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Abstract

Order restricted inference is an important field in statistical science. The uti-

Iization of ordering informations can increase tbe efficiency of statistical inference

procedures in several senses. see Ayer. Brunk, Ewing, Reid, and Silve.rman (1955),

Robenson and Wrigbt (19i4). Barlow and Ubhaya (1971), Lee (1981) and Kelly

(1989).

In this thesis we review some basic tbeories about the least squares regressions.

particularly the isotonic regressions. We give a simplified proof of an iterative pro­

cedure proposed by Dykstra (1983) for least squares problems.

We investigate tbe properties of the orderings of real-valued functions from sev­

eral aspects. Some definitions are e.'Ctended and their properties are generalized. "Ve

also show that the concept of closed convex cones and their duals is important in

estimating procedures as v.-ell as in testing procedures. We demonstrate that some

seemingly different problems bave actually the same likelihood ratio test sWistics

and critical regions.

We obsen-e that the orders of real-valued functions and the orders of random

variables are closely relat.e.d and statistical inference regarding these two orders be.­

have. similarly. A class of bivariate quantifications are defined based on these two

orders. This bivariate notion has direct interpretation and appealing properties.

More important, it characterizes a degree of positive dependence among random

variables and therefore makes it possible to study the positive dependence of ran­

dom variables by using the theories of the orders of real-valued functions and the

orders of random variables.

We consider several estimation problems under order restrictions. We propose an



algorithm that finds the nonparametric maximum likelihood estimates of a stochasti­

cally bounded survival function in finite steps, usually two or three steps. Simulation

study shows that in general. utilizing the prior knowledge of a lower bound and an

upper bound may reduce the point-wise MSE's and the amount of reduction in

MSE's could be substantial for small and moderate sample sizes for a pair of sharp

bounds. We obtain the estimates of a multinomial parameter under various order

constraints for a general mw.tinomial estimation procmure defined by Cressie and

Read (1984).

We also consider the problem of simulating tail probabilities with a known

stochastic bound. The proposed procedure may increase the efficiency of simula­

tion significantly.
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Chapter 1

Introduction

Statistical inference under order restrictions is an important field in statistical sci­

ence. Many types of problems are concerned with identifying meaningful structure

in real world situatioDS. Structure characterized by order restrictions arises in nu­

merous settings and bas many useful applications. For example. the failure rate

of a component may increase as it ages: treatment responses may be stochastically

dominated by a control. The books of Barlow, Bartholomew, Bremner and Brunk

(1972), and Robertson, Wright and Dykstra (1988) are two classical monographs on

this field and contain many important problems.

The utilization of ordering informations can increase tbe efficiency of statisti­

cal inference procedures in several senses. for example. 'isotornzing' estimates can

reduce total square error (Ayer, Brunk, Ewing, Reid, and Silverman 1955) and ma.'C­

imum absolute error (Robertson and Wright 1974, and Barlow and Ubhaya 1971).

Little was known about the pointwise properties of MLE's under order restrictions

until Lee (1981) considered the problem of estimating linearly ordered normal means.

He showed that in this case mean square error is reduced for every individual mean

by using order restricted MLE's. An even stronger result for the same problem was



obtained by Kelly (1989): the absolute error of each individual estimate under order

restrictiou is stochastically smaller than that of the sample mean. Lee (1988) also

observed that these pointwise properties do not hold, in geueral, for partial order

restrictious.

:\ number of quantifications have appeared in literature to characterize the order

of vectors in R". The well known isotonic regressiou arises from the maximum like­

lihood estimation of normal means under an isotonic restrictiou with respect to a

quasi-order of the populatious. Its usefulness is greatly enhanced by the fact that it

solves a wide variety of restricted estimation problems in which the objective func~

tion may take many different forms other than the sum of squares. Its application

include tbe maximum likelihood estimation of ordered nonnal variances, ordered

binomial parameters (bioassay), ordered Poisson means, ordered multinomial pa­

rameters as well as a variety of problems from other areas, such as inventory theory

and reliability analysis. In addition. the application of isotonic regression can be

readily extended to some other important problems by the theory of Fenchel's du·

ality. Other quantifications such as increasing on average and increasing on split

average are also often considered in applications.

These quantifications of functions correspond to closed convex cones in a Jlk

space. The concept of duals of closed convex cones and the associated duality

theorems in finite dimensional Euclidean space nave proven to be useful in order

restricted problems. Several authors have made extensive use of the concept of

convex cones and their duals in Jlk. Among these are Rockfellar (1970), Barlow and

Brunk (1972), Robertson and Wright (1981), and Dykstra (1984). See Robertson,

Wright and Dykstra (1988) for more details on the theory and applications of this



subject.

The idea of ordering random variables with respect to the considered property

is nnt very old. The (usual) stochastic ordering was tim introduced by Mann and

Whitney (1947) and Lehmann (1955). Since then many new notions have been in­

troduced in the literature to characterize orders of random variables, such as the

uniform stochastic ordering and the likelihood ratio ordering. The (usual) stochas­

tic ordering, the uniform stochastic ordering and the likelihood ratio ordering are

three of the most \vell studied orderings in the literature and can be expressed

conveniently in terms of total positivity (TP) of probability functions. Stochastic

orderings between random variables can arise in numerous settings and have many

useful applications. For example, the simplest way of comparing two random vari­

ables is by comparing their means. Howe..-er, such a comparison is based on only

two single numbers (the means), and sometimes it is not very informath-e, especially

in Donparametric statistical inference. Stochastic orders can also be used to deduce

probability inequalities which are useful to obtain bounds for probabilities that are

tedious to compute or analytically impo5Sible to handle. For example, Lehmann

(1959, P.1l2, Problem 11) showed that X is stochastically smaller than Y if and

only if Eu(X) :5 Eu(Y) for all increasing functions u. The reader is referred to

the newly published book by Shaked and Shanthikumar (1994) for an overview on

stochastic orderings and their applications.

Quantifications of real-valued functions and quantifications of random variable

are closely related and statistical inferences with regard to these two classes of quan­

tifications behave similarly. A class of bivariate quantifications are defined based

on these two orders. This bivariate notion has direct interpretation and appealing



properties. More important. it characterizes a degree of positive dependence among

random variables and therefore makes it possible to study the positive dependence

of random variables by using the theories of the orders of real·"ll.l.ued functions and

the orders of random variables.

In Chapter 2 we introduce some basic results on least squares regression and

particularly, the isotonic regression. We will introduce three algorithms that have

been used extensively in studying and computing the isotonic regressions, namely,

the pool.adjacent-violators algorithm. tbe minimum·lower-sets algorithm and the

min-max formula. We will also gi'oe a simplified proof of the correct convergence of

an iterative procedure which was first proposed by Dykstra and Robertson (1982a)

for a matrix partial order and then extended by Dykstra (1983) and Dykstra and

Boyle (1987) to a very general setting.

In Chapter 3 we extend tne notions of orders of real-valued vectors in R!< space

to real·va.lued functions in a measurable space and calculate the corresponding dual

cones. We exhibit an important property of duality in the problem of hypothesis

testing and demonstrate that some seemingly different problems have actually the

same likelihood ratio test statistics and critical regions.

In Chapter 4 we introduce the order of random variables in terms of total posi­

tivity of probability functions. The definition of total positivity ghoen in this chapter

is an extension of the usual one and can be readily used to define the quantification

of a sequence of random variables. We observe that tne orders of real-valued func­

tions and the orders of random variables are closely related and statistical inference

regarding these two orders behave similarly.

In Chapter 5, we define the quantification of bivariate random variables based



on tbe quantification of real-valued functions and the quantifications of random

\anables. We show that this quantification is closely related to the positive depen­

dence of random variables which has important applications in reliability analysis,

life sciences and many other fields. More specifically, we will show that the def­

initions of positi\-e dependence of random variables in reliability analysis (Barlow

and Proschan 1975) and positive associations for ordinal random variables (Agresti

1984 and Grove 1984) are special cases of our bivariate notions. But the bivariate

notions defined in this chapter ba~-e direct interpretations and nice properties and

the relations among them are readily revealed. In addition, it allows us to study

the positive dependence of random variables by using the theories of quantifications

of real·vaIued functions and random variables. Some aspects of estimation problem

are also considered in this chapter.

The remaining chapters are some applications of the above theories.

In Chapter 6, we consider the problem of estimating a multinomial parameter

under various ordering constraints for a general multinomial estimation procedure

defined by Cressie and Read (1984).

[n Chapter 7, we consider the problem of estimating a survival function that is

stochastically bounded both from below and from above, with rigbt-eensored data.

We extend the one-sided problems considered by Dykstra (1982) and propose an

efficient iterative algorithm to find bounded estimates in finite steps, usually two

or three steps. The proposed algorithm is an iterative procedure such that at each

step one needs only to solve several non-overlapping one-sided problems. An example

involving survival times for heart transplant patients which appeared in Crowley and

Hu (1977) is given to illustrate the proposed algorithm. We also conduct a simulation



study to investigate the increase in efficiency obtained by using the stochastically

bounded constraints. Simulation study shows that in general, utilizing the prior

knowledge of a lower bound and an upper bound may reduce the point-wise MSE's

and the amount of reduction in MSE's could be substantial for small and moderate

sample sizes for a pair of sharp bounds.

In Chapter 8, v.-e consider the problem of simulating tail probabilities with a

known stochastic bound. The propa;ed procedure may increase the efficiency of

simulation significantly.



Chapter 2

Isotonic Regression and Least
Squares Problems

2.1 Introduction

Isotonic regression problem arises from the maximum likelihood estimation of nor-

mal means under an order restriction and it plays a very important role in the order

restricted inference. Its usefulness is greatly enhanced by the fact that it solves a

wide variety of restricted estimation problems in which the objective function may

take many different forms otber than the sum of squares. Its application includes

maximum likelihood estimation of ordered normal variances, ordered binomial pa.

rameters (bioassay), ordered Poisson means, ordered multinomial parameters as weU

as a variety of problems from other areas, such as reliability theory and density esti­

mation, (d. sec: 1.5 of Robertson, Wright and Dykstra (1988)). In addition, solutions

to many other optimization problems can be expressed in terms of the isotonic re--

gression, see Barlow and Brunk (1972), Dykstra and Lee (1991), and Dykstra, Lee

and Van (1995).

The application of isotonic regression can be readily extended to some other



important problems by the theory of Fendel's duality. Duality is an important

concept in order restricted inference. For one thing, it provides an alternath'e ap­

proach to a problem that may be more tractable, or provides additional insight into

the problem. It is also possible to use duality concepts to expand the collection of

problems for which one has solutions. The reader is referred to Robertson. Wright

and Dykstra (1988) for more details on this subject.

The problem of developing algorithms for the isotonic regressions bas received

a great deal of attention. see Barlow et ai. (1972). In fact, isotonic regression is a

quadratic programming problem and there is an e.:'(tensive literature on the methods

of computing solutions. The problem of computing the isotonic regression is a special

case and a number of efficient algOrithms have been proposed.

The most widely used algorithm. for a simple order is the pool-adjacent-violators

algorithm. (PAVA) first published by A~'er, Brunk, Ewing, Reid and Silverman

(1955). PAVA is a \'ery efficient algorithm but it does not apply in general to

partially ordered isotonic regression. For general partially ordered isotonic regres­

sion the most well known algorithm is the min.imum·lower-sets algorithm of Bmu

(1955). Several other algorithms ha,,-e been developed for quasi or partial orders to

increase the efficiency of the computation, such as the minimum violator algorithm

due to Thompson (1962), an algorithm due to Eeden (1958) and its improvement

due to Gebhardt (1970), and the min-max algorithm due to Lee (1983), among

others.

An iterative algorithm for the matrix partial order is developed by Dykstra and

Robertson (1982a). This type of iterative algorithm has been extended. to a large

number of restricted optimization problems by Dykstra (1983) and Dykstra and



Boyle (1987).

In Section 2.2 we first review some concepts and preLiminary results of the least

squares regressions. Concepts of quasi..Qrders and isotonic regressions are given

in Section 2.3. In Section 2.4 we introduce three extensively used algorithms for

isotonic regressions, namely PAVA, minimum-low·sets algorithm and the min-max:

formula. Most of the contents of Section 2.3 and 2.4 can be found in RobertsOn,

Wright and Dykstra (1988). In section 2.5 we give a simplified proof of the correct

convergence of the iterative procedure proposed by Dykstra and Boyle (1987) for a

general least squares probLem.

2.2 Basic Concepts and Least Squares Regression

2.2.1 Convex Sets, Cones and Dual Cones

Let R" he a k-dimensional Euclidean space with the inner product defined by

(f,g) = ~f;9iWi' V/,y E R!<, (2.1)

where w = (WL, .. , w,,) is a vector of weights such that Wi > 0, i = 1,2, .. , k and

r:~,",IWi = 1.

A subset C of R" is said to be convex set if (1 - >')1 + >.y E C whenever

lEe, y E C and 0 :$ ..\ :$ 1. It is well known that the intersection of an arbitrary

number of convex sets is still convex.

A subset C of R" is called a cone if it is closed under nonnegative scalar multi­

plication, i.e. ..\1 E C when lEe and >. > O. Note that a cone is not necessarily

"pointed." For example, subspaces of R" are special cones. So are the open and

closed half-spaces corresponding to a hyperplane containing the origin.
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for a convex coo@ C, the subset C' of R!< defined by

C· = (g E 11:' , (g, f) ~ to gd,w, $ o. •f E C}. (2.2)

is called the Fenchd duaJor polar of C. rn panicular, i(C = 5 is a subspace of R!<,

then

(2.3)

It can be shown that C' is also a convex cone and furthermore, it is closed.

For any two subsets A, B of R!', denote A + B the direct sum of sets A, B, i.e..

A + B "" {/ + 911 E A, 9 E B}. Let C, C1 and C'2 be convex cones. We have the

following results,

(a) C C (CT. and C = (CT if C is dosed; (2.4)

(b) (-C)" ~ -C', (2.5)

(e) Ci C c; if C1 :J ~ (2.6)

(d) (C, + c,)" ~ C, n C;, (2.7)

eel (et nCzl" =Cj + C2 if the latter is dosed, (2.8)

see Rockafellar (1970. p.146).

2.2.2 Least Squares Regression and Projection

In the least squares regression. we are interested in the problem of.
Minimize lEe ~(9i - /;)'lW;. (2.9)

where 9 E R!< is a given vector and C c flk is a dosed convex set. The solution to

the problem (2.9) exists and it is unique. This unique solution, denoted by E(gIC),

is called the least squares projection of g onto C.
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Brunk (1965) sbcw.'ed that a 'lector g' E C is the solution if and only if

(g-g',f-g.) SO, v/eC. (2.10)

Funbermore, if C = C is a closed convex cone. then 9· E C is the solution if and

only if

(g - g•. g') ~ O.

and

(g-g',flSO, V/eC.

Barlow and Brunk (1972) showed that

E(gIC) + E(gIC·) ~ g.

It follows that

(E(gle). E(gIC·j) ~ o.

An affine transformation of a set C by Q E Er' is defined to be the set

C+o~{f+",/eC}.

Lemma 2.2.1 Ld C c Rk be a dosed conve% .lid. Then

E(gl C+o) ~o+E(g-olC).

Proof Letg· ~ E(gIC+o). By (2.lO), V/ eC,

(g - g',(f +0) - g)

«g - 0) - (g' - o).! - (g' - oj) SO.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Therefore, by (2.10) again, 9' - Q = E(g - ale). The proof is complete. 0
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Corollary 2.2.1 Let C c Ir be a closed convex cone. Then

£(9 IC + 0) = 9 - £(9 ~ aIC").

Proof. By (2.16) and (2.13).

(2.17)

E(yle +0) 0: + E(9 -ole)

0' + (g - 0) - £(9 - ole")

9 - E(g - oIC').

o

Let g" = E{y I C + oj, where C is a closed convex cone. By (2.16), g" - 0' =

£(9 - olC) E c. By (2.17), 9 - g" = E(9 - oIC·). It follows from (2.14) that

~d

(g' - 0.9 - y') = 0,

(g" - 0:, xl $ 0, 'r/ x E C'.

(2.18)

(2.19)

2,3 Quasi-order of Finite Sets and Isotonic Re­
gressions

2.3.1 Quasi-order

Let X be a finite set {XI,X" .. ,It}. A binary relation --< on X is a simple order if

1. it is reflexive: x -<x for x E X;

2. it is traruitive: x,y,z E X, x -< y and y -< Z imply x -< z;
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3. it is anfuvmmdric: Itg EX.:r -<" and y -<:r: imply:r =y:

-I. it is comparable: L, y E X implies that either :r -< y or II -< x.

A binary relation -< on X is called a partial onkr if it is re8exive, transith-e, and

antisymmetric, but there may be noncomparable elements. A biDary relation -< is

called a quasi-order if it is reflexive and transitive, but it need not be antisymmetric

and it may admit noncomparable elements. A partial order usually arises when

vector comparison are involved. The following examples are some partial orders

tbat are frequently encountered in applications.

Example 2.2.1 (Simple order): XI -< I2 -< ... -< :rot.

Example 2.2.2 (Simple loop order): Ig -< I, -< Z.t+h i = 1,2, .. ,k.

Example 2.2.3 (Simple tree order): Xo -< Xi. i = 1,2, ... k.

Example 2.2.4 (Umbrello order): XI -< 72 -< .. - -< x.. >- Xio+l >- ... >- XIt.

Simple order is one of the mast important orders and has many useful applica­

tions. This will be evident throughout tb.is article. The simple tree order, the simple

loop order and the umbrella order are three partial orders that have found many

useful applications. The simple tree order is a subset of the simple loop order. Thl!5e

two orders arise in sampling situations where one wishes: to compare several treat·

ments with one or two extreme contro15. For example, in a drug analysis, several

drugs may be compared to a zerc~dose control and a most effective but expensive

drug control. The umbrella order is closely related to tbe unimodal property and

bas found useful applications in estimating density functions, (see Robertson et 41.

1988 for some more details OD this subject).



"
2.3.2 Isotonic Regression

A real-valued function, f. 00 X is said to be isotQnic with respect to the quasi.

ordering -< on X if %, YE .Y and % -< Y imply f(z) :S j(y).

Let 9 be a given function 00 X and w a given positive weight function on X.

An isotonic function gO on X is called an isotonic regre.J.sion of 9 with weight w if it

minimizes

2: [g(x) - !(x)!'w(x)
..EX

in the class of all isotonic functions on X.

A real-valued function 00 a finite set X can be considered as a point of a Eu·

clidean space which bas as its dimension the number of points in X. In this setting,

the collection, It of all isotonic functions on X ",'itb respect to a given quasi-order

is a dosed COO\"e..,,( cooe and the isotonic regression y" is the closest point of Z to 9

with distance induced by tbe inner product

The existence and uniqueness then follow from the general theory of least squares

problem described earlier in this chapter.

2.3.3 Properties of Isotonic Regression

The isotonic: regression has a number of important properties. Some of them are

given below.

Theorem 2.3.1 Suppose 91 and 9'1. are 13otonic functions on X such that 9'(%) $

g(%} :5. 9'1.(x) lor all x E X I and if g" 13 an 13otonic ~on of 9, thm also
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9\(%) ~ g'(x) ~ 92(r) for all z eX. In particular, if a and b are constants such

that a ~ g(x) :oS b JOT all x e .Y, then al!o a :$ gO(r) :5 b for x EX. (Th. 1.3.4

RWDj

Suppose 9 and Ul are functions on X, set

Av(.-t) = EZEA w(x)g(x)
LZEAW(Z)

for those .4. nonempty subsets of X. While Av(A) depends on 9. this wiU not be

made explicit in the notation. Let (g' = cJ denote (x EX: g'(r) = c}.

Theorem 2.3.2 If c is any mU number and if the .set (go = cl u nonempty then

o ~ A>{[g' =01). ITh 1.3.5, RWDj

Theorem 2.3.3 For an arbitrary real-valued junction, 11', defined on the reals,

ITh /.3.6 RWDj

Theorem 2.3.2 reduces the problem of computing g' to finding the sets on which

g' is constant (i.e. its level lieu). There are & number of aJgorithms in computing

isotonic regressions and we will introduce three of tbem in tbe next section that

have been extensively used, namely the poot-odjocent-violatoT.s algorithm (PAVA),

the minimum-lower-sets algorithm and the min-maz /ofTTIula.
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2.4 Algorithms for Isotonic Regression

2.4.1 Pool-Adjacent-Violators Algorithm for the Simple Or­
der

Let X be a finite set {%I' L2... ,%k} with a simple order XI -< %, -< ... -< L/I;.. Then

a real valued function f on X is isotonic if and only if f(xl):5 f(x,):s ".. $/(%,,).

Let 9 be a given function on X and w a given positive weight function on X. By

definition, the isotonic regression of 9 is an isotonic function that minimizes in the

class of isotonic functions f on X the sum of squares

L (g(x) - !(x)!'w(x) .
•'x

The PAVA starts witn g. rr 9 is isotonic. then 9' = g_ Otherwise, there must

e.~t an index i such that g(x._d > 9(%,). These two values ace then replaced by

their weighted a\"erage. namely Av({i-l,i}) and the two weights w(xi_d and w(x.)

are replaced by w(z._d + w(x,). If this Dew set of k - 1 values is isotonic. then

g'(xi_d = gO(Zi) = Av({i - i,i}) and 9·(%;) = g(Z'j) otherwise. [f this new set is

not isotonic then this process is repeated using the new vaJues and weights until an

isotonic set of vaJues is obtained.

2.4.2 Max-min Formulas

Let -< be a given quasi-order on X. A subset L of X is caHed a lower set with

respect to the quasi-order -< if Y ELand x -< y imply x E L. A subset U of X is

called an upper set if x E U and x -< y imply y E U. We denote the class of all

lower sets by J:. and the class of all the upper sets by U. A subset B of X is called

a level sd if there exists a lower set L and an upper set U such that B = L n U.
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Theorem 2.4.1 The uotonic regression of 9 u givca by

(Th. J••.• RWDJ.

g'(x) m.,~1L~L·.tv(LnU)

L~LVrr;%,,'v(LnU)

(2.20)

(2.2l)

For illustration, let us consider the simple order defined on X by z\ -< %2 .....

,-. -< Xk. The nonempty lower sets are of the form {XhZ2, .•. ,X;}i i = 1,2, .. ,k,

and the nonempty upper sets are of the Conn {Xi,Xi+! • •• ,X.l:}; i = 1, .. ,k. For

the simple order, the max-min formula can be expressed by

9"(X.) ~tfr:ligAv({:rJlXj+t. .. ,XII})

TJ~~t."(A.v({Zj,Xl+I' . _,x.}).

(2.22)

(2.23)

2.4.3 The Minimum-lower-sets Algorithm

Let 8. denote the union of all lower sets of minimum average. 8. is the level set on

which g< assumes its smallest value:

g"(x) = Av(8.) = mio{Av(L): L E C} for x E B._

Now consider the averages of level sets of the form L n Sf, level sets consisting of

lower sets with 8. subtracted. Select again the union of these level sets of minimum

average, say 8 2 . The level set 8 2 is the set on which gO assumes its next smallest

value;

gO(x) = Av(B2 ) = min{Av(L n~); L E C} for x E~.

This process is continued until X is exhausted.
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2.5 A Proof of the Convergence of Dykstra's Al­
gorithm for Restricted Least Squares Regres­
sion

Many important least squares problems can be expressed as

Minimize ~~(K,+<t.J II 9 - % II . (2.24)

where K(, K2• •• K~ are dosed convex cones in R'" and 0\,02,' . ,Ur e Er". Dyk·

stra and Robenson (1982a) and Dykstra (1983) proposed an iterative method for

the case al =01 =. . = 0. =0, and showed that their procedure converges cor·

reetly. Later, Dykstra and Boyle (1987) extended this algorithm for arbitrary o;'s

and shO'A-ed that the procedure also converges to the desired solution as long as the

feasible set is nonempty. In this section we consider the same problem of Dykstra

and Boyle (1987) and give a simpler proof of the convergence ortbe algorithm. First,

we rewrite their procedure as following.

Step O. Initial settings; let 9a" = g, 10 .. =0, i =1,2, "'f r, and n = 1.

Step I. Compute

9...1 E{g.._l, -1..._I.lIKI +n!l,

/ •• 1 9... ,1 - (g,,-l,r - III_I,d· (2.25)

s == 2,3, ... ,r.

Step 2. Replace n by n + 1 and go to step 1.

(2.26)
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NOLI: that as we cyclicaliy project onto oDe of the COD\o-ex sets, tbe last increment

for that set is removed prior to that projection and a new increment Cor that set is

always formed. It follows from the algorithm that

Y"..o = 9 +~ 1...1 + 2~" 1,,_1,1, S = 1,2, ", r. (2.27)

where the second summand is 0 if s = r. The utility of the algorithm is based

on the foUowing theorem which bas been proved by Dykstra and Boyle's (1981).

The following is a simplified proof of the same theorem. The difference betv.-een

the two proofs is that we will use directly the basic property (2.10) of least squares

regressions to show the correct con~rgence of each convergent subsequence while

Dykstra and Boyle's proof is not so straightforward.

Theorem 2.5.1 Ifn'i=dK; + OJ) I- 0, then

J!.DJ:.9C..J) = £(91 n~ (Kj + OIi))

for etI~l= 1,2,. _,r.

Proof. Since K, + a, are closed com-ex sets, so is the nonempty set rY... ,(K; + a,l.

Therefore the projection of 9 onto n~:I(Ki + Q;) exists, say 9' and this projection

is unique. Note that the key relationships;

9",i.-1 - 9",;

9,,-l,r - g",1

I,,_l.i - I.. ,i, i=2, .. ,T, (2.28)

(2.29)

hold among the projections and increments. It follows that

II g...._, - gO II' = II (g•.• - gO) + (I.-., - 1.,) II'
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II g.... - 9" II' + II [,,-t.i - I.... 11 2 +2(9' - ai. In.. - 1.._1.. )

for i:;:: 2. :"late that the last term is nonnegative since by (2.11) and (2.12). (9...,­

0i. [ .... ) =0 and (9.... - 0i, 1.._1.. ) ~ O. It follows that

119..,;-1 - g" 11'::::11 Un.. - g" 11' + I[ {..-I,i - [fl., II' +2(9" - OJ, In .. - {.._I.,)

for i ::: 2. In a similar fashion,

Noting tae "telescoping property" of the term (g' - Q,. In.. - ["_I .. ), we may write

II 9 - g' 11',,11 g., - g' II' + t t 11/._" - I., II' +2 t(g' - Q" I.,). (2.30)
t:II.. 1 1",1

Since g" - cr, E K. and I.... e -K;", the last term is nonnegative. Therefore,

(2.31)

Thus,

and

Il [..-1,1 - /",1 1I=1l9fH.~ - 9..,1 II~ 0, as n -+- co. (2.32)

By (2.30), gn.~ are uniformly bounded. So there exists a convergent subsequence,

say g,,;.r with the limit h. Of course, by (2.32), 9n;.; also converges to h for each

i ==- 1,2, .. ,r - 1. By th.e closeness of K, + ai, h E nl(K; + Oil. Now, for any
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x E ni(K; +0';),

(g - h,x - h) j~~(g - gR"T'X - h)

.1 im (-tln.,),L-h)
1 ....00 /=1

-t .lim (/",.1, x - 9",.d
I=l} ....oc

- ~}!..r~,U"J.l,X - ad + ~}.!.~(l"J,l'gn,,1- ad· (2.33)

The first term of (2.33) is nonnegative because x - 0'1 E K1 and ["J.1 E -Kt by

(2.25). The last term of (2.33) is zero by (2.25) and (2.18). It rouows that (g­

h,h - x) :5 O. Thus by (2.10), h = g', By symmetry, one can sbow that any

convergent subsequence {gn;.~}, s = 1,2, .. , r will have the same limit gO, The

proof is complete. o



Chapter 3

Quantifications of Real-Valued
Functions and Their Duals

3.1 Introduction

In tbe previous chapter we !lave reviewed some basic results regarding isotonic regres­

sion. While isotonicity is one of the most important quantifications for real-valued

functions, a number of other quantifications are also of great importance both in

theory and application. In this chapter we will introduce some notions that are

do.sely related to tbe notions for random variables in tbe next chapter.

These quantifications of functions correspond to convex cones in 12 or ~ space .

The concept of convex cones and their duals in finite dimensional Euclidean spACe

has proven to be useful in order restricted problems. Several authors have made

extensive use of the concept of convex cones and their duals in R!<. Among these

are Rockfellar (1970), Barlow and Brunk (1972), Robertson and Wright (1981), and

Dykstra (1984). In this chapter we investigate the dual cones of quantifications of

general real-valued functions. We also consider some applications of the concept of

dual cones in the problems of hypothesis testings.

22
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3.2 Quantifications of Discrete Functions

3.2.1 Definition and Properties

We first consider the simple case of discrete functions on a countable set of reaJ Dum·

bers X. Without loss oC generality. \\-e assume that X = {.... -2, -1,0, 1,2 ...}.

Let w(·) be a given nonnegative function on X such that Lr€X W(X) < 00.

Definition 3.2.1 Let f be a real-valuedftmction on X 8uch that L%EX lJ(x)lw(x) <

+00. The f i, said to be (with respect to the weight function w)

monotonic increasing, or in the order of <m, if

f(xl $f(y), fOT any x < y E X with w(x) > 0, w(y) > 0;

increa.ring on left averoge, or in tM ortkr of «_I. if

Li<.< w(i)!(i) :$ Li<, w(i)~(i), for any x < y e X with L wei) > 0;
r:i~zW(I) E':!i,W(l) ':!:z

increasing on right a~e, or in the order of "G+), if

Ei:> .. w(i)!(i) $ Eo>, w(i)~(i), for any x < ye X with L wei) > 0;
L.:>r W(1) Li>,W(I) i>,

increa.ring on 8plit average, or in the order of < •. if

Li<z w{i)f{i) < Ei>.< w{i)f{i) for any;r e X with l: w(i), 2: w(x) > o.
Li:Sz w(i) - E,>.< w(i) , i:S. 1>.

There are several equivalence properties for the order of <t:(-l and «+) that can

be conveniently used in applications.
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Lemma 3.2.1 The following statements are equivalent, (auuming the denomina-

tor.s are not zero):

(a) fez) if in the order of «-j;

(b) Lf.:.~(~~il ~ Lf.~·;:;.~(~~;;), for any Xl < Xl E X;

(e) Lt:'S~(~~il 'S Lf:S:I+~(~~;l. for any x E X;

(d) Lr.::(~:i) $. f(z + I), for any x E X and w(x + I) > 0;
(e) r:r.·s:(~(~·) S f(x), for any x E X and w(x) > O.

Proof The equivalence of (a) and (b) and the equivalence of (e), (d). (e) are straight

forward. We now prove the equivalence of (a) and (el. (t is trivial that (a) implies

(e). Conversely, SUPpo5e that (e) is true. Then for any x" we have

2:.<." f(i)w(i) < Li<.EI+l J(i)w(i) for any x. E X. (3.1)
I:,~z, wei) - Li:Sz,+1 wei) ,

By induction, ooe obtains

Li<,I"' J(i)w(i) < £.<.1" f(i)w(i) for any x\ 'S ];1 E X, (3.2)
r:''f%,w(i) - I:.:s~w(i) ,

i.e.• f(x) is in the order of «-)0 The proof is complete. 0

It is easy to obtain the following analogs of the result regarding the order «+1"
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Lemma 3.2.2 The following statement3 C17'e equivalent, (l1$SUming the denomina­

tor.! are not zero):

(a) f{x) i" in the order of 'G+l;

(6) L:£:,';.~.:(~~":5 Er::.:(:~·) for any XI < %2 E X;

(e) ~.',:(~~il:5 EE.::!:'(~~:il for any LeX;

frJ) f(x):5: If,>:(2~:il for any x E X and w(x) > 0;

te) f(x):5 E;:~::~ !or any:re X andw(x»O.

If there are finitely many positive wei), then the notions in Definition 3.2.1 are

reduced to the quantification of vectors in R!' which have been well studied in tbe

literature. The relationship among these orders are given by the following theorem.

Theorem 3.2.1 (a) <.. implies <(-J and 'G+l; (6) <(-) or «+J implie.t <~.

Proof. By symmetry, it suffices to pro"e that (a) < ... implies 'G:-j, and (b) «-J

implies<•.

(a) Suppose f(x) is in the order of < ..., then by definition, lei) :5 f(x), for all

i :5 x EX, wei), W(I) > O. So

j(i)w(i) :5 j(x)w(i), for all i :5 x.

By summing both sides of (3.3) with respect i over i :s; I, one obtains

E".f(i)w(;) $ f(.).
L;:!::zW(1)

By Lemma 3.2.1. f(z} is in the order of <(-j_

(3.3)

(3.4)
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(b) Suppose f(x) is in the order of <1+ By Lemma 3.2.1, we have

E.<.t, f{il~(i) < EZI<o<y!(i)w(i). for any x\ < X2' (3.5)
E'~"l wei) - Er,<i~r] wei) -

By letting .T, -+ +00 in (3.5) one obtains that f(x) is in the order of <._ a

3.2.2 Dual Cones of Quantifications of Discrete Functions

In the following discussion we will consider functions aD X that lie in the space

12 = {f: r~ r(.r)w(x) < +oo}.

For any two functions f(-) and g{') E I,. we define their inner product by

If,g). ~ L J(x)g(x)w(x) .
.rEX

Then by the Cauchy.&hwarz inequality, we have

IIf,g)1 ~ L If(x)g(x)lw(x) ~ (L f'(x)w(x))'''(L g'(x)w(x))'" < +00,
zEX rEX ..EX

for any /,9 E I,. The corresponding nonn of IE /, is defined as

II f II~ If,fl'l> ~ (L f'(x)w(x»)'I> .
• <X

The dual of a COO\-'eX cone A. in I, is de6n~ to be the set

A" = {g E I,: L j(x)g(x)w(:r):5 0, for all f E A}. (3.6)
.<X

Let
(J E I,
(J E I,
(J E I,
{f e I,

the order of <em};
the order of «-l}i
the order of <l+)};
the order of <.,}.
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Proof. We shall first prove that Am is a convex cone. Suppose 1,9 E A.... Then for

any x < y E X with w~ > 0 and w, > 0, II.'e have f(x) ~ f(y) and g(x) $. g(y).

Therefore,

of(x) '" of(y)

for any Q ~ 0 and

fix) + g(x) '" fly) + g(y).

It follows that .-I.... is a convex cone. By a similar argument one can pro\'e that .-it-I •

.4(+1 and A. are also convex cone. o

We shall next find the duals of those convex cones. When there are only a finite

number of wei) such that w(i) > 0, our problem is equivalent to the DOes in R.k

spaces which have been studied by Barlow and Brunk (1972) and Dykstra (1984).

Define

S = lJ E t" L f(x)w(x) = D.}
~x

(3.7)

Lemma 3.2.4 If.4. C I, is a conva; cone that contains ail the constant junctioru,

then A' c S.

Proof. Suppose 9 E A'. Then for any f E A, we have (9, J) $. O. Since the constant

functions with values 1 and -1 are in Am, it follows that 9 E S.

Theorem 3.2.2 (a) A;,. = (-A.)nS; (6) A; = (-Am)nS.

o
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Proof. (a) We first prove that A';" C (-A.)nS. LetgE .-1;.. Then

(f. g) ~ 0 for any f E A....

Particularly. for rEX. define

e (y) _ ( -1/ :[;5'" wei), if y::::: r,
r - 1/ Lin wei), if y > z.

It is clear tbat e" E .4.", and hence

(3.8)

It follows that 9 E -.4.,. In addition, sin~ Am contains all the constant functions,

by Lemma 3.2.4,.4;,. C (-A,)n5.

Conven>ely, suppose 9 E (-.-I,)n$. For a given f E .4...., define rez) = f(r)vO

and rex) =/(%)1\0. Clearly.!= r+f- and r.r E .4... Now, £oranyxE X.

Lr(i)g(i)w(i)
I~'

D L crU) - ru - 1)) + r(z - l)lg(i)w(i)
.<!::<:r:S!!.

LILg(i)w(i)IU+U) - ru - 1)) + r(z -I) Lg(ilw(i).
J<!:I:'~ ,~"

Since 9 E (-A.l n S, we have r:i~g(i)w(i):5 0 and therefore,

Lr(i)g(i)w(i) " r(x -1) Lg(i)w(i).
i!:% i2:;.

By taking the limit x -+ -00 one obtains (f+ ,9) :5 O. By symmetry, one obtains

U-, g) :5 O. It follows that (f, g) = (f+, g) + U- ,9) 5: 0 and so 9 E A;". Therefore,

(-.4.,) n S c .4;,.. It follows that A;,. == (-A,) nS.
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We now prove (b). For any pairs X, y e X such that x < y, w(x) > 0 and

w(y) > 0, define e%1l(x) = -1, ery(Y) = Land ertl(.z:) = 0 if z '1= L,y. Clearly,

eZ)' E .4.•. If 9 E .-1;, tlIen

(ery, g) = -g(x) + g(y) $ 0,

and hence 9 E -Am. In addition, since A., contains all the constant [unctions, by

Lemma 3.2.4, A; C S. It follows that A; c (-A",)nS.

On the other hand, by (a), (2.4) and (2.8), we bave

Am C (A~)" = ((-A.)nS)· = (-A;) +S·.

Consequently.

Am nS C ((-A;) +S') nS = (-A;)nS = -.4;.

Therefore, (-A",)nS C .4.;. It follows that .4; = (-Am)nS. The proof is complete.

D

Corollary 3.2.1 (a) Am = ~A; +5.1.; (b) A. = -.4;" +5..l,..

Proof. It is trivial that Am = Am n S + S.L and .4. = A. n S + Sl.. By Theorem

3.2.2, the proof is complete.

Corollary 3.2.2 If ErEX W(X) = 1, then fOT any f e Am, 9 EA.,

L: J(r)g(r)w(x) ~ L: J(x)w(x) L: g(X)W(X).
rEX :rEX "'EX

D
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Proof. Since 9 e A., we bave 9 - 9 E As n S. where g(x) = LiEX g(i)w(i) (or all

.t EX. Therefore, by Theorem 3.2.2.

(f,g - g) = L f(%)g(%) ..(%)- L f(%) ..(%) L g(%) ..(%) "0.
~E.\' «:X xeX

o

The cones of A(_) and A(... ) are closely related to the positive orthant. For

convenience, we shall assume that w(x) > 0 for all x E X and define

{

-ljW(x), iCy $ x;
e~-J(y) = l/w(x + I), if y =x + 1;

o iCy;:..:r + 1

and

{

If(J."·(+oo) - W(z - 1)), if y ~ Xi
e~+l(~) = -t/w(x - I), if y::::: x-I;

o ify<x-l

Lemzna 3.2.5 (a) e~-) E .-1(-) for all x E X and (e~-).e~-l) = 0 ilx I- y_

(6) 4+) E '~+l/or ell x E X and (4+1,4.+) = 0 if z I- y.

Lemma 3.2.6 For any real-valud function f E l,. we have

f-+ '" (J,~-l) el-1
i~ (e1-I,e~-I) I •

j '" (f,e1+
1
) (+)

+ ifx (e1+I,e!+I/i ,

where 1 = LiEX f(i)w(il/ Loex w(i).

Proof. It suffices to prove (3.11). For any x E X,

f + L (~le1~l) e1-J(x)
'ex (e, ,e; )

(3.9)

(3.10)

(3.11)

(3.12)

(3.[3)
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j + ~:',ei~':~ et.'I(Z) + 2: (t/~!~':, e~-I(I).
(e~_I.eZ_I) i~:l" (e, ,e, )

1+ [- I: 1(j)w(j)/W(r - I) + I(r)] W.~~(- 1)
J~z-l H x)

- I: [- I:/(j)w(j)/IV(i) + I(i + 1)] w(i+ 1). (3.14)
.::!:% J5i W(l+l)

Since ~j5i f(j)w(j) == fE/EX w(j) - Epi f(j)w(j), we have

[-.I: l(j)w(j)/W(r -1) + Ilr)] W:;(-)I)
rSs - l :z:

{IEflj)W(j) - I,~ wlj)I/W(r -1) + I(r)} W:;(~/)

I(rl- J I: w(j)/IV(r) + W
I
( ) I: l(j)w(j) (3.15)

lEX I j~"+l

and

I: {- I: 1(j)w(j)/IV(i) + I(i + 1)} w(i.+ 1)
.<!:% J'S:' W{a+l)

I: {I I: l(j)w(j) - I I: w(j)IIW(i) + I(i + I)} w(i+ 1)
,~" J~;+l iEX W(. + 1)

-IiI: w(j)J I: w(i)/IV(i)lV(i + 1) +
iEX i~z

'" r'" wU + 1) . . w(' + 1). ]
~ U~2 W(i)W(i + l)/(j)W(j) + Wei) f(a + 1)

It is trivial that the first term of (3.16) is equal to

-III: w(j)/W(r) -1).
jeX

The second term of (3.16) can be written as

[
W(i+I)].. w(i+I).

j~' .<~_,W(i)W(i + 1) l(j)w(j) +~ W(i) 1(' + 1)

(3.16)

13.17)
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[
1 '] 0 0 w(i+l)L: W-() - W( 0 _ 1) fU)wU) + L: ---;V-(O) f(i + 1)

j::=:H2 X] i2:r 1

'/(x) L: fU)w(j) - L: W
W
( (~I)f(j) + L: W~+(0)') f(i+ 1)

J==",+1 J2::<+2) i<!:r 1

V-() L: f(j)wU)o (3018)
x j?;r+l

By combining equations (3.14) to (3.18), one obtains (3.11).

Theorem 3.2.3

o

.-1(-) = U E 12 : J = C+ L a;e~-) ,Ilt;?: OJ; (3.19)
iEX

.4.(+) = U E [1: f = c + i~ a.;el+l ,ai ~ O} (3.20)

where c is a constant junction in [2'

Proof. It suffices to prove (3.19). Denote

.-1= {f E l2: f =c+ La;e!-J. a;::: OJ.
,ex

By the fact that f E l2, each component of f is a limit of an absolute convergent

series. Since A( _) is a convex cone which contains all the real constant functions

and ej-l E .4(-). we have A(~) ::l .4.. Conversely, by Lemma 3.10, for any f E A(_),

f = f + L (~)e1~~) el- l .
;EX (ei ,ei )

It can be shown that (f,e~-») ~ 0 and hence, 04(_) C .4. The proof is complete. 0

Theorem 3.2.4 (a) 04(,_) = (-.4(_»)nS; (b) .4(+) = (-A(+)nS.
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Proof. By symmetry. it suffices to show (a). Weshal16rst prove A(-l C (-.-'1_J)nS.

Suppose 9 E .-l(-l' then

(I. g) 'S 0 for aIly I E AC-I-

Particularly, since t'" E .4.(_1, we have

(g,er ) == _I:~zg(i)(W)(i) +g(%'+ 1) 'SO, (crall xE X.
"'-,:Szw l

(3.21)

By Lemma 3.2.1, 9 e -04(-)- In addition. since A(_I contains all the constant

functions, by Lemma 3.2.4, .'1;_) C (-.4.(_1) nS.

Conversely, suppose 9 e (-AC-)) n S. Since 9 == 0, by Lemma 3.2.6,

(g,el- I ) (-I

9 == .~. (el-l,e~-') eo .

h is trivial that (g, el- l) s 0 and (I, el- l) :?: 0 for any I E A(_)_ Therefore. (g, f) SO

and bence. 9 E Ai_I' Consequently. (-~_I) n S C Ai_I- The proof is complete. Cl

The proof of the Coliowing result is similar to that of Corollary 3.2.2.

Corollary 3.2.4 If EZEX w(z) = l, then for any I,g E .4(_) (or ~+»),

L f(z)g(z)w(z) ~ (L f(z)w(z») (L g(Z)w(Z»).
reX \;ex ~EX

3.2.3 Quantifications of Functions in a Restricted Space

In applications it is not uncommon that the functions of interest are restricted to

some boundary constraint. Let K be a closed convex cone in 12 and S is a subspace
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in 12 . By (2.8) and (2.3) one obtains

(KnS)" = K-+SJ.

and cOD,,-ersely.

K" = (KnS)"nS, if K' C S.

Particularly, if

s=s ={Ie L/(')w(;) ~ Of,
iEX

then

s' ~ S" = {I e I('} ~ 1(' + 1), Vie Xl,

(3.22)

(3.23)

(3.24)

(3.25)

i.e., 5.1. is the subspace of all constant functions in 12 . In this case the two cones

(3.22) can be easily obtained from one to anotber.

Theorem 3.2.5 Let S be definw by (3.2.1). Then

(a) (Am ns)' ~ -.4,;

(e) (A(+lnS)' = -A(+l;

(d) (A,nS)' ~ -.4m •

Proof. We first prove (a). By (3.22), Theorem 3.2.2, and Corollary 3.2.1,

(AmnS)"

«-A,lnS) +S"

-A,.



By similar arguments, ODe can prove (b), (e) and (d).

3.3 Algorithms for Convex Projections

We shall now consider the problem of

35

o

where C = A.. , ~_I' .~+) and A•. The solution is called the projection onto C as

we have defined in ChapteT 2.

3.3.1 Projections onto Am and A.,

It is trivial that the algorithms of the isotonic regression introduced in SectioD 2.4

can also be applied to find the projection E(gIAm ). By (2.13) and Theorem 3.2.2,

one obtains

c(.IA.1 • - E:(gl(-.4m l nSI

(. + 9) - c(.1 - Ami·

(3.261

(3.27)

3.3.2 Projections onto A(-l

By Lemma 3.2.6, for any real·va1ued function 9 E 12•

_+~ (g,e!-l) H
9 = 9 if>: (~-), e~-» e, .

By Theorem 3.2.3, any real-valued function / E A(_) can be written as

/=c+La,e~-J.
iEX
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where c and Ct are real numbers \;\;th ao :::: o. Therefore, by Lemma 3.2.5 we have

II 9 - f II'~ (g -c)' L w(%) + L[(g,<!-') - (.~-I,.!-')a;I'/(.!-',.!-I).
.rex 'EX

(t foUows that the optimal values of c and a.. are given by

c' =g, and a; = «9.:
l
e!:!J V 0,

(e; Ie; )

where I V0 = max{z,O}. Therefore,

(3.28)

3.3.3 Projections onto A{+)

By a similar argument, one can show that

(3.29)

3.4 Quantifications of General Functions

Quantifications of discrete functions can also be e....:tended to functions on measurable

spaces. Let R be the whole real line and let B be the a.a1gebra of Borel sets on

R. Let W be a finite Lebesgue measure on (R,8) with support X. Without loss of

generality we may assume W(X) = 1. Denote

W(%) ~ W({ -00, %1>. (3.3D)

We denote by V(W) the space or all measurable functions on X for which f IflPdW <

Definition 3.4.1 A function I(x) E £, is .,aid lo be (wiJh respect the mea.run: W),
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monotone inCTeQ.$ing, or in the order of em, iflor any Zl :s .1"2 EX, f(.rtl :S /(X2);

incna.ring on left aVffQge. or in the order of <C{-I. if lor anl/ XI :5 %2 E X with

increasing on right average, or in the order of <c(...), if for any Xl :S X'l E X with

W(X2) < 1. [os, l(tjdW(tl/(l - W(xdl:5 h;~ f(t)dW(t)/(l - J,V(Z2));

increo.sing on split average. or in the order of < •. if for any x E X with a <

W(%) < " J.<.f(t)dW(t)/W(%) ~ f,,.f(t)dW(t)/(I-IV(%)).

It is straight forward that lex) is in the order of «-l if and only if

[1<S, f(t)dW(t) < J"'<I<"2J(t)dW(t)
W(x.) - W(X2) W(x.)

(3.31)

for any x, < X1 e X with 0 < W{xd < W(Z2)' Similarly, fez) is in the order of

«.+-1 if and only if

for any %1 < X2 E X with W(I,) < W(X'll < 1. Similarly,

The Collowing result is obvious.

Lemma 3.4.1 Let <: denote one of the orden <m, «_I. «+) and <.. Then

f(x) i$ in the order of < if and only if f(x) + c is in the .fame order oj « for any

cE R.

Theorem 3.4.1 raj < ... implies «_I and «+1; rbJ «_lor «+1 implies < •.
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Proof. By symmetry, it suffices to prove that <m implies «-I which in turn implies

<~. (a) Suppose f(:r) is in the order of <:"" then by definition, for any %, eX,

f{t) S f(zd, for all t::; Xht e X.

Br integrating both sides of (3.33) over (-00, :rd, we have

1. f(t)dW(t) $ f(x,)W(x,)
15"',

By a similar argument one obtains

(3.33)

(3.34)

and hence, by (3.31), f(x) is in the order of «-J-

(b) Now if f(:r) is in the order of «-J, then by (3.31),

1.... f(t)dW(t)/W(x,) $ /.."... f(t)dlV(t)/(W(x,) - W(x,I), (3.36)

By letting %2 -+ +00. one obtains that fer) is in the order of <.. 0

Similar to the discrete case we define the inner product of two functions /.9 E

L,(W) by

(f,g) =Lx f(x)g(x)dW(x).

Then by the Cauchy-Schwarz inequality, we have

for any I, gEL,. The corresponding norm of f E 1., is defined as

II f II~ (f,Il'" = (lEX f'(x)dW(xl)'''.
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To a..-oid acguments in terms of measure theory, we will only consider continuous

functions here and define

Am = {f E ~ : f is continuous and monotone increasing};

.-It-l = {/ e ~: f is continuous and increasing on left average};

A(+I = U E ~: f is continuous and increasing on right average};

.4.• = U E L" : f is continuous and increasing on split average}

and

S = {f E L" fJ(x)dW(x) = 0.)

Clearly, Am. -4<+), A(_). and it., are convex cones in ~ and S is a. subspace of lrz.

Lemma 3.4.2 /f It 9 E ~, then

r~'!l.,., is.% j(t)dW(t) [9 g(t)dW(tl/ l~% dW{l) = 0; (3.3;)

,'l'!'- /"J(')<!Wlt) /." ,ltj<!W(t)/ /." <!W(t) ~ O. (3.38)

Proof It suffices to prove (3.37). By the Cauchy-Sc::hwarz inequality,

I. Iflt)l<!W(t) $ (I. f'(t)<!W(t))'''(1. <!WIt))"'.

1:: Ig(t)ldW(t):5 (i::l(t ldW(t»),f2(i::dW(t»,fl.

It follows tbat

IL, f(t)dW(t) L, ,(t)<!W(')I/L, dW(t)

:5 (l~%f'l(t)dW(t) ls.zl(t)dW(t»I/;.
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Since f, 9 E L2 , we have

The proof is complete.

Theorem 3.4.2 fa) A.;" = (-.-l.~)ns;

(b) ...1[_1 = (-A(-))nS;

(e) .4(+) = (-A{+)nS;

rdJ A; = (-Am) nS.

o

Proof. (a) We first prove that.4.;" C (-A.l nS. Let 9 E A.;". Then (f,g) ~ 0 for

any f E Am. Particularly_ for each x E X with 0 < W(X) < 1, define

{
-lIW(x), if II:::; x,

e.. (y) = 1/(1 _ W(x)), if y > x.

It is clear that e" E Am and hence

(9, e",) = - 11<% ~~l::V(t) + f!>~ ~(~~(~(t) :5 0, for all x E X.

ft follows that 9 E -.4.,. Furthermore, since the constant functions with values 1

and -1 are also in Am, by (3.8), gE S. Therefore,.4.;" C {-A.)ns.

Conversely, suppose 9 E (-A.)nS. Let !vI > 0 be an arbitrary fixed real number

and n > 0 be an integer. Denote

xo=-oo; X;=-M+~=~{2M), i=1,2, .. ,n; X,,+I=+oo
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and

lU, = L.usz..,d«~(.:r);
a. =L<z'Sz..,l(x)dW{x){w;;

b, = £'<Z'$Z...,g(X)dJir'(X)/W;, i = 0,1, .. , n + I,

where by convention. % = O. Since f E Am' we have

4i :S:a;+1t iCWi,Wi+l >0, i=O,l, .. ,n;

and since 9 E (-.4.> nS. we have

E'<Jb;Wi > r:'>Jb;w; ,,+1
L;'fiW, - r:,>jW; . j = 0, I, "I n &D.d ~ b;w; = o.

Therefore. by Theorem 3.2.2.

~a.;b;Wi$O. (3.39)

Define I.(x) =a; and g..(.r) = b;" if Xi < X :S %.+1_ By the continuity of f and g, 1ft

and g.. are bounded functions with

and

{"",
lim fll(z) = f(x),.-- a.... t.

if.:r$ -M;
if - M < x $ M;
if.:r>M

{
too, Ifx:5 -ll'f;

lim 9,,(X) = g(x), if - M < x:$ M;
,,~+oo b..+!> iCz > A-/.

By the Lebesgue convergence theorem, we have
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However, by (3.39). we have

J. .f .. (x)g,,(x)dW{x) =l: a.:biWi ~ O.
rE.\: .-0

Consequently, by Lemma 3..&.2.

Lf(r)g(x)dW(x) = M~~LM<ZSM f(x)g(x)dW(x) ::5: O.

Therefore. A;" ::> (-.4,)nS. It follows that A;.. = (-A,)nS. By a similar argument,

one can prove (b),(c) and (d).

Corollary 3.4.1 If (a) f E A... , 9 E A" or (6) 1,9 E .4(_1 (or .4.(+11. then

I" f(z)g(x)dW(z) ~ Lf(x)dW(x) Ix g(x)dW{x).

Proof. Similar to the proof of Coronary 3.2.2.

3.5 Applications in Hypothesis Testing

3.5.1 Applications of Duality in Hypothesis Testing

o

o

The usefulness of the concept of duality in estimatioD is well demonstrated in the

literature and the book by Robertson, Wright and Dykstra (1988) includes many

important examples. Since A;,. = (-A,)nS and A; = (-AmlnS, (Theorem 3.2.2),

we shall see that statistical inferences regarding the orders of monotone increasing

and increasing on split average are closely related.
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Let X' = (Xl> x1 , • •• .Yt ) be a multivariate normal random variable of dimeD-

sian k with mean ~ and known covariance matrix diag(al,~, .. ,at). We afe inter-

ested in testing the b.ypothesis

Ho ; ~ E.~ versus HI: ~ E Al - Ao (3.40)

where ..to and .4\ are two nested closed convex cones in R!< such that Al C .4,_ The

likelihood ratio test (LRT) statistic for testing Ho versus HI is given by

T ~II X - E.(XI.4.) II' -II X - E.(XI.4,) II' (3.41)

and one rejects Ho for large values of T, where Wi = I/o" and the metric 11 . 1J2 is

induced by the inner product in £lk defined by.
(x, y) =~ XiYiW/.

T can be rewritten as

T ~ II E.(XI.4,) - E.(XI.4,l II' +2(E.(XI.4,) - E.(XIAo),X - E.(XI.4,j)

II E.(XI.4,j - E.(XIAol II' +2(E.(XI·4,j - E.(XIAo), E.(XIA;))

where the last identity is obtained by (2.13). Therefore, by (2.14), one obtains

T ~II E.(XIAoI - E.(XI·4,j II' -2(E.(XIA,), E.(XIA'». (3.42)

Theorem 3.5.1 The LRT !tatutic of the hypothesC3

(3.43)

u aha gium by (3.42).



Proof. [t is known that .-lj and .-to are also two closed con"e..'( cones and by (2.6),

Ai C .40. By (3.42), the LRT statistic of (3..13l is given by

Consequently, by (2.13) and (2.4), we have

The proof is complete. o

De8.nition 3.5.1 Let T be th~ LRT .statUtic of th~ h1JPOthe.se.s (3.40) given by

(3.41). A IJUtor lJ.o E .~ is said to be a least faoorable configuration (LFC) of

T if

Pp.o(T> c) = ~~t P#-,(T > e), for all c E R.

Denote by .cAo1A , (T) the collution of all such least favorable configuratioru.

Remark Even though (3.40) and (3.43) have the same LRI' statistic, the null

distributions of the LRT statistic are generally not the same. Howe\'er, if the two

tests have a common lmst favorable configuraticn, then problems (3.40) and (3.43)

will have the same critical region for each significance level Q E (0,1). [n such a

case we say that the two problems are (likelihood ratio) equivalent. The following

result can be found in Hu and Wright (1994).

Theorem 3.5.2 If AD C At are clo.sed conve£cone.s and non-oblique, i.e., P(P(xIAtlIAo) =
P(xIAoL then problerru (3.40) and (3.43) and

(3.44)
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are equivoJent.

Definition 3.5.2 ut YI. ri, .. ,Yt be independent normal variablu with meaR.5 0

and variances Wi-I. Let JI! be the number of level sets in Y', the i3otonic regression

olY =- (¥i, 1';, ... )it) with weight vector w. The level probabilitie$ an: defined by

Some examples of equivalent testing problems are given below.

Example 3.5.1 Consider the case that

.-1.0 = $1. = {x E R!' : Xl = X2 = = x.d;

Al = -Am = {x E R!' : Xl ~ %2 ?: 2: x,d·

It is trivial tbat .-to and Al are Don-oblique. In this case,

A; = Asns= {xe R!': E:;,xjwj:::: Etj i+1
X

j
Wi.

Lj.' Wi Lj:i+l Wj.
i=1,2, .. ,k-Iand l:>;Wj=O};

1=1

-40 = s={xeRl':'txJwj=O}.
j:\

The first paper published on tbe test of $J... versus Am-SJ.. was given by Bartholomew

(1959) and the Dull distribution of the LRT statistic is given by.
P(T ?: c) ={; P(l, kj w)P(Xtl ?: el, (3.45)

a chi·bar-square distribution, where X~ is a standard chi-square variable with i de--

grees of freedom (~ =: 0).
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Example 3.5.2 Consider the case

.40 = -A... = {I£ E ~: P.I ~ IJ2 ~ ... ?: p.,d

and At = R.k. Then ..1.0 and AI are oon-oblique and

.-l~ = .-\.ns = {p. E Fr: Li71:Ei~i :S Ej~i+l%jWj,
Lj*l wJ Lj"'+1 Wj.

j = 1,2, ... k-Iand I>jWj =O}
j .. 1

and Ai = {OJ. The Dull distribution of the LRT statistic: for testing 1.6 = -Am

versus 1.£ ¢ -A", was obtained by Robertson and Wegman (1978) and has the form.
sup P(T ?: c) =L P(l, k; w)P(X~_1 ?: el,

JOEA. 1=1
(3.46)

Example 3.5.3 The LRT of the null hypothesis Ho : p. E S.J. versus the alternative

hypothesis HI : 1.6 E A. - Sl. is equivalent to the LRT of the null hypothesis

Ho : JJ. = 0 versus the alternative hypothesis HI: p. E A, n S - {OJ of Example

3.5.2.

Example 3.5.4 The LRT of the null hypothesis Ho ; p. E A, versus the alternative

hypothesis H,: JJ. E Rt - A.., is equivalent to the LRT of the null bypothesis

Ho : p. E A. n S versus the alternative hypothesis HI: p. E S - A, of Example

3.5.1.

As is often the case, the procedures for normal means provide large sample

approximations for nonnormal distributions as well as distribution-free procedures

based on ranks. As an illustration, we consider the problem for testing a sequencl!
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of Poisson means. Our approach follows that of Dykstra and Robertson (1982b) for

the multinomial analogue.

Let XiI, -'<;2, ... Xi..." i = 1,2... , k be independent samples from Poisson pop­

ulations with means 1J1,1J2, ... ,Pt. Denote by ~ = r::;~lX;jlno tbe unrestricted

MLE of 1Ji. i = 1,2, ... k. The LRT statistic for testing the null hypothesis .4.0

versus the altematin~ hypothesis Al - Ao is given by. .
T = - ~(n.;ji.;lnp~O) - n;J4(1) + ~(n;p.lnlJ~l) - n;:~IJ), (3A7)

where ~(Ol and IlOI are the MLE's of ~ when

bfmu belongs to.4o and AI respecthrely. Expanding InJ401 and lOIJ!1l about the

point {l" T can be expressed as follows;. .
T = ~iLia;-2[.fiii(IJ~O) - ,Uj)]2 - E~Pi-2[J1ii(/.Ill) - {toW,

where 0, is between p.; and IJ~OI and iJi is between iJ., and I4 tl . Under Ho, the random

vector .jii(j1- It} converges in distribution to (UI ,U2 • •• ,Ut ) where U.,U2 • •• ,U"

are independent normal variables with means 0 and variances ~l, p.7.,. ., p./r;. Using

Theorem 4.4 of Billingsley (1968), it foHows that, under Ho, T converges in law to

II E.(UIA,) - U II' -II 6.(UI·4,) - U II', (3,48)

where w = l/p.. Statistic (3.48) is the same LRT statistic for tbe corresponding

hypothesis for normal populations. If one is interested in the testing problem in

Example 3.5.3, then the asymptotic: distribution of tbe LRT statistic is given by.
peT 2: c) =~ pel, k; w)P(xI_1 2: c).



3.5.2 Increasing on Average

Since A·i_1 = (-'~_I) n Sand ·4{+1 = (-·~+l) n S, (Theorem 3.2.4), problems

associated with orders of increa:.iog 00 average (from left or from right) and their

dual problems are in fact equivalent..~_I and At.}) are closely related to orthant

cones in a R!' space which are sometimes more easily dealt with than Am and .4,.

Let X' = (X lt .\'2, ... ,Xt ) be a multivariate nonnal random variable of dimen-

sion k with mean vector IS and known covariance matri."( E. Consider the problem

for testing the hypothesis

Ho : IS E 040 versus HI: IS E AI - Ao, (3.49)

where.40 C Al are two closed convex sets in flC. It is trivial that the LRT statistic

for testing the null bypothesis Ho ,,-ersus the alternative hypothesis Hit rejects Ho

for large values of

where IS"} is the solution to the problem

min(X - ",)'E- I
(.\' -p),

"'EA,

a general quadratic program whose solution exits and is unique.

The problem of testing the nypotheses (3.49) can be simplified sometimes after

making an appropriate transformation of X. Let Y = rx, where f is a k x k

nonsingular matrix. It is known tnat Y is a multivariate normal with mean v = f",

and covariance matri."( rE- I f'. Define

fA = {r:r::r E A}. (3.'1)



49

Then the problem (3A9) is ~uivaJe.nt to testing the hypotbeses

Ho ; v E L-'o versus HI: v e r(AI - .-tol. (3.52)

Let r be a k )C k Doosingular matrix and

.4. =: {xe It: Dx ~c}

wnere D is a r x k matri'< (r 2:: I) and c is a vector in R'<. Then

fA. = {y E £lk: Dr-Iy ~ c}

We now consider some testing problems associated with the orders of increasing

on a~"erage_ The orders of increasing on average are closely related to the :dar3haped.

order" wtllch are defined as follows.

A \"eCtor I.l E Jl.k is called low.ar-starshaped if

and upper-starshaped if

where w is a weight vector and Wi = Lj=1 Wi' Starsbaped vectors arise in a va­

riety of applications, see Shaked (1979). Shaked (1979) considered the estimation

of a starshaped sequence of Poisson and nonnal means. Dykstra and Robertson

(1982b) obtained the MLE of starshaped multinomial parameters and derived tbe

asymptotic distribution of the LRT statistics_ Theoretically, the upper-starsbaped

property is quite different from tbe lower-stacsbaped, property, see Sbaked (1979)
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and Dykstra (1984). In fact, the collection of lower-starshaped vectors is an ortbog.

anal cone in a R" space while the collectioD of upper.starshaped vectors is an oblique

cone. However, in many applications like in the multinomial and Poisson cases, the

variables are nonnegative and the constraint of J41 ~ 0 is naturally satisfied by the

estimates without this constraint. Therefore, the upper-starshaped restriction can

be replaced by tbe order of increasing on left average, i.e..

Let X':= (XI,X" ... Xt ) be a multivariate normal random variable of dimen­

sian k with mean #.f and known covariance matrix diag(Ol.lJ2, .. ,Ot). We will

consider the following three hypotheses

where w = O/Ol. 1/0'1• .. , l/Ot)'. The hypotheses in (3.56) can be written as

Ho : D#.f=O; H, :D",~O; H,:I.lE R!' (3.57)

where

( a

-1 0 n~ .... -1
D=- W, w,

#.:; -"'- -"'- l<t7w••• W._ 1

If we define

r = (-w~w.),
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tben

[
-\ ~II, Itl~

r-' _ o-Wi
- - 0 0

o
So the three hypotheses in (3.56) reduce to

H~ ; Vi = 0, i = 1,2, .. , k - 1;

H; : Vi ~ 0, i = 1,2, .. , k - 1;

H~ veJr

(3.58)

for a multivariate normal distribution with mean v =(Vt. "'2•.. , v.) and covariance

matrix diag(a't,a;•... ~l. where a~ = l-l"i+t!(WiWo+l), i = 1,2, . _, k - 1 and a~ =

I/W•. By (3.50) it can be showD that LRT statistics of H~ versus Hi - H~ and H:

versus Jl.C - H; are both distributed as

(3.59)

where Z •• Z'l' ..• Zt are independent standard normal variables.

The problem of testing hypotheses in (3.58) is a special case of the well known

positive orthant problem and bas received extensive attention in order restricted

inference, see, e.g., Kudo (1963), Perlman (1969) and Tang, Goecco and Geller

(1989).

As an application, cOllsider the Poisson problem as it appeared in Shaked (1979).

Let Xil,Xi'l' ."Xin" i = 1,2, ... ,k be independent samples from Poisson pop-

ulations with means J1.L./l?,---,J1.t- Shaked (1979) obtained the MLE estimates
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of J,£ E -AI_I' By symmetry, the LRT statistics for testing equal means versus

~ e -A(-l but not all equal and J" E -AH versus IA ¢ -.-1.(-) have the same

asymptotic distribution given by (3.59).



Chapter 4

Quantifications of Random
Variables

4.1 Introduction

Quantification. or order, of random variables is a 'Y-ery important concept in statis-

tical inference and has many useful applications. for example. the simplest way of

comparing two random variables is by comparing the two means. HOW1:!ver. such a

comparison is based on only two single numbers (the means), and therefore it is oRen

Dot very informative, especially in nonparametric statistical inference. In addition,

the means for some distributions do not exist, such as the Cauchy distribution.

Another application of stochastic orderings is that they can induce many im­

portant probability inequalities which playa fundamental role in probability and

statistics. Inequalities are used to obtain bounds for probabilities that are more

tedious to compute or analytically impossible to handle.

The idea of ordering distributions with respect to the considered property is not

very old. The notion or the usual stochastic ordering W8.'i first introduced by Mann

and Whitney (1947) to characterize the alternative when testing the equality of
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two distributions. Serious theoretical investigation on stochastic orderings seems to

have been initiated by Lehmann (1955); this is the first frequently cited reference.

The stochastic ordering, the uniform stochastic ordering and the likelihood ratio

ordering are among the most important orderings that have been "'-ell studied. All

these quantifications can be expressed most coD\leniently in terms of total positivity

(TP) of probability functions which has been extensively applied in several domains

of mathematics, statistics, economics, and mechanics.

In Section 4.2 we introduce the concept of total positivity and derive some pre­

liminary results. In Section 4.3 we introduce the notion of quantification of random

variables. We show that this Dotion can be expressed in terms of inequalities of

cross-products of probabilities. Many other important properties are readily ob­

tained from this result. In Section -t.4 we show that the quantification of random

variables are closely related to the quantification of real-valued functions introduced

in Chapter 3. This property plays an important role in the definition of bivariate

quantification of random \wables in the D.ext chapter. In Section 4.5 the quantifi­

cation of a series of random variables is defined and illustrated by some examples.

4.2 Total Positivity

For an excellent global view of the theory, the reader is referred to the classical book

of Karlin (1968). This hook represents a comprehensive, detailed treatment of the

analytic structure of totally positive functions and conveys the breadth of the great

variety of fields of its applications. A clear, systematic and detailed application of

TP in reliability and life testing theory can be found in Chapter 3 to Chapter 5 of

Barlow and Prosc:han (1975).
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The theory of total positivity (TP) has been exteosively applied in several do--

mains of mathematics. statistics.. economics, and mechanics. In statistics, totally

positive functions are fundamental in permitting characterizations of best statistical

procedures for decision theory. The scope and the power of this concept extend to

ascertaining optimal policy for inventory and system supply problems, to clarifying

the structure of stochastic processes with continuous path functions, to evaluating

the reliability of coherent systems. and to understanding notions of statistical de­

pendency. See Karlin (1968) and Barlow and Proschan (1975) for more details on

its theory and application in reliability and life testing tbeory.

Definition Let 0 1 and 0, be two quasi-ordered sets and f(x, y) a real valued

function on 0 1 x 0,. f(·,·) is said to be totally po.sitive of order k with respect to

the orders on D, and 0" (TP..) if for all Xl -<.t, -< .. -< Z"" y, -< Ih -< . _. -< II",

(Zi E 0" Yi E 0,), and all I :5 m :5 k,

f(x',Yml I
f(Z,:,y,.) ?: o.

f(xm,YmJ

where IA.I is the determinant of an m x m matrix A.

Remark 1. The definition given here is an extension on the usual one where both

D I and D, are assumed to be linearly ordered one dimensional sets of real numbers.

This extension will make it more convenient for us define the quantifications of a

series of random variables in Section 4.5.

Remark 2. Typically, D I and 0, are either intervals of the real line or countable

sets of discrete values on the real line, such as the set of all the integers or the set

of nonnegative integers. When 0 1 or D, is a set of integers, the term "sequence"



rather than "function" is usually used.

Many well known families of density functions (both continuous and discrete) are

totally positive, see Karlin (1968, p. 19) for some important examples. In fact, every

density is TP l , (nonnegativeness), while TP2 property is the monotone likelihood

property. In addition, J(z, y) is TPoo if it cao be written as a product of a function

of % alone and a function of y alone. So the joint probability density function of two

independent random variables is TPxo . TP2 is the order o(TP·nes5 which bas been

found to have a great applications. Higher order TP·ness has hardly been used in

applications except for the occ:asional use of TP3 •

An important specialization occurs if a TP. function may be written in the form

J(x, y) = g(x - y); g(u) is then said to be a Polya frequency junction oj ordf':T' k,

(PF.lJ. Every PF2 fJmction is of the form e-~("), where tb(x) is convex. It follows

that probability density functions of the exponelltial, normal, Weibull and many

other random "ariables are PF2- Intriguing results in tbe structure theory of PF.

functions can be found in Karlin and Proschan (1960), Karlin, Proschan and Barlow

(1961) and Barlow and Marshall (1964).

Theorem 4.2.1 Let D" be an interoal or a countable ,et on 1M real line wilh the

u.suaL a-algebra 8,. and the usual ordering. Let Jl2 be a finite Lebesgue measure on

(D:!,8,.). IJ f(x, y) is TP., then both J!oo J(z, t)Jl2(dt), and J:- f(x, t)P.2(dt), as

junctions on D 1 x D2 are auo TP._

Proof. It suffices to prove that J!.ooJ(x,t)ll2(dt), is TP•. Let 1 ~ m:S k, Xi E D I ,

andy, E 02,i= 1,2, .. ,m be such that XI ~X2 ~ ···~x"" YI ~Y25 ... :s y",.



57

Since fez. u) is TP•• we have

I
f(x"yo!
!(x2,yd

!(xm,y!l

I(x"y~) I
/(%2:,"",) :?: o.

l(xm,y~1

By integrating the m )( m matn.'{ column by column. one obtains

I
1!:o/(x,,'I.,(d') I:: I(x",).,(d') ... 1::_,!(x,,'I.,(d') I
J!;"'/(X'l:,t)IJ.2(dt) I:: !(I2;t)P2(dt) ::: I::_.J(X~.t)P2(dt) ~ o.

I!:'" f(x... , t)p2(dt) J:; f(x1,. m)Jl2(dt) ... 1::., f(x.. , t)p2(dt)

Thus. by adding successively the first column to the second column, the second

column to the third column... ". and the (m - l)-tb column to the m-th column,

I
f!:'" I(x" t)",(d'i
J!i.o /(X1/ t),£l2(dt)

f!:'" f(x m , t)J.l2(dt)

and the proof is complete.

f!'"" J(x(, t)p:z(dt)
!!'"",!(X2,t)P2(dt)

f!;" I(x" ').,(dt) I
f!;" I(x" '1.,ldt)

: ;?:O

f!;" Ilxm , t)",(dtl

o

Corollary 4.2.1 Ld. (O"B:z,J.l2) be defined tU in Theorem 4.£·1. II/(x,g) is TP""

(k ~ 2) andf~ I{x, tlp2(dt) does not depfmd on x, x E D 1 • then

(a) f!oof(x,t)p2(dt) lU a/unction on D l is antitonic.

(6) ftJC J(x, t)Jl2(dt) as a junction on D l is Uotonic.

Proof It suffices to prove (a). Since !(:r,y) is TP,t. (k ~ 2), by Theorem 4.2.1,

~oo!(:r,t)1J2(dt) is TP. and therefore, TP2 . If I~ !(:r,t)P2(dt) = 0, then by the



nonnegativenessofj(x,y).J!<»f(x,t)~2(dt) =Ofora1lx E D l . [ff~= f(X.t)~2(dt) >

0, then since

The proof is complete. o

Theorem 4.2.2 Let both D1 and D2 be either internals or countable sets on the real

fine with the u.'ltlal ordering. Let B l and ~ be the usual t7-algebrns on D1 and D2

with finite mel1StlTeS 1-'1 and JJ.2, respectively. If f(x. y) is TP/: integrable function on

D 1 x D2 , then

ond

as junctions on D l x D2 are also TP/:.

Proof. Since (Dt. BI> pd and (D2, f3:z, P2) are complete measure space, the two

identities follow from the well known Fubini Theorem, (see, e.g.• p307 of Royden

1988). The TP property is proved by using Theorem 4.2.1 twice. o
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4.3 Quantifications of Random Variables

Let XI and X 2 be two random variables with cumulative distribution functions

(cdr) F t (·) and F,(·), and probability density functions (pdf) fl(') and 120 (if they

exist), respectively. We assume tbat F l and F, have the same domain X. Denote

F;(;r) =1 - F,(x), i = 1,2.

Definition 4.3.1 Xl U said to be .ffflallu thcn X,

(a) in the likelihood ratio ordering, denoted by XI =;... :<, if h(x)/ fl(X) is nonde-

crea.ring in Z ovu X:

(b) in the uniform ,tochC1.5tic ordering from the left, denoted by XI :$(_1 -'<, if

F,(x)j F.(x) is nondecreasing in x over X,.

(c) in the uniform stocha.stic ordering from right, denoted by Xl :$(+) X, if F,(x)/Fl(x)

is nond~ing in x over X:

(d) in the {lUUaJ} Jtocha.stic ordering, denoted by Xl :$. :<, if F'\(:1') $: F'2(X), for

ailzE X.

Let [ ={I, 2} be an ordered set with the natural order. Denote L(i. xl = F,(x),

£(i,x) = 1- F;{x), and I(i,z) = /;(z) (when exist), £or i E I, rED. The £ollowing

result can be derived directly £rom the definition.

Theorem 4.3.1 (a) Xl $m X, if and only ifl(·,·) is TP2•

(b) XI $(-)(2 if and only if L(-,') is TP,.

(e) XI :5(+) X, if and only if l(·,·) is TP,.

(d) XI :5. X, if and only if Fi(r) is nondUf'Mfing in i for mch fi:red rEX.
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Theorem 4.3.2 ut tl.t'l,t] and t~ be mended real numbers such that. t l :5 t'l and

t:s:S t 4 • Denote

Then

for the following four cast's,

(a) u = m: t l < t2 :S t3 < t" an: arbitrary real numbers;

(6) u = (-): t l = -00 and 12 = t3 < t" are arbitrary real numbers;

(e) II. = (+): II < t1 = t3 are arbitrary rmJ numbers 4nd t" = +00,­

(d) u = s: t l = -00, t" = +00 and t2 = t3 are arbitmry reaJ number,,_

Proof. (a) We shall first prove the case u = m. Suppose that for any real numbers

i.e,

(4.1)

By dividing both sides of (4.1) by ~ - tl and then taking limit t l -+ t 2 • we have

(4.2)

for any real numbers t2 :5 t3 < t". By dividing both sides of (4.2) by t" - t3 and

tben taking limit t" -+ t), ooe obtains

(4.3)
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for any t'l :$ [3_ Therefore, X ~'" 1'", Conversely, if X ~ ... Y, tben (4.3) holds for

any t2 $ [3_ By integrating on both sides of (4.3) with respect to tJ over (tJ • t.I, one

obtains (4.2) for any t J < t._ By integrating /1 00 both sides of (4.2) with respect

to t 3 over (tl,loll. one obtains (4.1) for any t'l > ll_

(b) We shall Dext prove the case 1.1 = (-). For -00 = t l < t'l = tJ < t 4 •

P(X $ iJlP(tJ < Y:$ t~) ~ pet] < X :$ l.)P(Y:5 (3)

P(x::; lJ)PW:5 t~) ~ P(X:5 t 41P(Y:5 h)

X:5(-j}'"

where the second ..~ .. is obtained by adding or subtracting the term P(X :5 l)P(Y:5

(3) from both sirles of the inequalities.

By a similar argument one can prove the case (el.

(d) Finally, Vlre shall prove the case u = s. For -00 = t l < t'l = t J < t4 = +00.

P(X S t,}P(t2 < Y) ~ P(t2 < X)P{Y :s (2)

P(X > [,) :$ PlY > (2)

X:5. Y

where the second ..~ .. is obtained by adding or subtracting the term P(X >

t,)P(Y > [:2) from both sides of the inequalities. The proof is complete. 0

The following well known relationship of these orders can be inferred from The-­

orem 4.3.2
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Theorem 4.3.3 Let XI and X, ~ two mndom variabk.3.

(a) Xl $m X 2 implies X\ $(_1 X, and X\ :5:(+) X,;

(b) XI :5:H .\", or X\ :5:(+1 X, implies XI :S. Xl-

Theorem 4.3.4 For the ca.seJ U = m, (+), (-) and s, X :j:.. Y if and only if

¢'(X) ~ .. 6(Y) for any JtricUy monotone incmuing function 6 on X.

Proof. Since tb is a strictly monotone increasing function on X. we have

for any t ..~ E X. By Theorem 4.3.2 the proof is complete. o

Theorem 4.3.5 Let X, Y, Z be three random variables with cd!,s F, G, andwF+

(1 - w)G, re3pectively. If X::::::. Y, then X:::" Z~.. Y, for the Cll.'e.! u =m, (+),

(-) and s.

Proof. Let l., t" tJ and t. be defined as in Theorem 4.3.2. By Theorem 4.3.2,

X ::::::. Y if and only if

It follows that

(wP(h < X :5: t,) + (1 - to)P(t l < Y:5 t,)JP(t3 < Y::; t.)

2: [WP(t3 < X ::; t.} + (1 - W)P{t3 < Y:5 t.)]P(ll < t":5: t,).

By Theorem 4.3.2, Z ::::::.. Y. By symmetry one obtains X ::::::. z. o
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One of the most imponant applications of orderings of random variables is that

many important probability inequalities can be obtained from the orderings of~

tributions. For example. Lehmann (1959) showed that X :5. Y if and only if

Eu(X) '5 Eu(Y) for aU increasing functions u(·). An example in Ross (1983, p.

268) indicates that given two independent random variables, X and Y, X $", Y im·

plies that (2X +}"):5. (X +2Yj, and it iseqwvalent to Eu(2X +Y) ::; Eu(X +2Y),

for all increasing function u(·). The foUowing extensions were obtained by Shan·

thikumar and Yao (1991).

(a) Let X and Y be independent random ...-ariables. Let

!I'm == {,p; R' ...... R,t/J(x,Y) '5 .p(y,z) whenever x:5 y}.

Then X $ ... }-' if and only if 4>(X. y) :S. ¢(Y. X) for all 4> E 9....

(b) Let X and F be independent random variables. Let

g(+) = {ci: If --+ R.dl(x,y) is increasing in x, roreachy, on {x 2: Y}

and decreasing in y, (oreachy, on {Y2::Z}}.

Then X $(+) Y if and ollly if c;!){X, y) :S. <6(Y, X) for all q, E Q(+).

(c) Let X and Y be independent random variables. Let

Q. = {q,: R~ -+ R,q,{x,y) is increasing in x and decreasing in y}.

Then X:S. Y if and only if q,(X, Y) :s. q,{Y,X) for aU q, E 9•.

When X and Yare not independent, the above properties define a class of orders

of random variables by tbeir joint distributions, (Sbantbikumar and Yao 1991).

Tbe (usual) stochastic: order is tb.e first one that appeared in the literature (Mann

and Whitney 1947) and bas received e..'(tensive attention. It arises in numerous set-
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tings and iLS existence can be easily identified in real situations. See Chapter 7 for

more details. The uniform stochastic order from the right ::5(+) is weU known under

the terms uniform .!tochutic order in statistics and hazard nut: order (when distribu·

tions are absolute coDtinuous) in the reliability analysis. The term 'uniform stochas­

tic order' comes from the fact that if X 5(+) Y. then (XIX ~ t) .$~ (YIY ~ t) for

any given t. Many of the basic results regarding the uniform stochastic order can

be found in Ross (1983). For an explanation and applications of uniform stochastic

order in reliability analysis, see Barlow and Proschan (1975). Dykstra, Kochar and

Robertson (1991) considered statistical inferences regarding the uniform stochastic

order of several random variables. The likelihood ratio order has received relatively

less attention in the literature and statistical inferences regarding this ordering were

recently considered by Dykstra. Kochar and Robertson (1995).

It is trivial that aU the four orders are equivalent for binary random \-ariables.

However, differences among these orders will increase as the dimension or the prob-

ability \-e<:tors increases.

Theorem 4.3.6 Let X and F be two discrete random variable3 with probability

vectors p = (P1'P'z,P3) ami q = (ql,lh,th), re.sp«tively. Then

(a) X ~'" Y- if and only if X ~H Y and X ~(+J Y.

(b) X ~~ Y if and only if X ~(-J Y OT X ~(+J Y.

Proof. (a). By Theorem 4.3.3, it suffices to prove that if X ~H Y and X ~(+l Y,

th.en X ~m Y. Ir p :S;(-) q, by Theorem 4.3.2,
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which is equivalent to Plfq. ~ P,/fb. Similarly, if p $(+1 q, then

which is equivalent to P2/fh ~ P3!Ch. Combining the two inequalities we also have

pdql ;?: P3/fh, and hence X ::;... Y.

(b). It suffices to prove that if X ~$ Y, then X ~(-) 1'" or X ~(+) Y. If X ~$ Y,

then

Therefore, X ~(_) Y. If on the other hand Pt!ql < (PI + P'zl!(ql + /h). then

pdq. < Pzlth· Since X j$ 1'", it is trivial that P3 < lb. and P7. + P3 < fh + th·

Therefore, P2/Ch > 1 > P,/fh, and hence

1 > <P2 + P3)/(l/2 + q;s) > P3/CfJ·

Tberefore. X ~(+) Y. The proof is complete. CJ

The following example shows tbat the property (a) of Theorem 4.3.6 for k =3

does not hold for higher dimensions.

Example 4.3.1 Let X a.nd Y be two discrete random variables with probability

vectors (4/10,2/10,3/10,1/10) and (1/4,1/4,1/4,1/4). It is trivial that X ~(-l Y

and X :::0;(+1 Y. However, it is not true that X ::;". Y.
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4.4 Relationships between the Quantifications of
Functions and the Quantifications of Random
Variables

We have studied the quantifications of real-valued functions and tbe quantifications

of random variables. We shall show that these two classes of quantifications are

closel)" related.

Let X and Y- be two random variables with OOfs F(z) and G(x) and pdfs f(x)

and g(x) respecti\'l!ly. We assume that F(z) and G(x) have the same support X.

Theorem 4.4.1

(a)X$;rnY"';::::::;' j-IEAmnS;

(bjX::;(-jY ~ j-lEA(_lnS;

te) X ::::(+) y ¢:::::::> 7-I E A(+)nS;

(d) X :5~ y ¢:::::::> 7- - lEA. ns.

when .4......~-lt '~_I' .-tu Gnd S are dejinM in Section 3.3 with W = F.

Proof. It suffices to prove (a), (b) and (d). First, since

!. (g(X) )
" f(x) - 1 dF(x) ~ 0,

we have

Now,

7: -I eS.

If(x,) f(,,) I X
(a) X ~rn Y <:::=::;. g(xal 9(%') ~ 0, for any .:z;l :5: %, e

(4.4)



;~:~~ :5 :~::~. for any Xl :5 %, E X

yEA....
By Lemma 3.4.1 and (4..1) one obtains (a).
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(b) X ~(_) F

for any Xl :5 %2 E X

By Lemma 3.4.1 and (4.4) one obtains (b).

(c) X ~~ F F(Ld :s; O(xll for any Xl EX

G(xdf(xd :5 F(xtlG(xd for any LI E X

G(xd G{XI)
F(xd :5 F[;J' for any Xl e X

L ~~:~ dF(zl/Flz') $ L. ~~:~ dFlz)/Flz')

for any x, e X

<::=:> 7- e .4,.

By Lemma 3.4.1 and (4.4) one obtains (el. Tbe proof is complete.

Corollary 4.4.1 II X ..... Unifrmn!.X)' tMn

(a)X~... Y ~ g-leA... nS;

a
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(6) X ~H}-- 4==:=> 9 - 1 E A(-) n s;

(cjX:C(+))'- ~ g-lE'~+lnS;

(d)X~.Y <=:=;lo g-IEA.nS

whae the weight function W if the ubugue fflea.rure on X.

Corollary 4.4.2 Let h be the pdf 0/ F(},·). Then

(a) .'( ~m }'" ¢::::::> h - 1 E Am n 5;

(b) X :5(-) y' ¢:::::> h - 1 e A(_) n s;

(e) X :C(..j.) Y ¢::::::> h - 1 E A(+) n s;

(d) X :5. }'. ¢::::::> h - 1 E A. n S,

where the weight junction W is the ubes~meamf'e on (0, I).

Proof. By Theorem 4.3.4, X ::5. Y if and onJy if F(X) :5. F(Y). Since F(X) is a

uniform distribution on (0,11, b)' Corollary 4.4.1 the proof is complete. 0

Theorem 4.4.1 and its coroUaries show that quantification of random variables

and the quantification of real functions are closely related. An application of The­

orem 4.4.1 is given in Chapter 6 where we consider the problem of estimating a

multinomial parameter under various order constraiots. In addition, this relation­

ship plays an important role in the bivariate quantifications of random variables

introduced Chapter 5.
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4.5 Quantifications of a Series of Random Vari­
ables

Let X., x" ... and X.. be n random variables witb cd.f's F ll F2 , • _, and F.. , and

pdf's Ii,h., ". I", respectively. We assume that F I , F" ..., and F" ha\-"e the same

support X. Define L(i,x) = F;(x), LUtz) = Fi(x), and ((i. x) = I;(x), for i =

1.2, .. tn and xE K.

Let [ = {I. 2. .., n} be a quasi-ordered set. A number of quantifications of

X ll X 2 , • •• X.. can be defined through the concept of total positivity and types of

the quasi-Qrcler of I. Some examples are given below.

4.5.1 Linear Orderings

Let I = {1,2, .. , n} be a linearly ordered set such tbat 1 -< 2

Example 4.5.1 .'<\,X" ... X .. are said to be linearly likelihood ratio orden!d (in.

creasing) if I is a linear order set and l(i,.r) is TP,. Recently Dykstra, Kochar and

Robertson (1995) considered statistical inference regarding this ordering for n = 2.

They obtained a closed form expressions for the maximum likelihood estimate and

showed that the asymptotic distribution of the likelihood ratio statistic for testing

the equality of the two populations against likelihood ratio ordering restriction is

of the chi-baNquare type as discussed by Robertson, Wright and Dykstra (1988).

Closed. form expressions for the ma.'Cimum likelihood estimates for more than two

likelihood ratio ordered distributions have not heen found.

Example 4.5.2 XI, X" .. ,X.. are said to be linearly unifonn stochastic ordered

(increasing) if I is a linear order set and L(i, z) is TP,. The uniform stochastic
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stochastic ordering is the most tractable ordering. Dykstra. Kodlar and Roben,..

SOD (1991) have considered statistical inferences with respect to tills quantification

of tbe n distributions. They obtained a nice closed form. expression for the non·

parametric maximum likelihood estimates of the distributions and showed that tbe

asymptotic distribution of the likelihood ratio statistic for testing the equalit)" of

tbe n populations against linear uniform stochastic ordering restriction is also of the

chi.bar.square type. In fact, their result can he applied to a more general case tbat

I is a quasi-order. An example involving data for survival times for carcinoma of

the oropharyn..'( is also given in Dykstra, Kochar and Robertson (1991).

Example 4.5.3 X .. X 2• ••• .\n are said to he linear stochastic ordered (increasing)

if I is a linear order set and l.(i,x) is isotonic for each fixed:r E X. Stochastic or·

dering is the most extensively studied ordering, especiaUy for n = 2, (see Chapter

6). When n > 2, closed form e.."q)ressions for the MLE's do not exist and an iter·

ative p~ure for finding the MLE's was propo5ed by Feltz and Dykstra (1985).

In Chapter 7 we will propose an algorithm that finds the nonparametric MLE of

stochastically bounded survival functions in finite steps, usually two or three steps.

4.5.2 Partial Orderings

Same other orderings of F l , F2 , •. , F II induced by a partial ordering on 1 may also be

important in applications. For example, the simple tree ordering and the simple loop

ordering are often encountered in the control studies. Statistical inference methods

associated this kind of partial orderings have not been developed so far. However,

the result obtained by Dykstra, Kochar and Robertson (1991) can be applied to any

partial orders on I.



Chapter 5

Quantifications of Bivariate
Random Variables

5.1 Introduction

[0 many applications the random variables of interest are dependel1t. For example.

for two ordinal variables, high values of ooe variable may tend to be associated

with high values of tbe other, and similar for low values. Such relationship of tlloU

random variables is known as posith,'e dependence in reliability analysis. There are

many ways in which positive dependence might be precisely defined, some based on

single-valued measures and some 00 multiple inequality constraints. An example

of the first type would be the requirement that the correlation coefficient of two

random variables is pOSitive. Examples of the second type were first considered by

Lehmann (1966) and Esary, Prochan and Walkup (1967), among others. A number

of its applications were considered in the papers mentioned above, Jogdeo (1968),

Esary and Proscban (1970), Barlow and Proschan (1975) and Agresti (1980).

[n this chapter we define a class of quantifications of bivariate random variables

based on the quantifications of functions and random variables. These notions have
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direct interpretations and their relationsbips can be readily established. In addition,

these notions are closely related to the concept of positive dependence. We will show

that the notions of dependence of random variables in reliability analysis are special

cases of these quantifications. But the bivariate quantification defined in this chapter

presents a systematic definition and allows Doe to study bivariate dependence by

using the result 00 quantifications of functions and random variables.

We will only discuss these notions in the bivariate case in this thesis because they

are simpler and their relationships are more readily exposed. But all the the notions

and results in this chapter can be rea.d.ily extended to the multivariate case. Further

more, for convenience. we will assume that each variate of the bivariate random

variable is either discrete or continuous so that the joint density and marginal density

fUllctions exist, even though this requirement is not necessary in some cases.

In Section 5.2 quantifications of bivariate random variables are formulated. In

Section 5.3 we derive an equivalence theorem of these notions. Hierarchical relations

among these quantifications are established in Section 5.4. In Section 5.5 Vol! show

that these quantifications can be conveniently expressed in temlS of the inequalities

of cross product of probabilities over certain regions in the sample space. Some

applications are given in Sections 5.6 and 5.7. In Sec::tion 5.6 we show that the

notions of dependence of random variables in reliability analysis are special cases of

these bivariate quantifications. In Section 5.7 we use the results developed in this

chapter to analyze the association of ordinal variables.
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5.2 Quantifications of Bivariate Random Variables

Suppose we have a bivariate random variable (X, Y) with the joint cumulative dis-

tribution function (cdr) F(r.y) and the marginal cdC's Fx(x) and Fy(y) of X and

F, respectively. Let /(%. y), !x{x) and Jy(y) be the associated probability density

functions (pdf). Let X and Y be the domains of Fx and Fy respectively.

Let (XIY = Y), (XI}' :S 11') and (XIY > y) be random variables with cdC's,

respectively.

FxlY(xly) ~ [~F(X,y)] !IY(y),

F(x,y)!F,(y).

(F.dx) - F(x,y))!(!'y(Y)

where F(y) = 1 - F(y), and pelfs. respectively.

1.",(xIY) ~ ~:i~)'

Is, fJqy(xlt)dFy(t)/ Fy(y)

I. IxIY(xlt)dFy(t)! I'y(y) .."

(5.1)

The origin of our definitions is based on the following observation. Consider

(X!Y = 11'). Clearly, (XIY = y) is a random process indexed by real-valued number

11' E y. When (XIY = 11') is considered as a function of y (in a general sense),

ooe can introduce the quantifications of real·va.Jued functions to characterize this

fUDctioD. However, since each value of such a function is no longer a real number

but a random variable, the comparison of real numbers in the quantificatioDS of real

functions should naturally be replaced by the quantifications of random variables.



We will use the symbol "<" t.o denote a quantification or functions and "~" to

denote a quantification or random variables.

Definition 5.2.1 (X. F) is said to be in the order of

(jm,<ml if (XIY ~ y,) jm (XIY ~ y,),

(~(-J,<... ) if (XIY =.vd ~H (XIV = y,),

(~I+I'<"') if (XI1-" =.vd ~1+J (XIY = y,),

(j.. <m) if (XIY ~ y,) j. (XIY ~ y,)

for any !l1,Y:! E Y,.vl :s Y2.

Definition 5.2.2 (X. 1-") is .said to ~ in the order of

(~m,«-!l if (XI)' s. yil ~m (XIY:S Y2),

(~(-J. <t-)) if (XIV:S yll :=::(-1 (XIV OS; Y'..!),

(~(+I,<t-)) if (XIY:S y.) ~(+J (XIY OS; Y2),

(j.. <'_I) if (XIY S y,) j. (XIY S y,)

for any "loY:! E Y, YI :S!fl.

Definition 5.2.3 (X, Y) is said to be in tk order of

(:=:: ... ,«+)) if (XlY > Yl)~'" (XIY > Y2),

(:=::(-b «+J) if (XIY>!lil ~H (XIY > Y2),

(~(+), «+J) if (XIY > yd :=::1+) (XIY > Y:l),

(~~, <f+)) if (XIY > YI) ~~ (XIV> lh)

for anyylo!'2 E Y, YI $. Y2.



Definition 5.2.4 (X. }--) U 4aid to be in tM onkr of

(~m,<.) if (XIY 5 y) ~m (XIY > y),

(:::5(-j,<.) if (XIY:5 y):::51-1 (XIY > y),

(:~(+"<.) if (XIY:5 y) :::5(+) (XIV> y).

(~ .. <.) if (XIY 5 y) ~. (XIY > y)

foranyYEY.

By symmetry, one can define the order of (X, Y) in the form of «, :::5). For

example, \',"e say that (X, Y) is the order of «on, :::5rn) if

And we say that (.Y. Y) is the order of « •• :::5m) if

(YIX ::5.r) :::5... (YIX > .r), for any.r E X.

HO""ever, the equivalence theorem in the next section implies that it suffices to

consider only one of these two forms. This equivalent results is mainly due to the

conjugate property of the quantifications of functions and those of random variables.

5.3 An Equivalence Theorem

Theorem 5.3.1 (X, Y) is (:::l", < ..) if and only if (X, Y) is « .., :::5,,), where u and

v stand jor any ofm,(-), (+) and s.

Proof. We will prove the theorem case by case, following the sequential orders of

the definitions in the previous section.
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u - m. v - m. By definition, (X. Y) is in the order of (j:... , < ...) if and only if

(XIY = yll ~'" (XIY = Y2), for any 1/1 :s; VI E y, (5.2)

which is. by Theorem 4.3.1. equivalent to

IIXIY(zL!lId bW(X2IYd I::: o. Cor any XI :s %2 E X,
!Xly(xtlY2) IXIY(X21Y2)

which is, in turn, equivalent to

If(.:rl,yd f(x"yd I> 0, i.e. ,/(r,y) is TP2_ (5.3)
f(xlt Ih) /(X2, 1/2) -

It follows that (Xt Y) is (<:... , :S...) if and only if /(%,y) is TP,. By the same token,

one can show that (X, Y) is (:Sm, < ...) if and only if f(x, y) is TP2'

U - (-), v - m. (X. Y) is in the order of (:5(-lt<... ) if and only if for any 1/. S

Y2 E Y.

(XIY ~.,) ~(-J (XIY ~ lh)

Ifz'Sz, !xly(.:rIYd7ihidFx(x) IrS"" !xly(x!lI:z)z;'wdFx(x) I> 0
Ir'Sz1 Ixly{zlyd 1"'~ZldFx(x) Iz'S~ !xIy(xlll:z):rxhidFx(x) -
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for any %1 :5 L'l E X, i.e., (X. Y) is in the order of ('G-It~"')'

u == (+). v == m. This pan can be pro..-ed by its symmetry to the last case u = (-)

andv=m.

~ (X,Y) is in theorderor(~,,<m) ifaodonly i{(orany YI:5!h. EY,

(XIY ~ y,) ~. (XIV ~ y,1

!>:/:qy(tlyd Ix
l
(t)dF.'«t):5 L,:r.!XIY(tly,) fx

1
(t)dFx (t)

I
JI>S f(t, vd fJ/{ll dFx(t) 11>z f(t, !h)~dFx(t) 1< 0

fy(y,) IY(y,)-

¢:::::> (Y1X:5 xl ~m (YIX > xl.

for any x e X, i.e., (X, Y) is in the order of «" ::::Sm).

u:= m. v == (- ). (X, Y) is in the order of (::::Sm, «_I) if and only if for any YL :5
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!h E Y.

I
f,,,,, IXlr(Xtl,IolFy (,l J."n'XlI'(Z,t.')ltFl"(,J I

FylJol FrCnl > 0
f,< .. !Jcly(r,!,J<IlFy(,) f,<.,lxl'rl"'I1<I4FYI1<I -

Fy(,d FY(,tl

for any x, :5 X2 E X, i.e., (X. Yl is in the order of « .... ~(-)).

1.1- (-), v= (-). (X,l") is in theorderof(~l-I'«_I) if and only iCror any YI:S

!hEY,

IP(Y :5 ydX :S Xl) P(Y:S Y2IX :5 xd I> 0
P(Y :5 ydX :5 :1:2) P(Y:5 Y:2IX :5 :1:,) -
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for any XI :5 L2 E X. i.e.. (X. \'") is in the order of ("G-h :5(-1)'

tI = (+), v = (-). This partca.n be proved by its symmetry to the last case u = {-I

and v = (-).
u =s. v = (-). (X. Y) is in theorderof(j"~, «~_I) irandonly ifforany Yl S Y2 e Y.

(XIY:5 yll :5. (XIY ::: Y'.l:)

P(X > xlt" :5 yd :5 P(X > xlY ::; Y2)

IP(X :5 x. y :5 Y.) P(X:5 x. Y :5 Y2) I> 0
PO'" :5 yll pry $ y,) -

(5.10)

IP{.\':5 x. Y:5 yil P(X:5 %, Y:5 !h) I> 0 (5.11)
P(X > x. Y :5 yd P(X > x, Y :5 112) ~

Ipry :5 gilX :5 z) P(Y:5 y,lx :5 x) I> 0
pry :5 ytlx > x) P(Y:5 Y2IX > x) -

<==> (rOIX:5 x) :5(-) (YIX > x),

for any z E X, Le., (X, Y) is in the order of « •. :5(-1).

The four cases when v = (+) can be proved by their symmetry to the cases when

v=H·
~ (X,Y) is in the order of (:5...,<.) if and only irfor any yEY,

(XIY ~ y) ~. (XIY > y)
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I
J,,,,,/Xl'r("I't~Fy(tJ f.>.IxIY('<I!t)oilFy(t) I

Fyl,l ,,"yl¥) > 0
I.",1.m·{6lll)oilFY{11 f.HIXI ..(~lt)ljFY(11 -

Fyl,l Fy(,1

If,'S.,!YIX(tjzl) /Y:(ljdFy(t) ft>,fYJx(tlx\)$dFy(t) I> 0
f,S, fYj.x (t!X2) Jy(I)dFy(t) It>. !Ylx(tlx'):;ymdFy(t) -

for any Xl ~ X, E X. i.e.. (X, Y) is in the order of « ..., ~6)'

u = (-), v = s. (X, )-') is in tbe order of (~(-l' <.J if and only if for any y E Y.

(XIY:::: y) ~(_) (XIY > y)

IP(X' :5 xdY $: y) P(X:5 xliY > y) I> 0
P(X :5 x,JY :5 y) P(X:5 I,IY > y) -

IP(X :5 :r: .. y :5 y) P{X:5 II> Y > y) I> 0 (5.13)
P(X :5 %2, Y :5 Y) P(X:5 %2, Y > y) -

IP(X:5 xll P(X:5 XL, Y > Y) I> 0 (5.14)
P(X :5 x,) P{X:5 %"2, Y > y) -

P(Y > ylX :5 :ttl :5 P(Y > y!X :5 x,)

(YIX $. .:til ~6 (YIX :5 I'),

for any Xt :5 %, E X, i.e., (X, Y) is in the order of «(-I. :s.l·
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It - (+), 'I) - s. TlIis part can be proved by its symmetry to the last case u = (_)

and v = (-).

u = s, v = s. (X. Y) is in the order of (::;., «.) if and only if for any y E Y,

(X[Y 5 Y)~, (XI'" > y)

P(S > xlY:5 y) :5 P(X > xll" > y) (5.15)

1 pel"~ s y) P(Y > Y) I> 0
P(X>x,Y$y) P(X>x,Y>y) -

1

P(X $x,Y:5 y) P(X Sr,Y > y) I> 0
P(X > x, Y:5 y) P(X > x, Y > y) - (5.16)

IP(X :5 x) P(X:5 X, Y > y) I> 0
P(X > xl P(X > z, Y > y) -

P(Y > ylX ::::; x) :5 pey > ylX > x)

(YIX 5 x) ~, (YIX > x),

(5.17)

for any x EX, i.e., (X, Y) is in the order of (<<" .j.). The proof is complete. 0

By Theorem 5.3.1, the orders of (:~ .. , « ..) and (<cu, ~ .. ) are equivalent. Even

though the otber orders do not possess such property of symmetry, they are, by

their definitions, measures of degrees of congruen~, or positive dependeDce of two

random variables. Particular, the notions of positive dependence appeared in Barlow

and Prochan (1975) are special cases of these quantifications, (see Section 5.6).
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5.4 Hierarchical Relationship among Bivariate Quan­
tifications

The relations among the bivariate orders defined in the previous section can be

easily obtained by Theorem 5.3.1 and the well established results about the orders

of random variables. Let ~ .., and ~.2 be two quantifications of random variables.

We say that ~., is stronger than :$., if for any two random variables X and t',

X :$", Y implies X ::::," Y. Similarly, let <", and < ... he two quantifications of

real-valued functions. We say that <t:Ul is stronger than < ... if for any real function

f(r), f(x) is in tbe order of <., implies that J{x) is in tbe order of < ....

Theorem 5.4.1 Ld:5 UI and ::5... be two quantifications of random variabl~ such

that ::5., U :dronger than ::5.
"

ut <., and <Pol bt: two quantijicatio1U 0/ real

junctiom such that <., U stronger than <.,. Then i/(X. Y) is (:::: .. " <.,), (X, Y)

u(:5.,,<.. ).

Proof By Theorem 4.3.3, (X, Y) is the order 0(:5.,. <.,) impliestbat (X, Y) is the

order of (~•• , <Wi) which is, by Theorem 5.3.1, equivalent to « ••. :::S ..,). Again, by

Theorem 4.3.3, the latter implies « .... :::S ... ) which is, by Theorem 5.3.1, equivalent

to (~... , <t: ... ). The proof is complete. a

5.5 Bivariate Quantifications as Inequalities of the
Cross Products of Probabilities

In this section we will show that the bivariate quantifications defined in Section 5.2

can be conveniently expressed in terms of inequalities of cfoss-products of probabil-
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ities over certain regions. Some important applications of this property is given in

the ne.xt sectioD.

Denote

P(rl < X $. x"Yt < Y $ Y'z}

L~2 J.~ fx~~~i~~y)dFx(r)dFY(Y).

Theor-em 5.5.1 (X, Y) is in th~ order of(~.. , <,,) if and only if

IP(ZIlZ,;yl.Y2) P(Xl,X';YJ,Y4) I> 0 (5.18)
P(X3,Z4;Yt,Y2) P(X;),X4i!l3,y.) -

for the following ea"u

(b) u = (-): x\ = -00 and 7, = XJ < %. are arbitrary~ numben;

(el u = (+): Xt < %, = XJ are arbitrary real number.! and %. = +00;

(d) u = S: Xl = -00, X4 = +00 and %, = X3 are 4rbilrnry real numbers

ond

(d) II = m: lit < !h. ::; Y3 < II. are arbitrary real number,,;

(l/) v = (-): III = -00 and!h = YJ < II. are arbitrory real numbers;

(r!) 1I = (+): I/t < '!h =!h are arlritrury real nurnba-s and 114 =+co;

(r/) v = s: lit = -00, 114 = +00 and'!h =1/3 are arbitrary real number".

Proof. We will prove this theorem case by case, following the same order as in the

proof of Theorem 5.3.1.

u =m, v = m. Suppose (X, Y) is (=:... , < ...). by (5.3),

I/(X,. y,) l(x,.1I3) I> 0
l(x3. y,) l(x3.Y3) - ,

(5.19)
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for any I.,:5 X3 E X and Y2 $.1/3 E y. Let L.. X~ E K and 11"1/4 e Y be such that

Xl < %., :5 XJ < .£4 and 1/1 < !h :5 113 < 1/•. Now by integrating with respect to the

second argument of f. the first column of the matrix in (5.19) over (ilL. !hI and the

second column over (Y3' II.], we have

(5.20)

By integrating, with respect to the first argument of f. the first row of the matrix

in (5.20) O1i1!r (XIlL.,) and the second row o\-er (x:J,x.j,). we haw

IP(ZI < -: :S X2, 1/1 < )/ :5.v.z) P(XI < X :5 X'l, Y3 < Y :5 II.) I> O. (5.21)
P(r) < ~\: s: %., II' < Y S!h) P(X3 < X S X.f" 1/3 < Y S 11.) -

Therefore, (5.18) holds. Conversely, suppose (5.18), or equivalently, (5.21) holds for

any XI < It :5 x, < %. e X and 1/1 < !h S 1/3 < 1/. E y. By dividing the first

row and second row of (5.21) by J:, - Xl and %4 - X3 respectively, and then taking

the limits Xl -+ X2, %4 -+ ;e" one obtains (5.20). By dividing the first column and

second column of (5.20) by !h - YI and y~ - !h respectively, and then taking the

limits III -+!h, Y~ -+ 113. one obtains (5.19). Therefore. (X, Y) is (~".,< ..).

1.I = (-), V = m. By (5.4), (X, Yl is in the order of(~l-}t<..) ifand only if for any

IJ:5 %" E X and Y2:5 113 EY,

If~'5Z3 f(r, Y2) IX~~ldFx(r) fZ'iZ3 f(r.!h) 1.",(~)dFx(r) I> 0
f~'5z.J(r,!h)hhidFx(r) fz'S:z.J(r.IIJ)~dFx(r) - ,

or equivalent

where r2 = %3. By carrying on the same operations as in the case u =m and v =m

for the second argument of f, one establishes the desired. result.
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u - (+), v - m. This part can be proved by its symmetry to the last case tI = (-)
and v = m.

1.1 = s, V =m. By (5.5). (X. }') is in the order of C~~, <m) if and only if for any

x E X and!h:5!1J E Y t

By carrying on the same operations as in the case II =m and v = m for the second

argument of f, one establishes the desired result.

u - m, v - (-). By Theorem 5.3.1, (X, Y) is in the order of (~"'.«_I) if and only

if (X, F) is the order of «m. -<l-l)' We have proved for the case (-«-1.<... )' By

symmetry, one obtains the desired result.

'/J - (-), v - (- ). By (5.9), (X, Y) is in the order of (~(_), <C:(-) if and only if for

any %3 < %. E X and Y3:5!1~ e y,

IP(X:5 %3, 1":5 !l3) P(X:5 XJ,Y:5 !It) I
P(X :5 .Lt, Y :5 1/J) P(X:5 It. y :5 !If)

IP(X:5 Xl, Y :5 Yl) P(X:5 XJ,VJ < Y:5 Yt) I
P(X:5 I4' Y:5 Y:J,) P(X:5 X4,Yl < }' :5 !I.)

where %2 = Xl and y, = !/J'

u - (+). v - ( ). This part can be proved by its symmetry to the last case u = (-)
and v = (-).

U - St V - (-). By (S.II), (X, Y) is in the order of (:~~, «-1) if and only iffor any
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x E X ADd 1/2 = Y3 < y~ E Y,

IP(X :5 x, Y s 113) P{X s X, 1'" S 114)1
P(X > X, F :5 113) P(X > x. Y S 114)

IP(X S It Y S Yl) P(X S I,IIJ < Y S 114) I> O. (5.25)
P(X > x, Y S /h) P(X > X, YJ < Y S II.) -

The four cases when 1I = (+) can be pro,,-ed by their symmetry to tbe cases when

v~(-).

The cases of v = s, u = m.or (-) can be prm'ed by the same argument as in the case

v = m or (-) and It = s. The case v = s and u = (+) can be proved by symmetry.

u = s, v =B. By {5.16j, (X, Y) is in the order of (~.. <.) if and only if for any

x E X andy e y,

IP(X S x, y S y) P(X S x, y > Y) I> 0
P(X>x,l'"$Y) P(X>x,Y>y) - .

The proof is complete.

5.6 Positive Dependence of Random Variables

o

Positive dependence of random variables is an important concept and bas many

useful applications, especially in reliability analysis and liCe sciences; e.g., the lire

times of components in a system may be positively dependent because of the common

environmental stress, shocks and common sources of power. The following definitions

appeared in Barlow and Proschan (1975, p.142 and p.145).

Definition 5.6.1 Given random variables X and Y, ~ say the following:



87

(a) X and Y are positively quadront dependent. denoted by PQD(X, Y), if

P(X:S.c. to ~ y);::: P(X ::; x)P(Y :S y) for ail x,y.

(6) X i.J left taild~9 in Y. denoted by LTD(X!YJ, if

P(X :S xlY :5 y) is nonincreo.ring in y lor ail x.

(e) X is right tail increasing in }-", denoted by RTl(XIY j. if

P(X > IIV > y) is nondecn!Ming in y for all x.

(4) X is iJtQC/laslicnJly increasing in Y. denoted by SI(XIY), if

P(X > .elY = y) is nondecrm.sing in y for ail x.

(e) X and Y are totaUy positive of order 2, denoted by TP,z(X, Y), if the joint

probability density f(:r, y) of X and Y is TP2'

(J) X and}-" are "aid to be right corner set incmuing, denoted by RCSI(X. V), if

P(X >x.Y > "IX> x',Y > ~l)

i.s nond~ng in rand 11 for each peel:r and y.

We shall now show tbat the above definitions are special cases of the bivariate

quantifications defined in this chapter.

Theorem 5.6.1 (a) (X,Y) i.J PQD(X, Y) if and only if (X, Y} is (:~.,<.);

{bl (X, Y) " LTD{XIYI if and ,,",y if (X, Y) " (~.. <l-l);



(c) (X, Y) is RTI(XIY) if and only if (X, t') is Lj., «:c+))"

(d) (X, Y) is SI(XIY) if and oniy if (X, }O) is (~.,«:m)"

(e) (X, Y) is TP2 (X, Y) is (~m, «:m)"

(f) (X, n is RCSI(X. Y) if and only if (X, Y) is (~(+l'<{+))'

Proof (a). B)' Tbeorem (5.5.1), (X, Y) is (~ .. «:.) if and only if for any real

numbers x and y.

I
P(X:5 x, Y:5 y) P(X:5 x, Y > y) I
P(X > x, Y:5 y) P(X > x, Y > y)

I PO"":5Y) P{Y>y) I
P(X > x. Y:5 y) P(X > x, Y > y)

I 1 P(}' > y) I 0
P(X > x) P(X > x, Y > y) :::

which is equivalent to (a).

(b). By Tbeorem (5.5.i), (X, Y) is (~., <H) if and only iffor any real numbers

x and Y3 :5 y~,

I
P(X :5 x, Y :5 Y3) P(X:5 x, Y3 < Y :5 y~) I
P(X > x, Y :5 Y3} P(X > x, Y3 < Y :5 Y~)

I
P{X:5 x, Y :5 YJ} P(X:5 x, Y:5 Y~) I
P(X > x, Y :5 Y3) P(X > x, Y :5 y~)

IP(X :5 x, Y :5 Y3) P(X:5 x, Y:5 y~) I> 0
pry :5 113) P(Y :5 Y4) -'

which is equivalent P(X .$. xIV ::5 Y3) ::: P(X :5 xlY :5 Y~).

Similarly, one can prove (c).
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(d) By definition, (X, Y) is (j~,«m) if and only if£or any real numbers YI :5 V'l,

(XIY ~ y,) ~. (XIY ~ !hI,

i.e..

P(.\: > xlY = yll $; P(X > xIV = Y2)

for any real numbers x and YI :S V'l' By definition, (X, Y) is Sf(XIY).

(e) This is already proved in the proof of Tbeorem 5.5.1.

(f) This part is a little bit complicated. Note that

P(X > x, 1" > ylX > x', Y > g')

P{X > max(x,x'), Y > max(y,if)
P(X >x',Y > yl)

1. if x' > x, y' > y;

;~~~~.;::I if x' > x, y' :5 y;

;IZ~;;:~~l if x' :5 x, if> y;

:g~:;,~~;l) if x' :5 x, y' 'S y

(5.26)

It follows that (X, Y) is RCSI(X, Y) if and only if

~~; ~ ~:~;;; is nondecreasing in z' and y' with y/:5 y (5.27)

and

~~; ~ ~,~ ~ ~~ is nondecreasing in x' and y' with x' :S x. (5.28)
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It can be shown tbat both (5.27) and (5.28) are equh..alent to

P(X :> Zit Y :> y!lP(X :> %2. Y :> v.z)

~ P(.'::> '£2, Y :> y.)P(X :> It. Y :> !h) (5.29)

for any XI :5 L7. !II :5 112- Tberefore, (X, Y) is RCS[(X, Y) if and only if (5.29)

bolds. Since

P(X :> rl, 1'":> ydP(X:> %2. Y :> /h)

-P(X :> %2, Y:> ytlP(X :> %1>1":> Y2)

IP(X :> ;tit Y :> ya) P(X:> Xl> Y :> !h) I
P(X :> X2, Y :> yll P(X:> %2, }-" :> Y2)

IP(ZI < X :5 X2, Y :> yil P{ZI < X :5 %2, Y :> 112) I
P(X :> %2.1" :> !Ill P(X :> %2, Y :> Y:z)

_IP(ZI < X :5 %2. Y :> y.) P(ZI < X :5 x,. Y :> Yz) I
- P(X :> Z7,YI < Y:5:rn) P(X :> I2, Y:>!h)

by Theorem 5.5.1, (X, Y) is ReS/(X, Y) ifand only ir(X,Y) is (=:SI+).<I+I)' 0

By Theorems 5.4.1 and 5.6.1, one can easily obtain the chart of the implication

among notions of bivariate dependence in Barlow and Proschan (1975, p.146). The

proof of the following result can be found in Lehmann (1966).

Lemma 5.6.1 (X, Y) i" PQD if and only if

E(g(X)h(Y)) " E(g(X))E(h(Y)) (5.30)
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for any nondecreo.sing jundiOTU 9 and h with finiu e%~.dation in (5.30). In addi­

tion, if (X, }'-) u PQD and E(XY) = E(X)E(Y), then X and Y an: independent.

Consequently. if (X, Y) is PQD. then Cov(X. Y) ~ O. Howe\ow, the converse is

not true as illustrated by the following e.."(aatple.

Example 5.6.1 Suppo8e (X. Y) u a bivariate rundom which is uniformly dutriblJt~

on {(O,O),(2,-l),(3,1j). Then Cov(X,Y) = 1{3 > O. utg(-l) = -1 and

g(O) = 9(1) = O. Clearly, 9 u a nondecrea.'lingjunction on {-l,O,t}. However,

Cov(X,g(Y)) ~ -1/9 < O.

5.7 Positive Associations of Ordinal Random Vari­
ables

In many studies variables are measured on ordinal scales. These scales consist of a

collection of naturally ordered categories (e.g., stages of a disease, degree of recovery

from an illness, ordinal preference scale). Ordinal scaJes also result when discrete

measurement is used with inherently continuous variables such as age, education

and degree of prejudice. Tb.ere are many advantages to be gained from using ordinal

methods of the standard nominal procedures. For example, ordinal methods have

greater power for detecting important alternative to null hypotheses such as the

one of independence. See Agresti (1984) for more details on the analysis of ordinal

categorical data.

It is of great importance to study how ordinal variables interrelate with each

other. For example, high values on one ordinal scale may tend to be associated

with high values on tbe otber, and similarly for low values. There are many ways



92

that one can characterize such dependence of ordinal \'lU"iables, some based on tbe

single-valued measures and some on multiple inequality constraints. A well known

example of the first type would be the requirement that the Kendall's T be positive.

In the following discussion we will consider some definitions of the second and relate

them to the notions introduced in this chapter.

5.7.1 Odds Ratios of Cross-Classification Tables

Suppose that X and Y are ordinal variables with X = 1,2, .. , / and Y = 1,2, .. , J.

Denote lI";j = P(X = i. Y = j). The following definitions can be found in Agresti

(1984). We shall refer to X and 1-" as the row variable and the column variable

respective!)',

A basic set of (1- 1) x (J - I) odds ratios is

8i } = :"~::~i~:> i = 1, '" (- 1; i = I, ... J - 1. (5.31)

These odds ratios are called lccal1'l1tioll and their values describe tbe relative mag·

nitudes of "local" associations in the table.

The local odds ratios treat row and column alike. Another family of odds ratios,

one that makes a distinction between row and column, is

(f. = (E'<jl'r••HE'>jl'ri+',j,) ·=1 .. ,I-l;j=l, .. ,J-I. (5.32)
.J CLbjl'rill)(E'Sjl'l"i+U)' I ,

These odds ratios are local in the row variable but "global" in the column variable,

since all J levels of tbe column variables are used in each odds ratio.

A third family or odds ratios of ordinal variables is
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These measures treat row and column alike and describe associations that are global

in both variables.

For each set of the local, local-global, and global odds ratios, independence is

equivalent to all odds ratios equaling 1. An association described by one of these

measures is referred to as "positive" or "'negative" in accordance with odds ratios

greater or smaller than 1. By Theorem 5.5.1 it is easy to see that these three positive

assodations are equivalent to tbat (X, Y) is ill the order or(~",,<m),(~m,<~) and

(:::5., <.), respectively.

A broad classes of odds ratios can be defined corresponding to the bivariate

quantifications introduced in this chapter. These classes are listed below.

8}j·m
l = ;:~:il~;:7~;

O((-I.m} _ (E~ I 7r&j)1r,+IJ+I.

ij - Jl'i+lAE:"", '11"_'; • .)'

0((+1.... ) _ J1'.j(E~ ;.1 'lra,J+l).

if - (E!;t+I 1r.j)'Il'i,J+I'

~ .....l _ (L.:,,,,I r.j)(~=o+1 r_J+d.
ij - (L!.""+l r.j)(I:.1 r_J.d'

~"''(-)l _ O:h,JI'''}JI''+IJ+'.
i} - (Et=1 Jl'i+l,,),,"iJ+1 '

8\C-),(-1l _ (E~ I EL.1 ,,"-:)lI';+IJ+I .
'I - (Eiz, 1fi+l..)(E~.11I"_J+d'

8((+)'(-)) _ (EL.l 1I"ilI)(E~"'i+11I"_J+d.
ij - (r:~""'+1 r:~1 'II'..)1I";J+l '

8(~'(-) = (I:~_I r:i:~ 1f..)(E~.~+,1f_J+d.
'1 (I:~+1 Lkl 'II'..HE:"', :ll"e.,j+d'

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
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(5..1,5)

(5.48)

(5.49)

(5.46)

(5.43)

(5..1,2)

(5.44)

(5.47)

o(m.(+Jl _ lI"ijn:t:J+l ni+l,.) .

iJ - 1l"i+I-.i(I:t:;+l lI"i+U) ,

o~~-)(+)) = (I:~-"'l ir"'J!(I:; rl1l"HI6)
Pi+l,JI:",,,,,II:b=}+11l"411

O((+),(+JJ _ 1t,j(I:~=.+1 E; j+11I"4II) .

'1 - (L~::;+t ;r"'j)(Lt:i+l '/rib)'

0(>,(+1) _ (L~ 1 1I"",j)('L.~=i+l I:t..i+lll"Olt).

i; - (LLi+1 lI'aJ)(E~=1E;:;+l 11"010)'

O(m.. ) = (I:~ I 1l",b)(I:t:;+1 1I",+I,b).

IJ (I:i:l 1I"i+l,bHI:t:j +1 1I"jb)'

0«-)'» = (I:~-l L~=l 1l"4II){Lt:l+l 1I"i+l.b) .
IJ ('L.b _ IJpi+l.b)(E~=IL~j+l 'lrob) ,

0«+)'» = (Lh,l 1I"I6)(.L~_i+l 'L.f,..i+l1l"«b).
<J (I:~=i+l 'L.t:1 1I"4IIHI:;=i+l1l"i6)'

0<"') = (L~-I L~_. 1I"4II)(E~__i+l Et.j+l 11"411)

'J n::~=i+l Et=l 1I'4II)(I:~=1 'L;"'J+l 11""6)

for i = 1, .. ,1- 1 and j = 1, .. ,J - 1.

Some of the above classes of odds ratios have also appeared in Grove (1984). For

example, the odds ratios defined by (3.1), (3.2), (3.3) and (3.4) in Grove (l984) are

equivalent to those defined by (5.42), (5.37), (5.43) and (5.47), respectively.

5.1.2 Sampling Schemes and Estimations

ror a given random sample of size N, let Xi; denote the observed count of (X, Y) =
(i,j) and let Tnt; = N1I"ij denote the corresponding expected count. Let

and

"Xi+ = LXi;,
i=l

"Tnt+=Lmij,
;=1

,
X+i =~Xii

,
m+;=~mij'
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It is clear tlIat the cross-product of probabilities in Theorem 5.5.1 can be replaced

by the corresponding cross-product of mij '5.

In the simple sampling scheme (SSS) where the total sample size N is fixed,

{Xij} has a multinomial distribution, with pdf

Therefore, the kernel of the likelihood function is given by

(5.50)

Although in observational studies only a single sample may be examined, in ex-

perimental situations it is more usual to have several groups, with the total number

of individuals in each group determined by the sampling plan. The resulting distri·

butiaD is a product of multinomials from these groups and the sampling scheme is

called product multinomial sampling scheme (PMSS). For example, if the row totals

are fixed by TIl, 02, .. ,nt, then the sampling scheme is called PMSS with row totals

fi..'l:ed (PMSSR) and the resulting distribution is given by

[
x ..' ("". )';'][({x;,}) ~ II -n'x' II;;;:'- .

; j'r j 1+

Clearly the parameters mij are not estimable in this scheme. A common approach

to this problem is to consider the restricted parameter space with ffi;+ := rli. Then

the kernel of the likelihood function is also given by (5.50). Similar results hold for

the product multinomial sampling scheme with column totals fixed (PMSSC).

Suppose that (X, Y) is in the order of (::::: ..,<t:u). where u and v stand for any

of m, (-), (-) and s. The restricted MLE's under the above sampling schemes are
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generally not the same unless the MLE under SSS is in the restricted parameter

space of PMSS.

Theorem 5.7.1 Let u and II denote one oj the $Yf1lbo18 m, (-), (+) and.s.

(a) Suppo~e that (X, F) i.t in the order oj (:~.. , <mI. Then the res~ricted MLE's

of mij under SSS and PMSSC are identical.

(b) Suppose that (X, Y) i6 in the order of (:~m, <,,). Then the restricted MLE'"

of nl;j under SSS and PMSSR are identical.

Proof. It suffices to prove (a). We shall first prove the case u = m. Under the

simple sampling scheme. the MLE of mij minimizes

iI fI m;/'J
.",lj=1

subject to the constraints E.,J mol = N and

(5.51)

m.;-jm;-+I,j+l~m'J+lm.+I,j, i=1.2, .. ,1-1, i=1,2. _.• J-I. (5.52)

We can rewrite (5.51) as

<II m:;'lII rI"''',
pzl '=11=1

(5.53)

where Pi} = TIl;.jfm+i =1f.)/7f+j. Clearly the only constraint on m+i is 'Lf._ = N.

Therefore, the MLE of m+i is given by %+j_ It follows that the MLE's under SSS

and PMSSC are identical. Similarly, one can prove the cases u = (-), (+), and s.

o

Corollary 5.7.1 SUPpo3e that (X, Y) i.s in the order of (:~m, <Cm). Then the reo

"mcted MLE'3 of rI'ltj under SSS, PMSSR and PMSSC are identicaL
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We shall now consider some applications of the above results.

Example 5.7.1 I£ 1= 2. then the orders (~.,<.) are equivalent to (~..,<.).

where Il, U := m. (-), (+1. or iI. By Theorem 5.7.1. the restricted MLE's of 17L,j

under SSS and PMSSR are identical.

Example 5.7.2 Suppose tbat (X, 1") is the order of (~... , <",). By Corollary 5.7.1,

the MLE's of mil under SSS. PMSSR and PMSSC are identical.

Particularly, suppose I = 2. Then if we consider the order of(X. Y) as (j",.<:",)

and the sampling scheme as PMSSC, we will have the bioassay problem which was

first considered by Ayer and coworkers (1956). Let Xl = (Zll,Xt2• •• ,xu) and

X2 == (X21.%22' .. ,:.tv)· Then the i\lLE of m,j is given by

and m,2i =x11 +.t2J - ml)" for j = 1,2. ... J, where A = {(B lo ••• OJ) :8, ~1J.z;::

•.. 2: 8,,} is the cone of noninaeasing "-ectors. See Robertson, Wright, and Dykstra

(1988, 032).

On the other hand, if we consider the order of (X, 1'") as (:~..., < ...), which is

equivalent to « ... ,~... ) by Tbeorem 5.3.1, and the sampling scheme as PMSSR, we

will have a seemingly different problem: estimating mij is equivalent to estimating

two multinomial parameters under the likelihood ratio ordering. This problem was

recently considered by Dykstra, Kochar and Robertson (1995). In their paper, Dyk­

stra, Kochar and Robertson obtained the MLE's of mij and derived the asymptotic

distribution of the likelihood ratio statistics for testing the equality for two discrete

distributions against the alternative that one distribution is smaller than the other
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in the likelihood ratio order. E\~n though the ~[LE's were obtained in the discrete

setting, they provide generalized MLE's. in the sense of Kiefer and Wolfortz (1956),

under the assumption that the family of interest is the collection of all pairs of uni­

variate distributions. In addition. Dykstra, Kochar and Robertson (1995) showed

that these estimates are strongly consistent.



Chapter 6

Multinomial Estimation
Procedures under Order
Restrictions

6.1 Introduction

Suppose XI, %2, ..• XI< are the observed values of a random vector which possesses a

multinomial distribution with parameter n and probability vector (PV) p. Assume

also that p is restricted to lie within a closed convex subset if of A where

A= {(PbP:2, .. ,p,,):p; ;:::o,tPi = 1}

is the set of all probability vectors of length k.

Standard estimation procedures in a multinomial setting are the methods of

ma.ximum likelihood, Pearson minimum chi.square, Neyman modified minimum

chi-square, minimum discrimination information, and the Freeman-Tukey criteria.

These estimation techniques lead to optimization problems which can be phrased,

respectively, in the following manner:

min 2 f:. Xi In(x;/nPi),
pEK i:l
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(6.1)



mi9t (Xi - npi)' ,
pE ... ;:1 "'Pi

mint (Xi - "'Pi)',
PEK ,,.1 Xi.
miJ! 2 L npi 10(n",lx;),
pEl.: ".L.
miJ!4L(..,Ii;"_,fiiPi)2.
pE" .=1
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(6.2)

(6.3)

(6.4)

(6.5)

These problems may be difficult to solve, and indeed. this difficulty has often in-.

Buenced the estimation procedure which is used. For example, if K is a subspace,

the Neyman modified minimum chi-square procedure is essentially a weighted least

squares problem which is well understood. All these procedures are asymptoticaHy

equivalent.

Cressic and Read (1984) define the directed divergence of the PV, q, with respect

to the PV, p, of order'\ as

(6.6)

In order to ensure that I" is defined for all PVs p and q, for>' 'F 0 and -I, we

evaluate I"(q; p) as

,. 1 { • qt· 1
}

I (q.p)~ >(>+1) ~Pf-I . (6.7)

with the convention that % equals 0, and allow 00 as a possible value. For>' =0

or -1, we define l"(q: p) by continuity in >.. It is known that l"(q: p) is always

non-negative and it is zero if and only if p = q. Furthermore, [~(q : p) is a strictly

convex function of p over A if each q; > O. Thus [~(q: p) acts as a discrepancy

measure between p and q.
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Cressie and Read (1984)'5 beautiful observation is tbat all five of the aIoremen-

tioned estimatioD criteria are special cases of the problem

~ 2nl),(p : p). (6.8)

In particular, if ~ = 1, (6.i) reduces to the Pearson minimum chi-square expression

(6.2). [f>' = -2, it becomes the Neymann modified minimum chi-square expression

(6.3). While not explicitly defined if>' = 0 or -1, we ohtain the log-likelihood

ratio expression (6.1) and the MOl expression (6.4), respectively, for these values of

>. if we define matters by continuity. The Freeman-Tukey criterion (6.5) follows if

A~ -1/2.

[0 this section, we consider the problem that K consists of probability vectors

which satisfy some order restrictions. The results in SectioD 6.2 and 6.3 have been

obtained by Dykstra and lee (l99I) and Dykstra, Lee and Van (1996). respectively.

In the following discussion operations on vectors mean the corresponding oper-

ations on each element of the ,,-ectors. For example. p :S q means that Po :S q"

i= 1,2, ... Ie.

6.2 Multinomial Estimation Procedures under Or­
der Restrictions

6.2.1 Estimation under the Isotonic Constraint

Dykstra and Lee (1991) following earlier work of Dykstra (1985) and Lee (1987b)

showed that if K is an isotonic cone, tben all these procedures can be related and tbe

corresponding estimates expressed in tenns of equal weights, least squares projec·

tions. Specifically, if we let p{.l.) be the solution of (6.8) for an isotonic cone K = I,
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then

~. ~

E(p"'II) '" I~ {p"'II);'" [0' >. > -1

E(p'+'IA) 6 It, {p>HI.<),6 (0' >. < -1

where A. is tbe antitank cone, and

pll) =eXP{E(lnpll)}/~eXP{E(lnpll)i} for A=:-1.

(6.9)

(6.10)

6.2.2 Estimation under the Stochastic Ordering Constraint

Recently, Dykstra, Lee and Van (1996) considered tbe problem that K consists of a

pair of probabiJity vectors which are stochastically ordered. They showed that these

procedures are also closely connected. behave similarly, and have elegant solutions

in terms of a single least squares projection.

In the two-sample problem, let x = (Xl, %2, .. ,Xt) and y = (YI'Y:z, .. ,!lIr) be

the observed values of random vectors wbicb possess independent multinomial dis­

tributions with parameters m and n and probability \'eCtors p and q. The estimate

of (PI q) such tbat p ~. q are gb:en by the solutions to the problem

~~~ [2m/A
(t): p) + 2nl"(q: q)]. (6.!!)

where p = x/mand q = yIn. In the event that criterion (6.1) (maximum likelihood)

is used, Robertson and Wright (1981) have shown that the solution is given by

p {~+ NEt\(VP[V)} I

q{~E4(VplI)+~} (6.12)
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where V = {x : Xl 2: X2 .. 2: Ik} and I = {x : XI ~ X2 •• $. x,d. The following

result can be found in Dykstra. Lee and Van (1996).

Theorem 6.2.1 The solution to (6.Il) i., given by

f> {~+ NE15(vpIV)A+I} 1/()'+I) fe,

Ci {NE<\(Q/plI).H1 + ~}lf(A+ll Ie

where N = m + nand c is the normalizing constant

".' . {~ !!...E (CirIV)A+I}I!(.l.+1lf=L P' N + N ~ P ;

~qi {REq(qjp!I)t<f>! + ~} 1/(.\+1)

if ~ #- -1; if).. = -1,

(6.13)

(6.14)

(6.15)

(6.16)

pC-I)

q<_lj

pE.Wp[V)'INIe

iiE.(P/ii!IJm/N Ie

(6.17)

(6.18)

Note that only one least squares projection is required for all >. in this case,

while a different least squares projection is required for each value of >. for the

isotone constraints, (see Section 6.2).

[0 the one sample problem, i.e., when one of the multinomial parameters p and

q is known, Dykstra, Lee and Van (1996) showed that the solution to the stochastic

ordering estimation problem is (rather surprisingly) independent of A. Specifically,

if q is known, then the estimate of p is given by

p(.l.1= pEp(q/pj:D) if K = {p E A: p ::;~ q}; (6.19)

pI" ~ pE,(q/pIIJ ir K ~ (p E A, q~, p}. (6.20)
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See Robertson and Wright (1981).

6.2.3 Estimation under the Bound Constraint

Sometimes bounds for some Pi'S may be obtained Crom other sources. Suppose one

is interested in estimating p such that p E K = {p e A: p -s; q}, where q is a given.

nODoegative, real vector. The solution exists if and only if E:;'. q; ~ L Clearly, if q

is a PV, then q is the only PV that satisfies tbe constraint and thus is the solution.

When q = I, the problem reduces to the unrestricted one. We propose tbe following

algoritbm for the problem

min2nI),(p: p).
p~q

Algorithm

Step O. Let 8 = 0 and Vo ::::: 0.

Step 1. For i ¢ ~, compute

P~" = 1 i;~~friqip;.

Let V.+ 1 ::::: \'~ U {i; i ~ V.,P•.i > qi}'

Step 2. If A.+ 1 ::::: .4" then the solution is given by pi ::::: qi for i E v;, and pi == P.,;

Cor i tt v;,. Otherwise. replace .s by .5 + 1 and go to Step L

The utility of the above algorithm lies in tbe following lemma.

Lemma 6.2.1 Let x· be the solution to the problem.
min 2nIA(p: x), s.t. ~ Xi =c, and x:s q

wherec> 0 is a given reaJnumber. Let V ={i: cfJ; ~ qi,l:S i:S k}. Then x; =qi

ifiE V.
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Proof. Clearly the solution exits and it is unique. Suppose x· is the solution. then

we have

'<Sq,ScPi i(ieV.

Suppose there exists an index Q E ". such that

[6.21)

Since L:~=l xi == E~=l cPi == c. there must exist an index /J ¢ V such that

Let c = x~ + x8' It can be shown that

2n (,f.+' W')
.\(.\ + 1) x: + eel - %0)),

[6.22)

(6.23)

is astrict CODvex function oepo which is minimized at i .. == p..cf<P.. +pfJ). By (6.21)

and (6.22), P..:r8 > P8X;. It follows that i .. > x; and hence the function defined by

(6.23) is strictly decreasing from [x;, i o)' Therefore, while bolding all :ri's except

x; and xii fixed. one can decrease 2nIJ.(p ; x) by moving from x; in tbe direction

to r.. (XII = r! -x.. )) without violating the constraints x:S q and E7=, x; == c. This

yield a direct contradiction. The proof is complete. D

6.2.4 Estimation under the Uniform Stochastic Ordering
Constraint

Here we are interested in the following problem

min 2nl.l.(p; p).
P~I-lq

(6.24)
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where q is a given probability \"f!ttoc. We repanuneterize by lening

8, = r:.~:lp/ i = 1,2 ... ,1:-1. (6.25)

Then we have (1 +8,) = L:~~~PJ/r:;"'IPl and thus :r:~.. IPJ = l/rrJ:i(l +8J _.}. [t

follows that

(6.26)

and

'" 1
PI =~ = IT1"'2(1 + 8

i
-d' (6.27)

By denoting 80 = +00, the expression of (6.26) is also valid for k = L Similarly,

one defines il; and (/Ii from p and q. Now,

/' 1 G' p'" 1-- L-'----1
A(A + 1) ":1 pt

1 [t 9';!.' nj..(1 + 8;_,)' ]
.leA + 1) i=1 at-I nJ=i(1 + 9j _ I )A+1 - 1 .

So the original problem (6.24) reduces to minimize (6.28) subject to

9, :5:tPi, i= 1,2, .. ,t-I.

(6.28)

The first partial derivatives of /" with respect to (J, are found to be

alA ~ ['+l Bt::,l ni~(l + 9j d'" 1
ao; A+ 1 ~ St.-I m=o:(1 +8j _d.l.+! 1 + 8, (6.29)

ot+! ni-I+I(l + BJ_al" ]
et+ l m:I+I(1 + Bj _ I »),+!

1 2:1=1+1(1 + 8i _!l.l. 1 (6.30)
),,+ lr:i~+l(l +8.;-11).+ 11 +8,

[t 9';!.' n}.. (1 +8;_,)' (~)...] . (6.31)
;.. , ef-I n~=i(l + 8J_dJ.+1
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I = 1. 2, ... k - 1. It can be shown by calculation that the all .second partial

derivatives are all nonnegative. Suppose 9; is the solution to the problem (6.28). It

follows that 0," depends only on 8;, ... 8; by

(9,)'"8i = 0, (6.32)

1= 1.2, ". k - 1. The following result follows from the above argument.

Theorem 6.2.2 The optimal V4lue of 8; u given by

[t can be shown that al = 1 and

(6.33)

(6.34)

(6.35)

6.2.5 Estimation under the Likelihood Ratio Ordering Con­
straint

Here we are interested in the following problem

min 2nI~(p : p).
p:;5..q

(6.36)

wbere q is a given probability vector. By letting Xi = P;/qi and Yi = pdq" the

problem (6.36) reduces to
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First. consider the case A f:- 0 and - L Define

Then
d %-(},+II

0(X) =: d;4'(:r) == ->.+1

and

of,-l(Z) = [-(.A + l)xrl/IJ.+l).

By Theorem 3.1 of Dykstra and Lee (1991), the solution for x is given by

[ (
¢ )]-'11'+"

:to = -(..\ + 1)£......., - q;~II'D

where J/Jo is a constant such that

(6.38)

(6.39)

Suppose .>. + 1 < O. Since x· 2:: 0, the coefficient of 1/11'+1 in the projection of (6.38)

must be positive. By tbe identity

E'.(o£IV) = oE.(fl'D) if Q > 0,

and a theorem of Robertson (1966).

Eh(fjhltJ) = Er(h/fIA)-l, for positive f and h

one obtains that

x·

(6AO)
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Therefore, by (6.39), one obtains

It follows that
_ Eq (yA+llA)'/CA+1)

p' - qL~:1 qiEq(y),+IIA):/(),+lj'

By symmetry, one obtains

• Eq(y.l.+IIVP/(,),+I)

P = qL:f"" qiEq(yJ.+IIV)V(.l·+lJ'

(6.41)

(6.42)

for ~ + 1 > O. The case .A = 0 can be easily handled by continuity argument in

(6.41) 0' (6.42).

For the case .A = -1. the original problem is equivalent to minimizing.
~Pi(nxi

subject to :tl ;?: .£2 ~ ••• ~ Xt and Lf:l xiqi = 1. The solution can be obtained

similarly as above and found to be

PI exp{Eq(lnyIV)}
p = qL~:1 qiexp{Eq(lnYIV);}'

Therefore. we have proved tbe following result.

(6.43)

Theorem 6.2.3 The .Jolutionforp that minimize.s (6.36) such that P:5m q is given

by (6.,jl), (6.43) and (6.42) for.A < -1, >. = -1, and>' > -1, respectively.

Remark: Clearly the above argument in the proof of Theorem 6.2.3 still holds

for the more general case that p/q lies in an isotonic cone. When q is the unifonn

multinomial parameter, the problem is reduced to the one solved by Dykstra and

Lee (1991), (see Section 4.2).
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6.3 Maximwn Likelihood Estimates of Order Re­
stricted Multinomial Parameters

The maximum likelihood estimates of order-restricted multinomial parameters can

be obtained by letting A = 0 in the previous section. Let V = {x II ~,["2 •• ;? Id

be defined as beforE! and q be a given multinomial parameter.

~ By (6.9), the MLE of p is given by

p' ~E(pl1l)·

~Since

t,Q;E.(YI1l); = t,q,E.(P!ql1l); ~ t,q;(p!q); = 1,

by (6.33) the MLE of P is given by

p' ~ qE.(P!ql1l)·

(6.44)

(6,45)

P ~(+J q. By inductive formula (6.35) one can show tbat a, = I, I = 1,2, .. ,k.

Therefore, by (6.33) the MLE of 9 is given by

(6.46)

where

8 Pt+1 9; = ~;+I ; ¢. -~ (647)
i = Ej",lPj; Lj",LPj' - Ej.lqj' .

i = 1,2, .. ,k-I.

p ~~ 9. By (6.19), the MLE of p is given by

p' = pE.(qfpl1l) (6.48)
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Once again, by comparing the above results with th05e in Section 3.3 we see that

the orders of real-valued functions <m, «+) «(-l) and <C, are closely related with

the orders of random variables ::: ... , ~(+) (~(-l) and :5,-

6.4 Estimation under Other Ordering Constraints

Estimates under some other constraints may be obtained by Theorem 4.4.1 as illus­

trated by the following examples.

Example 6.4.1 Let q be the unifonn multinomial parameter. Then p j(-) q if

and only (PI + P'1. + .. + Pi)/i. 2: Pi+l-

Example 6.4.2 Let q be the uniform multinomial parameter. Then p :::. q if and

only (PI + .. + Pil!i 2: VJ.+I + .. + pt)/(k - i).

Example 6.4.3 Letq = (1/2,0, .. ,0,1/2). Thenp:::;qifandonlYPl+ "+Pi~

Pi+ ... +p".



Chapter 7

Nonparametric Estimation of
Bounded Survival Functions with
Censored Observations

7.1 Introduction

Stochastic ordering between survival functions is a ,-ery important concept. It arises

in numerous settings aDd has many U5eful applications. For example. Agresti (1974)

and Bhattacharjee (198;) considered the problem of finding appropriate stochas­

tic bounds for the time of e."<tinction in some branching processes. Examples of the

lower bounds and upper bounds for some test statistics in order restricted inferences

can be found in Robertson. Wright and Dykstra (1988, p.141). When such orderings

exist, it is desirable to recognize their occurrence and to model distributional struc·

Lure under such orderings. Nevertheless, estimates of the survival functions may Dot

bear out such properties because of the inherent variability of the observations. The

literature on estimation problems involving stochastic ordering is extensive. Brunk,

Franck, Hanson and Hogg (1966) obtained nonparametric maximum likelihood esti­

mates (MLE) or two stochastically ordered distribution runctions and studied their

112
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propenies. Dykstra (1982) considered a similar problem with right-<:ensored data.

Feltz and Dykstra (1985) proposed an iterath-e algorithm to find NMLE's of more

than two survival functions subject to linear stochastic ordering restrictions. Lee

(1987) discussed the MLE's for stochastically ordered multinomial populations with

6.:<00 and random zeros. Robenson and Wright (1974), and Sampson and Whitaker

(1989) considered stochastic orderings in higher dimensions.

In this chapter we consider the problem of estimating a survival function that

is stochastically bounded both from below and from above, with rigbt.censored

data. In Section 7.2 we introduce some notations and extend the one-sided problems

considered by Dykstra (1982). In Section 7.3 we derive the two-sided problem and

propose an iterative algorithm to find estimates in finite steps, usually two or three

steps. A..n example involving survival times for heart transplant patients which

appeared in Crowley and Hu (1977) is given in Section 7.4 to illustrate the proposed

algorithm. In Section 7.5 a simulation study is conducted to in\-e5tigate the increase

in efficiency obtained by using the stochastic bounded constraints.

7.2 Notation and the One-sided Problem

Suppose independent observations are taken from a distribution on the positive

real line with survival function pet) and complete observations (deaths) occur on a

subset of the times 51 < 52 < ... < Sm (50 = 0 and Sm+1 = 00 for convenience).

Let dj denote tile number of deatbs at Sj and Ij denote the number of censored

observations (losses) in the interval [Sj, Sj+l), assumed to occur at LpJ, i = 1, .. ,Ij.

Let Rj = L:;~j(dt + Ii), the number of items sumving just prior to 5 j . We assume

that the censoring times are fixed, although the method also works with indepeodeot
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random censoring times. see Dykstra (982).

Proceeding as in Johansen (1978), \\1!: can obtain the generalized i\'!LE of tbe

survival function (in the class of all unh-ariate distributions) by finding tbe SUrviVllI

function P(·) that maximizes

.. m { ,,}II P(L:") x II W(S'-} - P(S;)I" II P(LP') .
I~t J .. I isl

This problem is equivalent to tbe one that maximizes

ITIP(S;-,) - P(S;)I" P(S;)"
j",1

(7.i)

(7.2)

if pet) is a right continuous step function. The unrestricted solution to (7.2) is given

by
• J d; .

P(S,) ~ II(i- -I. 1 ~ i.2, .... m.
''''L n.

(7.3)

the well known Kaplan·Meier product limit estimates (K-M estimates).

Let Q(-) be a given survival function. We are interested in maximizing (7.2)

under one of the following four constraints

(f) PiS,) ~ Q(S,). j ~ i. 2..... m - i. ~d P(Sm) ~ Q(S.);

(f0) peS}) ~ Q(SJ)' j = 1,2, ...• m;

(U) P(S,) ,; QIS;). j = 1.2 m - 1. ~d P(S.) = Q(Sm);

(110) P(S;) ,; Q(S;). j ~ 1.2 m.

As in Dykstra (1982), it is required to solve equations of the form

Ii (i _....'!L) ~ Q(S,) .
j__ rlj + Y Q(So-tl

(7.4)

Let Y.o be the solution to (7.4) which lies between max.~~.(drnj) and the exteoded

real oumber +00 so that each individual term OD the left hand side of (7.4) is a value



115

between 0 and L The fotlowing result is an e..'ttension of Dykstra's (1982) one-sided

problem and its proof can be found in Section 7.6.

Theorem 7.2.1 The solwion to (7.2) is given by

POlS,) ~ IT (1-~), j ~ 1,2, .. ,m (7.5)
,,,,I Tlo+Yi

where

Y; =min..:!:i ma.."<b~. Yab =m~~; min..'Si Yd, for the con.straint (I),.

Y; = min..'Si max.~i y;' = ma.Xb~. mio,,:!:i y;', for the con.straint (10);

Y; = ma.'<o9 min'~i II.. = miI1b~i max.9 Yab, for the con.straint (II);

y; =ma.'<o:5' miu.~; II;' =rnm.~i max..9 y;:', for the con.straint (110)

with Y:' =rnax{Yeb,O} and y;. =min{y.,O}.

The estimates subject to the one-sided constraints are still in the form of the K·M

estimates and only require adjustment on n;'s. This remains the same for the t~

sided problem considered in the ne..xt section. For a heuristic AI interpretation of the

adjusting constants "ts, see Dykstra (1982). The values of 10';'5 for the constraint (I)

can be computed by the maximum lower sets type algorithm (MLSTA) as follows.

O. Setr=Oandio=O.

1. Let i~.l be the largest index j such that Yi.+IJ = max;.+I9:::;",Yi••U' Set

Y; = Yi•• l.i•• ,, i =iT + 1. .. ,iT +[.

2. Replace r by r + 1 and go to Step 1 if iT < m.

To compute y' for the constraint (II) we replace maximum in Step 1 by mini·



116

Consider the case of no censored observations. Then n;+1 = n.. - d" .PCS..) = 0,

and by (7..1)

(7.6)

Clearly, Yim ~ 0 and so the constraints (I) and (/0) are !Quivalent. The equivalence

of (D) and (lID) can also be attained by setting Q(Sm) to be O. It suffices to consider

the constraint (I).

Let f = (fl' /2, .. , 1m), d == (d,. d::z • .. , d"..) and :t = (ZI' %2,. '. z",) such that

fi =Q(S;_d - Q(Si) and:; = hid; and let z' = Ed(zII) with [= {x E R!": XI :5

X::z :5 ... $. r m }. Tb.en

• . Q(5•• ,) - Q(5.)
::, = ~~~~ n..-~I . (7.7)

This closed fonn e.,,<pression appeared in Robertson and Wright (1981). The values

of z;'s can be calculated by the standard algorithms of the isotonic regression. such

as the pool.adjacent.violators algorithm (PAVA). maximum lower sets algorithm or

min-max formula. see Robertson et aI. (1988). Let Q :S IJ be two indices suc::b. that

Y;'_I > y;' = ... = Y~ > Y6+1' Then from the proof of Tbeorem 7.2.1, one obtains

P"(S.._d = Q(5.._,), P'(S,,) = Q(S,,) and YO: -= ... = 1I~ = Y"'/J. It can be shown

that

The isotonic regression z' under constraint (11) is obtained by using z' = Ed(zID)

with D = {x E R!" ; r\ 2:: %, .. :=: xm }. The solution (7.S) can also be expressed

by PO{Sj) = 1 - E;cl Zidj'
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7.3 The Two-Sided Problem

We are interested in tbe problem of maximizing

fi: IP(SH) - P(S,)I" P(S,)"
,a'

subject to the constraints

(7.9)

where Q and R are two gi~'en survival functions. The problem can be solved normally

in tv.-o or three steps. In the first step, we use the one that solves Dykstra's (1982)

one-sided problem and the constraint (/0) is used. We then partition the problem

according to the levels ory' obtained. in Step 1 and we readjust the upper bound R

so that R(S.. ) = Q(S.. ) if a is the last index of a level of y'. For each partitioned

problem in Step 2, the constraint (II), P(5j) :5 R(Sj), j = 01 + I, .. ,0, and

peSo,) = R(S~) = Q(S"J), is used except for the last panitioned problem. The

latter requires constraint (llO) instead. In Step 3 we repeat Step 2 for a lower bound

Algonthm: Iterative Partitioning Proportional Fitting (IPPF)

DeDote Q, ~ Q(S;j, P, ~ peS,), R; ~ R(S.).

~ Set r = 0, AO = {a, m + I}, R!J = R and let Y:"+I = 0 for any positive

integer t.

~ Let Q;~+1 = R:; for each 0 E A2~. For two consecutive indices 01 < 02 in

A:l>'. let Q'r+l =Qj VQ~+l for 01 < i < 02. Let y,*"+1 denote the constant y
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which solves the equation

Apply the ma.''(imum lower sets type algorithm (M£STA) to the subset {o) +

I, ... a'l} to calculate

For the case Q2 = m + 1, replace yr+l by 0 if yr+ l < O. Set

~ Let R?;+2 = Q~r+1 for each Q E A2f-+I. For two consecutive indices 0t < Q<;J:

in A:b'+I, let R:f'+2 = RoAR:;+2 for 0, < i < 02- Let y~+2 denote the constant

y which solves the equation

'( d.) R!'+'II 1--'- ~
1=- Rj+Y ~.

Apply the minimum lower sets type algorithm (MLSTA) to the subset {Ol +

I, .. ,0'2} to calculate

For the case 02 = m + 1, replace yr+2 by 0 if yr+ 2 > O. Set

~ Replace r by r + 1 and go to step 1 until A2>'+'l = A2rH.



ll9

Clearly, the IPPF algorithm converges in finite steps, usually two or three steps,

but at most m. Let PJ = m:dl - d;/(n, + yD). They are the projections obtained

at the step t and these values can provide us with information on the computations

in the ne.u step. The proof of the following theorem can be found in Section 7.6.

Theorem 7.3.1 Let \f2'+1 =.-l2r U {i: p''lr < Qt+l} and ld \-'2r+? = 04,21>+1 U {i:

p,1.r +1 > nr+1}. Then AI C VI,

Suppose that Q. < 02 are two consecutive indices in AI, Then one computes

y~~II"" for each index 0. 0, < ,8 < 02, belonging to VtH . U there does not exist such

an index P then pt, i = Ql + l, .. ,cz.z is the desired solution, and 11. = ul remain

constant for I ~ t. The utilit)· of the lPPF algorithm lies in the following theorem

which is proved in Section 7.6.

Theorem 1.3.2 Let y' ~ the values obtained at the la.st 8tep ofUie IPPF algorithm.

Then the survival junction

r(s,) = IT (l-~), j ~ l.2, .. ,m (7.10)
;zl n; + Yi

is the. 30lution to the problem (7.9).

An illustration of the IPPF algorithm is given in the next section.

7.4 Example

The IPPF algorithm is an iterative procedure such that at each step one needs only

to solve several non-overlapping one-sided problems. For illustration, we consider

the data which appeared in Crowley and Hu (1977). It consists of survival times for
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patients who had heart implants in tbe Stanford Hean Transplantation Program,

and it includes censored observations of people who were still alive by the dosing

date for data collection. April l. 1974. We wish to estimate the survival function of

the post-transplant time T (in days).

Turnbull, Brown and Hu (1974) Doticed tbat the accepted candidates into the

program may come from a mixture of two populatiollS, namely, "regulae" and

"bardy" patients. Suppose

P(t) = wexp{ -t/IJI} + (I - w) exp{ -tI1J2}

where IJI > P2 > 0 and 0 ~ w S 1. The ~[LE's of these parameters based on 69

observations in Table 2 are found to be IJI = 1513, IJ'l = 55.86 and w =0.5626. We

consider tbe lower bound and upper bound of the unknown survival function to be

Q(t) =0.45exp{-t/ISOO} + O.55exp{ -tl55}, (7.11)

R(t) = O.65exp{ -t/I500} +O.35exp{ -t/SS}. (7.12)

We first illustrate tbe LPPF algorithm by tbe simple case of latent times, censored

observations as v.-ell as uncensored observations, since in this case the computation

of the solution at each step is simple. The latent times are grouped into nine

classes as in Table 1. When P, Q and R are all having finite support by assuming

P(1792) = Q(I792) = R(1792) = 0, AO in Step °of the IPPF algorithm is replaced

by AO ={O,m} and constraints (10) and (lID) need Dot be used.

In the first step, the one-sided problem (I) is solved aD the whole set {I, 2, .. , 9}.

Let Ii = Qi-t -Q;. The values of zl's, i = 1,2, .. ,9, in (2.7) are obtained by the

monotone increasing regression of f/d with weight d using the minimum lower sets



121

algorithm or the PAVAo Sin« v·\ = {O,B, 9}, the monotone regression has tllo'O levels.

z: = ... = :~ = .0125 and .:J = .0275, (11: = ... = yi = 10.747, yJ = 0.000). In

the second step, the upper bound is fir.>t adjusted at i = 8 by setting its values

equal to the lower bound. Ri = QA = .2476 (~ = .3577). Then the one-sided

problem (ll) is applied to each subsetor{1,2, ."S} and {9}. Let!; = Rl_1 - R1.
The value of Z; remains the same while the values of z1's, i = 1,2, .. ,8, are the

monotone decreasing regression of rId with weight d. Since V2 = {O,3,8,9}. the

subset {1,2, .. , 8} is portioned into two sub-subsets, namely, z~ = z~ = z~ = .0126

and zl = ... = z~ = .0125, (y~ = y~ = y~ = 10.126 and y~ = .. = !Ii = 10.786).

Similar procedures follow in tbe third step and it gives no new partition. Since the

projection P,2 satisfies the restriction (7.9), it is the solution (7.lO) in Theorem 7.3.2.

[n the above case with no censored observations, the estimate can also be obo

tained by an algorithm proposed by Pamami, Singh and Puri (1993). Howe,..er,

not only is the IPPF algorithm much more efficient, but also it can be applied to

problems ....'i.th censored observations.

To apply the IPPF algorithm with censored observations, one needs to com·

pute the values of yo's by solving equation (7.4) and tbe min-max type rormu­

las in Theorem 7.1. Table 2 contains a list or the original data, tbe adjusted

bounds and the values or the projection at each step. The bound restricted es­

timate is obtained in three steps. In the first step, the one-sided problem (f0)

is solved on the whole set {1,2, .. ,42}. The set VI = {0,l,2,3,24,25,43} and

the values or IIi'S are yl = +00, y~ = 29.95, Y~ = = yb = 0.055, and

y-1l = ... = y~2 = O. It means Yli's are finite, j = 2,3, .. ,42; 112.,2 is the largest

among 112..2,112,3, Y2.24 and 1'2,25; 1/1.25 is the largest among 113,3. 1I:U4 and Yl.25 while



122

!/'zt,,/s are non~positive. It also means that the left. hand side of (7.4) with II = Y2.2

(say) is larger than the right hand side when a -= 2, b =3,24,25 (or b = 3.4, .. ,42).

In the second step, the upper bound is first adjusted by setting R'f = Q: = 1.0

(Itt = LO), Iq = Q~ = .990 (Rg = 0.933), and ~ = .. =~ = Q~ = .590

(R!), ~ .732, R!), = .632, Rj, ~ .623, n;, ~ .613, n;, ~ .603), and tben

the one-sided problems (II) and (DO) are applied to the subsets {3, .. ,25} and

{26, ... 42}, respectively. for the subset {3, .. ,25}, its intersection with V2 yields

{4,5, .. ,IS}. The calculation yields yj = y~ = -34.86, III = yl = y? = -13.13,

yl = ... = "~3 = 4.04 and 1114 = ... = y1 = 6.53. It means Yu is the smallest among

113,4. Y3.s•..• Y3.1~, 113,25; "S,r the smallest among IIM.lls,6, .. , !lS,15. Y5.~; 118,13 tbe

smaUest among lIu. III.g, .. , YI.l~.YI,25; 1114,25 the smallest among !/14,a. IIIUs. IIlUS'

It also means that tbe right hand side of (7.4)) with y = !/J.~ (say) is less than

the right hand side when a = 3. b = 5,6, .. ,15,25 (or b = 5,6, .. ,25). For the

subset {W, . . ,42}, the values of Iif's remain the same since there are no violators

in this partition. 1n the third step, the lo....-er bound is first adjusted by setting

~ = ~ = .926, QJ = Rl = .870 and ££:3 = R'fJ = .788, with possible adjustment

of the other values to maintain the monotonicity of the survival functions. The

one-.sided problem (I) is then applied to the subsets {3, 4}, {5, 6, 7}, {8, ... , 13} and

{14, .. , 25} and only the values on the subset {3,4} need to be considered. The

new y;'s are yi = -16.23 and y1 = -42.80. Since the projection E1 satisfies the

restriction (i.9), it is the solution (7.10) in Theorem 7.3.2.

The Kaplan-Meier product limit estimate (7.3) and the bounded estimate (7.10)

are also plotted in Figure 1 along with the lower bound Q(t) and the upper bound

R(t) in (7.11) and (7.12), respectively.
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7.5 A Simulation Study

A simulation study was perfonned to in\'eStigate how tbe constraints affect the

efficiency of tbe estimation. We consider four sampling survi'oG! functions with a

series of stochastic bounds for each of the four cases. The root of tbe mean square

errors (MSE's) of the restricted and unrestricted (K-M) estimates of seJected right

tail probabilities are calculated based on 10,000 iterations of the simulations with

sample sizes 100 and 300.

In the Cases [ and II, the sampling survival functions are the generalized max~

imum modulus introduced by Lee (1996a) in constructing Tukey-type confidence

bands for monotone regressions. Let Zl,Z2, .. ,Z", be independent standard nor­

mal variates. The generalized maximum modulus is defined to be

The survival function of GM", is very complicated and selected percentiles can be

found in Lee (1996a). Clearly, G.Ut. is larger tban Mil: =maxl9~ IZil, the maximum

modulus with survival function 1- (2c1>(t) -1).1;. On tbe otber band. by the Cauchy's

Inequality, one obtains

where the right hand side is the square root of a chi-square random variable with

degrees of freedom k. Therefore, 1- (2c1>(t) - 1).1; and 1- ;d({Z) form a pair of lower

and upper bands for the survival function GM.I;(t) for any positive real t. Sharper

stochastic bounds for GM.I; can also be found.
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Ca.se I. Samplingsurvi\<l1 (unction: GM'l(t); and its IOlllo1!;T bound and upper bound

given by

Bl: 1 - (241(t) - I)', 1 - O.5X~(t2) - O.5(2~(t) _ 1)7;

82: 1 - (241(t) - 1)7, 1 - xl(t');

83: 1 - (2of?(t) - 1)2. no upper bound.

Case 1I. Sampling survival function: GM](t); and its lower bound and upper bound

given by

Bl: 1- (24'(t) - 1)3, 1- O.5xHt2 ) - 0.25(2t1(t) - 1)3 - O.25X~(t2)(24'(t) - 1);

82: 1 - (2~(t) - 1)3. 1 - xHt'l):

83: 1 - (2of?(t) - 1)3, no upper bound.

Ca:Je m. Sampling survival function: exp(-t); and its lower bound and upper bound

given by

BI.: exp( -t/0.8), exp( -t/1.2) ;

82, '"'P( -t/0.8), '"'P(-I/l.5) ;

B3: exp( -t/0.8), no upper bound.

Case IV. Sampling survival function: 0.5 exp(-t) + O.5exp( -t/lO); and its lower

bound and upper bound given by

Bl: O.7exp(-t) + O.3exp(-tflO), O.3exp(-t) + O.7exp(-t/IO);

82: O.7exp(-t) + O.3exp(-tflO), O.texp(-t) + O.9exp(-t/1O);

83; 0.7exp(-t) + 0.3 exp( -tflO), no upper bound.

The results of our simulation study are provided in Table 7.3. We are interested

in estimating the survival function P(t) at the four points, t = P-I(O.50), P-I(O.25),

P-l(O.lO) and P-I(O.05). In general, utilizing the prior knowledge of a lower bOllnd

and an upper bound may reduce the point-wise MSE's. The amount of reduction in
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MSE's could be substantial for smail and moderate sample sizes for a pair of sharp

bounds 81. For example. when the sample size is 100 and the upper tail probability

is 0.05, i.e., P(t) = 0.05, the root MSE's are reduced from .0219, .0218, .0219, .0220

(0.0218 for the exact standard deviation) to .0089, .0121, .0159, .0122 respectively

for the fOUf cases when the bounds 81 were used. In tbe Case I, the MSE for 81

is no more than 1{6 of that for the Kaplan-Meier product estimate when n = 100

and no more than 1(5 when n = 300. When only a lower bound or an upper bound

is given and when the sample sizes are small, the MSE's of the restricted estimates

may be larger than those of the unrestricted ones as the lower bound 83 is used

in the Case / with sample size 100 and upper tail probabilities 0.25,0.10 and 0.05.

However. once sample size increases from 100 to 300 the MSE's of the restricted

estimates become smaller than those of tbe unrestricted ones.

7.6 Discussion

The purpose of this chapter is to introduce an efficient algorithm to compute the

bounded NMLE of survival functions. It normally takes two or three steps of com·

putation for the [PPF algorithm to converge to the exact solution. When there ace

no censored data, a closed form expression for the projection is available at each

step, see (7.7) for odd Steps. The bounded NMLE should prove to be useful, both

as a descriptive tool and a primitive technique for any procedure requiring estima·

tion of a survival function or a distribution function. One may hypothesize a lower

bound and an upper bound for a survival function. Its validity may be verified by

the supremum of the distance between the bounded NMLE and the Kaplan-Meier

product estimate.
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Tbe bounded NMLE of tbe survival functions can substantially reduce point-wise

MSE's for small or moderate sample sizes compared to the Kaplan-Meier product

estimates. The reduction is optimal when the lower bound and the upper bound

are approximately the same distance from tbe underlying survival function. For the

data in Table 2, the bounded NMLE with the lower bound (7.11) and tbe upper

bound (7.11) may be a better estimate.

7.7 Proof of the Main Theorems

Proof of Theorem 7.2.1. It suffices to prO';e tbe result under tbe coostraint (I). The

proofs under the other constraints are similar. Using Dykstra's (1982) notations,

we shall let Pi = Inp; -Inp,_l and q; = InQ. -loQ'_I' The original problem is

equivalent to maximize a concave function

Eid] In(1 - e!') + (n; - dj)Pil
pd

over a closed convex region

{p: p ~ o;tPJ ~ tqj,i = 1,2, .. ,m - 1 and fPi =f:qj}'
]=1 j_1 ;=1 j_L

The solution exists and it is unique. Let

(7.13)

lit = ~[djln(I-e'.)+(nl-dj)pjl+ ~1Lo C~Pj - t q })·

By the Equivalence Theorem (see Kuhn and Tucker, 1951), p$.O is the solution if

and only if there exist nonnegative real numbers Ul, U'l, .. , Urn_I and a real number

Urn such that

i= 1,2, .. ,m; (7.14)
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1l,(tPi-tqJ)=O, ;=1,2 ... ,m-I;
1',01 1=1

t.P]~tq}, i=1.2. .. ,m-I.and Ep;=Eqj'
J=l J=I J=I j=1

By letting 1Ii = I:;'=i Iljl and /;(y,) = In(l - dd("" + IIi)) - qi, i = 1,2, .. , m. we

have from (7.14)

and

p, = In(I-~) ~q,+/;(y,) SO
lli+Yi

(7.15)

!II ~ Y2 ::: ..• ~ 1/",; (7.16)

(Yi-Yi+dt.Ji(Y;) =0, i=I • .. ,m-l (7.17),.,
t I,(y,) 2 0, i ~ I, .. , m - 1 and f: I;(y;) ~ O. (7.18)
i=1 J"'\

Let Q ~ fj be such that Y,t-l > Y.. = ... = Yfl > 1/"+1_ By (7.17), L.j=<Jl f}(Yj) = 0

and tben by (7.4), IIj = YolJ for j = o., ... ,{J. By (7.18), ~=<Jl!J(Yj) ::: 0 and

'£1..h(y;) $; 0, for any b ::: Q and a S;3. By the moooton.icity of functions /](y),. . .
L: I;(y..) ~ 0 S L: I,(y;) S L: I;(y..);
JEG J=G j ....

, , ,
L: I;(y.. ) S L: f;(y;) S 0 ~ L: I;(y.,)·

It fonows th.at II... S 'II"d S JlaIJ· Therefore, for i between 0. and {J we have that

where it is trivial to establish the second inequality. It follows that
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o

Proof of Theorem 7.3.1. It suffices tashow that ira E .42>'+l_A2r then P'/: < Q~+l.

Let PI < ~ be two consecutive indices in .4.2.. such that PI < a < 112. By (7.16),

By (7.4). (7.5) and the IPPF algorithm we have that p,/:+l = Q-:;+I and Q~~+I =
RlJ: = PtlZ;, i = 1,2. By Theorem 7.2.1,

If y;'+1 2:: y;: then

If y'1:+ l < Y?:' t then

This completes the proof. o

We shall derive two preliminary results that characterize the IPPF algorithm

before presenting the proof of Theorem 7.3.2

Lemma 7.7.1 (a) If Ol: E A2r+l - A2T, then Pf. = Qll' for I ~ 2r + 1 and

Q~'+l = Q"" for l ;?: 0;

(b) floe A2T+2_.4.2>"+I, then p~ = Ra,jorl;::: 2r+2 andre = n." for

l;?: O.
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Proof- It suffices to prove (0). Let Q E .4,,,,+1 - A."', and let 01 < Cl'2 be tWO

consecuth.-e indices in .4,2r such that 0 is generated by fitting Pi ~ qf'+I. i ==

01 + 1, ",02 with Po, =~... I if 02 $ m. By (7.17) and (7.lS) and Theorem 7.3.1,

Since Q~+l = Q.. V Q-::..... I, it follows that p;:""+l = Q;:+l = QQ' rt is dear from the

algorithm that the lower bound Q~+l and the projection P-:+l for Q E A2~+1 will

be fixed throughout the remaining iterations of the computation process and hence,

p!. = q", = QQ. for l ~ 2r + L Since Q:+I is nondecreasing in I, it follows that

Q~'+l =QQ' for I ~ O. The proof is complete. o

Lenuna 7.7.2 ra) If Q E r\2r+1 - A7r, then Y::+I S i.. lind !I;:+~l ::: Y'..+11 for

l::: 2r + l.

(b) If Q E .4.2.-+2 - ..t2r+I , then y;:+2 ::: i" and 11':.+'" $ Vo+l' for I::: 2r + 2.

Proof. It suffices to prove the case that if Q E A2r+ 1 - .4200 • then 11;:+1 ?: 11,#+2 and

1J,#+1 ::: y:+3 where 1 ?: rand fJ = 0+1. The P is the leading index or all partitioned

problems it belongs to after the (2T + I )st step. Deline

fJ.=inf{t:t;::fJ,teA 21
•

i
}. i=I,2,3.

Then PI ;:: Ih. ~ rh. In the (2/ + 2)nd step we solve a partitioned problem (J,.fJ +

I, .. , PI and in the (2l + 3)rd step we solve a partitioned problem /3, /3 + 1, .. ,132.

Therefore, yJfJ;2 = y:;;l and yJft,3 = yJft,2. By the min-max formulas,
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ifP$t$/hand

if P $. t '5 .81, For tbe case ~ = d" 'Il."e have that

For the case Ih < f3.l, we have that

and

However, in this case we have that fh E .-1.21+3 - .4.21+2 , By Lemma 7.7.1) we have

that ~+3 = ~+l = Q5I and Q:+3= Q~+1 = Qo' It follows that V:~I = y:~3

and

By induction the proof is complete. o

Proof of Theorem 7.3.2. Similar to tbe proof of Theorem 7.2.1, tbe original problem

is equivalent to maximize a concave objective function

tol<41n (1 - ",,) + (n, - <4),,1

over a closed and bounded COD\'ex region p$.O and
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The solution e.'Osts and it is unique. Let

By the Equivalence Tbeorem (see Kuhn and Tucker. 1951), P :5 0 is the optimal

solution if and only if there exist u ~ 0 and v ~ 0 such that

(J) P' ~ In (1 - m d; m ) ;
11t + EF.uJ - E]~vJ

(/1) u;(tPi-tq,l=O, .,(t,,-tpi)=O
j_1 j",1 i-I ;=1

C£I1) tqj'5tp}~tr},
p'l J=I J-I

i = 1,2, Initially we define u~ = v~ = 0, i = 1,2, .. , m. If i e .42r+t - ..t2T ,

let ui = V; - V;+l for each 1 ~ 2r + 1; if i E .4,2r+2 - A1r+l, then let til = 1/:+1 -!If for

each I ~ 2r + 2. It follows that II. =E~i u~ - Ej•• v~ and hence (I) is satisfied at

each step of the lPPF algorithm. Consider the case i E .42r+ 1 - A". Then vI = 0

for all 1 ~ 0 and ui = 0 for 1 < 2r + L For 1 ~ 2r + I, by Lemma 7.7.2 one obtains

By Lemma A.I,

i I d. I

~~ = :;In(l- nj ~14) = InQ; = ];qj.
Therefore, the first equation of Condition (lI) is satisfied at each step 1, as is the

second. Similarly, one can prove for the case i E A2r+2 - A2T+I, Our procedure

terminates no later tban m steps wben the condition (m) is satisfied because at

each step the index subset AI will have one or more new elements. This completes

the proor. a
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Table 7.1: Post-transplant Survival Times of Heart Transptant Patients and Their
Estimates in Grouped Data

S, do n; Po Q} Pi Pl
7 • 69 .9420 .9322 .9498 .9551 .9494

"
3 65 .8986 .8722 .9122 .9153 .9115

28 5 62 .8261 .m3 .8495> .8483" .8483
56 12 57 .6522 .6322 .6990 .7526 .6982

112 8 .5 .5362 .4894 .5987 .6489 .5980
22. 5 37 .4638 .3969 .5360 .5658 .5355
448 12 32 .2899 .3340 .3856 .4823 .3853
896 11 20 .1304< .2476" .2476 .2476 .2476

1792 9 9 .0000 .0000 .0000 .0000 .0000

.. The end of new partition.
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Table 7.2: Post-transplant Survival Times or Heart Transplant Patients and Their
Estimates

S, d, I, n, P, QI Pi R1 Pl Q! pt
0 I 0 69 .986< 1.00' 1.00 l.00 l.00 1.00 1.00
I I I 68 .971< .990' .990 .990 .990 .990 .990
3 I C 66 .956< .970 .975 .980 .968< .970· .970

12 I I 65 .942 .889 .960> .926' .926~
5 14 I 0 63 .927 .872 .945> .915 .908 .872 .908
6 15 I 0 62 .912 .864 .929> .910 .889 .870 .889
7 23 I 0 61 .897 .805 .914> .870' .870 .870 .870
8 25 I 0 60 .882 .792 .889> .861 .857 .792 .857
9 26 I 0 59 .867 .785 .884> .857 .843 .788 .843

10 27 I 0 58 .852 .779 .868> .853 .830 .788 .830
II 29 I I 57 .837 .766 .853> .844 .816 .788 .816
12 39 I 0 55 .822 .709 .838> .806 .802 .788 .802
13 '4 I 0 54 .807 .684 .822> .78S' .788 .788 .788
14 46 I 0 53 .791 .675 .807> .782 .775 .675 .775
15 47 I 0 52 .776 .670 .791> .779 .762 .670 .762
16 '" I 0 51 .761 .666 .776 .776 .749 .666 .749
17 50 I 0 50 .746 .6.57 .760 .770 .735 .657 .735
18 51 3 0 49 .700 .653 .714 .767 .696 .653 .696
19 54 I 0 46 .685 .640 .698 .758 .683 .640 .683
20 60 I 0 45 .670 .617 .683 .742 .669 .617 .669
21 63 I 0 44 .654 .606 .667 .735 .656 .606 .656
22 64 I 0 43 .639 .603 .652 .732 .643 .603 .643
23 65 2 0 42 .609 .600 .621 .730 .616 .600 .616
2. 66 I 0 '0 .593< .596 .605 .727 .603 .596 .603
25 68 I I 39 .578< .590" .590 .590 .590 .590 .590
26 127 I 0 37 .563 .468 .573 .590 .573 .468 .573
27 136 I 0 36 .547 .457 .558 .590 .558 .457 .558
28 147 I 0 35 .531 .446 .542 .590 .542 .446 .542
29 161 I I 34 .516 .434 .526 .590 .526 .434 .526
30 228 I I 32 .500 .395 .510 .564 .510 .395 .510

(to be continued)



Table 7.2 (continued)
31 253 1 0 30 .483 .386 .493 .553 .493 .386 .493
32 280 1 0 29 .466 .377 ,476 .541 ,476 .3n .476
33 297 1 1 28 .<SO .372 .459 .535 .459 .3n .459
34 321 1 26 .432 .365 .441 .526 .441 .365 .441
35 551 1 20 All .312 .419 .450 .419 .312 .419
36 624 1 17 .387 .297 .394 .<29 .394 .297 .394
37 730 1 I; .361 .277 .368 .400 .368 .277 .368
38 836 1 13 .333 .258 .340 .372 .340 .258 .340
39 896 1 10 .300 .248 .306 .358 .306 .248 .306
40 993 1 9 .266 .232 .272 .335 .2n .232 .2n
41 1024 1 8 .233 .227 .238 .328 .238 .227 .238
42 1349 1 .187 .183 .190 .264 .190 .183 .190

.. The end or Dew partition.
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Figure 7.1; The K-M Estimate (0), the Bounded MLE
(+) and the Lower Bound and the Upper bound (dotted
lines) the Post-Transplant Survival Function

135



136

Table 7.3: Root Mean Square Error of Bound Restricted Estimate of a Survival
Function P(t) under 10,000 Iterations

Size 100 Size 300
pit) pit)

0.50 0.25 0.10 0.05 0.50 0.25 0.10 0.05
BI .0130 .0119 .0092 .0089 .0123 .0111 .0065 .0042

Case B2 .0245 .0234 .0169 .0134 .0194 .0180 .0121 .0084
I B3 .0494 .0438 .0313 .0236 .0268 .0234 .0162 .DU9

K-M .0501 .0436 .0303 .0219 .0288 .0251 .0174 .0126
Bl .0255 .0236 .0162 .0121 .0217 .0195 .0126 .0086

Case B2 .0411 .0369 .0250 .0180 .0265 .0221 .0145 .0101
n B3 .0461 .0403 .0277 .0205 .0271 .0236 .0156 .0112

K-M .0503 .0438 .0300 .0218 .0289 .0252 .0172 .0127
Bl .0334 .0315 .0226 .0159 .0256 .0233 .0163 .0116

Case B2 .0435 .0391 .0282 .0201 .00n .0245 .0111 .0123
ill B3 .0466 .0404 .0288 .0205 .0281 .0247 .0172 .0124

K-M .0506 .0432 .0307 .0219 .0286 .0249 .017-1 .0127
BI .0451 .0372 .0207 .0122 .02n .0239 .0151 .0094

Case B2 .0472 .0398 .0239 .0148 .0281 .0244 .0161 .0106
IV B3 .0486 .0422 .0286 .0205 .0284 .0248 .0169 .0119

K-M .0499 .0432 .0302 .0220 .0286 .0250 .0174 .0126
Exact S.D .0500 .0433 .0300 .0218 .0289 .0250 .0173 .0126



Chapter 8

On Simulating Tail Probabilities
with a Known Bound

The problem of estimating distribution functions is of great importance, particularly

the upper tail probabilities. Simulations playa vital role in approximating proba~

bilities of statistics with intractable distribution functions. In this chapter we will

consider the problem of estimating tail probabilities of distribution functions with

a known stochastic bound and having monotone decreasing density at the upper

tails. Such prior knowledge may be utilized in the estimation problem to increase

tbe efficiency.

8.1 The Problem

Let F(·) be the cumulative distribution function (cdr) of interest and C(-) be its

stochastic hound such that F(ll ::::; G(t) for all t. We assume that F(·) bas a

probability density function I(·J which is monotone on the right tail (a, +00), wnere

a is a known real number. Suppose tbat one is interested in estimating F({) for

a specific { E (a, +00). One can incorporate the prior knowledge of the stochastic

137
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bound and monotonicity to gain efficiency in estimation. The procedure is as follows.

Let m and n be positive integers and h be a positive real number such that

.; - mh > a. We first partition the real line into k =: m + n + 2 intervals by

(-00,';0 - mh] • .... ({o - h,.;o]. (';0,';0 + hI, .. OJ (';0 + nh, +oo). Let fL., .,flt and

9\, ",9'" be the probabilities of F and G 00 these intervals, respectively. It is

clear that F(';) = r::~tl /;, h :.:::: ... ft-b r::f=l Ii :.:::: r::f"'l gi, j = 1, ... ,k - 1, and

r::~=! Ii = 1. A restricted. estimate of J;. denoted by BM.estimate, is then obtained

by solving the problem

min "tUi - ii)2
.-'n(g+Sli=t

where j is the non-restricted MLE of f and

(8.1)

.4. = {f=(/!.!2 ,f,,):h:?:h2: ... ;?:!k·-I}

B = {f = (ft,h, f,.,): ~fi:?: t9. ,j = 1, .. ,k -l,~j; =~9i = I}.

Since A and B are closed convex cones, the algorithm proposed by Dykstra and

Boyel (1987) can be applied to find the solution, (see Chapter 2 for the details of

this algorithm and a simplified proof of the correct convergence of the algorithm).

8.2 A Simulation Study

It is well known that the simple isotonic regression always reduces the pointwise

mean squares errors (MSE's) of estimates if the model is correct, (Lee, 1981). Point-

wise MSE's of estimates obtained under the stochastic bound constraint can be sig-

ni6cantly smaller than the MSE's of the unrestricted nonparametric MLE's when

the bounds are properly imposed. But it could also increase the MSE's if only one
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sharp upper bound or one sharp lower bound is imposed and the sample size is

small, see Lee, Van and Shi (1996).

A simulation study is performed here to investigate the efficiency of our proposed

procedure. The relative efficiency of two estimators is defined to be the reciprocal

of tbe ratios of their MSE's.

Tables 1 and 2 present the relath-e efficiencies of restricted estimators to the

unrestricted Don-parametric MLE orlhe right tail probability 0.10 for the standard

normal distribution and the standard exponential distribution. We observe that the

combined coQStraints increase the efficiency of estimation substantially even when

the impro\'emeot of indi\;dual constrains is not significant for small and moderate

sample sizes. For example. in Table 8.1, the relative efficiencies of the estimators

with sample size 50 are 1.11. 1.15, 1.18, 1.19 and 1.19 when only the monotone

constraint is used; 1.60. L.56. 1.46 1.3<1 and 1.20 when only the bound 2 constraint

is used; and 2.33, 2.64, 2.56. 2.25 and 1.84 when both the monotone and bound 2

constraints are used for the listed lengths of intervals.

8.3 An Example

Generalized maximum modulus (GMM) was introduced by Lee (1996) in construct,...

ing Tukey-type confidence bands for monotone regression functions. Let Zit Z2,

..., Z.. be independent standard normal variates. A GMM of order n is a random

variable defined by

(8.2)
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Table 8.1: Relath-e Efficiency ortbe Restricted Estimators to the Unrestricted MLE
of Right Tail Probability of F{t) = I - exp(-t) at 2.30 with k = 10. (10,000 Itera­
tions)

Sample Length of Intervals MSEof
Size Constraint 0.08 0.16 0.24 0.32 DAD MLE

Monotone only LIt 1.15 1.18 1.19 1.19
Bound 1 only 1.30 1.32 1.32 1.30 1.27

Monotone & Bound 1 1.57 1.75 1.83 1.82 1.74
50 Bound 2 only 1.60 1.56 1.46 1.34 1.20 18.59

Monotone &£ Bound 2 2.33 2.64 2.56 2.25 1.84 x 1O-~

Bound 3 only 1.67 1.52 1.34 1.18 1.02
Monotone &: Bound 3 2.79 3.00 2.56 2.04 1.56

Monotone only 1.09 1.14 1.15 1.14 1.13
Bound I only 1.15 1.16 1.17 1.17 1.13

Monotone &. Bound 1 1.30 lAO 1.43 1.41 1.39
'00 Bound 2 only 1.52 1.52 1.48 1.41 1.31 9.39

Monotone &. Bound 2 1.99 2.23 2.17 1.86 1.71 X 10-4

Bound 3 only 1.71 1.59 1.44 1.29 1.13
Monotone &; Bound 3 2.68 2.82 2.41 1.91 l.SI

Monotone ooly 1.06 1.08 1.07 1.05 1.03
Bound 1 only 1.00 1.00 1.00 1.01 1.01

Monotone &: Bound 1 1.06 1.08 1.07 1.06 1.03
500 Bound 2 only 1.13 1.14 1.15 1.15 1.15 1.80

Moootone & Bound 2 1.22 1.26 1.26 1.24 1.21 x 1O-~

Bound 3 only 1.54 1.54 1.51 1.44 1.33
Monotone & Bound 3 1.86 1.88 1.78 1.62 1.43

Monotone only 1.06 1.06 1.05 1.03 1.01
Bound 1 only 1.00 1.00 1.00 1.00 1.00

Monotone & Bound 1 1.06 1.06 1.13 1.03 1.01
1000 Bound 2 only 1.02 1.03 1.03 1.03 1.05 0.90

Monotone & Bound 2 1.08 1.10 1.08 1.07 1.06 xlO-~

Hound 3 on y 1.30 1.34 1.34 1.32 1.29
Monotone & Bound 3 1.45 1.48 1.45 1.38 1.28

ote: iDe cumu ative oistri ution tunctions 0 toe t ree oounas are,
respectively, 1- exp( -t/O.BO), 1 - e.'Cp( -t/O.90), and 1- exp( -tI0.95)
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Table 8.2: Relati\'e Effic:ienc)' oftbe Restricted Estimators to the Unrestricted MLE
or Right Tail Probability of N(O.I) at 1.645 with k = 10, (10,000 Iterations)

Sample Length of Intervals MSEof
Size Constraint 0.04 0.08 0.12 0.16 0.20 0.24 :'vILE

Monotone only 1.11 1.15 1.19 1.02 1.24 1.25
Bound 1 only lAO 1.43 1.42 1.38 1.30 1.20

Monotone &£ Bound 1 1.74 1.88 2.26 2.33 2.24 2.01
50 Bound 2 only 1..58 1.57 1.49 lAO 1.28 1.15 18.59

Monotone &: Bound 2 2.18 2.66 2.89 2.78 2.46 2.06 x 1O-~

Bound 3 only 1.67 L56 1.42 1.28 1.16 1.04
Monotone &. Bound 3 2.75 3.24 3.26 2.83 2.34 1.88

Monotooe only 1.09 LIS 1.18 1.18 1.19 1.19
Bound 1 OD. Y 1.23 1.27 1.29 1.29 1.27 1.21

Monotone &. Bound 1 1.42 1.60 1.73 1.78 1.77 1.67
100 Bound 2 only 1.49 1.51 1.49 1.43 1.34 1.22 9.39

Monotone &: Bound 2 1.90 2.22 2.37 2.29 2.08 1.81 xlO-~

t:lound 3 only 1.72 1.63 1.51 1.37 1.24 1.12
Monotone &: Bound 3 2.65 3.07 2.96 2.52 2.07 I.n

Monotone only 1.06 1.09 LID 1.10 1.08 1.07
Bound 1 only 1.01 1.01 1.01 1.03 1.05 1.07

Monotone & Bound 1 1.07 1.10 1.02 1.13 1.14 1.15
500 Bound 2 only 1.10 1.12 1.17 1.18 1.18 1.15 1.80

Monotone & Bound 2 1.18 1.25 1.29 1.31 1.31 1.26 x 10-01

Bound 3 only 1.53 1.54 1.53 1.46 1.35 1.22
Monotone & Bound 3 1.84 2.00 1.96 1.82 l.61 1.37

Monotone only 1.06 l.07 l.07 1.06 1.05 1.03
Bound 1 only 1.00 1.00 1.00 1.00 l.01 1.03

Monotone &: Bound 1 1.06 l.07 l.07 l.07 1.06 1.06
1000 Bound 2 only l.01 l.02 1.03 1.05 1.07 1.07 0.90

Monotone & Bound 2 1.07 1.10 1.11 1.11 1.13 1.11 x 10-01

Bound 3 on y 1.29 1.34 1.36 1.34 1.30 1.20
Monotone & Bound 3 1.43 1.53 1.55 1.50 1.41 1.27
ote: 1. The distributions 0 'the three bounds are, respective y,

N(O,7l, N(O, 0.8), and N(O,O.9).
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The distribution of GM.. is very complicated aDd its tail probabilities can be ob­

tained by numerical integration of n dimensions (using e.g. NAG), but its precision

for higher dimensional cases is still questionable. A.n alternative approximation can

be obtained by simulation and selected percentiles of GMM random variables can

be found in Lee (1996).

We now apply out proposed procedure to simulate tail probabilities of GMM.

It is trivial that GM" ~ JHM" = maxl~i:!> .. IZil. The latter is well known as the

ma.ximum modulus random variable. It follows tbat tlte cdC of M Mn is an upper

bound for tlte cdr of GM". This bound will be used in the simulation for n = 2,

5, 10, 15 and 20. We shall assume that GM.. bas a monotone decreasing density

function at the right tails.

The number of intervals used in this simulation is 20 and the length of tbe interval

is 0.05. Relative efficiency of tbe BM-estimator to tlte unrestricted MLE of the tail

probabilities at th~ 90th, 95th and 99th perceDtiles (approximate) is listed iD Table

8.3 for sampl~ sizes SO, 100, 200 and 500. We observe that th~ improvement of th~

BM--estimator is ...-ery significant, especially for small sample size, small GMM order

and at the 99th percentiles.
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Table 8.3; Relative Efficiency of the BM-Estimator to the Unrestricted MLE of the
GMM Tail Probabilities (10.000 Iterations)

Order of Sample Size
GMM ~ 50 100 200 500

2 2.02 3.61 3.07 2.49 1.73

2.32 3.75 3.21 2.n 2.03
2.89 3.68 3.70 3.58 3.00

5 2.49 2.27 1.68 1.30 1.10
2.76 2.80 1.99 1.49 1.21
3.30 ..(.30 3.69 2.75 1.89

10 2.81 1.71 1.36 1.16 1.08
3.06 2.16 1.58 1.28 1.14
3.57 4.24 3.16 2.22 1.51

15 2.98 1.56 1.29 1.14 1.08
3.23 1.98 1.47 1.25 1.11
3.71 4.12 2.94 2.09 1.43

20 3.10 1.49 1.26 1.14 1.09
3.34 1.87 1.42 1.23 1.11
3.81 3.82 2.88 1.97 1.43
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