) = fli+1),Vie X}, (3.25)

i.e., S* is the subspace of all constant functions in l,. In this case the two cones

(3.22) can be easily obtained from one to another.
Theorem 3.2.5 Let S be defined by (3.24). Then
(a) (Am N S)* = —A,;
() (A NS) = —A);
(¢) (A NS)" = —Agsy;
(d) (4,1 S)" = —Ap.
Proof. We first prove (a). By (3.22), Theorem 3.2.2, and Corollary 3.2.1,

(AnnS) = Ap+5*
= ((-4,)NS) +S*
= —A.



By similar arguments, one can prove (b), (c) and (d). a

3.3 Algorithms for Convex Projections
We shall now consider the problem of
it - 2
minllg -~/

where C = Am, A(-), A(+) and A,. The solution is called the projection onto C as
we have defined in Chapter 2.

3.3.1 Projections onto A, and A,

It is trivial that the i of the isotonic ion introduced in Section 2.4

can also be applied to find the projection E(g|Am). By (2.13) and Theorem 3.2.2,
one obtains
E(gl4s) = g-Elgl(-Am)NS) (3.26)

(9+3) — E(gl — 4m). (3.27)

3.3.2 Projections onto A

By Lemma 3.2.6, for any real-valued function g € I3,

(g, )
9= 9*’2 )‘()) :

By Theorem 3.2.3, any real-valued function f € A(_) can be written as

fect Saed?
€X
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where ¢ and g, are real numbers with a; > 0. Therefore, by Lemma 3.2.5 we have

llg=7IP=@-c? ¥ w@)+ Tllg.el7) - (e, el au?/(el ), el 7).
zEX €X

It follows that the optimal values of ¢ and a; are given by

where z V 0 = max{z,0}. Therefore,

BE(gld-) =g+ ( (3.28)
€X
3.3.3 Projections onto A,
By a similar argument, one can show that
E(glAd) =§+§ (——vo) ex (3:29)

3.4 Quantifications of General Functions

Quanti i f discrete functions can also be ded to ions on

spaces. Let R be the whole real line and let B be the o-algebra of Borel sets on
R. Let W be a finite Lebesgue measure on (R, B) with support X. Without loss of

generality we may assume W(X) = 1. Denote
W (z) = W((~c0,1]). (3.30)

We denote by L?(W') the space of all measurable functions on X for which [ | f[PdW <

co.

Definition 3.4.1 A function f(z) € L, is said to be (with respect the measure W),
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monotone increasing, or in the order of K, if for any z, < 1, € X, f(z1) < f(x2);

increasing on left average. or in the order of <(_), if for any 7, < 7, € X with
W(z1) > 0. fig,, F)AW()/W(21) < [ig, F(E)AW (8)/W (z2):

increasing on right average, or in the order of <(4), if for any z\ < z, € X with

W(z2) < L. fizz, f(OAW(6)/(1 = W(z1)) < [T, F()aW(2)/(1 = W (z2)):

increasing on split average. or in the order of <,, if for any r € X with 0 <
W(z) <1, fiee F(O)AW()/W(2) < [i5 f(E)AW (2)/(1 - W(2))-

It is straight forward that f(z) is in the order of <(_ if and only if

Sised SO _ Ly crse, SOV ()
W(z) T Wiz) - W(z)

(3.31)

for any z, < z; € X with 0 < W(z;) < W(z). Similarly, (z) is in the order of
<+, if and only if

Jeicigar FOAW(E) _ fios, F(1)AW (2)
W(z2) —Wz) — 1-W(z)

for any z, < 2o, W((zy,22]) #0. (3.32)

for any 7, < 7, € X with W(z,) < W(z,) < 1. Similarly,

The following result is obvious.

Lemma 3.4.1 Let < denote one of the orders Km, €(-), €(4+) and <,. Then
f(z) is in the order of < if and only if f(z) + c is in the same order of < for any

c€R.

Theorem 3.4.1 (a) < implies €, and (»); (b) €(~) or K(+) implies <,
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Proof. By symmetry, it suffices to prove that <, implies <) which in turn implies
<. (a) Suppose f(z) is in the order of <., then by definition, for any z, € X,
f() < f(z). forallt <z teX. (3.33)
By integrating both sides of (3.33) over (—oo, z,], we have
[, FOWO < fEW @) (334)
By a similar argument one obtains
f(z)(W(za) = W(zy)) < /;‘“S” f(t)dW(t) for any z, >z, € X (3.35)

and hence, by (3.31), f(z) is in the order of <(_).
(b) Now if f(z) is in the order of <(_), then by (3.31),
Jo. FOaW@OWE) < [ Oawe[W) - W), 636

t<o

By letting z, — +oc, one obtains that f(z) is in the order of <,. o

Similar to the discrete case we define the inner product of two functions f,g €
Ly(W) by
(9) = [ F@)e@dw(z).
Then by the Cauchy-Schwarz inequality, we have
I(f9)l < /ﬁx |f(x)g(x)|dW (z) < (/xex f’(z)M(z))"’(LEX g ()dW (2))'/* < +oo,

for any f, g € L,. The corresponding norm of f € L, is defined as

17 U= 0" = (@)
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To avoid arguments in terms of measure theory, we will only consider continuous

functions here and define

Am={f € Ly : f is continuous and increasing};

Ay ={f € Ly : f is continuous and increasing on left average};

A+) = {f € Ly : [ is continuous and increasing on right average};

A, ={f € L, : f is continuous and increasing on split average}

and
S={f€eLs: Lf(:)dW(;) =0}

Clearly, A, A(+), A(-), and A, are convex cones in L; and S is a subspace of L.

Lemma 3.4.2 If f,g € Ly, then

Jim [ f@awee [_owawie)/ [ ave =0 (337
Jim [ joawee [ sawe/ [ ave =0 (338

Proof. It suffices to prove (3.37). By the Cauchy-Schwarz inequality,
[ oo < ([ reave e o',
. lo@aw < ([ g eaw @) ([ aw @)
1t follows that

L[, foawe [ swawel/ [_aw
< ([ Fowe [ foawe).
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Since f, g € Ly, we have

tim [ FOW@ =0 tim [ Peawe =o.

z=-00 Jp<.

The proof is complete. o

Theorem 3.4.2 (a) 4;, = (-4,)NS;
(6) Aiy = (=A)NS;
() Ay = (=4 NS;
(d) 4} = (=4,)NS.

Proof. (a) We first prove that A}, C (—=4,) NS. Let g € A;,. Then (f,g) < 0 for
any f € 4. Particularly. for each z € X with 0 < W (z) < 1, define

[ -yW(), ify<sz,
W=\ yu-w), ify>z

It is clear that e; € A, and hence

_fige 9(0dW (1) M<n forall z € X
Wiz) ' '

lgrez) = W(z) 1-

It follows that g € —A,. Furthermore, since the constant functions with values 1
and —1 are also in A, by (3.8), g € S. Therefore, A5, C (—A,) N S.

Conversely, suppose g € (—A,)NS. Let M > 0 be an arbitrary fixed real number

and n > 0 be an integer. Denote

Ig=—00; IT;= i=1,2,...,0 Tn41 =+00
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and
w = W (z);
o= e, SR
b= g(z)dW(z)/wi, i=0,1,....n+1,
2, <TE<Tigr

where by convention, 0/0 = 0. Since f € A, we have
a; < @iy, fwiwiy >0,1=0,1,...,n
and since g € (—4,) NS, we have
Jw; ntl
Tigbith o TogO 4 _01,...in and 3 bmr=0.
Tigwi T Toywi =
Therefore, by Theorem 3.2.2.
sl
> abaw; 0. (3.39)
=0
Define fa(z) = a; and ga(z) = b;, if 7; < T < z;4y. By the continuity of f and g, fa
and gn are bounded functions with
ifz<-M;

ao,
lim fa(z) =14 f(z), f —~-M<z<M;
B Qs fz>M

and
by, ifz<-M;
lim gn(z)=1{ o(z), i —M<z<M;
Ao buet, EESM

By the Lebesgue convergence theorem, we have

Jim [ @o@dWE) = [ f(©)@dW (=) +aoby +anibusi-

M<z<M
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However, by (3.39). we have
-
| D0l (@) = 3 a2 0.
reX =1
Consequently, by Lemma 3.4.2.
J I @o@dw ) = Jim [ W) <o,

Therefore, A;, D (=A,)NS. It follows that A}, = (—4,)NS. By a similar argument,
one can prove (b),(c) and (d). o

Corollary 3.4.1 If (a) f € Am, g€ A,, or (b) f,g € A() (or A(y)), then
[I@e@d @) 2 [ f@dW(z) [ o(z)aw (z).

Proof. Similar to the proof of Corollary 3.2.2. o

3.5 Applications in Hypothesis Testing
3.5.1 Applications of Duality in Hypothesis Testing

The usefulness of the concept of duality in estimation is well demonstrated in the
literature and the book by Robertson, Wright and Dykstra (1988) includes many
important examples. Since A}, = (—4,)NS and A} = (=An) NS, (Theorem 3.2.2),
we shall see that statistical inferences regarding the orders of monotone increasing

and increasing on split average are closely related.



43

Let X’ = (X}, Xj.....Xi) be a multivariate normal random variable of dimen-

sion k with mean p and known covariance matrix diag(a,,as, ..., ax). We are inter-

ested in testing the hypothesis
Ho:p€ 4y versus H :p€ A — 4 (3.40)

where Ag and 4, are two nested closed convex cones in R* such that 4; C 4,. The
likelihood ratio test (LRT) statistic for testing Hy versus H, is given by

T =[| X - Ew(Xl4o) I* - [ X - Ew(X]4) |I? (3.41)

and one rejects Hy for large values of T, where w; = 1/a;, and the metric || - [|? is

induced by the inner product in R* defined by
k.
(x,y) =3 ziiws.
=
T can be rewritten as

T = || Bu(X]41) = Ew(X|o) [* +2(Bw(X|A1) — Ew(X|40), X — Ew(X]|41))
= || Ew(X]A1) = Ew(X]o) [* +2(Ew(X]|41) ~ Ew(X]4o), Ew(X|4}))

where the last identity is obtained by (2.13). Therefore, by (2.14), one obtains
T =|| Ew(X|Ao) = Ew(X|A41) I* =2(Ew(X]40), Ew(X|A}))- (3.42)
Theorem 3.5.1 The LRT statistic of the hypotheses
Hy:pe€A] versus H{:p€ Aj— A} (3.43)

is also given by (3.42).



m
Proof. It is known that A7 and 4 are also two closed convex cones and by (2.6),
Aj C A3, By (3.42), the LRT statistic of (3.43) is given by
T’ =|| Ew(X|4]) = Ew(X|45) [P —2(Ew(X|A7), Ew(X|(45)"))-
Consequently, by (2.13) and (2.4), we have
T' =|| Ew(X|A1) = Ew(X|4o) I —2(Ew(X|4]), Ew(X|4o)) =T-

The proof is complete. a

Definition 3.5.1 Let T be the LRT statistic of the hypotheses (3.40) given by
(3.41). A vector py € 4 is said to be a least favorable configuration (LFC) of
Tif
Py (T >c) = sup Pu(T >c), llceR.
o ) “:gn e ¢), forallce

Denote by L,4,(T) the collection of all such least favorable configurations.

Remark Even though (3.40) and (3.43) have the same LRT statistic, the null
distributions of the LRT statistic are generally not the same. However, if the two

tests have a common least ble configuration, then (3.40) and (3.43)

will have the same critical region for each significance level @ € (0,1). In such a

case we say that the two problems are (likelihood ratio) equi The foll

result can be found in Hu and Wright (1994).

Theorem 3.5.2 If Ao C A, are closed convez cones and non-oblique, i.e., P(P(x|A1)|Ao) =
P(x|Ao), then problems (3.40) and (3.43) and

Hy:p=0 versus Hl:p€ AiNA; -0 (3.44)



are equivalent.
Definition 3.5.2 Let Y,.Y5,...,Y; be independent normal variables with means 0

and variances w". Let M be the number of level sets in Y*, the isotonic regression
of Y = (Y1, Ya,....Yk) with weight vector w. The level probabilities are defined by
P(l.k;w)=P(M =1), l=1,2,....k.

Some of equivalent testing are given below.

Example 3.5.1 Consider the case that

do=S'={xe Rz =n ==z}

Ai=—An={x€R* : 7 22,2 ---2 x4}

It is trivial that 4o and A, are non-oblique. In this case,

k
P ]

Tjmist U5

A = ANS=(xeR:Z

g=1 Wi

&
i=12....,k—land } zw; =0}
=
i
A = S={xeR:Y zw; =0}
3=

The first paper published on the test of S* versus A, —S* was given by Bartholomew

(1959) and the null distribution of the LRT statistic is given by
.
P(T 2 ¢) =Y P(Lk;w)P(xt, 2 0), (3.45)
=

a chi-bar-square distribution, where x? is a standard chi-square variable with i de-

grees of freedom (x3 = 0).



Example 3.5.2 Consider the case

Ao=—An={peR : > >--- >}

and A; = R*. Then 4, and 4, are non-oblique and

k&

Zimis1 T
T i

Tmint W5

&
j=12...,k—1land } z;w; =0}
J=t

and A] = {0}. The null distribution of the LRT statistic for testing u = —Am
versus g & — A, was obtained by Robertson and Wegman (1978) and has the form

k
sup P(T 2¢) =) P(L,k;w)P(xi_ > c), (3.46)
BEAm =1

Example 3.5.3 The LRT of the null hypothesis Hy : g € S* versus the alternative
hypothesis H, : p € 4, — S* is equivalent to the LRT of the null hypothesis
Hy : p =0 versus the alternative hypothesis H, : p € A,NS — {0} of Example
3.5.2.

Example 3.5.4 The LRT of the null hypothesis Ho : p € A, versus the alternative
hypothesis H; : p € R* — 4, is equivalent to the LRT of the null hypothesis
Hp: p € A,N S versus the alternative hypothesis H, : pu € S — A, of Example
35.1.

As is often the case, the procedures for normal means provide large sample

1 as well as free d

for

based on ranks. As an illustration, we consider the problem for testing a sequence
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of Poisson means. Our approach follows that of Dykstra and Robertson (1982b) for
the multinomial analogue.

Let Xit, Xzi-o- Xin.» i =1,2,...k be independent samples from Poisson pop-
ulations with means s, 3, ..., . Denote by &; = 72, Xj/n; the unrestricted
MLE of p;, i = 1,2,....k. The LRT statistic for testing the null hypothesis 4o

versus the alternative hypothesis 4; — 4, is given by

T

. .
S o — ™) + S(mii ) —nil™), (347
= =

where p(® and p") are the MLE's of 2 when
bfmu belongs to 45 and A, respectively. Expanding In u(” and In u{") about the
point fi;, T can be expressed as follows:

k k
T =Y o [V — w)2 - 3 w7 V" - )P,
&

where a is between ; and 4 and 3; is between z; and p{"). Under Hy, the random

vector /n(jz — ) converges in distribution to (Uy, Uy, - .., Us) where Uy, Us, ..., Ui
are independent normal variables with means 0 and variances y,, gz, - - -, - Using

Theorem 4.4 of Billingsley (1968), it follows that, under Hy, T converges in law to
Il Ew(Ul4o) = U |* - [| Ew(Ul4) - U I, (348)

where w = 1/p. Statistic (3.48) is the same LRT statistic for the corresponding

hypothesis for normal 1 If one is i d in the testing problem in

E: le 3.5.3, then the ptotic distribution of the LRT statistic is given by

P(T>c)= il’(l, kw)P(xi_ > o)
=1



3.5.2 Increasing on Average

Since A7) = (=A()) NS and 4f,) = (=4)) NS, (Theorem 3.2.4), problems
associated with orders of increasing on average (from left or from right) and their
dual problems are in fact equivalent. 4._) and A(4)) are closely related to orthant
cones in a R* space which are sometimes more easily dealt with than A,, and A4,.
Let X' = (X}, Xa,..., Xi) be a multivariate normal random variable of dimen-
sion k with mean vector y and known covariance matrix X. Consider the problem

for testing the hypothesis
Ho:p €4y versus H,:p€ A — Ag, (3.49)

where 4y C A, are two closed convex sets in R*. It is trivial that the LRT statistic

for testing the null hyp is Hy versus the i P is H,, rejects Hy

for large values of

T = - a2 (B - p) + 2 - pV) =X - pV) (3:50)
where 4@ is the solution to the problem
: — -1 s
‘lﬂx‘xg‘(«Y w)'EZHX - p),

a general quadratic program whose solution exits and is unique.

The problem of testing the hyp (3.49) can be simpli: i after
making an appropriate transformation of X. Let Y = I'X, where ' is a k x k
nonsingular matrix. It is known that Y is a multivariate normal with mean v = '

and covariance matrix [E~'T". Define

FA={lz:z€A} (3.51)



Then the problem (3.49) is equivalent to testing the hypotheses

Hy:veldy versus H :vel(4; — ). (3.52)

Let T be a k x k nonsingular matrix and

{xeR*: Dx>c}
where D is a r x k matrix (r > 1) and c is a vector in R*. Then
Fd={y€eR*: DI 'y >¢}

We now consider some testing problems associated with the orders of increasing
on average. The orders of increasing on average are closely related to the starshaped-
orders which are defined as follows.

A vector p € R is called lower-starshaped if

> St et wn w0
W, We

and upper-starshaped if

+
0 < ki< wypy + Wapy Lk wipy + Wapp + +'”tﬂk‘ (3.54)
A Wi

where w is a weight vector and W; = Ti=1 W) Starshaped vectors arise in a va-
riety of applications, see Shaked (1979). Shaked (1979) considered the estimation
of a starshaped sequence of Poisson and normal means. Dykstra and Robertson
(1982b) obtained the MLE of inomi and derived the
of the LRT statistics. Th ically, the upp

property is quite different from the lower-starshaped property, see Shaked (1979)
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and Dykstra (1984). In fact, the collection of lower-starshaped vectors is an orthog-

onal cone in a R* space while the collection of upper-starshaped vectors is an oblique

cone. However, in many icati like in the multi ial and Poisson cases, the

variables are ive and the int of u; > 0 is lly satisfied by the

estimates without this constraint. Therefore, the upper-starshaped restriction can

be replaced by the order of increasing on left average, i.e..

g GO Wi g oy (333)
Wa W

Let = (X, X2,.... X, a multivariate noi random variable of dimen-
X X Xi) be a mul rmal

sion k with mean p and known covariance matrix diag(ai, az,...,ax). We will

consider the following three hypotheses
Ho:peS* Hi:peA-); Hy:peR* (3.56)

where w = (1/a;, 1/ay,....1/ax)’. The hypotheses in (3.56) can be written as

Ho:Dp=0; H :Du>0; Hy:pecR* (3.57)
where

5 -1 0 (]

{ -3
e o # -1 '(>) 0

R w
e wh W oW
If we define



then
woowm W w1l
W = o= =g
W i w e
0 - # w2 1
r'=- 0 -t =
W We
: : : LR}
Wi
0o o o o
So the three hypotheses in (3.56) reduce to
Hy:vi=0,i=12,...,k-1;
H:x,20,i=12,....k=-1; (3.58)

Hy:veRF

for a multivariate normal distribution with mean v = (v, v, . .., ) and covariance
matrix diag(a},a}, ..., a}), where o} = Wiy /(Wiwis1), i = 1,2,....k—land @} =
1/We. By (3.50) it can be shown that LRT statistics of Hy versus H} — Hj and Hj
versus R* — Hj are both distributed as

L= E(z. Vv0)y, (3.59)
=

where Zy, Z,, ..., Z; are independent standard normal variables.
The problem of testing hypotheses in (3.58) is a special case of the well known

positive orthant problem and has received i ion in order icted

inference, see. e.g., Kudo (1963), Periman (1969) and Tang, Gnecco and Geller
(1989).

As an application, consider the Poisson problem as it appeared in Shaked (1979).
Let X, Xa

s Xin, © = 1,2,...,k be independent samples from Poisson pop-
ulations with means g, z,..., . Shaked (1979) obtained the MLE estimates
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of p € —A(). By symmetry, the LRT statistics for testing equal means versus
B € —A() but not all equal and p € —A(-) versus p ¢ —A(_, have the same

asymptotic distribution given by (3.59).



Chapter 4

Quantifications of Random
Variables

4.1 Introduction

Quantification, or order, of random variables is a very important concept in statis-
tical inference and has many useful applications. For example. the simplest way of
comparing two random variables is by comparing the two means. However, such a
comparison is based on only two single numbers (the means), and therefore it is often

not very infc i ially in i istical i In addition,

the means for some distributions do not exist, such as the Cauchy distribution.

Another application of stochastic orderings is that they can induce many im-

and

portant ility i lities which play a fund I role in
statistics. Inequalities are used to obtain bounds for probabilities that are more
tedious to compute or analytically impossible to handle.

The idea of ordering distributions with respect to the considered property is not
very old. The notion of the usual stochastic ordering was first introduced by Mann

and Whitney (1947) to characterize the alternative when testing the equality of

53
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two di Serious ical i igation on hasti ings seems to

have been initiated by Lehmann (1955); this is the first frequently cited reference.
The stochastic ordering, the uniform stochastic ordering and the likelihood ratio

ordering are among the most important orderings that have been well studied. All

these il ions can be most i in terms of total positivity

(TP) of probability functions which has been extensively applied in several domains

of ics, statistics, ics, and

In Section 4.2 we introduce the concept of total positivity and derive some pre-

liminary results. In Section 4.3 we i the notion of ification of random

variables. We show that this notion can be expressed in terms of inequalities of

products of probabiliti Many other i ies are readily ob-

tained from this result. In Section 4.4 we show that the quantification of random

variables are closely related to the i ion of real-valued i i d
in Chapter 3. This property plays an important role in the definition of bivariate
quantification of random variables in the next chapter. In Section 4.5 the quantifi-

cation of a series of random variables is defined and illustrated by some examples.

4.2 Total Positivity

For an excellent global view of the theory, the reader is referred to the classical book

of Karlin (1968). This book a hensive, detailed of the

analytic structure of totally positive functions and conveys the breadth of the great

variety of fields of its icati A clear, ic and detailed ication of

TP in reliability and life testing theory can be found in Chapter 3 to Chapter 5 of
Barlow and Proschan (1975).
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The theory of total positivity (TP) has been extensively applied in several do-

mains of i isti ics, and hanics. [n istics, totally

positive fu i are in itti izati of best

procedures for decision theory. The scope and the power of this concept extend to
ascertaining optimal policy for inventory and system supply problems, to clarifying

the of i with conti path ions, to

the reliability of coherent systems, and to ing notions of istical de-

pendency. See Karlin (1968) and Barlow and Proschan (1975) for more details on
its theory and application in reliability and life testing theory.
Definition Let D, and D, be two quasi-ordered sets and f(z,y) a real valued
function on Dy x D,. f(-,-) is said to be totally positive of order k with respect to
the orders on D; and Dy, (TP;) ifforall z) <22 <+ < ZTm, Y1 <2 < - < Um
(zi€ Dy, yi€ Dy),andall 1 < m <k,
f@ew) flanw) - f(Z1Um)

; ( EVE N ) o f(rz_~y-) l(rzjyz) f(rz_,yn)
[@m) [m) - [Emvm)
where |A] is the determinant of an m x m matrix A.
Remark 1. The definition given here is an extension on the usual one where both
D, and D, are assumed to be linearly ordered one dimensional sets of real numbers.
This extension will make it more convenient for us define the quantifications of a
series of random variables in Section 4.5.
Remark 2. Typically, D, and D, are either intervals of the real line or countable
sets of discrete values on the real line, such as the set of all the integers or the set

of nonnegative integers. When D, or D, is a set of integers, the term “sequence”



rather than “function” is usually used.

Many well known families of density functions (both continuous and discrete) are
totally positive, see Karlin (1968, p. 19) for some important examples. In fact, every
density is TP,. (nonnegativeness), while TP, property is the monotone likelihood
property. In addition, f(z, y) is TP if it can be written as a product of a function
of z alone and a function of y alone. So the joint probability density function of two
independent random variables is TP. TP is the order of TP-ness which has been
found to have a great applications. Higher order TP-ness has hardly been used in
applications except for the occasional use of TP;.

An important specialization occurs if a TP, function may be written in the form
f(z,y) = g(z — y); g(u) is then said to be a Polya frequency function of order k,

(PFx). Every PF, function is of the form e~¥(*), where v(z) is convex. It follows

that ility density i of the normal, Weibull and many

other random variables are PF,. Intriguing results in the structure theory of PFy
functions can be found in Karlin and Proschan (1960), Karlin, Proschan and Barlow
(1961) and Barlow and Marshall (1964).

Theorem 4.2.1 Let D, be an interval or a countable set on the real line with the
usual o-algebra B, and the usual ordering. Let p, be a finite Lebesgue measure on
(D2, By). If f(z,y) is TPy, then both [, f(z,t)ua(dt), and [ f(z,t)pua(dt), as
Jfunctions on Dy x D, are also TP.

Proof. It suffices to prove that [Y_ f(z,t)po(dt), is TP¢. Let 1 <m < k, z; € Dy,

andy; € Dy, i=1,2,...,mbesuch that 7, <2, < - < T, N <2 < - < Yo
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Since f(z.y) is TPx. we have

fzum) flziye) oo f(@ym)
flxay)  flzzye) - f(z2,ym)

[ 1) [t <+ [T tm)

By integrating the m x m matrix column by column, one obtains

P2 F(znhma(dt) 7 f(zu thua(dt) -+ [y (70, t)pa(dt)
fym-

2 f(z2 hig(dt)  [37 [z, t)pia(dt) -+ [ f(Z2,t)pa(dt)

P s Q) 32 [zt - L3, F(am, Opal)
Thus, by adding successively the first column to the second column, the second

column to the third column, ..., and the (m — 1)-th column to the m-th column,

L f(zut)pa(dt)  [Z fze, thua(dt) -+ J2% f(z, thpua(dt)
J2 F(a2 t)pa(dt)  [2 f(za, tha(dt)  --- [2% f(z2, t)pa(dt)

P F o, Opialdt) [P [z mia(dt) - 23, F(2ms Opialct)

and the proof is complete. a

Corollary 4.2.1 Let (D,, By, itz) be defined as in Theorem 4.2.1. If f(z,y) is TPy,
(k > 2) and [*3 f(z,t)pa(dt) does not depend on z, z € D, then

(a) [¥o f(z,t)p2(dt) as a function on D, is antitonic.
(6) J;7 f(z,t)p2(dt) as a function on Dy is isotonic.

Proof. It suffices to prove (a). Since f(z,y) is TPk, (k > 2), by Theorem 4.2.1,
¥ f(z,t)pa(dt) is TP, and therefore, TPy. If [ f(=,t)u2(dt) = 0, then by the
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nonnegativeness of f(z,y), 2, f(z.t)uz(dt) = 0forallz € Dy. If [+ f(z,t)ua(dt) >

0, then since
Lo (20 Om(dt) [22 f(z0t)paldt) |
[2o f(22, )pa(dt)  J73 f(z2, t)praldt) | =

for any z, < z3, (1,22 € Dy) and y € D, we have that

. )
L rautiatdn 2 [ fzs, o).

The proof is complete. o

Theorem 4.2.2 Let both Dy and D, be either intervals or countable sets on the real
line with the usual ordering. Let By and B, be the usual o-algebras on Dy and D,
with finite measures y, and piy, respectively. If f(z,y) is TPy integrable function on

D, x D, then

Sttt atas) = [*_ [ £, 0mm(d)] ot

/:‘ [[yw (s, t)yz(dt)] pu(ds) = /ym [/:” (s, t)m(ds)] pa(dt)
as functions on D, x Dy are also TP;.

Proof. Since (Dy,By, ) and (Da, B, p;) are complete measure space, the two
identities follow from the well known Fubini Theorem, (see, e.g., p307 of Royden

1988). The TP property is proved by using Theorem 4.2.1 twice. El
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4.3 Quantifications of Random Variables

Let X, and X, be two random variables with cumulative distribution functions
(cdf) Fi(-) and Fy(-), and probability density functions (pdf) fi(-) and fa(*) (if they
exist), respectively. We assume that F; and F, have the same domain X. Denote
F(z)=1-F(z),i=1,2.

Definition 4.3.1 X, is said to be smaller than X,

(a) in the likelihood ratio ordering, denoted by X\ <m X if fo(z)/fi(z) is nonde-
creasing in r over X;

(b) in the uniform stochastic ordering from the left, denoted by X, =(-) X, if
Fy(z)/F\(z) is nondecreasing in z over X;

(c) in the uniform stochastic ordering from right, denoted by X\ <(+) X» if Fy(z)/F\(z)
is nondecreasing in  over X;

(d) in the (usual) stochastic ordering, denoted by X; <. X if Fi(z) < Fy(z), for
adlze X.

Let I = {1,2} be an ordered set with the natural order. Denote L(i, z) = F;(z),

L(i,z) = Fi(z), and l(i,z) = fi(z) (when exist), for i € I, z € D. The following

result can be derived directly from the definition.

Theorem 4.3.1 (a) X| <m X; if and only if I(-,-) is TPa.
(b) X1 S(-) Xz if and only if L(-,") is TPy.
(¢) X, Ss) X if and only if L(-,") is TP».

(d) X1 <, Xa if and only if Fi(z) is nondecreasing in i for each fired z € X.
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Theorem 4.3.2 Let t).ty, t3 and t; be extended real numbers such that t, < t, and
t3 < ty. Denote
P(ti.taits,t) = P(t1 < X < t)P(ts < Y < ty).
Then
X <Y ifandonly if P(t,taits, ta) 2 Plts, ta3t1,t2)

for the following four cases,
(a) w=m: t| <ty <ty <ty are arbitrary real numbers;
(b) u=(—): t, = —0c0 and t = t3 < t, are arbitrary real numbers;
(c) u=(+): t; < t =ty are arbitrary real numbers and t; = +oo;

(d) u=s: t; = —o0, t; = +00 and t; = t3 are arbitrary real numbers.

Proof. (a) We shall first prove the case « = m. Suppose that for any real numbers
L <t <t <t

Pty taits, t4) > P(ts, ts b, ta),

[P are [ 4w > [ ar [ ar. (@1
By dividing both sides of (4.1) by #, — ¢, and then taking limit t, — t,, we have
) [ dRae> [ dF(© (). 42)

for any real numbers t, < t3 < t;. By dividing both sides of (4.2) by t; — t3 and

then taking limit £ — 3, one obtains

filt2) fats) 2 filts) falta) (4.3)
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for any ¢, < t3. Therefore, X <., Y. Conversely. if X <, Y, then (4.3) holds for
any t; < t3. By integrating on both sides of (4.3) with respect to ¢; over (t3, t4], one
obtains (4.2) for any ¢; < t,. By integrating f, on both sides of (4.2) with respect
to t3 over (¢, ], one obtains (4.1) for any t, > ¢,.
(b) We shall next prove the case u=(—). For —oo =t, < t; =t3 < ty,
P(ty. tyits, ta) > Pts, ta; ty, ta)
< P(X<t3)P(t3 <Y <t3) > P(ts < X < tq)P(Y < t3)
= PX<t)P(Y <t)2P(X <t)P(Y < ts)
= XznY
where the second “ <= " is obtained by adding or subtracting the term P(X < t3)P(Y <
t3) from both sides of the inequalities.
By a similar argument one can prove the case (c).
(d) Finally, we shall prove the case u=s. For —oo =, < t; = t3 < t4 = +00,
P(ty, taita, ta) 2 Plts, ti tr, t2)
= P(X<t)P(t<Y)2 Pt < X)P(Y <t5)
= P(X>)<PY>t)
= XZx,Y
where the second “ <= " is obtained by adding or subtracting the term P(X >

t2) P(Y > t,) from both sides of the inequalities. The proof is complete. a

The following well known relationship of these orders can be inferred from The-

orem 4.3.2
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Theorem 4.3.3 Let X, and X, be two random variables.
(a) X1 Sm X> implies Xy <(-) X2 and X; <(4) Xa;
(b) X1 (=) Xz or Xy S(4) Xy implies X, <, Xa.

Theorem 4.3.4 For the cases u = m, (+), () and s, X =, Y if and only if

@(X) =4 0(Y) for any strictly monotone increasing function ¢ on X.
Proof. Since ¢ is a strictly monotone increasing function on X, we have
P(ti < X < tg) = P(d(t1) < &(X) < é(ta))

for any t,,t; € X. By Theorem 4.3.2 the proof is complete. a

Theorem 4.3.5 Let X, Y, Z be three random variables with cdf’s F, G, and wF +
(1 — w)G, respectively. If X %, Y, then X <, Z =, Y, for the cases u = m, (+),
(=) and s.

Proof. Let t, ty, t; and t; be defined as in Theorem 4.3.2. By Theorem 4.3.2,
X %.Y ifand only if

Pti< X <t)P(t3<Y <t) 2 Pt < X < tg)P(t, <Y < t3).
It follows that

[wP(ti< X Sta) + (1 —w)P(t <Y < ta)|P(ts <Y < 1)

> [wP(ts< X <ty)+(L—w)P(ts <Y < t)|P(ty < Y < tg).

By Theorem 4.3.2, Z <, Y. By symmetry one obtains X <X, Z. [=]
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One of the most i ications of orderings of random variables is that

many important probability inequalities can be obtained from the orderings of dis-
tributions. For example, Lehmann (1959) showed that X <, Y if and only if
Eu(X) < Eu(Y) for all increasing functions u(-). An example in Ross (1983, p.
268) indicates that given two independent random variables, X and Y, X <,, Y im-

plies that (2X +Y) <, (X +2Y), and it is equivalent to Eu(2X +Y) < Eu(X+2Y),

for all increasing function u(-). The i were obtained by Shan-
thikumar and Yao (1991).

(a) Let X and Y be independent random variables. Let
Gm ={¢: R* - R.6(z,y) < 6(y,z) whenever z < y}.

Then X <, Y if and only if ¢(X,Y) <, 6(Y, X) for all ¢ € G-
(b) Let X and Y be independent random variables. Let

Gis) = {6: R* - R, 6(z,y) is increasing in z, for each y, on {z >y}
and decreasing in y, for each y, on {y > z}}.

Then X <() Y if and only if 6(X,Y) <, 6(Y, X) for all ¢ € Gs).
(c) Let X and Y be independent random variables. Let

G, = {¢: R? = R, ¢(z,y) is increasing in z and decreasing in y}.

Then X <, Y if and only if $(X,Y) <, ¢(¥, X) for all ¢ € G,.

When X and Y are not independent, the above properties define a class of orders

of random vari by their joint distributi; hik and Yao 1991).

The (usual) stochastic order is the first one that appeared in the literature (Mann

and Whitney 1947) and has received i ion. It arises in set-
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tings and its exi: can be easily identi in real sil i See Chapter 7 for
more details. The uniform stochastic order from the right <(;, is well known under

the terms uniform stochastic order in statistics and hazard rate order (when distribu-
tions are absolute continuous) in the reliability analysis. The term ‘uniform stochas-
tic order’ comes from the fact that if X <(s) Y. then (X]X > ¢t) <, (Y|Y > ¢) for
any given ¢. Many of the basic results regarding the uniform stochastic order can

be found in Ross (1983). For an explanation and applications of uniform hi

order in reliability analysis, see Barlow and Proschan (1975). Dykstra, Kochar and

R (1991) id| istical i ing the uniform stochastic

order of several random variables. The likelihood ratio order has received relatively

less ion in the il and

this ordering were
recently considered by Dykstra, Kochar and Robertson (1995).

It is trivial that all the four orders are equivalent for binary random variables.
However, differences among these orders will increase as the dimension of the prob-

ability vectors increases.

Theorem 4.3.6 Let X and Y be two discrete random variables with probability
vectors p = (p1, P2, p3) and @ = (a1, 92, 4s). respectively. Then

(a) X %a Y ifand only if X 2 Y and X =%y Y.

(b)) X 2, Y if and only if X %Y or X =4y Y.

Proof. (a). By Theorem 4.3.3, it suffices to prove that if X %) ¥ and X =4 Y,
then X <, Y. If p <(-) q, by Theorem 4.3.2,

|p. m+szm P’|>o
@ Qta @ @



which is equivalent to pi/q) > p2/q,. Similarly, if p <(4) q. then
|m+m m|=|m 25,
@2ta @ @2 B
which is equivalent to p,/g2 > p3/gs. Combining the two inequalities we also have
Pi/q1 2 ps/gs, and hence X <, V.
(b). It suffices to prove that if X <, Y, then X <) Yor X <5, Y. [ X =, ¥,
then

P2q, PR 2+ adptptpn=ateta=1

1 pi/qy 2 (p+ p2)/ (g1 + @), then
n/n 2 (pr+p)/( @+ @) 2 1= (pu+p2+pa)/ (@ + G2+ @3)-

Therefore, X <X(_, Y. If on the other hand pi/q < (p + p2)/(q + g2), then
/a1 < p2/gqa. Since X X, Y. it is trivial that py < g5, and pr + p3 < @2 + Q3.
Therefore, p2/g, > 1 > p3/gs, and hence

1> (p2 +p3)/(a2 + @) > p3/as

Therefore, X <(4) Y. The proof is complete. a

The following example shows that the property (a) of Theorem 4.3.6 for k = 3

does not hold for higher dimensions.

Example 4.3.1 Let X and Y be two discrete random variables with probability
vectors (4/10,2/10,3/10,1/10) and (1/4,1/4,1/4,1/4). It is trivial that X <) Y’

and X =(+) Y. However, it is not true that X <, Y.
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4.4 Relationships between the Quantifications of
Functions and the Quantifications of Random
Variables

We have studied the i ions of real-valued ions and the
of random variables. We shall show that these two classes of quantifications are
closely related.

Let X and Y be two random variables with cdf’s F(z) and G(z) and pdf’s f(z)

and g(z) respectively. We assume that F(z) and G(z) have the same support X.
Theorem 4.4.1

(6) X <m ¥ = %-15.4,,.ns;
B) X <Y = %—IGA(,)HS;
() X< Y = %—xe,x(‘)ns;

(d) X<, Y &= %—le.—\.ns.
where Am, A-), A~y A,, and S are defined in Section 3.3 with W = F.

Proof. It suffices to prove (a), (b) and (d). First, since

A (% - 1) dF(z) =0,
we have
g _1es. (4.4)
F
Now,

f(m) f(za)

20, f <zn€X
gx) olm)|=7 AT ISR

(8) X %Y I



9(z) _ g(z2)
< , foranyz, <z, €X
F@) = o) vE s
aad ge.i,,.

f

By Lemma 3.4.1 and (4.4) one obtains (a).
F(z1) F(zp)
G(z)) Glza) 20, foranyz; <z € X

G(zy) _ Glza)
Fz) < Flaa)' foranyz, <z € X
9(z) 9(z)
- /.<x. THFEIF@E < / . T dF @)/ Fas),

forany z, <z € X

(b) X24Y =

—

g
= T €A
7oA

By Lemma 3.4.1 and (4.4) one obtains (b).
() X%Y & F(z))<G(r)) foranyz; € X

= G(@)F(z) < F(z)G(z1) forany z, € X
G(z) _ Glz)

— Flz) < o ), for any z, € X
9(z) 9(z)
/, . FerE/FE) < / FeF@/PE)
forany r; € X
= }1 € 4,.

By Lemma 3.4.1 and (4.4) one obtains (c). The proof is complete.

Corollary 4.4.1 If X ~ Uniform(X), then
(a) X 2mY <> g—1€ AnNS;
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() X2 Y &> g-1€4NS;
() X XY &> g—1€ ANS:
(d)X<,Y < g-1€4,nS
where the weight function W is the Lebesque measure on X.

Corollary 4.4.2 Let h be the pdf of F(Y). Then
(6) X 2m ¥ <= h—1€ AnNS;
()X XY <= h—1€ANS;
(c) X XY <= h—1€ A44)NS;
(d) X<, Y < h-1€A,NS,
where the weight function W is the Lebesque measure on [0,1].

Proof. By Theorem 4.3.4, X X, Y if and only if F(X) <, F(Y). Since F(X) isa
uniform distribution on [0, 1], by Corollary 4.4.1 the proof is complete. u]

Theorem 4.4.1 and its ies show that ification of random variables

and the quantification of real functions are closely related. An application of The-
orem 4.4.1 is given in Chapter 6 where we consider the problem of estimating a
multinomial parameter under various order constraints. In addition, this relation-
ship plays an important role in the bivariate quantifications of random variables

introduced Chapter 5.
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4.5 Quantifications of a Series of Random Vari-
ables

Let X;. X5..... and X, be n random variables with cdf’s F, F3, ..., and F,, and
PAf’s fi. fo.-+-. fa. respectively. We assume that F, F,..., and F, have the same
support X. Define L(i.z) = Fi(z), L(i.z) = Fi(z), and (i.z) = fi(z), for i =
1,2,...,nand z € X.

Let I = {1,2,...,n} be a quasi-ordered set. A number of quantifications of
Xi, X2,.... Xq can be defined through the concept of total positivity and types of

the quasi-order of /. Some examples are given below.
4.5.1 Linear Orderings
Let Z={1,2,...,n} be a linearly ordered set such that 1 <2--- < n.

Example 4.5.1 X,.X;,.....X, are said to be linearly likelihood ratio ordered (in-

creasing) if / is a linear order set and [(i, z) is TP,. Recently Dykstra, Kochar and

Robertson (1995) i istical i ing this ordering for n = 2.
They obtained a closed form ions for the i likelihood estimate and
showed that the asy ic distribution of the likeli ratio statistic for testing
the equality of the two i against likelihood ratio ordering iction is
of the chi-bar-sq type as di i by R Wright and Dykstra (1988).
Closed form ions for the i ikelihood esti for more than two
likelihood ratio ordered distributions have not been found.

Example 4.5.2 X\, Xy,..., X, are said to be linearly uniform stochastic ordered

(increasing) if Z is a linear order set and L(i,z) is TP2. The uniform stochastic
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stochastic ordering is the most tractable ordering. Dykstra, Kochar and Robert-
son (1991) have considered statistical inferences with respect to this quantification
of the n distributions. They obtained a nice closed form expression for the non-

likelihood esti: of the distributions and showed that the

asymptotic distribution of the likelihood ratio statistic for testing the equality of
the n populations against linear uniform stochastic ordering restriction is also of the
chi-bar-square type. In fact, their result can be applied to a more general case that
Z is a quasi-order. An example involving data for survival times for carcinoma of

the oropharynx is also given in Dykstra, Kochar and Robertson (1991).

Example 4.5.3 X, X;...... X, are said to be linear stochastic ordered (increasing)
if I is a linear order set and L(z, z) is isotonic for each fixed z € X. Stochastic or-
dering is the most extensively studied ordering, especially for n = 2, (see Chapter
6). When n > 2, closed form expressions for the MLE's do not exist and an iter-
ative procedure for finding the MLE’s was proposed by Feltz and Dykstra (1985).
In Chapter 7 we will propose an algorithm that finds the ic MLE of
stochastically bounded survival functions in finite steps, usually two or three steps.

4.5.2 Partial Orderings

Some other orderings of Fy, F3, . .., F, induced by a partial ordering on I may also be
important in applications. For example, the simple tree ordering and the simple loop
ordering are often encountered in the control studies. Statistical inference methods
associated this kind of partial orderings have not been developed so far. However,
the result obtained by Dykstra, Kochar and Robertson (1991) can be applied to any
partial orders on /.



Chapter 5

Quantifications of Bivariate
Random Variables

5.1 Introduction

In many applications the random variables of interest are dependent. For example,
for two ordinal variables, high values of one variable may tend to be associated
with high values of the other, and similar for low values. Such relationship of two
random variables is known as positive dependence in reliability analysis. There are
many ways in which positive dependence might be precisely defined, some based on

single-valued measures and some on multiple inequality constraints. An example

of the first type would be the i that the i flicient of two
random variables is positive. Examples of the second type were first considered by
Lehmann (1966) and Esary, Prochan and Walkup (1967), among others. A number
of its applications were considered in the papers mentioned above, Jogdeo (1968),
Esary and Proschan (1970), Barlow and Proschan (1975) and Agresti (1980).

In this chapter we define a class of quantifications of bivariate random variables

. These notions have

based on the ifications of functions and random
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direct i ions and their i ips can be readily i In addition,
these notions are closely related to the concept of positive dependence. We will show
that the notions of dependence of random variables in reliability analysis are special
cases of these quantifications. But the bivariate quantification defined in this chapter
presents a systematic definition and allows one to study bivariate dependence by
using the result on quantifications of functions and random variables.

We will only discuss these notions in the bivariate case in this thesis because they
are simpler and their relationships are more readily exposed. But all the the notions
and results in this chapter can be readily extended to the multivariate case. Further
more, for convenience. we will assume that each variate of the bivariate random
variable is either discrete or continuous so that the joint density and marginal density
functions exist, even though this requirement is not necessary in some cases.

In Section 5.2 quantifications of bivariate random variables are formulated. In
Section 5.3 we derive an equivalence theorem of these notions. Hierarchical relations
among these quantifications are established in Section 5.4. In Section 5.5 we show

that these i ions can be i in terms of the inequalities

of cross product of probabilities over certain regions in the sample space. Some
applications are given in Sections 5.6 and 5.7. In Section 5.6 we show that the
notions of dependence of random variables in reliability analysis are special cases of
these bivariate quantifications. In Section 5.7 we use the results developed in this

chapter to analyze the association of ordinal variables.
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5.2 Quantifications of Bivariate Random Variables

Suppose we have a bivariate random variable (X,Y)) with the joint cumulative dis-
tribution function (cdf) F(z.y) and the marginal cdf’'s Fy(z) and Fy(y) of X and
Y, respectively. Let f(z.y), fx(z) and fy(y) be the associated probability density
functions (pdf). Let X and Y be the domains of Fy and Fy respectively.

Let (X|Y = y), (XY < y) and (X]Y > y) be random variables with cdf’s,

respectively,
Fuv(aly) = [inz, y)] e
o ;
F(z,y)/Fw). (51)
(Fx(2) - F(z,9))/(Fy(y)

where F(y) = 1 — F(y), and pdf’s, respectively.

fz.y)
W)
[, Frrt=idF @/ Fe(w)

[, FxivaltidFe(0)/ Fr ).

Fxiv(zly) =

The origin of our definitions is based on the following observation. Consider
(XY = y). Clearly, (XY =y) is a random process indexed by real-valued number
y € Y. When (X|Y = y) is considered as a function of y (in a general sense),

one can introduce the i i of real-valued ions to ize this
function. However, since each value of such a function is no longer a real number

but a random variable, the comparison of real numbers in the quantifications of real

functions should naturally be replaced by the il ions of random
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We will use the symbol “<” to denote a quantification of functions and “<” to

denote a i ion of random

Definition 5.2.1 (X,Y) is said to be in the order of
(Zm €m) i (XIY =) Zm (XIV =32),
(Z1<m) i (XY =p1) 2 (XIY = 1),
(Seen€m) i (XIY = 31) %oy (XIY =),
(20 &m) f (XIY =0) %, (X|Y =10)

foranyyi. 1 €Y, y1 < v

Definition 5.2.2 (X.Y) is said to be in the order of
(Zm &) i (XIY < 41) S (X]Y < ),
(Zn <) f (XIY <m) 2o (X]Y < 1),
(X1 &) & (XY S 1) 2 (XIY < 2),
(20 (o) i (XIY Sw) % (X]Y <)

for any y.12 €Y. y1 < 1.

Definition 5.2.3 (X.Y) is said to be in the order of
(Zm <) i (XIY >u) Zm (X]Y > 1),
(Zen <€) ¥ (XY >u0) 2 (XIY > w2),
(Zen€w) i (XIY >u) 2 (XY > 1),
(Z0 &) ¥ (XIY >u) 2 (XY > 4)

for anyyi, 1 €Y, 1 S 1.



Definition 5.2.4 (X.Y) is said to be in the order of

(Zm: &) i (X]Y S 9) Zm (X]Y > 0),
(2 <) f (X]Y <9) %) (X]Y > ),
(X <) i (X]Y <9) 2 (XY > ),

(2, &) f (XY <p) %, (XY >y)
foranyy €.

By symmetry, one can define the order of (X,Y) in the form of (<, =). For

example, we say that (X,Y) is the order of (Km, %m) if
(YIX =2,) %m (YIX =1,), forany z,,7, € X, 7, < 7o
And we say that (X.Y) is the order of (&,, <m) if
(Y1X <z) 2m (Y|X >1z), foranyz € X.

However, the equivalence theorem in the next section implies that it suffices to

consider only one of these two forms. This equivalent results is mainly due to the

property of the ifications of ions and those of random variables.
5.3 An Equivalence Theorem

Theorem 5.3.1 (X,Y) is (Zu, <) if and only if (X,Y) is (K, Zu), where u and

v stand for any of m,(—), (+) and s.

Proof. We will prove the theorem case by case, following the sequential orders of

the definitions in the previous section.
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u=m, v = m. By definition, (X.Y) is in the order of (%m, <m) if and only if
(XY =41) Zm (X|Y =), forany yy S g2 €Y, (5:2)

which is, by Theorem 4.3.1, equivalent to

fxv(ziln) v (z2lw)
Fxv(@ly)  friv(zlve)

which is, in turn, equivalent to

>0.forany z; <z, € X,

fzuw) f(zam) : "
f(z:‘y;) m:v:) >0, ie ,f(z,y) is TP (5.3)

It follows that (X, Y) is (€, <m) if and only if f(z, y) is TPs. By the same token,
one can show that (X,Y) is (X, <m) if and only if f(z,y) is TP,.

u= (=), v=m. (X,Y) is in the order of (<(-), <m) if and only if for any y <
nEY,

XY =u) 2 (XY =)

L, S (1) 755dFx(2)  foge, Friv(ly2) 75 dFx (2)

Leca, Friv(zln) 775 dFx (z) Jecs, Frav(zlye) ;75 dFx (2)
Ix(=)

>0

Jeen S @) 550Fx (@) Joge, J(2.02) 725Fx (2)

Jogen F@ ) o dFx (@) Loam [z, 1) g dFx @) |20 64

Lega, Frix(n|2)dFx(z) Locr, frix(vala)dFx(z) | o
Jeczs Frix(ui|2)dFx(z) [rcz, frix(velz)dFx(z) | =

Joge IixnidF(a) [ frix(nlodF(s)

- >0

<ep

(x1)
Loy Ix(nizldFx@ [,
e

F(z1)
Jvix (v2lz)dFx (z)
() (

F(za2)

= (YIX<z)Zm (VX <20),



for any 7, < z; € X, i.e., (X.Y) is in the order of (<(-), <m)-
u = (+), v = m. This part can be proved by its symmetry to the last case u = (—)
and v =m.

u=s, v=m. (X,Y) is in the order of (X,. <) if and only if for any y; < y, € J,

(XY =9) 2, (X[Y = 1)

i 1
- /Nfxn'(ﬁlh)m’”"‘f(’f)S ,),f"""(tlm)[x(t)

dFx(t)

o [ HIITIES) oSO |

Fr(n) fr(va

Jioe St 1) P dFx(8) o £t v2) pydFxe

= | e A g dFe(®) f £t ve) pgdF(t)

)‘SO

Jore S RgdFR(O) Foe £(610) 72eydFix(0)
S FE ) g dFx(®) g F(t. 1) iy dFix(t) | S © (55

Jisz Frixt)dFx(8)/Fx(z) sz frix(valt)dFx (t)/Fx(z) | <0(556)
Jicz Frixn[t)dFx(8)/Fx(z) e frix(velt)dFx(t)/Fx(z) |~

i< Frix (n|t)dFx(t)/Fx(z) i>2 frix(ui|t)dFx (t)/ Fx(z)

Jooa FeixaltldFe ()] Fe(z) Tige Foixanlt)dFr )/ Fx(@) | < %C7)

= (Y|X 1) Zm (Y|X > 1),

for any z € X, i.e., (X,Y) is in the order of (<, <m)-

u=m, v=(=). (X,Y) is in the order of (Xm,<(-)) if and only if for any y, <
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ReEY,

(XY < 9) Zm (XIY S 32)

Sy I @IF6) [ L (ilv)dFy )

= 0

2

Al )
Ley v EIMF6) [ Friy (@alv)dFy ()
A FGo

D @D FGAFAD) Sy [@100) 557 Pe(s)

Sy J@ ) dFew) fygp Flza ) dFe@) |20 48)

Jyen FrixWlz) 7r w@ wadFr @) fycy, Frix(Wlz) 75;4Fr (y)

Jyen X122 5 dFe () fygpn Frix(vlaa) s dFy (v) | 2 ©

= (YIX=z) %) (YIX =1),

for any z, < 1, € X, ie., (X,Y) is in the order of (€m, <(-))-
u= (=), v=(=). (X, ¥) is in the order of (X(-), €(-)) if and only if for any y, <
ney,

(XY <) %) (XIY <)

PX<z|Y <y) P(X<z|Y <)

= |PX <nlY <y) PX<zmlY <u) |20
P(X <z,Y<y) P(X<z,Y <) s
= ’P(XSIhYSlll) P(X <z ¥ <y) |20 6.9
P(Y <ylX <z) P(Y <plX <z:)
= PV <ulX <zm) PY<piX <z) |20




= (YIX <) 2 (YIX < 32),

for any z; < 1; € X, i.e., (X.Y) is in the order of (<&(-), X(-))-

(

—)- This part can be proved by its symmetry to the last case u = (=)

+)
and v = (—).

u v = (=). (X.Y) isin the order of (X,, €(-)) ifand only if forany y; < y, € Y,

(XY < y1) %5 (XY < y2)

= P(X>zl¥ <y) < P(X >V <) (5.10)

PX<z.V<sy) P(X<z.V<y)|,
e } PIY <) Py<y |20
P(X<z,Y<uy) P(X<1,Y<u)
= |PX>z.¥Y<m) PX>zY<m)|Z° 10
o |P¥<mX<) PYSmX<a)|, o

PYsu|X>z) P(Y<SwplX>1)|=

= (¥IX<2) 20 (YIX > 2),

for any z € X, i.e., (X,Y) is in the order of (<,, %(-))-

The four cases when v = (+) can be proved by their symmetry to the cases when
(=)

u=rm, v=s.(X,Y) is in the order of (X, <,) if and only if for any y € Y,

v

(XY S y) Zm (X]Y > )



Jic Sy =i0dFy () [ Fxiv(ziitdFy (0

>y

— ) Frln)
Jig Iy (zi0aFv () [, Fav(z2idFy () 20

Frly) Frlv)
Ty F@ ) G dFe () finy F(0, ) 7 dFr (8)
Ty @2 ) g dFe(8) [y f(z2,t) fiydFi (2)

>0 (5.12)

Jegy i U2 FgdFr(t) sy Frix(tz) g dFr (8)

Jiey rx(Uz) S dFe(t) Ly Frix(tlze) i (t) | 2 ©

= YiX=z)% (YIX=m)

for any z; < 7, € X. ie., (X,Y) is in the order of (€pm, <,).

u=(=), v=s. (X.Y)is in the order of (X(-), <) if and only if for any y € Y,

(XY < 9) 2 (XIY >9)

P(X<z|Y <y) P(X<z|Y >y)

| P(X<zlY <y) P(X<znlY >y) ’2 i

P(X<z,Y<y) P(X<1,Y >y) 5
P(X<zY <y P(X<mY >y |20 &)

P(X<z)) P(X<z,Y >y)
P(X<z) P(X<zY>y)|2° @14

= P(Y>ylX<z) S P(Y>ylX <z2)

= (Y|X<z) % (Y|X <19),

for any 7, < z; € X, ie., (X,Y) is in the order of (€(-), <,)-
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u = (+), v = s. This part can be proved by its symmetry to the last case u = (=)

and v = (—).

u=s,v=s. (X,Y) is in the order of (X,,<,) if and only if for any y € Y,

(XY <y) 2, (XY >y)

= P(X>z]Y <y)<P(X>z|]Y >y) (5.15)

S IP( \F>yz<yy)< 4) P(XF (>Yr>yy )> 0|20
PSTvEn Pxsavap[ze 60

= |Pe5D BRsIvInfeo

<= P{Y>ylX<z)<PY>ylX>z) (5.17)

= (VX< (YIX>2),

for any z € &, i.e., (X,Y) is in the order of (K,, =%,). The proof is complete. O

By Theorem 5.3.1, the orders of (<, <) and (K, <u) are equivalent. Even

though the other orders do not possess such property of symmetry, they are, by

4

their definitions, measures of degrees of or positive d of two

random variables. Particular, the notions of positive dependence appeared in Barlow

and Prochan (1975) are special cases of these quantifications, (see Section 5.6).
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5.4 Hierarchical Relationship among Bivariate Quan-
tifications

The relations among the bivariate orders defined in the previous section can be
easily obtained by Theorem 3.3.1 and the well established results about the orders
of random variables. Let <,, and <,, be two quantifications of random variables.
We say that <,, is stronger than X,, if for any two random variables X and Y,
X =, Y implies X <,, Y. Similarly, let <,, and <,, be two quantifications of

real-valued functions. We say that <, is stronger than <,, if for any real function

f(z), f(z) is in the order of <,, implies that f(z) is in the order of <,,.

Theorem 5.4.1 Let < uy and <,, be two quantifications of random variables such
that X, is stronger than X,,. Let <,, and <, be two quantifications of real
functions such that <., is stronger than <,,. Then if (X,Y) is (S, €au1), (X,Y)

8 (Zas, Ka)-
Proof. By Theorem 4.3.3, (X, Y) is the order of (<.,, <, ) implies that (X, Y) is the
order of (<, <.,) which is, by Theorem 5.3.1, equivalent to (Ku,. <s,)- Again, by

Theorem 4.3.3, the latter implies (<,,, <,,) which is, by Theorem 5.3.1, equivalent

t0 (Zuzs €a;)- The proof is complete. o

5.5 Bivariate Quantifications as Inequalities of the
Cross Products of Probabilities

In this section we will show that the bivariate quantifications defined in Section 5.2

can be i in terms of i ities of -prod of probabil-
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ities over certain regions. Some important applications of this property is given in
the next section.
Let .22, 11, y2 be any extended real numbers such that z, < z; and y; < 2.

Denote
Plzi,zxn.tn) = P@m<X<nu<Y<wy)

f@w)
[ [ gy,

Theorem 5.5.1 (X,Y) is in the order of (%4, <,) if and only if

Pz, z2i 91, 42)  P(1, %25 43, 3a)
Plz3, 25591, ¥2)  P(T3, T4 Y, 94)

>0 (5.18)

Jor the following cases
(a8) u=m: 1, < I3 < 13 < 4 are arbitrary real numbers;
(b) u=(=): £; = — and z; = 13 < z4 are arbitrary real numbers;
(c) w=(+): £\ < z2 = 3 are arbitrary real numbers and z4 = +00;
(d) u=s: 1, = —00, 7, = +00 and z, = 3 are arbitrary real numbers
and
(@) v=m: y; < y2 < y3 < ys are arbitrary real numbers;
(V) v=(-): ;1 = —c and y» = y3 < y4 are arbitrary real numbers;
(¢) v=(+): y1 < ya = y3 are arbitrary real numbers and y, =
(d) v=s:y, = —00, yy = +00 and y, = ys are arbitrary real numbers.
Proof. We will prove this theorem case by case, following the same order as in the
proof of Theorem 5.3.1.
u=m, v =m. Suppose (X,Y) is (Zm, <m), by (5.3),

f(z2,y2) f(z2.93)
fw) flanw) |22 512
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forany z; < z3€ X and y, < y3s € V. Let 1,74 € X and y,y; € Y be such that
Iy < I3 < I3 <ryand y < y2 < y3 < y4. Now by integrating with respect to the
second argument of £, the first column of the matrix in (5.19) over (y1, 4] and the
second column over (ys, y4), we have

Bt f(z2,8) ,,mdFv(t) I f(za, ¢)mdﬂ(l)
I fes ) pdFr(t) [ f(za, ) FpdFr(t)

By integrating, with respect to the first argument of f. the first row of the matrix

>0. (5.20)

in (5.20) over (z;, .| and the second row over (z3,z,, we have

Pz < X<zpu <Y <) Pm<X<zmu<Y<uy)

P <X<zom<Y<y) Pa<X<zum<¥<g) |20 G2

Therefore, (5.18) holds. Conversely, suppose (5.18), or equivalently, (5.21) holds for
any 7; < 7 <13 < 74 € X and y; < y; < y3 < ys € Y. By dividing the first
row and second row of (3.21) by z, — z, and z4 — z3 respectively, and then taking
the limits £, — 1, T4 — 13, one obtains (5.20). By dividing the first column and
second column of (5.20) by y2 — v, and y, — ys respectively, and then taking the
Limits y, — y, y4 — y3, one obtains (5.19). Therefore, (X,Y) is (Xm, €m)-

—), v =m. By (5.4), (X.Y) is in the order of (%(_), =) if and only if for any

z3<r€EXandyp <y €Y,

Jecoy (2. 02) 5dFx(2)  Loce, £(2, 03) ;5 dFx(2)
Lo J(@ ) o dFx(2)  Loga, £z, 05) rizydFix(2)

20,

or equivalent

oo S ) BgdFe(a) oo, [(20) Rgd P
Jeartod @) RHAFX@)  foperge, S (@03 74P @)

>0 (522

where , = z3. By carrying on the same operations as in thecaseu =mand v =m
for the second argument of f, one establishes the desired result.
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u = (+), v=m. This part can be proved by its symmetry to the last case u = (—)
and v =m.

u=s, v =m. By (5.3), (X,Y) is in the order of (%,, <) if and only if for any

zeXandy, <ys €,

fise J60) BP0 ige FE1) dFx®) | o -
Jooe £ TR dFx(0) e St 1) 7y dFx(8) | 2 :

By carrying on the same operations as in the case u = m and v = m for the second
argument of f, one establishes the desired result.
(=)- By Theorem 5.3.1, (X, Y) is in the order of (<n, €(-)) if and only

u=m,
if (X,Y) is the order of (m, <(-)). We have proved for the case (<(-), <m).- By
symmetry, one obtains the desired result.

u= (=), v=(=). By (5.9), (X,Y) is in the order of (X(-), <(-)) if and only if for
anyz3 <z € Xand y3 <y €Y,

P(X<z3Y <y3) P(X<1z3,Y <)
P(X<z5,Y<ys) P(X<z,¥Y <u)

P(X<13,Y <ys) P(X<z3,us <Y S i)
P(X<z,Y<y) PX<zus <Y <w)

P(X <z3,Y <) PX <224 <Y Su) |5 (54)
Pz3<X<z,Y S1n) P(zs<X<zoya<Y <pi)

where z, = z3 and y; = y3.

u = (+), v = (—). This part can be proved by its symmetry to the last case u = (—)
and v = (=).

u=s, v=(=). By (5.11), (X, Y) is in the order of (<,, <(-,) if and only if for any



zeXandy=ys <y €Y,

P(X<z,Y<y) P(X<z.Y<y)
P(X>z,Y <y) P(X>z.¥ <y)

_|P(X<zY <y) P(XSzy3<Y <ys)
T |P(X>z,Y<y) P(X>z,43<Y <u)

>0 (5.25)

The four cases when v = (+) can be proved by their symmetry to the cases when
v=(=).

The cases of v = s, u = m.or (—) can be proved by the same argument as in the case
v=mor (-)and u=s. The case v =s and u = (+) can be proved by symmetry.
u=s, v=s. By (5.16), (X,Y) is in the order of (%,,<,) if and only if for any
reXandye),

P(X<zY<y) PX<z,Y>1)|,,
P(X>z,¥ <y P(X>z¥>y[Z"

The proof is complete. [s]

5.6 Positive Dependence of Random Variables

Positive dependence of random variables is an important concept and has many

useful icati ially in reliability analysis and life sciences; e.g., the life
times of components in a system may be positively dependent because of the common
environmental stress, shocks and common sources of power. The following definitions

appeared in Barlow and Proschan (1975, p.142 and p.145).

Definition 5.6.1 Given random variables X and Y, we say the following:
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(a) X and Y are positively quadrant dependent, denoted by PQD(X.Y), if
P(X<z.Y <y)2P(X<z)P(Y <y) forallz,y.
(b) X is left tail decreasing in Y, denoted by LTD(X|Y ), if
P(X < z|Y <y) is nonincreasing in y for all z.
(c) X is right tail increasing in Y, denoted by RTI(X|Y ), if
P(X >z|Y >y) is nondecreasing in y for all z.
(d) X is stochastically increasing in Y, denoted by SI(X|Y ), if
P(X > z|Y =y) is nondecreasing in y for all z.

(e) X and Y are totally positive of order 2, denoted by TPy(X,Y), if the joint
probability density f(z,y) of X and Y is TP,.

(f) X and Y are said to be right corner set increasing, denoted by RCSI(X,Y), if
P(X>z,Y>ylX>7,Y>y)
is nondecreasing in ' and y’' for each fized z and y.

‘We shall now show that the above definitions are special cases of the bivariate

quantifications defined in this chapter.

Theorem 5.6.1 (a) (X,Y) is PQD(X,Y) if and only if (X, Y) is (<, <.);
(b) (X.Y) is LTD(X|Y) if and only if (X, Y) is (X4, K(-);
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(c) (X, Y) is RTI(X|Y) if and only if (X,Y) is (%, <(s);
(d) (X,Y) is SI(X|Y) if and only if (X, Y) is (X, Km);
(e) (X,Y) is TPy (X.Y) is (Zm. Km);

() (X.Y) is RCSI(X.Y) if and only if (X,¥) is (X4), <cn)-

Proof. (a). By Theorem (5.5.1), (X,Y) is (Z,, <) if and only if for any real
numbers z and y,

P(X<zY<y) P(X<z,Y>y)
P(X>z,Y<y) P(X>z,Y >y)

_ P(Y <y) P(Y > y)
T | P(X>5nY<y) P(X>5Y>y)

’ 1 P(Y >y) 5

P(X>z) P(X>z,Y>y)
which is equivalent to (a).
(b). By Theorem (5.5.1), (X, Y) is (X,, €(-)) if and only if for any real numbers
z and y3 < s,

P(X<z,Y<y) PX<zys<Y <)
P(X>z,Y <ys) PX>z,3<Y <)

_ | P(X<zY<y) P(X<z,Y <y
P(X>z,Y <ys) P(X>z,Y <)

P(X<z,Y<y) P(X<z,Y<u)

= >
\ P(Y <) PY <) 0

which is equivalent P(X < z|Y < y3) > P(X < z|]Y < ).

Similarly, one can prove (c).
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(d) By definition, (X, Y) is (X,, <m) if and only if for any real numbers y; < ya,

(XY =31) %, (X[Y =),

PX>zlY =41) < P(X > z|Y = )

for any real numbers x and y; < y,. By definition, (X, Y) is SI(X|Y).

(e) This is already proved in the proof of Theorem 5.5.1.

(£) This part is a little bit complicated. Note that

P(X>z,Y>yX>2\Y >y)

P(X > max(z, '), Y > max(y, y')
PX>2.Y >y)

1, if >z, 9>y

Pb\')z’,y)z + - .
Rxszysy) B2 >7 ¥ <y

P(X>z.Y>y > .
Rz B2z ¥ >y

P(X>z,Y >y] 3 .
Pxosyogy <z ¥ <y

It follows that (X,Y) is RCSI(X,Y) if and only if

PX>2,Y>y) . 3 s oy e
<
PX>79>7) is inz'and ¥’ withy' <y

and

P(X>z,Y >y) i
P(X>z,y>y)

s in z’ and y' with ' < z.

(5.26)

(5.27)

(5.28)



It can be shown that both (3.27) and (5.28) are equivalent to

P(X>z,,Y > y)P(X >15,Y > 42)
2 P(X>z5.Y >y)P(X >z.Y > ) (5.29)

for any z; < 12, y1 < o Therefore. (X,Y) is RCSI(X,Y) if and only if (5.29)
holds. Since

P(X >z,Y > y)P(X >z, > )
—P(X >1,Y > 5)P(X > 21,Y > )

_ | P(X>z.Y>y) P(X>z,,Y > )
P(X >z,Y >y) P(X>z3,Y >up)

_ | P@<X<SmY>y) P@i<X <1,V >up)
= P(X>z1,Y >u) P(X >z,Y > 42)

P(ry<X<z,Y>uy) Plz; <X <z,Y > 1)
P(X>zpn <Y <) PX>z,Y>p)

by Theorem 5.5.1, (X.Y) is RCSI(X,Y) if and only if (X, V) is (X, (). O

By Theorems 5.4.1 and 5.6.1, one can easily obtain the chart of the implication
among notions of bivariate dependence in Barlow and Proschan (1975, p.146). The

proof of the following result can be found in Lehmann (1966).
Lemma 5.6.1 (X,Y) is PQD if and only if

E(g(X)h(Y)) 2 B(9(X))E(h(Y)) (5.30)
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Jor any nondecreasing functions g and h with finite ezpectation in (5.30). In addi-
tion, if (X, Y) is PQD and E(XY) = E(X)E(Y), then X and Y are independent.

Consequently. if (X, Y) is PQD, then Cov(X,Y) > 0. However, the converse is

not true as illustrated by the following example.

Example 5.6.1 Suppose (X.Y) is a bivariate random which is uniformly distributed
on {(0,0),(2,-1),(3,1)}. Then Cou(X,Y) = 1/3 > 0. Letg(~1) = —1 and
9(0) = g(1) = 0. Clearly, g is a nondecreasing function on {—1,0,1}. However,
Cov(X,g(Y)) =~1/9<0.

5.7 Positive Associations of Ordinal Random Vari-
ables

In many studies variables are measured on ordinal scales. These scales consist of a

of Ily ordered ies (e.g., stages of a disease, degree of recovery

from an illness, ordinal preference scale). Ordinal scales also result when discrete
measurement is used with inherently continuous variables such as age, education
and degree of prejudice. There are many advantages to be gained from using ordinal

methods of the standard nominal procedures. For example, ordinal methods have

greater power for di ing i ive to null hypoth such as the
one of independence. See Agresti (1984) for more details on the analysis of ordinal
categorical data.

It is of great importance to study how ordinal variables interrelate with each
other. For example, high values on one ordinal scale may tend to be associated
with high values on the other, and similarly for low values. There are many ways
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that one can characterize such dependence of ordinal variables, some based on the
single-valued measures and some on muitiple inequality constraints. A well known
example of the first type would be the requirement that the Kendall’s 7 be positive.
In the following discussion we will consider some definitions of the second and relate

them to the notions introduced in this chapter.
5.7.1 Odds Ratios of Cross-Classification Tables

Suppose that X and Y are ordinal variables with X = 1,2,...,fand Y = 1,2,...,J.
Denote m;; = P(X =i.Y = j). The following definitions can be found in Agresti
(1984). We shall refer to X and Y as the row variable and the column variable
respectively.

A basic set of (I — 1) x (J — 1) odds ratios is

TR L R W N O (5.31)

T FgeiMirry
These odds ratios are called local ratios and their values describe the relative mag-
nitudes of “local” associations in the table.
The local odds ratios treat row and column alike. Another family of odds ratios,

one that makes a distinction between row and column, is

(Zags 7) (S Tivra) . .
=08 Ty e R (. [ e =i .32
b Ce e e ikl -l 630

These odds ratios are local in the row variable but “global” in the column variable,
since all J levels of the column variables are used in each odds ratio.

A third family of odds ratios of ordinal variables is

(Za<i Tosj Tab) (Tasi To>j Tad)
po— X Rl AT K el e, P T
v e i s e e B
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These measures treat row and column alike and describe associations that are global
in both variables.

For each set of the local, local-global, and global odds ratios, independence is
equivalent to all odds ratios equaling 1. An association described by one of these
measures is referred to as “positive” or “negative” in accordance with odds ratios
greater or smaller than 1. By Theorem 5.5.1 it is easy to see that these three positive

associations are equivalent to that (X.Y) is in the order of (Xm, €m), (%m, <) and

(%4, <), respectively.
A broad classes of odds ratios can be defined corresponding to the bivariate
quantifications introduced in this chapter. These classes are listed below.

fringiiens 630

o = —ff:zlg’__):';‘rl‘) (5.35)

e 30
Ew o)

S e v wam
J -

K ey 69

= e ran)

o - e o0

ot — (Zom Tt 7o) (Camiss Tagr). (5.41)

. (Thmit Tt 7o) (Thmt Tait))



J
o) T4 (Thmjat Tirrs)
N Tt (Simget Tirrs)
1 _ (Zamt 0y (Tiyn Mivns)
o1 e

(+)(+) _
PR -

0 =
T (Cn ) (T Zn—;+| o)’
gims) _ (St m6) (T M)

(Shoi mirn)( §

) _ _(Zami Thot M) (T Tinrs)
Y (Z6 = Vpis16) (Tt Timjrt Tas)’

() _ (i T0) (Eliis T Tab)
911 e _“‘L‘—‘,
(Zhmirt Thet 7ab) (T ™in)

g _ (Camt Thet Mo ) (Thminr Tijort Tab)
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fori=1,..../—landj=1,...J~L
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(5.42)
(5.43)
(5.44)
(5.45)
(5.46)
(5.47)
(5.48)

(5.49)

Some of the above classes of odds ratios have also appeared in Grove (1984). For

example, the odds ratios defined by (3.1), (3.2), (3.3) and (3.4) in Grove (1984) are

equivalent to those defined by (5.42), (5.37), (5.43) and (5.47), respectively.

5.7.2 Sampling Schemes and Estimations

For a given random sample of size IV, let X;; denote the observed count of (X,Y) =

(4,7) and let m;; =

and

N;; denote the corresponding expected count. Let

J I
Mie =3 My, my;=3 my.
= =
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It is clear that the cross-product of probabilities in Theorem 5.5.1 can be replaced
by the corresponding cross-product of my;'s.
In the simple sampling scheme (SSS) where the total sample size N is fixed,

{Xi;} has a multinomial distribution, with pdf

b= (5

Therefore, the kernel of the likelihood function is given by
IImy=. (5.50)
i

Although in observational studies only a single sample may be examined, in ex-
perimental situations it is more usual to have several groups, with the total number
of individuals in each group determined by the sampling plan. The resulting distri-
bution is a product of multinomials from these groups and the sampling scheme is
called product multinomial sampling scheme (PMSS). For example, if the row totals
are fixed by ny,ny, ..., ny, then the sampling scheme is called PMSS with row totals
fixed (PMSSR) and the resulting distribution is given by

A= =11 [HI‘I,- II (:) } :

Clearly the parameters m;; are not estimable in this scheme. A common approach

to this problem is to consider the restricted parameter space with m;; = n;. Then

the kernel of the likelihood function is also given by (5.50). Similar results hold for

the product multinomial sampling scheme with column totals fixed (PMSSC).
Suppose that (X,Y) is in the order of (<, <,). where u and v stand for any

of m, (=), (=) and s. The restricted MLE’s under the above sampling schemes are
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generally not the same unless the MLE under SSS is in the restricted parameter
space of PMSS.

Theorem 5.7.1 Let u and v denote one of the symbols m, (—), (+) and s.

(a) Suppose that (X.Y') is in the order of (Xu, €m). Then the restricted MLE's
of my; under SSS and PMSSC are identical.

(b) Suppose that (X,Y) is in the order of (Xm, <,). Then the restricted MLE's
of m;; under 555 and PMSSR are identical.

Proof. It suffices to prove (a). We shall first prove the case u = m. Under the

simple sampling scheme. the MLE of m;; minimizes

I J
T1 [T me™ (551)

=1y=1

subject to the constraints ¥, ; m;; = N and
MMy jer 2 MyjeaMisy, i=12,....1-1,j=12,...,J-1 (5.52)
We can rewrite (5.51) as
g [
(I mz) I I 2™, (5.53)
=1 =15=1
where p;; = mj;/m.; = m;/7;. Clearly the only constraint on m,; is ©j_, = V.
Therefore, the MLE of m.; is given by z;. It follows that the MLE’s under SSS

and PMSSC are identical. Similarly, one can prove the cases u = (—), (+), and s.

a

Corollary 5.7.1 Suppose that (X,Y) is in the order of (Xm,<m). Then the re-
stricted MLE'’s of m;; under SSS, PMSSR and PMSSC are identical.
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We shall now consider some applications of the above results.

Example 5.7.1 If [ = 2. then the orders (<., <,) are equivalent to (<, <,).
where u, v = m, (—). (+), or s. By Theorem 5.7.1, the restricted MLE’s of m,;
under SSS and PMSSR are identical.

Example 5.7.2 Suppose that (X, Y) is the order of (X, <m). By Corollary 5.7.1,
the MLE’s of m,; under SSS. PMSSR and PMSSC are identical.

Particularly, suppose [ = 2. Then if we consider the order of (X,Y') as (%, €m)
and the sampling scheme as PMSSC, we will have the bioassay problem which was
first considered by Ayer and coworkers (1956). Let x; = (z11,Zi2,....Z1s) and
X2 = (21,222, - - ., T2s). Then the MLE of m,; is given by

g = @y + 2) Bencemn (555 14),
and 1ity; = Ty; + Iy — iy, for j=1.2,..., J, where A = {(,....0,):6, > 6, >
--+ > @} is the cone of nonincreasing vectors. See Robertson, Wright, and Dykstra
(1988, p32).
On the other hand, if we consider the order of (X,Y) as (Xm,<m), which is

equivalent t0 (&m, <m) by Theorem 5.3.1, and the sampling scheme as PMSSR, we

will have a seemingly different problem: estimating m; is equi to

two multi ial under the likelil ratio ordering. This problem was

recently considered by Dykstra, Kochar and Robertson (1995). In their paper, Dyk-

stra, Kochar and Robertson obtained the MLE's of m;; and derived the asymptotic

distribution of the likelihood ratio istics for testing the equality for two discrete
that one distribution is smaller than the other

against the
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in the likelihood ratio order. Even though the MLE's were obtained in the discrete
setting, they provide generalized MLE's, in the sense of Kiefer and Wolfortz (1956).
under the assumption that the family of interest is the collection of all pairs of uni-
variate distributions. In addition. Dykstra, Kochar and Robertson (1995) showed

that these estimates are strongly consistent.



Chapter 6

Multinomial Estimation
Procedures under Order
Restrictions

6.1 Introduction

Suppose i, Za, Zy are the observed values of a random vector which possesses a

Itinomial distribution with n and vector (PV) p. Assume

also that p is restricted to lie within a closed convex subset K of A where
A
A={Pi,p2--p) ;i 20,Y pi=1}
=

is the set of all probability vectors of length k.

Standard estimatil in a ti ial setting are the methods of
likelihood, Pearson mini hi-square, Neyman modified minimum

hi-sqs , mini discrimination information, and the Freeman-Tukey criteria.
These estimati hni lead to optimizati which can be phrased,

respectively, in the following manner:

K
min2 ; z; In(z:/np;), (6.1)
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& (@ — np)?

B 2
rpnsi’?g “‘z—'“’-)’ 63)
géi,{;Zgnp. In(np;/z;), (6.4)
mind -Z;(\/?- - Vap)*. (6.5)

These problems may be difficult to solve, and indeed, this difficulty has often in-
fluenced the estimation procedure which is used. For example, if K is a subspace,

the Neyman modified mini chi-square is a least
squares problem which is well d. All these are asy
equivalent.

Cressie and Read (1984) define the directed divergence of the PV, q, with respect

to the PV, p, of order A as

T | & @\
Ma:p) = A(A—H)qu [(;) - 1] . (6.6)

In order to ensure that /* is defined for all PVs p and q, for A # 0 and —1, we
evaluate I*(q : p) as

. q)‘l
Prase) = e {5 5 -1 ©n

with the convention that 0/0 equals 0, and allow oo as a possible value. For A =0
or —1, we define /*(q: p) by continuity in A. It is known that /*(q: p) is always
non-negative and it is zero if and only if p = q. Furthermore, [*(q : p) is a strictly
convex function of p over A if each ¢; > 0. Thus I*(q: p) acts as a discrepancy

measure between p and q.
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Cressie and Read (1984)’s beautiful observation is that all five of the aforemen-

tioned estimation criteria are special cases of the problem
inonl B -
min2nl(p : p)- (6.8)

In particular, if A = 1, (6.7) reduces to the Pearson minimum chi-square expression

(6.2). If A = —2, it becomes the N modified mini hi-sq

(6.3). While not explicitly defined if A = 0 or —1, we obtain the log-likelihood
ratio expression (6.1) and the MDI expression (6.4), respectively, for these values of
A if we define matters by continuity. The Freeman-Tukey criterion (6.5) follows if
A=-1/2.

In this section, we consider the problem that K consists of probability vectors
which satisfy some order restrictions. The results in Section 6.2 and 6.3 have been
obtained by Dykstra and Lee (1991) and Dykstra, Lee and Yan (1996), respectively.

In the following discussion operations on vectors mean the corresponding oper-

ations on each element of the vectors. For example, p < q means that p; < g,

i=12,...k

6.2 Multinomial Estimation Procedures under Or-
der Restrictions

6.2.1 Estimation under the Isotonic Constraint

Dykstra and Lee (1991) following earlier work of Dykstra (1985) and Lee (1987b)
showed that if K is an isotonic cone, then all these procedures can be related and the
corresponding estimates expressed in terms of equal weights, least squares projec-

tions. Specifically. if we let p() be the solution of (6.8) for an isotonic cone K = I,



then
P = E(p ) /3 ) fora> -1 69)
&
B = B4 T/5 ()N fra< o1 (6.10)
=

where A is the antitonic cone, and
£
P = exp{E(lnp|N}/ L exp{E(Inp|I)} for A= —1.
=t

6.2.2 Estimation under the Stochastic Ordering Constraint

Recently, Dykstra, Lee and Yan (1996) considered the problem that K consists of a
pair of probability vectors which are stochastically ordered. They showed that these
procedures are also closely connected. behave similarly, and have elegant solutions
in terms of a single least squares projection.

In the two-sample problem, let x = (z),%2,...,%¢) and y = (y1,%2,---.4x) be
the observed values of random vectors which possess independent multinomial dis-
tributions with parameters m and n and probability vectors p and q. The estimate

of (p,q) such that p =<, q are given by the solutions to the problem
: A - A(g -
min [2m1 (B:p) +2nI*q: q)] & (6.11)
where p = x/m and § = y/n. In the event that criterion (6.1) (maximum likelihood)
is used, Robertson and Wright (1981) have shown that the solution is given by
© - a{B.8 5 }
»9 = p{%+FE@sD)},

a© = a{FE@sD+5} (612)
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where D= {x :2, > z;--- 2 5z} and T = {x: 1y < 23--- < z;}. The following

result can be found in Dykstra. Lee and Yan (1996).

Theorem 6.2.1 The solution to (6.11) is given by

w0 = {2+ Zranior} " e ©13)
@ = af e+ 5 e (6.14)

where N = m +n and c is the normalizing constant
e = Salf+ ra@smy) ©15)
- SafpE@nmit - 2} 616)

FAE-LifA=—1, )

P = pEa/pID)"/c (6.17)
aY = aEy(B/alD™N /e (6.18)

where ¢ =TI, 5B (@/BID)" = TX, 4. Ba(B/aT)?".

Note that only one least squares projection is required for all A in this case,
while a different least squares projection is required for each value of A for the
isotone constraints, (see Section 6.2).

In the one sample problem, i.e., when one of the multinomial parameters p and

q is known, Dykstra, Lee and Yan (1996) showed that the solution to the stochastic

ordering estimation problem is (rather isi ) ind dent of A. ificall
if q is known, then the estimate of p is given by
pY = PEs(q/pID) if K ={peA:p=,q}; (6.19)

p¥ =pEy(a/plT) fK={p€A:q=.p} (6.20)



See Robertson and Wright (1981).

6.2.3 Estimation under the Bound Constraint

Sometimes bounds for some p;'s may be obtained from other sources. Suppose one

is interested in estimating p such that p € K = {p € A: p < q}, where q is a given,

nonnegative, real vector. The solution exists if and only if T%, ¢; > 1. Clearly, if q

is a PV, then q is the only PV that satisfies the constraint and thus is the solution.

When q = 1, the problem reduces to the unrestricted one. We propose the following

algorithm for the problem
i A -
EISAE 2nI*(p : p).
Algorithm

Step 0. Let s =0and V5 =0.

Step 1. For i ¢ V,, compute
1-Fiev @i,
= ——eh i,
P et T

Let Viu = V,U{i: i € Vipai > ai}-

Step 2. If 4,1 = A,, then the solution is given by p; =¢; for i € V; and p; =p,;

for i € V;. Otherwise, replace s by s + 1 and go to Step 1.
The utility of the above algorithm lies in the following lemma.
Lemma 6.2.1 Let x* be the solution to the problem

K
min2n/*(p:x), s.t. Y zi=c, andx<q

where ¢ > 0 is a given real number. Let V = {i: cp > a1 <i < k}. Thenz, =g

fieV.
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Proof. Clearly the solution exits and it is unique. Suppose x* is the solution. then
we have
n<g<cp ifieV.
Suppose there exists an index a € V" such that
Io < a < CPa- (6.21)
Since %, z; = $X, cpi = c, there must exist an index & V such that
cps < x5 < qp. (6.22)

Let ¢ =z, +zj. It can be shown that
Al Al

o (5 et -
is a strict convex function of p, which is minimized at Z, = po¢’/(pa+Ps)- By (6.21)
and (6.22), pazj > psz,. It follows that Z, > z, and hence the function defined by
(6.23) is strictly decreasing from [z.Z,). Therefore, while holding all z;’s except
z;, and zj fixed, one can decrease 2n/*(p : x) by moving from z, in the direction
to Z, (23 = ¢ — z,)) without violating the constraints x < q and %, z; = c. This

yield a direct contradiction. The proof is complete. a

6.2.4 Estimation under the Uniform Stochastic Ordering
Constraint

Here we are interested in the following problem

min 2nI*(p : p). (6.24)

P¥-)a



where q is a given

(6.25)

Then we have (1 +6,) = T3tk g/ Ty, 2y and thus 5o, p; = 1/ TEL(1+6,-). It
follows that

i1

PO+ 60

, fori=2,3,...,k (6.26)
and

S S
M=,(1+6,-1)
By denoting fy = +00, the expression of (6.26) is also valid for £ = 1. Similarly,

-
p= - (6.27)

one defines §; and ; from p and q. Now,

2 1 k i’A-rl
R
L [& BN mL s 60
0D [ S W+ Gt
So the original problem (6.24) reduces to minimize (6.28) subject to
6:<¢;, i=12....k-1

The first partial derivatives of /* with respect to 6; are found to be
LA +0) 1
(1 + 6,2 1 +6,

(6.29)

<

O (46,0
O Ty (1 + G52+

R S > R S
A+IT (L +6 )2 +11+6,

G (14600 (Q)‘“
O =1+ 652 \& i

(6.30)

(6.31)
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I'=1,2....k-1 It can be shown by calculation that the all second partial
derivatives are all nonnegative. Suppose 6 is the solution to the problem (6.28). It

follows that 6 depends only on 6],....6; by

OB+ 65 ) (é)lﬂ
el EL6 Lo/ VY ). =0, 6.32
Lt 522)

1=1,2,...,k — 1. The following resuit follows from the above argument.

Theorem 6.2.2 The optimal value of 6; is given by
6; = min(a;/**V6,, &). (6.33)

where
e . A
05 =1+ 651) (6:34)

‘
a= - .
SO a1+ 6 M

It can be shown that @, = 1 and

G (o)t .
m,|=(m+F) Wrap 1=23,....k=-1 (6.35)

6.2.5 Estimation under the Likelihood Ratio Ordering Con-
straint

Here we are interested in the following problem
min 2n0(p : p). (6.36)
P=Emq

where q is a given probability vector. By letting z; = pi/q: and y; = p;/qi, the

problem (6.36) reduces to

k ) A k
inY —Z stz >z, >--- >z, and =1 6.37
m“;x(A+1)‘ Stz 2T 2 2 ;zm. (6:37)
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First, consider the case A # 0 and —1. Define

=3
z
¥ = 5r
Then
d -0+
ola) = 20 = -5
and

674(z) = [~(A+ 1)z] /O

By Theorem 3.1 of Dykstra and Lee (1991), the solution for x is given by

/(1)
2t= [—(A +1)Egant (‘,32: |D)] (6.38)
where vy is a constant such that
k
Sar=1 (6.39)
=

Suppose A+1 < 0. Since x* > 0, the coefficient of 1/y**! in the projection of (6.38)
must be positive. By the identity

Ev(af|D) = aEw(f|D) ifa >0,
and a theorem of Robertson (1966),
Eqn(f/h|D) = Ee(h/f|A)™", for positive f and h
one obtains that
=1/(A+1)
2" = |~to(A+ 1)Egn (—“—m)]

qy~(+1)
= [o(A+ l)]—l/(M—l)E' (Y\HM)

1/(A+1) (6.40)



Therefore, by (6.39), one obtains
&
[o(A + D]VOD = 3 g.E, (Y\ulA)l/(nu i
=1 3

It follows that
Eq(y**1]4)V0+0

P T By AT [
By symmetry, one obtains
" E A+l D 1/(A+1)
o — g EaPID) -

ThiaBa(y*+ D)
for A+ 1 > 0. The case A = 0 can be easily handled by continuity argument in
(6.41) or (6.42).

For the case A = —1. the original problem is equivalent to minimizing

k
Y hilnz
=
subject to ; > I > -+ >z and ¥5, 7;¢; = 1. The solution can be obtained

similarly as above and found to be

exp{Eq(Iny|D)}
g exp{Eq(lny|D):}’

Therefore, we have proved the following result.

pW =

(6.43)

Theorem 6.2.3 The solution for p that minimizes (6.36) such that p <., q is given
by (6.41), (6.43) and (6.42) for A < —1, A= —1, and A > —1, respectively.

Remark: Clearly the above argument in the proof of Theorem 6.2.3 still holds
for the more general case that p/q lies in an isotonic cone. When q is the uniform
multinomial parameter, the problem is reduced to the one solved by Dykstra and
Lee (1991), (see Section 4.2).
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6.3 Maximum Likelihood Estimates of Order Re-
stricted Multinomial Parameters

The i likelihood esti SFiord . P —

be obtained by letting A = 0 in the previous section. Let D = {x:z; > £a--- > z;}

be defined as before and q be a given multinomial parameter.
p € D. By (6.9), the MLE of p is given by

p"=E(B/D)- (6.44)

P =m q. Since
£ x 3
Y GEq(yID)i = 3 a:Ea(B/alD)i = Y ai(B/a)i = 1,
= =1 =l
by (6.33) the MLE of p is given by

P’ = aFq(p/q|D)- (6.45)

P Z(+) Q. By inductive formula (6.35) one can show that a; = 1, [ = 1,2,...,k.

Therefore, by (6.33) the MLE of @ is given by
6; = min(é,, &), (6.46)

where

i+l
= . (6.47)
Y

P =, . By (6.19), the MLE of p is given by

p" = DbE;(a/BID) (6.48)
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Once again, by comparing the above results with those in Section 3.3 we see that
the orders of real-valued functions €mn, €(+) (€(-)) and <, are closely related with

the orders of random variables <. Z(+) ((-)) and =,.
6.4 Estimation under Other Ordering Constraints

Estimates under some other constraints may be obtained by Theorem 4.4.1 as illus-

trated by the following examples.

Example 6.4.1 Let q be the uniform multinomial parameter. Then p <) q if

and only (py +p2 +--. + Pi)/i 2 Pis1-

Example 6.4.2 Let q be the uniform multinomial parameter. Then p X, q if and

only (p1+---+pi)/i 2 (Pivi + - +pu)/(k —1).

Example 6.4.3 Let q = (1/2,0,...,0,1/2). Then p < qifand only py +---+p; >

Pt + e



Chapter 7

Nonparametric Estimation of
Bounded Survival Functions with
Censored Observations

7.1 Introduction

Stochastic ordering between survival functions is a very important concept. It arises
in numerous settings and has many useful applications. For example. Agresti (1974)
and Bhattacharjee (1987) considered the problem of finding appropriate stochas-

tic bounds for the time of extinction in some hil of the

lower bounds and upper bounds for some test statistics in order restricted inferences
can be found in Robertson, Wright and Dykstra (1988, p.141). When such orderings

exist, it is desirable to ize their and to model distributional struc-

ture under such orderings. Nevertheless, estimates of the survival functions may not

bear out such properties because of the inherent variability of the observations. The

on estimati I involving hastic ordering is ive. Brunk,
Franck, Hanson and Hogg (1966) obtained i i ikelihood esti-
mates (MLE) of two stochastically ordered distribution functions and studied their

12
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properties. Dykstra (1982) considered a similar problem with right-censored data.
Feltz and Dykstra (1985) proposed an iterative algorithm to find NMLE's of more
than two survival functions subject to linear stochastic ordering restrictions. Lee

(1987) discussed the MLE’s for ically ordered multi; ial ions with

fixed and random zeros. Robertson and Wright (1974), and Sampson and Whitaker
(1989) consi ic orderings in higher di

In this chapter we consider the problem of estimating a survival function that
is stochastically bounded both from below and from above, with right-censored
data. In Section 7.2 we introduce some notations and extend the one-sided problems
considered by Dykstra (1982). In Section 7.3 we derive the two-sided problem and
propose an iterative algorithm to find estimates in finite steps. usually two or three
steps. An example involving survival times for heart transplant patients which
appeared in Crowley and Hu (1977) is given in Section 7.4 to illustrate the proposed
algorithm. In Section 7.5 a sil ion study is d dtoi ij the increase

in efficiency obtained by using the stochastic bounded constraints.
7.2 Notation and the One-sided Problem

Suppose independent observations are taken from a distribution on the positive
real line with survival function P() and complete observations (deaths) occur on a
subset of the times Sy < S; < -+ < Sy (So = 0 and Sp4 = oo for convenience).
Let d; denote the number of deaths at S; and /; denote the number of censored
observations (losses) in the interval [S;, Sj.), assumed to occur at L&, i = 1,...,4;.
Let n; = 37 (d; +1;), the number of items surviving just prior to S;. We assume

that the censoring times are fixed, although the method also works with independent
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random censoring times, see Dykstra (1982).
Proceeding as in Johansen (1978), we can obtain the generalized MLE of the
survival function (in the class of all univariate distributions) by finding the survival

function P(-) that maximizes
ﬁP(Lt“’) x ﬁ {[P(S,—) - P(S))1 fl P(LE”)}. (1)
= 3
This problem is equivalent to the one that maximizes
,_fI.[P(S"" — P(S))14P(S)" 2

if P(t) is a right continuous step function. The unrestricted solution to (7.2) is given
by
5 s d "
Bs)=J[a-=). i=12....m, (7.3)
=l ™
the well known Kaplan-Meier product limit estimates (K-M estimates).
Let Q(-) be a given survival function. We are interested in maximizing (7.2)
under one of the following four constraints
(1) P(S;) 2 Q(S,), j = 1.2,..m — 1, and P(Sn) = Q(Sn):
(10) P(S,) 2 Q(S;),  =1,2,0om;
(1) P(S)) < Q(S;), j = 1,2,-..m =1, and P(Sp) = Q(Sw);
(I10) P(S;) < Q(S;), 5 =1,2,...,m.
As in Dykstra (1982), it is required to solve equations of the form

Sl _di ) _ QS
113‘ (l njiy) T Q(Sa-1)” 4

Let ygs be the solution to (7.4) which lies between max,<;<s(d;—n;) and the extended
real number +oo so that each individual term on the left hand side of (7.4) is a value
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between 0 and 1. The following result is an extension of Dykstra’s (1982) one-sided
problem and its proof can be found in Section 7.6.

Theorem 7.2.1 The solution to (7.2) is given by

;
i) =11

Y} = MiNyg; MAXy3, Yoy = MAXs3; Milag; Yo, for the constraint (I);
Yi = Milgg; MaXp>; Y, = MaXpy; Milyg; Ys, for the constraint (10);

Y] = MaXeg; Milp>; Yoy = Mils>; MAXag; Yab, for the constraint (II);

Y = MaXeg, Milyy; Yy = Mils>; MaXyg; Yop, fOr the constraint (I10)

with y} = max{yas, 0} and yg = min{yas,0}.

The esti subject to the ided ints are still in the form of the K-M

estimates and only require adjustment on n;’s. This remains the same for the two-
sided problem considered in the next section. For a heuristic Al interpretation of the
adjusting constants y;’s, see Dykstra (1982). The values of y;’s for the constraint (1)
can be computed by the maximum lower sets type algorithm (MLSTA) as follows.

0. Set r =0and i =0.

1. Let iry, be the largest index j such that y; +1; = maXiiicicm Yir+14i Set

Y= Yittdees =l L
2. Replace r by r + 1 and go to Step 1 if i, < m.

To compute y* for the constraint () we replace maximum in Step 1 by mini-

mum.
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Consider the case of no censored observations. Then ny,, = n; — d;, P(S,) =0,

and by (7.4)
T 1aQ(Ss) — 15+1Q(Sa-1)
QSat) - Q(S)) -

Clearly, y;m > 0 and so the constraints (/) and (/0) are equivalent. The equivalence

(76)

of (IT) and (II0) can also be attained by setting Q(Sm) to be 0. It suffices to consider
the constraint ([).

Let f = (fi.f21..-+ fm), d = (d1,da,...,dm) and z = (2, 23,..., 2Zm) such that
fi=Q(Si-1) — Q(Si) and z; = fi/d; and let z* = Eq(z|]) with [ = {x € R™ : 2, <

z2 < -+ < Zm}. Then
(7.7)

This closed form expression appeared in Robertson and Wright (1981). The values

of z7’s can be by the dard i of the isotonic regression, such

as the pool-adjacent-violators algori (PAVA), i lower sets algorithm or

min-max formula, see Robertson et al. (1988). Let a < 3 be two indices such that

Ya-1 > Ya =" = Yj > Y3.,- Then from the proof of Theorem 7.2.1, one obtains
P*(Sa-1) = Q(Sa-1), P*(Ss) = Q(Ss) and y; = -+ = yj = yas. It can be shown
that
Q(Sa-1) Q(Ss) QSa)) = Q(Ss) _ .
d === = = . (78
Fasl S s B et les | T Ve e ()

The isotonic regression z* under constraint (/I) is obtained by using z* = Eq4(2|D)
with D = {x € R™ : £y > z3-+- > Znm}. The solution (7.5) can also be expressed
by P*(S;) = 1 - T, z7d;.
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7.3 The Two-Sided Problem

‘We are interested in the problem of maximizing
0 4
L (P(S;-1) = P(S)I P(S;)"
=t
subject to the constraints
Q(S;) < P(S;)) < R(S;). i=12....m (7.9)

where Q and R are two given survival functions. The problem can be solved normally
in two or three steps. In the first step, we use the one that solves Dykstra’s (1982)
one-sided problem and the constraint (/0) is used. We then partition the problem
according to the levels of y* obtained in Step 1 and we readjust the upper bound R
so that R(S,) = Q(Sa) if a is the last index of a level of y*. For each partitioned
problem in Step 2, the constraint (II), P(S;) < R(S;), 7 = a1 +1,...,02 and
P(Sa;) = R(Sa.) = Q(Sa,), is used except for the last partitioned problem. The
latter requires constraint (/70) instead. In Step 3 we repeat Step 2 for a lower bound
Q(S;) < P(S;) problem.

Algorithm: Iterative Partitioning Proportional Fitting (IPPF)
Denote Q; = Q(S:), P, = P(S), R: = R(S))-
Step0 Set r =0, A = {0,m + 1}, R® = R and let y},,, = 0 for any positive
integer t.

Step 1 Let Q¥+' = R for each a € A*. For two consecutive indices ) < a3 in

A¥, let Q¥+ = Qv Q%! for ay < i < @z. Let yii ™" denote the constant y
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which solves the equation

1(-5%)-&

Apply the maximum lower sets type algorithm (MLSTA) to the subset {a +

)=

1,....a3} to calculate

2rel

Y ax:. yart!,

= min m
{a1<s<i} (1t<aa)

For the case ay = m + 1, replace y?™*' by 0 if y?™*' < 0. Set

AT = AU {a > g2,

Step 2 Let R¥*2 = Q¥ *! for each a € A¥*!. For two consecutive indices ay < az
in A%, let R¥*? = RAARZ*? for o, < i < aa. Let y%*2 denote the constant
y which solves the equation
t d, +2
n(-.%) -5
n; +y

==
Apply the minimum lower sets type algorithm (MLSTA) to the subset {a; +
1,..., a2} to calculate
2re2 _ in ¥
YT it diten T
For the case az = m + 1, replace y?™*2 by 0 if y?"*? > 0. Set

AT = g2 (g 242 < 22y

Step 3 Replace r by r + 1 and go to step 1 until A?+2 = A2+
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Clearly, the IPPF algorithm converges in finite steps, usually two or three steps,
but at most m. Let P} = [[_,(1 — di/(n; + y{)). They are the projections obtained
at the step ¢ and these values can provide us with information on the computations

in the next step. The proof of the following theorem can be found in Section 7.6.

Theorem 7.3.1 Let VZ*! = A7 U {i: P < Q¥*'} and let V¥*? = A7+'y (i:
P¥+' > R¥*?) Then A'C V.

Suppose that o, < @, are two consecutive indices in A*. Then one computes
YLt 5 for each index 3. @y < 8 < a3, belonging to V*+!. If there does not exist such
an index 3 then P, i =0 +1,...,0 is the desired solution, and y! = y} remain
constant for [ > t. The utility of the [PPF algorithm lies in the following theorem

which is proved in Section 7.6.

Theorem 7.3.2 Lety" be the values obtained at the last step of the IPPF algorithm.

Then the survival function
J
P(S;) = .1:1 (1 5

is the solution to the problem (7.9).

(7.10)

An illustration of the IPPF algorithm is given in the next section.

7.4 Example

The [PPF algorithm is an iterative procedure such that at each step one needs only

to solve several ing one-sided For il ion, we consider

the data which appeared in Crowley and Hu (1977). It consists of survival times for
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patients who had heart implants in the Stanford Heart Transplantation Program,
and it includes censored observations of people who were still alive by the closing
date for data collection, April 1. 1974. We wish to estimate the survival function of
the post-transplant time T (in days).

Turnbull, Brown and Hu (1974) noticed that the accepted candidates into the
program may come from a mixture of two populations, namely, “regular” and

“hardy” patients. Suppose
P(t) = wexp{—t/m} + (1 - w) exp{~t/uz}

where y; > pz > 0 and 0 < w < 1. The MLE’s of these parameters based on 69
observations in Table 2 are found to be p; = 1513, p; = 55.86 and w = 0.5626. We

consider the lower bound and upper bound of the unknown survival function to be

Q(t) = 0.45exp{—¢/1500} + 0.55 exp{~t/55}, (7.11)

R(t) = 0.65 exp{—£/1500} + 0.35 exp{~¢/55}. (7.12)

We first illustrate the [PPF algorithm by the simple case of latent times, censored
observations as well as uncensored observations, since in this case the computation
of the solution at each step is simple. The latent times are grouped into nine
classes as in Table 1. When P, Q and R are all having finite support by assuming
P(1792) = Q(1792) = R(1792) =0, A° in Step 0 of the IPPF algorithm is replaced
by A% = {0,m} and constraints (/0) and (//0) need not be used.

In the first step, the one-sided problem (/) is solved on the whole set {1,2,...,9}.
Let f; = Qi-1 — Q;- The values of z}'s,i =1,2,...,9, in (2.7) are obtained by the

monotone increasing regression of f/d with weight d using the minimum lower sets
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algorithm or the PAVA. Since V! = {0,8, 9}, the monotone regression has two levels,
s = ... =z} =0125and 2 = 0275, (y} = ... = g} = 10.747, 3 = 0.000). In
the second step. the upper bound is first adjusted at i = 8 by setting its values
equal to the lower bound, R} = Q} = 2476 (R§ = .3577). Then the one-sided
problem (IT) is applied to each subset of {1,2,...,8} and {9}. Let f; = R?, — R?.
The value of 22 remains the same while the values of 2%’s, i = 1,2,...,8, are the
monotone decreasing regression of f/d with weight d. Since V2 = {0,3,8,9}, the
subset {1,2,...,8} is portioned into two sub-subsets, namely, z} = z3 = 2 = .0126
and 22 = ... = 2} = 0125, (y} = 43 = v = 10.126 and yf = ... = y = 10.786).
Similar procedures follow in the third step and it gives no new partition. Since the
projection P? satisfies the restriction (7.9), it is the solution (7.10) in Theorem 7.3.2.

In the above case with no censored observations, the estimate can also be ob-
tained by an algorithm proposed by Parnami, Singh and Puri (1993). However,
not only is the [PPF algorithm much more efficient, but also it can be applied to
problems with censored observations.

To apply the IPPF algorithm with censored observations, one needs to com-
pute the values of y;'s by solving equation (7.4) and the min-max type formu-
las in Theorem 7.1. Table 2 contains a list of the original data, the adjusted
bounds and the values of the projection at each step. The bound restricted es-
timate is obtained in three steps. In the first step, the one-sided problem (I0)
is solved on the whole set {1,2,...,42}. The set V' = {0,1,2,3,24,25,43} and
the values of y's are y! = +oo, y} = 20.95, y} = ... = yl = 0.055, and

= yl, = 0. It means yy;'s are finite, j = 2,3,...,42; gy, is the largest

V="

AMONE Y22, Y23, Y224 30 Y225 Y325 is the largest among ys3, ys4 and ys 25 while
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Y265’ are non-positive. It also means that the left hand side of (7.4) with y = y22
(say) is larger than the right hand side when a = 2, b =3,24,25 (or b=3,4,..., 42).
In the second step, the upper bound is first adjusted by setting R? = Q} = 1.0
(R = 1.0), R} = Q} = 990 (R} = 0.933), and R}; = --- = Rjy = Q}s = 590
(R = 732, RY = 632, RY, = .623, RO = 613, Rl = .603), and then
the one-sided problems (/) and (II0) are applied to the subsets {3,...,25} and
{26,....42}, respectively. For the subset {3,...,25}, its intersection with V2 yields
{4,5,...,15}. The calculation yields y3 = y§ = —34.86, y2 = y2 = v} = —13.13,
ve=...=yh=4.04and y}, = ... = y3 = 6.53. It means y3 4 is the smallest among
Y34, Y35 - -2 Y315, Y32si Ys7 the smallest among yss, yss, .-\ Us,s: Uszsi Ysa3 the
smallest among yss, Ys.s: - - -+ Ys.15: Ys.25; Y125 the smallest among Y1414, Y1415, Y1a.25-
It also means that the right hand side of (7.4)) with y = ys, (say) is less than
the right hand side when a = 3. b = 15,25 (or b = 5,6,...,25). For the

subset {26,...,42}, the values of y?'s remain the same since there are no violators

in this partition. In the third step, the lower bound is first adjusted by setting
Q3 = R} = 926, Q3 = R? = .870 and Q}; = R%, = .788, with possible adjustment
of the other values to maintain the monotonicity of the survival functions. The
one-sided problem () is then applied to the subsets {3,4}, {5,6,7}, {8,...,13} and
{14,...,25} and only the values on the subset {3,4} need to be considered. The
new y;’s are y3 = —16.23 and y] = —42.80. Since the projection P? satisfies the
restriction (7.9), it is the solution (7.10) in Theorem 7.3.2.

The Kaplan-Meier product limit estimate (7.3) and the bounded estimate (7.10)

are also plotted in Figure 1 along with the lower bound Q(t) and the upper bound
R(t) in (7.11) and (7.12), respectively.



7.5 A Simulation Study

A simulation study was perfc d to i it how the i affect the

efficiency of the estimation. We consider four sampling survival functions with a
series of stochastic bounds for each of the four cases. The root of the mean square

errors (MSE’s) of the icted and i (K-M) esti of selected right

tail probabilities are calculated based on 10,000 iterations of the simulations with
sample sizes 100 and 300.

In the Cases [ and II, the ling survival functions are the ized max-

imum modulus introduced by Lee (1996a) in constructing Tukey-type confidence
bands for monotone regressions. Let Z,,Zs,...,Z; be independent standard nor-

mal variates. The generalized maximum modulus is defined to be

The survival function of GM, is very complicated and selected percentiles can be
found in Lee (1996a). Clearly, GMy is larger than My = max,c; [ Z:/, the maximum
modulus with survival function 1— (28(t) — 1)¥. On the other hand, by the Cauchy’s

Inequality, one obtains

GM < \/Zi+ 23 +---+ 2},

where the right hand side is the square root of a chi-square random variable with
degrees of freedom k. Therefore, 1 — (2®(¢) — 1)* and 1 — x}(t2) form a pair of lower
and upper bands for the survival function GM(t) for any positive real ¢. Sharper
stochastic bounds for G Mj can also be found.
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Case I. Sampling survival function: GM,(t); and its lower bound and upper bound
given by

BL: 1—(2®(¢) — 1)%, 1 - 0.5x3(£?) — 0.5(2®(t) — 1)%

B2: 1—(28(t) - 1)% 1 - x3(8):

B3: 1— (2®(t) — 1) no upper bound.
Case II. Sampling survival function: GMs(t); and its lower bound and upper bound
given by

BL: 1-(28(t) — 1), 1 - 0.5x3(¢?) — 0.25(2(t) — 1)* — 0.25x3(£?)(2®(¢) — 1);

B2: 1—(28(¢) - 1)%. 1 — x3(8);

B3: 1—(2&(t) — 1)%, no upper bound.
Case III. Sampling survival function: exp(-t); and its lower bound and upper bound
given by

BI: exp(—t/0.8), exp(—t/1.2) ;

B2: exp(—t/0.8), exp(—t/1.3) ;

B3: exp(—t/0.8), no upper bound.
Case IV. Sampling survival function: 0.5 exp(—t) + 0.5exp(—¢/10); and its lower
bound and upper bound given by

B1: 0.7exp(—t) + 0.3exp(—t/10), 0.3 exp(—t) + 0.7 exp(—t/10);

B2: 0.7exp(—t) + 0.3exp(—t/10), 0.1 exp(—t) + 0.9 exp(—t/10);

B3: 0.7exp(—t) + 0.3 exp(—t/10), no upper bound.

The results of our simulation study are provided in Table 7.3. We are interested
in estimating the survival function P(t) at the four points, t = P~'(0.50), P~'(0.25),
P~1(0.10) and P~'(0.05). In general, utilizing the prior knowledge of a lower bound

and an upper bound may reduce the point-wise MSE’s. The amount of reduction in
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MSE'’s could be substantial for small and moderate sample sizes for a pair of sharp
bounds B1. For example, when the sample size is 100 and the upper tail probability
is 0.05, i.e., P(t) = 0.05, the root MSE’s are reduced from .0219, .0218, .0219, .0220
(0.0218 for the exact standard deviation) to .0089, .0121, .0159, .0122 respectively
for the four cases when the bounds B1 were used. In the Case 7, the MSE for Bl
is no more than 1/6 of that for the Kaplan-Meier product estimate when n = 100
and no more than 1/5 when n = 300. When only a lower bound or an upper bound
is given and when the sample sizes are small, the MSE’s of the restricted estimates
may be larger than those of the unrestricted ones as the lower bound B3 is used
in the Case I with sample size 100 and upper tail probabilities 0.25, 0.10 and 0.05.
However. once sample size increases from 100 to 300 the MSE’s of the restricted

estimates become smaller than those of the unrestricted ones.

7.6 Discussion

The purpose of this chapter is to introduce an efficient algorithm to compute the
bounded NMLE of survival functions. It normally takes two or three steps of com-
putation for the IPPF algorithm to converge to the exact solution. When there are
no censored data, a closed form expression for the projection is available at each

step, see (7.7) for odd steps. The bounded NMLE should prove to be useful, both

as a descriptive tool and a primiti hnique for any requiring estima-
tion of a survival function or a distribution function. One may hypothesize a lower
bound and an upper bound for a survival function. Its validity may be verified by
the supremum of the distance between the bounded NMLE and the Kaplan-Meier

product estimate.



The bounded NMLE of the survival functions can sub ially reduce point

MSE’s for small or sample sizes to the Kaplan-Meier product
estimates. The reduction is optimal when the lower bound and the upper bound
are approximately the same distance from the underlying survival function. For the
data in Table 2, the bounded NMLE with the lower bound (7.11) and the upper

bound (7.11) may be a better estimate.

7.7 Proof of the Main Theorems

Proof of Theorem 7.2.1. It suffices to prove the result under the constraint (). The
proofs under the other constraints are similar. Using Dykstra’s (1982) notations,
we shall let p; = InP, — In P,_, and ¢; = InQ; — InQ;_;. The original problem is
equivalent to maximize a concave function
S old;In(1 - e”) + (n; — d;)pj] (7.13)
=t
over a closed convex region
i i m m
P:p<®:Yp2Ygii=12....m-1land Y p;=) g}
= 3=t =t =t
The solution exists and it is unique. Let
m m ‘ ‘
¥ =3 [d;ln (1~ %)+ (n; —d;)ps] + Lws (J):p, = Zq,) .
3=t =1 =1 =t
By the Equivalence Theorem (see Kuhn and Tucker, 1951), p < 0 is the solution if
and only if there exist nonnegative real numbers u,,uy, . .., tm— and a real number
U such that

N - imt S =0, =12 m (7.14)
Op: =1



w(Yp-Yg)=0 i=12...m-L
=1 3=

Sp2Y g i=l2...m-lad Y p=Yg

= =t o =L
By letting 3 = £7%,u;, and fi(w) = In(1 = di/(ni + ) — @, i = 1,2,...,m, we
have from (7.14)

po=lnll - 5 =t ) <0 (7.15)
and
N2 22 Ym (7.16)
W s L) =0, =1 m1 @17
=
j:f,(g,)zo, i=1,...,m—1 and i!,(yx)=0- (7.18)
i=t =t

=ys > yss1- By (7.17), T, fi(y) =0
and then by (74), y; = Yas for j = a,....8. By (7.18), £}, f;(3;) > 0 and
):f“f,(y,j <0, for any b > @ and @ < 3. By the monotonicity of functions f;(y),

Let @ < 3 be such that Yo > Yo = ...

1] b b
3 fwas) =0< Y fi(1) € Y fi(vas):
= — =

8 ] /]
Y fiWas) S X Fi(y;) 0= fi(Yas)-
= J=a i=a
1t follows that yas < Yag < Yas. Therefore, for i between o and § we have that
Yap = MEX Yop 2 MINMAX o5 > MWAX MINYe 2 M0 Yas = Yap
where it is trivial to establish the second inequality. It follows that

Y = Minmaxyes =

MAax min Yas-
a<i 831 PO Tah Vb
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The proof is complete. a]
Proof of Theorem 7.3.1. It suffices to show that if @ € A**!— 4> then P2 < Q¥+!,

Let §; < 3, be two consecutive indices in 4% such that 3 < a < £,. By (7.16),

Syt >

Pt L pay
[ A A - 3T Alb T A T 37 ALl

By (7.4), (7.5) and the IPPF algorithm we have that P"*' = Q2+ and Q¥ *' =

RY = P¥,i=1,2. By Theorem 7.2.1,
B>y =y > Bt i =6+ 1. B

If yZ+' > y2" then
2l _ portl _ gzr+l T d; 2r T d; o
QI =PI =Qf 11;‘[“(1 nj+y2,“)>P”‘1:g+‘(l—m)=Pa.
If y2r+' < yZ, then
2r+1 241 PR ] 2r d; 2r
a-rrn-agy ff (-] > fl (15 85) -
This completes the proof. a
We shall derive two preliminary results that characterize the IPPF algorithm

before presenting the proof of Theorem 7.3.2

Lemma 7.7.1 (a) If & € A**' — A, then PL = Qa, for | > 2r +1 and
Q¥*' = Qa, for 120;

(b) If a € A**2 — A%*\, then PL = R,, for | > 2r +2 and R% = R, for
1>0.
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Proof. It suffices to prove (a). Let a € A**' — 4%, and let ; < @3 be two
consecutive indices in 4% such that « is generated by fitting £, > Q¥+, i =
@+ 1,...,a with P, = Q%' if a; < m. By (7.17) and (7.15) and Theorem 7.3.1,

P+l = Qi s P > PE = RE = QEHL

Since Q2+! = Q, V QX+, it follows that P2+ = Q2+l = Q,. It is clear from the
algorithm that the lower bound Q2! and the projection PZ"*! for a € A¥*! will

be fixed i the ining i ions of the ion process and hence,

= Q. = Qa, for I > 2r + 1. Since Q%*! is nondecreasing in [, it follows that

Q¥*! = Q,, for | > 0. The proof is complete. a

Lemma 7.7.2 (a) If @ € A+ — A%, then y2*' < 4., and 25! > 4., for
1>22r+1.

(b) If a € AZ*2 — 47+ then yZ*2 > ¢, and Y22 < 4y, for [ > 2r +2.

Proof. Tt suffices to prove the case that if a € 4"+ — A%, then y3*' > y'*? and
y3*' > y3** where [ > r and 8 = a+1. The 3 is the leading index of all partitioned
problems it belongs to after the (2r + 1)st step. Define

=inf{t:t > §,t € A%+},

1,2,3.

Then B, > B2 > 5. In the (2! + 2)nd step we solve a partitioned problem 3, 8 +
1,...,0 and in the (2! + 3)rd step we solve a partitioned problem 8,8+ 1,..., fa.

Therefore, y35:2 = y3;" and y35* = y3%. By the min-max formulas,

YR =yl > B i=lor3



ifA<t<p and

=i < a2
if B <t < 3. For the case 33 = 35, we have that

+3 _ 2A+3 _ 2A+3 _ +2 _ 2A+2 2A+2 _ A+l _ 1
U5 =03 = vae = s = v < B = vl = it

For the case f3 < 3, we have that

2+3 _ | 2043 2A+3 _ 242 _ o 2A+2
YsT =Ygy 2 Yas, =Yas, = Vs
and
2+1 20+1 2L
vae < v, =z

However, in this case we have that g5 € A%+ — 4%+2_ By Lemma 7.7.1) we have
that Q3 = Q¥ = Qs and Q¥+ = Q¥+! = Q,. It follows that 325! = y2®
and

YB > 2 > e

By induction the proof is complete. (s}

Proof of Theorem 7.3.2. Similar to the proof of Theorem 7.2.1, the original problem

is ivalent to imize a concave objective function

m
Dldiln (1 - e”) + (n; — di)pi)
i=t

over a closed and bounded convex region p < 0 and

Yu<Yp<Yyn i=L2...m
i=t =t =t
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The solution exists and it is unique. Let
m, m i i m i ‘

¥ = $ldn (- ) -+ S (S, - zq,) S (}: n-3m)-
= = = j=t = =t =t

By the Equivalence Theorem (see Kuhn and Tucker, 1951), p < 0 is the optimal

solution if and only if there exist u > 0 and v > 0 such that

0 n=tn(1- )

S N Sl

@ w(Er-Ya) =0, w}n-3p) =0
= = = =

am Y <yp<y
==l =

..... m. Initially we define u? = 0,i=1,2,....,m fie A¥H — 4%

yi =yl foreach [ > 2r + 1; if i € A%*2 — A *1, then let vf = y},, — ¢/ for
each [ > 2r + 2. It follows that y{ = ST, u} — $°7, v} and hence (/) is satisfied at
each step of the [PPF algorithm. Consider the case i € A>*+' — 4*. Then v! =0

forall{ >0 and u! =0 for [ < 2r + 1. For { > 2r + 1, by Lemma 7.7.2 one obtains
w=yl~vha 2 - >0
By Lemma A1,

i i d 5
pIF A =§In(l~m)=an,=§q,.

=t
Therefore, the first equation of Condition (II) is satisfied at each step [, as is the
second. Similarly, one can prove for the case i € A**2 — A*!. Our procedure
terminates no later than m steps when the condition (/II) is satisfied because at
each step the index subset A' will have one or more new elements. This completes

the proof. a
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Table 7.1: Post-transplant Survival Times of Heart Transplant Patients and Their
Estimates in Grouped Data

© 0~ Do

Si

7

14
28
56
112
224
448
896
1792

&

© =D w0 o

n
69
65
62
57
45
37
32
20

9

P

.9420
.8986
8261
6522
5362
4638
.2899
-1304<
.0000

Q!

9322
8722

I

9498
9122
.8495>
6990
.5987
-5360
.3856
2476
.0000

I3

-9551
9153
8483
7526
6489
5658
4823
2476
0000

P?

f
9494
9115
.8483
6982
5980
-5355
3853
2476
0000

* The end of new partition.
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Table 7.2: Post-transplant Survival Times of Heart Transplant Patients and Their

Estimates
i S d L om| B Q P R P2 @}
1 0 I 0 69].986< 1.00° 1.00 1.00 1.00 1.00
2 1 1 1 68]|.971< .990° .990 -990  .990 990
3 3 1 C 66|.956< 970 975 980 .968< .970%
4 12 1 1 65|.942 .889 960> .926" .926 926
5 14 1 0 63].927 872 945> 915 .908 872
6 15 1 0 62|.912 .84 .929> 910 .889 870
7 23 1 0 61|.897 .805 914> .870° .870 870
8 25 1 0 60|.832 792 889> 861 .857 .792
9 26 1 0 39|.867 .785 .884> .857 .843 788
10 27 1 0 38].852 779 868> .853 .830 788
11 29 1 1 57|.837 .766 .853> .844 .816 788
12 39 1 0 55].822 709 .838> .806 .802 788
13 44 1 0 54|.807 .684 .822> .788° .788 .788
14 46 1 0 53).791 675 807> .782 775 675
15 47 1 0 32|.776 670 .791> .779 .762 670
16 48 1 0 51|.761 .666 .776 776 749 .666
17 50 1 0 50|.746 657 .760 770 735 657
18 51 3 0 49|.700 .653 .714 767  .696 653
19 54 1 0 46|.685  .640 .698 758  .683 640
20 60 1 0 45|.670 617 .683 742 669 617
21 63 1 0 44|.654 606 .667 .735 .656 .606
22 64 1 0 43(.639 603 .652 732 .643 .603
23 65 2 0 42/.609 600 .621 730 .616 .600
24 66 1 0 40(.593< .596 .605 727 603 .596
25 68 1 1 39|.578< .590° .590 590 .590 -590
26 127 1 0 37|.563 468 573 590 573 468
27 136 1 0 36|.547 457 .558 590  .558 457
28 147 1 0 35|.531 446 542 590  .542 446
29 161 1 1 34.516 434 526 .590 .526 434
30 228 1 1 32].500 395 510 564 510 395 510

{to be continued)



Table 7.2

(continued)

0
0
1
5
2
1
1
2
0
0
2
4

* The end of new partition.
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Figure 7.1: The K-M Estimate (o), the Bounded MLE
(+) and the Lower Bound and the Upper bound (dotted
lines) the Post-Transplant Survival Function



Table 7.3: Root Mean Square Error of Bound Restricted Estimate of a Survival
Function P(t) under 10,000 Iterations

Size 100 Size 300

[20) 120
050 025 010 005 050 025 010 005
BI 0130 0119 0092 0089 0123 Ol .0065 .0042
Case B2 0245 0234 0169 0134 0194 .0180 .0121 .0084
I B3 0494 0433 0313 0236 0268 0234 .0162 .0119
K-M 0501 .0436 .0303 .0219 0288 .0251 .0174 .0126
Bl 0255 023 0162 0121 0217 019 .0126 .0086
Case B2 0411 0369 0250 0180 0265 .0221 .0145 .0101
I B3 0461 0403 0277 0205 0271 0236 .0156 .0112
K-M 0503 0438 0300 0218 0289 .0252 0172 .0127
Bl 0334 0315 0226 0150 0256 .0233 0163 0116
Case B2 0435 0391 0282 0201 0277 .0245 .0171 .0123
OI B3 0466 0404 0288 0205 0281 .0247 .0172 .0124
K-M_ 0506 .0432 0307 0219 0286 .0249 0174 .0127
Bl 0451 0372 0207 0122 0277 0239 0151 0094
Case B2 .0472 0398 (0239 0148 0281 .0244 .0161 .0106
IV B3 0486 .0422 0286 0205 0284 .0248 0169 .0119
K-M_ 0499 0432 0302 0220 0286 .0250 .0174 .0126
Exact SD 0500 0433 0300 0218 0289 0250 0173 0126




Chapter 8

On Simulating Tail Probabilities
with a Known Bound

The problem of estimating distribution functions is of great i

the upper tail probabilities. Simulations play a vital role in approximating proba-
bilities of istics with i ble distributi i In this chapter we will

consider the problem of estimating tail ilities of distributi ions with
a known stochastic bound and having monotone decreasing density at the upper
tails. Such prior knowledge may be utilized in the estimation problem to increase

the efficiency.

8.1 The Problem

Let F(-) be the cumulative distribution function (cdf) of interest and G(-) be its
stochastic bound such that F(t) < G(t) for all . We assume that F(-) has a
probability density function f(-) which is monotone on the right tail (a, +c0), where

a is a known real number. Suppose that one is interested in estimating F'(€) for

a specific £ € (e, +00). One can i the prior ledge of the
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bound and monotonicity to gain efficiency in estimation. The procedure is as follows.
Let m and n be positive integers and h be a positive real number such that

& —mh > a. We first partition the real line into K = m + n + 2 intervals by

(=00, —mh], ....(§ ~ h.&], (0. & + Al ..., (& + nh,+00). Let fi,..., fx and
g1.-.., 9 be the probabilities of F and G on these intervals, respectively. It is
clear that F(€) = TZ{' fi, fo 2 fi-t, Tt i 2 Tlavgi s = 1,...,k— 1, and
Sk fi = 1. A restricted estimate of f;, denoted by BM-estimate, is then obtained
by solving the problem

min fj(f. -f2 8.1)

An(g+8) o

where f is the non-restricted MLE of f and

A= {f=(ffof): o2 F2... 2 fiu}
J J k k.

B = {f=(fi.for s f): 2 i2X g si=10k=-L) fi=Y g =1}
i

i=l =1

Since A and B are closed convex cones, the algorithm proposed by Dykstra and
Boyel (1987) can be applied to find the solution, (see Chapter 2 for the details of

this algorithm and a simplified proof of the correct convergence of the algorithm).

8.2 A Simulation Study

It is well known that the simple isotonic regression always reduces the pointwise
mean squares errors (MSE’s) of estimates if the model is correct, (Lee, 1981). Point-
wise MSE'’s of estimates obtained under the stochastic bound constraint can be sig-
nificantly smaller than the MSE'’s of the unrestricted nonparametric MLE’s when

the bounds are properly imposed. But it could also increase the MSE’s if only one
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sharp upper bound or one sharp lower bound is imposed and the sample size is
small, see Lee, Yan and Shi (1996).

A simulation study is perfc d here to i i the efficiency of our proposed
d The relative effici of two esti is defined to be the reciprocal

of the ratios of their MSE's.
Tables 1 and 2 present the relative iencies of i i to the

unrestricted non-parametric MLE of the right tail probability 0.10 for the standard

normal distribution and the d: | distribution. We observe that the
d increase the efficiency of estimati i even when
the imp of indivi is not signi for small and moderate

sample sizes. For example, in Table 8.1, the relative efficiencies of the estimators
with sample size 50 are 1.11, 1.15, 1.18, 1.19 and 1.19 when only the monotone
constraint is used; 1.60, 1.56, 1.46 1.34 and 1.20 when only the bound 2 constraint
is used; and 2.33, 2.64, 2.56, 2.25 and 1.84 when both the monotone and bound 2
constraints are used for the listed lengths of intervals.

8.3 An Example

Generalized maximum modulus (GMM) was introduced by Lee (1996) in construct-
ing Tukey-type d bands for i Let Z,Z,,

-, Zy be independent standard normal variates. A GMM of order n is a random

variable defined by
- | Shei Znl
GM, = 15}3-“,’;,. ﬁ (8.2)




Table 8.1: Relative Effici of the i Esti to the [ i MLE
of Right Tail Probability of F(t) = 1 — exp(—t) at 2.30 with k = 10, (10,000 Itera-
tions)

Sample Length of Intervals MSE of
Size Ci i 0.08 0.16 0.24 0.32 040 MLE
Monotone only L1l 115 1.18 1.19 1.19
Bound 1 only 130 132 132 130 127
Monotone & Bound 1 | 1.57 1.75 1.83 1.82 1L.74
50 Bound 2 only 160 156 146 1.34 120 18.59
Monotone & Bound 2 | 2.33 2.64 2.56 225 1.84| x107*
Bound 3 only 167 152 1.34 1.18 1.02
Monotone & Bound 3 | 2.79 3.00 2.56 2.04 156
Monotone only 109 114 1.15 114 113
Bound 1 only 113 116 1.17 117 113
Monotone & Bound 1 [ 1.30 1.40 143 141 139
100 Bound 2 only 1.52 1.52 148 141 131 9.39
Monotone & Bound 2 | 1.99 2.23 2.17 1.86 171| x10™*
Bound 3 only 171 159 144 129 113

M & Bound 3 | 268 2.82 241 191 151
Monotone only 1.06 1.08 1.07 1.05 1.03
Bound 1 only 1.00 1.00 1.00 1.01 101
Monotone & Bound 1 |1.06 1.08 1.07 106 1.03
500 Bound 2 only 113 1.4 115 L15 115 1.80
Monotone & Bound 2 { 1.22 1.26 1.26 124 1.21| x10~*
Bound 3 only 154 154 1.51 144 133

& Bound3 | 1.86 1.88 1.78 1.62 1.43
Monotone only 106 106 105 1.03 1.01
Bound 1 only 1.00 1.00 1.00 1.00 1.00

& Bound 1 | 1.06 1.06 1.13 1.03 1.01

1000 Bound 2 only 1.02 1.03 1.03 1.03 1.05 0.90
& Bound 2 |1.08 1.10 1.08 1.07 1.06 | x107*
Bound 3 only 130 1.34 1.34 1.32 129
& Bound 3 | 1.45 148 145 1.38 1.28

Note: The cumulative distribution functions of the three bounds are,
respectively, 1 — exp(—¢/0.80), 1 — exp(—t/0.90), and 1 — exp(—t/0.95)
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Table 8.2: Relative Efficiency of the i Esti to the Unrestricted MLE
of Right Tail Probability of N(0.1) at 1.645 with k = 10, (10,000 Iterations)

Sample Length of Intervals MSE of
Size C i 0.04 008 0.12 0.16 020 0.24 MLE
1 only 111 115 119 102 124 1.25
Bound 1 only 140 143 142 1.38 130 1.20
&Bound1|1.74 1.88 226 2.33 224 2.01
50 Bound 2 only 1.58 157 1.49 1.40 128 1.15 18.59
Monotone & Bound 2 [ 2.18 2.66 2.89 2.78 246 2.06 | x10~*
Bound 3 only 167 1.56 142 1.28 116 1.04
Monotone & Bound 3 | 2.75 3.24 326 2.83 234 1.88

¢ only 109 115 118 1.18 119 1.19
Bound 1 only 123 127 129 129 127 121
Monotone & Bound 1 | 1.42 1.60 1.73 1.78 1.77 1.67
100 Bound 2 only 149 151 149 143 134 1.22 9.39
Monotone & Bound 2 [ 1.90 2.22 2.37 2.29 208 1.81| x107*
Bound 3 only 1.72 163 151 1.37 124 112

Monotone & Bound 3 | 2.65 3.07 296 2.52 207 1.72
Monotone only 106 109 110 1.10 1.08 1.07

Bound 1 only 101 101 1.01 103 105 1.07
Monotone & Bound 1 |1.07 1.10 102 1.13 114 115
500 Bound 2 only 110 112 117 118 118 115 1.80

Monotone & Bound 2 | 1.18 1.25 1.29 1.31 131 1.26| x10~*
Bound 3 only 133 154 1353 146 135 1.22

Mo &Bound 3 /184 200 196 1.82 161 137
Monotone only 1.06 107 1.07 1.06 1.05 1.03
Bound 1 only 100 1.00 1.00 1.00 1.01 1.03

Monotone & Bound 1 | 1.06 1.07 1.07 1.07 106 1.06
1000 Bound 2 only 1.01 102 1.03 1.05 1.07 1.07 0.90
Monotone & Bound 2 [1.07 110 1.11 1.11 113 1.11| x107*

Bound 3 only 129 134 136 1.34 130 1.20
Monotone & Bound 3 | 1.43 1.53 1.55 1.50 141 1.27
ote: 1. The distributions of the three bounds are, respectively,
N(0,7), N(0,0.8), and N(0,0.9).
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The distribution of GM, is very i and its tail ilities can be ob-
tained by ical i ion of n di ions (using e.g. NAG), but its precision
for higher di: i cases is still ionable. An i imation can

be obtained by simulation and selected percentiles of GMM random variables can
be found in Lee (1996).

We now apply our proposed procedure to simulate tail probabilities of GMM.
It is trivial that GM, > MM, = maxXici<a|Zi|. The latter is well known as the
maximum modulus random variable. It follows that the cdf of MM, is an upper
bound for the cdf of GM,. This bound will be used in the simulation for n = 2,
5, 10, 15 and 20. We shall assume that GM,, has a monotone decreasing density
function at the right tails.

The number of intervals used in this simulation is 20 and the length of the interval
is 0.05. Relative i of the BM-esti to the i MLE of the tail

probabilities at the 90th, 95th and 99th percentiles (approximate) is listed in Table
8.3 for sample sizes 50, 100, 200 and 500. We observe that the improvement of the

BM-esti is very signil i for small sample size, small GMM order

and at the 99th percentiles.



Table 8.3: Relative Effici

of the BM:

to the U

GMM Tail Probabilities (10,000 Iterations)

Order of

GMM

Sample Size

100

200

500

2

3.07
3.21
3.70

2.49
2.77
3.58

173
2.03
3.00

o

4.30

1.68
1.99
3.69

1.30
1.49
2.75

110
121
1.89

3.10

3.81

171
2.16
4.24
1.56
1.98
412
149
187
3.82

1.36
1.58
3.16
129
147
2.94
1.26
142
2.88

1.16
1.28

1.14
1.25
2.09
114
1.23
1.97

1.08
114
151
108
pBSE
143
1.09
111
143

MLE of the
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