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Abstract

During the propeller manufacturing process, grinding of propeller surfaces can

introduce imperfections and deviations from the desired geometry. These defects

could lead to degradation of propeller performance in terms of efficiency, cavitation,

vibration and noise. However, there is a lack of scientific literature available that

specifically addresses the subject of manufacturing tolerances of propellers.

In this dissertation, numerical simulations were conducted for foils with constant

DTMB modified NACA-66 a = 0.8 sections using the steady Reynolds-Averaged

Navier-Stokes (RANS) solvers in Star-CCM+ to investigate the effects of manufac-

turing tolerances. 2-D simulations were first performed for the modified NACA-66

(a = 0.8, t/c = 0.0416 and f/c = 0.014) foils without and with the leading-edge (LE)

defects in infinite flow. Convergence studies were carried out to examine the effects of

domain size, grid distribution, grid resolution, and turbulence model on the solution.

Using the best-practice settings for 2-D simulation, verification studies were carried

out for the cavitation buckets of NACA-66 (a = 0.8, t/c = 0.2 and f/c = 0.02) foils

without defect. CFD simulations with best-practice settings were then extended to

the modified NACA-66 (a = 0.8, t/c = 0.0416 and f/c = 0.014) foils with three differ-

ent sizes of LE defects, representing three levels of manufacturing tolerances within

International Standards Organization (ISO) 484 Class S. The results showed that the

LE defects have significant effects on the cavitation performance of 2-D foils in terms

of reduced cavitation inception speed in the typical design range of angle of attack.

To investigate the differences in 2-D and 3-D simulations and further quantify the

effect of LE defect in future validation studies, 3-D simulations were carried out for
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the modified NACA-66 (a = 0.8, t/c = 0.0416 and f/c = 0.014) foils in 1.0 m and

0.525 m spans with and without LE defects in cavitation tunnel. Effects of RANS

modelling parameters, such as domain size, grid aspect ratio, first-grid spacing, y+,

and turbulence model, on the solutions were carefully examined. Using the corre-

sponding recommended settings, the cavitation buckets, the reduction of cavitation

inception speed and the efficiency due to LE defect were predicted. Additionally,

preliminary validation studies were performed on two sections of 0.525 m span with

no and 0.5 mm defects.

Furthermore, this dissertation extended 3-D RANS studies on the foils in cavi-

tation tunnel to full-scale propellers, based on the geometry of David Taylor Model

Basin (DTMB) 5168 propeller, with and without LE defects. Effects of simulation

parameters, including domain size, grid size, stretch ratio, first-grid spacing, y+, and

turbulence model on the solutions were carefully examined and the best modelling

practices for the full-scale propeller was developed. Since there is no full-scale data

available, convergence studies were performed for the model-scale propeller followed

by validation studies in order to develop the best-modelling practices for model-scale

propellers. The wake field, open-water and cavitation performance were presented and

compared with the experimental data. The best-practice settings for the model-scale

and full-scale propellers were compared. Using the best-practice modelling settings

for full-scale propellers, simulations were carried out to full-scale propellers without

and with 0.10 mm, 0.25 mm, and 0.50 mm LE defects. The results showed that the

LE defects within Class S tolerances narrow the cavitation buckets. As a consequence,

such LE defects can result in more than 40% reduction in cavitation inception speed,

which is similar to the conclusions drawn from earlier 2-D studies.
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General Summary

In this dissertation, a novel and comprehensive study was carried to investigate

the effects of leading-edge (LE) defect on propeller cavitation performance using the

steady RANS solver.

Small geometric variations relative to the dimensions of the propeller suggest

that much could be learned from less computationally intensive simulations based on

2-D sections before full-scale 3-D propeller simulations. 2-D simulations were first

performed for the modified NACA-66 (a = 0.8, t/c = 0.0416 and f/c = 0.014) foils

without and with the LE defects. To investigate the differences in 2-D and 3-D

simulations and further quantify the effects of LE defect in future validation studies,

3-D simulations were then carried out for the foils of 1 m span in a cavitation tunnel.

The reason for choosing 1 m span was that the foils with and without LE defect were

intended to be tested in a cavitation tunnel with 1 m by 1 m test section. However,

due to the limitation of the foil support mechanism in cavitation tunnel, the span

of 0.525 m was applied to minimize the force and moment on the foil. Simulations

were also conducted for the foils in 0.525 m spans with and without LE defects in

cavitation tunnel. Finally, this dissertation extended 3-D RANS studies on the foils

in cavitation tunnel to full-scale propellers, based on the geometry of David Taylor

Model Basin (DTMB) 5168 propeller, with and without LE defects.

Extensive convergence studies were carried out to examine the effects of domain

size, grid aspect ratio, first-grid spacing, y+, and turbulence model on the solutions

of 2-D and 3-D simulations. The best-practice settings could be useful for the simu-

lations of foils and further study of other manufacturing tolerances.
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Chapter 1

Introduction

1.1 Background

Underwater radiated noise (URN) from ships is being recognized as a world-wide

problem since underwater noise from shipping is increasingly being considered as a

significant and omnipresent pollutant with the potential to impact marine ecosystems

on a global scale. Continued growth in the number of ships will significantly increase

the total volume of noise generated by the global shipping fleet. Projections suggest

that URN level could increase by as much as a factor of 1.9 of the current level by the

year 2030 (Southall et al., 2017). The URN of a ship is primarily caused by the pro-

peller and the main machinery. The European Union’s collaborative research project

Achieve QUieter Oceans has provided valuable insight into the relative contribution

of each source of noise generated by different types of ships (Salinas, 2015). A signifi-

cant conclusion of the study is that propeller cavitation is the most important source

of noise for ferries and cruise vessels at normal operating speeds. The noise levels
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from a ship jump substantially when propeller cavitation begins.

The majority of propellers manufactured today are hand or robotic finished from

castings which are rough machined using computer numerical control (CNC). Blade

edges and tips, the most sensitive parts of the geometry of a propeller, are made to

conform to templates of their required form using manual grinding (Janssen and Leever,

2017; Van Beek and Janssen, 2000). Manual grinding of propeller surfaces introduces

inaccuracies and deviations from design, which could lead to degradation of propeller

performance in terms of efficiency, cavitation and noise.

Manufacturing tolerances for new ship propellers are specified by organizations,

such as International Standards Organization (ISO), which defines the manufactur-

ing standards for propeller construction, and the Naval Sea Systems Command, USA

(NAVSEA), which provides manufacturing standards for US Navy’s ship construc-

tion (NAVSEA, 2004). The ISO 484-1 and ISO 484-2 standards (ISO, 2005a,b) for

manufacturing tolerances of ship propellers were established in 1981 by adopting an

ISO Recommendation of 1966. ISO 484-1 standard (ISO, 2005a) is applicable to pro-

pellers with diameters greater than 2.5 m, while ISO 484-2 standard (ISO, 2005b) is

applicable to propellers with diameters from 0.8 m to 2.5 m. There are four classes

of tolerances in each standard. Each tolerance class is intended for a certain type of

vessels. Among the four classes, Class S denotes the smallest tolerance and hence the

highest precision.

Manufacturers could take various measures to finish machining propellers. Domi-

nis Engineering, for example, uses a CNC milling process which eliminates manual

grinding of blade edges and tips (Gospodnetic and Gospodnetic, 1996; Gospodnetic,

2013). This process has put possible manufacturing tolerances in a new and more ac-
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curate era (Gospodnetic, 2015; Tremblay and Gospodnetic, 2017), which better com-

plements today’s sophisticated propeller design tools. In light of these changes, it is

necessary to better understand the sensitivity of propeller performance to manufac-

turing defects.

Many studies have been carried out to investigate effects of design parameters

on cavitation and efficiency performance of a propeller with an objective to avoid or

control vortex cavitation and to improve its efficiency. A review of experimental and

numerical studies on cavitation performance of marine propeller is given in the next

section.

1.2 Literature Review

Cavitation is a phase change phenomenon that occurs in high-speed flows when the

local absolute pressure equals or drops below the vapor pressure at the ambient tem-

perature (Breslin and Andersen, 1994). One of the earliest references for the cavita-

tion on marine propeller dated back to 1875 when Osborne Reynolds discussed the

effect of propeller racing, as noted in Newton (1961). This phenomenon was first fully

recorded by Barnaby (1897), in the trails of the British high-speed destroyer Daring,

and was further observed by Parsons (1897) when building the first marine steam

turbine-driven vessel, Turbinia. To understand the mechanism of the cavitation and

reduce the effects of cavitation on the marine propeller, numerous experimental and

numerical studies have been carried out on the cavitation performance of marine

propeller.
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1.2.1 Experimental Studies

The prediction of cavitation inception on marine propellers heavily relies on physical

model tests in cavitation tunnels. In 1897, Parsons conducted a series of tests using

5 cm diameter propellers in the world’s first cavitation tunnel, aiming to address the

issues associated with Turbinia. Although Parsons did not publish the detailed exper-

imental results, his achievements were mentioned in the memorial lecture of Burrill

(1951).

In the model tests, the propeller models are operated at low Reynolds numbers,

leading to a large laminar boundary layer and a strong tendency for laminar sepa-

ration. This is in contrast to the observations of full-scale propellers, which work in

almost fully developed turbulent flows. The effects of turbulence level on cavitation in-

ception have been investigated by many researchers. For example, Arndt and George

(1979) studied cavitation inception in turbulent shear flow. Their results indicated

that the transition of the boundary layer had a significant impact on cavitation in-

ception, primarily due to the complex interaction between an unsteady pressure field

and the distribution of free stream nuclei. Huang (1986) conducted an investiga-

tion into the effects of turbulence stimulators on cavitation inception in the David

Taylor Naval Ship Research and Development Center (DTNSRDC) 36-inch water tun-

nel. The study showed that the measured cavitation inception numbers were notably

smaller than the computed negative minimum pressure coefficients, and the predicted

transition locations occurred at positions considerably aft of the minimum pressure

locations.

To reduce the viscous scale effect on the cavitation inception and simulate the tur-
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bulent flow in the experiments, the leading-edge roughness technique was employed in

cavitation tests. Holl (1960) carried out a series of cavitation tests in the water tunnel

of the Ordnanace Research Laboratory on roughness elements ranging from 0.002 to

0.5 inch. The results demonstrated that the cavitation inception depended on the rel-

ative height of roughness, the boundary-layer shape and the velocity. For the circular

arcs, the negative minimum pressure coefficient, determined by the frozen-streamline

theory, was about 25% greater than the measured negative minimum pressure coeffi-

cient and was as much as 40% greater than the incipient cavitation number. Kuiper

(1978) applied sand grain roughnesses of 30 and 60 µm carborundum on four model

propellers with an average chord length of 102 mm at 0.7 radius. Test results showed

that the critical radius associated with laminar separation was effectively removed and

that high Reynolds number conditions were simulated. Based on the experimental

results of Jones (1980), spherical glass beads with a nominal diameter of 94 µm were

used in the experiment of Shen (1985) to simulate high Reynolds number conditions.

It was found that the application of surface roughness could lower the cavitation

inception number. Although the leading-edge roughness technique has been widely

used, the level of turbulence generated by the roughened leading edge cannot be easily

quantified. The size and type of the roughness element, as well as the location of the

roughness area should be carefully considered. These parameters can significantly

influence the outcomes of cavitation tests and the accuracy of predictions related to

cavitation inception.

In order to address the limitations of the leading-edge roughness method, a tur-

bulent free-stream method was introduced by Korkut et al. (1999). Free-stream tur-

bulence was generated using wire mesh screens and measured using a laser doppler
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anemometry (LDA) system. Cavitation tests were systematically conducted for a

relatively large rectangular NACA-66 foil and a Meridian-type propeller model to in-

vestigate the effects of free-stream turbulence and artificial roughness on the inception

of tip vortex and sheet cavitation. Further details of the test results were discussed in

the work of Korkut and Atlar (2002). Their findings indicated that the leading-edge

roughness technique could be replaced with a more controlled method of altering the

free-stream turbulence. In a recent study, Kethanur Balasubramaniam et al. (2023)

investigated the impact of free-stream turbulence on cavitation inception using a

wire mesh fence. It was found that the turbulence has a delaying effect on cavitation

inception, and it tends to occur primarily at higher flow rates.

As experimental techniques continue to advance, researchers have the capability to

collect more detailed flow information, i.e., the velocity in the tip vortex core region,

as well as downstream pressure and Reynolds shear-stress, during cavitation tests. A

comprehensive velocity measurements were made for the downstream of DTMB 5168

propeller model by Chesnakas and Jessup (1998) in the Carderock Division Naval

Surface Warfare Center (CDNSWC) 36-inch water tunnel. Their findings indicated

that the measurements obtained with the coincident laser doppler velocimeter (LDV)

system exhibited higher accuracy in both velocity and Reynolds shear-stress terms

when compared to the results from the non-coincident sets. Using the LDV system,

Bertetta et al. (2012) measured the complex wake behind an unconventional con-

tracted loaded tip (CLT) propeller to analyze the dynamics of generated tip vortices.

Their research revealed that the vortices generated by the propeller and the end plate

had different pitches, with the blade tip vortex showed a higher pitch than the other.

Compared to LDA system, which provides single-point measurements, particle image
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velocimetry (PIV) has the ability to capture data across a plane or even a volume with

just one measurement (Lee et al., 2009). Many studies (Foeth et al., 2006; Li et al.,

2020; Pereira et al., 2004; Salvatore et al., 2006) had been carried out for the pre-

dictions of cavitation performance on marine propellers with the PIV system. Most

recently, D’Agostino et al. (2023) investigated the underlying mechanisms governing

the evolution of tip vortices in the far field of a naval propeller wake. Phase-locked

PIV snapshots recorded throughout the transitional and far fields of a propeller wake

were used in the clustering analysis. The clustering results suggested that the wake

instability and subsequent progression of tip vortices were governed by deterministic

chaos.

Most of the cavitation tests for propeller model were carried out with the uniform

incoming flow in cavitation tunnel. However, in real-world scenarios, the inflow is

typically non-uniform due to the presence of the ship’s wake, which can significantly

impact cavitation performance. Moreover, the interaction between the propeller and

rudder is another crucial factor affecting propeller cavitation. Over the past two

decades, the effects of non-uniform inflow on the cavitation performance of marine

propellers were investigated experimentally by many researchers (Alves Pereira et al.,

2016; Felli and Falchi, 2018; Kinnas et al., 2015; Lloyd et al., 2015; Lubke, 2015).

Recently, Abbasi et al. (2023) measured the flow field around a propeller with an

inclined shaft using LDV system. The effects of non-uniform inflow conditions caused

by the oblique shaft were analyzed focusing on the dynamics of vortices. Their findings

revealed that significant variations can be observed in the pitch of the vortices during

rotation.

Nowadays, there has been a notable increase in experimental efforts focused on
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propeller cavitation to provide valuable reference data for the validation of CFD sim-

ulations. For example, comprehensive model test results including the open-water

performance, the propeller-induced flow field and cavitation patterns of the Italian

National Institute for Naval Architecture Studies and Testing (INSEAN) E779A pro-

peller were summarized in Salvatore et al. (2006). To enhance the accuracy and qual-

ity of numerical methods used in the calculation of marine propellers under both cav-

itating and non-cavitating conditions, an experimental benchmark was established at

the propeller workshop of the Second International Symposium on Marine Propulsors

2011 (Barkmann et al., 2011). A series of model tests were conducted for a control-

lable pitch propeller, SVA-VP1304, and corresponding measurements (Heinke, 2011;

Heinke and Kröger, 2013; Lubke, 2015; Mach, 2011) were collected to serve as bench-

mark data. Considering the underwater radiated noise resulting from propeller cavita-

tion, a thorough examination of the Princess Royal propeller was conducted by eight

major cavitation tunnels and wave basin facilities around the world (Yilmaz et al.,

2020). Extensive cavitation test results along with the noise measurements have been

published. Furthermore, the Princess Royal propeller has also been recommended

by the International Towing Tank Conference (ITTC) as a recommended benchmark

propeller for a wide range of tests (ITTC, 2021).

Experiments continue to be important to predict the inception of cavitation, re-

veal the flow characteristics, and offering benchmark data for validating numerical

simulations. However, experimental studies are costly and limited to model scale.
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1.2.2 Numerical Simulations

In terms of numerical methods to predict the cavitation performance of marine pro-

peller, methods based on the potential-flow theory and the computational fluid dy-

namics (CFD) have been developed over years.

The initial simulations of marine propeller cavitation primarily relied on methods

based on potential-flow theory. One notable advancement in this field was the intro-

duction of a lifting-surface method by Kerwin and Lee (1978), aimed at predicting the

performance of marine propellers. In their work, the blades were assumed to operate

at a small angle of attack, and the spatial variation of the ship wake was assumed

small accordingly. The blade boundary layer and shed vortex wake thickness were

assumed to be thin so that the fluid rotation due to the propeller was confined in a

thin layer. Lee (1979) further developed this method, and applied it to predict sheet

cavitation on the suction side of the propeller blade. The theoretical predictions were

compared with experimental data, and it was found that this method could effectively

predict the performance of a propeller model in both uniform flow and flow generated

by screens. But the prediction of the cavity extent for a full-scale propeller was not

satisfactory, indicating that the extrapolation from the wake measured behind the

model ship to the full-scale wake was important for the prediction of the cavity. Fur-

thermore, the lifting-surface method (Lee, 1979) with the leading-edge correction was

incorporated into a code named PUF-3A by Kerwin et al. (1986). A similar lifting-

surface method was employed by Van Gent (1994) to predict pressure fluctuations

induced by a propeller flow, taking into account unsteady sheet cavitation.

One of the limitations in the lifting-surface method is the neglecting of the blade
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thickness. This omission makes it challenging to capture the details of the flow near

the leading and trailing edges of the blade. To address this problem and account

for the displacement effects, Lee (1987) developed a potential based panel method

to analyze the marine propeller the steady flow. Viscous effects were also taken

into account by incorporating a tangential friction force on each panel. A reliable

pressure distribution around a marine propeller, especially near the leading-edge of

the blade was obtained. The calculated thrust and torque were in close agreement

with the experimental data, even under off-design conditions. A efficient and robust

panel method was developed by Fine (1992) to predict the extent and shape of sheet

cavities on propellers in unsteady flow. In this approach, unsteady cavitating flow

was treated in nonlinear theory by employing a low order potential based boundary

element method (BEM). Comprehensive validation studies were carried out for various

scenarios, including 2-D and 3-D hydrofoils in steady flow, propellers in steady flow,

and propellers in unsteady flow. The results showed that the conventional linear

theory overpredicted the cavity planform in both spanwise and chordwise directions.

The method introduced by Fine (1992) was further extended to examine both

steady and unsteady sheet cavitation on hydrofoils and propellers. For example,

Fine and Kinnas (1993) investigated the the cavity extent and shape for 3-D par-

tially and supercavitating hydrofoils of arbitrary geometry by employing a low-order

potential-based boundary element method. Their results showed that the predicted

cavity surfaces were in good agreement with the corresponding reference data for

the cavitation number ranging from 0.2 to 1.6. This method was also applied for

the prediction of time-dependent sheet cavitation for propellers by Kinnas and Fine

(1992).
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Note that the fluid was assumed to be inviscid and irrotational in the method

of Fine (1992). The influence of viscosity, however, on cavitation performance can

not be neglected, as mentioned by Franc and Michel (1985). To solve the flow in

the boundary layer, Brewer and Kinnas (1997) introduced a numerical approach that

coupled a nonlinear panel method with a boundary layer solver. Both numerical and

experimental studies using a foil based on the geometry of the NACA0012-64, which

had a zero camber and symmetrical cross section, were carried out in their work.

The numerical method accurately predicted velocity fields away from the foil and

inside the boundary layer with fully wetted conditions. However, under cavitating

conditions, it was found that the displacement and momentum thickness loss at the

trailing edge were not well simulated. In addition, Sun and Kinnas (2006) developed

a viscous/inviscid interactive (VII) BEM model to study the cavitating flow around

a marine propeller. The more details of the VII BEM model was further presented in

the work of Pan (2009). Compared with the results from a commercial RANS software

(Fluent), the pressure was well predicted with the BEM inviscid theory. However, it’s

worth noting that the calculated pressure was increased with the coupled method con-

sidering the viscous effect. In a recent study conducted by Kim and Kinnas (2022),

a semi-empirical criterion was introduced into a lower-order panel method to sim-

ulate the viscous core of tip vortex. Their results demonstrated that the modified

boundary element method was able to predict sheet cavity patterns, as well as the

trajectories and shapes of developed tip vortex, in reasonable agreement with ex-

perimental observations. Importantly, the BEM method successfully captured the

higher-order harmonics in hull pressure fluctuations.

The potential-flow based methods have difficulties in dealing with highly non-

12



linear problems, such as the significant flow separation near the trailing edge and

breaking free surface. Another disadvantage associated with BEM is its susceptibil-

ity to numerical instability and ill-conditioning. With the development of computer

technology, many CFD methods have been developed to predict the cavitation per-

formance of marine propeller.

Numerical methods for predicting cavitation based on Reynolds Averaged Navier-

Stokes (RANS) model have been developed and widely used in marine industry.

Abdel-Maksoud (2003) employed the cavitation model in the commercial CFD soft-

ware package (CFX-TASCflow) to predict the flow characteristics on a marine pro-

peller. The investigation covered a wide range of cavitation numbers, spanning from

1.36 to 10.22. The standard k - ε turbulence model (Jones and Launder, 1972) was

applied in combination with a scalable wall function. It was recommended that the

applied cavitation model was able to predict most types of cavitation which take

place in the propeller flow. In the work of Watanabe et al. (2003), RANS simula-

tions of two conventional propellers, namely MP017 and Seiun-maru, were carried

out using the “full cavitation model” proposed by Singhal et al. (2002). The k - ω

turbulence model (Wilcox, 1998) in a commercial CFD code, Fluent Version 6.1, was

implemented. Their results showed that the cavitating flow around the Seiun-maru

propeller was well simulated, and there was a good agreement in the cavity shape

at the advance ratio of J = 0.2. In summary, these findings suggested that the

RANS approach proved to be a suitable method for simulating propeller flow in both

cavitating and non-cavitating conditions.

However, the tip vortices were not captured in the work of Abdel-Maksoud (2003)

and Watanabe et al. (2003) due to limitations of mesh resolution in the tip region.
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The tip vortices generated by marine propellers exhibit a higher degree of concen-

tration and have a more compact structure, which require a finer grid within the

tip vortex core. Numerical efforts (Ali et al., 2017; Hsiao and Chahine, 2005, 2008;

Hsiao and Pauley, 1999; Peng et al., 2013; Shen et al., 2009) have been made to ad-

dress this challenge and gain a deeper understanding of the tip vortex dynamics within

propeller flows. Most recently, Duan et al. (2023) conducted a numerical study to as-

sess the tip vortex inception for PPTC propeller. In this study, three types of feasible

cavitation initiation prediction methods, including the minimum pressure coefficient

method, the tip vortex model method and the minimum vapor volume method, were

investigated. Based on their CFD predictions, the tip vortex model was recommended

to predict cavitation initiation. It was also found that the turbulence model has little

effect on propeller cavitation inception prediction.

As mentioned earlier, full-scale ship propellers are generally installed at the stern

of the vessels. The effects of no-uniform wake field and propeller-hull-rudder inter-

actions should be considered when predicting cavitation performance. For example,

Li et al. (2012) studied the impact of incoming flow on a four-bladed propeller, IN-

SEAN E779A, cavitation inception properties. The numerical simulations were per-

formed using both uniform inflow conditions and non-uniform wake conditions, the

latter were obtained from experiments. Their numerical results with the uniform

incoming flow revealed that the predicted sheet cavities were stable and had similar

patterns as observed in experiments. The calculated thrust and torque coefficients

showed minimal differences of less than 5% compared to the measured data, while

the cavitation area was over-estimated by more than 30%. In contrast, for the pre-

dictions at the cavitation number of 4.455 in the non-uniform wake, vapor structures
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were shed from the tail of cavity and become cloudy when exiting the wake.

The effect on sheet cavitation due to the different wake distributions was exam-

ined for a typical full-scale ship by Regener et al. (2018). Their results showed that

the propeller designed with the full-scale effective wake distribution exhibited better

cavitation performance compared to the propeller designed with the nominal wake

field in model scale. Therefore, if only the measured nominal wake field was avail-

able, a conservative design was required. They predicted the roughness effects of

typical coatings and different fouling conditions on propeller performance for vari-

ous advance coefficients. Their results demonstrated that as propeller surface fouling

increases, the thrust coefficient magnitude decreases while the torque coefficient mag-

nitude increases, resulting in a net decrease in open water efficiency of up to 30%

at the highest simulated fouling level. The effects of biofouling-related roughness

on propeller’s hydrodynamic and URN performance were investigated by Sezen et al.

(2021a). Different roughness configurations were represented using roughness func-

tions implemented in the wall function model of the CFD solver. The results showed

that the propeller’s thrust decreases while the torque increases with increasing sever-

ity of roughness. The efficiency loss of the propeller at the most severe roughness

condition can be as high as 30% and 25% at J = 0.795 and J = 0.71, respectively.

In order to mitigating tip vortex cavitation, the possibility and effectiveness of

roughness application to mitigate tip vortex flows are evaluated by many researchers.

For example, Sezen et al. (2021b)conducted simulations for the Princess Royal pro-

peller under uniform, inclined, and non-uniform flow conditions. The Schneer-Sauer

cavitation model (Sauer and Schnerr, 2001) was used to model the sheet and tip vor-

tex cavitation along with the detached eddy simulation (DES) approach. With the
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application of roughness inside the tip region, the velocity was reduced, leading to

a pressure increase and tip vortex cavitation mitigation. The maximum cavitation

volume reductions due to the tip vortex for the full-scale propeller in the uniform and

non-uniform flows were 10% and 5%, respectively. Asnaghi et al. (2019) employed

implicit large eddy simulation (ILES) of OpenFOAM, incorporating a wall-function

to account for roughness effects in simulating propeller tip vortex flow. Their results

suggested that a roughness size of 250 µm is sufficient to mitigate the tip vortex.

Furthermore, they found that applying roughness on the leading edge and trailing

edge of the suction side is effective not only in mitigating the tip vortex but also in

limiting performance degradation.

It is noted that the surface roughness at the leading-edge (LE) also has significant

effect on the marine propeller cavitation performance. The presence of LE roughness

generates very small cavitating vortical structures which interact with the main sheet

cavity developing over the foil to later form a cloud cavity. These interactions create

a streaky sheet cavity interface which cannot be captured in the smooth condition,

influencing both the richness of structures in the detached cloudy cavitation as well

as the extent and transport of vapour (Asnaghi and Bensow, 2020). In the work

of Johnsson and Rutgersson (1991), leading-edge roughness applied on the pressure

side near the leading edge was found to have a delaying effect on tip vortex cavita-

tion, even when the planform of the hydrofoil (or the propeller blade) is highly swept.

The increase in drag caused by the roughness ranged from 1% to 10%, corresponding

to a maximum decrease in efficiency for the propeller of about 2%. Additionally,

Asnaghi et al. (2021) evaluated the application of surface roughness on model and

full-scale marine propellers to mitigate tip vortex cavitation. The effect of rough-
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ness was simulated using modified wall functions. Their findings suggested that the

combination of roughness on the blade tip and a limited area on the leading edge is

the optimum roughness pattern, achieving a reasonable balance between tip vortex

cavitation mitigation and performance degradation. For model-scale propeller, this

pattern led to an average tip vortex cavitation (TVC) mitigation of 37% with an

average performance degradation of 1.8%, while an average TVC mitigation of 22%

and performance degradation of 1.4% were obtained in full-scale condition.

Regarding the influence of ship’s wake on marine propeller cavitation performance,

Rizk et al. (2023) calculated the performance of the INSEAN E779A propeller behind

a generic hull at the self-propulsion point. The open-water simulations were first car-

ried out using a RANS based method. Grid sensitivity studies were also conducted

to accurately model the cavitating flow around the propeller. An interesting observa-

tion from their research was that cavitation had an unexpected effect of enhancing the

propulsion efficiency. Specifically, the propeller rotation rate was lower, while higher

thrust and torque coefficients were obtained at the cavitation number of σ = 1.5.

With computational capabilities and methods continuing to advance in recent

years, the Large Eddy Simulation (LES) has been widely used in aerospace (Heinz,

2020; Spalart and Venkatakrishnan, 2016; Tucker and Tyacke, 2016) and combus-

tion (Brito Lopes et al., 2022a, 2020, 2022b; Rutland, 2011). Owing to the high

Reynolds numbers encountered in ship hydrodynamics, the application of the LES

method is limited in practical design projects, as highlighted by Liefvendahl et al.

(2010) and the International Towing Tank Conference (ITTC, 2017). Early LES

simulation of the propeller can be found in work of Di Felice et al. (2009). They

compared the velocity fields measured by Laser Doppler Velocimetry (LDV) and pre-
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dictions of LES. However, the simulation encountered challenges in capturing the

wake due to limitations in grid resolution and distribution. Recognizing this, they

recommended an increased grid number of over 10 million to more accurately sim-

ulate the wake structure in future LES simulations. Alin et al. (2010) extended the

LES investigation of the Italian National Institute for Naval Architecture Studies and

Testing (INSEAN) E1619 propeller by employing finer grids, up to 13 million cells.

Despite the grid refinement, the constrained resolution of the computational mesh

continued to limit the analysis to the downstream wake flow. The self-propulsion of

a notional submarine model equipped with an INSEAN E1619 propeller was simu-

lated by Posa and Balaras (2018) using LES method. To capture the dominant hub

vortex in the downstream wake, they utilized an extensive grid number of more than

3 billion. Subsequently, Posa et al. (2019) employed an immersed boundary method-

ology coupled with LES to investigate propeller-rudder interaction. They simulated

three configurations using 1024 Central Processing Unit (CPU) cores, utilizing ap-

proximately 1.7 billion grids for each case. The total computational time for each

simulation was about 6 million CPU hours. Due to the high computational costs, the

majority of LES studies focused on simulating propellers in model scale. The RANS

method, applied in present work, remains a valuable tool for studying the flow char-

acteristics and performance of full-scale marine propellers due to its computational

efficiency.

The national and international organizations, as well as the classification societies

and IMO have emphasized the importance of underwater radiated noise (URN). For

instance, Det Norske Veritas Germanisher Lloyd (DNV GL) issued SILENT class

notations in 2010, highlighted the noise-related issues and encouraged ship owners to
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take measures to reduce URN emissions (DNV, 2010). Subsequently, International

Maritime Organisation (IMO) published a non-mandatory guideline in 2014 aimed

at providing advice to ship owners and designers on reducing URN generated by

commercial ships (IMO, 2014). In response to these concerns, numerous numerical

simulations have been carried out to explore the influence of cavitation on propeller-

generated URN. Recently, a series numerical and experimental studies have been

conducted by Sezen and Atlar (2022, 2023a,b) to investigate the hydroacoustic per-

formance of the benchmark Princess Royal propeller. The effects of various factors,

including incoming flow conditions, scale ratios, turbulence models and hydroacoustic

models, on the predictions were carefully examined. The cavitation on and off the

blades was modelled successfully in comparison with the experimental data. It was

observed that due to the lack of cavitation dynamics, especially tip vortex cavitation,

the the propeller URN was under-predicted at certain frequencies compared to the

model scale test campaigns and full-scale measurements.

1.3 Problem Statement

From the literature review, it becomes evident that little effort has been made to un-

derstand the effects of propeller manufacturing tolerances or defects on the propeller

performance, and no study in the public literature was found to address this issue. A

preliminary CFD study of Hally (2018) indicates that the manufacturing defects po-

tentially have large impact on propeller cavitation performance. It is also well know

that the propeller cavitation can result in load variation and lead to reductions in

propulsive and hydroacoustic performance. A better understanding of the influences
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of manufacturing tolerances on the propeller performance can help to mitigate these

undesirable effects.

Canadian propeller manufacturer, Dominis Engineering, has been at the forefront

of propeller manufacturing since its formation in 1985. Over years the company has

developed state-of-the-art technologies for manufacturing of propellers and propeller

blades. The precision routinely achieved using Dominis’s technology is significantly

better than Class S of ISO 484 (ISO, 2005a,b). In light of this technological excel-

lence, it is necessary to better understand the sensitivity of propeller performance to

manufacturing defects within Class S so that manufacturers can develop appropriate,

cost-effective processes; naval architects can better specify tolerances to their needs;

and owners and regulators can rest assured that vessels will meet their requirements.

In real-world scenarios, marine propellers operate in harsh, corrosive environments

characterized by biofouling. The cleaning and polishing of propeller blades to remove

fouling may also introduce tolerances.

Blade edges and tips are the most sensitive parts of the geometry of a propeller.

Robotic and hand grinding of blade edges could easily introduces inaccuracies and

deviations from design. This thesis uses CFD to gain a comprehensive understanding

of the effects of leading-edge defects on propeller cavitation performance.

1.4 Leading-Edge Manufacturing Tolerances

Manufacturing tolerances for new ship propellers are specified by the International

Standards Organization (ISO), which defines the manufacturing standards for pro-

peller construction. The ISO 484 standards (ISO, 2005a,b) for manufacturing toler-
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ances of ship propellers were established in 1981 by adopting an ISO Recommendation

of 1966. ISO 484-1 can be applied to propellers with diameters greater than 2.5 m,

while ISO 484-2 is applicable to propellers with diameters from 0.8 m to 2.5 m.

Table 1.1 presents a list of vessel types and their intended ISO manufacturing toler-

ance classes. As shown in Table 1.1, four classes of tolerances were defined in each

standard.

Figure 1.1: Real leading-edge defects on a propeller blade in service (Gospodnetic,

2022)

There exists an extensive types of potential defects that can be subject to exam-

ination. The tightest dimensional tolerances on ISO 484 standards are applied for

the geometry of the leading edge, clearly demonstrating the propeller manufacturers’

awareness of the critical characteristic of this region. Real leading-edge (LE) defects

on a propeller blade from DRDC-Atlantic (Gospodnetic, 2022) is shown in Fig. 1.1.

These tolerances could potentially be attributed to the manual grinding process con-

ducted during the manufacturing phase. It can be seen that the size of real defect is

small and varies at different blade sections. The start points of these defects do not
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Figure 1.2: 3-Part template (ISO, 2005a,b)

Figure 1.3: Template and the foil section with 0.25 mm deviation (Jin et al., 2020)
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Table 1.1: The accurate class for manufacturing tolerance

Class Manufacturing accuracy Ship type

S Very high accuracy

Naval vessels such as frigates and destroyers

Cruise vessels

High speed ferries

Research vessels

Special purpose merchant vessels

I High accuracy

General merchant ships

Deep sea trawler

Tugs

Ferries

Naval auxiliary vessels

II Medium accuracy

Low-power craft

Low-speed craft

Inshore finishing vessels

Work boats

III Wide tolerances Similar types as Class II

align precisely with the leading edge. For geometric simplification in this thesis, the

flat sections, resembling the real defects, with the constant deviations at leading edge

are intended to represent the defects caused by grinding.

A LE defect is determined by measuring the difference between the template and

the manufactured blade section. According to ISO 484 standards (ISO, 2005a,b),

Class S tolerances for LE deviations are defined as ±0.5 mm for a 1-part template or
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±0.25 mm for the 3-part template (see Fig. 1.2). For example, Fig. 1.3 shows how

a foil with 0.25 mm LE defect is measured using a 3 part template (note that the

short nose template was omitted here for clarity). In Detail A, the straight line on

the upper surface is used to represent the defect at leading edge.

1.5 Research Aims and Objectives

The present research aims to investigate the effects of leading-edge manufacturing

defects on cavitation performance of marine propeller. The main objectives and

contributions of this thesis are summarized as follows:

• Calculating cavitation performance of foils in infinite flow. The cavitation buck-

ets of DTMB modified NACA-66 a = 0.8 foil had been predicted with potential

flow based method in Brockett (1966). Hally (2008) conducted a preliminary in-

vestigation on the impact of leading-edge defects on cavitation performance for

2-D foils using three RANS solvers, ANASYS CFX, OpenFOAM and TRAN-

SOM. Small geometric variations relative to the dimensions of the propeller

suggest that much could be learned from less computationally intensive sim-

ulations based on 2-D sections before full-scale 3-D propeller simulations. In

present work, the effect of simulation parameters, such as domain size, grid

resolution, grid distribution, grid stretching ratio, grid aspect ratio, first-grid

spacing, y+, and turbulence model, on the solution were carefully examined.

Based on the results of convergence studies, the best-practice settings for 2-D

simulations with the steady RANS solver in Star-CCM+ were proposed. Fur-

thermore, using the best-practice settings, the cavitation buckets for the mod-
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ified NACA-66 sections (a=0.8, t/c=0.0416, f/c=0.014) with three different

sizes of defects near LE, representing three levels of manufacturing tolerances

within ISO 484 Class S, were compared at various angles of attack.

• Calculating cavitation performance of foils in cavitation tunnel. The foils with

and without LE defects were intended to be tested in a cavitation tunnel with

1 m by 1 m test section. It was important to investigate the differences in

2-D and 3-D solutions and to further quantify the effect of LE defect in future

validation studies. Effects of RANS modelling parameters, such as domain size,

span, grid aspect ratio, first-grid spacing, y+, and turbulence model, on the

solutions were carefully examined. Based on the results of convergence studies,

the best-practice settings for 3-D simulations with the steady RANS solver in

Star-CCM+ were proposed. Using the best practices, studies were then carried

out for the foils with no defect, 0.10 mm defect, 0.25 mm defect and 0.50 mm

defect at various angles of attack. Furthermore, the preliminary validation

studies for the foils of 0.525 m span with no defect and 0.50 mm defect were

also carried out on the cavitation buckets.

• Calculating cavitation performance of a full-scale propeller. There is a need to

investigate the effects of LE defects on cavitation performance of a full-scale

marine propeller. In this study, the simulations were carried out with full-

scale propellers, based on the geometry of DTMB 5168 propeller. Convergence

studies were first carried out for the open-water simulation to examine the

effects of domain size, grid size, y+ and turbulence model on the solutions.

Based on the findings from these convergence studies, the best-practice settings
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were proposed. Using the recommended settings, CFD simulations were then

extended to the same propeller with three different sizes of LE defects.

1.6 Outline of the Thesis

This dissertation is organized into seven chapters as follows.

In Chapter 1, the research background of manufacturing tolerances problems on

marine propeller performance is briefly described. A literature review on predicting

cavitation performance of propeller by using experimental studies and numerical ap-

proaches is detailed. The objectives and the scope of this research are also presented.

Chapter 2 shows the details of the research methodologies. The governing equa-

tions for various turbulence models used in this thesis are presented. The description

of the least square root (LSR) method, introduced by Eça and Hoekstra (2014), for

uncertainty analysis is also included in this chapter.

Chapter 3 studied the effects of manufacturing defects on the cavitation perfor-

mance of a propeller blade section in infinite flow. DTMB modified NACA-66 a = 0.8

sections without and with LE defects were investigated at various angles of attack

using 2-D steady RANS solvers on structured grids. Numerical results were com-

pared with potential-flow solutions by Brockett (1966) and the RANS solutions with

ANSYS CFX and TRANSOM by Hally (2008).

Chapter 4 shows the 3-D CFD simulations for the foils of 1 m span in a cavita-

tion tunnel with 1 m by 1 m test section. Convergence studies on RANS modelling

parameters, such as domain size, grid aspect ratio, first-grid spacing, y+, and turbu-

lence model were conducted. The best-practice settings were then summarized and
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recommended for the 3-D simulations of intended cavitation tunnel tests. The results

of predicted cavitation buckets in terms of minimum pressure coefficient for foils of

1 m span were discussed and compared with those from 2-D simulations.

Due to the limitation of the foil support mechanism of cavitation tunnel, the span

of 0.525 m was applied to minimize the force and moment on the foil. The 3-D

numerical simulations for the foils of 0.525 m span in a cavitation tunnel were carried

out in Chapter 5. Convergence studies were also performed to examine the sensitivity

of solutions to domain size, grid aspect ratio, first-grid spacing, y+, and turbulence

model. Furthermore, the preliminary validation studies for the foils of 0.525 m span

with no defect and 0.5 mm defect were also carried out on the cavitation buckets.

The objective of Chapter 6 is to investigate the effects of LE defect on a full-scale

marine propeller. Validation studies were carried out for the model-scale propeller,

the wake field, open-water and cavitation performance were presented and compared

with the experimental data (Chesnakas and Jessup, 1998). The best-practice settings

for the model-scale propeller were extended and verified for the full-scale propellers

with no and 0.5 mm defects. Using the best-practice modelling settings for full-

scale propellers, simulations were carried out to full-scale propellers without and with

0.10 mm, 0.25 mm, and 0.50 mm LE defects. The influences of LE defect on open-

water and cavitation performance are presented and discussed.

In Chapter 7, this thesis ends with conclusions and some future perspectives.
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Chapter 2

Research Methodology

2.1 Governing Equations

The governing RANS equations for the incompressible viscous flow are:

∂ui

∂xi
= 0 (2.1)

ρ
∂ui

∂t
+ ρ

∂

∂xj

(
uiuj + u′

iu
′
j

)
= − ∂p

∂xi
+

∂τ ij

∂xj
+ ρgi (2.2)

where ui, i=1, 2 and 3, denotes the mean velocity components along x-, y- and z-axis,

respectively, for a three-dimensional flow, p is the mean pressure, ρ is the density of

water, gi represents the acceleration of gravity, and −ρu′
iu

′
j are the Reynolds stresses.

The mean viscous stress tensor τ ij is defined by:

τ ij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.3)

where µ is the dynamic viscosity of water.
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2.2 Turbulence Modeling

The Reynolds stresses can be solved based on the Boussinesq hypothesis using the

eddy viscosity turbulence models, or be solved from the transport equation based on

Reynolds stress models. In the present studies, one-equation and two-equation eddy

viscosity models as well as Reynolds stress models were employed to solve the RANS

equations.

In the eddy viscosity turbulence models, it is assumed that the Reynolds stresses

are related to the mean velocity gradients, the turbulence kinetic energy and the eddy

viscosity, i.e.,

−ρu′
iu

′
j = µt

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
ρkδij (2.4)

where µt represents the eddy viscosity, δij is the Kronecker delta, k = 1
2
u′
iu

′
j is the tur-

bulent kinetic energy that can be solved from the transport equations. The Reynolds

stress tensor is linearly proportional to the mean strain rate.

Six turbulence models, including the Spalart-Allmaras (SA) model, the standard

k − ε model, the standard k − ω model, the shear stress transport (SST) k − ω

model, the linear pressure strain Reynolds stress model (LPS-RSM) and the elliptic

blending Reynolds stress model (EB-RSM), were applied in this thesis.

The one-equation turbulence model, Spalart-Allmaras (SA) (Spalart and Allmaras,

1992), used by Star-CCM+ solves a transport equation for the modified turbulence

viscosity, ν̃, to determine the turbulence eddy viscosity, µt, i.e.,

µt = ρfν1ν̃ (2.5)

where fν1 = χ3/ (χ3 + C3
v1) is the damping function and χ = ν̃/ν. The transport
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equation for the modified turbulence viscosity is:

∂ν̃

∂t
+ ui

∂ν̃

∂xi
=Cb1 [1− ft2] S̃ν̃ −

[
Cw1fw − Cb1

κ2
ft2

](
ν̃

d

)2

+
1

σν̃

[
∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

] (2.6)

where d is the distance to wall, while the other model parameters, S̃, fw, ft2 and Cw1,

are defined as,

S̃ =

√
2ΩijΩij +

ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
(2.7)

fw = gν̃

[
1 + C6

w3

g6ν̃ + C6
w3

]1/6
, gν̃ = rν̃ + Cw2

(
r6ν̃ − rν̃

)
(2.8)

rν̃ = min

(
ṽ

S̃κ2d2
, 10

)
(2.9)

ft2 = Ct3 exp
(
−Ct4χ

2
)

(2.10)

Cw1 = Cb1/κ
2 + (1 + Cb2) /σν̃ (2.11)

where Ωij = 1
2
(∂ui/∂xj − ∂uj/∂xi) is the mean rotation tensor. The default model

coefficients are summarized in Table 2.1. The details of SA model can be found in

the work of Spalart and Allmaras (1992). The SA model has good convergence and

robustness for specific flows. However, the turbulence length and time scales are not

well defined as they are in other two-equation models.

Table 2.1: The default coefficients used in Spalart-Allmaras model

σν̃ Cb1 Cb2 κ Cω2 Cω3 Ct1 Ct2 Ct3 Ct4

2/3 0.1355 0.622 0.41 0.3 2.0 1.0 1.0 1.1 2.0
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Two-equation models are widely used to solve the RANS equations, in which

both the velocity and length scale are solved using separate transport equations. The

turbulence length scale is estimated from the kinetic energy and its dissipation rate.

The standard k− ε model, the standard k−ω model and the SST k−ω models were

investigated in the present work.

In the standard k − ε model (Launder and Spalding, 1974), the turbulent eddy

viscosity is calculated as:

µt = ρCµfµkT (2.12)

where Cµ is a model coefficient, fµ is defined as 1.0, and T is the turbulent time scale

determined by:

T = max(Te, Ct

√
ν

ε
) (2.13)

where Te = k/ε is the large-eddy time scale, Ct is a model coefficient, ν is the

kinematic viscosity. The transport equations for the turbulent kinetic energy, k, and

the turbulence dissipation rate, ε, are given as,

∂(ρk)

∂t
+

∂ (ρkui)

∂xi
=

∂

∂xi

[(
µ+

µt

σk

)
∂k

∂xi

]
+ Pk + Sk − ρ(ε − ε0) (2.14)

∂(ρε)

∂t
+

∂ (ρεui)

∂xi
=

∂

∂xi

[(
µ+

µt

σǫ

)
∂ǫ

∂xi

]
+

1

Te
Cε1Pε − Cε2f2ρ(

ε

Te
− ε0

T0
) + Sε (2.15)

where σk, σε, Cε1 and Cε2 are the model coefficients, Pk and Pε are the production

terms, f2 = 1 is applied for the standard k−ε model, Sk and Sε are the source terms.

k0 and ε0 are the ambient turbulence values in the source terms that counteracts

turbulence decay (Spalart and Rumsey, 2007). The possibility to impose an ambient

source term also leads to the definition of a specific time-scale T0 that is defined as:

T0 = max

(
k0
ε0
, Ct

√
v

ε0

)
(2.16)
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where constant coefficient, Ct, can be found in the Table 2.2.

Table 2.2: The default coefficients used in the standard k − ε model

σk σε CM
1 Ct Cε1 Cε2 Cµ

1.0 1.3 2.0 1.0 1.44 1.92 0.09

For the standard k−ω model (Wilcox, 2008), the turbulent eddy viscosity is related

to the turbulence kinetic energy, k, and the specific turbulence dissipation rate, ω,

which is also referred to the mean frequency of the turbulence. The turbulent eddy

viscosity is calculated as:

µt = ρkT (2.17)

where T = α∗/ω is the turbulence time scale in the standard k − ω model and α∗ is

a model coefficient. The transport equations for the turbulent kinetic energy, k, and

the specific dissipation rate, ω, are written as:

∂(ρk)

∂t
+

∂ (ρkui)

∂xi
=

∂

∂xi

[
(µ+ σkµt)

∂k

∂xi

]
+Gk +Gb

−ρβ∗fβ∗(ωk − ω0k0) + Sk

(2.18)

∂(ρω)

∂t
+

∂ (ρωui)

∂xi
=

∂

∂xi

[
(µ+ σωµt)

∂ω

∂xi

]
+Gω + Sω − ρβfβ(ω

2 − ω2
0) (2.19)

where σk and σω are turbulence model coefficients, Gk, Gb and Gω are the production

terms of turbulent, buoyancy and specific dissipation, respectively, and fβ∗ is the free-

shear modification factor or the vortex-stretching modification factor, k0 and ω0 are

the ambient turbulence values that counteract turbulence decay (Spalart and Rumsey,

2007), Sk and Sω are the source terms. The k − ω model demonstrates superior ac-
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curacy in predicting strong vortices and near-wall interactions compared to the k− ε

models. The standard k − ω model and its variations have shown to be able to give

accurate predictions and are by far the most widely applied turbulence models in the

field of ship hydrodynamics. For example, 80% of the submissions for the Gothenburg

2010 Workshop were simulated with the k − ω model (ITTC, 2017).

Table 2.3 presents the values of default parameters for standard k − ω model.

More detailed description of the standard k − ω model can be found in the study

of Wilcox (2008).

Table 2.3: The default coefficients used in the standard k − ω model

α∗ β β∗ σk σω

1.0 0.072 0.09 0.5 0.5

The SST k−ω model (Menter, 1994) introduces the cross-diffusion term, Dω, and

improves the prediction of the onset and the flow separation under adverse pressure

gradients. The transport equations are the same as those of the standard k−ω model

when setting Dω as zero in the near field. Furthermore, the non-linear production,

Gnl, is included in the transport equation of turbulence kinetic energy. Then, the

transport equations can be expressed as

∂(ρk)

∂t
+

∂ (ρkui)

∂xi
=

∂

∂xi

[
(µ+ σkµt)

∂k

∂xi

]
+Gk +Gb +Gnl

−ρβ∗fβ∗(ωk − ω0k0) + Sk

(2.20)
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∂(ρω)

∂t
+

∂ (ρωui)

∂xi
=

∂

∂xi

[
(µ+ σωµt)

∂ω

∂xi

]
+Gω + Sω

+2 (1− F1)
ρσω2

ω

∂k

∂xi

∂ω

∂xi

− ρβfβ(ω
2 − ω2

0)

(2.21)

where σk = F1σk1 + (1− F1)σk2, σω = F1σω1 + (1− F1)σω2, β = F1β1 + (1− F1)β2,

and the turbulent eddy viscosity, µt, is computed with

µt =ρkT

T =min

(
α∗

ω
,
a1
SF2

)

F2 = tanh



(
max

(
2
√
k

β∗ωd
,
500v

d2ω

))2



β∗ =F1β
∗
1 + (1− F1)β

∗
2

(2.22)

in which, d represents the distance to the wall, S is the modulus of the mean strain

rate tensor, the specific values of a1, β
∗
1 and β∗

2 are 0.31, 0.09 and 0.09, respectively.

The blending function F1, which combines the near-wall contribution of a coeffi-

cient with its value far away from the wall, is defined as

F1 = tanh
(
F 4
ω1

)

Fω1 =min

[
max

( √
k

0.09ωd
,
500v

d2ω

)
,

2k

d2CDkω

]

CDkω =max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi

, 10−20

)
(2.23)

Detailed formulations can be found in the work by Menter (1994). The modelling

coefficients of SST k − ω model are summarized in Table 2.4.

In the Reynolds stress models (RSM), the transport equations are solved for all

the components of the Reynolds stress tensor and the turbulence dissipation rate,

∂
(
ρu′

iu
′
j

)

∂t
+

∂
(
ρumu′

iu
′
j

)

∂xm
= Dij + Pij + Fij + ϕij − εij (2.24)
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Table 2.4: The default coefficients used in the SST k − ω model

a1 α∗ β1 β2 β∗
1 β∗

2 σk1 σk2 σω1 σω2

0.31 1.0 0.075 0.0828 0.09 0.09 0.85 1.0 0.5 0.856

where Dij is the turbulent diffusion term, Pij is the turbulent production term, Fij is

the rotation term, ϕij is the pressure-strain correlation term, and εij is the dissipation

rate tensor.

The modelling of diffusion term Dij is based on the assumption that the rate of

transport of Reynolds stresses by diffusion is proportional to the gradients of Reynolds

stresses. Following the study of Lien and Leschziner (1994), a simple isotropic form

of Dij is

Dij =
∂

∂xm

[(
µ+

µt

σk

)
∂u′

iu
′
j

∂xm

]
(2.25)

where the turbulent viscosity µt in the elliptic blending model is determined by

µt =ρCµkT

T =max

(
k

ε
, Ct

√
v

ε

) (2.26)

in which Ct is the modelling coefficient.

The production term Pij in Eq. (2.24) is closed, which does not require modelling,

and it can be calculated with

Pij = −
(
u′
mu

′
i

∂uj

∂xm
+ u′

mu
′
j

∂ui

∂xm

)
(2.27)

In the study of Versteeg and Malalasekera (2007), the rotating term Fij is given

as

Fij = −2ωk

(
u′
mu

′
iejkm + u′

mu
′
jeikm

)
(2.28)
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where ωk is the rotation vector, eijk = 1 if i, j, k are in cyclic order and are distinct,

eijk = −1 when i, j, k are in anti-cyclic order and are different and eijk = 0 in case

any two indices are same.

In the elliptic blending Reynolds stress model (Manceau and Hanjalić, 2002), the

pressure-strain model is based on a blending of near-wall and quadratic pressure-strain

models for the pressure-strain and dissipation:

ϕij − εij =
(
1− α3

) (
ϕw
ij − εwij

)
+ α3

(
ϕh
ij − εhij

)
(2.29)

where the superscripts, w and h, denote the near-wall layer and outer region, respec-

tively. The blending parameter α is the solution of the elliptic equation,

α− L2∇2α = 1 (2.30)

where the turbulent length-scale L is defied as

L = Cl max

(
k3/2

ε
, Cη

v3/4

ε1/4

)
(2.31)

The traditional modelling of the dissipation rate tensor εij is based on the as-

sumption that the small dissipative eddies are isotropic. The dissipation can then be

simply compute by

εij =
2

3
εδij (2.32)

where ε is dissipation rate of turbulent kinetic energy. The isotropic turbulent dis-

sipation rate is solved from a transport equation analogous to the k − ε model with

various model coefficients.

∂(ρε)

∂t
+

∂ (ρεum)

∂xm
=

∂

∂xm

[(
µ+

µt

σǫ

)
∂ǫ

∂xm

]
− ε2Cε2ρ

k

+Cε1
ε

k

[
1

2
tr(P) +

1

2
Cε3 tr(G)

] (2.33)
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In general, the Reynolds stress models can predict complex flows with swirl rota-

tion and high strain rates more accurately than eddy viscosity models. The elliptic

blending Reynolds stress model of Manceau and Hanjalić (2002) was employed in

both 2-D simulations and 3-D simulations for the model- and full-scale propellers.

While the LPS-RSM (Gibson and Launder, 1978) was only applied in the 2-D simu-

lations for the foil sections with and without LE defect. Furthermore, the values of

modelling parameters for EB-RSM are presented in Table 2.5.

Table 2.5: The default coefficients used in the elliptic blending Reynolds stress model

σk σε CM Cs Cε1 Cε2 Cε3 Cµ Cl Ct Cη

1.0 1.15 2.0 0.21 1.44 1.83 0.50 0.07 0.133 6.0 80

2.3 Uncertainty Analysis

In this thesis, the least square root (LSR) method, introduced by Eça and Hoekstra

(2014), was employed to estimate the numerical uncertainty resulting from the spatial

discretization. This method assumed that the iterative and round-off errors are in-

significant when compared to the discretization error, which is considered the primary

source of numerical uncertainty.

The discretization error can be estimated using the generalized Richardson ex-

trapolation method, as proposed by Richardson (1911) in 1911.

εΦ ≃ δRE = Φi − Φexact = αhγ
i (2.34)
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where Φi represents the flow quantity Φ on the i-th grid, γ is the observed order

of grid convergence, and hi denotes the corresponding representative grid size. The

representative grid size hi can be determined by

hi =

[
1

Ni

Ni∑

j=1

(∆Vj)

]1/3
(2.35)

where ∆Vj is the volume of cell j, and Ni is the total number of cells. For field

variables, the local cell size can be used.

In the LSR method, three discretization error estimators are considered as alter-

natives:

εΦ ≃ δ1 = Φi − Φexact = αhi (2.36)

εΦ ≃ δ2 = Φi − Φexact = αh2
i (2.37)

εΦ ≃ δ12 = Φi − Φexact = α1hi + α2h
2
i (2.38)

where α1 and α2 are coefficients. The estimators defined in Eqs. (2.36), (2.37)

and (2.38), are only applicable if the estimation with Eq. (2.34) is impossible or

not reliable, i.e., the observed order of grid convergence, γ, is either too small or too

large.

Steps to obtain UΦi
with the LSR method are summarized as follows:

• Determine the discretization error εΦ, the standard deviation,

σd = min(σRE , σ1, σ2, σ12), and corresponding Φfit, where

σRE =

√∑ng

i=1 nwi(Φi − Φfit)
2

ng − 3

Φfit =Φ0 + αhγ
i

(2.39)
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σ1 =

√∑ng

i=1 nwi(Φi − Φfit)
2

ng − 2

Φfit =Φ0 + αhi

(2.40)

σ2 =

√∑ng

i=1 nwi(Φi − Φfit)
2

ng − 2

Φfit =Φ0 + αh2
i

(2.41)

σ12 =

√∑ng

i=1 nwi(Φi − Φfit)
2

ng − 3

Φfit =Φ0 + α1hi + α2h
2
i

(2.42)

In the equations above, wi is the weight, ng is the number of grids, and Φ0 is

the solution with hi = 0.

• Determine a data range parameter, DΦ, to assess the quality of the fit for εΦ.

DΦ =
(Φi)max − (Φi)min

ng − 1
(2.43)

where (Φi)max and (Φi)min are the maximum and the minimum values of Φi,

respectively.

• Determine the factor of safety, Fs, from γ, σd and DΦ. If 0.5 ≤ γ ≤ 2.1 and

σd < DΦ, Fs = 1.25. Otherwise, the value of Fs is set as 3.

• Obtain the uncertainty from Φ0 and the factor of safety Fs.

UΦi
=Fs(Φi − Φ0) + σd + |Φi − Φfit| σd ≤ DΦ

UΦi
=3

σd

DΦ
(Φi − Φ0 + σd + |Φi − Φfit|) σd > DΦ

(2.44)

Furthermore, the detailed procedure can be found in the work of Eça and Hoekstra

(2014).
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Chapter 3

2-D Simulations of the Foils in

Infinite Flow

Small geometric variations relative to the dimensions of the propeller suggest that

much could be learned from less computationally intensive simulations based on 2-

D sections before full-scale propeller simulations. The investigation into propeller

manufacturing tolerances was carried out for 2-D modified NACA-66 foils using the

steady RANS solver on structured grids.

Convergence studies were first carried out for foils without and with defects using

circular computational domains. Effects of simulation parameters, such as domain

size, grid stretching ratio, grid aspect ratio, first-grid spacing, y+, and turbulence

model, on the solution were carefully examined. Turbulence models considered in

this work include four eddy viscosity models: Spalart-Allmaras, k−ε, k−ω, and SST

k−ω models, and two Reynolds stress models: the elliptic bending model, EB-RSM,

and the linear pressure-strain model, LPS-RSM. Based on the results of convergence

43



studies, the best-practice settings for 2-D simulations with the steady RANS solver

in Star-CCM+ were proposed.

Using the best-practice settings, verification studies were carried out for the cavita-

tion buckets of a DTMB modified NACA-66 (a=0.8, t/c=0.2, f/c=0.02) foil without

defect by comparing the RANS results with the potential-flow solutions by Brockett

(1966) and the RANS solutions with ANSYS CFX and TRANSOM (Hally, 2008).

Note that t, f and c denote the maximum thickness, the maximum camber and the

chord length of a foil section, respectively. Furthermore, the minimum pressure co-

efficients for the modified NACA-66 (a=0.8, t/c=0.0416, f/c=0.014) foils with three

different sizes of defects near leading edge (LE), representing three levels of manufac-

turing tolerances within Class S, were compared at various angles of attack.

3.1 Coordinate System

The coordinate system for all 2-D simulations is presented in Fig. 3.1. The origin, O,

is at the leading edge of the foil. The OX axis is from the leading edge to the trailing

edge (TE) along the chord line and the OY axis is perpendicular to the chord line.

Figure 3.1: Modified NACA-66 (a = 0.8, t/c = 0.0416, f/c = 0.014) foils without

and with LE defects
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3.2 Geometry of LE Manufacturing Defects

Details of LE geometry for the foils (a = 0.8, t/c = 0.0416, f/c = 0.014) with and

without defects are shown in Fig. 3.1. Dimensions of LE defects are given in Table 3.2.

It can be found that the sizes of LE defects are relatively small when compared to

the chord length of the foils. Note that all the defects are within Class S.

Unit: mm
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1.0 X

Y

(a) No defect

1.0
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Figure 3.2: LE geometries for the foils with and without defects
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Table 3.1: Dimensions of LE defects

Defect (mm)
Point A Point B

Length (mm) ∆C (mm)

x (mm) y (mm) x (mm) y (mm)

0.094 0.078 0.490 1.104 1.571 1.490 1.026

0.250 0.078 0.490 2.796 2.531 3.399 2.718

0.500 0.000 0.000 3.160 2.700 4.156 3.160

3.3 Computational Domain

The computational domain must be sufficiently large to represent the infinite fluid

domain. It is preferable to use structured grids for simulations to achieve greater

accuracy. The geometry of the domain should be chosen in such a way that generated

structured grids are of high quality. To generate the grids for foils with defects,

adequate grids must be distributed on the foil surface, especially near LE defects,

to resolve the flow details. On the other hand, since a large computational domain

is required, the grid spacing needs to be increased when approaching to the domain

boundaries for the purpose of computing efficiency. These lead to some challenges in

generating structured grids.

The circular computational domain could provide high quality grids and hence

leading to greater accuracy in solutions. Therefore, the circular domain with the

O-type topology as shown in Fig. 3.3 was employed. Six domain sizes with radii (R)

of 6, 12, 18, 24, 30 and 36 chord length were investigated in the present work.

Boundary conditions are also presented in Fig. 3.3. Note that the hydrostatic

pressure was not taken into account in the 2-D simulations. The pressure boundary
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α

Figure 3.3: Circular computational domain

condition with p = pa was specified on the outlet. A no-slip wall boundary condition

was imposed on the surface of the foil section. The Reynolds number for all cases

was Re = 3.0 × 107. At the inlet boundary, a uniform velocity of U = 30 m/s was

specified.

3.4 Grid Generation

The generation of structured grids is dependent on the specified y+, the grid aspect

ratio (AR), and the grid stretching ratio (SR). The height of the first grid near the

wall, ∆S, is calculated by:

∆S =

√
2Re1/7

0.026U2

y+µ

ρ
(3.1)

where y+ is the non-dimensional first-grid spacing. Note that ∆S is measured from

the center of the grid cell in Star-CCM+.

The grid aspect ratio (AR) is defined as the maximum ratio of grid width to height
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Figure 3.5: Grid distribution on the surface of the foil with 0.5 mm defect

for 2-D grids. As shown in Fig. 3.4, the AR of the nth grid is determined as:

AR = hn/wn (3.2)

where wn and hn are the grid width and the grid height, respectively.

The grid stretching ratio (SR) is defined as the ratio of the heights of adjacent

cells. As shown in Fig. 3.4, the SR of the nth grid is given as:

SR = hn+1/hn (3.3)

where hn and hn+1 are the heights of the nth and the (n+ 1)th grids, respectively.

As shown in Fig. 3.5, both face and back of the foil are divided into three segments.
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Uniform grids are distributed on the leading and the trailing edge segments while non-

uniform grids are on the middle segment.

Figure 3.6: Grids near the leading edge and the trailing edge

As an example, grids near the leading edge and the tailing edge for the foil with

0.5 mm LE defect are shown in Fig. 3.6. For this case, the first grid spacing, y+, is 1.0.

The total number of grids on the foil surface is 13,695. The corresponding numbers

of grids on the back/the face of the LE segment, on the trailing edge segment, and

on the middle segment are shown in Fig. 3.5. The corresponding grid aspect ratios

on the leading edge, the trailing edge and the middle segments are 40, 20 and 300,

respectively. Note that 52 grids were distributed over the 0.5 mm defect to resolve

the flow details.

3.5 Convergence Criteria

Two levels of convergence criteria were applied in the present 2-D studies, including:
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• Residuals, defined as normalized root-mean-squared values in Star-CCM+, are

used as the first convergence criterion. Three orders of magnitude reduction

in residuals are considered as an acceptable level. Note that residuals are not

the only measure for convergence. The initial values strongly influence the

residuals. If the initial solution satisfies the discretized equations very well, the

residuals would not reduce significantly. Therefore, it is necessary to examine

the convergence of lift, drag and pressure coefficients.

• For the convergence of lift, drag and pressure coefficients, the changes between

their values at the present and previous iterations are used as indicators after the

residual criteria are satisfied. For the lift and drag coefficients, it is considered

acceptable if the changes between two iterations are in the order of 10−6. For

the minimum pressure coefficient, the acceptable value is in the order of 10−5.

The maximum number of iterations was set as 40,000 for all simulations. Residuals

and changes in lift, drag and minimum pressure coefficients were then checked against

the convergence criteria described above.

3.6 Simulation Parameters and Cases

The air pressure is set as pa = 101, 325 Pa. The density of water is ρ = 1.0×103 kg/m3

and the kinematic viscosity of water is 1.0×10−6 m2/s. Extensive cases were simulated

with different turbulence models, first-grid spacings, grid stretching ratios and grid

aspect ratios.

A summary of simulation cases using the circular computational domain is pro-
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vided below:

• Domain sizes in term of radius of domain (R): 6 m, 12 m, 18 m, 24 m, 30 m

and 36 m.

• Grid stretching ratios: 1.1 and 1.2.

• Grid aspect ratios at LE, ARL: 10.0, 20.0, 40.0, 56.56, 80.0, 113.12, 160.0 and

320.0.

• Grid aspect ratios at TE, ART : 20.0, 40.0, 60.0, 80.0, 120.0 and 160.0.

• First-grid spacing, y+: 0.5, 0.707, 1.0, 1.414, 2.0, 2.828, 4.0, 5.0, 10.0, 15.0, 30.0,

60.0, 90.0 and 120.0.

• Turbulence models: Spalart-Allmaras, k−ε, k−ω, SST k−ω, elliptic blending

and linear pressure-strain Reynolds stress models.

In these convergence studies, the number of grids ranges from 791,415 to 2,013,312.

The best-practice settings are then summarized and recommended for the 2-D simu-

lations. Using the recommended best practices, studies were then carried out for the

foil (a = 0.8, t/c = 0.2, f/c = 0.02) without defect and the foils (a = 0.8, f/c = 0.014,

t/c = 0.0416) with no defect, 0.1 mm defect, 0.25 mm defect and 0.5 mm defect at

various angles of attack. The chord length, maximum thickness and maximum cam-

ber are 1 m, 41.6 mm and 14.0 mm, respectively. The 1 m chord length represents

the chord length of a full-scale propeller at its 0.7 R section.
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3.7 Computing Resources

Most of the simulations have been conducted using a high-performance computer

cluster equipped with CPU 2x Intel Xeon Gold 6248. Each node has available memory

of up to 186 GB, with 40 cores per node. For example, approximately 24 hours were

required to complete 40,000 iterations for the 2-D case utilizing 80 cores.

3.8 Simulation Results

In the following results, the drag and lift coefficients, Cd and CL, are defined as:

Cd =
FD

0.5ρU2S
(3.4)

Cl =
FL

0.5ρU2S
(3.5)

where ρ is the density of water, S is the reference area, FD and FL denote the drag

and lift forces on the foil, respectively.

The pressure coefficient is defined as:

Cp =
p− p0
0.5ρU2

(3.6)

where p is the absolute pressure, and p0 is the reference pressure, which can be

calculated by

p0 = pa + ρgh (3.7)

where pa denotes the air pressure, and h = 0.5 m is used for the hydrostatic pressure,

ρgh. Note that the hydrostatic pressure is 0 due to the gravity is not considered in

the 2-D simulations. Then, the minimum pressure coefficient can be calculated with

Cpmin
=

pmin − p0
0.5ρU2

(3.8)
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In which, pmin is the the minimum pressure on the foil.

The cavitation number, σ, is defined as:

σ =
p0 − pv
0.5ρU2

(3.9)

where pv is the vapour pressure of water. Cavitation occurs if −Cpmin
≥ σ. The

condition for cavitation inception is therefore −Cpmin
= σ.

Introducing the cavitation inception speeds for the sections without defect and

with defect

U0 =

√
2(pv − p0)

ρCpmin

(3.10)

U ′ =

√
2(pv − p0)

ρC ′
pmin

(3.11)

The cavitation inception speed ratio, ISR, is then defined as

ISR =
U ′

U0
=

√
Cpmin

C ′
pmin

(3.12)

where Cpmin
and C ′

pmin
are the minimum pressure coefficients for the sections without

and with defect, respectively.

As all sections herein are DTMB modified NACA-66 (a = 0.8) foils, they will

be referred to only by their (t/c, f/c) and by the size of their defect (if any) in the

following sections.

3.8.1 Results of Convergence Studies

The foils (f/c = 0.014, t/c = 0.0416) without defect and with 0.5 mm defect were

employed in the present 2-D convergence studies. Simulations were performed at the

angles of attack α = 0◦ and α = 4◦ using steady RANS solver.
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Figure 3.7: Convergence of −Cpmin
to domain size and SR for the foils (f/c = 0.014,

t/c = 0.0416) with no defect
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Figure 3.8: Convergence of −Cpmin
to domain size and SR for the foils (f/c = 0.014,

t/c = 0.0416) with 0.5 mm defects

Six domain sizes with R = 6, 12, 18, 24, 30 and 36 m were carried out with y+ = 1.0

and k − ω model. The sensitivity of solution to the grid stretching ratio (SR) was

investigated using SR = 1.1 and SR = 1.2. It was found that numerical results

converged with the increase of R. For the foils (f/c = 0.014, t/c = 0.0416) with

no and 0.5 mm defects, the convergence of negative minimum pressure coefficient to

R and SR is shown in Figs. 3.7 and 3.8. The results indicated that the −Cpmin
was
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Table 3.2: Differences between −Cpmin
of SR = 1.1 and 1.2 using various domain sizes

for the foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm defect

α (◦) R (m)
−Cpmin

Difference Relative error (%)

SR = 1.1 SR = 1.2

0

6 0.23335 0.21809 0.01526 6.54

12 0.28366 0.27318 0.01048 3.70

18 0.30402 0.29026 0.01377 4.53

24 0.31443 0.30354 0.01089 3.46

30 0.31875 0.30822 0.01053 3.30

36 0.32328 0.31077 0.01251 3.87

4

6 2.69495 2.80656 0.11161 4.14

12 2.67834 2.74471 0.06637 2.48

18 2.67810 2.73198 0.05388 2.01

24 2.67805 2.72718 0.04912 1.83

30 2.68625 2.72769 0.04145 1.54

36 2.68203 2.72666 0.04463 1.66

independent on the grid stretching ratio for the foil without defect at α = 0.0◦ and

4.0◦. Table 3.2 presents the differences between −Cpmin
of SR = 1.1 and 1.2 using

various domain sizes for the foil with 0.5 mm defect. The relative errors with respect

to the predictions of SR = 1.1 were also included. It can be seen that the relative error

is less than 4.00% when R is greater than 24 m. In the following studies, R = 24.0 m

with SR = 1.1 was applied.

In order to resolve the flow field near the defects, eight sets of grids with aspect
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Figure 3.9: Convergence of −Cpmin
to ARL for the foils (f/c = 0.014, t/c = 0.0416)

with no defect
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Figure 3.10: Convergence of −Cpmin
to ARL for the foils (f/c = 0.014, t/c = 0.0416)

with 0.5 mm defect

ratios (AR) at LE of 320, 160, 113.12, 80, 56.56, 40, 20 and 10 with y+ = 1.0

were used. The corresponding results at α = 0◦ and 4◦ for the foils (f/c = 0.014,

t/c = 0.0416) without defect and with 0.5 mm defect are presented in Figs. 3.9

and 3.10, respectively. The results showed that numerical solutions were insensitive

to the ARL when the aspect ratio was less than 120 for the foil without defect. As

shown in Fig. 3.10, the predictions with 0.5 mm defect converged as ARL was refined.
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Figure 3.11: Convergence of −Cpmin
to ART for the foils (f/c = 0.014, t/c = 0.0416)

with no and 0.5 mm defects

In the following 2-D simulations, the aspect ratio of 40 over the defect was used.

The trailing-edge is another sensitive part of the foil. Investigations were also

carried out with six aspect ratios at the TE of 160, 120, 80, 60, 40 and 20 for the

foils (f/c = 0.014, t/c = 0.0416) with no and 0.5 mm defects. The value of y+ was

set to 1.0, and the k − ω model was employed. Figure 3.11 shows the convergence

of predicted −Cpmin
to ART for the foils with no and 0.5 mm defects. The results

demonstrate that the predictions are independent of the aspect ratio near TE. A value

of 120 for ART was selected for the subsequent studies.

Furthermore, 168 cases were carried out with different values of y+ = 0.5, 0.707,

1.0, 1.414, 2.0, 2.828, 4.0, 5.0, 10.0, 15.0, 30.0, 60.0, 90.0 and 120.0. Various turbu-

lence models, including the Spalart-Allmaras, k−ε, k−ω, SST k−ω, elliptic blending

and linear pressure-strain Reynolds stress models, were employed to examine their

effects on the prediction of the minimum pressure coefficients at the selected angles

of attack. Note that no wall function was applied for the wall treatment for the small

y+ (y+ ≤ 5.0) cases, while the all y+ wall treatment was applied for the other cases.
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The aspect ratio of 40 over leading edge and the grid stretching ratio of SR = 1.1

were used.
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Figure 3.12: Convergence of −Cpmin
to y+ using different turbulence models for the

foil (f/c = 0.014, t/c = 0.0416) with no defect at α = 0◦
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Figure 3.13: Convergence of −Cpmin
to y+ using different turbulence models for the

foil (f/c = 0.014, t/c = 0.0416) with no defect at α = 4◦

The results of various turbulence models and y+ for the foils (f/c = 0.014, t/c =

0.0416) with no and 0.5 mm defects are shown in Figs. 3.12 to 3.15. It can be observed

that results converge with the decrease of y+ for the foil without defect. In general,
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Figure 3.15: Convergence of −Cpmin
to y+ using different turbulence models for the

foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm defect at α = 4◦
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the magnitude of oscillations in the predictions is small when y+ is less than 1.414.

However, for the foil with 0.5 mm defect, the results were diverged in the simulations

using k−ε model and elliptic blending Reynolds stress model (EB-RSM) at the largest

angle of attack (α = 4◦). It is primarily due to flow separation. The prediction of flow

near the stalling point remains a challenging issue in CFD simulations. Consequently,

it is recommended that the value of y+ should be in the range of [0.5, 1.414].

The standard deviations and differences between consecutive results using various

y+ and turbulence models for the foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm defect

at α = 0◦ and α = 4◦ are presented in Tables 3.3 and 3.4, respectively. In addition,

Fig. 3.16 shows the standard deviations of −Cpmin
using different turbulence models

for the foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm defect. At the angle of attack

α = 4◦, the LSP-RSM model yielded the largest standard deviation (0.30723), while

the minimum standard deviation (0.3014) was calculated with the k − ω model. For

the results obtained at α = 0◦, the standard deviations of SA, k − ω and SST k − ω

models were at similar magnitudes. The standard k−ω model was then employed in

the following computations.

Based on extensive convergence studies, the best-practice settings for 2-D sim-

ulations with the Star-CCM+ steady RANS solver are determined and presented

in Table 3.5. The specific values used for full-scale propellers are also provided in

Table 3.5. Other default settings for the solver are summarized in Table 3.6.
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Table 3.3: The standard deviations and differences between consecutive results using

various y+ and turbulence models for the foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm

defect at α = 0◦

Turbulence model y+ −Cpmin
Differences in consecutive results standard deviation

0.500 0.40111 0.00204

0.707 0.39907 0.00983

1.000 0.40890 0.01677

SA 1.414 0.39213 0.01479 0.02242

2.000 0.37734 0.01673

2.828 0.36061 0.01819

4.000 0.34242 -

0.500 0.38286 0.00154

0.707 0.38440 0.00412

1.000 0.38853 0.00722

k − ω 1.414 0.38130 0.01493 0.02297

2.000 0.36638 0.02094

2.828 0.34544 0.08198

4.000 0.42742 -

0.500 0.39018 0.00250

0.707 0.38768 0.00650

1.000 0.39418 0.01650

SST k − ω 1.414 0.37768 0.02552 0.02482

2.000 0.40320 0.03562

2.828 0.36758 0.08329

4.000 0.45087 -

0.500 0.38579 0.00613

0.707 0.37965 0.00667

1.000 0.38633 0.02077

LPS-RSM 1.414 0.36556 0.06839 0.03082

2.000 0.43395 0.09780

2.828 0.33615 0.00268

4.000 0.33883 -
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Table 3.4: The standard deviations and differences between consecutive results using

various y+ and turbulence models for the foil (f/c = 0.014, t/c = 0.0416) with 0.5 mm

defect at α = 4◦

Turbulence model y+ −Cpmin
Differences in consecutive results standard deviation

0.500 2.60893 0.00474

0.707 2.61367 0.01534

1.000 2.62900 0.02223

SA 1.414 2.60678 0.04814 0.03971

2.000 2.55864 0.06732

2.828 2.62596 0.07663

4.000 2.70259 -

0.500 2.65949 0.00137

0.707 2.66086 0.03389

1.000 2.69475 0.04238

k − ω 1.414 2.65237 0.00227 0.03014

2.000 2.65464 0.02164

2.828 2.67627 0.06685

4.000 2.74312 -

0.500 2.76304 0.00165

0.707 2.76468 0.00232

1.000 2.76236 0.02475

SST k − ω 1.414 2.73762 0.05546 0.03379

2.000 2.68216 0.00883

2.828 2.69098 0.01092

4.000 2.70190 -

0.500 2.80463 0.00900

0.707 2.81363 0.00811

1.000 2.80552 0.01234

LPS-RSM 1.414 2.79318 0.07510 0.30723

2.000 2.86828 0.11691

2.828 2.98518 0.71970

4.000 3.70489 -
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Table 3.5: Best-practice settings for 2-D simulations with the Star-CCM+ steady

RANS solver

Items Variable Recommended setting Value

Domain size R ≥ 24 m 24 m

First-grid spacing y+ [0.5, 1.414] 1.0

Grid stretching ratio SR [1.1, 1.2] 1.1

Grid aspect ratio near LE ARL ≤ 40 40

Grid aspect ratio near TE ART ≤ 120 120

Turbulence model
k − ω

k − ω
SST k − ω

Table 3.6: Default settings used in the present simulations with Star-CCM+

Simulation Parameters Default Settings

Convection scheme 2nd-order upwind

Gradient method Hybrid Gauss-Least squares method

Limiter method Venkatakrishnan method

Custom accuracy level selector 2nd-order

Initial turbulence intensity, I 1%

Initial turbulent viscosity ratio, µt/µ 10.0

Linear solver Algebraic multigrid methods (AMG)

Relaxation scheme Gauss-Seidel

Under-relaxation factor for velocity 0.4

Under-relaxation factor for pressure 0.1

Under-relaxation factor for turbulence 0.7
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3.8.2 Results with Best-Practice Settings

With the best-practice settings summarized in the previous section, numerical simula-

tions were carried out for the foil (t/c = 0.2, f/c = 0.02) without defect and the foils

(t/c = 0.0416, f/c = 0.014) without and with LE defects in an infinite domain. The

simulation results of cavitation buckets, pressure, residuals, lifting and drag coeffi-

cients are presented in this section and the effect of LE defect on cavitation inception

speed and efficiency are discussed.

3.8.2.1 Cavitation Buckets for the Foil (t/c = 0.2, f/c = 0.02) without

Defect

The predicted cavitation buckets of the foil (t/c = 0.2, f/c = 0.02) without defect

in terms of the cavitation number at angles of attack from −5◦ to 6◦ are presented

in Fig. 3.17 and compared with the potential-flow solutions (Brockett, 1966) and the

numerical results with ANSYS CFX and TRANSOM (Hally, 2018). The agreement

is in general good.
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Figure 3.17: Cavitation buckets for the foil (t/c = 0.2, f/c = 0.02) without defect
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3.8.2.2 Cavitation Buckets for the Foils (t/c = 0.0416, f/c = 0.014) without

and with LE Defects

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

α 
(d

eg
re

e)

σ

No defect

(a) No defect

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

α 
(d

eg
re

e)

σ

No defect
0.1 mm defect

(b) 0.1 mm defect

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

α 
(d

eg
re

e)

σ

No defect
0.25 mm defect

(c) 0.25 mm defect

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

α 
(d

eg
re

e)

σ

No defect
0.5 mm defect

(d) 0.5 mm defect

Figure 3.18: Cavitation buckets for the foils (t/c = 0.0416, f/c = 0.014) without and

with LE defects

Cavitation buckets were compared for the foils (t/c = 0.0416, f/c = 0.014) with-

out defect and with three different LE defects (0.5 mm, 0.25 mm and 0.1 mm) at

a number of angles of attack (see Table 3.7). As shown in Fig. 3.18, the cavitation

buckets are narrowed by the defects at the LE in the region of typical propeller design.

In other words, the incipient cavitation speed is reduced by the LE defect. Note that

dashed lines denote one example in the typical design range.
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Table 3.7: Angles of attack for the foils (t/c = 0.0416, f/c = 0.014) with and without

LE defects in 2-D simulation

Parameter Values

Angle of attack, α (◦)

-4.00, -3.00, -2.75, -2.50, -2.25, -2.00, -1.75, -1.50, -1.25, -1.00,

-0.75, -0.50, -0.40, -0.30, -0.20, -0.10, 0.00, 0.10, 0.20, 0.25, 0.30,

0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,

2.50, 2.75, 3.00, 4.00

Minimum pressure coefficients and their locations on the foil surface, residuals of

simulations, and the convergence of drag and lift coefficients (Cd and Cl) are provided

in the following subsections.

3.8.2.3 Pressure Contours and Streamlines

As one example in the typical propeller design range, the contours of pressure coeffi-

cient and streamlines near the LE at α = 0.8◦ for the foils (t/c = 0.0416, f/c = 0.014)

with no defect, 0.5 mm defect, 0.25 mm defect and 0.1 mm defect are presented in

Fig. 3.19. It can be observed that the defect led to lower pressure near the LE. Al-

though locations of the minimum pressure depend on the size of a defect, they are all

located close to the upper end of the flat defect. For example, the upper end point of

the 0.5 mm defect is (0.00316 m, 0.0027 m) and the location of the minimum pressure

is at (0.00323 m, 0.00267 m).

Table 3.8 presents negative minimum pressure coefficients and their locations for

the foils with no defect, 0.5 mm defect, 0.25 mm defect and 0.1 mm defect at α = 0.8◦.

The cavitation inception speed ratios and their reduction percentages with respect to
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(a) No defect (b) 0.1 mm defect

(c) 0.25 mm defect (d) 0.5 mm defect

Figure 3.19: Pressure coefficient contours and streamlines for the foils (t/c = 0.0416,

f/c = 0.014) without and with LE defects at α = 0.8◦

the foil without defect (as designed) are also included in the table. It can be observed

that even the smallest defect leads to a significant reduction in the cavitation inception

speed (over 25% reduction for 0.1 mm defect) at angle of attack α = 0.8◦.
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Table 3.8: Cavitation inception speed variations with defects for the foils (t/c =

0.0416, f/c = 0.014) without and with LE defects at α = 0.8◦

Item No defect 0.5 mm defect 0.25 mm defect 0.1 mm defect

Cpmin
-0.29084 -1.20563 -0.8035 -0.54204

Location (X,Y ) (m)
(0.00401, (0.00323, (0.00287, (0.00116,

0.00299) 0.00267) 0.00251) 0.00158)

Inception Speed (m/s) 26.173 12.855 15.753 19.179

ISR 1 0.491 0.602 0.733

Inception Speed
- 50.9% 39.8% 26.7%

Reduction Percentage

3.8.2.4 Pressure Plots

Continuing with the above example, the pressure distributions near the LE at α = 0.8◦

for the four foils, i.e., with no defect, 0.5 mm defect, 0.25 mm defect and 0.1 mm

defect, are shown in Fig. 3.20. It was found that the pressures on the back were

significantly changed by the defect near LE.

3.8.2.5 Results of Residuals, −Cpmin
, Cd and Cl

In Star-CCM+, the normalized Root Mean Squared value of residual for all cells is

used to monitor the behavior of the solvers at each iteration. Residuals of simulations

for the four foils with no defect, 0.5 mm defect, 0.25 mm defect and 0.1 mm defect at

α = 0.8◦ are shown in Fig. 3.21 as one example. Three order-of-magnitude reduction

in residuals were achieved. In these figures, the legend of ”Continuity” denotes the

residual for the continuity equation, ”X-momentum” is the residual for the momentum
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Figure 3.20: Pressure distributions on the face and back of the foils (t/c = 0.0416,

f/c = 0.014) without and with LE defects at α = 0.8◦

equation (X-component), ”Y-momentum” is the residual for the momentum equation

(Y-component), ”Tke” represents the residual for the transport equation of turbulence

kinetic energy (k), and ”Sdr” denotes the residual for the transport equation of specific

dissipation rate (ω).

The corresponding iteration histories for the drag and lift coefficients (Cd and

Cl) are shown in Fig. 3.22, respectively. The negative minimum pressure coefficient,

−Cpmin
, the drag and lift coefficients and their changes between the last two iterations

are summarized in Table 3.9.
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Table 3.9: Numerical results of −Cpmin
, Cd and Cl for the foils (t/c = 0.0416, f/c =

0.014) without and with LE defects at α = 0.8◦

Item No defect 0.5 mm defect 0.25 mm defect 0.1 mm defect

−Cpmin
0.290840 1.205630 0.803500 0.542040

Cd 0.005468 0.005475 0.005474 0.005468

Cl 0.254443 0.254402 0.254437 0.254473

Changes in −Cpmin
between

6× 10−7 6× 10−7 6× 10−7 6× 10−7

the last two iterations

Changes in Cd between
5× 10−9 0 0 0

the last two iterations

Changes in Cl between
2× 10−7 0 0 0

the last two iterations

3.8.2.6 Effect of LE Defect on Cavitation Inception Speed

Based on the cavitation buckets for the foil (t/c = 0.0416, f/c = 0.014) as shown in

Fig. 3.18, the reduction percentages in inception speed due to LE defects are presented

in Fig. 3.23 for the foils with defects. In the typical design range of angle of attack

(−1.5◦ < α < 2◦) for a moderately loaded propeller, the reduction in inception speed

can reach to 60% for the 0.5 mm defect around α = 0.75◦. Between 0◦ and 1.5◦, the

reduction increases with the size of LE defect. At −1.5◦ < α < 2◦, the reductions for

the three defects are around 15% to 20%.

In summary, the LE defects significantly reduce the cavitation inception speeds

at the normal range of angle of attack.
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Figure 3.21: Residuals for the foils (t/c = 0.0416, f/c = 0.014) without and with LE

defects at α = 0.8◦

3.8.2.7 Effect of LE Defect on Efficiency

The ratio of lift to drag, i.e., Cl/Cd of a 2-D section provides an indicator of the

hydrodynamic efficiency of the propeller which incorporates it. The effect of a defect

on Cl/Cd is shown in Fig. 3.24. In the normal range of angle of attack for a moderately

loaded propeller, the LE defect has little on the efficiency. However, at larger angles

of attack, for example, a heavily loaded propeller or a propeller operating in a highly

uneven wake pattern, a LE defect reduces the efficiency more significantly. A larger

LE defect leads to a greater decrease in efficiency.
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Figure 3.22: Cd and Cl for the foils (t/c = 0.0416, f/c = 0.014) without and with LE

defects at α = 0.8◦
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Figure 3.23: Reduction percentage in cavitation inception speed for the foils (t/c =

0.0416, f/c = 0.014) with LE defects
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Figure 3.24: Effect of LE defect on lift-to-drag ratio
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Chapter 4

3-D Simulations for the Foils of

1 m Span

This chapter focuses on 3-D RANS studies on foils (a = 0.8, t/c = 0.0416,

f/c = 0.014) of 1 m span with and without LE defect to understand the 3-D effect

in simulations by comparing the solutions with those from 2-D RANS computations.

The reason for choosing 1 m span is that the foils with and without LE defect were

intended to be tested in a cavitation tunnel with 1 m by 1 m test section. It is impor-

tant to investigate the differences in 2-D and 3-D solutions and to further quantify

the effect of LE defect in future validation studies.

In present work, convergence studies were carried out on angles of attack α = 0

and 1.25 degrees. Effects of RANS modelling parameters, such as domain size, grid

aspect ratio, first-grid spacing, y+, and turbulence model, on the solutions were care-

fully examined. Impact of foil span on solution at the mid-span section was also

investigated. The 3-D CFD simulations were performed with the steady RANS solver
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in Star-CCM+ on structured grids. Based on the results of convergence studies, the

best-practice settings for 3-D simulations with the steady RANS solver in Star-CCM+

were proposed.

Using the best-practice settings, 3-D simulations were carried out for the foils

in a cavitation tunnel without and with LE defects and at various angles of attack.

The cavitation buckets were presented and compared with those from 2-D RANS

simulations.

4.1 Geometry and Computational Domain

3-D RANS simulations were carried out for foils with constant DTMB modified

NACA-66 (a = 0.8, t/c = 0.0416, f/c = 0.014) sections, where t, f and c

denote the maximum thickness, the maximum camber and the chord length of a foil

section, respectively. Details on the definitions of LE defects and their sizes can be

found in Section 3.2.

Figure 4.1: Geometry and computational domain for the foils of 1 m span
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Figure 4.2: Domain sizes for the simulation of foils with 1 m span and Lout = 3.0 m

Figure 4.3: Coordinate system for 3-D simulations

Figure 4.4: Boundary conditions for the simulation of foils with 1 m span

As shown in Fig. 4.1, the computational domain covers a segment of the cavitation

tunnel with square inlet and outlet sections. Figure 4.2 presents the domain size and

the location of the foil inside the tunnel with the length of downstream Lout = 3.0 m.

The origin is located at the center of the support shaft. The oy-axis is along the

span direction. The origin of the coordinate system, o−xyz, used in the present 3-D

76



simulations was shifted to o′ (-0.25 m, 0, -0.01107 m), as shown in Fig. 4.3. In this

way, o′x′z′ is consistent with the coordinate system in 2-D studies, which allows for

direct comparison of 2-D and 3-D results.

The boundary conditions, as an example, for the foil with no defect at the angle

of attack α = 0◦ are presented in Fig. 4.4. The pressure boundary condition with

p = pa was specified on the outlet. A no-slip wall boundary condition was imposed

on the surface of the foil. The maximum water velocity can be achieved in the tunnel

is 8.6 m/s. At the inlet boundary, a uniform velocity of UInlet = 1.424 m/s was then

specified. This leads to the inflow velocity of U = 8.0 m/s on the inlet of the test

segment. The Reynolds number in terms of the chord length of foil for all cases was

Re = 8.0× 106.

4.2 Grid Generation

To achieve greater accuracy, the computational domain is discretized into structured

grid. The generation of grid around the foil is dependent on the non-dimensional

first-grid spacing, y+, the grid aspect ratio, and the grid stretching ratio. Based

on the recommended settings of 2-D cases, the stretching ratio was set as 1.2 in

present 3-D simulation. To reduce the total number of grid, the meshing topology

of Gauthier and Hally (2019) was applied, the foil surface was divided into three

segments. As shown in Fig. 4.5, uniform grids are distributed on the LE defect (red

part), while non-uniform grids are applied on the pressure side (blue part) and the

segment of suction side without defect (green part). In this case, the corresponding

grid aspect ratios on the leading edge defect, ARL, and the cell at the end of trailing
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edge, ART , are 16 and 32, respectively.

ARL = 16

(N = 39 on defect)

z'

x'o'

ART = 32

�C

c = 1.0 m

Non-uniformUniform
(N = 259)

(N = 260)

Non-uniform

Figure 4.5: Example of grid distribution on the surface of the foil with 0.5 mm defect

Figure 4.6: A representative grid for 0.5 mm defect at the angle of attack α = 0◦

Leading edge

Trailing edge

Figure 4.7: The grid of mid-span section y′ = 0 m
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A representative numerical grid for 0.5 mm defect at the angle of attack α = 0◦,

as an example, is shown in Fig. 4.6. For this case, the first-grid spacing, y+, is 1.0

and the length between the end of test segment and outlet, Lout, is 3 m. The total

number of grids is 35,897,600. Note that 39 cells were distributed over the 0.5 mm

defect to resolve the flow details. Figure 4.7 shows the grids on the mid-span section

y′ = 0 m as well as near the leading and trailing edges . In present work, the number

of grids in convergence studies ranges from 22,319,600 to 140,422,800.

4.3 Convergence Criteria

The convergence criteria in previous 2-D simulations were also applied in the present

3-D studies, including the residuals and lift, drag, and pressure coefficients. Details

can be found in Section 3.5. For the minimum pressure coefficient, the acceptable

value for the changes between two iterations is in the order of 10−4. The maximum

number of iterations was set as 40,000 for all simulations. Residuals and changes in

lift, drag and minimum pressure coefficients were then checked against the conver-

gence criteria.

4.4 Simulation Parameters

Convergence studies on the domain size, span of foil, grid aspect ratio, first-grid spac-

ing, y+, and turbulence model were first carried out. The foils with and without defect

at angles of attack α = 0◦ and 1.25◦ were investigated. A summary of simulation

parameters in convergence studies is provided below:
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• Domain size in terms of Lout (m): 3.0, 4.0, 5.0 and 6.0.

• Span of foil (m): 1.0, 2.0 and 3.0.

• Grid aspect ratio at LE, ARL: 8.0, 16.0 and 32.0.

• First-grid spacing, y+: 0.5, 0.707, 1.0, 1.414, 2.0, 2.828 and 4.

• Turbulence model: k − ε, k − ω, SST k − ω and Spalart-Allmaras

The best-practice settings are then summarized and recommended for the 3-D

simulations of intended cavitation tunnel tests. Using recommended best practices,

further studies were carried out for the foils with no defect, 0.1 mm defect, 0.25 mm

defect and 0.5 mm defect at angles of attack between -4.00 and 4.75 degrees (see

Table 4.1). Other default settings used in the 3-D simulations with the steady RANS

solver are same as those of 2-D simulations, as shown in Table 3.6.

Table 4.1: Angles of attack for the foils of 1 m span with and without LE defects in

cavitation tunnel

Parameter Values

Angle of attack, α (◦)
-4.00, -3.50, -3.00, -2.50, -2.34, -2.00, -1.50, -1.25, -1.00, -0.80,

-0.75, 0.00, 0.80, 1.25, 2.00, 2.50, 3.75, 4.00, 4.25, 4.75
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4.5 Simulation Results

4.5.1 Results of Convergence Studies

A total of 84 cases were carried out in the convergence studies for the foils with

0.5 mm defect and no defect at angles of attack α = 0 and 1.25 degrees. Results on

the mid-span sections of foils are presented in this dissertation.
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Effect of span on the results for the mid-span section were carried out using foil

aspect ratios (span/chord length) of 1.0, 2.0 and 3.0, for the foils with no defect and 0.5

mm defect, i.e., the corresponding foil spans are 1.0, 2.0 and 3.0 m, respectively. This

led to simulations of three different tunnels of 1 m, 2 m and 3 m square test sections.

The corresponding velocities on the inlet boundary were adjusted to 1.424, 2.818 and

3.770 m/s to maintain the same Reynolds number of the foil Re = 8.0 × 106.

Figure 4.8 presents the corresponding negative minimum pressure coefficients on the

mid-span section for the foils with and without LE defect. It can be seen that the

effect of span on the negative minimum pressure coefficient at the mid-span section

was insignificant. In other words, 1 m span is adequate to avoid the tunnel wall effect.

The span of 1 m was then employed in the following studies.

Four domain sizes in terms of Lout = 3, 4, 5 and 6 m were investigated. The

convergence of negative minimum pressure coefficient to Lout is shown in Fig. 4.9.

It can be seen that numerical results converged with the increase of the length of

downstream. The negative minimum pressure coefficient is insensitive to Lout at both

angles of attack α = 0 and 1.25 degrees. In the following studies, Lout = 3 m was

used.

The influence of the first-grid spacing, y+, on the foils with no defect and 0.5

mm defect was also investigated with y+ = 0.5, 0.707, 1.0, 1.414, 2.0, 2.828 and

4.0. The negative minimum pressure coefficients with the k − ω model at angles of

attack, α = 0◦ and 1.25◦, are presented in Fig. 4.10. It can be observed that results

are converged with the decrease of y+. The first-grid spacing, y+ = 1.0, was then

employed.

In order to resolve the flow field near the defect, three aspect ratios for the near
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Figure 4.12: Convergence of −Cpmin
to turbulence model for the foils with no and

0.5 mm defects
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LE, 8, 16, and 32, were used with y+ = 1.0. The corresponding results at α = 0◦ and

1.25◦ are presented in Fig. 4.11. The results indicated that the effect of grid aspect

ratio on solutions with the k − ω was insignificant. The grid aspect ratio of 16 over

the defect was then chosen.

Furthermore, various turbulence models, including the k − ε, k − ω, SST k − ω,

and Spalart-Allmaras models, were employed to examine their effects on the predic-

tion of the minimum pressure coefficient at selected angles of attack. The aspect ratio

of 16 over leading edge was employed. In the near-wall layers, the first-grid spacing

was set as y+ = 1.0. Note that no wall function was used for the wall treatment

due to the low y+ value. Results for the foils with no defect and 0.5 mm defect are

shown in Fig. 4.12. The numerical solutions at angle of attack of 1.25◦ were affected

by turbulence models. The results with k − ε are different from those by other three

turbulence models. Note that the k − ω model, which is the one recommended as

best practice for 2-D simulations, was then used in the following simulations.

According to the convergence studies, the best-practice settings are recommended

and summarized in Table 4.2. The numbers of grids for the foils with and without

defects are summarized in Table 4.3.
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Table 4.2: Best-practice settings for 3-D simulations with foil of 1 m span

Items Variable Recommended setting Value

Domain size Lout ≥ 3.0 m 3.0 m

First-grid spacing y+ [0.5, 1.0] 1.0

Grid aspect ratio near LE ARL ≤ 16 16

Span of foil 1.0 m 1.0 m

Turbulence model
k − ω

k − ω
SST k − ω

Table 4.3: Number of grids for the foils with and without defects with best-practice

settings

Item No defect 0.1 mm defect 0.25 mm defect 0.5 mm defect

Number of grids over
100 100 100 100

the span

Number of grids on
289 289 302 298

suction side

Number of grids on
253 253 253 260

pressure side

Number of grids on
- 21 35 39

defect

Total number of grids 34,956,800 34,956,800 35,721,200 35,897,600
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4.5.2 Results with Best-Practice Settings

Using the best-practice settings of Table 4.2, studies were carried out for the foils with

no defect, 0.1 mm defect, 0.25 mm defect and 0.5 mm defect at various angles of attack

from −4.0 to 4.75 degrees. The cavitation buckets, residuals of simulations, minimum

pressure coefficients and their locations on the foil surface, pressure distribution and

reduction of cavitation inception speed are provided in the following subsections.
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Figure 4.13: Cavitation buckets for the foils of 1 m span without and with LE defects
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4.5.2.1 Cavitation Buckets

Cavitation buckets were compared for the foils without defect and with three different

LE defects (0.5, 0.25 and 0.1 mm) at selected angles of attack in Fig. 4.13. The

predicted cavitation buckets for foils of 1 m span are generally in good agreement

with those from 2-D simulations. The cavitation buckets are narrowed by the LE

defect in the region of typical propeller design, similar to the findings of 2-D studies,

which means that the incipient cavitation speed is reduced by the LE defect.
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Figure 4.14: Simulation residuals for the foils of 1 m span without and with LE defects

at α = 0.8◦
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4.5.2.2 Residuals of Simulations

For example, the residuals of simulations for the foils with and without LE defects at

α = 0.8◦ are provided in Fig. 4.14. It can be seen that three orders of magnitude

reduction in residuals were achieved.

(a) No defect (b) 0.1 mm defect

(c) 0.25 mm defect (d) 0.5 mm defect

Figure 4.15: Pressure contours and streamlines for the foils of 1 m span without and

with LE defects at α = 0.8◦
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4.5.2.3 Pressure and Streamlines

As one example in the typical propeller design range, pressure contours and stream-

lines near LE at α = 0.8◦ are presented in Fig. 4.15. The minimum pressure

coefficients and their locations on the foil surface are also given in these figures.

Figure 4.16 shows the pressure distributions near the LE on the face and the back

for foils with and without defect at α = 0.8◦. It can be found that the differences in

the pressure distributions from 2-D and 3-D simulations are generally insignificant.

Table 4.4 summarizes the detailed minimum pressure and the corresponding location

for the foils with and without defects at α = 0.8◦ along with relative errors between

2-D and 3-D solutions. The maximum relative error (17.6%) was obtained for the

minimum pressure coefficient of the foil without defect.

Table 4.4: Minimum pressure coefficient and location for the foils of 1 m span with

and without defects at α = 0.8◦

Item No defect 0.5 mm defect 0.25 mm defect 0.1 mm defect

2-D

Cpmin -0.29084 -1.20563 -0.8035 -0.54204

x′ 0.00401 0.00323 0.00287 0.00116

z′ 0.00299 0.00267 0.00251 0.00158

3-D

Cpmin -0.35277 -1.13414 -0.82975 -0.60770

x′ 0.00344 0.00322 0.00285 0.00115

z′ 0.00276 0.00267 0.00250 0.00157

Relative error

Cpmin 17.6% 6.3% 3.2% 10.8%

x′ 16.6% 0.3% 0.7% 0.9%

z′ 8.3% 0.0% 0.4% 0.6%
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Figure 4.16: Pressure distributions on the foils of 1 m span without and with LE

defects at α = 0.8◦

4.5.2.4 Effect of LE Defect on Cavitation Inception Speed

Figure 4.17 presents the comparison of reduction percentage in cavitation inception

speed for the foils with LE defects in 2-D an 3-D simulations. The maximum reduction

in inception speed can reach to 44% for the 0.5 mm defect at α = 0.8◦. From the

cavitation buckets and the reduction of cavitation inception speed, the effect of LE

defect is generally obvious. The differences in predictions of ISR from 2-D and 3-D

simulations of 1 m span foils are insignificant for most angles of attack.
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Figure 4.17: Comparison of the reduction percentage in cavitation inception speed

for the foils with LE defects from 2-D and 3-D simulations of 1.0 m span
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Chapter 5

3-D Simulations for the Foils of

0.525 m Span

Due to the limitation of the foil support mechanism of cavitation tunnel, the span

of 0.525 m was applied to minimize the force and moment on the foil. This chapter

presents an extension of previous studies on the effects of LE defects on cavitation

performance of the modified NACA-66 (a = 0.8, f/c = 0.014, t/c = 0.0416) foils.

For the foils of 0.525 m span tested in the cavitation tunnel, one foil was without

defect and others had defects near the leading edge (LE). Extensive convergence

studies were first carried out at angles of attack α = 0, 1.25 and 4 degrees. Effects of

RANS modelling parameters, such as domain size, grid aspect ratio, first-grid spacing,

y+, and turbulence model, on the solutions were carefully examined. The 3-D CFD

simulations were performed with the steady RANS solver in Star-CCM+. Based on

the results of convergence studies, the best-practice settings were proposed.

Using the proposed best-practice settings, 3-D simulations were carried out for
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the foils of 0.525 m span with and without LE defects at various angles of attack in

a cavitation tunnel. The cavitation buckets were presented and compared with those

from 2-D RANS simulations and 3-D RANS studies on foils of 1 m span.

5.1 Geometry and Computational Domain

The test geometry is shown in Fig. 5.1, the end plates (green parts) were attached to

the foil to reduce end effects, and four support arms (blue parts) were also installed

to enable testing at different angles of attack. For the LE defects, their sizes are the

same as those in Section 3.2.

Figure 5.1: Foil of 0.525 m span with end plates and support arms
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Figure 5.2: Geometry and computational domain of the cavitation tunnel

Figure 5.3: Domain sizes for 3-D simulations of the foil with 0.525 m span

Figure 5.4: Boundary conditions for the the foil with 0.525 m span
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Figure 5.5: Coordinate system for 3-D simulations of the foil with 0.525 m span

As shown in Fig. 5.2, the computational domain covers a segment of the cavi-

tation tunnel with square inlet and outlet sections. Figure 5.3 presents the domain

size and the location of the foil inside the tunnel with the length of downstream

Lout = 3.0 m. Following the dimensions of cavitation tunnel at the Brodarski Institut

in Zagreb (Gospodnetic, 2022), the lengths of the inlet and outlet square’s side are

2.45 m and 1.0 m, respectively.

The boundary conditions, as an example, for the convergence study is presented in

Fig. 5.4. The pressure boundary condition with p = pa was specified on the outlet. A

no-slip wall boundary condition was imposed on the surface of the foil. The Reynolds

number in terms of the chord length of foil for all cases was Re = 8.0 × 106. At the

inlet boundary, a uniform velocity of UInlet = 1.33 m/s was specified. This leads to

the inflow velocity of U = 8.0 m/s on the inlet of the test segment. Note that the

angle of attack, α, is 0◦ in Figs. 5.3 and 5.4.

The origin is located at the center of the support arm. The oy-axis is along the

span direction. The origin of the coordinate system, o-xyz, used in the present 3D

simulations was shifted to o′ (−0.250 m, 0 m, −0.011 m), as shown in Fig. 5.5. In
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this way, o′x′z′ is consistent with the coordinate system in 2-D studies, which allows

for direct comparison of 2-D and 3-D results.

5.2 Grid Generation

Due to the complex geometry of end plates attached to the foil of 0.525 m span, a

hybrid grid with structured meshes around the foil and unstructured meshes near the

end plates was generated. Similar to the study of the foil with 1 m span, the meshing

topology of Gauthier and Hally (2019) was also employed in this chapter.

Figure 5.6: Grid for the foil with 0.5 mm defect at the angle of attack α = 0◦

A representative numerical grid for the foil of 0.525 m span with 0.5 mm defect

at the angle of attack α = 0◦, as an example, is shown in Fig. 5.6. For this case,

the first-grid spacing, y+, is 1.0 and the length between the end of test segment and

outlet, Lout, is 3 m. The total number of grids is 50,006,864. Note that 39 cells were

distributed over the 0.5 mm defect to resolve the flow details. Meshes near the foil

and the end plates are presented in Fig. 5.7 and Fig. 5.8, respectively, where the green

part is end plate (150 mm long); the blue part denotes the support arms connecting

96



Figure 5.7: Meshes near foil and end plate

Figure 5.8: Views of local meshes

the foil to the tunnel walls; and the pink part represents for the surface of foil.

In present work, the number of grids in convergence studies ranges from 36,472,948

to 76,665,420. For instance, the number of grids for foils of 0.525 m span with and

without defects at the angle of attack α = 4 degrees are summarized in Table 5.1.
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Table 5.1: Number of grids for foils of 0.525 m span with and without defects at the

angle of attack α = 4◦

Item No defect 0.1 mm defect 0.25 mm defect 0.5 mm defect

Number of grids over the span 100 100 100 100

Number of grids on suction side 289 289 302 298

Number of grids on pressure side 253 253 253 260

Number of grids on defect - 21 35 39

Total number of grids 48,982,310 49,160,012 49,252,634 50,070,594

5.3 Simulation Parameters

Convergence studies on the domain size, grid aspect ratio, first-grid spacing, y+, and

turbulence model were first carried out. The foils of 0.525 m span with no defect and

0.5 mm defect at angles of attack α = 0◦, 1.25◦ and 4◦ were investigated. A summary

of simulation parameters in convergence studies is provided below:

• Domain size in terms of Lout: 2.0, 3.0, 4.0, 5.0 and 6.0 m.

• Grid aspect ratio at LE, ARL: 8.0, 16.0 and 32.0.

• First-grid spacing, y+: 0.5, 0.707, 1.0, 1.414, 2.0, 2.828 and 4.0.

• Turbulence model: k − ε, k − ω, SST k − ω and Spalart-Allmaras

Using the best-practice settings, studies were then carried out for the foils with

no defect, 0.10 mm defect, 0.25 mm defect and 0.50 mm defect at various angles

of attack between -4.0 and 5.0 degrees. The same convergence criteria as presented
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in Section 4.3 was applied for the foils of 0.525 m span in this chapter. The initial

turbulence intensity and turbulent viscosity ratio for the RANS models were set as

0.01 and 10, respectively. The detailed settings used in present 3-D simulations can

be found in Table 3.6.

Furthermore, the preliminary validation studies for the foils of 0.525 m span with

no defect and 0.5 mm defect were also carried out on the cavitation buckets. In

the cavitation tests, inflow velocity at each angle of attack was varied (increased/de-

creased) until cavitation was observed. The same approach was applied in 3-D RANS

simulations with the recommended best-practice settings. The cavitation bucket was

obtained by examining the lowest pressure on the foil surface. When the lowest pres-

sure equals to the vapour pressure, cavitation occurs. For each angle of attack, a

variety of inflow velocities need to be simulated. The average values of detailed op-

erating conditions, according to the experimental tests, are summarized below and

presented in Tables 5.2 and 5.3, where tw and pv denote the temperature of water

and vapour pressure of water, respectively.

• Geometry: No defect, 0.5 mm defect;

• Inflow velocity, U (m/s): 3.33 ∼ 7.85;

• Angle of attack, α (◦): -0.75 ∼ 4.75.
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Table 5.2: Operating conditions for the foil with no defect

α (deg) U (m/s) p0 (Pa) tw (◦C) pv (Pa)

4.75 6.12 11,748.00 19.70 2,290.45

4.50 6.28 11,900.50 19.70 2,290.45

4.25 6.26 11,051.20 19.70 2,290.45

4.00 6.85 10,908.25 19.80 2,304.74

3.75 6.81 10,198.50 19.73 2,295.22

-0.75 7.54 19,867.67 22.90 2,786.89

-1.00 6.60 18,013.11 22.72 2,757.20

-1.50 5.80 18,970.38 22.50 2,720.08

-2.00 5.28 21,638.57 21.80 2,618.43

-2.34 4.60 20,950.44 23.03 2,809.52

-2.50 3.76 16,221.00 17.10 1,946.05

-3.00 3.55 17,007.50 17.23 1,961.66

-3.50 3.69 17,493.07 17.43 1,987.69

-4.00 3.88 17,459.80 17.30 1,971.03
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Table 5.3: Operating conditions for the foil with 0.5 mm defect

α (deg) U (m/s) p0 (Pa) tw (◦C) pv (Pa)

4.75 5.16 17,253.00 19.70 2,290.45

4.50 5.46 16,979.50 19.70 2,290.45

4.25 5.58 15,791.83 19.70 2,290.45

4.00 6.53 13,325.38 19.75 2,297.60

3.75 6.50 12,821.25 19.73 2,294.03

3.50 6.85 11,958.50 19.70 2,290.45

-0.75 7.83 15,016.67 22.90 2,786.89

-1.00 7.20 15,667.44 22.72 2,757.20

-1.50 6.10 17,320.88 22.50 2,720.08

-2.00 4.98 19,152.43 19.70 2,313.47

-2.34 4.48 22,310.09 23.06 2,814.66

-2.50 3.54 17,220.33 17.10 1,946.05

-3.00 3.33 18,027.91 17.24 1,963.08

-3.50 3.73 17,239.46 17.49 1,995.12

-4.00 3.81 17,715.50 17.10 1,946.05
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5.4 Simulation Results

5.4.1 Results of Convergence Studies

A total of 114 cases were carried out in the convergence studies for the foils of 0.525 m

span with 0.5 mm defect and no defect at angles of attack α = 0, 1.25 and 4 degrees.

Results on the mid-span sections of foils are presented and discussed in this section.
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Figure 5.9: Convergence of −Cpmin
to Lout for the foils of 0.525 m span with no and

0.5 mm defects
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Figure 5.10: Convergence of −Cpmin
to y+ for the foils of 0.525 m span with no and

0.5 mm defects
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Figure 5.11: Convergence of −Cpmin
to ARL for the foils of 0.525 m span with no and

0.5 mm defects
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Figure 5.12: Convergence of −Cpmin
to turbulence model for the foils of 0.525 m span

with no and 0.5 mm defects

Four domain sizes in terms of Lout = 2.0, 3.0, 4.0, 5.0 and 6.0 m were investigated.

The convergence of negative minimum pressure coefficient to Lout is shown in Fig. 5.9.

It can be seen that numerical results converged with the increase of the length of

downstream. The negative minimum pressure coefficients, −Cpmin
, are insensitive to

Lout at three angles of attack α = 0, 1.25 and 4 degrees. In the following studies,

Lout = 3.0 m was used.
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Figure 5.13: Convergence of pressure distributions near the LE on the face and back

to turbulence model for the foil of 0.525 m span with 0.5 mm defect at α = 4◦

The effect of the first-grid spacing, y+, for the foils with no defect and 0.5 mm

defect was also investigated with y+ = 0.5, 0.707, 1.0, 1.414, 2.0, 2.828 and 4.0. The

negative minimum pressure coefficients with the k − ω model at angles of attack,

α = 0◦, 1.25◦ and 4◦, are presented in Fig. 5.10. It can be seen that the results at

angle of attack α = 0◦ were insensitive to y+. The predictions exhibited oscillations

before converging as the y+ decreased for the foil with 0.5 mm defect at α = 4◦. The

first-grid spacing, y+ = 1.0, was then employed.

Three aspect ratios for the near LE, ARL = 8, 16, and 32, were used with y+ = 1.0

to simulate the flow near the defect. The corresponding results at α = 0◦, 1.25◦ and

4◦ are presented in Fig. 5.11. The results indicated that the effect of grid aspect ratio

on solutions with the k − ω was insignificant when ARL ≤ 16. The grid aspect ratio

of 16 over the defect was then chosen.

Furthermore, various turbulence models, including the k − ε, k − ω, SST k − ω,
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and Spalart-Allmaras models, were employed to examine their effects on the predic-

tion of the minimum pressure coefficient at selected angles of attack. The aspect

ratio of 16 over leading edge was employed. In the near-wall layers, the first-grid

spacing was set as y+ = 1.0. Results for the foils with no defect and 0.5 mm defect

are shown in Fig. 5.12. For instance, the pressure distributions near LE on the face

and back for the foil with 0.5 mm defect at angle of attack α = 4◦ with different

turbulence models are also presented in Fig. 5.13. The numerical solutions at angle

of attack of 4◦ were affected significantly by turbulence models, especially for the

cases with 0.5 mm defect. The results with k − ε are different from those by other

three turbulence models. As shown in Fig. 5.13, similar results were obtained with

the k − ω and SST k − ω models. Note that the k − ω model, which is also the

one recommended as best practice for 2-D simulations, was then recommended in the

following simulations.

According to the convergence studies, the best-practice settings are recommended

and summarized in Table 5.4.

Table 5.4: Best-practice settings for 3-D simulations with foil of 0.525 m span

Items Variable Recommended setting Value

Domain size Lout ≥ 3.0 m 3.0 m

First-grid spacing y+ [0.5, 1.0] 1.0

Grid aspect ratio near LE ARL ≤ 16 16

Turbulence model
k − ω

k − ω
SST k − ω
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5.4.2 Results with Best-Practice Settings

Using the best-practice settings, studies were carried out for the foils of 0.525 m span

with no defect, 0.1 mm defect, 0.25 mm defect and 0.5 mm defect at various angles

of attack range from −4.0 to 5.0 degrees. The cavitation buckets, minimum pressure

coefficients and their locations on the foil surface, residuals of simulations, reduction

of cavitation inception speed, as well as results of the preliminary validation study

are provided in the following subsections.

5.4.2.1 Cavitation Buckets

Cavitation buckets, obtained using the mid-span section, are compared for the foils

without and with three different LE defects (0.5 mm, 0.25 mm and 0.1 mm) in

Fig. 5.14. The results of 2-D and 3-D with the foil of 1.0 m span are also included.

The cavitation buckets are narrowed by the LE defects in the typical design range of

angle of attack, −1.5◦ < α < 2◦, similar to the findings from 2-D results and 3-D

solutions with 1.0 m span, which means that the incipient cavitation speed is reduced

by the LE defect. However, the shapes of cavitation buckets are generally different

with the reference data. This is mainly attributed to the effect of the attached end

plates and support arms.

Figure 5.15 shows the second invariant of the velocity gradient tensor isosurfaces,

Qc = 50 s−2, colored with horizontal velocity, u1, while the solid surfaces of the foil,

end plate and support arm are colored with gray. In STAR-CCM+, the value of Qc

can be determined with

Qc =
1

2

(
(∇ · u)2 + ‖Ω‖22 − ‖S‖22

)
(5.1)
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Figure 5.14: Cavitation buckets for the foils of 0.525 m span with and without LE

defects using mid-span section

in which, u is the velocity vector, S is the strain rate tensor, and Ω is the rotation

rate tensor.

According to the definition, thresholding Qc to positive values identifies rotation-

dominated regions of the flow, or vortices. Similarly, negative values of Qc are as-

sociated with straining regions of the flow (Banko and Eaton, 2019). As shown in

Fig. 5.15, vortices are clearly identified in regions close to the wall and trailing edge

of the foil for the results with 1.0 m span, while strong vortices can be observed after

the support arms and the end plates in the solutions for the span of 0.525 m. It

can also be seen that the LE defects have little impact on the vortex pattern in the
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(a) No defect (span = 1.0 m) (b) No defect (span = 0.525 m)

(c) 0.1 mm defect (span = 1.0 m) (d) 0.1 mm defect (span = 0.525 m)

(e) 0.25 mm defect (span = 1.0 m) (f) 0.25 mm defect (span = 0.525 m)

(g) 0.5 mm defect (span = 1.0 m) (h) 0.5 mm defect (span = 0.525 m)

Figure 5.15: Comparison of the isosurfaces of Qc = 50 s−2 colored with horizontal

velocity, u1, for the foils with and without LE defects at α = 4◦
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simulations for the 0.525 m span.

5.4.2.2 Pressure Contours and Streamlines

As one example, the comparison of pressure coefficient contours and streamlines near

the LE at α = 2◦ for the foils with no defect, 0.5 mm defect, 0.25 mm defect and

0.1 mm defect are presented in Fig. 5.16. The minimum pressure coefficients and

their locations on the foil surface are also given in these figures. As expected, the

defect led to lower pressure near the LE. It can be found that the differences in

the pressure distributions from 2-D and 3-D simulations of 1 m span are generally

insignificant. However, as a result of the significant vortices generated with the end

plate and support shaft, the solutions with 0.525 m span are different from them.

Table 5.5 shows minimum pressures and their locations for the foils with and without

defects at α = 2◦. Although locations of the minimum pressure depend on the size of

a defect, they are generally located close to the ends of the flat defect. For example,

the upper end point of the 0.5 mm defect is (0.00316 m, 0.0027 m) and the location of

the minimum pressure for the span 0.525 m is at (0.00328 m, 0.00260 m) in Fig. 5.16.

Furthermore, the pressure distributions near the LE on the face and the back

for foils with and without defect at α = 2◦ of the mid-span section are presented

in Fig. 5.17. It was found that the pressures on the back were significantly changed

by the defect near LE. The effect of LE defect on pressure distribution is generally

obvious, especially for the 0.5 mm defect.
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(a) No defect (2D) (b) No defect (3D, span=1 m) (c) No defect (3D, span=0.525 m)

(d) 0.1 mm defect (2D) (e) 0.1 mm defect (3D, span=1 m) (f) 0.1 mm defect (3D, span=0.525 m)

(g) 0.25 mm defect (2D) (h) 0.25 mm defect (3D, span=1 m) (i) 0.25 mm defect (3D, span=0.525

m)

(j) 0.5 mm defect (2D) (k) 0.5 mm defect (3D, span=1 m) (l) 0.5 mm defect (3D, span=0.525 m)

Figure 5.16: Comparison of the pressure coefficient contours and streamlines for the

foils with and without LE defects at α = 2◦ of mid-span section
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Table 5.5: Minimum pressure coefficients and their locations for the foils of 0.525 m

span with and without LE defects at α = 2◦

Simulation Item No defect 0.5 mm defect 0.25 mm defect 0.1 mm defect

2D

−Cpmin
2.07202 3.01165 2.81075 3.01545

x′ 0.00018 0.00003 0.00013 0.00012

z′ 0.00064 0.00002 0.00051 0.00051

3D (Span = 1.0 m)

−Cpmin
2.73797 2.91472 2.75426 3.08022

x′ 0.00013 0.00002 0.00012 0.00011

z′ 0.00056 0.00002 0.00050 0.00050

3D (Span = 0.525 m)

−Cpmin
0.16946 0.56155 0.30745 0.16949

x′ 0.46403 0.00328 0.00290 0.46403

z′ 0.01849 0.00260 0.00240 0.01849
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Figure 5.17: Comparison of the pressure distributions for the foils of 0.525 m span

with and without LE defects at α = 2◦ of mid-span section
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5.4.2.3 Residuals of Simulations

Residuals of simulations for the four foils of 0.525 m span with no defect, 0.5 mm

defect, 0.25 mm defect and 0.1 mm defect at α = 4◦ are shown in Fig. 5.18, as one

example. Three orders of magnitude reduction in residuals were achieved.
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Figure 5.18: Residuals of simulations for the foils of 0.525 m span with and without

LE defects at α = 4◦
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5.4.2.4 Effect of LE Defect on Cavitation Inception Speed

Based on the cavitation buckets shown in Fig. 5.14, Fig. 5.19 presents the comparison

of the percentage reduction in inception speed for the foils with LE defects in 2-D

and 3-D simulations. The detailed calculation data for the foils with 0.525 m span

is provided in Table 5.6. From the predicted cavitation buckets and reductions in

cavitation inception speed, it can be observed that the LE defect has a significant

effect on cavitation inception speed in the typical design range of angle of attack

(−1.5◦ < α < 2◦) for a moderately loaded propeller.

The 2-D and 3-D simulations of 1.0 m span foils exhibit similar result patterns

in the predicted ISR, with minor differences between them at most angles of attack.

However, the 3-D simulations of 0.525 m span foils, which have end plates, show

significant discrepancies in the ISR predictions, particularly when angles of attack

are positive. Effects of end plate should be carefully examined and new designs will

be used in the upcoming cavitation tunnel tests.

For the foils with 0.525 m span, the reduction in inception speed can reach to

about 50% for the foil with 0.5 mm defect around α = 2◦. Between α = 0.75◦ and

α = 2◦, the reduction increases with the size of LE defect.

In summary, the LE defects significantly reduce the cavitation inception speeds

at the normal range of angles of attack.
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Figure 5.19: Comparison of the reduction percentage in cavitation inception speed

for the foils with LE defects from 2-D and 3-D simulations
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5.4.2.5 Preliminary Validation Study

Preliminary tests had been carried out by Gospodnetic (2022) in the cavitation tunnel

at the Brodarski Institut in Zagreb, Croatia. As shown in Fig 5.20, the working section

of the cavitation tunnel is 3.5 m long with a cross-section of 1 m by 1 m. Figures 5.21

and 5.22 present the experimental set-up in the cavitation tunnel. Four flanges were

used to mount and secure the foil model in the cavitation tunnel. Flanges were bolted

into recessed slots on the sides of the foil. Locations of flanges were at 25% of the

chord length from the leading-edge. The end plates, fabricated with 10 mm thick

Lexan, were bolted on each side of the foil.

Figure 5.20: Measurement section of the cavitation tunnel (Gospodnetic, 2022)

The preliminary validation studies for the foils of 0.525 m span with no defect

and 0.5 mm defect were conducted using the recommended settings. The cavitation

buckets, obtained using the mid-span section of the foils with no defect and 0.5 mm

defect, at angles of attack from α = −4◦ to α = 4.75◦ are shown in Fig. 5.23. It
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Figure 5.21: View from the LE for the foil model in the cavitation tun-

nel (Gospodnetic, 2022)

Figure 5.22: View from the top window for the foil model in the cavitation tun-

nel (Gospodnetic, 2022)

can be seen that the shapes of cavitation buckets are generally similar to those of

the experimental ones. For the foils at positive angles of attack, the results indicate

that the LE defect narrowed the cavitation bucket in comparison to the foil with no

defect.
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Note that the experimental cavitation buckets were based on observation during

the tests while the numerical ones were determined from a single point where the

pressure was equal to the vapour pressure. It took some time for a cavity to develop

and become visible in the tests. This was not considered in the numerical simulations

with the steady RANS solver. In future studies, the unsteady solver with a cavitation

model should be used to simulate the development of cavitation in the tests.
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Figure 5.23: Comparison of experimental cavitation buckets and those from 3-D

simulations using mid-span section
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Chapter 6

3-D Simulations for a Full-Scale

Propeller

This chapter extended 3-D RANS studies on the foils in a cavitation tunnel to full-

scale propellers with and without LE defects. The DTMB 5168 propeller model from

the study of Chesnakas and Jessup (1998) was used for the geometry of full-scale pro-

pellers. With the steady RANS solver in Star-CCM+, thorough convergence studies

were carried out for the open-water simulations of the model-scale propeller first and

then for the full-scale propellers without defect and with 0.5 mm defect at the advance

ratio of J = 1.102. Effects of RANS modelling parameters, such as domain size, grid

size, stretch ratio, first-grid spacing, y+, and turbulence model, on the solutions were

carefully examined. Numerical uncertainties due to spatial discretization were quan-

tified with the least square root (LSR) method (Eça and Hoekstra, 2014). Based on

the results of convergence studies, the best-practice settings for open-water propeller

simulations with the steady RANS solver in Star-CCM+ were summarized.
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Using the recommended best-practice settings, validation studies were first car-

ried out for the model-scale propeller. Numerical results of downstream velocities,

open-water and cavitation performance were compared with the experimental data

of Chesnakas and Jessup (1998).

Open-water simulations were then extended to the full-scale propellers without

and with LE defects. Effects of LE defects on cavitation inception speed were exam-

ined at various advance ratios from 0.921 to 1.205.

6.1 Geometry and Computational Domain

Simulations were carried out for propellers that have the same geometry as the five-

bladed fixed-pitch propeller model, DTMB 5168. The geometry and principal partic-

ulars of the DTMB 5168 propeller in model and full scales are presented in Fig. 6.1

and Table 6.1, respectively. The Cartesian coordinate system is also shown in Fig. 6.1,

where the origin is located at the center of propeller plane disk, the positive direc-

tion of X-axis is from upstream to downstream, and the positive direction of Z-axis

is upward. For geometric simplification, a cylinder with constant radius (blue part)

with a cap (red part) was used to model the hub, and the root fillets were ignored.

The geometry of the cap was described by

(X + 0.3R)2

(0.65R)2
+

Y2

(0.2819R)2
+

Z2

(0.2819R)2
= 1 (6.1)

where the value of X is within the range of −0.95 R to −0.30 R.

As shown in Fig. 6.2, the computational domain is composed of two cylindrical

regions: a rotating part containing the propeller and a static part for the rest of
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Figure 6.1: Geometry of the DTMB 5168 propeller

Figure 6.2: Computational domain
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Table 6.1: Particulars for the five-bladed DTMB 5168 propeller (scale ratio = 5.71)

Item Model Full-scale

Diameter of propeller, D, (m) 0.4027 2.2989

Radius of propeller, R, (m) 0.2013 1.1494

Diameter of hub, Dh, (m) 0.1135 0.6481

Chord length at 0.70 R, c0.7, (m) 0.1752 1.0000

the domain. The length of upstream is represented by Lup, Ldown is the length of

downstream, Trp denotes the thickness of the rotating part, and Dsp and Drp are

the diameters of the static and the rotating parts, respectively. To simulate the

rotating part, the multiple reference frame (MRF) technique was employed. In terms

of boundary conditions, velocity boundary conditions were imposed on the inlet while

the pressure boundary conditions were specified at the outlet. The far field was defined

as a slip wall, and a no-slip wall condition was imposed on the surfaces of the propeller

and other solid bodies in the domain.

6.2 Leading-Edge Manufacturing Defects

In this chapter, all the LE defects considered for full-scale propellers are also within

Class S. Details on the definition of the LE defect can be found in the previous

Chapter. It should also be noted that LE defects cannot be modeled in simulations

of the model-scale propeller since they are very small.

Figure 6.3 shows the full-scale propellers with no and 0.50 mm defects, respectively.
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(a) No defect (b) 0.50 mm defect

Figure 6.3: Full-scale propeller with no defect

In present study, the defects (purple parts) were distributed along the leading-edge

between the blade sections of r/R = 0.5 and r/R = 0.9. As an example, details of

the LE geometry for the full-scale propellers with and without defects on the blade

section of r/R = 0.7 are shown in Fig. 6.4. Note that the 3-D blade sections have

been expanded into a local 2-D coordinate system, oxy, in which the origin is located

at the leading edge. Dimensions of the LE defects are given in Table 6.2.
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Figure 6.4: LE geometries for the full-scale propellers with and without LE defects

on the blade section of r/R = 0.7

Table 6.2: Dimensions of LE defects on the blade section of r/R = 0.7 (unit: mm)

Defect Length ∆C
Point A Point B

x y x y

0.100 1.161 0.178 0.000 0.000 0.178 1.147

0.250 2.109 0.773 0.000 0.000 0.773 1.962

0.500 3.810 2.121 0.000 0.000 2.121 3.164
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6.3 Grid Generation

Structured grid was distributed on the blade surface, and the same number of grids

was applied on both the pressure and suction sides. The hexahedron grids in the

prism layer were then generated by extruding the surface meshes along the wall’s

normal direction.

The first-grid spacing in terms of y+ is estimated by

∆S =
2y+c0.7

Re
√
0.5Cf

(6.2)

in which, the Reynolds number, Re, is determined by

Re =
c0.7U0.7

ν
=

c0.7
√

U∞
2 + (0.7nπD)2

ν
(6.3)

where c0.7 and U0.7 represent the chord length and the combined velocity of the blade

section at 0.7 R, respectively, U∞ is the incoming flow velocity in the open-water

simulation, ν is the kinematic viscosity of water, n is the revolution speed, and D is

diameter of the propeller.

The friction coefficient, Cf , is estimated using the ITTC 1957 formula (ITTC,

2021):

Cf =
0.075

(logRe− 2)2
(6.4)

The thickness of boundary layer, δ, is estimated by

δ = 0.37
c0.7

Re1/5
(6.5)

As an example, the grids of full-scale propeller with 0.5 mm defect at the advance

ratio of J = 1.102 are shown in Figs. 6.5, 6.6 and 6.7. In this case, the target

value of y+ was 1.0 and 39 grids were applied on the LE defect. Figure 6.5 presents
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Figure 6.5: The grids on the planes of X = 0 and Y = 0 as well as whole domain

for the full-scale propeller with 0.5 mm defect at J = 1.102

Figure 6.6: The blade surface mesh for the full-scale propeller with 0.5 mm defect at

J = 1.102
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Figure 6.7: The grids on the downstream section of X/R = 0.2386 for the full-scale

propeller with 0.5 mm defect at J = 1.102

(a) Pressure side (b) Suction side

Figure 6.8: The distribution of y+ on the pressure and suction sides of the propeller

with 0.5 mm defect at J = 1.102
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the grids on the planes of X = 0 and Y = 0, along with an overview of the

entire computational domain. The static domain was discretized with structured

grids. To capture the downstream wake, a refinement of the grids in the region

between 0.8 R and 1.1 R was implemented. Furthermore, the surface mesh of one

blade of the full-scale propeller with 0.5 mm defect is shown in Fig. 6.6. Due to the

complex flow-structure interactions near the leading and trailing edges as well as the

tip region, grids were therefore refined in these regions. Following the previous study

of Jin et al. (2021), the aspect ratio at the trailing edges was set as 32. The domain

between blades is filled with unstructured cells. The blade surface grids in the regions

close to the blade sections (r/R = 0.5, 0.7 and 0.9) are also shown in Fig. 6.6. Since

the large gradients of the velocity field within the tip vortices, a high grid resolution is

required to accurately capture these tip vortices over a distance. Figure 6.7 shows the

grids on the downstream section of X/R = 0.2386. The grids were refined between

the 0.9 R and 1.1 R in order to capture the tip vortices downstream. The mean cell

size in the vortex refinement zone in terms of ∆x/D is 8.787E-4 in this figure.

In addition, Fig. 6.8 presents the distribution of y+ on the suction and pressure

sides of the full-scale propeller with 0.5 mm defect at J = 1.102. It is evident that the

achieved y+ values vary from the root to the tip. For example, the targeted y+ was

1.0 at the blade section of 0.7 R, and the average y+ values achieved on the suction

and pressure sides are 0.94 and 1.01, respectively.

The number of grids for convergence studies ranges from 12,160,613 to 190,248,803

in this study. As an example, the typical number of grids for the propellers without

and with 0.10 mm, 0.25 mm, 0.50 mm defects at the advance ratio of J = 1.102 are

summarized in Table 6.3. In these cases, the targeted value of y+ is 1.0.
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Table 6.3: Typical number of grids for the full-scale propellers with no, 0.10 mm,

0.25 mm and 0.50 mm defects at the advance ratio of J = 1.102

Defect Number of grids on defect Total number of grids

No defect - 135,861,672

0.10 mm defect 16 138,889,872

0.25 mm defect 25 144,303,623

0.50 mm defect 39 146,230,155

To assess the grid quality, the volume ratio, η∆V, the equiangle skewness, QEAS,

and the mesh non-orthogonality were calculated. Figure 6.9 shows the grid quality for

typical grids of the propellers without and with 0.10 mm, 0.25 mm, 0.50 mm defects

at the advance ratio of J = 1.102. Note that the y-axis is on a logarithmic scale.

The volume ratio of the i-th grid is computed by

η∆Vi = max

[
∆Vi

min(∆Vj)
,
max(∆Vj)

∆Vi

]
(6.6)

where ∆Vi and ∆Vj are the volumes of the cell i and its corresponding adjacent cell

j, respectively. As illustrated in Fig. 6.9a, it can be observed that the volume ratios

for the majority of grids are less than 5.0.

The equiangle skewness, QEAS, is expressed as the maximum ratio of the cell’s

included angle to the angle of an equilateral element and can be computed by

QEAS = max

[
θmax − θe
180− θe

,
θe − θmin

θe

]
(6.7)

where θe represents the angle for an equilateral element (i.e., 60◦ for a triangle, 90◦

for a quad), and θmax and θmin are the largest and smallest angles in cell, respectively.
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Figure 6.9: The grid quality of typical meshes for the full-scale propellers with no,

0.10 mm, 0.25 mm and 0.50 mm defects at the advance ratio of J = 1.102
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The angle skewness varies between 0 and 1. It is recommended to keep this skewness

measure below 0.8 for a good grid, and values below 0.9 are generally acceptable,

depending on the solver. In Fig. 6.9b, it is evident for each case that only small

portions of the grid, about 900,000 cells, exhibit skewness values greater than 0.8.

The non-orthogonality of a mesh is defined as the angle formed by the vector

connecting two neighboring cell centers across their shared face and the face normal.

For each cell, the maximum value of this measure is reported, considering all faces

of that grid. Figure 6.9c shows the mesh non-orthogonality of these typical grids

of full-scale propellers with and without LE defects. The number of cells with non-

orthogonality greater than 75◦ for the full-scale propellers with no, 0.1 mm, 0.25 mm

and 0.5 mm defects are 58,606, 46,040, 45,642 and 42,398, respectively. In summary,

all the grids were generated with good quality.

6.4 Convergence Criteria

The maximum number of iterations was set as 40,000 for all simulations. The pa-

rameters including the residuals, pressure, thrust and torque coefficient were checked

for the simulations of propeller. Three orders of magnitude reduction in residuals are

considered as an acceptable level. Note that residuals are not the only measure for

convergence. For the convergence of pressure, thrust, torque coefficients, the changes

between their values at the present and previous iterations are used as indicators.

The acceptable value is in the order of 10−4.
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6.5 Non-dimensionalization and Definition of Vari-

ables

The relationships between the axial, tangential, and radial velocities (Ux, Ut and Ur)

in the stationary frame and those in the rotating frame are given by:

Vx = Ux

Vt = Ut − 2πnr

Vr = Ur

(6.8)

where n is the propeller revolution speed, Vx, Vt and Vr are the axial, tangential, and

radial velocities in the rotating frame, respectively. These velocities are all normalized

by the incoming flow velocity, U∞.

In order to provide a more detailed description of the tip vortex structure, a

primary/secondary coordinate system, as illustrated in Fig. 6.10, is introduced. In

this coordinate system, the primary velocity, Vs, is defined in the axial-tangential

(x − t) plane at the propeller pitch angle, ϕ. The tangential velocity, Vc, and the

radial velocity, Vr, are then defined on the secondary-flow plane (r − c plane), which

is perpendicular to the primary velocity. Note that the pitch angle varies with the

radius of a section, and the coordinate systems are different at different radii. The

relations for velocity components are given below:

Vs =Vx sin(ϕ) + Vt cos(ϕ)

Vc =Vt sin(ϕ)− Vx cos(ϕ)

Vr =Vr

(6.9)
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Figure 6.10: Primary and secondary coordinate system

The propeller thrust coefficient, KT, and the torque coefficient, KQ, are defined

as follows,

KT =
T

ρn2D4
and KQ =

Q

ρn2D5
(6.10)

where T and Q are the thrust and torque, respectively.

The propeller open-water efficiency, η0, is given by

η0 =
J

2π
· KT

KQ
(6.11)

where J = Ua/(nD) is the advance coefficient, and the advance speed, Ua, is equal to

the incoming flow velocity, U∞, in the open-water tests and simulations.

6.6 Simulation Parameters

Convergence studies on the domain size, grid size, grid stretching ratio, first-grid

spacing, y+, and turbulence model were first carried out for the model-scale propeller

and then for the full-scale propellers with no and 0.5 mm defects at J = 1.102. A

summary of simulation parameters in convergence studies is provided below:
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• Length of upstream, Lup/D: 2.0, 3.0 and 4.0.

• Length of downstream, Ldown/D: 4.0, 6.0, 8.0 and 10.0.

• Diameter of static domain, Dsp/D: 4.0, 6.0, 8.0 and 10.0.

• Radius of rotating domain, Rrp/R: 1.2, 1.3 and 1.4.

• Thickness of rotating domain, Trp/D: 0.8, 1.0 and 1.2.

• Gird size in terms of the cell size in the vortex refinement zone, ∆x/D: 1.757E-3,

1.242E-3, 8.787E-4, 6.212E-4 and 4.393E-4.

• Grid stretch ratio, SR: 1.1, 1.2, 1.3 and 1.4.

• First-grid spacing, y+: 0.5, 0.707, 1.0, 1.414, 2.0, 2.828 and 4.0.

• Turbulence models: k − ε, k − ω, SST k − ω, Spalart-Allmaras and elliptic

blending Reynolds stress models

The best-practice settings were proposed for model-scale simulations by comparing

the solutions with the model test results. The best-practice non-dimensional settings

for full-scale simulations were also proposed, which are very similar to those for the

model-scale simulations.

Using the model-scale best practices, validation studies were first carried out for

the propeller model by following the test matrices in the work of Chesnakas and Jessup

(1998).

Simulations were then performed for the full-scale propellers with no, 0.10 mm,

0.25 mm and 0.50 mm defects. In the full-scale cases, simulations were carried out
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Table 6.4: The simulation matrix for suction-side tip vortex with p0 = 22.0 psi

J
U∞ n (rps) Experimental (model scale)

(m/s) Model-scale Full-scale KT 10KQ η0 σ

0.921 6.557 17.680 3.097 0.392 0.926 0.620 6.940

0.983 7.850 19.830 3.474 0.364 0.876 0.651 4.800

0.992 8.461 21.180 3.710 0.364 0.871 0.660 4.140

1.034 9.244 22.200 3.889 0.344 0.845 0.671 3.510

1.055 9.865 23.220 4.068 0.332 0.818 0.682 3.070

1.062 9.977 23.330 4.087 0.327 0.805 0.685 3.010

1.066 10.882 25.350 4.441 0.329 0.813 0.686 2.530

1.082 11.185 25.670 4.497 0.315 0.787 0.690 2.390

1.102 12.128 27.330 4.788 0.305 0.770 0.695 2.020

1.103 11.482 25.850 4.528 0.302 0.765 0.693 2.270

1.116 12.058 26.830 4.700 0.300 0.754 0.707 2.060

1.117 13.135 29.200 5.115 0.304 0.757 0.714 1.720

1.130 12.969 28.500 4.992 0.296 0.747 0.712 1.780

1.134 13.554 29.680 5.199 0.291 0.737 0.713 1.610

1.155 15.368 33.040 5.788 0.280 0.716 0.719 1.250

1.191 15.861 33.070 5.793 0.259 0.675 0.728 1.170
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Table 6.5: The simulation matrix for suction-side tip vortex with p0 = 16.5 psi

J
U∞ n (rps) Experimental (model scale)

(m/s) Model-scale Full-scale KT 10KQ η0 σ

1.004 7.621 18.850 3.302 0.349 0.852 0.654 3.860

1.059 9.608 22.530 3.947 0.322 0.806 0.674 2.430

1.115 10.709 23.850 4.178 0.299 0.755 0.703 1.950

1.136 11.816 25.830 4.525 0.290 0.736 0.714 1.600

1.159 13.166 28.210 4.942 0.278 0.710 0.722 1.290

1.205 15.480 31.900 5.588 0.241 0.653 0.707 0.930

with the same advance ratios and cavitation numbers as those in the experimental

cases. The detailed simulation parameters, such as the advance ratio, J , the propeller

revolution speed, n, the incoming flow velocity, U∞, and the static pressure, p0, were

summarized in Tables 6.4 and 6.5. Two static pressure conditions (p0 = 16.5 psi and

22.0 psi) were simulated. Note that the static pressure, p0, was measured at the same

level of the centre of propeller shaft on the outlet. The model test results of KT,

10KQ, η0 and σ by Chesnakas and Jessup (1998) are also included in the tables.

Other default settings used in the simulations with the steady RANS solver can

be found in Table 3.6.

137



6.7 Numerical Results

The convergence studies were conducted for both the model-scale propeller and the

full-scale propellers with no and 0.50 mm defects at the advance ratio of J = 1.102.

Based on the results of the convergence studies, the best-practice settings were sum-

marized. With the recommended best practices, validation studies were first carried

out the model-scale propeller at various advance ratios ranging from 0.921 to 1.205.

Numerical simulations were then performed for the full-scale propellers using the ge-

ometry of DTMB 5168 propeller without and with LE defects. Note that the LE

defects were only applied to the full-scale propellers, while the propeller model does

not have any LE defects since they are too small in model scale. In this section,

results of velocity field, cavitation buckets, pressure distribution, and residuals are

presented for model- and full-scale propellers. The effect of LE defects on cavitation

inception speed are also discussed for the full-scale propeller.

The model experimental results of Chesnakas and Jessup (1998) were used to val-

idate the numerical solutions of the model-scale propeller. The experimental setup

involved a hybrid LDV system, which combined lens-optic and fiber-optic assemblies.

The lens-optic system measured two components of velocity, while the fiber-optic

assembly measured a single component of velocity. Each system was traversed inde-

pendently, leading to challenges in maintaining precise coincidence of all three mea-

surements. Due to the uncertainties in probe positions and the coincident mode of the

hybrid LDV system, along with the inherent precision errors of measurement instru-

ments, experimental uncertainties should be considered in the comparison between

numerical and experimental data. For cavitation inception, it was noted when three
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of the five blades exhibited intermittent tip vortices. Another source of uncertainty in

the cavitation number resulted from precision errors. The calculated uncertainties for

the quantities measured in the test are summarized in Table 6.6, where the velocities

were obtained in the tip vortex region. Significant uncertainties can be observed in

the axial and radial velocities, reaching up to 19% of the incoming flow velocity (U∞).

The uncertainty in σ was estimated to be 0.4.

Table 6.6: The calculated uncertainties of experimental data from Chesnakas and

Jessup (1998)

Item Reference Uncertainty

Advance coefficient, J - 0.006

Cavitation number, σ - 0.400

Axial velocity in stationary frame, Ux U∞ 0.190

Tangential velocity in stationary frame, Ut U∞ 0.075

Radial velocity in stationary frame, Ur U∞ 0.190

Axial velocity in rotating frame, Vx U∞ 0.190

Tangential velocity in rotating frame, Vt U∞ 0.075

Radial velocity in rotating frame, Vr U∞ 0.190

Primary velocity in rotating frame, Vs U∞ 0.110

As the Reynolds numbers of the model- and full-scale propeller are not identical,

it is not feasible to use the model experimental data to directly assess the accuracy of

the numerical results for the full-scale propellers. However, since the unavailability of
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sea-trial data of the full-scale propeller, the numerical and experimental data for the

propeller model were included in the analysis of the full-scale predictions to provide

the readers with some references.

6.7.1 Simulations for the Model-Scale Propeller

6.7.1.1 Convergence Studies

The five-bladed DTMB 5168 propeller model generates five tip vortices on a down-

stream section. As an example, the non-dimensional primary velocity contour at

X/R = 0.2386 and J = 1.102 for the propeller model is shown in Fig. 6.11, where

the primary velocity is normalized with inflow velocity in the rotating frame (V∞ =

√
U2
∞ + 2πrn). In this case, y+ = 1, the SST k − ω model and SR = 1.2 were used.

Note that the vortex was numbered according to Chesnakas and Jessup (1998).

Figure 6.12 presents the non-dimensional axial, tangential and radial velocities,

Vx/U∞, Vt/U∞ and Vr/U∞, across these five vortex cores of the model-scale propeller

at X/R = 0.1756 and 0.2386. Note that the axial location X is measured from the

propeller mid-span section and R is the propeller radius. In this work, the posi-

tion of the vortex center is specified at θ = 0, where the minimum pressure occurs

within the tip vortex. To provide a comprehensive comparison, the experimental data

from Chesnakas and Jessup (1998), as well as the numerical results obtained using

the k−ω model in the study of Peng et al. (2013), are also included. In these figures,

the first valley, starting from the left, corresponds to the wake, and the second valley

is associated with the tip vortex.

To quantify the differences between present predictions and the experimental data
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Figure 6.11: The contour of non-dimensional primary velocity, Vs/V∞, at X/R =

0.2386 and J = 1.102 for the propeller model

by Chesnakas and Jessup (1998), the root mean square (RMS) errors as follows were

calculated for Vx/U∞, Vt/U∞ and Vr/U∞ across the vortex core:

RMS =

√∫ θ2
θ1

(Numerical − Experimental)2 dθ

θ2 − θ1
(6.12)

where θ1 and θ2 are −0.50 and 0.50 radians, respectively. Table 6.7 provides the RMS

errors for the non-dimensional axial, tangential, and radial velocities across different

vortex cores. It can be found that the RMS errors for the predicted radial velocity at

both X/R = 0.1756 and 0.2386 are lower than those reported by Peng et al. (2013).

In addition, the predicted axial velocity at X/R = 0.1756 shows slight improvement

compared to the numerical result in Peng et al. (2013), while the axial velocity at

X/R = 0.2386 is less accurate. On the other hand, the overall differences between

the vortices are relatively small. Therefore, the averaged velocities across the five
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Figure 6.12: Non-dimensional velocities across different vortex cores at X/R = 0.1756

and X/R = 0.2386 for the propeller model with J = 1.102
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Table 6.7: The RMS errors of the non-dimensional axial, tangential and radial veloc-

ities across different vortex cores for the propeller model at J = 1.102

Section Item
Vx/U∞ Vt/U∞ Vr/U∞

(10−2) (10−2) (10−2)

X/R = 0.1756

1st vortex 8.710 3.143 9.354

2nd vortex 8.638 2.975 9.135

3rd vortex 8.606 3.043 9.402

4th vortex 8.762 2.826 9.073

5th vortex 8.405 3.093 9.039

Mean value 8.624 3.016 9.200

Peng et al. (2013) 9.618 3.439 12.105

X/R = 0.2386

1st vortex 9.599 4.785 8.582

2nd vortex 9.816 4.554 8.307

3rd vortex 9.849 4.924 8.878

4th vortex 10.242 5.479 8.175

5th vortex 10.516 5.622 8.175

Mean value 10.005 5.073 8.423

Peng et al. (2013) 9.851 3.965 13.149

vortex cores were used in the following comparisons.

Cavitation occurs when the negative minimum pressure coefficient, −Cpmin
, on the

five blades is equal to the cavitation number, σ. For instance, cavitation numbers ob-

tained on the suction side in the tip region (r/R ≥ 0.95) of blades for the model-scale
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Table 6.8: The comparison of cavitation number on the suction side in the tip region

(r/R ≥ 0.95) for the propeller model at J = 1.102

Item Numerical Experimental Relative error (%)

Advance ratio 1.102 1.102 1.103 1.102 1.103

1st blade 2.522 2.020 2.270 24.84 11.09

2nd blade 2.591 2.020 2.270 28.25 14.13

3rd blade 2.593 2.020 2.270 28.36 14.22

4th blade 2.561 2.020 2.270 26.76 12.80

5th blade 2.523 2.020 2.270 24.90 11.15

Maximum value 2.593 2.020 2.270 28.36 14.22

Minimum value 2.522 2.020 2.270 24.84 11.09

Mean value 2.558 2.020 2.270 26.62 12.68

propeller are shown in Table 6.8. The maximum, minimum and mean results are also

included. The minimum relative error is 11.09% for the 1st blade compared to the

experimental data obtained at J = 1.103. Note that there were some geometrical de-

viations in the area near the tip, i.e., on the blade section of r/R = 0.97, between the

design and the tested model in the experiment by Chesnakas and Jessup (1998). This

likely contributed to the relative error. Furthermore, the uncertainty in the experi-

mental data is another source of error. For instance, approximately 10% difference

was observed between the experimental results at J = 1.102 and 1.103, indicating the

uncertainty in the measurement. It is worth noting that no significant difference was
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found in the predicted cavitation numbers on various blades. Therefore, the mean

value will be used in subsequent sections, unless otherwise specified.

In summary, comprehensive convergence studies were conducted for the model-

scale propeller, involving a total of 81 simulations. The simulation parameters includ-

ing the domain size, grid size, grid stretching ratio, y+ and turbulence model were

examined carefully for the base case at the advance ratio of J = 1.102.

As examples, Figs. 6.13, 6.14 and 6.15 present the sensitivities of the non-dimensional

velocities across the vortex core at X/R = 0.2386 to Lup, Ldown and Dsp, respectively.

These simulations were carried out using y+ = 1.0 and SR = 1.2, along with the

k − ω model. The results indicate that the predicted velocity at X/R = 0.2386

are generally insensitive to the lengths of upstream and downstream as well as the

diameter of the static domain; Lup = 2.0 D, Ldown = 4.0 D and Dsp = 6.0 D were

then employed in the following simulations for the propeller model.

The sensitivities of the non-dimensional velocities across the vortex core at X/R =

0.2386 to y+ for the model-scale propeller using the k − ε and k − ω models are

presented in Fig. 6.16, in which the predicted velocities are showed to be sensitive to

y+ with the k − ε model, and they do not converge as y+ decreased. For the k − ω

model, only slight differences were observed in the results obtained with y+ = 2.828

and 4.000. In the region of θ ∈ [−0.15,−0.10], the predicted axial velocities using

y+ = 2.828 and 4.000 were greater than those obtained with other y+ values. The

recommended value of y+ should be in the range of [0.5, 2.0].

Twenty five cases were conducted for the model-scale propeller with various grid

sizes in terms of ∆x/D = 1.757E-3, 1.242E-3, 8.787E-4, 6.212E-4 and 4.393E-4. Four

turbulence models, including the k − ε, k − ω, SST k − ω, Spalart-Allmaras and
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Figure 6.13: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Lup for the propeller model
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Figure 6.14: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Ldown for the propeller model
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Figure 6.15: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Dsp for the propeller model
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Figure 6.16: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to y+ for the model-scale propeller using the k − ε and k − ω models
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Figure 6.17: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to the grid resolution (∆x) for the model-scale propeller using the k − ω and

SST k − ω models
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elliptic blending Reynolds stress models, were applied. The value of y+ was set as

1.0, and SR was 1.2 in these cases. As examples, non-dimensional velocities across

the vortex core at X/R = 0.2386 for the model-scale propeller using the k − ω and

SST k − ω models are shown in Fig. 6.17. It can be found that the results based on the

k − ω and SST k − ω models converged with grid refinement. For the propeller model,

the tangential and radial velocities are more sensitive to the grid size than the axial

velocity. Compared with the model experimental data (Chesnakas and Jessup, 1998),

significant difference can be seen in the predicted tangential and radial velocities with

the grid sizes of ∆x/D = 1.757E-3 and 1.242E-3.

Table 6.9 and 6.10 provide detailed RMS errors of Vx/U∞, Vt/U∞ and Vr/U∞ with

the advance ratio of J = 1.102 for the model-scale propeller using various turbulence

models and grid sizes at X/R = 0.1756 and 0.2386, respectively. It can be observed

that the RMS errors of downstream velocity generally decrease as the grid size de-

creases. The largest RMS error (15.739 × 10−2) can be seen in the axial velocity at

X/R = 0.1756 with ∆x/D = 1.757E-3 using the EB-RSM model. And the minimum

RMS error (5.397 × 10−2) was achieved in the tangential velocity at X/R = 0.1756

with the medium grid size of ∆x/D = 8.787E-4 using the Spalart-Allmaras model.

The RMS errors for Vx/U∞, Vt/U∞ and Vr/U∞ across the tip vortex core predicted by

the eddy viscosity models were found to be slightly smaller than those of the Reynolds

stress model. This observation is consistent with the findings reported by Peng et al.

(2013).

Results of KT, KQ and η0 for the model-scale propeller, obtained using different

turbulence models and grid sizes, are shown in Fig. 6.18. The k − ε model ex-

hibits sensitivity to the grid resolution with y+ = 1.0, resulting in non-convergent
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Table 6.9: RMS errors of Vx/U∞, Vt/U∞ and Vr/U∞ across the vortex core at X/R =

0.1756 for the model-scale propeller with various turbulence models and grid sizes

when J = 1.102

Item Turbulence model

Grid size X/R = 0.1756

∆x/D Vx/U∞ Vt/U∞ Vr/U∞

(10−3) (10−2) (10−2) (10−2)

Model (Present)

k − ε

1.757 14.016 10.692 10.741

1.242 9.192 5.904 9.413

0.879 9.066 6.541 7.482

0.621 8.978 5.579 8.193

0.439 8.837 6.185 7.876

k − ω

1.757 10.030 8.724 11.038

1.242 8.804 6.166 9.099

0.879 9.440 6.228 7.646

0.621 8.824 6.891 7.624

0.439 9.339 6.199 7.408

SST k − ω

1.757 9.844 8.754 11.007

1.242 8.781 6.230 8.979

0.879 9.358 6.307 7.535

0.621 8.800 7.035 7.604

0.439 9.259 6.291 7.317

Spalart-Allmaras

1.757 10.332 8.289 11.170

1.242 8.849 5.782 9.173

0.879 9.013 5.397 8.154

0.621 8.728 6.355 7.443

0.439 9.055 5.776 7.291

EB-RSM

1.757 15.739 10.317 12.598

1.242 9.079 6.943 9.692

0.879 9.786 7.412 9.826

0.621 9.801 7.173 9.450

0.439 9.468 7.517 9.494

Model (Peng et al., 2013) k − ω - 9.618 3.439 12.105
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Table 6.10: RMS errors of Vx/U∞, Vt/U∞ and Vr/U∞ across the vortex core at X/R =

0.2386 for the model-scale propeller with various turbulence models and grid sizes

when J = 1.102

Item Turbulence model

Grid size X/R = 0.2386

∆x/D Vx/U∞ Vt/U∞ Vr/U∞

(10−3) (10−2) (10−2) (10−2)

Model (Present)

k − ε

1.757 10.428 10.904 9.470

1.242 10.567 7.903 11.071

0.879 10.279 7.394 8.581

0.621 10.032 7.699 8.506

0.439 10.264 7.488 7.961

k − ω

1.757 10.222 9.610 9.979

1.242 11.323 7.473 11.698

0.879 9.053 7.634 8.560

0.621 10.399 7.438 9.224

0.439 10.468 7.536 8.715

SST k − ω

1.757 11.199 9.857 9.228

1.242 11.917 7.584 11.121

0.879 10.419 8.393 8.248

0.621 10.290 8.469 8.490

0.439 10.063 8.287 7.812

Spalart-Allmaras

1.757 10.748 10.512 8.988

1.242 11.875 7.598 10.961

0.879 10.758 8.154 8.279

0.621 10.431 8.554 8.284

0.439 10.350 7.915 8.011

EB-RSM

1.757 11.321 10.172 10.980

1.242 11.506 8.019 11.591

0.879 11.375 8.833 9.072

0.621 11.253 8.964 8.762

0.439 10.863 8.826 8.440

Model (Peng et al., 2013) k − ω - 9.851 3.965 13.149
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Figure 6.18: Predicted open-water results for the model-scale propeller at J = 1.102

using different turbulence models and grid sizes
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Figure 6.19: Uncertainties of open-water results for the model-scale propeller at

J = 1.102 using different turbulence models

156



1.50

2.00

2.50

3.00

3.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

σ

hi / h1

Model (k − ε) 
Model (k − ω) 

Model (SST k − ω) 

Model (EB − RSM) 

Model (Spalart − Allmaras) 

Convergence curve (k − ε) 
Convergence curve (k − ω) 

Convergence curve (SST k − ω) 

Convergence curve (EB − RSM) 

Convergence curve (Spalart − Allmaras) 

(a) Cavitation number

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

U
n

ce
rt

ai
n

ty
 o

f 
σ

hi / h1

Model (k − ε) 
Model (k − ω) 

Model (SST k − ω) 

Model (EB − RSM) 

Model (Spalart − Allmaras) 

0.000

0.050

0.100

0.150

0.200

0.9 1.1 1.3 1.5

(b) Uncertainty

Figure 6.20: Predicted cavitation number on the suction side in the tip region and

associated uncertainties for the model-scale propeller at J = 1.102 using different

turbulence models

predictions as grid size decreases. The main reason for this phenomenon is that the

standard k − ε model is primarily suitable for turbulent core flows and is coupled

with wall functions to connect with solution variables in the log-law region. Its accu-

racy is severely affected when the cells are resolved in the viscous sub-layer (y+ < 5),

as the log-law formulae cease to be valid (Salim and Cheah, 2009). The KT, 10KQ,

and η0 values predicted by the k − ω, SST k − ω, Spalart-Allmaras and EB-RSM
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models were found to be consistently under-predicted compared to the experimen-

tal data Chesnakas and Jessup (1998). There was no significant difference observed

between the predictions with the k − ω and SST k − ω models.

Uncertainties due to spatial discretization, estimated using the LSR method, were

presented in Fig. 6.19. Note that the uncertainties for the results by the k − ε model

were not calculated due to the divergence in its predictions. Figure 6.20 shows the

predicted cavitation number on the suction side in the tip region and associated

uncertainties for the model-scale propeller at J = 1.102 using different turbulence

models. The convergence curves obtained by the LSR method (Eça and Hoekstra,

2014) were also presented in Fig. 6.20a. As expected, the uncertainties decreased as

the grid size decreased. The uncertainties were small when the grid size of ∆x/D is

not greater than 6.212E-4.

Table 6.11 presents the estimated exact values of KT, 10KQ, η0 and σ in the tip re-

gion on the suction side. Compared with the experimental data (Chesnakas and Jessup,

1998), the relative errors of KT, 10KQ and η0 using the k − ω, SST k − ω and

EB-RSM models were found to be smaller than 3.50%. For η0, the minimum relative

error is 0.13% with the SST k − ω model. However, significant difference can be

observed in the results of the cavitation number, with the SSTk −ω model exhibiting

the maximum relative error of 32.36%. The performance of the k − ω, SST k − ω

and Spalart-Allmaras models was similar, with all of their errors at around 30%. The

EB-RSM model slightly outperforms them, yielding a relative error of 26.87%, while

the k − ε model attains the smallest relative error of 19.32%.

To explain these findings, two primary reasons are identified. Firstly, the present

steady simulation does not account for the unsteady characteristics of the cavitat-
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Figure 6.21: Comparison of predicted q at r/R = 0.928, X/R = 0.2386 and J = 1.102

using various turbulence models

ing procedure. Secondly, the cavitation model is not included, which would pre-

dict a higher value of the minimum pressure, indicating a lower cavitation num-

ber (Hanimann et al., 2016; Perić, 2022). It should be noted that the experimental

data for σ at J = 1.102 and 1.103 are 2.02 and 2.27, respectively, with an uncer-

tainty of 0.4. Despite these limitations, all presented predictions remain reasonable

and fall within the range of experimental data (1.62, 2.67), considering the uncer-

tainty. Based on the convergence studies, both the k − ω and SST k − ω models

were recommended.

The turbulence predictions were examined by comparing the non-dimensional root

mean square fluctuation of velocity, denoted as q, using various turbulence models

in this study. The fluctuation of velocity, q, is directly related to the turbulent

kinetic energy, k, expressed as k = 1
2
(U∞q)2. Figure 6.21 presents the comparison of

predicted q across the tip vortex at X/R = 0.2386 and J = 1.102. Notably, as both

the results of fluctuation of velocity and turbulent kinetic energy were not saved in
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(a) Experimental (Chesnakas and Jessup, 1998)

(b) SST k − ω (Peng et al., 2013)

(c) SST k − ω (Present)

Figure 6.22: Comparison of predicted q contours at X/R = 0.2386 and J = 1.102

using the SST k − ω model with experimental data
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the one-equation turbulence mode of Star-CCM+, the outcomes of Spalart-Allmaras

model are not included in Fig. 6.21. As expected, the predicted non-dimensional

root mean square fluctuation of velocity is large in the tip vortex region. Conversely,

outside this region, i.e., θ /∈ [−0.12, 0.12], are close to 0. The maximum values of

q with various turbulence modes were in general observed at θ = 0.054, with the

k − ε model yielding the highest value (0.43). The predictions of the k − ω and

EB-RSM models were comparable, showing similar levels of q. The predicted q with

SST k −ω is greater than that of the EB-RSM model, in agreement with the findings

reported by Peng et al. (2013).

Furthermore, in Fig. 6.22, a comparison of predicted q contours at X/R = 0.2386

and J = 1.102 is presented using the SST k − ω model, along with experimental

data (Chesnakas and Jessup, 1998) and numerical results from Peng et al. (2013).

Note that both the experimental data (Chesnakas and Jessup, 1998) and numerical

solutions from Peng et al. (2013) were obtained through screen capture, making it

challenging to quantify the differences between them. The secondary streamlines

are also included in these figures. It can be observed that the predicted secondary

streamlines generally agree well with the reference data, although the values of q in

the vortex core were underestimated by the present method. The non-dimensional

root mean square fluctuation of velocity in the region of θ ∈ [0.70, 0.12] is larger in

the present study compared to that of Peng et al. (2013).

According to the convergence studies for the model-scale propeller, the best-

practice settings are recommended and summarized in Table 6.12
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Table 6.12: Summary of the best-practice settings for the model-scale propeller

Item Variable Recommended setting Value

Static domain

Lup/D ≥ 2.0 2.0

Ldown/D ≥ 4.0 4.0

Dsp/D ≥ 4.0 6.0

Rotating domain
Rrp/R ≥ 1.2 1.2

Trp/D ≥ 0.8 0.8

Mesh size

SR [1.1, 1.3] 1.2

y+ [0.5, 2.0] 1.0

∆x/D ≤ 6.212E-4 6.212E-4

Turbulence model
k − ω

k − ω
SST k − ω

6.7.1.2 Validation Studies for the Propeller Model with Best-Practice

Settings

Using the recommended best-practice settings, validation studies were conducted for

the model-scale propeller at various advance ratios ranging from 0.921 to 1.205. Two

static pressures, p0 = 16.5 psi and 22.0 psi, were applied. Compared with the ex-

perimental data from Chesnakas and Jessup (1998), the downstream velocities, open-

water performance, and cavitation performance are discussed in this section.

Downstream velocities. To validate the prediction of tip vortex downstream,

a close-up view of the tip vortex at X/R = 0.2386 and J = 1.102 is presented in

Fig. 6.23. Compared with the experimental data from Chesnakas and Jessup (1998)
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(a) Experimental (Chesnakas and Jessup, 1998)

(b) Numerical (Hsiao and Pauley, 1999)

(c) Best-practice settings

Figure 6.23: Comparison of Vs/V∞ in the tip vortex for the propeller model at X/R =

0.2386 and J = 1.102 using the best-practice settings
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Figure 6.24: Predicted Vx/U∞, Vt/U∞ and Vr/U∞ across the cortex core for the

propeller model at X/R = 0.1756 and 0.2386 using the best-practice settings when

J = 1.102
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Figure 6.25: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ for the

propeller model at X/R = 0.1756 and J = 1.102 using the best-practice settings
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Figure 6.26: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ for the

propeller model at X/R = 0.2386 and J = 1.102 using the best-practice settings
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Figure 6.27: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ for the

propeller model at X/R = 0.3963 and J = 1.102 using the best-practice settings
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Figure 6.28: Predicted open-water performance of the propeller model with different

static pressures using the best-practice settings
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and the numerical solution of Hsiao and Pauley (1999), the non-dimensional primary

velocity, Vs/V∞, in the tip vortex region was over-predicted. Note that the predicted

tip vortex core was located at r/R = 0.928, while the observed location of the tip

vortex core was at r/R = 0.920 in the experiment.

To further quantify the comparison between the numerical and experimental re-

sults, the non-dimensional axial, tangential and radial velocities (Vx/U∞, Vt/U∞ and

Vr/U∞) in the rotating frame at X/R = 0.1756 and 0.2386 are presented in Fig. 6.24.

These figures also contain the numerical results of Peng et al. (2013). Table 6.13 sum-

marizes the RMS errors of Vx/U∞, Vt/U∞ and Vr/U∞ at J = 1.102. The predicted

axial and radial velocities are in better agreement with experimental data compared

to those by Peng et al. (2013), while the tangential velocity was better predicted in

the work of Peng et al. (2013). In the present work, the minimum RMS error is

3.713 × 10−2 for the tangential velocity, Vt/U∞, at X/R = 0.1756.

Figures 6.25, 6.26 and 6.27 present the circumferentially averaged axial, tangential

and radial velocities (Ux/U∞, Ut/U∞ and Ur/U∞) in the stationary frame at different

downstream sections of X/R = 0.1756, 0.2386 and 0.3963, respectively. It can be

found that the circumferentially averaged axial and tangential velocities are in good

agreement with the corresponding experimental data (Chesnakas and Jessup, 1998),

with only minor differences in the tip vortex region (r/R ∈ [0.91, 0.95]). For the

circumferentially averaged radial velocity, large differences can be seen not only in the

tip vortex region but also in the region of r/R ≤ 0.85 on the X/R = 0.1756 section.

On the section of X/R = 0.2386, the predicted radial velocities in the tip vortex

region are in better agreement with experimental data than those from Peng et al.

(2013). The circumferentially averaged radial velocities in this work and Peng et al.
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(2013) are over-predicted at r/R ≤ 0.55, as shown in Fig. 6.26c.

Table 6.14 present the following RMS errors in predictions related to the experi-

mental data for the circumferentially averaged velocities.

RMS =

√∫ r2
r1

(Numerical− Experimental)2 dr

r2 − r1
(6.13)

where r1 and r2 are 0.8 R and 1.0 R, respectively, for X/R = 0.1756 and 0.3963

and they are 0.4 R and 1.0 R., respectively, for X/R = 0.2386. The maximum and

minimum RMS errors are 3.602 × 10−2 and 0.649 × 10−2 for the circumferentially

averaged axial and radial velocities, respectively.

Open-water performance. The predicted open-water results for the model-

scale propeller using the best-practice settings with different static pressures, p0 =

22.0 psi and 16.5 psi, are presented in Fig. 6.28. As shown, the numerical solutions

agree well with the experiment data (Chesnakas and Jessup, 1998) and the open-

water performance is independent of the static pressure. The relative errors with

respect to the experimental data from Chesnakas and Jessup (1998) are presented

in Table 6.15. The maximum and minimum relative errors of the predicted thrust

coefficient are 4.68% and 0.04%.

Cavitation performance. The comparison of the cavitation number in the tip

region (r/R ≥ 0.95) on the suction side for the propeller model with two static pres-

sures, p0 = 16.5 and 22.0 psi is shown in Fig. 6.29, and the relative errors are summa-

rized in Table 6.16. Overall, the predicted cavitation numbers at the tip region on the

suction side are basically the same under two different static pressures in the tunnel,

and they in general agree well with the experimental data (Chesnakas and Jessup,

1998). The minimum relative error is 4.16% for the case of J = 1.116 with the static
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Table 6.15: Relative Errors in predicted open-water performance for the model-scale

propeller with the best-practice settings

p0 (psi) J
Numerical Experimental Relative error (%)

KT 10KQ η0 KT 10KQ η0 KT 10KQ η0

22.0

0.921 0.39353 0.92006 0.62697 0.392 0.926 0.620 0.39 0.64 1.12

0.983 0.36046 0.86620 0.65105 0.364 0.876 0.651 0.97 1.12 0.01

0.992 0.35592 0.85812 0.65484 0.364 0.871 0.660 2.22 1.48 0.78

1.034 0.33351 0.82040 0.66899 0.344 0.845 0.671 3.05 2.91 0.30

1.055 0.32241 0.80109 0.67576 0.332 0.818 0.682 2.89 2.07 0.91

1.062 0.31865 0.79460 0.67782 0.327 0.805 0.685 2.55 1.29 1.05

1.066 0.31689 0.79074 0.67992 0.329 0.813 0.686 3.68 2.74 0.89

1.082 0.30829 0.77568 0.68442 0.315 0.787 0.690 2.13 1.44 0.81

1.102 0.29770 0.75642 0.69026 0.305 0.770 0.695 2.39 1.76 0.68

1.103 0.29693 0.75563 0.68983 0.302 0.765 0.693 1.68 1.22 0.46

1.116 0.29002 0.74294 0.69335 0.300 0.754 0.707 3.33 1.47 1.93

1.117 0.28979 0.74171 0.69457 0.304 0.757 0.714 4.68 2.02 2.72

1.130 0.28262 0.72906 0.69717 0.296 0.747 0.712 4.52 2.40 2.08

1.134 0.28059 0.72501 0.69850 0.291 0.737 0.713 3.58 1.63 2.03

1.155 0.26918 0.70333 0.70352 0.280 0.716 0.719 3.87 1.77 2.15

1.191 0.24944 0.66662 0.70927 0.259 0.675 0.728 3.69 1.24 2.57

16.5

1.004 0.34887 0.84769 0.65762 0.349 0.852 0.654 0.04 0.51 0.55

1.059 0.32009 0.79743 0.67655 0.322 0.806 0.674 0.59 1.06 0.38

1.115 0.29006 0.74425 0.69161 0.299 0.755 0.703 2.99 1.42 1.62

1.136 0.27859 0.72288 0.69678 0.290 0.736 0.714 3.94 1.78 2.41

1.159 0.26637 0.69967 0.70226 0.278 0.710 0.722 4.18 1.46 2.73

1.205 0.24159 0.65212 0.71050 0.241 0.653 0.707 0.25 0.13 0.49
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Table 6.16: Comparison of cavitation number in the tip region (r/R ≥ 0.95) on the

suction side for the model-scale propeller

p0 (psi) J Experimental Numerical Relative error (%)

22.0

0.921 6.940 8.417 21.28

0.983 4.800 5.644 17.57

0.992 4.140 5.386 30.09

1.034 3.510 4.124 17.48

1.055 3.070 3.541 15.33

1.062 3.010 3.352 11.36

1.066 2.530 3.271 29.31

1.082 2.390 2.859 19.64

1.102 2.020 2.430 20.31

1.103 2.270 2.397 5.62

1.116 2.060 2.146 4.16

1.117 1.720 2.149 24.92

1.130 1.780 1.968 10.54

1.134 1.610 1.925 19.55

1.155 1.250 1.700 35.99

1.191 1.170 1.311 12.08

16.5

1.004 3.860 4.916 27.35

1.059 2.430 3.420 40.76

1.115 1.950 2.140 9.75

1.136 1.600 1.871 16.94

1.159 1.290 1.623 25.83

1.205 0.930 1.174 26.21
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Figure 6.29: Cavitation numbers in the tip region (r/R ≥ 0.95) on the suction side

for the propeller model

pressure of 22.0 psi, and the maximum relative error is 40.76% at J = 1.059 with the

static pressure of 16.5 psi.

6.7.2 Simulations for the Full-Scale Propellers with and with-

out Defects

After the validation studies for the propeller model, simulations were extended to full-

scale propellers (with and without LE defects) that have the same geometry as that

of the propeller model. The best-practice settings were first developed in a similar

way for the propeller model, and then applied to investigate the effects of LE defects

on the open-water propeller performance.

6.7.2.1 Convergence Studies

A total of 172 cases were carried out in the convergence studies for the full-scale pro-

pellers using the geometry of DTMB 5168 propeller with no and 0.50 mm LE defects.

174



The predicted non-dimensional axial, tangential and radial velocities, Vx/U∞, Vt/U∞

and Vr/U∞, across the vortex core at X/R = 0.2386 are presented and discussed.

Since there is no sea trial data available for the full-scale propeller, experimental

data for the propeller model (Chesnakas and Jessup, 1998) are included in following

figures as references.

Convergence studies for the full-scale propellers on domain size were first per-

formed with three upstream length in terms of Lup = 2.0, 3.0 and 4.0 D. In these

cases, the downstream length was set to 10.0 D, and the diameter of static domain

was also 10.0 D. The rotating domain had a radius of 1.2 R and a thickness of 0.8 D.

The value of y+ was set to 1.0, and the k − ω model was employed. Figure 6.30

shows the sensitivities of non-dimensional velocities across the vortex core at X/R =

0.2386 to the length of upstream for the full-scale propeller with no and 0.50 mm

defects. It can be seen that the results were independent of the length of upstream.

The upstream with Lup = 2.0 D is then recommended.

Four downstream length in terms of Ldown = 4.0, 6.0, 8.0 and 10.0 D were investi-

gated. The diameter of static domain was set as 10.0 D. The radius and thickness of

the rotating domain were 1.2 R and 0.8 D, respectively. These convergence studies

were simulated with y+ = 1.0 and the k − ω model. The convergence of non-

dimensional velocities across the vortex core at X/R = 0.2386 with respect to the

length of downstream for the full-scale propeller with no and 0.50 mm defects are

shown in Fig. 6.31. The results indicate that the length of downstream has small

influence on the downstream velocity. Therefore, a length of Ldown = 4.0 D was used

in the following studies.

Convergence studies were then conducted for different diameters of the static
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Figure 6.30: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Lup for the full-scale propellers with no and 0.5 mm defects
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Figure 6.31: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Ldown for the full-scale propellers with no and 0.5 mm defects
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Figure 6.32: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Dsp for the full-scale propellers with no and 0.5 mm defects
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Figure 6.33: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Rrp for the full-scale propellers with no and 0.5 mm defects
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Figure 6.34: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to Rrp for the full-scale propellers with no and 0.5 mm defects
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Figure 6.35: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to y+ for the full-scale propellers with no and 0.5 mm defects using the

SST k − ω model
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Figure 6.36: The non-dimensional velocities across the vortex core at X/R = 0.2386

for full-scale propellers with no and 0.5 mm defects using different turbulence models

and y+ = 1.0
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Figure 6.37: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to SR for the full-scale propellers with no and 0.5 mm defects using the k − ω

model
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Figure 6.38: The non-dimensional velocities across the vortex core at X/R = 0.2386

for full-scale propellers with no and 0.5 mm defects using different turbulence models

and SR = 1.1
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Figure 6.39: Sensitivity of non-dimensional velocities across the vortex core at X/R =

0.2386 to the grid resolution (∆x) for the full-scale propellers with no and 0.5 mm

defects using the SST k − ω model
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Figure 6.40: Open-water performance of the full-scale propellers with no and 0.50 mm

defects at J = 1.102 using different turbulence models and grid sizes
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Figure 6.41: Uncertainties of predicted open-water results for the full-scale propellers

with no and 0.5 mm defect at J = 1.102 using different turbulence models
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domain, Dsp = 4.0, 6.0, 8.0, and 10.0 D. The radius of the rotating domain was

1.2 R, and the thickness was 0.8 D. The convergence of non-dimensional velocities

across the vortex core at X/R = 0.2386 with respect to Dsp is presented in Fig. 6.32.

The velocities across the vortex core at X/R = 0.2386 converge as the diameter of

the static domain increases. As shown in Fig. 6.32, a small difference can be observed

between θ = −0.15 and −0.05 radians for the full-scale propeller without defect when

using the smallest diameter of Dsp = 4.0 D. For the full-scale propeller with 0.50 mm

defect, a slight discrepancy can be found between θ = -0.05 and θ = 0.05 radians in

the axial and tangential velocities with Dsp = 4.0 D, while the radial velocity shows

differences in the region of θ ∈ (−0.20,−0.15) radians compared to the other cases.

Based on these findings, it is recommended to use a diameter of Dsp = 6.0 D for the

static domain in the subsequent cases.

As for the radius and thickness of the rotating domain, six cases with Rsp = 1.2,

1.3 and 1.4 R were examined for the full-scale propellers without defect and with

0.50 mm defect. The thickness of the rotating domain was 0.8 D. The simulations

were performed with y+ = 1.0 and the k − ω model. The sensitivities of the

non-dimensional velocities across the vortex core at X/R = 0.2386 to the radius of

the rotating domain, Rrp, for the full-scale propellers with no and 0.50 mm defects

are presented in Fig. 6.33. The results indicate that the predicted axial and radial

velocities are relatively insensitive to Rrp. Only slight oscillations can be observed in

the second valley of the tangential velocity. Thus, the radius of rotating domain is

recommended as Rsp = 1.2 R.

Similarly, the thickness of the rotating domain was examined to understand its

impact on the simulation results. Six additional cases were simulated with three
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different thickness, Tsp = 0.8, 1.0 and 1.2 D, for the full-scale propellers with no

and 0.50 mm defects. As shown in Fig. 6.34, the non-dimensional velocities were

independent of the thickness of the rotating domain. In the following studies, the

thickness of the rotating domain with Tsp = 0.8 D was used.

The grid density on the propeller blade, especially with the boundary layer, must

be sufficient so that the boundary layer can be well-predicted. To accurately resolve

the flow in the boundary layer, seven values of y+ less than 5, i.e., y+ = 0.500,

0.707, 1.000, 1.414, 2.000, 2.828 and 4.000 were examined along with four turbulence

models, k − ε, k − ω, SST k − ω and Spalart-Allmaras. The prism layer stretching

ratio was chosen as 1.2, and the gird size in terms of ∆x/D = 6.212E-4 was applied

in these cases. As an example, the sensitivities of the non-dimensional velocities

across the vortex core at X/R = 0.2386 to y+ for the full-scale propellers with no

and 0.50 mm defects using the SST k − ω model are shown in Fig. 6.35. The

downstream velocities showed insensitivity to the value of y+ when it was less than

4.0. Furthermore, the non-dimensional velocities across the vortex core at X/R =

0.2386 for full-scale propeller with 0.50 mm defect using different turbulence models

and y+ = 1.0 are shown in Fig. 6.36. It can be observed that the k − ε model yields

slight better results for the tangential velocity. The RMS errors of the other three

turbulence models, i.e., k − ω, SST k − ω and Spalart-Allmaras, are similar to each

other. Based on the results, the value of y+ = 1.0 was chosen for the following cases.

The effect of stretching ratio in the prism layer was investigated with SR = 1.1,

1.2, 1.3 and 1.4 for the full-scale propellers without defect and with 0.50 mm defect.

The value of y+ was set as 1.0, resulting in the first layer height of 2.103 × 10−6 m.

The estimated thickness of the boundary layer was 1.211 × 10−2 m, and the numbers
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of layers were 67, 39, 28 and 23 for SR = 1.1, 1.2, 1.3 and 1.4, respectively. Four

turbulence models, k − ε, k − ω, SST k − ω and Spalart-Allmaras, were applied in

these simulations. For examples, Fig. 6.37 shows the sensitivity of non-dimensional

velocities across the vortex core at X/R = 0.2386 to SR for the full-scale propeller

with no and 0.50 mm defects using the k − ω model. It can be seen that the stretching

ratio has no significant influence on the downstream velocity at X/R = 0.2386 for the

full-scale propeller with 0.50 mm defect. However, for the full-scale propeller without

defect, slight differences can be observed in the axial and tangential velocities between

θ = −0.20 and −0.10 radians when using a stretching ratio of SR = 1.4.

The non-dimensional velocities across the vortex core at X/R = 0.2386 with

SR = 1.1 using various turbulence models are presented in Fig. 6.38. For the k − ε

model, the radial velocity aligns well with the predictions of other turbulence models,

while smaller tangential velocity is noticeable in the tip vortex region. Furthermore,

a slight larger axial velocity is observed in the predictions only with no defect. This

deviation may be attributed to the large turbulence fluctuation velocity and numeri-

cal uncertainty associated with the fine grid near the wall when employing the k − ε

model (Salim and Cheah, 2009). The value of the prism layer stretching ratio less

than 1.3 was recommended, and SR = 1.2 was used in the subsequent studies.

To examine the effect of grid size on the prediction of the downstream flow velocity,

open-water and cavitation performance, convergence studies were performed using

five grid resolutions in terms of ∆x/D = 1.757E-3, 1.242E-3, 8.787E-4, 6.212E-4 and

4.393E-4, along with five turbulence models, k − ε, k − ω, SST k − ω, Spalart-

Allmaras and EB-RSM models. The value of y+ was set to 1.0, and the stretching

ratio of the prism layer was chosen as 1.2. In Fig. 6.39, as examples, the sensitivity
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Figure 6.42: Predicted cavitation numbers on the suction side in the tip region

(r/R ≥ 0.95) for the full-scale propellers with no and 0.5 mm defects at J = 1.102

using different turbulence models

of non-dimensional velocities across the vortex core at X/R = 0.2386 to grid size was

shown by comparing results based on the SST k − ω model. It was clear that the

velocities were not well predicted with the coarse grids with ∆x/D = 1.757E-3 and

1.242E-3 (the blue and red curves). However, as the grid size decreased, the numerical

velocities across the vortex core at X/R = 0.2386 converged.
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Figure 6.43: Uncertainties of predicted cavitation numbers on the suction side in the

tip region (r/R ≥ 0.95) for the full-scale propellers with no and 0.5 mm defects at

J = 1.102 using different turbulence models

For the open-water performance, the thrust and torque coefficients (KT and KQ),

along with the open-water efficiency (η0), for the full-scale propellers with no and

0.50 mm defects are shown in Fig. 6.40. These numerical solutions were obtained with

the different turbulence models and grid sizes. For reference, the model experimental

data of KT, 10KQ, and η0 by Chesnakas and Jessup (1998) are also included in these
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figures. It is important to note that the standard k − ε model is primarily suitable

for turbulent core flows and is coupled with wall functions to connect with solution

variables in the log-law region. This model performs well when the wall-adjacent cells

are in the log-law region, its accuracy is severely affected when the cells are resolved

in the viscous sub-layer, as the log-law formulae cease to be valid (Salim and Cheah,

2009). On the contrary, the Spalart-Allmaras and k − ω models are designed to

be applicable throughout the boundary layer, making them well-suited for fine grids

when the first wall-adjacent cells are in the viscous sub-layer (y+ < 5). To resolve the

flow in the boundary layer, the first grid of all simulations in present work is located

within the viscous sub-layer. As expected, the predicted open-water characteristics for

the full-scale propellers using the k − ω and SST k − ω models showed insignificant

differences, while large oscillations can be observed in the solutions with different grid

resolutions using the k − ε model.

To further evaluated the reliability of the predictions, uncertainties due to spa-

tial discretization were calculated using the LSR method. The estimated exact val-

ues of open-water results, i.e.,Φ0(KT), Φ0(10KQ) and Φ0(η0), for the full-scale pro-

pellers with no and 0.50 mm defects are summarized in Table 6.17. The experimental

data (Chesnakas and Jessup, 1998) of model-scale propeller was also included in the

table as a reference. It can be found that the LE defect of 0.50 mm has no significant

influence on the estimated exact open-water values using the k − ω, SST k − ω,

Spalart-Allmaras and EB-RSM models.

Uncertainties of KT, 10KQ and η0 with different turbulence models and grid sizes

estimated by the LSR method are presented in Fig. 6.41, in which hi denotes the

representative grid size of the i-th grid. As expected, the numerical uncertainties
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decrease as the grids were refined. Significant differences can be observed in the

results with the k − ε model.

In terms of the cavitation performance, the cavitation numbers on the suction

side in the tip region (r/R ≥ 0.95) for the full-scale propellers with no and 0.50 mm

defects using different turbulence models and grid sizes are presented in Fig. 6.42.

The convergence curves based on the LSR method are also shown in the figure. It

can be found that the cavitation number converged as the grid size decreased, and

similar results were obtained with the k − ω and SST k − ω models. The nu-

merical uncertainties of the cavitation numbers on the suction side in the tip region

(r/R ≥ 0.95) for the full-scale propellers with no and 0.50 mm defects using different

turbulence models and grid sizes are presented in Fig. 6.43, and the corresponding

estimated exact cavitation numbers, Φ0(σ), are given in Table 6.17. It should be

noted again that the experiments conducted by Chesnakas and Jessup (1998) were

carried out using the DTMB 5168 propeller model, which did not have LE defect.

Due to the scale effect and uncertainties in measurements, there are significant differ-

ences between the numerical results for the full-scale propellers and the experimental

data (Chesnakas and Jessup, 1998) obtained with the model-scale propeller.

Considering both accuracy and computing efficiency, it is crucial to choose an

appropriate grid size, especially in the vortex refinement zone. Based on the conver-

gence analysis, the grid size with ∆x/D no greater than 6.212E-4 is recommended.

Both the k − ω and SST k − ω models have shown good performance. Note that

the k − ω model, which was recognized as the best-practice for 2-D simulations, was

then used in the following simulations.

Based on the convergence studies, the best-practice settings for the full-scale pro-
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pellers are presented in Table 6.18. In comparison to the recommended settings for

the model-scale propeller, a slightly larger diameter of the static domain is recom-

mended for the full-scale propeller. In addition, y+ should be less than 2.0 for the

model-scale propeller. However, a larger value of y+ between 2.0 and 4.0 can be ap-

plied to full-scale propellers. The specific values used for full-scale propellers are also

provided in Table 6.18.
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Table 6.18: Summary of the best-practice settings for full-scale propellers

Item Variable Recommended setting Value

Static domain

Lup/D ≥ 2.0 2.0

Ldown/D ≥ 4.0 4.0

Dsp/D ≥ 6.0 6.0

Rotating domain
Rrp/R ≥ 1.2 1.2

Trp/D ≥ 0.8 0.8

Mesh size

SR [1.1, 1.3] 1.2

y+ [0.5, 4.0] 1.0

∆x/D ≤ 6.212E-4 6.212E-4

Turbulence model
k − ω

k − ω
SST k − ω

6.7.2.2 Simulations for the Full-Scale Propellers with Best-Practice Set-

tings

Using the best-practice settings provided in Table 6.18, simulations were conducted

for the full-scale propellers with no defect, 0.10 mm defect, 0.25 mm defect and

0.50 mm defect at various advance ratios ranging from 0.921 to 1.205. Predicted

velocities downstream, open-water performance, residuals of simulation, pressure co-

efficient, cavitation performance, and the reduction of cavitation inception speed, are

presented and discussed in the following subsections. To offer a reference, the numer-

ical results obtained for the model-scale propeller using the recommended settings

from Table 6.12 are also included.
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Downstream velocities. With the advance ratio of J = 1.102, the comparisons

of three velocity components (Vx/U∞, Vt/U∞ and Vr/U∞) for the full-scale propellers

with and without LE defects at downstream section of X/R = 0.2386 are shown in

Figs. 6.44 to 6.46. The results demonstrate that the tip vortex, wake, and blade-to-

blade flow were well simulated using the present recommended best-practice settings

from Table 6.18. The flow patterns for the full-scale propellers with and without

leading-edge defects are similar.

In Fig. 6.44, the axial velocity was accelerated in the blade-to-blade region, with

the maximum axial velocity observed in the tip vortex region. Regarding the tangen-

tial velocity at the downstream of X/R = 0.2386 (see Fig. 6.45), it was significantly

reduced by the tip vortex. Nevertheless, due to the non-slip boundary condition

applied to the propeller hub, the minimum value of Vt/U∞ was found in the region

close to the propeller hub. The tip vortex further exhibits a notable influence on the

radial velocity, as shown in Fig. 6.46, resulting in a small radial velocity within the

tip vortex region.

In addition, the primary velocity fields of the full-scale propellers with and without

defects are given in Fig. 6.47. It also can be seen that the predicted primary velocity

fields with different LE defects are visually similar to each other. As expected, the

primary velocity remains relatively small in the region close to hub. The wakes are

clearly visible as the curving green spokes in the plot of low primary velocity. Five

tip vortices with the low primary velocity were also well captured.

For a thorough examination of the effects of the LE defects on the tip vortex

structure, Fig. 6.48 present the computed non-dimensional axial, tangential and radial

velocities (Vx/U∞, Vt/U∞ and Vr/U∞) in the rotating frame across the tip vortex core

198



(a) Model scale (Experimental) (b) Model scale (present work)

(c) Full scale (no defect) (d) Full scale (0.10 mm defect)

(e) Full scale (0.25 mm defect) (f) Full scale (0.50 mm defect)

Figure 6.44: Comparison of non-dimensional axial velocity, Vx/U∞, contour atX/R =

0.2386 and J = 1.102 for full-scale propellers with and without defects
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(a) Model scale (experimental) (b) Model scale (present work)

(c) Full scale (no defect) (d) Full scale (0.10 mm defect)

(e) Full scale (0.25 mm defect) (f) Full scale (0.50 mm defect)

Figure 6.45: Comparison of non-dimensional tangential velocity, Vt/U∞, contour at

X/R = 0.2386 and J = 1.102 for the full-scale propellers with and without defects
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(a) Model scale (experimental) (b) Model scale (present work)

(c) Full scale (no defect) (d) Full scale (0.10 mm defect)

(e) Full scale (0.25 mm defect) (f) Full scale (0.50 mm defect)

Figure 6.46: Comparison of non-dimensional radial velocity, Vr/U∞, contour at

X/R = 0.2386 and J = 1.102 for the full-scale propellers with and without defects
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(a) Model scale (experimental) (b) Model scale (present work)

(c) Full scale (no defect) (d) Full scale (0.10 mm defect)

(e) Full scale (0.25 mm defect) (f) Full scale (0.50 mm defect)

Figure 6.47: Comparison of non-dimensional primary velocity, Vs/V∞, contour at

X/R = 0.2386 and J = 1.102 for the propeller model and full-scale propellers with

and without defects
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Figure 6.48: Predicted Vx/U∞, Vt/U∞ and Vr/U∞ across the cortex core at X/R =

0.1756 and 0.2386 for J = 1.102 using the best-practice settings
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Figure 6.49: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ at

X/R = 0.1756 and J = 1.102 using the best-practice settings
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Figure 6.50: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ at

X/R = 0.2386 and J = 1.102 using the best-practice settings
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Figure 6.51: Predicted circumferentially averaged Ux/U∞, Ut/U∞ and Ur/U∞ at

X/R = 0.3963 and J = 1.102 using the best-practice settings
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Figure 6.52: Predicted open-water performance of the propeller model and full-scale

propeller with no defect at different static pressures using the best-practice settings
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Figure 6.53: Predicted open-water performance of the full-scale propellers without

and with defects at p0 = 22.0 psi using the best-practice settings
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at two downstream sections, X/R = 0.1756 and 0.2386. Overall, the results showed

that the LE defects had no significant influence on the velocities across the tip vortex

core.

The flow outside the tip vortex region was evaluated by examining the circumfer-

entially averaged axial, tangential, and radial velocities (Ux/U∞, Ut/U∞, and Ur/U∞)

in the stationary frame. The predicted circumferentially averaged Ux/U∞, Ut/U∞

and Ur/U∞ at different sections of X/R = 0.1756, 0.2386 and 0.3963 are shown in

Figs. 6.49 to 6.51. It can be observed that there was no significant difference between

the predictions for the propeller model and full-scale propellers.

Open-water performance. The open-water performance of the full-scale pro-

pellers with and without LE defects was further examined at various advance ra-

tios ranging from 0.921 to 1.205. Two static pressures, p0 = 16.5 psi and 22.0 psi,

were considered using the recommended settings. The predicted thrust coefficients

(KT), torque coefficients (KQ), and open-water efficiencies (η0) for the propeller model

and the full-scale propeller without defects at different static pressures are shown in

Fig. 6.52. The results indicate that the influence of static pressure on the open-water

performance is insignificant. It is also observed that the numerical results for the

propeller model are slightly smaller than those for the full-scale propeller without

LE defect. The numerical results of the full-scale propellers without and with LE

defects at p0 = 22.0 psi are presented in Fig. 6.53. The results show that there is no

significant difference in open-water performance for the propellers with and without

LE defects at the range of advance ratios.

As an example, Fig. 6.54 shows the iteration histories of the thrust and torque

coefficients, KT and KQ, for the full-scale propellers with and without defects at
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Figure 6.54: Iteration histories of the thrust coefficient (KT), torque coefficient (KQ)

and negative minimum pressure coefficient (−Cpmin
) at J = 1.102

J = 1.102. The negative minimum pressure coefficient (−Cpmin
) on suction side in

tip region (r/R ≥ 0.95) is also included. The figures show that the simulations

reach convergence after approximately 10,000 iterations. Table 6.19 presents the final

converged results of KT, 10KQ, and −Cpmin
, along with the corresponding changes in

the last two iterations. It can be observed that all the changes are smaller than 10−4,

indicating that the convergence criteria is satisfied.

Residuals. The normalized root mean squared values of residuals for all cells are

used to monitor the behavior of the solvers during each iteration. Figure 6.55 shows
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Table 6.19: The thrust coefficient (KT), torque coefficient (KQ) and negative mini-

mum pressure coefficient (−Cpmin
) on the suction side in tip region for the full-scale

propellers with and without defects at J = 1.102

Item No defect 0.1 mm defect 0.25 mm defect 0.5 mm defect

KT 0.30228 0.30230 0.30241 0.30379

10KQ 0.74818 0.74827 0.75243 0.75702

−Cpmin
2.86044 2.82213 2.82495 2.83143

Change in KT between
7.1 × 10−8 3.6× 10−8 3.0 × 10−8 2.5× 10−8

the last two iterations

Change in 10KQ between
1.3 × 10−7 5.9× 10−8 5.3 × 10−8 3.3× 10−8

the last two iterations

Change in −Cpmin
between

3.3 × 10−6 1.4× 10−6 1.2 × 10−5 1.1× 10−6

the last two iterations

the residuals of simulations for the full-scale propellers with no defect, 0.10 mm defect,

0.25 mm defect, and 0.50 mm defect at J = 1.102 as an example. As seen in the

figures, there is a three orders of magnitude reduction in all residuals except for that

of ”X momentum”. It should be noted that while the residuals are indicative of

convergence, they are not the only convergence criteria employed in this study, as the

initial values can have a significant influence on the residuals.

Cavitation performance. Figure 6.56 shows the comparison of cavitation num-

bers in the tip region (r/R ≥ 0.95) on the suction side for the propeller model and

full-scale propeller with no defect at two static pressures, p0 = 16.5 and 22.0 psi.
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Figure 6.55: Residuals of simulations for the full-scale propellers with and without

defects at J = 1.102 using the best-practice settings

Slight differences are seen at two static pressures for the predicted cavitation num-

bers in the tip region on the suction side. The cavitation numbers for the full-scale

propeller without defect are generally greater than those for the propeller model. As

shown in Figs. 6.57 and 6.58, the results indicate that the 0.50 mm LE defect leads

to an increase in cavitation numbers in the tip region, while there are no significant

differences observed between the cases of no, 0.10 mm and 0.25 mm defects.

The cavitation numbers on the blade sections of r/R ∈ [0.5, 0.9] for the full-scale

propellers without and with defects are present in Fig. 6.59. As expected, similar
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Figure 6.56: Cavitation numbers in the tip region (r/R ≥ 0.95) on the suction side

with difference static pressures
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Figure 6.57: Cavitation numbers in the tip region (r/R ≥ 0.95) on the suction side

for the full-scale propellers without and with defects at p0 = 22.0 psi

numerical results were obtained with different static pressures. Significant differences

can be found between the full-scale propellers without defect and with 0.50 mm

defect and the cavitation number decreases as the size of the defect decreases when

J is smaller than 1.0.

Effect of LE defect on cavitation inception speed. Based on the predicted
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Figure 6.58: Cavitation numbers in the tip region (r/R ≥ 0.95) on the suction side

for the full-scale propellers without and with defects at p0 = 16.5 psi
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Figure 6.59: Cavitation numbers on the blade sections of r/R ∈ [0.5, 0.9] for the

full-scale propellers without and with defects

cavitation numbers shown in Fig. 6.59, Fig. 6.60 presents the comparison of the reduc-

tion percentages in cavitation inception speed on the blade sections of r/R ∈ [0.5, 0.9]

for the full-scale propellers with LE defects. The cavitation inception speed reduc-

tion ratios (ISR) are further provided in Table 6.20. From the predicted cavitation

numbers and reductions in cavitation inception speed, it can be seen that the effect
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Figure 6.60: Cavitation inception speed reduction ratios (ISR) on the blade sections

of r/R ∈ [0.5, 0.9] for the full-scale propellers without and with defects

of LE defect is obvious on the blade sections of r/R ∈ [0.5, 0.9].

For the full-scale propeller with 0.50 mm defect, the reduction in inception speed

can reach to 43.83% at the advance ratio of J = 0.992 and at the static pressure

of 22.0 psi. Within the advance ratio ranging from 0.921 to 1.034, the reduction

increases with the size of LE defect. In summary, the LE defects significantly reduce

the cavitation inception speeds at the investigated advance ratios. The maximum

ISR is similar to that in the 2-D studies (Jin et al., 2020).

Pressure. The pressure distributions on the pressure side of the propeller at

J = 1.102 are presented in Fig. 6.61. The numerical results of the propeller model

by Hsiao and Pauley (1999). It can be observed that there is no significant difference

in the results for the propeller model and the full-scale propellers. It can be observed

that there is no significant difference in the results for the full-scale propellers with

and without LE defects. The discrepancies between present results and the numerical

model solutions from Hsiao and Pauley (1999), especially in the regions near the shaft
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(a) Model scale (Hsiao and Pauley, 1999) (b) Model scale (present work)

(c) Full scale (no defect) (d) Full scale (0.10 mm defect)

(e) Full scale (0.25 mm defect) (f) Full scale (0.50 mm defect)

Figure 6.61: Comparison of Cp on the pressure side for the full-scale propellers without

and with defects at J = 1.102
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(a) Full scale (no defect) (b) Full scale (0.10 mm defect)

(c) Full scale (0.25 mm defect) (d) Full scale (0.50 mm defect)

Figure 6.62: Comparison of Cp close to the leading-edge on the section of r = 0.70 R

for the propeller model and full-scale propellers without and with defects at J = 1.102

and tip, are likely due to the cap used in present work and the application of different

turbulence models.

As an example, Figure 6.62 shows the pressure contours on the section of r/R= 0.70,

near the leading-edge of the 5th blade, for the full-scale propellers with and without

defects at J = 1.102. The maximum pressure was observed in the LE region. It is
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Figure 6.63: Comparison of Cp on the blade section of r = 0.70 R for the full-scale

propellers without and with LE defects at J = 1.102
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evident that the LE defects lower the pressure, particularly at the end of the 0.50 mm

defect.

To further explain the mechanism of how LE defects affect the cavitation inception,

their influence on the pressure distribution is given in Fig. 6.63, as an example, which

shows the comparison of the predicted pressure coefficient, Cp, on the blade section

of r = 0.70 R for the full-scale propellers without and with LE defects at J = 1.102.

The blade sections have been expanded into a local 2-D coordinate system, xoy, with

the origin located at the leading edge.

In Fig. 6.63a, the blade section with no defect exhibits a negative minimum pres-

sure coefficient of −Cpmin
= 1.177 at x/c0.7 = 0.68 of the suction side. Note that

the cavitation occurs when −Cpmin
≥ σ, and the condition of cavitation inception is

−Cpmin
= σ. The location with the minimum pressure experiences cavitation first.

It also can be observed that there was no significant difference in the pressure dis-

tribution between the sections no and 0.10 mm defects. The 0.25 mm defect slightly

reduced pressure at its end, as shown in Fig. 6.63b, the negative minimum pressure

coefficient, −Cpmin
= 1.176,occurs at a location similar to that of no defect.

Figure 6.63c shows a significant pressure reduction for the 0.50 mm defect. Com-

pared to the results with no, 0.10 mm and 0.25 mm defects, a larger negative min-

imum pressure coefficient, −Cpmin
= 1.765, was obtained at the end of LE defect

(x/c0.7 = 0.00212). It means that such a blade section with 0.50 mm defect would

experience cavitation earlier than the others with no, 0.10 mm and 0.25 mm defects.

The reduction in inception speed at the blade section of r/R = 0.70 can reach

18.33% with the advance ratio of J = 1.102. Detailed calculations for the reduction

in cavitation inception speed on the blade section of r/R = 0.70 are summarized in
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Table 6.21.

Table 6.21: Calculation details for the cavitation inception speed reduction ratios on

the blade section of r/R = 0.70 at J = 1.102

Defect −Cpmin
Percentage reduction in inception speed (%)

No defect 1.177 −

0.10 mm 1.177 0.00

0.25 mm 1.176 -0.04

0.50 mm 1.765 18.33
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

A novel numerical simulation has been carried out to investigate the effects of leading-

edge (LE) defect on marine propeller cavitation performance in this thesis. All the LE

defects examined are within ISO 484 Class S tolerances. Simulations were performed

with the steady RANS solver in Star-CCM+. Comprehensive convergence studies

were carried out to examine the effects of RANS simulation parameters on results.

The best-practice settings were recommended for both 2-D and 3-D simulations.

2-D simulations were first carried out for the DTMB modified NACA-66 a = 0.8

sections in 1 m chord length without and with LE defects using the structured grids.

The 1 m chord length represents the chord length of a full-scale propeller at its 0.7 R

section. Effects of the computational domain size, grid distribution, grid resolution,

and turbulence model on the solutions were examined. Based on the results of con-

vergence studies, best-practice settings were determined for simulations of 2-D foils
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using Star-CCM+. With the best-practice settings for the 2-D simulations, stud-

ies were carried out to verify the minimum pressure coefficient envelops of the foil

(t/c = 0.2, f/c = 0.02) without defect. Numerical results were generally in good

agreement with potential-flow solutions by Brockett (1966) and the RANS solutions

with ANSYS CFX and TRANSOM of Hally (2018).

CFD simulations using the best-practice settings were extended to the foils (t/c =

0.0416, f/c = 0.014) with three different sizes of defects near the LE, represent-

ing three levels of manufacturing tolerances within Class S. The predicted minimum

pressure coefficients for the NACA-66 sections without and with LE defects were com-

pared at various angles of attack. Comparative studies showed that the LE defects of

various sizes within ISO Class S have large effects on the cavitation performance of

2-D foil sections in terms of reduced cavitation inception speed in the typical design

range of angle of attack. As a consequence, such a defective section would experience

cavitation at a lower speed than the design one. Smaller defects than Class S max-

imum deviation show a similar effect. The defects can also cause pressure drops at

the furthest-forward edge of a LE defect.

To investigate the differences in 2-D and 3-D solutions and further quantify the

effects of LE defect in future validation studies, 3-D RANS studies on the DTMB

modified NACA-66 (a = 0.8, f/c = 0.014, t/c = 0.0416) foils of 1 m span with

and without LE defect were conducted with the structured grids. The reason for

choosing 1 m span is that the foils with and without LE defect were intended to

be tested in a cavitation tunnel with 1 m by 1 m test section. Effects of RANS

modelling parameters, such as domain size, grid aspect ratio, first-grid spacing, y+,

and turbulence model, on the solutions were carefully examined. Impact of foil span
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on solution at the mid-span section was also investigated. Using the proposed best-

practice settings for the foils of 1 m span, 3-D simulations were carried out for the

foils in a cavitation tunnel without and with LE defects and at various angles of

attack. The predicted cavitation buckets for foils of 1 m span were generally in good

agreement with those from 2-D simulations. Both 2-D and 3-D simulations show that

the effect of LE defect is generally obvious, especially for the 0.5 mm defect. The

maximum reduction in inception speed can reach to 44%.

Due to the limitation of the foil support mechanism of cavitation tunnel, the span

of 0.525 m was applied to minimize the force and moment on the foil. An extension

of previous studies on the effects of LE defects on cavitation performance of the

modified NACA-66 (a = 0.8, f/c = 0.014, t/c = 0.0416) foils were carried out in

the cavitation tunnel. The dimensions of cavitation tunnel at Brodarski Institut in

Zagreb (Gospodnetic, 2022) were applied. Due to the complex geometry of end plates

attached to the foil of 0.525 m span, a hybrid grid with structured meshes around the

foil and unstructured meshes near the end plates was generated. Convergence studies

were necessary when using a hybrid grid. Similar to the study of the foil with 1 m

span, effects of RANS modelling parameters, such as domain size, grid aspect ratio,

first-grid spacing, y+, and turbulence model, on the solutions were carefully examined.

With the best-practice settings for the foil of 0.525 m span, the predicted cavitation

buckets for foils without and with LE defects of 0.525 m span were obtained. It was

found that the cavitation buckets were narrowed by the LE defects, especially for the

0.5 mm defect, which means that the incipient cavitation speed was reduced by the

LE defect. However, the shapes of cavitation buckets were generally different with

the 2-D and 3-D simulations of foil with 1 m span. As a result of the attached end
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plates and support shafts, significant vortices can be observed in the downstream of

the cavitation tunnel. For the foils with 0.525 m span, the reduction in inception

speed can reach to about 50% for the foil with 0.5 mm defect around α = 2◦.

Furthermore, the preliminary validation studies for the foils of 0.525 m span with

no defect and 0.5 mm defect were also carried out on the cavitation buckets. In

the cavitation tests (Gospodnetic, 2022), inflow velocity at each angle of attack was

varied (increased/decreased) until cavitation was observed. The same approach was

applied in 3-D RANS simulations with the recommended best-practice settings. The

results show that the shapes of cavitation buckets are generally similar to those of

the experimental ones (Gospodnetic, 2022). For the foils at positive angles of attack,

the results indicate that the LE defect narrowed the cavitation bucket in comparison

to the foil with no defect.

3-D RANS studies on the foils in a cavitation tunnel were then extended to the full-

scale propellers with and without LE defects. The DTMB 5168 propeller model was

used to for the geometry of full-scale propellers. By employing the steady RANS solver

in Star-CCM+, thorough convergence studies were carried out for the open-water

simulations of the model-scale propeller first and then for the full-scale propellers

without defect and with 0.5 mm defect at the advance ratio of J = 1.102. Effects

of RANS modelling parameters, such as domain size, grid size, stretch ratio, first-

grid spacing, y+, and turbulence model, on the solutions were carefully examined.

Numerical uncertainties due to spatial discretization were quantified with the least

square root (LSR) method of Eça and Hoekstra (2014). Based on the results of

convergence studies, the best-practice settings for open-water propeller simulations

with the steady RANS solver were summarized.

225



With the best-practice settings for the propeller, validation studies were first

carried out for the model-scale propeller. The open-water simulations were then

performed for the full-scale propellers with no, 0.10 mm, 0.25 mm and 0.50 mm

defects. Two static pressure conditions (p0 = 16.5 psi and 22.0 psi) were applied.

In the model-scale validation studies, the predicted velocities across the tip vortex

at X/R = 0.1756 and 0.2386 sections shown good agreement with the experimental

ones (Chesnakas and Jessup, 1998). In the case of the full-scale propeller, it was found

that the influence of the LE defect on the downstream velocity was insignificant.

In the validation studies of the propeller model, the computed thrust and torque

coefficients, as well as open-water efficiency, are in good agreement with the experi-

mental data (Chesnakas and Jessup, 1998). The static pressure had little impact on

the open-water performance. The predictions for the propeller model were slightly

smaller than those for the full-scale propeller with no defect. Furthermore, no sig-

nificant differences were found between the open-water performance for the full-scale

propellers with and without LE defects at various advance ratios.

The cavitation performance was also examined, focusing on the cavitation num-

bers in the tip region on the suction side of the blade for sections of r/R ∈ [0.5, 0.9]

with LE defects. Slight differences in the predicted cavitation numbers were seen at

two static pressure conditions. The predicted cavitation numbers for the full-scale

propeller without defects were generally greater than those for the propeller model.

Numerical results showed that the full-scale propeller with 0.50 mm defect resulted

in increased cavitation numbers in the tip region, while no significant differences were

observed between the cases of no, 0.10 mm, and 0.25 mm defects. For the cavitation

numbers on the blade sections of r/R ∈ [0.5, 0.9], significant differences were found
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between the full-scale propellers without defect and those with 0.50 mm defect. Par-

ticularly, the cavitation number decreased as the size of the defect decreased when J

was smaller than 1.0. The cavitation buckets was narrowed by the LE defects that

are within ISO 484 Class S tolerance.

Based on the predicted cavitation buckets, the reduction percentages in cavitation

inception speed on the blade sections of r/R ∈ [0.5, 0.9] were calculated for the full-

scale propellers with LE defects. Larger leading-edge defect resulted in a greater

increase in the cavitation number, indicating a higher reduction in the inception speed.

The maximum reduction in inception speed (43.83%) was observed at J = 0.992 for

the full-scale propeller with 0.50 mm defect. The effects of LE defect on ISR are in

line with the findings in 2-D studies, in which the maximum reduction in inception

speed for the foil of 1.0 m chord length with 0.50 mm LE defect was more than 40%.

The results demonstrate that the LE defects within the current ISO 484 Class S

still have significant effect on cavitation performance. Note that propeller cavitation

constitutes a major source of noise for ferries and cruise vessels at normal operating

speeds. The noise levels from a ship jump substantially when propeller cavitation

begins. To circumvent propeller noise and address the manufacturing defects, it is

recommended to set the leading-edge defect tolerance within 0.10 mm for Class S to

enhance the existing ISO 484 standards. Moreover, to minimize manufacturing toler-

ances, the adoption of more accurate CNC milling processes, capable of eliminating

manual grinding of blade edges and tips, is recommended. This can help improve

the precision and consistency of propeller manufacturing, ultimately enhancing per-

formance and reducing noise emissions.
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7.2 Novel Contributions

The novel contributions of this research are summarized as below:

1. Comprehensive numerical studies were carried out to understand the effects

of LE defect on the cavitation performance of marine propeller. The studies

showed that the LE defect within ISO 484 Class S tolerances would narrow

the cavitation bucket. Larger LE defect resulted in a greater increase in the

cavitation number, indicating a higher reduction in the inception speed. The

maximum reduction in inception speed could reach to more than 40%.

2. Extensive convergence studies were conducted to assess the impacts of RANS

simulation parameters on the predictions of the DTMB modified NACA-66

sections and DTMB 5168 propellers in model and full scales. The best-practice

settings were proposed for both 2-D and 3-D simulations with the steady solver

in Star-CCM+. Such recommendations can be applied for the other foils and

propellers.

7.3 Recommendations for Future Work

The following aspects need to be addressed in future work.

7.3.1 Numerical Aspects

Simulations for other propeller manufacturing tolerances. This study focused

on examining the effects of leading-edge defects on the cavitation performance of

marine propeller. In the next phase, numerical simulations for the other propeller
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manufacturing defects, such as those in thickness and camber distribution, will be

carried out using the recommended best-practice settings.

Self-propulsion simulation considering LE defect. In this dissertation, the

numerical simulations were performed with the uniform incoming flow. However, the

full-scale ship propellers are generally working at the stern of the vessels. The effects

of no-uniform wake field and propeller-hull-rudder interactions should be considered

when predicting cavitation performance. In addition to the open-water simulation

with non-uniform incoming flow, the self-propulsion simulation for the full-scale ship

with the detailed propeller considering LE defect should be carried out in the future

work.

Unsteady simulation. All the simulations were carried out with the steady RANS

solver in present studies. It took some time for a cavity to develop and become visible

in the tests. This was not considered in the numerical simulations with the steady

RANS solver. In future studies, the unsteady solver is advisable for simulating real

cavitation development.

Cavitation models. For a single-phase analysis, such as the open-water simula-

tion conducted in this study, cavitation inception can be assessed by examining the

minimum pressure. Note that the cavitation involves a phase change at the interface

between the liquid and gas phases. The two-phase flow simulation with cavitation

model could capture the dynamics at this liquid-gas interface, lead to a larger value

of the minimum pressure than single-phase simulation (Hanimann et al., 2016; Perić,

2022). The accuracy of predicted cavitation number could then be improved by

the application of cavitation model. It would be valuable to investigate the impact
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of the LE defect using cavitation models, for example, the Full Rayleigh–Plesset

model (Singhal et al., 2002) and the Schnerr-Sauer model (Sauer and Schnerr, 2001).

Cavitation inception criteria. In this study, cavitation is considered to occur

when the cavitation number is equal to the negative minimum pressure at a single

point. However, in future work, it may be worthwhile to investigate other cavitation

inception criteria, such as a combination of the minimum pressure and the surface area

of the foil over which the minimum pressure occurs. Comparisons between cavitation

buckets generated using different cavitation inception criteria could provide valuable

insights into the cavitation behavior.

Effect of end plate. Significant effects of the end plate on both cavitation bucket

and cavitation inception speed were observed in the numerical results, further numer-

ical studies should be carried out for different sizes of end plates.

7.3.2 Experimental Aspects

Quantification of experimental uncertainty. In the preliminary validation stud-

ies for the foils of 0.525 m span, the experimental cavitation buckets were based

on observation. It is essential to quantify the experimental uncertainties. This will

facilitate the development of improved best-practice settings.

Tests in the typical design range of angle of attack. The predictions indicated

that the LE defect had a significant effect on cavitation inception speed in the typical

design range of angle of attack (−1.5◦ < α < 2◦) for a moderately loaded propeller.

However, the majority of experimental data from Gospodnetic (2022) fall outside
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this range. Conducting further tests in the typical design range of angle of attack is

recommended.

Sea trial. While the quality of CFD predictions has been confirmed through numer-

ous comparisons with numerical and experimental data from propeller models, the

accuracy of full-scale propeller simulations remains uncertain. The confidence in full-

scale simulations could be improved with the availability of more data obtained from

comprehensive full-scale measurements. All the LE defects considered for full-scale

propellers in this thesis are within ISO 484 Class S. It should also be noted that such

LE defects cannot be applied to the propeller model since they are very small. To

gain a better understanding of the effects of LE defects on the cavitation performance

of marine propellers, sea trials should be conducted.
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