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Abstract

Fish growth models are crucial for fisheries stock assessments and are commonly es-

timated using fish length-at-age data. This data is widely collected using length-stratified

age sampling (LSAS), a cost-effective two-phase response-selective method. The data may

contain age measurement errors. We propose a methodology that remarkably reduces the

bias in the estimation of fish growth for LSAS data with age measurement errors. The pro-

posed methods use empirical proportion likelihood methodology for LSAS and the struc-

tural errors in variables methodology for age measurement errors. We provide a measure

of uncertainty for parameter estimates and standardized residuals for model validation.

To model the age distribution, we employ a continuation ratio-logit model consistent

with the random nature of the true age distribution. We also apply a discretization approach

for age and length distributions, which significantly improves computational efficiency and

is consistent with the discrete age and length data typically encountered in practice. The

simulation study shows that neglecting age measurement errors can lead to significant bias

in growth estimation, even with small but nonnegligible age measurement errors. How-

ever, our new approach performs well regardless of the magnitude of age measurement

errors and accurately estimates standard errors of parameter estimates. Real data analysis

demonstrates the effectiveness of the proposed model validation device. Computer codes

to implement the methodology are provided.

KEYWORDS: Covariate measurement error; Fish growth model; Length-stratified age

sampling; Pseudoconditional likelihood; Response-selective sampling; Structural errors in

variables.
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Chapter 1

Introduction

Fish growth modelling is a scientific approach that involves developing mathematical or

statistical models to understand and predict fish length at different ages. Predicting the

length of fish at different ages is necessary for converting fish age to length and vice versa

in fisheries stock assessment [e.g. 43]. This process considers various factors that influence

fish growth, including species-specific characteristics, populations of a species (i.e. stocks),

and year classes within a population (i.e. cohorts) [e.g. 21].

Researchers use fish growth models to gain insights into the health of fish stocks and

fisheries. These models can help assess the impact of environmental changes, manage

fisheries, and make informed decisions for sustainable fishing practices. In order to make

informed decisions about sustainable harvest rates and predict the effects of future fishing

quotas on stock mortality, it is essential to have reliable information on body growth rates

[e.g. 73]. Therefore, growth model estimation is pivotal in assessing and managing fisheries

stocks.

The statistical inference about fish growth is based on the paired length-at-age data
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[e.g. 39, 47], which we also refer to it as growth data in this thesis. Such growth data are

widely available through large-spatial-scale multiyear surveys conducted by various coun-

tries, which provide valuable insights into fish growth and ocean ecosystems. For example,

Fisheries and Oceans Canada (DFO) has been conducting seasonal multispecies surveys

for over four decades, accumulating vast growth data for various fish species in the north-

west Atlantic Ocean. As explained subsequently, fish growth data are often collected using

response-selective sampling [see, e.g. 45] with substantial errors in age determination. The

objective of this research is to develop an effective methodology to accurately estimate fish

growth that takes into account both the sampling scheme and age measurement errors. Ad-

ditionally, this methodology includes a measure of uncertainty for parameter estimates and

provides a validation device for model fitting. To our knowledge, such a methodology has

not been proposed before.

Fish age measurement involves examining the structures in a fish’s body that accumu-

late growth increments over time. The most common method for determining the age of a

fish is by analyzing otoliths found in the fish’s inner ear. The analysis involves extracting

the otoliths and examining the growth rings under a microscope. In some cases, it is neces-

sary to slice the otolith across the core to see all the annuli. Other structures, such as scales,

vertebrae, and fin rays, may also be used depending on the species and the researcher’s

preference. All these processes make age determination far more time-consuming and ex-

pensive than length measurement. Therefore, fisheries surveys commonly use a two-phase

length-stratified age sampling (LSAS) method to obtain fish length and age data. In the first

phase, a large number of fish are randomly caught. The captured fish are then measured for

their length and divided into length strata, such as 2 centimeters (cm). For example, all fish

within the range of 10-12 cm would fall into one length stratum, and those in the range of
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12-14 cm would be in another stratum, and so on. In the second phase, a fixed number of

fish from each length stratum are randomly selected for age measurement. In this way, with

only a small number of age measurements, the selected fish are evenly distributed across

different length bins, which aligns with the actual growth curve of the fish population. The

actual growth curve refers to the real pattern of fish growth that fish exhibit over time. The

two-phase Length-Stratified Age Sampling (LSAS, acronyms for key methods and terms

are outlined in Table 1.1) method in fisheries surveys offers additional advantages, such

as greatly reducing age sampling costs, improving population representativeness, and en-

hancing measurement manageability. However, LSAS can significantly bias growth model

estimation if not properly considered [e.g. 31, 53, 79]. [49] offers an extensive review of

fish growth models, which typically treat age as the covariate and length as the response

variable. Treating age as the response and length as the covariate can be mathematically in-

convenient because fish length is confined below a certain asymptotic length. LSAS is thus

a kind of basic stratified sampling (BSS) in response-selective sampling (RSS) as defined

in [45]. To introduce the methodology for addressing LSAS, I will begin by providing a

review of the statistical inference of RSS.

1.1 Inference for response-selective sampling (RSS)

Consider a random sample from a target population of N observational units, where each

unit has a response yi and a vector of covariates xxxi, i = 1, . . . , N . These responses and

covariates are generated from the joint distribution f(y,xxx|θ), which based on chain rule

probability theorem can be broken down into a conditional distribution of y given xxx, de-
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noted by f(y|xxx; θ), and a distribution of xxx, denoted as g(xxx),

f(y,xxx|θ) = f(y|xxx; θ)g(x). (1.1)

The parameters θ include all the parameters describing the conditional distribution of y

given xxx.

Response-selective sampling (RSS) is widely used in various fields such as epidemiol-

ogy, finance, and social studies. In RSS, the partitioning of the range of (y,xxx) into K strata

labelled as S1, S2, ..., Sk, the process is influenced partially by the values of the response

variable y. In one of the simplest examples, this approach deals with a binary response y

that can be 1 or 0. We take separate samples from the population of units with y = 1 and an-

other one from the population with y = 0, then measure xxx for all sampled units. In contrast

to prospective sampling, which involves selecting samples during the study, RSS chooses

samples based on outcomes established at the study’s beginning. This makes it particularly

advantageous in clinical studies due to its effectiveness in saving time and costs.

Now, I review the semi-parametric maximum likelihood and pseudo-likelihood estima-

tions of θ for RSS in the literature. Let G(·) denote the corresponding distribution function

of g(·), and define the following inclusion probabilities,

Qj(θ,G) = pr {(Y,XXX) ∈ Sj}

Q∗
j(xxx; θ) = pr {(Y,xxx) ∈ Sj|xxx}

(1.2)

In the context of RSS, the response and covariate vector (y,xxx) are only available for a

subset of size n out of the total N units, referred to as complete data. In contrast, for the

remaining N −n units, only a partial subset of (y,xxx) is observed, making them incomplete

data. Let Nj and nj represent the number of observational units and complete data in the

jth stratum, so it is obvious that
∑K

j=1Nj = N and
∑K

j=1 nj = n. The set of fully observed
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units in the jth stratum is referred to asDj . The full likelihood for RSS samples is provided

by [45] as follows,

LF (θ,G) =
K∏
j=1

∏
i∈Dj

f(yi|xxxi; θ)g(xxxi)

Qj(θ,G)
Nj−nj . (1.3)

To make an inference about θ using the full likelihood (1.3), I briefly describe a semi-

parametric maximum likelihood approach as outlined in [45]. The full likelihood function

LF (θ,G) depends on the parameter θ and the distribution of functionG, both of which need

to be estimated. By holding θ fixed, we can maximize LF over all discrete distributions in

the data and obtain the profile likelihood for θ. When θ is fixed, we can ignore the constant

ln f(yi|xxxi; θ). The resulting profile log-likelihood function is [see, e.g. 66]

lFP(θ) = h {θ,Q(θ)} , (1.4)

where h(θ,Q) is defined by

h(θ,Q) =
∑
i:Ri=1

[ln f(yi|xxxi; θ)− ln
K∑
l=1

p̃lQ
∗
l (xxxi; θ)] +

K∑
j=1

(Nj − nj) ln(Qj) (1.5)

with

p̃j = 1− (Nj − nj)/NQj
(1.6)

Then, ∂h/∂Q = 0 can be solved for an estimation of Q’s. The resulting score function

from profile likelihood is

SFP(θ) =
∂lFP
∂θ

. (1.7)

The semi-parametric maximum likelihood estimates of θ are obtained by solving the score

equation SFP(θ) = 0 using the Newton-Raphson algorithm. The observed Hessian matrix

of lFP is detailed in [45].
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For problems that involve response-selective data, besides the likelihood approach,

there are several estimating function methods based on pseudo-likelihoods in the litera-

ture. One of these pseudo-likelihoods is the “estimated pseudo-likelihood” [see, e.g. 36]

which is based on an empirical estimator G̃(·) of the covariate distribution G(·),

G̃(xxx) =
K∑
j=1

G̃j(xxx)
Nj

N
, (1.8)

where G̃j(xxx) represents the empirical cumulative distribution function derived from the

observed covariate values xxxi of the complete observations in the jth stratum. Substituting

Eq. (1.8) into the logarithm of Eq. (1.3), and obtain the logarithm of the pseudo-likelihood,

lp(θ) =
∑
i:Ri=1

log {f(yi|xxxi; θ)}+
K∑
j=1

(Nj − nj) log

{
K∑
l=1

p̃−1
l

∑
i∈Dl

Q∗
j(xxxi; θ)

}
(1.9)

where p̃j = nj/Nj , and Ri = 1 if the unit i is completely observed, and 0 otherwise.

When all of the N units had been observed completely, the log-likelihood function

would be

∑
ln f(yi|xxxi; θ) (1.10)

An estimation of this value can be calculated by considering only the fully observed units

and adjusting their impacts using weights according to the selection probabilities [see, e.g.

76]. In the pseudo-likelihood function, when each element of the dataset is assigned a

specific weight, it refers to “weighted pseudo-likelihood” and is given by

lw(θ) =
K∑
j=1

p̃−1
j

∑
i∈Dj

ln {f(yi|xxxi; θ)} , (1.11)

which has been studied since the 1980’s for response-selective sampling. This method

utilizes the Horvitz-Thompson technique to address issues related to differential sampling

rates [see, e.g. 6].
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Another method is the seudoconditional likelihood [9, 76], for which the log pseudo-

likelihood function is

lC(θ) =
∑
i:Ri=1

[
ln {f(yi|xxxi; θ)} − ln

{
K∑
l=1

p̃lQ
∗
l (xxxi; θ)

}]
. (1.12)

Alternatively, the mean score pseudo-likelihood method can be obtained by applying

the EM algorithm to maximize the full likelihood LF (θ,G) [see, e.g. 25, 62]. Here the

complete-data likelihood lcom(θ,G) is defined as the log-likelihood based on complete ob-

servation of all xxxi, i = 1, 2, ..., N (conditional observation of yi only when Ri = 1),

lcom(θ,G) =
N∑
i=1

(Ri[ln {f(yi|xxxi; θ)}+ ln {dG(xxxi)}] + (1−Ri)[ln
{
Q∗
ji
(xxxi; θ)

}
+ ln {dG(xxxi)}]).

(1.13)

where ji denotes the stratum that unit i has taken. The EM algorithm iterates between an

E-step and an M-step. In E-step, it calculates the expected value of lcom(θ,G) based on the

current estimates θ and G, given the observed data. The expectation of lcom is

N∑
i=1

(Ri[ln f(yi|xxxi; θ) +
K∑
j=1

∑
i∈(Sj−Dj)

E[lnQ∗
j(XXX i; θ)|(Yi,XXX i) ∈ Sj]. (1.14)

Then the M-step adjusts the values of θ and G to maximize this function resulting from the

E-step and gives [for details, see, e.g, 44, 45]

lM(θ) =
K∑
j=1

∑
i∈Dj

([ln f(yi|xi; θ) +
K∑
j=1

(Nj − nj)/nj
∑
i∈Dj

lnQ∗
j(xi; θ) (1.15)

Subsequently, the estimating equation is obtained from Eq. (1.15).

To estimate θ based on these pseudo-likelihood methods, we need to solve S(θ) = 0,

where S(θ) = ∂l/∂θ represents the score function associated with a log-pseudolikelihood

l(θ). In all cases considered here, the Newton-Raphson algorithm can be employed to solve

the estimating equations [for details, see, e.g., 45].
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1.2 Inference for length-stratified age sampling (LSAS)

LSAS typically involves a large amount of first-phase length data and a relatively small

number of second-phase length-at-age data. To utilize the full likelihood given by Eq.

(1.3), it is necessary to accurately model the covariate (i.e., age) distribution to obtain the

distribution of first-phase length data by integrating age from the joint distribution of length

and age. However, due to the highly variable nature of fish recruitment, the age distribution

of a fish stock is often complex, with multiple modes and substantial skewness and can

change significantly over time.

As a result, no valid parametric or non-parametric model has been identified, so that

involving the distribution of first-phase length data in the likelihood can improve the infer-

ence of growth model parameters [53]; that is, the full likelihood is not suitable for growth

model estimation with LSAS data. In the remaining part of this thesis, we will consider

only the distribution of the second-phase length-at-age data. Inference for RSS data in other

fields, such as health and medicine, also involves only the distribution of the second-phase

response-at-covariate data [e.g. 67, 19]. Nevertheless, without the first-phase data, the RSS

cannot be addressed. The first-phase data is incorporated into the likelihood via weights or

inclusion proportions [45, 53].

Conditional likelihood [see, e.g., Eq. 1 in 67], given that the individuals are selected for

covariate measurement when their true covariate values are known, has been implemented

for RSS data in various fields, such as econometrics [35], biostatistics [9], case-control

study [76], and survey sampling [54]. In these implementations, the conditional probabil-

ity of an individual present in the second phase sample, given its true covariate value, is

approximated using the observed sampling proportions of all response strata (see, Eq. 2.8).
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The resulting approximation to the conditional likelihood is referred to as the pseudocon-

ditional likelihood (Eq. 1.12). [14] applied the pseudoconditional likelihood approach to

estimate growth models in fisheries. Their method for addressing trawl fishing selectivity

differs somewhat from the pseudoconditional likelihood approach defined by Eq. (16) of

[45]. To address LSAS data [53] conducted simulation studies to compare nine approaches

found in statistical and fisheries science literature. The results showed that the pseudocon-

ditional likelihood approach had substantially better performance than the other methods.

In fisheries’ LSAS data, some length strata include small and long lengths, but these strata

often do not contain any observations. To address this issue, [81] extended the pseudocon-

ditional likelihood method. Their approach was also more consistent with Eq. (16) of [45]

in terms of incorporating research gear selectivity, as compared to the method used in [14].

1.3 Age measurement errors

The conditional and pseudoconditional likelihood methods do not consider any errors that

may occur during covariate measurement. Unfortunately, such errors are quite common in

fisheries age determination, due to process and subjective factors [27, 12]. For instance,

one year’s growth may not always correspond to a single distinguishable ring on an otolith

[3]. Additionally, age readers and laboratories may show significant variation in the prepa-

ration and interpretation of periodic features in otoliths [7, 13]. In both cases, it led to

subjective errors. Here, both types of errors in age determination are referred to as age

measurement errors. For nonlinear models, covariate measurement errors have been shown

to cause biased and inconsistent parameter estimates, leading to inaccurate conclusions in

subsequent analyses to varying degrees [17, 29]. In addition, it is widely acknowledged
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that age and length measurement errors can substantially impact the accuracy of estimates

for fish growth, mortality, and recruitment patterns [e.g. 8, 60].

There are two primary methods used to address age measurement errors: functional

errors-in-variables (FEV) and structural errors-in-variables (SEV) [e.g. 69]. In FEV mod-

els, the actual unobservable covariates of the fish are treated as fixed unknown constants

(i.e., parameters), while SEV models consider them as random variables, which vary in

repeated sampling. The SEV approach is highly efficient and suitable for likelihood-based

inferences, while likelihood-based inference can be more challenging with FEV models

due to the numerous parameters involved [e.g. 17]. Even though the SEV approach re-

quires the specification and estimation of the distribution of unobserved covariates, SEV

models are widely used in comparison to FEV models because of their versatility, straight-

forward computational process, and potential for improved efficiency. To further strengthen

the robustness of SEV models, two strategies have been proposed: semiparametric mod-

els [e.g. 71] and flexible parametric models [e.g. 16]. It is worthwhile to mention that

accurately estimating the variances of age and length measurement errors can be difficult

without additional information regarding the precision of at least one of them. [65] utilized

a hierarchical Bayesian growth model to integrate age measurement error as a random ef-

fect. The variance of age measurement error was considered known in this model. Later,

[34] extended this approach by introducing a true age prior distribution to the hierarchical

Bayesian model, and claimed that this approach allows for the estimation of age mea-

surement error variance using data with only one age read per individual. However, the

effectiveness of this method was not evaluated through a simulation study.

[24] addressed a situation in which a smaller sample of fish with multiple age measure-

ments exists to estimate aging error variance. They proposed a SEV model with a gamma
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distribution for the unobserved true ages. The results of their simulation study showed that

this method provided more accurate estimations of von Bertalanffy (vonB) model param-

eters than the conventional ‘errors-in-length’ non-linear least squares method. However,

validation or repeated age measurement data is generally not readily available.

The model proposed by [50] builds upon the work of [24] by incorporating a gamma

distribution for unobserved ages, accounting for length measurement error variance as a

known parameter, and introducing between-individual variation in the growth model. [50]

also estimated the aging error variance. Results from the simulation study of [50] revealed

that the misspecification of the distribution of unobserved ages did not introduce bias in

the estimation of parameters for the vonB growth model. However, the estimated aging

error variance in [50] was very small. The von Bertalanffy growth model is a mathematical

formula used to describe the growth of living organisms over time. The model has been

widely used in fisheries science to estimate growth parameters and understand the growth

patterns of various species.

[11] employed a hierarchical model of growth that utilized a gamma distribution for the

age distribution. The model accounted for between-individual variability and measurement

errors in age and length, with known variances obtained from external sources. The study

found that a more flexible parametric age distribution did not significantly affect the vonB

parameter estimation. [37] revealed that the asymptotic bias of parameter estimators in

SEV models is close to zero when the covariate measurement error is low. However, model

misspecification and the magnitude of covariate measurement errors can introduce bias,

which was not considered in previous studies such as [24], [50], and [11]. [37] introduced

a method to evaluate bias arising from the misspecification of random-effects distribution

in SEV models.
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1.4 Previous studies on LSAS and age measurement er-

rors

[26] recommends the use of the SEV approach, which is also called structural modelling

strategy [e.g. 78], due to its high efficiency and the ability to perform likelihood-based in-

ference. SEV considers both the observed and true covariates as random variables that vary

in repeated sampling, as described by [17]. Therefore, for the SEV approach, it is necessary

to have an effective model of the covariate distribution. However, the irregularities often

found in fisheries age distribution, such as multi-modality and skewness, can make this

challenging. To address this issue, [26] proposed a parametric normal mixture distribution

for the true age and demonstrated through simulation studies that this model can improve

growth model estimation even with the misspecification of the true age distribution. How-

ever, [26] considered a random sample. Preliminary simulation tests conducted by [53]

showed that the normal mixture model does not perform well when applied to LSAS data,

even in the absence of age measurement errors. [53] introduced an empirical proportion

(EP) likelihood method for LSAS data (see, Eq. 2.6). This method is similar to the pseu-

doconditional likelihood, but instead involves the joint distribution of length and age, and

hence requires an age distribution model. For variable probability sampling (VPS), the EP

likelihood is also similar to the complete-data likelihood [Eq. 11 in 45] by replacing the

specified selection probability for full observation with the observed sample proportion.

Ages are typically represented as integers rather than continuous numbers, making the age

distribution a type of distribution for compositional data. The simulation studies in [53]

found that the EP likelihood method performed better than alternative approaches when

applying the continuation ratio-logit (CRL) model to analyze the age distribution in LSAS
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data. Compositional data cannot be independent due to the fixed total. Neutrality, as intro-

duced by [23], is the concept of independence for compositional data; complete neutrality

represents the highest level of independence.

In CRL, parameters are independent if the compositional data is completely neutral.

Given the high variability in yearly recruitments of a fish population, it is reasonable for

the sizes of cohorts (or age groups) to possess some degree of independence, resulting

in neutrality in age composition. This may be the reason for the popularity of the CRL

transformation in modelling age distribution in fisheries literature [e.g. 5, 10]. [53] did not

account for age measurement errors. We will evaluate the performance of the EP likeli-

hood method in the presence of age measurement errors. Additionally, we will introduce

a combined approach that utilizes both EP likelihood and SEV methods to address age

measurement errors in LSAS data.

When modelling age measurement errors, the variance of age measurement error is

difficult to determine. It is frequently assumed known [e.g. 65, 11] or proportional to that

of length measurement error [e.g. 40], which is an inconvenient limitation. For growth

model estimation, the variance of age measurement error is a nuisance parameter. My

study also aims to investigate the precision of estimating this parameter and its impact on

the inference of growth model parameters.

1.5 Model validation

To ensure the accuracy of the statistical models, it is crucial to validate their fitting to the

data. Measures such as Akaike Information Criterion [AIC, e.g. 70], Bayesian Informa-

tion Criterion [BIC, e.g. 77], and likelihood-ratio test [e.g. 46] can provide insight into the
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relative quality of models for a given dataset. It is necessary to have a means of assess-

ing the absolute quality of the model fitting. One commonly used method is to examine

the residuals, which can indicate how well the model fits the data. [81] discussed that the

conventional random-sample-based residual is unsuitable for LSAS data, and proposed a

residual evaluation method for LSAS data in cases where age measurement error is negli-

gible. The residual formula in [81] requires knowledge of the true age values, as it involves

the conditional expectation of response given the true age. In cases with age measurement

errors, the true ages are unknown; hence, the residuals in [81] cannot be applied. In Sec.

2.4, we will introduce a new set of standardized residuals that can be used for LSAS data

with nonnegligible age measurement errors.

As part of my MSc training, I gained expertise in utilizing TMB [Template Model

Builder; e.g. 41], a powerful modelling package. In this thesis, I successfully implemented

various methods using TMB, and I would like to provide a concise introduction to TMB in

the upcoming section.

1.6 Template Model Builder (TMB)

The calculation of derivatives plays a vital role in computational statistics. Automatic dif-

ferentiation [AD; e.g. 32] is a technique to compute derivatives of a function when giving

the computer algorithm to evaluate the function. This method is being integrated into sta-

tistical software, e.g., C++ packages ADMB [e.g. 28], Stan [e.g. 72] and Ceres Solver [e.g.

1]. In particular, the R [58] package TMB [Template Model Builder; e.g. 41] uses the state-

of-the-art AD package CppAD [e.g. 4] to calculate first, second, and third-order derivatives

of a user-defined function written in C++. The package facilitates the solving of complex
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nonlinear mixed-effects models. It calculates the marginal likelihood through the integra-

tion of random effects automatically using the Laplace approximation. This approximation

and its derivatives are achieved by using automatic differentiation of the joint likelihood

function. These computations are optimized for speed, especially for dealing with prob-

lems containing a substantial number of random effects (≈ 106) and parameters (≈ 103).

The structure of TMB is shown in Fig. 1.1.

Figure 1.1: The structure of Template Model Builder (TMB).
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Table 1.1: Definition of the acronyms. In the definition of RSS, the terminology two-

phase stratified sampling is used. In a two-phase stratified sampling, the sampling units are

partially observed and classified based on their response and/or covariate in the first phase.

The classes formed are used as strata in the second phase, where the sampling units are

selected for full observation.

Acronym Full name Brief definition

BSS Basic stratified sampling A RSS where in the second phase, a prespecified number

or proportion of units in each first phase stratum are ran-

domly selected and observed fully.

CEP Conditional empirical proportion Defined by Eq. (2.7).

CRL Continuation ratio-logit Defined by Eq. (2.13).

EP Empirical proportion Defined by Eq. (2.6).

LSAS Length-stratified age sampling A BSS where the response length is observed for all the

sampling units in the first phase, but the covariate age is

observed only for the selected second phase subsamples.

RSS Response selective sampling A two-phase stratified sampling where the probability

that a unit is fully observed depends on the response.

SEV Structural errors in variables A method to address measurement errors in covariates by

modelling the true covariates as random effects.

VPS Variable probability sampling A RSS where the units are observed sequentially and in-

dependently, and their strata are identified. In the second

phase, a unit in a stratum is selected for full observation

with the specified stratum probability.
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In order to perform maximum likelihood estimation and hybrid MCMC (Markov Chain

Monte Carlo) sampling, first-order derivatives are often sufficient. For example, the Stan

package utilizes first-order derivatives [e.g. 72]. However, in complex models with ran-

dom effects, computing higher-order derivatives using automatic differentiation can greatly

simplify the optimization process of the Laplace approximation for the marginal likelihood

[e.g. 68]. This method has been implemented in the TMB package and is particularly use-

ful for random effects models and Gaussian Markov Random Fields (GMRF). The TMB

package combines several high-performance libraries, including CppAD for automatic dif-

ferentiation in C++, Matrix [e.g. 2] for sparse and dense matrix calculations in R, Eigen for

sparse and dense matrix calculations in C++, and OpenMP for parallelization in C++ and

Fortran. Utilizing these packages results in better performance and simpler code.

Due to the good performance of TMB, the theory and methodologies in my thesis are

all implemented with TMB.

My thesis is structured as follows. In Chapter 2, I extend the SEV and EP likelihood

methods for two-phase LSAS data with age measurement errors. I also provide standard

errors for the parameter estimators and introduce standardized residuals for model valida-

tion. In Chapter 3, I evaluate the performance of the proposed methods through extensive

simulation studies. In Chapter 4, I apply the proposed methods to a set of growth data for

American plaice. Finally, I provide my conclusions and further discussions in Chapter 5.
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Chapter 2

Methods

2.1 Notations and background

Suppose there is a sample of N fish with individual length l and age at, generated indepen-

dently from the joint distribution

f(l, at|θθθ) = f(l|at;θθθg)p(at|θθθt), (2.1)

where θθθ is a vector of unknown parameters, subscripts indicating distinct subsets within

θθθ. Here, at indicates the true age of a fish, which is equivalent to the measured age in

the absence of age measurement error. This joint distribution may represent the popu-

lation distribution filtered by trawl fishing selectivity. The conditional density, denoted

as f(l, at|θθθg), models the length distribution of caught fish given their true age. This in-

cludes various growth models, trawl selectivities, and accounting errors for both process

and measurement of the length data. During the first phase of the two-phase LSAS, length

measurements are obtained for all N fish. Based on their lengths, the first phase sample is

then classified into J exclusive length strata, S1, S2, ..., SJ . The probability of a fish with
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length (l) falling into the jth stratum (i.e., l ∈ Sj , where j = 1, 2, · · · , J) is determined

by the inclusion probability Qj(θθθ). This probability can be calculated by integrating over

length and summing over discrete age as follows:

Qj(θθθ) = Pr[(l, at) ∈ Sj|θθθ] =
∫
l∈Sj

[∑
at

f(l, at|θθθ)

]
dl. (2.2)

A conditional version of the inclusion probability given the true age at is defined as

Q∗
j(at;θθθg) = Pr(l ∈ Sj|at;θθθg) =

∫
l∈Sj

f(l|at;θgθgθg)dl. (2.3)

The number of fish in a stratum is denoted by Nj , where N =
∑J

j=1Nj .

Only a subsample of size n from the N fish is measured for age in the second phase of

LSAS. Thus, only a subset of size n out of the N fish have their full length and age infor-

mation (li, ai), where subscript i indexes individual fish. In each stratum j, the maximum

number of fish to be sampled for age is denoted by mj . The true sample size nj for this

stratum is determined by the following equation:

nj =


Nj, if Nj < mj,

mj, if Nj ≥ mj,

(2.4)

which is a random variable. We define the indicator variable Ri for all individuals i =

1, · · · , N in the first-phase sample as

Ri =


1, if (li, ai) is fully observed,

0, if some information on (li, ai) is missing.

(2.5)

Here age is missing at random in the terminology of [64] since Pr(Ri = 1|li, ai) =
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Pr(Ri = 1|li). Further, define the stratum indicator

δij =


1, if li ∈ Sj,

0, otherwise,

i = 1, 2, · · · , N, j = 1, 2, · · · , J,

and denote the set of indices of all fully observed units in stratum Sj by

Dj = {i : δij = 1, Ri = 1}.

[53] introduced the following EP joint density of length and age for LSAS data,

fEP(l, at|R = 1;θθθ) =
(nj/Nj) f(l, at|θθθ)∑Jobs

k=1(nk/Nk)Qk(θθθ) +
∑Jtotal

k=Jobs+1Qk(θθθ)
, (2.6)

where l ∈ Sj , k = 1, 2, · · · , Jobs enumerates the length strata with observed data, and

Jobs + 1, · · · , Jtotal count the strata without data. [81] utilized the following conditional

EP density of length l ∈ Sj given true age at for LSAS data under the assumption that age

measurement error is negligible,

fCEP(l|at, R = 1;θθθ) =
(nj/Nj) f(l|at;θθθg)∑Jobs

k=1(nk/Nk)Q∗
k(at;θθθg) +

∑Jtotal
k=Jobs+1Q

∗
k(at;θθθg)

. (2.7)

The conditional and unconditional EP likelihoods are obtained by multiplying the corre-

sponding conditional and unconditional EP densities over the n second phase length-at-age

data. [53] also implemented the pseudoconditional likelihood method with individual den-

sity given by

fpseudo(l|at, R = 1;θθθ) =
(nj/Nj) f(l|at;θθθg)∑Jobs
k=1(nk/Nk)Q∗

k(at;θθθg)
for l ∈ Sj. (2.8)

In their simulation studies, [53] demonstrated that based on densities (2.6) and (2.8), the

EP likelihood and pseudoconditional likelihood approaches outperformed other methods
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for LSAS data, when age measurement errors are negligible. The conditional EP like-

lihood is expected to be an improvement over the pseudoconditional likelihood because

the conditional EP likelihood accounts for empty length strata in the denominator, while

the pseudoconditional likelihood omits them. In this study, we extend the conditional and

unconditional EP likelihood methods to address age measurement errors using SEV.

2.2 SEV methods for LSAS data

Let p(a|at;θθθe) be the probability mass function (pmf) of the measured age a given the true

age at. In SEV, the unobserved true ages are treated as random effects (REs) that must be

summed out to obtain the marginal distribution for observed length-at-age data. The SEV

densities based on the EP and conditional EP densities are, respectively,

fSEV EP(l, a|R = 1;ψψψ) =
(nj/Nj)

∑
at
f(l|at;θθθg) p(at|θθθt) p(a|at;θθθe)∑Jobs

k=1(nk/Nk)Qk(θθθ) +
∑Jtotal

k=Jobs+1Qk(θθθ)
, (2.9)

fSEV CEP(l, a|R = 1;ψψψ) =
∑
at

(nj/Nj) f(l|at;θθθg) p(at|θθθt) p(a|at;θθθe)∑Jobs
k=1(nk/Nk)Q∗

k(at;θθθg) +
∑Jtotal

k=Jobs+1Q
∗
k(at;θθθg)

, (2.10)

where l ∈ Sj , and ψψψ⊤ = (θθθ⊤, θθθ⊤e )
⊤. The vector ψψψ include the entire set of parameters for

estimation, comprising θθθg (growth and gear selectivity parameters), θθθt (parameters for the

true age distribution), and θθθe (age measurement error parameter).

In the rest of this thesis, we will use the terms “SEV EP” and “SEV CEP” to denote the

SEV methods that utilize the EP and conditional EP densities, respectively. To obtain the

log-pseudoconditional likelihoods, the corresponding individual log-densities are summed

over the n second phase length-at-age data,

lSEV EP(ψψψ) =
N∑
i=1

Ri log fSEV EP(li, ai|Ri = 1;ψψψ), (2.11)
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lSEV CEP(ψψψ) =
N∑
i=1

Ri log fSEV CEP(li, ai|Ri = 1;ψψψ). (2.12)

Note that the SEV based on density (2.9) may be more efficient to implement, as the de-

nominator is evaluated once for all at.

Following [53], we apply the CRL transformation to model the pmf of true ages,

p(at|θθθt) =



eλat∏at
i=1{1 + eλi}

if at = 1, 2, · · · , Amax − 1,

1∏Amax−1
i=1 {1 + eλi}

if at = Amax,

(2.13)

whereAmax is the maximum age in the data. It is easy to verify that the CRL model satisfies

the two probability rules: p(at|θθθt) ≥ 0 and
∑Amax

at=1 p(at|θθθt) = 1. The parameters λi, where

i = 1, 2, · · · , Amax − 1, can take any value between −∞ to ∞, making them suitable for

estimation through optimization techniques. The inverse transformation of Eq. (2.13) is

λat = log

[
p(at|θθθt)

p(at + 1|θθθt) + · · ·+ p(Amax|θθθt)

]
, at = 1, 2, · · · , Amax − 1. (2.14)

When implementing the various methods discussed in this section, the function of λat val-

ues in Eq. (2.13) should be used in place of p(at|θθθt), and the λat values are estimated along

with the other model parameters.

2.3 Asymptotics

We estimate the entire set of parameters, represented by ψψψ, by solving the score equation,

Sc(ψψψ) =
N∑
i=1

Ri
∂lci(ψψψ)

∂ψψψ
= 0, (2.15)
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where lci(ψψψ) can be log fSEV EP(li, ai|Ri = 1;ψψψ) or log fSEV CEP(li, ai|Ri = 1;ψψψ), de-

pending on which log-pseudoconditional likelihood is being optimized, SEV EP or SEV

CEP.

According to [45], under mild regularity conditions on the model, the estimator ψ̂̂ψ̂ψ ob-

tained from solving Eq. (2.15) for BSS is consistent, and
√
N(ψ̂̂ψ̂ψ − ψψψ) is asymptotically

normal with covariance matrix estimated with

˜ACOVBSS = A(ψ̂̂ψ̂ψ)−1B̂BSSA(ψ̂̂ψ̂ψ)
−T , (2.16)

where

A(ψ̂̂ψ̂ψ) = − 1

N

∂Sc(ψψψ)

∂ψψψ⊤

∣∣∣∣
ψψψ=ψ̂̂ψ̂ψ

.

To replicate the formula for B̂BSS derived in [45], we first define Ûi = ∂lci(ψ̂̂ψ̂ψ)/∂ψ̂̂ψ̂ψ and

¯̂
U(j) =

∑
i∈Dj

Ûi/nj for j = 1, · · · , J .

Using these values, we can compute

B̂BSS =
1

N

J∑
j=1

p̃j
∑
i∈Dj

ÛiÛ
⊤
i +

1

N

J∑
j=1

nj(1− p̃j)V̂j(U), (2.17)

where p̃j = nj/Nj , and

V̂j(U) =
1

nj − 1

∑
i∈Dj

(Ûi − ¯̂
U(j))(Ûi − ¯̂

U(j))⊤.

Standard error (SE) estimates of parameter estimators based on Fisher information are

usually provided by popular modelling packages such as TMB [Template Model Builder,

42] package in R [59]. Therefore, we also consider the asymptotic covariance estimator of
√
N(ψ̂̂ψ̂ψ −ψψψ) given by

˜ACOVFI = A(ψ̂̂ψ̂ψ)−1, (2.18)

where the subscript FI denotes the “Fisher information”.
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2.4 Residuals

As previously mentioned in the Introduction, the residual formula presented in [81] re-

quires knowledge of the true age values. However, when age measurement errors are not

negligible, the true ages are unknown, and using their residual formula requires estimating

the true ages. In SEV, the true ages are regarded as REs, and are frequently estimated using

the posterior modes with model parameters at the maximum likelihood estimates (MLEs)

[e.g. 38]. Nevertheless, the true ages are fixed values treated as REs because they are

unobserved. Posterior mode RE estimators are biased and variable in this situation [80].

Therefore, we define LSAS residual error based on the conditional distribution of length

given the observed age as

ei = li − χi,

χi = E(li|ai, Ri = 1;ψψψ),

(2.19)

where χi is evaluated with the conditional distributions of li given ai,

fSEV EP(li, ai|Ri = 1;ψψψ)∫
fSEV EP(l, ai|Ri = 1;ψψψ) dl

and
fSEV CEP(li, ai|Ri = 1;ψψψ)∫
fSEV CEP(l, ai|Ri = 1;ψψψ) dl

,

for SEV EP and SEV CEP, respectively. Here, the denominators are integrated over

the support of length l. Note that the marginal distribution of observed age is not∑
at
p(ai|at;θθθe)p(at|θθθt) under LSAS.

The residuals, or estimated errors, can be calculated using Equation

ri = li − χ̂i,

χ̂i =

∫
l fSEV EP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl∫
fSEV EP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl

or

χ̂i =

∫
l fSEV CEP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl∫
fSEV CEP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl

,

(2.20)
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where the symbol ˆ indicates that the estimated parameters are used, and χ̂i is estimated

using the SEV density based on either the EP or conditional EP method. The standard

errors (SEs) of the residuals can be calculated with

SE(ri) =

√√√√∫
l2 fSEV EP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl∫
fSEV EP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl

− χ̂2
i or

SE(ri) =

√√√√∫
l2 fSEV CEP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl∫
fSEV CEP(l, ai|Ri = 1; ψ̂̂ψ̂ψ) dl

− χ̂2
i .

(2.21)

The standardized residual for the ith observation can then be evaluated as ri/SE(ri).
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Chapter 3

Simulation studies

The simulation study uses a revised version of the widely recognized von Bertalanffy

growth function [vonB; 74], which effectively approximates growth for many fish species

[20, 57] by assuming a linear decrease in growth rate as the fish size increases. The model

based on the vonB growth function for the observed length l(at), given the true age at, is

expressed as

l(at) = µa + ϵ,

µa = L∞

[
1−

(
1− l0

L∞

)
e−k at

]
,

ϵ ∼ N(0, σ2
a),

σa = µa CV,

(3.1)

where L∞ is the theoretical length at which the growth rate stops, k is the growth coeffi-

cient, l0 is the length at age 0, CV is the coefficient of variation, N(µ, σ2) denotes normal

distribution with mean µ and variance σ2. The Gaussian error term ϵ represents the com-

bined effect of between-individual variation (or process error) resulting from individual

growth parameter variability and the length measurement error, as described in [55]. The
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commonly used parameter of age at length 0 is usually negative and is an extrapolation that

should be avoided, as fish length cannot be zero. Therefore, this parameter is replaced with

l0, which can usually be determined from existing larval studies in the literature [see 81,

for an example].

Model (3.1) states that the conditional distribution of length l given age at is

f(l|at;θθθg) ∼ N(µa, σ
2
a). In practice, since the real length data is discrete and represented

as integers, the corresponding probability mass function (pmf) can be approximated as

[Eq. 5 in 55]

p(l|at;θθθg) =
N(l, µa, σ

2
a)∑

l′ N(l
′, µa, σ2

a)
. (3.2)

Here the pmf p(l|at;θθθg) is obtained by normalizing the probability density function (pdf)

of N(l, µa, σ2
a) over all possible values of l, with N(l, µ, σ2) denoting a normal pdf with

mean µ and variance σ2 evaluated at l.

The integrals in Eqs. (2.2) and (2.3) should be replaced with summations over all the

length values falling in the length stratum Sj , and the integrals in Eqs. (2.19)-(2.21) should

be replaced with summations over all possible values of length.

In order to ensure comparability with the results presented in [53], we replicated their

methodology of simulating population dynamics to obtain population distributions for

length and age and collect LSAS data from the simulated fish population. The population

simulation utilizes the structure of the stock assessment model, Stock Synthesis [48]. The

simulation procedure is illustrated in Fig 3.1.

27



Figure 3.1: Illustration of the simulation steps used in population dynamics and LSAS data

collection.
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For the first year, an unfished stationary population is created based on a recruitment

value of R0; that is, the number of fish at a given age a is calculated as R0e
−Ma for a =

1, 2, · · · , A = 60. The natural mortality rate M is randomly generated from a uniform

distribution with a mean of 0.3 and a standard deviation (SD) of 0.11. The natural mortality

refers to the loss of fish within the population resulting from factors unrelated to fishing

activities. For the growth parameters, we fix l0 = 3, but for each simulation run, the

asymptotic length L∞ is randomly generated from a normal distribution with mean 50 and

SD 8, and the growth rate k is determined by the life-history-invariant k = M/1.65 + εk

[18], where εk is randomly generated from a normal distribution with mean 0 and SD

0.10 × M/1.65. The number of mature fish in the population is evaluated using a logit

maturity model

m(a) =
1

1 + e
− log(19)(a−A50)

A95−A50

, (3.3)

where the age at 50% maturityA50 = log(3)/k, and the age at 95% maturityA95 = A50+4.

The weight (w) of age a fish is calculated based on the mean length µa in (3.1) using a cubic

relationship, expressed as w(µa) = 0.20 × µ3
a. Then the Spawning stock biomass (SSB)

is evaluated by SSB(y) =
∑A

a=1w(µa) × m(a) × N(y = 1, a), where N(y, a) is the

number of age a fish in year y. The recruitment R, namely the number of fish at age 0

for the upcoming year, is determined by SSB using the Berverton and Holt spawner-recruit

relationship

R(y) =
SSB(y − 1) e−M eεR

1− (5h−1
4h

)[1− SSB(y−1)
SSBeq

]
, (3.4)

where SSBeq = ((5h − 1)/(4h)) × Ro, the steepness h is randomly generated from a

normal distribution with a mean of 0.75 and a SD of 0.07, and the random deviation εR is
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generated from a normal distribution with a mean of 0 and a standard deviation of σRec,

which is also randomly generated from a truncated normal distribution with a mean of 0.6

and a standard deviation of 0.15. To evaluate the number of fish at ages 1 to A for the

second year, we utilize the population dynamics model given by:

N(y, a) = N(y − 1, a− 1)e−[M+F (y)], (3.5)

where F represents fishing mortality or the death of fish due to fishing activities. F is

generated from a normal distribution with a mean of 0.2 and a standard deviation of 0.08,

truncated at 0 to ensure that it remains positive. UsingN(y = 2, a), we evaluate the recruit-

ment for the third year and continue this process iteratively. This simulation of population

dynamics is repeated for 61 years so that the joint distribution of length and age in the 61st

year closely approximates the natural distribution. Table 3.1 lists the distributions and mod-

els used. Each year, new fishing mortality (F ) and variation in recruitment (εR) are drawn

from their corresponding distributions; all other population values are generated once per

simulation run.
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Table 3.1: Population dynamics models and parameter distributions used to generate popu-

lation simulation. Fishing mortality (F ) and log recruitment deviation (σRec) are generated

randomly on a yearly basis, while other parameters are generated randomly for each simu-

lation iteration.

Parameter Distribution Mean SD

Natural mortality (M) Uniform 0.3 0.11

Fishing mortality (F) TruncNorm 0.20 0.08

Steepness (h) Normal 0.75 0.07

Log recruitment deviation (σRec) TruncNorm 0.60 0.15

Asymptotic length (L∞) Normal 50 8

Growth coefficient error (ϵ) Normal 0 0.10(1.65/M)

CV length-at-age TruncNorm 0.10 0.04

Log unfished recruitment [log(R0)] Fixed 9.0 —

Length at age 0 (L0) Fixed 3 —

Age at length 0 (a0) Fixed −0.07 —

Parameter Model

Recruitment R(y) = SSB(y−1)

1−( 5h−1
4h

)[1−SSB(y−1)
SSBeq

]

Weight w(µa) = 0.20× µ3
a

Maturity m(a) = {1 + e
[−log(19)(a−A50)]

A95−A50 }−1

Numbers at age N(y, a) = N(y − 1, a− 1)e−[M+F (y)]

Numbers in first year N(1, a) = R0(e
−a·M)

Spawning stock biomass SSB(y) =
∑A

a=1w[l(a)] ·m(a) ·N(y, a)

Note: Minimum = 0.10 and maximum = 0.50 for the uniform distribution; TruncNorm is the

truncated normal distribution with minimum = 0 , maximum = ∞ to prevent generating negative

values.
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We use the simulated population in the 61st year as the first-phase sample. Its age

composition is the true age distribution p(at), which is modelled with CRL in Eqs. (2.9) and

(2.10). Subsequently, we draw the second-phase LSAS sample from this first-phase sample.

The LSAS aims to regulate the number of age measurements and acquire evenly distributed

length-at-age data across the growth curve. Following [53], we assume that the target

stratum sample size mj is proportional to the length bin size, such that mj = 10× bin size,

where the bin size is chosen from a set of commonly used values in practice, namely 1, 2,

3, and 5 cm [e.g. 51]. This target stratum sample size choice is consistent with the sampling

strategies used in DFO surveys for American plaice, where mj = 20 for each length bin of

size 2 cm.

In data generation and model fitting, we assume that the measured age a equals the true

age at plus a Gaussian random error with mean 0 and SD σu, rounded to the nearest positive

integer. This approach is a discrete analog to the Gaussian age measurement error model

used by [63] and [56]. The conditional pmf p(a|at) in Eqs. (2.9) and (2.10) are evaluated

accordingly. To specify σu, we consider three different levels: small (0.1), medium (0.5,

1), and large (2).

Table 3.2: Sample size summary statistics for the 1000 simulated first-phase and second-

phase LSAS samples in the simulation studies. Length bin size is 2 cm.

Min. 1st Quartile Median Mean 3rd Quartile Max.

First phase 5452 12950 18041 20364 25277 100441

Second phase 193 392.0 446.0 446.7 500.0 714

32



For each simulation classified by σu and bin size, we repeated the data generation and

parameter estimation process 1000 times. To ensure that the resulting sample sizes for the

first and second phases of LSAS are comparable to the actual data, we have implemented

an initial recruitment of R0 = e9. The sample size of the 1000 simulated first-phase and

second-phase LSAS samples, using a length bin size of 2cm, are presented in Table 3.2.

The assessment of various approaches involves comparing the calculated values of L∞, K

and CV from each method to the true values in the simulation model. We evaluate the

estimation performance using two metrics: relative root mean squared error (RRMSE)

RRMSE =
RMSE
|true∗|

× 100, where RMSE =

√∑1000
i=1 (esti − truei)2

1000
,

and relative bias (RelBias)

RelBias =
Bias
|true∗|

× 100, where Bias =
∑1000

i=1 (esti − truei)
1000

.

Here, we use truei to denote the parameter value in the ith simulation, and true∗ to denote

the mean value of the parameter distribution. As mentioned earlier, the parameters for L∞,

CV, and k were drawn randomly from their respective distributions, resulting in variations

across iterations.

To evaluate the log-pseudoconditional likelihood functions and their gradients, we uti-

lized the TMB package in R. We performed the likelihood maximization using the R func-

tion nlminb().

The simulation results are presented in Tables 3.3 – 3.4 and Fig. 6.1. “EP” refers to

the EP likelihood methods based on density (2.6), where the age measurement errors are

ignored. SEV EP and SEV CEP exhibit nearly identical RRMSEs and RelBias for esti-

mating all the model parameters in all simulation scenarios. When the age measurement
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errors are small (σu = 0.1), all three methods perform similarly well in estimating L∞, k

and CV, as measured by their RRMSEs and RelBias. However, when the age measurement

errors are not negligible (σu = 0.5, 1, 2), the EP likelihood method shows poor perfor-

mance with large RRMSEs and RelBias, while the RRMSEs and RelBias remain small for

the SEV EP and SEV CEP approaches. Overall, the RRMSEs of the SEV EP and SEV

CEP methods for estimating L∞, k and CV tend to increase with age measurement error

(σu) and bin width. However, their RelBias show less variation and trend. When the age

measurement error is small to moderate (σu = 0.1, 0.5, 1), it is difficult to estimate σu ac-

curately, as indicated by large RRMSEs and RelBias. However, as the age measurement

error increases, the RRMSE and RelBias tend to decrease. Despite poor estimation of σu

at small and moderate age measurement errors, the SEV EP and SEV CEP methods still

perform well in estimating the growth model parameters L∞, k and CV. Simulation studies

for log-normal length-at-age and age measurement error models, detailed in Tables 6.1 –

6.4, reveal consistent findings.

Fig. 3.2 displays the LSAS data, the fitted growth curves, and the true growth curve to

illustrate the performance of various methods in estimating growth curves. The LSAS data

were generated randomly with a bin size of 2 cm, a commonly used bin size, and a moderate

age measurement error of σu = 1. The growth curves estimated using SEV EP (dashed

black curve) and SEV CEP (dashed green curve) approaches are nearly identical and almost

overlap with the true growth curve (the red curve). This demonstrates that both approaches

perform well in estimating the growth curve. However, the EP likelihood method (dashed

orange curve) exhibits a notable bias in its estimates when age measurement errors are

present, which starkly contrasts the results presented in Fig. 4 of [53]. In that study, the

estimated growth curve using the EP likelihood method closely aligned with the true growth
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curve in the absence of age measurement errors.
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Table 3.3: Relative root mean squared errors (RRMSEs) for vonB parameter estimates

from 1000 simulations with length at age 0 fixed at 3 cm, for various length bin sizes and

measurement error SDs (σu).

σu 0.1 0.5 1 2

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RRMSE

1 cm

L∞ 1.7 1.7 1.7 1.9 2.1 14.2 2.1 2.1 27.3 2.3 2.3 39.0

k 2.5 2.5 2.5 2.7 2.8 33.4 2.9 2.9 97.4 3.1 3.1 >100

CV 3.7 3.7 3.8 3.9 4.4 47.4 4.3 4.3 94.8 4.7 4.7 >100

σu 64.6 64.7 — 25.6 27.2 — 12.4 12.6 — 7.3 7.7 —

2 cm

L∞ 1.7 1.7 1.7 1.9 2.1 14.6 2.1 2.1 27.5 2.4 2.4 39.1

k 2.5 2.5 2.5 2.9 2.9 34.1 3.2 3.2 99.5 3.4 3.4 >100

CV 3.5 3.6 3.6 3.6 4.3 48.9 4.2 4.2 96.2 4.8 4.8 >100

σu 62.7 62.9 — 26.1 27.5 — 12.7 12.7 — 7.3 7.3 —

3 cm

L∞ 1.8 1.8 1.8 2.0 2.1 14.7 2.2 2.2 27.3 2.5 2.5 38.6

k 2.6 2.6 2.6 3.0 3.0 35.7 3.3 3.3 100.4 3.8 3.8 >100

CV 3.7 3.7 3.7 4.0 4.4 51.4 4.4 4.4 98.2 5.2 6.1 >100

σu 66.2 63.6 — 26.7 27.6 — 12.9 12.9 — 7.2 7.5 —

5 cm

L∞ 1.7 1.7 1.7 2.0 2.3 15.4 2.3 2.3 27.8 2.7 2.8 39.5

k 2.7 2.7 2.6 3.4 3.5 38.5 3.9 3.9 101.2 4.6 4.6 >100

CV 3.6 3.6 3.6 4.3 5.2 55.7 4.7 4.7 100.8 5.7 6.0 >100

σu 69.0 67.5 — 27.9 28.8 — 13.5 13.5 — 7.7 7.8 —

Note: >100 are results that are greater than 100% .
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Table 3.4: Relative bias (RelBias) for vonB parameter estimates from 1000 simulations

with length at age 0 fixed at 3 cm, for various length bin sizes and measurement error SDs

(σu).

σu 0.1 0.5 1 2

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RelBias

1 cm

L∞ − 0.2 −0.2 −0.3 −0.1 −0.2 −13.5 −0.1 −0.1 −26.6 −0.2 −0.2 −38.2

k 0.2 0.2 0.2 0.2 0.2 28.1 0.1 0.1 83.8 0.2 0.1 >100

CV 2.4 2.4 2.5 1.9 2.0 44.7 2.44 2.44 91.8 3.1 3.1 >100

σu −27.0 −27.4 — 21.7 21.1 — 9.3 9.4 — 4.4 4.5 —

2 cm

L∞ − 0.2 −0.2 −0.3 −0.1 −0.1 −13.9 −0.5 −0.5 −26.7 − 0.2 −0.2 −38.3

k 0.2 0.2 0.2 0.2 0.2 29.1 0.0 0.0 85.3 0.1 0.1 >100

CV 2.1 2.1 2.2 1.4 1.6 46.3 2.0 2.0 93.0 2.7 2.7 >100

σu − 25.0 −26.8 — 22.7 21.8 — 9.8 9.8 — 4.4 4.4 —

3 cm

L∞ −0.1 − 0.1 −0.2 0.0 0.0 −14.0 0.0 0.0 − 26.5 0.0 0.0 − 37.7

k 0.1 0.1 0.2 0.0 0.0 30.4 0.0 0.0 86.5 0.0 0.0 >100

CV 1.8 1.9 2.1 1.0 1.1 48.7 1.5 1.5 95.3 2.3 2.4 >100

σu − 18.9 −24.4 — 23.6 23.0 — 10.3 10.3 — 4.6 4.6 —

5 cm

L∞ 0.0 −0.1 − 0.1 0.1 0.1 − 14.8 0.1 0.1 − 27.1 0.0 0.1 − 38.8

k 0.0 0.0 0.1 −0.2 − 0.2 32.3 − 0.2 − 0.2 86.8 0.0 0.0 >100

CV 1.6 1.6 1.9 0.5 0.7 52.6 1.0 1.0 97.6 1.9 1.9 >100

σu − 16.3 − 18.2 — 24.4 23.7 — 11.2 11.2 — 5.4 5.4 —

Note: >100 are results that are greater than 100% .
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Figure 3.2: Plot of a simulated length-stratified age sampling (LSAS) sample with esti-

mated von Bertalanffy growth models from the sample. The length-at-age data are sim-

ulated with length bin size equal to 2 cm and age measurement error standard deviation

σu = 1. Points are subtly perturbed in random directions to mitigate overlapping observa-

tions. In the legend, “True” indicates the true growth model, “SEV EP” and “SEV CEP”

indicate the estimated growth models by maximizing the likelihoods (2.11) and (2.12), re-

spectively, and “EP” indicates the estimated growth model by maximizing the likelihood

constructed from density (2.6). 38



In order to evaluate the performance of the two standard error (SE) estimators described

in Sec. 2.3 for the SEV EP and SEV CEP parameter estimators, we conduct simulation

studies. To do this, we first set the growth model parameters to L∞ = 50, k = 0.30/1.65

and CV = 0.1. Then, we generate an age distribution using the population dynamics

simulation, which is also used to examine parameter estimators. With the growth model

parameters and age distribution fixed, we randomly generated 500 LSAS data sets for anal-

ysis, then applied SEV EP and SEV CEP approaches to each data set and evaluated the

resulting two SE estimators separately. As some age categories have little data, the esti-

mates of the corresponding age distribution parameter λa in Eq. (2.14) approach the lower

bound of −∞, which can result in a singular A(ψ̂̂ψ̂ψ) in the covariance estimators. To address

this issue, we employ Moore-Penrose inverse [52] for A(ψ̂̂ψ̂ψ). Table 3.5 displays the means

of the 500 SE estimates. The BSS and FI SE estimators are based on Eqs. (2.16) and

(2.18), respectively. The “True” value represents the SD of the 500 parameter estimates.

We conducted this simulation procedure five times. In each simulation, we fixed growth

model parameters but randomly generated and then fixed age distribution during the 500

iterations. As a result, Table 3.5 contains five groups of results, separated by horizontal

lines. To illustrate the variability among the 500 SE estimates for each parameter and ap-

proach, we present their boxplots for a single set of 500 simulation iterations in Fig. 3.3.

σ̂L∞ , σ̂k and σ̂CV denote the SE estimators for L∞, k and CV respectively. These results

suggest that the BSS SE estimator is fairly accurate, while FI estimator is not as reliable.
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Table 3.5: Comparison of standard error (SE) estimators for parameter estimators with

true SE values. BSS and FI SE estimators are based on Eqs. (2.16) and (2.18), respec-

tively. Each group of results, separated by horizontal lines, represents a simulation of 500

iterations with L∞ = 50, k = 0.30/1.65,CV = 0.1, and a randomly generated and then

fixed age distribution. The “True” SE values refer to the standard deviations of parameter

estimates obtained from each set of 500 iterations.

SEV EP SEV CEP

FI BSS True FI BSS True

L∞ 0.87 0.73 0.70 0.87 0.73 0.70

k 0.0054 0.0040 0.0039 0.0054 0.0040 0.0039

CV 0.0031 0.0028 0.0027 0.0031 0.0028 0.0027

L∞ 1.15 1.01 1.01 1.15 1.01 1.01

k 0.0064 0.0052 0.0053 0.0064 0.0052 0.0053

CV 0.0032 0.0028 0.0029 0.0032 0.0028 0.0029

L∞ 1.24 1.08 1.02 1.24 1.08 1.02

k 0.0069 0.0055 0.0053 0.0069 0.0055 0.0053

CV 0.0036 0.0032 0.0032 0.0036 0.0032 0.0032

L∞ 1.11 0.93 0.90 1.11 0.93 0.90

k 0.0065 0.0048 0.0047 0.0065 0.0048 0.0047

CV 0.0041 0.0036 0.0034 0.0041 0.0036 0.0034

L∞ 0.83 0.70 0.68 0.83 0.70 0.68

k 0.0053 0.0041 0.0039 0.0053 0.0041 0.0039

CV 0.0027 0.0023 0.0021 0.0027 0.0023 0.0021
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Figure 3.3: Boxplots of the standard error (SE) estimates of parameter estimators for 500

simulated length-at-age data sets generated with L∞ = 50, k = 0.30/1.65,CV = 0.1, and

the age distribution was randomly generated once and then fixed for the 500 simulation

iterations. BSS and FI SE estimators are based on Eqs. (2.16) and (2.18), respectively.

“SEV EP” and “SEV CEP” refer to the estimators obtained by maximizing the likelihoods

(2.11) and (2.12), respectively.
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Chapter 4

Real data analysis

To demonstrate the impact of accounting for age measurement errors on growth estima-

tion, we apply the EP and SEV EP methods to estimate vonB growth parameters. We

do not include SEV CEP in this real data analysis as it provides almost identical growth

model estimation as SEV EP. We use a dataset for female American plaice collected by

DFO in Northwest Atlantic Fisheries Organization (NAFO) Divisions 3L, 3N, and 3O for

2012. The data were collected at various sites across each division to ensure spatial rep-

resentativeness. The sampling goal in each division was to obtain approximately 25 age

measurements per 2 cm length stratum by sex if the length was greater than or equal to 10

cm, and about 15 age measurements per stratum without distinguishing sex if the length

was less than 10 cm. For simplicity, we assume no spatial variation in fish growth and

therefore neglect the spatial structure of the sampling scheme, treating the whole sample in

each division as an LSAS sample [see Appendix C of 53]. The total first-phase sample size

is 59627, and the second-phase sample size is 942.

To determine the length at age 0, l0, we referred to [61] that reported American plaice
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larvae to be 0.62–0.75 cm long five days after hatching when yolk absorption is complete.

We used the midpoint of this range, which is 0.685 cm, as the value for l0.

Since the fall of 1995, the survey gear used by DFO has been the Campelen trawl. We

assume a linear logistic model for the trawl selectivity,

s(l) =
1

1 + exp(− log(19)[l − l50]/[l95 − l50])
, (4.1)

where s(l) is the selectivity at length l, and l50 and l95 are the lengths at which 50% and

95% of fish are retained, respectively. The values of l50 and l95 were estimated by [81] using

38 years of data and the results of DFO trawl selectivity comparative studies [30, 75]. For

this data analysis with only a relatively small sample, we adopt the estimation of [81] that

l50 = 11.01 with SE = 0.049 and l95 = 12.65 with SE = 0.075.

We continue to use the model (3.1) to determine the population conditional distribution

of length given age. However, by incorporating gear selectivity s(l), the sample conditional

distribution f(l|at;θθθg) in (2.1) takes on a different form,

f(l|at;θθθg) =
s(l)N(l, µa, σ

2
a)∑

l′ s(l
′)N(l′, µa, σ2

a)
, (4.2)

which is proven in Appendix B of [81] and utilizes the discretization method outlined in

Eq. (3.2).

Table 4.1 displays the estimated growth model parameters and their corresponding SEs

obtained through SEV EP and EP methods. The estimated value of σu = 0.70 suggests

the presence of age measurement errors. The standardized residuals are assessed using

Eqs. (2.20)–(2.21) and visualized in Fig. 4.1. We assume the estimated σu of 0.70 as the

standard deviation of age measurement errors when evaluating residuals for both methods.

Ideally, the mean of residuals at each age (solid red lines in Fig. 4.1) should be equal

to 0, and the standard deviation (SD) of the standardized residuals at each age (dashed red
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lines in Fig. 4.1) should be equal to 1 if the model is correct. For SEV EP, the means of

the standardized residuals at each age, except ages 2 and 3, follow the zero reference line

(green line at 0), and SDs follow the one reference line (green line at 1), indicating a good

fit of the model to the data. However, for EP, the residual means deviate from 0 after age

13, suggesting a lack of fit. Both methods show overestimation for ages 2 and 3, which may

be attributed to the research gear selectivity and an improper length variability model, as

discussed in [81]. Specifically, the misspecification of the length variability model σa(µa)

in (3.1) may result in this pattern in residual plots. To address this issue, [81] proposed

a more sophisticated length variability model. However, exploring the length variability

model is beyond the scope of this thesis.

Table 4.1: Estimations of growth model (3.1) for female American plaice length-at-age data

collected by Fisheries and Oceans Canada (DFO) using length-stratified age sampling in

2012 in NAFO (Northwest Atlantic Fisheries Organization) Divisions 3L, 3N and 3O. The

EP likelihood method based on (2.6) and neglecting age measurement errors is denoted by

“EP”. “SEV EP” denotes the growth estimation obtained by maximizing likelihood (2.11).

The parameter estimates are denoted as “Est.” and their corresponding standard errors are

denoted as “SE”. SEs are based on the BSS asymptotic covariance given by Eq. (2.16).

Method Quantity L∞ k CV σu

SEV EP Est. 82.30 0.066 0.066 0.70

SE 1.92 0.0021 0.0030 0.039

EP Est. 64.62 0.091 0.11 —

SE 1.17 0.0024 0.0022 —
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Figure 4.1: Standardized residuals for fitting 3LNO female American plaice growth data

using SEV EP (lower panel) and EP (upper panel) methods, as assessed by Eqs. (2.20)–

(2.21). Here “EP” refers to the EP likelihood method based on (2.6) and neglecting age

measurement errors, while “SEV EP” denotes the growth estimation method achieved by

maximizing likelihood (2.11). The points have added transparency to represent the density

of the observations better. The solid red lines indicate the residual means at age, while

the dashed red lines represent the standard deviations of the residuals at age. The green

reference lines are at 0 and 1. 45



Chapter 5

Discussion

In this work, we developed two methods to estimate growth parameters using fisheries

survey data while accounting for length-stratified age sampling (LSAS) design and age

measurement errors. These methods are extensions of the empirical proportion (EP) likeli-

hood method [53, 81] for LSAS and the structural errors in variables [SEV; 17] method for

covariate measurement errors. The two approaches, which are denoted as “SEV EP” and

“SEV CEP”, optimize (2.11) and (2.12), respectively.

Effectively modelling covariate distribution is challenging when dealing with either

response-selective sampling design [45] or covariate measurement errors, such as age mea-

surement errors [26]. To address this issue, we treat ages as ordered categorical data (inte-

gers) and use the continuation ratio-logit (CRL) model for age distribution. This approach

aligns with the limitation that fish ages can only be determined in years and effectively

handles the wild variation, multiple modes, and significant skewness present in the true

population age distribution. As a random sample can be considered a special case of LSAS

when the second phase subsample size within each length stratum is significantly large, the
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impressive performance of CRL for LSAS data implies its appropriateness in modelling age

distribution while dealing with age measurement errors for a random length-at-age sample,

for which we suggest further studies.

To accelerate the evaluation of the inclusion probabilities Qj(θθθ) and Q∗
j(at;θθθg) defined

in (2.2) and (2.3) respectively, we applied a discretized normal distribution (3.2) for length

distribution modeling. This approach converts integration over length into summation and

is consistent with the fact that fish lengths are commonly recorded as integers in practice.

To optimize the algorithm for implementing the proposed approaches, it is crucial to mini-

mize or avoid duplicated evaluations, particularly those of the inclusion probabilitiesQj(θθθ)

and Q∗
j(at;θθθg). The codes provided along with this thesis can demonstrate my efforts in

this regard.

The simulation results indicate that inadequate consideration of age measurement errors

can severely bias growth model estimations, even when using inferential methods that have

been proven optimal under the assumption of negligible age measurement errors. A notable

advantage of the proposed SEV EP and SEV CEP methods is their ability to perform well

regardless of the presence or magnitude of age measurement errors. Although the estima-

tion of σu, the standard deviation of age measurement errors, may not be precise when σu

is small, it does not affect the accurate estimation of growth model parameters using the

SEV EP and SEV CEP methods. We also believe that the σu estimates produced by these

methods can still be useful in identifying the presence or magnitude of age measurement

errors. This information can be valuable in monitoring and improving age measurements.

Further exploration of this topic is left for future research.

This thesis aims to develop a general methodological framework for accounting for

age measurement errors in LSAS data. In addition to the discretized normal age mea-
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surement error model used in this thesis, my methodology can also incorporate other age

measurement error models, such as the symmetrical geometric model of [22], asymmetri-

cal two-sided geometric model of [33], and continuation ratios model of [15]. However,

my focus is not on investigating a comprehensive age measurement error model that can

accommodate bias, asymmetricity, and skewness in age measurement errors or the impact

of incorrectly specifying age measurement errors. These topics will be explored in future

research.

The simulation and case studies suggest using the BSS asymptotic covariance estimator

(2.16) and the standardized residual estimators proposed in Eqs. (2.20)–(2.21) for measur-

ing uncertainty in parameter estimates and validating model fittings, respectively.
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Chapter 6

Appendix

6.1 Simulation results for log-normal growth model

The simulations in Tables 6.1 – 6.2 replicated the thesis’s specifications and procedures,

deviating solely in the growth model presented in Eq. 3.1. While Eq. 3.1 in the original

model adopts a normal distribution for length-at-age with a mean of µa and a standard

deviation of µaCV, the revised version here employs a log-normal model with a median of

µa and a coefficient of variation set to CV.
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Table 6.1: Relative root mean squared error (RRMSE) for von Bertalanffy growth model

parameter estimates from 1000 simulation iterations. Log-normal model is used for length-

at-age. The length at age 0 was fixed at 3 cm. The simulation study considered different

length bin sizes indicated with “cm” in the first column and various age measurement error

standard deviations (σu) indicated in the first row.

σu 0.1 0.5 1 2

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RRMSE

1 cm

L∞ 1.8 1.8 1.8 2.0 2.0 13.5 2.3 2.3 28.8 2.6 2.7 45.9

k 2.4 2.4 2.4 2.8 2.8 30.1 3.2 3.2 96.0 3.5 3.6 >100

CV 4.1 4.1 4.1 4.4 4.6 44.7 4.9 5.2 95.4 5.8 6.3 >100

σu 58.4 58.2 — 25.1 25.7 — 12.4 12.7 — 7.6 7.7 —

2 cm

L∞ 1.9 1.9 1.9 2.2 2.3 13.8 2.5 2.5 29.2 3.0 3.0 46.5

k 2.8 2.8 2.9 3.2 3.2 30.6 3.6 3.6 96.3 4.2 4.5 > 100

CV 3.7 3.8 3.8 4.0 4.5 47.3 4.5 4.5 97.8 5.5 5.9 > 100

σu 60.1 61.4 — 26.4 27.4 — 12.7 12.7 — 7.5 7.5 —

3 cm

L∞ 1.9 1.9 1.9 2.2 2.3 14.0 2.7 2.7 29.2 3.1 3.1 46.5

k 2.7 2.7 2.7 3.3 3.3 31.3 3.8 3.8 94.4 4.7 4.4 >100

CV 3.7 3.7 3.8 4.5 4.8 50.1 4.7 4.7 >100 6.2 6.1 >100

σu 61.1 60.1 — 26.9 27.8 — 13.1 13.1 — 7.6 7.9 —

5 cm

L∞ 1.9 1.9 1.9 2.2 2.4 14.6 2.5 2.5 29.5 3.0 3.1 47.5

k 2.9 2.9 2.9 3.3 3.3 31.0 3.8 3.8 90.7 4.5 4.5 >100

CV 4.0 4.0 4.0 4.4 5.5 56.5 5.1 5.1 >100 6.1 6.4 >100

σu 62.7 61.2 — 27.1 28.1 — 12.9 12.9 — 7.4 7.5 —

Note: >100 are results that are greater than 100% .
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Table 6.2: Relative bias (RelBias) for von Bertalanffy growth model parameter estimates

from 1000 simulation iterations. Log-normal model is used for length-at-age. The length

at age 0 was fixed at 3 cm. The simulation study considered different length bin sizes indi-

cated with “cm” in the first column and various age measurement error standard deviations

(σu) indicated in the first row.

σu 0.1 0.5 1 2

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RelBias

1 cm

L∞ 0.0 0.0 0.0 0.0 0.0 −12.7 0.0 0.0 −27.9 −0.1 −0.1 −44.8

k −0.1 −0.1 −0.1 −0.1 −0.1 24.6 −0.4 −0.4 79.7 −0.2 −0.2 >100

CV 2.7 2.7 2.8 2.5 2.6 42.7 2.9 2.9 92.7 3.8 3.9 >100

σu −31.1 −32.6 — 20.8 20.5 — 9.0 8.9 — 4.2 4.2 —

2 cm

L∞ 0.0 0.0 0.0 0.1 0.1 −13.0 0.1 0.1 −28.2 0.0 0.0 −45.5

k −0.2 −0.2 −0.1 −0.3 −0.2 25.1 −0.4 −0.4 80.2 0.0 −0.1 >100

CV 2.2 2.3 2.4 1.7 1.8 45.2 2.1 2.1 95.3 3.0 3.1 >100

σu −27.3 −32.3 — 22.7 22.0 — 9.9 9.9 — 4.5 4.5 —

3 cm

L∞ 0.0 0.0 0.0 0.3 0.2 −13.2 0.3 0.3 −28.2 0.0 0.1 −45.5

k −0.1 −0.1 −0.1 −0.4 −0.4 25.4 −0.5 −0.5 78.3 −0.2 −0.3 >100

CV 2.0 2.0 2.1 1.2 1.3 47.8 1.5 1.5 97.8 2.4 2.4 >100

σu −24.6 −28.0 — 23.3 22.6 — 10.5 10.5 — 4.9 5.0 —

5 cm

L∞ 0.0 0.0 0.0 0.3 0.3 −13.8 0.3 0.3 −28.5 0.1 0.1 −46.6

k −0.3 −0.3 −0.2 −0.6 −0.6 24.7 −0.6 −0.6 73.7 −0.3 −0.3 >100

CV 1.8 1.8 2.0 0.8 1.0 53.5 1.2 1.3 >100 2.1 2.1 >100

σu −25.6 −27.8 — 24.0 23.3 — 10.4 10.4 — 4.9 4.9 —

Note: >100 are results that are greater than 100% .
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6.2 Simulation results for log-normal growth and age

measurement error models

The simulation analysis presented in Tables 6.3 – 6.4 maintains the log-normal model for

length-at-age as that of Tables 6.1 – 6.2 but incorporates a log-normal model for age mea-

surement errors. Specifically, the relationship between observed age a and true age at is

defined as a = ate
εa rounded to the nearest positive integer, where εa follows a normal

distribution with mean 0 and standard deviation σu. σu values exceeding 0.5 yield unreal-

istically large age measurement errors and are therefore excluded from consideration. All

other specifications and procedures align with those outlined in the thesis.
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Table 6.3: Relative root mean squared error (RRMSE) for von Bertalanffy growth model

parameter estimates from 1000 simulation iterations. Log-normal model is used for both

length-at-age and age measurement error. The length at age 0 was fixed at 3 cm. The sim-

ulation study considered different length bin sizes indicated with “cm” in the first column

and various σu’s for age measurement error indicated in the first row.

σu 0.1 0.3 0.5

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RRMSE

1 cm

L∞ 2.6 2.6 4.5 3.6 3.6 25.4 3.9 3.9 37.9

k 3.3 3.2 5.7 5.3 5.3 64.7 6.6 6.6 >100

CV 6.7 6.5 12.5 7.2 7.2 74.6 7.1 7.1 >100

σu 35.4 32.4 — 14.9 14.8 — 12.6 12.6 —

2 cm

L∞ 2.7 2.7 4.5 3.8 3.8 25.4 4.0 4.0 38.6

k 3.8 3.8 6.1 5.8 5.8 64.5 6.9 6.9 >100

CV 6.3 6.5 12.7 7.4 7.4 75.1 6.8 6.8 >100

σu 36.6 36.2 — 15.7 15.6 — 12.9 12.9 —

3 cm

L∞ 2.7 2.6 4.6 3.7 3.7 25.5 4.0 4.0 38.4

k 3.6 3.6 6.4 5.8 6.6 63.8 6.5 6.5 >100

CV 6.2 6.1 13.7 6.9 6.9 76.2 6.6 6.6 >100

σu 34.1 32.5 — 15.6 16.9 — 13.1 13.1 —

5 cm

L∞ 2.7 2.7 4.7 3.7 3.6 25.7 4.1 4.1 38.8

k 3.7 3.7 6.4 5.4 5.4 61.7 7.0 7.0 160.9

CV 6.5 6.3 14.8 7.1 7.1 80.5 6.8 6.8 133.4

σu 33.7 31.7 — 15.7 15.7 — 13.6 13.6 —

Note: >100 are results that are greater than 100% .
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Table 6.4: Relative bias (RelBias) for von Bertalanffy growth model parameter estimates

from 1000 simulation iterations. Log-normal model is used for both length-at-age and age

measurement error. The length at age 0 was fixed at 3 cm. The simulation study considered

different length bin sizes indicated with “cm” in the first column and various σu’s for age

measurement error indicated in the first row.

σu 0.1 0.3 0.5

Method SEV EP SEV CEP EP SEV EP SEV CEP EP SEV EP SEV CEP EP

RelBias

1 cm

L∞ −1.1 −1.1 −3.7 −1.1 −1.1 −24.5 −0.7 −0.7 −36.8

k 1.2 1.1 4.8 1.7 1.7 61.1 1.6 1.6 >100

CV 5.0 4.9 11.0 5.0 5.0 72.2 5.0 5.0 >100

σu −20.1 -18.4 — 11.2 11.1 — 10.7 10.7 —

2 cm

L∞ −1.1 −1.1 −3.8 −1.1 −1.1 −24.6 −0.6 − 0.6 −37.6

k 1.3 1.3 5.1 1.7 1.7 60.8 1.4 1.4 >100

CV 4.5 4.6 11.1 4.5 4.5 73.0 4.4 4.4 >100

σu −20.5 −20.2 — 12.1 12.1 — 11.2 11.2 —

3 cm

L∞ −1.0 −1.0 −4.0 −0.7 −0.7 −24.6 −0.1 −0.1 −37.3

k 1.2 1.2 5.5 1.3 1.2 60.0 0.8 0.8 >100

CV 4.2 4.2 12.0 3.5 3.5 74.2 3.3 3.4 >100

σu −18.4 −17.5 — 12.6 12.8 — 11.5 11.5 —

5 cm

L∞ −0.9 −0.9 −4.0 −0.2 −0.2 −24.9 0.1 0.1 − 37.9

k 1.0 1.0 5.4 0.4 0.5 57.5 0.3 0.3 >100

CV 4.2 4.1 12.8 2.6 2.6 78.1 2.7 2.7 >100

σu −18.4 −17.3 — 13.0 13.0 — 12.2 12.2 —

Note: >100 are results that are greater than 100% .
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6.3 Summary figure for Tables 3.3 – 3.4

In the simulation results detailed in Tables 3.3 – 3.4, diverse methods exhibit consistent

trends in the variations of Relative Root Mean Squared Error (RRMSE) and Relative Bias

(RelBias) vs the age measurement error standard deviation (σu) across different growth

model parameters (L∞, k, CV), and various length bin sizes. This shared trend is illustrated

by plotting RRMSE and RelBias against σu specifically for L∞ and the 1cm length bin in

Fig. 6.1.
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Figure 6.1: Comparisons of relative root mean squared errors (RRMSEs) and relative bias

(RelBias) against the age measurement error standard deviation (σu) in the simulation re-

sults corresponding to L∞ and the 1cm length bin, as presented in Tables 3.3 – 3.4.
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