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Abstr.lct

TIle objective of this proj"l:t has been:o dcvclor ~ fillering Il'Chniljuc which will'
en~b1c the recovery of n wide-sense station~ry, stochnstic signaillrocess. from :1 tW\l·dimellsiOllal

image. It is assumed that the image is cOlllaminated by :l stationary hroad-haml !luise Ilmeess.

having a spatial extent ofcorrclntion, represented by c. which is much less than the slmtial est~l1t

ofcorrelatioll within thesigllal process. Under such conditiolls. il ispossihle til uerivc a lllT>:e

channcl Wiener filter which operates on the pasl vnlucs of 1I coherent data sequence. in nrtkr til

predict a future value. Bysctting theptcdiclion gnp,<r.tobegrcalerth:lI1('.thcprcdietelllllllpUl

sequence will bca noise-suppressed version orlhe input The Ihrcc-ehmmcllilter IIccepls as illfllll.

three ro.....~ of the image. and thell produces a single output which is a Ii1tercd estilllate or Ihe

signal process occurring within the middle row of the input triplet. E.1ch 1\1W within this trilliel

is sepntated by a distance. 13. which is held constant for all row lriplets during lhe liUering

operntion, Aft~r opcrnling on all possible row triplets. the smne procedure is repented Ii.lr eOIUllI1t

triplets. It has been demonstrated lhat thc three-channel filter has a greater ellpaeity fur nuise

suppression. when compared to single-channcl versions. By choosing lhe value of (j tll he greater

than c. this noise supprcssioneapabilily isoptimizcd,

This research has verified that the three-channel Wiencr tiltcr is elTi.'Clivc III

suppressing correlated speckle noise. within oeclln wave scenes imllilcd hy airoornc Synthetic

Aperture Radar. However. due to the exponentially-damped nature of lhe correl:,till11 functiuns

which characterize the bandpass sillnal proc::ess within such imalles. il has 1115<1 heen shown lhllt

the filtered estimatesllredireetly dependentllpon lhe vallics chosen for ex anti (j, In lil>:t. iflw\I

different filtering operators are derived. each with a different comhination of values for rt :lnd (1,

then Ihey will each produce 1\ different fillered estimate after operating on till: .'>lIme input image.

Consequently, the accuracy of the filtering operation will vary according to the choices which nre



rnad~ rc~arding these parameters. The most accurate filtered estimates of the bandpass process are

llchicvcd with small parametric values. Since a must assume a value which is greater than c, and

since it is preferahle thaI (J shoull.! also, it logically follows that the extent of noise cOrTeiation

within any image will predetermine lhe degree of accuracy which can be achieved by usc of this

tcchniquc.

The thrcc-eha:mel Wiencr filtering technique will have practical noise-suppression

applications. relating to the extraction of more accurate wave Icature information from speckle-

CllIlt:llllinatcd Si\R linages of ocean scenes. Furthennore, since the use of large a and (3 reSlricts

recovery to only n portion of a bandpass signal, this technique may be suitable for the isolation

:lnd cnham;ement of low-frequency, low-power wave components, which may be otherwise

nhscured by higher-frequency wind-generated waves.
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CHAPTER ONE

PROJECT OVERVIEW AND DISCUSSION OF BACKGROUNn MAn:RIAI.

1.1 Introduttion and Specification of Scope

The mathematical tedmiquc which has been dcvdopctl during lhisprojct:l will llchicVl'

noise suppression within a digital image. provided certain statistical assumptions nre *Ilislied hy

the image data. Subject to these assumptions. any two-dimensional widc-sell.'lC stati\ltl;lry (WSS)

wavdield which has been contaminated by WSS bmnd-bmu.l eorrelnted noise, may be proccsscd

via this technique in order to obtain n noise-suppressed version. The olltcome of such Jlmcc.~sing

will be a filtered image, within which the previously occluded wavcfic1d is preselllt-d with

enhanced darity. Within the scope of this thesis, lItili7.ation of the tcchnique will b<: limit..-d tll

extraction of ocean wave features from imagery ohtained via airborne synthetic llpt'tlurc rmlar

(SARl. The objective of this thesis is to provide a mathematical derivation of the liltcring

technique, and demonstrate its feasibility; tile gencrnl results of this research. nrising fmm

application of the procedure to SAR data, have also been reponed in ['].

Airborne and spacebome SAR systems exhibit a strong (lOtcntinl for aeC\lrulc

assessment of ocean surface conditions. The relative ease with which data can he tlbtained, alld

lhe large spatial extent covered by the imaging radar, means that lillch measurements lire

logistically more feasible and statistically more represcntative. than observations made from th~

surfacc, A pcrsislcnt problem with coherent imaging systems. however, is the inlroduction nf

speckle noise which sevcrely degrades the imagc quality. The mathematics of a spe<:kl~ process

do not losually conform to Ihe assumptions upon which most !ignal pro.'essiug algorithms nrc

based. This is because usc of linear filtering operations presumes that the signal and nnise



processes are additive and independent. In general however, the speckle and signal components

of lhe image are known to interacl in a multiplicative manner, and in some cases, the speckle

amplitude may also be dependent upon the signal amplitude. Such attribules make speckle noise

resistant to many welt-known signal processing lcchniques: partially as a cOJlsequcnce of this,

there has been lillie emphilSis placed upon use of the linear filtering operators which wilt be

employed in this thesis.

Furthennore, many filtering algorilhms are based on an assumption, that the

eonluminnling process has significant non-zero autocorrelalion only at the zero lag of its

aUlocorrellllioo funelion (ACF): lhis isthecommonly-rcferenecd white noisc. HOlYever, in addition

10 ils :r.om lag, speckle also has significant valucs at non-7.cro delays of its ACF; it therefore

constitutes a less-commonly encountered process, usually referred to as coloured noise. In cases

where the silVllll-to-noise ratio (SNR) is IDlY, any estimate of the staliSlical parameters from the

underlying image scene will be biased by Ihe unwanted infonnation from the speckle process. This

introduces Ihe need for an effective noise-suppression algorithm, which lYill minimize the capacity

ofspecklctoinlerferewithlheextmctionofsuehinfonnalion.

While il is well-established that in mostcascs, spe<:kle contaminates in a multiplicative

fashion, this thesis dt..velops a linenr mathematical method of suppression for a very special case;

herein, the sigllal and speckle are assumed 10 be additive and illdependent, as well as individually

WSS. There exisls evidence to sugsest thaI this assumption holds, with respecllo SAR imagery

of ocenn wave scenCli. TIle filtering lechnique which will be discussed, ndapls to the desired

w:lv.:ficld component by utilizing information from the one-dimensional row and column

aUlocorrelation functions of the image matrix, as well as the row and column cross-correlation

(unclions (CCF's). 11lis is tlte basie principle of design for a linear operator known as the Wiener

tilter. which will bcdiscussed in some detai1.



By an appropriate manipulation of the ACF nnd CCF. thi~ \lpCml\lr fllf'l:CS a

decorrelation of frequendcs comprising the splXkle, whih: the cOlTClntion of fn.'tlllcncics within

the wavefield is maintained. In general. it is known thnt Illlllti·clmnnel Wiener mters. whieh

simultaneously process data on severnl input channels. mc more el1i-ctivc tllnn their sillglc-c1mnncl

counterparts in achieving such decorrelations_ Duringlhis projcct, alhrcc-c1Hll1l1el vershlnoflhe

multi-channelliher has been employed; however, in principle, a larger nllmbcr{lfehmmel~ CUll III

also be effcctively implemented in order to address the problem which is now hcil1l:\ consillercd.

In Chapter Two. a malhematical comparison will be provided in ordcr to demonstrate the tlvcmll

noise suppression superiority, which thc thrcc-ehanncililter has over Ihe singte-c1Hllllld ven;iun.

Thethree·chnl1l1cl filter aceeptsns input, three neighbouring TOWS or the image, CllCh of which is

scpamtcd bya sl'eciflcdistance from the others, and then produccsllsinglcrow(lIlIPllt.Il:I.~cdt\ll

the nlagnitude and phasc relationships within and hctwcel1lhesc rows. the Jltlwcr in the olllpl1trtlw

is biased towards those frequencics which are collerent across the rows: (Incorrclnted Ih..'tlllcncie.~

are then suppressed during the filtering opomtion. By starting at the lOp of the image. Ihe three

channel opcrotion is incrementally shifted one row down and repeated. Aftcr lhe rows have heell

filtered, the image matrix is transposed to enable filtering orthe columns via the smllc prtlC~'tIlIfC.

Although SAR applications will be the ultimate goal, lhe general ohjective uf this

projcct is to demonstrate nppHcabilily of the three-channel Wiener filtering IL-chni,!ue, ttl the

problem of stochastic process recovery in the presence or coloured noise. Pursuant 10 such a

scope. Chapler Two will focus on the mathematical derivation of the scalar Wiener tilter, and

:nvesligatc its perfonnance for lhe special case of correlated noise. An cxtcnsiun willlhen he

made by deriving II vector versionorthe filter, after having highlighted thnscallrihutcs which give

it superior noise suppression ability. Chapter Three will then present lhe results or simulllled

numerical case studies, designed 10 provide corroboraling information in support of ohservations

made within the context of Chapter Two. Building upon this, Chapter Four will tlcmonslrntc (hc



effectiveness of the filtering technique, by applYing it to s~klcd images of two independent

ocean scenes collected by airborne SAR. Subsequent to this, Chapter Five will assess the

rcpresenlalivenc.~s of lhc results obtained in Chapter Four, by investigat;ng the spectl'3l sensitivity

ufthc filtCT output to changes in the input correlation paramclers. In order to establish a general

basis lor these discussions. the remainder of the current Chapter will focus on the gent:ml history

of speckle cont3min3lion in coherent imaging, and di~~us~ some recenl findings which have

motivated the lechnique to be developed in Chapter Two.

1.2 Nlliurc of Ihe Speckle Phenomenon

1.2.1 The Proces~ of Speckle Formation

Speckle contamination occurs when a coherent energy source is reflected from a

surfm:e. which is rough in comparison to the wavelength of lhc electromagnetic energy incident

upon it; technical descriplions of this process may be found in [2] & [3]. Under this condition,

the rencetcd wave consists of contributions from many independent scattering features [2]. and

each contribulion will have a magnitude and phase which is determined by the geometry of its

rm1icular rcncclor. If the surface roughness is of a random nature, tllen it follows Ihat the

l'Csulting mngnitudes and phases are also random, for any gi~en angle of incidence in relation to

the radiating :iOlII"Ce orthe energy. Moreover, for a change in the angle of incidence, the reflected

wave will incorporate magnitude and pha~e components which are again random. but not

nc~c~sarily independent orillc return from the previous angle. Consequently, the returned signal

clln~isls of an envelope of coherent, dcphascd wavelets, which may incorporate relative phase

delays llf scveral wavelengths {2].

If a receiver has a resolution cell size such lhal severnl of the scanering elements fall

within each cell. then the interaction of these dephased components will have a significant impact



upon the detected signal. Since the relntive dephasing is rondom lind depe1llklll upon the g"xlmcll')'

of the scattercr. then for some resolution cclls. the superposition of Ihe c.Icpltas;:c.1 wnw1cts wHl

lead to hiChly constructive interference; intcgmtion or tile return cnergy occurring wilhin these

cells will thcn produce n high intensity. At the opposite estfCmc. within othereelb there will he

highly-dcstructive interfen:nct:. leading to 11 vcry low intcnsity valuc liner intcgmtioll. In thc

remainder of the cells. supcrposilionswill be moder:ltcly destmctiveorcl1nstmctivc 121. producing

varying levels of speckle intensity between the extremes. For n matrix of resolutioll cells. such

as an image, thc modom supcrposilioll of wavelets ultilllDlcly resntls in a hnlad-tmlld mnUUIIl

paUem of intensities; this comprises the undesired spe1:klc componcnt. which needs til he

suppressed by digital processing. 11le desired signal component which exists within the nuisy

image. is created when the backseatterins surface also has variations tlmt \}Cclir lit a se;lle !:Irc,ller

than the incidem wavelength. [11 this sitllatioll, a componcnt of tlte b.1ckscallcr will also he pllllse.

coherent with IIdjoining cells; consequently. :t will incorpomte n plmsc shin lhllt systcl11(ltically

corresponds to those surface variatiolls which occur nt n scalccquivalcnllo Iheresolution cell size.

The imagc patlerns which arisc due to these vnriations. will contain diseemihlc infllrnHllinn

regarding the surface being imagcd; it is this infonnntion which ncctls to he enhnllcctlthrouyh

digital processing.

The goal of a signal processing operation Ihen. is to separate the d..'Sircd sigunl

component from the undesired llOise subspace of the image. ~Iowevcr. a prerequisite to nchicving

success with IIny such operation in the intensity domain. is a mathem~lica' mudd which

adcquately summarizes how the signal and noise components intcmet.



1.2.2 Modelling the Sprckle and Signal Interaction

A commonly-referenced conceptualizal.ion of signal and speckle noise intCfXtion. is

the multiplicative noise model. used to describe speckle in both laser and rndat applications. II is

defined as;

~jj) • g(iJ) . n(iJ) (1.1)

where I/ri,j) is a nndom noise: process which is independent of the signal g(ij). This is the

n:lnlionship assumed in (2) 01: [3J. and forms the basis of many allemplS to suppress speckle by

digital processing lcchniques. One of.1le earlier wch works [4J. used this model to develop an

optimum restorn.tion filter based 00 Wiener filtering theory; however. that filtering slrotegy docs

not corn:spond to .hc techniquc described in this thesis. Othcr approaches motivated by this model

hnvc involved taking a log tmnsformntion of the process in Eq. (1.1). then:by making it additivc

nnd llllowing for the usc of lineRr filtering operations [Sj. By pcrfonning slICh a trallSfonn on

multiple images of.he s.,me 5«lle and then avenging them. the randomly-phased speckle can be

somewhat suppressed. resulting in an improved SNR (6). Still. this does not pennita detailed

image m:overy bc:causc the averaging process will produ~some blurring; furthermore. multiple

images of.hc: same scene are not always available.

Ilowever. inadequaties klve been IqIOrted Il'garding the mulliplicative model,

wggcsting that it may only be rt'g8rded as an approximation. For instance. it has been shown in

171. chat the model does not hold for situations in whieh tIM: object being imaged contains detail

liner than the resolution capability of the imaging system. The Butho~ emphasize the practical

$ignificance of this obscrvalion. nOling that most objects contain detail beyond the resolution of

the imaging system being uscd: howevcr. an altemalive modcl was not suggestcd. Complcmental)'

tillhis. it ha.~ been proposed in [81. tMt image intensity might be eJtpress\-od lIS:



'«j-llv'i(ij,i'"'!@h(x)I' (1.2)

where It(x) is the impulse response of lhe imaging system. and the symbol @den('l\c.~ CllnV\llulinu:

.f(.V) is signal intensity and ~tI is II mndam phase shin introduced by the sp~'1.:k1c Pl\lCCSS. By

working with this representation. n lmnsformotion has been devdo~dwhich forel'S the spI;'cklc

and signal 10 more closely approximate a multiplicative process, therehy pcmlitting llcvdnpmcnt

of an optimum linear filler based on tlte minimum mcan-square error criterion.

Many such investigations have been conducted in order 10 beller undcl'lilalld the gC1K'mi

problem of speckle in coherent imnging; this is because many inferentinl IcchnitlllCS IlSCJ in

physics, including laser imaging, arc plagued by this phenomenon. Il00vcvcr, wilh particular

reference to suppression of speckle in SAR images. the multiplicnlive Illodel lind ils relaled

approximations have also been dominant The purely multiplicative case wasa~sumcd in 191. whe'l

developing suppression methods based on local statislics from windowed sub·scencs Ill' a SAR

image. and lalcr in [IOJ. when repolting on local stalistics and sigma lillcring melhllds. Rcsulls

in [llJ suggest no extension to tile tnultiplicnlive model. by nssuillillj,\ lh:lt imllge inlensity lIl11y

be represented I1S a convolution belween the mdar impulse responlie runclion. h(iJ). :lnd thllse

tenns whieh comprise Eq. (1.1). TIlis model is exprc.~scd ali:

x(/J) = [ g(iJ) . n(iJ) I ® h(iJ) (tJ)

Based on this, on optimum fi Iter has been developed. which adapts 10 subrej,\ions or the image by

using locally-eslimated parameter values. More recenl work, reponed in r121. has lIsSUllIclllllll\

an inlensily image may be represented as n convolution which involves lhe tenns or Ell. (1.1) and

Ihe radar impulse response, but with addilive system lhennnl noise being introlluccd allcr the

convolution. TIlis relationship may be summarized as:



xCi,j) • / f g(i.j) . n(jJ) J 0 h(i,j) I + v(i,j) (1.4)

where l'flJ} represents thermal noise, and !I(ij} is the radar impulse TCsponse. From this model.

a 1000all}".lIdaptive two-dimensional block Kalman filler has been developed, whith compensates

fur image degradations due to the multiple effcets of speckle noise. additive rcteiver thermal

noi~. and IineM space-invariant blur [12]. Other results. reponed in (I 3). detail the first approoch

towards de\'eloping a model which takes into account the second-order statistics of speckle. This

has permitted de\'elopment of a family of loeally-adapti\'e suppression filters. based on the

assumption tl1at the magnitude of speckle is correlated with the magnitude of the signal.

Ff'."n these discllssions. it isapparenl IhDl the;pcekleand signal inlern:lion has bcen

addressed by a range of modelling strategies. ll1ese various models have given rise to an IlITay

of fiherillJ!. alJ!.orithms. some of which olTer superior performance o\'er others. A comparative

study of!>Cveral sueh sp~kle suppression algorithms has recently been reponed in 114]. HOI'·el'er.

since these methods ha\'e not been based on the speckle and signal model which forms the basis

ufll'mk in thisprojcet. funl1er investigation of their relative anributcs is not warranted.

1.2.3 Inndegulleies of Existing S!!cckre Filrers

'lllC research presented in thisrcpon makes no claim agllinst eitberthe validity of the

techniqucs discussed above. or the validity of assumptions under which they have been deri\'ed.

Howe\"er. the assumptions which facilitated their derivation do impose :I common Iimilation.

which is 110t prcselll wilh the approach taken in this project. The disadvantage of these techniques

is related to the usually non-stationary nature of a speckled SAR image, which implies that

statistics computed within any given subseene will not be representative for the entire image.

BlXallse la~e.seale stationarity of the image scene cannot genernllr be assumed. the mlering

llpcmtion must continuously adaplto the signal component wilhin each image subscene or some

prl.'dctemlined size. To avoid glossing small-scale variability wilhin the non-stationary signal, the



size of this seene is typically chosen to be velY sml'lil. thereby ensuring that the I"rl'el;"ss within the

subscenc is approximately stntionnl)'. This is imponant. because if statistics are derived l'll a httgc

spatial scale and assumed to comc from II slntionary process. within a region which is actually

non-stationary, then the liller is unnblc to account for the non-periodic vnriations in thc signall'lnd

will not function optimally, Unfortunately. for an imnge in which the: SNR is 11111". 100000alliitcr

parameters estimated from a small sample size will bc scverely pertllrhed hy' noise:: hence. the

accuracy of such cSlimates will not bc strollg.ConscquCl1l1y. fora non-stational)'cnviHllllllcnt,

effectiveness of the speckle.suppression technique is limited by the sizc llfthe subsccnc Ullllll

whichil is required tC' '.pcrate.lngeneral.lhesmallerlhe size. the Icssaccurale this <Ippllladl

becomes. for any given SNR,

Howcver. a significant advantage is gained when the digital I"focess may he l'Cll:mk'tl

as stalionllT)' on some large scale. such as the region dcfined b)" the horders nflhe image. Given

these conditions, an adaptive filter may bcderived bascdon estimatcsnhtaint'd rcgiollillly.li'tlll1

the entire area within the image. This follows from the stationarity assumption, which mnkcs it

possible tn compute filter parometers via an averoginl:! procedure which simultaneously

incorporates all information from the imaged reg.ion, Due to the suhstantially larger sample sile

which will result. the filter \\'ill adapt to thc signal component of the image with much greatcr

accurocy. This implies that the regional1)·.adaplivc method will yield superior results in

comparison to lhe locally-adaptive approach. for any gil'en SNR. Within this thesis. it has b<:en

assumed that one such example of regional stationarity would be an ocean wave scene as imal:\ed

by SAR. Yel. vcr)' li«le cffort has been directed towards suppressing speckle in a process which

iSSlationary o\"erthe entire scenc. This is not surprisillg. becausc it corresponds to a small subscl

of the possible applications ofSAR. wherells moslliltcrillg procedures developed thus far. have

been motivated by a desire to solve the speckle problem for Ihe l:\cncral ranl:\e of SAR

applications.



1.2.4 Snccklc end Signal Model for SAR Images pf Ocean Scenes

In addition to regional stationarity, if it is also known that the speckle and signal

proc(.'sses arc additive and mutually independent. then the sUJlpression problem is further

simplified. This is because linear prediction techniques may then be utilized in order to separatc

the background image from lhe speckle. Earlier work regarding SAR imaging of ocean wave

scenes 115J. continued to assume the multiplicative representation. However, recent findings in

r16J do suggest that for an ocean wavc scene :rnaged by SAR, the signal lind speckle interact in

an additive and independent manner. The theoretical development of this work commences with

an assumption that the baekseauered complex field received by the SAR. is made up of two

statistically independent fields. One of these. the spiky field. is produced by breaking or near

breaking sea waves which produce discrete amplitude fluctuations. The other, which is the

h.1ekground field. arises due to system noise andlor the background of non.breaking waves of

unifonn SClltlerinllamplitude [16J. From this it can be shown that the total image field, A. is

represented as the sum of two independent image complex fields:

(1.5)

where the subscripts band s denote the backgroUl,d and spiky fields respectively. The image

intensity is thentlcfined as:

(1.6)

where· denote", complex conjugp~ion. After taking expectations based on ensemble averages, the

final image intensity is rcpresc.:llted by:

1f).Ii,>.(I.1 (1.7)

" is lhoughl that the dominant contribution to the background lidd is due 10 additive receiver

noise [16]. In most systems. this would be independent of the contribution coming from non-

10



breaking waves, and implies thai the background field lnishtllCtu311y be wriltcn uthe sum o(lwo

intensities:

(I.B)

where g represents the intensity due 10 lhe wavefield, and rdenolcs the contribution due to system

noise.

Given these considerations. and by combining Eqs. (1.7) &. (1.8). it (ollows that nny

pixel within a SAR image of an OCClUl wave scene will have an intensity, .t(IJ). \~hich is

represented as:

x(/,il • 19(iJ) + r(i,j) I" sUJ)

Where ogain, g(IJ} is the pixel intensity due to the wavefield component, r(iJ) is the intensity due

to system noise, and l(iJ) is pixel intensity due to speckle. Clearly, it is possible 10 cullcct Ihe

speckle and system noise lenns into a common noise tcnn, defined as:

n(ij) " r{iJ) .. s(iJ) (1.10)

This pennits the image 10 be expressed as the following sum of signal and noise componenls:

xf,iJ) .. g(fJ) + n(/J) (1.11)

Where ,,(ij) is assumed to be coherent noise, due to the presence: of Ihe speckle component. Since

bc.:h r(IJ) and 1(IJ) are independent or g(iJ). it follows thai ,,(lJ) will also be indepenck:nl nf

g(iJ). This establishes the attribules of additivencss and stochaslie independence, for the

Interaction of signal and coherent noise within n SAR ocean wave scene.

1.3 Motivation for New Approach to Speckle SupprCllslon

11 has been demonstrated via Eq. (1.11), Ihal for lUI ocean wave scene oblainl.'<I hy

SAR, the waveficld and noise components of the image may be viewed as additive, independent

"



processes. Furthermore, the fact that the image contains an ocean wavefield, permits an

assumption that the overall scene may be regarded as a process which is wide·sense stationary

(WSS). at last within the region bounded by the image margins. Within this scene then, there are

two independent WSS subcomponents, specifically, the spcckle noisc and the desired signal; this

is also the assumption which hasbcentaken in [161.

An additional consideration arises due to the correlated nature of speckle in WSS

scenes, which has also been documented in [ISJ & [16). Findings in [16) indicate that the ACF

of the speckle decays very rapidly, within only a few lag steps of the zero lag: afier this, it

apPI1"'ches some nominal level of power which is very low in comparison to the ACF for the

signal component. 11,c implication is that the noise component within any given pixel, has

signilicant correlation with the noise component of other pixels only in its immediate vicinity.

This is also supported by results found in {IS], which showcd that the second--order statistics of

a SAR speckle process could be represented as a nearest-neighbour correlation. Given these facts,

it is possiblc 10 conclude that the spatial extent of correialion within the noise component of the

image, is much less than Ihc extent of correlation within the wavefield component.

11,e above facts prompt r~ognition that speckle suppression is possible via an alternate

tcchnique. which diITen in assumption from methods documented thus far. Consequently, it will

now be asserted that a new method is feasible, provided that certain mathematical prerequisites

;1rc sntisfied by the process whieh has been imaged. Pursuant to this, three conditions necessary

for irnplcmerllation Oflhc lechnique maybc staled as follows;

(I) 1111: noise and waveficld components of the image must be additive, and mutually

stocl>astieallyindependent.

(2) 'llc proccss occurring within th.e image must be WSS, at least to Ihe regional extent

defined by lhe borders of the image. This implies that both the speckle and signal

subcomponents must each be WSS.

12



(3) The spatial e!l:tent of corrclatioll of the noise pn)l'l~ss. rnU!lt be f:lr 1~'Ss than the

extent of correlation of the desired signal component

Given any situation for which such conditions hold. it is!;"e working hypothesis of this

thesis, Ihat a linear filler which adapts regionally to the entire image will be capable ofenb,:tively

suppressing correlated noise. The use of a linear filter is motivated in conjullclion with Condition

(1), and its regionally-adaptive nature follows from Condition (::). An important ramilicutiol1lluc

to Condition (3), is that if the spatial dimension of significililt noise correlation cnn be dClenllined.

then gapped forward linear prediction may be applied to the image as n means of suppressing the

correlated noise. According to linear prediction theory f171. it is possihlc to derive a linc:lr

function which opcrates on the past values ofa coherent datll !>Cquencc. ill order to prL'l.lict its

future values. By this technique, a sequence of data points, x(I}. x(2}... "x(IJ}. say. IlIlly he usct!

to predict pointx(II+a}, which lies a steps ahead within the set. If the prediction gnp. a. helween

X(II} and x(n+a}, is greater than the spatial e:tlent of noi~ corrclntion. thell nnly the corrclak'il

signal component can be predicted; providcd also. that the extent of correlatioll of the signal is

greater than or equal to a. As a consequence of this, the predicted sequence is smoothed hy the

operator, which suppresscsvariations occurring at any interval smaller than a. ·n,crcfore. chousing

a (0 be larger than the dimension ofspcckle correlation, implies that the noise wilt hc suppressed

when the image is operatcd upon. ~lenee, Condition (3) providcs motivation fur deriving the

desired filter as an a-step forward linear predictor. Following from these conclusions, the nc:tt

Chapter will provi"Je a mathematical formulation of such lin opemtor, and exam inc how its

performance is determined by the correlation characteristics of the wavelidd and noise pmccsses

which comprise the image.
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CHAPTER TWO

ANALYTICAL FORMULATION OF TECHNIQUE FOR SUPPRESSION OF

BROAD-BAND COHERENT NOISE

2.1 Introduction

The problem of recovering infonnation from a noisy image has typically been

approached by the use of two-dimensional filtering operators, as diseussed in [6'1, (18], [191 &

[20]. Howevcr, thc applicability of one-dimensional techniques to two-dimensional image

proccssingbasalsobc<lndcmonstralcd in the literaturc [21], and l'rovides some impetus fortbe

technique to be developed herein. Therefore, this Chapter will detail a method by which a digital

image satisfying the constraints of SCl:tion 1.3, can be processed by two tbree,·channel linear

operators. One operator will adapt to the row dimension of the image, while the other adapts to

the column dimension. TIll: row filter triplet then operates to suppress noise within the rows, oller

which, the column operator triplet is applied in order to reduce noise in the eolumns. Initially, it

will be secn that single-channel filters operating sequentially in this manner, will achieve

noticeable and quantifiable noise reduction. However, it will subscquently be demonstrated that

vectllr stochastic process theory ean be applied in order to derive three-channel versionsofsOleh

filters. Thcse vector operators wiil cllhibit superior noise-suppress ion capabilities, when comparcd

to thcsinglc-chnnnelvcrsions.

2.2 Formal Statement or Problem

The problem of obtaining information concerning a two-dimensional stochastic process,

in the presence of broad-band coherent noise. will now be ronnally defined. By way of
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illtroduClion, consider an imagc which consists of a two·dimensionul proccss, .~(iiJ, dclil1l'd us:

x(iJ) '" 8{iJ) + lI(iJ) (:!.Il

Such a process is comprised of two components: it will be gencrally assumed lhat K(iJ) i~ a 1.1.'1"0

mean. wide-sense stationary, stochastic bandpass signal proccs~. which i~ indcpendent of tile 1.Cn."

mean. wide-sense slationary. broad-band noise process. represented hy I/(ij). The hnndrass

process. S(lj), is the tle.fired .d~I1(l/about which infonnation is sought. By definition, 11 stnehnstie

process is bandpass if its power Spec::tOII1l contains a clustcr of frequene)' e(ll1ll'llncnts, ill II

frequcncy band of some width IV, which have significlll1l1y higher power in e01l1parisun I" the

nominally nOll-zero power lcvels existing at all othcr poil1ts or the sp«trmn 1221. Sueh a c1u~ter

of frequencies will berefcrred to as the effective bandwidthofthc process. ·111isdclinilill1l1llsll

assumes that the frequency 1'=0 is nol a part of the clusler; however. nole Ihat the puwer spcctnnn

is not required to be zero at thb frequency. In a !ess-general C.:ISC, ~(iJJ 111.:1)' altem:ll;vc!y he II

narrow-band process. having.:l spectrum which is zero at most frequency points. except fOT:I non

zero cluster of some bandwidlh w. With respect to the noisc process. ll(iJ}. its hrond-hnnd

definition implies that it incorporates components or signifi.-,antly non-zcm power, fmm uti

rrequencies within the spectrum.

The fonn ofEq. (2.1) reveals that any attempt to compUle stati~tics rcgarding K(iJ), must

inevitably include infonnation from the noise process, thereby biasing estimllles orthe parameters

which are of interest. In gCtleral then, if O[.tfiJ)) is some linear opcmlor which compute.~ n

statistic from the image, the expectation of this statistic will ultimately be cxprc~scd ll~ a ~llm of

individual expectations, derived from eaeh of the signal and noise processes:

Z"{O[.r(j,J))J = ZjO[g(l,j)j} + Z'{O[n(i,j»)1 (2.2)

It is now dear thai the desired statistics pertaining to Kfij) cannot be obtained directly from the

unprocessed image.
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One such example of the linear operator discussed in Eq. (2.2) is the Discrete Fourier

Transform (OFT), and ils computationally-efficient counterpart, the Fast Fourier Transform (FIT).

An cxpcelalion operalion involving the OFT produces the well·known periodogram (23]. A

pcriudogram OFT is l;;olllmonly used in imagl;; analysis, and it is often thl;; l;;ase that the image data

have becn gathered specifil;;al1y in order to extral;;t spectral infonnation via this operation. In fact,

the prindpal application of the filtering te<:hnique developed in this thesis, will be image pre-

processing in order that more accurale OFT's may be obtained under conditions of low SNR. In

order 10 appreciate the need for Ihis preprocessing, begin by considering Ihat the two-dimensional

DFTof:x(jj) isexpressedns:

NC-l N~-l

Xifr;J,) .. E E x(ocoo,) c-Jlc·c c-J/~-~
.c,O .~.O

NC-I N~-I Nc-I No-I

= L E 8("C'"~) c-Jlc~c c-Jf~"· + E E o("CO"R) c-l/clle c-J/o-.
"c,o "0_0 "c,o "~.o

(2.3)

where N,. nnd N. might represenl the total number of pixels within each column and each row

rcs~tively. but whieh may actually assume larger values in order to improve angUlar resolution

ofI.. and k. The column and row frequencies,f,. and I.. are discrete frequency points which are

uniquely defined within the nonnalized range of 0::: (j,.,f,J < 27(' only. From Eq. (2.3), it is easy

10 sec that a pcriodogram cstimate of the spectrum of g(IJ) will also be biased by lhe noise

componenl of the image. If the noise has only significant cOlTelation at the zero lag of its AeF,

then II bias will be ndded to the power of all digital frequencies in the spectrum ofg(iJ). Although

this is thl;Oll:tically a constant bias. when the FFT is used, several frequencies of the noise process

may coincide within the same frequency bin. This combined power produces spurious peaks in

the spectrum, which may be so large lIS to make them indistinguishable from peaks due to the
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desired signal. For very low SNR, extensive periodogram averaging may then he O'equill'o in order

to identify the signal portion of the spcclrum.

Additional complications arc introduced if the noise also hIlS sillnilicllnt correlation lit

non-zero lags of its AeF. In this case, the noisc will have a tapered spectrum, with signiticantly

greater power found in frequencies near DC when compared 10 frequencies near Nyquist. When

this is added to the spectrum resulting from the signal component of the image, then the llveroll

shape oftte power spectrum of the image is distorted. For this situation. pcriodogrmn averaging

will not be capabh: of restoring a shape which corresponds to the spectrum of the desired signal.

because the bias imposed by correlated noise will vary as a function of frctlucncy. Hence, lor

spectrom estimation in the presence of broad-band eorreJaled noise. it is p.1rtieularly importllnl

Ihat the noise power be minimized prior 10 performing a Fourier transform. TIlis will ensuTC that

the shape of the resulting powcr spectrum more accurately reflects Ihc actual speclrum nf the

desired signal,g(IJ).

2.3 An Adaptive Filtering Solution to lhe Signal R~very J'roblem

A blockdata.adaptive filter olTers considerable promiseofelTectivenoiscsupprc.~sion,

when operated in a gapped prediction mode subjcct to the constraints ou/lined ill Section 1.3. 'nli~

type of filter adapts to the signal component of an image process, after statisticaliy-representativll

estimates of the correlation functions have been oblained. The block dntn approneh to adaptive

filtering offers superior results in comparison to Olhcr tcchniqucs, because it incorporalfo.':!

parameter estimates based upon all dala contained within the ilPlIl;e. 'nJis differs from locally

adaptive methods, such as gradient estimators, which continuously update an ACF by utilizing

values in the recent past ofa time series, in order to predict a future value. A filter derived from

block-data computations, contains information regarding bol!'! the entire past and cntire future of
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a finite: time ~ries upon which it opcrates. This provides superior ability for the anticipation of

a future valuc. within a stationary proecss.

Ily selective manipulation of appropriate oomponcnts within the correlation functions of

a stochastic proccss. thc passband of thc block data version of an adaptive filter may be adjusted.

tln:n::by achieving conformance to the eITective bandwidth of a signal process. When this operator

is then applied to the image. the noise component which lies outside thc passband is severely

allelluated, rcsulting in an image scene which has fewer dctcctable noisccomponents; this filtered

image is an estimatc of the desired signal. In ordcr to fully understand the means by which this

may he achieved. it will first be necessary 10 investigate the correlation characteristics of the

signalnnd noise components of the imagc.

2.4 Corf('latlon Characteristic" of Imaged Stationary Stochastic Proccsses

2.4.1 Gcnernl Derivation of Two·Dimensional and One-Djmensjonul Correlation Functions

It is well-known that the correlation functions of WSS stochastic processes contain

infoml11tion pertaining to the frequency content of such signals (17] & 123]. As a prelude 10

developing onc·dimensional filtering operations for a two-dimensional proccss. it will first bc

shown that valid one-dimensional ACF's and CCF's may be derived from the two-dimensional

ACI' of th~t process. II will Ihe~ become apparent that a two-dimensional WSS process must

consist of two complementary one-dimensional processes, comprising the rows and the columns

IIf the image in which it has been captured. To begin. consider that the ACF of the proccss

described in Eq. (2.1) may be obtained as:

whcre i nnd} represent the row and column indices respectively, within the image matrix. The

symbols 1:,. nnd t~. denote the lagged correlation distances al\lOg tile column direction and along

thc row direction respectively. Since Ihe cross-covariance infonnation cancels, via the
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independence of the two zero-mean processes. the flnal rcsult is:

(2.5)

For the theoretical developments which follow, it will be assumed that R..(tr,tR) has becn derived

via a regional estimate based on the entire image scene. By usc of Eq. (2.5), it ;s possible to

separate correlation infonnation pertaining to the rows of the image. from that which JlCrtains In

the columns. In order to see this. let the lagged distance bftween rows be represented by t," 011,1

the lagged distance between columns correspond to the value of t R• Then, setting t,.=/I in

R..(fntR) must yield lhe regional average of the one-dimensional ACr. '1,(tRI rJ). for the olle-

dimensional signal.plus.noise process existing in the rows. Similarly, sclling t,.=fj produces the

regional C(:F, ,..)"t.. II3). existing between any two rows. x and y. which are scpamlcl.l by n

distance of {3. In summary. the one-dimcnsiollal regional ACE and CCE's of thc imngc nlW

processaredcrivcdas:

'zlt"IO) .. Rz/O,t,,) = R,,(O,t,,) • Rn(O,t,,)

'zlt"I~) = Rz.(~,'l;II)" R,,(~,fll). Rn(~,tR)

(2.6)

Furthennorc, by the assumptir.n of stationarity, the f{\lIowing vcry important axiom also hulds ror

theCCF:

(2.7)

II is easily seen that by perfonning the same manipulations on t R, it is also possible to derive the

one·dimensional ACF and CCF's for the process existing in the columns.

2.4.2 Analytical Form of the Two-DjmensionAI ACE and ill Ons-Dimensional Comnoncnl.~

In developing an analytical fonn f;:;~ the two-dimcnsioflal Aer. it will be a.~~umcd that

the signal stochastic process, g(iJ), has an ACF which can be approximated as the sum of "

exponentially·damped, two-dimensional sinusoids. This model has been chosen because it olTers
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the greatest flexibility in repres<:ntinga bandpass process. Olten, the spectrum of such a process

can include more than onc cluster of frequencies, each with power levels which are significantly

greater than the ovemlt nominally non·7.ero levels; the use of n terms facilitates proper

representation of this casco As well. this representation permits modelling of a narrow-band

spectrum, merely by setting the exponential damping factors to zero. Moreover, in Chapter Four,

it will be sccn that this model adequately accommodates the form of two-dimensional ACF's

which will be derived from SAR images of ocean scenes. Therefore. building upon discussions

found in (241. the two-dimensional ACF of gfiJ) may be represented as:

(2.8)

Here the index /c denotes the Ie '," clement of some set of size II; Nt· and N~ represent the total

number of pixels in each column and each row of the image, respectively. The digital phasor

increment pairs, w... and W'!l' are defined to be:

2n),.lC 271),.u
WIC=~' Wl//;:~

whue (Lc,L//) IE N. Lc<Nc• L//<NII

and (AlC'),.U) IE {(A"•• AIIl>.....(),.~e-),.d)} l: {(AC'AR> IE 12 lOs ),.c< Le-O :S ).//< LII }

(2.9)

It will be assumcdthat L,. ..c N,.lud L~..c N,.; since N,.and NR arc the dimensions of the image,

this implies that the two-dimensional ACF will incorporate many cycles of its lowest.frequency

component. Furthermore. the subset indicated in Eq. (2.9) is defined to be a not-necessarily·

contiguous subset of /1.

In Eq. (2.8), the term OJ represents the amplitude ofdte /c'/II two-dimensional sinusoid

in the ACF. For each such sinusoid. the terms d.,. and djll represent the damping factors along the
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column dimension and the row dimension respectively. For any gi"en k. these temlS mayor may

not be equal; this aeeommodates the possibility lhat an imnp,inr. systt'n! gathers inf\mllatioll lin

the row dimension. in a manner which differs from that by which it ohtains colu1IIn infonnation.

Since it is known that an imaged scene will bt' affected by Ihe point spread functi(ln of the

imaging system, it follows that this influence must ultimately he rcnect\'(! in the nlltocom:lntitlll

data which are extracted from lhat scene. By convention similar 10 above. it will be il~SUIl,,'(1 tlmt

each amplitude factor nnd each damping factor p-1ir. rcprescnt the /( ',11 clements of thcir respective

not-nccessarily-eontiguolls slibselsof si7.eII. dclincd liS:

at € {o[ ..... a.} c {a € RIO<acool (2.10)

(du;.du ) € ((dlC:A,,), .... (d.c.dd)} c I (dr;>d/t) € R11 0 ~dc<""'O ~d/t<""}

Thercfore. Eqs. (2.8). (2.9). and (2.10) describe the gcncrnlllpproxil1111tilln of the ACF Iilr n two-

dimensklnlll bandpass stochaslic process contained in a digital image. In the sj'lCCinl case where

the damping factors arc identically zero and the process is narrow-hand. the I\CF in Eq. (2.8)

reduces to a sum of /I periodic sinusoids. wilh cach /(',,, component having an amplitude of (/1'

With respect to the noise component of :rOJ). shown in Ell. (2.1). it lYiIIgenemlly be

assumed that /I(;J) is a correlated process. having a two-dimcnsinnnl ACI-' which is llppm.~imlltl,.'(/

(2.11)

Here. 11(11.1') represelJls the Ilmplilude of a two-dimensional delta function. 6(t,.t~). lind the

constant c is a non-negative integer which defines the extent of correlation of the noise process.

While it may actually bc the case lhat thecxtcnt of noise correlation in one dimension of the

image is greater lhan in the other, the magnitulle of c should represent the maximum of these two

values. It will eventually become apparenl that the derivation of row and column filterll using
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different minimum prediction gaps. as pcnnilted by two different values of c, would produce

gencrally undesirable results. From Eq. (2.11), it is clear that R...(tc,t.) is equal to zero for either

I te I > C or I t~ I > c; II spe<:illl fonn of Eq. (2.11) o<:curs when c=O, in which case the

contaminating process consists of white noise only.

From Eq. (2.6), and by setting tc=O in Eqs. (2.8) :md (2.11), the one·dimensional

regional ACF for the row component of the image process now becomes:

(2.12)

where -(NR-I)~tR~(NR-l)

Cnreful ins~tion of Eq. (2.12) will lead to four important conclusions, which will have

~ignjficllnt implications for subsequent discussions:

(I) r,}(t~IO) conlains no infonnation regarding the phase of frequencies relative to one

anolher within a given row.

(2) for values of It~1 > c, the row A("F contains only infonnation relating to the row

component of signal process g(IJJ, that is, r..,(t. I0) II rmet. I0). This is due to the fact

thaI any contribution to the ACF from the row component of lI(iJJ, is zero for these

(3) If the damping r.,cfors, dlR' are identically zero. lhen for It~1 > c, there exists some

integer. 'I. such that rO}{t~IO) is periodic; lhal is, rO}(lt~l 10) - r..,-<I t~I+I'I1 10) and

(4) If the damping factors are nol identically zero, then lhe ACF will decay as It~l

becomes largc, and the periodicily property will no longer hold. In particular, if dIU >

d:R > ... > till<> then for It.1 = Iql > c. whcre q is close to c say, the cosinccomponent

associated with d'N will experience modernte attenuation in comparison to that of the
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cosine component associated with d~ Uowever, for vel)' large 1/. the component

governed by dill will exhibit sevcre aUenuation wilen compared to that of the component

governed by d.K'

Also. by Eq. (2.6~ thl: regional CCF of tile row process is derived by setting fl· ... (J in

R,,(fe-T.). where 13 is the desired distance belw~n. ""y two rows ofllle im:lgc. By inspection of

Eqs. (2.8) and (2.11), it issccn that this will yield:

(2.13)

Study ofEq. (2.13) will also lead to four significant conclusions:

(I) r~.,(T.ll3) contains a constant phase term, ~,:13. whieh is introdue~'tI by the column

dimension of imaged wavcficld g(IJ}. Tllis indicates that the cell retains inlhnnation

regarding the phase relationships which exist between the row components oflhe dc.~ircd

signal process. It is, in fact, this very phase relationship ....hich preserves the one-

dimensional process existing in the columns.

(2) The noise component, r"'l(t.II3). can be removed. either by choosing (J > c prior to

deriving the CCF Of by taking IT.! > e afterwards.

(3) Similar to the AeF, the CCF will also exhibit periodicity for \T~I > c: if the damping

factors are all zero. For non·zero damping factors, the CCF behaves in the same manner

as does the AeF for observation (4) above.

(4) In addition to the damping which O>;ClIfS as a fllnction of f •• the CCF also contains a

constant damping tenn. e .d.cl~l. which is introduced by the column component of the
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two-dimensional ACF. Therefore, ifat least one of the damping factors is non-zero, then

Ihe power and shape of the CCF will be altered by changes which occur in either 'R or

Generally-speaking, it has been convention to treat the ACF and CCF as separate

entities, despite the fact that they are mathematically very similar. Specifically, by inspection of

Eqs. (2.12) nnd (2.13), it is seen that the ACFmay be regarded as a special case of the CCF, for

which the parameter 13 is zero. Given this, most subsequent mathematical discussions involving

correlation information will take a unified approach, by working only with the analytical form of

the ccr. The corresponding resulr for the ACF may then be instantly realized, merely by setting

f1 .. (J. Furthermore, throughout this report, correlation functions for which all damping factors

nrc identically zero. will be refetTed to as Case I correlation data. Functions which exhibit ollly

positive damping factors, will be referred to as Case II; combinations of zero and positive

dnmping fnctors will define Case III correlation dala.

2.4.3 ~mcteristiesWithin the Signal Component of the CCF

111e spectral content orthe signal component of the CCF, will eventually be shown to

hnveasignificant impact upon the filtering technique being developed. Consequently,adetailed

examination oflhe frequency.dornai" represcntation for this portion oflhe CeF is now warranted.

To begin, consider a subset of size N", comprised of contiguous coefficients taken from

the right-hand side of ',w('RIP). for which the correlation lag is non-negative. This subset may

hcn:prcscnlcdas:

',.,;no • {',.,(,,,1 P)I 0 c< '11:0;; Nil-I} • {',.,(OIP), ',.,(11 P), ..., ',.,(N/C-ljP)}

(2.14)

where the elements of ',w-.," are ordered according to increasing values of"l:R' By analysis of
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, P.l"2C' it is desired to obtain information regarding tile spCl:tral content within the row component

of its generating stochastic process. g(ij). This onRlysi! will be pcrfomu:d upon some contiguous.

ordered subset of chosen size ~ <c N/(o found within rt .,••2C and defin':d to be:

r,~r.'(.) • { r,.,('rll 1P) Ia s til sct.~-I I • {',.,(<<I Pl..... r,,,(a-.~-IlP>\
(2.IS)

where a is 8 non.negative integer. a~ 0 5" NII-~' By changing lhe value of 0, givcn fixc<1 t, it is

possible to window several equal-length subsets oflhe CCF. in order Ihat nn independent spectral

analysis may be perfonned upon each one. The frequency-domain mapping of rt ......l ,,). rcpfL'5Cnted

as G."Ulo.~). will be achieved via theone-dim~nsion81 Discrete Fourier Trnnsroml (DrT). lomlldly

defined as:

,.,
G~7(f1«.P) • ~ r,~lt:H1.1 p)eJ!'

for,IE {2~l; I ~,.O.... ~-I}

and,O S II s; NR-~

(2.16)

It will be assumed that ~ can be chosen such that (VL"J E N; that is. Lt from Eq. (2.9) dividcst

wilh zero remainder. The rell:;on for this assumption will become apparent from the discussion in

Appendix J. Furthermore, by usc of the wcll·known identity:

e·j'.el8
cOS(6)c-

2
- (2.17)

the spectral analysis will be performed only for Ihe negative complex exponential component tlf

each cosine term occuning in rt,,{'rR 1(3). Given these considerations. and for lIny chosen vlIlucs

of (Z and (j occurring in the signal component of Eq. (2.13). the frequency·domain behaviour of

't.,.("'CR1(3) may be categorized by three possible cases, based upon values taken by the damping

coefficients. d""llnd dl/(o Ic=i, ....n.
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2.4.3.1 Cn<: I: Damping CoeffICients are JdcntiCillly Zero

Consider first, • ease for which the damping coefficients are identically zero, such that

d.....J...=O. for J"·,.1.....n in Eq. (2.13). In Appendix 1. it has been shown that upon evaluation

orlhe DFT in Eq. (2.16), G~a.{j) may be expressed as:

G.,{/Ill:.P)· t (fe·J<..·C....,•• ) {J{/-foI
ut

} (2.18)

From this it is clear that the spectrum or rm{t.l/J> eontains complex phase terms, introduced by

the cr and (j rarometers. Assuming that w.... 'F W/.lfo/oro 'F b. it is seen that for any k'th frequency.

"',. SlIy, only the Ie',,, component of the summation on the RHS of Eq. (2.18) is non-uro for fixed

j. 'nlis condition has been imposed by the presence of the delta function. and shows that for any

given/, only one oftlle IIlemlS can be non-zero. This implies that for any two arbitrary disjoint

fmtucney pair!, {w....uoJi.rn:I (W",.foI~ say. the o',h complex veclor never intentCU with Ute b '",

complex veclor during the summation operation which defines G..,(/la.(J). This is because when

the frequency response due to the first pair is non-zero. the: frequeney response due to the second

must be zero. and vieo-versa. For any f then!fore, it follows thai the resultanl of the vector

summation in Eq. (2.IS) is stil1the Ie 'fh non-zcro complex VC'CIor. Hence, the magn;tUlk of this

resultant is ronstant for all a. and the only change which the resultant will experience due 10

varying a. is an angular advance of its phasor.

To extend this .rgument fun her, suppose now that for I < P :s 11. there exists p terms

in t!q. (2.18). all ofwhieh hnvethe ,fOmcvalue for w,,,. but cachofwhich has a r1islinelive phase

teMn. w.... In this case there must be p tenns involved in the summation of Eq, (2.18), however,

for elleh temt, the initial phnse valllc, w.. ~ is independent of a. Careful thought wilt reveal, that

these p complex vectors will maintain their same magnitudes and rela/;lIe positions in the z-plane

for all lr; lignin. the magnitude of the complex lIeclor resulting from the summation will be
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independent of o. The ultimale conclusion. is that magnitudc infonnalion for each value offin

Eq. (2.18) is independent o( Q'. Consequently. the spectral power representation of rro,(t.ltl> will

be constant (or all values assumed by this parameter under Case I. For the SlIme reasons just

given, it is also easy to verify that varialions in the v'\luc of 13 will have no effC'C'l upoo ,he shape

ofthespec:trum.

A special ease of Eq. (2.11) may be derived by $Clling 0"'13-0. whieh produces lhe

autospeclrum for the row component of g(ij). In this situation. it is easy to sec th..,t v.MO.O) is

defined as:

(2.19)

There(ore. it has now been shown that the one-sided aUIOSflC(tnnn of the row compoll~'f11of ~(iJ)

consists of lines only, when the damping coefficients are identically zero.

2.4.3.2 case II: Damping Coeffidents are all Non-Zero

Given the ease in which III damping factors an: non-zero. derivations presroled in

Appendix I reveal th~· .he OFT of "..,(f.11i) may be expressed 05:

G.(fla.p) '" t ~e-("'d'I·"'o{.!!..:f=1lle-~">c·f··"·;'-""J). sinhld~(/21
, 1.\ 2 slOh{(du.,wu-i/)/21

(2.20)

Inspection of this equation reveals a situatioo which is very different from that which wa~

represented by Eq. (2.18). An assessment commences by noting that the .f/II11 (unction in the

numerator can be zero only if dllt - 0 or ~ • O. bolh of which arc impossibilities under lhe

assumptions defining Case 11. This means that for evc!')'], v.,(/la.(J) is the complex resultant nf

n complex tenos, each of non·zero magnitude. Since. in general, Col"" ';It w.. for lJ ;It h. the /I

complex vectors in Eq. (2.20) will not maintain constant relative distances in the ;:.pl.ne as a
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changes. This implies that for any fixcdf, thecomplex resultant of the summation will vary with

changes in a. lI~nce, the magnitude of the resultant will in part be determined by the degm: of

constructive or destructive interference, which occurs during addition of the " complex terms. This

suggr.sts that for each/. variations in Ihe magnitude of t."iq{f!o•.Bl would be cyclical if 0 were to

increase without bound. In addition to tllis, the relative contributions from the exponential

damping factors will also cllange witll a, more rapidly for some of the II components than for

others, When these considerations arc laken inlo account, they clearly demonstrate that the spectral

representation of Ihe bandpass process is directly dependent upon 0, and the OFT of r..,,(tRI.Bl

cannol be uniquely defined. It is alsocasy to see, for fixed 0, thaI varying tile value or(3 willllave

an elluivalent effect. '1lCreforc. magnitude inrormation pertaining to any f in the spectrum is

dill.'Ctly alTccted by tIle values which these p.1rametel'S assume.

An examination or the special case in which 0=(3"'0, reveals that the autospcctrum or

the bMdpass process existing in tile rows or tile image is represented as:

'nlcrcl1JT1:, it iscasily seen that the autospcctrum is alsonon·zero for all! It now follows that if

the exponential damping raetors arc all non-zero, then tile aUlospectrum orthe row component of

~(iJ) cun ncvcrbcrcprcscntcd asa line spectrum,

Further to these observations, consider also tile cross-row spectral power coherence

function, which indicates the relative power ort!::.: bandpass frequency components between any

two TOWS,.Y andy. This is usually computed with 0/=0 in the one-sided spectrum. and is denned
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Based on the alx)\'c discussion, since 1M aUlospt'ClJ:l and cmss-sJXdr.l chanEt as 3 fundi..,n of (J.

it liso followslhat the: cross-row cohcmx:e fundion musl similllrl)'chanl;c with altcrnlions in (J,

In Chapter Five, evidence of(J·induced variations ",ill be presented. in order to \'crify the prc~lIa:

of Case II data within SAR imagery of two otean WOVCsrnles.

2.4.3.3 Case 111: Damping Coefficients arc Combination of Zero Dnd Non·Zero Terms

Lustly, consider the situation in which ooly some of the" tcn11s in Eq. (:!.:!O) have nun-

zero damping facton; this is known asa mixcdspcclrum 125J. In p.1r1icular. Ie! the lirst 1/<1/ HI'

the tenns have idelltiC<llly 7.ero dumping factors. and lei U,,/lja.(j). fCflresel1tlhc 1",11 Icnn in thc

summation of Eq. (2.18), Similarly, Icttlte remlining "'f/-h of till: terms how non-i'.cro damping

factors, and let G,f!lcr,{J). represent the u'th component. the summation ofEq, (2.20), Given

these conditions, it follows that th~ sum of lhese n = a +h tenns is represented as;

The implication of this relationship is tbat ifatlcast one ofthc damping factors is noIl-mu, thm

lite influtltce ofGJ/lOl,{JJ... described byCasell, will mean thnt a unique spedl'ltl cslirnalec.1nnnt

be found in G.illa.(JJ. Additionally, by the findings obtained UIltk.,. Case II. it also follows thnt

GvUla.fJ) in Case III con never consist of lines only, if at least one damping factor is lIun-i'.cro.

111e facts highlighted by the above three cascs, provide inrormation which will he cnlci:ll

in asscssingthe capability of the scalar and vector Wiener filters. While Case III corfClation hns

been briefly discussed, this Iw been conducted only in the interest of completeness. Subsequent

investigations will deal exclusively wilh Case I and Case: II data: from these. ramiflCllions for
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Ca~e III dolo will be readily apparent. With this information now established. it is possible to

proceed with deYelopment of the Wiener filter operators.

1.5 Bloek-Adllrtive Wiener Filler ror Scalar StochlUtlc ProcflSes

2.5.1 Overview

A one-dimensional scalar stochastic process. x,-{.t,WIi=/...NH }. consists of a set of

dahl points, x,(j), which denole the magnitude of observations made on tlte proccss which exists

in row i, at discrete pl)ints along the column indexj. When applying scalar process theory to the

digital image of a two-dimensional wavefield. it is assumed lhat each image row of length NR•

represents a set of point-wise observations. Each such set constitutes lhe ;'fh row realization of

a parent stochastic process from which all rows have been genernted. This is consistent with the

fact that R",(IJ.T.) 1!I ,.~,(TRIIJ=o) represents the expectation associated with the zeroth coIl/nil/lag

in the two-dimensional ACF, which has been obtained over all rows ofthc image. Therefore, the

r-1renl process which is represented by '1I'){TRIO) contains information which is common to all

rows. due to all ayernging of the correlation functions: in fact. this parent process is detennined

via lhe ('.'/H.'cfatiOlI of ACF's from indiyidual row process realizations. Note also. that it is not

J'Klssiblc to charaeterj,:e any given row realization ascrgodic. because, while the two dimensional

process is assumed to be ofzeTO mean. it ;$ highly tonecivable that Ihe individual row processes

may haye unequal. non-lero means, This would occur with a situation in which a DC ofTset in

thc rows is modulated by a WIlyclield which exisls only in thc columns,

Consider now. an arbitral)' i',l1 row and an arbitral)'j'''r point located within that row,

say point J:,(j). Then around this point, there exists a two·dimensional zonc within which there is

significant tnrrclation relating point K,(j) to other points within the nil TOW, and with points in

any adjacent (/±fl)'lll row, As verified by the fonn of Eq, (2,13). the strength of this correlation

dcenys with increases in (J and "l"R' if at least some damping coefficients are non-zero, However,
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by the assumplion of slationarity. an equivalenl zone I)f correlation exisls around eaeh and I....·el)'

other point in the image. In tenns of the underlying signal process. the eross·row corrclatillll

corresponds to a phase shift between rows. which has been inlrodueed by lhe column C011lJl'llf1I.'tl1

of lhe two-dimensional signal process. Furthennore. prior to lilly Iiltering procedure. lhen: will

also exist an additive noise component ,·..!lieh has signilicant correlalion bolh within and hctween

rows. Consequently, in lenns of its rows. an unfiltered N(" x N~ image cOllsislsofn Sl;t. X. orone-

dimensional. noise-perturbed. phase-shifted proeesscsdelined as:

X· {x, I1,,1 .....Nc J

• {i',U1V·1..··,N,}·I',Ul V·I ....,N,}. ·.('N,u1Ij·I .....N,1I
(2.24)

In a block-adaptive lillering approach. it is desired to derive a sct of eo~mcicnls.

'/2th.irla..BJlr=O.I"..• ~·/). where lhe h,,(rla.I3J arc coefficients belonging 10 II linear lIpcmtm

of some lenglh ~. 111is operator has been designed based on lhc relationships existing hclwecn

all x, and X"6 which arc E X. where (3 is some integer which is held conslanl whcn llhlaining

estimates over all the x,. The infonnation which is required in order to cOlIstnlclthis 0pl,:ralnr. is

found wilhin the zone of correlation which surrounds caeh point in Ihe image.

An estimate of the desired signal occurring wilhin each noisy.f" is representcU hy lhe

set ~,.t~,(jla.(3) U-I, ....N~}; it may be obtained by aplllying the linear operator to cadI x,'~. vi:1

lhe following convolution operation:

,.,
Kj(Jla.p) • ~h.,<rla,p)xj,~(j.r-a) (2.25)

where Q" is the length of the prediction gap of the Iiller. By applying lhis operation 10 all

elemental subsets of X, il is possible to produce a new sci of phase-shifted, one-dimensional.

noise-suppressed signal processes.C. defined as:
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G. {.,II.I .....N,I

• ({i,U} •• P) ~'1····,N.1·1',(j I•• P) Ij·I.···,N.I.·".{••p I•. P) Ij·I...,,N.}}

(2.26)

'Ille ultimate product then, is on estimate or the set of one-dimensional signal processes existing

in tile rows of the imngc; within Ihis noisc-suppressed domain it is possible to obtain more

accumlc information regarding the signal of interest. For convenience in subsequent nOlation,

observe thai ft. nod C are the fillered cstimlliesofthcirrespectivc oclual image components, g, nnd

G. Thcdcsircd lincaropcrator which will yield such estimates is the scalar Wiener filter, described

in 126!.1271. llnd derived in the next Subsection.

2.5.2 Senior Wiener Filler' MOlhcmalicaj perivation

To formally inlrodtlee the derivation of a scalar Wiener filler. negin by considering a

elise where, for all x, E X, i\ is desired to derive a set. II, comprised of ~ linear function

cocnicients. 1I,,(rla,{3); here, the subscript xy denotes the transfer function of row y into row x.

This function is to operate on the row process sct y=O.T"" for the purpose of predicting eaehj'lh

vnlueorthc signal process occurring within some proximal. phase-shifted sct,x!!xj • The prediction

is to be based on ~ previous points in the sequence y~x,.6' Furthermore. relative to thej 'th value

or xEx,. the nemest point of row yE.t, •• is a steps in the past. along the row dimension. TIlis

relationship mnythen be summarized liS:

h~1(O Ja, P)x1,,(j-a) +h.,<11 a,p)x,.,(j-«-I) + .. +h,,(~-II «, P)X,.,(j-lX-~+1) = x j (})

(2.27)

If 0.=/. then this is the one-step predictor commonly referred to in the literature [27J. The

uerivntion process is commenced by rewriting Eq. (2.27) in vector notation as:
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Multiplying both sides of Eq. (2.21) by the lJanspose of the stochastic pnlt'l:SS V\.'dor now Gi\'o;;

[

xl.,(j-a.)x,••(}-(l) x,.,ej-rJ.)x,.,(j-rJ.·n

X,.,U-a.-:)x",U-IJ) XIo.(j-(l-l~,.,U-(l-I)

x,.p(j-IJ-(+I)x{.,U-Il) ...

X1••(/- CII lx, ,<J- CII -(+l) I
X,,~(j-CII-( .1)x,.~(j-I1-( -I)

(2.29)

Upon taking expectations of Eq. (2.29) for all ; and all}. the following ~Il is obtain!""':

[

,.(010) '.(110) - '~«-II0)I
' (-liD) , (010) - !

[1l.,(01a:.~) h~,{lICII.P) - fr.,(E-l!rJ..P)] x .,! ., ! ... !

'''7(-(+110) - '.,(01 0)

'" ['.,(1Il I P) ',,(a +1 1P) - ,~,(CII'E-IIP)I

(2.30)

When! '9(t.lfJ) denotes the regtonal expcctatton ofthc: one.dimensiooal eCF liX'Dny two nlWs

of the image which an: fJ steps apart, and'..(t.1 0) represents the regional expectation of the nne-

dimensional ACF for XI'" Notc here, that since the RHS of Eq. (2.30) is dcpcmlcnt upun huth

a Dnd (1, then the scalar transfer runction occurrinl; on thc UIS is alsodcpcndent on these

panlmClers: Ihis neeessitate:s use nrthc notation ".,trla,(3j. As well, ror notational convenicncc

during subsequent rererences, Eq. (2.30) may be expressed as;
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(2.31)

The solution for h/., is achieved by multiplying both sides of Eq. (2.30) by the inverse of R,.(.

2.5.3 Prediction Effectjveness of the Scalar Wiener Filter

The preceding discussioos imply that a given realization of the row process. in row i+fJ

say, may be u.'\Cd to make predictions about another realization of the same process. in row I say.

which is (3 steps away in the column dimension. This predictability relies upon that relationship

whieh must e.,ist between signal processes in tlte rows in order that signal processes in the

columns be pl'Cservcd. Within their zone of significant correlation. the individual realizations of

lhe row signal process al'C nOI mUhllllly slochastically independent; hence. the bellaviour of row

;+(1 must have implications for tile behaviour of row;. There are however, practical limitations

to this assumption of predictability. both between rows and within rows. Such limitatiOtls arc

din't:t1y relnted to the charneteristics of the zone of correlation which surrounds caeh point in the

image.

In order that the relationship between fillet dfectivellCss and correlation characteristics

of thc signal process may be fully undcrstood, it will now be necessary to examine the

eharm:tcrislies of a gcnemJ linear operntor which makes predictions on a noise-free process. Given

this. consider the situatIon in which a two-dimensional stochastic process, g(iJ), exists in an image

which is free of noisc; the i'll, element within the i'tll row component of tbis process is

rcprcSl.'11ted lIS}!,(j). In sueh an instanec.-, it is easy to see that Eq. (2.25) becomes:

,.,
I,U/Cl,P) = ~ h~,(rla,p)gl,~(j-r-«) (2.32)

where the symbol· is used to denote the estimated value of glJ) which has been obtained in the

rlbsence of noise. Now, if g,(ila.I3J is the estimated value associated with the actual value of g,O).
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then roWProcesSK, is considered tobcpr('(/irlllhh' if:

aii!a,p}-g,U) =0, !oral1iandalli CU))

It can be shown 128] Ih1l11his rcl.11ionship holds if (lml OIl~I' if the uutospcelmm of ~, consists llf

lines, in the fonn represented by Eq. (2.19). QfeourSt', it follows from previous discussiulis 1I1l11

theex~tcdnutospectrumof1!iisolsothcexpectcdatllospectnltnof.l!,,~,fur 1111 inndnlll3; lhis

pennits lhe application ofEq. (2.)]) 10 thc cross-channel prediction in Eq. (2.J:!). Cuns(,:ql1C1l11y,

unlessthcexpectcdautospcelrumofM,eonsistsonlyoflincs.lhcgcncr:JIingstllch:lslicprl,lcessis

not predietablc. In Section 2.4.3. il was shown that for the case UfUllll-7.Crll dnmpingcllcnicicilts.

G'J(//a,!3) could never be rcpr<"..ctIlcd as 11 line spectnlll1. I-lence. Illr Cnscs 11 :lJld III in Scctintl

2.3. II now follollls that Ihe output ofthc WiCM'f IiIler from the nuIsc·frL'I;' upemt;nn nfEq. (:!.J2)

cnnnotsotisfy Eq. (2.3J).

If a process docs not satisfy these conditions, it is possihle thut ill1l11Y he dcscrihL't1 as

weakly prrc!ictabfe. providrd Ihat its speclrum is b.1nd·limited. This definition requires that

G.,(fIa,{3) • 0 for j> '/'. where op is some valuc between (J and 11". 11{)wcvcr, for the situation

which is of primary inlerest in this thesis.. namely that of Case II dnta. ~, is merely handpnss.

TherefoTC. as shown by Eq. (2.21). it will havc an expected aUlospectrum which is nnn·I'.cro for

nil/. since there are non·zero damping coefficients in the expectcd ACI,'.llcncc, CXL'I;'pt for Clse

I, the process represented by thc cxpected ACF cnnnot be band-limiled, lind thcn.:IIITC it docs nllt

satisfy the condition for weak predictability. 11 now follows that G,,(lia.{3) in CIISC II, Plld

G",(I\a,~). in Cllse III, both s3tisfythe definition of nn Ul1f1'l!dicluhft: prtlCCliS as discussed in 12111,

This introduces Wold's decomposition. which states tbnl any arbitrary unpredictable

process. 8, say, may be written as the sum:

(2.34)

where g" is known as a regular process, ond M'r is a predictable process. FurthennoTC, M" and
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~'p are orthogonal in the statistical sense, that is g'fg",(j) . gll'O)} ... O. Hence, gi',(j) is a

component of I{,O) which cannot be determined from previous \aliles of the sequence, say g{a)

f<lr t1 <j. On the other hand, Kll}) is predicted exactly by these previous values in the sequence,

In f.lcl, it has been shown that if JM'IO'./3) is the predicted value of gluJ obtained in the absence

of noise, then it must also be the predicted value of Il.Ip(i), and iWIO'./3) .. gil}) since the regular

process component, I{, ,(J), cannot be determined from the prediction operation [28]. It can further

be shown that KIf' has n spectrum which consists of lines, whereas g,.• has a spectrum which is

norH:ero for all f and whicf. does not contain lines, The resulting implications for Casc II

correlation data, is that pmcessg, may be separated into a component which is predictable by h,_,
within Eq, (2.31). and a componellt which cannot be predicted. For Case III it is seen that there

arc IwO predictable components; one has thl: spel:tral representation ofG.,.(frrx,/3). from Eq, (2.23),

and nrises naturally due to the undamped portion of the ACE; the other may be defined as

U,,(/IO'.I3J.,., which arises due to Wold's decomposition of G.lfICt./3)•.

A prolonged examination of the implications arising from these observations is not

w:lrmnted. In preparation lor subsequent discussions. il is merely sufficient to establish a general

conclusion for CMes II and III. that, in the absence of noise, g'(iIO'.,8) ;If g,(j), hence:

8"{[#jla.I})-g~j)l11 = e>O, forolliandforallj (2.35)

Consequently. except for Case I, f!l'ClI ill the absence oj noise eollltJmimJllolI there will exist a

linilcrron-zcroerror variance, e,due to differences between the predicted and actual valuesofg,.

25.4 Scalar Wiener filter: Frequency-Domain Transfer Function

In order to nddresslltcnoisc-suppressioneharaeteristicsoCthescalnrWiencrfilter. ilis

nccessnry 10 examine ils perfonnance in Ihe frequency domain. To facilitate this. begin by

ohserving Iha\ Eq, (2.30) may be rewritten us:
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[1'-' IIH 1 JH 11~ h~7(bICll.p)r~,(-bIO) • ~h67(blcr..p)r~7(I-bIO) •...•l~ hk,(b/a,p)r.,{(-I-bjO)

• [r.,<<<IP) '.,(<<+lIP) -,. '.,(IIII:'(-IIII>J
(1.36)

This reduces 10 the Wiener-Hopr equations [26J; m:alliflg lhal C' dCf1Ol.cs the e..'(lenl of ll(lisc

com:lation. and thai by choosing a > c it is possible to t.'tCludc the noise component fmm the

RHS of Eq. (2.]6). the Wiener-Hopr equations may be expressed n.~:

,.,
~h'7(blCl,p)r.,(IC-bIO)" ',.,(H«IP). forK. 0, ...•(-1 AND a>c

(_I (-I

~ h./bJa.p)r,.,(IC-bIO) + ~ h.,(b 1et,l)r..,(II:-b 10) .. r~,,(IC+ClIP)

(2.]7)

The (requeocy-domain transfer (unction may be derived by us<: ofthc Discrete fourier Tnm~r(lml.

previously defined in Eq. (2.16). TIlctefore, multiplying both sKies of Eq. (2.37) by~ nnd takins

summations over Ie, gives the Doe-sided spectrallq)f"CSenlation of the DFT with a > ", u:

(2.38)

Since, by the propenies of the OFT, a tlme-domain c:onvolutlon mllps to II multiplication operation

In the frequency domain, the linal result of Eq. (2.38) is n summcd pmd\lc:l of ~pcctrnl dcnsity

functions, expressed as:

H~,(/la.Il)G.,(fIO) .. H.,<fla.,,)N.,(fIO) • G.,(fla,,,) (2.39)

Study of Eq. (2.38) will verify that the bandpassspcctral estimatcson the L1iS of Eq. (2.39), an:

derived from a different set of correlation coefficients than arc those: on the RIIS; }towever, if
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a<~, then there will be ~ome degree of intersection between the sets. Moreover, the estimate

occurring on the RIIS is. in general. dependent upon variations in a and {J, whereas the estimate

from the L1IS is not affected by changes in these parameters, Finally then. the frequency-domain

transfer function for Ihescalllr Wiener fiher may bc~xpressedas:

(2.40)

Inspection of this equation will readily confirm that since the numerator is affected by changes

in a and fJ. given Case Jl or Case III spectra. a uniquc frequency response cannot be obtained.

Thcrefore. II very significant I1lmification is that the magnitude response ehlll1leteristies for the

passband of this filter will change with any variations in either a or (J. In fact, it is only for Case

I spectra that the passband magnitude will remain constant over all possible values cfthese two

parameters. In effect tllen. for Cases II an.:l Ill, each form of N,/lIa.(3) which results from each

unique f;ombination of a and (3, represents a different realization of Wold's decomposition for the

process which is being operated on; some realizations will be closer approximations to the actual

signal process than others will be. From this, it also follows thai prediction accuracy, as measured

hy e in Eq. (2.35), must also vary according to the parametric values which determine the shape

(lfG,,(/Ia,(J).

Ofcourse. the relative phase delay characteristics between frequenc ics within the transfer

function of the filter will also ehonge for Cases II and III. due to variations in the shape

pal1lJ\lctcrs of the ccr. This is a direct consequence of the interactions which occur between

scvernl nOll-zero complex terms within G...,(IIa,(J). which forms the cross·spectrum within the

nlllllCl1ltor of Eq. (2.40). rurthcr to this. however, it is also very important to understand that the

Wicller filter derivation procedure seeks only to minimize the estimation error, e in Eq, (2.35),

ror (lny chosen a and (3. This reduces to an optimization problem which imposes no additional

constraints on the solution t21}. In particular, there exists no constraint that the filtered output be
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undistorted, with respect to the originnl phllSc relntionships existinl; between frequencies wilhin

process g,. This Rleans that, in gener...!. the filtered output will be phase-distorted lor nil th,,:c

cases of the CCFpreviousl)'dcscribcd.It willialcr besccn that this distortionenn be 'cversed

during thc actual filtering operation.

As a final observation, nole thnt in Ihe cnse of coherent noise. the vlllue of N,..(I1/J) is

not constant for all! In r.,ct, thenoiscspc<:tn.nn InpcrssuchthntlhclIlngnitudcdl.'t:rcll.'il'Switlt

increasing! Given the relationship defined by Eq. (2.40). it is en.~y to sec that this uneven lIoise

spectrum will induce a different gain factor for each value of! This too, willllcclir IIndernlllhn:e

cases of the eCF previously described. and implies 'Imt even tor Case I data. Iho: dcsitl.'tl sign;.l

cannot be perfectly recovered.

Based on these considerations, it is possible to conclude Ihat a Wiener lilter oJICl'lIting

in a gapped prediction mode, can never complctcly recover II stationary proce.~s which Illls hccn

contaminated by coherent noise; hence, for such silt'ations it is 1I general rule Ihnl iUiIOl,{J) j1I! "Mil.

This establishes one source of error for the filtering techniquc which is being devclopo:d.

2.5.5 The Scalar Fi1terjng Operation

To investigate the elTectiveness of the scalar Wiener filter, begin by ubserving tho:

relationshiprepresenled by Eq. (2.40). From comparison of the numcrntor nnd denominntnr lcrms.

it is seen that frequencies which occur with very low magnitude within the sign;.1 process. hilt

which occur in the noise process with relatively high magnitude, will lead to /I ftc<Ulelley (e.~punsc

which is of minimal amplitude. TIlcse frequencies comprise the stopband of the filter. anu will

be suppressed during the filtering operation; it is easy to seelhatthis relationship furthl.'r impeul.'s

the predictability of a bandpass signal, since its lowest-power frcqul.'ncies will he attenuated.

However, frequencies which possess power levels Ihat are approximately equivalent within both
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the noise and signal processes, will remain relalively unanenu.ted: such frequencies will then:forc

compriSClhepassbandoflhe filter.

To provide I formal iIlllSlr.!llioo, based on a one-sided spet;:tr.!ll representation, let OJ

denote lhc subset of frequencies having significantly above-nominal magnitua ~ within the

lipcctrom of row signal process g" Ilnd let NJ be the set of frequencies found in the noise process.

Oy definition, this lalter set will contain eornponents from all digital frequencies 0 sis r,

whcfcas the former SCI will conl.in only some values of J Similarly, lei PJ be the sci of

unaUClluated frequencic.s which define the passband of the filler. lind leI SF represent the set of

suppressed frcqu..:neieswhieheomprisetheslopbllnd.GiventheseconventionS.lhcpassbllndand

stopband rcllltionshipli may be fonnally represcnledns:

P,- G,nN,- G,

S,- N,- G,n N,- N,- G,
(2.41)

lienee. the filter is capable only of suppressing those frequency comp-....::nlS of the: noise pl'OCC55.

\vflich have significantly greater magnitudes lhan their respective components within the signal

process. TIlis n:veals thlllG pot1ion of the noise process will be passed by the filter and continue

to contaminate the estimate. I,. of the row process. In fact. the bandwidth of that portion of the

noise process whieh ~ unsuppressed by the filter. is prtlporlionilio Ihe baodwidth of signiflCllltly

pownful frcq1lCncies found within the signal pt'OCC5.S. The resulting implication i5 thai for any

fixed level of noise. effectiveness of the filter will dttTCaSC if this effective bandwidth of the

liignalproccssise.'(tended.

'l1,is establishes a second souree of error for the filter, and prompts the rewriting of Eq.

(:1.25)115:
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(_I t-l

K/(illX.P)" ~hi~(rllX.p)gl.~(i-r-lX) + ~".,(rlu.p)Il,.~(j-r-U)

H
'" tlilu,P) + ~h.~(rlu.P)II/.~(j-,~ U)

... B,(jIIX.P) .. tUIIX.P) + ti,(jIIX,P)

(:1.4:1)

where li,O"IOI.,B) is a lillered version of the noise process. Therefore. it has now been shown Ilmt

g,(lla,,B) has two sources of error: one sourcc ariscs dul;' to thc fact that only some components

of g, pre predictable. while another occurs because lhe Wiener filter cannOI suppress all nni.~e

frequencies.

Based on these conclusions. the onc-sidcd spectrum of *, may now be TCpTCsented us:

Whereupon it is seen that the LHS is the complex resultant of two independent complex tcmls

occurring on the RHS. Of particular relevance. is the fact that due to Ihe independence of the

signal and noise processes. tile phase of the noise process is not in any way rdated to the phase

of the signal process. Momentarily ignoring any distortions which hlay be imposed on G,(J1a./J)

due to non-linear phase attributes of the filter. it is seen that C,(J1a,.BJ will be phasc..distortcd due

10 the additive elTeel of the residual noise. NlIIOl.,BJ. which is generally not in phase with

0,0101,(1). Consequently. that portion of the noise process which is retained will continue til

distort the desired signal. Although the filtered result will represent II significant impmvement over

the unfiltered version, it will still possess a finite signal-to-noise I"oltio cxprcs.~cd as:

SNR
1

.. Id,Ula,p>1
2

ltil/l«,'ll'
(2.44)

where the subscript J has been used to denote the fact that this SNR resulls from the one-channel

Wiener filter.
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While the retention of noise is unavoidable, in principle it is possible to modify the

filtering operation in order to minimilC this problem. In this regard, the objective will now be to

uerive three distinct versions of the scalar transfer functioro, h•.,_ For the sake of this immediate

discussion, it will be assumed that the signal correlation data are umif!ecred by changes ii' ellher

('J IIr 13, so that allthrce fillers will have an identical frequency response. Pursuanllo this, suppose

threc vnlnes nre tlcfined for {3: spcdfieally, let these be·{3 and +{3 for 13 > c. and 13 ., O. Then.

let row x•.jl he referenced as the Channel I input, row x/ as the Channel 2 input. and row x,.~ as

the Channel 3 input Furthermore, in order to simplify notation, let X,~,,~, X,.:C,. and xJ'u..", for

any; ur (J; therefore, '''1 represents Ihe (;-13) '/11 row. Xl represents row i, and .'CJ represents row

0+(3). Given this, 111/ is Ihe time·domain transfer function of Channel 1 inlo the row estimate for

Channcl2, or equivalently, row x'.u into row estimate~,. Similarly, 1111 is the transfer funclion of

x, into row eslimalc ~" and 1I}j describes the mapping of x"D into ~,.

By operating on Iheir respective (1-13) 'Ih, i'III, and (1+{3) ',h rows. Ihe three transfer

functions each produce an estimate, k" of the signal process, g,. existing in the i ',It row. These

operations may now be summarized as:

,.,
821(}) " ~h2l(r)XI(j-r-(l)

,.,
8n(j) • ~hu(r)XM-r-a:)

,.,
82l(j) .. ~ hn(r)xij-r-a:)

(2.45)

where Ihe notation on the LHS denotes the estimate of the Channel 2 process, based 0:1 the inputs

rrom Channels 1,2, or 3. An estimate of Ihe desired signal process for any I'th row is then

c:'\presscdns:
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(2.46)

This technique incorporates a distinct noise-suppression advanlag:e \lwr the l111c-chmmc1 apl'r\l:lch.

which is best understood through n frequency-domain representation. Thcrdilll:. tnking: F\lllri~'T

Iransforms of Ihe filler OUlpulS in Eq. (2.45) yields a t]lf\.'C-chmmel versinu Ill' Eq. (2..13).

rcpresentedas:

OZI(/) " IGz(f)le,jIiWI + IN1Ulle·jll;!/)

On(/) " 1171(/) Ie -J8,1/) + IN
2
Ulit -jll~1/1

6aU) _lG1(f)le-J8,U"1 + !N
1
Ulle·/ll;"UI

(2.47)

This notation implies that the phase values for all three estillllues of the sigmll process

are equal. whercas lhephase values for the noise eslimalcs arc unequlI I. To lInderstmnl this, rccnll

via Eq. (2.40), lhat the cross-channel tmnsfer functions. lin lind h,}. will incorpomle infnmwtiull

from the CCF proper. Further 10 lhis, by Eqs. (2.20) nnd (2.18), it has becn shown lhat the CCF

retains information describing the relative phaJc rellllionships. which exist helwecn the individll:ll

row components of the signal process. The incorpomtion of this phase information into lhe cross-

channel tmnsfer funclions, enables Ihese opemtors to either delay or advance their resllCctive

outputs. This is needed, in order that the phase of lhe signal estimates from Channels I anI! J,

may malch the phase of the signal eslimale from Channel 2. II is facilitalcd hy lhe f.,cl that lhe

distance between rows, 13, is chosen such that!l signilicant correlation conlinlle~ 10 exi~t b!.:twccn

lhc signal componelllS. However, recnl1 also thaI this separation distance exe~'Cl!s thc l~)llC or

correlation for the noisc process, since (3 > c. Consequently, the litters have no cross-channel

phase information pertaining to the noise process. In fact. for (3 so restricted, there will bc no

phase coherence between noise components existing within any two rows which arc ~cparal(:d by

this distance. Therefore, phase adjustments by thc cross-channel filters will properly sYllchronil.c
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the phases of the signalestimales. but cannot synchronize Ihe phases oflhose noise frequencies

which arc :ll~o passe<!. because no consistent cross·channel relationship exists between the noise

componenls. Givcn lhat lhe phase lcrms of Ih: noisc in Eq. (2.47) are random variables. the

ahscnccofsignificantcorrclation does not necessarily imply that they areindependellt. however,

it docs imply that their covariance is zero. This increases the likelihood that, in genera];

(2.48)

In other words, it i~ unlikely llmt th..:se lhree temls will be equal. after the fillering operation has

heen pcrfonned on any !liven row triplet in the image; a fact which has been represented in Eq.

(2.47).

For the one-sided spectral representation given in Eq, (2.47), it is also seell that lhe

predicted components of Ihe signal process, and the filtered versions of the noise process, are all

complex·vnllled.lgnoringthescalarvalueofl-3. it isseenthattheoperation;n Eq. (2.46) involves

the sum of three cstimates of tile desired signal. and the sum ofthrce filtered versions of lhe noise

process; consequenlly, the final estimate must still n:tain a noise component. However, in

calculnting the SNR. it is npP3rent that the following rel3tiol1ship will exist for the numerator

term:

'nli~ will hold because the three estimates of the ~ignal process nrc equal in magnitude and phase.

Illlwevcr. while the noisc components are also equal in magnitudc, they are generally unequal in

phase. ('onscquelltly.summntion of the noisctenns will yield thcrelationship:

II now follows thaI for Ihe three-channel version of the filtering techniqlJe, the SNR of Ihe

cstimn\e is expressed as:
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SNR , 'Ia,(fll' • 10,1111' • SNR

, 'IN,IIII' IN,IIII' '
:. SN~ :i!.SNR1

(2.51)

Hence, for the ideal situationdclincd nbove, IheSNR:lchicvcd vinthcullc-chmlllcllillcr

is the lower limit or the SNR which is achievable yia the thrcc-channclllflplicntilll1. IIll\\'o.:......r. if

the restriction that the three p.1ssbands be identical is now relaxed. it is denr lhnl wilh 11 Case II

or ease III CCF,thctransfcf functions will nol be idlmtical lliid. equally illlpOn:lll1. their fn.'lIUcncy

responses will change with Rdjustmcnls to a and (3. Yet. with rctcrcncc to Eq. (:l.St). il is S"~l1

that ony chonges which this might impose on the numcmlor will hbn he impusc\! l'(lnnlly 1111 the

denominator; since these arc linear operations. it follows Ihal the incqu;llilY SNRs?:.\'NR, will

continue to hold.

A major concern with the three-channel nppro~eh delincd hy Eq. (2.45), is Chat cileh

tHter has been derived independencly of the olher IWO. Deriving each filler ill this mmUll'r,

excludes information pertaining to the inter-relationships whieh exist between allthrce orlhe input

channels. Such information will beerucial in ensuring lhat nil three fillers. dCllpitctheir dincrent

frequcncyrcsponses,llre collectivclyable torencel the potentially intricate phasennd magnitude

relationships which exist between and within the rows of the image. In cases such :I.~ this, the 1J.~e

ofveclor·bascd multi.channelliltcring operations is highly rr.commended, becallscthey have hecn

developed for lhis type of problcm. This now providcs motivatioll lor addressing the n(lise

suppression problem via the principles of vector stochastic process theory, nnd vL'CllJr Wiener

filtering; such methods will be diseussrd in lhe next Section.
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2.6 Block-Adaplive Wie.er Filter for Vector Stochastic Processcs

2.6.1 Overview

The objective now is to develop a vector version of the scalar three~hannel filtering

orray proposcd in the previous Scction. Within this discussion, vector operations wiJ1 be limited

to three-channel versions of the lilter5, however, extensions to higher dimensions are certainly

achievable. To begin, consider that a three-component ve<:tor stochastic process, x'fJr is defined

nsf17J:

where x/fJ/ is a suhsct consisting of vector elements. Each vector dement, [x,u)JJ./' contained in

this subset, denotes a triple-scalar observation obtained from the}',I, position within each of three

row stochastic processes. The vector is centred on the j',l1 row, from which it acquires its second

scnlar clement, x/O), with the firsl lnd third scalar elements, x.,OJ and x,.,lj), coming from rows

i-{J and ;+(3 respectively. In order to avoid ambiguity in notation, the process realillltions

occurring in Ihe (;-(3) 'III. the nil, and the (;+(3) ',11 rows correspond, respectively, to the Channel

I. Channel 2, and Channel 3 inputs of the three-channel vcctor Wiener filter which will be

derived: this convention is identical to that which was established in Section 2.5.5. The entire

image is then perceived as consisting of a sct, Xj' of such three-channel row process subsets:

x) - {xUlII ;-(p·>l),...,(Nc-P»)

• ({[x,.,Ul]", Ij·l....,N,j.{i'•.,Ul),., Ij·l....,N,j, ..., (['.,.•U'I,., Ij·l....,N,ll

(2.53)

Iilspection ofEqs. (2.52) and (2.53) will reveal that with respect to actual rows of the image. there

must exist S<'Ime overlllp between the .lIfJ) E X,. In particular, consider any arbitrary x,m centred

ou the; ',,, row of the image: concurrent with this, consider another arbitrary vec.tor process in Xj'

rl"I'OI sny. which iscenlred on Inc (i+k) 'Iii row of the imagt:. TIle common content between these
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two v~tor processes. in tenns of physical rows frorn the image. is delermined from the vllille

taken by k in relation 10 the value which has been chosen for Ii The imllge rows whieh comprise

the intersection of Ihese two vector proccsses may oow be defined liS:

X(I)()) n x{j •.ll(3) " { flU) Ij.I,,,,,N~}. (xr.pU) Ij .. I •...,N,III, lor k .. P
X(I)() n XU •.lll]) ,. {fl.~(j) Ij .. I .....N ,I} f. lor k .. 2p (2.54)

Some extremely important ramifications which arise duc to the rcl:\liOl1ships wilhin Eq. (2.54).

will be discussed later, in Section 2,7.3.

By utiliz,,1tion of vector Wiencr filtcr thctlry. it is soughl ttl derive II set. II,. uf JinCllr

matrix operator coefficients. defined as:

(2.55)

wherether"helementofliJistheJ "3matrix:

[

IJI1(rl«.p) IJu<rl«.p) hllcrltt.p)]

[IJ.,(r(tt,p)]Jd ,. ~lCr/o:,P) hn<r/o:.P) hl)Cr/o:.P) (2.%)

1l3ICrl«.P) hn<r1o:,P) "J1Crltt.P)

111e elements of eaelt 3 " 3 block represent lhe coefficients of scalar timc-domain trillls!cr

functions, between the subscripled input elmnnels !ltthe r 'til lag. For each scular lmnsfer functiun.

the nOlational convention is identical 10 lhat which was established in Section 2.5.5. thai is. lin

represents the scalar transfer function which maps the Channel J input into the estimate lOr

Channel 2. and so on, The set hJ can be used to fonn a block vector. "J"I' of block c1emenl si1.c

/ >< ~. within which. each block element consists of a 3 " 3 matrix of scalar elements. Forming

the inner product between "HI' and a ~ " 1 block-element obscrvation vector comprised uf the

t (3"/) scalar-clement blocks. (x,(i»)J-I' will then rcsull in the following block convolution

operation:
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(2.57)

where [x,lj-'-c¥'/],., represents the appropriately tagged triple-scalar block-clement of vector

processxIIJ). which is centred on the i',,, row of tile image. This then. isthe veclor version of the

three-channel array of scalar transfer functions defined in the previous Section. The output from

&t. (2.57) is a three-clement vcctor. which consists of estimates of the row signal processes

(lccurring on each of the input channels:

If only the Channel 2 output is .-ctained after the filter operates on each row triplet. then the linal

product is the set ()1' defined as:

6 1 • {81 I jz(P+l),....(Nc-p)}

• ({t,.ma.p) li·I····.N,I· .."' (tN,.,Ula.p) li·'.",.N,}}

(2.59)

Nole how the three-channel configuration of the operator dictates that the 2nd (i't" row) input

channel. Clln never coincide with the rows i .. / .....{J or I"'N,~{J+I,... ,N,.. Consequently, for rows

j .. I.. ...(J, output estimatcs from Channei I must be used, whereas for rows i=N,.-{J+I, ... ,Nn the

Chnnnel) estimates arc used. Denoting tlte former sct ofestimnles as (;" and the laller as 6J, tlte

entire fihered image is then represented os(;=O, uC/U G.'. The mathemath:al means by whi~h these

estimates may be realized will now be examined.

2.6.2 T/1fI$Channel Wiener Filler: Malhemnticol Derivation

The procedure by wl1ich a muhi-channel Wiener filter may be derived is discussed

extcnsively in [29) & 130). The three-channel vefsion conforms to the same mathematical
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principles as for the more general ease: morco\·er. the derivation I\lr 1m)' numher \11' chntlnd~ is

merely an extension of the scalar case discussed in Section 2.5.2. Con~lIently. nil prcVi\lUS

discussions pertaining to thc behaviour of the gcneralized CCF. for Cases I. II. and III. u[l[lly

equallytotheassesslnentofthethree-channclliher. Givcntheseobscrvalillns.cnnsiderthctlm:e_

channel extension of the singlc-clmnnel a-step prediction 0fICratitlll givcn in Ell. (2.27): it i.~ llllW

desired to prcdict vector observation !.r,WIs." hascdon£prcviousv~t(lr\'hsel"·ntltl1ls.with thc

nearest such observation being cr:> csteps in the past:

[h.,<OI Cl,P)]hlx[XI(j-Cl)]hl +[\PICl,P)Jhlx[Xt<j-Cl-lJ]hl .....

..... [h.)(~-ll Cl. P)]Jvl 1: [x;(j··I't-~ .. 1)J).I ",[.l,(j)kl

(2.bO)

Therefore, the obscrvation to be predicted. may be viewed liS the result of nn inncr product

between a block transfer function vector comprised of £ (J >< J) matrix clements. and II hloek

signal vector comprised of ~ (3 >< /) vector elements. In keeping with this intcrprctntinn. ddinc

the following block vectors:

h,." • [[h"(OI.,'II,,, [',,(lI.,PI!,.,· [h,,((-II.,PI!,.,j

x':(](>l)- [IX,(j-Cl)J:•• [x,(j-(I-I)]~KI ... [xl(j-Cl-E+I)]~Kr

(2.61)

Then. by the same procedure as for the scnlarcquations, multiply both sides of 1:11. (2.60) by the

tfllnsposeofsignal vectorx1'1JI"!' to get:

Now, let u=O,J, .,f./ and v=O,/.... ,E-J represent indices of the block clements within the mlltrix

X1:(Jl.,!><r;:/JI'/J' such that (II,V) = (0,(/) represents the location of the (Jll.J) block dement in the

upper left comer of the matri",. If the e",pcctation of XW1"i ll.X
T
, "I'" is taken over all I, then the

resulting expectation of IIny block element al location (u, v) within thc matri", is expressed as:
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"'{f'"j-a-u)]", .~.li-a-·)J:.,l

I!

Z'.'li-a-u)z,.,li-a -.) z,.,li-a -u)z/j-. -.) z,.,lj- a-.)z,_,(j-a-.) 11
.. r. x,(j-u-Il)xj _,(j-a-v) x,(j-a-u)xtJ-U-lI) ;r;~j-a-Il);r;f.~,<j-a-v)

XI.~(j-Cl-Il)X,_t(j-o.-v) X"J(j-a.-II)x;lj-a-v) x/.,(j-a-Il)xi.,(j-cr:-v)

(2.63)

C311)'ing out lhe C:Xpt:(:13Iion opmilion on the RHS of Eq. (2.63) leans:

[

',,''-'10) ',,'.-uIP) ',,'.-.12Pl)
7{[x,(i-a-u)]J.llC[x,(J-tl-">J:.l}" 'u(v-ul-P) 'n(v-III0) '23(v-1I111)

'll(v-U 1-21J) 'Jl(V-u )-IJ) 'n(lI-uIO)

(2.64)

By IIsing the same block·c1ement address notation. where nO\\lIl-O and ,'=0.1...• ~-I. it is seen

Ihal the cXpeclation of the vector outer product on the RHC: of Eq. (2.62) is .aken as:

I
',II(Cl4\110) ',I,(I"\lIP) "IJ(U+VJ2PJ]

1:{r,(J-O)]l.\x[X,(J-Cl-l"!;.I}" ',lI(<<·vl-P) ',z.j.fI.·vIO) f,u<.a.vlP)

',J/(II+vj-2P) "1z(a.vl-II) ',Jj(ll.vIO}

(2.65)

Upon fomling the diffen:ncc 1.-\'+11. it is seen thaI the: final result or laking expectations on both

sidl'Sor Eq. (2.62) then becomes:
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[r~..(OI tE P)]J,)

['~..(-lliEP)]J.J

[,...(1 (t::: Pl]J.J ... ['r,,(~-11 tE P)]J.)

[r~1(O I t E P)]J.l .

whue :::.0,1,2, and «>c

Hence, the steps occurring between Eq. (2.62) and Eq. (2.66) :lJay be summarized as:

h J • U X Z" {X;(lf'l) )( XI:~JI,l)} : if ([:r,(j)]ld x Xj:~H>l)}

h J • J ( x R,(.J( : rJolt

(2.M)

From inspection of the scalar clements occurring within the preceding operations. it i~ casy to SL~

that tach block element within RU'JI and rHI, n::tains information regarding the regional inter-

relationships which exist bi:lween the rows of the image, for chosen Cll and {1. Since the hlock

vector of the impulse response is achieved via solution of Eq. (2.67). it follows 1I1al the fihcr ilself

must also incorporate this same information.

2.6.3 Three=Channel Wiener Filler: Frequency-Domain Transfer Function

The form of Eq. (2.66) is essentially 11 block elcmcnt elltension of the scalar clement

version presented in Eq. (2.30). Consequently, by following the same procedure as for Eq. (2.36)

and Eq. (2.37), it is possible 10 show that the three-channel version or the Wiener-Hopf L'qualions

!J«ome, for 0' > C and" .., O,/....,~·/;
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[

',,(blooP) '"Cblo,P) '"CbIO,P)] ['''C'-bIO) '"C,-bIP) '''C'-bl'P)]
~ h21(hla.lJ) hl1(hla.ll) h;!J(bja.p»)( 'll(X-bl-P) '22(K-bjO) '2J(K-blll)

h1!(bla,p) hJ2(bla,ll) h1lblo:.ll) 'Jl(lC-bl-2!J) '31(K-bl-ll) 'lilC-bIO)

[

"Il(K+O: 10) ',12(K+« IP) "13(K+lW. 1211»)
" ',21(K+/x I-II) ',22(K+0; 10) ',n(lCtU IP)

',Jl(K+Cl: J-2P) 'Iln(K+a I-Il) ',ll(KtCl: 10)

(2.68)

The princilllli focus of this discussion, will be those filtering operations which lite required in

order to produce the row process estimate occurring at the Channel 2 output; however, note Ihat

nil discussions pertaining to Channel 2 may also be applied to Channels I and 3 in II similar

r.1shion. 'n,creforc, by extracting only the Channel 2 output from the convolulion of Eq. (2.68),

it is possible 10 oblain II sci of simultaneous equations, defined as:

...
~ [h~l(b I a, P)rl,(k-b 10)+h12(b la, P)'~lb:-b1-13)+h1J(b Ia, P)"I(IC-b 1-2Pl]

" ',2,(k+a I-P)

,.,
~ [h'l(b I a,p)'I2(IC-b I P)+h12(b I IX, P)'l2(IC-bIO)+h1J(b Ia,13)'n(lC-b 1-13)]

.. r,n(IC+a:IO)

...?; !h21(b I «, Il)', ,(IC-b 12P)+h22(b Ia, P)'13(IC M b I P)+h13(b 1IX,13)'Jl(IC-b I0)]

= ',2J(IC+aIP)

(2.69)

where /C'="O. /, ,,~-/, nnd a :> c. Upon multiplying both sides by til' and then taking summations

Ilvcr K. it will be seen that this system reduces fo the following frequency-domain matrix

operation;
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JI
G,,(!'Ol G"UHl G"UI-2Pl) I IH"u,u.Pl] [G"U1U.-Pl!
G11(fIP) G21<JIO) GnCfI-P) .j. [Nx/fl.t8P)Jhl x H22(/lo:,P) = GJ~(fla.O)

GlJ<l1213) G1)<lI13) GJ}UIO} H~_Mla,p) G2JUla.p)

(2.70)

Here, [N...(f]±Z/1)Jl,' is a 3 x J matrix ofnoisetcnns which will be investigated in Section 2.6.4.

Note also, that the 8Uto- and cross-spectral eslimll1cs of the signnl components un the L1IS. will

differ from any corresponding estimates occurring on the RHS. By mOlUentarily ignoring the lIuisc

term and focusing only upon the signal spectra. from Eq. (2.70) it is npp.1rcnt thnl. in general,

Hl1(f1et,fj);o! H]J(fIa,fj);I! Hu(!ra,fj). That is, the foml oflhe equation implies thnllhcrc exists nu

restriction whiclt forces the three terrns to be equal for any givenj. Moreover. given the fm:! 111m

the LHS is dependcnlupon 13, as well as the fact that the RHS is dependenl upon Imlh (\' and (3,

it must follow that 'hI! magl/illlde fl!spo",fe af fhl! fhree filfers will be I!ffi.'l.'fl~f by II/e.l't' It'rlll.~. if

the CCF obeys either Casc II or Case III from Section 2.4.3. This implies 11mt the predictnhh:

components of a vector bandpass proce.~s will change due to any variations in these pammctcn;;

II direct extension of the situation forthc scalarfiltcr. 'nlc pn:sencc of thc noise tenus willnlso

affect the filter performance, yel, as was shown in Section 2.5.5, the innuencc of noi~e will he

much less severe than for Ihesealarcasc.

[t is now desirable to investigale those relationships within the v~'Ctor filler structure

which may influence its noise.suppression capability. However. a dircct analylical :iolulion 10 I~.

(2.70) will nOI be altempted because it would yield an unwieldy fl.'Sult. involving tcnns of stich

ubiquity as to preclude any intuitive analysis. A beller approach lownrds in~pecting the role of lhe

noise terms would be to summarize Eq. (2,70) llS follows:
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{[G.,U1:l::::IHJM + \N.,U: EP)JM})( \H'1UIIl,P)t. "IG..,UIIl,:l:rJ)],.1

:::"0,1,2; r=O,1

(2.71)

'l1lc form of this equation implies that its solution has been subjected to the following constraint:

/N",(f):t:::P»)M x IHUIIt,!})],.l" 0J~l

8=0,1,2

(2.72)

where OJ./ is a j x I vector, the clements of which arc all zero. The ramifications which this

constraint will hold, regarding the noise suppression perfonnanee of the three-channel vector

Wienerfilter,willnowbestudicd.

2.6.4 Achieving Optimum Noise Stlppre~sion with the Three-Channel Wiener Fjller

In Eq. (2.66). it is to be understood that the sClllar ACF coefficients which occur within

the block clements on the LHS must contain a noise term, regardless of the value chosen for (3.

In addition, if 0 <: (3 ::;c,then the coefficients from the CCF proper will also contain noise terms.

'nlerefore, it follows tllat the scalar auto-<:orrcilltion coefficients in Eq. (2.66) IIIltst contain a noise

tcnn. nnd .he scalar cross-corrclation coefficients /lillY incorporate noise components. For the

matrices which occur on the LHS of Eq. (2.70) and Eq. (2.71), this implies that each ij'lh, i-j,

~ignal component II/lI.tl have a corresponding non-zero noise component in [NOJ{fl:i:Z,B)Jl-J, and

lImt ellch /j'lh. i;1f.j, signal componcnt may have an associated non-zero noise term in

[N,,(/j±ZPl]JoJ' Hence. theconfiguralion ortcnIls wilhin {N»(Il±Z,8)]j'J will be direcllydependent

upon thc value which has been chosen for (3 in relation to the value which exists for c. In fact,

for n three-channel filter. there are three possible fonns whkh may be taken by [N.N1*Z!3J]J's:
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(2.73)

(2.7<1)

lor c < ~

(2.75)

where l-J denotes the integer floor function. From these relationships, it follows thntoplimullI

noise suppression will be obtained from the three-channel filter for the case in which (3 :> t',

defined in Eq. (2.75). This can be seen by considering that if thc olT-diagonnl noisol sp~'l;lrll ;Ill:

not present, then the only solution for transfer function [1f,,(Ila,I3l)JoI which s,1tisfies Eq. (2.72),

is the trivial solution. However, for the two cases corresponding to (J S" t·, in Eq. (2.7J) lind Etl.

(2,74), the existence of the ofT-diagonal noise terms implies lIdmiuanee of olher solutions. Ikncl.:,

the orr·diagonal tenns, if present, will permit an unconstrained solutioll to lhe cquation, which

docs not necessarily imply that the transfer function havc 7.cro-magnitmle frequency rcspon~. 'Illl:

Intcnncdiatc case, in Eq. (2.74), docs impose a greater degree ofCQnstmim in comparison to Eq.

(2.73), but still does not force a trivial solution, Alternatively, the eKistence of noise tcrms only

on the main diagonal, forces a constrained solution in which the frequency response must Ix: ;>.em.

These conclusions of course, are only truly valid for the case in which the signn!

componenl is absenl from Eq. (2.71). It is obvious Ihat when the desired signal component is

55



present, the transfer function must also satisfy the constraints imposed by this matrix as well;

therefore, cven for the trivial caseofEq. (2.15), the transfer function can never be:rero for all!

Ilowever. lhe above argument does make it clear lhat if the noise terms are present only on the

main diagonili. then the filler will achieve noise suppression which is superior in comparison to

that which would be achieved via thealtemative configurations for (N"Ul±Z/3)]'.J' Based on this

analysis, it can be concluded thaI all filtering applications should be performed with a value for

{j which is greater than the value observed fore.

2.' Vector "'iltering Technique for Reduction MCohennt Noise

2.7.1 Overview

Numerical derivation of a three-channel Wiener filter is begun by computing an

estimated two-dimensional ACF, from an Nr ~ Nil image which satisfies the signal and noise

modcl defined by Eq. (2.1). By close inspection of this ACF, it will be possible to make

inferences regarding the approximatc extent of eorrelalion within the noise process, thereby

pennitting an estimate orthe value fore. Then. after choosing an appropriate value for {J such that

(3 > c, numerical estimates of the one·dimensional row ACF and CCF may be extracted. Upon

determining an appropriate value for «such that« > e, the auto- and cross-correlation coefficients

may then be arranged into Ihe form prescribed by Eq. (2.66). Solulion of this block malrix

L'tjuation will yield lhe numerical estimates of the matrix impulse response coefficients, which are

defined in Eq. (2.56). The scalar impulse' response function coefficient sets, hl/' "11' and "11' may

then be extracted; these arc required in order 10 produce the Channel 2 estimate, gl' of Kp The

final result will be three scalar filters, each of which incorporates information regarding the inter

relationships between alllhrec channels, as provided by lhe auto- and cross-correlation data.
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The filtering operation then involves the convolution of each impulse response with its

respective row process component, found within each row triplet process of the im:ll:\e. By

operating on each row triplet. an estimate of the signal procC5S is generated for each i ""l\lw and

stored in a separate set. That is, for the image which is being opcmted on, the row p"lcess..t"

existing in row i, must //01 be replaced by ils estimate, k,; such a pmetise would alYccl the

eventual estimation of row 1+13, which assumcsthat all three filter inputs arc from noisy rows of

the image. Rather, the Channel 2 estimates arc used to build a ncw and sepam'c imagc, 1\1W hy

row, as the filter operates on successive row triplets from the noisy image.

This filtering operation will achieveelTective Iloisesupprcssion in the I\lW dimCilSit111

of the image; however. upon completion of the row operations, noise components will conlinue

to exist in the column dimension. Consequently. a ncw set ofthrcc·chnnncl impulse responsc

functions lire then derived for the columns. Imsed on the initial two-dimensional ACF whieh was

estimated from the unfiltered image. This is achieved by selling 1!1''=(} in Eq. (2.10) amI Eq. (2.11),

in order to derive the onc·dimensional ACF information for the eolul11ns; similarly, selling l H=*P

and:l:1{3 in these equations yields the appropriate cel' information. 111e filtering operntion is lhen

applied to the columns in the same manner as for the rows.

The three-channel configuration of the operator, in combination with the fact tlllit till.:

rows and columns are filtered independently, will give rise to some poten,ial sources uf

inaccuracy. These need to be taken into consideration if Ihe filter is 10 pcrfonll its task properly.

Such specialized allributes of thc vector filtcring tcchnique will now be discussed.
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2.7.2 Minimizing Phase Distortions in the Rowand Column E~timates

Tile fact that tile three filters lIave not been CQnstrained to produec a distortionless

response. requires somc consideration as to 1I0w phase distortions in the output may be cancelled.

Given a general siLUation. in wllicll some filler is known to produce a phase.distorted version of

its input. the sequence being operated on is typically filtered first in tile forward direction; then.

the output sequence .<rom this operation is reversed and p;:Issed through lhe filter again. Hence.

the tlata sequence is filtered in both direclions. so that any phase distortion introduced oy the

forward liltcring pass is reversed and cnncelled during the Imckward pass. This technique. which

has Ocen employed in [3IJ. results in zero phase distortion. Sincc it is possible thattlle three

Wiener filters will each introduce phase distortions into the output signal. it would be desirable

to:lpply this forwurd and backwards approach when filtcring the image. Howevcr. a three-channel

cuntiguration prescnts complications. To understand this, considcr a situation in which three row

processes. x'-J/' x,. and x,,~. occur such that in terms of relative phase. x,.~ leads x,. and x,,~ trails

.t,: let these three rows now act as inputs to the Channels I. 2 and 3 respectively. Assume also,

that lhis relationship is typical for predictable components existing in all rows of the image. Then.

aller the filters have been derived. 1111 will incorporate a phase delay which is nCl:essary in order

that the Channell estimate oflhe Channel 2 signal component. may be brought into phase with

the estimate which actually occurs from the Channel 2 filter. Similarly. "l' will incorporate a

pllll<c lIdwmcl! which is nceded in order to brillg the Channel 3 estimatc of the Channel 2 proces~

into Illmsc with the CIlIlllncl 2 cstilllate. Now, in addition to thcse desired (mel ne'·f!.fsary phase

adjustments. there will also be undesired phase distortions produced by the generally non-linear

phase response within allthrCl: lilters. RCl:a11ing that the three outputs arc summed in order to

produce the Channel 2 estimate. it may appear that prior to such summation, unwanted phase

distortions could be eliminated by reversing each output sequence and then passing it through its

respective Iilter in the back\\~rds direction. While it is truc Ihat such distortions would be
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cancelled, this operation would also cancel the Channel J phascdclay and the Channel J plllll«:

advance, which must be retained in order thaI the three oulput estimates he inllllASC for lhc

summing operation. Therefore, if forward and reverse fillering are pcrlbnned in this manner. thcn

the fiaal summation process will involve three ollt-of.phase signals, which will cllllsid\.11lhly

distort the estimated signal eomponenl of row i.

As an alternative, it might also appear that immediate sUl1llllAtioll of dIe three OUtputs,

followed by reverse fillering of this sum by "11 would solve the distonioll problem. Ih\wevcr, thc

fonn ofEq. (2.70) has implied that the three lransfer functions are not constrnined to be idenlic:ll.

This suggests that each of lhese transfer functions complement each other during thc addition

operation. Hence, although the summation oflhcir three oulputs isan appro~imati(lnlnlhc desired

signal, there exists no guaranlee lhat each of the individual outpuls is a complete facsimile lit' the

process being predicted. Therefore, reverse filtering with the Channel 2 liller only, may induce

distortions ofa different nalure.

Given lhese eonsideralions, it is "ow possiblc to discuss II fe:lsible approach 10 Ilwcrsing

phase distortions in a Ihree.channclliltering application. In this procedure, thc entire image is

fillered row-wise to produce a set of forward.filtered estim;lles of Ihc row sigr1ll1 process. Fwm

the above discussion, it is known lhnl the resulling image will ;llso ineorpor;lte unwmlted plU1SC

distortions induced by the nonline;lr phase response of the filtcrs. Oy relaining the s....me lhrcc-

channel configuration of filter impulse responses, nnd Ihcn nipping lhc row·filterctl inmge from

left to right, it is seen that thc data sequence in each row is now revcrscd with rcspcctlUlhc fillcr

inputs. However, as a result of lhis nip, lhe forward-filtered signal eslimate. ~,~, now lmils

process estimate k, in phase, and process estimate ~J'~ leads estimate ~,. This is c~nctly opposite

10 that which the filter anticipates.1l1t:rcforc, in order to aeeommodatethc filter, the imnge is thcn

nipped from top to Dollom; careful consideration will verify that this procedure produces a phase

relationship between rows, whicb obeys tbe input assumptions of the filler. Revcrsal of phase
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distortions is then possible, by filtering aJ] row Iriplets occurring within this vertically and

horizontally nipped, forward-filtered image of row proccssestimates. Following this, the column

filtering operations are performed in identical fashion.

2.7.3 Selection of CCF and ACF Information for Vector Filtering in the Columns

Since fillering is performed in the rows first. it is important to anticipate any influences

which this may have upon the pcrfonnanee of the three-channel filter for the columns. In

p:trlieulllf. the remnant noise components which arc inevitably passed by the three-channel row

operatiun may significantly affcc: Ihe column operations which follow. To understand this,

consider the image whieh has been produced by filtering the rows in only olle direction, in the

presence of Case II correlation data. from this image. consider any three row estimates. say ~..

kp/l' and kl>J~' and for this partieulnr example. assume {J·e:1 and c"'l. It is already known that

each estimate has been obtained from a respective row triplet of the noisy image, and that the

rows within each trip!et have been separated by a distance of fJ which is greater than the extent

of noise c-nrelalion. 1·lowever, Eq. (2.54) has shown that two of lhe noisy rows used in the

estimate or k, have also been used to estimate k,,~. and one of the rows used in estimating both

k,lllld k•._has also been uscd in estimating k,.,~.

The three-chaonel row filtering operation relics on Ihe summation of out.of-phase,

uneorrcl:lted noise components. in order 10 suppress noise cxisting in the passband. While this

pilsshnnd n<lise is suppressed by the method. it is certainly not eliminated, and some remnants will

coutinlle 10 exist in the estil1lates,~" Furthennore, the overlap oflhex, belwl!(!IIrow triplets which

are used in tile fillering operation, guarantees that all three row est;males must contain a certain

(!egrcc of common information pertaining to the remnant noise; this is the ultimate result of the

relationships which arc described in Eq. (2.54). It thercfore follows that the remnant noise

c(ll1lponcnts in p" must now be correlated with those remaining in both k,,~ nndk"J~' This means
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thai after fillering in one direclion along Ihe rows, the noise in lhe column dimension oflhc row-

filtered image will be corrclaled up to,' "" 2(3+ / within Ihe column versions of Eq. (2.1 2) IIl1d Eq.

(2.13). Recall, that prior to fillering, it wns only correlated tn ('={j./; hence, the exlellt llf IIIlisc

correlation inlhe columns has been increased due 10 Ihe row tillering. Further to Ihis,IISSUml':llsll

that a '" (3 for the row tiltering operation. perfonned only in the fomanl din.-ctioll, and thaln new

two-dimensional ACF is then computed in support of column filter derivation, (lft!'r 1\1W lillcrin~

has been done. For lhis example, it is e.,sy to sec that Ihe column derivation will rellllirc 11

prediction gap of a > 2{J+ J, in u:dcr to separate Ihe noise components fl\lm lhe signal pr....eess

componenls which exist in lhe columll eorrelalion data. If thc cnm:lation functiolls lOx the

columns nrc also exponcntially.damped, then it is obvious thaI this increascd pn.'tliclioll gar will

mean that Ihe column estimalesarc binsed in comparison to Ihe row estimah:s: this will dislurt the

original rdationshipswhich existed belween the rows and columns. Asan mltliliol1111clllIsiucmtion,

it is easy 10 conclude that the exlent of noise correlation in lhe eolul1IlIs will further increase, if

the rows are also reverse-filtered prior to computing column correlation data.

However, iflhe column £i1terS'arc derived from correlation dala ohiailll'ti I'I'ior to row

fillering, lhen it is possible to maintain a prediction gap which is equivalellt to that iur the TIlWS.

and the filtcrs will still pass only those noise frequencies which llrc common 10 the signal pnlCcss.

In Ihis situation, the passbands of the column filters will be unaltered by lhc increased !;nrrdaliull

of the noise. It should also be noted, thallhe row filtering opcmtion must further correlatc the

remnant noise components along the row dimension as wdl. For fillering ill Ihe columns, this

means that the extent of cross-column eoherencc betwecn remnanl noise eOl11pol1cnt~· will hI;

greater than it had originally bcen bctween rows. Furthl;r to this, when lhe signal is hllndllo1SS, lhe

same value of {J must be used in the columns liS was used for the TIlWS. This implies that Ihe

passband noise suppression advantage offered by a threc-ehannd op!;rntor may nol Ix: as

significant for operalions in lllc column dimension.
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2.8 Summary

Based on lhe mathematical consideralions presented in ':;e preceding Sections. it is

possible to conclude that a veelN filtering technique which suppresses broad-band correlated noise

is indeed achievable. TllI:rc are, however. compromises associated wilh Ihe technique under certain

circumstances. This is due to the fact that if the two-dimensiOllal ACr is eltponentia1Jy-damped,

then only some components of the stochastic process are predictable; consequently, the original

process can never be recovered in ilSentirety. However, in situations of very low SNR, a recovery

which favours some frequenc)' components over others, may be preferable to the noisy version.

Having IIOW eslablished a mathematical basis for 11]1" veclor filtcring lcdlllique, the remaining

CIHlplers will examine results which have been obtained from simulated rlata. as well as from

stochastic processes existing in noisy SAR images.
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CHAPTER THREE

RESULTS FROM NUMERICAL SIMULATIONS INVOLVING CASE I

CORRELATION DATA

3.1 Introduction

To examine the efTCl:livencss of the VCl:tor filtering techniquc under ctlntrn1Jcll

conditions, and as a means of verifying some of the mathematical oiJservalinns made previllusly,

several investigations were conducled using simulaled dala, '111CS( have hccn mmlc pnssihlc

through development of computer algorithms which incorporate the IIlnthclllll(ielll rdn!iunshif"~

defined in Chapter Two. Such algorithms were constructed from subroutines aVllilahlc in the

MATLAB sofiwarc packllgc [31] & [32], ami arc discussed in Appt:ndix 11. The sirnulilted illlilges

whiehwere analyzed. consisted ofsignal-plus-noisecoll1posites incorporntinll/OU ~ IOU pixels,

Results of test filtering operations have betn presented in the fonn of rccmerttl imlll;l'S, Ilnd one-

dimensional FFT analysis of the image row and column components. These have also ~cn

supplemented by the development of powcr transfcr functions, which indicate how thc f)owcr

within row and euJumn components has becrl redistributed as d result of the filtcring npcmliun.

The present Chapter will deal with analysis of stationary proccsses having onc·tlimcnsionnl row

and column correlation functions which satisfy thc Case I criteria discussed in Section 2.4.3;

subsequent Chapters will provide an analysis of filter performance for ClI5C II tlala.

Spectral analysis WllS achieved via a (UJ24 ~ f024).point rH, which yieldcd a IW(l-

dimensional complex-valued spl-ttrum for the process contained within each image. Each elemclll

within this matrix spectrum was then multiplied by its complcx conjugate in order to produce a

two-dimensional power spectrum. [n any typical mathematical problem involving the juinl
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UCCUlTence of two variables, the marginal values associated with a variable in one dimension may

he ohluined by intcgrating along the dimension or the other. Consequently, in order to obtain a

1fJ24-poinl one-dimensional power spectrum for the row component, the two-di,:~nsional power

.~[}CettlJm was summed along the column component. Following this, the frequency powers within

the row spectrum were nonnalized by one of the two procedures described below, thc choice of

which depended upon the intended manner of presentation. TIlis entire procedure was then

followed in an identical fashion when deriving power spectra for the column components. Another

impOr1ant point which should be made, is that the frequency axis for all spectral plots to be

Ilrc~entcd in this thesis, has been labelled with decimal multiFles of~. Therefore, while all FFT's

have lK.'Cn computed for digital frequencics -,. < is,., thc corresponding x-axis frequency range

is lahelled as-/ <is /.

"nIe nonnnlization of power spectra will be perfonned for all FFT analysis to be

under1l1kCIl in lhis repor1. The rcason for this practise stems from the discussion regarding Eq.

(2.40): thcre, it WIIS observed thlltthe filter frcquem:y response must always have a magnitude of

less limn unity, in the presence ofnoisc. While this equation refers specifically to the scalar

version ofthcfilter,suchcharactcristiesals.oextendtothcveetorversion. 111erefore, again factor

of less limn unity implies lhnt even irall signal frequcncics have been recovered in the filtered

image, eaeh frequency valuc must have II power lcvel which is less than that or its respective

component in the original image. This means lhat direct comparisons of speclra, based on .'bsollite

Illagnitudcs of power, nrc not reliable.

'11lercforc, where spcctrnl plots have been prCSl:iltcd f('; pllrpfJsesofvisualcomparison,

c;leh will have been scakd by the inversc of its respective Illaximum power, lllis restricts tlte

power of;lny frequcncy poillt wilhin tlte 1I0m131izcd spectrum, fo IIlllllximum value of unity. The

purpose of slIch prcsclIMion is to provide qualitative evidence of overall change in spectral shape

llr slIllPrcssillll of noise, helice, direct comparisons based on magnitude arc not emphasizcd.
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Complementary to lhis. dirKl numerical comparisons betwccn IiIttred and unfi1te~

row or column pow~ Speclra, have been facililated by computalion ofa poWCI'" Imn...fcr funelinn.

In order to achieve this. it was necessary 10 normalize lhe spe<:lrn via an all~'n\llte pml....'tIurc.

defined by the following relationship found in (33):

p.lf) • ilf)p(f)

{/H""}

(J.l)

Here, P,d) denotes the nonnalizcd power at the specified frequenc)' J When cnlllp.1rin~ nlW

spectra. sa)', between an unlillered and II filtered image. this nonl1nliz:lIion procctlllf\: i.~ uso:dto

scale the spectra such that thc /o/(l{ ,flllIf of powcr wilhin caeh speclnun nSSUJ!1CS n vullie of 1Illily.

Since these two spt.'Clnllns now contain the same lolal powcr. II numerical [lOwer Imllslcr 1\1I1cliOI1

will force an emphasis upon the manner in whieh power has been redistrihuted dllring the filh:ring

operation which maps the fonner spectrum into tlte laller. In fl1Ct. an)' filter which n:duCl.'Spower

in tOe noise frequencil!S and ~istribules it in ordcrto boost signal power. mostyidd an il11pmvl'tl

SNR within the image.

lbe capacity of an opcntor 10 ptrform in this manner. can be assessed by means of

a Ioglo·scaled power tr.1rtsfer function, defined as:

T( n • 1010& !p"..(/) \
I J: "Ptf/NU)

(3.2)

where Ptt:,.tf) represents the normalized powcr spectra. via I:q. (3.1). of either the row or l'ulumn

componenl which served as input to the fillerinlloperation; I'N""'(/) rcprcsenlsthe nonnaliZl;d

power spectra, also via Eq. (3.1). for the respective component of the outpul image whieh

resulted. Since both Ihe input speetro and lhc output spectra incorporate an identical mnuuOl or

eoergy. it follows that if T,.dJ is 110/ identically 1.ero for allf. then it mu.~t incorporate .,,"IlIe

oombination of bolh positive and negative values. Cor..se:quently. frequcnci~ which I;lCpericnccd
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a Joss of power during filtering will yield a negative value for Tp (/}. whereas those which

experienced power gain at output will producc a positive value; obviously, frequencies

expcriencing no changc will produce a value ofzcro.

3.2 Characteristics or Simulated Dala Sets

To facililale these inllCStigalions.two image processes comprised of /024 )( /024 pixels

Cllch. were generlltcd from the following Iwo-dimensional sinusoidal components:

51 .. c....l!:!!j+~j)
....\40 30

52=cos(*/+-f&JJ)

sJ.cos(~I+*j)

(3.3)

where i"'I.2....• ION. andI""'.2... ,1014. One such process was a zero-mean wavefield which

consisted only of sl from Eq. (3.3). 11lc other was a three-componenl. zero·mean wavefield

comprised ofal1thrcc sinusoids; in this case however, the 1024 )( 1024 image component s3 was

nipped left-to-right, prior to superposition onto tnc 1024 " /024 composite formed by addition

ofcomponents.rl nnd .12. From the form of tile signal components, defined by Eq. (3.3), it should

be npparcnt thnt the resulting wavcliclds will producc Case I correlation data, when a two-

dimcnsional ACF is estimated from the simulated images. In addition to this, a 1024 " IOU

correlated. zero-mean liaise field was generated and added to both the one-component wavefierd

,tnd lhe lhrce-compol1el1l composite. This noise field incorporated a spatial correlation extent

which would be equivalent 10 a valueofc=/ ill Eq. (2.11). [t was produced by initially generating

a 1015 " /015 uncorrclated noise field, 11....(iJ) say, from zcro--mean normally_distributed random
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numbers. Each (IJ) 'I}, point within correlated noise field //(iJ). was then creatl'd via the following

operation:

l/{iJ) c ".PJ)+//.,.(i+IJ)+I1.,.(IJ+I)+II...(i+IJ+I) (3.4)

Prior to superposition onto eilch of the two image proccsses, the JXlwcr level of the correlalcd

noise was scaled such that, within each signal-plus-noise process, the re~u1ting SNR was -'2 III/.

1l1ese combinations arc presented in Figul'C 3.1. where the left half of Figure 3.I(n)

shows the one-component noise-free wavefield, w'"ile the right half consists of the ellrrcsptll1dinl:l

wavefield.plus.noisc combination. Similarly. the left portion of Figure 3.I(h) displays the Ilm.'C,

eompouent noise-free process. with the signal.plus.noisecornposile shown on the righl. Note here,

that the gn:y.scalc: mapping IISed to produce the images in Figure 3.1, pcrlhn/IS hlilf-wave

reclification. That is. allncgative'valued amplitudes of the :r.cro-rncan proccssc.~ lire clipped lit

zero; this fonn of presentalion will be used for all images which arc displayed in this rc[K1rl.

The manner in which lhe noise and sigMI components of lhese processes inter.lct

within the correlation infonnation is shown in Pigurc 3.2, which displnys the onc·dimcllsimml

ACF characteristics ofthc row and COlli Inn components from each image. Ti,e contrihtllion fnlm

the noise portion of the processprescnls itsclfas a prominent, tapered spikc. which c1enrly shows

that the noisc is also correlated at non-zero lags T:=±l. Howevcr, it is secn thatlhe nuise has 1m

influence upon the autocorrelation information for values of J t I > I.

Figure 3.3 presents the results ofa J014.point nonnalized FFT nn:llysis, perfonned tin

the row and column components oflhe lIoise·free wavefields. Complementary to this. Figurc 3.4

shows the results from an identical analysis perfonncd on each of the signal-plus-noise plllCc.~SCS.

Here. it is seen that the noise component produces a spcctmm which is obviously tapered. II

characteristic which is typical of broad·band noise processes: note also. that tapering windows

have 1101 bcen used in the computation of these spectra. Figures 3.3 and 3.4 will serve as a
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(a) One-Component Wavefield with Noise

(b) Three-Component Wavefield with Noise

Figure 3.1: Simulated noise-free wavefields, and wavefield-plus.noise composites with
-12dB SNR.
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convcnientreference,wllenevalulltingthesignaJ-reeoveryabilityorthethrce-ehannelWienerlilter

in!:iections3.3and3.4.

J.J Uelerminalion or Optimum Operational Parametel'll ror Filtering Technique

~ Overview

ThisScction will provide numerical verification of some operalional allributes.that

were previously identified as imparting superior performance to the filtering lcchnique which has

heen proposed. Such altriblllcs will be investigated through filtering operations performed on the

threc-eomponellt signal-plus-noise process. The lests which will be discUs.'led, were performed in

order to substnntiatethe folloWing assertions which emerged from the discussions within Chapter

Two:

(I) the n)ise-suppression advnntage offered by the three-channel operator. whellcompored

10 the single-channel version.

(2) the noise-suppression advllntage of the three-elmonel operator when derived with a>c,

as compared with the same operator for O<a!C.

(3) the noise<suppression advantage of the thrcc-ehannel operator when derived in

conjunction wilh ~>c. as compared with the slime operator for O<~!C.

(4) lhe noise-suppression advantage of deriving row and column vector operators by using

eorrclntion data (rolll :ne unlillered image. when compared 10 deriving the column

opcratorusiugdatafrom the row-filtered image.

In prep.1ration fnr these investigations. II. sl:lndard reference image was recovered from

Ihe noisy three-component wavelield. This was obtained by using row and column operators

which WCrt~ derived based on lhe optimal filtering strategies recommended by the diseuss:ons of

Chapler Two. SJII,'l:ilically. this involved deriving a three-channel vector opetntor which used row
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and column correlation data from the unfilten:d image, and which incorpornted pam11letric values

of f1 > c and a > c; this will subsequently he referred 10 as the sl:llldard-allribule operator.

The investigation process consisted 01 < cneraling a tesl image. which WlIS Ihen

compared with the standard reference ohtained via the standard-allribule operator. When

generating each test image. only the filter atlribute under investigation was chnngcd; the remaining.

operational attributes were idenlic.11 to those used to establish the reference illln!!.e. Thcwfnfe,

when assessing the surcriority which n three-channel opemtor could have (lver a Illle-ch;lIllld

version, only the number of channels was adjusted. Similarly, when assessing thc il1l1uellce llf

adjustments to fJ or a, or the elTcet of using colullIn correlation dilta ohtnined from the ruw

filtcred image, only one of IhC'Sc attributes was changed in order that its R.'J;[lCl:tiw test image

could be genemted. Nole also, that although eOIT"llltion data have beell disrll1yl'tl in a nurmalizcd

fonnat. only non-nonnalized data were used in filter derivation. FurtI1l.:nnore. correlation daHl litr

the filtering operations were oblained based upon averages laken over the entire inHlge. as

discussed in Chapter Two. In all cases, filtering was pcrfonned first in the row dill\en~i(1n; Ihj.~

was then followed bycquivalentopcrationson the columns.

For all four tests, an operator length of~=l(J has been used; it will evcnhllllty he secn

thaI this is II considerably smaller vallie than was used for other fillering of'l'l'ilti(tIls. tn he

described in lhe next Seetion and in subsequent Chapters. This comparatively shmter length was

selected because it imposes a condition of marginal performance for the opemlur; hence, with

small ~, the filters will pass a detectable amount of noise. However, lilr large t tlvemll noise

suppression would be so severe. fCgardless of parumetrie adjushnents, that rciativl,J dillcn;lIccs

between images will not be detected visually. 'nlereforc, a value of ~elf1 mnkes it 11llssihlc In

visually assess changes in noise suppression efficiency which are imposed hy adjU.~lml,Jnts In thc

filter parameters. Evaluations will be made possible via tlte prc.'iClllation of rl'Covcrcd images und

nonnalizcd FFT analysis, including power transfer functions. Within thecontcxt ofEtj. (3.2), nnte
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that the power transfer function derivation will treat the spectrum of the test image as P"'/I.if),

whereas the power spectrum of the reference image will be nssigned to P"'J/,,(j).

funhermore, for both the statldard image and those test comparisons which have been

generated. it will he secn that a IiIter order of ~"'20 docs not permit completc recovery of Ihe

Ihrec.component wflveficld. This is partly due to the fact that one cycle of tile longest wavelength

in lhe column dimension incorporates 90 pixel elements, while one cycle in the row dimension

sp<1ns 100 pixels. TIlcrefore, in eompllrison to the longest wavelength on which it operates, the

filter is too short and contains insufficient information for making accurate predictions at the SNR

which exists ill the image. How~ver. since this deficiency is eommonto both the reference image

and the test imagcs,rclativecomparisollsarecel1l1inly~nnissible.Also,sineeitisknownthat

the filters are functioning only nominally in recovering the wavefield, trends which orc observed

for the wavefield frequencies will not be of interest during these comparisons. COllsequently, this

SL'Ction will focus only on test resullsas they affect the noise pol1ion orthe spec1rum. The results

of cOlllpnrisolls between the reference and test images will now be discussed.

J.11 Noise-Suppression Advantage ora Three-Chanllcl Filter OvertheOne-Channcl Version

figure 3.5(a) shows the reference wavefield which was recovered using the standard

filtering parmnelers discussed previously. By comparison, the test image which was rewvered via

n one-channel operator, and which is shown in Figure 3.5(bl, indicates that the three-channel

orcrator yields II superior result. In foci, it is easily seen that the slructure produced by the three-

cbnnd opcmtl;lr. olbdt incomplete, docs bear a much stronger resemblance to the original

\\'ovefield of Figure 3.I(b), than docs the structure which results from the sing[e-chllnncl filter.

Figure 3.6 presen1s an FFT analysis or the information contained in these w.:overed

i111Ilgcs.TIlcvisu:lIdiffercneesbctwecnFigurcs3.5(a)and3.5(b)arcexplained,whcnthc
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(a) Wavefield Recovered Using 3-Channel Filter

(b) Wavefield Recovered Using 1-Channel Filler

Figure 3.5: Reference wavefield recovered with a standard-attribute operator, E=10, is
shown in (a). This result is definitely superior to the test image obtained with
a single-<:hannel operator, shown in (b).
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frequency-domain representations orthe standard inmge are compared to the sJlCI:lrn derived fWIlI

the test image. Whilst Figures 3.6(a) and 3.6(b) indkate that the three-channel npcrnt\lr dllcs pllSS

some noise, Figures 3.6(e) and 3.6(d) show that the ovemll relative power tlfnoisc pnsSl,.'d hy thc

single-channel operator is much higher. This is also exemplified by the prescnce OfStl1lle rIl\\' ami

column noise components n~r the Nyquist frequency. which arc b<lrdy llbscrvllh1c in :he 1111lpllt

from thclhrec-ehallncl operator.

Figure 3.7 displays the IOSlo-scaled power transfer rllnctiOIl delincJ by Ell. :\.2. I'm

both the row and column components, it is sccn thnt the values of 1AIJ nre predominantly

negative. Therefore, the overall noise level for the thrce-clmnncl (llllpl:t is 1l111rh lower than lilt

the olle-channel output. This occurs because addition of three oUI-ol:phase lHlisc cump"ncills. lit

anyvl'lueofj,ncbievesa fllrther degree of noise sllppressinn than docs lhesinglc-ehanncllliit rut.

T11e fact that the thrce-thannel output is sllperior to lhe one-channel result.enn OOqUillitill1tivc1y

established by averaging Ti.(j) over all of the /OJ.f poinls shown in Figure 3.7. Grnnted.thc sigll:lI

components will also contribute to this avemge, howcver. since there life vel)' lew signnl

frequencies, it is expected that this will not significantly bias the result. Givcn this caveat, the

averaging operntion reveals a mean noise-suppression advnlllage of -5. 98 till, whcn thc thrce

channel operation is used in the row dimension. For the columns. the thrce·channclliller achicvc.~

all average noise-suppression advantage of -7.87 dB. rrom these observations. it is CllSY hI

conclude thaI Ihe three-channel fillering opcrator docs indeed provide sllpetinr nnisc suppression

w!len compared to theone-channel operntor.

l,l,l Influcnce of g in Dc:tcnninil\!! Noise.Suppression Efficiency

To assess the influence which the value ofa will have 011 the lillering procedure. a lest

image was generated based on row and column operators derived wilh a vulue of 01""/: this lllSI)

corresponds to the case for which (J""C. Figure 3.II(b) shows the result uf this operation as it
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Figure 3.7: Results obtained for TI.(f}, based 011 WU-point FFT's from lhc rows lind

columns of images in Figure 3.5.
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(a) Recovered with Alpha=2

(b) Recovered with Alpha=1

Figure 3.8: Reference wavefield recovered with a standard-attribute operator, t-lO, is
shown in (a). This result is undeniably superior to Ihe ICSI image obl8ined with
a=J. shown in (b).
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compares 10 the reference image in Figun: 3.8(a). Cle:lrly. the tcst image CI'ntains no diJlCt.'l11iht.:

inforul31ion \YhatSOC\'Cr. and verifies the absolute necessity of sclcctin~0>('.

A frequcncy-domain analysis of these images is prncntcd in Hgure 3.~. f'rtlm l'iguf\.'"

3.9(el and 3.9(d). il is dear that the test mtcring opcBtion has forced a substantial shin in l'K'w'Cr"

(owards those frequencies existing at the upper end of the spectrum. Some ill5ight inlll Ihill

phenomenon may be acquired with reference to the scalar frequency-domain tmnsfer funetilln or

Eq. (2.40). To begin. consider that when an a-value of I is selccted. this has the elTcct (If Il':lvinl;

e:xlK:lly one: lag value: of the: noise correlation function. nt T-I. within the windowed portion of

the ACF defined by the set in Eq. (2.15). Based 011 discussions in Chapler Two. it Ims 11l'Cn

implied that the OFf representation of this ordered set produces the frequency (lC'Iints which

nppcar in the numerntor of Eq. (2.40). ClcMly. since the !irst ACt: Ing (corrcspollding to T-II) hilS

been eliminated. the OFT representation of this windowed. ordcred set. will consisl ofa series of

Casc I spectrnllines representing the wavdicld components of Figure 3.I(b). l'fllbcdtJcd in ajll/l

spectrum of white noise. However, observe thaI within the denominator of Eq. (2.40). the 1ll1isc

spectrum is still colourul, and hence. iltapcrs to vCf'J small values at its higb.frcq[)Cncy end. '111is

means lhat for the higher frequency components in Eq. (2.40). a large valuc in the numerntur will

be subjected to division by a very small value in Ihc denominator. 111<: result of this relatiollship.

will be to form a passband in the high.frequency Iqion of the spectrum. Consequently. wll(:u

operating on the image, the filter attenuates all other components. including the spcetm :l....'iOCmh..-d

with the desired signal.

The results for rl(f) have been presented in Figure 3.10. fhere it is set:n that, fur buill

the row and column components. noise frequencies which nrc outside of the frequency mngc

spanned by the signal components, are subjected to severe lItlcnun':' n when mapping Irllm c.-I

to a=2. Hence. the net result is one of Illlcnuatioo, with an average value of -Y.fJ7 d/l for 7;(J)

in the row dimensioo, and ·12.47 dO in the column dimension.
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(a) Power Transfer Due 10 Alpha: Rows
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Figure 3.10: Results obtained for T,.(j), based on IOU.poiot FFT's from the rows ilnd

columns of images in Figure 3.8.
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J.J..i Innuenee of B in lktenninins Noise.Suppression Efficiency

In order 10 assess the influence of {J upon filter pcrfonnancc, a test imagc was

recovered by selecting a value of {3=lwhen deriving lhe transfer functions; this corresponds to

the ellSC for which {J"'c in Eq. (2.74). Based upon earlier discussions in Chapler Two, it is

eX[X.octed that this choice for (3 will result in a diminution ofthc noise suppression capability of

lhe thrcc-ehannel operator. A comparison of results is given in Figure 3.11, which shows the

reference image in FigufC 3.I1(a) and the tcst image in Figure 3.1 I(b). Close inspection of the

two imagcs does reveal differences, with the standard image, for which (3=2 > c=l, showing a

pallem which appcars to have fewer variations than docs lhe result which is presented in the test

image. Comparatively-speakiog, irregularities within the test image nre certainly detectable, and

leave the impression that this structure resembles the orillirJal noise-free wavefield with less

cnrnOlonulity than docs the reference image.

The frequency domain representations ofthe row and column components from Figures

3.1 l(n) and 3.11(b), nre shoWIl ill Figure 3.12. Once ngain, close comparison of the nomlalized

lIoise levels for (3=1. to those obtained for (3=J. indicates that the relative noise power associated

with the laller is slightly greater; this observation holds for both the row nnd column components.

Further verification is provided in Figure 3.13, which presents the 10g'D,scaled power transfer

function defined by Eq. (3.2). Here it is seen that r,.(/) is predominantly negative, and again, it

is :lIsa possible to see evidence or superior noise<suppression within the stopband whcn mapping

from fj-lto {J-2. 111is is because, with(3=l. the noise frequencies will still retain a certain degree

of phase cohercncc; consequently, when the three filter outputs are added,destructiveinterfercncc

docs nol occur to th,;! same eSlen! as it does with (3=2. In fact, when filtering with fj=1 > c.,.l,

n further averagc noise power allenuation of ·2.59 ,'B is tlchieved within the row spectra, ane! an

llVemge lI11cnuation of -2. U dB is achieved in the column spectra. These values, in conjunction
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(a) Wavefield Recovered Using Beta=2

(b) Wavefield Recovered Using Bela=1

Figure 3.11: Reference wavefield recovered with a standard-attribute operator, E-20, is
shown in (a). This result is noticeably superior to the test image obtained with
(1=1, shown in (b).

84



(a) Beta=2: Rows (b) Beta=2: Columns
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(a) Power Transfer Due 10 Beta Value: Rows
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with lhe diagrammatic results, lead to the conclusion that a parametric value of (3=2 > c""1

l,rovidcs overall superior noi~e suppression in both the row and column dimensions,

l1.:1 Ontimmn Method for Seleetil1¥ Correlation Data When Deriving Column Operators

The optimum procedure for obtaining correlation data was investigated by recovering

a lesl image, hased on a column OJ'lerator which had been derived with intermediate correlation

tJ:llll laken from the row-filtered image. This result was lhen compared to the slandard image,

recovered using a column operator derived with COfTelalion dala from the original, unfillered

image; in both cases of course, the row operator was based on correlation data obtained from the

unfiltered image. The resulls of this investigation arc presented in Figure 3.14, which compares

the standard image of Figure 3,14(a) to the test image in Figure lI4(b). In this case the

din'crenees arc obvious, and show that use of row-filtered correlation estimates in the column

operator, produces II IiIlered slnlcture which bears virtually no resemblance to the noise-free

wavefield of Figure 3,I(b),

Figure 3.15 cOlllpares the row and column spcclra rcsulting from these operatians.ln

Figures 3,15(c) nnd 3,15(d). it is seen that the spectrum of the tcst image incorporates n noise

haekgmund which has a much broader bal dwidth than the spectra from the reference image,

shown in Figures 3. I5(a) and lI5(b). TIlis broader bandwidth is a result oran increase in the

spatial extent of correlation within the noise process, due to mechanisms discussed in Section

2.7.3. TIle results for Trif) are presented in Figure 3.16. Here too, the log,o value of the power

tmnsfcr function yields predominantly negative results, indicating that the standard imagc has

considembly less noise power, TIle IOU-point average of T,QJ in the rows is -/0.32 dB,

eomrared with a 1014-point mean of -/5.54 dB in the columns. These observations confirm that

the relative noise power in the standard image is mueh lower than for the test image, ane:
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(a) Results with Both Operators Based on 2-D ACF of Noisy Image

(b) Results with Column Operator Based on 2-D ACF of Row-Filtered Image

Figure 3.14: Reference wavefield reoovered with a standard-attribute operator, ~=20, is shown
in (a). This result is clearly superior to the test image, shown in (b), obtained
after deriving the column filter from the row-filtered image.
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(b) Common 2-D ACF: Columns
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Figure 3.15: IOU-point FFT's, showing relative magnitudes of noonaliud power within row Ind column components of Ihe
recovered wlvefields shown in Figure 3.14.



(a) Power Transfer Due to Correlation Estimation ~'3lhod: Rows
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Figure 3.16: Results obtained for TrU}. based on IOU-puint lOFT's from the nlWS and
columns ofimllgcs in Figure 3.14.
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substantiates earlier assertions that both row and column operntors must be derived by utilization

ofcorrclation data from the unfiltered image.

3.4 Evalualion of Filtering Technique for Large e
1..i..! nllerim! Operation 00 Simulated Data Sets

'111e objective of this Section is to assess the capability of the threc-channcl filtering

technique. when using operator lengths which arc longer than at least one period of the lowest

frequency component within the desired signal. TIlis is a much more pragmatic approach, since

the usc of longer filter lengths generally permits the derivation of tighter passbands, with steeper

roll-oIT than was achievable in the previous Section. Passbands which confonn more closely in

slmpe to the spectrum of the desired signal, wi!! facilitate a more accurate recovery; hence, the

accumcy of results will increase with largcr e. for any fixed SNR.

Performance of the three-channel filter when operatillg on the one-component

wllvclicld-plus-noise composite, was assessed by utilization of standnrd-anributc row and column

opcrators having a length of e=60. Magnitude responsc characteristics of these filters havc bccn

presented ill Appendix Ill. Sinee the IOllgcstcomponent within this simulated process had a period

or 40 pixel units.lhe filter length was considerably longer lhan the period of the lowest-frequency

component within the image signal process. TIle results of this operation have been summarized

in Figure J.I 7. Inspcction of the recovered wavefield, shown in Figure 3. I7(b), reveals a structure

whieh is virtually identical to its original noise-free counterpart, shown in the right portion of

Figure 3. I7(n). In facl, the oilly d;Sl;cmablc differences are due 10 slight undulations in tonal

values of the image. along the crests or the recovered wavefield. The normalized power spectra

llflhe l'l.'Covercd row and column componcnts, showl! ~l'! Fi~ures 3.17(c) and 117(d), suggest a

~lll1lplcte absence of detectable noise rrequencics. From these observations it is easy to fonn an
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ovcrall conclusion, that the slnlcturc within Figurc 3. I7(b) represents a nearly-complelc recovery

of the original noise-free wftvefield.

In similar fashion, the three-component wavelield-plus-noise composite was processed

using standard-attribule operators with a value of ~"'JjO. Here too, because the longest wave

pcrioc.l in thc image consisted of I00 pilleIs, this choice for ~ ensured that the filler 81;commodated

all relationships occurring wilhin at least onc full eyclc of the lowest frequency component from

lhe wavelield. The magnitude response characteristics of these filters are also shown in Appendix

Ill; consistent with lhe discussion of S~"Clion 2.6.3, reference to these Figures will eonfinn lhat

the passband characteristics of a three-filler set are not constrained to be identical.

Results from this second investigation have been summarized in Figure 3.18. lllere it

issecn thot therccovcred wovelield, shown in Figure 3.18(b). ex.hibitsno observabledifTerences

in SlructUl\1 when compared to its original noise-fret: counterpart, shown in lhe right portion of

FigUTC 3.18(a). Once again, Ill\! conclusion is thai the slruclure of Figure 118(b) represenls a

nearly-complele recovery of lhe original noise-free wavelield. The normalized power spectra for

row lind column components of lhe recovered wavelield, are shown in Figures 3.18(c) and

3.18(d). 1·leTC too. scrutiny oft1lc FIT's will verify the absence of delectable noise components.

Figure 3.19 displays the laglo·scaled power transfer functions, T,lj), which map the

spectral powers of each unfiltered noisy image into the power spectrum of its respective filtered

version. Figures 3.19(a) and 3.19(b) show the transfer of power, for the row and column

components respectively, oflhe singlewavefield. Figures 3. I9(c) and 3. r9(d) highlight the transfer

of power willrhl the row and column componenls of the three-component wavefield. For bolh

1V1lvefields, it is clear that severe attenuation of noise has occulTed as a cnnsequence of the

IiIlering operation, TIle curious curvature which is seen in the power transfer spectrum, is

produccd by the tapered shapcofthe unfiltered noise spectrum, shown in Figure 3.4. The fact that

T,l/J nppronches zero from the negative direction as lJl becomes large, indicates that the
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frequencies near Nyquist e.>:perienec little ehangc in poIVcr during fil1ering. I-h,w~vcr. since 1I11;,se

noise frequencies are of very low power anyway, this htls no signiliennl imp"ct upon the lillcring

capability.

Furthermore, during lhe discussion pertaining 10 Eq. (2.40), it was pl'l'dictcd that this

tapering would also produce slightly diffcrent gain factors among.~t those rrcqucnci~'S which

comprise the signal component of the spectrum. Close inspectioll of Figures 3.19(c) and 3.11){d)

will reveal a pattern which is consistent with this asscrtion. With respect to the rower tmn~rer in

the TO\V1; of the three-component image. it is seen thaI the hillh~SI rrcqu~1ley complllleltl

experiences slightly greater gain than tile two lower frequency components. For the colul1ln~. it

is seen that the gain factors of the three wavefield frequcneies appear to incfCase in pr<1pllrtion tn

the value off. This suggests that the tapered noise spectrum could introduce notic~ablc dislnrlions.

for cases in which the desired signal contains high-frequency components which nrc clllsc tll :l: f

(:I: 1'"). However, when the desired frequencies nre ncar the lower portion of lhc spcctnllll, the

influences upon the output image are visually undetcclable, as revealed by the recovered imngc

in Figure 3.18(b). In either ease, this phenomenon is a direct conscqucnce of Ihe rnllthclll1lticlll

relationships which characterizc Wiener filter applications in the presence or colollred noi~e.

Based upon the findings of this Section. it is now possible to conclude lhatlhe thr~'C.

channel filtering technique, utilizing standard-allribute operators, does facilitale a remiOnably

accurate recovery of a noise-contaminated w.1vefield, provided that the valuc chosen for ~ is

sufficiently large. Hence, the applicabilily of vector Wiener filterinll tothe slIppres.,ion ofcoloured

noise has now been proven for simulated data. lIowever, consistent with thc relationships

predicted by Eq. (2.40), it has also been shown that whcn dealing with correlated nuise, the

recovered image may incorporate some distortions regarding the relative power Icvel.~ nr ils

constituent signal frequencies.
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M.,1 InOuellcc of (X and 8 Parameters Upon Filler Perfonnanee

In Chapter Two it was observed that for Case I correlation data, filter pcrfonnallCe

would nol be affected by changes in either a Of /3, pro~ided that these parameters assumed values

$Ilch that (X > c and IJ > c. Unfortunately, this inference was established from inspection of the

scalar operator only; due to the complexity of the vector version, it was not possible to make

similar infcrcne<:$ based OIl inspection of an analytical fonn. However, it is CXpctted that this

characteristic also extends to the ve<:tor version. Therefore, in order to provide evidence in support

ofthis,lhe frequency response characteristics and filtering perfonnance ofthethree·channcl filter

have bcl:n examined numerically for sc[cet~ combinations of 01 and 13 values. This analysis is

based on correlation data which were estimated from lhe three.component wavefield.plus·noisc

cornJlO!iite. shown in Figure ].I(b).

The investigation was conducted using a standard-attribute oper.ltor with ~=JjO.

During one series of tests, a constam value of (j=1 was maintained. wlli Ie filters were derived for

1111 values of 1 Sa S 50. Figures 3.20(a), 3.2l1{b). and 3.20(c) summarize tile frequency response

trends exhibited by 1111, 1111, and III) respcctil'dy, during these operations. In a second series of

tests. the relationship of pEa was maintained, while (X was increased within Ihe range of 2 ~o: ~

50. Figures 3.20(d). J.20(el, and ].20(t), summarize the frequency response results which were

observctl for 1I1~ 111/, ilnd hl/ respectively, during the second series.

To ensure clarity of presentation, the surfaces in Figure 3.20 show the frequency

response for the lower halfofthc positive digital spectrum only, that is, for 0Sf~ 0.5. Since this

bandwidth encompasses all frequencies occurring within !he desired signal, very little information

has hccn lost by omiUingthe upper half of tile spectrum. These results are based on 64.poinl

FFT's of the one-sided spectrum; hence, only the first 32 points of each frequency response

magnilude arc shown. [n addition, nole thnt results have been presented for tile row component

of the image only. Since. in this cXlImple. the rows and columns were generated by the same
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Figure 3.20: Magnitude response of the vector Wiener filter, as a function of adjustments to
correlation shape parameters ct and {3.
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proccdure, it is clear that any pallems emerging from the analysis would also hold for the

columns.

from inspection of Figures 3 .20(a), 3.20(b), and 3.20(c), it is apparent that for constant

(j lind varying or, the peak frequency responscs do not change appreciably. While there are

ccrti,inly fluctuations, the overall impression is that the peak frequencies, which correspond to tile

wavefield components, are consistently dominant in relation to the background freque~cies, In

particular. note lhat there exists no value of ex for which the frequency response of the signal

component decays to magnitude levels at or about the level of the background frequencies. This

strongly suggcsts that filter output, for any given a. would not differ significantly from the output

associalcd with any other value of this parameter. assuming a;:' c.

l3asctl upon Figures 120(d), 3.20(e), and 3.20(f), it is also apparent lhat peak

fretluency responses do not exhibit any overall trend of decay, and consistently dominate the

s~lrull1 for all chosen values ofp=a. Here too, it is possible to conclude that filler pcrfonnance

is not affected significantly when IJ and a are changed by equivalent magnitudes. However, it is

interesting to 1I0te thatlile Channel I filter response for fJ~a, is somewhat more erratic than its

counterpart for 13=2; a similar observation can also be made regarding theChaonel3 response and,

to n milch lesser extent, the Channel 2 response as well. A possible explanation, is that this

phenomenon occurs because the estimated correlation functions will retain some perturbations due

to noise. Such perturbations must inevitably introduce some variability iota the surfaces of Figure

3.20, bcClluscthe correlation infonnation which is used in filter derivation will change with each

nCIVvalue taken by eilher a or/1.

In r.,ct, when {3 is adjusted along with a, each new value of fJ introduccs an entirely

new s\.'! of CCF dala to the derivation process. Furthennorc. a change in the value of cr means thai

II slightly different section of the ACF is windowed for each derivation. lltest changes introduce

n relalively high degree of variability. However. when fJ is held constant, the same correlation
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functions are used for all 0:: hence, thc only variatiol ~ occurring. arc duc to the windllwing urn

slightly different section of the samc CCF's nnd ACF as CI:' assumes cach new vnlue. Since tY

changes by increments of /. this means that the correlation infonnatioll used ill ~':lch nel\'

derivation, differs only by nine scalar volues from the datn which was t1S~-d with the preVi\lllS

value of 01'; this can be verified by studying the RI-IS of Eq. (2.68). It is casy to c\ll\chillc

therefore, that this must introducc less variability than \\'ould otherwise occur when the entire s~'\

of cross-correlation data is replaced for each derivation. Furthennnrc. thcsccnrrclatillll timc!iuns

have been based on biased numerical estimalc3. discussed in 1241 & [31]. This is:l numerical

procedure which deliberately tapers the function as ItI illcrcases. in order to reducc estilll:uinn

errors. Consequently, thcse estimated correlation funclions arc not cXllctly [lCriodic for CI:' > l'; this

implies that they may yield s~tral chameteristics which depart slightly fr(llll thc rigorous

definitions established for Ca~~ I data. For thesc reasons, it should be expected thaI the S\lrfile~'S

in Figure 3.20 might not correspond exactly to the established th'::ory.

Having verified thnt peak frequency responscs do not vary significantly with chang~'S

in 0/ and (3, supplementary numerical evidence can also be provided, to show that the !ilter output

will not be compromised by selected adjustments to Ihese parameters. In support of this, lhe th"..e

component wavefield.pllls.noise composite was subjected to four addilionltl slalldltrd·nHrihute

filtering oreratiol1s, using a vector operator of length ~=15(J for selected combinations of 01' nlld

13. Figures 3.21(a), 3.21(b), and 3.21(e) presenlthe images which were recovcred using It constant

value of(3-2, for selccted or-values of 0/-2, or""/4, lind a=26 rc.~pcctivcly. Of eOllfSe. the imagc

for n=fJ=2 is the same one whiehwas generated for Figure 3.18; it has been presentcd in FigufC

3.21 for purposes of comparison. Study of these waveliclds will not reveal any noticcllblc

differences, either when comparing each one to another, or when comparing anyone 10 the

original wavefield in Figure 3.I(b). 1:1 similar fashion. Figures 3.22(a), 3.22(b), and 3.22(c) show

the wavefields which were recovered with C1r"'(3%<2, a=(J"'14, and OI'=(3=lfi respectively. Again,
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Figure 3.21: Wavefields recovered using standard-attribute opel1l.toc, E=J50. for selected
values of correlation shape pal3JTIeler a, with constant value of shape parnmeter
U~2.
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(a) Three Waves in -12dB Noise: Recovered with Alpha=2, Beta=2
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Figure 3.22: Wavefields recovered using standard-attribute operator, E=/50, for selected
values of correlation shape parameter a, with shape parameter n=a.
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these wavefields show no apparent difTerenees. either when compared amongslthemselvcs. or

when they are individually compared to Figure 3.I(b); this provides further verification thallilter

oUlputis unafTcctcd.

'nlercforc, numerical evidence has been provided, which allests to the insensitivity of

Ihe vector opcrntor regarding changes in Ihe parameters a and fl, with ~ > c and fI > c. for Case

I correlation data. Although the results presented in Figures 3.20, 3.21 and 3.22 may initially be

pereeived os unrctnmhble. llley do provide a valuable reference against whieh subsequent

investigations may be compared. In ChapleT Five il will be 5Cen that a similar analysis, using Case

II correlation data, will yield results which are in dramatic conlrast 10 the findings presented in

IhisScction.

3.5 S.mmnry

In this Chapler. numerical evidence has been provided in order to support several

conclusions which were mode from the analytical results presCl1led in Chapter Two. In particu13r,

it has been verified lhal optimum signal rcrovery requires utilization of a thrcc-channel vector

Wi~~ner filter, for which cr > cand (3 > C, wilh bollilhe row and column versions of this operator

being derived using n Iwo-dimCflsional ACF estimated from the noisy image. This filler has been

referred to asthe standard-attribute vTlcratOl".ln addilion, it has also been numerically verified that,

for ense I correlation dala. the filtering operation is not significantly affected by changes in or: or

fl. provided Ihat these parameters are chosen such that Ol > c and {3 > c. Conscquer<tly. a vector

mlering procedure ror the recovery of stationary processes having CIlSC I comlation

characteristics. has now neen established und numerically verified in lhe presence of brond·band

coherent noise.
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CHAPTER FOUR

APPLICATION OF FILTERING TECHNIQUE TO OCEAN WAVE SCENE."

WITHIN SAR IMAGERY

4.1 Introduction

Building upon thc preceding theoretical and numcricul results. tlti~ Ch:lpter examines

the performance of the filtering technique when operllting to reCllver a slillillnnry process which

will be shown to exhibit Case II correlation ch3racterjstic~. The datn set ttl he used in this:lIlillysis.

consists of two ocean wave scenes which were imaged bynirbome synthetiCilpct1l1f1.\ m(lnr (Si\l~).

These incorporate /22./ x /22./ pixels each. and were obtained over Cnllllllinn l~ast ('un.~t wntcrs

by the Canada Centre for Remote Sensing (CCRS). on the fourtcel11h and cighll'Cllth ufNuvcmhcr.

1991. TIle objective of tbis Chapter is to demonstrate thtH the Vl.'ctllr upcmlnr enn pmduec II

filtered version of these images, whieh represents a reasonable lilcsimile ur the nlli.o;c-~rlurhed

wavefic1d found in the unfiltered versions. Unlike the simulations uf the previnus Chapter. there

exists no absolute information regarding the characteristics of the noise-free Ver!iilln. lienee,

recovet)' capability must be established by comparisOll of smoolhL-d WHvclicid gcul11elrie:; with

theirnoise.perturbed counterparls, supplemented by examination tlfrow 1111·\ cnlumn ~lll:etra. mill

power lransfer function characteristics.

4.2 Imll~e Charneteri,til/S

The methods by which SAR data arc gathered and tmnsfomlCd intn imugery. nrc

mathematically intricate. Whiledelailcd discussions of such procedures mny he found in 1341. 1351

& {36], it is not necessary 10 provide further elaboration here; this is hccause the scn~ of lhi~
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projt'Cl is limited 10 recovery of the process whieh exists within the image. While there is rc;:rlil;nly

II relationship between the actual occan wave scene and the wavclield which appears in the image.

the transfer fUllction which maps the fonner into Ihe lattcr is non-trivial. as discusscd in (37].

llence. 111) allcmpt will be made to establish any relationship between the filtered image wave

scene. nmlthe aclual wavelield which was imaged by the radar. From Ihe discussions of preceding

Chaptcrs, it will be clear that the liltering operations arc not dependent upon this relationship in

II is irnportanllo observe though, lhallhe eharacleriSlies of data gathered by airborne

SAR, will impose some departures from the mathematical assumptions which were discussed in

ChaplersOne and Two. In particular, the SAR images used in these tests have not been corrected

thr mnge distortions which rcsul1 from thc radar imaging process. In order to appreciate the

implicntiolls orlhis statemcnt, consider that for a typical airborne SAR. the centre axis of the radnr

hemn projects obliquely onto the ocean surface, The nctual depression angle of this centre axis

rduive to the night plane of the aircraft is detennincd by the configuration of the radar, ''.i,ieh

may 1I,1ry from olle instnllntion 10 another. In general hOll'eller, the alllenna beam axis and the

aircrnfl velocity vector intersect orthogonally, to fonn the orthogonal basis vectors of a virtual

pl:1l1e which intc~cts the ocean surface at some distance from the aircraft; this plane is referred

to liS the slam plane. The slant plane dimension which parallels lhe antenna beam axis is known

as lhe slnnl ronge dimension. while the dimension which parallels lhe airclafl velocity vector is

rclcrrcd to as the azimuth dimension. The basic geomelry of a SAR imaging process is illustrated

in Fignre 4,1; nOle here thaI the n1.imuth dimension is nonnal to the page plane.

As illustrated by Figure 4.1, the radar imaging process i!lVolves mapping the

t>(\ek~c;lllercd ellcrg)' into pixels. denoted by JI f, which fonn a malrix of elements within the slant

plane, Each j'III elemenl is assigned n digilal grey lellel which is proportional to llie energy

rclllTtlcd from Ihe correspol1dingj'rh pateh of ocean, denoled by PI' existing ill the surface plane.
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Wilhin any i'lh row (range line) of lhe slant plane matrix, each pixel position along that row

cnrresponds to II range distance from the anlenna. This distance is eSlablished by the time which

cJap.'iCS between the transmission and reception of II microwave pulse. The resulting slant plane

IlHilrix is thell constructed row by row in the column dimension, as the aircraft nies along the

n~jmuth veclor. Since the slant plane matrix is mapJ>Cd to II digital image, this implies that the

procedure by whieh lhe i:lIllge rows arc generated isdifTerent from that by which the columns lire

fomled. Each pixel occurring in the slant plane will be of a constant physical size. In this

Iwticular case, the dimensions were .I.(} m " 1.9/// in range and azimuth respectively, lor the

Nov. 14 image; pixel specifications were not available for the Nov. 18 image.

Ilowcvcr, as shown by Figure 1\.1, the geometrical relationship between each slant

plane pixel and the patch of ocean surface which it represents, is actually non-Euclidean. In fact,

lhe range dimension of each discrete ocean patch, fJ" decreases with increasing range distancc

H'Om the radar, despite the fact that the slant range pixel dimension, pi, remains constant. This

IlIC:lIlS that the information content of each pixel decreases along the range dimension, bllt remains

conslant along the azimuth dimension. Therefore, if any given row of the slant plane image is

envisioned as a digital sample of a one-dimensional wavcfoml on the ocean surface, then lhese

are:ll coltlraclions arc equivalcnt to an ever-changing sample rate, which increases non-linearly

alonl; the range dimension. An additional consideration, is that microwave energy in the ncar

range reaches the ocean surface at a stecpcr angle thlln encrg)' in the far range; this will result in

a changing SNR across the range dimension. Overall, Ihese factors imply that there will be some

allerntions in lhe statistical properties of slant range data, as a function of range position. The two

imlll;es which were made available by eCRS, and which have been analyzed in this Chapler, arc

in slant range formal. However, these images are actually subscenes which were extracted from

lho: Inr mnge region of lhe slant plane. where it is known Ihat range.dependent variations arc

minimized. Nevertheless, it is certain that Ihese imnged processes cannot be ideally stationary in

107



the range dimension. In addition to this, since the Nov. 18 image was g:Uhercd nt 1m :lllil1nte ,,1'

approximately )000 III, while tile Nov. 14 image was \lbtaillcd :It appnlximatl.'ly "'lOll Ill, the

fonner covers a much larger palch of occan than the lnUl.'r: hence, the wavdlclLls arc nt'l dio..-cll)"

comparable.

Of further relevance is tIll.' fact that, whilcin thciroril;;nnl slnl1t planc rllTllnlts, thl'

image pixels consisted entirely of non-ncg.ltive illtcnsitics. COIl~quclll1y. thc tW\l·dimcnsiolll1l

processes within these images exhibited non-zcro means. I\s well, PccHuse ul'nircr:lll motion, thc

images also contained some intensity vllriations which wl:re not due to hacksenncr properties or

the ocean surface. Here 100 there exist violations of the previous assumptitllls. whidl sped I)' that

the tlVo-dimensional image processes will havc an e.~peclcd vahle of zcro. 'Jllcrclill"C, in ordcr In

lTansfonn the imaged proccss to a zero·mean proccss. nnd to remove the unw:Ulk'd cOcets or

aircrafi motion, a two·dimensional, third-order polynomial trend surf.lce was cOlllputed rWl11 the

data in each image. When each model trend was then subtracted rrom its respl'Ctive illlage. lUI

approx;malC zero-mean process rtsulted. and spurious inlcnsities due to 11101ioll wcre rcdllc~",1.

Basic slatistics, computed from each image aller such detrending. arc SlIllll11:lrizl'<l in Figure '1.2;

the lower trace in each plot represents the l1lean valueorpixclsavemgcdnlongthercs[K-'Clivcnlw

or column componenl of the imoge. while the upper trocc represents positive stnmlard dcvill1illll.

Both the column index and the row index positions. which arc shown 011 the X-lIXis. havc their

origins in the upper left-hand corner of the image.

From Figure 4.2(0), it is seen Ihat the row means or the delrclldcd Nov. 14 imnge

exhibit both positive and negative minor fluctuations, which arc very lIellT to ;,.em; within these

flUCluations, there exists no large-scalc trend. Similarly, the posilivc standard devialinn 111' pixels

;s eonstanl at about /6, for all rows of the image. 110wevcr, Figure 4.2{b) sh()w.~ thm lilr the

column dimension of Ihis image. the mean pixel values incorporalc a long-period undulatinn nf

low amplitude. As well, there is a slight increase in thc positive standard deviation uf the column
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(a) Row Sialislics: Nov. 14 (b) Column Statistics: Nov. 14
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Figure 4.2: Means (bollam trace) and positive standard deviations (top lrace), for the row and column oomponcnu orNoy. 14 and
Nov. 18 signal-plus-noise p~sses.



pixels. from about 15 for columns in the left por1ion of the imllge.loaholll (7 f\lr columns inlhe

right portion. Since the left and right por1ions of the image correspond to the neM r:tnge lllld tar

range regions of the SAR imaging process. such llll increase is cnnsistenl with lhe e:.:pecll'tl

depar1ures from stationarity which were discussed previously. From Figure 4 ..2(c). it is Sl'Cll thaI

thc TOW means for lhe detrended Nov. 18 image. behave very milch like lhose lilr llic Nnv. 14

case; that is, they exhibit minor fiuctlllll:')lls llbout zcro.with 110 discemiolelrcnd. '111C(lIlsitive

Slandarddeviation remains very close 10 20 for all rows. wilh n slightineTl:ascappllrcnl in Ihelcfl

portion of the image. However. Figure 4.2(d) revcnls lhat withillthc columns of lhc N\w. 18

image, there exists signifieanl trends for both lhe mcans and stnndllrd devintillns, whieh arc I:lf

more severe Ihan the casesjllsl discusscd. In par1icular. the column mcans cxhihit nlllicc:lhly

greater departures from zero, while the posilivestalllJard deviation deeTlmses fll.llll:l value or

approximately 2./ in Ihe near range, to a value ofappro,~il1lalely 1./ ill the Ihr mnge. This implies

Ihal there will be definile departures from Ihe WSS nssllmplion wilhin the Nuv. III image.

111erefore. il is clear ovemll, thai the delrendcd SAR images will continue In rct:lin

some departures from Ihose mathematical assumplions which were strictly adhered 1\1 hy the

simulated images in Chapter Three. 11lese departures have been imposed hy a eomhil1ati\ln oflllc

radar ir'lDging geometry. and a limiled effecliveness of the detrending algorithm: however. such

factors mllst be tolerated. bcc:luse lhey arc unavoidable. ror instance. wilh respeel III imugc

formal. only slanl range data were available from the CCRS offices. Wilh regard 10 tlctrending,

it is lrue that a polynomial of higher orde!' mighl result in less variahility ahoul the mellll; still.

there cannol be any guarantee Ihat it will nol remove lIseful informalion as well. '11IeretiJTl:.

delrending via a third-order algorilhm is the highesl ortlcr of prcpmcessing which can he

altempted with confidence. TIIC fact that such observed departurcs from lIs.~urnplilln do el(ist.

suggesls lhat these imaged processes, especially the Nov. III imuge. will pennil II rohust
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assessment of the filtering technique. This is because the filters will be operating in situations

wt.ieh arc less than ideal, with respCl:t to the mathematical structures inherent 10 the image data.

4.3 Correlation ...,;haracleri3tics of Imaged Processes

4.3.1 Estimation of Two-Dimensional and One-Dimensional Correlation Functions

4.3.1.1 Numerical Estimales of the Two-Dimensional ACF

Following the detrending operation. the next staF,e in preparation for filtering of the

SAR inmgcs. was the estimntion of a two-dimensional autocorrelation function from ellch image.

'111is is the numerical equivalent of R,,(T,.•TR) in Eq. (2.5). and the objective of this operntion was

til identify the signal and noisc relationships which wen: prcsent within the images. Consequently.

in order 10 n.-ducc computalional complexity, the two-dimensional ACF's were estimated from a

11114 " IIIU subscene occurring within each 12U " 122-1 image. A portion of each resulting

carrerlilian surfllcc is shown in Figures 4.] and 4.4. for the Nov. 14 ond Nov. 18 images

rc.spcctivcfy.

Figure 4.3(a) shows a small portion of the two-dimensional ACF from the Nov. t4

image: this surface has been normalized so that its maximum value, R,,(O.O), is equal to unity.

From inspection of the corrcfation surface, it is immediately clear thatlhe image has a significant

hmad·hnnd noise component, which is rcpresented by a prominentlapercd spike located atlhe

centre or the AeF. Complementary to this, Figure 4.3(b) shows a contour map for a larger

s\lhrcgioll of the corrcllltion surface. and for ncrrnalir.cd correlation values in the range n :s

R,,(T,•• f.) S O.J only. With the contour values restricted to this range, only panern~ rclating to the

signal cotnponcntsnre observable.

Each lag unit in the correlation surface and map, corresponds to a pixel unit in the

image; consequently. periodic patterns exhibited by the correlation data, reflect wllveficld periods

uccurring in the imaged process. Study of the Nov. 14 map, in Figure 4.3(b), will reveal that the
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(a) Autocorrelation Function: Nov. 14 Wavefield
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Figure 4.3: Nonnalizcd autocom:lation data, obtained from 1024 x 1024 subscene of Nov.
14 image.
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(a) Autocorrelation Function: Nov. 18 Wavefield
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Figure 4.4: Normalized aUIOCOIT'elalion data, obtained from IOU X 1024 subscene of Nov.
18 image.
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correlation function conlains a low.frequency component, which has a period of appn.:e.inlntc1y

/00 correlation lags in the column dimension. and appro:e.imately ZOfllags in the row tJimt'll~illn.

This waveHeld component has I major rods which is oriented at :lpproxinl:1lc1y J(I' cUlmh.'f

clockwise (CCW) from vmica!; it is seen in the centre of lhe m:1p. 10 dther side of Ihe axis alnny.

which t.=D. As well. Figure 4.J(b) indicates the prc:smcc of. higher frcqucncy component. which

has a period of approximaleI)' /00 lags in Ihe column dimension. but ooly :lppro."i01:1tc1y /j I:lSo'l

in lhe row dimensioo. This wnveHeld. which has ils major lI."is oriented al :lppro:e.inmlcly 1/1'

CCW from vertiClil. may be seen in all R:gions of the mnp. f'in:ally, nC3r the upper len nmllllwcr

right borders of Ihe map. Ihere is some evidrncc 10 indiClile lhe possible prcsence of 11 wllvetield

which is oriented at close to 9UO CCW from vertical. 111is possible wllvelie!d 1l1.~O hlls an

appro;"imalc period of 100 lags in the column dimension. but has n pcriotJ which exeeL-ds Iht'

number of pixels in the row dimension; hence, the wavefie!d has a frequenc)' whieh is very c1use

to OC within Ihe rows. The fltCl Ihat this wnvefield is dele<:labh: only ntlaryc dislances fmm the

cenlre of lhe m:r.p, indicates thai it is of relalively low pawa in coll1p.,rison 10 the ..tlM.'!"

waveflClds. Study of lhe patterns in Figure 4.3(b). SUll&CS1S lnat it cm~cs oot)' after Ihc

correlation power of these WBveHelds has decayed 10 a certain level.

Figure 4.4(1) shows I nonnalind. portion of the com::lalio:l surface which wa~

e:e.lr.lf:ted from the Nov. 18 image. Here too, lhere elliSIS a sig.nifi~nl noi.'iC compoocnl.

represenled b)' a promin~tll1pCred spike althe centre of the correl~tion surface. /lowcn'!". thc

contour map for O:s R..(tc.t.} :s 0./. shown in Figure 4.4(b). 5uggcststhallhis ACF conl~ins onc

main Wllvefield component which is dominant overall, oriented atapproximillely 45" CCW from

vertical. This is a waveHeld whieh has a period of approximotel)' lit) lag.~ in the column

dimension, and 80 lags in the row dimension. Figure 4.4(b) does suggest Ihe possible presence

of ooe other component, (l(ientcd at about !4U' CCW from vertical. however it is only prescnt

ncar the centre of the map, indicating that it.!l correlation power decays very rapidl)'. As D
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renection of this possible wavefield, the contour pattern contains three regions within which the

contours arc vel)' closely spaced. rn a three-space context, very close contours 8re indicative of

:I rapidly increasing slop(': hcncc, thcse contours indicate the presence of three "mounds" in the

central region of the map. Each mound has a major aKis orientation of approKimatcly -15· CCW

from verticlll, which is consistent with the orientation of most other fcatures in the map. However,

when the mounds aTe enveloped as a group, it is apparent that the major a.xis of the envelope is

oriented al about /.Jlrccw from vertical. This would suggest thaI a low-power wavefield crosses

the imllile nt this orientation.

4.3.1.2 Numerical Estimates ofOlle-Dimensional Correlation runctions

One-dimcnsionnillutocorrclation functions, estimated from the rows and columns of

the Nov. 14 image, arc shown in Figures 4.5(n) and 4.5(b) respectively. For both the row and

column dimcnsions, the shape of the ACF is consistent with severe damping of one or more

npparently sinusoidal wtlVcforms. In fact, most of the power is eontained within approximately

the first ± 5(J autocorrelation lags, and it is ill this interval that the exponential dccay is most

observable, with power Icvels assuming nominally ncar-zero values for subsequent lags outside

of Ihis range. In conjunelion with the prominent noise spike, this suggests that the Cllse II

analytical model from Eq. (2.12) would be a good approximation 10 these numerical estimates.

Similarly, Figures 4.5(e) and 4.5Cd) present the one-dimensional autocorrelation

functions obtained from the rows and columns of the Nov. 18 image. TIlese estimates also yield

evidence or exponentially-damped sinusoidal components, along with 8 significllnt broad-band

noise eOlllponent: however, it is apparent thnt the damping factors are not as significant as thosc

which are implied hy the Nov. 14 ACF's. This conclusion is drawn from the fact that the Nov.

18 rilW lind column ACF's continue to exhibit noticeable power levels, well beyond the lag values

at which significant power ceased to be observed in the Nov. 14 ACF's. Thcrefore, for the Nov.

115



(a) Nov. 14 ACF: Rows (b) Nov. 14 ACF: Columns
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Figure 4.:5: Normalized one-dimensional autocorrelation funcljons. ror the row and column components or the Nov. 14 and
No\·.18signal.plus-noise processes.



III image also, it is possible to eonelude thai the exponentially-dampcd Case II model proposed

in Chapter Two, is a good analytical approximation.

lbe structure of one-dimemional row and column cross-correlation functions can also

be inf..'lTCd from the correlation surfaces presented in Figures 4.3(a) and 4.4(a). This is achieved

by fixing the column lag, te. at Sf'llTIC constant value of~#1, and then extracting the function

which has its domain over all values of T•• The result will be a numerical estimate of the regional

CCF for the specified distance, fl, betM:e:n rows. Similarly, fixing the row lag. T•• at a specified

value of 1.=#1#1, nnJ extnlcting the function having its domain over all values of Tt" gives the

regional CCF for the diSlance. fl, between columns.

Figure 4.6 presents the row and column ccr's which have been extracted via the

above procedure. from the Nov. 14 image. rigures 4.6(n), 4.6(b), and 4.6(c) present the numerical

estimalcs of row CCF's represented as Rn(l,TJ, R..(l,T.), 8Ild R..(J.T.) n:spectively. By similar

convention. Figures 4.6(d), 4.6(e) IU1d 4.6(1) show the numerical estimates for column CCF's

":presented as R..(t... l). R..(~2). R..(~) respectively. Figures 4.7(a) t1lrough 4.7(1) show the:

numerical equivalents to these functions. obtained from the CQm:lation surface for the Nov. 18

imagc. Study of tnc CCF's contained within both sets of Figul't!. in coojullCtion with the one·

dimensional ACF's of Figure 4.5. leads to 8lI interesting observation n:garding interaction of

,ignalllnd noise components within the correlation functions. For the coIllmn dimensKln of both

im:lIlI.'S, the noisc contribution to the one-dimcnsional com::lalion functions is distinctive. in the

sense lhat the noise component CllI be visually infemd from an obvious change in the shape of

the sillnal·plus-noisc oom:lation function. This shape change presents itself as II spike. whieh

cl11el'l:\cs from the rounded undulation of the plolted correlation geometry. Huwever, in the roll'

dimension. no such change is apparent; hence, for the rows, it is not possible to usc the shape of

the correlation function a,a means by which to infer the extent of noise correlation. Upon initial

cllnsidcrntion, this would ~m to hold ominous ramifICations for detennining the value of c in
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(0) Row CCF a' 8ela=1 (d) Column CCF at Beta=1
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Figure 4.6: Xorm:lliud one-dimensional row and column CCF·s for No\·. 14 image, ellu1ICled from the t>·..o-dimensional ACF of
Figure.U.
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lhe row dimension, which is a prclUJuisltc 10 establishinllihe \'alul'll of nand JJ Whl'll dl'l'i\'ing

fillers for these images. Fortunately, there is an indim:t procedure tI)· which :hc \'alne or t' may

be estimated; Ihiswil1 now be discussed.

.!J.,l Estimating C Ihe Sl!3lial E:<:lent of Noi$ CooclnlK'!!!

Based upon observalions made in conjunt1ion wilh Figur'CS ".5. 4.6. :lnd '1.7. il is

apparent that the e:<:lent of noise correlatiOll. wilhill and betwecn n.Jws. C,lIIn,,1 he dill.,"lly

estimated. Therefore, in order to develop a reliable method of infcll.'1lcC. hCllin hy rdl'ITing til lhc

sectioned column correlmion functions which arc shown in Figure 4.8 lor holh il1lagl'S. I [ere, the

one-dimensional ACr, R,,(tr,O). is denoted by '0'. with CCF's H,,(t,.,/J. H.,(t, ..2). lIud H"lt, ...ll

identified by 'x', '.', and '+' respectively. To cstnblish the cs:lcnt of ,wise nuttlcorrclatitlll in the

column dimension al row [ag tl..O for botb images. observe firstly th:lI (ltlints N,,(IJ,fI) nnd

R.J.f:.J.O) are dearly componenlsofthe noise spike. However. wilh addilionlll rcfcn.'11C1; Itl(ltlinls

R.,(f:.2,O), it is apparent that these also form part of lhe llOisc CUtllptltll'lll within lhc column

ACF's. This is ba!.ed on the observation that in both Figures 4.8(0) and 4.8(b). Ihe ACF

coefficiel1ts at R,,(B.OJ appear to represent a point of inncction. In fact, as t,. nppmachcs lhe

value ofB from lhedirection of~, the slopeoflhe Acr conlinueslo da:n:asc.lloWl:Vcr. dllring

the transition from ~-B 10 te-:i:1. it is clear that this trend lcm!inatcs antllhe lilopc hegins to

incrcasc once more. lllC$C points of inflection have been indicaled by Ihe symhul!>'" and /, in

Figure 4.8. Based upon this observation, il is possible to infer lhnt the noise hllS signi1icnllt

autocorrelation at column lags 0, f:./, and ±2.l-Iowcvef, it isc:rtIrenn:ly important tn utlte thaillie

column (Il1/(JcorreluliOlI coefficicnts al R,,(f:.J./I) and R,,(:t:2,f1), un.: lilso the ~.cro-hlg tMlints within

the row cro.tN:orre/afioll functions at row spacings of (1 ..J nud (1"2. I fCllcc. il has now Ill't:ll

established thai the noise is self-correlated for the first two noo-~.em InW' in the cnlumns, lllld
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Column Correlation Functions for Nov. 14
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crosso{;orrelated at the ::eroth CCF lag between rows which are scparnted hy di~tilnccs Ill' {J"'-I 31ul

Refer next, to the column cross-correlation functions of hoth images, :llthc coctlicicnt

values of R,,(O,J), R,,(O,2) and R,,(O,J), which are the zero-lng points in Figures 4,lI(n) nnd '1,II(h).

When comparing these at column lag fe-a, it is scel1 that the noise spike is present at N,,«(J,/) llnd

Ru (O,2), bUlappears to be absent at R,,(O,J), This indicatcs thntthc zero-lag (fj'=/J) Illllgniwdc llr

the noise crosso{;onclation functions in the eolunlns, is also significalltly nOll-zero :n enlss-channcl

spacings {J=/ and 13""2, However, by argument similar 10 above, the clllumn ,'ru.t.N'O/'l'I'!f,f;tJII

coefficients, R~.(O,±!) and R,,(U,±2) at f,.=O, nrc als,) thc tJII/tK'f!I'r<!la,itJ// cocllieients tilr mw

correlation lags t~"'±J ;lnd tk=±2. 1llis implies that the extent of nOll-zero noise autncom:lalitln

powt:r in the rows also includes ACF lags f.=±! and t.=:I:2. '11111S, it has IIl.'Cn de11l11llstrnlc~lthnt

the noise is selfo{;onelated for the first two non-zero correlation lngs in the mws, and h:~~ II

significant zcroth-Iag cross-correlation bctween columns which are sCpilrll1cd hy distallcc,~uf(j= I

and/3-1.

Therefore, for both the No\', 14 and Nov, 18 images, il has b~'Cn t,:stllhlishcd thaI the

noise component of theone-dimensional ACF, in both rows lind columns. issignilicalltly !lilli-zero

for autvconelation lags t"'O, T=±/, nnd t=:l:2. Similarly, for the row and CUIUlllll cross-l;orn:laliun

functions of both images, it has been established that the noise component is nOI1-'1.cw at eeF lag

1"'0 for /3""/ and /3=2. Furthennore, careful ;llspt1;tion of Figures 4.8(a) nnd 4,lI(h) will yield

evidence to indicate that the noise is eonelated for II/O,\·t combinations of -250 f" 50 2 111It! -J :::: f M

50 1, This can be established with the aid of Eq, (2.7), however, the slatements llillde in the

preceding paragraphs are sufficient to define to value of c, As well, lh~'fc exists no l:videllce

whatsoever 10 indicate lhe possible existence of noise correlation al jointly non-'1.l:W eurrelation

lags Ifel> 2 and lfll.l > 2. This establishes an estimate of <:""2 for the sJlntial exlenl 0["

conelation within the noise process. Thcrefore, the extent of row and column noise mlluenrrdntiun
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bas demonstrated that the vector filter must be derived with a prediction gap of Cli>2, for both

imagc.~. In conjunction wilh Ihis, the existence of s.gnifieant noise cross·correlation at the

nhscrved lags requires that the vector fihers should also be derived with (3)2.

4.4 RC3Ult!l rrom V~c1or Filtering 0flerllliom

M.J. Overview

Withillthis Section. the clTectiyoness of tho vector filtering technique has been tested

hy filtering each of the detrended Nov. 14 and Nov. 18 SAR images. Correlation functions

extracted from these images indicllte that they satisfy thc Case 11 criterion. Based upon the

findings of the previous Sections, the pnmmelrie values of the standard-attriblile operators were

chosen to be a=J. f3=3. and ~=200. For the most part, this filter length is approximately

equivnlent to, or tn e.\(cess or, one full period orthe illlnged waveforms whieh were revealed by

the correlation surfaces of the previous Section. A possible coneem is with respect to the row

componcnt of the Jrr waycfic1d which occurs ill the Nov. 14 image. From Figure 4.3(b), it has

heen obscrvel! that the period of this component was approximately 200 pixels; therefore, ns an

initial consideration, it might seem appropriate to usc an operator of slightly greater length. In

fnct. if the row AeF were not exponentially.damped, then this wouid be hiGhly desirable.

However, refcrenee to Figure 4.5(a) sllOWS that even at 150 autocorrelation lags. the damping is

so sevcre that there exists YCl)' little power in the autocorrelation function. Naturally. this also

holds lor the cross-correlation functions, but the smaller .r-axis range in Figure 4.6 docs not make

Ihi5 npparenl. With the choice of ~=200momenlarily notwithstanding, this implies that extending

lite vnfue of ~ beyond /50 might aclunlly be SUperfluOllS, because accuracy of the filtering

procedure will probably nOI improve significantly. Therefore, thc choice or t-200 ensures that

Ihl.! maximum possible extent of useful correlation infonnation has been incOfPOratcd within thc

wctoroperntor.
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FurtllermoTC, the specific orientation of the approximately 9rr waveticld within the

Nov. 14 image is also of some cOtlcem in this regard. Since thcst:lled orientation of 91r iStlllly

an approximation, it is quite likely that the major axis of this \wlvclkhl lllny unt 1;11.' eXIlcll)'

orthogonal to the column dimension. If this is so. Ihen the rows will incotpl~mtc a vel)' lnw

frequency componenl, one full c)'{:lc of which Illay not actually c~ist within the image. Thi~

indicates the practical limitations of trying to incorpomtc one full cycle within Ihe liller tmn~tcr

funclion, when operafing on bandpass processes. In such siluminns. image rotation algorillllns til)

not offer II po~ible solutiOlt, because with this type of process there may he numerous wavcliclds

of different orientations; furthennore. rotation algorithms may signilicanlly alter lhe correlatiun

properties ofthenoisc.

TIle frequency response magnitude characteristics of each t1m:c·c1mnnel llperator hllve

beell presented in Appendix Ill. Notc that when deriving these oflCmtnrs. llne·dimcllsillnal

correlation functions were estimnted directly frolll each /12./ x /22./ image: the cnrrctlliion data

derived from lhe /02./ x /02-1 subscenes describe<! in Section 4.3 were nOl used. tllspectiun nf

the diagrams in Appendix III will once more verify that Ihe frequency re.~pon~c magnitudes arc

not constrained to be identical. [ll fact. for these opemtors, the diITerencC':l hctWC\.~1 channels arc

much more pronounced lhan was observed for filtCfS derived wilh Case I correlation datil. Thi~

is due to the shape-altering influences which the a and (3 parameters exer1 in Ihe prescnce ur Clse

II eorrelalion data. Results obtained from the filtering operations will nuw he discllssed.

4.4.2 Comparison of Unfiltered and Filtered lmm!c Processes (Of Nov. 14

The unfiltered signal.pJus~noisc process for the Nov. 14 image is slmwll in Figure

4.9{a); the presence ora noise process is evident, aoo interferes with IIny ntlemptln visullllyilssess

the structure of the underlying wavefield. Despite this however, it is possible to nhservc II

wavefield component which has its major axis oriented at ur ccw rmm vertical. This
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Figure 4.9: Noise-contaminated SAR image is shown in (a), for Nov. 14 wa\'efield. The
recovered wa...efield. based on standard-auribute oper3tor with «=/3-3, E-1OO,
is shown in (b).
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component was previously identified in conjunction with the two-dimensional ACF discllssed in

Section 4.3.1. However, from that ACF data it is also known that there e.xist~ other l\'llvetields.

one of which has its major-axis orientation ntllpproximntely 3fr CCW from ver1iclll. At best. this

wavefield can only bc described as being barely observable in Figure 4.9{al. In filet. it is olll}'

slightly noticeable in the upper t:t:ntml region of the image. aud then only to a lrained eye. II:ul

its presence not been revealed by the two-dimensional i\Cr, this waveficltl pl'tlbably Wl1uld gil

unnoticed during a visual inspection of the unfiltered image. A third possible wnvelic1d, orientL't1

at 9f1' CCW from vertical as suggested by the ACF in Figure 4.3. cannot he detectL'tl.

Resldtsofthe vector filtering operation involving lhe Nov. 14 image. nrc displnyed ill

Figure 4.9(b). From this image, it issccn thatthespecklingdTccl of the eom:laled n\lise in Figure

4.9(a) has been eliminated, at least 10 such an extent that it cannot be detL'Cted visllally. As a

direct consequence, the lf1' wavefield is now more clearly obscrvahle. As well, the 31r wllvelieltl

also appears wilh an enhanced visibility whit:h is far superior 10 its presenl(\\ioll in Figure 4.9(11).

TIlis enhancement is actually due to the exponenlially-damped nature of the /le1-': hL'C:ll1sc Ihe

filter is performing a three-step prediction, lhe damping of the ACI' has prnbahly ullered lhe

power relationships within til,; output spectra. Hence, the fillering IIpcrmioll ;IlIPllr1.~ II

disproportionatc amount of power 10 this wavelield, when compared to the rd:ltiollships whkh

cxisted previously. FUl1hennore, the wavelield which has a 9,r CCW orientmion, previtlll~ly

indicated by the ACF in Figure 4.3, can now be partially detectcU, This felllurc is hesl llhserved

in the extreme left and right regions of the image, especially in the lower h:1If JlClrtinn: its

emergence is also likely due to the shin of power towards lower frequency components, liS a resllh

ofthc filtering operation,

A close visual assessmellt of the enhancement provided lOt fillering can be made w;lh

reference to Figures 4.1 O{a) and 4.IO(b). which present enlarged 5ubsccnL'S from the Inwer right

regions ofthc images in Figure 4.9. At this scale, of course, sufficient information for making
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Figure 4.10: Enlarged subscenes from the unfiltered and filtered images in Figure 4.9.
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comparisons can only be provided for the waveficld which is oriented at Uf CCW from verticnl.

As seen in Figure 4.IO(a), the elongated paltem produced by Ihe unliltcred wave Cl\.'lits is

noticeable ovemll, bUllhe individual waves nrc not easily discerned; this is due 10 pertllrbntillns

of their geometry, which have been imposed by the noise. I-Iowever, from Figure 4.IO(h), il is

seen that the wove cresls become clearly visible after Ihe filtering opemtion hns hcen perfllnncd.

Furthermore, very careful comparisons will yield positional and geometrical correspondences,

between each filtered wave feature in Figure 4.10(b) :lI1d ils related 110is~"'fICrturhcd ti..'!lturc ill

Figure 4.1 O(a). Based on a purely visual assessment, il is possible 10 cunelude that the liltering

operation yields convincing resullS.

Frequeney.domain representations of the untiltercd and tihercd imnges for Nov. 1,1,

arc shown in Figure 4.11. In particular. Figures 4.I1(a) and 4.11(11) shmv the sigllnl-plus-llllise

spectra from the row and column components of the unfiltered imngc. In both cascs. thcre exists

clear evidence of a tapered noisc spectrum, consistent with enrlicr obscrvlltinns thnt the noise is

significantly correlated at non-zero lags. For the row component, it is npparent that there exists

IwO dominant frequency bands, one at about j=±O.2, llnd allothcr which occurs in the regioll

around j=O. These two frequency bands wilhin the row component com.'sfIOnd 10 the imllge

w8vefields which arc oriented at J(r and J(J' respectively. 1l should also he nuted that the

apparent peak al/:O is actually two peaks, representing the positive nnd negative components of

II frequency which is very close 10 DC; here, the spacing is so small thai it cannot be resllived hy

the plotting device. This fcature is possibly due to Ihe 9(1' wllvefield cliscussed previously: because

oritsorieotation in the image. its row component would have a frequcney which is very cll1scto

DC, For the column component, shown in Figure 4, II(b), it is secn that lherccxistsonly (lIlC hand

of frequencies for which there is nOliceably greater power. This occurs in the approximate range

of ·O.J 'S./"f:. 0./, and il is not surprising. since the two-dimensional ACF of Figure 4.3 indicutcs

thai all wavefields are of very low frequency in the column dimension. As a further comment.
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nOlo that sinoe tl:e ACF of Ihese processes is e:o.:ponclltially.damped in !lolh the row and c\~llImn

dimensions, it is 10 be e:o.:pected that the desired signalllClU1l11y has 11 ~peetra! cuntelll whieh ~p.1ns

all digital frequencies ./ < 1.$ I. However, outside of the bands just identitied, Ihe signal

contribution to the spectrum is insignificant in comparison to the power e\Jnlrihutcd hy lIoise. nml

will never be recovered.

Figures 4.11(c) and 4.11(d) display the row and colul11l1 spcclr:lwhich were rce('lVcf\.'I.1

by filtering the noisy image. 111e bandwidths which enlcrye from this operation arc a resull \lflhc

filter having adapted to the signal component of the image. for lllose valucs of a mid (J whkh

were chosen. These bandwidths then, ore comidercd to be lhe elTeclive h.1lHlwidlhs or the signal

process; in actual fact, they have been defined by that p.1r1ieular renli7~1linll Ill' W'lld's

decomposition which is associated with the chosen filter pnrmllclers. From Figlll"l: ·UI(o;). il is

seen that the recovered signal in the rows, has spectral peaks corresponding 10 those whkh wcre

identified in Figure 4.11(0); however, there is certainly detectable [lOwer for all frelJuencies within

the rollge of -0.15/5 0.1, thus establishing the effective bandwidlll os spanning lhis mngc. Iiwl11

Figure 4.11 (c), it might initially seem that the low powers which occur in the Inlllgh at :lIxmt

I=±O./. could possibly be remnant noise: however. based on the correlnlillil plots of Figure 4.8,

it iSlllmost certain that the forward prediction and cross·ch:mllel gaps ore sufficient rur dim inalion

of the noise component. Therefore, it must be concluded that the frequency powers occurring in

these troughs also belong to the bandpass process. For the output spcctrn from the columns, S\.'Cn

in Figure 4.11(d), it is easy to conclude that the effective bandwidlh is appr01timalely -0./ Sf"::.

0./, a range which corresponds to the spread already inferrctl rrom the noisy inmge. These

observations are verified by the row and column power transfer runctions which are showll in

Figures 4.12(a) and 4.12(b). With reference to the definition of7ilj) via Eq. (3.2), the noisy

image spectrum eorrespoonds to PN:li./J, whereas the fillcred output spectra correspond 10 J>NI/Wlj)·

In these Figures, it is ~.cen that all of the positive gain factors coincide with rrcqucndcs occurrillll
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Figure 4. 12: Power lrIItsfcr functions, mapping unfiltcm:l row and column spectra to their
(t:speclivc fihertd spectra, Cor Nov. 14 image.

III



within the ranges just defined. In particular, it is soxn lhat Ihe noise In.''lliencics which occur

outside of these effective bandwidlhs experience atlcnuation t'ilclllf'.'; ill the mnge of -S dlllol -.'8

dB.

A vel)' impOl1nnt observation which can be made wlu:n ef)111flarin~ the l1nliltcn'd

nonnalizcd spectr~ to their fillered coulllerpnrts, is that Ihe power rclatiol1shiflS within the ellb.:live

bandwidths are changed as a result of the li1tering, For instance, eomp:tris<.ltI til' FigllfC .J.llte}

with Figure 4.11(a) will reveal that the higher frequency compnnent wilhil1thc rt1\\'S, III ahlllli

1-±'0.2. has experienced a loss or power relative to the componcnts which occur ncar .1=11.

Similarly, comparison of Figures 4.11(d) and 4.11(b) shows that i,lmost LIlt fretlllCnck'S in tlie

bandwidth of -0./ sf S 0./ have e.~pcricnccd a loss of power, except lilr 1\\'11 frequency I'nints

which have emerged to dominate Ihe Speetnl11111f1er fillering. In r.1et. for hnlh Ihe row nntl c"lulun

filtered spectra, it is the lower-frequency componenls which ha\'c gaiul'll 11 relativc pllwer

advantage within the signal bandwidth. The power transfer functions of f'il;ure 4.11 ellilrirm Ilia!

Ihere hIlS been a redistriblltioo of power. In these diagrnm~ it is clear lhntlhc (lo.~itivc I:win t;lcl"~

are not cOllstant aeross the signal bandwidth~; in fael, the gain Ihctors lire j;enemlly Imgest liJr

frequCflcies near DC, This verifies lhal sOll1e spectral componcl1t.~ within the dcsirl'tl sigJwl must

have experienced 3 power increase relative to the power (If other frequencies withilllhc clli:clivc

bandwidth. Further to this, it is seen that within the effective b:tm.lwidlh ul' thc mws, SOllie

frequerlCies have actually expericnced attenuations close to -III dll. Sueh uhservatiuns cxplain

why the J(J' wavefield, as well as the 9rr wavelield, have become more visually dominant in thc

flIlerro image than they had previously been in the unnJlercd vl11iion.

MJ. Comparison of Unfiltered and Fillered Image I'rocesses for Nnv. lK

The unnJtercd signal-plus-noise process for the Nov. 18 imagc is shown in I'iguw

4.13(3).•Iere too, the presence of noise is obvious and interferes with any !\llcmpt 10 either
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Figure 4.13: Noise-contaminated SAR image is shown in (a), for the Nov. 18 wavefield. The
recovered wavefield, based on standard-attribute operator with 0I={J=3, ~=200,

is shown in (b).
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visually or numerically cllaracterize tile wllvefield structure. In this imnge there :lppnrelltl}' exists

a single dominant wavefield oriented at 4j· CCW from vertical. as predicted hy the pallems

observed in lhe two-dimensional ACF of Figure 4.4(b). A s~ond possihle wn\'eficid oriented nt

approximately 14(}" CCW from vertical, which was suggested by the correlation inlilnlllltioll in

Figure 4.4(b), cannot be observed. A recovered image obtaincd via the vcctor liltcring OflCT'atillll

is presented in Figure 4.J3(b); as with the previous !iltering results. this image nlso su~csts n

complete absence of visually detcctablc noise components.

Inspection of enlarged subscenes shown in Figurcs 4.14(:1) nnd 4.14(h). indiellte that

thc""e is a strong positional correspondence between the filtcred stroetures nlllitheir lIntihcn..'tI

counterparts. Furthermore, while the fillcred structures are certainly more crisply delilll'1.t, thcre

also exists a definite geometric correspondence to their diffuse. noise-perturbed wrsions. which

are seen in the unfiltered image. TIlis provides strong empiricnl evidcnce, to indicatc thnt the

filtering technique has recovered a reasonably accurate facsimile of Ihe wllvelield while

successfullyalmulling the distortions due to correlated noise. Asa further comment. note nlsu Ihllt

the filtered image in Figure 4.13{b) yields no visulll evidence to indicate the prescnce ofnny

wavefield oriented at 14rr CCW from vertical.

Frequency-domain characteristics of tile row Rnd column components from the Nuv.

18 image, are shown in Figure 4.1 S. Inspcction of the unfiltered spectm in Figures 4.1 Sea) nud

4.IS(b) suggests that the noise power is lower in relation to the signal pOlVer. thun lVa.~ lire case

for the Nov. 14 image. From the filtered spectra, in Figures 4.IS{c) and 4.1 S(d). it is sccn that

the effective bandwidth of the signal process within both the row and oolumn components of Ihc

image is approximately -0.1 siS 0./. This equality in bandwidths between row and column

dimensions, is consistent with the fact that the dominant wavefield is oriented UI an angle oJ'

approximately 45' CCW from vertical. These same approximate bandwidth~ elln also he observed

in the unfiltered spectra. However, when making comparisons between the spcctrd, it is clear that
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lhe filtering operation has resulted in a redistribution of power within the effective bandwidths.

1\ notable example occurs within the column componellt, shown in Figure 4.15(b), where Ihe

unfihe/'l.'d spcetrum reve:lls the presence of a notch at frequencies near /=0: in the filtered

~pectflJm, however, secn in Figure 4.1 S(dl, it is clear that this notch has deepened considerably.

These observations may also be confirmed by reference to the power transfer functions which are

shown in Figure 4.16. Iiere, it is seen that the positive gain factors arc nOI equal within the

clfective bandwidths of the signal, and in fact. the notch which deepens in the bandwidth of the

column component, actually corresponds to a negative gain within Ihe power transfer function:

this is similar (0 the effect observed for the row transfer function of the Nov. 14 image. These

nOll-uniform gain factors confinn that the signal is distorted during the filtering operation.

However. the powcr transfer function also reveals that the noise components which lie outside of

the effective bandwidth xperienee attenuation factors having magnitudes within the range of -10

dB to -25 dB.

4.5 Summary

In this Chapter, the vector filtering technique has been applied to two images, each of

which contained a bandpass stochastic process contaminated by correlated noise. This underlyillg

process was characterized by Case II correlation functions which exhibited noticeable damping.

By inspcttion of the one-dimensional row and column ACF's, it was possible to establish that the

lIoise was correlalcd to a spatial eXlent which is equivalent to c=2 in Eq. (2.11). This required Ihat

lhe veclor Wicncr filtcr be derived with parametric values of a-3 and /3-3. Inspection of two

dimensional autocorrelation surfaces, indicated thai an operator length of~=200would incorporate

sunicicnl infonnation for recovery ofthcsc noise-perturbed wavefields.

Filtering operntions performed on the tll'O images indicate lhal it is indeed possible to

recover n 1I0ise-suppressed wavefield. Within this waveficld, the smoothed wave features will
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Figure 4.16: Power transfer functions. mapping unfillcred row lind column spectra to their

respective filtered spectra, for Nov. 18 image.
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relain an observable geometric correspondence, wilen compared to their diffuse, noise-penurbed

counlcrpans in the unfiltered images. However, eKamination of power spectra and power transfer

functions, indicates that some signal fr~lIencies within the recovered images have experienced

a .~ignifjcanl gain in comparison to other spectrn! componenls within Ihe desired signal. This

phenomenon arises due to the exponentially-damped nature of the cOlTClntion data, lind has been

predicted hy the analytical representations discussed in Chapter Two. The next Chapter will

present a detailed investigation as to how this problem might become further intensified, in

jillcring situations for which larger values of a and fJ may be required.
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CHAPTER FIVE

INFLUENCE OF WOLD'S DECOMPOSITION UPON VF.crOR FILTER FOR

CASE II CORRELATION DATA

5.1 Introduclion

During the muthematical discussions in Chapler Twu. it WIIS shown thllt li'r eliSe II

correlation data, the scalar Wiener filter would produce n diITcrcnl rCIl]i1,lllinn Ill' Wlllll's

decomposition. for each unique combination of values assigned to the forward pN.'tliction Hnd

cross-channel prediction parameters, a lind (1. Hence, for two diffcrcnt ctllnhin:lti(\n.~ of rt nnd 13.

the corresponding scalar Wiener fillers would produce diffcrent recovered wavclields lIner

operating on the same noise-contaminated image. This Chapter will provide empirical evidence

that Wold's decomposition has a similar effcct upon the three-channel version of lhe veetur

Wiener filter 85 well. Such innuences were suggestcd at 'he hcginning or SL-ctillll 2.ft.2. hut

analytical proofs were beyond the scope of this project. As a further comment. from the

mathematical fonnulations of Chapter Two. and with particular reference to Eq. (2.21), it Clm be

seen that the filler length. ~. will also be innuential in detcrmininll thc rcp~scntation accumcy

of Ihe recovered waveficld. However, this fact will not he investig.1ted here hecause it is an

already wcll·knolVn attribute of linear prediction theory.

In addition, Ihis Chapter will present further evidence to contiI'm thutthe exponcntially

damlJCd Cnse II models of Chapter Two, ure representative of thl,) cnrrclulinn lind spectral

charncteristics for processes within the Nov. 14 and Nov. 18 images. Such vcrificatinn will he n

necessary step, lowards evaluating and explainin& the innuence which Wold'~ dccomll(J~itil1n

exerts upon filter perrol nanee in the three-channel case. 'nlis study will focus nn the usc of a Hnd
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(3 parameters which arc of much greater magnitudes than those which were used in Chapter Four.

Suchan investigation haspraetical signincance for potential fiJteri ng situations in which the extent

of spatial correlation exeecdsc""2, this having bcen the value established for operations in the

pn.:viousChapter.

5,2 Cnm-Coherence Funcdons Obtained from Nov, .4 and Nov, 18 Images

The cross·spectral magnitude coherence function. t.NIO,{3" was previously defined

via Eq. (2.22) in Section 2.4.3.2. There. it was asserted that for Case II correlation data, the cross

spectral magnitude coherence would change as a function of{3, when computed from the one·sided

power spectrum lit ~=O. 'nlis fllct provides a good measure against which to verify the presence

tlf Case II data within the SAR images discussed in Chapter Four. Pursuant to this, numerical

estimntes of the coherence fun:tion were obtained from the unfiltered Nov. 14 and Nov. 18

inmges, for I s{3 S5tJ and a=O. Implicit toY.,(fJO,{3), via Eq. (2.20) lind Eq. (2.22), is the value

for ~, which was chosen to be 256 in this case. The choice of ~=256 involves an integral power

of 2, r in fact, which greatly improves the computlltional efficiency of the FFT algorithms

required for numerical estimation of Y\I<tlO,.B). A detlliled discussion of the estimation procedure

may be found in [311. Essentially. wilh each pair of 1224-point rows, t.,(fJO,I3) was computed

for scvernl segment pairs, each of 256 points per segment, and each of which overlapped with the

previous segmcnt pair by 210 points. At each value of {3, this procedure was performed for all row

pairs oeclltTing in the image, oller which the resulting ensemble was averaged to produce lhe

estimate of i .,.VI 0,/3). The numerically-averaged results for fifty positive values of (1 are shown

in Figure 5.1. 11lCSC surfaces display the regional average ofr.y(f\ 0,(1), which has been computed

IWl'l" nil row pairs scpamted by each specified distance of {3. In order to enhance the clarity of

prescntatiun, these surfnces show results only for 0 SfS 0.5: for both images, the effective
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bandwidths of the row and column balldpass processes occur within this range, hence, very little

information has been lost by omitting the upper half of the spectrum,

Upon inspection of these surfaces, it is clear thai they all share a common attribute in

the form ofa "curtain" ofspcctral correlation at ~"I. At this valueoflJ, the correlation coefficienl

for each frequency point is much bigher than the coefficient at each corresponding point for 2:s

{1 :s 50. This is due to the additive noise component, wllich is known 10 be correlated across rows

which are separated by a distance of IJ=I. However, overnll higher coefficients for (3=2 are not

apparent, despite the fact that results of the previous Chapter showed the noise to be correlated

across rows which are separated by this distance as well. This discrepancy is likely due to the fact

that the surfaces were estimated usiliS mm:h shorter data lengths, a necessity for periodogram

averagillg ofspectrn. Becau5eofthis, the cross·coherence surfaces of Figure S.l will be insensitive

to the mue:, weaker noise correlation known 10 exist at (1=2.

A second attribute which is common to all four surfaces, is that for the bandpass signal

component, the correlation power at larger values of IJ is much lower than at smnl1er values of

this pnrnmeter. In fact, with respect tothe bandpass component at aboutf= 0.2 in Figure 5.1(0),

il is seen that for IJ > 40, the correlation power is not significantly greater than the coherence

estimate for /lQis/: frequencies at (3 > I. Such a loss in signal correlation power would be

consistent with the exponential decay of cross-spectral power within a Case II process, for

increasing IJ, as predictcd by GI},(/]O,IJ) in Eq. (2.20). This is further evidence Ihat the spectral

model for Case II correlatioll data, as defined by Eq. (2.20). aptly represents the spectral processes

which nrc found in these images.

There is also II Ihird significant attribute which is observed to be present in Figure

5.1(b) nnd,lo a lesscrexlent, in Figure 5.1(a). Wilh specific reference to the bandpasseomponenl

of Figure 5.I(b), for 0 :sf:s 0.1, it is sccn that the correlation power decreases rapidly while P is

in Ihe npproximate range of I ~ (3 :s 6, however it increases once more, in a cyclical pattern, for
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6 < {J S 15; thC'!'C also appears to be another very weak cyclc in thc approximah: mng.c of 15 <

{j S JO, This pattern would also be consistent with the exponentiol decoy of a cyclieol (i"Vl O,{J)

in the numerator ofr.yU] O.{J), as (J continued to increase. Por any tixed valuc offand increasing

e. such a pallem would occur due to the cyclic nature of the complex rcsultmll which nrises fl\1111

the addition of n non-zero spe<:tral terms in Eq. (2.20). In fact, such a pnltcm Wll.~ spl.'Cil1enlly

predicted during the discussion which pertained to tlmt equation. A similar paltcm, ofmueh [ow\.'I'

correlation power, can be observed from Figure 5.I(a), within the rcllion bounded lIy /J sfs 0.1

and I S {J S 50. Consequently. based on these observations. as well ns thc discussion of the

preceding paragraphs, and taking into account the apparently damped slmrc of the corrclnlion

functions in Chapter Four, it is now possible to rcaeh a significant conclusion which wns unly

alluded to in the previous Chapter. Specifically, fOI both thc Nov. 14 nnd Nov. 18 unliltcrciJ

images, correlation data obtained from the time domain, as well as from the fl'C(luency domain.

exhibit characteristics which are predic~ed by the onolytical rnodclsddining ease II correlation

conditions. In fact, no evidence whatsoever has been observed which would support nny n.~sertions

to the contrary.

Given that Case II correlation conditiolls exist for the images which were pT1lccssed

in Chapter Four, it is now importnnt to recall certain statements which were mnde in Chaptcr Twu,

regarding the role of Wold's decomposition in the filtering process. There. it was stated thai lhe

scalar Wiener filter would yield different realizations of Wold's decomposition, each distinct, and

each corresponding to a specific combination of values for a and P, if Case II correlnticJIl data

were used in the filter derivation. While this characteristic was not demonstrated analytically for

the vector version, it follows that since the prindi'lcs of vector Wiener fillering ore an extension

of the scalar case, then similar behaviour can be cxpected for the three-channel filter. '111is now

prompts recognition that the recovcred images shown in Chapter four. represent but one of 11

range of possible realizations of Wold's decomposition. Hence, the wavcficlds shown ia Figures
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4.9,4.10, 4.13, and 4.14 arc not unique representations of the bandpass components O(:clIlTing

within the original images.

furthennore, it also follows that sinee the lower limits of ex and (3 are detennined by

the upper limit of c, then the actual extent of noise correlation will predetermine which

renli1..ations are recoverable from Case II data. Given this, it would now seem that the most

accurnte representations will be recovered when the spatial extent of noise correlation is small.

'nlis is because for small values of a and (3, the differing rates of exponential decay between the

II sinusoidal components orthe CCF, will not be as innuential as they would for larger values of

ex and p. Moreover, small parametric values will impose only minor relative displacements

between :.plane positions of the /I complex phasors which comprist: Eq. (2.20). These two factors

imply that the frequency response of the filter will not depart severely from thc frequency

characteristics of the bandpass process within the noisy image, when ex and {J nre small. This

assertion is supported by lhe fact thai close positional and geometrical correspondences were

observed between features OCCUlTing in the unfiltered and filtered images presented in Chapter

Four. Conversely, for large a and (3, exponential atlc,luntion will be so severe that some frequency

t(llnp!Jnents may be virtually eliminated. As wt;1I, the severity of relative phasor displacements

in fhe =-plane will increase and decrease eyelically wilhin G.)(/] a.P), as either one f'f these

pmamelers increases without bound. These influences will severely aller the frequenty response

ehnracteristics of the filter. thereby distorting the wavelield whith occurs in the output image.

Therefore. it is quite reasonable to expecl a decrease in filtering accuracy. for elISe II situalions

in which lhe extent of noise torrelation forces the choice of large parametric values. To

invcstignle the validity of Ihese observntions, the frequ:ncy magnitude response of the thrce

ch:lIlllel filter will now be examined over a range of values for a llnd p.
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5.3 Magnitude Response Variations Induced by Chlln~in~ q lind tJ

To provide verification that Vf,.-ctor filter characteristics will rcl~' heavily Upllli variations

in a and {J for Case II correlation data. a series of numerical investigations were cnmlucted. 'Illese

inyolvedthe derivation ofthree-ehanncl transfer functions. for ChOSCll rnngesnftllt.: shape

parameters; all derivations involved standard·attribute opemto~ haYing a valuc of t =JI/II. One set

of derivations involved a fixed value of (J-J. while a was incrementally m.!justcd betwcen cach

indiyidual derivation, within the range of J :s a :s 5/1. A second set of lhrcc·ch:nmcl tr:lIlsl'cr

functions werederiyed by setting (3=a for llllderiyations.andjoinl1y incrementing thcseynlucs

within the range of J :s (a=(3) :s 50. 111is procedure was implementl'tl for row :l11d el111111111

correlat;cn data obtained from bolh of the unfillered Nov. 14 and Noy. 18 imllgl'S. An cXlensiye

data set was produced, which need nOI be examined in delail. since the primc ohjl'Ctiye is mcrely

lodemonstratethatyariabilityin filter response docs occurasafUllctionurthcshnpcparnmdets.

Consequently, only the results from column fillers for the Noy. 14 image hayc hl'Cn displaycd in

Figures 5.2 and 5.3; similar results for lhe row filters of this image. as wcll as thc rtlW and

column filters of the Noy. 18 image. may be found in Appendix IV. rUr1hermore, eaeh slirlilee

within Figures 5.2 and 5J has been nonnalizcd such Ihal its maximum responsc I1SSllllll'S 11

magnitude of unity. ll1crcfore, magnitude response comparisons hellVcen surlilces arc nnl

meaningful; however, the surfaces in Appendix IV have nol IY.-cn suhjcctcd 10 lilly such

nonnalizalion.

Figures 5.2(a), 5.2(b) and 5.2(c) show the respcctiye frequency respunsesurfnccs III

transfer functions lIu' lin, and II)). for (J=J lind yaf)'inga. Similarly. rigures 5.3(11), 5.3(0). i111t.!

5.3(c) show the responses of these transfer functions for jointly varying Yallles of (1"'a. Inspeclinn

of thesc surfaces, will yield unequivocal evidence that the filter responses do vary signilie:lIltly

with changes in the shape parameters. This eonfinns Ihat lhe rceovered images prescntl'tl in

Chapter Four are nol unique represcntations of the bandpass proccssc.~ occuning in the noisy
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images. As well, Figures 5.2(a) and 5.2(c) show a clearly cyclical pattern ill the cross-channel

response of each frequency point, for increasing cr. [f one considers the scalar Wiener filter

analogy ofEq. (2.40), it isarparent that such a pallem cOllldonly occur ifG"Ula,J) were derived

from Case II correlalion data. This pattern is also evident, to a slightly lesser degree, in the

resJlnnsc for 111) shown in Figure 5.2(b). For lhe response surfaces corresponding to jointly varying

tJ"'cr, a similar pattern is also evident in the response for "11 shown in Figure 5.3(b); however, for

"11 111m IIll in thiseasc, shown in Figures 5.3(a) and 5.3(c), there is only very slighl evidence of

such a pattern, restricted to frequency points of 0 ~f~O.I.

As a genernl comment, which pertains to all response surfaces shown in Appendix IV.

the occurrence of cyclical frequency response is less prevalent for jointly varying {3=a than for

fixed {J wilh varying a. This may be partly due to the variability which occurs with the

introduction of new CCF data as {J varies. a fact which was discussed in conjunction with similar

responsc surfaces for Case I correlation data in Section 3.4.2. However. for Case Il, a more

cumpelling explanation logically follows from lhe fonn of Eq. (2.20). which indicates that

changing {3 in conjunction with changing cr will destroy the periodicity which occurs with

advancinga. TIlis is bcwuse the exponential tenns involving Wj(p will also introduce new phase

relationships with each change in {J. Hence. with Case II data. there is an analytical b~sis for

explaining the loss of periodicity in the cross-channel frequency response for jOilllly varying {3=".

Further to Ihis. the fact that cyclic behaviollr can still be observed for 111) in Figure 5.3(b),

suggeslslhal the within-channel trnnsfer funclion for this three-channel set behaves somewhat like

its senior counterpart in Eq. (2.40). If. for instance, Ihe fonn of Eq. (2.40) is considered within

Ihc role of the three-channel scalar array proposed in Eq. (2.45). it is realized that this version of

"11 would only incorporate G\"Ul".O) in the numerator of its frequency-domain representation.

However, within this array, the frequency-domain representations of "11 and /l1J would incorporate

(lnly G,,(jJa.-{3) nnd G,.,Ul«,{3) respectively. Since {J would be equal to zero and constant over all
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0: for the version of lin represented by Eq. (2.40). it is ens)' to sec IIml II j\li11\ly VI1l)'1I1g Il=rr

would only influence Ihe response of "~I and " 1l : hence. the cyclie n-:;!X)I\sl; of 11:: would remain

unaltered. nlC pattcrns observed in Fi~ures 5.3(11). 5..1{b). and 5.3(c) an: consistent with the

existenceofa similar relationship belween the transfer functions of the thrcc-chmmcl VL'\:t\lr Iiller.

However, this is not to imply that the thrce..channel vector vcrsion is L't)uiv:llcllI 10 the

scalar arrangemcnt of Eq. (2.4S): for instance, the veclor vcrsion incllrpomtcs correlation

infonnation between rows ;-fJ and ;+13. whereas thc scalar functions of Eq. (2.45) dctinitd)' d.1

not. As well, the surfaces in Appendix IV indicate thatlhe Channel] respilnse gcnerally dnes

exhibit some change with lJ=a, when compared to its response for fixed fl. llenee. t:1mn~illg tJ

does influence the Channel 2 filler, ovemll Imwevcr, the chanllcs wilhin h.,: an: mil/iII/III in

comparison to the changes which occur within "11 llnd ".'J' l3asL'tI un thcse Ilhscrv:ltinns. it is

possible to conclude that while autocorrelation and cross·correlation dntll CllntrihUle til Ihe

frequency response of all three filters, autocorrelalion dala is most inllllcllt;al in shnpin~ the

response of h11 ; conversely, it would appear thaI cross-correlation dala is dominant in delL'fmining

the frequency charncteristicsofl/lI andh1J•

The surfaces in Figure 5.2 reveal another interesting pattern, which nISI) rL'tlllire.~ snm\:

explanation. By inspection, it is clear that the frequency of c)'cles which occur due to :lIlvancing

lX, at any given j. increases with Ihc value off Hence. for f close 10 0. I say, Ihe IUilgllitndc

n:sponseexhibits only a small number of cycles for 3::: a::: 50. Ilowever, :L~farrru:l\;hes f).S,

the number of cycles increases noticeably. TIlis suggests that tlte nllmber of cycles which Q

introduces 10 Ihe magnitude response, is somehow pro[lOrtional 10 the value off To understaml

Ihe source of this phenomenon, consider a modified and approximate version \If the .Kalllr lransfer

function, now represented as H./Ol[j), which has as its domain, thc values occnrrin!; :lInn!; till: {J'

axis of the surfaces in Figure 5.2; such a function will bcdelincdas :
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(5.1)

This representation excludes several tenns whieh are prnent in Eq. (2.20). However. b)'

momenl.arily assuming thatthcsc terms are uninfluentiat. it is possible to uDdctsl.and the changing

frequency Oflhc a-induted cyclcs in Figure 5.2. To begin. consider the case where n is largc in

Eq. (5.1), such that for euch value l'f1 in thc OFT. the correlation function incorporates a

cOfTCSpondillg sinusoidal component offrequenc)' "'lifo Consider next. an arbitrary frequency point,

/" ~ay, at which Eq. (5.1) will be evaluated over all or. Although it will nOI be fonnally shown,

it call be numerically verified that as wlI("-+I... from either the right or left, Ihe mugllilllJe of the

quotil:llt ofs;/I11 fUllClions increases in a highly non-linear fashion nnd peaks quite suddenly whcn

W'ol" I.. This has signirlcant ramifications for the behaviour of H..(orlf=J..) when the summation

is carried out within Eq. (5.1). In pal1ieular. consider the " cyclic series which are geoerated at

Las lJ increases witooul bound. From the form ofEq. (5.1), it is known that ca<:h *',11 series will

have a unique frequency of "'go *.. /.1.....11. Point-wise summation of these 11 series. each of a

dirrcn;:nt c)'dk flUloency. defines the frequeoey response series of Hv(alf=/.J at specified

frcquencY/.. over a specified domain of a, in this case J:5a .:550. However. dueto the behaviour

ofthc quotient of.d,," funclions in Eq. (5.1). the most powerful eyclic series within in this poinl-

wise summation will be the series for which Wlolel.. Therefore. the dominant frequency of 01-

induced cycles lit DFT point.!... is in fact.f.,. Based on this discussion. it now follows in general

tlmt tor any frequeney point./. cyclic variations in HQ(orl/) must oecur with It dominant frequency

which in fnct is equivolent to/' This hdps to explain the changing frequenc)' of cyclic palttms

observed in Figure 5.2; however. in thr.:se surfaees. the influcoce of exponential damping factors

Willllisopla)'ll role.
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An overall (ommenl which can be madc regarding the frequcncy reSJXll1SC surlilet·s in

Appendix IV, is that existence of cyclic behaviour. while presel1t in 11l0~t. is generally much less

pronounced for row tmnsfer functions, regardless ofwhelher (J is lixcd or V:lryinll. /\nll1b~'r

general conclusion. is lhat as a increases. the decay in magnitude rcspon~e i~ mueh Il!ore sel'cre

for column transfer funclions lhan for row transfer funclions. Thcse ohserved dill~'TCllecs are

consistent wilh statements made in Section 4.2. wherein it was revealed that the process hy whkh

image rows were conslmcted was different from thaI by which the cClhllnns were f.\fIlIed.

Based on infonnation prcscnled in this Seclion. it is nnw conclusive Ihm wilh o,~c II

correlation dala. the frequency response of the veclor filter is dercndenl upon the values whieh

are chosen for a and (3. Therefore. each choice of a and {J docs yield a dil1crelll TCa1i;-"ltiun Ill'

Wold's decomposition; visual evidence in support of this will now be eX8Inined.

5.4 Assessment of Recovered Images for Impacl Due 10 Chlln~CS in (Y nnel fj

To further emphasize lhe findings of lhe previous SCi;lillll. a set nf recovered

wavefields was generated by filtering the Nov. 14 and Nov. 18 imnges. using a sl;mtlllrcl·atlrihutc

operator with ~=200. Complementary to the recovered inl:lges {If the previous Chi,pter. Ihur

additional proeess realizations were obtained from ench noisy image by derivilll;\ Iillcrs "'ased un

four unique combinations of values for parameters 0 and (3. An FFT nnalysis. for -0-1j 'Sf'S/I.Jj.

perfonned on lhe rows and columns of eaeh oflhcse images. has hcen presented in Append is V;

FFT results from the filtered images in Chapter Four have also been included.

Results obtained from the Nov. 14 imase. for parametric combinations (a,(3;-(lj,Jj

and (a.(3)=(27.J), are shown in Figures S.4(h) and SA(c) rt.'speclively: for comparison flllTf'uses.

Fisure 5.4(a) presents the recovered wavcfield which was previously obtained in Cllllplcr Four.

wilh (0.(3)""(3.3). Based on Ihese wavcficids. it is clear that lhe Iff wavelicld componcnluflhc

Nov. 14 image experiences significant atlenuation as a inercasCli in magnitude. for a constllllt (1,
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(a) Nov. 14 Wavefield: Recovered with Alpha=3, Beta=3
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Figure 5.4: Realizations of Nov. 14 bandpass process for fl-3. al three distinct values of (I.
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For (oc.fJ)'"'(/5.3J, shown in rigure 5.4(bl,lhis higher-frequenc)' wnveficld is still highl)'visihle,

however, it is also clear that tile lower frequene)' wavclield at Jf1' oricntati(ln has heeoille ll1\lre

dominant in comparison to Figure 5.4(a), Funhcrmore. the actual shape of l~allll'l'S which

comprise the Iff' waverield component is now much more regular than for the ellse in which

(t:t,f1).-rJ.J). This sugscsts that thc significant bandwidth nssodatc:d wilh this /I,. e\llllponcllt h:ls

narrowed due to the increase in a; a fact which can he vl'l"ificd by reference t(lthe FI~r mmlysis

in Appendix V. In Figure SA(c). with (t:t.{3)=(17.J). it is seen thatlhe Jtr waveliehllms bC~~l

even further enhanced, with only a slightlrace of the ur wavelic1d rcmaining. In additillllill this,

the right portion of the image apparently di~plays a portion of the wavefield which is uncilled :11

9lf CCW from vcnica!. As suggested by the discussion penaining 10 1111: two·dimcnsillnal 1\t'1,'

in Figure 4.3(a), this wavelield has cmerged only ancr lhe other wavelicld cUlllJXlIlenls have

experienced a significant attenuation of power, which resulted from Ihe fillering uperation.

Figure 5.5 presents a second set of procct>s rcalil.:Jtions, ohl:linl't11i1111l the Nnv. 1'1

image by using parametric values of (01..(3)"(15,15) and (a.(J) ..(27.17). These IIrc shown in Figllr~~

5.5(b) and 5.5(c) respectively. with the referencc proccss due to (t:t,(J)=(J.J), shnwlt in Figurc

5.5(a). For both Figures 5.5{b) and 5.5(c), the Jlr wavcfield is tolally dominant lllld lhe fir

wlIvefield is virtually absenl. TIlese results nrc iacontrnstlothc results ill Figure 5.4, where the

J{]' wavefield was less well-defined overall. The mechanism hy which the Jrr wllvelield

undergoes significant enhancement during recovery of Figures 5.5(h) and 5.5(e), can he inferred

by examining the spectral magnitude cross-coherence functions shown in Figure 5.1. With

paniculllr reference to Figure 5.I(a), it is S~'Cl1 lhat as (J increases. the croSS-rIlW speelrnl

correlation power decays much more rapidly for the higher frequency ham.lpllss compunenl thall

for the lower frequcncy balldpass component. This relalionship means tlmt fllr a v\'Ctur !ilter

derived with (ot,{3)=(J5,15j or (27.27), the filtered outputs from the cross-channel row 1r.II1.~fcr

functions will be biased in powcr towards the VCl)' low end of the spectrum. To understand the
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(a) Nov. 14 Wavefield: Recovered with Alpha=3, Beta=3
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Figure 5.5: Realizations of Nov. 14 bandpass process for pea, at three distinct values of

155



impact of this., suppose tMt th~ lime..£lomain output from h.... f('lr tht-sc \'ailles of (3. aclllllllr

incorporales power relationships comparable to those which tOmprise Fig.ure 5A{bl. s.ay; thi~

implies that a significant contribution from the higher.frequency It,. WJ\ocfickt stilll:xi~ts, 11k·n.

aller summations involving the lIn output and the c:ross-channel contributions ffOOl "." :Illd II~J'

the 10W'Cf·frequalty component within the eombinedOlltput mllSlcx~ a sig.nirleantly prnh:r

gain in power, Ielative to the higbr:r.frequcncy component. This will occur bccau5I: of t~ klw

frequency bias which large: tJ introduces to the cross-challnd wntribuli...n. amJ "':lplaill~ IMlw the

row dimension of the J(1' wnvelidd experirnces cnhnncemc:nt in Figurlls 5.5(h) :lIld 5.5(c). A

similar process possibly occurs in the columns as wdl; in raet. rcfc~ncl: to Ihe eolllml1'Crtl~~

coherence function for Nov, 14. shown in Figure 5.1(b). shOll'S that the bandwidth lit" ~i~llilicllllt

coherence does indeed narrow wilh increasing (3. ~Iowcver. Ihcre is il1sul1icient rIIsohl1iull lilT

determining which frequency points of Figure 5. I (b) correspond to the .Ifl" w:lvcficld. and which

ones relale to the 1(,. WllYeflCld. Hence. il isdifficultloconlirm the presence ofa low fn.'qlleney

bias in the cross-channel transfer runctions for the columns. Note also. thaI in Figun.-s 5.5(h)lu1<.1

5.5(c). all traces or the 90' wavelield have disnppcarcd: hat too. in the absence of ~tcr

resolution for the numeriell cstimllies of r.,U'1 O.~ it is not possible to prnvidc :1 rillllrllus

explaJQtion.

Figure 5.6 shows one sdofprocessrealimions obt:lincd from the Nov. 18 imab'C. with

results for (a.(J)-(15.Jj and (a,IJ)-(17.1) shown in 5.6(b) nnd Hl(c) n:5flI-'Ctivcl)'; Ihe wDvcl~'t1

which was recOYCl'Cd in Chapter Four for Nov. 18. with (a.(1)'-(J,J). iuhown in Figure 5.6/0) :IS

a reference. In these images also. Ihere exists obvious differences between the three Iilleretl

estimatesof the Nov. 18 bandpass process. Indicating that eneh filter SCi eorrespollds 10 1I dilli.:renl

realizalion of Wold's decomposition. Furthennore, an interesting phenomcnon is (lbserv~-d in

Figure 5.6(b), which Wllrrants further investigation. Upon inspection. il will be IJlJscrvcd th~t this

image incorporales a higher-frequency component which is oriented II fJ(r CCW from vertical;
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this means that the wavefield exists in the column dimension of the image only. COll1parison nf

Figure 5.6(b) with Figure 5.6(.1) will reveal that this waveficld is nol present for (n,/1)=rJ.Ji. and

has been introduced by changing the filter parameters to(a.(1)"'(15.3). I\n eX:l111inalion ofthc FIoT

analysis in Appendix V, will verify that the introduction of nil higher fTl,'quency component Ims

indeed occurred exclusively within the columns. In fael. this analysis shows that fllr the fI.lW

component, changing from (a.I3)=(3,3) to (a.I3)=(15.3) has actually imparted nil (1IIt'lIIlllfioll tllthe

higher frequetl~y points of the spectrum. Suppl-:mentary to this. Figure 5.7 presents ntl I·TI'

analysis of the eolum,; components from Figures 5.6(a) and 5.6(b). nlung with the power transfer

function which maps the eolulI1l1 power of the fonner into Ihat of the hiller. These spect"1 11I'C

based on lOU-point FFT's. wilh -I <.jS I, of which a subsection eom,'sptlmling to ·0.25 -:;/s

0.25 has been presented here; the speetml nonnalizatioll procedures nrc those which wcre

discussed in Chapter TIlree. When comparing the spcctnnn for (a,I3)-(3.3) tn thnlllsXllCilltctllYilh

(a,I3)=(l5,J), it is clear that digital frequencies for O.(J5 S lJ1 :s rJ.25 Imve illcrcmu.'tI in powcr liS

n result ofehanging C'l from a value of 3 to a value of /5. In r.,et. the (lOwcr tmnslcr 1"1Inclitlil in

Figure 5.6(c) shows that for lJ1 in this mnge, the power sp«tm cxpericncc relativl,: gains which

are all positive; in some cases. these factors arc as high liS 15 dB.

By referring once more to the scalar Wiener filter of Eq. (2.40) as:1I1 1II11llogy Ihr the

vector filter, it is possible to understllnd the phenomenon which has heen (lhservcd in the COIUlIIlIS

of Figure 5.6(b). By substitution of Eq. (2.20) into Eq. (2.40), it is seen IImt vnrinlions inthc

magnitude of frequency response, due to ct and (3 at fixed j, is detenninoo hy the numcmtllr

spectra, G.IJ'(f1a.(3). Recall next, thosealtriblltes which eharacteri1.c the belmviuur uf{;,,(f1 0I,13l lilr

Case 11 correlation data. as discussed in Section 2.4.3.2. Specifically. for incl"Cllsingu ntllny tixcd

j, the magnitude of G"Vla,l3) will in part be determined by the degree of dc.~tructivc nr

constructive interference which results from summation of lhe" complex tenns cnmprisingthe

spectrum. Given this statement, consider also that the frequency response surfm:es of Figurcs 5.2

158



"I~~~0.61°04
ZO.2

o
-0.25

(a) Nov. 18 Columns: Alpha=3, 8ela=3

: :JWC: j
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Digital Frequency

(b) Nov. 18 Columns: Alpha=15, Beta=3

1
0

:1 ~ j.~ 0.6

~ 04

~0.2

O-~-="-=:::L_~-~-:-'-::--J==~~_

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Dignal Frequency

(c) Power Transler Function of (a) into (b)

l~
""'"20 • • . .. . .., ..•..............

ig 10 ..: : >- : ( :..".: :-.-.
-;; 0 " .. ':'''':' ··· .. i·,,·····: " ..:-- : , ; " ..: ..

~ -10 : : :.. " "" : ".;. : " ..: : ..

-20 . .•. .,.. ..• .. ..
. . . . . . .

-30
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Digital Frequency

Figure 5.7: Nonnalizcd power spectra from column components of recovered wavefield
realizations for Noy. 18, arc shown in (a) and (b). The power transfer function
which mnps (a) into (b). is soown in (e).

1S9



and 5.3 do demonstrate cyclic behaviour as IX advances. consistent with pnlll'ms pl\.'tlictcd hy

G~,Ul 0',13). Based upon this. it is now reasonable to conclude that b)' ad\'llncing CI froll1 J to /5

when deriving the column filters, an increased degree of com/meli\'(' interlcn:ncc occurs hctwecn

the" complex tcnns of Eq. (2.20). for those frequency points whieh lic in lhe 11Ilpro.'dll111te rnngc

of 0.05:s lfl S 0.25. While thisexplannlion certainly eannol be direclly veritkd. it is nllncthcless

consistent with the relative changes observed to occur belween Figull.'li 5.6(n) lind 5.(I{h).

Figure 5.8 displnysthe second sel of process rcnli7..aliolls ohtllinl-d thll11 the No\'. IS

image, for (a,(3)-(1J.l5) and (aJJ)"(27,27). As with all previous cl1mJmrisolls. it is c1car thM

Figures 5.8(a), 5.8{b) and 5.8(1.') each present different rca1i7.1tions of what is knowll tn he lhe

same bandpass process. Furthennorc, from Figure 5.8(b), it is clear tlmt the high !h.'tluem:y

column component seen in Figure 5.6{b). no longer exists: ycl. lhe only dillcTl'tlee hetl\'l~n the

fillers which produced these images. is that (3 was increased fWIll a vllluc of J 10 a value or /5

for Figure S.8{b). When theeross-channel transfer functions He cast in the Hnaillgy uf thl: scnhlr

Wiener filter of Eq. (2.40). this disappearance can nlso be inlcrpreled M n cnnscquclII;e nf changes

in G-')Ula,P). From the analytical ronn ofG,,(f]a,13) in Eq.(2.20). il is seeuthal with ll/ILxcu al

say. 15. increasinglJ from J to /5 would once agnin alter the relatiou~hip between the" CUlIlfllc:'1.

phasors which define the frequency respon~e at any j It is therefore reasonuble ['1 pnslul~lle that

for f in tile range of 0.05 S lfl S 0.2$, this new armngemellt leads to a CfllIIJJ(lffllively t1estntetivc

addition of the n complex lenns.

Other evidence of tile effects which Wold's ueeompositillll can exert upon Ihe VCcltlr

fillcr maybe found in FigureS.S(c), which was recovered with (a,{1)=(27.27).ln both theexlrelllc

right and the cxtreme left regions of Ihis image, there exists II liltering artililet which presents

ilself as a slrip running from top to bottom. The boundaries of these strips al ~ delllllrclltcd hy II

discontinuity in the pattern of the n:covcn:d waveficld. To understand the rell.'>On !br this

phenomenon, recall that for the vast majority or rows within the image, the Il1Insfcr functint1s "n'
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1111 and 1111 are used. These transfer functions map the inpuls from Chnn1lds I. 2 and J inl0 the

output eSlimate for Channell. Howcver. as discussed in Section 2.6.1. the llm....··challm:1

ronfigul'Jtion ofthe operator implies that a Channell estimate cannot be ohtaincd 1'lr illHlg~' 1\\\\'S

;=/.....13 or i=N~-(3+J.... ,NR' Consequeotly. for lhesc row sets. it is n\.-cessllry to lISC olltllll1

estimates for Channel/and Channel J respectively. This l'I.'quire:. lhe I'SC of tr.Hlsfcr funcliuns "".

h'l' and III! for Ihe Channel/output estimate. and trnnsfcr funelillns II.". II,.., and II!! 1i.\r thc

Channel j output estimate. Clearly. for Ihe Channcl 10ulput. involving crtlss-chmlllcl tmns1er

functions Ill! and 1111' the cross-channel inputs come from rows which are only ±(3 stcps ;l\l'ilY in

the column dimension. Howel'er, for both the Channel I and CIH1I111cl3 outpul cslil1lales. tlllC or

the cross-channel inputs must come from rows which are 113 and -1(3 steps nW;ly. rcsp;.'Ctil'c1y.

From the coherence functions in FigureS.I. it is clear thaI lhese diffcrenees in (3 will llIcnn Ih;\1

Ihe cross-channel relationships associatcd wilh {ha• /t,l' hul and {IIJ .. h!_.. 1I ,!1 aTl~ difterenl from

those associated with ("1/' h1:o fin). 11lis implies that wilh Case 11 COITChltinll datn. Ihe Illltplil

which the first two sets of transfer funclions will produtl:, in response to Ihe SHmc input. will

differ from Ihat which is generated by the third set. Ilcnee. the Channell oulput cslim;llc

constillllesa realization of Wold's decomposition which isdirTercnt Irom the rcali"'.:Ilion producloU

by lhe Channels / and J output estimales. Of course, these same rclntionships also hold I(lr Ihe

column transfer functions, and in fact, the artifacls occurring in Figure 5.8(e) were produced hy

the column filtering operali(ln.

Figurc5.8(c) also contains anothcr rcalure which warmnts sOlllelUentillll. Although

careful scrutiny may be required, within this image it is JlOssihle 10 nssimila1c n pnl1cm whieh

resembles four wavelike undulations, cach of which has a major.u;(is oricnlHtion al ahulIl /.Iff

CCW from vertical. This may well be the /4lf wavcficld which was suggested In he prt:selll hy

the correlation map in Figure 4.4(b), bUI for which there has h(:en no visual evidencc herclnlilre.
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5.5 Summary

In this Chapter, resulls have been presented which confirm that for Case II correlation

data, the role of Wold's decomposition is significant in affecting the output from the vector

filtering opemtion. Convincing o'umerieal evidence has indicated that the values selected for filter

pmnmeters lX and (3, will directly determine the panicular realization of Wold's decomposition

which emerges from the filtering operation. Any alteration of these parameters will propagate a

detectable and ollen significant change in filter output. This presents a dramatic contrast to the

rcsuhs uf Chaptcr Three. whereill it was demonstrated that for Case I correlation data, the filter

output was unaffected by changes in 01 and (3. nle phenomenon for Case II correlation data can

he rationalized through an analytical conceptualization of complex phasor interactions .md

exponential damping foetors; these have bcen based 011 the spectral rel:lliollsl1ips which are thought

to exist within the one-dimensional row and column processes of the image. Without exception,

empirical evidence based 011 numerical analysis of the image data, has 1>«n consistent with the

rcsultspredictcdbytheseanalytiealforrns.

'ntis means that when Case II spectra are subjected to filtering. it will not be possible

to produce a unique wavelield pattern which is common toall combinations of lX and (l However,

realizations of Wold's decomposition which lire achieved with small a and (3, arc more

rcprcsetltalive of lhe original bandpnss process than arc realizations obtained with IlIrge a and (3.

Sim:e the values for these parameters arc chosen such that 01 > c and (3 > c, the implication is that

till: spatial cxtcnt of noise correlation, represented by c. predctcnnines thc extent to which the

l'l.,,"overciJbandp.1ssprocesscanbercpresentativeofilsoriginaleounterpan from the noisy image.

Consequently, while it is possible to obtain a noise-suppressed version of the noise-perturbed

handpas.~rroccss.numcricalresulls indicate Ihat this process can never be recovered in itsentircty.

Furthennore, note that the invesligations involving lixed (3 with varying lX, as well as

those for jointly-varying (3=a, do have a prnctical rnmification. To see this, first consider that if
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c is large, then it has been clearly shown that selecling a = f3:> l' willrcslIlt in I\.'CO\'CI)' IIf"nl)'

a portion of the bandpass process. However. unlike the elise lor rI'. which IIl/1.l"1 hc grc:llcr thnn c.

it is possible to recover a filtered version for which 0 <; {J :s t": a f.,ct which is 111'P:1rcI11 frnm lhe

resulls shown in Chapter Three. While lhis filter eonligurntion would nol ineorpornte ol'linml

noisc suppression, it docs ofTer il compromise. This is bcCilU~ n greatcr pol1inn urlhe handpass

process can be recovered if optimum noise suppression is wnived. and f3 is choscn ltl hc SlllllC

value lessthanl', whilearemninsgrcaterlhnnc. Withlhisnrrnllgcll1cnl.thelhl\.'C-c1mtlnc1liltcl·

is still superior to lhe one~channel version. because lhe CroSS-TOW coherence wilhin lhe 1I11isc

process does decrease with increasing (3. when /I <; {J :s ,.. Ilcnee. it is fnrcsceahlc lhal a

tompromise could be established between what is 11 desirable degree of noise dccllrrdalinn. and

whlll isan acceptable lossofinfomlation rcgnrding the bamJpnssprocl'Ss. lilr {J <; (j::; c.
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CIIAPTF.R SIX

CONCLUSIONS

fl.! Overview

Thc objective or this project has bccn to develop II filtering technique which will

ermhlc the recovery or II wide-sense stationary (WSS) desired signal process, rrom a t\\'o

dimcnsional image contaminated by broad-band WSS noise. Pursuant to this. it has been the

working hypothesis that a linear filtering operator, npplied sequentially in onc dimcnsion to the

ruws or the image:. and thell to the columns, would be effective in achieving this goal. The linear

operator which was utilized during this investigation, was a three-channel version or the vector

Wiener filter. Implemcntation or this operator requires that the imagc data satisfy three

prerequisites:

(I) ll1e signal and noise processes must be additive, and mutually stochastically

independent.

(2) Both processes must be wide-sense stationary, at least within the region which is

defined by the borders orthe image.

(3) '11e spatial e:'\tent or correlation, c, within the noise process, must be rar less than the

extent orcorrelntion within the signal process.

Where thesceonditiollshold, lillcar prcdiction theory slatcs that it is possible to derive

II Wiener Ii1ter, which opcratcs on the past values or a coherent data sequenee in order to prcdiet

its ruture values.lrsucharunetion is designed to predict n vllluewhich liesa stepsllhead in the
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sequence, where a > c. then the predicted sequence will be \-irtually tree of allY VilrilltiollS which

are III/COrl-e1uted beyond any interval smaller tlmn (I'. Sincc the c~lrrel:1l...'(1 extent of ntlise is

assumed to be smaller than the prediction gap. a. then the noise-induced variations will ~

suppressed.

In a three-channel configuration of the vector Wiener tiltcr. eaeh uf tlll'\~c tmnsfer

functions operates on its respective input taken from three image rows which nre sepamled hy

some distance (3. These input rows are located at image row rositiollsi-(J, i. nud i+(J respeclively;

after the filter operates on a given row triplet. the indc:" i is incremented hy ~ll1e ntHl the upermillil

is repeated. The result of a simultancous opcmtion on lhese three rows, will he all estimnle Ill' the

desiredsignalprocesswhiehexistsinrowi.Suchestimatesarcachiev...-dbypoinl-wisesulllm1l1itln

of oulput series from the cross-channel prediction Iiltcrs, "n and It:J_ lIud Irllm n lilrWllrtl

prediction Iiller. "ll' Filter transfer functions "11 and hll operate on row i-f3 and nlW 1+#

respectively, while"ll operates on row i. TIle Slimmed oUlput cstillHlle which resulls is Ihen used

to build a new row-mlered image, row by row. as the row index i is incremellied within lile noisy

image. After producing estnnates of the desired signal from nil rows ill the noisy imnge matrix.

the resulting row·fihered facsimile is transposed to permit idenlical operations 1111 llle cnlUlIlIIs.

This is required because after TOW filtering is complete. sOllie remnant noise will continue til e;tisl

in the column dimension of the image.

Withinthiswork,ithasbecnpOslulatedthatathrcc-challllelversiolloftlll::fillerwill

provide II noise suppression advantage over the single-channel version. ·111i.~ is basell un lhe

principle that if threc inputs arc taken from rows which arc separated by II distance of (l>c:, then,

as II consequence ofmagnilude and phase relationships bclwC1:n rows, the power in the lI\llpUI row

will be biased in favour of those frequencies which afe coherent aeross the rows. Uucorrdated

frequencies, such as the noisccomponclIt, are then suppressed when the threc filter outputs arc
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summed. It has been mathematically shown that this strategy offers further noise allenuation,

which is supplementary to suppression achieved from the forward prediction gap, Q.

'111e Iiltcr which is used for the row operations is derived independently ofthe operator

which is used ror column filtering. However, this docs not imply that the row process is

indepL'Tlllent of the column process; to be sure,there exists an intricate relationship between the

two, liS is revealed in the pallems which arc exhibited by a two-dimensional autocorrelation

functiou orthc image process. Yet, by proper manipulation, the two-dimeusional ACF will yield

sets or one-dimensional correlation functions, which separately represent the row or column

components of the two-dimensional signal-plus-noise process. This provides justification for

deriving either the row or column filters rrom ol1c<dimeusional autocorrelation and cross-

correlation functions, which are obtained by averaging such functions overall rows or all columns

existing in the image. Such II strategy is consistent with the assumption that the signal-plus-noise

process which e.~ists in nny given row, constitutes a single realization of II parent stochastic

process which involves lhe addilive superposition of stochastic signal and broad-band noise

componeills. Hence, each row of the image is perceived as having been generated by the same

stoeha..~tic process, which is described by the two-dimensional ACF.

With regard to each three-row set occurring in the image, there exists nine correlation

funcliolls which describe the cross-row and within-row relationships, for the row triplet which is

centred on index i. Estimation of these functions at each i over the entire image, generates an

ensemble of fuactions for e{/c/, autocorrelation and cross-correlation relationship within the three

ww scI. Since eilch row triplet is generated by the same stochastic process, then each realizalion

uf n givcn autocorrelation or cross-correlation function, rI!Jlrl!.~I!III.'r a .ringle observalioll of t1

.r""Clillllll'lIkh I,f. il.fl'lj. f1 NII/dUIII lourielhle. ll1ereforc, upon taking the average of each ensemble,

the expectation of each autocorrelation or cross-correlation runctiol1 is obtained. The ensemble

averaged corrdation fUllctions are tnen considered to be representative of the statistically-expected
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relationships within the rolf' componenl or lhe (lo'lrent sign"l-plus-lloise !ilochastic proccu. H)' n

judicious choice or values ror the parameters CJ and IJ. these C1lscmble-awrni:wd com:lalioll

rUT1C1ions can be used to dc:rivc a three-c:hannc:1 ~or liht'f which :xbpts t(1lhe row C\'I\1I1""1\.'111

or the signal process: such. lilter is tllen capable or auc:nuating the: row conlponcnt or the noise

process during the filtering <lpC11Itioll. This salllC tc:cIUlique is also practisro in L'onjunction with

the e:olumn filtering operation. However. it has be:c:n rurther postulaled. that allhollgh the \'olul11o

filter wil1 be intended tooperntc: on IhecoJumnsorthermr-jilll'r\'t/il1lage. itlllusInonl1hek:s..;he

derived wilh ensemble averagn obtained rrom Ihe columns or lhe /IIifill<·,...~1 illlllge.

The effectiveness of this lillering operalion was initially examined vi:, nperlllitln~ 1111

IwO simulaled data sets consisting ofdiscretc:. two-dimcnsional sillusoitlal enmpnllent~ whieh hlill

been contaminated by bmad·b.,nd. spalially.coherent noise. This WllS then followed hy 1'I)Cnllitlll~

on tWO images of ocean wave scenes. which had been obInined via airbonle synth\.1ic lIj)CrtUI'l;

radar (SAR); both of lhese: images were also comlpted by brood-hand spnlially-eorrclatL'tI ll11iS\'.

The major difTemlCe between lhe correlation eharnctcrislic..~ (If these Pl'OCCSSCs. WIL~ lhat at

correlattoo lags having magnitude pter than c. com:latKm functions associ:ltcd with the

simulatc:ddatasctswcn: periodic. Furthennorc. ellc:e:pt forapha5cshiR.lhcircross.rowcuml;ltiun

functions were unaltered by increasing lhe value: or 11 During this pmjxt. such clml1lCteristics

were categorized aJ being representative orease I correlation data. For the rndar images. IKIW'Cvcr.

the COlTelation funelions were aperiodic: this was doc 10 lhe inl1ueoce uf c.'f'lmential dmnping

factors. which produced 8 non·linear allenuation ofampJiludc n.~ the magnitude of cnm.:lllliun I:lg.~

increased. Due to Ille presence of these damping factors. the shape of cross-row currclutinu

functions was also altered as the scparation dislance. 6. wus vurk-d wilhin the ruw lriplels.

Correlation funclions which exhibiled these characterislics have been classilietl a.~ bclunging III

Case: II correlation data. It has been shown via analytical equations, that the difTerencL'S between

these classes of correlation functions., lead to spectral R.'PI'CSCntalions which an: mathemalically
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more intricate for Case II than for Case I. As a consequence of this, the desired sigJIal component

of the image will respond 10 the littering operation in a much more complex fashion for Case II

data than ror Case I. If.ving documented these preliminary considerations. it is now possible to

addll:S5 the significanl findings whieh emerged during the course or this investigation.

6.2 Signmeut Findillp

During the execution of lhis project, a range or fllCtors were investigated in order to

delermine their innuenee upon the proposed filtering tcchnique. In part, such activities were

fncilitated through the derivation or mathematical moods. These were required in order to

llnticipatc behnviour of the filtering leehnique for certain situations, as well as to delermine which

opcmlor configurntions would yield optimum results. Withoul exception, allributes of the filtering

operation which were predicted through these analytical forms, wen: also confirmed by numerica.l

operations performed on simulated data sets and the ocean wave scenes which were obtained via

airborne SAR. TIle significant findings whlch emerged from this sequence of poslulation and

verification an: as follows:

(I) It has been demonstraled that the three-channel Wie1ler filler is capable of suppm.sing

brood-band coherent noise. in images which contain desired signal processes definc:d

by Casc I or Case II correlation data. Hence, the primary objective of the project has

becnachieved.

(2) For applications involving bandpass processes, which are characterized by Case 11

corrclation dala, the exponentially-damped nature of the correlation functions will

cause the filter to be highly sensitive 10 adjustments in its parameters, IX and 13.

Convincing evidence has been presented 10 show that with Case II correlation data.
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each combination of Yalues fot cr and fl will lead to a different stmctute wilhin thl'

recovered wayefield. Consequently, the bandpass process which exists in the nuis)'

image cannot be uniquely represented by a filten:d version. Uowcver, [hl,."fC is C'!·k.lI,.'UCC

to suggest that WlIvefltlds which an: recoycrro with small Yillues of cr amI fl. will

COJTeSpond more completely to [he originnl bllndpass process [h:m will \Yilyeftclili;

obtained with large values of these parnmcters. This fact conll'1lSts with the Case I

correlation data. for which it has been demonslrntcd thallhe rccnvercd \Yilycfiekls nte

identical over II rnnge of values assigned to cr lind fl. I\s well, the invl,."Slig.1tions which

were conducted with simuillted data indiclltcd tlmt, for nil othcr fnctors being coustnnl.

greater filtering accuracy is nehieycd with 0 Inrgcr opcrntor lenglh. rcprcscUlcd us~.

This fact has not been specifieolly dwelt upon dllringlhe cuurnc of this prujcet.

because it is a well-known IItlribute of linear prediction thl,.'Of'y.

(3) Correlation characteristics within the SAR imag<!$ dosely correspond to the nn:lIytie:d

models which have been derived in Chapter Two. Specifically, nwncriC'\1 e:stimatC!i nf

lht corre1Alion functions. verify Ihat the two-dimensional autocorrelation functiun uf

lhe noise process may be represented as a sum of two-dimensional della fuul;tinns.

These summed delta functions have non-zero response for -1 :::: fl.,f. :::: 1, where f,.nnd

f. represent the correlation lags in the column and row dimensions of the inmge,

rcspectively; this establishes the spatial extent ofnoisc com:lntion at 1:=2. Furthermore.

there exists evidence to indicate that the nurllcricolly-cstimntcd. lwn-dill1clIsionnl

autocorrelation funclion for the signal component of cuch imngc. llistl closely

approximates ts analytical represenlotion (rom Chllptcr Two. In particular. tllc shnpc

characteristics ofthe onc-dimcnsional, numerically-estimutcd correlalion funcliuus llnd

cross-channel speclrlll coherence functions, are scento chnnge as a functkm lIf (I. lind
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exhibit behaviour consistent with exponential damping. Such characteristics are

J:ongruent with those of the mathematical models which were developed for Case If

correlation data. FUl1hermore, Ihe numerically-estimated cross-channel spectrnl

coherence functions have also been observcdtocxhibitcycliebchaviouras8 function

of changing it Complementary to this, frequency-response characteristics of the

numerically-derived vector filter have been shown to vary cyclically as a function of

increasing a. These cyclic behaviours can be readily explained by analytical spectral

representations of the correlation models developed for Case II. Hence, there is

l:xtremely good agreement between lhe behaviour prec!kted by these mathematical

models. and lhe behaviour exhibited by their numerical equivalents which were

estimated from the SAR images. In general. such patterns are scen to occur for both

the row and column dimensions of the images, yet, there are visible differences when

comparing the row and column results. This is consistent with the fact that the SAR

processor employs a technique for constructing the rows, which differs from the

mcthod by which the columns are fomted.

(4) Analytical and numerical evidence has been presented, to confirm that the three

channel Wiener filler offers noisc-suppression capabilities whieh arc superior in

comparison to results aehievcd via a single-channel version. 1l1C absolutenecessityof

choosing a value for a which is greater than c, has also been demonstrated.

Complementary to this, while it is certainly possible to recover a wavcfield using row

and column filters for which 0 < {3 s: c. analytical and numerical evidence indicates

that optimum noise suppression is only llchieved by selecting (3 > c in conjunction

with 0: > C.
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(5) It has also been numerically verified that both the row lillers llnd the column filters.

must be deri~'ed from correlation data which have been estimated fmm the 11riginnl.

noisy, unfiltered image. In particular. correlation data obraincd from the c\llllmnS \If

the TOw-filtered image will incorpomte nn incrcaSl:d extefl1 of noise cllm:lnti"n. whi<;h

has been induced by the row fillering procedure. Usc of column llpcnltun: deriv('\1

from the row-liltered data, will introduce additional noise artifacts when the columns

arc filtered: as a consequence of which. the rc<:overed image will yiehJ very littlc

useful information. However, column opemtors which are based on correlation dnlil

estimated from the unlillcred image. will cancel nrtifacts intro<luccd Irl1m the f\11V'

filtering operation, thereby eliminating visual traces ofnoisc.

6.3 Practical Application, of Fillering Technique

One of the most likely applications for Ihe vector Wiener filtering techniljuc. will he

the suppression of noise within imaged wave scenes, in order that more accurnte sfl<'CtTllI e.~linllll<'s

of the desired signal component may be extracted. TIle advantage of pcrfonning H Discrcl<' Fourier

Transform on a noise-suppressed image was discussed in Chapter Two. This lIpplication wlluld

be important for the extraction of directional wave spectra over a large region, therehy yielding

information which would be useful in understanding how wavefield dynamics arc alTecled by the

movement of storm systems. Wilh this type of applicatiun however, it is known tll;,t sOllie

information loss will occur within the filtered image. due Ie the stnreturc of lmndp:rss cIJITel:ltiun

functions and the necessity of performing gapped forward prediction to suppress llUise.

Conversely, the information loss associated wilh forward prediction may llellHllly

constitute an advantage in another potential applieation of the filteringlechniljue. 'Ibisappliealion

involves the extraction of wave features which arc of such low power that they appear only U~

subtle variations in the original image. One such example is the 3tf wavelicld shown in Figures
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S.S(b) and S.S(c). This waveficld is barely detectable within the original image, as shown in

Figure 4.9(a), yet, by an appropriate adjustment of the filtering parameters, it has become highly

visihle within a filtered version of the image. Therefore, the vector Wiener filtering technique

might sec useful applications in satellite oceanography, for lhe study of long-period waves which

would Olherwise remain obscured by the presence of higher-frequency wind-generated waves.

6.4 Gcnend ConclusionJ Ilnd Recommendations

Based on lhe numerical and analytical results obtained, it is clear thnt the vector

fillcring tcchniquc is Cllpnble of recovering stationary processes which are contaminated by broad

bmul coherent noise. However, in lhe case of bandpass stlllionary processes, the exponentially

damped nnture ofthceorrclation functions imposes limitations upon the representativeness of the

waveficld which ;s recovered. Those wa"eficld realizations whieh nre obtnined with small CIt and

13 correspond more closely. but never exactly, to the original bandp.'\Ss process; conversely,

reali7..lllinns obtained for large CI lind 13 will incorporate only a portion of the original process.

Whcn the filter is derived, it is of paramount importance that the value for ot must be greater than

Ihe value which is known for c, c1se no useful illfonnation will be fCl:overed; furthennore.

uptimum noise suppression cnn only be achieved if the value for (J also .lxceeds c. These

considcmtiolls imply that the edent of noise correlation predetennines the degree ofcompleteness

for wllvclields which can be recovered. Consequently, for bandpass processes, lite greater the

vlIlue of c. the less complete will be thc wavefield represenlations which are achievable.

rhereforc, lit best. only nearly-co01plcte representations can be recovered, and then only with

small values of a and (l Depending on the application, this may reslrict usefulness of the

tcchnique to situations in which the spatial extent of noise correlation is smalL

Given this. further research could be directed towards eliminating, at least, the

intlucllcc which ot will have upon the filler derivation. This might improve signal recovery
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capability for noise-suppression applicntions. One possible solution is to ll~ rank reduction

methods [27]10 cxtractthe noise componcnt within Rj .( in Eq. (2,] I), or wilhin ils thn,.~-c1H1nl\l:1

version in &j. (2.66). A cursory investigation undcrtnkcl1 near the end of lhis prl.1j~'d, ~u~est~'l1

that by setting 01=0 on the RHS ofEq. (2.30), and by retaining only the ntlise comptll1cnl 1'1' Nt •t

on the LHS, it might be possible 10 obtain a suitable onc-chmmcl liltcr. Ilowever, numerical

stability problems were encountered during the deriviltion, which cast suspicion upulithc results.

Hence, allhough the passband response appeared fnvoumble, no allcmpt wn.~ made Itl fl'Clwo:r II

wavefield from Ihe noisy image. Nevertheless, milk reduction methods nre knuwn hI he rcliahle

in many applications, and should be investigatcd ilS a possihlc means hy which hI csIO:1II1 the

capability oflhe vector filtering technique developed during this project.
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AI'I'F;NDlX I

IHSCRr.TE FOURIER TRANSFORM REPRESENTATION OF THE SIGNAL

<:n(),~S-CORRELATIONFUNCTION

1.1 InlrOOllelnl')' Concepts

Thi~ ApflCndix will derive the OFT representation for lhe signal eompollent oftheCCF

previollsly defined hy Eq. (2.13). To begin, consider II CCF of finile k:ngtlt 2N,,-J. where NR is

the number of pixel clements in ;my given row of the image. The analytil;lIl fonn of this CCF.

hetween any two rows separated by some fixed distance of (1, may be represented as;

(1.1)

where the index k denolcs the x',11 clement of some set of size II. The digital phasor increment

pnim.wl!' nndwl/l' nrc defined lobe;

w!Jtrt (Lc.LIf) E N. Lc<Nc• LIt<HR

and O'ICO"U) E {CAIOA1R)'·..•O·~0"d)} ~ {C"CO"If) € 121 Os "c<LoO JO "R<LIf}

(1.2)

II will be llSSllll1cd Ihal L,. <c H,. And LR <C NR: since H,. nnd HR are the dimensions of the image,

this implies that the two-dimensional ACF from which Eq. (1.1) is d,.,ived. will incorporate many

C)'eles of ils lowest-frequency component. Furthennore. the snbset indicated in Eq. (I.?) is defined

tl) hell not-neecssarily-eonligllollssubsetof / 1.
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For the k'/!J sinusoid of the CeF. the tenlls ,1,,- :md ",~ Tl:prl."Scnt rCSllol.'l.:ti\'c1y. the

damping factors along the column dimension nnd the roN dimension: the lenn l/, rI.'prl.'sctUs th~'

nmplilUde of the k',h sinusoid, It will be assumoo that each amplihldc llictor nlld cnch lIallll'ing

fnclor JllIir. represcnt thek'th clements of their respl'Ctive not.nel'l,:ssarily-el'lltigUllus sl1hSels"f

si7.en.definedas:

at € {ai' ",a. } c I a € itl O<ac"" I

(diC' du ) E { (dw d IR)• ...• (d.c' dd) } c { (dc.dR) E R2 lOs dc < "". 0 sdR< "" I
(t.3)

Therefore. Eqs. (1.1). ([.2), and ([.) describe the geneml appro:timalion of the ulll:·dinn:nsi(lll11t

CCF from a two-dimensional bandpass stochastic process contained in n digitnl inmgc. Fur thc

special case in which the damping factors arc identically zero and the pmCl'Ss is n;lrmw-hnnd. Ihe

CCF in Eq. (1.1) reduces to II sum of II periodic sinusoids. where lhc /('/(, compunent is Ill'

amplitudea"

Consider then, a contiguous subsct of Sj7.e NRo conlaining coefficients tllken from thc

right·hand side of the CCF for which the autocorrclntion lng. t~. is lIoo-neg.1tivl,l. This suhsl,lt may

be represented as:

r".""o - {r,.)(tRIP)ltR~O} -{ ',.)(OIP), ',.,(IIP)..... r~,,fNR-111}) I
(1.4)

where the clements of't.p>o nre ordered based upon increasing values of t~. !"rom ml:lly.~is nt"

1'#0",>0' it is desired to obtain infonnation regarding the spectral content of the row eomponenl nf

its generating stochastic process, K(iJ). This analysis will he perfonned upon some cllntigllllUs.

ordered subset within r...,-"lOO of chosen SilO ~ .. NJto defined to be:

',.);.l.) - {r,.it,d P) I«:s: t RS e..«-I , • {',.)(a IP), ,,,,)(<< .. IIP)..... '".,(a.(-1 IP>j
(15)

where a is a non-negative integer, 0 ::; a ::; N,,-~. It will be assumed that ~ is chusen III he :111
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appropriate '/alue suth tilal (~/LJ E N; that is.L. from Eq. (1.2) divides ~ with zero remainder. The

liltt that r~'''''' is a discrete sequence of finite length. prompls use of the Discrete Fourier

Tr.lOsform fOfT) as the technique by which ilS spC'ttrlll content will be determined. From

inSflCClion of Eq. (/.1). and by 11K: definilion of the DfT. it is easy 10 show lhat the cross-speclral

t!enSlly function. G.,(/JOl./J). for any arbitrary subset r....,......, (If r...,-.'''' may be represented as:

,.,
G.,(/la,p) " ~ r..';K+4U~)eU~

10r,/E{ 2~V Iv.O, ... ~.1}

Gild. 0 s; IX s; NIt-~

Nnw, by usc of the well·known idcnlit)':

e-jl + ~I
cos(6)"-,-

(1.6)

(1.7)

the negative eompk::<l c:<lponcntial component of~ch sinusoid wilhin the CCF. may be obtained

from the analytical form of r...,f.:+«I/J). Substitution into Eq. (1.6) then yields:

(1.8)

Rearnn~ing terms. based on the index &, gh'C:5 thc linal form as:

Fmm this it now follows thm the *'," component of G,llla.P) is simply:

!'.' IG,,(fIQ;,P)~. ~e-(JocI~l.tJu·)e-J("oc~·"".) 1: e(·tJu -J" u •JI) "
2 ~.o

'30

(1.9)

(I.IO)



whcre f£(fh denotes the aetualcuntribulion to (I,,(lla.,1J, thaI is due to thc DFT, Ck;lrly. fJ(fJ, is

independcnt ofot nnd,1: hence, for lixed ot and 13, lhc valllc :Issocialcd wilh th~' /;,'," spcctml

componenl of G",,(IIa,/i) for allYl. is detemlilled by {£(/)l' The innuenee which CErn, hilS \111 the

outcome of G"(lla,,BJ, can now be eX:Illlined for three possihlc C:lSCS.

1.2 Case I: Damping Coefficients nrc hlenticully 7.ero

The first casc to be investigaled deals wilh the trivi:ll situation in which thc dampiug

coefficients are idelltiealty ler!), that is, eI,,. - dill'" 0, k-l,l, .,11. Wilh rclcrcncc til Ell. (1.111),

it is easy to see that for this case, CI.(f), reduces to:

Now, when! = W,//> then e -J( .... ·/) .. I , from which it follows that:

,~,
(r(f)~" ~ 1 ,,~. for!," (,)IR

(1.11)

(1.12)

However, when!;I! WIll> then Eq. (1.11) represents the ~ ',/I partial sum uf!! geometric scrit.'S, which

maybe expressed as:

(1.13)

Upon close examination ofthc complex exponential portion of the numerator in I~t. (I, (3), it is

seen that this may be written 35:

(1.14)
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(jiVl,:l1t1mt/.~dividC!i~,lhcrl(VI.,J ""r E N;also, II Eland>...., E I. TIlispcrmitstherewritingofEq.

(1.14)1Is:

(1.15)

Frum the preceding discussion, it is clear that (}..I~ r- II) '" (1 E I, hence, forf;o:! WI.\'> 'J,(f), becomes:

(1,16)

Ilnwcvcr, 27(0 is 11 root of unity of the complex cxponential. Hence. ('!~1.. - J, and it follows that

CS(f)1 '" f) in Eq. (1.16). Consequently, the Fourier component ofEq, (1.10) may be summarized as:

(1.17)

From these discussions il is clear thai any k'III component, G'1(/1fl,{3JI' will be non-7.ero only when

f: W'N' It can now finally be concluded lhat lhe DFT ofr"'1(t~L8), for the case of identieally zero

dmnping coefficients, is represented us:

'1l1crcforc. il Ims been shown Ihat the spectrum of the process defined by the CCF of Eq, (1.1),

fWI h(' n'jlr(',~(,II/l!(1 (I,~ fI ,~(,l/II(,IIC(, of lil1l' sjlectra for th.: case in which tile damping coefficients

lire ideulicully «em. 'nIe only prcrcquisile is thai thc length. t, of the DFT must be chosen such

Ihal {~/r.JJ is 11 mcmbcr of the positive scI of integers,
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1.3 Case II: DnmpinJ: Coefficieots :lrl.' Non-Zero

In this Section, the ense tor which nil dnmping eocnieielllS liTe l111n-lClll will hI.'

examine<!. By inspection of Eq. (LlO). it is seen thllt in Ihis CIlSl;, rJ.(/l, is e.~rn.:ss~'tllls:

ll.lll)

Clenrly, when!"" WI'" this equation reduces 10 the ~ 'fll pllrtin! slim of:! geumetric series illYlllying

e-J",expressedas:

(1.2(1)

a resull which is E R. Howeyer. for Ihe general c:!se in which!;II! WI'" the E'/11 pllrtial S11l1111f Ihe

geomelric series in Eq.(I.!9) is seen to be:

(1.21)

where the second step in Eq. (1.21) is due 10 Ihe fact thllt (~II,,J E I. ns was shown thr elise I;

this general resull is E C. By algebrnie manipulation oflerms. it is possible tll rewrite Eq. (1.21)

(1.22)

which leads to 11 final form. smnmari7.cd ns:
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Now, the exponential lerms can never be zero. given finile values for (heir arguments, and the

,\';1111 function in t.he numernlor of Eq. (1.23) can be zero only when diN - 0 or ~ '" 0, bolh of

which arc imllOSsibililiestinder Ihc as:;umplions for Case 1[, Consequently, il now follows thai if

11[1 damping coeJTicicnts Rre non-zero. then C5.(fh is also non-zero for allj By combining Eq. (1.10)

llnd Eq. (1.23). it is seen Ihal the general form ofG.,(fja,(1) under Case II may now be written as:

G.Ulu.P)" t 5.e-(d.dal'd'.(~])e·~"'·caf ....·t ....]) sinhldu~/21
, j.1 2 sinhj(du -+j(,Ju-j/j/2}

(1.24)

which is non·l.cro for nllI Hence, il has heen shown Ihnl if all damping coefficients nre non-zero,

then Ihe sf)Celnun or the slochastic process described by r~'J(1:II.II3) CUllilol be represellft'(l (IS (/ Ii/Ie

,1'pet'lflll/l.

1,4 Cnse 111: Damping Coefficients Rrc Combination of Zero nnil Non-Zero Terms

Following from the above discussions. it is easy to conclude that if some damping

coemeiellts are zero white others arc not, then G./lla.{j) may be represented as n summed

combination or Ihe lernlS from the RHS of Eq. (1.18) and Eq. (1.24). This will not be explicitly

shown, however, il does follow Ihal if only one damping coefficient is non·zero within this

SUlIIlIHllion. Ihen G,/!Ia,(1) can never be a linc spectrum and will be non-zero for all!
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APPENDIX II

PROCESSING ALGORITHMS FOR IMPLEMENTATION OF FILTF.RIN{;

TECHNIQUE

11.1 Overview

This Appendix describes a series of algorilhms which can he llscd to implcment the

vector filtering operation devclopcd during this proj«t. 'nlese algorilhms arc wrillen in Ihe

MATLAB protocol [J I]. [32]. alld incorporate the IhrlXl-chnnnel relalionships which wcre filrlll:llly

defined in Chapter Two. Thert! are lwO main algorilhms. the IiI1'iI of which perfimns numerienl

estimation of one-dimensional com:lalion funclions. while lhe second derivcs a three-dmnnd

transfer function based on the correlation estiTlUl.les. and then implements the riltering npcrntiou.

Both algorithms will operale only in the row dimenskln of Ihe image: Iherefore. each hll~ an

associated calling algorithm which transposes the imab'tl after the row operalions. so Ihnl hnlh

dimensions of the: image may ultimately be procc:ssed. In adherence 10 lhe procedurc which WIl.~

established in Chapter Three. estimation orthe eom:lation functions is performed for !lolh Ihe",w

and column dimensions of Ihe noisy image; after this has been completed. lhe rillering algorilhm

is executed. Prior to the implementation of these algorithms. Ihe image must be subjccted 10 a

Iwo-dimeilsional detrending operation, which is needed in order 10 ensuTC that the imDge eUlltnins

an approximately zcro-mean process. The structure of these opemtioils will now be described fur

an appliC<llion involving the dctrended. noisy image designated liS NOV/R.lllf//: the lIClUlll imllgc

matrix. whieh exists wilhin Ihis Iile is assigned the variable name 1M.
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11.2 Ik«ril"lion of Calli,,!; Programs

Tbe numerical estimation ofCQm:latio" (u"etions iscoordinaled by the calling program

ACFJ...·AI.L",. which i" tum calls the rom:latton estimation program ACF.",. By a similar

prna:du~ the image IiIlering optntion is coordinated by program ""fCW_CALL,,,_ which calls

the fillering algorithm M(·W_F.",.

The calling program ACFJ:ALL", is structul'Cd as follows:

load NOV18.mat

bela=3;

ACF

RQW_C=R;

r_zlag=zlag;

IM=IM';

ACF

COl_C=R;

c_zlag=zlag;

clear 1M R zlag

save NOV18_1D_ACF

% load data file.

% define value for p.

% call correlation estimation for rows.

% assign row correlation average 10 storage variable.

% store vector address which denotes tM=O.

% transpose image to permil column estimation.

% cell correlation estimation for columns.

% assign column correlation average to storage varillble.

% store vector address which denotes te-a.

" save correlation functions 10 disk.

IItpha-3;

belll=-3;

xi=3;

The calling progmm MCW_CALL", has been organized in the following (ormal:

% define value for c.

% define value for p.

% define value for f.

load NOV18.mat

load NOV18_1D_ACF.mat

R:R ROW_C; % assign row correlation functions.
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% assign vector index s;leci!ying position of zero lag.

% implement derivation of row operator, and filtering.

% assign row transfer functions to storage variable.

% prepare for scaling of row·filtered image.

zlag=,_2Iag;

MCW_F

T_ROW=F:

[xl,yl]-sizeUM}:

top = ROW_C[5,zla;:Jl;

bot=sum{sumUM,"211i1xl"yll:

scale ... sqrtltop/boll:

IM=lM"scale; % scale rOW-filtered image back to power levels at input.

% REPEAT ABOVE PROCEDURE FOR COLUMNS.

MCW_F

T_COL=F:

[1(1,yl]=sizel1M);

top ... COL_CI5,zlagl:

bot=sumlsum(lM."21IJ(xl·V11;

scale'" sqrtltop/botl;

IM-IM"scalo;

seve NOV1S_FILT 1M T_AOW T_COL

Nole that after each filtering opcmtion, the output image is sCilled til ensure Ihul it

incorporates Ihe SlIme nverllgc level of power as thaI which cl(istcd within the untiltere<l illplll

imagc. This scalc factor is derived with reference to the j1Qwcr valuc :lssnciatcd with the zem

autocorrelation lag of the original image. A scaling upcmtion of this /laWn: has lin m:tthenmlie:lI

impact upon the filtering operation; henec, it docs nol improve the accuracy of the nutput in IIny

way. However, when either the row,filtered or tinal output image is e()mp'lr~'tl til the nuisy
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vcrsiun, on it video display terminal, the equivalence of power within both images pennlts use of

a comlllon grcy-scnle mapping algorithm. WithOUlthis, severalallcmpts might bcrequircd in order

to display the fillered image with an acceptable range of grey levels.

11,3 F.~limation orCorrclation Functions

The cOfTClntion relationships which exist within any row triplet witl generate nine

correlation functions. These functions and their ensemble averages, are estimated from the rows

or columns of the image by the algorithm ACF.III. The program utilizes biased correlation

cSlinmtes which arc fonnally discussed in [24J & [JIJ. One advantage of biased estimates is that

they eliminate lhe need for tapering windows, which are otherwise needed with unbiased estimates

in order to reduce error at large lag numbers, where f~, ..er samples are involved. The correlation

estimation program is slructured lIS follows:

Ixl,V1J=sizeUMl:

R = zeros(9,(2"y11·11;

At_A;

div=O;

for im = (beta +1l:(xl-betal.

div=div+1;

AU1,:1 = xcorr(lMjim-beta, :l,IM(im-beta,:I, 'biased'};

RU2,:1 =xcorr(lM(jm,:I,IM(im-beta,:l.'biastld'l;

RI(3,:1 = xcorr/IM{im +bettl,:I,IM(im-bet8,:), 'bilwed'};

At(4,:) cxcorr/IMfim-beta,:),IM(jm,:),'biased'l;

RU5,:1 =xcorrtrMlim,:I,IM(im,:},'biased'};

At(6,:) - xcorr(IMlim +bettl,:l,IM(im,:l, 'biased');

Atl?,:) = xcorr(IMlim-beta,:I,Ift.(im +beta, :), 'biased'l;
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RH8,:) = xcorr(lMlim,:),IM(im +beta, :), 'biased');

Rt(9,:) = xcorr(IM(im +beta, :},IM(im +beta,:}, 'biased');

A=R+Rt;

ond

A-R./div;

zlag=y1;

clear div Rt x1 yl

11.4 Derivation of Tmnsfer Functions nntllmplcmcntation of Filtcrinl.: Opcnltinn

The progmm MeW_F. III. for derivation oftmnsfcr functions ~Ild impll'1l1cnt~liol\ of

the filtering opcmtion. is stnlctured ~s follows:

(x1,y1)=sizellM);

% CONSTRUCT R'f.J/ (MATRIX VARIA8LE NAME PHil, AS DEFINED BY Ea. (2.66)

% PHI IS INITIALIZED AS A BLOCK VECTOR, THEN BUILT UPON

PHI =zerosI3,3"xi);

for r= 1:xi,

A=zeros(3,3);

for c=1:xi,

k=O;

% BUILD INDIVIDUAL ELEMENTS (3 x 3 MATRICES) OF R'f.:JI

for i=1:3,

for j=1:3,

k=k+ 1;

TRli,j) =R(k,zlag + (c-rll;
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ood

% APPEND EACH ELEMENT COLUMN-WISE

if c Cl = 1

A .. TA;

else

A=IA,TR);

% APPEND EACH BLOCK ROW VECTOR AOW-WISE TO PHI

if r = = 1

PHI=A;

else

PH1=IPHI;A);

.nd

.nd

OESR=zeros(3,31;

% CONSTRUCT ''':It (MATRIX VARIABLE NAME DESR) AS DEFINED BY EO.

% (2.66)

for c=1:xi,

k .. O;

% BUILD INDIVIDUAL ELEMENTS (3 x 3 MATRICES) OF '3'Jf (DESR)

for 1=1:3.

for J=1:3.

k=k+1;
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TRli,j) =R(k,(zIBg-l) + c +alphal;

.nd

.nd

% APPEND ELEMENTS COLUMN-WISE

if c = = 1

DESR=TR;

else

DESR .. IDESR,TR);

.nd

.nd

% DERIVE BLOCK ROW VECTOR, h3• 3f• OF MATRIX TRANSFER FUNCTION

% COEFFICIENTS AS DEFINED BY Ea. 12.66). STORE RESULT IN {3 x 3{1 MATRIX

% MCTAANS.

MCTRANS = DESR·inv/PHIl;

% REMOVE INDIVIDUAL ELEMENTS FROM MCTRANS AND CONSTRUCT TRANSFER

% FUNCTIONS h o' h,2' h r3' h II, hlP h~3' h 31 • h31' h 33 , FOR SCALAR OPERATIONS

F=zeros(9,xil;

for 1=1:xi,

for j=1:3,

F(3·U-1I+ 1:3"j,il= (MCTRANS/j,(3·(j-1l +1:(3"iI1ll:;

end

.nd

%

F-fliplr(F);

% PROCEED TO FILTER IMAGE
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for j",1:2,

!xl.ylJ=sizellM);

for 1m = (b3ta + 11:lxl·betal.

cl ... hankeIflMlim-bete, 1:ryl-xi + 1)).IM(im-beta,ly1-xi + 1):y111;

e2=hankelliMlIm.' :(yl·xi+ l)),IM(im,lyl.xi+ l):ylll;

c3 =hankel(lMjim t beta, 1:Iyl-xi t' ll.lM{lm t beta,ly' -xi t 11:yll);

lel =el"FI4,:I'; % h 21 operates.

fc2 =e2 "F/5,:)'; % hu operates.

le3 '"'e3 "FIB,:)'; % h 23 operates.

IM2/im, l:(yl-xi+ 1l)=lfel +fe2+fc31';

%

If lim> = (beta + 1)) & lim < = 12"betall,

fel =cl"F(l,:I'; % h" operates.

fe2 =e2"FI2,:)'; % h'2 operates.

fe3=e3°F(3,:I'; % h/3 operates.

lM2(im-beta,1 :(Vl-xl+ l)j=(fel +fe2+fc31';

end

%

if Urn > = Ixl-12"betal+ 111 & 11m < = (xl-beta)),

fel =el °FI7,:)'; % h3 , operates.

fe2=c2°FI8,:)'; % h 32 operates.

fc3=c3"FI9,:)'; % h33 operates.

IM2limtbeta,1 :(yl·xi+ l11=(fcl tfc2 tlc31';

ond

ond
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1M2 =fliplrIlM2l;

IM=flipud(lM21;

clear 1M2

end

%

clear xl yl PHIArckjiTRR

clear DESR MCTRANS cl c2 c3 fc1 fc2 fc3

IM=IM';

II,S An Algorithm for De1remling lhe Noisy [mnge

At present, neither the core MATLAB [32J nor the MATLAIJ Signnl I'rocf,.~~ing

Toolbox [31], provide any algorithm for implementation of the two-dimcnsinl1ill polynomial

dctrending opcratio'l discussed in Chapter Four. To fill this void, n rouline ha~ hocn hmrtlwcd

from the III-file librory of the Remote Sensing Group at C-CORE, Mcmorial Univcrsity "I'

Newfoundland. This detrending procWure is structured as follows:

% This routine fits 20 polynomials and detrends a 2-0 data set

% function fz,pl >= trend(z, x, y, lordl

% For example, a 3rd order has the form:

% z(y,x) '" 1)0 + pPy + p2'x + p3"y~2 + p4"y"x + p5'x~2

% + p6"y"'3 + p7"y"'2"x + pS·y·x....2 + p9'x"'3

% - polynomial coefficients in ascending order

% • two-dimensional data matrix m x n

% • xaxis values, length m

% - yaxis values, length n
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% iord· polynomial order

% Oetrended data is returned in original array z

%

function [z,pl = trendlz, x, y, iord)

In,ml = siza/z/;

% number of coefficients in p

ncoef = liord+l} ~ liord+21/2;

% error checking, check sizes of x and y

x"" xl:l;

y = yl:};

ifmaxlsizelxll -= m,

error('length of vector Y. must equal number of columns in z'J

.nd

if maxisize/v)) - = n,

error('length of vector y must equal number of rows in z'l

.nd

% compute components of A'A and A'Z, corresponding to each column

ata = zeroslncoef,ncoefl;

atz = zerosfncoef,ll;

for zcol = 1:m

ajcol - 1;

for k = O:iord

for suble = l:k+ 1

ajl:,ajcoll = V ."Ik + 1-subk) ~ xlzcol}"lsubk-1);

ajcol = ajcol + 1;
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.nd

.nd

ata "" ata + aj: • aj;

atz '" atz + aj:' z(:,zcol);

% compute polynomial coefficients

p '" inv(ata) • atz;

% detrend data, column by column

for zeol = l:m

aical = 1;

for k - O:iord

for subk = l:k+l

aj/:,ajcoJ) = y ,A(k+l-subk) • xlzcoll"(subk·l);

ajcal '" sjcal + 1;

.nd

.nd

Z{:,zcol) = z( ,zeol)· aj· p;

.nd
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APPF.:NDlX III

FREQUENCY RESPONSE MAGNITUDE CHARACTERISTICS OF VECTOR

FILTF.:RS

111.1 Oven-iew

This Appendix presents the frequency response magnitude characteristics, of tile three

channel mlers which were derived for row and column operations pcrfonned in Chapters Two and

·nlrcc. Figures 1lI.1 and 111.2 present frequency response magnitudes which were obtained wilh

~'=6(} and ~=15(}, for Ihe recovered wavelields which have been display~d in Figures 3.17 and

3.18 rcspcctivciy. Figures IIIJ and 111.4 present Ihe frcquency response magnitudes derived from

lhe Nov. 14 and Nov. 18 noisy SAR images respectively; their corresponding recovered images

:ll'I: displayed in Figures 4.9 and 4.13. For filtering operations involving the SAR images, an

opcrolor length of ~=200was used.
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Figure 111.1: Ma!ilitude of frequency mponse. for mIen used in teeO'·ef}· of one-component simulau:d wa"efield pre5Cnted in Figure
3.17.



Three Waves: Ch. 1, Rows Ch. 2, Rows Ch. 3, Rows

a.5

W
a.5

W
a.5

WOA M 0.4

O~ 0.3 Q3

U U U

~1 0.1 Ql

o 00'
-1 0 1 -1 0 1 -1 0 1

~ Digital Frequency Digital Frequency Digital Frequency

Three Wa':es: Ch. 1, Columns Ch. 2, Columns Ch. 3, Columns

a.5

W
a.5

W
o.sW

M M Q4

U U U

0.2 Q2 0.2 I

0.1 0.1 Q1

o . 0 a
-1 0 1 -1 () 1 -1 0 1

Digital Frequency Digital Frequency Digital Frequency

Figure 1It.2: Magnitude of frequency response, for filters used in recovery of three-componem simulated wavefield presented in
Figure 3.18.
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Figure II1.3: Magnitude of frequency response, for filters used in reco\·ef)· of No\". 14 bandpass process presented in Figure 4.9.
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Figure 11I.4: Magnitude of rrequenC)' response. for filters used in recovery of Nov. 18 bandpass pllX:ess presented in Figure 4.13.



APPENDIX IV

FREQUENCY RESPONSE OF VECTOR FILTER AS FUNCTION (}I<'

VARIATIONS IN a AND (J

IV. I Overview

TIlis Appendix presents magnitude frt.'qucncy response SUrrIlCL'S fur lmnsfcr lill1dinns

111/' lin. lind hn . corresponding respe.:tively to Channels I. 1, lind J. or the vector Wiener liltcr.

These were derived for varying combinations of or lind (3, 1I.~ described in Chapler Five. Resulls

obtained for both the row and column filters have been displayed, for varying or in the mllge (If

J :s a :s 50 with (3""3, and for jointly varying (3=or in the range of J '$ ((3=01) :s 5/J. Figurt.'S IV. I

and IV.2 present rcsults based on cOrTelation data from the roW1lnnd eolulllns rcspcetively,llflhe

unfiltered Nov. 14 image. Similarly, Figures IV,) and IVA show results lilr the mws and enhll11IlS

oftheunlilteredNov.18imllgc.
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(a) Nov. 14 Rows: Channel 1, Beta=3 (d) Nov. 14 Rows: Channel 1, Beta=Atpha
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(e) Rows: Channel 2, Beta=Alpha

(f) Rows: Channel 3, Bela=Alpha
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Digital Frequency 0.5

FiguTC IV. I: Magnitude frequency response surfaces of Nov. 14 row filter, for varying cr
with fixed (J, shown in (a), (b) and (e), and jointly varying (J=a, shown in (d),
(c),nnd(f).
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(a) Nov. 14 Cols.: Channell, Beta=3 (d) Nov. 14 Gols.: Channell, Beta=Alpha
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Figure IV.2: Magnitude frequency response surfaces of Nov. 14 column IiIter. for varying a
with fixed ~, shown in (a), (b) and (c), and jointly varying (J=o. shown in (d),
(e),and(l).
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(a) Nov. 18 Rows: Channel 1, Be1a=3 (d) Nov. 18 Rows: Channel 1, Beta=Alpha
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0.5Digital Frequency

Figure IV,): Magnitude frequency response surfaces of Nov. 18 row filter, for varying IX with
fixed 13. shown in (a), (b) and (c), and jointly varying fj"'a, shown in (d). (e),
and (f).

204



(a) Nov, 18 Cols.: Channel 1, Beta=3 (d) Nov. 18 Cols,: Channel 1, Bela=Alpha
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(f) Cols.: Channel 3, Beta=Alpha
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Figure IV.4: Magnitude frequency n:sponsc surfaccs of Nov. 18 column Iilter, for varying a
with fixed fJ, shown in (a), (b) and (c), and jointly varying l3'"a, shown in (d),
(e),and(f),
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APPENDIX V

FliT ANALYSIS OF RECOVERED IMAGES PRESENTED IN CHAPTER FIVE

V.I OvC!noiew

This Appendix preSC!nts an FFT analysis of each image which has been presented in

Chapter Five for selected combinations of a and p. Figures V.I. V.2, V-J, and V.4 present a row

nml colullln nnalysis for the 1'C(0vered wavefields shown in Figures 5.4. 5.5, 5.6, and 5.8

rt:spcctivcly.l11esearc based on IOU-point FFT's for the digital frequencies -I <Is I, of which

a handwidth corresponding to -0.25 S!S 0.25 has been displayed here.
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Fig.ure V.1: FFT analysis for recovc~ images shown in Figure SA,
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Figure V.2: FFT ::'-odlysis for recovered images shown in Figure 5.s.
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Figure V.3: FFT analysis for reco\'ered images shown in Figure 5.6.
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Figure VA: FFT analysis for recovered images shown in Figure 5.8.
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