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Abstract

The objective of this project has been ‘o develop a filtering technique which wil
enable the recovery of a wide-sense stationary, stochastic signal process, from a two-dimensional
image. It is assumed that the image is contaminated by a stationary broad-band noise process,
having a spatial extent of correlation, represented by ¢, which is much less than the spatial extent
of correlation within the signal process. Under such conditions, it is possible to derive a three-
channel Wiener filter which operates on the past values of a coherent data sequence, in order to
predict a future value. By setting the prediction gap, e, to be greater than ¢, the predicted output
sequence will be a noise-suppressed version of the input. The three-channel filter aceepts as input,
three rows of the image, and then produces a single output which is a filtered estimate of the
signal process occurring within the middle row of the input triplet. Each row within this triplet
is separated by a distance, 8, which is held constant for all row triplets during the liltering
operation. After operating on all possible row triplets, the same procedure is repeated for column
triplets. It has been demonstrated that the three-channel filter has a greater capacity for noise-
suppression, when compared to single-channel versions. By choosing the valuc of 8 to be greater
than c, this noise suppression capability is optimized.

This research has verified that the three-channcl Wiener filter is effective m
suppressing correlated speckle noise, within ocean wave scencs imaged by airborne Synthetic

I functions

Aperture Radar, However, due to the ially-damped nature of the
which characterize the bandpass signal process within such images, it has also been shown that
the filtered estimates are directly dependent upon the values chosen for a and . In fact, if two
different filtering operators are derived, cach with a different combination of values for o and 3,
then they will each produce a different filtered cstimate after operating on the same input image.

Consequently, the accuracy of the filtering operation will vary according to the choices which are



made regarding these parameters. The most accurate filtered estimates of the bandpass process are
achieved with small parametric values. Since o must assume a value which is greater than ¢, and
since it is preferable that 3 should also, it logically follows that the extent of noise correlation
within any image will predetermine the degree of accuracy which can be achieved by use of this
technique.

‘The three-chaanel Wiener filtering technique will have practical noise-suppression
applications, relating to the extraction of more accurate wave feature information from speckle-
contaminated SAR images of ocean scencs. Furthermore, since the use of large o and @ restricts
recovery to only a portion of a bandpass signal, this technique may be suitable for the isolation
and enhancement of low-frequency, low-power wave components, which may be otherwise

abscured by higher-frequency wind-generated waves.
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CHAPTER ONE

PROIJECT OVERVIEW AND DISCUSSION OF BACKGROUND MATERIAL

11 Introduction and Specification of Scope
The mathematical technique which has been developed during this project will achicve
noise suppression within a digital image, provided certain statistical assumptions are satisficd by

the image data, Subject to these ions, any t i i ide-sense stationary (WSS)

wavefield which has been contaminated by WSS broad-band correlated noise, may be processed
via this technique in order to obtain a noisc-suppressed version. The outcome of such processing
will be a filtered image, within which the previously occluded wavefield is presented with
enhanced clarity, Within the scope of this thesis, utilization of the technique will be limited to
extraction of ocean wave features from imagery obtained via airborne synthetic aperture radar
(SAR). The cbjective of this thesis is to provide a mathematical derivation of the filtering
technique, and demonstrate its feasibility; the general results of this rescarch, arising from
application of the procedure to SAR data, have also been reported in [1].

Airbome and spacebome SAR systems cxhibit a strong pofential for accurate
assessment of ocean surface conditions. The relative easc with which data can be obtained, and

the large spatial extent covered by the imaging radar, means that such measurements are

logistically more feasible and statistically more ive, than ions made from the
surface. A persistent problem with coherent imaging systems, however, is the introduction of

speckle noise which severely degrades the image quality. The mathematics of a speckle process

do not usually conform to the assumptions upon which most signal processing algorithms are

based. This is because use of linear filtering operations presumes that the signal and noise



processes are additive and independent. In general however, the speckle and signal components
of the image are known to interact in a multiplicative manner, and in some cascs, the speckle

amplitude may also be dependent upon the signal amplitude. Such attributes make speckle noise

resistant to many well-known signal i iques; partially as a of this,

there has been little emphasis placed upon use of the lincar filtering operators which will be

employed in this thesis.
Furthermore, many filtering algorithms are based on an assumption, that the

process has signi non-zero ion only at the zero lag of its

autocorrelation function (ACF); this is the commonly-referenced white noise. However, in addition

to its zero lag, speckle also has significant values at non-zero delays of its ACF; it therefore
constitutes a less-commonly encountered process, usually referred to as coloured noise. In cases
where the signal-to-noise ratio (SNR) is low, any estimate of the statistical parameters from the
underlying image scene will be biased by the unwanted information from the speckle process, This
introduces the need for an effective noise-suppression algorithm, which will minimize the capacity
of speckle to interfere with the extraction of such information.

While it is well-established that in most cases, speckle contaminates in a multiplicative
fashion, this thesis develops a linear mathematical method of suppression for a very special case;
herein, the signal and speckle are assumed to be additive and independent, as well as individually
WSS. There exists evidence to suggest that this assumption holds, with respect to SAR imagery
of occan wave scenes. The filtering technique which will be discussed, adapts to the desired

waveficld by utilizing i ion from the row and column

autocorrelation functions of the image matrix, as well as the row and column cross-correlation
functions (CCF"s). This is the basic principle of design for a lincar operator known as the Wiener

filter, which will be discussed in some detail.



By an appropriate manipulation of the ACF and CCF. this operator forces a
decorrelation of frequencies comprising the speckle, while the correlation of frequencies within
the wavefield is maintained. In general, it is known that multi-channel Wicner filters, which

simultaneously process data on several input channels, are more effctive than their single-c

annel
counterparts in achicving such decorrelations. During this project, a three-channel version of the
multi-channel filter has been employed; however, in principle, a larger number of channels could
also be effectively implemented in order to address the problem which is now being considered.

In Chapter Two, a mathematical comparison will be provided in order to demonstrate the overall

noise i fority, which the three-ch | filter has over th

single-channel version.
The three-channel filter accepts as input, three neighbouring rows of the image, cach of which is
separated by a specific distance from the others, and then produces a single row output. Based on
the magnitude and phase relationships within and between these rows, the power in the output row
is biased towards those frequencics which are coherent across the rows; uncorrelated frequencies
are then suppressed during the filtering operation. By starting at the top of the image, the three-
channel operation is incrementally shifted one row down and repeated. After the rows have been
filtered, the image matrix is transposed to enable filtering of the columns via the same procedure.

Although SAR applications will be the ultimate goal, the general objective of this

project is to icability of the three-channel Wicner filtering technique, to the
problem of stochastic process recovery in the presence of coloured noise. Pursuant to such a
scope, Chapter Two will focus on the mathematical derivation of the scalar Wiener filter, and
investigate its performance for the special casc of correlated noise. An extension will then be
‘made by deriving a vector version of the filter, after having highlighted those attributes which give
it superior noise suppression ability. Chapter Three will then present the results of simulated

numerical case studies, designed to provide ing i ion in support of’

made within the context of Chapter Two. Building upon this, Chapter Four will demonstrate the



effectiveness of the filtering technique, by applying it to speckled images of two independent
ocean scencs collected by airbome SAR. Subsequent to this, Chapter Five will assess the
representativeness of the results obtained in Chapter Four, by investigating the spectral sensitivity
of the filter output to changes in the input correlation parameters. In order to establish a general
basis for these discussions, the remainder of the current Chapter will focus on the general history
of speckle contamination in cohcrent imaging, and discuss some recent findings which have

motivated the technique to be developed in Chapter Two.

12 Nature of the Speckle Phenomenon

L2l The Process of Speckle Formation

Speckle contamination occurs when a coherent energy source is reflected from a

surface, which is rough in ison to the gth of the ic energy incident
upon it; technical descriptions of this process may be found in [2] & [3]. Under this condition,
the reflected wave consists of contributions from many independent scattering features [2], and
cach contribution will have a magnitude and phase which is determined by the geometry of its
particular reflector. If the surface roughness is of a random nature, then it follows that the
resulting magnitudes and phases arc also random, for any given angle of incidence in relation to
the radiating source of the encrgy. Moreover, for a change in the angle of incidence, the reflected
wave will incorporate magnitude and phase components which are again random, but not
necessarily independent of the retum from the previous angle. Conscquently, the returned signal
consists of an envelope of coherent, dephased wavelets, which may incorporate relative phase
delays of scveral wavelengths [2].

If a receiver has a resolution cell size such that several of the scattering elements fall

within cach cell, then the interaction of these dephased components will have a significant impact



upon the detected signal. Since the relative dephasing is random and dependent upon the geometry
of the scatterer, then for some resolution cells, the superposition of the dephased wavelets will
lead to highly constructive interference; integration of the return energy occurring within these
cells will then produce a high intensity. At the opposite extreme, within other cells there will be

highly-destructive interference, leading to a very low intensity value afler integration. In the

remainder of the cells, itions will be y i ive |21, producing,

varying levels of specklc intensity between the cxtremes. For a matrix of resolution

ich
as an image, the random superposition of wavelets ultimately results in a broad-band random
pattern of intensities; this comprises the undesired speckle component, which nceds to be
suppressed by digital processing, The desired signal component which exists within the noisy
image, is created when the backscattering surface also has variations that oceur at a scale greater

than the incident wavelength. In this situation, a component of the backscatter will also be ph

coherent with adjoi

cells; y, it will i a phase shift that
g

corresponds to those surface variations which occur at a scale equivalent to the resolution cell s
The image patterns which arise due to these variations, will contain discernible information
regarding the surface being imaged; it is this information which nceds to be enhanced through
digital processing.

The goal of a signal processing operation then, is to scparate the desired signal
component from the undesired noise subspace of the image. However, a prerequisite to achicving
success with any such operation in the intensity domain, is a mathcmatical model which

adequately summarizes how the signal and noisc components interact.



122 ing the Speckle and Signal

A commonly-referenced conceptualization of signal and speckle noise interaction, is
the multiplicative noise model, used to describe speckle in both laser and radar applications. It is
defined as:

x(ij) = glij) - n(i) (1
where #(ij) is a random noise process which is independent of the signal gfi,j). This is the
relationship assumed in [2] & [3], and forms the basis of many attempts to suppress speckle by
digital processing techniques. One of the earfier such works [4], used this model to develop an
optimum restoration filter based on Wicner filtering theory; however, that filtering strategy does
ot correspond to the technique described in this thesis. Other approaches motivated by this model
have involved taking a log transformation of the process in Eq. (1.1), thereby making it additive
and allowing for the use of lincar filtering operations [5]. By performing such a transform on
multiple images of the same scene and then averaging them, the randomly-phased speckle can be
somewhat suppressed, resulting in an improved SNR [6]. Still, this does not permit a detailed
image recovery because the averaging process will produce some blurring; furthermore, multiple
images of the same scene are not always available.

However, inadequacies have been reported regarding the multiplicative model,
suggesting that it may only be regarded as an approximation. For instance, it has been shown in
171, that the model does not hold for situations in which the object being imaged contains detail
finer than the resolution capability of the imaging system. The authors emphasize the practical
significance of this observation, noting that most objects contain detail beyond the resolution of
the imaging system being used; however, an alternative model was not suggested. Complementary

1o this. it has been proposed in [8], that image intensity might be expressed as:



i) [V ] ® nex) |* a2
where /1(x) is the impulse response of the imaging system, and the symbol @ denotes convolution:
() is signal intensity and & is a random phase shift introduced by the speckle process. By
working with this representation, a transformation has been developed which forces the speckle
and signal to more closely approximate a multiplicative process, thereby permitting development
of an optimum linear filter based on the minimum mean-square error criterion.

Many such investigations have been conducted in order to better understand the general
problem of speckle in coherent imaging; this is because many inferential techniques used in
physics, including laser imaging, are plagued by this phenomenon. However, with particular
reference to suppression of speckle in SAR images, the multiplicative model and its related
approximations have also been dominant. The purely multiplicative case was assumed in [9], when
developing suppression methods based on local statistics from windawed sub-scencs of a SAR
image, and later in [10], when reporting on local statistics and sigma filtering methods. Results
in [11] suggest an extension to the multiplicative modcl, by assuming that image intensity may
be represented as a convolution between the radar impulse response function, /Afi,j), and (hose

terms which comprise Eq. (1..1). This model is expressed as:

x(ij) = [ 8(f) * n(ij) | D hiiij) 3
Based on this, an optimum filter has been developed, which adapts to subregions of the image by
using locally-estimated parameter values. More recent work, reported in [12], has assumed that
an intensity image may be represented as a convolution which involves the terms of Eq. (1.1) and
the radar impulse response, but with additive system thermal noise being introduced after the

This

may be ized as:



x(of) = { [8(f)  nCif) 1@ (i) } + V(i) 9
where v(i,j) represents thermal noise, and /(i is the radar impulse response. From this model.
a locally-adaptive two-dimensional black Kalman filter has been developed. which compensates
for image degradations duc to the multiple effects of speckle noise. additive receiver thermal
noise, and linear space-invariant blur [12]. Other results. reported in [13], detail the first approach
towards developing a model which takes into account the second-order statistics of speckle. This
has permitted development of a family of locally-adaptive suppression filters, based on the
assumption that the magnitude of speckle is correlated with the magnitude of the signal.

From these discussions, it is apparent that the speckle and signal interaction has been
addressed by a range of modelling strategies. These various models have given rise to an array
of filtering algorithms. some of which offer superior performance over others. A comparative
study of several such speckle suppression algorithms has recently been reported in [14]. However,
since these methods have not been based on the speckle and signal model which forms the basis

of work in this project. further investigation of their relative attributes is not warranted.

Inadequacies of Existing Speckle Filters

“The research presented in this report makes no claim against either the validity of the
techniques discussed above. or the validity of assumptions under which they have been derived.
However. the assumptions which facilitated their derivation do impose a common limitation,
which is not present with the approach taken in this project. The disadvantage of these techniques
is related to the usually non-stationary nature of a speckled SAR image, which implies that
statistics computed within any given subscene will not be representative for the entire image.
Because large-scale stationarity of the image scene cannot generally be assumed. the filtering
operation must continuously adapt to the signal component within each image subscene of some

predetermined size. To avoid glossing small-scale variability within the non-stationary signal, the



size of this scene is typically chosen to be very small, thereby ensuring that the process within the
subscene is approximately stationary. This is important, because if statistics are derived on a large
spatial scale and assumed to come from a stationary process. within a region which is actually
non-stationary, then the filter is unable to account for the non-periodic variations in the signal and
will not function optimally. Unfortunately. for an image in which the SNR is low, local filter

parameters estimated from a small sample size will be severely perturbed by noise: hence, the

accuracy of such cstimates will not be strong. C y. for a 3
effectiveness of the speckle-suppression technique is limited by the size of the subscenc upon
which it is required to -perate. In general. the smaller the size. the less accurate this approach
becomes, for any given SNR.

However. a significant advantage is gained when the digital process may be regarded
as stationary on some large scalc. such as the region defined by the borders of the image. Given
these conditions, an adaptive filter may be derived based on cstimates obtained regionally, from
the entire area within the image. This follows from the stationarity assumption, which makes it
possible to compute filter parameters via an averaging procedure which simultancously

incorporates all information from the imaged region. Duc to the substantially larger sample
which will result, the filter will adapt to the signal component of the image with much greater
accuracy. This implies that the regionally-adaptive method will yicld superior results in
comparison to the locally-adaptive approach, for any given SNR. Within this thesis, it has been

assumed that one such example of regional stationarity would be an ocean wa

e scene as imaged
by SAR. Yet, very little effort has been directed towards suppressing speckle in a process which
is stationary over the entire scene. This is not surprising, because it corresponds to a small subset
of the possible applications of SAR, whereas most filtering procedures developed thus far, have
been motivated by a desire to solve the speckle problem for the general range of SAR

applications.



1.2.4 Speckle and Signal Model for SAR Images of Ocean Scenes

In addition to regional stationarity, if it is also known that the speckle and signal
processes are additive and mutually independent, then the suppression problem is further
simplificd. This is because linear prediction techniques may then be utilized in order to separate
the background image from the speckle. Earlier work regarding SAR imaging of ocean wave
scenes [15], continued to assume the multiplicative representation. However, recent findings in
[16] do suggest that for an ocean wave scene .maged by SAR, the signal and speckle interact in
an additive and independent manner. The theoretical development of this work commences with
an assumption that the backscattered complex field roceived by the SAR, is made up of two
statistically independent fields. One of these, the spiky field, is produced by breaking or near-
breaking sca waves which produce discrete amplitude fluctuations. The other, which is the
background ficld, arises due to system noise and/or the background of non-breaking waves of
uniform scattering amplitude [16]. From this it can be shown that the total image field, 4, is

represented as the sum of two independent image complex fields:

A=A, + A, (1.5)
where the subscripts b and s denote the background and spiky ficlds respectively. The image
intensity is then defined as:

I=4-4" (1.6)

where * denotes complex conjugation. After taking ions based on ensemble averages, the

final image intensity is represented by:
(D = (1) + (L) ()

1t is thought that the dominant contribution to the background tield is due to additive receiver

noise [16]. In most systems, this would be independent of the contribution coming from non-



breaking waves, and implies that the background field might actually be written as the sum of two
intensities:

(1) = (1) + (1) (1.8)
where g represents the intensity due to the wavefield, and r denotes the contribution duc to system
noise.

Given these considerations, and by combining Egs. (1.7) & (1.8), it follows that any
pixel within a SAR image of an ocean wave scenc will have an intensity, x(i,j), which is

represented as:

X(hj) = { i) + (i) } + sCi) 1.9)
Where again, g(i,j) is the pixel intensity due to the wavefield component, #(i,j) is the intensity duc
to system noise, and (i) is pixel intensity due to speckle. Clearly, it is possible to collect the

speckle and system noise terms into a common noisc term, defined as:

n(i) = (i) + i) .10

This permits the image to be expressed as the following sum of signal and noise components:

x(ij) = g(ij) + n(ij) [(R1))
Where #(i,j} is assumed to be coherent noise, due to the presence of the speckle component. Since
beth r(i,j) and s(ij) are independent of g(ij), it follows that n(ij) will also be independent of
g(ij). This establishes the attributes of additiveness and stochastic independence, for the

interaction of signal and coherent noise within a SAR occan wave scene.

13 Motivation for New Approach to Speckle Suppression
It has been demonstrated via Eq. (1.11), that for an ocean wave scene obtained by

SAR, the waveficld and noise components of the image may be viewed as additive, independent



processes. Furthermore, the fact that the image contains an ocean wavefield, permits an
assumption that the overall scene may be regarded as a process which is wide-sense stationary
(WSS), at least within the region bounded by the image margins. Within this scene then, there are

two it wss i the speckle noise and the desired signal; this

is also the assumption which has been taken in [16].

An additional consideration arises due to the correlated nature of speckle in WSS
scencs, which has also been documented in [15] & [16]. Findings in [16) indicate that the ACF
of the speckle decays very rapidly, within only a few lag steps of the zero lag; after this, it
approaches some nominal level of power which is very low in comparison to the ACF for the

signal The implication is that the noise within any given pixel, has

significant correlation with the noise component of other pixels only in its immediate vicinity.

This is also supported by results found in [15], which showed that the second-order statistics of

a SAR speckle 1 1d be asa ighb lation. Given these facts,
it is possible to conclude that the spatial extent of correlation within the noise component of the
image, is much Iess than the extent of correlation within the wavefield component.

The above facts prompt recognition that speckle suppression is possible via an alternate

technique, which differs in ion from methods thus far, C it will

now be asserted that a new method is feasible, provided that certain mathematical prerequisites

are satisfied by the process which has been imaged. Pursuant to this, three conditions necessary

for implementation of the technique may be stated as follows:

o The noise and waveficld components of the image must be additive, and mutually
stochastically independent.

@ The process occurring within the image must be WSS, at least to the regional extent
defined by the borders of the image. This implies that both the speckle and signal

subcomponents must cach be WSS.



[€)) The spatial extent of correlation of the noise process, must be far less than the

extent of correlation of the desired signal component.

Given any situation for which such conditions hold, it is the working hypothesis of this

thesis, that a lincar filter which adapts regionally to the entire image will be capable of off

vely
suppressing correlated noise. The use of a linear filter is motivated in conjunction with Condition
(1), and its regionally-adaptive nature follows from Condition (2). An important ramification due
to Condition (3), is that if the spatial dimension of significant noise correlation can be determined,
then gapped forward linear prediction may be applied to the image as a means of suppressing the
correlated noise. According to linear prediction theory [17], it is possible to derive a lincar
function which operates on the past values of a coherent data sequence. in order to predict its
future values. By this technique, a sequence of data points, x(1), X(2).....x(n), say, may be used
to predict point x(+a), which lies & steps ahcad within the set, If the prediction gap, a, between
x(n) and x(n+a), is greater than the spatial extent of noise correlation, then only the correlated
signal component can be predicted; provided also, that the extent of corrclation of the signal is
greater than or equal to a. As a consequence of this, the predicted sequence is smoothed by the

operator, which suppresses variations occurring at any interval smaller than ec. Therefore, choosing

o to be larger than the dimension of speckle correlation, implics that the noise will be suppressed
when the image is operated upon. Hence, Condition (3) provides motivation for deriving the
desired filter as an a-step forward lincar predictor. Following from these conclusions, the niext

Chapter will provide a mathematical formulation of such an operator, and examine how its

d by the i istics of the waveficld and noise processes

which comprise the image.



CHAPTER TWO

ANALYTICAL FORMULATION OF TECHNIQUE FOR SUPPRESSION OF

BROAD-BAND COHERENT NOISE

2.1 Introduction

The problem of recovering information from a noisy image has typically been

by the use of two-di ional filtering operators, as discussed in [6], [18], [19] &

[20]. However, the applicability of imensi iques to two-dimensional image
processing has also been demonstrated in the literature [21], and provides some impetus for the
technique to be developed herein. Therefore, this Chapter will detail a method by which a digital
image satisfying the constraints of Scction 1.3, can be processed by two three-channel linear
operators. One operator will adapt to the row dimension of the image, while the other adapts to
the column dimension. The row filter triplet then operates to suppress noise within the rows, after
which, the column operator triplet is applied in order to reduce noise in the columns. Initially, it
will be seen that single-channel filters operating sequentially in this manner, will achicve
noticeable and quantifiable noise reduction. However, it will subsequently be demonstrated that
vector stochastic process theory can be applied in order to derive three-channel versions of such
filters. These vector operators wiil exhibit superior noise-suppression capabilities, when compared

to the single-channel versions.

22 Formal Statement of Problem

The problem of obtaining i i a I stochastic process,

in the presence of broad-band coherent noise. will now be formally defined. By way of

14



introduction, consider an image which consists of a two-dimensional process, x(i, defined as:

x(i.)) = g(ij) + n(ij) 2.1)

Such a process is comprised of two components: it will be generally assumed that g(i,j) is a zero-

mean, wid

'y, stochastic band| ignal process, which is independent of the zero-
mean, wide-sense stationary, broad-band noise procss, represented by m(ij). The bandpass
process, g(i,j), is the desired signal about which information is sought. By definition, a stochastic
process is bandpass if its power spectrum contains a cluster of frequency components, in o
frequency band of some width w, which have significantly higher power in comparison to the
nominally non-zero power levels existing at all other points of the spectrum [22]. Such a cluster
of frequencies will be referred to as the effective bandwidth of the process. This definition also

assumes that the frequency f=0 is not a part of the cluster; however, note that the power spectrum

is not required to be zero at this frequency. In a | I case, g(i,j) may i be a
narrow-band process, having a spectrum which is zero at most frequency points, except for a non-

zero cluster of some bandwidth w. With respect to the noise process, #(ij), its broad-band

definition implies that it i of signi ly non-zero power, from all
frequencies within the spectrum.

The form of Eq. (2.1) reveals that any attempt to compute statistics regarding g(i.j), must
inevitably include information from the noise process, thercby biasing estimates of the parameters
which are of interest. In gencral then, if Ofx(ij)] is some lincar operator which computes a
statistic from the image, the expectation of this statistic will ultimatcly be expressed as a sum ol

individual expectations, derived from cach of the signal and noise processes:

Z(o[x(h)]} = Z{0g(i)]} + ElO[n(i)]} @2
It is now clear that the desired statistics pertaining to gfi ) cannot be obtained directly from the

unprocessed image.



One such example of the linear operator discussed in Eq. (2.2) is the Discrete Fourier
‘Transform (DFT), and its computationally-efficient counterpart, the Fast Fourier Transform (FFT).
An expectation operation involving the DFT produces the well-known periodogram [23]. A
periodogram DFT is commonly used in image analysis, and it is often the case that the image data
have been gathered specifically in order to extract spectral information via this operation. In fact,
the principal application of the filtering technique developed in this thesis, will be image pre-
processing in order that more accurate DFT’s may be obtained under conditions of low SNR. In
order to appreciate the need for this preprocessing, begin by considering that the two-dimensional

DFT of x(iyj) is expressed as:
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where N, and N, might represent the total number of pixels within each column and each row
respectively, but which may actually assume larger values in order to improve angular resolution
of £ and f. The column and row frequencies, £ and f;, are discrete frequency points which are
uniquely defined within the normalized range of 0 < (£.f;) < 2= only. From Eq. (2.3), it is easy
to see that a periodogram estimate of the spectrum of g(ij) will also be biased by the noise
component of the image. If the noise has only significant correlation at the zero lag of its ACF,
then a bias will be added to the power of all digital frequencies in the spectrum of g(i,j). Although
this is theoretically a constant bias, when the FFT is used, several frequencies of the noise process
may coincide within the same frequency bin. This combined power produces spurious peaks in

the spectrum, which may be so large as to make them indistinguishable from peaks due to the

16



desired signal. For very low SNR, extensive periodogram averaging may then be sequired in order
1o identify the signal portion of the spectrum.

Additional complications arc introduced if the noisc also has significant correlation at
non-zero lags of its ACF. In this case, the noisc will have a tapered spectrum, with significantly
greater power found in frequencies near DC when compared to frequencies near Nyquist, When
this is added to the spectrum resulting from the signal component of the image, then the overall
shape of th:e power spectrum of the image is distorted. For this situation, periodogram averaging
will not be capable of restoring a shape which corresponds to the spectrum of the desired signal,
because the bias imposed by correlated noise will vary as a function of frequency. Hence, for
spectrum estimation in the presence of broad-band correlated noise, it is particularly important
that the noise power be minimized prior to performing a Fourier transform. This will cnsurc that
the shape of the resulting power spectrum more accurately reflects the actual spectrum of the

desired signal, g(iyj).

2.3 An Adaptive Filtering Solution to the Signal Recovery Problem

A block data-adaptive filter offers considerable promise of effective noise suppression,
when operated in a gapped prediction mode subject to the constraints outlined in Section 1.3. This
type of filter adapts to the signal component of an image process, after statisticaliy-representative

estimates of the correlation functions have been obtained. The block data approach to adaptive

filtering offers superior results in ison to other i because it i

parameter estimates bascd upon all data contained within the image. This differs from locally
adaptive methods, such as gradient estimators, which continuously update an ACF by utilizing
values in the recent past of a time serics, in order to predict a futurc value. A filter derived from

block-d: i contains i ion regarding buth the entire past and entire future of




a finite time series upon which it operates. This provides superior ability for the anticipation of
a future value, within a stationary process.

By selective i ion of i within the ion functions of

a stochastic process, the passband of the block data version of an adaptive filter may be adjusted,
thercby achieving conformance to the effective bandwidth of a signal process. When this operator
i then applied to the image, the noisc component which lies outside the passband is severely
altenuated, resulting in an image scene which has fewer detectable noise components; this filtered

image is an estimate of the desired signal. In order to fully understand the means by which this

may be achieved. it will first be necessary to investigate the lati istics of the

signal and noisc components of the image.

24 Correlation C| istics of Imaged i Y Processes

24.1 General Derivation of Two-Di i and One-Dis i Correlation Functions

It is well-known that the correlation functions of WSS stochastic processes contain
information pertaining to the frequency content of such signals [17] & [23]. As a prelude to
developing one-dimensional filtering operations for a two-dimensional process, it will first be
shown that valid onc-dimensional ACF's and CCF’s may be derived from the two-dimensional

ACEF of that process. It will then become apparent that a two-dimensional WSS process must

consist of two i i processes, ising the rows and the columns
of the image in which it has been captured. To begin, consider that the ACF of the process
described in Eq. (2.1) may be obtained as:

E(x(+tajre) 20D = z'([g(mojw,) + n(ivtgjrep)] [g(h ) +n (i, ]} (2.4)
where i and j represent the row and column indices respectively, within the image matrix. The
symbols 7. and 1, denote the lagged correlation distances along the column direction and along

cancels, via the

the row direction i Since the



independence of the two zero-mean processes, the final result is:

R (TR = Ry(5etp) + R (tatp) @.5)

For the theoretical developments which follow, it will be assumed that R, (t.ty) has been derived
via a regional estimate based on the entire image scene. By use of Eq. (2.5), it is possible to
separate correlation information pertaining to the rows of the image, from that which pertains to
the columns. In order to sec this, let the lagged distance between rows be represented by ., and
the lagged distance between columns correspond to the valuc of t. Then, selting =0 in
R (tc,tg) must yield the regional average of the one-dimensional ACF, r,(tq|f), for the onc-
dimensional signal-plus-noise process existing in the rows. Similarly, setting 7= produces the
regional CCF, r,(te|B), existing between any two rows, x and y, which arc scparated by a
distance of 8. In summary, the one-dimensional regional ACF and CCF’s of the image row

process are derived as:

ry(10) = R, 05 = R, (Op) + R, (O

(26)
TR D) = R(B. = R (Bt + R, (Bisp
by the icn of stationarity, the following very important axiom also holds for
the CCF:
(-t | -B) = r(t4|B) .7

It is casily seen that by performing the same manipulations on % it is also possible to derive the

one-dimensional ACF and CCF’s for the process existing in the columns,

242 Analytical Form of the Two-Di i ACF and its One-Dir i Ce

In developing an analytical form f5: the two-dimensional ACF, it will be assumed that
the signal stochastic process, g(ij), has an ACF which can be approximated as the sum of n
exponentially-damped, two-dimensional sinusoids. This model has been chosen because it offers
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the greatest flexibility in representing a bandpass process. Often, the spectrum of such a process
can include more than one cluster of frequencies, each with power levels which are significantly
greater than the overall nominally non-zero levels; the use of n terms facilitates proper
representation of this case. As well, this representation permits modelling of a narrow-band

spectrum, merely by sctting the exponential damping factors to zero. Moreover, in Chapter Four,

it will be scen that this model adeq the form of two-dimensional ACF’s
which will be derived from SAR images of ocean scenes. Therefore, building upon discussions
found in [24], the two-dimensional ACF of g(i,j) may be represented as:

S el - dealial
$3ia conliny o+ ygy)
i @8)

“(Ng=1) s 76 S (Ng=1), =(Ng=1) € T4 < (N-1)

Ryy(ety

Here the index k denotes the k't clement of some set of size ; ;- and N, represent the total
number of pixels in each column and each row of the image, respectively. The digital phasor

increment pairs, . and awy, are defined to be:

J2nhe o 2mAy
. & gy
LR

D
where (Lc,Ly) € N, Lo<Ng, Ly<Ny
and (e dyp) € {(AohipenRaoh,d ) € {(Aohp) € 17| 05Ac<Lo0 <A< Ly )
(2.9)

1t will be assumed that Z,. <€ N,-and L, <¢ N,; since N,. and N, are the dimensions of the image,
this implics that the two-dimensional ACF will incorporate many cycles of its lowest-frequency
component. Furthermore, the subset indicated in Eq. (2.9) is defined to be a not-necessarily-

contiguous subset of I,
In Eq. (2.8), the term g, represents the amplitude of the & 't/ two-dimensional sinusoid

in the ACF. For each such sinusoid, the terms d,. and djy represent the damping factors along the
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column dimension and the row dimension respectively. For any given &, these terms may or may
not be equal; this accommodates the possibility that an imaging; system gathers information for
the row dimension, in a manner which differs from that by which it obtains column information.
Since it is known that an imaged scene will be affected by the point spread function of the
imaging system, it follows that this influence must ultimately be reflected in the autocorrelation
data which are extracted from that scene. By convention similar to above, it will be assumed that
each amplitude factor and each damping factor pair, represent the k 7/ elements of their respective

not-necessarily-contiguous subsets of size n, defined as:

a €{a,..a,}c{acR|0<ax=) 2.10)
(dyndi) € { (dyndyp)s o (dyendyp) | < { (dindp) € B |0 s <m0 sdg<o)

Therefore, Eqs. (2.8), (2.9), and (2.10) describe the general approximation of the ACF for a two-
dimensional bandpass stochastic process contained in a digital image. In the special case where
the damping factors are identically zero and the process is narrow-band, the ACF in Eq. (2.8)

reduces to a sum of » periodic sinusoids, with cach k't component having an amplitude of a;.

With respect to the noise component of x(i,j), shown in Eq. (2.1), it will generally be

assumed that n(i,j) is a correlated process. having a two-dimensional ACF which is
as:
c .
R Got) = L % AGwy) 8(te-u,ty-v) @11
e

Here, A(u,v) represents the amplitude of a two-dimensional delta function, &(t.,1,), and the
constant ¢ is a non-negative integer which defines the extent of correlation of the noisc process.
While it may actually be the case that the extent of noise correlation in onc dimension of the
image is greater than in the other, the magnitude of ¢ should represent the maximum of these two

values. It will eventually become apparcnt that the derivation of row and column filters using
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different minimum prediction gaps, as permitted by two different values of ¢, would produce

generally undesirable results. From Eq. (2.11), it is clear that R,,(tc,Tz) is equal to zero for either

| %] >cor | %] > ¢ a special form of Eq. (2.11) occurs when ¢=0, in which case the

contaminating process consists of white noise only.

From Eq. (2.6), and by setting 1c=0 in Eqs. (2.8) and (2.11), the one-dimensional

regional ACF for the row component of the image process now becomes:

ryg|0) = ; age ' cos(gt) + ): A(0,Y) 8(0,54-v) @i

(R 10) + Fo(5al0),  where -(Ng-1) 55 € (Np-1)

Carcful inspection of Eq. (2.12) will lead to four important conclusions, which will have

significant implications for subscquent discussions:

ny

@

[©]

[O)]

7,(t]0) contains no information regarding the phase of frequencies relative to one
another within a given row.

For values of |1,| > ¢, the row ACF contains only information relating to the row
component of signal process g(i,j), that is, #,,(Tg | 0) = 1y, (Tr | 0). This is due to the fact
that any contribution to the ACF from the row component of n(ij), is zero for these
values of t,.

If the damping factors, dy. are identically zero, then for |7;| > ¢, there exists some
integer, 1, such that r,(t|0) is periodic; that is, ry(|ta| |0) = ry(|e|+[n| |0) and
rolltwl 0= ryClwl-Inl 10

If the damping factors are not identically zero, then the ACF will decay as |ty
becomes large, and the periodicity property will no longer hold. In particular, if d,; >
> ... > dy then for |1z]| = |g| > ¢, where g is close to ¢ say, the cosine component

associated with d, will i moderate ion in ison to that of the
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cosine component associated with d;. However, for very large ¢, the component
governed by d, will exhibit severe attenuation when compared to that of the component

governed by dy.

Also, by Eq. (2.6), the regional CCF of the row process s derived by setting t. = 8 in
Ro(tc,Ty), where § is the desired distance between any two rows of the image. By inspection of

Eqgs. (2.8) and (2.11), it is scen that this will yield:

Y a, e el o5, B+ wptp)
_
ry(TplB) = G & @
+ T Y Awy) 8-uc,)
e Ve
= Ton(TRIB) + 1y (TRlB),  where ~(Ng-1) s tp s (Np-1)
Study of Eq. (2.13) will also lead to four significant conclusions:
) Teu(Tx|B) contains a constant phase term, w,8, which is introduced by the column

dimension of imaged waveficld g(i,j). This indicates that the CCF retains information

regarding the phase relationships which exist between the row f the desired

signal process. It is, in fact, this very phasc relationship which preserves the one-
dimensional process existing in the columns.

@ The noise component, #,,(tz|8), can be removed, cither by choosing 8 > ¢ prior to
deriving the CCF or by taking |74 > ¢ afterwards.

(€] Similar to the ACF, the CCF will also exhibit periodicity for |te| > ¢ if the damping
factors are all zero. For non-zero damping factors, the CCF behaves in the same manner
as does the ACF for observation (4) above.

(4)  In addition to the damping which oscurs as a function of t,, the CCF also contains a

-dielPl

constant damping term, e , which is introduced by the column component of the
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two-dimensional ACF. Therefore, if at lcast one of the damping factors is non-zero, then

the power and shape of the CCF will be altered by changes which occur in either T, or

B.
G lly-speaking, it has been ion to treat the ACF and CCF as separate
entitics, despite the fact that they are i very similar. i by inspection of

Eqgs. (2.12) and (2.13), it is seen that the ACF may be regarded as a special case of the CCF, for
which the parameter 3 is zero, Given this, most subsequent mathematical discussions involving
correlation information will take a unified approach, by working only with the analytical form of
the CCF. The corresponding result for the ACF may then be instantly realized, merely by setting
B = 0. Furthermore, throughout this report, correlation functions for which al/ damping factors
arc identically zero, will be referred to as Case I correlation data. Functions which exhibit only
positive damping factors, will be referred to as Case Il; combinations of zero and positive

damping factors will define Case 111 correlaticn data.

243  Spectral Characteristics Within the Signal Component of the CCF
The spectral content of the signal component of the CCF, will eventually be shown to

have a significant impact upon the filtering technique being developed. Consequently, a detailed

of the freqy -domai ion for this portion of the CCF is now warranted.
To begin, consider a subset of size N, comprised of contiguous coefficients taken from
the right-hand side of r,,,(%4|8), for which the correlation lag is non-negative. This subset may
be represented as:
Teryinso ™ { Teny(Tr | B[ 0 TpsNp=1 ) = {1 (O1B), 1 (1[B), o 7 (Np-11B)}

(2.14)

where the elements Of 7,0 are ordered according to increasing values of 7. By analysis of
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Fwaoy it is desired to obtain information regarding the spectral content within the row component
of its generating stochastic process, g(i,j). This analysis will be performed upon some contiguous,

ordered subset of chosen size £ < N, found within r,

o

20 and defined to be:

Feict@ ® { TonTr 1B | @ s Tps @bl ) = (1, (@|B), vy r(a+E-1]B)}
(@.15)

where e is a non-negative integer, 0 < o < N;-£. By changing the value of e, given fixed &, it is
possible to window several equal-length subsets of the CCF, in order that an independent spectral

analysis may be performed upon each one. The frequency-domain mapping of 7. represented

a5G,,(flou ), will beachieved viath imensional Discrete Fourier Transform (DFT), formally
defined as:

2]

G (flaB) = X ry e |B)elr

X0

(2.16)
forfe {%‘i e=0mt-t]
and, 0 < o s Np-§
1t will be assumed that £ can be chosen such that (¢/L,) € N that is, L, from Eq. (2.9) divides ¢

with zero remainder. The reason for this assumption will become apparent from the discussion in

Appendix 1. Furthermore, by usc of the well-known identity:

cos(0) = i# @1

the spectral analysis will be performed only for the ncgative complex exponential component of
each cosine term occurring in #,,(tz | 8). Given these considerations, and for any chosen values
of a and @ occurring in the signal component of Eq. (2.13), the frequency-domain behaviour of
Fyo(ta| B) may be categorized by three possible cases, based upon values taken by the damping

coefficients, dj and dyy, k=1,...1.

25



2.43.1 Case I: Damping Cocfficients are Identically Zero
Consider first, a case for which the damping cocfficients are identically zero, such that
dy=dy=0, for k=1,2,...,n in Eq. (2.13). In Appendix |, it has been shown that upon evaluation

of the DFT in Eq. (2.16), G,,(fl.8) may be expressed as:
.
Gy(flap) = % E%,-n-.gn....-)u,_,_,", (.18)
=1

From this it is clear that the spectrum of r,,,(z | 8) contains complex phase terms, introduced by
the avand B8 parameters. Assuming that w,, # wy, fora # b, it is seen that for any k'th frequency,
aw,y say, only the k 'th component of the summation on the RHS of Eq. (2.18) is non-zero for fixed
/- This condition has been imposed by the presence of the delta function, and shows that for any
given £, only one of the # terms can be non-zero, This implies that for any two arbitrary disjoint
frequency pairs, (w,e,w,y) and (wy.wy,) say, the a'th complex vector never interacts with the b 't
complex vector during the summation operation which defines G,,(fa.8). This is because when
the frequency response due to the first pair is non-zero, the frequency response due to the second
must be zero, and vice-versa. For any f therefore, it follows that the resultant of the vector
summation in Eq. (2.18) is still the k'th non-zero complex vector. Hence, the magnitude of this
resultant is constant for all o, and the only change which the resultant will experience due to
varying o, is an angular advance of its phasor.

To extend this argument further, suppose now that for / < p < n, there exists p terms
in Eq. (2.18), all of which have the same value for w,g, but each of which has a distinctive phase
term, wy,.. In this case there must be p terms involved in the summation of Eq. (2.18), however,
for cach term, the initial phase value, w,., is independent of a. Careful thought will reveal, that
these p complex vectors will maintain their same magnitudes and relative positions in the z-plane

for all a: again, the magnitude of the complex vector resulting from the summation will be



independent of a. The ultimate ion, is that magnitude i ion for each value of fin

Eq. (2.18) is independent of a. Conseguently, the spectral power representation of r,.,,(ty| 8) will
be constant for all values assumed by this parameter under Case |. For the same reasons just
given, it is also easy to verify that variations in the value of 8 will have no effect upon the shape
of the spectrum.

A special case of Eq. (2.18) may be derived by sctting a=8=0, which produces the
autospectrum for the row component of g(ij). In this situation, it is casy to see that G, (10.0) is

defined as:
G, (£10,0) = EE—H(F Wgg) 2.19)

Therefore, it has now been shown that the one-sided autospectrum of the row component of g(ij)

consists of lines only, when the damping coefficients are identically zcro.

2.4.3.2 Case Il: Damping Coefficients are all Non-Zero
Given the case in which all damping factors arc non-zero, derivations presented in

Appendix I reveal th~ he DFT of 7,,(t;| 8) may be expressed as:

2ot dovu])  sinh{de€/2
sinh{(dyy + jeozp - Jf )12}
(2:20)

o1em - 5 2 2 (emraf2)) o [ R

Inspection of this equation reveals a situation which is very different from that which was
represented by Eq. (2.18). An assessment commences by noting that the sinh function in the
numerator can be zero only if dy, = 0 or & = 0, both of which are impossibilitics under the
assumptions defining Case Il This means that for every f, G,,(fla,B) is the complex resultant of
n complex terms, each of non-zero magnitude. Since, in general, w,, # w,, for @ # b, the n
complex vectors in Eq. (2.20) will not maintain constant relative distances in the z-planc as a
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changes. This implies that for any fixed f; the complex resultant of the summation will vary with
changes in a. Hence, the magnitude of the resultant will in part be determined by the degree of

destructive i hich during addition of the n complex terms. This

suggsts that for cach £, variations in the magnitude of G,(fla,8) would be cyclical if o were to
increase without bound. In addition to this, the relative contributions from the exponential
damping factors will also change with o, more rapidly for some of the n components than for
others, When these considerations are taken into account, they clearly demonstrate that the spectral
representation of the bandpass process is dircctly dependent upon o, and the DFT of £ (t:|8)
cannot be uniquely defincd. It is also casy to sec, for fixed o, that varying the value of 8 will have
an equivalent cffect. Therefore, magnitude information pertaining to any f in the spectrum is
directly affected by the values which these parameters assume.

An examination of the special case in which a=3=0, rcveals that the autospectrum of

the bandpass process existing in the rows of the image is represented as:

g a2 ) sinhidatizy
G100 = F 5 & Sith{(dyg +J g -3 )17

‘Therefore, it is casily scen that the autospectrum is also non-zero for all f. It now follows that if
the exponential damping factors are all non-zero, then the autospectrum of the row component of
2(i.j) can never be represented as a line spectrum.

Further to these observations, consider also the cross-row spectral power coherence
function, which indicates the relative power of thc bandpass frequency components between any
two rows, x and y. This is usually computed with a=0 in the one-sided spectrum, and is defined

as:



G102
[G..710.0)][G,(F10.0)]

»
i
]

Yolf10.8) =

Based on the above discussion, since the autospectra and cross-spectra change as a function of 8,
italso follows that the cross-row coherence function must similarly change with alterations in g.
In Chapter Five, evidence of f-induced variations will be presented, in order to verify the presence

of Case Il data within SAR imagery of two ocean wave scenes.

24.3.3  Case I1I: Damping Coefficients are Combination of Zero and Non-Zero Terms

Lastly, consider the situation in which only some of the n terms in Eq. (2.20) have non-
zero damping factors; this is known as a mixed spectrum [25]. In particular, let the first a<n of
the terms have identically zero damping factors, and let G, (fjce. 8), represent the v 't term in the
summation of Eq. (2.18). Similarly, let the remaining n1-a=h of the terms have non-zero damping
factors, and let G,(flB), represent the u 'tk component in the summation of Eg. (2.20). Given

these conditions, it follows that the sum of thesen = & + b terms is represented as:
" »
G (fle,B) = ¥ G, (fle.p), + ¥ G, (f]e.B), @)
“ &

‘The implication of this relationship is that if at least one of the damping factors is non-zero, then
the influence of G, (fle.,B),, described by Case II, will mean that a unique spectral estimate cannol
be found in G,,(fla.f). Additionally, by the findings oblained under Case II, it also follows that
G,(flee.) in Case Il can never consist of lines only, if at least one damping factor is non-zero.

‘The facts highlighted by the above three cases, provide information which will e crucial
in assessing the capability of the scalarand vector Wiener filters. While Case 11 correlation has
been briefly discussed, this has been conducted only in the intercst of completeness. Subsequent

investigations will deal exclusively with Case | and Case Il data; from these, ramifications for
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Case 111 data will be readily apparent. With this information now established, it is possible to

proceed with development of the Wiener filter operators.

25 Block-Adaptive Wiener Filter for Scalar Stochastic Processes
25.1 Overview

A one-dimensional scalar stochastic process, x={x()li=/.....N, }, consists of a sct of
data points, x,¢j), which denote the magnitude of observations made on the process which exists
in row i, at discrete points along the column index j. When applying scalar process theory to the
digital image of a two-dimensional wavefield, it is assumed that each image row of length Ny,
represents a set of point-wise observations. Each such set constitutes the i 't row realization of
a parent stochastic process from which all rows have been generated. This is consistent with the
fact that Ry, (011) = (x| 8=0) represcnts the expectation associated with the zeroth colunn lag
in the two-dimensional ACF, which has been obtained over all rows of the image. Therefore, the
parent process which is represented by 7, (tz| 0) contains information which is common to all
rows, due to an averaging of the correlation functions; in fact, this parent process is determined
via the expectation of ACF's from individual row process realizations. Note also, that it is not
possible to characterize any given row realization as ergodic, because, while the two dimensional
process is assumed to be of zero mean, it is highly conceivable that the individual row processes
may have unequal, non-zcro means. This would occur with a situation in which a DC offset in
the rows is modulated by a wavefield which exists only in the columns.

Consider now, an arbitrary i 't row and an arbitrary j 7/ point located within that row,
say point g(j). Then around this point, there exists a two-dimensional zonc within which there is
significant correlation relating point g,j) to other points within the i 'th row, and with points in
any adjacent (#+8)'th row. As verified by the form of Eq. (2.13), the strength of this correlation

decays with increases in 8 and 1y, if at least some damping coefficients are non-zero. However,
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by the assumption of stationarity, an equivalent zone of correlation exists around each and every
other point in the image. In terms of the underlying signal process, the cross-row correlation
corresponds to a phase shift between rows, which has been introduced by the column component

of the two-dimensional signal process. prior to any filtering procedure, there will

also exist an additive noise svhich has signi ion both within and between

rows. Consequently, in terms of its rows, an unfiltered N,. x Ny image consists of a set, V. of one-
dimensional, noise-perturbed, phase-shifted processes defined as:
X = x| i=LNe }

= [P} 0= LN gl )=

In a block-adaptive filtering approach, it is desired to derive a sot of cocfficients,
Ity (rlce8)| =0, 1,...£-1}, where the h(H,B) are cocfficients belonging to a linear operator

of some length £. This operator has been designed based on the relationships exis

ng between
all x and x,,, which are € X, where B is some integer which is held constant when obtaining
estimates over all the x,. The information which is required in order to construct this operator, is
found within the zone of correlation which surrounds cach point in the image.

An estimate of the desired signal occurring within cach noisy x,, is represented by the
set 8={@,G18) |j=1,...Ny}; it may be obtained by applying the lincar operator to cach x,,,, via

the following convolution operation:
&l
£010B) = X by @B xp(ir-a) @25
=

where o is the length of the prediction gap of the filter. By applying this operation to all
clemental subsets of X, it is possible to produce a new set of phase-shified, onc-dimensional,

noise-suppressed signal processes, G, defined as:
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G = {gli=1,Ne |
= {{eiile.p)i=1

Ny (E2(F 1@, B) [7=LosNgh e (8 7 120 B) [i=1,N )

(2.26)
‘The ultimate product then, is an cstimate of the set of one-dimensional signal processes existing
in the rows of the image; within this noise-suppressed domain it is possible to obtain more
accurate information regarding the signal of interest. For convenience in subsequent notation,
observe that &, and G are the filtered estimates of their respective actual image components, g, and
G. The desired linear operator which will yield such estimates is the scalar Wiener filter, described

in 26, [27), and derived in the next Subsection.

252 Scalar Wicner Filter: icai Derivation

To formally introduce the derivation of a scalar Wiener filter, hegin by considering a
case where, for all x, € X, it is desired to derive a set, /i, comprised of £ linear function
coeflicients, /1,,(rl,B); here, the subscript xy denotes the transfer function of row y into row x.
‘This function is to operate on the row process set y=x,,;, for the purpose of predicting each j'th

value of the signal process occurring within some proximal, phase-shifted set, x=x,. The prediction

is to be based on ¢ previous points in the sequence y=x,,. Furthermore, relative to the j 't/ value
of x=x, the ncarest point of row y=y,,4 is e steps in the past, along the row dimension. This
relationship may then be summarized as:

hey(O o, BYx, (=) + by (1 | e, B)x p(F-e=1) +ooot by (B-1 |, B)x, g (j-a=E+1) = x,(J)

@27

If o=1, then this is the one-step predictor commonly referred to in the literature [27]. The

derivation process is commenced by rewriting Eq. (2.27) in vector notation as:



x,p0-a)

X,p(j-a-1)

[ 1aB) A1 [a,B) ~ By E-1]aP)] x =x  @®

. pCi-a-E+1)
Multiplying both sides of Eq. (2.28) by the transpose of the stochastic process vector now gives:
[ ©1e.B) Ayt [aB) - h(E-1|e.p)] x

X=X (-8) B gGea-) o X a,(e-E )
Xiug(m@ =15, (=0) X g(-a-1x, p(j=a-1) - :

e =E+ 8y (-a) Xy amE D, a-E )

= [%(DxpG@) (DX pG-a-1) = x(/)x,p(j-e-E+D)]
(229)
Upon taking expectations of Eq. (2:29) for all i and all /. the following result is oblained:

010 r(1[0) - r -1]0)

r(-110) r,©]0) -
[0l e.B) By (1]a,P) = hy(E-1]aB)] x| . L

ro-E+1l0) - -~ r(]0)

= [ry(@ | B) ry(es1]B) - r(a+E-1]P)]

(2.30)
Where ,,(;| 8) denotes the regional expectation of the one-dimensional CCF for any two rows
of the image which are 3 steps apart, and r,,(ty | 0) represents the regional expectation of the one-
dimensional ACF for x,,4. Note here, that since the RHS of Eq. (2.30) is dependent upon bhoth
o and B, then the scalar transfer function occurring on the LHS is also dependent on these
parameters; this necessitates usc of the notation /1, (r|,8). As well, for notational convenicnce

during subsequent references, Eq. (2.30) may be expressed as:

33



Riyg X Reyp = Mg @31

“The solution for 4, . is achieved by multiplying both sides of Eq. (2.30) by the inverse of R;..

2.53  Prediction Effectivencss of the Scalar Wicner Filter

‘The preceding discussions imply that a given realization of the row process, in row i+8
say, may be used to make predictions about another realization of the same process, in row i say,
which is 3 steps away in the column dimension. This predictability relies upon that relationship
which must exist between signal processes in the rows in order that signal processes in the
columns be preserved. Within their zone of significant correlation, the individual realizations of
the row signal process arc not mutually stochastically independent; hence, the behaviour of row
i+B must have implications for the behaviour of row i. There are however, practical limitations
to (his assumption of predictability, both between rows and within rows. Such limitations are
directly related to the characteristics of the zone of correlation which surrounds each point in the
image.

In order that the relationship between filter i and correlation

of the signal process may be fully understood, it will now be necessary to examine the
characteristics of a general linear operator which makes predictions on a noise-free process. Given
this, consider the situation in which a two-dimensional stochastic process, g(i,j), exists in an image
which is free of noise; the j' element within the i'th row component of this process is

represented as g,(7). In such an instance, it is easy to see that Eq. (2.25) becomes:
(=]
&(J1ap) = X h(rie,p) g (i-r-a) @32)
o

where the symbol ~ is used to denote the estimated value of g(j) which has been obtained in the

absence of noise. Now. if &(jla.B) is the estimated value associated with the actual value of g,¢j),
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then row process g, is considered to be predictable
§ilap)y-g(j) =0, forall iandall j (2.33)
It can be shown [28] that this relationship holds if and only if the autospectrum of g, consists of
lines, in the form represented by Eq. (2.19). Of course, it follows from previous discussions that
the expected autospectrum of g; is also the expected autospectrum of g;,,.. for all 7 and all B: this
permits the application of Eq. (2.33) to the cross-channel prediction in . (2.32). Consequently,
unless the expected autospectrum of g, consists only of lines, the generating stochastic process is
not predictable. In Section 2.4.3, it was shown that for the case of non-zero damping coefticients,

., for Cases 1L and [ in Section

G, (fla.B) could never be represented as a fine spectrum. Hen
2.3, it now follows that the output of the Wicner filter from the noise-free operation of Eq. (2.32)
cannot satisfy Eq. (2.33).

If a process does not satisfy these conditions, it is possible that it may be described as
weakly predictable, provided that its spectrum is band-limited. This definition requires that

G, () = 0 for £ > o, where g is some value between 0 and . However, for the situation

which is of primary interest in this thesis, namely that of Case Il data, g, is merely bandpass.
Therefore, as shown by Eq. (2.21), it will have an expected autospectrum which is non-zero for
all £, since there are non-zero damping coefficients in the expected ACF, Hence, except for Case
I, the process represented by the expected ACF cannot be band-limited, and therefore it does not
satisfy the condition for weak predictability. It now follows that G, (eB) in Case II, and
G, (fle.B), in Case 111, both satisfy the definition of an unpredictable process as discussed in [28].

This introduces Wold's decomposition, which states that any arbitrary unpredictable

process, g say, may be written as the sum:
8= 8ir * 8ip (2.34)

where g,, is known as a regular process , and g,,, is a predictable process. Furthermore, g, , and
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&, arc orthogonal in the statistical scnse, that is &g, () * &,()) = 0. Hence, g,() is a
component of g,(j) which cannot be determined from previous values of the sequence, say g(a)
for a < j. On the other hand, g,,) is predicted cxactly by these previous values in the sequence.
In fact, it has been shown that if g(jle.B) is the predicted value of g,(j) obtained in the absence
of noise, then it must also be the predicted value of g;,(j), and &(j|e.8) = g,() since the regular
process component, g, ,(j), cannot be determined from the prediction operation [28]. It can further
be shown that g, , has a spectrum which consists of lines, whereas g;, has a spectrum which is
non-zero for all f and whici, does not contain lines. The resulting implications for Case 11
corrclation data, is that process g, may be scparated into a component which is predictable by .,
within Eq. (2.31), and a component which cannot be predicted. For Case II1 it is seen that there
are two predictable components; one has the spestral representation of G,,(f|.8), from Eq. (2.23),
and arises naturally due to the undamped portion of the ACF; the other may be defined as
Gy (fler. ), which arises due to Wold’s decomposition of G, (flev.B),..

A prolonged examination of the implications arising from these observations is not
warranted. In preparation for subsequent discussions, it is merely sufficient to establish a general

conclusion for Cases 11 and 111, that, in the absence of noise, &(le.8) # g(j), hence:

&{[g0ilaB) -g(/)]) = € >0, foralliand for all j (2.35)
Consequently, cxcept for Case I, even in the absence of noise contamination there will exist a

finite non-zero error variance, &, due to differences between the predicted and actual values of g,.

254  Scalar Wiener Filter; Frequency-Domain Transfer Function
In order to address the noise-suppression characteristics of the scalar Wiener filter, it is
necessary to examine its performance in the frequency domain. To facilitate this, begin by

abserving that Eq. (2.30) may be rewritien as:



[[g h,,(blu.B)rx’(-b!0)}.{§h,,(blu.ﬂ) r,,(l—blo)], {:: h, ,(bIa,g),u(g.pb]a)”
= ol B ro@e1[B) = roeE-1]p)
2.36)
This reduces to the Wiener-Hopf equations [26]; recalling that ¢ denotes the extent of noise
correlation, and that by choosing e > c it is possible to exclude the noise component from the
RHS of Eq. (2.36), the Wiener-Hopf equations may be expressed as:

o
Y hyblap)ry(c-b|0) = r, (x+a|B),  forx = 0,..-1 AND a>c

=1
£-1 &l
)_‘E Iy (b B) 1y (6=b]0) + 3 h, (b e, B)r,, (k-b0) = ry, (x+a|B)
= =
(2.37)
‘The frequency-domain transfer function may be derived by usc of the Diserete Fourier Transform,
previously defined in Eq. (2.16). Therefore, multiplying both sides of Eq. (2.37) by ¢* and taking
summations over «, gives the one-sided spectral representation of the DFT with & > ¢, as:
£

€-1 &1 (et
):{g n,,(b|u.p)r,,,(x—b|u)}e”= . );{g hb]a,B)r,, (x-b|O) e =

-1
=

&1
3 rplra | Bel
3

(2.38)

Since, by the properties of the DFT, a time-domai ion mapstoa
in the frequency domain, the final result of Eq. (2.38) is a summed product of spectral density

functions, expressed as:
H,(f1a,P)G,(f10) + H(fla.B)N,(f]0) = G, (fe,B) (2.39)

Study of Eq. (2.38) will verify that the bandpass spectral estimates on the LHS of Eq. (2.39), are

derived from a different set of correlation coefficients than are those on the RIIS; however, if

37



a<t, then there will be some degree of intersection between the sets. Moreover, the estimate
occurring on the RHS is, in general, dependent upon variations in « and 8, whereas the estimate
from the LHS is not affected by changes in these parameters. Finally then, the frequency-domain
transfer function for the scalar Wiener filter may be expressed as:

Gy(flep) (2.40)
G(f10) + N(f|0)

H(fla,p) =
Inspection of this cquation will readily confirm that since the numerator is affected by changes
in « and B, given Case IT or Case IIl spectra, a unique frequency response cannot be obtained.
‘Therefore, a very significant ramification is that the magnitude response characteristics for the
passband of this filter will change with any variations in cither o or 8. In fact, it is only for Casc
I spectra that the passband magnitude will remain constant over all possible values of these two
parameters, In cffect then, for Cases Il and Il each form of A, (fla.) which results from each

unique combination of o and B, represents a different realization of Wold’s decomposition for the

process which is being operated on; some realizations will be closer imations to the actual

signal process than others will be. From this, it also follows that prediction accuracy, as measured
by € in Eq. (2.35), must also vary according to the parametric values which determine the shape
of Gy (flaf).

Of coursc, the relative phase del istics b ies within the transfer

function of the filter will also change for Cases Il and I, due to variations in the shape
parameters of the CCF. This is a direct consequence of the interactions which occur between

several non-zero complex terms within G,,(/la.f), which forms the cross-spectrum within the

numerator of Eq. (2.40). Further to this, however, it is also very important to understand that the
Wiener filter derivation procedure secks only to minimize the estimation error, & in Eq. (2.35),
for any chosen a and . This reduces to an optimization problem which imposes no additional

constraints on the solution [27]. In particular, there exists no constraint that the filtered output be
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undistorted, with respect to the original phase relationships existing between frequencies within
process g. This means that, in gencrul, the filtered output will be phase-distorted for all three
cases of the CCF previously described. It will later be scen that this distortion can be *eversed
during the actual filtering operation.

As a final observation, note that in the casc of coherent noise, the value of N, (f0) is
not constant for all /. In fact, the noisc spectrum tapers such that the magnitude decreases with
increasing f. Given the relationship defined by Eq. (2.40), it is casy to scc that this uneven noise
spectrum will induce a different gain factor for each value of /. This too, will occur under all three

cases of the CCF previously described, and implics that cven for Casc | data, the desired signal

cannot be perfectly recovered.

Based on these considerations, it is possible to conclude that a Wiener filter operating
in a gapped prediction mode, can never completely recover a stationary process which has been
contaminated by coherent noise; hence, for such sitcations it is a general rule that &(jle.8) # £,0).

This establishes one source of error for the filtering technique which is being developed.

255 The Scalar Filtering Operation

To investigate the effectiveness of the scalar Wiener filter, begin by observing the

relationship represented by Eq. (2.40). From ison of th and i terms,

it is seen that frequencies which occur with very low magnitude within the signal process,

., but
which oceur in the noise process with relatively high magnitude, will lead to a frenuency response
which is of minimal amplitude. These frequencies comprise the stopband of the filter, and will
be suppressed during the filtering operation; it is casy to sce that this rclationship further impedes

the predictability of a bandpass signal, since its lowest-power frequencies will be attenuated.

However, frequencies which possess power levels that are approximately cquivalent within both
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the noise and signal processes, will remain relatively unattenuated; such frequencies will therefore
comprise the passband of the filter.

To provide a formal illustration, based on a one-sided spectral representation, let G,
denote the subset of frequencies having significantly above-nominal magnituds within the
spectrum of row signal process g, and let N, be the st of frequencies found in the noise process.
By definition, this latter set will contain components from all digital frequencies 0 < f < =,
whereas the former set will contain only some values of £ Similarly, let 7, be the set of
unattenuated frequencics which define the passband of the filter, and let S, represent the set of

suppressed frequencies which comprise the stopband. Given these conventions, the passband and

stopband i may be formally ast

P= G,NN, =G
S = N,- G NN =N, - G

(241)

Hence, the filter is capable only of suppressing those frequency compax:ents of the noise process,
which have significantly greater magnitudes than their respective components within the signal
process. This reveals that a portion of the noise process will be passed by the filter and continue

to contaminate the estimate, £, of the row process. In fact, the bandwidth of that portion of the

which is by the filter, is ional to the idth of sij

powerful frequencies found within the signal process. The resulting implication is that for any
fixed level of noise, effectiveness of the filter will decrease if this effective bandwidth of the
signal process is extended.

This establishes a second source of error for the filter, and prompts the rewriting of Eq.

(2.25) as:
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€1 &1
£(j]a,p) = )_“ahx,(rlu.ﬂ)x,.,(j-r—n) + Eh(rleBn,(-r-a)
= =

=glle,p + tiéh,,(r[a.m mupli-r-o)
« gle.B) = &(Fla,p) + ri(jlwB)

(2.42)
where ##,(j|e.f) is a filtered version of the noise process. Therefore, it has now been shown that
2,18) has two sources of error; one source arises duc to the fact that only some components
of g, are predictable, while another occurs because the Wiener filter cannot suppress all noise
frequencies.

Based on these conclusions, the onc-sided spectrum of % may now be represented as:

Gfle,B) = |Gl e, B | 1 |N(f|a,py|e 1P (243)
Whereupon it is seen that the LHS is the complex resultant of two independent complex terms
occurring on the RHS. Of particular relevance, is the fact that due to the independence of the
signal and noise processes, the phase of the noise process is not in any way related to the phase
of the signal process. Momentarily ignoring any distortions which taay be imposed on G,(flee.8)
due to non-linear phase attributes of the filter, it is seen that e will be phase-distorted due
to the additive cffect of the residual noise, Nj(fla.8), which is generally not in phase with
G (fla.B). Consequently, that portion of the noisc process which is retained will continue to
distort the desired signal. Although the filtered result will represent a significant improvement over

the unfiltered version, it will still possess a finite signal-to-noisc ratio expressed as:
< 2
R, = J—(f‘(f e.0) |l (2.44)
|N(flep) |
where the subscript / has been used to denote the fact that this SNR results from the one-channel
Wiener filter.
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While the retention of noise is unavoidable, in principle it is possible to modify the
filtering operation in order to minimize this problem. In this regard, the objective will now be to
derive three distinct versions of the scalar transfer function, /. For the sake of this immediate
discussion, it will be assumed that the signal correlation data are unaffected by changes in either
a or B, so that all three filters will have an identical frequency response. Pursuant to this, suppose
three values are defined for B; specifically, let these be -8 and +8 for 8 > c, and 8 = 0. Then,
let row x,,, be referenced as the Channel 1 input, row x, as the Channel 2 input, and row x,., as
the Channel 3 input. Furthermore, in order to simplify notation, let x,=x, 5, x,=x,, and x,=x,, for
any i or f; thercfore, x, represents the (i-B) th row, x, represents row i, and x; represents row
(i+B). Given this, I, is the time-domain transfer function of Channel 1 into the row estimate for
Channel 2, or cquivalently, row x,., into row estimate g, Similarly, 4, is the transfer function of
X, into row cstimate &, and A, describes the mapping of x,,, into g,

By operating on their respective (i-3)'th, i'th, and (i+B)'th rows, the three transfer
functions cach produce an estimate, g, of the signal process, g, existing in the i 74 row. These

operations may now be summarized as:

e

&) = T hy(Nx(i-r-a)
=
&1

8i) = D h(r) x(j-r-a) 2.45)
=0
&1

&30 = X hy(r) x(i-r-a)
r=0

where the notation on the LHS denotes the estimate of the Channel 2 process, based on the inputs
from Channcls 1, 2, or 3. An estimate of the desired signal process for any i'th row is then

expressed as:



3
&) = —;): bnli) (2.46)
by

This technique i adistinct noi ion ad: aver the one-channel approach,
which is best through a frequency-domai ion. Therefore, taking Fourier
transforms of the filter outputs in Eq. (2.45) yields a three-channel version of (243).
represented as:

G, = |§2( f)[e"“"” & ' Ny /)i,-lnir/)

G“(f) - Iﬁz(f)lerislm . l"z(f)i’w!m (2.47)

Cos(h) = |G & [Ny e 74

This notation implies that the phase values for all three estimates of the signal process
are equal, whereas the phase values for the noise estimates are uncqual. To understand this, recall
via Eq. (2.40), that the cross-channel transfer functions, i, and hy,, will incorporate information
from the CCF proper. Further to this, by Egs. (2.20) and (2.18), it has been shown that the CCF
retains information describing the relative phase relationships, which exist between the individual
row components of the signal process. The incorporation of this phasc information into the cross-
channel transfer functions, enablcs these operators to cither delay or advance their respective
outputs. This is needed, in order that the phase of the signal estimates from Channels 1 and 3,
may match the phase of the signal estimate from Channel 2. It is facilitated by the fact that the
distance between rows, B, is chosen such that a significant correlation continues to exist between
the signal components. However, recall also that this separation distance exceeds the zone of
correlation for the noise process, since 8 > ¢. Consequently, the filters have no cross-channel

phase information pertaining to the noise process. In fact, for @ so restricted, there will be no

phase coherence between noise components existing within any two rows which arc scparated by

this distance. Therefore, phase adjustments by the cross-channel filters will properly synchronize
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the phases of the signal estimates, but cannot synchronize the phases of those noise frequencies
which are also passed, because no consistent cross-channel relationship exists between the noise
components. Given that the phase terms of the noise in Eq. (2.47) are random variables, the
absence of significant corrclation does not necessarily imply that they are independent, however,

it does imply that their covariance is zero. This increases the likelihood that, in gencral:

9 * B # BN (2.48)

In other words, it is unlikely that these three terms will be equal, after the filtering operation has
been performed on any given row triplet in the image; a fact which has been represented in Eq.
(2.47).

For the one-sided spectral representation given in Eq. (2.47), it is also seen that the
predicted components of the signal process, and the filtered versions of the noise process, are all
complex-valued. Ignoring the scalar value of %. it is seen that the operation in Eq. (2.46) involves
the sum of three cstimates of the desired signal, and the sum of three filtered versions of the noise
process; consequently, the final cstimate must still retain a noise component. However, in

calculating the SNR, it is apparent that the following relationship will exist for the numerator
ferm:

Idz( £) 10 G oo | [X0)) E-/D,(/)l - 3| Gy f)l (2.49)
“This will hold because the three estimates of the signal process are equal in magnitude and phase.

However, while the noisc components are also equal in magnitudc, they arc generally unequal in

phase. Consequently, summation of the noise terms will yield the relationship:
o b TS 5
NSO 4 N pre ™D hipre 1n,m| < 3| (2.50)

It now follows that for the three-channel version of the filtering technique, the SNR of the

estimate is expressed as:
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SNR, » o6l _ |6nf = SNR,

NI N[ @sn
. SNR, > SNR,

Hence, for the ideal situation defined above, the SNR achicved via the one-channel filter

is the lower limit of the SNR which is

via the th h 1 ication. However, i’

the restriction that the three passbands be identical is now relaxed, it is clear that with a Case 11
or Case 1l CCF, the transfer functions will not be identical and, cqually important, their frequency
responses will change with adjustments to & and 8. Yet, with reference to q. (2.51), it is seen
that any changes which this might impose on the numerator will also be imposed equally on the
denominator; since these are linear operations, it follows that the incquality SNR,2SNR, will
continue to hold.

A major concem with the three-channel approach defined by Eq. (2.45), is that cach

filter has been derived independently of the other two. Deriving cach filter in this manner,

excludes i ion pertaining to the inte ionships which exist between all three of the input
channels. Such information will be crucial in ensuring that all threc filters, despite their different
frequency responses, are collectively able to reflect the potentially intricate phasc and magnitude

relationships which exist between and within the rows of the image. In cases such as this, the use

of vector-based multi-channel filtering operations is highly becausc they have been
developed for this type of problem. This now provides motivation for addressing the noise
suppression problem via the principles of vector stochastic process theory, and vector Wicner

filtering; such methods will be discussed in the next Scction.



2.6 Block-Adaptive Wiener Filter for Vector Stochastic Processes
261 Overview

The objective now is to develop a vector version of the scalar three-channel filtering
array proposed in the previous Section. Within this discussion, vector operations will be limited
to three-channel versions of the filters, however, extensions to higher dimensions are certainly
achievable. To begin, consider that a three-component vector stochastic process, Xy, is defined

as [17]:

By = { [0y, = iep) 50D X OD]T [ =10V} (2.52)

where x,,, is a subsct consisting of vector elements. Each vector clement, [x()];.,, contained in
this subset, denotes a triple-scalar obscrvation obtained from the j th position within each of three
row stochastic pracesses. The vector is centred on the i 'th row, from which it acquires its second
scalar element, x,(j), with the first and third scalar elements, x, 5(j) and x;,4(j), coming from rows
i-B and i+ respectively. In order to avoid ambiguity in notation, the process realizations
occurring in the (i-g) 'th, the i'th, and the (i+p) 'th rows correspond, respectively, to the Channel
I, Channel 2, and Channel 3 inputs of the three-channel vector Wiener filter which will be
derived; this convention is identical to that which was established in Section 2.5.5. The entire

image is then perccived as consisting of a set, X, of such three-channel row process subscts:

Xy = i | i=(B+D,(Ne-B)}
= {0 Pl =1 (O e o a0, i)
(2.53)
Inspection of Egs. (2.52) and (2.53) will reveal that with respect to actual rows of the image, there
must exist some overlap between the x,,, € X;. In particular, consider any arbitrary x,, centred
o the i ' row of the image; concurrent with this, consider another arbitrary vector process in X,,
Xyonn SAY, which is centred on the (i+k) 'th row of the image. Tiie common content between these
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two vector processes, in terms of physical rows from the image. is determined from the value
taken by k in relation to the value which has been chosen for 8. The image rows which comprise

the intersection of these two vector processes may now be defined as:

Xoo M Xawe = { 0 [ 7= belgh {51,50) [J= 1o} | for k=P
Foos M Koy = { gD [F= Lol o for k=2p @s4

Zom N Xy = @ otherwise

Some extremely important ramifications which arise due to the relationships within Lq. (2.54),
will be discussed later, in Section 2.7.3.
By utilization of vector Wiener filter theory, it is sought to derive a set, /1, of linear

matrix operator coefficients, defined as:
hy = ([l @B | r=0)1, -1} (@55)

where the r'th element of /, is the 3 x 3 matrix:

hy(r|@,B) hy(r|o,B) hy(r| e, B))
[trias ], ., = [P 1 @) fy(r] ) hy(r|e,B) (256
Fyr|euB) hlr|euB) hyg(r] )

The elements of each 3 x 3 block represent the coefficicnts of scalar time-domain transfer
functions, between the subscripted input channels at the r 't lag. For each scalar transfer function,
the notational convention is identical to that which was established in Scction 2.5.5, that is, /1,
represents the scalar transfer function which maps the Channel 1 input into the estimate for
Channel 2, and so on. The set /, can be used to form a block vector, /., of block element size
1 x &, within which, each block element consists of a 3 x 3 matrix of scalar clements. Forming,
the inner product between 4.y, and a £ x / block-clement observation vector comprised of the
£ (3x1) scalar-clement blocks, [x(/)];.,, will then result in the following block convolution

operation:



v
U1, = X ot leD),,, [xGr-e),, @s57)

where [x(j-r-a)],., represents the iately lagged triple-scalar block-el of vector

process x,,,, which is centred on the i 't row of the image. This then, is the vector version of the
three-channe) array of scalar transfer functions defined in the previous Section. The output from
Eq. (2.57) is a three-element vector, which consists of estimates of the row signal processes

accurring on cach of the input channels:
1B, = g1 0B) GG 1B Gl @

1f only the Channel 2 output is retained after the filter operates on each row triplet, then the final
product is the set &, defined as:
Gy = (g | i=(B+1)s(Ne-P)}
= ({Epal 1B [ 5= Ll o {18 [J= Lol }
(2.59)

Note how the three-channel configuration of the operator dictates that the 2nd (i'th row) input

s OF =N +1,...,N,.. Consequently, for rows

channel, can never coincide with the rows i
i=1,....B, output estimates from Channei | must be used, whereas for rows i=N,-8+1,...,N,, the
Channel 3 estimates are used, Denoting the former set of estimates as G, and the latter as &, the
entire filtered image is then represented as G=G, U G, U G.. The mathematical means by which these

estimates may be realized will now be examined.

2,62  Three-Channel Wicner Filter: ical Derivation

The procedure by which a multi-channel Wiener filter may be derived is discussed

extensively in [29] & [30]. The three-channel version conforms to the same mathematical
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principles as for the more general case: morcover. the derivation for any number of channels is
merely an extension of the scalar case discussed in Section 2.5.2. Consequently, all previous
discussions pertaining to the behaviour of the gencralized CCF, for Cases I, 11, and NI, apply
equally to the assessment of the three-channel filter. Given these abservations, consider the three-
channel extension of the single-channel a-step prediction operation given in K. (2.27); it is now
desired to predict vector observation [x,(j)},.;, based on £ previous veetor observations, with the

nearest such observation being a > c steps in the past:

O R (I NS
=+ et oD - E D, =)

(2.60)

33

Therefore, the observation to be predicted, may be viewed as the result of an inner product
between a block transfer function vector comprised of £ (3 x 3) matrix clements, and o block
signal vector comprised of £ (3 x 1) vector elements. In keeping with this interpretation, define

the following block vectors:

Bsse ™ [y @@, (gt I@P), - [Ao-tlaB ] -

e A e M

Then, by the same procedure as for the scalar cquations, multiply both sides of Eq. (2.60) by the

transpose of signal vector X, to get:

Bye * { %uaga X Fiotn | = {[x‘(f)],_, "*‘:ﬂuxl)} (2.62)

Now, let u=0,

.w§-1 and v=0,1,....£-1 represent indices of the block clements within the matrix
X * oo Stich that (1) = (0,0) represents the location of the (3x3) block clement in the
upper left comer of the matrix. If the expectation of x, .., %x", e, is taken over all i, then the

resulting expectation of any block clement at location (u,v) within the matrix is expressed as:
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#{prte-a)y,, el )

x gU-a-w)x, o(j-a-v) x_ (j-a-w)x(j-a-v) x_y(j-a-u)x_s(j-a-v)
= 2f| sU-e-wx (-a-v)  x(-e-wrlj-a-V)  x(j-a-u)x g (j-a-v)
X pU-a-w)x_g(j-a-v) x  (j-e-wx(j-a-v) x,(j-a-w)x,_ (j-a-v)
(2.63)
Carrying out the expectation operation on the RHS of Eq. (2.63) leaves:

ry(v-u0)  rpv-u|B) ry(v-ul2B)
#Ar-a-w), xrU-a-n]l | = [ aGoul=p) r0-u]0) rye-u|p)
-] -2B) ry(v-u | ) rys(v-u]0)

= [ryv-ul£EP)],  » E=0,1,2

(2.64)

By using the same block-clement address notation. where now #=0 and v=0,1.....£-1, it is seen

that the expectation of the vector outer product on the RHS of Eq. (2.62) is iaken as:

Fa(@+v]0)  ry(@sv|B) ryyasv]2p)
Z{mU-0),  x[g-a-0]] |} = | Fa(evl-B)  rplev]0) ralav|p)
Ial(@+v|-2B) ryasv|-B) r y(asv|0)

= [enle+vI:ZP)] |, E<0,1.2, and a>c

(2.65)
Upon forming the difference t,=1-u, it is seen that the final result of taking expectations on both

sides of Eq. (2.62) then becomes:
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[[B@1a®], s (A B, - [hyE-1lab)], ] x

e R L P L G EE T
[CHED), [r0122P), - !

[ro-Ee 122D, . = [rg@12ER),

= [ U@ 122D, (@l L2, | = [r(esE-11:2D)], ]
where £=0,1,2, and a>c

By s X Rogog = Fausg

(2.66)
Hence, the steps occurring between Eq. (2.62) and Eq. (2.66) may be summarized as:
h z Z Zl[x )], »xh
sese % & {Xoen x5t | = E{[8O)],,, » e} i

h)-!l - RJ{AE = 3¢

From inspection of the scalar elements occurring within the preceding operations. it is easy to sec
that each block element within Ry,.,; and r,.y,, retains information regarding the regional inter-
relationships which exist between the rows of the image, for chosen « and B. Since the block

vector of the impulse response is achieved via solution of Eq. (2.67). it follows that the filter itsell

‘must also incorporate this same information.

263  Three-Channel Wiener Filter: Frequency-Domain Transfer Function

The form of Eq. (2.66) is essentially a block clement extension of the scalar element
version presented in Eq. (2.30). Consequently, by following the same procedurc as for Eq. (2.36)
and Eq. (2.37), it is possible to show that the three-channel version of the Wiencr-Hopf cquations

become, for« > c and k = 0,1,
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- (b0, B) hy(b|a,B) hy(bla,B)| | ry(-b|0)  ry(c=b ) ryy(x-b|2P))
Y (B la,B) hyb|eB) hyb|a,p)| x| rylk-b|-B) ryx~b|0) ru(x-b|p)
P | ®1aB) hb|aB) hy® )] [rye-b]-28) ra(k-b|-B) ry(x-50)
rau@kea [0)  rp(cea [B) ke |26)
| rentkea [ -B)  rp(kea [0)  ropycra )
re(kre | -2B) roy(cea ] =) ry(cia|0)
(2.68)
‘The principal focus of this discussion, will be those filtering operations which are required in
order to produce the row process estimate occurring at the Channel 2 output; however, note that
all discussions pertaining to Channel 2 may also be applied to Channels 1 and 3 in a similar
fashion. Therefore, by extracting only the Channel 2 output from the convolution of Eq. (2.68),
it is possible to obtain a set of simultaneous equations, defined as:
et
[FrasCb | @, Bry (k=B | 0)+hyy(b |, B3ry (k-b | - B) +hyo(b | oty B)ry (k=B | -2P)]

= raera|-p)

b0

[tan(B Fers By (= | B)+hyy(b |, BIry(-b | 0)+hys(b | 0, BIryy(k-b | -B)]

=
= ryalea[0)

-
b); [a1(® 1 s BOry (0B [ 28) +h (b |, B)rys(-b | BY +hys(b |, B)ryy(x-b | 0)]
= reslera | B)

(2.69)

where k=0, 1,...£-1, and & > . Upon multiplying both sides by ¢ and then taking summations

over &, it will be scen that this system reduces to the following frequency-domain matrix

operation:



Gy(f10) Gy(f1-B) Gy(f]-2B), Hy(fle.B)|  [Gyy(f]et,-B)
GalfIB) Ga(/10 Galf1-B) | + (N(F1+ER),, | * |HalfleB)| = | Grlfl0)
G(f12B) Gu(f1))  Gy(f10) Hy(fl.B)| | Golfla,®)
2.70)
Here, [ N,(f1£EB)]., isa 3 x 3 matrix of noise terms which will be investigated in Section 2.6.4,

Note also, that the auto- and cross-spectral estimates of the signal components on the L1IS, will

differ from any i i ing on the RHS. By ily ignoring the noise
term and focusing only upon the signal spectra, from Eq. (2.70) it is apparent that, in gencral,
Hy(flew,B) # Hyy(flowB) # Hy (i B). That is, the form of the equation implies that there exists no
restriction which forces the three terms to be equal for any given f. Morcover, given the fact that
the LHS is dependent upon §, as well as the fact that the RHS is dependent upon bath o and 8,
it must follow that the magnitude response of the three filters will be affected by these terms, if
the CCF obeys either Case Il or Case Iil from Scction 2.4.3. This implics that the predictable
components of a vector bandpass process will change due to any variations in these parameters;
a direct cxtension of the situation for the scalar filter. The presence of the noise terms will also
affect the filter performance, yet, as was shown in Section 2.5.5, the influcnce of noise will be
much less severe than for the scalar case.

It is now desirable to investigate those relationships within the vector filter structure
which may influence its noise-suppression capability. However, a dircct analytical solution o Eq.
(2.70) will not be attempted because it would yield an unwicldy result, involving terms of such
ubiquity as to preclude any intuitive analysis. A better approach towards inspecting the role of the

noise terms would be to summarize Eq. (2.70) as follows:



{[Cutf1£ER, + [Noff1 BB, ) > [Ha(fl @B, = [GplflessTRY),,,
==0,1,2; T=0,1
@7

‘The form of this equation implies that its solution has been subjected to the following constraint:

[Nt f1£EB)], , % [H(flo B,y = Os

£=0,1,2
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2.72)

where 0., is a 3 x I vector, the elements of which are all zero. The ramifications which this

constraint will hold, regarding the noise i of the tI hannel vector

Wiener filter, will now be studied.

2.6.4 Achicving Optimum Noise Suppression with the Three-Channel Wiener Filter

In Eq. (2.66), it is to be understood that the scalar ACF coefficients which occur within
the block elements on the LHS must contain a noise term, regardless of the value chosen for 3.
In addition, if 0 < B <c, then the coefficients from the CCF proper will also contain noise terms.
‘Therefore, it follows that the scalar auto-correlation coefficients in Eq. (2.66) must contain a noise

term, and the scalar may i noise For the

matrices which occur on the LHS of Eq. (2.70) and Eq. (2.71), this implics that cach if rh, i=j,
signal component must have a corresponding non-zero noise component in [Ny (4EB)];.,, and
that cach ijth, ij, signal component may have an associated non-zero noise term in
[N, (/1£EB)],... Hence, the configuration of terms within [N, (1£B)],., will be directly dependent
upon the value which has been chosen for 8 in relation to the value which exists for . In fact,

for a three-channel filr, there are three possible forms which may be taken by [N,(+EB)];.:



Ny(£10) Ny(f]-B) Nyy(f]-2P) Hy(f|e,B) 0
NyfIB) Ny Ny(f|-B) | x | Ha(flesB)| = |0 for p slg }
N(f12B) Ny(f1B)  Nuy(£10) Hy(fle.B) 0

(2.73)
Ny(f10) Ny(f]-B) 0 Hy(f,B) 0
NoFIB) NoF10) Nos(f1-B) | x | Hlfl 2B | = |0 /o,lﬂ< B s
0 Nu(FIB) Nay(£10) Hyy(f] . ) 0
(2.74)
Ny(F1o 0 0 Hy(f|e,B) 0
0 Nyl 0 |x|Hp(fle.®)| =0 forc<p
0 0 Nyflo| |Hlem| L0
(2.75)

where |+ denotes the integer floor function, From these relationships, it follows that optimum
noise suppression will be obtained from the three-channel filter for the case in which 8 > ¢,
defined in Eq. (2.75). This can be seen by considering that if the off-diagonal noise spectra arc
not present, then the only solution for transfer function [, (flce8)),., which satisfies Eq. (2.72),
is the trivial solution. However, for the two cases corresponding to 8 < ¢, in Eq. (2.73) and Eq.
(2.74), the existence of the off-diagonal noise terms implics admittance of other solutions. Hence,
the off-diagonal terms, if present, will permit an unconstrained solution to the equation, which
does not necessarily imply that the transfer function have zero-magnitude frequency response. The
intermediate case, in Eq. (2.74), does impose a greater degree of constraint in comparison to Eq.
(2.73), but still does not force a trivial solution. Alternatively, the cxistence of noise terms only
on the main diagonal, forces a constrained solution in which the frequency response must be zero.

These conclusions of course, are only truly valid for the case in which the signal

component is absent from Eq. (2.71). It is obvious that when the desired signal component is
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present, the transfer function must also satisfy the constraints imposed by this matrix as well;
therefore, even for the trivial case of Eq. (2.75), the transfer function can never be zero for all f.
Iowever, the above argument does make it clear that if the noise terms are present only on the
main diagonal, then the filter will achieve noise suppression which is superior in comparison to
that which would be achieved via the alternative configurations for [N, (|Z0));.,. Based on this
analysis, it can be concluded that all filtering applications should be performed with a value for

B which is greater than the value observed for c.

27 Vector Filtering Technique for Reduction of Coherent Noise
271 Overview

Numerical derivation of a three-channel Wiener filter is begun by computing an
estimated two-dimensional ACF, from an N, x N, image which satisfies the signal and noise
model defined by Eq. (2.1). By closc inspection of this ACF, it will be possible to make
inferences regarding the approximate extent of correlation within the noise process, thercby
permitting an estimate of the value for c. Then, after choosing an appropriate value for 8 such that
B > ¢, numerical estimates of the one-dimensional row ACF and CCF may be extracted. Upon
determining an appropriate valuc for & such that « > ¢, the auto- and cross-correlation coefficients
may then be arranged into the form prescribed by Eq. (2.66). Solution of this block matrix
equation will yield the numerical estimates of the matrix impulse response coefficients, which are
defined in Eq. (2.56). The scalar impulse response function coefficient sets, Ay, fi5,, and h,;, may
then be extracted; these arc required in order to produce the Channel 2 estimate, g, of g, The
final result will be three scalar filters, each of which incorporates information regarding the inter-

relationships between all three channels, as provided by the auto- and cross-correlation data,



‘The filtering operation then involves the convolution of cach impulse response with its
respective row process component, found within each row triplet process of the image. By
operating on each row triplet, an estimate of the signal process is generated for each i ‘th row and
stored in a separate set. That is, for the image which is being operated on, the row process., X,
existing in row i, must not be replaced by its estimate, £ such a practise would affect the
eventual estimation of row i+, which assumes that all three filter inputs are from noisy rows of’
the image. Rather, the Channel 2 estimates arc used to build a new and separate image, row by
row, as the filter operates on successive row triplets from the noisy image.

This filtering operation will achieve effective noise suppression in the row dimension

of the image; however, upon completion of the row operations, noise components will continue

to exist in the column dimension. Cc a new set of thi h { impulse response
functions are then derived for the columns, based on the initial two-dimensional ACF which was
estimated from the unfiltered image. This is achicved by setting t,=0 in Eq. (2.10) and Eq. (2.11),
in order to derive the one-dimensional ACF information for the columns; similarly, setting t,=+8
and %28 in these equations yields the appropriate CCF information. The filtcring operation is then
applied to the columns in the same manner as for the rows.

The three-channel configuration of the operator, in combination with the fact that the
rows and columns are filtered independently, will give rise to some potential sources of
inaccuracy. These need to be taken into consideration if the filter is to perform its task properly.

Such specialized attributes of the vector filtering technique will now be discussed.



272 Minimizing Phase Distortions in the Row and Column Estimates

‘The fact that the three filters have not been constrained to produce a distortionless
responsc, requires some consideration as to how phase distortions in the output may be cancelled.
Given a general situation, in which some filter is known to produce a phase-distorted version of
its input, the sequence being operated on is typically filtered first in the forward direction; then,
the output sequence Srom this operation is reversed and passed through the filter again. Hence,
the data sequence is filtered in both directions, so that any phase distortion introduced oy the
forward filtering pass is reversed and cancelled during the backward pass. This technique, which
has been employed in [31], results in zero phase distortion. Since it is possible that the three
Wiener filters will cach introduce phase distortions into the output signal, it would be desirable
to apply this forward and backwards approach when filtering the image. However, a three-channel

presents ications. To this, consider a situation in which three row

processes, X,y X, and x4, occur such that in terms of relative phase, x.; leads x,, and x5 trails

x; let these three rows now act as inputs to the Channels 1, 2 and 3 respectively. Assume also,

that this ip is typical for i existing in all rows of the image. Then,
after the filters have been derived, /1,, will incorporate a phase delay which is necessary in order
that the Channel | estimate of the Channel 2 signal component, may be brought into phase with
the estimate which actually oceurs from the Channel 2 filter. Similarly, &,, will incorporate a
pha=e advance which is needed in order to bring the Channel 3 estimate of the Channel 2 process
into phase with the Channel 2 estimate. Now, in addition to these desired and necessary phase
adjustments, there will also be undesired phase distortions produced by the generally non-linear
phase response within all three filters. Recalling that the three outputs are summed in order to
produce the Channel 2 estimate, it may appear that prior to such summation, unwanted phase
distortions could be eliminated by reversing each output sequence and then passing it through its

respective filter in the backwards direction. While it is true that such distortions would be
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cancelled, this operation would also cancel the Channel 1 phase delay and the Channel 3 phase
advance, which must be retained in order that the three output estimates be in phase for the
summing operation. Therefore, if forward and reverse filtering are performed in this manner, then
the final summation process will involve three out-of-phase signals, which will considerably
distort the estimated signal component of row i.

As an alternative, it might also appear that immediate summation of the three outputs,
followed by reverse filtering of this sum by /i, would solve the distortion problem. However, the
form of Eq. (2.70) has implicd that the three transfer functions are not constrained to be identical.
This suggests that each of these transfer functions complement cach other during the addition
operation. Hence, although the summation of their three outputs is an approximation to the desired
signal, there exists no guarantee that each of the individual outputs is a complete facsimile of the
process being predicted. Therefore, reverse filtering with the Channel 2 filter only, may induce
distortions of a different nature.

Given these considerations, it is wow possible to discuss a feasible approach to reversing

phase distortions in a three-ch | filtering ication. In this procedure, the entire image is
filtered row-wise to produce a set of forward-filtered cstimates of the row signal process. From
the above discussion, it is known that the resulting image will also incorporate unwanted phase
distortions induced by the nonlinear phase response of the filters. By rotaining the same three-
channel configuration of filter impulse responses, and then flipping the row-filtered image from
Teft to right, it is seen that the data sequence in each row is now reversed with respeet to the filter
inputs. However, as a result of this flip, the forward-filtered signal cstimate, £, ,, now trails
process estimate @, in phase, and process estimate £,., Icads estimate £,. This is exactly opposite
to that which the filter anticipates. Therefore, in order to accommodate the filter, the image is then
flipped from top to bottom; careful consideration will verify that this procedure produces a phase

relationship between rows, which obeys the input assumptions of the filter. Reversal of phase



distortions is then possible, by filtering all row triplets occurring within this vertically and

flipped, forward-filtered image of row f imates. Following this, the column

filtering operations are performed in identical fashion.

273  Selection of CCF and ACF Information for Vector Filtering in the Columns

Since filtering is performed in the rows first, it is important to anticipate any influences
which this may have upon the performance of the three-channel filter for the columns. In
particular, the remnant noise components which are inevitably passed by the three-channel row
operation may significantly affect the column operations which follow. To understand this,
consider the image which has been produced by filtering the rows in only one direction, in the
presence of Casc Il correlation data, From this image, consider any three row estimates, say £,
B A0 54, and for this particular cxample, assume f-c=1 and c=1. It is already known that
cach cstimate has been obtained from a respective row triplet of the noisy image, and that the
rows within cach triplet have been separated by a distance of 8 which is greater than the extent
of noise currelation. However, Eq. (2.54) has shown that two of the noisy rows used in the
estimate of £, have also been used to estimate £,,5, and one of the rows used in estimating both
#and g, has also been used in estimating £,

The three-channel row filtering operation relics on the summation of out-of-phase,
uncorrelated noise components, in order to suppress noise existing in the passband. While this
passband noisc is suppressed by the method, it is certainly not eliminated, and some remnants will
continue to exist in the estimates, £, Furthermore, the overlap of the x;, befween row triplets which
are used in the filtering operation, guarantees that all three row estimates must contain a certain
degree of common information pertaining to the remnant noise; this is the ultimate result of the
relationships which arc described in Eq. (2.54). It therefore follows that the remnant noise

components in & must now be correlated with those remaining in both 8,,, and 8,,,,. This means
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that after filtering in one direction along the rows, the noise in the column dimension of the row-

filtered image will be correlated up to ¢ = 28+/ within the column versions of Eq. (2.12) and Eq.

(2.13). Recall, that prior to filtering, it was only correlated to ¢=g-/: hence, the extent of noise

correlation in the columns has been increased due to the row liltering. Further to

assune also
that & = 8 for the row filtering operation, performed only in the forward direction, and that a new
two-dimensional ACF is then computed in support of column filter derivation, affer row filtering,
has been done. For this example, it is easy to sec that the column derivation will require a

prediction gap of a > 28+, in urder to separate the noise components from the signal process

components which exist in the column correlation data. If the corrclation functions for the
columns are also exponentially-damped, then it is obvious that this increased prediction gap will
mean that the column estimates are biased in comparison to the row estimates: this will distort the
original relationships which existed between the rows and columns. As an additional consideration,

it is easy to conclude that the extent of noise correlation in the columns will further increase,

fill

the rows are also d prior to ing column data.

However, if the column filters-are derived from correlation data obtained prior to row

filtering, then it is possible to maintain a prediction gap which is equivalent to that for the rows,
and the filters will still pass only those noise frequencics which are common to the signal process.
In this situation, the passbands of the column filters will be unaltered by the increased correlation
of the noise. It should also be noted, that the row filtering operation must further correlate the

remnant noise components along the row dimension as well. For filt

ing in the columns, this
means that the extent of cross-column coherence between remnant noise components will be

greater than it had originally been between rows. Further to this, when the signal is bandpass, the

same value of @ must be used in the columns as was used for the rows. This implics that the
passband noise suppression advantage offered by a three-channel operator may not be as

significant for operations in the column dimension.
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28 Summary
Based on the mathematical considerations presented in ihie preceding Sections, it is

possible to conclude that a vector filtering technique which suppresses broad-band correlated noise

is indecd achicvable. There are, however, i iated with the technique under certain

circumstances. This is due to the fact that if the i ional ACF is ially-damped,
then only some components of the stochastic process are predictable; consequently, the original
process can never be recovered in its entirety. However, in situations of very low SNR, a recovery
which favours some frequency components over others, may be preferable to the noisy version.
Having now established a mathematical basis for the vector filtering technique, the remaining
Chapters will examine results which have been obtained from simulated data, as well as from

stochastic processes cxisting in noisy SAR images.
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CHAPTER THREE

RESULTS FROM NUMERICAL SIMULATIONS INVOLVING CASE 1

CORRELATION DATA

31 Introduction

To examine the effectiveness of the vector filtering technique under controlled
conditions, and as a means of verifying some of the mathematical observations made previously,
several investigations were conducted using simulated data. These have been made possible

through development of computer algorithms which i the mathematical

defined in Chapter Two. Such algorithms were constructed from subroutines available in the

MATLAB software package [31] & 32], and arc discussed in Appendix I1. The simulated images

which were analyzed, consisted of signal-pl 1024 x 1024 pixcls.
i

Results of test filtering operations have been presented in the form of recoverzd images, and one-
dimensional FFT analysis of the image row and column components. These have also been
supplemented by the development of power transfer functions, which indicate how the power
within row and column components has been redistributed as « result of the filtering operation,
The present Chapter will deal with analysis of stationary processes having one-dimensional row
and column correlation functions which satisfy the Case 1 criteria discussed in Scction 2.4.3;
subsequent Chapters will provide an analysis of filter performance for Casc I data,

Spectral analysis was achieved via a (1024 x 1024)-point FFT, which yiclded a two-
dimensional complex-valued spectrum for the process contained within cach image. Each clement
within this matrix spectrum was then multiplied by its complex conjugate in order to produce a

two-dimensional power spectrum, In any typical mathematical problem involving the joint
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occurrence of two variables, the marginal values associated with a variable in one dimension may
be obtained by integrating along the dimension of the other. Consequently, in order to obtain a
1024-point one-dimensional power spectrum for the row component, the two-di.: ensional power
spectrum was summed along the column component. Following this, the frequency powers within
the row spectrum were normalized by one of the two procedures described below, the choice of
which depended upon the intended manner of presentation. This entire procedure was then
followed in an identical fashion when deriving power spectra for the column components. Another
important point which should be made, is that the frequency axis for all spectral plots to be

nted in this thesis, has been labelled with decimal multiptes of . Therefore, while all FFT's

i
have been computed for digital frequencies -m < f < , the corresponding x-axis frequency rangé
is labelled as -/ < f < 1.

The normalization of power spectra will be performed for all FFT analysis to be
undertaken in this report. The reason for this practise stems from the discussion regarding Eq.
(2.40): there, it was obscrved that the filter frequency response must always have a magnitude of
less than unity, in the presence of noise. While this equation refers specifically to the scalar
version of the filter, such characteristics also extend to the vector version. Therefore, a gain factor
of less than unity implics that even if all signal frequencies kave been recovered in the filtered
image, each frequency value must have a power level which is less than that of its respective
component in the original image. This means that direct comparisons of spectra, based on absolute
‘magnitudes of power, arc not reliable,

Therefore, where spectral plots have been presented fo: purposes of visual comparison,
cach will have been scaled by the inverse of its respective maximum power. This restricts the
power of any frequency point within the normalized spectrum, to a maximum value of unity. The
purpose of such presentation is to provide qualitative evidence of overall change in spectral shape

or suppression of noise, hence, direct i based on i are not




Complementary to this, direct numerical comparisons between filtered and unfiltered
row or column power spectra, have been facilitated by computation of a power transfer function.
In order to achieve this, it was necessary to nommalize the spectra via an altemate procedure,
defined by the following relationship found in [33]:

PN = —L)l'm il
{n-rusi}

Here, P,() denotes the normalized power at the specified frequency /. When comparing row
spectra, say, between an unfiltered and a filtered image, this normalization procedure is used to
scale the spectra such that the total sum of power within cach spectrum assumes a value of unity.
Since these two spectrums now contain the same total power, a numerical power transfer function
will force an emphasis upon the manner in which power has been redistributed during the filtering
operation which maps the former spectrum into the latter. In fact, any filter which reduces power
in the noise frequencies and redistributes it in order 1o boost signal power, must yield an improved
SNR within the image.

The capacity of an operator to perform in this manner, can be assessed by means of

a log,g-scaled power transfer function, defined as:

Pyon(S) 3.2)

7.

y 7 =101 SN
e

where Py(f) represents the normalized power spectra, via Eq. (3.1), of cither the row or column
component which served as input to the filtering operation; Py ,,(f) represents the normalized
power spectra, also via Eq. (3.1), for the respective component of the output image which
resulted. Since both the input spectra and the output spectra incorporate an identical amount of
energy, it follows that if 7,() is not identically zero for all £, then it must incorporate some

combination of both positive and negative values, C ics which
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a loss of power during filtering will yield a negative value for 7,(f), whereas those which
experienced power gain at output will produce a positive value; obviously, frequencies

experiencing no change will produce a value of zero.

32 Characteristics of Simulated Data Sets

To facilitate these i igations, two imag prised of /024 x 1024 pixels

cach, were generated from the following two-dimensional sinusoidal components:

sl = cm(mu %/J
2 2n
<o 28, 28 63
2 ws(m 100’ ]

o - cof 2 2
15 10

where i=1,2,...,1024, and j=1,2,...,1024. One such process was a zero-mean waveficld which
consisted only of s/ from Eq. (3.3). The other was a three-component, zero-mean wavefield
comprised of all three sinusoids; in this case however, the 024 x 1024 image component s3 was
flipped lef-to-right, prior to superposition onto the /024 x 1024 composite formed by addition
of components s/ and s2. From the form of the signal components, defined by Eq. (3.3), it should
be apparent that the resulting wavefields will produce Case I correlation data, when a two-
dimensional ACF is estimated from the simulated images. In addition to this, a 7024 x 1024
correlated, zero-mean noise ficld was generated and added to both the one-component wavefield
and the threc-component composite. This noise field incorporated a spatial correlation extent
which would be equivalent to a value of c= in Eq. (2.11). It was produced by initially generating

a 1025 x 1025 uncorrelated noise field, n,(i,j) say, from zero-mean normally-distributed random
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numbers, Each (i,/) ' point within correlated noise field n(i,j). was then created via the following

operation:

(i) = m, Q)+, G+ 10) G+ 1) +n, G+ 1 1) &)
Prior to superposition onto each of the two image processcs, the power level of the correlated
noise was scaled such that, within cach signal-plus-noise process, the resulting SNR was -12 dB.
These combinations are presented in Figure 3.1, where the left half of Figure 3.1(2)
shows the one-component noise-free wavefield, waile the right half consists of the corresponding
wavefield-plus-noise combination. Similarly, the left portion of Figure 3,1(b) displays the three-
component noise-free process, with the signal-plus-noise composite shown on the right. Note here,

that the grey-scale mapping used to produce the images in Figure 3.1, performs half-wave

That

all negative-valued amplitudes of the zero-mean processes are clipped at

zero; this form of presentation will be used for all images which arc displayed in this report.

‘The manner in which the noise and signal components of these proces: cract
within the correlation information is shown in Figure 3.2, which displays the one-dimensional
ACF characteristics of the row and column components from cach image. The contribution from

the noise portion of the process presents itself as a prominent, tapered spike, which clearly shows

that the noise is also correlated at non-zero lags T=+/. However, it is seen that the noise has no

influence upon the autocorrelation information for values of | t| > /.

Figure 3.3 presents the results of a /024-point normalized

analysis, performed on

the row and column components of the noise-free waveficlds. Complementary to this, Figure 3.4

shows the results from an identical analysis performed on cach of the signal-plus-noise proces

Here, it is seen that the noise component produces a spectrum which is obviously tapered, a
characteristic which is typical of broad-band noisc processes: note also, that tapering windows

have nof been used in the computation of these spectra. Figures 3.3 and 3.4 will serve as a
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(a) One-Component Wavefield with Noise

Figure 3.1: fi , and pl se ites with

-12dB SNR.



(a) Orie Wave with =12 dB Noise: Rows (b) One Wave with 12 dB Noise: Columns
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Figure 3.2:  One-dimensional autocorrelation functions. for row and column components of the signal-plus-noise processes shown
in Figure 3.1.
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Figure 3.3:  1024-point FFT’s, showing relative magnitudes of normalized power within row and column components of the noise-

free wavefields in Figure 3.1.
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reference, whi i ignal ry ability of the three-channel Wiener filter

in Scctions 3.3 and 3.4.

33 ination of Optimum Operational P for Filtering Technique
331 Overview

This Scction will provide numerical verification of some operational attributes, that
were previously identified as imparting superior performance to the filtering technique which has
been proposed. Such attributes will be investigated through filtering operations performed on the
three-component signal-plus-noisc process. The tests which will be discussed, were performed in

order to substantiate the following asscrtions which emerged from the discussions within Chapter

Two:

[Q)) the n.ise-suppression advantage offered by the three-channel operator, when compared
to the single-channel version.

) the noise-suppression advantage of the three-channel operator when derived with a>c,
as compared with the same operator for 0<a<c.

3) the noise-suppression advantage of the three-channel operator when derived in
conjunction with 8>c, as compared with the same operator for 0<B<c.

“ the noise-suppression advantage of deriving row and column vector operators by using

corrclation data from ‘hc unfiltered image, when compared to deriving the column

operator using data from the row-filtered image.

In preparation for these investigations, a standard reference image was recovered from
the noisy threc-component waveficld. This was obtained by using row and column operators
which were derived based on the optimal filtering strategies recommended by the discussions of

Chapter Two. Specifically, this involved deriving a three-channel vector operator which used row



and column correlation data from the unfiltered image, and which incorporated parametric values
of B> c and « > c; this will subsequently be referred to as the standard-attribute operator.

The investigation process consisted ol , enerating a test image, which was then
compared with the standard reference obtained via the standard-atiribute operator. When
generating each test image, only the filter attribute under investigation was changed; the remaining
operational attributes were identical to those used to establish the reference image. Therefore,
when assessing the supcriority which a three-channel operator could have over a one-channel

version, only the number of channels was adjusted. Similarly, when as

ing the influence off
adjustments to 8 or a, or the effect of using column correlation data obtained from the row-

filtered image, only one of these attributes was changed in order that its respective

image
could be generated. Note also, that although correlation data have been displayed in a normalized
format, only non-normalized data were used in filter derivation. Furthermore, correlation data for

the filtering operations were obtained based upon averages taken over the entire

nage, as
discussed in Chapter Two. In all cases, filtering was performed first in the row dimension; this
was then followed by equivalent operations on the columns.

For all four tests, an operator length of £=20 has been uscd: it will eventually be scen
that this is a considerably smaller value than was uscd for other filtering operations, to be
described in the next Section and in subsequent Chapters. This comparatively shorter length was
selected because it imposes a condition of marginal performance for the operator; hence, with
small £, the filters will pass a detectable amount of noise. However, for large £, overall noise

suppression would be so severe, regardless of ic adj that refative

between images will not be detected visually. Thercfore, a value of £=20) makes it possible to
visually assess changes in noise suppression cfficiency which are imposed by adjustments to the
filter parameters. Evaluations will be made possible via the presentation of recovered images and

normalized FFT analysis, including power transfer functions. Within the context of Ig. (3.2), note
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that the power transfer function derivation will treat the spectrum of the test image as Py.\(/f),
whereas the power spectrum of the reference image will be assigned to Py (/).
Furthermore, for both the standard image and those test comparisons which have been

generated, it will be seen that a filter order of £=20 does not permit complete recovery of the

threc-component waveficld. This is partly due to the fact that one cycle of the longest wavelength

in the column dimension incorporates 90 pixel elements, while one cycle in the row dimension
spans 100 pixels. Therefore, in comparison to the longest wavelength on which it operates, the
filter is too short and contains insufficient information for making accurate predictions at the SNR
which exists in the image. However, since this deficiency is common to both the reference image
and the test images, relative comparisons are certainly permissible. Also, since it is known that
the filters are functioning only nominally in recovering the wavefield, trends which are observed
for the wavefield frequencies will not be of interest during these comparisons, Consequently, this
Section will focus only on test results as they affect the noise portion of the spectrum. The results

of comparisons between the reference and test images will now be discussed.

Noi ionA ra Three-Channel Filter Over the One-Channel Version

Figure 3.5(a) shows the reference wavefield which was recovered using the standard
filtering parameters discussed previously. By comparison, the test image which was recovered via
a one-channcl operator, and which is shown in Figure 3.5(b), indicates that the three-channel
operator yields a superior result. In fact, it is easily seen that the structure produced by the three-
ckannel operator, albeit incomplete, does bear a much stronger resemblance to the original
waveficld of Figure 3.1(b), than does the structure which results from the single-channel filter.

Figure 3.6 presents an FFT analysis of the information contained in these recovered

images. The visual differences between Figures 3.5(a) and 3.5(b) are explained, when the



(a) Wavefield Recovered Using 3—-Channel Filter

(b) Wavefield Recovered Using 1-Channel Filter

Figure 3.5 Reference wavefield recovered with a standard-attribute operator, £=20, is
shown in (a). This result is definitely superior to the test image obtained with
a single-channel operator, shown in (b).
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frequency-domain representations of the standard image are compared to the spectra derived from

the test image. Whilst Figures 3.6(a) and 3.6(b) indicate that the three-channel operator does pass

some noise, Figures 3.6(c) and 3.6(d) show that the overall relative power of noise pas

sed by the
single-channel operator is much higher. This is also cxemplified by the presence of some row and
column noise components nzar the Nyquist frequency, which are barely obscrvable in the output
from the three-channel operator.

Figure 3.7 displays the log,g-scaled power transfer function defined by Eq.

‘or
both the row and column components, it is scen that the values of 7(/) are predominantly
negative. Therefore, the overall noise level for the three-channel ontput is much lower than for
the one-channel output. This occurs because addition of three out-of-phase noise components, at
any value of f, achieves a further degree of noise suppression than does the single-channel output.

The fact that the three-channel output is superior to the one-channel result, can be quantita

vely
established by averaging T,(f) over all of the /024 points shown in Figure 3.7, Granted, the signal
components will also contribute to this average, however, since there are very few signal
frequencies, it is expected that this will not significantly bias the result. Given this caveat, the

averaging operation reveals a mean noisc-suppression advantage of -5.98 dB, when the thr

channel operation is used in the row dimension. For the columns, the three-channel filter achicves

an average noise-suppression advantage of -7.87 dB. From these observations, it is easy to

conclude that the three-channel filtering operator does indeed provide superior noise suppressi

whien compared to the one-channel operator.

Influence of o in Dt ining Noi: ion Efficicncy

To assess the influence which the value of  will have on the filtering procedure, a tes
image was generated based on row and column operators derived with a value of a=1; this also

corresponds to the case for which a=c. Figure 3.8(b) shows the result of this operation as it
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(a) Recovered with Alpha=2

(b) Recovered with Alpha=1

Figure 3.8 Reference wavefield recovered with a standard-attribute operator, £=20, is
shown in (a). This result is undeniably superior to the test image obtained with
a=1, shown in (b).
9



compares to the reference image in Figure 3.8(a). Clearly. the test image contains no discernible
information whatsoever, and verifies the absolute necessity of sclecting a>c.

A frequency-domain analysis of these images is presented in Figure 3.9. From

3.9(c) and 3.9(d), it is clear that the test filicring operation has forced a substantial shift in power
towards those frequencies cxisting at the upper end of the spectrum. Some insight into this
phenomenon may be acquired with reference to the scalar frequency-domain transfer function of
Eq. (2.40). To begin, consider that when an a-valuc of / is selected, this has the effect of leaving,
exactly one lag value of the noise correlation function, at t=/, within the windowed portion of
the ACF defined by the set in Eq. (2.15). Based on discussions in Chapter Two, it has been
implied that the DFT representation of this ordered set produces the frequency points which
appear in the numerator of Eq. (2.40). Clearly, since the first ACF logs (corresponding to t=0) has
been eliminated, the DFT representation of this windowed, ordered set, will consist of a series of

Case | spectral lines ing the wavefield f Figure 3.1(b), embedded in a flar

spectrum of white noise. However, observe that within the denominator of Eq. (2.40), the noise
spectrum is still coloured, and hence, it tapers to very small values at its high-frequency end. This
means that for the higher frequency components in Eq. (2.40), a large value in the numerator will
be subjected to division by a very small value in the denominator. The result of this relationship,
will be to form a passband in the high-frequency region of the spectrum. Consequently, when
operating on the image, the filter attenuates all other components, including the spectra associated
with the desired signal.

The results for 7;,(/) have been presented in Figure 3.10. There it is seen that, for both
the row and column components, noise frequencies which are outside of the frequency range
spanned by the signal components, are subjected to severe attenuat- n when mapping from a=/
to a=2. Hence, the net result is one of attenuation, with an average valuc of -9.07 dB for 7,()

in the row dimension, and -/2.47 dB in the column dimension.
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334 Influence of B in D ining Noi: ion Efficiency

In order to assess the influence of B upon filter performance, a test image was
recovered by selecting a value of 8=/ when deriving the transfer functions; this corresponds to
the case for which B=c in Eq. (2.74). Based upon carlier discussions in Chapter Two, it is
expected that this choice for 8 will result in a diminution of the noise suppression capability of
the three-channl operator. A comparison of results is given in Figure 3.11, which shows the
reference image in Figure 3.11(a) and the test image in Figure 3.11(b). Close inspection of the
two images does reveal differences, with the standard image, for which 8=2 > ¢=/, showing a
pattern which appears to have fewer variations than does the result which is presented in the test
image. Comparatively-speaking, irregularities within the test image are certainly detectable, and
leave the impression that this structure resembles the original noisc-free wavefield with less
commonality than does the reference image.

The frequency domain representations of the row and column components from Figures
3.11(a) and 3.11(b), are shown in Figure 3.12. Once again, close comparison of the normalized
noise levels for B=2, to those obtained for 8=/, indicates that the relative noisc power associated
with the latter is slightly greater; this observation holds for both the row and column components.
Further verification is provided in Figure 3.13, which presents the log,,-scaled power transfer
function defined by Eq. (3.2). Here it is seen that T,(f) is predominantly negative, and again, it
is also possible to see evidence of superior noise-suppression within the stopband when mapping
from B=1 to =2 This is because, with 8=/, the noise frequencies will still retain a certain degree

of phase coherence; consequently, when the three filter outputs are added, destructive interference

does not oceur to the same extent as it does with §=2. In fact, when filtering with 8=2 > c=1,
a further average noisc power attenuation of -2.59 dB is achieved within the row spectra, anc an

average attenuation of -2.74 dB is achieved in the column spectra. These values, in conjunction



(a) Wavefield Recovered Using Beta=2

(b) Wavefield Recovered Using Beta=1

Figure 3.11:  Reference wavefield recovered with a standard-attribute operator, £=20, is
shown in (a). This result is noticeably superior to the test image obtained with
B=1, shown in (b).
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(a) Power Transfer Due to Beta Value: Rows
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with the diagrammatic results, lead to the conclusion that a parametric value of =2 > c¢=]

provides overall superior noisc suppression in both the row and column dimensions.

335 Optimum Method for Selecting Correlation Data When Deriving Column Operators

The optimum procedure for obtaining correlation data was investigated by recovering
a test image, based on a column operator which had been derived with intermediate correlation
data taken from the row-filtered image. This result was then compared to the standard image,
recovered using a column operator derived with correlation data from the original, unfiltered
image; in both cases of course, the row operator was based on correlation data obtained from the
unfiltered image. The results of this investigation are presented in Figure 3.14, which compares
the standard image of Figure 3.14(a) to the test image in Figure 3.14(b). In this case the
differences arc obvious, and show that use of row-filtered correlation estimates in the column
operator, produces a filtered structure which bears virtually no resemblance to the noise-free
waveficld of Figure 3.1(b).

Figure 3.15 compares the row and column spectra resulting from these operations, In
Figures 3.15(c) and 3.15(d), it is seen that the spectrum of the test image incorporates a noise
background which has a much broader bar dwidth than the spectra from  the reference image,
shown in Figures 3.15(a) and 3.15(b). This broader bandwidth is a result of an increase in the
spatial extent of correlation within the noise process, due to mechanisms discussed in Section
2.7.3. The results for 7,() are presented in Figure 3.16. Here t0o, the log,, value of the power
transfer function yields predominantly negative results, indicating that the standard image has
considerably less noisc power. The /024-point average of T,(f) in the rows is -/0.32 dB,
compared with a /024-point mean of -15.54 dB in the columns. These observations confirm that

the relative noise power in the standard image is much lower than for the test image, anc



Figure 3.14:  Reference wavefield recovered with a standard-attribute operator, £=20, is shown
in (a). This result is clearly superior to the test image, shown in (b), obtained
after deriving the column filter from the row-filtered image.
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substantiates carlicr assertions that both row and column operators must be derived by utilization

of correlation data from the unfiltered image.

34 Evaluation of Filtering Technique for Large

34.1 Filtering Operation on Simulated Data Sets

The objective of this Section is to assess the capability of the three-channel filtering
technique, when using operator lengths which are longer than at least one period of the lowest
frequency component within the desired signal. This is a much more pragmatic approach, since
the usc of longer filter lengths generally permits the derivation of tighter passbands, with steeper
roll-off than was achievable in the previous Section. Passbands which conform more closely in
shape to the spectrum of the desired signal, will facilitate a more accurate recovery; hence, the
accuracy of results will increase with larger £, for any fixed SNR.

Performance of the three-channel filter when operating on the one-component
waveficld-plus-noise composite, was assessed by utilization of standard-attribute row and column
operators having a length of £=60. Magnitude response characteristics of these filters have been
presented in Appendix I11. Since the longest component within this simulated process had a period
of 40 pixel units, the filter length was considerably longer than the period of the lowest-frequency
component within the image signal process. The results of this operation have been summarized
in Figure 3.17. Inspection of the recovered wavefield, shown in Figure 3.17(b), reveals a structure
which is virtually identical to its original noise-free counterpart, shown in the right portion of
Figure 3.17(a). In fact, the only discernable differences are due to slight undulations in tonal
values of the image, along the crests of the recovered wavefield. The normalized power spectra

of the recovered row and column components, shown i Figures 3.17(c) and 3.17(d), suggest a

complete absence of detectable noise frequencies. From these observations it is easy to form an
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overall conclusion, that the structure within Figure 3.17(b) represents a nearly-complete recovery
of the original noise-free wavefield.

In similar fashion, the three-component wavefield-plus-noise composite was processed
using standard-attribute operators with a value of £=/50. Here too, because the longest wave
period in the image consisted of 100 pixels, this choice for £ ensured that the filter accommodated
all relationships occurring within at least ane full cycle of the lowest frequency component from

the wavefield, The magnitude response characteristics of these filters are also shown in Appendix

11I; consistent with the discussion of Section 2.6.3, reference to these Figures will confirm that
the passband characteristics of a three-filter set are not constrained to be identical.

Results from this second investigation have been summarized in Figure 3.18, There it
is scen that the recovered wavefield, shown in Figure 3.18(b), exhibits no observable differences
in structure when compared to its original noise-free counterpart, shown in the right portion of
Figure 3.18(a). Once again, the conclusion is that the structure of Figure 3.18(b) represents a
nearly-complete recovery of the original noise-frec wavefield. The normalized power spectra for
row and column components of the recovered wavefield, are shown in Figures 3.18(c) and
3.18(d). Here too, scrutiny of the FFT’s will verify the absence of detectable noise components.

Figure 3.19 displays the log,,-scaled power transfer functions, T,(), which map the
spectral powers of each unfiltered noisy image into the power spectrum of its respective filtered
version, Figures 3.19(a) and 3.19(b) show the transfer of power, for the row and column
components respectively, of the single wavefield. Figures 3.19(c) and 3.19(d) highlight the transfer
of power within the row and column components of the three-component wavefield. For both
wavefields, it is clear that severe attenuation of noise has occurred as a consequence of the
filtering operation. The curious curvature which is seen in the power transfer spectrum, is
produced by the tapered shape of the unfiltered noise spectrum, shown in Figure 3.4, The fact that

T(f) approaches zero from the negative direction as |f] becomes large, indicates that the
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frequencies near Nyquist experience little change in power during filtering. However, since these
noise frequencies are of very low power anyway, this has no significant impact upon the filtering
capability.

Furthermore, during the discussion pertaining to Eq. (2.40), it was predicted that this
tapering would also produce slightly different gain factors amongst those frequencies which
comprise the signal component of the spectrum. Close inspection of Figures 3.19(¢) and 3.19(d)
will reveal a pattern which is consistent with this assertion. With respect to the power transfer in
the rows of the threc-component image, it is scen that the highest frequency component
experiences slightly greater gain than the two lower frequency components. For the columns, it
is seen that the gain factors of the three wavefield [requencics appear to increase in proportion to
the value of f. This suggests that the tapered noise spectrum could introduce noticeable distortions,
for cases in which the desired signal contains high-frequency components which are close to + /

(+ 7). However, when the desired frequencies are near the lower portion of the spectrum, the

influences upon the output image are visually undetectable, as revealed by the recovered image

in Figure 3.18(b). In cither case, this is a direct of the

which ize Wiener filter applications in the presence of coloured noise.

Based upon the findings of this Section, it is now possible to conclude that the three-
channel filtering technique, utilizing standard-attribute operators, docs facilitate a reasonably

accurate recovery of a noise-contaminated wavefield, provided that the value chosen for £ is

large. Hence, the applicability of vector Wiener filtcring to the suppression of coloured
noise has now been proven for simulated data. However, consistent with the relationships
predicted by Eq. (2.40), it has also been shown that when dealing with correlated noise, the
recovered image may incorporate some distortions regarding the relative power levels of its

constituent signal frequencies.



342 Influence of o and B Parameters Upon Filter P

In Chapter Two it was obscrved that for Case I correlation data, fiiter performance
would not be affected by changes in cither « or 8, provided that these parameters assumed values
such that & > ¢ and 8 > c¢. Unfortunately, this inference was established from inspection of the
scalar operator only; due to the complexity of the vector version, it was not possible to make
similar inferences based on inspection of an analytical form. However, it is expected that this

characteristic also extends to the vector version, Therefore, in order to provide evidence in support

of this, the frequency response istics and filtering of the three-channel filter
have been examined numerically for selected combinations of o and 3 values. This analysis is
based on correlation data which were estimated from the three-component wavefield-plus-noise
composite, shown in Figure 3.1(b).

‘The investigation was conducted using a standard-attribute operator with £=/50.
During one serics of tests, a constant value of §=2 was maintained, while filters were derived for
all values of 2 S < 50. Figures 3.20(a), 3.20(b). and 3.20(c) summarize the frequency response
trends exhibited by /1, by, and iy, respectively, during these operations. In a second series of
tests, the relationship of f=a was maintained, while o was increased within the range of 2 <a <
50. Figures 3.20(d), 3.20(e), and 3.20(f), summarize the frequency response results which were
observed for /iy, hy,, and by, respectively, during the second series.

To ensure clarity of presentation, the surfaces in Figure 3.20 show the frequency
response for the lower half of the positive digital spectrum only, that is, for 0 < £ < 0.5, Since this
bandwidth encompasses all frequencies occurring within the desired signal, very little information
has been lost by omitting the upper half of the spectrum. These results are based on 64-point
FFT’s of the one-sided spectrum; hence, only the first 32 points of each frequency response
magnitude are shown. In addition, note that results have been presented for the row component

of the image only. Since, in this example, the rows and columns were generated by the same
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procedure, it is clear that any patterns emerging from the analysis would also hold for the
columns.

From inspection of Figures 3.20(a), 3.20(b), and 3.20(c), it is apparent that for constant
B and varying @, the peak frequency responses do not change appreciably. While there are
certainly fluctuations, the overali impression is that the peak frequencies, which correspond to the
waveficld components, are consistently dominant in relation to the background frequencies. In
particular, note that there exists no value of « for which the frequency response of the signal
component decays to magnitude levels at or about the level of the background frequencies. This
strongly suggests that filter output, for any given «, would not differ significantly from the output
associated with any other value of this parameter, assuming o > c.

Based upon Figures 3.20(d), 3.20(e), and 3.20(f), it is also apparent that peak
frequency responses do not exhibit any overall trend of decay, and consistently dominate the
spectrum for all chosen values of f=w. Here too, it is possible to conclude that filter performance
is not affected significantly when 8 and o are changed by equivalent magnitudes. However, it is

interesting to note that the Channel | filter response for B=a; is somewhat more erratic than its

for f=2; asimilar ion can also be made regarding the Channel 3 response and,
1o a much lesser extent, the Channel 2 response as well. A possible explanation, is that this
phenomenon occurs because the estimated correlation functions will retain some perturbations due
to noise. Such perturbations must inevitably introduce some variability into the surfaces of Figure
3.20, because the correlation information which is used in filter derivation will change with each
new value taken by cither « or .

In fact, when B is adjusted along with «, each new value of g introduces an entirely
new sct of CCF data to the derivation process. Furthermore, a change in the value of « means that
a slightly different section of the ACF is windowed for each derivation. These changes introduce

a relatively high degree of variability. However, when 8 is held constant, the same correlation
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functions are used for all a; hence, the only variatior s occurring, are due to the windowing of a
slightly different section of the same CCF’s and ACF as « assumes each new value, Since «
changes by increments of /. this means that the corrclation information used in cach new
derivation, differs only by nine scalar values from the data which was used with the previous
value of a; this can be verified by studying the RHS of Eq. (2.68). It is casy to conclude
therefore, that this must introduce less variability than would otherwise occur when the entire set
of cross-correlation data is replaced for each derivation. Furthermore, these correlation functions
have been based on biased numerical estimates, discussed in [24] & [31]. This is a numerical
procedure which deliberately tapers the function as || increases, in order to reduce estimation
errors, Consequently, these estimated correlation functions are not exactly periodic for & > ¢ this
implies that they may yield spectral characteristics which depart slightly from the rigorous
definitions established for Casz I data. For these reasons, it should be expected that the surfaces
in Figure 3.20 might not correspond exactly to the established theory.

Having verified that peak frequency responses do not vary significantly with changes

in o and B, supplementary numerical evidence can also be provided, to show that the filter output

will not be ised by selected adj to these In support of this, the three-

field-pl it ite was subjected to four additional standard-attribute
filtering operations, using a vector operator of length £=/50 for sclected combinations of o and
B. Figures 3.21(a), 3.21(b), and 3.21(c) present the images which were recovered using a constant
value of B=2, for selected a-values of =2, a=/4, and a=26 respectively. OF course, the image
for a=g=2 is the same one which was gencrated for Figure 3.18; it has been presented in Figure
3.21 for purposes of comparison. Study of these wavefields will not reveal any noticeable

differences, either when comparing each onc to another, or when comparing any one to the

original wavefield in Figure 3.1(b). in similar fashion, Figures 3.22(a), 3.22(b), and 3.22(c) show

the wavefields which were recovered with a=g=2, a==/4, and a=f=26 respectively. Again,
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(a) Three Waves in —12dB Noise: Recovered with Alpha=2, Beta=2

50 100 150 200 250 300 350 400
Column Index (j)

(b) Recovered with Alpha=14, Beta=2

50 100 150 200 250 300 350 400

Figure 3.2

Wavefields recovered using standard-attribute operator, £=150, for selected
values of correlation shape parameter a, with constant value of shape parameter
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Row Index (i)
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(b) Recovered with Alpha=14, Beta=14

N x
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Figure 3.22:  Wavefields recovered using standard-attribute operator, £=150, for selected
values of correlation shape parameter o, with shape parameter S=c:.
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these waveficlds show no apparent differences, either when compared amongst themselves, or
when they are individually compared to Figure 3.1(b); this provides further verification that filter
output is unaffected.

There fore, numerical evidence has been provided, which attests to the insensitivity of
the vector operator regarding changes in the parameters o and 8, with« > ¢ and 8> ¢, for Case
1 correlation data. Although the results presented in Figures 320, 3.21 and 3.22 may initially be
perccived as unremarkable, they do provide a valuable reference against which subsequent
investigations may be compared. In Chapter Five it will be seen that asimitar analysis, using Case
11 correlation data, will yield results which are in dramatic contrast to the findings presented in

this Section,

35 Summary

In this Chapter, numerical cvidence has been provided in order to support several
conclusions which were made from the analytical results presented in Chapter Two. In particular,
it has been verified that optimum signal recovery requires utilization of a three-channel vector
Wicner filter, for whicha > cand 8 > c, with both the row and column versions of this operator
being derived using a two-dimensional ACF estimated from the noisy image. This filter has been
referred to asthe standard-attribute operator. In addition, it hasalso been numerically verified that,
for Case I correlation data, the filtering opcration is not significantly affected by changes in o or
B, provided that these parameters are chosen such that o« > c and 8 > . Consequertly, a vector
filtering  procedure for the recovery of stationary processes having Case | correlation
characteristics, has now been cstablished und numerically verified in the presence of broad-band

coherent noise,

103



CHAPTER FOUR

APPLICATION OF FILTERING TECHNIQUE TO OCEAN WAVE

ENES
WITHIN SAR IMAGERY

4.1 Introduction

Building upon the preceding theoretical and numerical results, this Chapter examines
the performance of the filtering technique when operating to recover a stationary process which
will be shown to exhibit Case 11 correlation characteristics. The data set 1o be used in this analysis,

consistsof two ocean wave scenes which were imaged by airbome synthetic aperture radar (SAR).

These incorporate /224 x 1224 pixels cach, and were obtained over Canadian East Coast waters
by the Canada Centre for Remote Sensing (CCRS), on the fourteenth and cighteenth of November,

1991. The objective of this Chapter is to demonstrate that the vector operator can producy

filtered version of these images, which represents a facsimile of’ the noise-perturbed
wavefield found in the unfiltered versions. Unlike the simulations of the previous Chapter, there
exists no absolute information regarding the characteristics of the noise-free version. Ience,

recovery capability must be established by comparison of smoothed wavefield geometries with

their noise-perturbed by examination of row ant column spectra, and

power transfer function characteristics.

4.2 Tmage Characteri

The methods by which SAR data are gathered and transformed into imagery, are

intricate. While detailed di i f such may be found in [34], [35]

& [36), it is not necessary to provide further elaboration here; this is because the scope of this
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project is limited to recovery of the process which exists within the image. While there is certainly

arelationship between the actual ocean wave scene and the wavefield which appears in the image,
the transfer function which maps the former into the latter is non-trivial, as discussed in [37].
Hence, no attempt will be made to establish any relationship between the filtered image wave
scene, and the actual wavefield which was imaged by the radar. From the discussions of preceding
Chapters, it will be clear that the filtering operations are not dependent upon this relationship in
any way.

It is important to observe though, that the characteristics of data gathered by airborne
SAR, will impose some departures from the mathematical assumptions which were discussed in
Chapters Onc and Two. In particular, the SAR images used in thesc tests have not been corrected

for range distortions which result from the radar imaging process. In order to appreciate the

implications of this statement, consider that for a typical airborne SAR, the centre axis of the radar
beam projects obliquely onto the ocean surface, The actual depression angle of this centre axis
relative to the flight planc of the aireraft is determined by the configuration of the radar, v hich
may vary from one installation to another. In general however, the antenna beam axis and the
airerafl velocity vector intersect orthogonally, to form the orthogonal basis vectors of a virtual
planc which interscets the ocean surface at some distance from the aircraft; this plane is referred
10 as the slant plane. The slant plane dimension which parallels the antenna beam axis is known
as the slant range dimension, while the dimension which parallels the airciaft velocity vector is
referred to as the azimuth dimension. The basic geometry of a SAR imaging process is illustrated

Figure 4.1: note here that the azimuth dimension is normal to the page plane.

As illustrated by Figure 4.1, the radar imaging process involves mapping the

backscattered energy into pixels, denoted by p), which form a matrix of elements within the slant

plane. Each j'th element is assigned a digital grey level which is proportional to the energy

returned from the corresponding j ' patch of ocean, denoted by p;, existing in the surface plane.
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Within any i‘th row (range line) of the slant plane matrix, cach pixel position along that row
corresponds to a range distance from the antenna. This distance is established by the time which
clapses between the transmission and reception of a microwave pulse. The resulting slant plane
matrix is then constructed row by row in the column dimension, as the aircraft flies along the
azimuth veetor. Since the slant plane matrix is mapped to a digital image, this implies that the
procedure by which the i:nage rows arc generated is different from that by which the columns are
formed. Each pixel occurring in the slant plane will be of a constant physical size. In this
particular case, the dimensions were 4.0 m x 3.9 m in range and azimuth respectively, for the
Nov. 14 image; pixel specifications were not available for the Nov. 18 image.

However, as shown by Figure 4.1, the geometrical relationship between each slant
plane pixel and the patch of ocean surface which it represents, is actually non-Euclidean. In fact,
the range dimension of each discrete ocean patch, p,, decreases with increasing range distance
from the radar, despite the fact that the slant range pixel dimension, p’, remains constant. This

means that the information content of each pixel decreases along the range dimension, but remains

constant along the azimuth dimension. Therefore, if any given row of the slant plane image is
envisioned as a digital sample of a one-dimensional waveform on the ocean surface, then these
arcal contractions are cquivalent to an ever-changing sample rate, which increases non-linearly
along the range dimension. An additional consideration, is that microwave energy in the near
range reaches the ocean surface at a steeper angle than energy in the far range; this will result in
a changing SNR across the range dimension. Overall, these factors imply that there will be some
alterations in the statistical properties of slant range data, as a function of range position. The two
images which were made available by CCRS, and which have been analyzed in this Chapter, are
in slant range format. However, these images are actually subscenes which were extracted from
the far range region of the slant plane, where it is known that range-dependent variations are

minimized. Nevertheless, it is certain that these imaged processes cannot be ideally stationary in
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the range dimension. In addition to this, since the Nov. 18 image was gathered at an altitude of
approximately 3000 m, while the Nov. 14 image was obtained at approximately /800 m, the
former covers a much larger patch of occan than the latter; hence, the waveficlds are not dircetly
comparable.

Of further relevance is the fact that, while in their original stant plane formats, the
image pixels consisted entirely of non-negative intensitics. Consequently, the two-dimensional
processes within these images exhibited non-zero means. As well, because of aircraft motion, the
images also contained some intensity variations which were not due to backscatter prapertics of
the ocean surface. Here too there exist violations of the previous assumptions, which specily that
the two-dimensional image processes will have an expecied value of zero. Therefore, in order fo
transform the imaged process to a zero-mean process, and to remove the unwanted cffects of
aircraft motion, a two-dimensional, third-order polynomial trend surface was computed from the
data in each image. When cach model trend was then subtracted from its respective image, an
approximate zero-mean process resulted, and spurious intensities duc to motion were reduced.
Basic statistics, computed from each image after such detrending, are summarized in Figure 4.2;
the lower trace in each plot represents the mean value of pixels averaged along the respective row
or column component of the image, while the upper trace represents positive standard deviation.

Both the column index and the row index positions, which are shown on the x-axis, have their

origins in the upper lef-hand comer of the image.

From Figure 4.2(a). it is seen that the row means of the detrended Nov. 14 image
exhibit both positive and negative minor fluctuations, which are very near to zero; within these
fluctuations, there exists no large-scale trend. Similarly, the positive standard deviation of pixels
is constant at about /6, for all rows of the image. However, Figure 4.2(b) shows that for the
column dimension of this image, the mean pixel values incorporate a long-period undulation of

low amplitude. As well, there is a slight increase in the positive standard deviation of the column
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Figure 4.2: Means (bottom trace) and positive standard deviations (top trace), for the row and column components of Nov. 14 and

Nov. 18 signal-plus-noise processes.



pixels, from about /5 for columns in the left portion of the image. to about /7 for columns in the
right portion. Since the left and right portions of the image correspond to the near range and far
range regions of the SAR imaging process, such an increase is consistent with the expected

departures from stationarity which were discussed previously. From Figure 4.2(c). it is

en that

the row means for the detrended Nov. 18 image, behave very much like those for the Nov. 14

case; that is, they exhibit minor fluctuations about zero, with no discernible trend. The positive

standard deviation remains very close to 20 for all rows, with a Mt increas

e apparent in the left

portion of the image. However, Figure 4.2(d) reveals that within the columns of the Nov. 18
image, there exists significant trends for both the means and standard deviations, which are far

more severe than the cases just discussed. In particular, the column means ex

it noticeably

greater departures from zero, while the positive standard deviation deercases from a value of

approximately 2+ in the near range, to a value of approximately /4 in the far range.

mplics
that there will be definite departures from the WSS assumption within the Nov. 18 image.

Therefore, it is clear overall, that the detrended SAR ima

ges will continue to retain
some departures from those mathematical assumptions which were strictly adhered to by the
simulated images in Chapter Three. These departures have been imposed by a combination of the
radar iraaging geometry, and a limited effectivencss of the detrending algorithm: however, such
factors must be tolerated, because they arc unavoidable. For instance, with respect to image
format, only slant range data were available from the CCRS offices. With regard to detrending,
it is true that a polynomial of higher order might result in less variability about the mean; still,
there cannot be any guarantee that it will not remove uscful information as well. ‘Therefore,
detrending via a third-order algorithm is the highest order of preprocessing which can be
attempted with confidence. The fact that such observed departures from assumption do exist,

suggests that these imaged processes, especially the Nov. 18 image, will permit a robust
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assessment of the filtering technique. This is because the filters will be operating in situations

which are less than ideal, with respect to the mathematical structures inherent to the image data.

43 Correlation Characteristics of Imaged Processes

43.1 imation of Two-Dil i and One-Di i Correlation Functions

4.3.1.1  Numerical Estimatcs of the Two-Dimensional ACF
Following the detrending operation, the next stage in preparation for filtering of the

SAR images, was the estimation of a two-dimensional autocorrelation function from each image.

1 cquivalent of R, (1) in Eq. (2.5), and the objective of this operation was
o identify the signal and noisc relationships which were present within the images. Consequently,

in order to reduce i ity, the i i ACF’s were estimated from a

1024 % 1024 subscene occurring within cach /224 x /224 image. A portion of each resulting
correlation surface is shown in Figures 4.3 and 4.4, for the Nov. 14 and Nov. 18 images
respectively.

Figure 4.3(a) shows a small portion of the two-dimensional ACF from the Nov. 14
image; this surface has been normalized so that its maximum value, R,(0,0), is equal to unity.
From inspection of the correlation surface, it is immediately clear that the image has a significant
broad-band noise component, whicl is represented by a prominent tapered spike located at the
centre of the ACF. Complementary to this, Figure 4.3(b) shows a contour map for a larger
subregion of the correlation surface, and for normalized correlation values in the range 0 <
R, (te\tq) < 0.7 only. With the contour values restricted to this range, only patterns relating to the
signal components are observable.

Each lag unit in the correlation surface and map, corresponds to a pixel unit in the

consequently, periodic patterns exhibited by the correlation data, reflect wavefield periods

oceurring in the imaged process. Study of the Nov. 14 map, in Figure 4.3(b), will reveal that the

1"



(a) Autocorrelation Function: Nov. 14 Wavefield
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Figure 43:  Normalized autocorrelation data, obtained from /024 x 1024 subscene of Nov.
14 image.



(a) Autocorrelation Function: Nov. 18 Wavefield
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Figure 44:  Normalized autocorrelation data, obtained from /024 x 1024 subscene of Nov.
18 image.
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correlation function contains a low-frequency component. which has a period of approximately
100 correlation lags in the column dimension, and approximately 200 lags in the row dimension.
This wavefield component has a major axis which is oriented at approximately 30" counter-
clockwise (CCW) from vertical it is seen in the centre of the map. to cither side of the axis along
which t,=0. As well, Figure 4.3(b) indicates the presence of a higher frequency component, which

has a period of i 100 lags in the column dimension, but only i 15 lags

in the row dimension. This wavefield, which has its major axis oriented at approximately /0"
CCW from vertical, may be seen in all regions of the map. Finally, near the upper left and lower
right borders of the map, there is some evidence to indicate the possible presence of a wavefield
which is oriented at close to 90" CCW from vertical. This possible waveficld also has l;ll
approximate period of /00 lags in the column dimension, but has a period which exceeds the
number of pixels in the row dimension; hence, the waveficld has a frequency which is very close
to DC within the rows. The fact that this wavefield is dctectable only at large distances from the
centre of the map, indicates that it is of relatively low power in comparison to the other
wavefields. Study of the pattemns in Figure 4.3(b), suggests that it emerges only afier the
correlation power of these wavefields has decayed to a certain level.

Figure 4.4(a) shows a normalized portion of the corrclation surface which was
extracted from the Nov. I8 image. Here too, there exists a significant noisc component,
represented by a prominent tapered spike at the centre of the correlation surface. However, the
contour map for 0 < R, (%¢.%) < 0./, shown in Figure 4.4(b), suggests that this ACF contains one
main wavefield component which is dominant overall, oricnted at approximately 45* CCW from
vertical. This is a wavefield which has a period of approximately 80 lags in the column
dimension, and 80 lags in the row dimension. Figure 4.4(b) does suggest the possible presence
of one other component, oriented at about /40" CCW from vertical, however it is only present

near the centre of the map, indicating that its corrclation power decays very rapidly. As a
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reflection of this possible wavefield, the contour pattern contains three regions within which the
contours are very closely spaced. In a three-space context, very close contours are indicative of
a rapidly increasing slope; hence, thesc contours indicate the presence of three "mounds” in the
central region of the map. Each mound has a major axis orientation of approximately 45° CCW
from vertical, which is consistent with the orientation of most other features in the map. However,
when the mounds are enveloped as a group, it is apparent that the major axis of the envelope is
oriented at about /40 CCW from vertical. This would suggest that a low-power wavefield crosses

the image at this orientation.

4.3.1.2  Numerical Estimates of One-Dimensional Corrclation Functions

One-dimensional autocorrelation functions, estimated from the rows and columns of
the Nov. 14 image, arc shown in Figures 4.5(a) and 4.5(b) respectively. For both the row and
column dimensions, the shape of the ACF is consistent with severe damping of one or more
apparently sinusoidal waveforms. In fact, most of the power is contained within approximately
the first £ 50 autocorrelation lags, and it is in this interval that the exponential decay is most
observable, with power levels assuming nominally near-zero values for subsequent lags outside
of this range. In conjunction with the prominent noise spike, this supgests that the Case 11
analytical model from Eq. (2.12) would be a good approximation to these numerical estimates.

Similarly, Figures 4.5(c) and 4.5(d) present the one-dimensional autocorrelation

functions obtained from the rows and columns of the Nov. 18 image. These estimates also yield

evidence of ially-domped sinusoidal along with a signi broad-band
noise component: however, it is apparent that the damping factors are not as significant as those
which arc implied by the Nov. 14 ACF’s. This conclusion is drawn from the fact that the Nov.
18 row and column ACF's continue to exhibit noticeable power levels, well beyond the lag values

at which significant power ceased to be observed in the Nov. 14 ACF’s. Therefore, for the Nov.
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18 image also, it is possible to conclude that the exponentially-damped Case Il model proposed
in Chapter Two, is a good analytical approximation.

The structure of one-dimensional row and column cross-correlation functions can also
be inferred from the correlation surfaces preseated in Figures 4.3(a) and 4.4(a). This is achieved
by fixing the column lag, 1., at some constant value of t=%80, and then extracting the function
which has its domain over all values of 1. The result will be a numerical estimate of the regional
CCF for the specified distance, B, between rows. Similarly, fixing the row lag, t,, at a specified
value of t;=%820, and extracting the function having its domain over all values of 1., gives the
regional CCF for the distance, §, between columns,

Figure 4.6 presents the row and column CCF's which have been extracted via the
above procedure, from the Nov. 14 image. Figures 4.6(a), 4.6(b), and 4.6(c) present the numerical
estimates of row CCF's represented as R, (/,5), Ro(2.%), and R (3,7,) respectively. By similar
convention, Figures 4.6(d), 4.6(e) and 4.6(f) show the numerical estimates for column CCF's
represented as R, (te./), R (t.2), R, (t3) respectively. Figures 4.7(a) through 4.7(f) show the
numerical cquivalents to these functions, obtained from the correlation surface for the Nov. 18
image. Study of the CCF’s contained within both sets of Figures, in conjunction with the one-
dimensional ACF’s of Figure 4.5, leads to an interesting observation regarding interaction of
signal and noise companents within the correlation functions. For the column dimension of both

images, the noisc ibution to the imensis ion functions is distinctive, in the

sense that the noisc component can be visually inferred from an obvious change in the shape of
the signal-plus-noise correlation function. This shape change presents itself as a spike, which
emerges from the rounded undulation of the plotted correlation geometry. However, in the row
dimension, no such change is apparent; hence, for the rows, it is not possible to use the shape of
the correlation function as a means by which to infer the extent of noise correlation. Upon initial

consideration, this would seem to hold ominous ramifications for determining the value of ¢ in
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Figure 4.6:  Normalized one-dimensional row and column CCF’s for Nov. 14 image, extracted from the t:o-dimensional ACF of
Figure 4.3.
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Figure 47:  Normalized one-dimensional row and column CCF’s for Nov. 18 image, extracted from the two-dimensional ACF of
Figure 4.4.



the row dimension, which is a prerequisite to establishing the values of « and § when deri
filters for these images. Fortunately, there is an indirect procedure by which *he value of ¢ may

be estimated; this will now be discussed.

432 Estimating ¢, the Spatial Extent of Noise Correlation

Based upon observations made in conjunction with Figures 4.5, 4.6, and 4.7, it is
apparent that the extent of noise correlation, within and between rows, cannot be directly
estimated. Therefore, in order to develop a reliable method of inference, begin by referring to the
sectioned column correlation functions which are shown in Figure 4.8 for both images. Ilere, the

one-dimensional ACF, R, (tc,0), is denoted by "0, with CCF’s R (t../), R (1:2), and R, (t..3)

identified by *x”, "*", and "+ respectively. To establish the extent of noise autocorrelation in the
column dimension at row lag ©,=0 for both images, obscrve firstly that points &, (0,0) and
R (%1,0) are clearly components of the noise spike. However, with additional reference to points
R, (£2,0), it is apparent that these also form part of the noise component within the column
ACF’s. This is based on the observation that in both Figurcs 4.8(a) and 4.8(b), the ACKF
coefficients at R,(3,0) appear to represent a point of inflection. In facl, as 7, approaches the
value of £3 from the direction of +8, the slope of the ACF continucs to decrease. |lowever, during

the transition from t.=%3 to =22, it is clear that this trend terminates and the slope begins to

increase once more. These points of inflection have been indicated by the symbols \ and /, in
Figure 4.8. Based upon this observation, it is possible to infer that the noise has significant
autocorrelation at column lags 0, +/, and +2. However, it is extremely important to note that the
column autacorrelation coefficients at R (£1,0) and R, (£2,0), arc also the zero-lag points within
the row cross-correlation functions at row spacings of 8=/ and f=2. llence, it has now been

that the noise is self- L

d for the first two non-zero lags in the columns, and
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cross-correlated at the zerorh CCF lag between rows which are separated by distances of 8=/ and
B=2.

Refer next, to the column cross-correlation functions of both images, at the coefticient
values of R(0.1), Ry(0.2) and R(0,3), which are the zero-lag points in Figures 4.8(x) and 4.8(b).

‘When comparing these at column lag t.=

is seen that the noise spike is present at 8,0, /) and

R(0.2), but appears to be absent at R,,(0.3). This indicates that the zero-lag (t.=0) magnitude of

the noise ion functions in th , is also signil non-zero at eross-ch 1

spacings 8=1 and B=2. However, by argument similar to above, the column cross-correlation
coefficients, R (0.+1) and R.(0.£2) at =0, arc also the autocorrelation coellicients for row
correlation lags Tg=+/ and tz==2. This implies that the extent of non-zero noise antocorrelation
power in the rows also includes ACF lags ty=%/ and t,=%2, Thus, it has been demonstrated that
the noise is self-correlated for the first two non-zero correlation lags in the rows, and has o

significant zeroth-lag cross-correlation between columns which are scparated by distances of 8=/

and B=2.
Therefore, for both the Nov. 14 and Nov. 18 images, it has been established that the

noise component of the one-dimensional ACF, in both rows and columns,

nificantly non-zero
for autccorrelation lags =0, t=%/, and t=+2. Similarly, for the row and column cross-correlation
functions of both images, it has been established that the noise component is non-zero at CCF lag
=0 for B=I and B=2. Furthermore, careful inspection of Figures 4.8(a) and 4.8(b) will yicld
evidence to indicate that the noise is correlated for most combinations of -2< t.. <2 and -2 = 1,

< 2. This can be established with the aid of Eq. (2.7), however, the statements made in the

preceding paragraphs are sufficient to define to value of ¢. As well, there exists no evidence

whatsoever to indicate the possible existence of noise correlation at jointly non-zero corrclation
lags |tc|> 2 and |tg| > 2. This establishes an cstimate of ¢=2 for the spatial extent of

correlation within the noise process. Therefore, the extent of row and column noise autocorrelation
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has demonstrated that the vector filter must be derived with a prediction gap of o>2, for both
images. In conjunction with this, the existence of s.gnificant noise cross-correlation at the

observed lags requires that the vector filters should also be derived with 8>2,

44 Results from Vector Filtering Operations
44.1 Overview

Within this Section, the effectiveness of the vector filtering technique has been tested
by filtcring cach of the detrended Nov. 14 and Nov. 18 SAR images. Correlation functions
extracted from these images indicate that they satisfy the Case Il criterion. Based upon the
findings of the previous Sections, the parametric values of the standard-attribute operators were
chosen to be a=3, =3, and £=200. For the most par, this filter length is approximately
cquivalent to, or in excess of, one full period of the imaged waveforms which were revealed by
the correlation surfaces of the previous Section. A possible concem is with respect to the row
component of the 30° wavefield which occurs in the Nov. 14 image. From Figure 4.3(b), it has
been observed that the period of this component was approximately 200 pixels; therefore, as an
initial consideration, it might seem appropriate to use an operator of slightly greater length. In
fact, if the row ACF were not exponentially-damped, then this wouid be highly desirable.
However, reference to Figure 4.5(a) shows that even at /50 autocorrelation lags, the damping is
so severe that there exists very little power in the autocorrelation function. Naturally, this also
holds for the cross-corrclation functions, but the smaller x-axis range in Figure 4.6 does not make
this apparent. With the choice of =200 momentarily notwithstanding, this implies that extending
the value of & beyond /50 might actually be superfluous, because accuracy of the filtering
procedure will probably not improve significantly. Therefore, the choice of £=200 ensures that

the maximum possible extent of useful lation i ion has been i within the

vector operator.



Furthermore, the specific orientation of the approximately 90" wavefield within the

Nov. 14 image is also of some concern in this regard. Since the stated orientation of 90 is only

an approximation, it is quite likely that the major axis of this waveficld may not be exactly

orthogonal to the column dimension. 1£ this is so, then the rows will incorperate a very low,

frequency component, one full cycle of which may not actually exist within the image.

indicates the practical limitations of trying to incorporate one full cycle within the filter transfer
function, when operating on bandpass processes. In such situations, image rotation algorithms do

not offer a possible solution, because with this type of process there may be numerous waveliclds

of different orientati rotation algorithms may signi ly alter the
properties of the noise.

The frequency respons i istics of each th h | operator have
P La

been presented in Appendix 11l Note that when deriving these operators, one-dimensional
correlation functions were estimated directly from cach /224 x 122+ image; the correlation data
derived from the /024 x 1024 subscenes described in Section 4.3 were not used. Inspection of

the diagrams in Appendix 111 will once more verify that the frequency response magnitude

¢
not constrained to be identical. In fact, for these operators, the differences between channcls are
much more pronounced than was observed for filters derived with Case | correlation data. This

is due to the shape-altering influences which the « and 8 parameters exert in the presence of Case

11 correlation data. Results obtained from the filtering operations will now be dis

Comparison of Unfiltered and Filtered Image Processes for Nov. 14

The unfiltered signal-plus-noisc process for the Nov. 14 image is shown in Figure

4.9(a); the presence of a noise process is evident, and interferes with any attempt to visually ass

SS
the structure of the underlying wavefield. Despite this however, it is possible to observe a

wavefield component which has its major axis oriented at /(" CCW from vertical. This
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(a) Nov. 14 Wavefield: Unfiltered
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Figure 4.9: Noise-contaminated SAR image is shown in (a), for Nov. 14 wavefield. The
recovered wavefield, based on standard-attribute operator with a=8=3, £=200,
is shown in (b).
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component was previously identified in conjunction with the two-dimensional ACF discussed in

Section 4.3.1. However, from that ACF data it is also known that there exi

s other waveficlds,
one of which has its major-axis orientation at approximately 30" CCW from vertical. At best, this
wavefield can only be described as being barely observable in Figure 4.9(a). In fact, it is only
slightly noticeable in the upper central region of the image, and then only to a traincd eye. 1lad
its presence not been revealed by the two-dimensional ACF, this waveficld probably would go
unnoticed during a visual inspection of the unfiltered image. A third possible waveficld, oriented
at 90° CCW from vertical as suggested by the ACF in Figure 4.3, cannot be detected.

Results of the vector filtering operation involving the Nov. 14 image, are displayed in
Figure 4.9(b). From this image, it is scen that the speckling effect of the correlated noise in Figure
4.9(a) has been eliminated, at least to such an extent that it cannot be detected visually. As
direct consequence, the /0" wavefield is now more clearly observable. As well, the 30" wavefield
also appears with an enhanced visibility which is far superior to its presentation in Figure 4.9(a).
This enhancement is actually due to the exponentially-damped nature of the ACI; because the
filter is performing a three-step prediction, the damping of the ACF has probably altered the
power relationships within the output spectra. Hence, the filtering operation imparts a
disproportionate amount of power to this wavefield, when compared o the relationships which
existed previously. Furthermore, the waveficld which has a 90" CCW orientation, previously
indicated by the ACF in Figure 4.3, can now be partially detected. This feature is best observed
in the extreme left and right regions of the image, especially in the lower half portion; its
emergence is also likely due to the shift of power towards lower frequency components, as a result
of the filtering operation.

A close visual assessment of the enhancement provided Iy filtering can be made with
reference to Figures 4.10(a) and 4.10(b), which present enlarged subscencs from the lower right

regions of the images in Figure 4.9. At this scale, of course, sufficicnt information for making
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(a) Nov. 14 Subscene: Unfiltered
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(b) Nov. 14 Subscene: Filtered

Figure 4.10:  Enlarged subscenes from the unfiltered and filtered images in Figure 4.9.
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comparisons can only be provided for the wavefield which is oriented at /0 CCW from vertical.
As scen in Figure 4.10(a), the clongated pattern produced by the unfiltered wave crests is
noticeable overall, but the individual waves arc not casily discerned: this is due to perturbations
of their geometry, which have been imposed by the noisc. However, from Figure 4.10(b), it is
seen that the wave crests become clearly visible after the filtering operation has been performed.
Furthermore, very careful comparisons will yield positional and geometrical correspondences,

between each filtered wave feature in Figure 4.10(b) and its related nois

perturbed feature in

Figure 4.10(a). Based on a purely visual assessment,

is possible to conclude that the filte

operation ields convincing results.
Frequency-domain representations of the unfiltered and filtered images for Nov. 14,

are shown in Figure 4.11. In particular, Figures 4.11(a) and 4.11(b) show the signal-plus-noise

spectra from the row and column components of the unfiltered image. In both cascs, thes

clear evidence of a tapered noise spectrum, consistent with carlicr observations that the n
significantly correlated at non-zero lags. For the row component, it is apparent that there exists
two dominant frequency bands, onc at about f=0.2, and another which occurs in the region
around f=0. These two frequency bands within the row component correspond to the image
wavefields which are oriented at /0” and 3(” respectively. It should also be noted that the
apparent peak at /=0 is actually two peaks, representing the positive and negative components of
a frequency which is very close to DC; here, the spacing is so small that it cannot be resolved by
the plotting device. This feature is possibly duc to the 90" waveficld discussed previously; because
of its orientation in the image, its row component would have a frequency which is very clese to
DC. For the column component, shown in Figure 4.11(b), it is scen that there exists only one band
of frequencies for which there is noticeably greater power. This occurs in the approximate range
of 0./ £ <0.1,and it is not surprising, since the two-dimensional ACF of Figure 4.3 indicates

that all wavefields are of very low frequency in the column dimension. As a further comment,
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note that since the ACF of these processes is exponentially-damped in both the row and column
dimensions, it is to be expected that the desired signal actually has a spectral content which spans
all digital frequencies -/ < f < /. However, outside of the bands just identified, the signal

contribution to the spectrum is insignif in ison to the power i by noise, wnd

will never be recovered.

Figures 4.11(c) and 4.11(d) display the row and column spectra which were recovered
by filtering the noisy image. The bandwidths which emerge from this operation arc a result of the
filter having adapted to the signal component of the image, for those values of a and B which

were chosen. These bandwidths then, are considered to be the cffective bandwidths of the signal

process; in actual fact, they have been defined by that particular realization of Wold's
decomposition which is associated with the chosen filter parameters. From Figure 4.11(2), it is
seen that the recovered signal in the rows, has spectral peaks corresponding to those which were
identified in Figure 4.11(a); however, there is certainly detectable power for all frequencics within
the range of -0.2 < £ < 0.2, thus establishing the effective bandwidth as spanning this range. From
Figure 4.11(c), it might initially seem that the low powers which occur in the trough at about
f=20.1, could possibly be remnant noise; however, based on the correlation plots of Figure 4.8,
it is almost certain that the forward prediction and cross-channel gaps are sufficient for elimination
of the noise component. Therefore, it must be concluded that the frequency powers occurring in
these troughs also belong to the bandpass process. For the output spectra from the columns, sen
in Figure 4.11(d), it is easy to conclude that the effective bandwidth is approximately -0. / <f=
0.1, a range which corresponds to the spread alrcady inferred from the noisy image. ‘These
observations are verified by the row and column power transfer functions which arc shown in
Figures 4.12(a) and 4.12(b). With reference 1o the definition of 7,(/) via Eq. (3.2), the noisy
image spectrum corresponds to Py(f), whereas the filtered output spectra correspond o 7y /).

In these Figures, it is seen that all of the positive gain factors coincide with frequencies occurring
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within the ranges just defined. In particular, it is seen that the nois

frequencies which occur
outside of these effective bandwidihs experience attenuation factors in the range of -8 dB to -28
dB.

A very important observation which can be made when comparing the unfiltered

normalized spectra o their filtered is that the power refationships within the effectiv

bandwidths are changed as a result of the fillering. For instance, comparison of Figure -4.11(¢)
with Figure 4.11(a) will reveal that the higher frequency component within the rows, at about
f=#0.2, has experienced a loss of power relative to the components which oceur near /=0,

Similarly, comparison of Figures 4.11(d) and 4.11(b) shows that almost all frequencies in the

bandwidth of -0.1 < f < 0.1 have cxperienced a loss of power, except for two frequency poi

which have emerged to dominate the spectrum after filtering. In fact, for both the row and colunn
filtered spectra, it is the lower-frequency components which have gained a relative power
advantage within the signal bandwidth. The power transfer functions of Figure 4.12 confirm that
there has been a redistribution of power. In these diagrams it is clear that the positive gain factors
are not constant across the signal bandwidths; in fact, the gain factors are generally largest for
frequencies near DC. This verifies that some spectral components within the desired signal must
have experienced a power increase relative o the power of other frequencies within the effective
bandwidth. Further to this, it is scen that within the cffective bandwidih of the rows, some
frequencies have actually experienced attenuations close to -/0 dB. Such obscrvations explain
why the 30° wavefield, as well as the 90" waveficld, have become more visually dominant in the

filtered image than they had previously been in the unfilicred version.

443 Comparison of Unfiltered and Filtered Image Processes for Nov. 18

The unfiltered signal-plus-noisc process for the Nov. 18 imaj

shown in Figure

4.13(a). Here too, the presence of noise is obvious and interferes with any attempt to cither
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Figure 4.13:  Noise-contaminated SAR image is shown in (a), for the Nov. 18 wavefield. The
recovered wavefield, based on standard-attribute operator with a==3, £=200,
is shown in (b).

133



visually or numerically characterize the wavefield structure. In this image there apparently exists
a single dominant wavefield oriented at 45° CCW from vertical, as predicted by the patterns
observed in the two-dimensional ACF of Figure 4.4(b). A sccond possible wavefield oriented at
approximately 140° CCW from vertical, which was suggested by the corrclation information in
Figure 4.4(b), cannot be observed. A recovered image obtained via the vector filtering operation
is presented in Figure 4.13(b); as with the previous filtering results. this image also suggests a
complete absence of visually detectable noise components.

Inspection of enlarged subscenes shown in Figures 4.14(a) and 4.14(b), indicate that
thc-e is a strong positional correspondence between the filtered structures and their unfiltered
counterparts. Furthermore, while the filtered structures are certainly more crisply defined, there

also exists a definite geometric to their diffuse, noise-perturbed versions, which

are seen in the unfiltered image. This provides strong empirical evidence, to indicate that the
filtering technique has recovered a reasonably accurate facsimile of the waveficld while
successfully annulling the distortions due to correlated noise. As a further comment, note also that
the filtered image in Figure 4.13(b) yields no visual evidence to indicate the presence of any
wavefield oriented at /40" CCW from vertical.

Frequency-domain characteristics of the row and column components from the Nov.

18 image, are shown in Figure 4.15. Inspection of the unfiltered spectra in Figures 4.15(a) and
4.15(b) suggests that the noise power is lower in relation to the signal power, than was the case
for the Nov. 14 image. From the filtered spectra, in Figures 4.15(c) and 4.15(d), it is seen that
the effective bandwidth of the signal process within both the row and column components of the
image is approximately -0./ < f < 0.1. This equality in bandwidths between row and column
dimensions, is consistent with the fact that the dominant wavefield is oriented at an angle of

approximately 45° CCW from vertical. These same approximate bandwidths can also be obscrved

in the unfiltered spectra. However, when making comparisons between the spectra, it is clear that
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Figure 4.14 Enlarged subscenes from the unfiltered and filtered images in Figure 4.13
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the filtering operation has resulted in a redistribution of power within the effective bandwidths.
A notable example oceurs within the column component, shown in Figure 4.15(b), where the
unfiltered spectrum reveals the presence of a notch at frequencies near f=0; in the filtered
spectrum, however, seen in Figure 4.15(d), it is clear that this notch has deepened considerably.
‘These observations may also be confirmed by reference to the power transfer functions which are
shown in Figure 4.16. Here, it is scen that the positive gain factors are not equal within the
effective bandwidths of the signal, and in fact, the notch which deepens in the bandwidth of the
column component, actually corresponds to a negative gain within the power transfer function;
this is similar to the effect obscrved for the row transfer function of the Nov. 14 image. These
non-uniform gain factors confirm that the signal is distorted during the filtering operation.
However, the power transfer function also reveals that the noise components which lie outside of
the effective bandwidth  xperience attenuation factors having magnitudes within the range of -/0

dB to -25 dB.

4.5 Summary

In this Chapter, the vector filtering technique has been applied to two images, each of
which contained a bandpass stochastic process contaminated by correlated noise. This underlying
process was characterized by Case Il correlation functions which exhibited noticeable damping.
By inspection of the one-dimensional row and column ACF’s, it was possible to establish that the
noise was correlated to a spatial extent which is equivalent to c=2 in Eq. (2.11). This required that
the vector Wiener filter be derived with parametric values of or=2 and B=3. Inspection of two-
dimensional autocorrelation surfaces, indicated that an operator length of £=200 would incorporate
sufficient information for recovery of these noise-perturbed wavefields.

Filtering operations performed on the two images indicate that it is indeed possible to

recover a noise-suppressed wavefield. Within this wavefield, the smoothed wave features will
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retain an observable geometric correspondence, when compared to their diffuse, noise-perturbed
counterparts in the unfiltered images. However, examination of power spectra and power transfer
functions, indicates that some signal frequencies within the recovered images have experienced

a significant gain in comparison to other spectral components within the desired signal. This

phenomenon ariscs duc to the ially-damped nature of the ion data, and has been
predicted by the analytical representations discussed in Chapter Two. The next Chapter will
present a detailed investigation as to how this problem might become further intensified, in

filtering situations for which larger values of « and 8 may be required.
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CHAPTER FIVE

INFLUENCE OF WOLD'S DECOMPOSITION UPON VECTOR FILTER FOR

CASE Il CORRELATION DATA

5.1 Introduction

During the mathematical discussions in Chapter Two, it was shown that for Case Il
correlation data, the scalar Wiener filter would produce a different realization of Wold's
decomposition, for each unique combination of values assigned to the forward prediction and
cross-channel prediction parameters, a and . Hence, for two different combinations of « and 8,
the corresponding scalar Wiener filters would produce different recovered wavefields afier
operating on the same noise-contaminated image. This Chapter will provide empirical evidence
that Wold’s decomposition has a similar effect upon the three-channel version of the vector

Wiener filter as well. Such influences were suggested at the beginning of Section 2.6.2, but

analytical proofs were beyond the scope of this project. As a further comment, from the

mathematical formulations of Chapter Two, and with particular reference to Eq. (2.21), it can be
seen that the filter length, £, will also be influential in determining the representation accuracy

of the recovered wavefield. However, this fact will not be investigated here because it is an

already well-known attribute of linear prediction theory.

In addition, this Chapter will present further evidence to confirm that the exponentially-
damped Case 11 models of Chapter Two, arc representative of the correlation and spectral
characteristics for processes within the Nov. 14 and Nov. 18 images. Such verification will be a
necessary step, towards evaluating and explaining the influence which Wold’s decomposition

exerts upon filter perfor nance in the three-channel casc. This study will focus on the use of & and
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B parameters which are of much greater magnitudes than those which were used in Chapter Four.
Such an investigation has practical significance for potential filtering situations in which the extent
of spatial correlation exceeds ¢=2, this having been the value established for operations in the

previous Chapter.

52 Cross-Coherence Functions Obtained from Nov. 14 and Nov. 18 Images

The cross-spectral magnitude coherence function, Y2,,(f] 0.8), was previously defined
via Eq. (2.22) in Scction 2.4.3.2. There, it was asserted that for Case Il correlation data, the cross-
spectral magnitude coherence would change as a function of 8, when computed from the one-sided
power spectrum at a=0, This fact provides a good measurc against which to verify the presence
of Casc I data within the SAR images discussed in Chapter Four. Pursuant to this, numerical

cstimates of the coherence function were obtained from the unfiltered Nov. 14 and Nov. 18

images, for / < 8 < 50 and a=0. Implicit to ¥,,(f] 0,8), via Eq. (2.20) and Eq. (2.22), is the value
for £, which was chosen to be 256 in this case. The choice of £=256 involves an integral power
of 2, 2" in fact, which greatly improves the computational efficiency of the FFT algorithms
required for numerical estimation of ¥%,,(/10,8). A detailed discussion of the estimation procedure
may be found in [31]. Essentially, with each pair of /22/-point rows, 12,/(/] 0,8) was computed
for several scgment pairs, each of 256 points per segment, and each of which overlapped with the
previous segment pair by 210 points. At cach value of 8, this procedure was performed for all row
pairs occurring in the image, after which the resulting ensemble was averaged to produce the
estimate of ¥, (/]0,6). The numerically-averaged results for fifty positive values of 8 are shown
in Figure 5.1. These surfaces display the regional average of v',,(/] 0,8), which has been computed
over all row pairs separated by cach specified distance of 8. In order to enhance the clarity of

presentation, these surfaces show results only for 0 < f'< 0.5; for both images, the effective
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bandwidths of the row and column bandpass processes occur within this range, hence, very little
information has been lost by omitting the upper half of the spectrum,

Upon inspection of these surfaces, it is clear that they all share a common atiribute in
the form of a "curtain” of spectral correlation at A=/, At this value of 8, the correlation coefficient
for cach frequency point is much higher than the coefficient at each corresponding point for 2 <
B < 50. This is due to the additive noise component, which is known to be correlated across rows
which are separated by a distance of =/. However, overall higher coefficients for =2 are not
apparent, despite the fact that results of the previous Chapter showed the noise to be correlated
across rows which are separated by this distance as well. This discrepancy is likely du to the fact
that the surfaces were estimated using much shorter data lengths, a necessity for periodogram
averaging of spectra. Because of this, the cross-coherence surfaces of Figure 5.1 will be insensitive
to the much weaker noise correlation known to exist at §=2.

A second attribute which is common to all four surfaces, is that for the bandpass signal
component, the correlation power at larger values of 8 is much lower than at smaller values of
this parameter. In fact, with respect to the bandpass component at about f = 0.2 in Figure 5.1(a),
it is seen that for 8 > 40, the correlation power is not significantly greater than the coherence
estimate for moise frequencics at § > /. Such a loss in signal correlation power would be
consistent with the exponential decay of cross-spectral power within a Case II process, for
increasing f, as predicted by G,,(/]0.6) in Eq. (2.20). This is further evidence that the spectral
model for Case Il correlation data, as defined by Eq. (2.20), aptly represents the spectral processes
which are found in these images.

There is also a third significant attribute which is observed to be present in Figure
5.1(b) and, 1o a lesser extent, in Figure 5.1(a). With specific reference to the bandpass component
of Figure 5.1(b), for 0 <f<0.1, it is seen that the correlation power decreases rapidly while 8 is

in the approximate range of / < 8 < 6, however it increases once more, in a cyclical pattern, for
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6 < B < 15; there also appears to be another very weak cycle in the approximate range of /5 <
< 30. This pattern would also be consistent with the exponential decay of a cyclical G, (/] 0.8)
in the numerator of ¥*,,(/] 0.8), as 8 continued to increase. For any fixed value of fand increasing
£, such a pattern would occur due to the cyclic nature of the complex resultant which arises from
the addition of n non-zero spectral terms in Eq. (2.20). In fact, such a pattern was specifically
predicted during the discussion which pertained to that equation. A similar pattern, of much lower
correlation power, can be observed from Figure 5.1(a), within the region bounded by 0 <f< 0./
and / < B < 50. Consequently, based on these observations, as well as the discussion of the
preceding paragraphs, and taking into account the apparently damped shape of the correlation
functions in Chapter Four, it is now possible to reach a significant conclusion which was only
alluded to in the previous Chapter. Specifically, for both the Nov. 14 and Nov. 18 unfiltered
images, correlation data obtained from the time domain, as well as from the frequency domain,
exhibit characteristics which are predicted by the analytical models dt fining Casc 11 correlation

conditions. In fact, no evidence whatsoever has been observed which would support any assertions

to the contrary.
Given that Case 11 correlation conditions exist for the images which were processed
in Chapter Four, it is now important to recall certain statements which were made in Chapter Two,

regarding the role of Wold’s decomposition in the filtering process. There, it was stated that the

scalar Wiener filter would yield different realizations of Wold's decomposition, each distinet, and

each corresponding to a specific combination of values for « and B, if Case Il correlation data

were used in the filter derivation. While this istic was not y! ly for

the vector version, it follows that since the principles of vector Wicner filtering arc an extension
of the scalar case, then similar behaviour can be expected for the three-channel filter. This now

prompts recognition that the recovered images shown in Chapter Four, represent but one of a

range of possible realizations of Wold’s ition. Hence, the shown in Figures
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4.9, 4.10, 4.13, and 4.14 arc not unique representations of the bandpass components occurring
within the original images.

Furthermore, it also follows that since the lower limits of o and B are determined by
the upper limit of ¢, then the actual extent of noise correlation will predetermine which
realizations are recoverable frem Case II data. Given this, it would now seem that the most
accurate representations will be recovered when the spatial extent of noise correlation is small.
This is because for small values of « and B, the differing rates of exponential decay between the
n sinusoidal components of the CCF, will not be as influential as they would for larger values of
o and B. Morcover, small parametric values will impose only minor relative displacements
between z-plane positions of the 1 complex phasors which comprise Eq. (2.20). These two factors
imply that the frequency response of the filter will not depart severely from the frequency
characteristics of the bandpass process within the noisy image, when o and 8 are small. This
assertion is supported by the fact that close positional and geometrical correspondences were
observed between features occurring in the unfiltered and filtered images presented in Chapter
Four. Conversely, for large o and B, exponential attcauation will be so severe that some frequency
components may be virtually eliminated. As well, the severity of relative phasor displacements
in the z-plane will increase and decrease cyclically within G,(f]a.B), as either one nf these
parameters incrcases without bound. These influences will severely alter the frequency response
characteristics of the filter, thereby distorting the wavefield which occurs in the output image.
‘Therefore, it is quite reasonable to expect a decrease in filtering accuracy, for Case II situations
in which the cxtent of noise correlation forces the choice of large parametric values. To
investigate the validity of these observations, the frequency magnitude response of the three-

channel filter will now be examined over a range of values for & and 8.
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53 Magnitude Response Variations Induced by Changing o and §

To provide verification that vector filter istics will rely heavily upon variations
in arand @ for Case 11 correlation data, a series of numerical investigations were conducted. These

involved the derivation of three-channel transfer functions, for chosen ranges of the shape

all derivations involved standard-attribute operators having a value of £=200. One set
of derivations involved a fixed value of =3, while & was incrementally adjusted between cach
individual derivation, within the range of 3 < & < 50. A second set of three-channel transfer
functions were derived by setting 8= for all derivations, and jointly incrementing these values
within the range of 3 < («=B) < 50. This procedure was implemented for row and column
correlaticn data obtained from both of the unfiltered Nov. 14 and Nov. 18 images. An extensive
data set was produced, which need not be examined in detail, since the prime objective is mercly

to demonstrate that variability in filter response does occur as a function of the shape paramete

Consequently, only the results from column filters for the Nov. 14 image have been displayed in
Figures 5.2 and 5.3; similar results for the row filters of this image, as well as the row and
column filters of the Nov. 18 image, may be found in Appendix IV. Furthermore, each surface
within Figures 5.2 and 5.3 has been normalized such that its maximum response assumes a

magnitude of unity. Therefore, magnitude response comparisons hetween surfy

are not
meaningful; however, the surfaces in Appendix IV have not been subjected to any such
normalization.

Figures 5.2(a), 5.2(b) and 5.2(c) show the respective frequency response surfaces o1
transfer functions /iy, /i, and fy,, for B=3 and varying . Similarly, Figures 5.3(a), 5.3(b), and
5.3(c) show the responses of these transfer functions for jointly varying valucs of f=a. Inspection
of these surfaces, will yield unequivocal evidence that the filter responses do vary significantly
with changes in the shape parameters. This confirms that the recovered images presented in

Chapter Four are not unique representations of the bandpass processes occurring in the noisy
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(a) Nov. 14 Cols.: Channel 1, Beta=3

Digita! Frequency

(c) Cols.: Channel 3, Beta=3
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o .. Digital Frequency
Figure 5.2: Magnitude response surfaces” derived from column component of Nov. 14
image, for fixed 8 and varying . Note the cyclic patterns parallel to the a-axis.
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images. As well, Figures 5.2(a) and 5.2(c) show a clearly cyclical pattem in the cross-channel
response of cach frequency point, for increasing a. If one considers the scalar Wiener filter
analogy of [iq. (2.40), it is apparent that such a pattern could only occur if G,,(/] e, 3) were derived
from Case Il correlation data. This pattern is also evident, to a slightly lesser degree, in the
response for /,, shown in Figure 5.2(b). For the response surfaces corresponding to jointly varying
B=a, a similar pattern is also evident in the response for /z,, shown in Figure 5.3(b); however, for
hy, and hy in this case, shown in Figures 5.3(a) and 5.3(c), there is only very slight evidence of
such a pattern, restricted to frequency points of 0 <f<0.1.

As a general comment, which pertains to all response surfaces shown in Appendix 1V,
the oceurrence of cyclical frequency response is less prevalent for jointly varying B=c than for
fixed B with varying «. This may be partly due to the variability which occurs with the
introduction of new CCF data as 8 varies, a fact which was discussed in conjunction with similar
response surfaces for Case | correlation data in Section 3.4.2. However, for Case II, a more
compelling explanation logically follows from the form of Eq. (2.20), which indicates that
changing B in conjunction with changing « will destroy the periodicity which occurs with
advancing a. This is because the exponential terms involving 8 will also introduce new phase
relationships with cach change in 8. Hence, with Case Il data, there is an analytical basis for

explaining the loss of periodicity in the hannel frequency response for jointly varying B=cr.

Further to this, the fact that cyclic behaviour can still be observed for A, in Figure 5.3(b),
suggests that the within-channel transfer function for this three-channel set behaves somewhat like
its scalar counterpart in Eq. (2.40). If, for instance, the form of Eq. (2.40) is considered within
the role of the three-channel scalar array proposed in Eq. (2.45), it is realized that this version of
I, would only incorporate G,(f]@,0) in the numerator of its frequency-domain representation.
However, within this array, the frequency-domain representations of 4, and 4,; would incorporate

only G, (f]a.-B) and G,(f]B) respectively. Since B would be equal to zero and constant over all
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«a for the version of /1,, represented by Eq. (2.40), it is casy to sce that a jointly varymg =
would only influence the response of /1, and . hence, the cyclic response of f, would remain

unaltered. The patterns observed in Figures 5.3(a).

3(b). and 5.3(c) arc consistent with the
existence of a similar relationship between the transfer functions of the three-channel vector filter,

However, this is not to imply that the three-channel vector version is equivalent to the
scalar arrangement of Eq. (2.45); for instance, the vector version incorporates correlation
information between rows i-8 and i+, whereas the scalar functions of Eq. (245) definitely do
not. As well, the surfaces in Appendix 1V indicate that the Channel 2 response generally does

exhibit some change with 8=c, when compared to its response for fixed g. Hence.

anging 8

does influence the Channel 2 filter; overall however, the changes witl

n by, are minimal in
comparison to the changes which occur within /1, and /i, Based on these observations, it is
possible to conclude that while autocorrelation and cross-correlation data contribute to the
frequency response of all three filters, autocorrclation data is most influential in shaping the

response of /1; conversely, it would appear that cross-correlation data is dominant

determining

the frequency characteristics of /1,, and /.

The surfaces in Figure 5.2 reveal another interesting pattern, which also requires some
explanation. By inspection, it is clear that the frequency of cycles which occur due to advancing
@, at any given f, increases with the value of £, Hence, for £ close to 0.7 say, the magnitude
response exhibits only a small number of cycles for 3 < < 50. However, as f approaches 0.5,
the number of cycles increases noticeably. This suggests that the number of cycles which «

introduces to the magnitude response, is somehow proportional to the value of £ To understand

the source of this phenomenon, consider a modified and approximate version of the scalar

function, now represented as H,,(ce| ), which has as its domain, the values occurring along the o~

axis of the surfaces in Figure 5.2; such a function will be defined as :
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This representation excludes several terms which arc present in Eq. (2.20). However, by
momentarily assuming that these terms are uninfluential, it is possible to understand the changing
frequency of the a-induced cycles in Figure 5.2. To begin, consider the case where # is large in
Eq. (5.1), such that for each value of f in the DFT, the correlation function incorporates a
corresponding sinusoidal component of frequency wy,. Consider next, an arbitrary frequency point,
£, say, at which Eq. (5.1) will be evaluated over all . Although it will not be formally shown,
it can be numerically verified that as w,—,, from cither the right or lef, the magnitude of the
quotient of sink functions increases in a highly non-linear fashion and peaks quite suddenly when
< = £, This has significant ramifications for the behaviour of H,,(a|f=f,) when the summation
is carricd out within Eq. (5.1). In particular, consider the n cyclic series which are generated at
/., as « increases without bound. From the form of Eq. (5.1), it is known that each & 7/ series will
have a unique frequency of w,, k=1,2....,n. Point-wise summation of these n series, each of a
different cyclic frequency, defines the frequency response series of H,(a|f=f)) at specified
frequency £, over a specified domain of , in this case 3 <a < 50. However, due to the behaviour
of the quotient of sinf functions in Eq. (5.1), the most powerful cyclic series within in this point-
wise summation will be the series for which w,,=f,. Therefore, the dominant frequency of a-
induced cycles at DFT point f,, is in fact, f,. Based on this discussion, it now follows in general
that for any frequency point, £, cyclic variations in H,,(«|/) must occur with a dominant frequency
which in fact is equivalent to £ This helps to explain the changing frequency of cyclic patterns
observed in Figure 5.2; however, in these surfaces, the influence of exponential damping factors

will also play a role.
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An overall comment which can be made regarding the frequency respons: in

Appendix IV, is that existence of cyclic behaviour. while present in most, is generally much less
pronounced for row transfer functions, regardless of whether 8 is fixed or varying. Another
general conclusion, is that as « increases, the decay in magnitude response is much more severe
for column transfer functions than for row transfer functions. These observed dilferences are
consistent with statements made in Section 4.2, wherein it was revealed that the process by which
image rows were constructed was different from that by which the columns were formed.

Based on information presented in this Section, it is now conclusive that with

ell
correlation data, the frequency response of the vector filter is dependent upon the values which
are chosen for a and 8. Therefore, each choice of  and § docs yield a different realization of

Wold’s decomposition; visual evidence in support of this will now be examined.

54 Assessment of Recovered Images for Impact Due to Changes in « and 8

To further emphasize the findings of the previous Section, a set of recovered
wavefields was generated by filtering the Nov. 14 and Nov. 18 images, using a standard-attribute
operator with £=200. Complementary to the recovered images of the previous Chapter, four
additional process realizations were obtained from cach noisy image by deriving filters hased on
four unique combinations of values for parameters o and 8. An FFT analysis, for -0.25 < /< (.25,
performed on the rows and columns of each of these images, has been presented in Appendix V:
FFT results from the filtered images in Chapter Four have also been included.

Results obtained from the Nov. 14 image, for parametric combinations (e.3)=(15.3)
and (@,8)=(27,3), are shown in Figures 5.4(b) and 5.4(c) respectively: for comparison purposcs,
Figure 5.4(a) presents the recovered wavefield which was previously obtained in Chapter Four,
with (,8)=(3,3). Based on these wavefields, it is clear that the /(" wavelficld component of the

Nov. 14 image i significant ion as « increases in i for a constant 3.
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Figure 5.4:  Realizations of Nov. 14 bandpass process for §=3, at three distinct values of «



For (c.8)=(15,3), shown in Figure 5.4(b), this higher-frequency wavefield is

till highly visible,
however, it is also clear that the lower frequency waveficld at 30° orientation has become more
dominant in comparison to Figure 5.4(a). Furthermore, the actual shape of features which

comprise the /0° wavefield component is now much more regular than for the case in which

(f)=(3,3). This suggests that the significant bandwidth associated with this /(" component has
narrowed due to the increase in ; a fact which can be verified by reference to the FFT analysis
in Appendix V. In Figure 5.4(c), with (@,8)=(27.3). it is scen that the 30° waveficld has been
even further enhanced, with only a slight trace of the /0 waveficld remaining. In addition to this,
theright portion of the image apparently displays a portion of the wavefield which is oriented at
90 CCW from vertical. As suggested by the discussion pertaining to the two-limensional ACK
in Figure 43(a), this waveficld has emerged only after the other waveficld components have
experienced a significant attenuation of power, which resulted from the filtering operation.
Figure 5.5 presents a second set of process realizations, obtained from  the Nov. 14
image by using parametric values of (c.)=(15, 15) and (,)=(27,27). These arc shown in Figures
5.5(b) and 5.5(c) respectively, with the reference process duc to (e,8)=(3.3), shown in Figure
5.5(a). For both Figures 5.5(b) and 5.5(c), the 30* waveficld is totally dominant and the 107

wavefield is virtually absent. These results arc in contrast to the results in

Figure 5.4, where the
30° wavefield was less well-defined overall. The mechanism by which the 30* wavefield

undergoes significant enhancement during recovery of Figures 5.5(b) and 5.5(c), can be inferred

by examining the spectral magnitude cross-coherence functions shown in Figure 5.1. With

particular reference to Figure 5.1(a), it is scen that as § increas

s, the cross-row spectral

correlation power decays much more rapidly for the higher frequency bandpass companent than
for the lower frequency bandpass component. This relationship means that for a vetor filter
derived with (ce.8)=(15,15) or (27,27), the filtered outputs from the cross-channel row transfer

functions will be biased in power towards the very low end of the spectrum. To understand the

154



(a) Nov. 14 Wavefield: Recovered with Alpha=3, Beta=3

1" \ m ) LR AT L) ALY 1AM e
\ \H\“ i\ L N \-l\n:. WL
I\ LAV \

A | Ly
“'\QV('“‘.“ {*k ‘ lh““” i il

ey ARG
A1 \ \
\
T Th 1y
L Wiie
100 200 300 400 500 600 700 800
Column Index (j)

\

(b) Recovered with Alpha=15, Beta=15

100 200 300 400 500 600 700 800

Figure 5.5:  Realizations of Nov. 14 bandpass process for f=a, at three distinct values of
a



impact of this, suppose that the time-domain output from Jy, for these values of 8. actually

power relationshi to those which comprise Figure S4(b). say: this

implies that a significant contribution from the higher-frequency /07 wavefield still

s, Then,
after summations involving the /i, output and the cross-channel contributions from /1, and .

the lower-frequency within the combi i igni greater

gain in power, relative to the higher-frequency component. This will occur because of the low-
frequency bias which large § introduces to the cross-channel contribution, and explains how the
row dimension of the 30" waveficld experiences enhancement in Figures 5.5(b) and 5.5(c). A
similar process possibly occurs in the columns as well; in fict, reference to the column-cross
coherence function for Nov. 14, shown in Figure 5.1(b), shows that the bandwidth of” significant
coherence does indeed narrow with increasing 8. However, there is insuflicient resolution for
determining which frequency points of Figure 5. 1(b) correspond to the 30" wavefield, and which
ones relate to the /0° wavefield. Hence, it is difficult to confim the presence of a low frequency
bias in the cross-channel transfer functions for the columns. Nole also, that in Figures 5.5(b) and
5.5(c), all traces of the 90" wavefield have disappeared: here too, in the absence of greater
resolution for the numerical estimates of ¥,,(f] 0,8), it is not possible to provide a rigorous
explanation.

Figure 5.6 shows one set of process realizations obiained from the Nov. I8 image, with
results for (cxB)=(15,3) and (cx,B)=(27,3) shown in 5.6(b) and 5.6(c) respectively; the waveficld
which was recovered in Chapter Four for Nov. 18, with (e, 8)=(3,3), is shown in Figure 5.6(a) as

a reference. In these images also, there cxists obvious differences between the three filtered

timates of the Nov. 18 bandi indicating that cach filter sct corresponds to a different

of Wold’s i an i i is observed in

Figure 5.6(b), which wamants further investigation. Upon inspection, it will be observed that this

image incorporates a higher-frequency component which is oriented at 907 CCW from vertical;
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(a) Nov. 18 Wavefield: Recovered with Alpha=3, Beta=3
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Figure 5.6:  Realizations of Nov. 18 bandpass process for §=3, at three distinct values of «



this means that the wavefield exists in the column dimension of the image only. Comparison of

Figure 5.6(b) with Figure 5.6(a) will reveal that this waveficld is not present for (e.8)=(.2. 3), and

has been introduced by changing the filter parameters to (cv, 8)=(15.3). An examination of the FF
analysis in Appendix V, will verify that the introduction of an higher frequency component has
indeed occurred exclusively within the columns. In fact, this analysis shows that for the row
component, changing from (e, 8)=(3,3) to (. 8)=(15.3) has actually imparted an attenuation 1o the
higher frequency points of the spectrum. Supplementary to this, Figure 5.7 presents an FI'T
analysis of the columi: components from Figures 5.6(a) and 5.6(b), along with the power transfer

function which maps the column power of the former into that of the latter. Th

speetra are
based on 7024-point FFTs, with -/ < f< 1, of which a subscction corresponding o .25 </ <
0.25 has been presented here; the spectral normalization procedures arc those which were

discussed in Chapter Three. When comparing the spectrum for (@,8)=(3,3) to that associated with

(0,B)=(15,3), it is clear that digital frequencics for 0.05 < |/] < 0.25 have increased in power as
aresult of changing « from a value of 3 to a value of /5. In fact, the power transfer function in
Figure 5.6(c) shows that for |] in this range, the power spectra expericnce relative gains which
are all positive; in some cases, these factors are as high as /5 dB.

By referring once morc to the scalar Wiener filter of Eq. (2.40) as an analogy for the
wector filter, it is possible to understand the phenomenon which has been observed in the columns
of Figure 5.6(b). By substitution of Eq. (2.20) into Eq. (2.40), it is scen that variations in the
magnitude of frequency response, due to a and 3 at fixed £, is determined by the numerator
spectra, Gy(/] ). Recall next, those attributes which characterize the behaviour of ¢ o1 0B) for
Case Il correlation data, as discussed in Section 2.4.3.2. Specifically, for increasing « at any fixed
£ the magnitude of G,(f]cu) will in part be determined by the degree of destructive or
constructive interference which results from summation of the # complex terms comprising the

spectrum. Given this statement, consider also that the frequency response surfaces of Figures 5.2
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realizations for Nov. 18, are shown in (1) and (b). The power transfer function

which maps (a) into (b), is shown in (c).
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and 5.3 do demonstrate cyclic behaviour as « advances, consistent with patterns predicted by
Gy(f1B). Based upon this, it is now reasonable to conclude that by advancing « from 3 to 75
when deriving the column filters, an increased degree of constructive interference oceurs between
the 7 complex terms of Eq. (2.20), for those frequency points which lic in the approximate range
of 0.05 < |f] < 0.25. While this explanation certainly cannot be dircctly verified, it is nonctheless
consistent with the relative changes observed to occur between Figures 5.6(a) and 5.6(b).

Figure 5.8 displays the sccond set of process realizations obtained from the Nov. 18

image, for (c.3)=(15,15) and (c.)=(27,27). As with all previous comparisons, it is clear that
Figures 5.8(a), 5.8(b) and 5.8(c) each present different realizations of what is known to be the
same bandpass process. Furthermore, from Figure 5.8(b), it is clear that the high frequency
column component seen in Figure 5.6(b), no longer exists; yet. the only difference between the

filters which produced these images, is that 8 was increased from a value of 3 to a value of 75

for Figure 5.8(b). When the cross-channel transfer functions arc cast in th

gy of the scal:

ar
Wiener filter of Eq. (2.40), this disappearance can also be interpreted as a consequence of changes
in G,,(/]a,B). From the analytical form of G,,(f|cw) in Eq. (2.20), it is scen that with o fixed at
say, 15, increasing B from 3 to 15 would once again alter the relationship between the n complex
phasors which define the frequency response at any f. It is therefore reasonable 1 postulate that

for £ in the range of 0.05 < |/] < 0.25, this new leadstoa

addition of the » complex terms.

Other evidence of the effects which Wold’s decomposition can exert upon the vector
filter may be found in Figure 5.8(c), which was recovered with (v, 8)=(27.27). In both the extreme
right and the extreme left regions of this image, there exists a filtering artifact which presents
itself as a strip running from top to bottom. The boundarics of these strips a1 demarcated by a
discontinuity in the pattem of the recovered waveficld. To understand the reason for this

phenomenon, recall that for the vast majority of rows within the image, the transfer functions A,
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Iy and hy are used. These transfer functions map the inputs from Channels 1, 2 and 3 into the

output estimate for Channel 2. However, as discussed in Section 2.6.1, the three-channel

configuration of the operator implies that a Channel 2 estimate cannot be obtained for image rows

i OF =Ny,

N,. Consequently, for these row sets. it is nece

ary to use output
estimates for Channel / and Channel 3 respectively. This requires the use of transfer functions /i,,.

Iy, and By, for the Channel / output estimate, and transfer functions /1,), Iy and hy, lor the

Channel 3 output estimate. Clearly, for the Channel 2 output, involving cross-channel transfer

functions 4, and /,,, the cross-channel inputs come from rows which arc only £8 steps

ay in
the column dimension. However, for both the Channel / and Channel 3 output estimates. one of’
the cross-channel inputs must come from rows which are 28 and -28 steps away, respectively.
From the coherence functions in Figure 5.1, it is clear that these differences in 8 will mean that
the cross-channel relationships associated with {J, /1,5 s} and {y, hy. By} are different from
those associated with {/1,;, h,,, h,,}. This implics that with Case 11 correlation data, the output
which the first two sets of transfer functions will produce, in response to the same input. will

differ from that which is generated by the third sct. Hence, the Channel 2 output estimate

constitutes a realization of Wold’s decomposition which is different from the realization produced
by the Channels / and 3 output estimates. Of course, these same relationships also hold for the
column transfer functions, and in fact, the artifacts occurring in Figure 5.8(c) were produced by
the column filtering operation.

Figure 5.8(c) also contains another featurc which warrants some mention, Although
careful scrutiny may be required, within this image it is possible to assimilate a pattern which
resembles four wavelike undulations, each of which has a major-axis oricntation at about /40"
CCW from vertical. This may well be the /407 wavefield which was suggested to be present by

the correlation map in Figure 4.4(b), but for which there has been no visual evidence heretofore,
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55 Summary

In this Chapter, results have been presented which confirm that for Case Il correlation
data, the role of Wold’s decomposition is significant in affecting the output from the vector
filtering operation. Convincing numerical evidence has indicated that the values selected for filter
parameters o and B, will directly determine the particular realization of Wold’s decomposition
which emerges from the filtering operation. Any alteration of these parameters will propagate a
detectable and often significant change in filter output. This presents a dramatic contrast to the
results of Chapler Three, wherein it was demonstrated that for Case I correlation data, the filter
output was unaffected by changes in @ and 8. The phenomenon for Case Il correlation data can
be rationalized through an analytical conceptualization of complex phasor interactions and
cxponcntial damping factors; these have been based on the spectral relationships which are thought
1o exist within the one-dimensional row and column processes of the image. Without exception,
empirical evidence based on numerical analysis of the image data, has been consistent with the
results predicted by these analytical forms.

“This means that when Case I1 spectra are subjected to filtering, it will not be possible
to produce a unique waveficld pattern which is common to all combinations of @ and 8. However,

izations of Wold’s decomposition which are achieved with small o and B, are morc

representative of the original bandpass process than are realizations obtained with large « and 6.
Since the values for these parameters are chosen such that & > ¢ and 8 > ¢, the implication is that

the spatial extent of noise i by ¢, ines the extent to which the

recovered bandpass process can be representative of its original counterpart from the noisy image.

rturbed

Consequently, while it is possible to obtain a noi: version of the noise-p:
bandpass process. numerical results indicate that this process can never be recovered in its entirety,
Furthermore, note that the investigations involving fixed 8 with varying e, as well as

those for jointly-varying B=a, do have a practical ramification. To see this, first consider that if
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c is large, then it has been clearly shown that selecting o = 8> ¢ will result in

covery of only
a portion of the bandpass process. However, unlike the case for o, which must be greater than ¢,
it is possible to recover a filtered version for which 0 < 8 < ¢: a fact which is apparent from the
results shown in Chapter Three. While this filter configuration would not incorporate optimal
noise suppression, it docs offer a compromise. This is because a greater portion of the bandpass

process can be recovered if optimum noisc suppression is waived, and § is chosen to be some

value less than ¢, while « remains greater than ¢. With this arrangement, the three-channel filter

is still superior to the one-channel version, because the cross-row coherence within the noise

it is fore

process does decrease with increasing 8, when 0 < 8 < c. llenc

compromise could be established between what is a desirable degree of noise decorrelation, and

what is an acceptable loss of information regarding the bandpass process, for 0 < 8 < c.
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CHAPTER SIX

CONCLUSIONS

6.1 Overview

The objective of this project has been to develop a filtering technique which will
cmable the recovery of a wide-sense stationary (WSS) desired signal process, from a two-
dimensional image contaminated by broad-band WSS noise. Pursuant to this, it has been the
working hypothesis that a linear filtering operator, applied sequentially in one dimension to the
rows of the image, and then to the columns, would be effective in achieving this goal. The linear
operator which was utilized during this investigation, was a three-channel version of the vector
Wiener filter. Implementation of this operator requires that the image data satisfy three

prerequisites:

Q) The signal and noise processes must be additive, and mutually stochastically
independent.

(@) Both processes must be wide-sense stationary, at least within the region which is
defined by the borders of the image.

(&) The spatial extent of correlation, ¢, within the noise process, must be far less than the

extent of correlation within the signal process.

Where these conditions hold, linear prediction theory states that it is possible to derive
a Wiener filter, which operates on the past values of a coherent data sequence in order to predict

its future values. If such a function is designed to predict a value which lies « steps ahead in the
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sequence, where o > ¢, then the predicted sequence will be virtually free of any variations which

are uncorrelated beyond any interval smaller than a. Since the correlated extent of noise

assumed to be smaller than the prediction gap, . then the noisc-induced variations will be
suppressed.

In a threc-channel configuration of the vector Wicner filter, cach of three transfer
functions operates on its respective input taken from three image rows which are separated by
some distance (3. These input rows are located at image row positions i-g, i, and i+ respectively:
after the filter operates on a given row triplet, the index i is incremented by one and the operation

is repeated. The result of a simultaneous operation on these three rows, will be an

matc of the

de

d signal process which exists in row i. Such estimat achieved by point-wis it

of output series from the cross-channel prediction filters, /1y, and /r,, and from a forward
prediction filter, /r,,. Filter transfer functions /1, and h,, operate on row i and row i+
respectively, while /1,, operates on row i. The summed output estimate which results is then used
to build a new row-filtered image, row by row, as the row index i is incremented within the noisy
image. After producing estimates of the desired signal from all rows in the noisy image matris,

the resulting row-filtered facsimile is transposed to permit identical operations on the colum

This is required because afier row filtering is complete, some remnant noisc will continue to

in the column dimension of the image.

Within this work, it has been postulated that a three-channel version of the filter will

provide a noise suppression advantage over the single-channel version. This is based on the

principle that if three inputs are taken from rows which arc scparated by a distance of 8>c, then,

asa f magnit d phase ionships between rows, the power in the output row
will be biased in favour of those frequencies which are coherent across the rows. Uncorrelated

frequencies, such as the noisc component, are then suppressed when the three filter outputs are
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summed. It has been mathematically shown that this strategy offers further noise attenuation,
which is supplementary to suppression achieved from the forward prediction gap, a.

“The filter which is used for the row operations is derived independently of the operator
which is used for column filtering. However, this does not imply that the row process is
independent of the column process; to be sure, there exists an intricate relationship between the
two, as is revealed in the patterns which are exhibited by a two-dimensional autocorrelation
function of the image process. Yet, by proper manipulation, the two-dimensional ACF will yield
sets of one-dimensional correlation functions, which separately represent the row or column

of the imensional signal-plus-noise process. This provides justification for
p i

deriving cither the row or column filters from one-dimensional autocorrelation and cross-

correlation functions, which are obtained by averaging such functions over all rows or all columns
existing in the image. Such a strategy is consistent with the assumption that the signal-plus-noise
process which exists in any given row, constitutes a single realization of a parent stochastic
process which involves the additive superposition of stochastic signal and broad-band noise
components. Hence, each row of the image is perceived as having been generated by the same
stochastic process, which is described by the two-dimensional ACF.

With regard to each three-row set occurring in the image, there exists nine correlation
functions which describe the cross-row and within-row relationships, for the row triplet which is

centred on index /. Estimation of these functions at each i over the entire image, generates an

cnsemble of functions for each ion and i i ip within the three-

. Since each row triplet is generated by the same stochastic process, then cach realization

TOW st

of a given autocorrelation or cross-correlation function, represents a single observation of a

fimetion which i, itself, a ranciom variable. Therefore, upon taking the average of each cnsemble,

the ion of cach ion or jon function is obtained. The ensemble-

ted

averaged correlation functions are then i tobe ive of the statisti P
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relationships within the row of the parent signal-plus-noise stochastic process. By a

judicious choice of values for the « and B, these bl raged

functions can be used to derive a three-channel vector filter which adapts to the row component
of the signal process; such a filter is then capable of attenuating the row component of the noise
process during the filtering operation. This same technique is also practised in conjunction with
the column filtering operation. However, it has been further postulated, that although the column
filter will be intended to operate on the columns of the row-filtered image, it must nonctheless be
derived with ensemble averages obtained from the columns of the mnfilfered image.

The effectiveness of this filtering operation was initially examined via operations on

two simulated data sets consisting of discrete, two-dimensional sinusoidal components which had

been inated by brond-band, spatially-coherent noisc. This was then followed by operations

on two images of ocean wave scenes, which had been obtained via airborne synthetic aperture

radar (SAR); both of these images were also corrupted by broad-band spatially-correlated no

The major difference between the correlation characteristics of these processes, was that at

lags having i greater than ¢, fation functions associated with the

setswere periodic. except for a phase shifl, their cross-row correlation

functions were unaltered by increasing the value of 8. During this projzct, such characteristics

er ized as being ive of Casel ion data. For the radar images, however,
the correlation functions were aperiodic; this was due to the influence of exponential damping

factors, which produced a non-linear ion of amplitude as the itude ion lags

increased. Due to the presence of these damping factors, the shape of cross-row corrclation
functions was also altered as the separation distance, B, was varied within the row triplets.
Correlation functions which exhibited these characteristics have been classified as belonging (o
Case 11 correlation data. It has been shown via analytical equations, that the differences between

these classes of correlation functions, lead to spectral ions which arc
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more intricate for Case I than for Case I. As a consequence of this, the desired signal component

of the image will respond to the filtering operation in a much more complex fashion for Case Il

data than for Case I. Having these preliminary iderations, it is now possible to

address the significant findings which emerged during the course of this investigation.

62 Significant Findings

During the execution of this project, a range of factors were investigated in order to
determine their influence upon the proposed filtering technique. In part, such activities were
facilitated through the derivation of mathematical models. These were required in order to
anticipate behaviour of the filtering technique for certain situations, as well as to determine which
operator configurations would yield optimum results. Without exception, attributes of the filtering
operation which were predicted through these analytical forms, were also confirmed by numerical
operations performed on simulated data sets and the ocean wave scenes which were obtained via
airborne SAR. The significant findings which emerged from this sequence of postulation and

verification are as follows:

m 1t has been demonstrated that the three-channel Wiener filter is capable of suppressing
broad-band coherent noise, in images which contain desired signal processes defined

by Case | or Case Il correlation data. Hence, the primary objective of the project has

been achieved.
) For applications involving bandpass processes, which are characterized by Case 11
lation data, the ially-damped nature of the correlation functions will

cause the filter to be highly sensitive to adjustments in its parameters, o« and 8.

Convincing evidence has been presented to show that with Case Il correlation data,
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each combination of values for « and 8 will lead to a different structure within the
recovered wavefield. Consequently, the bandpass process which exists in the noisy
image cannot be uniquely represented by a filtered version. However, there is evidence
to suggest that wavefields which are recovered with small values of & and 8. will
correspond more completely to the original bandpass process than will waveficlds
obtained with large values of these parameters. This fact contrasts with the Case |

correlation data, for which it has been that the recovered are

identical over a range of values assigned to « and B. As well, the investigations which
were conducted with simulated data indicated that, for all other factors being constant,
greater filtering accuracy is achieved with a larger operator length, represented ns £,
This fact has not been specifically dwelt upon during the course of this project,

because it is a well-known attribute of linear prediction theory.

Correlation characteristics within the SAR images closcly correspond to the analytical
models which have been derived in Chapter Two. Specifically, numerical estimates of’
the correlation functions, verify that the two-dimensional aulocorrelation function of

the noise process may be as a sum of t delta functions.

These summed delta functions have non-zero response for -2 < 1.1, < 2, where T, and

T, represent the correlation lags in the column and row dimensions of the image,

b .

ial extent of

there exists evidence to indicate that the numerically-cstimated, two-dimensional
autocorrelation function for the signal component of cach image, also closely

ts analytical ion from Chapter Two. In particular, the shape

P i imated jon functions and

cross-channel spectral coherence functions, arc scen to change as a function of A, and
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exhibit behaviour consistent with exponential damping. Such characteristics are
congruent with those of the mathematical models which were developed for Case I

data. F the i imated hannel  spectral

coherence functions have also been observed to exhibit cyclic behaviour as a function

of changing B. C y to this, freq D istics of the
numerically-derived vector filter have been shown to vary cyclically as a function of
increasing a. These cyclic behaviours can be readily explained by analytical spectral
representations of the correlation models developed for Case II. Hence, there is
extremely good agreement between the behaviour predicted by these mathematical
models, and the behaviour exhibited by their numerical equivalents which were
estimated from the SAR images. In general, such patterns are seen to occur for both
the row and column dimensions of the images, yet, there are visible differences when
comparing the row and column results. This is consistent with the fact that the SAR
processor employs a technique for constructing the rows, which differs from the

method by which the columns are formed.

Analytical and numerical evidence has been presented, to confirm that the three-
channel Wiener filter offers noise-suppression capabilities which are superior in
comparison to results achieved via a single-channel version. The absolute necessity of
choosing a value for o which is greater than ¢, has also been demonstrated.
Complementary to this, while it is certainly possible to recover a wavefield using row
and column filters for which 0 < B < ¢, analytical and numerical evidence indicates
that optimum noise suppression is only achieved by selecting 8 > ¢ in conjunction

with a > ¢.

171



5) It has also been numerically verified that both the row filters and the column filters,

must be derived from correlation data which have been estimated from the original,

noisy, unfiltered image. In particular, correlation data obwined from the columns of
the row-filtered image will incorporate an increased extent of noise correlation, which
has been induced by the row filtering procedure. Use of column operators derived
from the row-filtered data, will introduce additional noisc artifacts when the columns
are filtered; as a consequence of which, the recovered image will yield very little
useful information. However, column operators which are based on correlation data
estimated from the unfiltered image, will cancel artifacts introduced from the row-

filtering operation, thereby eliminating visual traces of noisc.

63 Practical Applications of Filtering Technique

One of the most likely applications for the vector Wiener filtering technique, will be
the suppression of noise within imaged wave scenes, in order that more accurate spectral estimates
of the desired signal component may be extracted. The advantage of performing a Discrete Fourier
Transform on a noise-suppressed image was discussed in Chapter Two. This application would
be important for the extraction of directional wave spectra over a large region, therchy yiclding
information which would be useful in understanding how waveficld dynamics are affected by the
movement of storm systems. With this type of application however, it is known that some
information loss will occur within the filtered image, due te the structure of bandpass correlation
functions and the necessity of performing gapped forward prediction to suppress noise.

Conversely, the information loss associated with forward prediction may actually
constitute an advantage in another potential application of the filtering technique. This application
involves the extraction of wave features which are of such low power that they appear only as

subtle variations in the original image. One such example is the 3¢" waveficld shown in Figures
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5.5(b) and 5.5(c). This waveficld is barely detectable within the original image, as shown in

Figure 4.9(a), yet, by an appropriate adj of the filtering it has become highly

visible within a filtered version of the image. Therefore, the vector Wiener filtering technique
might see useful applications in satellite oceanography, for the study of long-period waves which

would otherwise remain obscured by the presence of higher-frequency wind-generated waves.

6.4 General Conclusions and Recommnendations

Based on the numerical and analytical results obtained, it is clear that the vector
filtering technique is capable of recovering stationary processes which are contaminated by broad-
band coherent noise. However, in the case of bandpass stationary processes, the esponentially-
damped nature of the correlation functions imposes limitations upon the representativeness of the
waveficld which is recovered. Those wavefield realizations which are obtained with small o and
B correspond more closely, but never exactly, to the original bandpass process; conversely,
realizations obtained for large « and 8 will incorporate only a portion of the original process.
When the filter is derived, it is of paramount importance that the value for o must be greater than
the value which is known for c, else no useful information will be recovered; furthermore,
optimum noisc suppression can only be achicved if the value for B also exceeds c. These

considerations imply that the extent of noise correlati incs the degree of

for waveficlds which can be recovered. Consequently, for bandpass processes, the greater ihe
value of ¢, the less complete will be the wavefield representations which are achievable.
Therefore, at best, only nearly-complete representations can be recovered, and then only with
small values of o and 8. Depending on the application, this may restrict usefulness of the
technique to situations in which the spatial extent of noise correlation is small.

Given this, further research could be directed towards eliminating, at least, the

influence which « will have upon the filter derivation. This might improve signal recovery
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capability for noise-suppression applications. One possible solution is to use rank reduction

methods [27] to extract the noise component within Ry., in Eq. (2.31), or within its three-channe!

version in Eq. (2.66). A cursory investigation undertaken near the end of this project, suggested
that by setting =0 on the RHS of Eq. (2.30), and by retaining only the noise component of Ry,
on the LHS, it might be possible to obtain a suitable one-channel filter. However, numerical
stability problems were encountered during the derivation, which cast suspicion upon the results.
Hence, although the passband response appeared favourable, no attempt was made to recover a
wavefield from the noisy image. Nevertheless, rank reduction methods arc known to be reliable
in many applications, and should be investigated as a possible means by which to extend the

capability of the vector filtering technique developed during this project.
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APPENDIX 1

DISCRETE FOURIER TRANSFORM REPRESENTATION OF THE SIGNAL

CROSS-CORRELATION FUNCTION

LI Introductory Concepts

‘This Appendix will derive the DFT representation for the signal component of the CCF
previously defined by Eq. (2.13). To begin, consider a CCF of finite length 2N/, where N is
the number of pixcl clements in any given row of the image. The analytical form of this CCF,

between any two rows separated by some fixed distance of §, may be represented as:

- -dic |B] - digleal
Fen(Tr|B) = g ay e Pl Al cogwy B+ wypte)

@
~(Ng=1) s B s(Ng-1), =(Np-1) s 15 < (Np-1)

where the index & denotes the k't element of some set of size #. The digital phasor increment

pairs, wy. and g are defined to be:

27 d, 2nh,,
Wye = » W =

where (Le,Lg) € No Lo<Ng, Ly<Ny
and (g € {Ayoh oo, ) € {(oh €12 [05Ac<Lo0s <Ly}
@12)
1t will be assumed that L. < N,.and L, < N since N;. and N, are the dimensions of the image,
this implies that the two-dimensional ACF from which Eq. (1.1) is deived, will incorporate many

eyeles of its I frequency the subset indicated in Eq. (1.7) is defined

to be a not-necessarily-contiguous subset of 1°.
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For the k'th sinusoid of the CCF. the terms . and dyy represent respectively, the
damping factors along the column dimension and the ro.w dimension: the term «; represents the
amplitude of the k's/r sinusoid. It will be assumed that each amplitude factor and each damping

factor pair, represent the &'t/ elements of their respective not-necessa

rily-contiguous subsets of

size n, defined as:

a€{a,..a,}c{acR|0<axm=}

(dycrdig) € { i di, o (dycrdy) } < { (o) € B |0 5de<m,05dp<m )

(1.3)

Therefore, Eqgs. (I.1), (12), and (1.3) describe the general approximation of the one-dimensional
CCF from a two-dimensional bandpass stochastic process contained in a digital image. For the
special case in which the damping factors are identically zero and the process is narrow-band, the
CCF in Eq. (1) reduces to a sum of n periodic sinusoids, where the & 7 component is of
amplitude a;.

Consider then, a contiguous subset of size N, containing coefTicients taken from the
right-hand side of the CCF for which the autocorrelation lag, Ty, is non-negative. This subset may

be represented as:

Texyiea0 = { Teny(TaIB) |t 20 } = { r, O[B), £, (1]P), e Np-11B) }

(14)

where the elements of 7y, 4, are ordered based upon increasing values of 1. From analysis of
o it is desired to obtain information regarding the spectral content of the row component of
its generating stochastic process, g(i,j). This analysis will be performed upon some contiguous,

ordered subset within 1. .., of chosen size & < N, defined to be:

Toiviem * ( r"y(tnlﬂ) |astgs E+a-1 )=

Tey(@ B Ty(@ 1| B), oy (e rE-1]B))
(L.5)

where o is a non-negative integer, 0 < o < Nye£. It will be assumed that £ is chosen to be an
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appropriate value such that (¢/L,) € N:that is, L, from Eq. (1.2) divides £ with zero remainder. The
fact that r,, ,,, is a discrete sequence of finite length, prompts use of the Discrete Fourier
“Transform (DFT) as the technique by which its spectral content will be determined. From
inspection of Eq. (1.1), and by the definition of the DFT, it s casy to show that the cross-spectral

density function, G,,(fla.B), for any arbitrary Subset 7y, ) OF Iy 00 May be represented as:

€1
G (fla.B) = > e | B) el

1.6
/nr.fe{zLE'|v.o.4.,,z-x} 9
and, 0 s & < Np-§

Now, by use of the well-known identity:

cos(8) = Lz”" “©n

the negative complex cxponential component of each sinusoid within the CCF, may be obtained

from the analytical form of r,, (k+a|f). Substitution into Eq. (L6) then yields:

n (&
G (flap) = ):‘ {z} %,-«aalz-a..-‘-m-g-:-..,-e-;-..-,—m.. elk} 8
Rearranging terms, based on the index , gives the final form as:

G (e - § St ) At ) {‘)i,(«u-:-..m . } a9

From this it now follows that the & i component of G, (fle..B) is simply:

&1
G (fw.p), = %,-(d.dnw..-),-J(u.cum..-; {En - Iou+if) :}
=

(1.10)
" le"(‘g(’l“ul)"l(ﬂm"'lul) (),



where G(f); denotes the actual contribution to G, (fla.8), that is duc to the DFT. Clearly, G(), is
independent of & and B; hence, for fixed @ and B, the value associated with the k 't/ spectral
component of G (fla.) for any £, is determined by G(f);. The influence which G(/), has on the

outcome of G, (fle.8), can now be examined for three possible c

12 Case I: Damping Coefficicnts arc Identically Zero

The first case to be investigated deals with the trivial situation in which the damping

coefficients are identically zero, that is, dy- = dig = 0. k=1,2,....n. With reference to Eq. (1.10),

it is easy to see that for this case, §(f); reduces to:

=
() = Y e md (L1
=
Now, when £ = w,, then e /™) = 1 | from which it follows that:

£l
G(f)=Y1=E forf=o, (.12
=

However, when £ 3 @, then Eq. (I.11) represcnts the & '/ partial sum of a geometric series,

may be expressed as:

|- e Nt
&, = dme (1.13)
E(f)y T Jorf+ @,

Upon close examination of the complex exponential portion of the numerator in Fq. (1.13), it is

seen that this may be written as:

27)
e owht 2 exp{_}.[ ’;-Rm R 1121)5} (1.14)
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Given that £, divides , then (£/L,) = € N also, » € Tand Ny, € I This permits the rewriting of Eq.

(1.14) as:

I oxp 2 (Ayar - v ) (115)
From the preceding discussion, it is clear that (\y #- %) = o € I, hence, for.f # w,, G(f); becomes:

1-ei2me

6y = T

Jor froy (116)

However, 27 is  root of unity of the complex exponential. Hence, ¢*** = 1, and it follows that
(0, = 0in Eq. (1.16). Conscquently, the Fourier component of Eq. (1.10) may be summarized as:

& f=o,
{0 From L

From these discussionsit is clear that any k'rh component, G,,(fie.8);, will be non-zero only when
f= wy. 1t can now finally be concluded that the DFT of r,.,(tg | 8), for the case of identically zero

damping coefficients, is represented as:
g G -i(onch + onpe) 118}
S 18

“Iherefore, it has been shown that the spectrum of the process defined by the CCF of Eq. (L.1),
can be represented as @ sequence of line specira for the case in which the damping coefficients
are identically zero. The only prerequisite is that the length, £, of the DFT must be chosen such

that (£/L,) is a member of the positive set of integers.
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L3 Case 11: Damping Coefficients are Non-Zero

In this Section, the case for which all damping cocfficients are non-zero will be

examined. By inspection of Eq. (L.10). it is scen that in this case, G(f, is expressed

g1
6y = Y el e (1.19)

=
Clearly. when f = w,, this equation reduces to the £ '/ partial sum of a geometric serics involving

<d
e | expressed as:

Jor =gy (1.20)

aresult which is € R. However, for the general case in which f % w,, the £ % partial sum of the

geometric series in Eq. (1.19) is seen to be:

oy, - Lme e eehe
-
PP
azi

~dig b
1-e™F
soeloe b e
o e g Ko ) dorf iy

where the second step in Eq. (1.21) is duc to the fact that (£/L,) € I as was shown for Case I
this general result is € C. By algebraic manipulation of terms, it is possible to rewrite L. (1.21)

as:

C(f) =

which leads to a final form, summarized as:

183



€ - S AT stz 29

Sinh{(dy + j 0y~ if)12)

Now, the exponential terms can never be zero, given finite values for their arguments, and the

sinh function in the numerator of Eq. (1.23) can be zero only when d, = 0 or £ = 0, both of

which are impossibilitics under the jons for Case 1. C: it now follows that if
all damping cocfficients are non-zero, then G(f is also non-zero for all /: By combining Eq. (1.10)

and Fq. (1.23), it is seen that the general form of G, (fle, 8) under Case Il may now be written as:

; oy e afigst) -/(u.cn{ﬂL;"-'ﬂ]) sinh {d,,£/2
Gotfled =3 3 ‘ S {0+ 035~ )12}

(1.24)
which is non-zero for all f. Hence, it has been shown that if all damping coefficients are non-zero,
then the spectrum of the stochastic process described by 7, (ta|8) cannot be represented as a line

spectrum.

ion of Zero and Non-Zero Terms

14 Case I13: Damping Cocfficients are Combin:

Following from the above discussions, it is easy to conclude that if some damping
coeflicients are zero while others are not, then G, (fle»8) may be represented as a summed
combination of the terms from the RHS of Eq. (1.18) and Eq. (1.24). This will not be explicitly
shown, however, it docs follow that if only one damping coefficient is non-zero within this

summation, then G (fla.8) can never be a line spectrum and will be non-zero for all £
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APPENDIX I

PROCESSING ALGORITHMS FOR IMPLEMENTATION OF FILTERING

TECHNIQUE

L1 Overview
This Appendix describes a serics of algorithms which can be used to implement the
vector filtering operation developed during this project. These algorithms are written in the

MATLAB protocol [31], [32], and i the three-channel relationshi ich were formally

defined in Chapter Two. There are two main algorithms, the first of which performs numerical
estimation of one-dimensional correlation functions, while the second derives a three-channel
transfer function based on the correlation estimates, and then implements the filtering operation.
Both algorithms will operate only in the row dimension of the image: therefore, cach has an
associated calling algorithm which transposes the image afler the row operations, so that both

dimensions of the image may ultimately be processed. In adherence to the procedure which was

in Chapter Three, cstimation of th lation functions is performed for both the row
and column dimensions of the noisy image; after this has becn completed, the filtering algorithm
is executed. Prior to the implementation of these algorithms, the image must be subjected to a
two-dimensional detrending operation, which is needed in order to ensure that the image contains
an approximately zero-mean process. The structure of these operations will now be described for
an application involving the detrended, noisy image designated as NOVI8.mat; the actual image

matrix which exists within this file is assigned the variable name /M.
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n2 Description of Calling Programs

Th ical estimation of on functions i inated by the calling program

“ALL.m, which in tum calls the corrclation estimation program ACF.m. By a similar

procedure, the image filtering operation is coordinated by program MCIV_CALL.m, which calls
the filtering algorithm MCW_F.m.

‘The calling program ACF_CALLm s structured as follows:

load NOV18.mat % load data file.

beta=3; % define value for 4.

ACF % call correlation estimation for rows.

ROW_C=R; % assign row correlation average to storage variable.
r_zlag=zlag; % store vector address which denotes t,=0.

IM=IM"; % transpose image to permit column estimation.

ACF % call correlation estimation for columns.

COL_C=R; % assign column correlation average to storage variable.
c_zlag=zlag; % store vector address which denotes t.=0.

clear IM R zlag

save NOV18_1D_ACF % save correlation functions to disk.

The calling program MCW_CALL.m has been organized in the following format:

alpha=3; % define value for a.
beta=3; % define value for .
Xi=3; % define value for £

load NOV18.mat
load NOV18_1D_ACF.mat

R=ROW_C; % assign row correlation functions.
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zlag=r_zlag; % assign vector index specifying position of zero lag.

MCW_F % implemant derivation of row operator, and filtering.
T_ROW=F; % assign row transfer functions to storage variable.
[x1,y1] =size(iM); % prepare for scaling of row-filtered image.

top =ROW_C(5,zlag);

bot =sum(sum(IM.*2)}i(x1 *y1);

scale = sqgrt{top/bot);

IM=IM*scale; % scale row-filtered image back to power levels at input.
R=COL_C; % REPEAT ABOVE PROCEDURE FOR COLUMNS.
2lag=c_zlag;

MCW_F

T_COL=F;

Ix1,y1]=size(IM);

top =COL_C(5,zlag);

bot =sum{sum(IM.*2))/(x1*y1);

scale =sqrt{top/bot);

IM=IM*scale;

save NOV18_FILT IM T_ROW T_COL

Note that after cach filtering operation, the output image s sealed to ensure that it

incorporates the same average level of power as that which cxisted within the unfiltered input
image. This scale factor is derived with reference to the power value assaciated with the zero
autocorrelation lag of the original image. A scaling operation of this nature has no mathematical
impact upon the filtering operation; hence, it docs not improve the accuracy of the output in any

way. However, when cither the row-filtered or final output image is compared to the noisy
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version, on a video display terminal, the cquivalence of power within both images permits use of
a common grey-scale mapping algorithm. Without this, several attempts might be required in order

(0 display the filtered image with an acceptable range of grey levels.

n3 Estimation of Correlation Functions

The correlation relationships which exist within any row triplet will generate nine
correlation functions. These functions and their ensemble averages, are estimated from the rows
or columns of the image by the algorithm ACF.m. The program utilizes biased correlation
cstimates which arc formally discussed in [24] & [31]. One advantage of biased estimates is that
they climinate the need for tapering windows, which are otherwise needed with unbiased estimates
in order to reduce error at large lag numbers, where fesver samples are involved. The correlation
estimation program is structured as follows:
[x1,y1]1=size(IM);

R=zeros(9,(2*y1)-1);

div=0;
for im = (beta -+ 1):(x1-beta),
div=div+1;

Rt(1,:) = xcorr(IM(im-beta,:),IM(im-beta,

‘biased’);
Rt(2,:) = xcorr{IM(im,:),IM(im-beta, ), 'biased);
Rt(3,:) =xcorr(IM(im + beta,:),IM(im-beta, :), 'biased");
Rt{4,:) = xcorr(IM(im-beta,:),IM(im,:),'biased’);
Rt(5,:) =xcorr(IM{im,:),IM(im,:),biased");

Rt(6,:) =xcorr(IM(im + beta,:),IM(im,:),'biased’);

Rt(7,:) =xcorr(IM(im-beta, :),IM{im + beta, :]

iased’);
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Rt(8,:) =xcorr(IM(im,:),IM(im + beta, ), 'biased");
Rt(9,:) =xcorr(IM(im + beta,:),IM(im + beta,:),'biased’);
R=R+Rt;

end

R=R./div;

zlag=y1;

clear div Rt x1 y1

L4 ivation of Transfer ions and ion of Filtering Operation
The program MCIW_F.m, for derivation of transfer functions and implementation of

the filtering operation, is structured as follows:

[x1,y1]=size(IM);

% CONSTRUCT Ry, 5 (MATRIX VARIABLE NAME PHI), AS DEFINED BY EQ. (2.66)
% PHI 1S INITIALIZED AS A BLOCK VECTOR, THEN BUILT UPON

PHI =zeros(3,3*xi);

for r=1:xi,

A=zeros(3,3);

for c=1:xi,
k=0;
% BUILD INDIVIDUAL ELEMENTS (3 x 3 MATRICES) OF Ry, 5
fori=1:3,
forj=1:3,

k=k+1;

TRIi.i) =R(k,zlag + (c-n);
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%

end

end
end
APPEND EACH ELEMENT COLUMN-WISE
ife==1
A=TR;
else
A=[A,TR];
end
end

APPEND EACH BLOCK ROW VECTOR ROW-WISE TO PH/

ifr==1
PHI=A;

else
PHI=[PHI;A];

end

DESR =zeros(3,3);

% CONSTRUCT ry, 5 (MATRIX VARIABLE NAME DESR) AS DEFINED BY EQ.
% (2.66)
for ¢ =1:xi,
k=0;
% BUILD INDIVIDUAL ELEMENTS (3 x 3 MATRICES) OF r3,5 (DESR)

fori=1:3,
forj=1:3,

k=k+1;
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TRIi,j) =Rk, (zlag-1) + ¢ + alpha);
end
end
% APPEND ELEMENTS COLUMN-WISE
ifc==
DESR=TR;
else
DESR =[DESR,TR];
end
end
% DERIVE BLOCK ROW VECTOR, ;5 OF MATRIX TRANSFER FUNCTION
% COEFFICIENTS AS DEFINED BY EQ. (2.66). STORE RESULT IN (3 x 3§ MATRIX
% MCTRANS.
MCTRANS =DESR*inv(PHI);
% REMOVE INDIVIDUAL ELEMENTS FROM MCTRANS AND CONSTRUCT TRANSFER
% FUNCTIONS h,;, Ay By Pass Doz By gy, Bz oz, FOR SCALAR OPERATIONS
F=zeros(9,xi);

for i=1:xi,

for j=1:3,

F(3*(j-1) + 1:3%j,i) = (MCTRANS(j (3 * (i-1) + 1:(3*IM).";

end
end
%
F=fliplr(F);

% PROCEED TO FILTER IMAGE
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for j=

:2,

[x1,y1] =size(IM);

for im =(bata + 1):(x1-beta),

end

cl im-beta, 1:(y1-xi+ 1)), IM{im-beta, {y 1-xi + 1):y1));
c2 =hankel{IM(im, 1:{y 1-xi + 1)), IM{im, {y1-xi + 1):iy1));
c3=hankel(IM(im + beta, 1:(y1-xi+ 1)),IM(im + beta, [y 1-xi + 1):y1));
fc1=c1*F(4,:)'; % h,, operates.
fc2=c2*F(5,2)"; % h,, operates.
fc3=c3*F(6,:)'; % h,, operates.
IM2(im, 1:(y1-xi+ 1)) = {fc1 + fc2 + fc3)";
%
if (im > = (beta+1)) & (im <= (2*beta)),
fe1=c1*F(1,.:)'; % h,, operates.
fc2=c2*F(2,:)’'; % h,, operates.
fc3=c3*F(3,:)'; % h,; operates.
IM2(im-beta, 1:(y1-xi+ 1)) = (fc1 + fc2 + fc3);
end
%
if im > = (x1-(2*beta)+ 1)) & {im <= (x1-beta)),
fc1=c1*F(7,2); % h,, operates.

fc2=c2"F(8,:)'; % hj, operates.

fe3=c3*F(9,:)'; % h;, operates.

IM2(im +beta, 1:(y1-xi + 1)) = (fc1 +fc2 +fe3)";
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IM2 =fliplr(IM2);
IM =flipud(IM2);
clear IM2

end

%

clear x1 y1 PHIArckjiTRR

clear DESR MCTRANS c1 c2 ¢3 fe1 fc2 fe3

IM=IMm";
s An Algorithm for Detrending the Noisy Image

At present, neither the core MATLAB [32] nor the MATLAB Signal Processing
Toolbox [31], provide any algorithm for i ion of the

detrending operation discussed in Chapter Four. To fill this void, a routine has been borrowed
from the mi-file library of the Remote Sensing Group at C-CORE, Memorial University of

Newfoundland. This detrending procedure is structured as follows:

% This routine fits 2D polynomials and detrends a 2-D data set
% function (z,p] = trend(z, X, y, iord)

% For example, a 3rd order has the form:

% zly,x) = p0 + pl*y + p2*x + p3*y*2 + p4*y*x + p5*x"2
% + pB*y"3 + p7*y*2*x + p8*y*x*2 + p9*x*3
% ] - polynomial coefficients in ascending order

% z - two-dimensional data matrix m x n

% X - xaxis values, length m

% Yy - yaxis values, length n
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% iord - polynomial order

% Detrended data is returned in original array z
%

function [z,p] = trend(z, x, v, iord)

[n,m] = size(z);

% number of coefficients in p

ncoef = (iord+1) * (iord+2) / 2;

% error checking, check sizes of x and y

x = x{:);
y = yi)
if max(size(x)) ~=m,

error('Length of vector x must equal number of columns in 2')
end
if maxisize(y)) ~= n,

error(’Length of vector y must equal number of rows in z)

% compute components of A’A and A’Z, corresponding to each column
ata = zeros{ncoef,ncoef);
atz = zeros(ncoef, 1);

for zcol = 1:m

ajcol =
for k = Oiord
for subk = 1:k+1
ajl:,ajcol) = y .A(k+1-subk) * x(zcol)"(subk-1);

ajcol = ajcol + 1;
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end

ata = ata + aj.’ * aj;

atz = atz + aj.’ * z(:,zcol);

end

% compute polynomial coefficients

p = inv(ata) *
% detrend

for zcol = 1:m

ajcol = 1;

fork =

atz;

data, column by column

Oiord

for subk = 1:k+1

end

end

ajl:,ajcol) =y ."(k+ 1-subk) * x(zcol)*(subk-1);

ajcol = ajcol + 1;

z(:,zcol) = z(:,zcol) - aj * p;

end
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APPENDIX Il

FREQUENCY RESPONSE MAGNITUDE CHARACTERISTICS OF VECTOR

FILTERS

ni Overview

This Appendix presents the frequency response magnitude characteristics, of the three-
channel filters which were derived for row and column operations performed in Chapters Two and
Three. Figures 1111 and 111.2 present frequency response magnitudes which were obtained with
£=60 and £=150, for the recovered wavefields which have been display<d in Figures 3.17 and
3.18 respectively. Figures 1113 and I11.4 present the frequency response magnitudes derived from
the Nov. 14 and Nov. 18 noisy SAR images respectively; their corresponding recovered images
are displayed in Figures 4.9 and 4.13. For filtering operations involving the SAR images, an

operator length of £=200 was used.
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Figure IIL1:  Magnitude of frequency response, for filters used in recovery of one-component simulated wavefield presented in Figure
3.7,
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Figure IL2:  Magnitude of frequency response, for filters used in recovery of three-component simulated wavefield presented in
Figure 3.18.
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Figure IL3:  Magnitude of frequency response, for filters used in recovery of Nov. 14 bandpass process presented in Figure 4.9.
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Figure IL4:  Magnitude of frequency response, for filters used in recovery of Nov. 18 bandpass process presented in Figure 4.13.



APPENDIX 1V

FREQUENCY RESPONSE OF VECTOR FILTER AS FUNCTION OF

VARIATIONS IN « AND 8

w.a Overview

This Appendix presents magnitude frequency response surfiices for transfer functions
Iy, hyy, and hy,, corresponding respectively to Channels /, 2, and 3, of the vector Wiener lilter.
‘These were derived for varying combinations of & and B, as described in Chapter Five, Results
obtained for both the row and column filters have been displayed, for varying  in the rnge of
3 < <50 with B=3, and for jointly varying B=a in the range of 3 < (B=a) < 50. Figures V.|
and 1V.2 present results based on correlation data from the rows and columns respectively, of the
unfiltered Nov. 14 image. Similarly, Figures IV.3 and V.4 show results for the rows and columns

of the unfiltered Nov. 18 image.
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Figure IV.1:  Magnitude frequency response surfaces of Nov. 14 row filter, for varying a
with fixed 8, shown in (), (b) and (c), and jointly varying B=c, shown in (d),
(e). and (f).
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Figure IV.2:  Magnitude frequency response surfaces of Nov. 14 column filter, for varying o
with fixed B, shown in (a), (b) and (c), and jointly varying B=a, shovm in (d),
(e), and ().
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fixed B, shown in (a), (b) and (c), and jointly varying B=a, shown in (d), (e),
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Figure IV.4:  Magnitude frequency response surfaces of Nov. 18 column filter, for varying «
with fixed B, shown in (a), (b) and (c), and jointly varying =, shown in (d),
(), and (f).
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APPENDIX V

FFT ANALYSIS OF RECOVERED IMAGES PRESENTED IN CHAPTER FIVE

Vi1 Overview

This Appendix presents an FFT analysis of cach image which has been presented in
Chapter Five for selected combinations of o and 8. Figures V.1, V.2, V.3, and V.4 present a row
and column analysis for the recovered wavefields shown in Figures 5.4, 5.5, 5.6, and 5.8
respectively. These arc based on /024-point FFT’s for the digital frequencies -/ << 7, of which

a bandwidth corresponding to -0.25 < f < 0.25 has been displayed here.
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