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Abstract

We present a novel perception model named Herd’s Eye View that adopts a global

perspective derived from multiple agents to boost the decision-making capabilities of

reinforcement learning agents in multi-agent environments, specifically in the context

of game AI. The Herd’s Eye View approach utilizes cooperative perception to empower

reinforcement learning agents with global reasoning ability, enhancing their decision-

making. We demonstrate the effectiveness of Herd’s Eye View within simulated game

environments and highlight its superior performance compared to traditional ego-

centric perception models. This work contributes to cooperative perception and multi-

agent reinforcement learning by offering a more realistic and efficient perspective for

global coordination and decision-making within game environments. Moreover, our

approach promotes broader AI applications beyond gaming by addressing constraints

faced by AI in other fields such as robotics.
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Chapter 1

Introduction

1.1 Perspective Views

Game environments traditionally grant AI agents access to extensive global infor-

mation from the game engine. While this configuration assists in efficient decision-

making, it does not accurately represent the restrictions encountered by AI applica-

tions outside of gaming, where comprehensive access to a system’s software or engine

is not feasible. Consequently, game AI techniques that rely predominantly on game

engine data may limit their potential contribution to broader AI applications, as their

dependency on perfect information and global environmental data is often unrealistic

in other contexts such as robotics and autonomous vehicles.

In response to these challenges, our work delves into the application of more

constrained, realistic perception models for game AI. We take inspiration from pub-
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lications like the ViZDoom platform [17] and the Obstacle Tower Challenge [18] that

have embraced the shift towards game AI with real-world constraints. ViZDoom and

Obstacle Tower have utilized visual data as the primary input for AI agents, enabling

them to navigate complex 3D environments. These perception-based game AI agents

reinforce the importance of models without access to game engine information.

1.1.1 Bird’s Eye View

Research in autonomous vehicles has made extensive strides in AI perception mod-

els, particularly using intermediary environmental representations like the Bird’s Eye

View (BEV) [19]. The BEV model provides an overhead perspective of the environ-

ment, often in the form of a semantic obstacle grid, from a single “ego” vehicle’s

standpoint. This concept has become a key component in many self-driving systems

[19] an example of this can be seen in Figure 1.1.

Drawing on these past works, we propose a similar intermediary representation for

game AI: the Herd’s Eye View (HEV) model. Differing from the BEV’s ego-centric

perspective, the HEV model offers a shared world-centric perception derived from

multiple agents. This shared perception model aligns more closely to real-world AI

applications, where multiple systems often work together to understand and navigate

their environment.
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Figure 1.1: Real-time Bird’s Eye View on the Infotainment System of a Tesla [1].

1.1.2 Herd’s Eye View

The HEV model presents dual advantages. First, it mirrors the constraints faced

by AI outside of gaming, contributing to the development of more believable AI

behaviour in games. Second, it alleviates the computational demands associated with

the BEV model, where each agent maintains its own unique view of the environment,

instead, only a single shared global view is utilized.

We also incorporate Reinforcement Learning (RL) into our approach, enabling

us to test the effectiveness of HEV in both low-level control tasks and high-level

planning challenges concurrently in complex environments. Importantly, our agents

are assessed not solely on their ability to navigate familiar environments, but also on

their ability to handle unique variations of these environments. This highlights the
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importance of generalization in adapting to novel scenarios within environments.

To assess the effectiveness of the HEV model, we conduct two sets of experiments

in three simulated Multi-Agent Reinforcement Learning (MARL) game environments.

The first compares the accuracy of HEV world-centric predictions with BEV ego-

centric predictions. The second experiment evaluates the efficiency of policies learned

by RL agents trained on HEV perspective views compared to those trained on BEV

perspective views.

1.2 Motivation

Our research responds to the growing interest in intermediary 3D perception represen-

tations in computer vision applications [19]. This trend is crucial as AI applications

in areas such as autonomous vehicles and robotics, where the luxury of unrestricted

access to global information, typical in game environments, is rarely available. Rec-

ognizing this, our research pivots towards exploring more grounded and practical

perception models in game AI.

The rationale for our focus is evident in recent academic trends. The graph in

Figure 1.2 shows a consistent increase in studies mentioning “Bird’s Eye View” and

“Perception” from 2018 to 2023. This data points to a significant interest in refining

AI perception models, aligning well with the direction of our work.

Our motivation is to align game AI with real-world AI challenges and contribute

to the expanding knowledge base of advanced perception models. The growing aca-
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Figure 1.2: Publications mentioning “Bird’s Eye View” and “Perception” (2018-2023),

indexed by Google Scholar.

demic interest underlines our work’s relevance and potential impact in the wider AI

landscape. Our research shows the HEV model is effective and viable for creating

sophisticated and realistic AI agents. By aligning with current academic trends and

addressing the needs of modern AI applications, our work contributes to the evolving

3D perception field in AI and games.

Our exploration of more realistic perception models provides significant insights

for game AI development, stressing the wider applicability of these techniques beyond

the gaming industry.
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Figure 1.3: Example semantic segmentation (left) original image, (right) semantic

segmentation [2].

1.3 Image Segmentation

Rooted in the realm of computer vision, image segmentation is a foundational im-

age processing task. This process involves the task of partitioning an image into

constituent segments, typically referred to as pixels or superpixels [20]. The primary

goal of image segmentation is to map an image’s representation into a more analyzable

and informative structure. Specifically, image segmentation assigns a unique label to

each pixel in an image, thus ensuring that pixels bearing the same label display sim-

ilar visual attributes, such as colour or intensity [20]. This transformation effectively

morphs an image from a collection of RGB pixels into a topographical map of regions,

simplifying further analysis and interpretation. An example of image segmentation

can be seen in Figure 1.3.
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1.3.1 Segmentation Metrics

The evaluation of image segmentation techniques is a critical facet of their develop-

ment, ensuring the accuracy and reliability of the methodology. Among the wide

array of metrics available for this task, Intersection over Union (IoU), also referred

to as the Jaccard Index, is frequently utilized [21].

IoU provides a quantification of the degree of overlap between two bounding boxes

or segmented regions. It computes the ratio of the intersecting area between the

predicted segmentation and the ground truth, and the union of these two areas [21].

The resulting value falls within the range [0, 1], where 0 indicates no overlap and 1

represents complete congruence between the predicted and actual segmentation.

As illustrated in Figure 1.4, IoU serves as a comprehensive yet intuitive metric of

segmentation accuracy. It offers essential quantitative feedback instrumental for the

refinement and improvement of image segmentation algorithms [22].

1.4 Reinforcement Learning

Reinforcement Learning is a sub-field of machine learning where agents must learn

the highest reward behaviours by interacting with an environment [3]. In this process,

an agent first takes an action, which transitions the environment to a new state which

usually provides a reward related to the action taken. This flow of action and feedback

of the reinforcement learning agent can be seen below in Figure 1.5.
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Figure 1.4: Visualization of the Intersection over Union (IoU) metric

Reinforcement learning consists of five key elements, the environment, state, re-

ward, policy and value, these are more clearly defined below:

Environment: The physical world agent(s) interact with.

State: The agents most recent observations and beliefs of the environment.

Reward: Feedback from the environment about how good action(s) taken are.

Policy: The mapping from agent state to action.

Value: Future reward an agent receives taking action in a state.

The structure and the granularity of information encapsulated within the state

representation significantly influence an agent’s learning trajectory and success within

a given environment [3]. The complexity of the environment dictates the required
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Figure 1.5: The flow of a reinforcement learning model [3].

state representation; in simplistic environments, a few binary variables might suffice

to encapsulate the state, whereas, in more complex environments, high-dimensional

images may be required to capture details required for the agent to make optimal

decisions. Choosing the optimal state representation in RL often encapsulates a

trade-off between the richness of information and the speed or size of the model,

highlighting the importance of adequate state representation strategies to balance

effective learning and judicious decision-making against computational efficiency and

model compactness. It should be noted that the described RL framework assumes a

fully observable Markov Decision Process (MDP), where the agent’s state encapsulates

all relevant information from the environment for decision-making. This contrasts

with a Partially Observable Markov Decision Process (POMDP), where the agent

must make decisions with incomplete information about the current state.
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1.4.1 Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning systems, agents cooperate or compete to max-

imize a reward signal they simultaneously receive [3]. In multi-agent systems, agents

often lack knowledge of other agents and their objectives, this is commonly referred

to as social awareness. It is not always necessary for agents to have social aware-

ness to learn the optimal policy. In our multi-agent environments, social awareness

is not necessary when working with agents but becomes increasingly necessary the

more agents that exist in the environment [23]. Some multi-agent systems train with

no possibility for social awareness, using only a single agent and then later applying

the learned policy to multiple agents in the environment. This single-agent train-

ing process is beneficial because it shrinks problem dimensionality but often leads to

unforeseen errors and inefficiencies between agents [23].

1.4.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of policy gradient methods for rein-

forcement learning. These methods alternate between sampling data through inter-

action with the environment and optimizing a “surrogate” objective function using

stochastic gradient ascent [24]. Unlike previous policy gradient methods, which per-

form one gradient update per data sample, PPO utilizes an objective function that

enables multiple epochs of minibatch updates [24].

PPO has some of the benefits of Trust Region Policy Optimization (TRPO) [25],
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but it is much simpler to implement, more general, and has better sample complexity.

PPO has been tested on many games and benchmarks, such as robotic locomotion

and Atari games, outperforming other online policy gradient methods [24].

The key idea behind PPO is to use a surrogate objective function with clipped

probability ratios, which forms a pessimistic estimate (i.e., lower bound) of the per-

formance of the policy. To optimize policies, PPO alternates between sampling data

from the policy and performing several epochs of optimization on the sampled data

[24].

The surrogate objective function in PPO is defined as follows:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât)]

Where θ is the policy parameter, Êt denotes the empirical expectation over timesteps,

rt is the ratio of the probability under the new and old policies respectively, Ât is

the estimated advantage at time t, and ϵ is a hyperparameter, typically set to 0.1 or

0.2 [24]. The first term inside the min is the surrogate objective. The second term,

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât, modifies the surrogate objective by clipping the probability

ratio, this removes the incentive for moving rt outside of the interval [1−ϵ, 1+ϵ]. The

minimum of the clipped and unclipped objective is taken, so the resulting objective

is a lower bound of the original objective [24].
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1.4.3 Multi-Agent POsthumous Credit Assignment

Agents within a cooperative Multi-Agent Reinforcement learning (MARL) system

must collaborate to achieve shared objectives. However, a significant challenge arises

when agents terminate before their teammates within an episode, where an agent may

“spawn” (i.e., be created) or “die” (i.e., terminate) within a single episode. The core

challenge is called the Posthumous Credit Assignment problem, where terminated

agents must learn from the team’s success or failure that occurs beyond their own

existence [26]. Traditional MARL algorithms often handle this by placing terminated

agents in an “absorbing state” until the entire group reaches termination Cohen et al..

While this approach allows existing algorithms to manage terminated agents without

architectural modifications, it introduces challenges in training efficiency and resource

utilization [26].

The Multi-Agent POsthumous Credit Assignment (MA-POCA) architecture in-

troduced by Cohen et al. leverages attention mechanisms instead of fully connected

layers with absorbing states. MA-POCA is designed to handle scenarios where agents

are created or terminated within an episode but share a reward function. By applying

a self-attention layer to active agent information, MA-POCA scales to an arbitrary

number of agents. This attention mechanism allows the critic to attribute the future

expected value of the group to states with terminated agents without the need for

absorbing states [26].
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Chapter 2

Related Works

2.1 Transformers

Transformer models represent a significant paradigm shift in the field of machine

learning, notably deviating from the Recurrent Neural Network (RNN) based encoder-

decoder architectures that were prevalent before their introduction [4]. The primary

innovation of Transformer models lies in their utilization of self-attention mecha-

nisms, entirely dispensing with the recurrence and convolutions that previous models

relied on. Unlike traditional attention mechanisms that depend on sequence-aligned

RNNs or convolutions, the Transformer model computes the representation of se-

quences by relating different items within the same sequence. This approach, termed

self-attention, allows the model to internalize the relationships between the various

elements in a sequence [4].
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Figure 2.1: Transformer model architecture [4].

2.1.1 Architecture

The Transformer model first proposed by Vaswani et al. comprises two main compo-

nents: the encoder and the decoder. Each of these components consists of multiple

identical layers, with each layer having two sub-layers. The first is a multi-head self-

attention mechanism, and the second is a position-wise fully connected feed-forward

network. This architecture enables the model to process multiple positions in the

14



sequence simultaneously in a constant number of steps, improving computational ef-

ficiency. Additionally, the Transformer uses position encodings added to the input

embeddings at the bottoms of the encoder and decoder stacks. This method allows

the model to consider the order of the sequence, which is essential for tasks with

ordered data. A full overview of the transformer architecture can be seen in Figure

2.1.

2.1.2 Scaled Dot-Product Attention

In the Transformer model, the attention mechanism is a mapping between a query and

a set of key-value pairs to an output. The scaled dot-product attention mechanism

is a crucial component of this model, where the output is computed as a weighted

sum of the values. The weight assigned to each value is computed by a compatibility

function of the query with the corresponding key [4]. This mechanism first computes

a dot product for each query with all of the keys, then divides each result by the

square root of the dimension of keys (
√
dk), and then applies a softmax function to

obtain the weights that are used to scale the values [4]. This process can be seen in

Figure 2.2.

The attention function can be computed on a set of queries simultaneously, packed

together into a matrix Q. The keys and values are also packed together into matrices

K and V [4]. The matrix of outputs can be computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

15



Figure 2.2: Transformer model architecture with zoom in on multi-head attention

and scaled dot-product attention [4].

The scaled dot-product attention mechanism in the Transformer model incorpo-

rates a scaling factor to mitigate the vanishing gradients problem, a common issue in

neural networks that can slow or halt learning. As the dot product of query and key

vectors can increase significantly with their dimensionality (dk), applying the softmax

function to these large values could yield extremely small gradients, which is indica-

tive of the vanishing gradient problem. To avoid this, the Transformer model uses a

scaling factor of 1/
√
dk to moderate the magnitude of the dot products before they

are passed through the softmax function, ensuring a more balanced gradient flow and

promoting effective learning [4].
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2.1.3 Multi-Head Attention

The second key innovation in the Transformer model is the Multi-Head Attention

mechanism. Vaswani et al. [4] built upon their scaled dot-product attention to

propose this mechanism, which provides multiple learned linear projections of the

input data. The Multi-Head Attention mechanism allows the model to jointly attend

to information from different representation subspaces at different positions. Multiple

attention heads allow the model to focus on different positions, capturing various

relationships between the input sequences.

The query, keys, and values for each head are computed by applying distinct

learned linear transformations (represented by the weight matrices WQ
i , WK

i , and

W V
i ) to the original queries, keys, and values. The scaled dot-product attention is

then applied to these transformed inputs:

headi = Attention(QWQ
i , KWK

i , V W V
i )

The output of each head i is then concatenated and linearly transformed to result

in the final values:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

Here, WO is the projection matrix for the multi-head output. The concatenated

output is thus projected back to the model dimension, mixing information from all the

individual attention heads. The Multi-Head Attention mechanism ensures that the

model can capture a broader context, attending to different positions and focusing
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on different patterns, thereby significantly improving the model’s ability to handle

complex tasks [4].

2.1.4 Cross Attention

Building upon the foundation of the Transformer’s architecture and its self-attention

mechanism, an additional attention mechanism, termed cross-attention, augments

the model’s capability. Cross-attention was originally used within the decoder part

of the Transformer model, allowing for a richer interaction between the encoder and

decoder, but has since been utilized in many other contexts [5, 12, 27, 28].

As previously described, each layer in the decoder has two sub-layers: the first one

is the self-attention mechanism, and the second one is the cross-attention mechanism.

In the original transformer architecture, the cross-attention sub-layer takes the output

of the encoder stack as its input, in contrast to the self-attention mechanism that

only operates over positions in the previous layers of the decoder [4]. This cross-

attention mechanism allows each position in the decoder to map attention scores for

each position in the input sequence.

Cross-attention serves as a bridge, connecting two different sequences and enabling

the Transformer model to understand the relationships between them. For instance,

in the originally proposed translation task [4], the cross-attention mechanism helps the

model relate each word in the target language (decoder) with each word in the source

language (encoder). This mechanism significantly improves the model’s performance
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Figure 2.3: Visualization cross attention [5].

in sequence-to-sequence tasks by allowing it to consider the full context of the input

sequence while generating each position in the output sequence [4].

The cross-attention mechanism, seen in Figure 2.3, reinforces the Transformer

model’s effectiveness, allowing it to capture both the internal relationships within a

sequence and the relationships between different sequences. This ability to handle

complex inter-sequence dependencies is a key factor behind the widespread success

and adoption of Transformer models in various machine learning tasks [4].

2.1.5 Positional Embeddings

Positional embeddings are a key addition to Transformer models, enabling the in-

corporation of sequence order into the model’s computations, as the self-attention

mechanism in Transformers is inherently position-insensitive [4]. These embeddings

are usually added or multiplied with input sequences before input to transformer
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models.

The concept of positional embeddings was first introduced in the context of con-

volutional sequence-to-sequence learning [29], and later adopted in the Transformer

model proposed by Vaswani et al. In the first proposed Transformer, a pre-defined

sinusoidal function generates a unique embedding for each position:

PE(i, 2j) = sin(i/100002j/dmodel),

PE(i, 2j + 1) = cos(i/100002j/dmodel),

where i is the position index and j is the dimension index. Later research has

explored many types of positional embeddings, including learned embeddings [6, 30,

31, 32]. A study by Wang and Chen found that Transformer encoders can learn

local position information, while Transformer decoders for autoregressive language

modelling can learn about absolute positions. However, the position embeddings of

Transformer encoders do not capture much information about their absolute positions,

especially in the case of BERT [6].

Figure 2.4 from Wang and Chen visualizes the cosine similarity of different learned

position embeddings, with lighter colours denoting higher similarity. The choice of

positional encoding function can significantly influence the performance of a trans-

former model on various tasks [6].
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Figure 2.4: Visualization of cosine similarity of different position embeddings [6].

2.1.6 Transformers In Computer Vision

Transformers, which were originally devised for natural language processing tasks,

have made a substantial impact in the field of computer vision [7, 27, 33, 34, 35].

The ability of transformers to capture long-range dependencies in data sets them

apart from traditional convolutional neural networks (CNNs). This unique feature is

particularly beneficial in image analysis tasks, where understanding the relationships

between distant pixels can be crucial [7].

The introduction of the Vision Transformer (ViT) by Dosovitskiy et al. marked a

significant shift in the application of transformers in the field of computer vision. ViT

applies transformer mechanisms to sequences of image patches, effectively capturing

dependencies across the entire image. This model architecture can be seen in Figure

2.5. At the time of its release, ViT demonstrated performance on par with, or even

surpassing, traditional CNNs on many image classification datasets. Since the release

of ViT, transformer-based computer vision models have dominated the leaderboards
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Figure 2.5: ViT Model Architecture [7].

of computer vision benchmarks like ImageNet.

However, the excellent performance of ViT was accompanied by considerable com-

putational costs. To address this, LeViT, a hybrid neural network that combines

principles from both CNNs and transformers, was developed [34]. LeViT introduced

a pyramid structure, a common feature in traditional convolutional architectures,

that uses pooling steps to decrease the resolution of activation maps, thereby enhanc-

ing computational efficiency. Furthermore, it incorporated a novel attention bias to

integrate positional information, a key element in vision transformers. LeViT signif-

icantly improved the trade-off between accuracy and speed, demonstrating that at

80% ImageNet top-1 accuracy, it is five times faster than EfficientNet on a CPU [34].

In the ongoing research of integrating CNNs and transformers, a state-of-the-art
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model, Lion, has been introduced [35]. Lion represents another leap forward in ef-

fectively leveraging the strengths of both paradigms. Not only does Lion create a

unified architecture capable of handling various scales and regions of an image, but

it also sets a high standard in performance. It demonstrates a substantial improve-

ment in accuracy on multiple datasets, marking a new milestone in the evolution of

vision transformers. This model builds on the foundations laid by earlier models like

CrossViT, but goes further by providing a more efficient framework for image analysis

[35].

The trajectory of these developments highlights the vast potential and continuing

evolution of transformers in computer vision. Researchers continue to innovate, aim-

ing to maximize the strengths of transformer models and mitigate their limitations,

thereby enhancing their applicability and performance across a diverse range of visual

tasks [35]. This ongoing exploration is set to yield further advancements in the field,

laying the groundwork for the next generation of computer vision applications [33].

2.2 Bird’s Eye View Perception

An accurate perception of the surrounding environment is critical for the operation of

autonomous vehicles. In this regard, bird’s eye view (BEV) representations in the 3D

perception field have received substantial interest in recent years due to their ability

to provide rich semantic information and precise localization [36, 37, 14]. These

characteristics allow BEV to be used directly in numerous real-world applications

23



such as occupancy prediction, 3D object detection, motion planning and behaviour

prediction [10, 38, 39, 19].

The BEV provides a straightforward approach for fusing information from differ-

ent views, sensors, and time series. By representing the scene in a world coordinate

system, BEV can seamlessly integrate multiple views of data into a comprehensive

representation. It also allows for the accurate and seamless temporal fusion of se-

quential visual data and the integration of data from other common sensors, such as

LiDAR and radar [14, 13, 12]. An example of camera-only BEV perception can be

seen in Figure 2.6

However, the transformation from Perspective Views (PV) to BEV, known as in-

verse perspective mapping, presents substantial technical difficulties [9]. Early strate-

gies relied primarily on geometric computations, which often fell short in complex

real-world scenarios. The advent of data-driven techniques in computer vision, par-

ticularly deep learning, has heralded a crucial evolution in this field. These advanced

methodologies offer significant improvements over traditional approaches, unlocking

further possibilities for enhancing vision-centric BEV perception [10, 38, 12].

2.2.1 Homography Based BEV

Homography-based transformation, such as Inverse Perspective Mapping (IPM) [9], is

a traditional methodology for converting PV to BEV. Leveraging geometric projection

relationships, it is conventionally seen in vehicle backup cameras and dashboard 360◦
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Figure 2.6: Example BEV model camera inputs (top) and prediction (bottom) [8].

views [40, 41]. Four example IPMs on vehicle dash cams can be seen in Figure 2.7.

However, this approach has its limitations. The most glaring is its dependence

on the flat-ground assumption, often leading to inaccuracies when detecting objects

above ground level, such as buildings or vehicles [42, 43, 44]. Although some tech-

niques employ semantic information [45, 46], and Generative Adversarial Networks

(GANs) [19, 47] to mitigate these issues, these solutions only partially resolve the

distortions and do not sufficiently address the complexity of real-world 3D scenarios

25



Figure 2.7: Example IPM: (left) input image (right) output IPM [9].

[44, 48]. The homography-based approach’s inherent constraints necessitate further

improvements to deliver more robust and accurate BEV mapping, despite its utility

in creating interpretable BEV features [19].

2.2.2 Depth Based BEV

Depth-based methods for transforming PV to BEV primarily rely on depth predic-

tions to go beyond the limitations of homography methods. Initially, these methods

26



were established on the concept of point-based view transformation, where depth

estimation is directly utilized to convert pixels into point clouds scattered in continu-

ous 3D space [49, 50]. They integrated techniques from monocular depth estimation

and LiDAR-based 3D detection [51, 52]. Despite their advantages, these methods

encounter several issues, such as data leakage, the complexity of the pipeline, and

inaccurate pseudo-LiDAR generation [49, 53, 54, 55, 56]

Lift, Splat, Shoot (LSS) [10], illustrated in Figure 2.8, is a popular example of

depth-based PV-to-BEV transformation, this model predicts a categorical distribu-

tion of depth alongside a context vector. The outer product of these elements de-

termines the feature at each point along the perspective ray, approximating the real

depth distribution [10]. “LSSlifts” each image individually into a frustum of fea-

tures for every camera, subsequently “splatting” all frustums onto a bird’s-eye-view

grid Philion and Fidler. Despite sacrificing local spatial precision, these depth-based

methods are more effective at covering large-scale scene structure information and

are compatible with end-to-end learning paradigms for view transformation [10].

2.2.3 MLP Based BEV

Multilayer Perceptron (MLP) has been used extensively to map inputs to outputs

of varying modalities, dimensions, and representations. This architecture has been

utilized in various studies to transform between PV and BEV. It has seen application

in various forms such as VED [57], VPN [58], FishingNet [59], PON [11], and STA-ST
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Figure 2.8: The “lift” step in “Lift, Splat, Shoot” [10].

[60], among others. These methods achieve view transformations by harnessing the

MLP’s capacity to learn implicit representations, thus enabling them to sidestep the

inductive biases inherent in camera calibrations [19].

Additionally, certain methods like PON [11] and STA-ST [60] employ a feature

pyramid [61] to extract image features at multiple resolutions, thus harnessing more

spatial context and allowing for a focus on smaller objects. The PON architecture

can be seen in Figure 2.9. Despite their potential, MLP-based PV-to-BEV methods

exhibit certain weaknesses. Due to the lack of depth information, occlusion, and the

unknown ground topology, the network needs a lot of vertical context to map features

to BEV, leading to complications in the view transformation process [11].

The individual transformation and late fusion of multi-view images further hamper

these methods from fully leveraging the geometric potential of the overlapping regions

[19]. Although the MLP has been a valuable tool for PV to BEV transformations,

it is important to note that the approach faces challenges, and has been generally
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Figure 2.9: Architecture diagram of PyrOccNet (PON) with Dense Transformer [11].

outperformed by recently proposed transformer-based methods [19].

2.2.4 Transformer Based BEV

The application of transformers for PV to BEV conversion was first proposed by Tesla

[1] and has since served as a catalyst for subsequent research in the autonomous driv-

ing domain [19]. Their pioneering technique crafted BEV queries via BEV positional

encodings, this allowed for transformation from camera perspective features to the

BEV plane, facilitated by cross-attention.

Building on Tesla’s initial concept, the research community has produced a plethora

of studies that have adopted and refined the cross-attention mechanism within trans-

formers to effectively model perspective view transformation [14, 12, 62, 63]. Specif-
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Figure 2.10: Architecture diagram of the Cross-View Transformer [12].

ically, the work of Cross-View Transformer [12] echoes Tesla’s original concept, and

subsequent studies have built upon its techniques [64, 65, 66], aimed at enhancing its

performance and efficiency, pushing the envelope of transformer use in autonomous

driving.

One key decision in these transformer-based methods revolves around the use of

sparse versus dense queries. Sparse query-based approaches are used in object detec-

tion tasks, where each query represents a possible object in the scene; the transformer

resolves each query as null or to a bounding box surrounding the object’s occupancy.

However, sparse query-based methods lack some of the geometric structure in the 3D

representation making it challenging for dense prediction tasks like map segmentation

[19, 67, 68]. In contrast, dense query-based techniques offer a comprehensive repre-

sentation of the input space; each dense query resolves to x and y locations in the

BEV plane. Dense query-based methods necessitate higher computational resources
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Figure 2.11: Architecture diagram of BEVFusion [13].

because many additional queries are required to represent the scene when compared

with sparse query-based methods. To balance the trade-off, many researchers focus

on developing more efficient cross-attention mechanisms, especially for high-resolution

feature maps [14, 19, 64].

The incorporation of geometric information in the transformer framework is an-

other crucial aspect. Although transformers have the capability to function without

geometric priors, the inclusion of geometric data, like calibration matrices and depth

information, can considerably enhance performance [12]. Calibration matrices play

a pivotal role in defining the geometric projection from the 3D space to the image

plane, assisting in the interaction between visual features and queries. Although not

essential for PV-to-BEV conversion, depth information aids in geometric reasoning

and aids in creating meaningful associations between queries and image features as

seen in Figure 2.11 [56, 64, 69, 70].

The current research is trending towards larger, more generalized transformer

models. These models have the potential to replace traditional components in the
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Figure 2.12: Architecture diagram of BEVFormer [14].

perception system, serving as feature extractors and detection heads [62, 69]. Tempo-

ral fusion, seen in Figure 2.12 is also becoming a crucial element in transformer-based

methodologies. Incorporating temporal information, these methods generally outper-

form single-frame methods, yielding more accurate perception over time [14, 19, 69].

2.3 Collaborative Perception

The burgeoning field of Collaborative Perception represents a significant frontier in

autonomous systems research. This section presents an overview of collaborative

perception, focusing on the datasets and methods integral to this research domain.

We pay particular attention to how these approaches leverage multiple sensory inputs

and agent collaborations to enhance perception and decision-making capabilities in

autonomous systems.
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2.3.1 Collaborative Perception Datasets

Autonomous vehicle datasets have been widely used in collaborative perception re-

search, comprising various sensory inputs, including cameras, lidar, and GPS [71],

from multiple vehicles in a vehicle-to-vehicle (V2V) environment [15, 72]. Some

datasets, such as those proposed in [73, 74], include infrastructure sensors, resulting in

a vehicle-to-infrastructure (V2I) data model. Others, such as the dataset presented in

[75], employ a vehicle-to-everything (V2X) model. The CoPerception-UAVs dataset

[76] employs five images from five drones flying in formation. It is worth noting that

these datasets are all sourced from CARLA [77] in Unreal Engine, a widely used

open-source platform for simulating autonomous vehicles.

The HEV datasets sourced from our simulated environments are uniquely chal-

lenging in the field of collaborative perception, as the agents are equipped with only

one or two cameras. Unlike previously proposed collaborative perception problems,

the HEV task does not provide the agents with the transformation component of their

pose. The unknown position of each camera view within the global coordinate frame

adds a significant challenge to the semantic segmentation prediction task and other

downstream tasks.

2.3.2 Collaborative Perception Methods

Collaborative perception has been explored in recent years, improving the capability

of single-agent perception models [78, 76, 79, 80, 81]. In conventional collaborative
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Figure 2.13: Derived from the OPV2V Dataset [15], this illustration provides two

representative scenarios. The first (a) depicts a T-intersection, where roadside vehicles

obscure the subject vehicle’s sightline, shown via LiDAR and connected vehicle point

cloud data. The second scenario (b) demonstrates how heavy traffic can cause LiDAR

occlusions. The red markers identify vehicles unseen by the subject but visible to

other connected vehicles.

perception, intermediate representations produced by sensors or neural networks from

multiple viewpoints are propagated among a team of robots, such as a group of ve-

hicles [76, 16] or a swarm of drones [81, 76]. The existing works commonly learn a

collaboration module, produced by a Graph Neural Network (GNN) [81, 82], Convo-

lutional Neural Network (CNN) [78, 83], or a Transformer [16, 76] to combine multiple

robot intermediate representations. The FuseBEVT collaboration module introduced

by Xu et al. can be seen in Figure 2.14.
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Figure 2.14: Architecture diagram of CoBEVT [16].

Prior research has focused on robots equipped with multiple sensors, requiring

sensor data fusion on a per-agent basis before information exchange among agents

[71]. However, in this work, we focus on robots with only one or two cameras and

no additional sensors, making our approach more amenable to smaller, simpler robot

swarms. Since we focus on simpler robots, we do not utilize a collaboration module,

and instead fuse all camera views together in a single cross-attention module.

2.4 RL in Game Environments

Reinforcement Learning (RL) has emerged as one of the most influential methods for

training intelligent agents in game environments. The basic premise of RL is that

agents learn by interacting with an environment, taking actions, and receiving rewards
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or penalties based on the consequences of those actions. Over time, agents aim to

optimize their actions to maximize cumulative rewards. In gaming scenarios, this

often translates to achieving high scores, optimizing in-game objectives, or defeating

opponents.

Game environments, with their dynamic nature, have a myriad of possible actions,

and the need for strategic planning, provide an ideal sandbox for RL algorithms. The

controlled settings of games allow for extensive experimentation and fine-tuning, while

the complexity inherent in many games offers rich challenges that push the capabilities

of RL methods.

A notable example of RL’s application in games is the ViZDoom platform [17].

ViZDoom offers a first-person shooter environment where agents, driven solely by

visual inputs, must navigate intricate levels, avoid obstacles, and combat adversaries.

By operating purely on pixels, the agents trained in this platform exhibit behaviours

that are not only sophisticated but also constrained by real-world-like perceptions.

Such settings challenge the RL agents to rely on spatial awareness, quick reflexes, and

strategic planning to succeed, emphasizing the potential of vision-based RL methods.

The Obstacle Tower Challenge [18] provides another testament to the efficacy of

RL in games. The challenge presents a procedurally generated tower with increasing

difficulty levels. The primary task is to ascend the tower, requiring agents to handle a

range of tasks from simple platform jumps to puzzle-solving. Like ViZDoom, agents

in the Obstacle Tower rely predominantly on visual inputs, emphasizing perception-
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driven decision-making. Furthermore, the procedural nature of the environment forces

agents to generalize their strategies, moving beyond rote memorization to true adapt-

ability.

2.4.1 ML-Agents

Unity, a real-time 3D development platform, has been widely adopted across various

industries, including gaming, architecture, engineering, construction, automotive, and

film [84]. The platform comprises both a rendering and physics engine, accompanied

by a user-friendly interface known as the Unity Editor. Given Unity’s historical

emphasis on creating a versatile engine to cater to diverse platforms, developer ex-

pertise levels, and game genres, it has emerged as an ideal candidate for AI research

simulations. The flexibility of Unity allows for the design of tasks ranging from

straightforward 2D gridworld problems to intricate 3D strategy games, physics-based

puzzles, or multi-agent competitive games. The Unity Editor further facilitates rapid

prototyping and development of games and simulated environments [84].

The Unity ML-Agents Toolkit, an extension of the Unity platform, has been in-

strumental in advancing AI research. This toolkit provides the necessary tools and

architecture to deploy learning algorithms within Unity environments. The Unity

engine’s generality and the ML-Agents Toolkit’s capabilities have already played a

pivotal role in fostering innovation within the AI research domain [84].

Cohen et al. introduced multiple Unity environments that serve as standard bench-
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marks for evaluating the MA-POCA algorithm in multi-agent reinforcement learning

settings. These environments, each with their own unique challenges and dynamics,

serve as valuable testbeds for evaluating the adaptability, collaboration, and strategic

planning capabilities of reinforcement learning agents in game-like settings.
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Chapter 3

Herd’s Eye View

This chapter outlines the methodology adopted in our research, focusing on two inter-

twined tasks: the PV-to-BEV task of Herd’s Eye View (HEV) and the reinforcement

learning task that benefits from the HEV perspective.

BEV transformation is a crucial task in computer vision, with a wide range of

applications in diverse areas such as autonomous vehicles, video surveillance, and

advanced robotics. It moves beyond basic object detection and classification, offering

a deeper understanding of a scene by precisely delineating and classifying each pixel

[20]. In the context of BEV, semantic segmentation proves to be particularly advan-

tageous, paving the way for more effective planning and control in later stages due to

its rich representation of the environment [? ].

Alongside the semantic segmentation task, we also consider RL that utilizes the

resulting HEV output as its state representation. This RL task demonstrates that
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Figure 3.1: A visualization of the proposed HEV approach in the Dungeon Escape

environment: Agent camera views are extracted via a backbone model, then combined

in a cross-attention module, then decoded into a world-view semantic segmentation.

The resulting semantic segmentation can be used as an observation for a swarm of

robots.

the utilization of the HEV perspective could lead to more effective decision-making

as compared to traditional BEV-based RL.

Our approach, seen in Figure 3.1, follows three steps:

1. Collect multiple views of the environment from robot cameras.

2. Use a collaborative perception model to obtain the HEV, the world-centric

semantic segmentation of the environment.

3. Input the HEV to a Reinforcement Learning (RL) control policy to obtain agent

control commands.
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Through these steps, we aim to illustrate the potential of HEV in semantic seg-

mentation and reinforcement learning tasks, offering a robust and comprehensive

understanding of the environment that surpasses traditional BEV limitations. This

chapter and the following chapter discuss the methodology and approach used to

achieve these goals in detail.

3.1 Perception

In contrast to the commonly used Bird’s Eye View (BEV), our research introduces the

concept of Herd’s Eye View (HEV). The HEV task seeks to go beyond the constraints

of a single perspective, instead adopting an approach that benefits from a multiple

perspectives – much like the vantage points available to a herd. This concept attempts

to address some of the limitations inherent in relying solely on a single perspective,

as is the case in the traditional BEV.

The BEV, by definition, presents an overhead, orthographic projection of the en-

vironment with respect to the ego-agent. While this offers a simplified view that

eliminates the problems of perspective, it also introduces limitations, such as occlu-

sions and limited perceptual data, due to the restriction to a single viewpoint. The

HEV model leverages multiple camera views, each with its own unique pose and loca-

tion, which can mitigate these problems and offer a more robust and comprehensive

scene understanding.

In the Herd’s Eye View (HEV) semantic segmentation task, we are given a set of n
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monocular camera views, (Ik, Kk, Rk)
n
k=1 consisting of an input image Ik ∈ RH×W×3,

camera intrinsics Kk ∈ R3×3, and extrinsic rotation Rk ∈ R3×3 with respect to the

agent base. The goal of the HEV task is to predict a binary semantic segmentation

mask y ∈ {0, 1}h×w×C in the global coordinate frame, where C is the desired number

of segmentation classes. The HEV task adds additional ambiguity to the well-studied

BEV task as each camera view is at an unknown translation and orientation with

respect to the global coordinate frame.

The multiple views sourced for the HEV provide a broader perspective, enabling a

more complete understanding of the environment, that would be difficult for a single

agent to achieve alone. The improved environment perspective could have poten-

tial applications in improving the performance of autonomous systems in complex

environments.

Figure 3.2 demonstrates the disparity between the ego-centric view and the world-

centric view. As seen in the left-hand side of the figure, ego-centric views fluctuate

with the translation and rotation of the agent, thereby offering a dynamic perspective.

Conversely, the world-centric view, displayed in the center, remains static and offers

a more consistent perspective.

The main objective of the perception portion of our research is to establish a

baseline HEV perception model to extract information from the multiple camera views

and project them onto a fixed world-centric view. We propose a baseline perception

model using the Cross-View Transformer (CVT) [12] and use semantic segmentation
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Figure 3.2: A visualization of the different map-view coordinate frames tested, ego-

centric views move in accordance to translation and rotation of the agent, whereas

the world-centric view does not.

as our downstream task. The Cross-View Transformer is a recent approach that uses

a cross-view attention module, first proposed by [12], enabling the agents to reason
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about their environment in an ego-centric coordinate frame. We extend the CVT

model to further improve its accuracy and speed for the HEV use case. We name our

baseline model the Herd’s Eye View Cross-View Transformer (HEV-CVT).

3.1.1 Model Architecture

The Cross-View Transformer’s (CVT) capability to reason about an environment

given multiple camera views makes it a natural fit for our task. For our specific use

case, we propose several enhancements to the original CVT model in order to optimize

its accuracy and processing speed. Our extended model, the HEV-CVT, incorporates

a world-centric map embedding. Furthermore, we tune the positional embeddings,

output sizes, and the number of transformer layers to harmonize with our proposed

HEV settings.

One advantage of the CVT architecture over other possible models lies in its at-

tention mechanism. Transformer-based methods calculate attention between image

pixel features and BEV x,y positions. This attention mechanism facilitates the under-

standing of associations between different spatial positions in the image perspective

view and the BEV. It is this relationship that forms the basis of the mapping from

image space to the BEV or HEV plane.

The standard CVT architecture can learn both the map and positional embed-

dings. This is an advantage over other methods which require explicit map and

positional embeddings like GKT [85]. By learning these embeddings, the CVT can
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adapt to the unique characteristics of the specific environment and task, providing

a more flexible and adaptive approach which is compatible with both the BEV and

HEV tasks.

The CVT’s global attention mechanism represents another key advantage for our

use case. It calculates attention between all image pixel features and all BEV loca-

tions, rather than just between corresponding pairs. In contrast to many other trans-

former methods, which seek to optimize the attention calculation by using known

geometric information about the camera perspective with respect to the BEV, the

CVT does not require such explicit geometric information. This global attention

mechanism is particularly relevant to the HEV problem, where the environment is

observed from multiple, potentially unrelated, camera perspectives.

Conventional PV-to-BEV approaches rely heavily on known geometric information

about the camera perspective with respect to the BEV plane, which is less suitable for

our task. The HEV task introduces an additional level of complexity as the position

and orientation of each camera with respect to the HEV are not known. As such,

we cannot make the same assumptions about the geometry of the scene, and must

instead rely on a model like the CVT, which can handle this inherent uncertainty.
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Chapter 4

Experiments and Results

4.1 RL Environments

In this research, we employ Reinforcement Learning (RL) as a practical and effec-

tive measure to gauge the complexity of the planning and control problem. Using

RL enables us to systematically evaluate the performance differences that arise from

various sensor setups. However, it is important to underscore that while RL provides

useful insights into these differences, it does not offer an exhaustive evaluation. Con-

sequently, our conclusions are grounded in these RL experiments, but we acknowledge

that there may be other aspects to consider for a more comprehensive understanding

of the sensor approaches.

To gather our datasets for both the HEV semantic segmentation task and the

MARL task, we leverage identical Unity simulation environments. The use of Unity
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Figure 4.1: Images of the three environments used to test the HEV collaborative

perception and reinforcement learning algorithms. The top left is the Dungeon Es-

cape environment. The top right is the Collaborative Push Block environment. The

bottom is the Planar Construction environment.

allows us to create versatile and complex virtual environments where agents can

learn and be evaluated under controlled yet challenging conditions. We conduct

our simulations across three distinct ML-Agents environments, seen in Figure 4.1,

each presenting a range of unique challenges and opportunities for testing our HEV

approach. These environments, discussed in the following subsections, have been

designed and selected to test and validate the capabilities of our method under various
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conditions.

4.1.1 Collaborative Push Block

The Collaborative Push Block environment, seen in Figure 4.2, developed within

the Unity ML-Agents framework, initially proposed by Cohen et al. [86], establishes

an arena for the study of multi-agent reinforcement learning techniques. This envi-

ronment contains a grid area where the agents and blocks are spawned at random

locations outside of the goal area.

The goal area, characterized by a green colour, is randomly assigned to a side of

the grid square in each episode, adding to the unpredictability and diversity of the

task scenarios. The core objective for the agents is to push white blocks into this goal

area. The task emphasizes the need for cooperative behaviour among the agents, as

the block sizes vary, requiring different numbers of agents for movement based on the

size.

Blocks within the environment are categorized into three distinct sizes, labelled

as “size” 1, 2, and 3. The size of the block directly corresponds to the number of

agents required to push it, with larger blocks needing more agents. This variability

in block size presents a unique challenge for the agents, as they must decide whether

to collaboratively push larger blocks or individually maneuver smaller ones, leading

to the development of coordinated strategies.

When a block is successfully pushed entirely into the goal area, the agents actively
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Figure 4.2: Push Block

involved in pushing that particular block are rewarded with a positive reinforcement

signal. This reward serves to encourage the cooperative behaviour required to ac-

complish the task. To ensure efficiency and avert inaction, a slight negative reward

is applied at each timestep, thereby promoting rapid completion of the task.

Each agent within this environment operates individually in terms of observation

collection and action application. Despite this, all agents train the same MA-POCA

policy. This policy allows for the development of synchronized behaviours and coop-

erative strategies among the agents, despite their independent operation.

The original Collaborative Push Block environment by [86] employed a sophisti-

cated observation framework. Each agent was equipped to cast 21 rays across a 180°

arc to perceive various elements in the environment: other agents, walls, the goal,
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and block types. The observation system operated on two distinct levels. One set

of rays was cast higher, enabling the agents to observe over obstacles and locate the

goal or walls. A second set of rays, cast at the agent level, was employed for detecting

nearby objects like blocks and other agents.

This dual-level observation system provided a comprehensive perspective for the

agents to navigate and strategize effectively. However, it is worth mentioning that we

have considerably altered this observation structure in our study, the details of which

will be covered in the subsequent Model Training section.

4.1.2 Dungeon Escape

Introduced by Cohen et al. [86], the Dungeon Escape environment, seen in Figure

4.3, is a task within the Unity ML-Agents framework. This environment tests multi-

agent reinforcement learning models by enforcing strategic cooperation among the

agents. The Dungeon Escape environment is confined within walls, simulating a clas-

sic dungeon setup. Within this bounded area, the agents and the dragon are spawned

at random positions and orientations at the beginning of each episode, promoting a

diverse set of scenarios and an element of unpredictability.

Within the Dungeon Escape environment, there are three agents and a green

dragon, the latter being the holder of a key. The environment also features a portal

and a door, both randomly placed within the dungeon at the onset of each episode.

The primary objective for the agents is to escape the dungeon through the door.
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Figure 4.3: Dungeon Escape

However, the door requires a key to open, which is initially held by the green dragon.

An agent must sacrifice itself to defeat the green dragon, in which process, both the

dragon and the agent disappear from the environment. This action results in the key

being dropped, which the remaining agents must then retrieve and use to escape the

dungeon.

The episode ends when either an agent with the key successfully reaches the door

or the green dragon makes its way to the portal. To receive a positive group reward,

at least one agent must make it through the door.

In the original environment, agents collect observations using 15 rays cast in a

120° arc in front of them, allowing them to navigate the dungeon and respond to the

presence of other agents and the dragon. However, within the context of our study,
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Figure 4.4: Planar Construction

the agent’s observations have been significantly altered, which will be discussed in

more detail in a subsequent Model Training section.

4.1.3 Planar Construction

In the Planar Construction environment, seen in Figure 4.4 six agents collaborate

to reposition red pucks into desired locations or patterns. This environment’s foun-

dation rests on the Orbital Construction (OC) problem, which has been studied in

multiple prior works, in multiple simulators [87, 88, 89, 90, 91]. We base our pla-

nar construction environment specifically on the Strickland et al. implementation in

CWaggle.

In the original RL formulation, the environment comprises of a square enclosed
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space, filled with circular agents and circular puck objects. The agents, capable of

moving freely, can influence the positions of the pucks by colliding with them. This

environment also featured a scalar field grid projected onto the floor surface, with

values ranging from 0 to 1. This scalar field encoded information relating to the final

shape to be constructed [88].

In our recreation of the Planar Construction task within the Unity ML-Agents

framework, the scalar field has been replaced with a Grid Sensor. Instead of agents

detecting the current scalar field values around them, the desired positions and current

positions of pucks are encoded into the grid-sensor. We achieve this by placing a

second “goal grid” underneath the planar construction environment. In the goal grid

area, the pucks are in the desired positions, so the agents above them can detect

where the goal areas are without the physics of the goal pucks interfering.

The recreated Planar Construction environment challenges the six agents to navi-

gate the environment and effectively manipulate the red pucks to reach either random

or static designated positions in each episode. This process demands cooperative ef-

fort and strategic alignment among the agents, adding to the complexity and challenge

of the task. The unpredictability of these positions requires the agents to continually

adapt their strategies, making the Planar Construction environment a comprehensive

testbed for advancing research in cooperative multi-agent reinforcement learning.
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4.2 Model Training

4.2.1 Reinforcement Learning

In order to explore the utility of different agent perspective views for collaborative

tasks, we designed a series of Unity MARL environment experiments. The underlying

hypothesis is that we want to test whether agents trained with a global perspective

view could demonstrate superior efficiency and effectiveness when compared to those

trained with ego-centric perspective views. As seen in Figure 4.5, the following con-

figurations of agents where benchmarked:

1. Ego-Centric agent: These agents were equipped with a 32x32 semantic segmen-

tation grid of the objects surrounding the agent at all times. This grid adheres

to the translation and rotation of the agent, providing the agent with a coherent

perspective that aligns with its motion.

2. Ego-Forward agent: This variation of the BEV-based agents maintains the same

32x32 semantic segmentation grid, but it is offset forward from the agent. This

allows the agent to have a more forward-facing view of its environment, which

could potentially result in improved anticipation of the objects in its path.

3. World-Centric agent: In contrast to the BEV-based agents, the HEV-based

agents utilize a 32x32 semantic segmentation grid centred at the world’s origin

and scaled to cover the entirety of the world space. The grid remains stationary

and does not rotate or translate with the agent. This necessitates an additional
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encoding to the semantic segmentation, enabling the reinforcement learning

policy to interpret the agent’s relative location with respect to obstacles and

objectives within the world space.

All the agents in our experiments were trained using the MA-POCA policy. MA-

POCA was chosen due to its established efficacy in Unity cooperative multi-agent

settings. This algorithm integrates a centralized value function that utilizes the ob-

servations and actions of all agents, enhancing the ability to coordinate policies among

agents. This value function serves as a critic during policy updates, providing a form

of guidance to the decentralized policies. We ensure the total area of observation

between each type of agent is equal so they can be compared on an equal playing

field. Exact training parameters can be seen in Table 4.1.

By comparing the performance of these different agent configurations, we aim to

uncover the relative benefits and drawbacks of each perspective view. This will not

only inform our understanding of how the choice of perspective impacts reinforcement

learning performance but will also provide a benchmark for future studies in this area.

4.2.2 Grid Sensor

An integral part of our environment setup is the collection of the HEV ground truth.

For this purpose, we developed a custom fork of MBaske’s Unity Grid-Sensor Library

[92] which allows the collection of HEV world-centric grid-sensors. The modified li-

brary allows us to create grid-based observations for the agents in the environment,
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Figure 4.5: Example scene and corresponding agent observations from the Collabo-

rative Push Block environment. The top image shows a debug camera (not available

for agent observation). The bottom left shows the HEV world-centric observation of

the blue agent. The bottom middle shows the BEV-centric observation of the blue

agent. The bottom right shows the BEV-forward observation of the blue agent. Blue

is the controller agent, green is ally agents, and red shades are differently-sized push

blocks.
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Table 4.1: Parameters for the simulated environments with HEV inputs.

Robots Robot Cameras Grid Size

Collaborative Push Block 3 1-left, 1-right 32x32

Dungeon Escape 2-3 1-left, 1-right 32x32

Planar Construction 6 1-forward 32x64

facilitating the conversion of the agent’s observations to the required HEV represen-

tation.

A notable feature of our custom fork of the grid-sensor library is its capability to

differentiate between the controller agent and the other agents. This feature, which

we will call the self-perception mechanism, permits the controller agent to perceive

itself differently from the surrounding agents. This distinction is crucial in enabling

the controller agent to take actions based on its unique pose within the environment.

One key distinction between the ego-centric and world-centric based agents lies

in the positioning of their grid-sensor and their action perspectives. For instance,

“forward” for a world-centric agent always corresponds to the north, but for an ego-

centric agent, “forward” is relative to their current orientation.

All agents are trained using ground-truth sensors, calculated using bounding boxes

individually tuned to each object in the environment. The resolution of the grid-sensor

57



is carefully adjusted to match the complexity and size of the environment, facilitat-

ing a balance between perception accuracy and computational efficiency. Detailed

specifications can be found in Table 4.1.

4.2.3 Perception

The collection of vision data for the HEV-CVT model forms the backbone of our

research. The data is obtained by training a unique reinforcement learning model

for each specific observation type ego-centric, ego-forward, and world-centric for each

environment. Thus, a total of 9 distinct models are trained, which are then deployed

across different environments for our RL experiments and perception data collection.

We utilize an RTX 3090 GPU to train these perception models. Once we have

trained an MA-POCA model, we run it in the environment and collect training data

every ten time steps, capturing a snapshot of the agent’s view, camera intrinsics, and

the corresponding ground truth HEV and BEV each time.

To streamline the data collection process and boost the variety of our dataset, our

models are concurrently deployed in 8-12 different environments. This simultaneous

data collection significantly accelerates the training process, encapsulating a wide

range of situational and environmental dynamics.

Our extensive dataset comprises approximately 30,000 instances per environment

and agent type, these are collected across different runs, promoting robustness and

diversity. To enhance our model’s generalization capabilities for unseen scenarios, we
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reserve a validation dataset that is 10% the size of the training data, sourced from

unique seeds.

4.2.4 Evaluation Metrics

The dual nature of our research—focusing on both vision and reinforcement learning

(RL)—requires an evaluation process that measures the effectiveness of our models

in these two diverse domains. To this end, we have chosen metrics that are relevant

to each task and capable of providing insightful analysis of our model’s performance.

On the vision front, the Cross-View Transformer models’ performance is quantified

using the intersection over union (IoU) score. A widely used metric in the field of

semantic segmentation, IoU score offers a reliable measure of the model’s accuracy by

quantifying the overlap between the predicted and ground truth segmentation. The

choice of IoU reflects its ability to provide an understanding of how well our model

is performing the semantic segmentation task.

For the RL task, we opt to measure agent performance via the length of an episode.

This decision is primarily driven by the characteristics of our RL environments where

the speed of task completion differentiates the performance of agents. By focusing

on episode length, we emphasize the efficacy and efficiency of our agents in achieving

their objectives, hence providing a clear depiction of the RL model’s performance.

Although alternative metrics such as cumulative or mean reward are often used

in RL, in our case they primarily reflect minor negative rewards assigned per time
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step. In our particular context, these metrics would provide less insight into an agent’s

efficiency over the course of the episode rather than the agent’s capability to complete

tasks swiftly.

By employing these specific evaluation metrics, we aim to provide a comprehensive

and insightful analysis of our model’s performance, that encapsulates the complexity

and distinct aspects of our research domains.

4.3 Collaborative Perception

We test the HEV-CVT model’s ability to accurately localize the position of each agent

based on the overlap of six camera frames, which are located at unknown rotations

and positions. The cameras are recorded at resolution 480 × 224, and we use the

camera intrinsics of a Raspberry Pi Camera Module 3 with a wide-angle lens. We

compare the performance of the baseline CVT model on world-centric, ego-centric,

and ego-centric-forward coordinate frames.

4.3.1 Experiment 1: Collaborative Push Block

In the Collaborative Push Block environment, three agents collaborate to push different-

sized blocks into a goal area. The three agents are equipped with two forward-facing

cameras angled positively 45 degrees and negatively 45 degrees from the center of the

agent’s front face. The goal for this perception task is to use the six different camera

views available from all agents to predict the occupancy of all agents and the goal
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Figure 4.6: (left) example six input images to HEV model, (right) HEV model pre-

diction of agent locations and dragon agent.

area.

We find the HEV-based model is significantly more effective for occupancy pre-

diction in this environment, boasting a 96.94% IoU score. A significant contribution

to the HEV prediction advantage is the goal area, which always exists on one side of

the predicted area as seen in the sample prediction Figure 4.6. The bright yellow area

on the heat map demonstrates the model’s high confidence in the goal area’s location

within the HEV, an easy landmark that the model can use to help orient itself.

The BEV model also successfully predicts occupancy in this environment but at
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a lower IoU score of 63.87% and 64.22% for the ego-centric model and ego-forward

model respectively. The BEV models must predict occupancy with respect to the

agent, meaning they must predict the exact offset and angle of the goal area, which

our results demonstrate to be more challenging than the HEV version of the task.

4.3.2 Experiment 2: Dungeon Escape

In the Dungeon Escape environment, three agents are equipped with two angled

forward-facing cameras and are tasked with predicting the occupancy of the dragon,

agents and key. We choose not to train the model to predict the portal as this infor-

mation is not necessarily required to complete the RL task. Additionally, the model

implicitly predicts the door by aligning the world-view to always place the door on

the east side. This environment poses the additional challenge of an agent sometimes

being disabled. In order to collect the key needed to escape the environment, an

agent must sacrifice itself to take down the dragon, meaning sometimes the HEV or

BEV prediction is made from only four images instead of six. Camera dropout has

been tested in past autonomous vehicles research [10, 12], and we find similarly the

HEV-CVT is resilient to camera dropout.

The ego-centric and ego-forward models perform worst in the Dungeon Escape

environment of all the environments with IoU scores of 13.47% and 26.07%. These

low IoU scores show the BEV models fail to converge on a robust prediction policy,

unlike the HEV model. The BEV models are trained with the same amount of data
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Figure 4.7: (left) example six input images to HEV model, (right) HEV model pre-

diction of agent locations and dragon agent.

as the HEV policy. We additionally train various sized smaller and larger models with

multiple hyper-parameters combinations and report the highest achieved IoU scores.

These results suggest the Dungeon Escape environment is the hardest for the BEV

model due to its lack of landmarks available. If the HEV ego-agent input has some

views without landmarks or important information it can choose to ignore them, but

if the BEV ego-agent’s view does not contain landmarks it can be more difficult to

determine where it is located and the contents of its BEV. In other words, having a
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poor perspective view is more detrimental to the BEV models compared to the HEV

models.

The HEV model consistently makes a good occupancy prediction, but there are

some rare scenarios where the input images provided do not contain enough infor-

mation (e.g. dragon is not in view) to make accurate predictions. This disadvantage

occurs significantly less frequently in the BEV datasets due to the camera placement

on the ego-agent. Despite this disadvantage, the HEV model converges on a sufficient

policy in the Dungeon Escape environment. The HEV-CVT model scores an IoU of

43.53%, an example prediction from this model can be seen in Figure 4.7. The model

accurately predicts the location of agents, the dragon and the key, each appearing as

a unique size in the HEV.

4.3.3 Experiment 3: Planar Construction

In the Planar Construction environment, six agents are equipped with a single forward-

facing camera and are tasked with predicting the occupancy of all pucks. The previ-

ous ML-Agents environments were not as challenging for the CVT models due to the

availability of objects in predictable locations. The Planar Construction environment

presents a more complex challenge as we randomly change the colouring of all six wall

and floor components at every time step of the environment during data collection.

The wall colours provide a helpful aid for the model to piece together the locations of

the pucks as they are the only overlapping feature between images besides the pucks
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themselves. We alter the environment to add the additional challenge of random wall

colours because it’s possible that the model would just learn to associate specific wall

colours with their spatial positions, a task that is considerably less complex. Despite

this additional challenge the HEV-CVT and ego-centric BEV policies converge.

The Ego-Forward CVT model performs the worst of all tested models on the

Planar Construction environment with an IoU score of 10.16%. We think the Ego-

forward model performs the worst of all models because the forward viewpoint is

less advantageous in the rectangular environment. Often, the extra forward range

provided by the shifted forward BEV is wasted on regions outside the environment

with no information. In contrast to the forward model the ego-centric BEV CVT

model converges on an adequate policy with an IoU score of 35.45%.

Both the HEV and BEV models are imperfect and sometimes hallucinate pucks

into the prediction or do not include pucks in view in the prediction. Interestingly,

when the model does not have a view of a region of the stadium, it will often predict

a low confidence interval for the entire unseen area, demonstrating its understanding

of the environment. The HEV-CVT model has the best IoU score of all models tested

in the Planar Construction environment, with a score of 48.37%. A sample prediction

from the model can be seen in Figure 4.8
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Figure 4.8: (left) example six input images to HEV model, (right) HEV model pre-

diction of agent locations and dragon agent.

4.3.4 Summary of Results

Our results are shown in Table 4.2 and Figure 4.9 demonstrate the world-centric co-

ordinate frame consistently outperforms the ego-centric coordinate frames in all en-
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Table 4.2: HEV-CVT validation IoU results per coordinate frame in each environment

(higher is better).

World-Centric Ego-Centric Ego-Forward

Collaborative Push Block 96.94% 63.87% 64.22%

Dungeon Escape 43.53% 13.47% 26.07%

Planar Construction 48.37% 35.45% 10.16%

vironments. The Collaborative Push Block and Dungeon Escape environments show

the largest performance improvements, with up to 32.72% and 43.71% improvement

in IoU, respectively. These results suggest that the world-centric HEV approach

is effective in addressing the challenges of collaborative perception in multi-agent

environments. This result is especially apparent in the Collaborative Push Block

environment, where HEV-CVT model easily localizes itself based on the large goal

location seen in most camera views for a near-perfect 96.94% IoU score.

4.4 Multi-Agent Reinforcement Learning

In order to compare the performance of the fixed world-view coordinate frames with

other commonly used coordinate frames, we conduct experiments in all three proposed

environments. To ensure a fair comparison between the performance of agents using

67



Figure 4.9: HEV-CVT validation IoU results per coordinate frame in each environ-

ment (higher is better).

different coordinate frames, we use identical reward functions to each environment’s

original implementation and identical grid sizes. We train unique RL models for

world-centric, ego-centric and ego-forward perspective view models. To evaluate the

strength of each trained RL model, after training has converged, we run the agent

in the environment 1000 times and report the mean and standard deviation for the

agent to complete the task in the environment in Table 4.3.
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4.4.1 Experiment 1: Collaborative Push Block

In the Push Block environment, agents collaboratively work to push various-sized

blocks into a designated goal area. The distinct feature of this environment is the dif-

ferential block sizes (1-3), the number of agents required to push a block corresponds

to its size, e.g., pushing a size-three block necessitates the collective effort of all three

agents.

When agents were trained using the BEV perspective view, several inefficiencies

were observed. The most glaring of which was the frequent scenario where one of

the three agents did not observe the size three block. This lack of visibility led to a

predicament where the two agents, who were aware of the larger block, would position

themselves ready for a collaborative push. However, due to the missing third agent,

there was a prolonged waiting period, leading to wasted time and decreased task

efficiency. This recurrent scenario is not merely an oversight but can be attributed to

the inherent limitations of the BEV architecture, which restricts agents’ observational

capacities and situational awareness. This behaviour occurred in both ego-centric and

ego-forward agents but occurred more in ego-centric agents as reflected in Table 4.3

In stark contrast to the BEV agents, those modelled using the HEV perspective

view demonstrated significantly superior collaboration. From the onset of the task,

HEV agents had a tendency to remain in close proximity. This behaviour intuitively

aligned with the task’s demands, especially for handling the size three block, which

requires all three agents for movement. This strategy allowed for HEV agents to
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almost never wait on each other for a collaborative push. Additionally, their strategy

consistently prioritized pushing the highest-value blocks first. By addressing the

most collaboration-intensive part of the task at the outset, they mitigated the risks of

wasted time and uncoordinated efforts. Following this, they would disperse, focusing

on the smaller blocks, ensuring maximum task efficiency. This systematic approach

by the HEV agents highlights the potential of the HEV architecture in enhancing

agent collaboration and overall task performance.

4.4.2 Experiment 2: Dungeon Escape

In the Dungeon Escape environment, one agent must sacrifice itself to the green

dragon so one of the remaining two agents can recover the key and escape. The

agents have a short amount of time to reach the dragon before it reaches the exit

portal, if they don’t, they lose. If the agents do reach the dragon, they must pick up

the key the dragon drops and then bring it to the exit door random location.

The agents trained in the Dungeon Escape environment showed the smallest

change between viewpoint observations. We think this small amount of variance

is due to the lack of collaboration required to complete the dungeon escape environ-

ment. Only a single agent needs to observe the dragon in order for them to move

towards it and sacrifice themselves for the key. Then, only one of the two remaining

agents needs to find the key and bring it to the door for all the agents to win.

Despite the Dungeon Escape environment requiring less collaboration than the
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other environments, we still find the HEV model outperforms its BEV counterparts.

The world-centric HEV approach completes the task in 14.15 time steps on average

while the ego-centric completes the task in 16.74 time steps on average.

4.4.3 Experiment 3: Planar Construction

In the Planar Construction environment, six agents must push randomly arranged

pucks into desired positions or patterns. Each round a random number of pucks are

spawned to be pushed, with the same number of desired destinations available for

the pucks. Any puck can be pushed into any of the desired positions, the agents win

when all pucks are in desired positions with an overlap greater than a set threshold.

We find that agents trained with ego-centric perspective views prioritize pushing

pucks that are near them and easy to travel to, requiring the least turning. This

strategy is effective at first but often leads to the last remaining pucks requiring to

be pushed at longer distances than required if solved optimally. In contrast, agents

trained on world-centric policies account for the actions of other agents and spread

out their efforts, resulting in a more efficient policy. These HEV agents will more

frequently avoid goals that are targeted by teammates and take paths that avoid

collision with other agents.
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Table 4.3: MA-POCA mean episode timesteps ± standard deviation per coordinate

frame in each environment (lower is better).

World-Centric Ego-Centric Ego-Forward

Collaborative Push Block 246.5 ± 106.6 280.9 ± 112.6 259.5 ± 109.2

Dungeon Escape 42.7 ± 44.6 16.74 ± 49.6 23.27 ± 57.6

Planar Construction 110.5 ± 16.6 120.3 ± 18.2 149.9 ± 26.4

4.4.4 Summary of Results

Our experiments highlight a common challenge faced by BEV agents in all three en-

vironments, where sometimes the object necessary to take the optimal action was

missing from the agent’s view, leading to sub-optimal decision-making and increased

episode lengths. The HEV agents were able to leverage the world-centric viewpoint

available to them, enabling them to perceive their environment more holistically and

take more optimal actions. This issue was particularly evident in the Planar Construc-

tion environment, where the improved perception of world-centric agents resulted in

significantly lower episode lengths than ego-based agents.

Overall, these findings suggest that the HEV model offers a superior perception

perspective view in MARL environments, providing agents with a more comprehensive

understanding of their surroundings, leading to improved decision-making and better
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Figure 4.10: MA-POCA mean episode length ± standard deviation per coordinate

frame in each environment (lower is better).

overall performance.

Table 4.3 and Figure 4.10 compare agents’ performance using different coordinate

frames to those using traditional sensor frames in all three proposed environments.

We find consistently lower episode lengths with world-centric based agents compared

to ego-centric agents.
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Chapter 5

Conclusion

We have proposed a new perception model called Herd’s Eye View (HEV) that pro-

vides a global view of the environment, enabling better global coordination and coop-

eration in MARL scenarios. We conduct two sets of experiments in three simulated

multi-agent environments. Our first experiment focuses on the perception aspect of

HEV and shows the same Cross-View Transformer model performs better on the

world-centric HEV task than its BEV ego-centric counterpart. Our second exper-

iment focuses on the effectiveness of the HEV perspective view compared to BEV

perspective views for MARL agents. We find that RL agents trained on world-centric

perspective views learn more efficient policies than those trained on ego-centric per-

spective views. Our work opens up new possibilities for advanced perception models

in MARL game environments, which can greatly enhance the performance of multi-

agent systems by enabling better collaboration and coordination.
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5.1 Contributions

This thesis presents two primary contributions to the autonomous vehicle perception

domain within Multi-Agent Reinforcement Learning settings:

HEV-CVT Model Development: We introduced the HEV-CVT model, a

novel transformer-based approach providing a global, world-centric perspective of

the environment. This model contrasts with traditional ego-centric BEV models by

leveraging Cross-View Transformers to aggregate information across multiple agents,

thereby enhancing global coordination and strategic decision-making in MARL sce-

narios.

HEV vs. BEV Perspective Evaluation: Our experiments demonstrated that

MARL agents trained with the HEV perspective exhibit superior policy efficiency

compared to those trained with conventional BEV perspectives. This finding high-

lights the Herd Eye View advantage of adopting a global viewpoint for improving the

performance of multi-agent systems.

We additionally open-source the code-base for our Unity simulator and HEV

dataset generation. These contributions advance the field by showcasing the poten-

tial of transformer-based models for collaborative perception in dynamic multi-agent

environments.
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5.2 Future Work

We introduce the HEV-CVT model to produce a global semantic segmentation of a

game environment. More advanced transformer architectures have been published for

Bird’s Eye View semantic segmentation since the Cross-View transformer that could

inspire improvements in the HEV-CVT architecture. One such improvement could

be making the model input video-based; additional frames from previous time steps

would likely improve the IoU scores of a HEV model [93, 94]. Improvements such

as transformer size, dataset size and additional transformer layers could also increase

model IoU scores.

Another avenue for feature research could be unifying the HEV perception and

control algorithms. Some recent works directly predict future paths for an agent using

recurrent neural networks. These models, often referred to as “end-to-end” models,

operate similarly to the CVT model utilizing transformer attention, but instead of

using CNNs in the last stage to predict semantic segmentation, they use a recurrent

network to predict waypoints that form a future path for the agent. The HEV-CVT

or a similar model’s semantic segmentation head could be swapped with a recurrent

network to predict future paths for an agent, or multiple agents, and our previously

developed MA-POCA model could be used to create labels for these paths.
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