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Abstract

Canadian fisheries management has embraced the precautionary approach and the incor-

poration of ecosystem information into decision-making processes. Accurate estimation of

fish stock biomass is crucial for ensuring sustainable exploitation of marine resources. Spa-

tio-temporal models can provide improved indices of biomass as they capture spatial and

temporal correlations in data and can account for environmental factors influencing biomass

distributions. In this study, we developed a spatio-temporal generalized additive model (st-

GAM) to investigate the relationships between bottom temperature, depth, and the biomass

of three key fished species on The Grand Banks: snow crab (Chionoecetes opilio), yellowtail

flounder (Limanda ferruginea), and Atlantic cod (Gadus morhua). Our findings revealed

changes in the centre of gravity of Atlantic cod that could be related to a northern shift of the

species within the Grand Banks or to a faster recovery of the 2J3KL stock. Atlantic cod also

displayed hyperaggregation behaviour with the species showing a continuous distribution

over the Grand Banks when biomass is high. These findings suggest a joint stock assess-

ment between the 2J3KL and 3NO stocks would be advisable. However, barriers may need

to be addressed to achieve collaboration between the two distinct regulatory bodies (i.e.,

DFO and NAFO) in charge of managing the stocks. Snow crab and yellowtail flounder cen-

tres of gravity have remained relatively constant over time. We also estimated novel indices

of biomass, informed by environmental factors. Our study represents a step towards eco-

system-based fisheries management for the highly dynamic Grand Banks.

Introduction

Stock assessments aim to evaluate the status of a population by evaluating biomass and fishing

mortality relative to reference points to define catch limits [1]. Time series of biomass indices

are often used to calibrate stock assessment models, primarily derived from fisheries-indepen-

dent data collected from scientific surveys. These surveys commonly employ a stratified-ran-

dom sampling design to generate estimates of absolute biomass by using area-swept
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information [2, 3]. This involves dividing the study area into different strata based on specific

characteristics, such as depth or habitat type. Within each stratum, random samples are col-

lected. Random stratified sampling increases the precision of the estimates when the popula-

tion is homogenously distributed among strata. However, variability in habitat preference may

exist within strata, compromising the robustness of this approach [4]. This approach also

requires all strata to be sampled at each sampling event, which is not always possible due to

inclement weather, broken ships, among others.

Spatial correlation is a common feature of fisheries data. It occurs when observations col-

lected at different locations are not independent of each other, as nearby things tend to be

more connected than distant things [5]. If unaccounted for, spatial correlation can lead to

biased estimates of biomass and abundance [6]. This also applies to the correlation of objects

through time [7]. Spatio-temporal generalized mixed effect models (GLMMs) and generalized

additive models (GAMs) can account for spatial heterogeneity found in fisheries survey data

[8]. The latter are more flexible because they are fit using smoothing spline terms, making

them especially useful for addressing non-linear relationships [9]. These models explicitly

account for both spatial and temporal correlations in a dataset [10], and can incorporate infor-

mation about environmental variables that may be driving species biomass and distribution

[11]. Another advantage of these methods is that they employ spatial interpolation throughout

the region of interest, overcoming incomplete sampling issues [9]. Spatio-temporal models

can improve predictions for areas and years with little or no data and can be more precise than

with design-based methods (i.e., strata-based index) and conventional GLMMs and GAMs

(i.e., without spatio-temporal effects) [12, 13].

Our study focuses on the practical application of spatio-temporal Generalized Additive

Models (st-GAMs) [14] to understand the biomass dynamics and distributional changes of

snow crab (Chionoecetes opilio), yellowtail flounder (Limanda ferruginea), and Atlantic cod

(Gadus morhua) on The Grand Banks of Newfoundland. The Grand Banks is a highly produc-

tive region where two distinct water masses, the Labrador Current and the Gulf Stream, con-

verge. The Labrador Current brings fresh and nutrient-rich waters, while the Gulf Stream

carries warmer and saltier waters. This combination of conditions makes The Grand Banks a

dynamic and highly variable ecosystem [15, 16]. The Grand Banks experienced a regime shift

in the early 1990s characterized by the collapse of the Atlantic cod, yellowtail flounder and

other groundfish species. However, species such as snow crab and northern shrimp prolifer-

ated during that time [17]. The shift was attributed to a combination of factors, including over-

fishing and changes in environmental conditions [18]. In recent years, the species in this study

exhibited different dynamics, with snow crab experiencing a significant decline, Atlantic cod

remaining persistently low and yellowtail flounder recovered to pre-collapse levels. Currently,

the yellowtail flounder fishery is operating as a Marine Stewardship Council (MSC) certified

fishery [19].

The Grand Banks constitute an independent ecosystem production unit within the New-

foundland and Labrador Shelf, characterized by high ecosystem productivity and a well-

defined marine community [17, 20]. We used this ecosystem production unit as our spatial

scale of focus and examined how it relates to the management units of the study species. Our

study contributes to the evolving landscape of ecosystem-based fisheries management through

the application of advanced modeling techniques to uncover spatio-temporal patterns in snow

crab, yellowtail flounder and Atlantic cod dynamics. These species were selected based on

their variable responses post cod collapse, their cultural and economic fisheries importance

and their distinct movement behaviors. Gadoids are streamlined swimmers, flatfish are bot-

tom-dwellers that perform undulatory movements and snow crab have legs that allow for lat-

eral movement. These adaptations are shaped by the specific ecological niches and lifestyles of
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each species. By incorporating environmental variables into our analysis (bottom temperature

and depth) and considering spatial heterogeneity, we explored species-habitat associations and

calculated environmental-informed biomass indices that can be used in stock assessment mod-

els. Finally, we assessed the effect of fishing on the environmental-informed biomass indices.

Material and methods

Data sources

Multispecies survey. Fisheries and Oceans Canada (DFO) have been conducting annual

stratified-random multispecies trawl surveys on The Grand Banks, located in the Northwest

Atlantic since 1971 [21] (Fig 1). The survey is conducted in spring and fall and has changed

sampling gear and coverage over time. Fall surveys, particularly in 2004–06, have issues with

an absence of deep sets, reduced coverage and timing extensions due to vessel breakdowns and

Fig 1. The Grand Banks of Newfoundland (grey). Solid lines indicate the management unit boundaries of the North

Atlantic Fisheries Organization (NAFO) divisions (3L, 3N and 3O).

https://doi.org/10.1371/journal.pone.0300311.g001
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unplanned changes [22]. In contrast, the spring survey (April-June) has had more consistent

coverage [mean observations of 282.5 per year], although the 2006 and 2017 surveys had lower

coverage [194 and 191 observations, respectively]. To limit variability introduced by changes

in the surveys, we utilized data from surveys conducted in spring (6,780 observations in total).

Since 1996, spring surveys have been conducted with the CCGS Alfred Needler vessel and Cam-
pelen 1800 shrimp trawl gear, sampling up to 732 meters depth. The trawl survey collects data

on the abundance, size, and biomass of numerous groundfish and shellfish species, in addition

to other biological information (i.e., size, maturation status, body condition, stomach con-

tents) [21].

Biomass data were used to create two response variables for each species: presence/absence

and conditional-to-presence-biomass. Abiotic explanatory variables were bathymetry (here

called depth) and bottom temperature, also obtained from the DFO bottom trawl survey

(Table 1). These covariates were selected based on their well-known relationship with distribu-

tion and productivity of the study species [23–25]. The relationship between the study species

and salinity is less understood in this region and was not considered here. Finally, we assumed

that expected fish biomass is proportional to the area surveyed (referred to as swept area); thus

we included swept area (log-transformed) as offset in all the models to account for the effort.

Prediction grid. We created a 5x5 km grid for The Grand Banks with 274,461 grid points.

We used gridded bathymetry data with spatial resolution of 15 arc seconds (�0.004 º) obtained

from the General Bathymetric Chart of the Oceans (GEBCO) project (https://www.gebco.net)

and manipulated it with the R package marmap [26] to extract depth values at each grid point.

Rasters of bottom temperature data were provided by DFO. These rasters were created using

data from different sources (DFO multispecies survey, Atlantic Zone Monitoring Program

(AZMP) hydrographic campaigns, International Oceanographic Campaigns (IOC), ARGO

program, etc) [27]. All data were vertically averaged in 5 m bins, and a linear interpolation was

applied to fill missing bins. We selected the data corresponding to the spring season (April-

June) for which data were averaged on a regular 0.1˚ x 0.1˚ grid. Horizontal linear interpola-

tion was applied to overcome missing data on grid cells (full description in [27]). We tested

the correlation between these databases (i.e., GEBCO and DFO temperature interpolation)

with trawl station observations to assess accuracy (Figs 1 and 2 S1 Appendix).

Fishing data. Finally, fishing data aggregated at division level were obtained from the

NAFO STLATLANT database. Strata-based indices of snow crab [28], yellowtail flounder [29]

and Atlantic cod [30] were collected and compared to the new environmental-informed indices.

Spatio-temporal modelling

An exploratory analysis highlighted that species biomass data have two main features, namely

strong spatial and temporal dependence and a large proportion of observed zeros (i.e., zero

Table 1. List of response and explanatory variables included in the st-GAM.

Name Description Units

Explanatory

variable

Depth Bathymetry at sampling location metres

Temperature Bottom Temperature at sampling location ºC
Response variable Occurrence & conditional-to-presence

biomass

Presence/absence and biomass of snow crab (Chionoecetes opilio) Kg.tow-1 (live

weight)

Occurrence & conditional-to-presence

biomass

Presence/absence and biomass of Atlantic cod (Gadus morhua) Kg.tow-1 (live

weight)

Occurrence & conditional-to-presence

biomass

Presence/absence and biomass of yellowtail flounder (Limanda
ferruginea)

Kg.tow-1 (live

weight)

https://doi.org/10.1371/journal.pone.0300311.t001
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inflated data). To address this, we developed a delta gamma generalized additive model

(GAM) using the R-package sdmTMB [31]. This separately analyzes species occurrence (bio-

mass information is transformed to 0 and 1 according to species absence and presence, respec-

tively) and conditional-to-presence biomass (observations with positive biomass values) and

combines both predictions in a final estimate of biomass [8]. Delta gamma models are com-

monly found in the literature to perform analysis similar to this one [32, 33]. We considered Z
(s,t) to be the spatiotemporally distributed occurrence and Y(s,t) the conditional-to-presence

biomass at location s and time t. The final model formulation is described as follows (Formula

1):

Zðs; tÞe Bernoulli p s; tð Þð Þ ð1Þ

Yðs; tÞe Gammaðmðs; tÞ; �Þ

logitðp s; tð ÞÞ ¼ bz þ Yi þ
XI

i¼1

fi ðXi ðs; tÞÞ þ Vz s; tð Þ

logðm s; tð ÞÞ ¼ bY þ Yi þ
XI

i¼1

fi ðXi ðs; tÞÞ þ VY s; tð Þ

where π (s, t) represents the probability of occurrence at location s and time t; and μ(s,t) and ϕ
are the mean and variance of the conditional-to-presence biomass, respectively. The linear pre-

dictors, which represent the intercept of each variable associated to the parameter π (s, t) and μ
(s, t), are represented by βz and βY, respectively. Survey year was added as a fixed effect in our

model (Yi). f() represents any function applied to the covariates (Xi), which in the present

study were smoothing terms (p-splines). Vz(s, t) and Vy(s, t) refer to the spatio-temporal struc-

ture of the occurrence and conditional-to-biomass model, respectively.

sdmTMB relies on the integrated nested Laplace approximation (INLA) to discretized the

space by defining a Delaunay triangulation mesh, which in turn creates an artificial set of

neighbors over the study area, and Gaussian Markov random fields to model spatial dependen-

cies between observations [31, 34]. Our approach involved constructing a Delaunay triangula-

tion mesh with a defined minimum distance of 20 km, resulting in a mesh comprising 467

vertices (Fig 3 in S1 Appendix). This choice was carefully considered, accounting for the spatial

distribution of sampling locations and aiming to strike a balance between computational effi-

ciency and predictive accuracy. To test which model performs better, we evaluated the spatial

effect by running a model with and without the spatial component. The spatio-temporal com-

ponent was included as: 1) a first-order autoregressive effect (AR1), which has a parameter

(rho) that regulates the degree of autocorrelation between random field deviations from one

year to the next; 2) a random walk (RW) and 3; an independent and identically distributed

(iid), in which the random fields are assumed to be independent across time steps, to test

which one performs better.

Model selection and validation

We calculated Pearson’s rank correlation index and the variance inflation factor (VIF) of the

covariates before model runs. This helped avoid correlation and collinearity among explana-

tory variables [35]. We did not find any substantial correlation among the covariates (R< 0.6

and VIF< 3), allowing us to proceed with including depth and bottom temperature in the st-

GAM. To model the non-linear relationship between explanatory and response factors,

PLOS ONE Biomass shifts in Newfoundland’s Grand Banks fisheries

PLOS ONE | https://doi.org/10.1371/journal.pone.0300311 April 1, 2024 5 / 20

https://doi.org/10.1371/journal.pone.0300311


covariates were included to the model as random factor with a smoothing term (p-splines)

[31]. Depth was log-transformed for better model convergence.

To assess the importance of bottom temperature, depth, and the spatial component on spe-

cies spatial distribution, Akaike weights were used instead of stepwise variable selection, as

they account for model selection uncertainty [36, 37]. By summing these weights, the relative

importance of each variable can be estimated. To test model predictability, we carried out a k-

fold cross-validation in which data were randomly split in k = 4 folds of equal size. In each iter-

ation, one of the folds is held to test the data, while the other 3 are used to train the model.

Then, we used the expected log pointwise predictive density (ELPD) to evaluate model predic-

tive accuracy [31, 38].

To validate models, residuals were evaluated to ensure that spatial patterns were not

detected and that residuals were normally distributed (S2 Appendix).

Biomass index and centre of gravity calculation

Once models were fit, we predicted species biomass over the study area using a 5x5 km grid.

We summed up the densities calculated in the predictions and multiplied them by cell area

to calculate the biomass index. In the case of snow crab, species catchability in the bottom

trawl survey was found to be lower than 1 [39]. To account for this issue, a conversion factor

was calculated using a Delury depletion regression analysis on fishery catch rate data from

logbooks from 2000 to 2016 [40] and biomass estimates were adjusted by a factor of 0.126.

Agreements between the new biomass indices (spatially aggregated biomass data) and strata-

based indices (strata aggregated biomass data) reported in the stock assessment of snow crab

[28], yellowtail flounder [29] and Atlantic cod [30] were assessed by using the coefficient of

determination, R2. For snow crab, the strata-based indices were estimated using fall survey

data, whereas our environmental-informed indices were estimated using spring data. The

models used in the assessment of all stocks except 3NO Atlantic cod require biomass indices

as input (snow crab assessment uses biomass trends, yellowtail flounder a Schaefer surplus

production model and 2J3KL Atlantic cod a state-space model). Therefore, the new biomass

indices developed in the present study are comparable and could be used in the assessment

of the species.

Finally, we estimated the centre of gravity of the populations using the following (Formula

2):

CGyear ¼

Pn
i¼1
xiwiPn

i¼1
wi

ð2Þ

where xi is the location (x or y-coordinates) of the grid cell, wi is the species biomass estimated

at each grid cell i, and n is the total number of grid points in the study area (n = 274,461) [41].

We also calculated the species centre of gravity directly from the data using mean weight.

Fishing impact

We were unable to account for the impact of fishing due to a lack of spatially resolved fishing

effort data that could be integrated into the model. Despite this limitation, we endeavored to

explore the fishing effect on species biomass using a linear regression model with species bio-

mass at the divisional level (3L, 3N, and 3O) as the response variable and fishing catch data

aggregated at the same level (NAFO STLATLANT database) as the explanatory variable. We

only investigated yellowtail flounder and snow crab because the commercial Atlantic cod fish-

ery on The Grand Banks has remained closed since 1992 due to the slow recovery after its
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collapse, with species being captured as bycatch and in recreational (known as the food fishery)

and small vessel, inshore commercial fisheries [42].

Results

For all species, models that included spatial effects produced better fits. Similarly, models that

included bottom temperature and depth effects as covariates performed better (Table 2). Our

results showed that the spatial effect explained most of the variability in the biomass data, fol-

lowed by depth and temperature, respectively (Table 2-ΔAIC values). We also tested different

spatio-temporal configurations (AR1, RW and iid) and found that the autoregressive spatio-

temporal structure (AR1) had higher predictive accuracy for snow crab and yellowtail floun-

der, while independent and identically distribution (iid) performed better for Atlantic cod

(Table 2-ΔELPD values). AR1 has a rho parameter that indicates the degree of correlation

from one year to the next. We found that yellowtail flounder biomass had a rho = 0.73 and

snow crab biomass had a rho = 0.71.

Spatial and covariate effects

The spatial random field represents consistent deviations in space through time that are not

accounted for by depth and bottom temperature covariates. Higher spatial deviations were

Table 2. Models used to identify the best configuration based on Akaike information criteria weights (ΔAIC) and expected log pointwise predictive density weights

(ΔELPD). Model structure indicates the different configurations tested in the model. Note that bottom temperature (temp) and depth were added as smoothing terms (p-

spline). df indicates the degree of freedom, AIC is the Akaike information criteria, and ΔAIC indicates differences among AICs. ELPD is the expected log pointwise predic-

tive density, and differences among ELPDs are indicated by ΔELPD. The best model configuration is in bold.

Species Model structure df AIC ΔAIC ELPD ΔELPD

Snow crab biomass ~ year + temp + depth + spatial + AR 65 16165.08 0 0.066 0

biomass ~ year + temp + depth + spatial + RW 63 16227.41 -62.33 0.017 -0.048

biomass ~ year + temp + depth + spatial + iid 63 16380.88 -215.8 0.017 -0.049

biomass ~ year + depth + spatial + iid 59 16421.67 -256.59 -0.010 -0.077

biomass ~ year + spatial + iid 55 16719.23 -554.15 -0.057 -0.123

biomass ~ year + spatial 53 17429.39 -1264.31 -0.379 -0.446

biomass ~ year + depth + temp 57 18876.37 -2711.29 -0.731 -0.797

biomass ~ year 49 22066.03 -5900.95 -1.123 -1.190

yellowtail flounder biomass ~ year + temp + depth + spatial + AR 65 25270.75 0 -2.601 0

biomass ~ year + temp + depth + spatial + RW 63 25320.52 -49.77 -2.632 -0.031

biomass ~ year + temp + depth + spatial + iid 63 25406.76 -136.01 -2.614 -0.013

biomass ~ year + depth + spatial + iid 59 25416.07 -145.32 -2.646 -0.044

biomass ~ year + spatial + iid 55 25624.18 -353.43 -2.652 -0.050

biomass ~ year + spatial 53 25998.47 -727.72 -2.882 -0.281

biomass ~ year + depth + temp 57 27189.61 -1918.86 -3.389 -0.788

biomass ~ year 49 33741.03 -8470.28 -4.392 -1.791

Atlantic cod biomass ~ year + temp + depth + spatial + AR 65 26026.72 0 -1.121 -0.007

biomass ~ year + temp + depth + spatial + RW 63 26241.75 -215.03 -1.220 -0.106

biomass ~ year + temp + depth + spatial + iid 63 26126.11 -99.39 -1.113 0

biomass ~ year + depth + spatial + iid 59 26315.88 -289.16 -1.119 -0.006

biomass ~ year + spatial + iid 55 26990.33 -963.61 -1.194 -0.081

biomass ~ year + spatial 53 28139.83 -2113.11 -1.500 -0.387

biomass ~ year + depth + temp 57 29430.96 -3404.24 -1.818 -0.697

biomass ~ year 49 31308.14 -5281.42 -2.195 -1.082

https://doi.org/10.1371/journal.pone.0300311.t002
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found in the north of The Grand Banks for snow crab occurrence, while they were higher near

the nose and tail of the Banks for snow crab biomass (Fig 2a and 2b). Higher spatial deviations

of yellowtail flounder probability of occurrence and biomass were both found in the southern

part of The Grand Banks (Fig 2h and 2i). Higher spatial deviations of Atlantic cod occurrence

Fig 2. Spatial random field deviations of snow crab probability of occurrence (a) and biomass (b), yellowtail flounder probability of

occurrence (h) and biomass (i), and Atlantic cod probability of occurrence (o) and biomass (p). Temperature smoothed effects on

snow crab probability of occurrence (c) and biomass (d), yellowtail flounder probability of occurrence (j) and biomass (k), and

Atlantic cod probability of occurrence (q) and biomass (r). Depth smoothed effect on snow crab probability of occurrence (e) and

biomass (f), yellowtail flounder probability of occurrence (l) and biomass (m), and Atlantic cod probability of occurrence (s) and

biomass (t). Note that depth has been log transformed. Biomass density units are kg/25 km2. Delta gamma combined biomass

prediction of snow crab (g), yellowtail flounder (n) and Atlantic cod (u) over the Grand Banks. Predictions made on a 5x5 km grid.

https://doi.org/10.1371/journal.pone.0300311.g002
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were found in the western part of the Banks and in the 3O division, while spatial deviations

were higher in the south (3NO division) and around The Grand Banks’ periphery for Atlantic

cod biomass (Fig 2o and 2p).

Higher probability of snow crab occurrence and biomass was associated with colder tem-

peratures, below 0 ºC (Fig 2c and 2d), and at depths of about 100 m for occurrence and 450 m

for biomass (Fig 2e and 2f). For yellowtail flounder, both higher probability of occurrence and

higher biomass were predicted for temperatures close to 3 ºC and shallower depths around 80

m (Fig 2j–2m). Atlantic cod probability of occurrence was predicted to be highest at tempera-

tures close to 3 ºC and depths of 300 m (Fig 2q and 2r). Highest biomass of Atlantic cod was

predicted to occur at 5 ºC and at depths between 200 and 400 m (Fig 2s and 2t).

Combined predictions of the delta gamma models indicate that snow crab biomass is higher

in the north of the Banks, with a hotspot located in the northeast, and in the southeastern edge

of the Banks (Fig 2g). The yellowtail flounder biomass hotspot is found south of the Banks (Fig

2n). Finally, Atlantic cod biomass is higher in the north and periphery of the Banks, as well as

in the southeast (Fig 2u).

Biomass indices

A decline in the snow crab relative biomass index was observed over time, reaching a mini-

mum of 33.72 t in 2016 (Fig 3a). Although there has been a small recovery since then, the cur-

rent biomass index of snow crab was 85% lower in 2019 than at the beginning of the time

series in 1996. Yellowtail flounder relative biomass has fluctuated over time, peaking in 2006

(597.88 t), 2012 (538.31 t) and 2008 (424.83 t) (Fig 3b). However, the biomass plummeted to

its lowest value in 2016 (119.96 t) and has remained relatively low since then, with a biomass of

171.12 t in 2019. Similarly, Atlantic cod biomass has fluctuated over time, reaching its highest

value in 2013 (150.07 t), with smaller peaks in 1999 (100.6 t) and 2006 (100.04 t) (Fig 3c). Since

2014, the relative biomass of Atlantic cod has been on the decline, hitting a record low of 19.30

t in 2017, a similar biomass level when the stock collapsed in the mid 1990s (31.12 and 20.39 t

in 1996 and 1997, respectively). As of 2019, the biomass of Atlantic cod on The Grand Banks

was rather low compared to the historical series (43.17 t).

Our model effectively generated an environmental-informed biomass index that showed

trends consistent with strata-based indices reported in the stock assessments of the studied

species. For yellowtail flounder, our biomass index had a high correlation (R2 = 0.92), with the

strata-based index falling within the confidence interval. For snow crab, the correlation with

the strata-index was also high (R2 = 0.84). However, some disparities were evident between the

indices, as our analysis indicates slightly higher biomass estimates, particularly at the begin-

ning of the time series. Note that we are comparing our biomass index created using spring

data with the strata-based biomass index created using fall data. Unfortunately, no established

index exists for Atlantic cod in the 3LNO division since this species is considered two separate

stocks (i.e., 2J3KL and 3NO). As a result, we compared our biomass index to the index used to

assess the 3NO stock, as it more accurately represents cod biomass within The Grand Banks,

resulting in a correlation of R2 = 0.63.

Centre of gravity

Centre of gravity indicates the central point of a population distribution. In the case of snow

crab, the centre of gravity shifted slightly toward the northwest of The Grand Banks over time

(Fig 4a). The centre of gravity of yellowtail flounder has remained relatively stable (Fig 4b).

Atlantic cod had the greatest changes in centre of gravity, first moving eastward and then

northward at the end of the time series (Fig 4c). We also calculated the species centre of gravity
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directly from the data using mean weight, which displayed similar trends but are slightly more

spread out (Fig 4 in S1 Appendix). This difference can be attributed to the spatio-temporal

model predicting biomass in years and locations with sampling gaps.

Fishing effect

Our findings suggest a negative relationship between snow crab biomass and fishing (mea-

sured as catch) in divisions 3L and 3N, although these relationships were not statistically sig-

nificant (p = 0.1 and 0.9, respectively). Similarly, we observed a negative relationship between

yellowtail flounder biomass and fishing in divisions 3N and 3O. These relationships were also

not statistically significant, although the fishing effect was more pronounced in division 3N

(p = 0.08 and 0.48, respectively) (Fig 5 in S1 Appendix).

Discussion

Our findings highlight the importance of considering spatial heterogeneity in fisheries survey

data, as the spatial component accounted for the majority of observed variance for all three

Fig 3. Biomass indices of snow crab (orange), yellowtail flounder (green) and Atlantic cod (blue) on The Grand Banks of Newfoundland

estimated from the spatio-temporal delta gamma GAM. Shaded areas indicate the 95% confidence interval. Black dashed line indicates the strata-

based index of the species (units in tonnes x1000). R2 is the coefficient of determination.

https://doi.org/10.1371/journal.pone.0300311.g003
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species (see Table 2). The spatial component explains variance that is not accounted for by the

covariates depth and temperature. We observed that spatial effects differed between the occur-

rence and biomass processes for snow crab and Atlantic cod, but not for yellowtail flounder.

These differences have been found in other studies and may be indicating spatial differences

between species life stages, which are ignored in the occurrence analysis but get weighted in

the biomass analysis [43]. Likewise, we noted a disparity in the relationship between biomass

Fig 4. Centre of gravity of snow crab (a), yellowtail flounder (b) and Atlantic cod (c) on The Grand Banks of

Newfoundland. Points indicate mean values and bars indicate variance. Colors represent years (from 1996 to 2019),

with more recent years in yellow.

https://doi.org/10.1371/journal.pone.0300311.g004
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and depth for snow crab in both the occurrence and biomass processes, which is likely linked

to the preference of adult snow crab for deeper waters [44]. Biomass hotspots are more restric-

tive than occurrence hotspots since biomass is higher only in areas with suitable conditions

(e.g., environmental, reduce competition, prey availability), whereas individuals have a wide

spatial range where they can be found [43].

The new biomass indices presented in this study overcome issues related with gaps in sam-

pling by interpolating among missing data points. Missing data were important in the years

2015 and 2017 due to incomplete sampling during those periods. [21, 22]. They also account

for species habitat-presence (i.e., depth and temperature) when predicting in unsampled loca-

tions and address spatio-temporal correlation. Predicted model biomass estimates align closely

with those obtained using strata-based methods, with some disagreements for snow crab and

Atlantic cod. In the case of snow crab, the assessment of the stock is done using data from the

fall trawl survey. This is because spring data are considered to be less reliable because certain

population components may be sampled relatively poorly during this time, coinciding with

the mating and moulting periods [45]. In our analysis, we applied the conversion factor used

to account for low catchability of snow crab in the fall bottom trawl survey [39, 40]. The devel-

opment of this conversion factor was created using data from 2000 to 2016. Thus, the dispari-

ties observed in the biomass indices, particularly during the early stages of the temporal series,

could potentially be explained by the exclusion of certain years and differences between fall

and spring data. Spring data correspond to the pre-fishery season; the higher biomass observed

in the new biomass index compared to the fall index could also be attributed to this. For Atlan-

tic cod, differences are mostly due to the comparison of 3NO to 3LNO Atlantic cod.

The models used in the assessment of all stocks included in our analysis, except 3NO Atlan-

tic cod, require biomass indices as input (snow crab assessment uses biomass trends, yellowtail

flounder a Schaefer surplus production model and 2J3KL Atlantic cod a state-space model).

Therefore, the new biomass indices developed in the present study could be used in the assess-

ment of the species. Use of spatio-temporal indices to fit stock assessments has been shown to

improve estimate precision compared to design-based indices [12, 46]. Consequently, this

approach has been adopted by governmental bodies such as DFO and the United States

National Oceanic and Atmospheric Administration (NOAA) to conduct the assessment of

species such as northern shrimp (Pandalus borealis) [47] and yelloweye rockfish (Sebastes
ruberrimus) [48]. However, it is important to acknowledge that calculating these indices is

computationally intensive and presents implementation challenges. For example, spatial con-

founding (i.e., unaccounted spatial effects influencing the relationships between predictors

and response variables) may exist, leading to bias in predictions [49]. Thus, accurately defining

the spatial component is crucial in spatio-temporal models [50].

Centre of gravity has been used to evaluate the impacts of climate, fishing pressure and

other anthropogenic factors on the average location of marine populations [51, 52]. A shift in

species centre of gravity may create challenges and risks for managing resources when species

move outside of historical fishing areas or management boundaries [53, 54]. The temperature

distribution over The Grand Banks is not uniform, with the south and the north warmer than

the centre. Additionally, this area undergoes natural cyclical periods of cold and warmth [27].

Changes in species distribution (here reflected as changes in the centre of gravity) can be an

early sign of water warming on The Grand Banks due to natural variability and/or to climate

change [55, 56]. However, shifts in species distribution may also be influenced by other factors

such as competition, prey availability, habitat degradation and fishing [51, 57]. Our results

indicate that snow crab is the most sensitive species to warming as its biomass declined as tem-

perature increases, in agreement with other observations in Newfoundland and Labrador,

where cold events have been associated with higher recruitment of snow crab [58, 59].
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Yellowtail flounder tolerates a wide range of temperatures, with a preference for 3 ºC. This

agrees with the literature, stating that yellowtail flounder can survive wide fluctuations in tem-

perature [60, 61]. The persistence in the yellowtail centre of gravity on The Grand Banks is

likely related to a weak current regime allowing for the retention of eggs and larvae in the

southern part of The Grand Banks [62]—hypothesized as a nursery ground [63]. Atlantic cod

has preference for warmer waters compared to yellowtail flounder and snow crab, favoring

temperatures around 5 ºC. The northward shift in the center of gravity of Atlantic cod could

be explained by a faster recovery of the 3L component of the 2J3KL stock, whereas the 3NO

component may been experiencing a slower recovery. However, it may also be related to a

northern shift of the species as a response to warming in the region due to a northern shift of

the Gulf Stream [55].

Management of natural resources is a complex task that should consider ecological pro-

cesses and how they relate to administrative boundaries. When management units are solely

defined based on these administrative boundaries, decisions can have unintended conse-

quences for the ecosystem [64]. Our analysis of Atlantic cod showed a continuous distribution

over The Grand Banks during years of higher biomass (Fig 6 in S1 Appendix), indicating

hyperaggregation behavior (i.e., aggregation of fish in a location during a period of low abun-

dance [65]). While this behavior can decrease individual competition and maximize fitness, it

can also increase the vulnerability of the species to fishing because of range contraction [66].

Previous studies have documented the mixing of Atlantic cod stocks [67, 68], suggesting that a

joint assessment of the population and management decisions at the 2J3KL and 3NO manage-

ment units, similar to the approach taken with snow crab, would be prudent. However, the

pursuit of such collaborative efforts may face institutional barriers, given that these two Atlan-

tic cod stocks fall under the purview of distinct regulatory bodies, namely DFO and NAFO.

NAFO is a regional fisheries management organization responsible of the management of

high seas fishery resources while DFO manages resources within the Canadian economic

exclusive zone. Both entities apply the precautionary approach and reference points to manage

the resources [69, 70], however, differences in management strategies, regulatory frameworks,

and governance structures across these governing entities may exist.

Ocean warming (natural or driven by climate change) has been identified as the primary

driver of snow crab decline in Newfoundland, while fishing and competition may have had

localized impacts [71]. Overfishing is generally blamed for the decline of yellowtail flounder

stocks in the early 1990s, but the productivity of the species was also strongly influenced by cli-

matic conditions during the collapse and subsequent recovery [63]. In the present analysis,

even though we could not directly account for the fishing effect in our models, we assessed the

effect of fishing on species biomass at a coarser spatial resolution—the NAFO division level.

We found that, even though the negative effect of fishing (i.e., landed catches) on species bio-

mass was important in certain divisions (such as 3L and 3N for snow crab, and 3N for yellow-

tail flounder), these relationships were not statistically significant (refer to Fig 5 in S1

Appendix). The divisions with strongest fishing effect overlaped with those in which species

had a biomass hotspot. This is not surprising, since fishers harvest on aggregations of individu-

als and not homogeneously across the entire area. However, the non-significance (p> 0.05) of

the fishing effect on the new biomass indices suggests that additional factors are likely contrib-

uting to the observed decline in species biomass.

Our analysis is based on spring survey data, and therefore, the distribution patterns we

observed may differ during other seasons. Species distribution is highly influenced by seasonal

cycles, particularly in temperate areas, due to variations in environmental factors, light avail-

ability, and nutrient supply [72, 73]. Atlantic cod of the 2J3KL stock seek refuge near the conti-

nental shelf edge in winter and move to shallow coastal waters and onto The Grand Banks

PLOS ONE Biomass shifts in Newfoundland’s Grand Banks fisheries

PLOS ONE | https://doi.org/10.1371/journal.pone.0300311 April 1, 2024 13 / 20

https://doi.org/10.1371/journal.pone.0300311


plateau during spring and summer [74]. Similarly, snow crab undergo seasonal migrations

related to moulting and mating [44]. It is likely that we are missing information on species

affinity for habitats that rely on seasonal variations. In addition, we used aggregated size and

sex information of species to predict biomass. Distribution differences among species life

stages may exist, including potential shifts in habitat preferences between juvenile and adult

stages [75].

As species ranges shift in different directions and rates, it is likely that predator-prey inter-

actions will also change [76]. The availability and abundance of prey directly impacts the popu-

lation dynamics and distribution of predators [77, 78]. When prey species become scarce,

predators may experience declines in body condition and overall population size [79]. The

diminishing abundance of capelin, the primary prey of Atlantic cod, has been identified as a

contributing factor to the decline in Atlantic cod growth potential [79] and body condition

[80] of the 2J3KL stock. Fisheries harvest of other prey items of the Atlantic cod (i.e. snow crab

and northern shrimp) could further exacerbate the issue of food limitation, hampering stock

recovery [79, 80]. On the other hand, predators like Atlantic cod can play a regulatory role in

shaping prey populations. In the Barents Sea, Atlantic cod has been identified as a regulator of

the snow crab population, impacting both its distribution and productivity [81, 82]. A compa-

rable phenomenon could potentially exist between these species on The Grand Banks. The

examination of the distribution maps (Fig 2g and 2u) reveals limited overlap between Atlantic

cod and snow crab in The Grand Banks. The limited overlap could be primarily attributed to

the preference of snow crab for lower temperatures (below 0 ºC), however snow crab distribu-

tion may also be regulated by Atlantic cod presence. Future studies could explore predator-

prey dynamics and species competition using alternative methodologies such as joint species

distribution models [83, 84]. Additionally, incorporating substrate type in future research

could provide valuable insights into the habitat preferences of demersal and benthic species of

The Grand Banks. Future research could enhance ecosystem understanding by incorporating

predation-prey interactions [85, 86], integrate multiple sources of data [13] and forecast cli-

mate change impacts on The Grand Banks under different emissions scenarios [87]. Our work

could serve as a foundation for the development of spatial management strategies, including

the establishment of conservation areas and spatial closures [88, 89].

Conclusions

The introduction of novel indices offers a practical avenue for informed decision-making and

underscores the importance of comprehensive approaches to fisheries management.

Our study revealed a continuous distribution of Atlantic cod across The Grand Banks and a

possible northern shift of the species, emphasizing the need for joint management of the

2J3KL and 3NO stocks. The research presented here holds promise for enhancing the sustain-

ability of Canadian fisheries by improving our understanding of the interactions between envi-

ronmental variables and species distributions.
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