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Abstract

Momentum often faces skepticism as a discredited phenomenon in sports. While

some contradictory evidence has been found, we provide new insights by quantifying

this phenomenon. Momentum literature often relies on proving the dependence or

independence of sequential outcomes. However, we argue that this approach is not

appropriate due to the large body of literature showing that sports are highly subject

to randomness. If sports are subject to randomness, we should focus on what leads

to winning rather than not winning itself. Here, we engineer momentum-based fea-

tures that quantify a team’s linear trend of play in several underlying performance

indicators and compare the predictive power of these features to more traditional

frequency-based features when only using a small sample of recent games to assess

team quality. We developed a complete data pipeline that allows us to compare the

effects of momentum on multiple sports. We found evidence of momentum in the

NHL and the five major European football/soccer leagues; however, we could not

find evidence of momentum in the NBA. The differences between these sports indi-

cate that momentum could be a sport-specific phenomenon. We also found that the

combination of momentum-based and frequency-based feature sets, along with more

powerful machine learning techniques such as random forest, led to very promising

results. In the future, we believe that by combining these two feature sets with proper

hyperparameter tuning and feature selection, better pre-game prediction models can

be created that accurately capture both short-term and long-term quality of play.
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Chapter 1

Introduction

In recent years, we have seen a paradigm shift in the world of sports relating to how

teams treat the available data [1]. Professional teams that traditionally relied only on

their scouts’ expertise and their executives’ business know-how, more often turn to

statisticians, computer scientists, and data scientists for help making daily decisions.

This is mainly due to the growth of sports analytics in recent years. Insightful analysis

of in-game data allows the upper management of sports teams to make informed

decisions untainted by human bias. By eliminating the human element from the

equation, decisions can be made based on empiricism, allowing decision-makers to

create more successful teams and increase the revenues and profits seen by the team

owners [2].

While sports analytics may be based on eliminating human bias, there is a plethora

of phenomena that players and coaches provide anecdotal evidence on that are worth
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exploring empirically. One such phenomenon that is very common in sports is mo-

mentum. In most cases, momentum refers to the idea that consecutive positive or

negative outcomes will lead to a greater chance of positive or negative outcomes in

the near future.

While momentum has been a long-held belief by coaches, players, and fans [3], a

large segment of the academic work surrounding the topic refutes its existence [4, 5,

6, 7] or argues its effects are marginal [8]. However, in recent years, scattered amongst

the refutations is a growing body of work that shows evidence of momentum in sports

[9, 10, 11, 12, 13]. Most of the academic work regarding momentum has focused on

the dependence or the independence of sequential outcomes, using statistical run tests

to determine whether or not repeated success or failure are dependent events.

In this work, our goal is to neither confirm nor refute these claims but to attempt

to shift the focus of momentum research away from the dependence on sequential

outcomes. We believe that due to demonstrable randomness in sports [14], momen-

tum is better captured with the trends of several in-game performance indicators.

Then, using these indicators and machine learning (ML) models, we can examine

how momentum may affect sports.

In the rest of this Chapter, we first state the problem we are trying to solve in

Section 1.1, then outline our research goals and question in Section 1.2. Our unique

contributions to the momentum and sports analytics field are described in Section

1.3. In Section 1.4, we provide a co-authorship statement for the two papers under

2



review that are the major outcomes of this thesis. Finally, in Section 1.5, we outline

the rest of this thesis.

1.1 Problem Formulation

As previously stated, momentum is often a controversial topic in sports analytics.

However, we believe that it currently may be approached improperly. The ultimate

goal of sports analytics is to make informed decisions that maximize the likelihood

of a positive outcome. It is, however, essential to understand that just because the

probability of a positive outcome is maximized, victory is not guaranteed. It is

always possible to perform actions that result in winning most of the time and still

lose a match or a championship. This can be backed up by the literature on the

randomness of outcomes in sports, particularly ice hockey [14]. For this reason, we

believe that measuring momentum using methods that work with the dependence or

independence of sequential events, such as the Wald-Wolfowitz test for randomness,

is not an appropriate approach. We believe momentum is better captured by the

increase or decrease in the overall quality of play and that we should move away from

the binary view of winning and losing when addressing it. While several papers find

evidence of momentum, it is also usually viewed in a binary fashion (i.e., is this team

affected by momentum or not) and lacks a method of quantification that shows the

degree to which momentum affects them [5, 9, 4, 15, 6, 8].
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1.2 Research Goals and Questions

Instead of approaching momentum with a binary view, we believe momentum should

be quantified by the increase or decrease of underlying performance indicators over a

short period of games. Therefore, the goals of this work are as follows:

• Creating a method of quantification for momentum in sports based on the in-

crease or decrease in the overall quality of play.

• Using this quantification method along with Machine Learning (ML) models to

determine the predictive power of momentum and compare that to the predic-

tive power of traditional frequency-based features.

Therefore, this thesis is attempting to answer the following research questions:

• How can momentum be quantified in terms of performance indicators?

• Does momentum affect the outcome of sports game outcomes?

1.3 Contributions

Our work advances research in sports analytics and momentum through the following

contributions.

• Using a team’s recent games, we engineer momentum-based features that use

individual performance indicators from each game and the passing of days be-

tween these games to develop a linear line of best fit. This allows us to determine
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the play trend over a recent sample of games. These features, therefore, quantify

momentum and allow us to measure a team’s momentum pre-game using the

slope of such a line of best fit, which in turn also allows us to project the team’s

performance in the upcoming game should these trends continue. A complete

overview of our final proposed pipeline is shown in Figure 4.1 (Chapter 4).

• We compare the predictive power of these proposed momentum-based features

against the predictive power of traditional frequency-based features. We found

evidence that momentum affects outcomes in ice hockey (Section 3.3 of Chapter

3 and Section 4.4 of Chapter 4) and soccer (Section 4.4 of Chapter 4) but does

not affect basketball (Section 4.4 of Chapter 4).

• We find that ensemble-based tree models, such as random forest, favor models

that include both momentum-based and frequency-based features (Section 4.5 of

Chapter 4). This indicates that more robust models may benefit from combining

the feature sets and, consequently, create better future pre-game prediction

models.

All these contributions and the results achieved by this thesis are detailed in

Chapters 3 and 4. We first developed a prototype framework focused mainly on

Hockey game events. This work was titled The Use of Momentum-Inspired Features

in Pre-Game Prediction Models for the Sport of Ice Hockey. was published in the

International Journal of Computer Science in Sports (IJCSS) [16]. The published

version of this paper can be seen in Chapter 3. Later, we generalized the framework for
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multiple sports, and the results were included in a manuscript titled A Comprehensive

Data Pipeline for Comparing the Effects of Momentum on Sports Leagues. which was

published with MDPI Data [17]. The published version of this paper can be seen in

Chapter 4.

1.4 Co-authorship Statement

Chapter 4 is our first manuscript published as Noel, J.T.P., Prado da Fon-

seca, V., Soares, A. (2024). The Use of Momentum-Inspired Features in

Pre-Game Prediction Models for the Sport of Ice Hockey. International

Journal of Computer Science in Sport (IJCSS), 23 (1), 1-21. https:

//doi.org/10.2478/ijcss-2024-0001. [16]. This was our first work, which looked

at introducing the momentum-based features and how they were engineered and then

applied to an NHL dataset. I performed the experiments and wrote all the required

code for the manuscript. My supervisors, Dr. A. Soares and Dr. V. Prado da Fon-

seca guided me through design concepts, statistical tests, and ML techniques. They

both provided great feedback and editorial input for the manuscript before its initial

submission and in the following peer review rounds.

Chapter 5 is our second manuscript which is published as Noel, J.T.P., Prado

da Fonseca, V., Soares, A. (2024). A Comprehensive Data Pipeline for

Comparing the Effects of Momentum on Sports Leagues. MDPI Data

9 (2), 29. https://doi.org/10.3390/data9020029. [17]. I designed the basic
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concept of the work with constant feedback from my supervisors, Dr. A. Soares and

Dr. V. Prado da Fonseca. I coded and performed all the experiments. I performed

the data analysis but with substantial feedback from my co-supervisors. I drafted and

prepared the manuscript with subsequent editorial input from my two supervisors.

1.5 Thesis Outline

This work is a thesis by articles and, therefore, is structured as follows. In Chapter

2, we provide an in-depth literature review and show how our work’s unique aspects

advance the literature in sports analytics, more specifically in the field of momentum

research. In Chapter 3, we present our first published work on momentum which

explores the use of momentum-based features in the NHL [16]. Next, in Chapter 4 we

present a second published work on momentum, this time exploring different sports

and outlining a complete data pipeline [17]. Finally, in Chapter 5, we conclude this

thesis by articles and provide a list of future works that can be performed.
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Chapter 2

Literature Review

The concepts of momentum and sports are, in many ways, inseparable. While there

has been a considerable amount of research in the field, the amount of work that

pertains to ML is sparse. It could be argued that the main two field research areas

are psychological and statistical. While this paper is based on ML, we will use all

the information we can find, including data from other disciplines to paint a clearer

picture of the current state of scientific literature regarding momentum.

It is first essential to define the differences between the two main momentum fields.

The statistical field attempts to prove or disprove the notion that prior events lead

to positive or negative individual/team outcomes in the future. The psychological

field usually attempts to understand the cognitive changes an individual experiences

while going through a series of positive or negative events and how these effects can

change the individual’s outlook on themselves and their abilities. This will often be

8



referred to as psychological momentum.

We should also note the difference in the terms positive and negative momentum.

Positive momentum is the phenomenon felt after a series of positive outcomes; it would

be believed that this momentum would lead to more favorable results in upcoming

events. The negative momentum is the phenomenon felt after a series of adverse

outcomes, and likewise, this type of momentum would lead to less favorable results

in upcoming events.

Below we will look at the prior work in this field, determine what their contri-

butions to the research topic were, and try and determine what we can learn and

incorporate into this paper. To best achieve this, we will first, in section 2.1 identify

the aspects of the literature we are most interested in analyzing. We only include

here what we believe to be relevant concepts that help show how this thesis uniquely

contributes to the field of momentum research. Then, we will discuss these works in

depth in Section 2.2. Lastly, in Section 2.3, we will compare this thesis with some of

the prior works discussed. While we will discuss psychology-based works in section

2.2, as they can still inform us on the theoretical idea of how players or teams would

build and maintain momentum, we will not include them in Section 2.3 due to the

fact they are, in most cases, not looking to answer the question of whether momentum

exists.
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2.1 Analyzed Aspects

The aspects used for the comparison are as follows. First, we determine if the paper is

ML inclusive, that is, does the paper use machine learning to explore the data? The

second aspect is a meta-analysis of the Sport the paper focuses on. Here, we determine

if the paper explores the entirety of the sporting event, including the outcome, and not

just a tiny part of it, such as simple events (i.e., game actions) such as shooting. Next,

we determine if the paper used some sort of shifting window. In other words, does

the paper use a small sample of recent events to determine something about future

events? Lastly, we identify if the research yields a proposed method of quantification

for momentum in sports.

2.2 Papers on Momentum Analysis in Sports An-

alytics

The real beginning of mainstream momentum research started in 1985 with “The

Hot Hand” [4]. This paper used a controlled experiment that involved participants

shooting free throws and claimed that sequences of made or missed free throws were

statistically independent events and therefore, players, coaches, and fans were per-

ceiving momentum where there was none. The foundation of this school of thought is

that an individual has a true shooting percentage and that given a sufficient sample

size they will eventually return to this number despite streaks of made or missed
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shots. The nature of this paper was psychological as its main claim was that humans

perceive streaks in random sequences. However, this paper served as the backbone of

a large amount of the momentum research that followed and is still discussed heavily

today. Thus, the “Hot Hand Fallacy” was born.

After “The Hot Hand” more research was focused on momentum, if it existed,

and what effects it may have if it did. The work of Taylor and Demick [18] proposed

a multidimensional model for momentum in sports. The authors proposed that mo-

mentum was developed through a series of changes, and termed this series of changes

the “momentum chain”. Through these series of changes, an individual could develop

positive or negative momentum. While this paper was psychological in nature it can

be viewed as an early attempt at quantifying momentum.

The work of Vergin [5] looked at winning streaks in Major League Baseball (MLB)

and the National Basketball League (NBA) and found that when using statistical

tests such as the chi-square goodness-of-fit test and the Wald-Wolowitz test, wins

and losses in these leagues were statistically independent events. Thus, concluding

that streaks of similar outcomes in the league were created by random chance. The

paper uses a constant probability for each team to win which is represented by the

team’s end-of-season win percentage. This can be viewed as a shortcoming of the

study and that the quality of a team should be their win percentage up to that point

in time rather than judging a team’s quality on games that have yet to transpire.

When looking at our analyzed aspects, this paper only applies to the meta-analysis
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of sport, as it attempted to use team quality to determine if the outcomes of games

were dependent or independent events.

When we look at individuals who play the games such as players or coaches, we

find that the belief in momentum and momentum’s effects are very strong. The

work of Jones and Harwood[19] looked to examine psychological momentum from the

players’ point of view. What they found was that players have specific triggers that

they believe lead to positive or negative psychological momentum and that players and

coaches will go as far as to create strategies in order to maintain positive momentum

once it has been obtained or overcome negative momentum when they are in a slump.

As analytics began to change the game of hockey [20] more papers began to

examine the sport. The work presented by Shmanske and Lowenthal [21] used NHL

game data to attempt to study overtime play in the league. For reference, an NHL

game cannot end in a tie. If the score is tied after three periods the game will then

enter a next goal wins overtime period. Using several variables for the home and away

team, as well as multiple regression, the authors attempted to quantify the statistical

significance of certain aspects of the game when heading into this overtime period.

They found that if the home team had scored the last goal of regular time, then they

were more likely to score the overtime goal and win the game. This means that the

momentum from the last goal had carried over into the overtime period, however, this

effect was not present for the away team. Therefore, the work shown by Shmanske

and Lowenthal [21] made use of none of the aspects we are looking to analyze.
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The work presented by Leard and Doyle [22] studied the effects of fighting, home

advantage, and momentum in the sport of hockey. Using game-level data they con-

structed statistical models which accounted for aspects of the game such as fighting,

home advantage, and current win streak. The authors found that when looking specif-

ically at winning streaks of two or three games there was enough evidence to make

the claim that these streaks were statistically significant to the outcome of the cur-

rent game. Through this, they meet our qualification for a meta-analysis of their

respective sport. The authors do, however, acknowledge that these streaks may be

accounting for other unseen aspects of the game in some way.

The research presented by Arkes and Martinez [9] in 2011 looked to determine

if there was any measurable proof of momentum in the NBA. The authors found

that when they adjusted their quality metric for an individual team based on a short

sequence of recent games there was statistically significant evidence that these teams

were being affected by their recent results. They also find that these recent results

could demonstrate team quality and thus, be used as an indication as to what team

would win. Given the author’s approach in this work, they meet the qualification

for two of our analyzed aspects, those being meta-analysis and short-term window

analysis. Interestingly, the authors also found that in their database both the home

and away teams were affected the same by momentum. The paper also identifies

what it believes to be three things that affect the outcome of the game. These are

momentum, team strength, and randomness. This is one of the only relevant research
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studies that recognizes the randomness of sports and the fact that often the “better

team” can lose.

The paper by Kniffin and Mihalek [6] explored a meta-analysis of hockey and

momentum. Their paper focused on groups of two-game series from NCAA college

hockey. They found that when accounting for team quality the outcome of the first

game had no effect on the outcome of the second game and that these were two

statistically independent events. The authors also found that a team’s margin of

victory in the first game had no effect on the second game. A potential shortcoming

of this study was the measure of team quality which was the team’s win percentage

at the end of the current season. This is a similar technique to what we saw in work

by Vergin [5] which studied the MLB and NBA.

In 2014 a paper was submitted to the MIT SLOAN Sports Analytics Conference

which looked at the 83,000 shots in the 2012-2013 NBA season and found that players

who were experiencing a streak were more likely to take lower percentage shots and

the opposing team would also tend to guard the player more closely. When all this was

put together the authors estimated that the “Hot Hand” could increase the likelihood

of a player making a shot by 1.2 to 2.4 percentage points [10]. While this percentage

increase may seem small, every percentage point matters in sporting events due to

the fact a team’s margin of victory is often small. This paper also denotes that all

baskets made are not the same and this affects how a player builds momentum, if a

player makes three of his last four simple layups he will likely not experience the hot
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hand. However, if he makes three of his last four more difficult three-point attempts

he may potentially experience the effects of the hot hand.

There has also been some work in the area of predicting momentum shifts in

NBA games. The work shown by Larow, Mittl, and Singh [15] used ML, specifically,

Logistic Regression and SVM to attempt to predict streaks in play using a sliding

window of the last 20 in-game events. This makes their work one of the first we

reviewed that made use of our ML analyzed aspect. While the authors experimented

with other window sizes this is the size used for the majority of the paper. The

authors defined a streak as a period of play where a team scores eight or more points

while holding their opponents to zero points. In doing this, the authors found success

in predicting if a streak would occur obtaining a true positive rate of 0.787 and a true

negative rate of 0.860.

One of the few statistical analyses for individuals in hockey was put forth by

Vesper [23] in 2015. Using a number of variables that expressed the quality of a given

shot along with regression models, the authors attempted to determine if individual

players experienced the hot hand when shooting the puck. What they found was that

after a player scored, their shot quality dropped and they became less likely to score

a goal. The authors further explain that this negative hot hand may be due to a

number of unseen changes, such as defensive adjustment from the opposing teams.

When it comes to European football or soccer as it is usually referred to in North

America, there exists very little work on momentum. However, work by Parsons
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and Rohde [24] examined games from the English Premier League (EPL), in hopes

of re-examining what is understood about the concept of the hot hand using fixed

effects regressions to control for time-invariant heterogeneity in conjunction with tra-

ditional non-parametric techniques such as the Wald-Wolowitz test which has been

used in past momentum-based studies such as the study by Vergin [5]. The authors

proceeded to examine both across-game and within-game momentum, their findings

neither accepted nor rejected the theory of the hot hand but added that evidence of

momentum is largely context-dependent.

There has been some more recent research in the area of psychological momentum

such as that conducted by Den et al. [25]. This study focused on 22 athletes compet-

ing in a rowing-ergometer tournament. The study’s purpose was to find a connection

between short-term momentum and long-term momentum. The authors found that

individuals who had positive outcomes in the first two races were less perceptible to

the negative momentum if they encountered a less desirable outcome in the third

race than individuals who had negative outcomes in the first two races. The overall

claim of the paper was that long-term and short-term momentum are interconnected

and that positive long-term momentum can hinder the effects of short-term negative

momentum. It is also worth mentioning that this paper was more focused on the ath-

lete’s perception of themselves and their performance and rather than the outcome

of the sporting events.

There have been a large number of papers that have challenged the belief in the
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“Hot Hand Fallacy” particularly in the mid to late 2010s. One of these papers that

challenged the belief of the hot hand fallacy was a paper by Green and Zwiebel [13]

in 2018. The authors analyzed data from the MLB and found what they considered

to be strong evidence for the hot hand in several statistical categories. The authors

claim that due to the fact baseball allows for minimal defensive changes to stop a hot

player the evidence of the streaks becomes more clear. This stands in contrast to a

sport such as basketball where there is a large number of ways for a defense to deal

with a hot player. This was well addressed by the authors in [10] as discussed before.

Recently, the authors in [8] released a paper that looked at the 2019 NHL season

in an attempt to find evidence of momentum at play. This paper was built upon a

meta-analysis of hockey in an attempt to determine if momentum had an effect on

outcomes. The 2019 NHL season is of interest particularly because the St. Louis Blues

who sat at the bottom of the league about halfway through the season performed very

well in the second half of the season and won the Stanley Cup. In their research, the

authors used entropy to determine if wins and losses were dependent events. The

authors found that there was no evidence of momentum and that wins and losses

were independent events in all cases except for the Anaheim Ducks, which led them

to conclude that if momentum exists its effects are likely exaggerated.

In the NBA, during All-Star weekend some players take part in a three-point

shooting competition where they must shoot 20 balls from five different places behind

the three-point line. Fans will often view this as an event where the hot hand is
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relevant and in [11], the authors looked to see if there was any evidence of this. Using

34 years of NBA three-point contest data and a statistical strategy that the authors

claim accounts for bias, they found that there is considerable evidence of the hot

hand in the three-point contest. The authors finally claim that the hot hand should

be viewed as a bias and not as a fallacy, due to the fact that they provide evidence of

the measurable effects of the phenomenon. They believe that it is better understood

as a bias as people often overestimate or underestimate the effect it is having.

Recent work from Ding et al. [7] sought to determine if NHL goalies get hot

during the playoffs by using a multilevel logistic regression analysis. The authors

used a shifting window of the last “x” number of shots a goaltender faced or a time-

based window, in order to feed data to the model. This is one of the few relevant

research studies that made use of a moving window as in our own work. What the

authors found was the opposite of “The Hot Hand” effect, they found that saves were

an indication of worse performance ahead.

The most recent paper reviewed was published in 2022 [12]. The paper argued that

most hot hand research was studies that took place in a vacuum, so they looked to

study the hot hand in real game situations. The authors found that when considering

in-game basketball situations and accounting for several variables, certain players do

display the “hot hand”. However, your average player does experience a drop in

performance after several successful attempts, bringing their performance back to an

equilibrium.
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2.3 A Summary of Momentum Literature

We summarize the discussion in the previous section by presenting Table 2.1. This

table compares this thesis with the discussed previous works in the field of momentum.

As can be seen, this thesis is the only work that blends elements of machine learning,

meta-analysis, short-term windows, and the quantification of momentum together.

Work
Machine Learning

Inclusive

Meta-analysis

of Sports

Short-term

Window

Analysis

Quantification

of

Momentum

R.C. Vergin (2000) [5] ✓

S. Shmanske & F. Lowenthal (2007) [21]

B. Leard & J.M. Doyle (2011) [22] ✓

J. Arkes & J. Martinez (2011) [9] ✓ ✓

K. M. Kniffin & V. Mihalek (2014) [6] ✓

A. Bocskocsky et al. (2014) [10]

W. Larow et al. (2014) [15] ✓ ✓

A. Vesper (2015) [23]

S. Parsons & N. Rohde (2015) [24] ✓

B. Green & J. Zweibel (2018) [13]

G.M. Steeger et al. (2021) [8] ✓

JB. Miller & A. Sanjurjo (2021) [11]

L. Ding et al. (2021) [7] ✓

K. Pelechrinis & W. Winston (2022) [12] ✓

This thesis ✓ ✓ ✓ ✓

Table 2.1: A comparison of previous works and ours.
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As we can see the research related to sports momentum is large and includes

contributions from several different scientific fields. There seems to be a large amount

of contradictory evidence for or against the statistical significance of momentum.

However, it is worth noting that most of the relevant research studies that provided

some statistical proof of momentum have been more recent.

These differences in findings could be due to any number of things such as models

that do not take into account significant aspects of the sport in question. It could

also be possible that evidence of momentum is situational and can only be measured

in certain players or teams.

As previously mentioned, the amount of research that employs the use of some

form of ML is slim, as is the amount of research that explores the sport of hockey.

Most papers are based on more traditional statistical methods and more popular

American sports such as basketball or baseball.

We should also note that the majority of momentum research focuses only on

men’s leagues. This is likely due to the lack of game event data for some of the

major women’s leagues. It is essential to identify this trend in the currently available

research.

Due to the fact that sporting events include a significant amount of randomness

that cannot be accounted for, our critique of the field would be that momentum

research is too heavily tied to the outcome of the event. In previously discussed

work by Arkes and Martinez [9], the authors outline their belief in three factors that

20



determine the outcome of the game, those things being momentum, team strength,

and randomness. I believe that team strength does not play as big of a role as some

may believe. If we study winning percentages in the NHL regular season between the

years of 2010-2021 (inclusive) and only use games that occur after each team’s first

20 games in each season (this is done to ensure a reliable sample size to calculate a

win percentage). We find that the team with the higher win percentage only wins the

game 56.6% of the time, with a variance of 1.1%, and a range from 16.7% to 87.5%.

It is possible that a more reliable metric to determine momentum is the standard of

play upheld over a period of time, rather than the results that were obtained. We

attempt to investigate this idea along with others in the coming sections.

To the best of our knowledge and based on all criteria discussed in this literature

review, we place our work as unique in the field of sports analytics with a focus on

momentum analysis as the first one to provide a methodology to quantify momentum,

as well as making the use of ML, provide a meta-analysis of sports and using a short-

term window.
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Chapter 3

The Use of Momentum-Inspired

Features in Pre-Game Prediction

Models for the Sport of Ice Hockey

3.1 Introduction

Since the early 2000s, the National Hockey League (NHL) has undergone a significant

change regarding the use of analytics [26]. Teams now have an amplified reliance on

advanced analytics, leading them to establish in-house analytics departments staffed

with data scientists, statisticians, and computer scientists that focus on aspects from

player performance all the way to ticket pricing [27]. While the acceptance of ad-

vanced analytics has grown in the NHL, the league still trails most other major
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leagues in accepting and using the information in daily decision-making [28]. This

could be because analytics can often challenge or refute phenomena that players,

coaches, and fans often view as tangible and real. An example of such a phenomenon

is momentum. Although momentum is frequently considered a discredited concept in

analytics, anecdotal evidence is reported by many players and coaches. In the context

of this study, momentum refers to the notion that successive achievements or failures

can influence the likelihood of future success.

Academic research in momentum often can be broken into several categories start-

ing with individual momentum and team momentum. Moreover, momentum research

can be further classified into intra-game momentum (within a match) and inter-game

momentum (between matches). Most of the cited literature in our paper revolves

around inter-game momentum. The most influential piece of research around mo-

mentum is a paper written by Gilovich, Vallone, and Tversky [4]. This research found

that when shooting free throws in a controlled setting, the outcome of each free throw

was independent of the previous outcomes. This means that groups of converted or

missed shots were simply created by chance and did not indicate a shooter was “heat-

ing up” or “cooling down.” Thus, the “Hot Hand Fallacy” concept was born, stating

that humans often suffer from a cognitive bias in which they perceive streaks in ran-

dom sequences where none exist. Although the findings of Gilovich et al. [4] are

generally undisputed, contradictory results have emerged in this field of study. For

instance, the research conducted by Arkes and Martinez [9] demonstrated evidence of
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positive momentum in winning streaks when considering factors such as team quality

and recent opponents. This implies that winning increases the likelihood of winning

the next game, with no distinction between home and away teams. Research con-

ducted by Pelechrinis and Winston [12] argued that only looking at free throws did

not accurately depict what happens during your average shot in a game. Instead,

using actual NBA event data they found strong evidence of the hot hand effect in

certain players when accounting for variables such as shot distance from the rim and

defensive coverage, suggesting that momentum can influence individual performance.

While a large amount of research has been published regarding momentum in

other sports, limited research has been conducted on the concept of momentum in ice

hockey. Kniffin and Mihalek [6] examined a group of two-game series in the NCAA;

when accounting for team quality, the outcome of the first game did not affect the

outcome of the second game. Similarly, Steeger, Dulin, and Gonzalez [8] reported

comparable findings, where the wins and losses of only one team provided evidence

to reject the null hypothesis of random wins and losses in the 2017 NHL season. This

limited amount of research is unsurprising, as ice hockey is often one of the least

researched sports. For example, literature regarding pre-game prediction in the NHL

is often scarce, and in our research, we encountered only four relevant studies based on

pre-game prediction: Weissbock and Inkpen [29], Weissbock, Viktor, and Inkpen [30],

Remander [31], and Pischedda [32]. Our paper contributes to this area of research by

introducing a novel approach to pre-game prediction in the NHL and expanding the
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overall body of literature. However, the most frequently cited paper we found in the

NHL prediction field is the work of Gu, Foster, Shang, and Wei [33]. They concluded

that a goalie’s save percentage is critical in determining game outcomes, suggesting

that goalies can single-handedly win or lose a game. Nonetheless, a goalie’s save

percentage can vary considerably randomly from game to game.

Previous studies have suggested that the upper limit of accuracy in pre-game

NHL prediction is approximately 62%. This finding was initially demonstrated by

Weissbock and Inkpen [29]. They came to this conclusion by simulating an NHL

season 10000 times using Monte Carlo simulations and assigning random strengths to

each team at each iteration. They then experimented with different trade-offs between

skill and luck in the simulated outcomes, such as outcomes being determined 100%

by skill or by 50% skill and 50% luck. The standard deviation of the win percentages

obtained in the simulations was then compared to the standard deviation of win

percentages for all NHL teams between the 2005 and 2011 seasons. They found

that the standard deviation of the win percentages in the 2005 to 2011 seasons was

most like a simulated season with a trade-off of 24% skill and 76% luck. With this

information, they derive that if 24% of outcomes are determined by skill and 76% of

outcomes are determined by luck, they can mathematically determine that the upper

bound for prediction in the NHL is 62% as 24 + (76/2) = 62.

The conclusions of this approach have been supported by Pischedda [32], who

used an actual pre-game prediction model based on machine learning and could not
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reach the 62% ceiling, achieving an accuracy of 61.54% over 517 matches. Weissbock

and Inkpen (2014), in the same paper in which they proposed this ceiling, created

a pre-game prediction model that could not reach the 62% ceiling, achieving an ac-

curacy of 60.25% over 720 games. In a more recent thesis by Remander [31], they

attempted to predict outcomes of the 2016 through 2019 NHL seasons and achieved

an accuracy of 55.4% over 5043 games. However, we do not believe that the approach

of Weissbock and Inkpen [29] is infallible as it is based on simulation and not real-

world game outcomes. Their method also relies on using the standard deviation of

win percentages; in theory, they could have used a different metric, such as mean ab-

solute deviation, or they could have compared the complete distributions with tests

such as the Kolomogorov-Smirnov test. Changing the measurement to compare the

distributions could lead to a different theoretical ceiling. Therefore, concluding that

a ceiling exists in NHL pre-game prediction is fair, but the actual ceiling could differ

from 62%.

Previous research, such as the studies conducted by Lopez, Matthews, and Baumer

[14] and further supported by Gilbert and Wells [34], has extensively explored the

randomness of NHL game outcomes. These studies demonstrated that NHL game

outcomes exhibit a considerable degree of randomness, and often, the team with su-

perior performance indicators before the game would end up losing. Lopez et al. [14]

also show that in a tournament setting such as the NHL playoffs, there only exists a

19% chance that the team with the best performance indicators will win the tourna-
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ment due to this randomness. However, these studies were performed on a pre-game

basis. What about instances of in-game performance indicators? Research conducted

by Daniel Kari [35] found that even when using several popular in-game performance

indicators for NHL games and a convolution neural network, they could not achieve

a high level of predictive power in NHL games, as they could only predict the correct

game-winner with an accuracy of 61.6%. It is worth noting that Kari’s study did

not include team-specific performance indicators such as goals, save percentage, or

shooting percentage; including goals in the model would lead to 100% accuracy, as

the team with the most goals will always win the game. At the same time goals scored

is very closely tied to shooting and save percentage as they respectively represent the

percentage of shots that result in a goal or the percentage of shots a goalie saves.

As the goal of the study was to look at the effects of randomness in the NHL and

compare how certain performance indicators often used to forecast a team’s future

success would act in in-game prediction they opted to not include these performance

indicators as they would not yield very interesting or useful results. Based on these

prior studies, there is strong evidence that NHL game outcomes are subject to a high

level of randomness.

This randomness greatly affects our ability to make accurate predictions about

game outcomes. For instance, in 2022, the sports betting sector achieved a record

gross revenue of USD 7.5 billion [36]. If there were currently a highly accurate method

for predicting NHL game outcomes, this multi-billion-dollar industry would undoubt-
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edly adopt it for setting initial odds, as the methods bookmakers utilize to establish

these odds are integral to the profitability of their business [37]. However, as was

described by Osborne [38], NHL betting underdogs emerge victorious in 41.1% of

games.

Several different factors could cause the perceived randomness of outcomes in the

NHL. There may be undiscovered performance indicators in the NHL that could pro-

vide better insights into game outcomes. Alternatively, the game itself may simply

possess a high degree of randomness, whereby “luck” plays a significant role in deter-

mining results. Weissbock and Inkpen [29] suggest that this randomness may have

something to do with the parity of the NHL, which is created by the hard-ceiling

salary cap. This means that teams are only allowed to spend up to a certain amount

of money on player salaries, making creating “super-teams” funded by wealthy own-

ership groups impossible. However, parity alone does not account for all the observed

randomness in the league. We, therefore, believe that momentum may be a missing

piece of the puzzle and could potentially help account for some of this randomness.

To date, there is a lack of papers proposing a quantification method for team mo-

mentum as a performance indicator and an absence of studies attempting to address

inter-game team momentum using machine learning techniques. We perceive this as

a gap in the existing momentum literature we aim to address. Instead of looking at

whether wins and losses were dependent or independent events, we used momentum-

based features to create machine learning models and compare their predictive power
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against models trained with the same algorithm that only used more traditional

frequency-based features as well as a model that used a combination of both feature

sets. We hypothesize that these momentum-based features can potentially find ev-

idence of momentum in ice hockey where previously none has been found. We also

believe these features can provide a new momentum-based framework for creating

performance indicators in the NHL and other sports. Additionally, these features

can help determine the impact of momentum on NHL game outcomes, shedding light

on some of the perceived randomness in the league. Furthermore, the comparative

analysis of our three feature sets can serve as a foundation for future investigations

into the effects of momentum on different sports.

3.2 Methods

The organization of this section follows the flow of data through our proposed pipeline,

with a final summary presented in Figure 1.

3.2.1 Raw Event Data

Our raw database was created using the Python module hockey scraper, which utilizes

the NHL’s API to retrieve event data for NHL games [39]. Our study collected all

event data for regular-season NHL games from 2011 to 2020, resulting in a dataset

comprising 10,602 NHL games. The raw data utilized in this research encompasses

various game events recorded by the NHL, including shots, misses, goals, blocks,
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takeaways, giveaways, and more. The specific events we track and utilize will be

discussed in the subsequent section on game events extraction. Each event entry

contains information regarding its timing, such as the associated game, the period in

which it occurred, and the remaining time in that period. Furthermore, situational

details are provided, including the teams involved, the players participating, and the

score at the time of the event. This situational information holds significance for

our analysis as we incorporate “5v5” and “close” values throughout the paper. The

term “5v5” in a value signifies that the event count only includes occurrences when

both teams had five players and a goalie on the ice, thereby eliminating potential

bias arising from power plays and penalty kills. On the other hand, the term “close”

in a value indicates that the event count only encompasses instances within a closely

contested game scenario. Specifically, we define this as a score differential of one or less

in the first two periods or a score differential of zero in the third period or overtime.

This definition addresses the notion that specific teams may adopt a more defensive-

oriented approach when holding a substantial lead. While the raw event data consists

of 56 columns of information per event entry, a significant portion is irrelevant to our

objectives. Table 3.1 provides a small sample illustrating the structure of the raw

data.
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Table 3.1: A small example of what the scraped data from hockey scraper looks like.

It shows several columns that we use in our calculations.

Game Id Event Team Event Strength Period . . .

201200001 MTL SHOT 5x5 1 . . .

201200001 TOR BLK 5x5 1 . . .

201200001 TOR PENL 5x5 1 . . .

3.2.2 Game Events Data Extraction

We performed in-game event extraction using the raw events dataset, specifically

focusing on counting events by type for each team within individual games. The

extracted events included blocks, faceoffs, giveaways, goals, hits, misses, penalties,

shots, and takeaways. These events play a crucial role in subsequent interval-based

extraction. The process of extracting game events data involved traversing the raw

events data and tallying the occurrence of each event type for a given team in a specific

game. This grouping of events was facilitated by utilizing the unique game ID. To

illustrate, we examined the data to determine the number of shots taken by the home

team in a particular game by counting the instances of the “SHOT” event attributed

to the home team. For instance, if the home team had 25-shot events, it indicated

they had taken 25 shots in that game. Another example would be calculating the

number of blocks for each team by summing up the “BLOCK” events associated
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with each team. Table 3.2 provides an example showcasing the structure of the game

events data.

Table 3.2: A small example of what our game events look like after events have been

extracted from the raw dataset.

Game Id Home Team Away Team Home Shots Away Shots Home Blocks . . .

201200001 MTL TOR 25 29 15 . . .

201200002 BOS PIT 35 26 9 . . .

201200003 TBL FL 20 29 10 . . .

3.2.3 Interval-Based Data Extraction

We utilized the game events data to extract pre-game team quality assessments by

considering intervals of the previous three to seven matches for both the home and

away teams. Although not the direct inspiration for our work, Weissbock, Viktor,

and Inkpen [30] briefly mentions using a recent number of games to evaluate team

quality. It’s important to note that this data extraction was performed pre-game,

meaning we only extracted data from games preceding the specific game we intended

to model. To illustrate the procedure of interval-based data extraction, let’s consider

an example. Suppose we are working with an interval of the last three games, and

we want to create an instance for game number 40, where we aim to obtain the
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average number of goals for both the home and away teams. To achieve this, we

calculate the average number of goals for both teams (home and away) using only

their 37th, 38th, and 39th games. During the interval-based data extraction, we

excluded certain games from the datasets. This included all overtime games, as they

are more likely to produce outliers in individual statistical categories due to the longer

game duration and the recent change from 5v5 overtime to 3v3 play, which affects

the number of players on the ice. Additionally, we removed the first 20 games played

by each team in every season, as teams tend to struggle with consistency during

this initial phase, which could potentially skew the training phase of our machine-

learning algorithm. Although we experimented with removing 15 and 25 games,

removing 20 games yielded the best predictive power in our algorithms. This step

aligns with standard practices in other public pre-game prediction models, such as

the one developed by MoneyPuck.com [40], which also removes the first 20 games of

each season during training. In addition to the data from the NHL’s play-by-play, we

incorporated expected goals (xG) data from MoneyPuck.com [40], which was valuable

to our dataset. Overall, this approach created five datasets, each corresponding to

different time windows of 3 to 7 games, totalling 5 setups. Each dataset consisted of

5,730 instances.
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3.2.4 Frequency-Based Features

We utilized frequency-based features to capture teams’ performance over several pre-

vious games. These features were categorized into three types: sum-based, average-

based, and percentage-based features. Sum-based features are created by totalling a

specific event’s occurrences throughout the selected game window. For example, if we

considered a four-game interval and wanted to create a sum-based feature for shots

taken by a team, we would sum up the total number of shots taken by the team in

their last four games. As the name suggests, average-based features were based on

the average value of a particular event over the chosen interval of games. Instead of

summing the occurrences, we calculated the average value. For instance, we could

compute the average number of goals scored by a team in their last four games.

Percentage-based features were calculated using data from all the games within the

specified interval. These features represented the percentage or proportion of a spe-

cific event out of all instances recorded in the given window of games. For example,

we could determine the percentage of face-offs won by a team in their last four games.

By incorporating these frequency-based features, we aimed to capture the patterns

and trends in team performance over a certain period, providing valuable insights

into their playing style and effectiveness in various aspects of the game.
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3.2.5 Momentum-Based Features

Various definitions of momentum have been proposed in the scientific literature over

the years. For instance, Arkes and Martinez [9] define a “momentum effect” as a

situation where a team is more likely to win or achieve success if they have been

performing well in their recent games. On the other hand, Steeger et al. [8] do

not explicitly provide a definition of momentum but differentiate it from winning or

losing streak by suggesting that streaks are observed sequences of wins or losses that

may or may not be related, while momentum implies a dependence between similar

events. Our research defines momentum as a consistent increase or decrease in the

overall quality of play over a specific number of previous games. Our definition of

momentum considers it as something that can be estimated using engineered features

that determine the trend of a team’s quality of play for the upcoming game. Although

our definition aligns more closely with Arkes and Martinez [9], we exclude the aspect

of winning from our definition due to the random nature of the NHL, where game

outcomes are subject to chance.

In this study, we have extracted two types of momentum-based features. The first

type is the slope-based feature. This feature focuses on the interval of recent games,

specifically the last three games for each team. Using a selected statistic, such as the

number of shots, we plot the number of shots taken in each of these recent games on

a two-dimensional space. The y-axis represents the number of shots taken in a game,

while the x-axis represents the passing of days between games, starting from zero for
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the earliest game in the interval. We then determine the linear line of best fit for these

plotted points, and the slope of this line becomes the value of the slope feature. The

second type of momentum-based feature is a projection feature that utilizes the same

line of best fit created for the slope feature. In this case, we use the equation of the

line of best fit to project a given statistic for the team in the game for which we are

predicting the outcome. By employing the function y = mx + b, where x represents

the number of days that have passed since the first game in our interval of games, m

denotes the slope of the line of best fit, b represents the intercept on the line of best

fit, and y represents our actual projection, we obtain a feature that provides insight

into how the team is expected to perform if their recent trends continue.

3.2.6 Features Used

Table 3.3 and 3.4 presents the features utilized in this study, briefly describing each

feature and their respective deviations. The deviations correspond to the four feature

types discussed: sum-based, average-based, slope-based, and projection-based. While

a comprehensive understanding of these features is not essential for comprehending

the paper, their inclusion is crucial for ensuring the replicability of this study. Prior

works influenced the selection of these features in NHL pre-game prediction, particu-

larly the studies conducted by Pischedda [32] and Weissbock et al. [30]. However, we

also considered inputs from the public domain, considering numerous NHL advanced

analytics sites, including MoneyPuck [40] and Natural Stat Trick [41]. These sites
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offer performance indicators that have not yet been widely adopted in the academic

space but have demonstrated their effectiveness as predictors of game outcomes, such

as expected goals.
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Table 3.3: Features used by the MLmodels along with a description and the deviations

from the base calculation of the feature.

Feature Description Deviations

Wins The number of times a team won the game Sum-based

Losses The number of times a team lost the game. Sum-based

Goals (For & Against)
When the puck crosses the line, enters the net,

and is awarded to the team as a goal.

Sum-based, Average-based,

Slope-based, Projection-based

Goals 5v5 (For & Against)
When a Goal is scored by a given team

in a 5v5 situation.

Sum-based, Average-based,

Slope-based, Projection-based

Goals 5v5 Close (For & Against)
When a Goal is scored by a given team

in a 5v5 close situation.

Sum-based, Average-based,

Slope-based, Projection-based

Shots (For & Against)

When the puck is sent toward the opposing net

by a player on a given team. This has to

result in the goalie stopping the puck

or a goal being scored, misses do not count.

Sum-based, Average-based,

Slope-based,Projection-based

CORSI

The shot attempt differential for a team.

That is the number of attempted shots for,

minus the attempted shots against.

Sum-based, Average-based

CORSI% The percentage of the shot attempts a given team had. Slope-based, Average-based

Fenwick%

The shot attempt differential for a team

represented as a percentage. However, this

calculation does not include shots that were blocked.

Slope-based, Average-based

CORSI 5v5 The shot attempt differential in 5v5 scenarios. Sum-based, Average-based

CORSI 5v5 Close The shot attempt differential in 5v5 close scenarios. Sum-based, Average-based

Face-offs (For & Against)

When two players meet to “face-off” for the puck

before the start of play. The puck is dropped and

whoever moves it to a teammate first is

considered to have won the faceoff.

This is the number of face-offs won.

Slope-based, Projection-based

Face-off Percentage The percentage of face-offs won. Percentage-based

38



Table 3.4: Features continued

Feature Description Deviations

Hits (For & Against) When a player body checks an opposing player.
Sum-based, Average-based,

Slope-based, Projection-based

—

Penalty Minutes (For & Against)
The number of minutes a team had a player in the penalty box,

due to an infraction performed on the ice.

Sum-based, Average-based,

Slope-based, Projection-based

Blocks (For & Against)
When an opposing player takes a shot which is in turn

blocked by a player on the team before the puck can reach the net.

Sum-based, Average-based,

Slope-based, Projection-based

Giveaways (For & Against) When a player gives the puck away to an opposing player.
Sum-based, Average-based,

Slope-based, Projection-based

Takeaways (For & Against) When a player takes the puck away from an opposing player.
Sum-based, Average-based,

Slope-based, Projection-based

xG (For & Against)

The expected number of goals the team should

have scored based on a machine learning algorithm

that takes into account the quality of each shot and trains

on historical shot data.

Sum-based, Average-based,

Slope-based, Projection-based

xG 5v5 (For & Against) The xG for a team in 5v5 scenarios.
Sum-based, Average-based,

Slope-based, Projection-based

xG 5v5 Close (For & Against) The xG for a team in 5v5 close scenarios.
Sum-based, Average-based,

Slope-based, Projection-based

Power Play Opportunities
A power play is when a team has an extra player on the ice

due to a penalty that is being served by the opposing team.

Slope-based, Projection-based

Power Play Goals The number of goals a team scores on the power play Slope-based, Projection-based

Power Play Percentage
Power play percentage represents the percentage of power plays

that result in a goal for the team.

Percentage-based

Penalty Kill Opportunities
A penalty kill is when a team has fewer players on the ice

due to a penalty that is being served by the team.

Slope-based, Projection-based

Penalty Kill Goals The number of goals that are scored on a team during the penalty kill. Slope-based, Projection-based

Penalty Kill Percentage
Penalty kill percentage is the percentage of time that these

situations do not result in a goal for the opposing team.

Percentage-based

Shooting Percentage The percentage of shots from a team that results in a goal. Percentage-based

Save Percentage
The percentage of shots that are taken against a team

that results in the goalie stopping the puck.

Percentage-based

PDO
A team’s shooting percentage plus their save percentage.

Sometimes referred to as a “luck” statistic.

Percentage-based

Turnover to Giveaway Ratio (For & Against) The ratio of turnovers to giveaways. Slope-based, Projection-based
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Two momentum-based features in our analysis deviate from the slope and projection-

based approach. These features include the team’s current streak, which indicates

the number of consecutive games they have won or lost. The streak is represented

as an integer, where a positive value indicates a winning streak and a negative value

indicates a losing streak. Additionally, we incorporate a rest calculation feature that

captures the number of days between a team’s most recent game and the upcoming

game for which we predict the outcome.

It is worth noting how the features were represented before their use by the

machine learning models. Pischedda [32] demonstrated that their models exhibited

greater predictive power when the features were represented as the home team’s value

minus the away team’s value. We obtained similar results upon testing it with our

data, leading us to adopt this approach in presenting the features to the machine

learning models. For instance, if the home team was projected to have 30 shots in

a game and the away team was projected to have 25 shots, we would calculate the

difference (30 - 25 = 5) and store the value of five in the projected shots column for

that specific game.

3.2.7 Model Evaluation

It is important to note that in this section, the term “model” refers to a specific

combination of a feature set (momentum-based, frequency-based, or combined), an

interval of games (3-7), and a machine learning algorithm (Logistic Regression, Ran-
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dom Forest, Support Vector Machine). The models were evaluated using a moving

window approach. The games were sorted chronologically, and we trained the model

on a group of games and tested it on the subsequent group of games, starting from

the game immediately after the last game in the training set. Specifically, we used a

training size of 2460 games and a testing size of 1230 games, resulting in a train/test

moving window of 3690 games. This setup allowed for approximately two seasons of

training data and one season of testing data, as each NHL season consists of roughly

1230 games. We observed that using less than two seasons of training data yielded

inconsistent results during the experimental design. Therefore, we ensured that our

moving window always included two seasons of data for training purposes. We cre-

ated 20 train-test sets and utilized these sets to evaluate our models. The objective

was to predict the winner of the games in the testing set while fitting the model to

the training set. To measure the performance of the models, we employed the accu-

racy metric from the Sklearn module [42]. This metric was applied to each of the 20

train-test splits and calculated the percentage of correctly identified game outcomes

out of the 1230 games in the testing set. The accuracy metric is computed by dividing

the number of correctly identified outcomes by 1230, representing the total number

of games in the respective testing set.

We consider the 20 individual results obtained from the moving window approach

to indicate each model’s performance. Additionally, this number of results meets the

recommended minimum requirement for conducting the Wilcoxon signed-rank test
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[43], a nonparametric test used to assess the statistical significance of differences in

result distributions. By performing this test, we can determine whether the observed

differences are statistically significant. Specifically, if the test yields a p-value less

than 0.05, we can reject the null hypothesis, indicating that the two sets of results are

not drawn from the same distribution. The Wilcoxon signed-rank test was conducted

using the SciPy Python module [44]. For our machine learning algorithms, we selected

models from the Sklearn library [42] to evaluate our pipeline. The chosen algorithms

include logistic regression, random forest [45], and support vector machines (SVM),

also known as SVM [46]. These algorithms were employed to assess the performance

of our models. The models mostly relied on their default hyperparameters, except

for random forest, which had its estimators set to 500, and the seed set to 1415 (the

first four digits after the decimal in Pi) to ensure the results were replicable. Logistic

regression also had its max iterations set to 10000 to ensure convergence was achieved.

3.2.8 Model Comparison

To compare the performance of our models, we utilized box plots for visualizing the

data. These box plots were created with the use of the Matplotlib module in Python

[47]. Each box plot represents the distribution of 20 individual results obtained by the

moving window approach previously discussed. All calculations regarding minimums,

maximums, medians, and interquartile range are performed by the Matplotlib module

at the time the plot is created. We have also included the mean in each box plot
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denoted by a green plus sign. Each section of our methodology corresponds to a

specific machine learning algorithm: logistic regression, random forest, and support

vector machines (SVM). For each interval of games ranging from three to seven,

we examined and compared the accuracy distributions achieved by the momentum-

based, frequency-based, and combined feature sets. Additionally, we provided a table

displaying the p-values and test statistics resulting from the Wilcoxon signed-rank

test. In the p-value table, statistical significance is indicated by the presence of a star

(*).

3.2.9 Entire Data Pipeline

The methodology employed in our study is summarized in Figure 1. The raw event

data is initially processed to extract and organize game event summaries, enabling

access to previous games of both home and away teams. Subsequently, an interval-

based procedure is employed to collect data from the previous “n” games for both

home and away teams. This interval-based data generates distinct feature sets such

as frequency-based, momentum-based, and all features, serving as input feature vec-

tors for the machine learning models. The models are then trained using the same

algorithm but with different feature sets, and their performances are compared in the

final stage of model evaluation and comparison.
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Figure 3.1: Data pipeline for our methodology.

3.3 Results

3.3.1 Logistic Regression

Figure 3.2 provides an overview of our findings, indicating that momentum-based

features outperformed both the frequency-based and combined feature sets when uti-

lizing a three-game interval. The statistical analysis using the Wilcoxon signed-rank

test, as presented in Table 3.5, confirms the significant differences in performance

between these feature sets at this game interval. At an interval of four games, all

feature sets have very similar performance. However, as we extend the interval to

five or six games, the advantage momentum-based features initially saw quickly di-

minishes, and they exhibit worse performance than the frequency-based features; this

difference in performance is also confirmed as statistically significant in Table 4. In-

terestingly, momentum-based features perform similarly to frequency-based features
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when employing a seven-game interval.

Figure 3.2: Comparison of the models using the logistic regression algorithm and

game intervals 3 through 7.
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Table 3.5: The p-values and statistical value of the test achieved when comparing

the distributions of two given feature sets for a given interval of games when using

logistic regression. Statistically significant p values are denoted by a star *. The

statistical value represents the sum of the ranks of the differences above or below

zero, whichever is smaller.

Models Interval of Games

3 4 5 6 7

Frequency – Momentum p-value 0.00315* 0.760 0.0313* 0.00181* 0.687

Momentum – Combined p-value <0.001* 0.0415* 0.0867 0.00700* 0.0140*

Combined – Frequency p-value 0.717 0.368 0.105 <0.001* 0.00253*

Frequency – Momentum Statistical value 28.5 78.5 41.5 17.5 85

Momentum – Combined Statistical value 15 33.5 52.5 28 34

Combined – Frequency Statistical value 86 57.5 60.5 16 20

3.3.2 Random Forest

Figure 3.3 illustrates that the frequency-based and momentum-based feature sets

exhibit similar performance across intervals of three to five games. However, it is

essential to note that this does not diminish the value of momentum-based features

in this dataset, as the combination of frequency-based and momentum-based features

yields the best results across intervals of three to six games. This observation may
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be attributed to the potency of the random forest algorithm, which has the ability to

assign weights to features and potentially prioritize a subset of the combined feature

set for classification purposes. The statistically significant differences between the

distributions generated by the combined feature set and the momentum-based or

frequency-based feature sets are evident in all game interval feature set comparisons

but two, as demonstrated in Table 3.6.

Figure 3.3: Comparison of the models using the random forest algorithm and game

intervals 3 through 7.
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Table 3.6: The p-values and statistical value of the test achieved when comparing the

distributions of two given feature sets for a given interval of games when using random

forest. Statistically significant p values are denoted by a star *. The statistical value

represents the sum of the ranks of the differences above or below zero, whichever is

smaller.

Models Interval of Games

3 4 5 6 7

Frequency – Momentum p-value 0.105 0.840 0.234 0.00137* 0.0153*

Momentum – Combined p-value 0.112 0.00486* 0.0119* 0.00365* 0.0107*

Combined – Frequency p-value <0.001* 0.00639* 0.00102* <0.001* 0.985

Frequency – Momentum Statistical value 61 90 65.5 15.5 41.5

Momentum – Combined Statistical value 55.5 32.5 32.5 30.5 38.5

Combined – Frequency Statistical value 3 34.5 22 0 104.5

3.3.3 SVM

Figure 3.4 shows that the momentum-based and combined feature sets deliver the

best performance when utilizing a three-game interval and that the performance in-

crease seen over the frequency-based features is statistically significant for both the

momentum-based and combined feature sets. The performance at the three-game

interval is also the best performance out of all the intervals. However, it should be
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noted that SVM exhibits inconsistent performance, as indicated by the relatively large

interquartile ranges depicted in Figure 4.

Figure 3.4: Figure 4. Comparison of the models using the SVM algorithm and game

intervals 3 through 7.
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Table 3.7: The p-values and statistical value of the test achieved when comparing

the distributions of two given feature sets for a given interval of games when using

SVM. Statistically significant p values are denoted by a star *. The statistical value

represents the sum of the ranks of the differences above or below zero, whichever is

smaller.

Models Interval of Games

3 4 5 6 7

Frequency – Momentum p-value <0.001* 0.0282* 0.0406* 0.122 0.0583

Momentum – Combined p-value 0.105 0.143 0.0279* 0.123 0.0362*

Combined – Frequency p-value <0.001* <0.001* 0.856 0.304 0.648

Frequency – Momentum Statistical value 11 40.5 38.5 50 54.5

Momentum – Combined Statistical value 60.5 65 35 63 43

Combined – Frequency Statistical value 8 0 64.5 69.5 92

Our results from logistic regression show it is the most reliable predictor of NHL

games among the algorithms we tested, and it should be considered and compared

in future research on NHL game prediction. Additionally, our findings indicate that

momentum-based features have greater predictive power than traditional frequency-

based features in short intervals of three games. This observation did not come as a

surprise. While frequency-based features have been established and proven effective

in NHL prediction over the years, we believed that momentum-based features would
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outperform them in very short game intervals due to momentum’s potential marginal

and temporary effects.

When examining our results from the random forest algorithm, we observe that

the combination of all features consistently produces the highest predictive power

across all but one interval. This suggests that momentum-based features are not a

universal solution for pre-game prediction in the NHL. Instead, it highlights the need

for further research into these momentum-based performance indicators to identify

the ones that possess the most significant predictive power. This can contribute to

developing more comprehensive pre-game prediction models that consider a team’s

performance over the entire season while incorporating momentum-based indicators

from recent games.

Our results from SVM show that the momentum-based and combined feature sets

outperformed the frequency-based feature set at a three-game interval and that this

was the best performance seen over all intervals for SVM. We should note that the

benefit seen here when using the three-game interval and momentum-based features

is similar to what was seen in logistic regression. Aside from this, we acknowledge

that our SVM model did not yield meaningful results as the accuracy never seems

to reach an average of 56% again, which aligns with our previous findings in which

SVM would always choose the home team to win (Noel, 2021). This suggests that

SVM may not be a suitable pre-game predictor for NHL games without appropriate

feature selection and hyperparameter tuning, as parameters such as the regularization
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parameter (C) can affect the model’s ability to generalize [46].

It is important to contextualize these results in the area of pre-game prediction

in the NHL. If we consider the lower bound of NHL prediction as the percentage of

times the home team wins the game, which is 55.4% based on our dataset after data

manipulation, and we observe the upper bound as the theoretical 62% ceiling that

Weissbock and Inkpen [29] purposed. We observe a variance of only 6.6% between

the upper and lower bounds. Therefore, even slight improvements in predictive power

are precious in the context of NHL pre-game prediction, given the relatively narrow

range of variation between the upper and lower bounds. A potential shortcoming

of this range is that the 62% ceiling is that Weissbock and Inkpen [29] derived the

ceiling using data from the 2005 through 2011 seasons while our approach uses data

from the 2011 season to the 2020 season. Therefore, we are assuming that the league

has not changed dramatically enough since 2011 to lead to a massive shift in the

predictability of outcomes. However, we would expect that in seasons that have more

parity (skill difference between the best and worst teams is small), the ceiling will

likely be lower, while in seasons that have less parity (skill difference between the best

and worst teams is large) the ceiling will likely be higher as in the past researchers

have related parity and predictability [48].

In saying this, our goal in this work was to establish a new framework for ice

hockey performance indicators and examine the potential effects of momentum in

NHL games. We hypothesized that these momentum-based performance indicators
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would be able to capture the effects of momentum, whereas previous studies have

not due to the lesser dependence on outcomes. While our primary goal was not to

create the most powerful model, we achieved an average accuracy of 57.8% using

logistic regression, a seven-game interval, and frequency-based features, as shown in

Figure 3.2. Our second most powerful model achieved an average of 57.7% using

logistic regression, a seven-game interval, and momentum-based features, as shown in

Figure 3.2. These averages fall within a four to five-percent margin of the proposed

62% ceiling by Weissbock and Inkpen [29]. However, it is essential to note that

while their proposal considered using all team games to measure team quality, our

approach utilized only seven games. In comparison, an NHL season consists of 82

games, meaning our three to seven-game intervals represent a small fraction of a

team’s season.

The implications of momentum-based features having greater predictive power

than frequency-based features at a small interval of three games, as seen in our logistic

regression and SVM results, extend to sports science and analytics. Firstly, our results

suggest that momentum does have some influence on the outcome of NHL games with

smaller samples of games. However, its impact may not be as substantial as anecdotal

reports from players and coaches suggest. Nonetheless, momentum-based features can

be valuable assets, particularly for coaches. In a league characterized by its relative

randomness, coaches should focus on factors they can control rather than those they

cannot. These momentum-based performance indicators can help coaches identify
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areas in opponents’ games that can be exploited in upcoming matches. For instance, if

the momentum-based projection-based feature indicates that a forthcoming opponent

is likely to give up a high number of power plays, it would be wise for the coach to

emphasize power play strategy with their team before that game.

Our findings from random forest have broader implications for more complex and

robust models like neural networks or ensembles. Such models can assign higher

weights to specific features, thereby increasing predictive power [49]. This, in turn,

could have implications for sports betting by creating models that can potentially

predict short-term success more accurately than existing models. However, we must

exercise caution in attempting to outperform sports betting books at their own game.

It is essential to recognize that bettors often succumb to the bias of favoring teams

with apparent momentum and frequently lose due to this bias [50].

While our study primarily examines team momentum rather than individual mo-

mentum, it is plausible that momentum-based features may also possess predictive

power for individual players. This could impact a coach’s player selection, determin-

ing who plays and who sits, especially when faced with players who exhibit similar

frequency-based performance indicators. Momentum-based indicators can serve as

tie-breakers in such cases. Exploring momentum-based performance indicators for

individual players is an avenue we intend to explore in future research. It would be

valuable to compare the results of such a study to the work of Pelechrinis and Win-

ston [12], who found that certain NBA players exhibited the effects of momentum
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more than others.

The contributions of our work are unique in that we have introduced a novel frame-

work for performance indicators that quantifies momentum across various aspects of

team performance, going beyond the traditional binary distinction of winning and

losing. Although these performance indicators may only lead to marginal improve-

ments in the predictive power of machine learning models, we have provided ample

citations to support the notion that NHL games are subject to a significant amount

of randomness. Therefore, it becomes crucial for teams to focus on maximizing their

chances of success, understanding that losing is still possible even when making deci-

sions that maximize the likelihood of a positive outcome. This idea can be backed up

by the work of Schulte et al. [51], who developed a Markov game model for evaluat-

ing actions in ice hockey. They found a strong correlation between the overall value

of team actions and the likelihood of a team winning the game. This entails that

the team who made the best decisions won most of the time but not all the time.

This can also be seen in the work by Sprigings and Toumi [52], who showed that

past CORSI percentage and expected goal (xG) percentage were better predictors of

future goal percentage than past goal percentage. This means that shot quality and

shot attempt differential are better predictors of future goal scoring than past goal

scoring, reaffirming the idea that there is a level of randomness present in the NHL

and that teams should focus on the process (i.e., generating quality shot attempts)

rather than the result (i.e., scoring goals). Therefore, our perspective on ice hockey
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should align with how one would approach a game of probability, such as blackjack,

where the goal is to make informed choices to optimize the odds of winning.

While our results demonstrate that momentum has an impact on the outcome of

NHL games, we do not view it as a contradiction to previous studies that found no

evidence of momentum in ice hockey, such as the works by Kniffin and Mihalek [6]

or Steeger et al. [8]. Those studies primarily aimed to determine if teams experience

winning or losing streaks solely due to momentum. In contrast, our findings suggest

that momentum plays a role in game outcomes but is a small aspect of it and is

not the sole determinant. Ice hockey is a complex sport with various factors at play,

and our momentum-based performance indicators provide an additional perspective

in understanding why teams win or lose.

However, our work has certain limitations. Our features measure momentum

based on previous game performance indicators but evaluating our models’ success

primarily relied on predicting game outcomes accurately. While at the same time,

we have acknowledged several times that momentum should be studied in way of

underlying performance indicators and not just in streaks of wins or losses as teams

should focus on maximizing the chance of success. In future research, we aim to

develop models that focus on predicting other measures of team performance, such as

the xG differential, which could provide insights into a team’s share of scoring chances

during a game. Exploring xG differentials in ice hockey, a statistic also popular in

European football/soccer could allow for comparisons between the two sports.
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Another aspect of our work that can be seen as a limitation is our use of a lin-

ear line of best fit in our slope-based and projection-based features. This is because

short intervals of games may exhibit random fluctuations in a team’s performance.

As a result, the linear line of best fit may not always capture these fluctuations ac-

curately, and it may not provide the most comprehensive representation of a team’s

recent performance trends, especially when using a minimal interval of games, such

as three. However, despite this limitation, we utilized the linear line of best fit as it is

the most intuitive and straightforward approach to quantify a team’s recent perfor-

mances. In future investigations, we are interested in exploring alternative methods

for determining the line of best fit. By experimenting with different approaches, we

aim to enhance our understanding and capture the nuanced dynamics of a team’s

performance over time.

Additionally, it is essential to note that the data provided by the NHL may contain

some imperfections, despite our efforts to clean and ensure accuracy. Challenges

arise when determining powerplay opportunities, mainly when simultaneous penalties

occur. Scorekeeper bias has also been observed to affect NHL statistics, leading to

potential inaccuracies in shot placements and shot credits (Thomas, 2015). To foster

the growth of analytics in the NHL, public access to player and puck-tracking data

would be necessary for transparency and trust in the provided data, as was previously

recommended by Nandakumar and Jensen [26].

Looking ahead, we believe this work could serve as a foundation for developing
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a framework that investigates the effects of momentum on individual teams, players,

or even across different sports. By delving deeper into momentum-based analysis, we

can gain further insights and expand our understanding of its implications in sports.

3.4 Conclusion

Our work sheds light on the impact of momentum in ice hockey and serves as a

foundation for further research in this area by engineering features that show mo-

mentum can be approached from a trend of play perspective rather than looking at

the dependence or independence of sequential outcomes.

Our work contributes to developing a more formal definition of momentum and of-

fers momentum-based features that can be utilized to construct models for predicting

pre-game outcomes in the NHL and other sports. We offer two main findings from this

work: momentum-based features offer performance increases over frequency-based

features at a small three-game interval with logistic regression or SVM, and random

forest tends to see a performance increase when using the combined feature set. Over-

all, our findings imply momentum has a potential impact on game outcomes be it

a rather small one. Of our two main findings, we believe the one regarding random

forests to be the most promising. A data pipeline that uses sufficient feature selection,

hyperparameter tuning, and a random forest model may better understand the finer

details of pre-game prediction in ice hockey. Such a model could better pre-game

prediction for anyone attempting to predict NHL game outcomes, from academics to
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teams to bookmakers setting initial odds. This highlights the need to strike a bal-

ance between the overestimation of momentum’s effect by athletes, coaches, and fans

and the potential underestimation of its significance by the analytics community. We

can deepen our understanding of momentum’s effects by conducting more research,

particularly in ice hockey, where academic studies are limited.

Continued exploration of momentum in sports analytics can lead to valuable in-

sights that benefit athletes, coaches, and fans alike. It is an area that warrants fur-

ther investigation and can contribute to advancing our knowledge of the intricacies

of sporting events.
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Chapter 4

A Comprehensive Data Pipeline

for Comparing the Effects of

Momentum on Sports Leagues

4.1 Introduction

By the year 2027, the revenue for the global sports market is estimated to reach

623.63 Billion USD. This is a marked increase from the revenue of 486.61 Billion USD

seen in 2022 1. This significant revenue growth also increases financial incentives for

management groups to attempt to create successful sports franchises. One of the ways

to improve a franchise is through the team’s quality of play, which has given rise to

1Research and Markets: https://www.researchandmarkets.com/reports/5781098/

sports-global-market-report
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the use of sports analytics. Sports analytics are built on the idea that statistics, data

science, and machine learning can improve a team’s quality by allowing management

to make informed decisions with the use of information about the in-game play that

the average scout, coach, or person in management may not notice by simply watching

games.

The acceptance of sports analytics by fans, players, or people in management

has often been slow and met with skepticism. In other cases, teams have embraced

analytics and prospered because of it. Such was the case for the 2002 Oakland

Athletics, who managed to create a competitive MLB team at a fraction of the cost

of their more wealthy competitors; this event became more colloquially known as

“Moneyball” [53]. Due to this success, the field of sports analytics has grown to the

point that many sports teams have in-house analytics departments. There is also a

third-party market in which companies work with professional sports teams to provide

in-depth statistical analysis or give them the tools to do so internally. Examples of

such companies include Wyscout, 2 StatsBomb, 3 and Sportslogiq.4

Recently, a growing body of literature in sports analytics is interested mainly in

studying the claims of many coaches, players, and fans that momentum impacts the

outcome of the game [54]. These papers often conclude that momentum, as it is

traditionally defined, does not exist in team sports [5, 4]. But in recent years, several

2Wyscout: https://www.hudl.com/en_gb/products/wyscout
3StatsBomb: https://statsbomb.com/
4Sportslogiq: https://www.sportlogiq.com/
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papers have come to the opposite conclusion, stating that momentum impacts team

sports [55, 56]. In reviewing the literature on data engineering in sports analytics, we

found a gap in the research. That gap is in providing a comprehensive approach to

building a generic data pipeline using game events, from which valuable features can

be extracted from event data. In this work, we try to fill this gap as follows. First, we

propose a way to extract distinct sets of features from the event data to use later to

evaluate their predictive power; this allows us to evaluate the effect (or lack thereof)

of momentum on a given sport. We define momentum as the increase or decrease in

a team’s overall quality of play over a small sample of games. Previous literature has

often defined momentum differently. For instance, Arkes and Martinez [9] focused on

momentum over multiple games and defined the effect of momentum as a “situation in

which a team has a higher probability of winning or success had the team been playing

well in the last few games”. Fry and Shukairy [57] studied momentum more from an

in-game perspective and defined it as the idea that “certain positive (negative) events

during a game cause a team to do better (worse) subsequent to that event”. Taylor

and Demick [18] explore momentum from a psychological approach and define it as “a

positive or negative change in cognition, physiology, affect, and behavior caused by a

precipitating event or series of events that will result in a shift in performance”. These

definitions differ slightly, but all hinge on the idea that success or failure increases

the likelihood of future success or failure. Our definition of momentum focuses on

momentum over multiple games and is similar in some way to these previous examples,
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but rather than focusing on catalysts, we focus on the overall trends of teams, whether

these trends are positive or negative. This means that we aren’t dependent on all prior

events being alike (positive or negative) as we are more concerned with the overall

trend of the team. In our definition of momentum, the quality of play is defined as

the features extracted from the in-game events. We assume that if momentum indeed

plays a significant role in the outcome of a given game, our momentum-based features

should be able to be incorporated into a model such that it can more accurately predict

the outcome of the next game than a more traditional frequency-based approach.

In this work, we provide a practical data pipeline that uses raw sports event data

that can be transformed to create multiple feature sets (e.g., frequency, momentum,

and combined) and then compare the predictive power of each of these feature sets

using several different machine learning algorithms and performance metrics. We test

our pipeline on data from the National Hockey League (NHL), National Basketball

Association (NBA), and five major first-division European football/soccer leagues

(e.g., Premier League, Bundesliga, La Liga, Serie A, and Ligue 1). Our standardized

pipeline can be replicated in any sport for which event data is available.

This paper is organized as follows. Section 4.2 reviews several papers that discuss

and propose methodologies to evaluate the effects of momentum in distinct sports

and papers that propose sporting event data pipelines. Section 4.3 outlines our data

pipeline in detail with information about how data was retrieved, processed, engi-

neered, and finally used for comparisons in a machine learning model. Section 4.4
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presents the results that we achieved in our research. Finally, Section 4.5 shows our

conclusions and future works.

4.2 Literature Review

In our review of previous literature, we found only limited research in the area of

data engineering pipelines for sporting event data; however, adjacent fields of study

in sports can provide us with valuable information and potential ways to approach

the momentum evaluation problem.

The work of Carson Leung and Kyle Joseph[58] proposed a way to mine data from

college football games to predict the game’s outcome. An approach to storing and

mining the available statistical information was outlined, but their work focuses on

predicting the games rather than defining and generalizing their mining approaches.

This work also relied heavily on traditional statistical approaches to predicting out-

comes rather than a machine learning-based approach.

The work conducted by Wang et al., [59] proposed a deep reinforcement learning

approach to individual play retrieval from sporting data. They do this by proposing a

way to measure and quantify the similarity between plays. They then use algorithms

(some based on reinforcement learning) to determine how to split games to discover

quality candidates within a given game. Lastly, using deep metric learning, they

prune games that likely only contain poor candidates to improve the efficiency of

their search. This work was, however, intended for situations where a person would
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be more interested in retrieving alike plays for comparison rather than using these

plays to predict the outcome of games.

Very recently, the work of Wongta and Natwichai [60] shows how to create a data

pipeline that ingests game analytics efficiently. Their work focuses on minimizing

data flow issues in the pipeline from a much larger scope than what we are looking at

in this work and includes research into how certain approaches can affect data transfer

rates and how that, in turn, may affect the central processing unit (CPU) in a given

system. Therefore, this work provides valuable information to those actively parsing

data as the game takes place and are greatly concerned with the speed of the process,

such as those third-party analytics companies we previously mentioned. This work

was similar to their previous work [61], which focused on the multiple issues arising

in such an end-to-end sports data pipeline and how to remedy them.

It should also be noted that a large amount of research focuses on predicting game

outcomes in a given sport, which also usually gives a brief overview of the pipeline

used to create a game-predicting model. This can be seen in the work by Thabtah,

Zhang, and Abdelhamid [62], who predicted outcomes in the NBA; a similar work

shown by Pischedda [32] predicted outcomes in the NHL; and the work of Rodrigues

and Pinto [63] focused on European football/soccer. Differently from these works,

our work intends to create an approach more focused on feature engineering and a

data pipeline such that it could be used as a potential guide for the comparison of

feature sets and the effects of momentum in the sports analytics research space.
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The extensive body of work regarding momentum in sports has covered many

disciplines. In this work, we are more concerned with statistics, machine learning,

and data science research. The most influential paper in this space is likely the

work of Gilovich et al., [4] whose work gave rise to the “hot-hand fallacy”. The

study presented by Gilovich et al. showed that consecutive made or missed shots in

basketball resulted from random sequences and not from a momentum effect on the

player shooting the ball. This conclusion has been backed up several times in works

such as those by Vergin [5], who found no evidence of momentum in winning streaks

from Major League Baseball (MLB) or the NBA when using the Wald-Wolfowitz or

chi-square goodness-of-fit tests. The work of Koehler and Conley [64] also found no

evidence of the hot hand in NBA shooting competitions. However, as the years have

passed, several papers provide contradictory evidence to the claim that perceived

streaks are the result of random sequences. The work of Ritzwoller and Romano [55]

found evidence that some players exhibit shooting patterns in basketball that do not

indicate randomness. The work of Green and Zwiebel [13] found evidence of the hot

hand in ten separate statistical categories from MLB. The work presented by Miller

and Sanjurjo [56] argues that there exists a bias in such experiments of conditional

dependence and that when this bias is accounted for, the conclusions of such studies

are often reversed. It is essential to highlight that our goal is not to validate or

refute any prior work on momentum but to shift the field’s discourse away from the

dependence or independence of sequential events and toward viewing momentum from
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a feature engineering perspective and measuring the predictive power of such features.

The random nature of outcomes in sports has been measured in several ways

over the years. The work of Lopez, Matthews, and Baumer [14] showed that the

best team does not win the game frequently in North American sports. The work of

Wunderlich, Seck, and Memmert [65] shows that goal scoring in the English Premier

League (EPL) is often affected by the randomness of the sport. This insinuates that

often, a team may lose games while, in theory, outplaying their opponent. Because of

this demonstrable randomness, we believe a more appropriate approach to assessing

momentum is quantifying the increase or decrease in a team or player’s quality of

play over a short period of time rather than focusing on the dependence of sequential

outcomes.

Like the pieces of literature above, our work looks to answer if momentum exists in

sports. However, we approach momentum from a different perspective by quantifying

it using a team’s linear play trend in several performance indicators rather than

focusing on the dependence or independence of sequential outcomes. This allows us

not to depend on the outcome of the game solely but to see how teams are trending in

performance indicators that typically lead to success and use those trends to predict

the outcomes of future games. While this approach is not without fault, we believe

it can capture the essence of momentum more effectively than winning or losing

streaks in a set of outcomes. As others have shown, sports are subject to randomness

and are not determined by pure skill. Therefore, we should focus on what leads to
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winning/losing rather than the act of winning/losing. This, however, doesn’t mean to

say that there isn’t a lot of value in the literature we have cited. Rather than refuting

or affirming previous findings, we look to provide a new perspective on momentum

in sports.

4.3 Materials and Methods

Figure 4.1 outlines the data pipeline proposed in this paper. Our pipeline starts with

a raw dataset that includes individual events over games we intend to characterize.

We then summarize individual games in our game event extraction, which groups

events to determine key performance indicators in a game. We create the distinct

features of our frequency-based, momentum-based, and combined feature sets using

our game events. These feature sets are then fed into machine learning algorithms.

The performance of these models is then evaluated with chosen performance metrics.

After, the models are compared to each other, aiming to determine which groups of

features have more predicting power.

4.3.1 Data Sources

The NHL dataset was sourced from a Python module called hockey scraper created by

Harry Shomer5. This module scraped all NHL event data from the NHL’s public API

for 2011 to 2020. For this dataset, we only included games that ended in the regular

5Hockey Scraper: https://hockey-scraper.readthedocs.io/en/latest/
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Figure 4.1: A diagram of our complete data pipeline.

time. Overtime games are often close and do not help models distinguish between

the binary targets of a home win or away win. We also removed each team’s first 20

games from each season as they seem to struggle with consistency up to this point in

the season. Both of these steps are often used in the training set for NHL pre-game

prediction models, and we were inspired to do this by the work done by Peter Tanner

on MoneyPuck.com6. We combined the scraped event data with expected goals data,

also sourced from MoneyPuck.com, to ensure we had a solid dataset to build our

models upon.

The NBA dataset was sourced from kaggle7. This dataset held all play-by-play

6MoneyPuck: https://moneypuck.com/
7NBA play-by-play data 2015-2021: https://www.kaggle.com/datasets/schmadam97/
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data for the NBA from 2015-2020. The NBA has a similar format to the NHL; each

team plays 82 games a season, and ties after regulation are settled through overtime.

We also found that removing overtime games and each team’s first 20 games yielded

similar results, and therefore, we performed these steps as we did for the NHL dataset.

The European football/soccer dataset came from the public dataset released by

Pappalardo et al., [66] using data collected by Wyscout. This dataset contained data

from only the 2017 season; however, it contained this data for each of the five major

first-division European leagues, those leagues being the first division in Spain, Italy,

England, Germany, and France. We could view the data from these five competitions

as five seasons of data. Due to the fact these leagues do not include overtime periods,

we did not have to remove any games for that purpose. However, we removed each

team’s first seven games as the number of games per team per season in the five major

leagues ranges from 34 to 38. This is nearly the same percentage of games removed

per season from the NHL and NBA datasets.

4.3.2 Game Event Extraction

Using the raw data as our main source, we created individual game events that

captured all the main events in a given game. This was done by grouping events

based on their unique game ID. Each dataset had its way of uniquely identifying

games. The NHL uniquely identified games with pairs of game IDs and the season in

nba-playbyplay-data-20182019
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which the game took place. The Soccer dataset took the same approach, while the

NBA dataset used the home team, away team, and date to identify each game.

We created a unique game ID for each game, so we would only require a single

column to uniquely identify a game. We combined the season and game ID strings

for the NHL and Soccer datasets to create a single game ID string. This would work

as follows. If the game had the ID “1115” and was being played in the 2015 season,

our created game ID would be “20151115”. While in the NBA, we used the season

and a counter variable that incremented every new game. For example, the first game

of the 2015 season would be game ID “201500001” and the second game would be

“201500002” and so on.

These unique game IDs allowed us to create the game events by querying the

raw datasets. For example, if we were looking to determine the number of shots the

home team took in a given game, we would count the number of “SHOT” events

that contained the unique game ID in the game id column and contained the home

team in the event team column. This allowed us to summarize the outcome of each

game from the event data and discern statistics such as the score, number of shots,

shooting percentage, and more.

Table 4.1 displays a small amount of the information that is held in each game

event and shows how they are organized in the database.
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Table 4.1: Example of the data contained in each game event for the NHL.

Game ID Away Team Home Team Away Goals Home Goals Away Shots ...

20150001 MTL TOR 3 2 25 ...

20150002 CAL EDM 1 3 30 ...

20150003 MIN PIT 2 0 22 ...

... ... ... ... ... ... ...

4.3.3 Interval-Based Game Data Extraction

One of the fundamental parts of our pipeline is the game intervals. These intervals

represent the number of games used to assess team quality in our models. For each

game in our dataset, we would use the previous “n” games to gather statistics rep-

resenting each team’s quality. For example, if we use an interval of three games, we

will only use each team’s last three games when creating the features that represent

the quality of those teams for a given game we are trying to predict the outcome of.

Specifically, this paper uses intervals of three to ten games.

For each game and each game interval, this extraction must take place. The data

from interval-based extraction is used to calculate the values for our features and is,

therefore, done concurrently with our feature set extraction to ensure that only one

extraction of interval-based data takes place, therefore making the parsing of the data

more computationally efficient.
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The game IDs that were previously discussed can help improve this process. If

IDs are sequential, that is, the IDs increase in the order of game occurrence, we can

extract the ‘n’ most recent games by getting all games involving a given team that

has a game ID less than the ID of the game we are modeling, from there we get the

’n’ games with the highest game ID. If the game IDs are not sequential, a better

approach would be to retrieve the most recent games using their dates.

4.3.4 Feature Engineering

This work considers three feature sets in our pipeline: frequency-based, momentum-

based, and combined. The frequency-based and momentum-based features have dif-

ferent sub-features, which we will discuss below. The combined feature set represents

the combination of both the frequency-based and momentum-based feature sets. The

features that were used by the models can be seen in Tables 4.6, 4.7, and 4.8. The

features extracted from the data were largely reflections of the event types recorded in

each dataset. However, in the case of the NHL and NBA, more advanced performance

indicators were extrapolated using the data. The advanced metrics used from each of

these datasets were influenced by performance indicators discussed in other research,

such as work in ice hockey by Johansson, Wilderoth, and Sattari [20] and work in

basketball by Kubatko, Oliver, Pelton, and Rosenbaum [67]. Some popular public

sources were also consulted, such as Natural Stat Trick8 and Basketball-Reference9.

8Natural Stat Trick: https://www.naturalstattrick.com/
9Basketball-Reference: https://www.basketball-reference.com/
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4.3.4.1 Frequency-Based

Two separate frequency-based feature types are considered in our pipeline, named

sum-based and average-based features. These features represent a primarily static

and traditional approach to pre-game prediction in sports. These features are created

by first querying data from each team’s previous ‘n’ games as defined by our game

interval. From there, we select a statistic for which we are creating these features,

such as shots or blocks. Lastly, we extract features from the chosen statistic. Sum-

based features are the sum of the statistics over the previous ’n’ games as defined by

the game interval, i.e., the total number of shots over the last three games. At the

same time, average-based features are the average statistical value achieved over the

previous ’n’ games, i.e., the average number of shots over the last three games.

Table 4.2 shows statistics achieved by a given team over the last three games.

We use this table to illustrate how to create sum-based and average-based features

to predict the outcome of the team’s upcoming game on January 7th. If we were to

calculate the sum-based feature for the shots statistic on this set of recent games,

we would add 25, 42, and 35 together, giving us a sum-based shot feature of 102. If

we were now to calculate the average-based goal feature, we would divide the total

number of goals by the number of games in the interval. So, we would divide 7 by 3,

giving us an average-based goal feature of 2.33.
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Table 4.2: Example of statistics over a team’s last three games.

Game Date Number of Shots Number of Goals

January 1st 25 0

January 3rd 42 3

January 6th 35 4

January 7th ? ?

4.3.4.2 Momentum-Based

This work defines two separate momentum-based feature types, slope-based and

projection-based. Slope-based features are created as follows: first, we query data

from each team’s previous ’n’ games. We then select a statistic, such as shots, blocks,

goals, etc., to create momentum-based features. Using the queried data from the

recent games and our selected statistic, we create a two-dimensional space to plot our

data, where the x-axis represents the passing of days between games and the y-axis

represents the statistical value they obtained for each given game. For example, if we

had chosen the number of shots for our statistic, we would have plotted the number

of shots for each game on the y-axis with the x-axis representing the passing of days

between games starting at x = 0 for the first/earliest game in the interval. With these

points, we calculate the linear line of best fit, and the slope of such a line would be

our slope-based feature. Projection-based features are essentially just an extension of
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our slope-based features. Using the equation of the line of the best fit, we calculate

the slope-based feature. We add the x value, which is the number of days that have

passed since the first day in our game interval, and we project the statistical value

for the upcoming game if the given trends continue.

We feel that an example can best show how these features are calculated. Suppose

we are trying to calculate the slope-based and projection-based features using a three-

game interval for the team in Table 4.2. We have chosen the number of shots to be

the statistic we are using for our calculations, and we are calculating features for

the upcoming game on January 7th. Using this data, we plot the data in the two-

dimensional space as previously stated. Starting with the first game in our interval,

which is the game on January 1st, we would plot x = 0, y = 25. From there, we would

count the days between the game on the 1st and the 3rd; there are two days between

these games, so next, we would plot x = 2, y = 42. Lastly, we would note that January

6th is five days after January 1st, so we plot x = 5, y = 35. With the points we have

plotted, we can calculate the linear line of best fit; this line of best fit is represented

by the equation y = 1.657x + 30.13. From this equation, we can see that our slope-

based feature would be 1.657. Now, using the line of best fit, we can calculate our

projection-based feature. Using the fact that January 7th is six days after our first

game in the interval on January 1st, we plug x = 6 into our previously stated line of

best-fit equation. This gives us roughly 40.08, which would be our projection-based

feature and represents how many shots the team should have if recent trends continue.
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This example can be seen in Figure 4.2.

Figure 4.2: Example of how momentum-based features are calculated with the use of

the data in Table 4.2.

4.3.5 Model Evaluation/Comparison

We use a moving window to generate the data folds rather than evaluating our models

using a standard cross-validation approach. This is because sports events are, in many

ways, temporal data, and therefore, we do not want future events to be predicting past

events. While this approach may slightly decrease our predictive power because we

77



will be training on significantly fewer games than we would when using a traditional

80-20 split and cross-validation, we believe it keeps the integrity of the temporal data.

Our moving window first sorts all games in order of their occurrence. From there,

we determine the number of games the model should train on and the number of

games it should test on; these numbers are different for each sport we will discuss.

Next, we divide all games into 20 equal train-test splits, such that a model is trained

on a group of games and then tested on a group of games that begin immediately

after the last game in the training set, thus ensuring that the future is not predicting

the past. Therefore, these train-test splits move from left to right in the window of

time.

As we alluded to, the train-test size is different for every sport due to the difference

between the number of games in a season for each sport. The training and testing

windows in the NHL and NBA are the same size, as teams in both leagues have

82-game seasons. The training and testing size used for the NHL/NBA is 2460 and

1230, respectively. We need to use much smaller training and testing sizes in the

soccer dataset as teams play significantly fewer games, with only 34-38 games for

each team in a given season and fewer teams playing in the league. The training and

testing sizes used for the soccer dataset are 760 and 380, respectively. These sizes

were chosen to represent roughly two seasons of training and one season of testing in

all three sports.

We adjusted the feature representation before our data was fed into our machine-
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learning algorithms. Rather than having two values for each feature, one for the home

team and one for the away team, we created one singular feature by subtracting the

away feature from the home feature. For example, if we were creating our goals feature

and the value for the home team was 10, and the value for the away team was 7, we

would subtract 7 from 10, giving us 3 for our goals feature. Our inspiration for this

type of feature representation came from the work of Pischedda [32], who found that

this increased the predictive power of their NHL game prediction model. We came to

the same conclusion when testing our models and using this feature representation.

We have included feature selection approaches in our pipeline. We tested multi-

ple approaches, such as recursive feature selection and sequential feature selection.

However, we obtained the best results with the SelectBestK method. This method is

handed some features to select (k) as a parameter and then selects the k best-scoring

features from the complete feature set per a chosen statistical measurement. We used

this method to select the best half of the available features for each model per their

scoring based on mutual information. We perform feature selection on each training

set in the moving window. This means we perform it 20 separate times, once for each

training and testing set, which can result in slightly different features being chosen

each time. We chose to do this because selecting features based on the entire dataset

may introduce a bias into our moving window that unfairly increases the performance

of our models.

We used three separate machine learning approaches for our models: logistic re-

79



gression, random forest [45], and linear discriminant analysis (LDA). While we at-

tempted to use more powerful techniques such as XGBoost [68] or neural networks,

all gradient boosting methods yielded inferior results with our data. When testing

neural networks, we found it was impossible to produce a neural network that wasn’t

biased toward one feature set or the other, and the logistics of having a network for

each model and feature set was beyond the scope of what we are proposing here as our

focus is the data pipeline itself. However, we should note that any machine-learning

techniques could be employed in this pipeline.

To evaluate our models’ predictive power, we used the accuracy metric from

Sklearn [42]. After our models have predicted the outcome of each game in the

testing set, the accuracy metric determines what percentage of those predictions were

correct. Our data manipulation and model evaluation were done using the Python

programming language. For our data manipulation, we relied heavily on the Pandas

module [69], while our machine-learning algorithms and evaluation metrics were all

imported through Sklearn [42]. Lastly, we created data visualizations that show the

average accuracy obtained at each game interval for each machine-learning technique

and each sport. These visualizations were created using the Matplotlib and Seaborn

modules [47, 70].

We should also note the hyperparameters used with our machine-learning tech-

niques. Logistic regression used all default hyperparameters except for max iterations

set to 10000. Random forest used a random state of 1415 to ensure reproducibility
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and had the number of estimators set to twenty percent of the training window size.

Lastly, LDA used all default hyperparameters as well.

4.4 Results

Below, we present the results obtained from each machine-learning technique we em-

ployed. In all figures of this subsection, we report the average accuracy of the 20 equal

train-test splits in the NHL, NBA, and football/soccer datasets. In subsection 4.4.1,

we show the results obtained when using logistic regression, followed by subsection

4.4.2, which shows the results obtained when using random forest. Lastly, subsection

4.4.3 shows the results obtained when using LDA.

4.4.1 Logistic Regression

In Figure 4.3 and Table 4.3, our logistic regression analysis unveils intriguing findings.

It becomes evident that the performance of various feature sets differs across differ-

ent sports leagues. In the NHL, for instance, the momentum-based models exhibit

superior performance when game intervals are shorter. In contrast, frequency-based

features and combined features consistently outperform momentum-based features

for the NBA across all game interval durations. Turning our attention to soccer, we

observe that the momentum-based model excels when game intervals range from six

to seven. While frequency-based and combined features perform similarly to each

other throughout all intervals. Logistic regression consistently delivers the highest
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average accuracy across all three sports, underscoring its effectiveness in our analysis.

Figure 4.3: A comparison of the accuracy achieved among different sports and feature

sets using logistic regression.
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Table 4.3: Average accuracy obtained from the 20 train-test splits of the moving

window for each league and feature set when using logistic regression. The highest

average accuracy for each league at each game interval is represented in bold font.

League Feature Set Interval of Games Used

3 4 5 6 7 8 9 10

Frequency 0.5535 0.5594 0.5623 0.5669 0.5743 0.5824 0.5889 0.5916

NHL Momentum 0.5612 0.5606 0.5682 0.5691 0.5645 0.5760 0.5661 0.5720

Combined 0.5504 0.5608 0.5580 0.5653 0.5738 0.5763 0.5819 0.5802

Frequency 0.6051 0.6199 0.6310 0.6411 0.6442 0.6387 0.6479 0.6451

NBA Momentum 0.5742 0.5821 0.5939 0.5858 0.6008 0.6039 0.6035 0.6066

Combined 0.6044 0.6287 0.6346 0.6333 0.6422 0.6318 0.6411 0.6445

Frequency 0.6434 0.6538 0.6457 0.6481 0.6423 0.6484 0.6433 0.6628

Soccer/Football Momentum 0.6165 0.6230 0.6448 0.6509 0.6480 0.6477 0.6293 0.6459

Combined 0.6468 0.6417 0.6394 0.6475 0.6324 0.6341 0.6328 0.6430

4.4.2 Random Forest

In Figure 4.4 and Table 4.4, some interesting observations emerge as we present

the results obtained for the random forest model. Momentum-based models, it ap-

pears, do not exhibit strong performance across any of the sports. In contrast, the

combined and frequency-based feature sets consistently yield better results across

all three sports. Notably, in both the NHL and soccer datasets, the combined fea-

tures display an edge over the frequency-based feature set, suggesting that combining

frequency-based and momentum-based features may offer a promising approach to
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enhance prediction accuracy. This can also be seen to a lesser extent in the NBA.

Figure 4.4: A comparison of the accuracy achieved among different sports and feature

sets when using random forest.
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Table 4.4: Average accuracy obtained from the 20 train-test splits of the moving

window, for each league and feature set when using random forest. The highest

average accuracy for each league at each game interval is represented in bold font.

League Feature Set Interval of Games Used

3 4 5 6 7 8 9 10

Frequency 0.5414 0.5459 0.5473 0.5505 0.5582 0.5656 0.5643 0.5647

NHL Momentum 0.5419 0.5431 0.5455 0.5561 0.5436 0.5502 0.5511 0.5466

Combined 0.5536 0.5578 0.5566 0.5645 0.5618 0.5671 0.5707 0.5692

Frequency 0.5829 0.5916 0.5971 0.6074 0.6234 0.6267 0.6248 0.6282

NBA Momentum 0.5530 0.5641 0.5754 0.5805 0.5752 0.5952 0.5855 0.5992

Combined 0.5802 0.5901 0.6030 0.6069 0.6193 0.6185 0.6208 0.6291

Frequency 0.6328 0.6250 0.6385 0.6263 0.6393 0.6360 0.6372 0.6325

Soccer/Football Momentum 0.5663 0.5808 0.6056 0.6145 0.6184 0.6224 0.6208 0.6274

Combined 0.6316 0.6272 0.6410 0.6381 0.6353 0.6408 0.6339 0.6458

4.4.3 Linear Discriminant Analysis

Utilizing linear discriminant analysis (LDA) reveals a consistent preference for the

frequency-based feature set, a trend evident in Figure 4.5 and Table 4.5. However, a

couple of notable results are present, the NHL dataset mirrors the initial advantage

for momentum-based features observed with short game intervals when using logistic

regression. We consistently observe a preference for frequency-based features in the

NBA dataset across all but two game intervals. In the soccer dataset, the frequency-

based features excel at all intervals. However, all feature sets seem to perform well

in the soccer dataset.
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Figure 4.5: A comparison of the accuracy achieved among different sports and feature

sets when using linear discriminant analysis.
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Table 4.5: Average accuracy obtained from the 20 train-test splits of the moving win-

dow, for each league and feature set when using LDA. The highest average accuracy

for each league at each game interval is represented in bold font.

League Feature Set Interval of Games Used

3 4 5 6 7 8 9 10

Frequency 0.5522 0.5588 0.5636 0.5699 0.5753 0.5829 0.5851 0.5931

NHL Momentum 0.5661 0.5565 0.5649 0.5667 0.5645 0.5747 0.5663 0.5715

Combined 0.5538 0.5591 0.5590 0.5608 0.5732 0.5759 0.5748 0.5759

Frequency 0.6071 0.6269 0.6271 0.6394 0.6415 0.6396 0.6446 0.6398

NBA Momentum 0.5741 0.5948 0.6098 0.6098 0.6081 0.6264 0.6390 0.6334

Combined 0.6007 0.6285 0.6327 0.6320 0.6368 0.6348 0.6385 0.6377

Frequency 0.6446 0.6559 0.6488 0.6490 0.6402 0.6459 0.6383 0.6591

Soccer/Football Momentum 0.6070 0.6162 0.6442 0.6452 0.6371 0.6431 0.6303 0.6435

Combined 0.6421 0.6330 0.6427 0.6419 0.6291 0.6272 0.6316 0.6387

4.5 Discussion

Upon examining our results, several compelling patterns come to light. Notably, in the

context of the NHL dataset, we discern potential evidence of momentum’s influence

across all three machine learning techniques employed. Both logistic regression and

LDA reveal that momentum-based features and at times combined features hold an

early predictive advantage over the frequency-based feature set. This finding carries

notable significance, suggesting that a team’s performance trend, as opposed to their

aggregated and averaged performance over the same period, better predicts outcomes
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when we only consider a small sample of recent games to access team quality. This

insight implies that momentum can wield predictive power, particularly for outcomes

over shorter spans of games such as three or four. It is essential to clarify that this does

not imply that momentum-based features or momentum itself are universally superior

predictors; instead, it underscores that momentum-based features can enhance more

intricate models by offering valuable insights into short-term performance.

In the case of random forest and the NHL dataset, we observe that a combination

of momentum-based and frequency-based features exhibits the highest predictive effi-

cacy. Given that random forest is a more powerful technique than logistic regression

and LDA, this outcome suggests that the model places significant weight on specific

features from the combined feature set. This finding emphasizes the potential advan-

tages of employing combined features when the goal is to predict the game outcome,

provided that feature selection and hyperparameter tuning are rigorously performed,

particularly in the context of more complex machine learning techniques.

In the NBA dataset, our analysis reveals a minimal effect attributable to momen-

tum across all three machine learning approaches applied in this study. At times we

see advantages when using the combination of both frequency-based and momentum-

based features but these advantages are rare and short-lived. Several factors may

contribute to this lack of evidence, including the specific features we utilized, the

level of hyperparameter tuning, or the inherent characteristics of the NBA itself. It

is worth acknowledging that the NBA, as shown by Rockerbie [71], may exhibit dis-
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tinctive attributes, such as lesser degrees of team parity and randomness, which can

potentially impact the predictability of outcomes.

When examining the outcomes derived from our European football/soccer dataset,

we uncover a particularly intriguing trend, mainly when focusing on the performance

of momentum-based features, notably within the context of logistic regression. In

contrast to the NHL, where momentum-based features demonstrated an advantage

over shorter intervals of three or four games, the soccer dataset presents a distinctive

pattern. Here, the initial performance of momentum-based predictors is underwhelm-

ing, but they exhibit exponential growth in predictive power, reaching their peak at

game intervals of six to eight. Notably, logistic regression showcases an accuracy peak

at an interval of six to seven games. We also see the combined feature sets outperform

the other feature sets the majority of the time when using random forest. Though

the margins of this advantage are small, this recurring trend emphasizes the potential

benefits of leveraging combined feature sets with more sophisticated machine-learning

techniques.

The primary objective of this study was to demonstrate the feasibility of compar-

ing momentum’s impact within a given sport by utilizing both frequency-based and

momentum-based features. We contend that we have effectively elucidated and sub-

stantiated the rationale behind this methodology. Furthermore, we have illustrated

this approach’s practical implementation by contrasting momentum’s effects across

three distinct datasets.
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The outcomes presented in this study strongly suggest that team-based momen-

tum is a tangible phenomenon, quantifiable through the use of momentum-based

features. We believe these findings lay the foundation for future predictive models,

which could employ a combined feature approach to capture short-term and long-term

success in sports analytics more comprehensively.

On a more practical level, this work helps us differentiate the level to which

momentum affects different sports, thus allowing us to contextualize other literature

on the topic in their respective sports. For instance, studies that find no evidence of

momentum in the NBA are no surprise, given our findings here. This work could also

be adapted to examine how momentum affects individual teams differently. This,

in theory, could give teams a better understanding of how an upcoming opponent

may perform, given their predisposition to being affected by momentum or the lack

thereof. For instance, if a team seems to be heavily affected by momentum, their

upcoming opponents can put extra emphasis on their more recent games to judge the

quality of the team.

In this work, we did not use neural networks due to the large scope of constructing

multiple network architectures for each sport and feature set. However, we would like

to explore how neural networks, particularly Long Short-Term Memories (LSTMs),

interact with each feature set in future works. LSTMs are particularly interesting due

to their advantages when using temporal data such as the datasets we have outlined in

this manuscript. Ideally, we would like to construct a pipeline capable of engineering
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unique networks for each sport and feature set. Thus allowing us to further our

understanding of the predictive power of momentum-based features.

It is essential to acknowledge certain limitations in our overall approach. Our

models did not implement a rigorous feature selection technique, nor a hyperparam-

eter selection technique of any kind, potentially introducing bias towards specific

feature sets in certain sports. In future research, a practical strategy that combines

momentum-based and frequency-based features from various game interval durations

may prove instrumental in achieving more accurate predictive models, particularly

in sports like the NHL, where momentum exhibits more substantial indications. Ad-

ditionally, our approach to engineering momentum-based features has two potential

drawbacks. The first is related to cases where we use as few as three games for

our game interval. In such instances, the residuals may deviate significantly from

the line of best fit. Currently, there is no immediate solution to this issue in our

research. Nevertheless, in future endeavors, exploring the possibility of exclusively

predicting games for which the line of best-fit results in an acceptable value for the

residual sum of squares (RSS) may be worthwhile. Another essential concern is us-

ing momentum-based features with many recent games, such as 20 or more. In such

cases, it is possible that the slope of the momentum-based feature could approach

zero. However, employing a more significant number of games may not align with

the conventional concept of momentum, which is typically viewed as a short-term

phenomenon. As the slope feature approaches zero, it could be harnessed with the
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residual sum of squares (RSS) to gauge consistency in scenarios where larger game

intervals are applied. Recognizing that these larger game intervals might also lead

the projection-based feature to yield outcomes connected to those obtained through

the average-based feature is essential. To avoid this, we recommend limiting the use

of this method to no more than 10-12 recent games unless the objective is to measure

consistency rather than momentum. The specific limit could vary, depending on the

league’s structure for which predictions are made. It is crucial to clarify that our

intention is not to imply that momentum-based features, in isolation, are inherently

superior to frequency-based features. Instead, we aim to illustrate the capacity to

measure momentum in ways that extend beyond solely relying on sequential out-

comes. Through these diverse approaches, we can gain insights into how momentum

can influence different sports in distinctive manners, potentially paving the way for

developing more robust pre-game prediction models.

4.6 Conclusion

In this work, we aimed to outline a data pipeline that could effectively compare and

demonstrate the predictive power of momentum-based features among multiple sports

leagues. We believe we have achieved that, and in its current state, this pipeline can be

used to measure the effects of momentum in any sport for which event data is available

and could also be adapted to view the effects of momentum on individual players.

We also believe we have provided further insight into momentum by approaching
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the phenomenon from a trend of play perspective; we believe this view allows us to

emphasize that momentum can be separate from game outcomes and that it is more

important to focus on what historically leads to winning rather than winning itself.

In the future, we would like to explore potential refinements of the pipeline to select

the optimal features and hyperparameters for each model to explore the capabilities

of the momentum-based features further, particularly when they are being combined

with frequency-based features in more robust models such as random forest.
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4.7 Abstract

Table 4.6: The statistics that were used to create the features for the NHL model.

Statistic Sum-based Average-based Slope-based Projection-based

Wins ✓

Loses ✓

Goals For ✓ ✓ ✓ ✓

Goals Against ✓ ✓ ✓ ✓

Goals For 5v5 ✓ ✓ ✓ ✓

Goals Against 5v5 ✓ ✓ ✓ ✓

Goals For 5v5 Close ✓ ✓ ✓ ✓

Goals Against 5v5 Close ✓ ✓ ✓ ✓

Shots For ✓ ✓ ✓ ✓

Shots Against ✓ ✓ ✓ ✓

CORSI ✓ ✓ ✓ ✓

CORSI 5v5 ✓ ✓ ✓ ✓

CORSI 5v5 Close ✓ ✓ ✓ ✓

Faceoffs ✓ ✓ ✓ ✓

Hits For ✓ ✓ ✓ ✓

Hits Against ✓ ✓ ✓ ✓

Penalty Minutes For ✓ ✓ ✓ ✓

Penalty Minutes Against ✓ ✓ ✓ ✓

Blocks For ✓ ✓ ✓ ✓

Blocks Against ✓ ✓ ✓ ✓

Giveaways For ✓ ✓ ✓ ✓

Giveaways Against ✓ ✓ ✓ ✓

Takeaways For ✓ ✓ ✓ ✓

Takeaways Against ✓ ✓ ✓ ✓

xG For ✓ ✓ ✓ ✓

xG Against ✓ ✓ ✓ ✓

xG For 5v5 ✓ ✓ ✓ ✓

xG Against 5v5 ✓ ✓ ✓ ✓

xG For 5v5 Close ✓ ✓ ✓ ✓

xG Against 5v5 Close ✓ ✓ ✓ ✓

Power Play Opportunities For ✓ ✓ ✓ ✓

Power Play Opportunities Against ✓ ✓ ✓ ✓

Power Play Goals For ✓ ✓ ✓ ✓

Power Play Goals Against ✓ ✓ ✓ ✓
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Table 4.7: The statistics that were used to create the features for the NBA model.

Statistic Sum-based Average-based Slope-based Projection-based

Wins ✓

Loses ✓

Points For ✓ ✓ ✓ ✓

Points Against ✓ ✓ ✓ ✓

Field Goal Percentage For ✓ ✓ ✓ ✓

Field Goal Percentage Against ✓ ✓ ✓ ✓

Free Throw Percentage For ✓ ✓ ✓ ✓

Free Throw Percentage Against ✓ ✓ ✓ ✓

3-Point Field Goal Percentage For ✓ ✓ ✓ ✓

3-Point Field Goal Percentage Against ✓ ✓ ✓ ✓

Rebounds For ✓ ✓ ✓ ✓

Rebounds Against ✓ ✓ ✓ ✓

Offensive Rebounds For ✓ ✓ ✓ ✓

Offensive Rebound Percentage For ✓ ✓ ✓ ✓

Offensive Rebounds Against ✓ ✓ ✓ ✓

Offensive Rebound Percentage Against ✓ ✓ ✓ ✓

Defensive Rebounds For ✓ ✓ ✓ ✓

Defensive Rebound Percentage For ✓ ✓ ✓ ✓

Defensive Rebounds Against ✓ ✓ ✓ ✓

Defensive Rebound Percentage Against ✓ ✓ ✓ ✓

Assists For ✓ ✓ ✓ ✓

Assists Against ✓ ✓ ✓ ✓

Steals For ✓ ✓ ✓ ✓

Steals Against ✓ ✓ ✓ ✓

Blocks For ✓ ✓ ✓ ✓

Blocks Against ✓ ✓ ✓ ✓

Turnovers For ✓ ✓ ✓ ✓

Turnovers Against ✓ ✓ ✓ ✓

Effective Field Goal Percentage For ✓ ✓ ✓ ✓

Effective Field Goal Percentage Against ✓ ✓ ✓ ✓

True Shooting Percentage For ✓ ✓ ✓ ✓

True Shooting Percentage Against ✓ ✓ ✓ ✓

95



Table 4.8: The statistics that were used to create the features for the European

football/soccer model.

Statistic Sum-based Average-based Slope-based Projection-based

Wins ✓

Loses ✓

Draws ✓

Goals For ✓ ✓ ✓ ✓

Goals Against ✓ ✓ ✓ ✓

Shots For ✓ ✓ ✓ ✓

Shots Against ✓ ✓ ✓ ✓

Shots On Target For ✓ ✓ ✓ ✓

Shots On Target Against ✓ ✓ ✓ ✓

Corners For ✓ ✓ ✓ ✓

Corners Against ✓ ✓ ✓ ✓

Corners On Target For ✓ ✓ ✓ ✓

Corners On Target Against ✓ ✓ ✓ ✓

Fouls For ✓ ✓ ✓ ✓

Fouls Against ✓ ✓ ✓ ✓

Yellow Cards For ✓ ✓ ✓ ✓

Yellow Cards Against ✓ ✓ ✓ ✓

Red Cards For ✓ ✓ ✓ ✓

Red Cards Against ✓ ✓ ✓ ✓

Passes For ✓ ✓ ✓ ✓

Passes Against ✓ ✓ ✓ ✓

Passes On Target For ✓ ✓ ✓ ✓

Passes On Target Against ✓ ✓ ✓ ✓

Free-kicks For ✓ ✓ ✓ ✓

Free-kicks Against ✓ ✓ ✓ ✓

Free-kicks On Target For ✓ ✓ ✓ ✓

Free-kicks On Target Against ✓ ✓ ✓ ✓
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Chapter 5

Conclusion and Future Works

We believe that through the works described in chapters 3 and 4, we have achieved

the initial research goal of creating a quantification method for sports based on the

increase or decrease in the overall quality of play. This quantification method can

be seen in the momentum-based features we propose, which are engineered using a

team’s linear trend of play over any desired performance indicator allowing us to

extract both slope-based and projection-based features, thus quantifying the increase

or decrease in their overall quality of play.

We have also achieved our second research goal of using this quantification method

along with Machine Learning (ML) models to determine the predictive power of

momentum and compare that to the predictive power of traditional frequency-based

features. This can be seen in our comparison of the accuracy achieved amongst

different game intervals, feature sets, and sports in chapters 3 and 4. This work led
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us to conclude that momentum can affect the outcomes of sporting events; however,

this effect is small. While we found no evidence that momentum has an effect on

outcomes in the NBA, we found that it does affect the outcomes of both the NHL

and soccer/European football. We believe that due to the results seen in chapters 3

and 4, momentum plays a small role in game outcomes; however, it is not near the

sole determinant of the outcome. Therefore, we believe the use of the combination

of momentum-based features and frequency-based features is the way forward. As

was seen in the use of random forest, more powerful machine learning techniques may

favor the combination of the feature sets as it allows them to heavily weigh powerful

features from each respective feature set. For this reason, as we have mentioned in

the work above a pipeline that makes use of more powerful classification methods

coupled with sufficient hyperparameter tuning and feature selection may create a

more powerful pre-game prediction model for sporting events. As it will be able to

capture both short-term trends of play and the standard of play over a period of time.

In the future, there is an opportunity to expand these momentum-based features

by experimenting with features that quantify how well the trend line fits the games

it is modeling or by experimenting with trend lines other than the linear line of best

fit. Experimentation with combining frequency-based and momentum-based features

together into a single feature is also an avenue worth exploring, such as combining

the averaged-based and projection-based features for a given performance indicator

into a single value.
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These momentum-based performance indicators have opened up a new way to

view momentum and how it affects pre-game prediction in sports. With the contin-

ued study of momentum and prediction in sports, we will be able to improve our

understanding of how momentum affects teams and how to better quantify it.
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