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Abstract

We provide a brief introduction to the mathematical aspects of Hermitian and non-

Hermitian quantum theory. Subsequently, we derive the general form of a two-

dimensional Hamiltonian possessing PT symmetry, where T is the complex conju-

gation operator. We then investigate the diagonalizability of such Hamiltonians at

the transition point.

Furthermore, we analyze the time-independent solutions of the Dyson map for a

non-Hermitian, time-independent Hamiltonian. During this exploration, we uncover

certain features of these solutions at the transition point.

As a central finding of this thesis, we consider a quantum oscillator coupled to a

bath of N other oscillators. The total system evolves with a quasi-Hermitian Hamil-

tonian. Associated to it is a family of Hermitian systems, parameterized by a unitary

map W . Our main goal is to find the influence of W on the entropy and the en-

tanglement in the Hermitian systems. We calculate explicitly the reduced density

matrix of the single oscillator for all Hermitian systems and show that, regardless of

W , their von Neumann entropy oscillates with a common period which is twice that

of the non-Hermitian system. We show that generically, the oscillator and the bath

are entangled for almost all times. While the amount of entanglement depends on the

choice of W , it is independent of W when averaged over a period. These results de-

scribe some universality in the physical properties of all Hermitian systems associated

to a given non-Hermitian one.
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Chapter 1

Introduction

In recent years, there has been a growing interest in the exploration of extensions to

quantum mechanics that permit the use of non-Hermitian Hamiltonians. A notable

example of this is found in PT symmetric quantum theory, where non-Hermitian

Hamiltonians yielding purely real spectra are frequently encountered. Many of these

Hamiltonians are, in fact, quasi-Hermitian, as has been extensively discussed in the

literature (e.g., [4, 5, 7, 12, 25, 29, 27, 28, 34, 38]). In the case of quasi-Hermitian

Hamiltonians, it is possible to construct corresponding Hermitian Hamiltonians, which

can then be examined using the conventional methods of quantum theory.

The growing interest in non-Hermitian quantum mechanics, or non-Hermitian

Hamiltonians, can be attributed to several compelling observations. Despite the long-

standing prevalence of Hermitian operators (Hamiltonians) in traditional quantum

mechanics, some of the reasons behind the increasing popularity of non-Hermitian

quantum mechanics are the following:

1. Complex Energy Eigenvalues: Hermitian operators in quantum mechanics have

real eigenvalues, which correspond to observable quantities like energy. However,

in certain complex and open quantum systems, non-Hermitian operators can

lead to complex energy eigenvalues. These systems can describe processes with

decay, amplification, or non-unitary dynamics, which are relevant in fields like

quantum optics and nuclear physics.

2. PT symmetry: Some non-Hermitian Hamiltonians exhibit PT symmetry, which

means that they are invariant under the combined operations of the parity (P )
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and time reversal (T ) operators,

H = PTHPT.

PT symmetric systems have been studied extensively and exhibit interesting

properties. In particular, a PT symmetric H can have real spectrum, despite

being non-Hermitian. This concept has been applied to various physical systems,

leading to the study of exceptional points and non-Hermitian physics. More

details are given in Subsection 2.2.1

3. Topological Phases: Non-Hermitian systems can exhibit topological phases and

associated phenomena, including topological phase transitions. These phases

have been explored in the context of non-Hermitian systems, leading to a deeper

understanding of the role of non-Hermiticity in quantum mechanics and its

connection to topology. See subsection 2.2.1

4. Quantum Mechanics with Gain and Loss: Non-Hermitian Hamiltonians can

model open quantum systems that interact with their environment. This is par-

ticularly relevant in quantum optics, where gain and loss are common phenom-

ena. Non-Hermitian operators are used to describe the dynamics of quantum

systems coupled to external baths or reservoirs. See example 2 in Subsection

2.2.2.

An illustration of a non-Hermitian system can be seen in the case of an oscillator

interacting with a ‘bath’ consisting of N independent oscillators.
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The Hamiltonian of the above system is given by

H = νNtot + (g + κ)
√
N a∗Q+ (g − κ)

√
N aQ∗, (1.1)

where ν > 0 and g, κ ∈ R are parameters and

Ntot = a∗a+
N∑
n=1

q∗nqn, Q =
1√
N

N∑
n=1

qn. (1.2)

Here a∗ and a are respectively the creation and annihilation operators for the oscilla-

tor. Similarly, q∗i and qi represent the creation and annihilation operators for the ith

oscillator associated in the bath.

The Hamiltonian in (1.1) is Hermitian only when κ = 0. Consequently, the ap-

plication of Hermitian quantum theory is not a valid option for dealing with such

Hamiltonians. Hence, there arose a need to formulate a new theory capable of han-

dling non-Hermitian operators. Notably, a key feature of the Hamiltonian described

in (1.1) is its similarity to its conjugate transpose through a metric operator, a char-

acteristic subsequently labeled as quasi-Hermiticity.

1.1 Quasi-Hermitian systems

In this thesis, we employ the notation H to denote the Hilbert space, with the inner

product 〈·|·〉 exhibiting anti-linearity in the first argument. In other words, we have

〈c1ψ1 + c2ψ2|ψ3〉 = c̄1〈ψ1|ψ3〉+ c̄2〈ψ2|ψ3〉,

where cj ∈ C and |ψj〉 ∈ H.

Let H be a finite-dimensional Hilbert space. An operator η is said to be positive,

denoted as η > 0, if 〈ψ|ηψ〉 > 0 for all nonzero |ψ〉 ∈ H. This is equivalent with

saying that η∗ = η and all eigenvalues of η are strictly positive. Here A∗ is the adjoint

of the operator A, defined by 〈ψ|Aφ〉 = 〈A∗ψ|φ〉 for all |φ〉, |ψ〉 ∈ H. An operator H

on H is called (η-)quasi-Hermitian if there exists a positive operator η > 0 such that

H∗ = ηHη−1. (1.3)
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Quasi-hermiticity is a special case of pseudo-Hermiticity, where (1.3) holds with an

invertible (but not necessarily positive) Hermitian operator η. Pseudo- and quasi-

Hermitian Hamiltonians arise in PT symmetric quantum theory, see for instance [42]

and references therein.

1.2 Hermitian counterparts

Let H be a non-Hermitian operator on a Hilbert space H with inner product 〈·|·〉, a

candidate for the Hamiltonian of a physical system. In order to obtain a Hermitian

quantum theory, one could either:

(1) Modify the inner product of H to 〈·|η ·〉 for some metric operator η > 0, such

that H becomes Hermitian in the Hilbert space Hη with this new inner product;

or

(2) Take a similarity transformation (invertible map) S such that the transformed

h = SHS−1 is Hermitian in the original Hilbert space H.

If H is quasi-Hermitian, then both options (1) and (2) are possible, but neither the

metric nor the similarity transform in options (1) and (2) are unique. To explore

this non-uniqueness, we first notice that any quasi-Hermitian H is diagonalizable

[13, 16, 29]. More precisely,

H =
N∑
n=1

En|ψn〉〈φn|, (1.4)

where the En ∈ R are the eigenvalues and the {|ψn〉, |φn〉}Nn=1 form a complete bi-

orthonormal family, meaning that 〈ψk|φl〉 = δkl and
∑
|ψn〉〈φn| = 1l. Let us consider

the case where all eigenvalues En are distinct for simplicity (a discussion including

degenerate eigenvalues can be done similarly, but this is not our focus here). Then

the decomposition (1.4) is unique, it is the spectral representation of the operator H,

and the Pn ≡ |ψn〉〈φn| are the uniquely defined (generally not orthogonal) spectral

projections. The vectors |ψn〉 and |φn〉, however, are determined only up to a joint

scaling |φn〉 7→ zn|φn〉 and |ψn〉 7→ 1
zn
|ψn〉, with 0 6= zn ∈ C arbitrary.

• First let us explore the option (1). A metric η is called a metric for H if H

is η-quasi-Hermitian. Let A be a linear operator on H, with adjoint A∗ as defined
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above. If A is viewed as an operator on Hη, then 〈φ|ηAψ〉 = 〈η−1A∗ηφ|ηψ〉, so the

adjoint of A in Hη is

A‡ = η−1A∗η. (1.5)

It follows that a given η > 0 is a metric for H if and only if H‡ = H, that is, if and

only if H is Hermitian acting on Hη. It is well known (see e.g. [34, 16]) that

η is a metric for H ⇐⇒ η =
N∑
n=1

xn|φn〉〈φn| for some x1, . . . , xN > 0, (1.6)

where the |φn〉 are the vectors appearing in (1.4). The multitude of metrics obtained

by varying the xj in (1.6) naturally appears due to the fact that |φn〉 is only determined

up to an arbitrary nonzero scaling factor zn (as explained after (1.4)), which results in

the scaling xn 7→ xn|zn|2. Given this non-uniqueness of the metric, which one should

be chosen to define the physical Hilbert space Hη?

One answer is that the metric is fixed provided that instead of just H, one chooses

a whole irreducible family of operators to be Hermitian observables. Namely, it is

shown in [38] (see also [35] for the two-dimensional case) that if there is a family

of operators {Ai}i on H, and positive operators η, η′ such that A∗i = ηAiη
−1 and

A∗i = η′Ai(η
′)−1 for all i, then

η′ is a scalar multiple of η ⇐⇒ {Ai}i is an irreducible family of operators on H.

Recall a set O(V) of operators on a vector space V is irreducible if there are no

proper subspaces of V (i.e. except V and {0}) that are invariant under all Ô ∈ O(V).

This means that for an irreducible family of quasi-Hermitian operators, there is

exactly one metric (up to a scalar multiple) that makes those operators Hermitian.

The chosen family1 can then be viewed as the physical observables of the theory and

the space of pure states is H with inner product 〈·|·〉η.

On the other hand, if interested only in the single observable H (the Hamiltonian),

one should keep the xn in (1.6) general.

• Next, let us investigate option (2) for H of the form (1.4). Let η be a metric

1Examples of irreducible families are the Pauli matrices for a spin, with the Euclidean inner
product on C2, or the position x̂ and momentum p̂ = −i~∇x for a quantum particle (rather, the
bounded Weyl operators generated by them) with the inner product 〈ψ|φ〉 =

∫
R3 ψ̄(x)φ(x) d3x.
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for H, so it is of the form (1.6). We find all invertible S such that the transformed

h ≡ SHS−1 is Hermitian,

h = SHS−1 =
(
SHS−1

)∗
= h∗. (1.7)

One readily sees that (1.7) is equivalent to TH = HT , where T = η−1S∗S. That

T commutes with H, as in (1.4), is equivalent to T being diagonal in the same bi-

orthonormal system as H, that is, T =
∑N

n=1 tn|ψn〉〈φn| for some tn ∈ C. Now

S∗S = ηT =
( N∑
n=1

xn|φn〉〈φn|
)( N∑

k=1

tk|ψk〉〈φk|
)

=
N∑
n=1

xntn|φn〉〈φn|, (1.8)

and as S∗S > 0 and xn > 0, we have tn > 0 as well. It follows from (1.6) and (1.8)

that ηT is also a metric for H. In fact, (1.6) and (1.8) show that given a fixed metric η

for H and varying ηT over all operators T > 0 that commute with H, we obtain all of

the metrics for H. We conclude that given η, the S we are looking for are the solutions

of S∗S = ηT , where T > 0 is an operator that commutes with H (equivalently, is

diagonal in the same bi-orthonormal system as H). The general solution is

S = W
√
ηT , (1.9)

where W is any unitary and where for a positive operator A,
√
A is the unique positive

operator whose square equals A.

Once W and T are chosen, the associated Hermitian h in (1.7) becomes

hW,T = W
√
ηT H

1√
ηT

W ∗. (1.10)

We stress with this notation that h depends on the choice of W and T . The h

obtained from two different choices of unitaries, say V and W , are unitarily equivalent,

with hV,T = UhW,TU
∗ and U = VW ∗. In this sense, the choice of W is globally

immaterial. However, if the Hilbert space has a local structure, say is of bipartite

nature H = HS⊗HB, then the global unitary U may well change the local properties

of the two local subsystems, in which case the choice of W will play a physically

relevant role. We also point out that the spectrum of hW,T does not depend on either

W or T (or η, for that matter).
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In Chapter 6, we start with a given quasi-Hermitian Hamiltonian H and an arbi-

trary metric η for H and we view Hη as the physical Hilbert space. We analyze the

class of all associated Hermitian systems hW,T , where W and T vary over all unitaries

and all positive operators commuting with H, respectively. As explained above, con-

sidering all metrics η is the same as considering all metrics ηT , so varying over T is

redundant if η is kept arbitrary. We may then set T = 1l and only consider

S = W
√
η, hW = W

√
η H

1
√
η
W ∗ (1.11)

for all W and η.

1.3 States, reduced states, von Neumann entropy

Consider now a fixed metric η, so that the physical Hilbert space is Hη and H is

Hermitian on Hη, H
‡ = H, where H‡ be defined as stated in equation (1.5). Then

e−itH is the unitary Schrödinger dynamics on Hη. The average of an observable A on

Hη in the state |ψ〉 ∈ Hη is given by

〈ψ|Aψ〉η = 〈ψ|ηAψ〉 = tr
(
|ψ〉〈ψ|ηA

)
= tr

(
ρ̃A
)
, (1.12)

where

ρ̃ = |ψ〉〈ψ|η (1.13)

is a density matrix on Hη (a positive, trace-one operator). This ρ̃ is called the ‘gen-

eralized density matrix’ in [39]. It is important to point out that the trace in (1.12)

is a purely algebraic quantity: it is the sum of the eigenvalues of the operator, and

therefore does not depend on the choice of the metric.

To arrive at a Hermitian Hamiltonian, it is necessary to make a choice for the

unitary W in (1.11). The associated Hermitian Hamiltonian hW is then given by

(1.11). Let

|ψ(t)〉 = e−itH |ψ(0)〉, |φ(t)〉 = e−ithW |φ(0)〉 (1.14)
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be the evolution of the initial states |ψ(0)〉, |φ(0)〉 with respect to H and hW , respec-

tively. The states are related by

|φ(t)〉 = S|ψ(t)〉, S = W
√
η, (1.15)

and the density matrices associated to these vector states for the non-Hermitian (see

(1.13)) and the Hermitian systems are

ρH(t) = |ψ(t)〉〈ψ(t)|η and ρhW (t) = |φ(t)〉〈φ(t)|, (1.16)

respectively. (We adopt the notation ρhW and ρH for the density matrices on the

Hermitian and non-Hermitian sides of the problem from [18].) It is clear from (1.15)

that

ρhW (t) = S|ψ(t)〉〈ψ(t)|S∗ = S|ψ(t)〉〈ψ(t)|(S∗S)S−1 = SρH(t)S−1. (1.17)

It follows that ρhW (t) and ρH(t) have the same eigenvalues, and hence the same von

Neumann entropy, E(ρhW (t)) = E(ρH(t)), where

E(ρ) = −tr
(
ρ ln ρ

)
= −

∑
i

λi lnλi (1.18)

and {λi} are the eigenvalues of ρ.

Consider now a bipartite system with H = HS ⊗ HB (‘system’ and ‘bath’). We

consider the reduced states (denoted by an overbar) defined by tracing out the degrees

of freedom of the subsystem HB,

ρ̄H(t) = trHB

(
ρH(t)

)
, ρ̄hW (t) = trHB

(
ρhW (t)

)
. (1.19)

In some recent works [18, 22, 21, 11], the dynamics of a bipartite system generated by

a non-Hermitian Hamiltonian H is studied, with particular focus on the von Neumann

entropy of the reduced density matrix ρ̄H(t). The strategy proposed in those works

is to examine the entropy of ρ̄hW (t) as a proxy for that of ρ̄H(t). In this respect,

however, one should observe the following facts:

1. The operator ρ̄H(t) always satisfies trHS
(ρ̄H(t)) = 1, but for some choices of η
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the eigenvalues of ρ̄H(t) can be complex, in which case it is not a valid density

matrix.

2. Even if the metric η is chosen such that ρ̄H(t) is a density matrix, for generic

choices of W the von Neumann entropies E(ρ̄H(t)) and E(ρ̄hW (t)) are not the

same. The latter in fact depends on the choice of W .

To understand the normalization of the trace mentioned in fact 1. above, we ob-

serve (using 1lS as the system observable) that

trHS
(ρ̄H(t)) = trHS

(ρ̄H(t)1lS) = trHS⊗HB

(
ρH(t)(1lS ⊗ 1lB)

)
= trHS⊗HB

(ρH(t)) = 1.

If S = SS ⊗ SB, then ρ̄h = SSρ̄HS
−1
S and so the spectra and thus the von Neumann

entropies of ρ̄h and ρ̄H coincide. However, if S is entangling (not of product form

SS ⊗ SB), then the eigenvalues of the two reduced density matrices are not the same

in general, and neither are their entropies.

These difficulties are resolved in Chapter 6, where we study the concrete model

used in [18]. In particular, we determine for which choices of η the reduced operator

ρ̄H(t) is indeed a density matrix, and then we find the von Neumann entropy of ρ̄hW (t)

for all possible choices of the unitary W .

1.4 Main results and organization of the thesis

Our main findings are summed up as follows:

1. Diagonalizability at transition point. We successfully compute all 2 × 2

Hamiltonians possessing PT symmetry, where P is an involutive 2× 2 matrix,

meaning P 2 = 1l, and T is the complex conjugate operator with respect to a fixed

basis acting on the complex space C2. We then proceed to delineate the regions

where these Hamiltonians exhibit unbroken and broken symmetry, pinpointing

the specific transition points. Subsequently, our investigation focuses on the

diagonalizability of these Hamiltonians precisely at these transition points. See

Chapter 3.

2. Existence of metrics and their properties. In Chapters 5, we consider a

general setup of a PT symmetric system. In Chapter 5 we introduce a generic
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model of a family of Hamiltonians H(κ) indexed by a parameter κ varying

around a symmetry transition point κ0, with κ < κ0 corresponding to the

symmetry unbroken regime. Our main result is Theorem 5.2.2. It shows that

at the transition point κ0, the Hamiltonian H(κ0) is diagonalizable if and only

if there exists a time-independent metric η, that is, if and only if H∗(κ0)η =

ηH(κ0) for some η > 0.

We show in Section 5.2.2 that in the PT symmetry broken regime, there are

no time-independent metrics (Proposition 5.2.5). Furthermore, we show in

Theorem 5.2.3 that in the PT symmetry unbroken regime, any possibly time-

dependent metric is a bounded function of time, while in the PT symmetry

broken regime, one can always find a time-dependent metric which grows expo-

nentially in time.

3. Analysis of an explicit PT symmetric open system. In Chapter 6 we

introduce an N + 1 oscillator model with a PT symmetric Hamiltonian - it is

the same model that has been considered in [18]. In Sections 6.1.2 and 6.1.3

we obtain the explicit formulas for the states |ψ(t)〉 and |φ(t)〉 as well as the

reduced states ρ̄H(t) and ρ̄hW (t).

– Metrics. We find all possible metrics for the given Hamiltonian and show that

the operator ρ̄H(t) is a density matrix exactly when η is of product form ΛS⊗ΛB

– otherwise ρ̄H(t) has complex eigenvalues. See Section 6.1.1. Consequently, for

the further analysis we take η of product form.

– Subsystem entropy. The reduced states ρ̄H(t) and ρ̄hW (t) are periodic2

in time, both having the same period regardless of the choice of W . The von

Neumann entropy of ρ̄H(t) and ρ̄hW (t) is periodic in time as well, but for generic

initial conditions and generic W , the period of the entropy of the Hermitian

system is double that of the non-Hermitian system. See Section 6.2.

– SB entanglement. We show that the non-Hermitian and the Hermitian SB

(system-bath) states |ψ(t)〉, |φ(t)〉 are entangled for all times except at periodi-

cally reoccurring single instants. Given any entangled state |ψ〉, one can find W

such that the associated |φ〉 is disentangled, and for any disentangled |ψ〉 there

2The whole SB complex consists of N + 1 oscillators, so the energy spectrum of all the Hamilto-
nians involved consists of discrete eigenvalues only, without continuous spectrum. This explains the
periodicity.
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are W such that |φ〉 is entangled. However, in an averaged sense, the choice of

W does not influence the entanglement at all. Namely, the concurrence of the

time-averaged density matrix, 〈ρ〉 = 1
T

∫ T
0
|φ(t)〉〈φ(t)| dt, where T is the period

of |φ(t)〉〈φ(t)|, is independent of W . Its value is determined entirely by the

initial condition and the choice of the metric. We identify the initial states for

which 〈ρ〉 is separable and for which it is maximally entangled. See Section 6.3.

The structure of this thesis is as follows:

Chapter 2: Concise introduction to key concepts in quantum mechanics, such as

PT symmetry, and pseudo-Hermiticity, which are pertinent to the research presented.

Chapter 3: Investigation of the diagonalizability of 2×2 matrices that exhibit PT

symmetry.

Chapter 4: Introductory discussion of the Dyson map.

Chapter 5: Analysis of time-independent solutions of the Dyson map. Exploration

of the properties of these solutions, focusing on their positivity and invertibility.

Chapter 6: Analysis of the concrete N+1-oscillator PT symmetric system. Based

on the published work [26].



Chapter 2

Basics of Hermitian and

Non-Hermitian Quantum

Mechanics

2.1 The basic postulates of quantum mechanics

Quantum mechanics serves as a mathematical framework for the formulation of phys-

ical theories. In this chapter, we provide a concise overview of the fundamental

postulates that underpin quantum mechanics. These postulates establish a vital link

between physical reality and the mathematical structure of quantum mechanics [37].

2.1.1 Postulate 1: Space of pure states

Any physical system is described by a complex Hilbert space H, known as the (pure)

state space of the system. The system is completely described by its state vector,

which is a unit vector in the system state space,

|ϕ〉 ∈ H, ‖ϕ‖ = 1.

Such a state (vector) is also called a “ket” (or a wave function).

To any ket |ϕ〉 is associated the “bra”, denoted by 〈ϕ|, defined to be the element
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in the dual space H∗ of H acting as

〈ϕ|
(
|ψ〉
)

= 〈ϕ|ψ〉, (2.1)

where the right hand side is the inner product of |ϕ〉 and |ψ〉 in H.

Examples.

1. A single spin has a Hilbert space H = C2. It has basis B = {| ↑〉, | ↓〉}, where

| ↑〉 =

[
1

0

]
, | ↓〉 =

[
0

1

]
.

Any state can be written as a linear combination of the basis elements,

|ψ〉 ∈ C2 |ψ〉 = α| ↑〉+ β| ↓〉, α, β ∈ C. (2.2)

The interpretation of the complex numbers α, β is that |α|2, |β|2 are probabilities

of finding the spin in the state up or down, respectively (upon measurement,

see Postulate 4 below). The normalization ‖ψ‖2 = |α|2 + |β|2 = 1 is consistent

with this probability interpretation of the coordinates.

2. A single particle in three-dimensional space is described by the Hilbert space

H = L2(R3, d3x) of complex-valued square-integrable functions. A (pure) state

is given by a square-integrable normalized function ψ(x). The physical inter-

pretation of the ‘component’ ψ(x) is this: |ψ(x)|2d3x is the probability density

of finding the particle at location x ∈ R3.

2.1.2 Postulate 2: Dynamics (Schrödinger equation)

The state of a quantum system evolves in time according to an evolution equation,

the Schrödinger equation. Namely, the orbit t 7→ |ψ(t)〉 satisfies the first-order linear

differential equation

i~
d|ψ(t)〉
dt

= H|ψ(t)〉. (2.3)
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Here ~ is the Planck constant and H is a self-adjoint operator acting on the pure state

Hilbert space H, called the Hamiltonian. Equation (2.3) is solved by

|ψ(t)〉 = e−itH |ψ(0)〉, (2.4)

where we have chosen units so that the Planck constant ~ = 1 . The unitary group

t 7→ U(t) = e−itH (2.5)

is often called the propagator, as it pushes the initial condition to the state at time t.

Example. If a spin is initially in the state |ψ(0)〉 = α0| ↑〉+β0| ↓〉, then according

to the Schrödinger equation (2.4), with Hamiltonian

H = 1
2

[
1 0

0 −1

]
, (2.6)

the state at time t is

|ψ(t)〉 = α0e
−it/2| ↑〉+ β0e

it/2| ↓〉. (2.7)

2.1.3 Postulate 3: Composition of systems

If two systems have Hilbert spaces H1 and H2 then the composite system is described

by the tensor product,

H = H1 ⊗H2. (2.8)

Examples.

1. The Hilbert space describing N particles is given by

N⊗
i=1

Hi = H1 ⊗ · · · ⊗ HN ,

where for each 1 ≤ i ≤ N , Hi = L2(R3, d3x).

2. The composite space H of a spin and a single particle is

H = C2 ⊗ L2(R3, d3x).
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If a state |ψ〉 ∈ H1 ⊗H2 can be written as |ψ〉 = |ψ1〉 ⊗ |ψ2〉 with |ψj〉 ∈ Hj , then it

is called a (tensor) product state or a separable state, or a disentangled state.

A state that is not of product form is called a non-separable state, or an entangled

state.

2.1.4 Postulate 4: Measurements

Every physical observable (energy, position, momentum, etc) is associated with a self-

adjoint operator A = A∗. The Hamiltonian H (see Postulate 2) is the observable of

energy. Suppose the spectral decomposition of A is given by

A =
∑
j

λjPj, (2.9)

where the Pj are the spectral projections and λj the eigenvalues. When measuring the

observable A in any state, the possible measurement outcomes are one of {λ1, λ2, . . . }.
When the measurement is performed on the state |ψ〉, the outcome λi will occur with

probability

pi = ‖Pj|ψ〉‖2 = 〈ψ|Pjψ〉. (2.10)

If the measurement reveals the outcome λj, then the state of the system immediately

after measurement is

|ψpost〉 =
Pj|ψ〉
‖Pj|ψ〉‖

. (2.11)

This part of the postulate is called the “wave function collapse” and (2.11) is called

the post-measurement state.

Examples.

1. Consider the spin with Hamiltonian (2.6),

H = 1
2

[
1 0

0 −1

]
= 1

2
P+ − 1

2
P− (2.12)

(with obvious notation for the spectral projections). The measurement outcomes

for the energy are ±1/2 in any state. Upon measurement of the energy in the
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state |ψ〉 = α| ↑〉+ β| ↓〉, the measurement value +1/2 occurs with probability

p+ = ‖P+|ψ〉‖2 = |α|2.

2. Let A be an observable and |ψ〉 a state. The expectation value (statistical

average) of A with respect to the state |ψ〉 is denoted by 〈A〉. From Postulate

4 we know that the possible measurement outcomes of A are its eigenvalues,

where each eigenvalue λj will occur with probability pj. Thus the average of A

is

〈A〉 =
∑
j

λjpj. (2.13)

Using the probability formula in equation (2.10) and the spectral decomposition

of A in (2.9) we have

〈A〉 =
∑
j

λj〈ψ|Pjψ〉

= 〈ψ|
∑
j

λjPjψ〉

= 〈ψ|Aψ〉

= tr
(
|ψ〉〈ψ|A

)
. (2.14)

The trace of an operator X (if it exists) is given by

tr(X) =
∑
n∈N

〈en|Xen〉, (2.15)

for any orthonormal basis {|en〉}n∈N of H. The definition of trace is independent

of the choice of the orthonormal basis.

2.1.5 Density matrix

The average of an observable O in the pure state |ϕ〉 is 〈ϕ|Oϕ〉, see (2.14). Suppose

now that our knowledge of the state is not perfect, namely, that we only know that

with probabilities pj our state is |ϕj〉. The collection {|ϕj〉, pj} is called an ensemble of

pure states. The average of the observable O associated to that ensemble is naturally
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defined to be

〈O〉 =
∑
j

pj〈ϕj|Oϕj〉. (2.16)

By defining the density matrix

ρ :=
∑
j

pj|ϕj〉〈ϕj|, (2.17)

we see that

〈O〉 = tr
(
ρO
)
. (2.18)

The density matrix ρ, (2.17), is called a mixed state [8] if its rank exceeds one. If

ρ has rank one, then it is called a pure state, ρ = |ϕ〉〈ϕ| (see (2.14)). More generally,

any operator ρ acting on H satisfying the following properties is a density matrix:

• ρ ≥ 0 (positive, in particular self-adjoint),

• tr(ρ) = 1 (normalized).

Examples.

1. For any 0 ≤ p ≤ 1, the following is a family of density matrices of a spin,

ρ = p| ↑〉〈↑ |+ (1− p)| ↓〉〈↓ | =

[
p 0

0 1− p

]
.

Here, ρ is pure if and only if p ∈ {0, 1}.

2. Let |ψ〉 be a general pure state of a spin, (2.2). The associated density matrix

(written in the basis | ↑〉, | ↓〉) reads

ρ = |ψ〉〈ψ| =

[
|α|2 ᾱβ

αβ̄ |β|2

]
. (2.19)
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2.1.6 Reduced density matrix and partial trace

Let X⊗Y be an operator on the composite system H1⊗H2, formed by two separable

Hilbert spaces H1 and H2. We define the partial trace over H2 by

tr2(X ⊗ Y ) = Xtr(Y ). (2.20)

tr2 extends by linearity and countinuity to a linear map from B(H1 ⊗H2) to B(H1)

[40]. The partial trace is important when we study the physical state of a subsystem

of the composite system. In other words, if ρ12 is a density matrix of the composite

system H1 ⊗H2, then the reduced states are

ρ1 = tr2(ρ12), ρ2 = tr1(ρ12). (2.21)

ρ1 and ρ2 are called the reduced density operators for the systems 1 and 2, re-

spectively. The point of this construction is the following.

Suppose ρ12 is the density matrix of the composite system H1 ⊗H2, and we want

to find the average of an observable O1 of system 1 only. This average is

trH1⊗H2

(
ρ12(O1 ⊗ 1l2)

)
= trH1(ρ1O1). (2.22)

This means we can use the reduced density matrix of a composite system if we are

interested in the properties of a subsystem only.

Example. The Hilbert space H = C2⊗C2 describes the pure states of two spins.

Consider the pure state (Bell state)

|ψ〉 =
| ↑↑〉+ | ↓↓〉√

2
, (2.23)

where | ↑↑〉 = | ↑〉 ⊗ | ↑〉 , | ↓↓〉 = | ↓〉 ⊗ | ↓〉 and call its density matrix ρ12 = |ψ〉〈ψ|.
The reduction to the first spin is

ρ1 = tr2ρ12 = 1
2

(
| ↑〉〈↑ |+ | ↓〉〈↓ |

)
=

1

2
1l. (2.24)

This example shows that the reduced state of a pure state can actually be a mixed

state. (Note, the rank of ρ1 is two.)
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2.1.7 Evolution of quantum systems

According to Postulate 2, the dynamics of the pure initial state |ψ(0)〉 is given by

|ψ(t)〉 = e−itH |ψ(0)〉. Equivalently, the propagator

U(t) = e−itH , (2.25)

satisfies the evolution equation

i
dU(t)

dt
= HU(t). (2.26)

This is the setup of Postulate 2, which implicitly assumes that the system considered

is closed, meaning that it is not in contact with ‘external agents’. (Strictly speaking,

thus, the only closed system is the whole universe, since in reality, any system is in

contact with its surroundings.)

How does the dynamics look for a closed system in a mixed state? Suppose the

system is described by the density matrix ρ(0) at time zero. To get the equation of

motion for this state, we use the definition of the density matrix in (2.17),

ρ(0) =
∑
j

pj|ϕj(0)〉〈ϕj(0)|. (2.27)

Now the evolution of |ϕj〉 is given by |ϕj(t)〉 = U(t)|ϕj(0)〉 and so the density matrix

at time t is

ρ(t) =
∑
j

pjU(t)|ϕj(0)〉〈ϕj(0)|U∗(t)

= U(t)ρ(0)U∗(t), (2.28)

where U∗(t) is the adjoint of U(t). With (2.25) this becomes

ρ(t) = e−itHρ(0)eitH . (2.29)

Equation (2.29) is called the Liouville-von Neumann equation [9]. In differential

form, it takes the shape
d

dt
ρ(t) = −i[H, ρ(t)]. (2.30)
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Let O be an observable. Its average in the state ρ(t) is

tr
(
ρ(t)O

)
= tr

(
e−itHρ(0)eitHO

)
= tr

(
ρ(0)O(t)

)
, (2.31)

where

O(t) = eitHOe−itH . (2.32)

The map t 7→ O(t) called the Heisenberg evolution of the observable O [23].

2.1.8 Open systems

An open system is a system in contact with an ‘environment’, with which the system

can exchange energy, matter, information, etc. The following diagram illustrates what

we mean by an open quantum system.

In the above figure, the system S is described by a Hilbert space HS and a state

ρS. It is coupled with the environment R (“reservoir”) which is described by a Hilbert

space HR and a state ρR.

Postulate 3 tells us that the total system S + R is given by the tensor product

H = HS ⊗HR. A state of the joint system, in which the system and reservoir parts

are not correlated (no entanglement) is given by ρ = ρS ⊗ ρR. The total Hamiltonian
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H for the composite system has the form

H = HS ⊗ 1lR + 1lS ⊗HR +HC, (2.33)

where HS and HR are the Hamiltonians of the system and environment. HC is the

Hamiltonian of the interaction between the system and environment, which acts on the

total system H. Even though the evolution of the total complex S+R is given by the

Schrödinger equation (unitary propagator), the time evolution of the open subsystem

S is not, in general, unitary. The non-unitary dynamics of the open system comes

from the interaction between the system and the environment. It reflects the fact that

the system can lose energy, matter, etc.

Let ρ(0) be the initial state of the complex S +R. The reduced density matrix of

S at time t is given by

ρS(t) = trR{U(t)ρ(0)U∗(t)}, (2.34)

where we take the partial trace over the reservoir degrees of freedom. In equation

(2.34), U(t)ρ(0)U∗(t) is the (closed, unitary) evolution of the total complex S +R.

The differential form of (2.34) is

d

dt
trRρ(t) =

d

dt
ρS(t) = −itrR

[
H, ρ(t)

]
, (2.35)

where H is as in (2.33).

An observable OS of the open system S has the form

OS = O ⊗ 1lR, (2.36)

where operator O acting on HS and 1lR stands for the identity operator of HR. The

average value of OS is given by

〈OS(t)〉 = trS(ρS(t)OS), (2.37)

where ρS(t) as is in (2.34).
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2.1.9 The Von Neumann entropy

The von Neumann entropy of the density operator ρ is defined by

E(ρ) = −tr(ρ log(ρ)). (2.38)

If the trace is infinite, we set E(ρ) = +∞. If we use the spectral decomposition (2.17)

of ρ , we find the representation

E(ρ) = −
∑
j

pj log(pj). (2.39)

Here are some fundamental properties of entropy. For a more in-depth exploration,

please see reference [37].

Proposition 2.1.1. The entropy E(ρ) is a non-negative function. Moreover,

(i) The state ρ is pure if and only if E(ρ) = 0.

(ii) In a N-dimensional Hilbert space, the entropy is at most logN . The maximum

entropy is taken by a completely mixed state. More precisely, E(ρ) = logN if

and only if the system is in the completely mixed state ρ = 1l
N

, where 1l is the

identity operator.

(iii) For a bipartite pure state ρ ∈ H1 ⊗H2, E(ρ1) = E(ρ2).

2.1.10 Creation and annihilation operators of the harmonic

oscillator

We begin with the Hamiltonian operator for the harmonic oscillator H acting on the

square-integrable functions Hilbert space L2(R, dx) expressed as

H =
p̂2

2µ
+

1

2
µω2x̂2, (2.40)

where µ is the particle’s mass, ω is the angular frequency of the oscillator, x̂ is the

position operator (the multiplication operator acting as x̂ψ(x) = xψ(x)), and p̂ is the

momentum operator (given by p̂ = −i~ ∂
∂x

in the coordinate basis). We next introduce
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the operators Q and P , related to x̂ and p̂ by the equations

x̂ =
( ~
µω

) 1
2
Q, (2.41)

and

p̂ = (µω~)
1
2P. (2.42)

Using

[x̂, p̂] = i~, (2.43)

it can easily be shown that

[Q,P ] = i. (2.44)

Substituting equations (2.41) and (2.42) into equation (2.40) we obtain

H =
1

2
~ω(P 2 +Q2). (2.45)

We next define

H1 =
H

~ω
=

1

2
(P 2 +Q2) (2.46)

It is easy to see that if ψ is an eigenfunction of H1 with the eigenvalue λ, then ψ is also

an eigenfunction of H with eigenvalue E = ~ωλ. We next define the annihilation

operator by

â =
1√
2

(Q+ iP ). (2.47)

The adjoint of the annihilation operator

â∗ =
1√
2

(Q− iP ). (2.48)

is called a creation operator. Clearly, â is not Hermitian. Using (2.44), it is easy to

show the commutator between creation and annihilation operators is given by

[â, â∗] = 1. (2.49)

Using the definition of creation and annihilation operators in (2.47) and (2.48)
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respectively, the expression for H1 becomes

H1 = â∗â+
1

2
= N +

1

2
, (2.50)

where

N = â∗â, (2.51)

is called the number operator. We see that if ψn is an eigenfunction function of

N with eigenvalue n; i.e. Nψn = nψn, then ψn is also an eigenfunction of H1 with

eigenvalue n+ 1/2 as well as an eigenfunction of H with eigenvalue (n+ 1/2)~ω.

2.2 Non-Hermitian Quantum Theory

Traditionally, the Hamiltonian is a Hermitian (self-adjoint) operator, H∗ = H. Let us

therefore first recall the principal reasons why Hermiticity is a very necessary property

to have in a physical system.

• One primary justification lies in the fact that Hermiticity ensures the realness

of energy values. This is easily seen when starting from the time-independent

Schrödinger equation for some state vector |ψ〉 involving a time-independent

Hamiltonian H and its conjugate H∗

H|ψ〉 = E|ψ〉 and 〈ψ|H∗ = Ē〈ψ|. (2.52)

Multiplying the first equation by the bra state 〈ψ| from the left and the second

equation by the |ψ〉 from the right, and subsequently taking the difference we

obtain

〈ψ|H|ψ〉 − 〈ψ|H∗|ψ〉 = (E − Ē)〈ψ|ψ〉. (2.53)

Thus when H is Hermitian, i.e. H = H∗, the left-hand side vanishes and since

〈ψ|ψ〉 6= 0 it follows that the energy E must be real.

• The second justification is rooted in Hermiticity’s role in safeguarding the con-

servation of probability densities, or in other words, ensuring the unitarity of

the propagator e−itH . This is easily seen by starting from the evolution of a
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state at time t = 0 to a state at time t

|ψ(t)〉 = e−iHt|ψ(0)〉. (2.54)

Taking the conjugate of this equation, multiplying by 〈ψ(t)| from the left and

assuming once more that the Hamiltonian is Hermitian we obtain

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|eitH∗e−iHψ(0)〉 = 〈ψ(0)|ψ(0)〉. (2.55)

This means the normalization at the time t = 0 is the same as at any other

arbitrary time t, i.e. it is conserved.

However, non-Hermitian operators can also have purely real eigenvalues, and conse-

quently, non-Hermitian Hamiltonians might also be proposed to generate the dynamics

according to (2.3). This was first observed in Schrödinger operators H with complex

potentials that are “PT symmetric” [4], namely,

H(PT ) = (PT )H,

for a linear (parity) operator P and an anti-linear (time-reversal) operator T . Recall

that the definition of an anti-linear operator A acting on a Hilbert space H is

A
(
α1|ψ1〉+ α2|ψ2〉

)
:= ᾱ1A|ψ1〉+ ᾱ2A|ψ2〉.

Here αj ∈ C and |ψj〉 ∈ H.

2.2.1 PT symmetry and its ramifications

In this section, we review the basics of PT symmetric quantum theory. PT symmet-

ric quantum theory replaces the Hermiticity constraint on observables in standard

quantum mechanics by the physically-motivated constraint of invariance under PT

symmetry. The operator PT acting on the Hilbert space H is assumed to be the

composition of P , a linear operator, and T , an antilinear operator, such that their

combined action is an antiunitary involution on H. An antiunitary operator, is a
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bijective antilinear map U : H → H on Hilbert space H such that

〈Ux|Uy〉 = 〈x|y〉,

for all |x〉, |y〉 ∈ H. An antiunitary operator U is called an antiunitary involution if

U2 = 1l.

2.2.2 Definition of PT symmetry

PT symmetry is a notion originating in physics. It can be defined abstractly in

mathematical terms as follows.

Definition 2.1 (PT symmetry). [2] Let H be a Hilbert space and let P ∈ L(H) and

let T be an anti-linear operator on H, satisfying P 2 = 1l, T 2 = 1l, and [P, T ] = 0

(commutator). A linear operator H ∈ L(H) is called PT symmetric if

(PT )H(PT )−1 = H. (2.56)

The operator PT is invertible due to the invertibility of both P and T , with their

respective inverses being P−1 = P and T−1 = T . Furthermore, as [P, T ] = 0, we can

establish that

(PT )−1 = T−1P−1 = TP = PT.

In general, the operators H,P, T may be unbounded; then one has to consider delicate

domain questions (which are never addressed in the physical literature). We are

assuming here that H, P , and T are all bounded operators, defined on all of H. Then

we have (PT )−1 = PT and (2.56) is equivalent to [PT,H] = 0. Often, H is called a

Hamiltonian, even though it is not a Hermitian operator, in general. The operators

P and T are also called the parity and time-reversal operators.

Examples.

1. The founding example comes from basic quantum theory [2]. The Hilbert space

is H = L2(R, dx), the state space of a quantum particle (moving on a line).

The Hamiltonian is H = p̂2 + ix̂3, where p̂ = −i∂x and x̂ is the operator of

multiplication by x. (This H is not a bounded operator.) Elements in H are
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called wave functions and denoted by ψ(x). The operators P, T are defined as

Pψ(x) = ψ(−x) (2.57)

Tψ(x) = ψ(x) (2.58)

(complex conjugate). Equivalently, the action of P and T can be given on the

operators p̂, x̂: Px̂P = −x̂, P p̂P = −p̂, T x̂T = x̂, T p̂T = −p̂. With this, it is

evident that H is PT symmetric.

Note: In this setup, the Hilbert space has the direct sum decomposition H =

HRe
e ⊕ HRe

o ⊕ HIm
e ⊕ HIm

o into summands of even and odd, real and imaginary

functions. Assuming ψ(x) ∈ H, we can express ψ(x) as a combination of even

functions, E(x), and odd function, O(x), as follows

ψ(x) = E(x) +O(x),

since E(x) and O(x) are complex-valued functions we can represent ψ(x) in the

following manner:

ψ(x) = Re(E(x)) + iIm(E(x)) +Re(O(x)) + iIm(O(x)). (2.59)

By utilizing the definitions of P and T in equations (2.57) and (2.58), we can

directly compute the action of the operator PT on ψ(x) defined in equation

(2.59) as follows:

PTψ(x) = Re(E(x))− iIm(E(x))−Re(O(x)) + iIm(O(x))

= (1l⊕−1l⊕−1l⊕ 1l)ψ(x)

This means PT = 1l ⊕ −1l ⊕ −1l ⊕ 1l. Hence the spectrum of PT is {−1, 1}.
The spectrum of PT generally lies on the complex unit circle (see the proof of

Theorem 2.2.2).

2. Consider the case of a two-level system H = C2, with a possibly non-Hermitian

Hamiltonian H given by

H =

(
reiθ s

s re−iθ

)
, (2.60)

where r, s and θ are real parameters, the Hamiltonian in equation (2.60) is used
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to describe a basic two-site system with gain and loss [2].

To gain a deeper insight into the system outlined by the Hamiltonian in equation

(2.60), let’s begin by considering the case where s = 0. The Hamiltonian that

describes the time evolution of the one-dimensional system in the left box is the

1 × 1 matrix H1 = reiθ, where r > 0 and 0 < θ < π so that Im(H1) > 0. The

solution to the time-dependent Schrödinger equation for this system

i
d

dt
|ψ(t)〉 = H1|ψ(t)〉,

is |ψ(t)〉 = e−itH1|ψ(0)〉, which grows exponentially with time because there is a

source in the left box. Similarly, the Hamiltonian that describes the time evolu-

tion of the one-dimensional system in the right box is the 1×1 matrixH2 = re−iθ,

so that Im(H2) < 0. The solution to the time-dependent Schrödinger equation

for the right system is |ψ(t)〉 = e−itH2|ψ(0)〉, which decays exponentially with

time because there is a sink in the right box. The left and right systems taken

together are described by the diagonal matrix Hamiltonian

H =

(
reiθ 0

0 re−iθ

)
. (2.61)

The system governed by the Hamiltonian H in equation (2.61) is not in equilib-

rium. This is because the eigenfunction in the left box undergoes exponential

decay, while the eigenfunction in the right box experiences exponential growth.

To attain equilibrium, it is necessary to establish a strong coupling between the

boxes, achieved through the coupling constant s.

The Hamiltonian H in (2.60) is PT symmetric if we define the time reversal
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and parity operators as

T

(
x

y

)
=

(
x̄

ȳ

)
and P = σx :=

(
0 1

1 0

)
(Pauli x matrix). (2.62)

3. For κ ∈ R define H ∈ L(C2) by

H =

(
1 iκ
iκ −1

)
. (2.63)

H is PT symmetric for T as in (2.62) and

P = σz :=

(
1 0

0 −1

)
(Pauli z matrix). (2.64)

4. Let H be real N ×N matrix, then H is PT symmetric if we define P = 1l and

T to be the complex conjugation. An N × N matrix is real if and only if it is

PT symmetric with P = 1l and T is the complex conjugation.

2.2.3 PT symmetry breaking

A PT symmetric H belongs to one of two regimes: the unbroken or the broken

symmetry regime. As we will see, the regimes determine the spectral properties of H.

Definition 2.2 (Broken and unbroken symmetry regimes). [2] Let H be a PT sym-

metric Hamiltonian.

1. If every eigenvector of H is an eigenvector of PT , then we say the PT symmetry

of H is unbroken, or, that we are in the unbroken regime.

2. If H has an eigenvector that is not an eigenvector of PT , then we say the PT

symmetry of H is broken, or, that we are in the broken regime.

3. When H = H(ε) depends on a parameter ε ∈ R, then ε0 is called an exceptional

(or transition) point if for all ε close enough to ε0, H(ε) is in different regimes

for ε < ε0 and ε > ε0.
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Examples.

1. The class of quantum mechanical Hamiltonians

H(ε) = p̂2 + x̂2(ix̂)ε ε ∈ R. (2.65)

In [4, 5] was shown numerically that H is in the unbroken symmetry regime

whenever ε ≥ 0, and it is in the broken regime when ε < 0, The phase transition

occurs at ε0 = 0. Note that if we restrict ourselves to ε = 1, the Hamiltonian

(2.65) reduces to the Hamiltonian we have discussed earlier, H = p̂2 + ix̂3. It’s

worth noting that at ε = 0 the Hamiltonian reduces to a harmonic oscillator.

2. The eigenvalues and eigenvectors of the Hamiltonian in (2.60) are

λ± = r cos θ ± (s2 − r2 sin2 θ)
1
2 , (2.66)

and

|ψ+〉 =
1√

2 cosκ

(
e

iκ
2

e
−iκ
2

)
, |ψ−〉 =

i√
2 cosκ

(
e
−iκ
2

−e iκ
2

)
(2.67)

respectively. The parameter κ satisfies the equation sinκ = r
s

sin θ. Note that κ
is real if and only if s2 ≥ r2 sin2 θ if and only if we are in the region of unbroken

PT symmetry. When s2 < r2 sin2 θ, H is in the broken region.

3. [2] The eigenvalues and eigenvectors of the Hamiltonian in (2.63) are

E± = ±iβ(κ) and |ψ±(κ)〉 =
1√

κ2 + | ± β(κ)− i|

(
±β(κ)− i

κ

)
, (2.68)

where β(κ) =
√
κ2 − 1. One can check that if κ ∈ (−∞,−1)∪ (1,∞) then the

eigenvalues are real and the corresponding eigenvectors of H are eigenvectors of

PT corresponding to the eigenvalues λ = ±1, indeed, PT |ψ±(κ)〉 = −|ψ±(κ)〉.
On the other hand, for κ ∈ (−1, 1), the eigenvalues are complex conjugate pairs

and the eigenstates of H are not eigenstates of PT . The exceptional points are

κ0 = ±1.
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2.2.4 Symmetry phases and spectrum

The purpose of this section is to solve the eigenvalue problems associated to the PT

symmetric operators and explain the features of the spectrum of such operators.

Suppose H is PT symmetric. The resolvent satisfies

(H − z)−1 = (PTHT−1P−1 − z)−1 = PT (H − z̄)−1T−1P−1,

where we used that PTzT−1P−1 = z̄ (complex conjugate). This implies

z ∈ spec(H) ⇐⇒ z̄ ∈ spec(H). (2.69)

We thus have the following result:

Theorem 2.2.1. Suppose H is PT symmetric, with H, P and T bounded. Then the

spectrum of H is invariant under complex conjugation. In particular, the eigenvalues

of H are either real or come in complex conjugate pairs.

Note: if P and T are bounded, then so are P−1 and T−1 since P−1 = P and

T−1 = T . The next result links the reality of eigenvalues of H and the PT symmetry

unbroken regime.

Theorem 2.2.2. [1] Let H be a PT symmetric operator.

(a) If an eigenvector of H is also an eigenvector of PT , then the associated eigen-

value of H is real.

(b) Suppose E is a real, simple eigenvalue of H. Then the associated eigenvector

is also an eigenvector of PT .

Proof. We prove (a) first. Note that the spectrum of PT lies on the complex unit

circle:

PTψ = λψ ⇒ ψ = (PT )2ψ = PTλψ = λ̄PTψ = |λ|2ψ ⇒ |λ| = 1.

Next, consider Hψ = zψ with ψ satisfying PTψ = λψ. Multiplying by PT gives

PTHψ = z̄PTψ = λz̄ψ. (2.70)
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Since PTH = HPT we have PTHψ = Hλψ = λzψ. Combining with (2.70) gives

z = z̄, as λ 6= 0.

Now we prove (b). Consider Hψ = Eψ. Since PTH = HPT we have PTHψ =

E(PTψ) = H(PTψ), now the simplicity of E implies PTψ ∈ span{ψ}. Thus PTψ =

λψ for some nonzero λ ∈ C, this means ψ is an eigenvector of PT with eigenvalue

λ.

In part (b) of theorem 2.2.2, the simplicity of the eigenvalue condition is crucial.

To illustrate this, consider the scenario where P = 1l and T represents complex con-

jugation. A matrix is then PT symmetric if and only if its entries are real. If we

select H to be the identity matrix, every vector in C2 becomes an eigenvector for the

eigenvalue E = 1. However, not every vector in C2 serves as an eigenvector for PT .

For example, if we take

PT

(
1

i

)
=

(
1

−i

)
,

it demonstrates an eigenvector of H with a real eigenvalue that isn’t an eigenvector

for PT .

2.2.5 Pseudo-Hermiticity and Quasi-Hermiticity

Pseudo-Hermiticity and quasi-Hermiticity are concepts related to linear operators in

quantum mechanics and mathematical physics. Both terms involve a generalization of

the Hermitian property of operators, which plays a crucial role in quantum mechanics.

Definition 2.3. [34] A linear operator H on a Hilbert space H is called pseudo-

Hermitian if there is a Hermitian, bounded, invertible linear operator η such that

H∗ = ηHη−1. (2.71)

An operator η satisfying (2.71) is called a pseudo-metric operator associated with H.

The set of all pseudo-metric operators associated to H is denoted by MH . The set of

all strictly positive pseudo-metric operators associated with H is denoted by M+
H . H

is called quasi-Hermitian if (2.71) holds for an η ∈M+
H .

Just as for the PT symmetric case, the spectrum of a pseudo-Hermitian operator

H is also invariant under complex conjugation – it satisfies (2.69). This follows easily
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from (2.71).

The following is a link between PT symmetry and pseudo-Hermiticity.

Lemma. Suppose H is a PT symmetric operator acting on a finite dimensional

Hilbert space. Suppose further that H is real symmetric ( i.e., H t = H) and P is

Hermitian ( i.e., P ∗ = P ). Then P ∈MH , i.e., H is pseudo-Hermitian with pseudo-

metric P .

Proof. Fix a basis such that THT = H̄, where H̄ is the entry-wise complex conjugate

of H. From equation (2.56) we have

H = PTHPT = PTHTP = PH̄P, (2.72)

The second equality holds because P and T commute. Since P−1 = P equation (2.72)

can be written as

PHP = H̄ = H∗ (2.73)

The second equality is true by assumption H t = H, where t denotes the transpose.

Theorem 2.2.3. [43] If H finite-dimensional PT symmetric Hamiltonian, then H is

pseudo-Hermitian.

Proof. According to the definition of PT symmetry, the Hamiltonian H exhibits

similarity to its complex conjugate, denoted as H̄. Consequently, in accordance with

Theorem 2 presented in [43], which asserts that pseudo-Hermiticity is equivalent to

being similar to its complex conjugate, we can conclude that H is pseudo-Hermitian.

Let {|ψn〉}n∈N, {|φn〉}n∈N, be two bases of H, satisfying 〈φm|ψn〉 = δm,n. The

collection {|φn〉, |ψn〉}n∈N is called a biorthonormal basis [29], or BIOB, of H. We

have the following completeness relation∑
n

|φn〉〈ψn| = 1l =
∑
n

|ψn〉〈φn|, (2.74)

which is easily verified by applying basis vectors |ψn〉 or |φn〉 to the sums and noting

that the action is that of the identity.
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An operator H on H is called diagonalizable if it is of the form

H =
∑
n

En|ψn〉〈φn| (2.75)

for some BIOB {|φn〉, |ψn〉}n∈N and some En ∈ C. This means that the spectrum

of H consists exactly of the eigenvalues En (with associated eigenvectors |ψn〉). The

adjoint of the operator H in the equation (2.75) given by

H∗ =
∑
n

Ēn|φn〉〈ψn|, (2.76)

so the |φn〉 are the eigenvectors of H∗ with corresponding eigenvalues Ēn.

Theorem 2.2.4. [29, 27] Let H : H → H be a linear operator. Then

1. If H is pseudo-Hermitian, then the spectrum of H is invariant under complex

conjugation.

2. Suppose H is diagonalizable and the spectrum of H is invariant under complex

conjugation. Then H is pseudo-Hermitian.

In particular, this result shows that a diagonalizable, PT symmetric H is pseudo-

Hermitian.

Proof.

1. Let η ∈MH . We have

(H − z)−1 = (η−1H∗η − z)−1 = η−1(H∗ − z)−1η,

so H − z is invertible if and only if H∗ − z is invertible. This means that spec(H) =

spec(H∗). The result follows since spec(H∗) = spec(H).

Now we prove part 2. Let SR be the collection of real eigenvalues E of H (re-

peated according to their multiplicity) and let SP be the collection of pairs (E, Ē)

of the complex conjugate, non-real eigenvalues of H, also repeated according to their

multiplicity, and where ImE > 0. We denote the eigenvectors as

E ∈ SR : HψE = EψE, H
∗φE = EφE

(E, Ē) ∈ SP : Hψ+
E = Eψ+

E , H
∗φ+

E = Ēφ+
E, Hψ−E = Ēψ−E , H

∗φ−E = Eφ−E.
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They can be normalized as to form a BIOB. We have

H =
∑
E∈SR

E|ψE〉〈φE|+
∑

(E,Ē)∈SP

E|ψ+
E〉〈φ

+
E|+ Ē|ψ−E〉〈φ

−
E|.

Let ηE, η±E ∈ C be any non-zero numbers and set

η =
∑
E∈SR

ηE|φE〉〈φE|+
∑

(E,Ē)∈SP

η+
E |φ

−
E〉〈φ

+
E|+ η−E |φ

+
E〉〈φ

−
E|.

Using the biorthogonality and the completeness relation (2.74), it is easy to verify

that η is invertible, and

η−1 =
∑
E∈SR

1

ηE
|ψE〉〈ψE|+

∑
(E,Ē)∈SP

1

η+
E

|ψ+
E〉〈ψ

−
E |+

1

η−E
|ψ−E〉〈ψ

+
E |.

Furthermore, ηHη−1 = H∗, as is also easily verified using biorthogonality. Finally,

η = η∗ if and only if ηE ∈ R and η−E = (η̄+
E) for all E. This shows that H is

pseudo-Hermitian. This completes the proof.

Note, if all eigenvalues are real (no complex conjugate non-real pairs), then in the

above construction we can take η =
∑

E∈spec(H) ηE|φE〉〈φE| and we have η > 0 ⇔
ηE > 0∀E. This shows that if H is diagonalizable and has a purely real spectrum,

then H is quasi-Hermitian, see also Theorem (2.2.5) below.

Theorem 2.2.5. Let H : H → H be a linear operator. Then

1. If H is bounded and quasi-Hermitian, then the spectrum of H is real.

2. As a partial converse: If H is diagonalizable and has real spectrum, then H is

quasi-Hermitian.

Proof.

1. Since η is strictly positive we can define H0 as

H0 =
√
ηH(
√
η)−1, (2.77)

equation (2.77) together with equation (2.71) implies H0 is Hermitian i.e, H0 = H∗0 .
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So the eigenvalues of H0 are real. Then equation (2.77) implies that the eigenvalues

of H are real too.

2. Suppose H is diagonalizable i.e., there exists an invertible matrix Q and a

diagonal matrix D such that H = QDQ−1. Since the eigenvalues of H are all real

D = D∗. Now we set η = QQ∗. We have

H∗ = (Q−1)∗D∗Q∗ = (Q−1)∗DQ∗ = (Q−1)∗
(
Q−1HQ

)
Q∗ = η−1Hη.

The following example is given to illustrate why we need the diagonalizability con-

dition in part (2) of Theorem 2.2.5.

Example. The operator

H =

(
0 1

0 0

)
(2.78)

is not diagonalizable. Any η belonging to the set MH , which is any 2 × 2 matrix η

that satisfies the equation H∗η = ηH, can be expressed in the following form:

η =

(
0 b

b d

)
, (2.79)

where b, d are real numbers. For η to be strictly positive, we need tr(η) > 0 and

det(η) > 0. Here det(η) = −b2 < 0, therefore, η can’t be positive definite, so M+
H is

empty set.



Chapter 3

Diagonalizablity and PT symmetric

regime of two dimensional PT

symmetric Hamiltonian

In the field of quantum mechanics, the study of non-Hermitian Hamiltonians has un-

veiled interesting phenomena that challenge conventional expectations. One remark-

able class of non-Hermitian Hamiltonians is the PT symmetric Hamiltonians, where

PT symmetry refers to a combined operation involving parity P and time-reversal

T symmetries. In recent years, the diagonalizability of PT symmetric Hamiltonians

has attracted significant attention, especially in two-dimensional systems. This explo-

ration is motivated by the remarkable behavior exhibited by such systems, particu-

larly at the transition points where PT symmetry undergoes a critical transformation.

This discussion delves into the fascinating world of two-dimensional PT symmetric

Hamiltonians, focusing on their diagonalizability properties at these critical transition

points.

3.1 Diagonalizablity at the transition point

Definition 3.1. Let (x, y, z, w) be the complex entry of the matrix H ∈ L(C2).

Define Bε(x, y, z, w) as a ball centered around (x, y, z, w) with radius ε. We designate

(x0, y0, z0, w0) as a transition point if for every ε > 0, within some regions of the ball
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Bε(x0, y0, z0, w0), the eigenvalues λ±(x, y, z, w) are real, while in the remaining parts,

they form a complex conjugate pair.

Theorem 3.1.1. Let H, P and T be operators acting on H = C2 such that H is

PT symmetric, then H is either nondiagonalizable or proportional to the identity at

a transition point.

Proof. Given that H is a 2×2 matrix, it possesses at most two eigenvalues, denoted

as

λ± = r ±
√
E, (3.1)

where

r =
x+ w

2
, E =

(x− w
2

)2
+ yz. (3.2)

Because H is PT symmetric, the eigenvalues λ± are either real or form a complex

conjugate pair.

1. If λ± are real, we have

2r = λ+ + λ−, 2
√
E = λ+ − λ−. (3.3)

Since the sum and subtraction of real numbers result in real numbers, Equations

(3.3) imply that both r and
√
E are real, thus indicating that E > 0.

2. If λ± are complex conjugate pair (λ+ = λ̄−), we have

2r = λ+ + λ̄+ = 2Re(λ+) 2i
√
−E = λ+ − λ̄+ = 2iIm(λ+) (3.4)

Since Re(λ+) and Im(λ+) are real, it follows from equation (3.4) that both r

and
√
−E are real, thereby implying that E < 0.

If E > 0, two distinct real eigenvalues emerge, leading to the diagonalizability of H

and placement within the unbroken regime. In the case of E < 0, a pair of complex

conjugate eigenvalues arises, still resulting in diagonalizability but placing H in the

broken regime. Due to calculations in equations (3.3) and (3.4) and the fact the

quantities r and E depend continuously on the parameter space (x, y, z, w), then they

are both real and E equals zero at the transition point according to definition 3.1. If

E = 0, the eigenvalues become λ± = λ = r, where r may have geometric multiplicity
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2, yielding H = r1l ( real proportional to the identity), or geometric multiplicity 1,

causing H to be non-diagonalizable.

In the subsequent subsection, we investigate the various potential scenarios de-

scribed in Theorem 3.1.1, taking into account all allowable choices of H and P , while

assuming that T operates as the complex conjugation operator.

3.1.1 Case Analysis: Theorem 3.1.1

Let H and P be a linear operator acting on the space C2

H =

(
x y

z w

)
and P =

(
a b

c d

)
, (3.5)

Suppose further T is the complex conjugation operator,

T

(
x

y

)
=

(
x̄

ȳ

)
. (3.6)

We assume the operators H,P and T satisfy the following

1. P 2 = 1l,

2. [P, T ] = 0,

3. [H,PT ] = 0.

The first assumption implies P = P−1, while the definition of complex conjugation

automatically implies T = T−1. From the second assumption we have

P = TPT = P̄ , (3.7)

the notation bar is the matrix entry-wise complex conjugate. Equation (3.7) implies

that matrix P is a real involution matrix. Therefore, it can be concluded that:

P = ±1l or P =

(
a b

c −a

)
, (3.8)



40

where a2 + bc = 1 and a, b and c are real numbers. After utilizing the commutativity

property [H,PT ] = 0, the following result is obtained:

H = PTHPT = PTHTP = PH̄P. (3.9)

Or equivalently

PH = H̄P.

Assuming that P = ±1l, equation (3.9) yields H = H̄, which implies that any real

matrix can be considered as a PT symmetric matrix. It is important to note that if

a matrix H is symmetric (H = H t), then H will also be Hermitian. Equation (3.9)

shows that H is P -pseudo Hermitian. We omit the computation for the case P = ±1l

because in physics, the operator P typically signifies spatial reflection. When P = ±1l,

there is no reflection, yet since H remains PT symmetric, the outcomes from theorem

3.1.1 remain valid.

Let

P =

(
a b

c −a

)
, (3.10)

where a2 + bc = 1, and a, b, and c are real numbers. We aim to determine all possible

solutions of H which satisfy (3.9), or more specifically, all H that satisfy PH = H̄P ,

that is (
a b

c −a

)(
x y

z w

)
=

(
x̄ ȳ

z̄ w̄

)(
a b

c −a

)
. (3.11)

Simplifying equation (3.11) we have

bz1 = cy1,

2ay1 = b(x1 − w1),

2az1 = c(x1 − w1),

and

x2 = −w2,

2ax2 = −(cy2 + bz2),

2aw2 = (cy2 + bz2).
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The variables x1, y1, z1 and w1 represent the real parts of x, y, z, and w, respectively,

while x2, y2, z2 and w2 represent their corresponding imaginary parts. The solutions

for the above systems fall into two distinct cases.

• Case 1: If c 6= 0, then

H =

(
w̄ + 2a

c
z1

b
c
z̄ + 2ai

c
w2

z w

)
, (3.12)

In this context, z = z1 + iz2 , while w = w1 + iw2. The eigenvalues and

eigenvectors of H in (3.12) can be expressed as follows:

λ± =
(
w1 +

a

c
z1

)
± E and v± =

(
λ± − w

z

)
. (3.13)

Here, E =
[
(a
c
z1)2 + b

c
|z|2 −

(
w2

2 + 2a
c
z2w2

)] 1
2 . When E 6= 0 , the eigenvectors

v± are linearly independent, and therefore, H is diagonalizable. However, when

E = 0 and z 6= 0, the matrix H has only one eigenvalue with algebraic multi-

plicity 2 and geometric multiplicity 1, making H non-diagonalizable. Assume

z = 0 and since E = 0 we have w2 = 0 and therefore H in equation (3.12)

reduces to H = w11l.

• Case 2: If c is assumed to be equal to 0, then a takes the values of ±1. Let’s

consider the scenario where a is equal to 1 as the case when a is equal to −1 is

analogous. In this context, the matrices P and H can be expressed as:

P =

(
1 b

0 −1

)
and H =

(
x− ib

2
z b

2
(x− w) + iy

iz w + ib
2
z

)
, (3.14)

where x, y, z and w are real numbers. The eigenvalues and eigenvectors of H

are:

λ± =
x+ w

2
± E and v± =

(
(x− w)− ibz ± 2E

2iz

)
, (3.15)

where E =
(
(x − w)2 − (4zy + b2z2)

) 1
2 . If E 6= 0, then the eigenvectors v±

are linearly independent, and thus H is diagonalizable. However, if E = 0

and z 6= 0, the matrix H has one eigenvalue with algebraic multiplicity 2 and
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geometric multiplicity 1, and hence H is not diagonalizable. However if E = 0

and we assume z = 0, we get x = w and hence H in equation (3.14) becomes

H =

(
x iy

0 x

)
.

Therefore, if y 6= 0, H is not diagonalizable, and it becomes proportional to the

identity (H = x1l) when y = 0.

3.2 PT symmetry regimes

The objective of this section is to determine the PT symmetry regimes of the operators

H that were obtained from equations (3.12) and (3.14).

• Unbroken regime: Assume the quantity E that appears in equations (3.13)

and (3.15) be real. Then the operator H in (3.12) and (3.14) possesses two

distinct nonzero real eigenvalues. According to theorem (2.2.2) part (b), the

associated eigenvectors are eigenvectors of PT , indicating that we are in the

unbroken regime.

• Broken regime: Assume the quantity E that appears in equations (3.13) and

(3.15) be pure imaginary. Then the operator H in (3.12) and (3.14) has a

complex conjugate pair of eigenvalues. According to theorem (2.2.2) part (a),

the associated eigenvectors are not eigenvectors of PT , indicating that we are

in the broken regime.

• Transition point:

1. Let H be defined as shown in equation (3.12). Recall that the eigenvalues

of H appears in equation (3.13) depends on the quantity

E =
[(a
c
z1)2 +

b

c
|z|2
)
−
(
w2

2 +
2a

c
z2w2

)] 1
2 .

Suppose E = 0 and z 6= 0 i.e.,

(
a

c
z1)2 +

b

c
|z|2 = w2

2 +
2a

c
z2w2. (3.16)
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In this case, H has one eigenvalue λ = w1 + 2a
c
z1 with algebraic multiplicity

2 and corresponding eigenvector

v =

(
2a
c
z1 − iw2

z

)
. (3.17)

Now we claim that v in equation (3.17) is an eigenvector of PT , that is(
a b

c −a

)(
2a
c
z1 + iw2

z̄

)
= eiθ

(
2a
c
z1 − iw2

z

)
, (3.18)

for some θ ∈ [0, 2π). To prove the claim note that one can easily show the

following three qualities

|2a
2

c
z1 + iaw2 + bz̄|2 − |2a

c
z1 − iw2|2 = 0,

|2az1 + icw2 − az̄|2 − |z|2 = 0,
2a2

c
z1 + iaw2 + bz̄
2a
c
z1 − iw2

− 2az1 + icw2 − az̄
z

= 0,

hold if E = 0 and z 6= 0.

2. Let H and P defined as in equation (3.14). Then the eigenvalues of H in

equation (3.15) depends on the quantity

E = ((x− w)2 − 4yz + b2z2)
1
2 .

Suppose E = 0 and z 6= 0 i.e.,

(x− w)2 = 4yz + b2z2,

we have only one eigenvalue λ = x+w
2

with algebraic multiplicity 2 and

corresponding eigenvector

v =

(
(x− w)− ibz

2iz

)
. (3.19)
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We claim vector v in equation (3.19) is an eigenvector of PT i.e,(
1 b

0 −1

)(
(x− w) + ibz

−2iz

)
= eiθ

(
(x− w)− ibz

2iz

)
, (3.20)

for some θ ∈ [0, 2π). Note that (3.20) is valid since

|(x− w)− ibz| = |eiθ||(x− w)− ibz|,

|2iz| = |eiθ||2iz|,

and
(x− w)− ibz
(x− w)− ibz

= eiθ =
2iz

2iz
(3.21)

Equation (3.21) implies that θ = 2nπ for any integer n solves equation

(3.20).

In both scenarios mentioned above, at the transition point assuming z = 0 implies that

H is real and proportional to the identity. Every vector in C2 becomes an eigenvector

of H. Consequently, there exist vectors in C2 that are not eigenvectors of PT , where

P is defined as in (3.14) and (3.10). In this case, one can envision the broken region as

a closed subset in the parameter space, with its unbroken counterpart being the open

complement. However, if H is not diagonalizable at the transition point, it becomes

apparent that at these junctures, the only eigenvector of H is also an eigenvector

of PT . Thus, it is plausible to regard the transition point as an integral part of

the unbroken region. Consequently, one may conceptualize the unbroken region as a

closed entity and its open complement as the broken region.



Chapter 4

Dyson Map

4.1 The Dyson map: Setup and motivation

The idea of mapping a non-Hermitian Hamiltonian to a Hermitian one was originally

presented by Dyson in the context of the theory of magnetization [14, 15]. Let H
be a Hilbert space with inner product 〈·|·〉 and let H be an operator on H that is

not necessarily Hermitian with respect to 〈·|·〉. Denote by |ψ(t)〉 = e−itH |ψ(0)〉 the

solution of the evolution equation

i∂t|ψ(t)〉 = H|ψ(t)〉, (4.1)

with initial state |ψ(0)〉. Next, let S(t) be a differentiable family of operators on H
such that S(t) is invertible for each t, and set

|ϕ(t)〉 = S(t)|ψ(t)〉. (4.2)

Passing from |ψ(t)〉 to |ϕ(t)〉 represents a (possibly time-dependent) change of vari-

ables. The evolution equation for |ϕ(t)〉 is

i∂t|ϕ(t)〉 = h(t)|ϕ(t)〉, (4.3)

with

h(t) = S(t)HS(t)−1 + iṠ(t)S(t)−1, (4.4)



46

the dot being the time derivative. Conversely, if |ϕ(t)〉 solves equation (4.3) with h(t)

in equation (4.4), then |ψ(t)〉 solves (4.1). Equation (4.4) is called the time-dependent

Dyson equation [18]. By means of S(t), one may thus equivalently solve (4.1) or (4.3).

If H is not Hermitian, one can look for S(t) such that the resulting h(t) is Hermitian,

hence trading a non-Hermitian problem with constant Hamiltonian H for a Hermitian

problem with time-dependent Hamiltonian h(t). One readily sees that

h(t)∗ = h(t) ⇐⇒ i∂t
(
S(t)∗S(t)

)
= H∗

(
S(t)∗S(t)

)
−
(
S(t)∗S(t)

)
H. (4.5)

The operator η(t) = S(t)∗S(t) is non-negative. This is because, for any non-zero

|ψ〉 ∈ H, the following inequality holds:

〈η(t)ψ|ψ〉 = 〈S(t)ψ|S(t)ψ〉 = ‖S(t)ψ‖2 ≥ 0

The equation for η(t), according to (4.5), is

i∂tη(t) = H∗η(t)− η(t)H. (4.6)

This is called the quasi-Hermiticity relation in [17]; note that it simplifies to (1.3) if

η does not depend on time. It is clear that (4.6) has a unique solution for any initial

condition η(0), namely

η(t) = e−itH
∗
η(0)eitH , (4.7)

and that η(t) is positive for all times if and only if it is positive at some t0.

A strategy to study the dynamics generated by a non-Hermitian H is to find a

transformation S(t) such that h(t), as given by (4.4), is Hermitian, and then analyze

the dynamics of this Hermitian system using usual quantum theoretical methods.

Finding S(t) for a specific Hamiltonian H is not easy, however. It often involves

making a judicious ansatz containing parameters that must solve rather complicated

differential equations, which are obtained by imposing the self-adjointness of h(t).

This can be done explicitly for some models [10, 17, 18, 33, 36, 19, 20].

Given H, we seek all possible S(t), and the resulting Hermitian Hamiltonians

h(t), with the sole requirement that η(t) = S(t)∗S(t) is non-negative and satisfies

the quasi-Hermiticity relation (4.6). The solution η(t) is uniquely determined by the

initial condition η(0), which we may choose to be any positive, invertible operator.
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The most general form of S(t) is thus

S(t) = W (t)
√
η(0)eitH , (4.8)

where W (t) is any unitary family and
√
η(0) denotes the unique positive operator

squaring to η(0). The h(t) associated to (4.8) by (4.4) is

h(t) = iẆ (t)W (t)∗. (4.9)

Note that we are entirely free to choose W (t). For instance, given an arbitrary A = A∗,

the choice W (t) = e−itA yields h(t) = A. This means any time-independent Hermitian

h can be obtained from a suitable choice of S(t). A particularly simple choice is

S(t) = eitH , which results from undoing the dynamics e−itH (going backwards in

time) and has h = 0.

More generally, suppose A(t) is a continuous family of operators, and let W (t)

solve the differential equation

iẆ (t) = A(t)W (t). (4.10)

It is easily shown that if A(t) = A(t)∗ for all t and the initial condition W (0) is

unitary, then the solution W (t) is unitary for all t. Choosing this W (t), we find from

(4.9) the Hermitian Hamiltonian h(t) = iẆ (t)W (t)∗ = iẆ (t)W (t)−1 = A(t). This

means any time-dependent Hermitian h(t) can also be obtained from a suitable choice

of S(t).



Chapter 5

A generic model for PT symmetry

breaking

In Section 5.1 we introduce a generic model of a family of Hamiltonians H(κ) indexed

by a parameter κ varying around a symmetry transition point κ0, with κ < κ0

corresponding to the symmetry unbroken regime.

We study the existence and properties of metrics for H(κ) in Section 5.2. The

main result of this chapter is Theorem 5.2.2. It shows that at the transition point κ0,

the Hamiltonian H(κ0) is diagonalizable if and only if there exists a time-independent

metric η, that is, if and only if H∗(κ0)η = ηH(κ0) for some η > 0.

We show in Section 5.2.2 that in the PT symmetry broken regime, there are no

time-independent metrics (Proposition 5.2.5). Furthermore, we show in Theorem 5.2.3

that in the PT symmetry unbroken regime, any possibly time-dependent metric is a

bounded function of time, while in the PT symmetry broken regime, one can always

find a time-dependent metric which grows exponentially in time.

5.1 A family of non-Hermitian Hamiltonians

We consider a family of linear operators H(κ) ∈ B(CN), where κ ∈ I varies in the

open interval

I = (κ0 − ε,κ0 + ε), (5.1)
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centered at κ0 ∈ R having radius ε > 0. The interval is the disjoint union

I = I− ∪ {κ0} ∪ I+, (5.2)

where

I− = (κ0 − ε,κ0), I+ = (κ0,κ0 + ε). (5.3)

We make the following assumptions.

(A1) κ 7→ H(κ) is a continuous map from I to B(CN).

(A2) For κ ∈ I−, the spectrum of H(κ) consists of N simple, real eigenvalues

{E−j (κ)}Nj=1.

(A3) For κ ∈ I+, the spectrum of H(κ) consists of m real eigenvalues {E+
j (κ)}mj=1

and of p pairs of complex conjugate eigenvalues {E+
m+j(κ), Ē+

m+j(κ)}pj=1, all of

which are simple. We allow for m = 0 or p = 0 (no eigenvalues real or all of

them real). We have N = m+ 2p.

We refer to κ ∈ I− as the unbroken symmetry phase (regime) and to κ ∈ I+ as

the broken symmetry phase (regime). The point κ0 is called the symmetry breaking,

or transition point. As a consequence of (A2) and (A3), H(κ) is diagonalizable for

κ 6= κ0 and we have the spectral representation of H(κ),

H(κ) =
∑

E∈spec(H(κ))

E P (E). (5.4)

For each eigenvalue E ∈ spec(H(κ)), the associated spectral (Riesz) projection is

P (E) =
−1

2πi

∫
Γ(E)

(H(κ)− z)−1dz, (5.5)

where Γ(E) is a circle in the complex plane, centered at E and such that all eigenvalues

other than E are outside Γ(E). The projections satisfy ∀E,E ′ ∈ spec(H(κ))

P (E)P (E ′) = δE,E′P (E) and
∑

E∈spec(H(κ))

P (E) = 1l. (5.6)
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Due to the simplicity assumption in (A2) and (A3) we have

P (E) = |ψ(E)〉〈φ(E)|, (5.7)

with

〈φ(E)|ψ(E ′)〉 = δE,E′ . (5.8)

Moreover, for all E ∈ spec(H(κ)),

H(κ)|ψ(E)〉 = E|ψ(E)〉 and H(κ)∗|φ(E)〉 = Ē|φ(E)〉. (5.9)

Of course, the eigenvalues E of H(κ) depend on κ, and so do the eigenvectors |ψ(E)〉
and |φ(E)〉.

We now collect a few results about the continuity of spectral data of the family

H(κ). We start off with a general result about the continuity of the spectrum.

Proposition 5.1.1. Let A and B be bounded operators on a Hilbert space H and

denote their spectra by σ(A), σ(B). For any ε > 0 there exists a δ > 0 such that if

‖A−B‖ < δ, then dist(σ(A), σ(B)) < ε.

Proof. Let z ∈ ρ(A) = C\σ(A), the resolvent set of A. From the relation B − z =

[1l− (A−B)(A− z)−1](A− z) we see that B− z is invertible provided ‖(A−B)(A−
z)−1‖ < 1, because then the right side is the product of two invertible operators.

Thus,

{z : ‖A−B‖ ‖(A− z)−1‖ < 1} ⊂ ρ(B). (5.10)

The function z 7→ (A−z)−1 is holomorphic in ρ(A) and (A−z)−1 → 0 for |z| → ∞, so it

is bounded for all z in the complement of any ε-neighbourhood of σ(A): ∀ε > 0 ∃b <∞
such that ‖(A − z)−1‖ ≤ b whenever dist(z, σ(A)) ≥ ε. Take ‖A − B‖ < δ := 1/b.

Then according to (5.10), each z with dist(z, σ(A)) ≥ ε belongs to ρ(B). Hence σ(B)

is contained in {z : dist(z, σ(A)) < ε}.

Proposition 5.1.2. Suppose κ 7→ H(κ) is a family of bounded operators on a finite-

dimensional Hilbert space, which is continuous in an open interval I around some

κ0 ∈ R, and such that H(κ) is diagonalizable for all I 3 κ 6= κ0. Then the following

holds.

(1) The eigenvalues and the Riesz projections of H(κ) are continuous in κ ∈ I.
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(2) One can find eigenvectors |ψ(E)〉 and |φ(E)〉 of H(κ) and H(κ)∗ that are con-

tinuous vector valued functions in κ for κ ∈ I, κ 6= κ0, and such that (5.7)

holds.

Proof. (1) We first show the continuity of the eigenvalues. Let µ ∈ I and let η

be small. We use proposition 5.1.1 with A = H(µ) and B = H(µ + η). Given any

ε > 0 there exists a δ0 > 0 such that if ‖H(µ+ η)−H(µ)‖ < δ0, then the eigenvalues

of H(µ + η) lie in the union of the ε-balls centered at the eigenvalues of H(µ). By

the continuity of H(κ) at κ = µ, there exists a δ > 0 such that if |η| < δ then

‖H(µ + η) − H(µ)‖ < δ0. Hence for |η| < δ each eigenvalue of H(η + µ) lies at a

distance < ε to one of the eigenvalues of H(µ). This shows the continuity of the

eigenvalues of H(κ) at κ = µ.

Now we show the continuity of the Riesz projections. Again, let µ ∈ I and let η

be small. We have

(H(µ+ η)− z)−1 = (H(µ)− z)−1 + (H(µ+ η)− z)−1[H(µ)−H(µ+ η)](H(µ)− z)−1.

For κ close to µ, denote by P (κ) the Riesz projection given by (5.5) for a fixed contour

Γ around an eigenvalue E of H(µ). Then

P (µ+ η)− P (µ) =
−1

2πi

∫
Γ

(H(µ+ η)− z)−1[H(µ)−H(µ+ η)](H(µ)− z)−1dz.

It follows that ‖P (µ+ η)−P (µ)‖ ≤ C‖H(µ)−H(µ+ η)‖ → 0 as η → 0. This shows

that P (κ) is continuous at µ ∈ I.

(2) Let κ = κ∗ ∈ I\{κ0} be fixed. We construct a family of eigenvectors which

is continuous at κ∗. Pick any nonzero vector χ ∈ RanP (κ∗) and set ψκ = P (κ)χ.

The map κ 7→ ψκ is continuous at κ∗ due to point (1) of the proposition. Since

P (κ∗)χ = χ, we have by the inverse triangle inequality,

‖ψκ‖ ≥ ‖χ‖ − ‖[P (κ)− P (κ∗)]χ‖ ≥
(
1− ‖P (κ)− P (κ∗)‖

)
‖χ‖.

By part (1) we have ‖ψκ‖ > ‖χ‖/2 for all κ in a neighbourhood of κ∗. Hence κ 7→ ψκ

is a continuous family of nonzero vectors in a neighborhood of κ∗. Now ψκ is indeed

an eigenvector of H(κ) with eigenvalue E(κ): Since H(κ) is diagonalizable, we have
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H(κ)P (κ) = E(κ)P (κ) and so

H(κ)ψκ = H(κ)P (κ)χ = E(κ)P (κ)χ = E(κ)ψκ.

The argument for H(κ)∗ is the same. Set K(κ) = H(κ)∗. Then K(κ) is continuous

in κ ∈ I and diagonalizable for κ 6= κ∗, and one can repeat the above argument.

Note: This procedure is extended easily to the case where the eigenvalues are not

simple. Then dimP (κ) = d > 1 is constant in a neighbourhood of κ∗ and one chooses

d linearly independent vectors χ1, . . . , χd ∈ RanP (κ∗) and proceeds as above.

5.2 Solutions of the Dyson equation

Let H be a diagonalizable operator in B(CN)

H =
∑

E∈σ(H)

EP (E), (5.11)

where σ(H) ⊂ C is the spectrum and P (E) is the eigenprojection associated to E.

The eigenvalues are not assumed to be simple here. The set σ(H) automatically

consists of at most N distinct points. Consider the linear operator L acting on B(CN)

as

Lη = H∗η − ηH, η ∈ B(CN). (5.12)

We want to solve the Dyson equation (4.6),

i∂tη(t) = Lη(t), t ≥ 0, (5.13)

with a given initial condition

η(0) = η0 ∈ B(CN). (5.14)

The solution can be written as

η(t) = e−itLη0 = e−itH
∗
η0e

itH . (5.15)
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The operator L is not Hermitian w.r.t. the inner product 〈A,B〉 = tr(A∗B) on B(CN)

unless H = H∗ is Hermitian as an operator on CN with respect to the Euclidean inner

product. In fact, the adjoint of L is L∗η = Hη − ηH∗.

For E,F ∈ σ(H), define the operators P(E,F ) acting on η ∈ B(CN) by

P(E,F )η = P (E)∗ηP (F ). (5.16)

These are the spectral projections of L,

L =
∑

E,F∈σ(H)

(Ē − F )P(E,F ). (5.17)

Clearly we have (as it should be)

P(E,F )P(E ′, F ′) = P(E,F )δE,E′δF,F ′ and
∑

E,F∈σ(H)

P(E,F ) = 1l. (5.18)

Proposition 5.2.1. For any operator η ∈ B(CN), the following are equivalent

(i) η is a time-independent solution of the Dyson equation (5.13)

(ii) Lη = 0

(iii) P (E)∗ηP (F ) = 0 whenever Ē 6= F

(iv)

η =
∑

E∈σ(H)

P (E)∗ηP (Ē) (5.19)

Proof. (i) ⇐⇒ (ii): ∂tη = 0 is equivalent to Lη = 0 by (5.13).

(ii) =⇒ (iii): From (5.17) we get

Lη =
∑

E,F∈σ(H)

(Ē − F )P (E)∗ηP (F ) = 0. (5.20)

Let E0, F0 ∈ σ(H). Apply P (E0)∗ and P (F0) to equation (5.20),

P (E0)∗LηP (F0) =
∑

E,F∈σ(H)

(Ē − F )P (E0)∗P (E)∗ηP (F )P (F0) = 0. (5.21)
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Due to the disjointness condition (5.6), the relation (5.21) reduces to

(Ē0 − F0)P (E0)∗ηP (F0) = 0.

This means P (E0)∗ηP (F0) = 0 whenever Ē0 6= F0. Since E0 and F0 are arbitrary

eigenvalues, (iii) holds.

(iii) =⇒ (iv): Using the completeness relation 1l =
∑

E∈σ(H) P (E) =
∑

E∈σ(H) P (E)∗

we obtain

η =
∑

E,F∈σ(H)

P (E)∗ηP (F ) =
∑

E∈σ(H)

P (E)∗ηP (Ē).

(iv) =⇒ (iii): For η of the form (5.19) and E,F ∈ σ(H), we have by the

disjointness of the projections, that P (E)∗ηP (F ) = 0 unless E = F̄ .

Finally (iii) =⇒ (i):

e−itH
∗
ηeitH =

( ∑
E∈σ(H)

e−itĒP (E)∗
)
η
( ∑
F∈σ(H)

eitFP (F )
)

=
∑

E,F∈σ(H)

e−it(Ē−F )P (E)∗ηP (F )

=
∑

E∈σ(H)

P (E)∗ηP (Ē) = η.

This completes the proof of Proposition 5.2.1.

5.2.1 Metrics at the transition point κ0

Suppose now H(κ) depends continuously on κ ∈ I− = (κ0− ε,κ0) and that the limit

lim
κ→(κ0)−

H(κ) = H− (5.22)

exists. For each κ ∈ I−, consider the Dyson equation

i∂tη(t,κ) = L(κ)η(t,κ), t ≥ 0, (5.23)
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with L(κ)η(t,κ) = H∗(κ)η(t,κ)− η(t,κ)H(κ) and initial condition

η(0,κ) = η0(κ) ∈ B(CN). (5.24)

Denote the distinct eigenvalues of H− by {E−1 , . . . , E−r } ⊂ C, 1 ≤ r ≤ N .

Proposition 5.2.2. Each eigenvalue E(κ) of H(κ) is continuous in κ ∈ I− and

converges to one E−` as κ → (κ0)−. Conversely, each E−` is the limit of at least one

eigenvalue E(κ) of H(κ) as κ → (κ0)−.

Proof. Define the operator

H̄(κ) =

H(κ), κ ∈ I−
H−, κ ≥ κ0

.

The map κ 7→ H̄(κ) is continuous in κ in a real, open interval centered at κ0. It

follows from Proposition 5.1.2 that the eigenvalues of H̄(κ) are continuous in κ and

in particular, that any arbitrarily small neighborhood of the spectrum of H− contains

the spectrum of H(κ), provided that κ close enough to κ0.

To see that every eigenvalue E−` is the limit of an eigenvalue of H(κ), we let Γ be

a circle in the complex plane, centered at E−` of radius small enough so that no other

eigenvalues of H− are contained inside or on it. Then for κ close to κ0, there are no

eigenvalues of H(κ) on Γ, since the spectrum of that operator has to cluster around

the spectrum of H−. Thus the projection

P (κ) =
−1

2πi

∫
Γ

(H(κ)− z)−1dz

is well defined, and as κ → (κ0)−, it converges to the spectral (Riesz) projection of

H− associated to E−` . So their ranks coincide, i.e., rankP (κ) ≥ 1 for κ sufficiently

close to (κ0)−. This rank is the sum of the algebraic multiplicities of all eigenvalues

of H(κ) inside Γ.

The next result shows that if H− has a real, non-semisimple eigenvalue, then the

Dyson equation for H− does not have a strictly positive, time-independent solution.

Recall that an eigenvalue λ is classified as semisimple if its geometric and alge-

braic multiplicities are equal. In the case where both the geometric and algebraic
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multiplicities are one, λ is called a simple eigenvalue. An eigenvalue λ is said to be

non-semisimple if its geometric multiplicity is strictly less than its algebraic multiplic-

ity.

Theorem 5.2.1. Suppose that H− has a real eigenvalue that is not semisimple. Then

the kernel of LH− does not contain any strictly positive element.

Proof. The result follows immediately from the following observation.

Proposition 5.2.3. For H ∈ B(CN) define the linear operator LH acting on η ∈
B(CN) by LHη = H∗η − ηH. If H has a real eigenvalue that is not semisimple, then

the kernel of LH does not contain any strictly positive element.

Proof. According to the Jordan decomposition, there is an invertible map Q such

that H = Q−1JQ, where J has the following properties. In a certain (Jordan) basis

of CN , J takes the form of a block diagonal matrix, with blocks Jk, called Jordan

blocks. Each Jk is either a 1× 1 matrix, or a square matrix of size greater than one,

in which case Jk has a constant diagonal (the entry is an eigenvalue of H), and the

super diagonal consists of the entry 1, and all other matrix elements are zero.

Take an H which is not diagonalizable. Then there is at least one Jordan block,

Jk, of size ≥ 2. Splitting off the diagonal gives Jk = E1lk + Nk, where E is a non-

semisimple eigenvalue of H and Nk is the nilpotent matrix with zeros everywhere

except ones on the super diagonal. Thus there exists a ψ ∈ CN such that Nkψ 6= 0

but N2
kψ = 0. This means that

(J − E1l)ψ 6= 0 but (J − E1l)2ψ = 0. (5.25)

Using the decomposition H = Q−1JQ and setting ξ = (Q−1)∗ηQ−1, we get for real E

H∗η− ηH = 0 ⇐⇒ J∗ξ − ξJ = 0 ⇐⇒ (J −E1l)∗ξ − ξ(J −E1l) = 0. (5.26)

Since strict positivity of η and ξ are equivalent, it suffices to show that if the last

equality in (5.26) holds, then ξ cannot be strictly positive. Now we show that indeed,

if ξ is positive, then (J − E1l)ψ is in the kernel of ξ: due to (5.25),

0 = 〈ψ, ξ(J − E1l)2ψ〉 = 〈ψ, (J − E1l)∗ξ(J − E1l)ψ〉 = ‖
√
ξ(J − E1l)ψ‖2.

This completes the proof of Proposition 5.2.3 and hence that of Theorem 5.2.1.



57

The following is a consequence of Theorem 5.2.1. Suppose that the Dyson equation

for H(κ) has a strictly positive, time-independent solution η(κ) for each κ ∈ I−,

and that η(κ) → η− as κ → (κ0)−. Then of course, η− is a non-negative, time-

independent solution of the Dyson equation for H− (i.e., 0 ≤ η− ∈ kerLH−), but due

to Theorem 5.2.1, η− cannot be invertible. that is, η− is not strictly positive.

Proposition 5.2.4. If H is diagonalizable and has a real spectrum as in (5.11), then

the kernel of LH contains a strictly positive element η > 0.

Proof. Suppose H is diagonalizable and has real spectrum. We need to show that

there is an η > 0 such that Lη = 0. Let η0 > 0 and set

η =
∑

E∈σ(H)

P (E)∗η0P (E).

The disjointness of the projections, (5.6), easily implies that
∑

E∈σ(H) P (E)∗ηP (E) =

η and so Proposition 5.2.1, (5.19), shows that η is in the kernel of L. (We use here

that the spectrum is real.) We now show that η > 0. For any ψ ∈ CN we have

〈ψ|ηψ〉 =
∑

E∈σ(H)

‖√η0P (E)ψ‖2 ≥ 0, (5.27)

which shows that η ≥ 0. Now suppose ηψ = 0. Then by (5.27), P (E)ψ = 0 for all

E ∈ σ(H). Hence (see (5.6)) 0 =
∑

E∈σ(H) P (E)ψ = ψ. It follows that η > 0.

As an immediate application of Propositions 5.2.3 and 5.2.4 suited to the world of

PT symmetry, we have the following result.

Theorem 5.2.2. Suppose that κ 7→ H(κ) is continuous in a neighborhood of κ0 and

has real eigenvalues for κ < κ0. Then H(κ0) is diagonalizable if and only if the kernel

of LH(κ0) contains a strictly positive element η > 0.

Proof. Due to the continuity of κ 7→ H(κ) at κ0, the spectrum of H(κ0) is real.

Proposition 5.2.4 thus gives the implication (⇒). The implication (⇐ ) is correct

since it is just the contrapositive of proposition 5.2.3.

Theorem 5.2.2 shows that at an exceptional point κ0, there is a time-independent

metric η > 0 satisfying the quasi-Hermiticity equation (4.6) if and only if H(κ0) is

diagonalizable. Based on observations made in concrete examples, it is claimed in the
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PT symmetry literature that H(κ0) is not diagonalizable at exceptional points κ0.

Theorem 5.2.2 shows that the statement of this claim is true if and only if there is no

time-independent metric for κ = κ0.

5.2.2 Metrics in the PT symmetry broken regime κ ∈ I+

Proposition 5.2.5. Any time-independent solution of the Dyson equation in the in-

terval I+ cannot be strictly positive.

Proof. Recall, η is a time-independent solution to the Dyson equation (5.15) if and

only if η ∈ ker(L(κ)), that is, if and only if

H∗(κ)η − ηH(κ) = 0. (5.28)

Due to assumption in (A.3), the formulas of H(κ) and H∗(κ) in equation (5.4) can

be written as

H(κ) =
m∑
i=1

EiP (Ei) +

p∑
j=1

Em+jP (Em+j) + Ēm+jP (Ēm+j),

H∗(κ) =
m∑
i=1

EiP (Ei)
∗ +

p∑
j=1

Ēm+jP (Em+j)
∗ + Em+jP (Ēm+j)

∗. (5.29)

For simplicity of notation, we drop the plus sign at the top of eigenvalues (Ek ≡ E+
k )

as we only consider the case κ ∈ I+ here. Combining (5.28) and (5.29) we have

( m∑
i=1

EiP (Ei)
∗ +

p∑
j=1

Ēm+jP (Em+j)
∗ + Em+jP (Ēm+j)

∗
)
η

= η
( m∑
i=1

EiP (Ei) +

p∑
j=1

Em+jP (Em+j) + Ēm+jP (Ēm+j)
)
. (5.30)

Now, we use the ordered basis formed by the eigenvectors of H(κ)

{ψ(E1), · · · , ψ(Em), ψ(Em+1), ψ(Ēm+1), · · · , ψ(Em+p), ψ(Ēm+p)}

together with equation (5.30) to calculate the matrix elements of η. Assume that all
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of the eigenvalues are simple, then for all k, l = 1 · · · ,m and j, n = 1, · · · , p we have

〈ψ(Ek)|ηψ(El)〉 = 0, if k 6= l,

〈ψ(Ek)|ηψ(Em+j)〉 = 〈ψ(Ek)|ηψ(Ēm+j)〉 = 0, ∀ {k, j},

〈ψ(Em+j)|ηψ(Em+n)〉 = 0, if Ēm+j 6= Em+n. (5.31)

Then, the matrix representation of η is

η =



x1 0
. . . 0

. . .

0 xm [
0 ym+1

zm+1 0

]
0

0
. . .

0

[
0 ym+p

zm+p 0

]


N×N

,

where

xi = 〈ψ(Ei), ηψ(Ei)〉,

ym+j = 〈ψ(Em+j), ηψ(Ēm+j)〉,

zm+j = 〈ψ(Ēm+j), ηψ(Em+j)〉.

Clearly the matrix η is a block diagonal matrix with blocks {Ak}mk=1 and {Am+j}pj=1

where Ak = [xk] and Am+j =

[
0 ym+j

zm+j 0

]
. Then, by matrix algebra, we have

det(η − λ1l) = det(A1 − λ1l)× · · · × det(Am+p − λ1l), (5.32)

= (x1 − λ)× · · · × (xm − λ)× (λ2 − µm+1)× · · · × (λ2 − µm+p),

where µm+j = ym+jzm+j. Equation (5.32) shows that η cannot have only positive

eigenvalues.

Our next result concerns the relation between boundedness properties of metric
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operators η(t) and the symmetry phases.

Theorem 5.2.3. Let H be a diagonalizable linear operator on CN .

1. If the spectrum of H is real, then any (not necessarily positive definite) solution

η(t) of (5.15) satisfies supt∈R ‖η(t)‖ <∞.

2. If H has a complex conjugate pair of eigenvalues z = x ± iy, then there is an

initial condition η(0) > 0 and a constant C > 0 such that the solution η(t) of

(5.15) satisfies ‖η(t)‖ ≥ Ce2|yt| for all t ∈ R.

Proof. We have

H =
∑
k

Ek|ψk〉〈φk|, (5.33)

for a BIOS {|φk〉, |ψk〉} and eigenvalues Ek ∈ C. Then by the functional calculus, we

obtain from (5.15)

η(t) =
∑
k,l

eit(El−Ēk)ηk,l|φk〉〈φl|, ηk,l = 〈ψk|η(0)ψl〉. (5.34)

If all Ej are real then clearly η(t) is bounded in t, as asserted in point 1. To address

point 2, take η(0) =
∑

k |φk〉〈φk|. Since {|φk〉}k is a basis of CN , this η(0) has full

rank N and hence η(0) > 0. We obtain from (5.34),

η(t) =
∑
k

e−2tImEk |φk〉〈φk|.

Suppose now that there is a pair of complex conjugate eigenvalues, say E1 = x + iy,

E2 = x− iy. Then η(t)|ψ1〉 = e−2ty|φ1〉 and η(t)|ψ2〉 = e2ty|φ2〉. Thus ‖η(t)‖ ≥ Ce2|yt|.

This concludes the proof.



Chapter 6

Entropy and entanglement in a

bipartite quasi-Hermitian system

and its Hermitian counterparts

In this chapter, we present the content of our published paper [26], having the following

Abstract. We consider a quantum oscillator coupled to a bath of N other oscilla-

tors. The total system evolves with a quasi-Hermitian Hamiltonian. Associated to it

is a family of Hermitian systems, parameterized by a unitary map W . Our main goal

is to find the influence of W on the entropy and the entanglement in the Hermitian

systems. We calculate explicitly the reduced density matrix of the single oscillator for

all Hermitian systems and show that, regardless of W , their von Neumann entropy

oscillates with a common period which is twice that of the non-Hermitian system. We

show that, generically, the oscillator and the bath are entangled for almost all times.

While the amount of entanglement depends on the choice of W , the entanglement of

the time-averaged density matrix is entirely independent of W . These results describe

some universality in the physical properties of all Hermitian systems associated to a

given non-Hermitian one.
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6.1 Model

We consider an oscillator with creation and annihilation operators a∗, a is coupled to

a ‘bath’ of N independent oscillators with creation and annihilation operators q∗i , qi,

i = 1, . . . , N .

The total Hilbert space of the N + 1 oscillators is

H = HS ⊗HB, (6.1)

where HS is the space of a single oscillator and HB is that of the other N . We

denote the inner product by 〈·|·〉 and let ∗ denote the adjoint in this inner product.

The commutation relations are [a, a∗] = 1 = [qi, q
∗
i ], and all operators belonging to

different oscillators commute. This open quantum system, non-Hermitian model was

used in [18].

6.1.1 The quasi-Hermitian system

The coupled total system–bath Hamiltonian is

H = νNtot + (g + κ)
√
N a∗Q+ (g − κ)

√
N aQ∗, (6.2)
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where ν > 0 and g, κ ∈ R are parameters and

Ntot = a∗a+
N∑
n=1

q∗nqn, Q =
1√
N

N∑
n=1

qn. (6.3)

Due to the different prefactors of κ in the interaction term of (6.2), H is ∗-Hermitian

if and only if κ = 0.

The ‘uncoupled’ (g = κ = 0) Hamiltonian is simply νNtot, a multiple of the total

number operator Ntot. As H commutes with Ntot, each eigenspace of Ntot, with a

fixed number of excitations (in the system plus the bath) is left invariant. Denote by

|0S0B〉 the ‘vacuum’ zero excitation state, where all oscillators are in the ground state.

The single excitation space is defined as

E1 = span
{
|1S0B〉, |0S11〉, |0S12〉, . . . , |0S1N〉

}
, (6.4)

where |1S0B〉 = a∗|0S0B〉 and |0S1i〉 = q∗i |0S0B〉 for i = 1, . . . , N . When H is applied

to a vector in E1 the result is again a vector in E1. Moreover, due to the collective,

symmetric nature of the system-bath interaction in (6.2), H leaves the even smaller

space

H1 = span
{
|eS〉, |eB〉

}
(6.5)

invariant, where

|eS〉 = |1S0B〉, |eB〉 =
1√
N

N∑
n=1

|0S1n〉. (6.6)

Those two vectors describe states in which a single excitation is either in S (the state

|eS〉) or in B, collectively spread over the N bath oscillators (the state |eB〉). Therefore,

we may view H as an operator on H1. When we do this we denote it by H1, which

has the form

H1 = ν1l + (g − κ)
√
N |eB〉〈eS|+ (g + κ)

√
N |eS〉〈eB|. (6.7)

The eigenvalues of H1 are

ω± = ν ± ω, ω =
√
N
√
g2 − κ2, (6.8)

which are real for κ2 ≤ g2 and (purely imaginary) complex conjugates for κ2 > g2.
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See [18] for a discussion of the PT symmetry of H. The operator H1 is diagonalizable

except at the transition points defined by κ2 = g2 6= 0, where H1 reduces to a Jordan

block. Note that increasing the number N of oscillators in the bath simply amounts

to speeding up the dynamics (the frequency ω) by a factor
√
N .

We consider the ‘PT symmetry unbroken regime’ κ2 < g2, so that ω± ∈ R. For

definiteness we take g > 0 (the case g < 0 can be dealt with in the same fashion), so

0 ≤ |κ| < g, (6.9)

which is equivalent to g + κ > 0 and g − κ > 0. Then we have ω > 0 and

a1 =
√
g + κ > 0, a2 =

√
g − κ > 0, (6.10)

where the equalities in (6.10) define the quantities a1, a2. The two linearly independent

(not normalized) eigenvectors of H1 and its adjoint H∗1 are

|v±〉 ∝ a1|eS〉 ± a2|eB〉 and |v∗±〉 ∝ a2|eS〉 ± a1|eB〉,

respectively. They satisfy H1|v±〉 = ω±|v±〉 and H∗1 |v∗±〉 = ω±|v∗±〉. Note that |v∗±〉
denote the eigenvectors of H∗, not to be confused with the complex conjugates of the

eigenvectors |v±〉 of H. We normalize the vectors as

|v±〉 = 1√
2

(√
a1
a2
|eS〉 ±

√
a2
a1
|eB〉

)
and |v∗±〉 = 1√

2

(√
a2
a1
|eS〉 ±

√
a1
a2
|eB〉

)
. (6.11)

Then {|v±〉, |v∗±〉} is a bi-orthonormal basis, satisfying 〈v∗±|v∓〉 = 0 and 〈v∗±|v±〉 = 1,

and the operator H1 can be written as

H1 = ω+|v+〉〈v∗+|+ ω−|v−〉〈v∗−|. (6.12)

Using this, one easily finds

e−itH1 = e−itω+|v+〉〈v∗+|+ e−itω−|v−〉〈v∗−|

= e−itν cos(ωt)1l− ie−itν sin(ωt)
(a1

a2

|eS〉〈eB|+
a2

a1

|eB〉〈eS|
)
. (6.13)

We consider initial states which are vectors in H1, as defined in (6.5), so the

dynamics generated by H is entirely given by the operator H1 from (6.7). We still
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consider the regime (6.9), so that the spectrum of H1 consists of two distinct real

eigenvalues. Comparing (1.4), (1.6) and (6.12), we see that H1 is quasi-Hermitian

and the set of all associated metrics is

M+ =
{
η = x1|v∗+〉〈v∗+|+ x2|v∗−〉〈v∗−| : x1, x2 > 0

}
. (6.14)

Written as a matrix in the basis {|eS〉, |eB〉}, we obtain from (6.11)

η =
1

2

(
(x1 + x2) a2/a1 x1 − x2

x1 − x2 (x1 + x2) a1/a2

)
. (6.15)

This is diagonal exactly when x1 = x2. As we will see in Appendix A, this is equivalent

to η being the restriction to H1 of a product metric ΛS⊗ΛB on H. And as we discuss

below after (6.23), this is also equivalent to the reduced system state ρ̄H(t) in (6.22)

being a positive operator.

6.1.2 Reduced non-Hermitian system dynamics

Fix an η ∈M+ and take an initial state of the form

|ψ(0)〉 = A|eS〉+B|eB〉 (6.16)

for some A,B ∈ C normalized to have ‖ψ(0)‖2
η = 1, that is,

1 =
(x1 + x2

2

)(a2

a1

|A|2 +
a1

a2

|B|2
)

+ (x1 − x2)Re(AB∗). (6.17)

The dynamics is given by

|ψ(t)〉 = e−itH |ψ(0)〉 = e−itνA(t)|eS〉+ e−itνB(t)|eB〉, (6.18)

where
A(t) = A cos(ωt)− iBa1

a2

sin(ωt),

B(t) = B cos(ωt)− iAa2

a1

sin(ωt).
(6.19)
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The normalization

‖ψ(t)‖2
η = x1

∣∣〈v∗+|ψ(t)〉
∣∣2 + x2

∣∣〈v∗−|ψ(t)〉
∣∣2 = 1 (6.20)

holds for all t, as e−itH acts unitarily on H1 equipped with the inner product 〈·|·〉η.
The relation (6.20) is the same as (6.17) with A and B replaced by A(t) and B(t).

We now introduce the reduction of the system to the single oscillator (a∗, a). The

average of a system observable OS (observable of the single oscillator) in the state

|ψ(t)〉 given by (6.18) evolves according to

〈ψ(t)|ηOS|ψ(t)〉 = trS

(
ρ̄H(t)OS

)
, (6.21)

where the reduced system state is

ρ̄H(t) = trB ρH(t) = trB

(
|ψ(t)〉〈ψ(t)|η

)
. (6.22)

For the partial trace we have the identities trB|eS〉〈eS| = |1S〉〈1S|, trB|eB〉〈eB| =

|0S〉〈0S| and trB|eS〉〈eB| = 0 = trB|eB〉〈eS|. Using (6.18) and η of the form (6.14),

we obtain after a calculation

ρ̄H(t) =
(x1 + x2

2

a1

a2

|B(t)|2 +
x1 − x2

2
A(t)B(t)∗

)
|0S〉〈0S|

+
(x1 + x2

2

a2

a1

|A(t)|2 +
x1 − x2

2
A(t)∗B(t)

)
|1S〉〈1S|. (6.23)

This matrix is diagonal in the basis {|0S〉, |1S〉} and the two diagonal entries are its

eigenvalues. One checks directly that trS(ρ̄H(t)) = 1 (the sum of the diagonal elements

equals ‖ψ(t)‖2
η = 1). However, the eigenvalues of ρ̄H(t) are complex, in general,

unless the metric is chosen to satisfy x1 = x2. Indeed, the imaginary part of the first

eigenvalue is x1−x2
2

Im(A(t)B(t)∗). If A,B, the coefficients in the initial state (6.16), are

real then this quantity becomes1 −(x1−x2)( 1
x1+x2

− a2
a1
A2− x1−x2

x1+x2
AB) cos(ωt) sin(ωt).

Unless x1 = x2 or the initial condition satisfies (x1 + x2)a2
a1
A2 + (x1 − x2)AB = 1,

the eigenvalues of ρ̄H(t) will not be real except at the discrete set of times t when

sin(ωt) cos(ωt) = 0.

1Use the equations (6.19) and write B as a function of A according to the normalization condition
(6.17).
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We require ρ̄H(t) to be a density matrix (and in particular to have non-negative

eigenvalues) for all times. To do so with a metric that does not depend on the initial

conditions we therefore must choose x1 = x2. We thus take

x1 = x2 = x > 0

for the remainder of this chapter. In the basis {|eS〉, |eB〉} the metric η is diagonal,

η = x

(
a2/a1 0

0 a1/a2

)
, (6.24)

see (6.15). As explained after (6.15), this is equivalent to η being of product form.

With this choice, ρ̄H(t) given by (6.23) is ∗-Hermitian. According to (6.23) and (6.19)

we have

ρ̄H(t) = p(t) |0S〉〈0S|+ (1− p(t)) |1S〉〈1S|, (6.25)

where

p(t) = x
a1

a2

|B(t)|2

= x
(a1

a2

|B|2 cos2(ωt) +
a2

a1

|A|2 sin2(ωt)− 2 sin(ωt) cos(ωt)Im(A∗B)
)

=
1

2
+
(1

2
− xa2

a1

|A|2
)

cos(2ωt)− x sin(2ωt)Im(A∗B). (6.26)

In the last step, we used the normalization condition (6.17), resulting in a1
a2
|B|2 =

1
x
− a2

a1
|A|2, and the trigonometric identities sin(ωt) cos(ωt) = 1

2
sin(2ωt), cos2(ωt) =

1
2
(1 + cos(2ωt)) and sin2(ωt) = 1

2
(1 − cos(2ωt)). In view of (6.26) it is natural to

introduce the parameter

α ≡ x
a2

a1

|A|2 ∈ [0, 1]. (6.27)

Equations (6.25) and (6.26) show the following.

Properties of p(t):

1. p(t) and ρ̄H(t) depend on time unless α = 1
2

and A∗B ∈ R, in which case

p(t) = 1
2

and ρ̄H(t) = 1
2
1l.

2. Otherwise p(t) and ρ̄H(t) are periodic in time, with period π/ω, and the mean
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value of p(t) is

p0 =
ω

π

∫ π/ω

0

p(t)dt =
1

2
. (6.28)

6.1.3 Reduced Hermitian system dynamics

Next, we turn our attention to the density matrix of the Hermitian system, which

according to (1.17) is

ρhW (t) = SρH(t)S−1 = W
√
ηρH(t) 1√

η
W ∗ = W

√
η |ψ(t)〉〈ψ(t)|√ηW ∗. (6.29)

We keep W in the notation hW to highlight that the choice of h depends on W , see

(1.11). Again choosing a metric η of the form (6.14) with x1 = x2 = x > 0, we use

(6.18) to obtain
√
η|ψ(t)〉 = e−itνγ(t)|eS〉+ e−itνδ(t)|eB〉, (6.30)

where

γ(t) =

√
x
a2

a1

A(t), δ(t) =

√
x
a1

a2

B(t). (6.31)

We then obtain

√
η |ψ(t)〉〈ψ(t)|√η =

(
|γ(t)|2 γ(t)δ(t)∗

γ(t)∗δ(t) |δ(t)|2

)
, (6.32)

written in matrix form in the ordered basis {|eS〉, |eB〉} of H1. Next, we take a general

(time-independent) unitary on H1, expressed in the same basis as

W =

(
a b

c d

)
, ac∗ + bd∗ = 0, |a|2 + |b|2 = 1 = |c|2 + |d|2. (6.33)

Using (6.29), (6.32), (6.33) and writing momentarily δ, γ for δ(t), γ(t), we get

ρhW (t) =

(
|aγ + bδ|2 ac∗|γ|2 + bc∗γ∗δ + ad∗γδ∗ + bd∗|δ|2

a∗c|γ|2 + b∗cγδ∗ + a∗dγ∗δ + b∗d|δ|2 |cγ + dδ|2

)
.

(6.34)

We observe that ρhW (t) is periodic in time, with period π/ω. This follows from (6.31)

together with (6.19), since cos2(ωt), sin2(ωt) and sin(ωt) cos(ωt) all have period π/ω.

Next we calculate the reduced density matrix ρ̄hW (t) of S by taking the partial
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trace of ρhW (t) over B,

ρ̄hW (t) = q(t) |0S〉〈0S|+
(
1− q(t)

)
|1S〉〈1S|, (6.35)

where q(t) =
∣∣cγ(t) + dδ(t)

∣∣2 and γ(t), δ(t) are given in (6.31). We get the expression

q(t) = x
∣∣∣c√a2

a1

A(t) + d

√
a1

a2

B(t)
∣∣∣2, (6.36)

where A(t) and B(t) are given in (6.19). Expanding the square and using |d|2 = 1−|c|2

as well as the normalization (6.17) (which is valid for A,B replaced by A(t), B(t) at

any time), we obtain

q(t) = |c|2 + (1− 2|c|2)x
a1

a2

|B(t)|2 + 2xRe
(
cd∗A(t)B(t)∗

)
= |c|2 + (1− 2|c|2)p(t) + 2xRe

(
cd∗A(t)B(t)∗

)
, (6.37)

where p(t) is the population of ρ̄H(t) evaluated above in (6.26). Expanding the real

part term in (6.37) using (6.19), we arrive at

q(t) = |c|2 + (1− 2|c|2)p(t)

− sin(2ωt)
(
1− 2x

a2

a1

|A|2
)
Im(cd∗)− 2x cos(2ωt)Im(AB∗)Im(cd∗)

+2xRe(AB∗)Re(cd∗). (6.38)

We take into account (6.26) to rewrite

q(t) = 1
2

+ 2xRe(AB∗)Re(cd∗)

+ cos(2ωt)
[
(1

2
− α)(1− 2|c|2)− 2xIm(AB∗)Im(cd∗)

]
− sin(2ωt)

[
(1− 2α)Im(cd∗)− x(1− 2|c|2)Im(AB∗)

]
, (6.39)

where we recall that α is given in (6.27). Using the explicit form (6.39) of q(t), we

obtain the following information.

Properties of q(t):

1. q(t) and ρ̄hW (t) depend on time unless both factors of the cosine and sine terms
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in (6.39) vanish. Thus q(t) is time-independent and hence equal to

q0 =
ω

π

∫ π/ω

0

q(t)dt =
1

2
+ 2xRe(AB∗)Re(cd∗) (6.40)

if and only if:

• α = 1/2, |c| = 1/
√

2 and Im(AB∗)Im(cd∗) = 0, or

• α = 1/2, |c| 6= 1/
√

2 and Im(AB∗) = 0, or

• α 6= 1/2, |c| = 1/
√

2 and Im(cd∗) = 0, or

• α 6= 1/2, |c| 6= 1/
√

2 and Im(A∗B) = 1
2x
|1 − 2α| and Im(cd∗) = 1

2
(1 −

2|c|2)sgn(1− 2α), where sgn(x) = |x|/x.

2. Otherwise q(t) and ρ̄hW (t) are periodic in time, with period π/ω, and the mean

value of q(t) is q0 from (6.40).

Generic initial states and unitaries. As x > 0, the average q0 equals 1
2

exactly

when Re(AB∗)Re(cd∗) = 0. This is a condition on the initial state (via A,B) and the

unitary W (via c, d). We call the initial state and the unitary generic, respectively,

when

AB∗ 6∈ R and cd∗ 6∈ R. (6.41)

In other words, for generic initial states and unitaries, the average q0 of the population

of ρ̄hW (t) differs from the average p0 = 1
2

of the population of ρ̄H(t). As we show in the

next section, this deviation from the value 1
2

causes the entropy of ρ̄hW (t) to oscillate

with exactly half the frequency of the entropy of ρ̄H(t).

6.2 Entropy

Recall that the states ρ̄H(t) and ρ̄hW (t) are given in (6.25) and (6.35), with associated

populations p(t), q(t) evaluated in (6.26) and (6.39). Their von Neumann entropy is

given by

E(ρ̄H(t)) = −p(t) ln p(t)− (1− p(t)) ln(1− p(t)),

E(ρ̄hW (t)) = −q(t) ln q(t)− (1− q(t)) ln(1− q(t)). (6.42)
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We show in Appendix B that

E(ρ̄H(t)) = E(ρ̄hW (t)) for all t ≥ 0 and initial conditions (A,B) ⇐⇒ cd = 0.

If Re(cd∗) 6= 0, then according to (6.28) and (6.40) the averages p0 and q0 around which

the populations p(t) and q(t) oscillate are different for all generic initial conditions,

i.e., all coefficients A,B satisfying Re(AB∗) 6= 0. This translates into a modification

of the period of the entropy of ρ̄hW (t) as a function of time t relative to that of ρ̄H(t),

as we explain now.

6.2.1 Period doubling of von Neumann entropy in the non-

Hermitian versus the Hermitian system

Consider the function

E(Q) = −Q lnQ− (1−Q) ln(1−Q), Q ∈ [0, 1].

Suppose now that Q = Q(t) depends periodically on time and has average Q0,

Q(t) = Q0 + ∆(t) ∈ [0, 1], (6.43)

with ∆(t) having period π/ω and zero average. This setup incorporates both cases

p(t) and q(t) in one. As Figure 6.1 illustrates, if Q0 = 1
2
, which is the value where

E(Q) takes its maximum, then as Q(t) moves over one period, the entropy E(Q(t))

moves over two periods.

𝑄

ℰ(𝑄)

𝑄! 𝑄"

𝑄#

Figure 6.1: The period of the entropy E(Q(t)) relative to the period of Q(t), consid-
ering parameter choices Q0 = 0.5 and ∆ ≡ maxt ∆(t) = 0.2.
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According to (6.43), Q(t) starts at Qm = 0.3 (at a time we take to be t = 0) and

moves to QM = 0.7 at time ωt = π/2, and then back to Qm at time ωt = π (left

panel), so the value of the entropy E(Q(t)) evolves through two periods (right panel).

In each period, the entropy has two local minima (counting minima at the endpoints

of the considered intervals once).

On the other hand, if Q0 6= 1
2
, then the period of the entropy E(Q(t)) is not doubled

relative to that of Q(t), as Figures 6.2 and 6.3 show.

𝑄

ℰ(𝑄)

𝑄! 𝑄"

𝑄#

Figure 6.2: The period of the entropy E(Q(t)) relative to the period of Q(t), consid-
ering parameter choices Q0 = 0.6, ∆ = maxt ∆(t) = 0.2.

In this case Q(t) starts at Qm = 0.4 when t = 0 (upon a possible shift of the time

axis) and moves to QM = 0.8 at time ωt = π/2 and back to Qm at time ωt = π (left

panel). The value of the entropy E(Q(t)) evolves through one single period (right

panel). In each period, the entropy has two local minima (counting minima at the

endpoints once).

𝑄

ℰ(𝑄)

𝑄! 𝑄"

𝑄#

Figure 6.3: The period of the entropy E(Q(t)) relative to the period of Q(t), consid-
ering parameter choices Q0 = 0.8, ∆ = maxt ∆(t) = 0.2.
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In this case Q(t) starts at Qm = 0.6 when t = 0 (after possibly shift the time

axis) and moves to QM = 1.0 at time ωt = π/2 and back to Qm at time ωt = π (left

panel). The value of the entropy E(Q(t)) evolves through one single period (right

panel). Since 0.5 is not in the interval (Qm, QM), the graph of the entropy has only

one local minimum in each period, instead of two when the interval contains the value

0.5 for Q.

We draw the following conclusions:

• The period of the von Neumann entropy of the non-Hermitian system E(ρ̄H(t))

is 1
2
π/ω, regardless of the initial condition (except for the stationary state).

• Regardless of the metric (parameter x), the period of the von Neumann entropy

of the Hermitian system E(ρ̄hW (t)) is:

◦ π/ω, provided Re(AB∗)Re(cd∗) 6= 0 (generic case),

◦ 1
2
π/ω, provided Re(AB∗)Re(cd∗) = 0 (special case).

This means that for generic initial conditions (meaning Re(AB∗) 6= 0) and generic

choices of the unitary W (meaning Re(cd∗) 6= 0), the period of the von Neumann

entropy of the Hermitian system is double that of the non-Hermitian sys-

tem. That is, the entropy of the non-Hermitian system oscillates faster. This is so

even though the populations in both cases have the same frequency π/ω. The change

of the period is due to the shift of the average in the population induced by W , as

given in (6.40).

6.2.2 Numerical illustration of the period doubling

We plot the populations and entropies for parameters in the regime

x = x1 = x2 > 0 (metric η, (6.24)) (6.44)

c, d ≥ 0 (unitary W , (6.33)) (6.45)

A,B ≥ 0 (initial state |ψ(0)〉, (6.16)) (6.46)
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According to (6.45) and the unitarity of W , we have d =
√

1− c2. Moreover,

x2A2B2 = α(1 − α), where α = xa2
a1
A2 ∈ [0, 1]. The population q(t) of the Her-

mitian system reduced density matrix, given in (6.39), then becomes

q(t) = q0 + ∆ cos(2ωt) (6.47)

with

q0 = 1
2

+ 2
√
c2(1− c2)

√
α(1− α), (6.48)

∆ = 1
2
(1− 2c2)(1− 2α). (6.49)

Here, α = xa2
a1
A2 ∈ [0, 1] and c ∈ [0, 1] can be chosen freely. The population p(t) of

the non-Hermitian system, in (6.26), is simply the expression (6.47) with c = 0.

Note that the change α 7→ 1 − α leaves q0 invariant and flips the sign of ∆. It

then suffices to plot graphs for α ∈ [0, 1/2]. For α = 1/2 we get ∆ = 0, which gives

a stationary state (for all c). The same invariance of q0 and sign flip of ∆ is induced

by c2 7→ 1− c2.

In Figure 6.4, we compare the von Neumann entropies of the two density matrices

ρ̄H(t) and ρ̄hW (t), directly seeing the doubling of the period.

Figure 6.4: Comparing the entropies of ρ̄hW (t) and of ρ̄H(t) for the values c = 0.5 and
α = 0, 0.15, 0.3, 0.45.

The doubling of the period for α 6= 0 is manifest. The oscillations decrease as α

approaches 0.5, which gives the stationary state.
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6.3 Entanglement of system and bath oscillators

The total Hilbert space H = HS⊗HB in (6.1) is bipartite, one part being the singled-

out oscillator (system), the other being the remaining N oscillators (bath). We say

that a nonzero vector |ψ〉 ∈ H is of product form, or disentangled, if |ψ〉 = |ψS〉⊗ |ψB〉
for some |ψS〉 ∈ HS and some |ψB〉 ∈ HB. We call a nonzero |ψ〉 ∈ H entangled if it

is not of product form. The notion of being entangled or not does not depend on the

metric determining the inner product of H. Nevertheless, the physical interpretation

of entanglement in terms of independence of the subsystems S and B does depend on

the metric. The physical manifestation of disentangled states is the independence of

the two subsystems S and B. Namely, if the inner product of H is given by a metric

of the form η = ΛS ⊗ ΛB (a particular example being 1lS ⊗ 1lB), then measurement

outcomes of observables on either of the subsystems are independent random variables.

This follows because expectation values of observables OS⊗OB in a state |ψS〉⊗ |ψB〉
split into products,

〈ψS ⊗ ψB|η(OS ⊗OB)ψS ⊗ ψB〉 = 〈ψS|ΛSOSψS〉〈ψB|ΛBOBψB〉.

However, those random variables become dependent (correlated) if η is not of product

form, because then their average will not split into a product of a system term times

a bath term.

In the model defined in Section 6.1, the metrics η we consider are restrictions to

the subspace H1 of product metrics ΛS ⊗ ΛB of H (c.f. (6.15) and Appendix A).

The physical meaning of SB entanglement in terms of subsystem independence does

therefore not depend on the choice of η within this class. In other words, measurement

outcomes of system and bath observables in |ψ〉 ∈ H1 are independent or dependent,

according to whether |ψ〉 ∈ H1 is disentangled or not, regardless of the choice of η.

It is then sensible to investigate the SB entanglement in pure states belonging to the

subspace H1 for all η.

Any vector |ψ〉 ∈ H1 is of the form

|ψ〉 = A|eS〉+B|eB〉, A,B ∈ C. (6.50)

In accordance with (6.6), we may write |eS〉 = |10〉 = |1〉 ⊗ |0〉 ∈ HS ⊗ HB and
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|eB〉 = |01〉 = |0〉 ⊗ |1〉 ∈ HS ⊗HB. Explicitly, |0〉, |1〉 ∈ HS are the ground state and

first excited state of the system oscillator, and |0〉, |1〉 ∈ HB are the ground state of all

the N bath oscillators and the distributed excitation state 1√
N

∑N
n=1 |1n〉, respectively;

see (6.6).

We now show that

|ψ〉 of the form (6.50) is disentangled ⇐⇒ AB = 0. (6.51)

To see that the implication ⇒ in (6.51) holds, let ρS ≡ trB|ψ〉〈ψ| (partial trace over

B). On the one hand, (6.50) gives ρS = |A|2|1〉〈1|+ |B|2|0〉〈0|. On the other hand, if

|ψ〉 is disentangled, then ρS must have rank one, since ρS = trB(|ψS〉〈ψS|⊗|ψB〉〈ψB|) =

|ψS〉〈ψS| ‖ψB‖2. This forces either A = 0 or B = 0. Conversely, to see the implication

⇐ in (6.51), we note that if either of A or B vanish, then |ψ〉 is is proportional to

|eB〉 or |eS〉, so |ψ〉 is disentangled.

Entanglement in the non-Hermitian system. An initial state |ψ(0)〉 =

A|eS〉+B|eB〉 evolves into |ψ(t)〉 = e−itH |ψ(0)〉 = A(t)|eS〉+B(t)|eB〉, where the time

dependent coefficients are given in (6.19). According to (6.51), |ψ(t)〉 is disentangled

exactly if A(t)B(t) = 0. Let us first analyze the condition A(t) = 0. This equality is

equivalent to the two equations

(ReA) cos(ωt) + (ImB)
a1

a2

sin(ωt) = 0,

(ImA) cos(ωt)− (ReB)
a1

a2

sin(ωt) = 0.
(6.52)

The condition B(t) = 0 is the same as (6.52) but with A↔ B swapped and a1 ↔ a2

swapped.

Suppose |ψ(0)〉 is disentangled, so AB = 0. Then exactly one of A or B vanish

and the equations (6.52) are satisfied for ωt ∈ πZ (if A = 0) or for ωt = π
2
(2Z+ 1) (if

B = 0). We conclude that |ψ(t)〉 is entangled except periodically at discrete moments

in time where it is disentangled.

On the other hand, if |ψ(0)〉 is entangled, then both A and B do not vanish. If A

and B are both real or both purely imaginary, then (6.52) is not satisfied for any t.

For all other A and B (6.52) is satisfied for discrete, periodically repeating values of

t.
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We conclude:

(a) If the initial state |ψ(0)〉 is entangled and both A,B are either purely real or

purely imaginary, then |ψ(t)〉 is entangled for all times t.

(b) With the exception of case (a) and regardless of the entanglement in the ini-

tial state |ψ(0)〉, the state |ψ(t)〉 is entangled except at periodically repeating

instants.

Entanglement in the Hermitian systems. The Hermitian system pure state

vector is given by (see also (1.15))

|φ(t)〉 = S|ψ(t)〉 = W
√
η|ψ(t)〉 = Ã(t)|eS〉+ B̃(t)|eB〉,

a normalized vector in H (with the original inner product), where(
Ã(t)

B̃(t)

)
= T

(
A(t)

B(t)

)
, T =

√
x
a2

a1

(
a ba1/a2

c da1/a2

)
, detT = x detW 6= 0

(6.53)

satisfy |Ã(t)|2 + |B̃(t)|2 = 1; c.f. (6.31) and (6.33). It follows from (6.51) that |φ(t)〉
is entangled if and only if Ã(t)B̃(t) = 0. An analysis of the latter equality along the

lines of that carried out after (6.52) shows that |φ(t)〉 is entangled except at isolated,

periodically reoccurring instants in time, just like the state of the non-Hermitian

system.

Effect of choice of W on entanglement. Given a state |ψ〉 = A|eS〉 + B|eB〉 of

the non-Hermitian system, the associated Hermitian system state is |φ〉 = W
√
η|ψ〉.

For the choice W = 1l we have

|φ〉 =
√
η|ψ〉 =

√
xa2/a1A|eS〉+

√
xa1/a2B|eB〉. (6.54)

Hence for W = 1l, |φ〉 is entangled if and only if |ψ〉 is entangled (recall (6.51)). The

metric η does not alter the property of being entangled. Choosing a different W to

build |φ〉 from |ψ〉, however, changes this. It is not hard to see that the unitaries W

that map every product state (that is |eS〉 and |eB〉) into another product state are

exactly the diagonal and the off-diagonal W . Furthermore, given an entangled
√
η|ψ〉
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as in (6.54), one can always find unitaries W such that W
√
η|ψ〉 is not entangled.

Those W are precisely the ones with |a| = |d| =
√
a1/(xa2)|B| and |b| = |c| =√

xa2/a1|A|.2

We now examine the effect of W on the time-averaged density matrix

〈ρ〉 =
ω

π

∫ π/ω

0

|φ(t)〉〈φ(t)| dt (6.55)

where we integrate |φ(t)〉〈φ(t)| = ρhW (t) over one period, see (6.34). A direct calcu-

lation yields

〈ρ〉 =

(
q0 z

z∗ 1− q0

)
, z = (bc∗ + ad∗)xRe(AB∗), (6.56)

with q0 = 1
2

+ 2xRe(AB∗)Re(cd∗), cf. (6.40). The density matrix (6.56) is written in

the basis {|eS〉 ≡ |10〉, |eB〉 ≡ |01〉} of H1, using the same notation as after (6.50). We

view H1 as a subspace of the four-dimensional space of two qubits, spanned by the

vectors {|00〉, |01〉, |10〉, |11〉}. In this basis, the density matrix (6.56) takes the form

〈ρ〉 =


0 0 0 0

0 1− q0 z∗ 0

0 z q0 0

0 0 0 0

 . (6.57)

We calculate the concurrence [41, 24] of 〈ρ〉 to be3

C
(
〈ρ〉
)

= 2x|Re(AB∗)|. (6.58)

The concurrence of any two qubit density matrix is bounded below by 0 (separable

state) and above by 1 (maximally entangled state). Both inequalities in

2x|Re(AB∗)| ≤ 2x|A||B| ≤ x
(a2

a1

|A|2 +
a1

a2

|B|2
)

= 1

(the last equality is the normalization (6.17), with x = x1 = x2 > 0) are saturated

exactly if AB∗ ∈ R and |A| = a1
a2
|B|.

2This follows from the characterization (6.51) of product states and the normalization
‖√η|ψ〉‖H = 1.

3In the present case, the square of the concurrence is the difference between the two non-zero
eigenvalues of the squared matrix 〈ρ〉2.
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We conclude that the concurrence of 〈ρ〉 is the same for all choices W , so it only

depends on the initial state. The state 〈ρ〉 is separable if and only if Re(AB∗) = 0,

and is maximally entangled if and only if Im(AB∗) = 0 and |A| = a1
a2
|B|.



Chapter 7

Summary and Future research

7.1 Summary

We demonstrated that, for a PT symmetric Hamiltonian H operating on the Hilbert

space H = C2, at the transition point, H is either non-diagonalizable or is real propor-

tional to the identity. Additionally, we determined all PT symmetric Hamiltonians

H acting on H = C2 when T is chosen as the complex conjugation operator.

We studied the existence and characteristics of metrics associated with H(κ).

The focal point of this investigation is Theorem 5.2.2, which established a crucial

condition for the diagonalizability of the Hamiltonian H(κ0) at the transition point

κ0: the diagonalizability of H(κ0) is equivalent to the existence of a time-independent

metric η that solves the equation H∗(κ0)η = ηH(κ0).

In our analysis, it was demonstrated that within the PT symmetry broken regime,

the existence of time-independent metrics is absent, as indicated by Proposition 5.2.5.

Moreover, as outlined in Theorem 5.2.3, in the PT symmetry unbroken regime, any

potential time-dependent metric remains bounded over time. Conversely, within the

PT symmetry broken regime, it was shown that a time-dependent metric characterized

by exponential growth over time can always be identified.

Generally, the Dyson map assigns to a given quasi-Hermitian quantum system an

associated Hermitian system in a non-unique way. We quantified the non-uniqueness

employing a metric operator η and a unitary map W . The physical properties of the

Hermitian systems depend on the choice of W , and it is not obvious how to capture
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the dynamics of the original quasi-Hermitian system in its Hermitian counterparts –

unless there happens to be some universality throughout the Hermitian family. We

described an aspect of universality for a quasi-Hermitian open system consisting of

a single oscillator coupled to a bath of N oscillators. We showed that there is a

unique metric operator for which the reduced state of the system (single oscillator) is

a well-defined density matrix. Using this metric, we construct all Hermitian systems

obtained from the quasi-Hermitian one by varying W . We found that the entropy

of the single oscillator in the Hermitian system evolves periodically in time with

exactly double the period of the corresponding entropy of the quasi-Hermitian system,

independently of W . We further showed that averaged over one time period, the

entanglement between the oscillator and the bath is independent of the choice of W .

7.2 Future research

(1) Behaviour of metric across the exceptional point. Consider a PT sym-

metric H(κ) with an exceptional point κ0. We know that for κ < κ0, in the

unbroken regime, there are time-independent metrics η−(κ). In the broken re-

gion, κ > κ0, there are only time-dependent metrics η+(t,κ). We want to set up

a simple generic model in which we can study the transition of the metric from

a time-independent to a time-dependent one as κ crosses κ0. For instance: con-

sider a model in which H(κ) has simple eigenvalues for κ < κ0 which collapse

for κ = κ0, resulting in a non-diagonalizable H(κ) with a single eigenvalue,

and such that for κ > κ0, the operator H(κ) has again purely simple spectrum

consisting of non-real, complex conjugate pairs (broken regime). Let κ 7→ η(κ)

be a continuous family of time-independent metrics for κ < κ0. Can we link this

family continuously to a family of time-dependent metrics η(t,κ) as κ crosses

κ0? If so, is this continuation unique?

(2) Infinite dimensions. The original Hamiltonians in the PT symmetry lit-

erature are Schrödinger operators with complex potentials [3, 6], which are

unbounded operators with discrete spectrum. On the other hand, the math-

ematically rigorous results in this field – like our theorems in Chapter 5 – are

proven for finite-dimensional operators [30, 6, 32, 43]. We are interested in ex-

tending the mathematically rigorous definitions and results from finite to infinite
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dimensions:

(i) In a first round, consider the operators P and T bounded, and H un-

bounded, having discrete spectrum. Can we generalize our Theorems in

Chapter 5 to this situation?

(ii) One way of characterizing the unbroken symmetry regime for finite-dimensional

Hamiltonians H is that all eigenvectors of H are also eigenvectors of PT

see Theorem 2.2.2. What if we have an H that has a continuous spectrum?

Then the notion of an eigenvector does not make sense. We can still define

the phases in terms of the nature of the spectrum (purely real or invariant

under complex conjugation). Can one still prove results about metrics η

analogous to our Theorems in Chapter 5?

(3) Physical observables, non-uniqueness of pairing h(t)↔ H. The relation

between the Hermitian h(t) and the non-Hermitian H, given by the Dyson

equation

h(t) = S(t)HS(t)−1 + iṠ(t)S(t)−1, (7.1)

is not uniquely defined. It involves the metric η(t), which is a solution of the

quasi-Hermiticity equation

H∗η(t)− η(t)H = i∂tη(t), (7.2)

which involves the choice of an initial condition η(0), and a not uniquely defined

square root S(t) of the metric η(t). What does this non-uniqueness represent

physically? We are unclear about the answer to this question at the moment.

To elucidate it, we need to clarify the notion of physically observable quantities

(measurements) in non-Hermitian systems. We have come across this notion in

different papers [6, 31], but have never seen that researchers ask how the non-

uniqueness h(t)↔ H affects an observable. More precisely, if A is an observable

of the non-Hermitian system, then (most probably?) A′(t) = [S(t)−1]∗AS(t)−1

is to be interpreted as an observable of the associated Hermitian system (recall

that φ(t) = S(t)ψ(t)). But A′(t) depends on the choice of η(t), S(t). In what

sense (if any) is A′ insensitive to changing η(t) and S(t)?



Bibliography

[1] C. Bender. Introduction to pt-symmetric quantum theory. Contemp. Phys.,
46(4):277–292, 2005.

[2] C. Bender. PT symmetry: In quantum and classical physics. World Scientific,
2019.

[3] C. Bender, M. Berry, and A. Mandilara. Generalized pt symmetry and real spectra.
Phys. Math. Gen., 35(31):L467, 2002.

[4] C. Bender and S. Boettcher. Real spectra in non-hermitian hamiltonians having
p t symmetry. Phys. Rev. Lett., 80(24):5243, 1998.

[5] C. M. Bender, S. Boettcher, and P. N. Meisinger. pt-symmetric quantum mechan-
ics. Journal of Mathematical Physics, 40(5):2201–2229, 1999.

[6] C. M. Bender, D. C. Brody, and H. F. Jones. Complex extension of quantum
mechanics. Physical Review Letters, 89(27):270401, 2002.

[7] C. M. Bender, D. C. Brody, and H. F. Jones. Must a hamiltonian be hermitian?
American Journal of Physics, 71(11):1095–1102, 2003.

[8] K. Blum. Density matrix theory and applications, volume 64. Springer Science &
Business Media, 2012.

[9] A. Borz̀ı, G. Ciaramella, and M. Sprengel. Formulation and numerical solution of
quantum control problems. SIAM, 2017.

[10] O. A. Castro-Alvaredo and A. Fring. A spin chain model with non-hermitian
interaction: the ising quantum spin chain in an imaginary field. Journal of Physics
A: Mathematical and Theoretical, 42(46):465211, 2009.

[11] J. Cen and A. Saxena. Anti-pt-symmetric qubit: Decoherence and entanglement
entropy. Physical Review A, 105(2):022404, 2022.
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Appendix A

Diagonal form of η is equivalent to

product form

We have seen above in (6.24) that η must be diagonal for the populations of ρ̄H(t)

to be non-negative and that conversely if η is diagonal, then the populations of ρ̄H(t)

are positive. As it turns out, η being diagonal is also equivalent to η being of product

form. More precisely, the following two statements are equivalent:

(1) η is diagonal in the basis |eS〉, |eB〉 of H1.

(2) There are metrics ΛS and ΛB on HS and HB, respectively, such that ΛS ⊗ ΛB

leaves H1 invariant and η = ΛS⊗ΛB �H1 is the restriction of this product to H1.

Given η, the ΛS and ΛB are not unique.

Proof of (1) ⇔ (2).

Consider a bipartite Hilbert space H = HS ⊗ HB with an orthonormal basis

|vij〉 = |ei〉⊗|fj〉, the |ei〉 and |fj〉 being orthonormal bases ofHS andHB, respectively.

Let H1 be the two-dimensional subspace H1 = span{|v11〉, |v22〉}. In this setup, |v11〉
is identified with |eS〉 and |v22〉 with |eB〉. Let η > 0 be a strictly positive operator on

H1.

We first show (1) ⇒ (2). Assume that η is diagonal, that is, η = a|v11〉〈v11| +
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b|v22〉〈v22|, where a, b > 0. Set

ΛS = α1|e1〉〈e1|+ α2|e2〉〈e2|+ Λ⊥S

ΛB = β1|f1〉〈f1|+ β2|f2〉〈f2|+ Λ⊥B ,

where α1, α2, β1, β2 > 0 satisfy α1β1 = a, α2β2 = b and Λ⊥S , Λ⊥B are arbitrary positive

operators on the orthogonal complements of span{|e1〉, |e2〉} and span{|f1〉, |f2〉} in

HS and HB, respectively. Then ΛS ⊗ ΛB is a metric on H which leaves H1 invariant

and satisfies (ΛS ⊗ ΛB)|vjj〉 = η|vjj〉 for j = 1, 2.

Next we prove that (2) ⇒ (1). The orthogonal projection onto H1 is given by

π = |v11〉〈v11|+ |v22〉〈v22| = p11 ⊗ q11 + p22 ⊗ q22,

where pij = |ei〉〈ej| and qij = |fi〉〈fj|. Since ΛS ⊗ ΛB leaves H1 invariant, we have

(ΛS ⊗ ΛB)π = π(ΛS ⊗ ΛB)π. Now

(ΛS ⊗ ΛB)π = ΛSp11 ⊗ ΛBq11 + ΛSp22 ⊗ ΛBq22 (A.1)

and, with [ΛS]ij = 〈ei|ΛSej〉 and similarly for ΛB,

π(ΛS ⊗ ΛB)π = [ΛS]11[ΛB]11 p11 ⊗ q11 + [ΛS]12[ΛB]12 p12 ⊗ q12

= [ΛS]21[ΛB]21 p21 ⊗ q21 + [ΛS]22[ΛB]22 p22 ⊗ q22. (A.2)

Taking the partial trace over B in (A.1) and (A.2) and equating the two results gives

[ΛB]11ΛSp11 + [ΛB]22ΛSp22 = [ΛS]11[ΛB]11 p11 + [ΛS]22[ΛB]22 p22. (A.3)

Since [ΛB]11, [ΛB]22 > 0 we get from (A.3) that ΛSpjj = [ΛS]jjpjj for j = 1, 2, so

ΛS|ej〉 = [ΛS]jj|ej〉. Hence the restriction of ΛS to span{|e1〉, |e2〉} is diagonal, ΛS =

[Λ1]11p11 +[ΛS]22p22 +Λ⊥S , where Λ⊥S is the block acting on the orthogonal complement

of that span. By taking the partial trace over S in (A.1) and (A.2) and proceeding

analogously, we see that ΛB = [ΛB]11q11 + [ΛB]22q22 + Λ⊥B . It follows that (ΛS ⊗
ΛB)|vjj〉 = [ΛS]jj[ΛB]jj |vjj〉 for j = 1, 2, so

η = [ΛS]11[ΛB]11 |v11〉〈v11|+ [ΛS]22[ΛB]22 |v22〉〈v22|
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is diagonal.



Appendix B

Criteria for the equivalence of

entropy and density matrices in

both Hermitian and non-Hermitian

systems

Conditions for ρ̄H(t) = ρ̄hW (t) and E(ρ̄H(t)) = E(ρ̄hW (t))

In this section, we assume the metric η is of the form (6.14) with x1 = x2 = x > 0.

and we want to study Recall the formulas (6.25) and (6.35) for the quasi-Hermitian

and Hermitian density matrices.

First we ask when the two reduced density matrices coincide. We show that the

following statements are equivalent:

1. ρ̄H(t) = ρ̄hW (t) for all t in an open interval I ⊂ R and all A,B ∈ C;

2. ρ̄H(t) = ρ̄hW (t) for all t ∈ R and all A,B ∈ C;

3. There are two real phases Φ1, Φ2, such that

W =

(
eiΦ1 0

0 eiΦ2

)
.

1. ⇒ 3. : Assume that ρ̄H(t) = ρ̄hW (t) for t ∈ I. Then p(t) = q(t) for t ∈ I,
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where these quantities are given in (6.26) and (6.39), respectively. Their equality is

equivalent with

ξ1 + ξ2 cos(2ωt) + ξ3 sin(2ωt) = 0 for all t ∈ I, (B.1)

with ξ1 = 2xRe(AB∗) Re(cd∗), ξ2 = −|c|2(1 − 2α) − 2xIm(AB∗)Im(cd∗) and ξ3 =

−(1− 2α)Im(cd∗) + 2x(1− |c|2)Im(AB∗). As the constant function and the sine and

cosine are three independent functions, and since (B.1) holds for all t in an interval,

we conclude that ξ1 = ξ2 = ξ3 = 0. Since ξ1 = 0 for all A,B and x > 0, we have

Re(cd∗) = 0, that is, Im(cd∗) = cd∗. The coefficients A,B and α are related by (6.17)

and (6.27), resulting in A =
√
α
√

a1
xa2
eif1 and B =

√
1− α

√
a2
xa1
eif2 , where f1, f2 ∈ R

are phases. This gives Im(AB∗) =
√
α(1− α) 1

x
Im ei(f1−f2). Then ξ2 = 0 for all A,B

implies that

|c|2(1− 2α) = −2
√
α(1− α)cd∗ Im ei(f1−f2) for all f2, f2 ∈ R, α ∈ [0, 1].

This forces |c|2(1 − 2α) = 0 = α(1 − α)cd∗ for all α ∈ [0, 1]. Hence c = 0. Then due

to (6.33), |d| = 1 and bd∗ = 0, so b = 0, and statement 3. holds.

3. ⇒ 2. : Suppose c = 0. Then |d| = 1 and from (6.36) we have q(t) = xa1
a2
|B(t)|2,

which equals the population of |0S〉 in ρ̄H(t), see (6.23). Therefore 2. holds.

2. ⇒ 1. : Obvious.

This completes the proof of the equivalence of the three statements 1.-3.

Next we ask when the entropies of the two density matrices coincide. We show

that the following statements 4.-6. are equivalent:

4. E(ρ̄H(t)) = E(ρ̄hW (t)) for all t in an open interval I ⊂ R and all A,B ∈ C;

5. E(ρ̄H(t)) = E(ρ̄hW (t)) for all t ∈ R and all A,B ∈ C;

6. There are two real phases Φ1, Φ2 such that W is of either of the two forms

W =

(
eiΦ1 0

0 eiΦ2

)
or W =

(
0 eiΦ1

eiΦ2 0

)
.

4. ⇒ 6. : Start by looking at the function E(q) = −q ln(q) − (1 − q) ln(1 − q),
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for q ∈ [0, 1]. It is clear from the graph of E(q) (see the left panel of Figure 6.1) that

E(q) = E(q′) exactly if either q = q′ or q = 1 − q′. Consequently, if E(ρ̄hW (t)) =

E(ρ̄H(t)) for all t ∈ I, then for each t ∈ I individually, we have either p(t) = q(t) or

p(t) = 1− q(t). We now show that the same alternative must happen for all t ∈ I.

Suppose first that p(t0) 6= 1 − q(t0) for some t0 ∈ I. Then by the continuity of

p(t) and q(t), we have p(t) 6= 1 − q(t) for all t in an open interval I0 ⊂ I around t0,

so we must have p(t) = q(t) for t ∈ I0. But this means that ρ̄H(t) = ρ̄hW (t) for all

t ∈ I0. Hence, as 2. and 3. are equivalent, W is of the diagonal form as given in point

3. above. Similarly, if p(t0) 6= q(t0) for some t0 ∈ I, we obtain p(t) = 1 − q(t) on an

interval around t0. Proceeding as in the proof of the implication 1. ⇒ 3. above, this

implies that a = d = 0, so W is of the off-diagonal form given in statement 6. above.

6. ⇒ 5. : If W is of the diagonal form, we already showed that p(t) = q(t)

when we proved 3. ⇒ 2. In the same way, if W is off-diagonal, then one sees that

p(t) = 1− q(t). In either case, E(ρ̄H(t)) = E(ρ̄hW (t)).

5. ⇒ 4. : Obvious.


