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Abstract

The design of marine vessels and structures operating in regions where ice is present, must

consider the loads transferred to the structure upon impact with an ice feature. The flexural

strength of ice is an important material property and can have significant impact on the

loads transferred to a structure. Flexural strength is generally considered to be dependent

on the size or scale of the sample (often reported as beam volume), ice temperature and

brine volume (in the case of sea ice), however the influence of temperature and beam volume

have been debated in the literature. Conventionally flexural strength was often modelled as

a constant (i.e. average strength), or was modelled as a single parameter or dual parameter

(sea ice only) empirical relationship. Employing an extensive database of flexural strength

measurements, with over 2000 freshwater and 2800 sea ice measurements, machine learning

(ML) algorithms were utilized to define a relationship between these ice parameters and the

measured flexural strength. The implementation of ML algorithms was able to highlight a

link between freshwater flexural strength and ice temperature, a relationship often ignored or

not perceivable in existing models. When considering sea ice, the use of ML algorithms were

able to highlight a dependence of flexural strength on scale, brine volume and temperature.

These findings have the potential to impact the design of ice strengthened structures, and

highlights the importance of accurately recording these parameters when performing tests

in the either the field or laboratory.
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1 Introduction

1.1 Overview

The design of marine structures and vessels intended to operate in ice-prone waters must

take into account the global and local loads resulting from impacts with an ice feature. In

reference to level ice loads, the amount of force transferred to the structure is the lesser of

the environmental driving forces (wind, waves, current, etc.) or the ice strength. Ice failure

will generally occur in either compression or tension. Loading a sheet in tension is generally

the result of buckling or bending the ice sheet, resulting from an eccentric loading scenario

such as level ice impacting an inclined plane. The failure of ice in flexure is dependent upon

the flexural strength of the ice. The flexural strength of ice is significantly lower than the

compressive strength (Sanderson (1988), Timco and O’Brien (1994)) resulting in lower loads

being transferred to the structure. Stationary structures such as bridge piers and offshore

wind turbines as well as ice-breaking vessels will often take advantage of the lower flexural

strength of ice by implementing sloping elements at the waterline to promote the failure of

ice in flexure. As a result the flexural strength of ice holds significance in the engineering

and design of offshore structures and vessels.

1.2 Purpose

The geophysical nature of ice leads to a material prone to the inclusion of natural flaws and

impurities. The effects of the physical properties of the ice and how they affect the measured

flexural strength of both freshwater ice and sea ice are of interest to scientists and engineers
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alike. In the current work special attention is given to the effects of temperature, beam

volume (i.e. scale effects) and brine volume (when considering sea ice) and their impact on

the flexural strength of ice.

There are theoretical and empirical evidence that suggest these three ice properties should

have an appreciable impact on the flexural strength of an ice sample. However, with respect

to sea ice, only brine volume has garnered widespread acceptance as a governing factor in de-

termining flexural strength (e.g. Weeks and Assur (1967), Dykins (1968), Weeks and Assur

(1972), Tozawa and Taguchi (1986), Timco and O’Brien (1994) and Frederking and Sudom

(2013)). The influence of scale effects is debated among researchers (e.g. Frederking and

Sudom (2013), Lau et al. (2001), Williams and Parsons (1994), Maattanen (1975), Lavrov

(1971), Blanchet et al. (1997), Timco and O’Brien (1994), Parsons et al. (1992) and Parsons

and Lal (1991)), as is the influence of temperature (e.g. Weeks and Assur (1972), Maattanen

(1975), Gow (1977), Lainey and Tinawi (1984) and Gow and Ueda (1989)) . When consider-

ing freshwater ice few models exist for estimating flexural strength, however, most available

models are single parameter and limited to either temperature or scale dependence.

The main objective of this thesis is to investigate the influence of scale effects, brine volume

(for sea ice only) and temperature on the flexural strength of ice through the application

of Machine Learning (ML) algorithms. ML has been employed across many disciplines and

fields of study with great success, from analysis of medical diagnostic imagery, facial recog-

nition, natural language processing and recommender systems tailoring the advertisements

seen by users online. ML has a lot to offer and is often perceived as a solution to every

problem, however ML is not always the best tool for the job. The goal of this research

has been to determine the applicability of ML to the field of ice mechanics, in particular

the estimation of flexural strength. The scope of work for this research has been defined

as:
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� Review standard measurement methodologies employed during laboratory and in situ

field testing.

� Conduct a review of previous studies related to the topics of ice mechanics and flexural

strength

� Examine the effects of scale, brine volume and temperature on recorded flexural strength

data

� Develop a machine learning model for flexural strength predictions applicable to fresh-

water ice and sea ice

� Compare the machine learning models to previous empirical models and discuss whether

the application of machine learning can offer any improvements over the existing mod-

els

� Discuss the overall results of the research and provide recommendations for further

research

1.3 Outline of thesis

A literature review was conducted investigating the influence of scale effects, brine volume

and temperature on the flexural strength of ice, results of this review are presented in Chapter

2. In Chapter 3 a flexural strength database is introduced along with the preprocessing steps

taken to ensure the quality of the data. An overview of ML and several common algorithms

are introduced in Chapter 4. Chapter 5 contains a discussion on the analysis of flexural

strength of freshwater ice as a function of scale and temperature. In Chapter 6, the focus

shifts to sea ice and a discussion of the analysis of sea ice flexural strength as a function

of scale, brine volume and temperature. A summary including a discussion of the main

conclusions and future research considerations are presented in Chapter 7.
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2 Literature Review

In the following sections a review of common ice failure methods will be presented with

particular attention focusing on flexural failure and associated flexural strength. This will

be followed by a brief review of simple beam theory and three of the most common methods

to experimentally measure flexural strength of an ice beam. Finally a brief discussion on

the physics of ice growth and the theoretical and experimental evidence supporting the

relationship between ice properties (beam volume, brine volume and ice temperature) and

flexural strength.

2.1 Ice Failure Methods

There are multiple mechanisms by which an ice sheet can fail upon interacting with a struc-

ture. In its simplest form the failure of an ice sheet can be reduced to failure resulting from

loading the ice sheet in compression or tension. When level ice interacts with a structure,

a compressive force is generated when the driving force (eg. wind, waves, tides etc.) is in

the same plane as the resulting reactive force from the structure. In order for an ice sheet

to experience a tensile load, a portion of the reactive force must be out of plane with the

driving force resulting in an eccentric loading. An example of such a reactive force would be

the horizontal and vertical forces generated when level ice impacts a sloped-walled structure.

In this case the resulting vertical load puts the ice sheet in a state of flexure having tension

in either the upper or lower fibres depending on direction of the slope.

According to Sanderson (1988) there are six ice failure mechanisms generally associated with

compressive loading, which can be separated into global modes including creep, buckling,
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radial and circumferential cracking, and local modes of spalling and crushing as shown in

Figure 2.1. The failure mechanisms are generally dependent upon the indentation rate

(U/D) and the aspect ratio (D/h), where U is the speed at which the incoming ice sheet and

indenter are interacting, D is the width of the indenter (or structure) and h is the thickness

of the ice sheet.

(a) Creep (b) Radial cracking (c) Circumferential cracking

(d) Buckling (e) Spalling (f) Crushing

Figure 2.1: Ice failure mechanism (Sanderson, 1988)

The failure of an ice sheet in pure creep, i.e. without cracking, requires very low indentation

rates which, in nature, are generally only observed in glacial interactions. Sanderson (1988)

states that regardless of the geometry or aspect ratio if the indentation rate is low enough

the deformation will be entirely creep. In thin ice sheets elastic deformations in the form

of buckling can be observed within an ice sheet and generally culminates in circumferen-

tial cracking. In addition to buckling the formation of circumferential cracks can also be

the result of an eccentrically loaded ice sheet (Sanderson, 1988), such as the result of an

interaction with a sloping surface. Radial cracking is described by Palmer et al. (1983) as

“the growth of vertical cracks, directed radially from the contact region and running through

the whole thickness”. Ice too thick to buckle generally begins to experience compressive ice

failure when interacting with a vertically walled structure. This compressive failure typically

results in localized crushing generating fine-grained particles, or spalling as a result of crack

propagation to the top and bottom surfaces of the ice sheet.
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When an ice sheet is subjected to bending the fracture mechanics are altered, and failure

of the sheet is generally due to tension in the extreme fibres. The flexural strength of ice

is significantly lower than the compressive strength (Sanderson (1988), Timco and O’Brien

(1994)) resulting in lower loads being transferred to the structure. While it may not make

sense in every application, the use of sloping elements at the waterline should be consid-

ered for all structures operating in ice as a means to reduce global loads. For this reason

accurate models of flexural strength are invaluable to the design and operation of offshore

structures.

2.2 Flexural Strength

The accuracy and precision of modelled flexural strength are directly influenced by the

quality of the input data, which is acquired via flexural strength measurements. Flexural

strength is not a basic material property and cannot be measured directly in the same

manner as compressive and tensile strength. Flexural strength is a derived strength based

on the principles of simple beam theory and is governed by the testing method, ice beam

dimensions, measured forces and location of beam failure.

2.2.1 Simple Beam Theory

The flexural strength of a beam is generally defined based one of three flexural strength

tests: cantilever, 3-point bending or 4-point bending. Flexural strength of the beam is

then derived based on simple beam theory using the maximum force measured during the

test, beam dimensions and location of the load. The flexural strength derivations from simple

beam theory using the cantilever, 3-point and 4-point bending tests are provided in Equation

2.1, 2.2 and 2.3 respectively.
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σfcant =
6FL

bh2
(2.1)

σf3pt =
3FL

2bh2
(2.2)

σf4pt =
FL

bh2
(2.3)

where: σf is the flexural strength, F is the maximum measured load, L is the length of the

beam, b is the width of the beam and h is the height of the beam. These equations assume

a neutral axis at the center of the beam, the load in 3-point bending is at the midpoint of

the beam, and the loads in 4-point bending are L/3 from the supports as indicated in Figure

2.2

(a) Cantilever beam (b) 3-point bending (c) 4-point bending

Figure 2.2: Loading, shear and bending moment diagrams
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2.2.2 Simple Beam Theory Assumptions

Simple beam theory has a number of underlining assumptions, five commonly accepted

assumptions of simple beam theory are:

1. The cross-section maintains its shape and scale along the length of the beam

2. The cross-section of a beam remains plane after deformation

3. The cross-section remains normal to the deformed axis of the beam

4. The deformation is elastic and the material is both isotropic and homogeneous

5. The elastic moduli in tension and compression are equal

The primary issue with the beam theory assumptions when applied to ice is that of the

material being isotropic and homogeneous. Firstly ice behaves different when loaded verti-

cally versus horizontally as discussed by Schwarz and Weeks (1977) who also described ice

as an anisotropic material with non-linear stress distributions across the depth. According

to Schwarz (1975), when under flexure the neutral axis of an ice beam shifts from the centre

towards the compressed fibres due to the differing elastic modulus in compression and ten-

sion. As for the homogeneity of ice, naturally occurring ice is prone to the inclusion of air

and or brine pockets as well as other naturally occurring flaws and cracks. These natural

inclusions can result in localized stress concentrations reducing the capacity of the ice.

For this reason, the flexural strength of ice is often referenced as a index strength (Schwarz

andWeeks (1977), Timco and O’Brien (1994)), as the exact true flexural strength is not easily

attained. While the use of simple beam theory for ice beam flexural strength evaluation may

not be fully accurate, Schwarz (1975) concluded that the force-deflection curves indicate the

stress-strain relationship is linear suggesting that simple beam theory is adequate for close

approximations of flexural strength.
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2.2.3 Physical Testing of Flexural Strength

There are three primary physical testing approaches as noted earlier: cantilever, three-point

and four-point bending tests, these tests are either performed in situ or in laboratory type

testing. The use of in situ tests are favoured, where possible, as they permit the ice to

maintain a more natural temperature gradient through its depth, and in the case of sea ice

they reduce the amount of brine lost when a sample is removed from the water. Laboratory

testing on the other hand often permits more accurate control of the testing temperature and

more sophisticated tools are generally available for sample preparation and testing.

2.2.3.1 Cantilever Beam Tests

The cantilever beam test is the easiest of the three tests to perform in situ and can be scaled

up to accommodate larger beams with greater ease. A cantilever tests is conducted by first

cutting a u-shaped channel in the ice leaving an ice beam supported on one end by the ice

sheet, secondly a force is exerted at the free end of the beam and sequentially loaded until

failure. The application of the load can be performed in either a push down or pull up

direction depending on the test equipment.

A potential issue with cantilever beam tests is the presence of external stress concentra-

tions at the root of the beam. The sharp corners left after cutting the beam free from the

surrounding ice sheet have been suggested to result in stress concentrations, leading to a

reduction in flexural strength capacity when compared to 3-point or 4-point bending. Using

freshwater beams Gow et al. (1978) found that flexural strength for 3-point bending fre-

quently exceeded the strength of cantilever beams cut from the same ice sheet by a factor

of two. When considering sea ice Timco (1985) found there was no appreciable difference

between the results from cantilever tests verses 3-point or 4-point bending. Sea ice behaviour
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is more plastic in nature compared to freshwater (Schwarz and Weeks, 1977), and therefore

this behaviour may help relieve these external stress concentration.

The issue of stress concentrations does not exist in the 3-point and 4-point bending tests,

therefore these two tests should be the preferred method of flexural strength testing. How-

ever, the cantilever test has some advantages: firstly the ease of preparing and performing

the tests in the field cannot be understated, secondly the beam remains immersed in water

helping to maintain a more natural temperature gradient and brine volume content. It has

been suggested that flexural strength measurements from cantilever beam tests could be

adjusted using a correction factor to account for the presence of stress concentrations. Gow

et al. (1988) and Gow and Ueda (1989) found that the inclusion of stress relief cuts by way of

filleted corner at the root of the beam increased the flexural strength capacity by upwards of

two times that of conventionally cut beams. Considering that conventionally cut cantilever

beams were found to be upwards of 2 times lower than 3-point (or 4-point) bending tests

with an average between 1.2 and 1.7 lower (Gow et al., 1978), the basis for a correction

factor could be argued. Aly et al. (2019) found that measurements from 3-point and 4-point

bending tests were just over 2 times higher than cantilever results. Similar results were

also found by Wang et al. (2020) who suggested 1.8 as a correction factor. For the data in

question a correction factor of 2 was applied to the cantilever strengths to account for the

effects of stress concentrations.

2.2.3.2 3-point and 4-point Bending Tests

3-point and 4-point bending tests are often referred to as simple beam tests in reference

to the manner in which the beams are supported. In simple beam tests, the ice beam is

completely cut free from the surrounding ice sheet. The beam is then supported at each

end and a load is then applied at the center of the beam (3-point) or at two locations which
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are equidistant from the end supports (4-point) as presented in Figure 2.2, the load is then

increased monotonically until failure.

One issue with the 3-point bending test is that failure generally occurs at the center of the

beam at the point of highest bending moment (see Figure 2.2b). Therefore, potential exists

for a weaker point to exist within the beam which simply was not loaded to failure. The

4-point bending tests attempt to correct this by separating the load application points and

creating a region of constant moment within the beam (see Figure 2.2c), providing a wider

window through which the beam can fail at its weakest point.

2.3 Ice Properties and Ice Mechanics

The strength of ice is dependent upon a number of key factors including the physical proper-

ties of the ice itself and the method employed to measure said strength. Timco and O’Brien

(1994) found that the physical ice properties of ice temperature, grain structure, grain size

and beam volume are contributing factors to the strength of both freshwater ice and sea ice.

When considering sea ice the salinity or brine volume are also of importance. Experimen-

tal set-up and procedures can also impact the strength of ice including parameters such as

loading direction, loading rate and test type (cantilever or simple beam).

The scope of work here was limited to investigating the impact of beam volume (or scale

effect), temperature and brine volume on the flexural strength of freshwater ice and sea ice,

all other parameters will be generalized as “other factors”. However, before exploring these

properties a quick review of some of the principles of ice formation will help in providing

some necessary background information.
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2.3.1 Physics of Ice Growth

An overview of many principles associated with ice growth are covered in Timco and Weeks,

2010 and will be discussed briefly in the following sections.

2.3.1.1 Formation of Brine Pockets

Timco and Weeks (2010) describes the ice lattice as being highly selective and not very

receptive to impurities such as salts. During the formation of ice the growing ice sheet

attempts to expel the salts present in sea water. As expected this expulsion process is not

100% efficient resulting in some salt being left behind in brine pockets. The amount of

salt left behind is generally a function of the growth rate of the ice and the salinity of the

originating sea water. Average salinity of first year ice is around 4-6 parts per thousand (ppt

or �) compared to the average salinity of sea water being 32-35�.

2.3.1.2 Grain Structures

There are multiple grain structures possible during the development of an ice sheet, the three

most common structures according to Timco and Weeks (2010) are: granular, columnar and

discontinuous columnar.

Granular ice generally forms as a result of wave action stirring up recently formed frazil ice.

Due to this stirring action, the orientation of the grain structure is very random, resulting

in an ice sheet having isotropic (or near isotropic) mechanical properties. The formation of

brine pockets within granular ice generally forms between the ice crystals and not within the

crystals themselves.

Columnar ice can form at the surface when conditions are calm or beneath an initial layer

of granular ice which can help reduce the vertical motions of the water column. Within

columnar ice the brine pockets are located within vertically orientated planes within the
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ice crystals. These planes result in a reduction of ice to ice contact and result in a plane

of weakness. Columnar ice has two varieties based on the horizontal orientation of the c-

axis within the individual crystals: random or aligned. Random crystal orientation have

no directional dependency within the horizontal plan, while aligned crystals have the c-axis

all oriented in the same direction. The properties of “aligned” ice can vary significantly

depending on if the ice is loaded parallel or perpendicular to the orientation of the crystals.

The horizontal orientation of crystal c-axis are believed to reflect the mean current direction

beneath the ice (Weeks and Gow, 1980).

2.3.2 Beam Volume - Scale Effects

The influence of beam volume on ice strength has been investigated by numerous researchers.

Some researches have determined that ice strength declines with increasing beam volume

(Frederking and Sudom (2013), Lau et al. (2001), Williams and Parsons (1994), Maattanen

(1975) and Lavrov (1971)), while others believe there is no significant relationship (Blanchet

et al. (1997), Timco and O’Brien (1994), Parsons et al. (1992), Parsons and Lal (1991)).

Therefore, there is some debate as to the legitimacy of these scale-effects on flexural strength.

In the following sections both theoretical and experimental evidence for scale effects will be

discussed.

2.3.2.1 Scale-Effect Theory

Theoretically the concept that ice strength is inversely proportional to the volume of the

sample can be explored through the weakest link model as described by Weibull (1951).

Jordaan (2005) describes this weakest link model as a structure composed of a series of n

elements, where the structure will fail if one of those elements fails. Lets assume the strength

of each element is independent and identically distributed (iid) and follows the distribution

function FT (t). Then if Ti is the strength of the ith element and the strength of the entire

13



structure is R, then R = min (T1, T2, T3, ..., Ti, ..., Tn) and the failure probability of the entire

structure FR(r) can be written as,

FR(r) = 1− [1− FT (r)]
n (2.4)

This can also be expressed as,

FR(r) = 1− exp {n ln [1− FT (r)]} (2.5)

If one considers an ice beam of volume V which is composed of n individual elements of

volume v0, then V = nv0 (or n = V/v0), and FR(r) can be written as,

FR(r) = 1− exp

{︃
V

v0
ln [1− FT (r)]

}︃
(2.6)

A power-law material function, m(r), was suggested by Weibull as a replacement for the

expression {− ln [1− FT (r)]} and is expressed below,

m(r) =

(︃
r − r0
r1

)︃α

(2.7)

where α and r1 are the distribution shape and scale parameters respectively, and r0 is the

lower limit of the ice strength. Using this material function Equation 2.6 can be rewritten

as,

FR(r) = 1− exp

{︃
−V

v0

(︃
r − r0
r1

)︃α}︃
(2.8)
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If one compares Equation 2.8 to that of the standard three-parameter Weibull distribution

as shown here,

FX(x) = 1− exp

{︃
−
(︃
x− γ

β

)︃α}︃
(2.9)

it can be observed that both equations have the identical form, where

x ≡ r (2.10)

β ≡
(︂v0
V

)︂1/α

r1 (2.11)

γ ≡ r0 (2.12)

Generally, r0 can be assumed as zero as this is a natural minimum for strength and therefore

simplifying the failure probability to,

FR(r) = 1− exp

{︃
−V

v0

(︃
r

r1

)︃α}︃
(2.13)

2.3.2.1.1 Inhomogeneous Stress State and Reduced Volume Formulation

The failure probability defined in Equation 2.13 is based on a homogeneous stress state,

however the stress level in an ice beam can vary significantly from element to element result-

ing in a inhomogeneous stress state. Weibull (1951) suggested that for a small volume, ∆V ,

around a given point (with a Cartesian coordinates of x) the stress state at each element

could be considered homogeneous. Jordaan (2005) suggests that this elemental stress state

(σ(xi)) could then be represented by a single scaler, s, and can be expressed as,
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s = rR ϕ(x) (2.14)

where rR is a reference value and ϕ(x) is the stress state within the structure as a function

of position within the structure.

The strength of the ith element, Ti, can then be described by the distribution function,

FT (s) = FT [rϕ(x)] (2.15)

The distribution function FT (s) is generally the same as used previously in Equation 2.6

(FT (t)) where t is replaced by s and the deterministic stress variations across the structure

are represented by ϕ. If the volume of the structure is considered to be segmented into k

small elements ∆Vm , m = 1, 2, ...k than Equation 2.6 can be rewritten as,

FR(r) = 1− exp

[︄
1

v0

k∑︂
i=1

(︁
∆Vi ln{1− FT [rϕ(x)]}

)︁]︄
(2.16)

The summation can be replaced with an integral resulting in,

FR(r) = 1− exp

{︃
1

v0

∫︂
V

ln
{︁
1− FT [rϕ(xi)]

}︁
dv

}︃
(2.17)

rewriting the material function from earlier as,

m(r) =

(︃
rϕ(xi)− r0

r1

)︃α

(2.18)

the failure probability can be expressed as,
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FR(r) = 1− exp

{︃
− 1

v0

∫︂
V

(︃
rϕ(xi)− r0

r1

)︃α

dv

}︃
(2.19)

if we assume that r0 = 0, further simplification can be made to the failure probability such

that,

FR(r) = 1− exp

{︃
− 1

v0

(︃
r

r1

)︃α ∫︂
V

ϕα(xi) dv

}︃
(2.20)

Here the integral defines a “reduced volume” which can be represented as,

v∗ =

∫︂
V

ϕα(xi) dv (2.21)

substituting the “reduced volume” into the failure probability the distribution can be written

as,

FR(r) = 1− exp

[︃
−v∗

v0

(︃
r

r1

)︃α]︃
(2.22)

Making a comparison between this distribution and the one defined in Equation 2.13, one

can observed that the two equations are identical, if the reduced volume, v∗, replaces the

volume of the body, V , from the homogeneous stress.

The mean strength of an ice beam can be obtained from Weibull theory, where the mean of

Equation 2.13 is,

⟨R⟩ = ro + r1

(︃
V

v0

)︃−1/α

Γ

(︃
1 +

1

α

)︃
(2.23)

Comparing the strengths of two beams, represented by VA and VB, results in,
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⟨R⟩1
⟨R⟩2 =

ro+r1
(︂

VA
v0

)︂−1/α
Γ(1+ 1

α)

ro+r1
(︂

VB
v0

)︂−1/α
Γ(1+ 1

α)
(2.24)

then,

⟨R⟩1
⟨R⟩2

=

(︃
VB

VA

)︃1/α

(2.25)

From this relationship it can be observed that the average strength, ⟨R⟩, of an ice beam is

inversely proportional the volume raised to some power.

2.3.2.2 Past Work on Scale Effect

One of the pioneering investigators into the effect of beam geometry on flexural strength

was Lavrov, who determined that flexural strength decreases with increasing beam width

(Lavrov, 1971).

Maattanen (1975) performed a series of tests in which the width of the beam was varied.

Maattanen theorized that as beam width increases from a “narrow” beam to a “wide” beam

the stress field transitions from one to two-dimensional, therefore in accordance with fracture

mechanics the failure of defects between ice crystals would increase. Maattanen did not note

any significant links between beam length and flexural strength.

Gow and Ueda (1989) did not find any significant change in flexural strength when increasing

the size of the test beams, and Parsons and Lal (1991) found the relationship between flexural

strength and beam size to be inconclusive.

Parsons et al. (1992) conducted a size-effect study on simply supported beams under 3-point

loading. Expected flexural strength values (⟨R⟩) are derived based on Equation 2.23 repeated

below.
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⟨R⟩ = ro + r1

(︃
V

v0

)︃−1/α

Γ

(︃
1 +

1

α

)︃
(2.23 revisited)

where it can be seen that volume dependencies on strength are governed by the Weibull

Modulus (α). The author states that based on the experimental data the value of α (based

on a maximum-likelihood fit of the three parameter Weibull distribution) should fall between

4.3 and 7.7 for sea ice and 5.8 and 7.3 for freshwater ice. An exponential regression of the

mean strength (σ) versus volume (V ) results in σ ∝ V 1/12 or α ≈ 12 for sea ice and an

α ≫ 12 for freshwater ice. This indicates that scale effect trends are present in both sea

ice and freshwater ice, albeit lower than would be implied by the variability in ice flexural

strength measurements.

Timco and O’Brien (1994), see Section 2.3.3, performed an extensive review of measured

freshwater and sea ice flexural strengths for the purpose of creating a correlation between

the properties of ice and flexural strength. The authors found that on average there was a

difference between flexural strengths of large and small scale beams, however this difference

could be attributed to the reduction in brine volume observed in the small scale beams. This

theory of brine volume causing the reduction in strength was also discussed in Timco (1985),

where the author performed a review of the flexural behaviour of ice, both freshwater and

sea ice, for the purpose of defining the properties of modelled ice.

Williams and Parsons (1994) performed a review on a flexural strength database containing

1771 sea ice and 650 freshwater ice data points from three-point, four-point and cantilever

beam tests. The purpose of their review was to perform an empirical study of the depen-

dence of flexural strength on the five primary physical parameters of ice (or testing method)

including: brine volume, sample size, grain diameter, temperature and strain rate. When

investigating the flexural strength of freshwater ice, the data were limited to tests involving

3-point and 4-point bending only. As discussed in Section 2.2.3.1 flexural strengths of fresh-
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water cantilever tests can be significantly impacted by the presence of stress concentrations

at the root of the beam, for this reason the authors choose to eliminate cantilever tests from

their analysis.

Using correlation analyses the authors were able to determine which parameters have the

strongest interrelationships to flexural strength. For sea ice, brine volume was determined

to have the strongest correlation followed by beam volume. The authors developed a two-

parameter exponential model on brine volume and beam volume as seen below:

σf = 1760 exp (−5.395
√
vb)

(︃
V

V1

)︃−0.0507

(2.26)

where V is beam volume and V1 is 0.01 m3 based the standard volume of their test samples

(also referred to as a reference volume). For freshwater they found the flexural strength

model to be:

σf = 1629

(︃
V

V1

)︃−0.084

(2.27)

Williams and Parsons (1994) compared the model results for freshwater ice (Equation 2.27)

with measured results in Figure 2.3. In an effort to present the influence of beam volume

without the effects of brine volume (vb), sea ice flexural strengths were adjusted according

to:

σp = σm

(︂
5.395

(︂
vb −

√
0.03

)︂)︂
(2.28)
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where σp is the plotted (or adjusted) strength and σm is the measured strength. Modelled

strengths (Equation 2.26) were then compared to adjusted strengths as shown in Figure

2.4.

Figure 2.3: Measured and model strength of simple freshwater beams versus beam size
(Williams and Parsons, 1994)
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Figure 2.4: Measured and model strength of sea ice ice beams near vb = 0.03 versus beam
size (Williams and Parsons, 1994)

Lau et al. (2001) performed a series of flexural tests on small saline ice beams and appended

their data to that of Williams and Parsons (1994). Their results were in-line with Williams

and Parsons and demonstrated a clear scale effect trend in both freshwater ice and sea ice.

Additionally they performed correlation analysis on Williams and Parsons (Equation 2.26)

and Timco and O’Brien (1994) (Equation 2.34) and found that Williams and Parsons and

Timco and O’Brien under predicted flexural strength by about 11% and 38% respectively,

and indicated that the inclusion of the size parameter in Williams and Parsons was the

reason for their model experiencing lower error.

Frederking and Sudom (2013) performed a review on the measured flexural strength of multi-

year ice from a series of beam tests and ship ramming trials. They observed a decrease in

flexural strength as beam volume increased, or in the case of multi-year flows, as the thickness

of the flow increased.
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Based on the Weibull weakest-link theory, scale effect trends are expected to be present

in ice samples. Tozawa and Taguchi (1986) performed a series of 3-point bending tests on

freshwater ice specimens of varying size to evaluate the Weibull theory. Their work consisted

of more than 100 3-point bending tests with the results presented in Figure 2.5. The expected

mean strengths for the medium and small specimen sizes were shown to align very well with

the estimated mean strengths from the Weibull model, giving validity the Weibull theory

and demonstrating a clear trend towards lower strengths with increasing beam size.

Figure 2.5: Flexural strength vs effective size (Tozawa and Taguchi, 1986)

Aly et al. (2019) assembled a comprehensive flexural strength database containing 2073

freshwater ice and 2843 sea ice flexural strength measurements. The authors performed a

regression analysis on the database and developed flexural strength models for both freshwa-

ter ice (see Equation 2.29) and sea ice (see Equation 2.30). As demonstrated in the flexural

strength models, the authors found that beam volume plays a significant role in the flexural

strength of both freshwater ice and sea ice.
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σf = 840

(︃
V

V1

)︃−0.13

(2.29)

σf = 1324

(︃
V

V1

)︃−0.054

exp(−4.969
√
vb) (2.30)

Buil et al. (2022) performed an analysis of flexural strength tests for both freshwater and

saline ice beams using an explainable ML approach. Their database was based on 608

freshwater and 281 saline ice tests, however, this represents the number of tests prior to

data filtering, the final database size was not provided. In this work the authors determined

the influence of the various model features on the ML model predictions using the SHapley

Additive eXplanation Method (SHAP) and MDI methods. From the SHAP analysis they

determined that beam volume was ranked 4th behind temperature, test type (cantilever or

three-point bending) and beam length to depth ratio. In their analysis a conclusive trend

between beam volume and flexural strength was not observed, and while in general large

beams resulted in lower loads too much variability existed to make any conclusive statements

based on the database they considered.

2.3.3 Brine Volume

The influence of brine volume on ice strength has been investigated by a number of authors

and it is generally well accepted that ice strength (compressive or flexural) is inversely

proportional to brine volume (Weeks and Assur (1967), Dykins (1968), Weeks and Assur

(1972), Tozawa and Taguchi (1986), Timco and O’Brien (1994), Frederking and Sudom

(2013)). The following sections contain a brief discussion on the formation of brine within

an ice sheet as well as some past work relating brine volume to flexural strength.
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2.3.3.1 Brine Expulsion

As discussed in Section 2.3.1.1 the entrapment of brine within an ice sample is related to the

growth rate, as growth rate increases the amount of trapped brine increases (Cox and Weeks,

1988). The expulsion of brine from an ice sheet is a time and temperature dependent process

(Cox and Weeks, 1988). Firstly the temperature dependency, as temperatures decrease water

within previously expelled brine is subject to freezing. Once again salts are expelled from

the ice lattice, and as the newly forming ice occupies approximately 10% more volume than

the water from which it formed, the remaining brine becomes compressed assisting in the

drainage of brine from the sheet. Brine will also drain from the ice under gravity, the rate

of gravity drainage is related to the temperature and porosity of the ice.

2.3.3.2 Past Work on Brine Volume

The presence of brine and solid salts within an ice sample are quantified using either brine

volume or salinity. Brine volume can be expressed as a function of temperature and salinity

as defined by Frankenstein and Garner (1967), see Equation 2.31.

vb = S

(︃
49.185

T
+ 0.532

)︃
(2.31)

Brine volume is generally randomly distributed throughout an ice sample in what are com-

monly referred to as brine pockets. The presence of these brine pockets can be considered

flaws in the ice sample, therefore as the quantity or size of these pockets increase, the prob-

ability that one of those flaws will result in a stress concentration sufficient to cause failure

of the sample increases. Weeks and Assur (1967) further suggested that it is logical for ice

strength to decrease with increasing brine volume due to a reduction in the amount of solid

ice.
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The relationship between strength and brine volume has been represented by the following

expression as presented in Schwarz and Weeks (1977) and Weeks and Ackley (1986), where

σ0 and a are constants.

σ = σ0 (1− a
√
vb) (2.32)

Cox and Weeks (1988), in a discussion on the properties of first year ice, performed a least-

squares regression on a database from Vaudrey (1977) and found a relationship between

brine volume and strength as shown below,

σf = 0.959− 0.0608
√
vb [MPa] (2.33)

Timco and O’Brien (1994) performed an extensive review of measured freshwater and sea

ice flexural strengths for the purpose of creating a correlation between the properties of ice

and flexural strength. In their review nearly 3000 measured flexural strength data points

were analysed including 1556 for freshwater and 939 for sea ice. The author found that on

average there was a difference between flexural strengths of large and small scale beams,

however this difference could be attributed to the reduction in brine volume observed in the

small scale beams. This theory of brine volume causing the reduction in strength was also

discussed in Timco (1985), where the author performed a review of the flexural behaviour

of ice, both freshwater and sea ice, for the purpose of defining the properties of modelled

ice. Here the author also found that on average the strength values were lower in the large

beam samples, and concluded this was likely a cause of the increased brine volume within the

larger beams. Brine volume levels in the beams were thought to be an artifact of the general

timing and location of the testing; larger samples are generally prepared in the late fall or

early spring resulting in warmer ice temperatures, while small beam tests often performed
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at colder temperatures and under conditions in which brine drainage is more likely to have

occurred. The authors noted that the scatter in flexural strength generally decreased as

brine volume increased, suggesting that ice with low brine volume is less ductile. From this

work Timco and O’Brien (1994) developed a flexural strength model based only on brine

volume, as shown below.

σf = 1760 exp (−5.88
√
vb) [kPa] (2.34)

Timco and O’Brien (1994) noted that strength should be a function of the total porosity

of the sample taking into account brine volume in addition to air volume (entrapped air

bubbles), however the total porosity requires an accurate measurement of the ice density,

and unfortunately this is not frequently reported in the literature and therefore not included

in their model. Frederking and Sudom (2013) noted that Equation 2.34 over predicted the

flexural strength of multi-year ice, concluding that the inclusion of air porosity should also

be considered in determining flexural strength.

Further study on brine volume was performed by Aly et al. (2019) who also found that

flexural strength of sea ice is inversely proportional to brine volume. Regression analysis on

their database consisting of more than 2800 sea ice test results (see Section 2.3.2.2 for more

details) resulted in the relationship presented below in Equation 2.35, this relationship is

very similar to Timco and O’Brien (1994) presented earlier.

σf = 1730 exp(−4.89
√
vb) [kPa] (2.35)

According to Buil et al. (2022) the influence of brine volume was ranked 5th behind tem-

perature, test type (cantilever or three-point bending), beam length to depth ratio and
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beam volume. Inspite of the low ranking, their analysis did observe a relationship between

decreasing flexural strength with increasing brine volume.

Timco and O’Brien (1994) noted that sea ice flexural strength can vary throughout a typical

“winter” as shown in Figure 2.6. Flexural strength is low in early season corresponding to ice

that is thinner with higher salinity and temperatures that are still relatively warm. Strength

begins to increase throughout the winter as the ice builds thickness and temperatures de-

crease. Brine volume generally decreases as the season progresses due to brine drainage

which is a function of both time and temperature (Cox and Weeks, 1988). At the end of the

ice season when temperatures begin to increase and the ice begins to deteriorate the flexural

strength begins to drop off rapidly.

Figure 2.6: Flexural strength versus the time of year (from October (O) to May (M)) for
Beaufort Sea ice sheets for both an average and an extreme winter (Timco and O’Brien,
1994).

Timco and Weeks (2010) emphasized that the relationship in Equation 2.34 is not valid

for the whole season, but limited to cold ice still in the growth process. As temperatures

increase in the spring and the ice warms and begins to decay, the internal brine pockets
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begin to migrate and interconnect, culminating in the drainage of brine from the ice. As a

result this ice has a very high porosity concentration in spite of a lower brine volume.

Considering the formation of brine pockets within an ice sheet and the process of brine

drainage, salinity of an ice sheet will be dependent on the depth within the sheet, and

can even vary across small samples (Timco and O’Brien, 1994). The ability to accurately

portray the salinity profile in a model of flexural strength would add a lot of complexity

to the model, therefore average salinity is a much more reasonable input. According to

Timco and Frederking (1990) the average salinity within an ice sheet can be approximated

according to the thickness (hice) of the sheet as,

S = 13.4− 17.4hice for: hice < 0.34m

S = 8.0− 1.62hice for: hice ≥ 0.34m

(2.36)

2.3.4 Temperature

A number of authors have investigated the effects of temperature on the flexural strength of

ice. The general consensus is the flexural strength of sea ice decreases as ice temperatures

increase (Timco and O’Brien (1994), Saeki et al. (1978), Lainey and Tinawi (1981), Butkovich

(1959) and Dykins (1971) ). When concerning freshwater ice, Timco and O’Brien (1994)

found no strong connection between temperature and flexural strength. When discussing

flexural strength of sea ice Timco and O’Brien (1994) noted the effect of temperature has

two primary components: firstly the impact on the ice lattice itself and secondly in the

impact of temperature on distribution of brine volume.
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2.3.4.1 Impact on Brine Volume

As discussed in Sections 2.3.1.1 and 2.3.3.1, the temperature of the ice sheet has a direct

influence on the brine volume content within the sheet. As temperatures decrease more

brine is expelled from within the sheet, therefore strength of the ice should increase with

decreasing temperatures. Frederking and Sudom (2013) found that in multi-year ice flows

flexural strength was highest in floes with colder temperatures.

As discussed in Section 2.3.3.2 the seasonal variability observed in flexural strength can be

correlated to the temperature, with strength increasing with increasing ice thickness and

decreasing temperatures.

As discussed earlier, Timco (1985) found that strength values for smaller beams were gen-

erally higher than those for larger beams. They contributed the strength reduction to two

factors: an increase in brine within the large beams and a colder ice temperature during

the small beams tests. The reduction of brine volume within the small samples is likely the

combination of both the temperature variation and the increased potential for brine drainage

when removing the samples from the parent ice sheet.

2.3.4.2 Past work on Temperature

The relationship between increasing ice flexural strength with decreasing temperatures has

been documented by a number of researchers. Tests performed on sea ice by Butkovich

(1959) (see Figure 2.7), Dykins (1971) (see Figure 2.8), Saeki et al. (1978) (see Figure 2.9)

and Lainey and Tinawi (1981) (see Figure 2.10) all indicated an inverse relationship between

temperature and flexural strength.
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Figure 2.7: Flexural strength vs temperature (Butkovich, 1959,Butkovich, 1956)

Figure 2.8: Flexural strength vs temperature (Dykins, 1971)
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Figure 2.9: Flexural strength vs temperature (Saeki et al., 1978)

Figure 2.10: Flexural strength vs temperature (Lainey and Tinawi, 1981)

Weeks and Assur (1972) determined that the flexural strength of both freshwater ice and sea

ice increased with decreasing temperature. Maattanen (1975) and Gow (1977) found that
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not only does the current ice temperature play a role in flexural strength but the temperature

history during ice formation is also of significance. This aligns with the discussion of brine

expulsion with temperature as discussed earlier (Section 2.3.3.1).

Gow et al. (1978) noted an appreciable dependence between flexural strength and tempera-

ture for large lake ice beams. Gow and Ueda (1989) performed a series of test of freshwater

ice beams, and found that for beams with a temperature gradient between the top and

bottom fibres there was little dependence of flexural strength on temperature. However, if

these beams were allowed to reach constant temperature, i.e. being isothermal, there was a

significant increase in flexural strength as beam temperature decreased.

Lainey and Tinawi (1984) found that flexural strength of sea ice increased with decreasing

temperature, but noted that temperature appears to have much less significance in fresh-

water ice. Lainey and Tinawi also noted that substantial increases in strength were found

for temperatures below -23◦C. Timco and O’Brien (1994) found that strength decreased

significantly above -4.5◦C and also observed a much higher degree of scatter. They con-

tributed these low strengths to be a result of “candling”, which refers to melting along the

grain boundaries as a result of solar radiation. This “candling” can result in extremely low

strengths even when the ice still has considerable thickness.

Williams and Parsons (1994) performed correlation analysis between flexural strength and

the ice properties of brine volume, sample size, temperature, grain size and strain rate.

The strongest correlations were with brine volume and sample size (respectively), however

temperature and the others were also found to be of significance.

Saeki et al. (1978), Blanchet et al. (1997) and Ji et al. (2011) analysed flexural strength

data on sea ice. The relationship between temperature and flexural strength according to

Saeki et al., Blanchet et al. and Ji et al. are provided in Equations 2.37, 2.38 and 2.39

respectively.
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σf = 3.4− 0.64T [kg/cm2] (2.37)

σf = 0.5836− 1.413T [MPa] (2.38)

σf = 0.35− 0.09T [MPa] (2.39)

These equations are summarized in Figure 2.11, and it can be seen that the Blanchet et al.

results in values significantly higher than the other two models, leading one to believe that

perhaps a typesetting error is present in the model. However, without any references to cross

validate the model and due to the significant offset in the Blanchet et al. model, this model

will not be used in any analysis in this work.

Figure 2.11: Flexural strength as a function of temperature
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According to Buil et al. (2022) temperature is the primary ice feature impacting flexural

strength. Additionally, the authors determine that flexural strength decreased as ice tem-

peratures increased.

2.4 Summary

In Section 2.1, an overview of ice failure methods were presented, followed by a review of

ice flexural strength testing methods in Section 2.2, the three most common methods being

cantilever, three-point and four-point bending. Each method has associated advantages

and disadvantages. Cantilever tests are the easiest of the three to perform in the field, more

readily adaptable to various beam sizes and better at preserving the temperature and salinity

profiles of the beam. Three-point and four-point bending tests eliminate the influence of

stress concentrations observed at the root of cantilever beams. Four-point bending produces

a zone of constant moment and zero shear between the two loading points, increasing the

likelihood of the beam failing at its weakest point and not the point of highest load as

is generally the case in three-point bending. While four-point bending may offer slightly

better quality results, the limited availability of flexural strength data solely from four-point

bending requires results from all test methods to be considered.

In Section 2.3 a review of ice properties and their effect on ice flexural strength were pre-

sented, along with an overview of the fundamental approach to scale effect in materials.

Based on theory and observed data, there is a general consensus that flexural strength has

an inverse relationship with brine volume, beam volume and temperature.

The influence of brine volume on the flexural strength of ice has been investigated by a

number of authors and it is generally well accepted that ice strength is inversely proportional

to brine volume (Weeks and Assur (1967), Dykins (1968), Weeks and Assur (1972), Tozawa

and Taguchi (1986), Timco and O’Brien (1994) and Frederking and Sudom (2013)).
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The presence, or at least the significance, of scale effect trends in both sea ice and freshwater

ice has been debated in the literature. The results from physical testing by a number of

authors were either inconclusive or showed scale effect to be insignificant (Gow and Ueda

(1989), Timco and O’Brien (1994) and Parsons et al. (1992)). As presented earlier, there is

theoretical evidence to suggest scale-effect should be present, this theory has been validated

by several researchers who have found that the presence of scale effects trends in ice are of

significance (e.g. Tozawa and Taguchi (1986), Williams and Parsons (1994) and Lau et al.

(2001)) and should be considered when modelling flexural strength.

Like beam volume, the effects of temperature are debated in the literature, and have varying

results depending on whether the discussion is on freshwater ice or sea ice. Weeks and Assur

(1972), Maattanen (1975) and Gow (1977) found a link between decreasing flexural strength

with increasing temperatures. Several authors found that only a weak link between flexural

strength and temperature exists for freshwater ice including Lainey and Tinawi (1984) and

Gow and Ueda (1989), while Buil et al. (2022) found that temperature was the key feature

in predicting flexural strength.

Using an extensive database of flexural strength measurements, an updated investigation

into the effects of ice properties such as beam volume, brine volume and temperature on

flexural strength are investigated for both Freshwater Ice (Chapter 5) and Sea Ice (Chapter

6).
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3 Flexural Strength Database

The accuracy and validity of a ML model is governed by the data upon which the model are

trained. In the following sections, the freshwater ice and sea ice flexural strength database

will be presented including details on the preprocessing steps required before model training

could begin.

3.1 Data Source

The primary source of data for this work were acquired from a database compiled by Aly

et al. (2019) based on an archive of technical publications reporting on freshwater ice and sea

ice beam tests. Additional data from a series of field programs conducted between 2010-2018

(Karulina et al., 2019), were appended to the Aly et al. database. The database is quite

extensive, with 4100 freshwater ice and over 2700 sea ice data points.

The amount of data presented within a technical publication can vary significant from one

publication to the next. The core test parameters of interest to the database are the volume of

the test beam, measured strength, ice type (freshwater or sea ice), the type of test (cantilever,

three-point or four-point bending), brine volume, ice temperature, salinity and location of

the test(field or laboratory). In many cases one or more of these core parameters were not

presented in a given publication, resulting in the need for data preprocessing.
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3.2 Data Preprocessing

Prior to any model development the database was subjected to two forms of preprocessing;

filtering and data adjustment.

3.2.1 Data Filtering

The database was inspected and filtered to remove any unnecessary or unusable data, the

following steps were taken when filtering the database:

Step 1: Freshwater Ice vs Sea Ice: Separate models were developed for freshwater ice and

sea ice, therefore, it was necessary to split the database according to the type of

ice tested. Subsequent steps were performed on both the freshwater ice and sea ice

subsets.

Step 2: Null Values: The ML algorithms do not perform well when the features (input data)

contain null values, therefore entries with null values were removed from database.

Step 3: Field vs Laboratory Testing: For this work, the strength of naturally occurring ice

is the primary interest, and for the current database this refers to tests which have

been performed in the field. Laboratory test are generally conducted on ice samples

which are grown in the laboratory under strict controlled conditions. Great care is

generally taken to ensure these samples are grown to minimize the inclusion of flaws

such as cracks and air pockets, and samples with such flaws are often not chosen

for testing. Naturally occurring ice on the other hand, is prone to the inclusion of

many flaws, including cracks, debris/air pocket inclusions, layer separation due to

freeze thaw cycles and many more. The strength of naturally occurring ice samples

is generally lower than that of the laboratory grown samples.
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With each filtering step the number of data entries in the database decreased. The results

of the above data filtering reduced the freshwater ice and sea ice databases to 641 and

803 entries respectively, details on the number of remaining entries after each filtering step

are provided in Table 3.1. The 641 entries in the freshwater database detail the work of

seven researchers (or research groups) as listed in Table 3.2. The 803 entries in the sea ice

database detail the work of 14 researchers (or research groups) as listed described in Table

3.3. Flexural strength as a function beam volume for the resultant freshwater ice and sea

ice database can be seen in Figures 3.1 and 3.2, additional plots of sea ice flexural strength

as a function of brine volume and temperature are provided in Figures 3.3 and 3.4.

Table 3.1: Number of entries resulting after each preprocessing step

Step 1 Step 2 Step 3

(Ice Type) (Null Values) (Location)

Freshwater Ice 4100 4076 641

Sea Ice 2755 1171 803
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Table 3.2: Journal papers for freshwater ice analysis

Primary Author Title

Frankenstein (1959) Strength data on lake ice

Lavrov (1971) Deformation and strength of ice

Gow and Langston (1975) Flexural Strength of Lake Ice in Relation to Its

Growth Structure and Thermal History.

Gow et al. (1978) Flexural strength of ice on temperate lakes: com-

parative tests of large cantilever and simply sup-

ported beams

Frederking and Timco (1983) On measuring flexural properties of ice using can-

tilever beams

Frederking and Sudom (2013) Review of flexural strength of multi-year ice

Karulina et al. (2019) Full-scale flexural strength of sea ice and freshwa-

ter ice in Spitsbergen Fjords and North-West Bar-

ents Sea
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Table 3.3: Journal papers for sea ice analysis

Author Title

Butkovich (1956) Strength studies of sea ice

Butkovich (1959) On the mechanical properties of sea ice, Thule, Greenland,

1957

Frankenstein and Garner (1970) Dynamic young’s modulus and flexural strength of sea ice

Williams et al. (1991) Full-scale ice breaker trials CCGS Sir John Franklin Indian

Arm/Little Burnt Bay 1991

Williams et al. (1992) Ice and snow measurements in support of the operational

evaluation of the Nathaniel B. Palmer in the Antarctic win-

ter environment

Williams, Crocker, et al. (1993) Northumberland Strait ice properties measurements

Williams, Kirby, et al. (1993) Strength and Fracture Toughness of First-Year Arctic Sea

Ice

Saeki et al. (1981) Experimental study on flexural strength and elastic modulus

of sea ice

Dykins (1968) Tensile and flexural properties of saline ice

Blanchet et al. (1997) Mechanical properties of first-year sea ice at Tarsiut Island

Christensen (1986) Sea ice strength measurements from the inner Danish Wa-

ters in early 1985

Kujala et al. (1990) Results from in situ four point bending tests with Baltic Sea

ice

Frederking and Sudom (2013) Review of flexural strength of multi-year ice

Karulina et al. (2019) Full-scale flexural strength of sea ice and freshwater ice in

Spitsbergen Fjords and North-West Barents Sea
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Figure 3.1: Resultant freshwater ice database: Flexural strength as a function of beam
volume

Figure 3.2: Resultant sea ice database: Flexural strength as a function of beam volume
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Figure 3.3: Resultant sea ice database: Flexural strength as a function of the square root of
brine volume fraction

Figure 3.4: Resultant sea ice database: Flexural strength as a function of ice temperature

A high degree of variability in the flexural strength of both freshwater and sea ice samples

can be observed in Figures 3.1, 3.2, 3.3 and 3.4. A portion of this variability is likely due

to natural variations that can be observed within a given ice sheet, however the effect of
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variations in test mechanics and ice sample properties from test to test are also a factor.

For instance parameters such loading rate, loading direction, ice density, total porosity and

grain size are not always publicized along with the flexural strength results, however, each

of these parameters can have an impact on the resultant flexural strengths.

3.2.2 Data Adjustment: Cantilevered Tests

As discussed in Section 2.2.3.1, the presence of stress concentrations at the root of cantilever

beams can result in a significant reduction in the flexural strength of the beam. The influence

of stress concentrations was found to be more prevalent in freshwater beams when compared

to sea ice beams. In the freshwater database approximately 80% of all field measurements

were performed using the cantilever beam test, therefore there is significant motivation to

keep the cantilever beam tests as part of the analysis. To permit the use of cantilever beam

measurements a correction factor must be applied to adjust the recorded strengths. The use

of a correction factor has been discussed in Section 2.2.3.1 where Aly et al. (2019) suggested

a factor of 2, which is in line with the results presented by Gow et al. (1978). To verify

these correction factors a comparison between cantilever and simple beam measurements

was performed. A Least Squares Regression (LSR) line was fit to the natural log of flexural

strength and beam volume for both cantilever and simple beam tests as shown in Figure

3.5, the resultant equations are shown in Equation 3.1 (cantilever tests) and Equation 3.2

(simple beam tests). From the figure and LSR equations, it is evident that the trend lines for

both the cantilever and simple beam measurements have nearly identical slopes (equivalent

at the hundredths place), and taking the ratio of these two equations results in simple beam

strengths being approximately 2 times higher than the cantilever beam strengths. Therefore,

in following with Aly et al. (2019) and Gow et al. (1978) in addition to the comparison

performed here, a correction factor of 2.0 was applied to the cantilevered strength values for

the analysis conducted in this work.
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σf Cantilever = 399
V

V1

−0.13

(3.1)

σf Simple Beam = 828
V

V1

−0.13

(3.2)

Figure 3.5: Freshwater flexural strength vs beam volume: Cantilever vs simple beam

3.3 Summary

The flexural strength database contained a total of 4100 freshwater and 2755 sea ice flexural

strength measurements. Removing null values and omitting laboratory tests the number

of measurements were reduced to 641 and 803 for freshwater and sea ice respectively. The

developement of ML and empirical models presented in the following sections are based on

these 641 freshwater and 803 sea ice flexural strength measurements.
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4 Machine Learning

Machine Learning (ML) is best described as the field of study that gives computers the

ability to learn without being explicitly programmed. This definition is generally attributed

to Arthur Samuel (1959) one of the pioneers in ML. The following sections will present some

background on general model development, selected machine learning algorithms as well as

some general information surrounding the practical use of machine learning libraries.

4.1 Background

The implementation of ML in this work was performed using a Python based ML library

developed by Scikit Learn (Scikit-learn, 2021). This library contains an extensive compilation

of learning algorithms in addition to tools for data analysis and quality control of the input

data.

The input dataset, including the independent and dependent variables, are partitioned to

form two sets of data, a training set and a test set. The formation of these datasets involve

the random selection of a data entry from the input dataset which is then randomly placed

in either the training set or test set. The training set is generally larger than the test set and

is often comprised of 70% of the input dataset. As the name implies, the model is trained

on, or learns based on, the training set while the test set is used to evaluate or test the model

on new or unseen data.

The range of values within these model features must also be considered, as some ML algo-

rithms are sensitive to large variations within the features. In particular algorithms which
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exploit distances or similarities between data points are susceptible to errors as a result of

high feature variance. To avoid one feature creating a bias within the model, a common prac-

tice is to perform feature scaling via normalization or standardization. In the current work

there are three main features of interest, beam volume with values ranging from 9.3× 10−6

m2 to 60m2, brine volume ranging from 0 to 370 ppt and temperature ranging from -55◦C

to 0◦C. In this work the data were standardized, in which each feature is rescaled to have a

mean of 0 and a variance of one.

Each ML algorithm contains a set number of input parameters, generally referred to as

hyperparameters, which are used to control how the model reacts with the training data.

The proper selection of these hyperparameters are paramount in the optimization of the

model.

4.2 Algorithms

The work presented here will focus on four supervised learning regression algorithms includ-

ing: multi-layer perceptron, gradient boosted trees, extra trees and k-nearest neighbours. A

brief introduction to each of these algorithms is provided in the following sections. As the

goal of this research was in the application of ML algorithms and not in the development or

advancement of these algorithms, the review will focus primary on the basic approach of the

algorithm with an attempt to highlight the advantages and disadvantages of each algorithm.

For further details on the individual algorithms there are numerous options available in the

technical literature, such as Belyadi and Haghighat (2021), Zhou (2021) and Scikit-learn

(2021).
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4.2.1 Multi-layer Perceptron Regression

The Multi-layer Perceptron Regressor (MLPR) is categorized as an Artificial Neural Network

(ANN), and the basic components of the algorithm include neurons (or nodes), an input

layers, a hidden layer(s) and an output layer. The number of nodes in each layer and the

number of hidden layers are amendable according to the needs of the model being developed.

There is no communication between nodes within a given layer, however adjacent layers are

fully interconnected, as demonstrated in Figure 4.1. Each node to node link is associated

with a weight (e.g. w11), input values are then passed along these links and multiplied

by the associated weight. Each node receives the weighted sum from the nodes in the

previous layer which is subjected to an activation function and passed on to the next layer.

This forward passing of information culminates with the output layer receiving the final

weighted sums which are subsequently subjected to the activation function concluding as

the model response. A regularization parameter is generally employed to help improve the

generalization of the model and reduce overfitting.

Training a MLPR model involves the forward passing or propagation of information as

discussed above and the back propagation of information. On the first pass the weights of

the links are estimated, at the end of a pass a comparison is made between the predicted

output and the expected output and the weights are then automatically adjusted for each

layer. This adjustment of weights, referred to as back propagation, is performed by a process

referred to as “gradient decent” which attempts to minimize the error within the function.

The number of iterations is generally defined by the user, and with each iteration the error

(expected vs predicted) should decrease.

For the MLPR there are numerous hyperparameters which require tuning to arrive at an

optimized model. The tuning of these hyperparameters can be aided through the use of built-

in functions within the ML library. Hyperparameters requiring specific attention are:
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� the number of hidden layers,

� the weight optimization solver,

� the number of iterations through the network,

� the strength of the regularization parameter (α), and

� the activation function.

The MLPR does have a few disadvantages which must be considered prior to use. Firstly,

the inclusion of hidden layers results in a non-convex loss function and therefore multiple

local minimum can exist. The primary means for limiting the effects of a non-convex loss

function is in the selection of the regularization parameter (α). The MLPR is also sensitive

to the variance within the input data, therefore feature scaling is necessary to ensure no

single feature is disproportionately represented.

Figure 4.1: An example MLPR layer structure
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4.2.2 Decision Trees

Decision trees are non-parametric supervised learning algorithms which can be applicable to

both classification and regression problems. In general, decision trees are relative simple in

concept and can often be presented visually, such as in Figure 4.2. Unlike some algorithms

decision trees are not sensitive to the variance within the data and therefore do not require

feature scaling. Decision trees have the potential to become overly complex resulting in

models which overfit the data, this issue can often be mitigated through the careful selection

of the hyperparameters. Due to the nature of the decision tree process, the predicted out-

comes are not smooth and continuous but piecewise approximations and as a result decision

trees do not perform well when attempting to extrapolate beyond the limits of the training

data. When extrapolating, decision trees will base predictions on the nearest leaf nodes to

the query point, and with each query calling on the same leaf nodes extrapolation results in

constant predictions.

Decision trees can also be unstable, where small changes to the input data can generate vastly

different tree structures affecting model predictions. One means by which to reduce this

sensitivity is to implement the use of ensemble modelling. Two decision tree ensemble models,

Extra Trees Regressor (ETR) and Gradient Boosted Trees Regressor (GBR), were employed

in this study and a brief discussion of each are contained in the following sections.
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Figure 4.2: A simple decision tree

4.2.2.1 Extra Trees Regression

The ETR is an ensemble method in which n number of trees are generated from various

sub-samples of the training data (Scikit-learn, 2021). The decision of splitting is performed

using a random subset of features, the threshold for these features are drawn at random and

the best of these random thresholds is selected as the splitting rule.

The ETR algorithm accepts a number hyperparameters which require tuning to arrive at an

optimized model, three hyperparameters requiring specific attention are:

� the number of estimators (or trees) in the ensemble,

� the maximum depth of the tree, and

� the minimum number of samples required at any given leaf

The max depth parameter controls the number of splits within each tree, the number of

estimators determines the number of trees and the minimum samples per leaf sets the

minimum number of samples in each branch of the tree.

Individual decision trees have been found to exhibit high variance and generally over fit the

data. However, the randomness associated with ETR has been found to reduce this variance
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resulting in a model which is less prone to overfitting. Another benefit of the randomness is

that ETR models have improved computational cost when compared to other decision tree

models such as Random Forest. The issues surrounding decision trees and data extrapolation

are still present when using ETR

4.2.2.2 Gradient Boosted Trees Regression

GBR, like ETR is an ensemble method in which n number of trees are generated and used

in the predictions, however GBR differs in how the trees are generated and combined. As

described in Belyadi and Haghighat (2021) GBR builds an ensemble model by sequentially

training on many smaller simpler models referred to as weak learners. With the assembly

of each weak learner the error rate (difference between predicted and observed) can be

generated and used to determine the gradient, which is essentially the partial derivative

of the loss function. Using the gradient, modifications to the model parameters can be

estimated to reduce the error in the next round.

There are multiple hyperparameters required for successful operation of the GBR algorighm,

a few of the hyperparameters requiring specific attention are:

� the learning rate, which controls the contribution of each tree,

� the maximum depth of the individual trees,

� the number of features considered when determining the best split,

� the minimum samples per leaf, and

� the number of estimators or boosting stages to be performed

The application of GBR, like ETR, can help to lower the variance observed within a model

and reduce a models tendency towards overfitting. Like ETR, the issues surrounding data

extrapolation are still present when using GBR.
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4.2.3 k-Nearest Neighbours Regression

k-Nearest Neighbour Regressor (KNR) is a common yet simple supervised learning method

that can be employed for both classification and regression. Predictions for a query point are

generated based on the k-nearest training samples or neighbours. Predictions in regression

applications are generally made by averaging these k neighbours. These neighbours can be

weighted by distance such that the closer a neighbour is to the query point the higher the

weight, or each neighbour can be assigned a uniform weighting. An example of a KNR

model is presented in Figure 4.3, showing two query points and their associated five nearest

neighbour data points.

For KNR there are numerous hyperparameters which require tuning to arrive at an optimized

model, three hyperparameters requiring specific attention are:

� the number of neighbours,

� the method of weighting, and

� the algorithm used to compute the nearest neighbours

KNR models are very intuitive and easy to follow, and like decision trees are not sensitive

to the variations in the features and therefore do not require feature scaling. However,

KNR tend to decrease in efficiency for large datasets or for datasets with a large number of

features. Also KNR does not perform well when attempting to predict beyond the range of

the training data, as all new predictions will based on the same subset of neighbours.
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Figure 4.3: Example KNR model

4.3 Ensemble Modelling

As discussed in Section 4.2.2 where multiple decision trees were combined to form the ensem-

ble models of ETR and GBR, a similar application of ensemble modelling can be employed

to improve upon the characteristics of an individual models (MLPR, ETR, GBR and KNR).

In the current work a total of six ensemble models were developed consisting of model pairs

generated from the original four individual models.

4.4 Model Evaluation and Selection

During evaluation and comparison between the various ML regression algorithms, a number

of evaluation metrics may be used including:

� Root Mean Squared Error (RMSE),

� Coefficient of determination,
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� Expected physical behaviour,

� Generalization and overfitting behaviour

4.4.1 Root Mean Square Error

RMSE is the standard deviation of the residuals, and provides a measure of the prediction

error of a regression model. The RMSE is calculated according to Equation 4.1 where

n, yi and yî are the number of data points, the observed data, and the predicted data

respectively.

RMSE =

√︃∑︁n
i=1(yi − yî)2

n
(4.1)

4.4.2 Coefficient of Determination

Coefficient of Determination, often denoted as R2, is a measure of how much of the variability

in the dependant variable can be predicted from the independent variable(s). The calculation

of R2 is defined in Equation 4.2, where y, ŷ and ȳ represent the observed data, predicted

data and mean of the observed data respectively.

SSR =
n∑︂

i=1

(ŷi − ȳ)2

SSE =
n∑︂

i=1

(yi − ŷ)2

SST =
n∑︂

i=1

(yi − ȳ)2

R2 =
SSR

SST
= 1− SSE

SST

(4.2)
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The calculation of R2 is generally based on the assumption that the data are linear, normally

distributed, independent and have constant varaince. It could be argued that the data used

in this analysis do not strictly comply with all these assumptions. However, the R2 coefficent

still has utility in assessing the predicted outcomes of the models.

4.4.3 Expected Physical Behaviour

The expected behaviour of ice based on theoretical and empirical evidence is also considered

during model evaluation. As discussed in Section 2.3 the models are expected to present

a trend towards lower flexural strength with increasing beam volume, brine volume and

temperatures. Models which demonstrate these expected physical behaviour will be given a

higher ranking.

4.4.4 Generalization and Overfitting

When tuning a model it is important to balance the accuracy of the model with the ability

to generalize to the underlining trends within the data. In most instances a ML model

can be tuned such that it produces a very high accuracy to the training data, simply by

“memorizing” the expected result. This is referred to as overfitting, an example of which

can be seen in Figure 4.4. An overfitted model does not generalize well and will have low

statistical accuracy on data not previously seen. An underfitting model on the other hand

suffers from both poor generalization and low statistical accuracy on both observed and new

data. The goal is to tune the model as to obtain a balanced predictive behaviour as shown

in Figure 4.4. An appropriately balanced model will generalize well to the underlining data

trends in addition to providing accurate predictions on new data. As shown in Figure 4.4 the

balanced model may have lower accuracy metrics, however it offers a better representation of

the underlining trends in the data. For this reason, it is important to consider the simplicity
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of the model and how well it can generalize to the underling data trends in addition to the

statistical accuracy metrics of the model.

Figure 4.4: Example of overfitting, underfitting and balanced models
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5 Freshwater Ice Analysis

In the following sections an investigation of freshwater ice flexural strength is presented,

with a discussion on traditional and machine learning methods. A portion of the work in

this Chapter was published in a paper entitled “Estimating Freshwater Level Ice Loads on

Sloping Structures Using Machine Learning-Derived Flexural Strength,” and was presented

at the 26th IAHR International Symposium on Ice, see Burton et al. (2022). Co-authors

Dr. Rocky Taylor and Dr. Renat Yulmetov served in conceptualizing the research, securing

funding, and providing guidance and support during data analysis and interpretation as

well as reviewing and editing the manuscript. The author took on the primary role in

research execution, compiling and analyzing data, leading the organization, synthesis and

interpretation of results, as well as preparation and revision of the manuscript.

5.1 Traditional Methods: Non-linear Regression

Non-linear models can serve as a robust means for estimating the flexural strength of fresh-

water ice. Single parameter polynomial regression models are often employed due to their

linearity when plotting in a log-log scale. One such model is represented by the equa-

tion:

σf = C ×
(︃
V

V1

)︃x

(5.1)

where σf is the flexural strength of ice, C and x are constants, V is the volume of the beam

and V1 is a reference volume. This single parameter polynomial model, simply referred to
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as a linear model for the remainder of this work, was employed by Williams and Parsons

(1994) (see Equation 5.2), Aly et al. (2019) (see Equation 5.3) and Burton et al. (2022)

(see Equation 5.4). A modification to the filtering methods since the publication of Burton

et al. (2022) and a subsequent regression analysis on the observed data resulted in the same

equation as defined in Aly et al. The reference volume, V1, generally refers to the standard

volume of the ice samples used within a given test set-up, and for Williams and Parsons

(1994) this volume was 0.01m3. For Aly et al. (2019) and Burton et al. (2022) the models

referenced multiple tests of varying volume and therefore a reference volume was 1.0m3 was

chosen. A graphical comparison of these models is provided in Figure 5.1, with Aly et al.

(2019) and Burton et al. (2022) having nearly identical trendlines.

σf = 1629 · V
V1

−0.084

(5.2)

σf = 840 · V −0.13 (5.3)

σf = 847 · V −0.13 (5.4)
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Figure 5.1: Non-linear model comparison

5.2 Machine Learning

In this work, ML regression algorithms were developed and applied to predict the flexural

strength of freshwater ice. Four machine learning models were developed based on the

MLPR, ETR, GBR and KNR algorithms. All models were generated and tuned using

a Python machine learning library developed by Scikit-learn (2021). These models were

compared and contrasted looking at model bias, accuracy and generalization as well as

their ability to extrapolate and predict strengths for values outside of the training data.

The application of ensemble modeling was also investigated, in which two or more models

were blended, attempting to overcome their individual weaknesses by building upon their

combined strengths.
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5.2.1 Observed and Simulated Data

There are two primary datasets used during model development, observed data and simulated

data. Observed data refers to the data as originally presented within the flexural strength

database (see Chapter 3) and forms the basis for the training and testing of the models. The

variability within the observed data can make it difficult to observe the underling data trends

and as a result simulated data were generated to elucidate these data trends. Simulated

datasets are composed of monotonically increasing beam volumes ranging from 0.0001m3 to

50m3, with each dataset being assigned a constant temperature. Several temperatures are

investigated in this work including -1, -5, -10 and -25◦C.

5.2.2 Independent Models

The following sections discuss the implementation of the four ML algorithms discussed earlier

and the process by which the model hyperparameters are determined. The general process

for tuning the model to the data began with the default hyperparameters, followed by hyper-

parameters selected using Scikit-Learn’s parameter grid search optimization tool, and finally

a manual tuning of the hyperparameters. ML model predictions for each algorithm are pre-

sented using observed and simulated data (T = -5◦C) and compared against the empirical

model presented by Aly et al. (2019) (see Equation 5.3).

When tuning the models careful consideration is given to both the statistical accuracy metrics

and the generalization of the model. As noted earlier, when plotting model predictions using

the observed data a higher degree of variability in the predictions is expected in comparison

to the simulated data. The simulated data provides feedback on the generalization of the

model, with less variability than is present in the observed data. However, careful observation

of the model predictions using the observed data help to distinguish between variability

within the model and the potential overfitting of the model. A careful balance of monitoring
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the statistical accuracy metrics alongside the generalization of the model are performed

throughout the tuning process.

5.2.2.1 Multilayer Perceptron Regressor

As discussed in Section 4.2.1 the MLPR algorithm has a number of hyperparameters which

require tuning to achieve an optimized model. Four of most influential hyperparameters were

found to be the strength of the L2 regularization term or learning rate (default = 0.001),

the size and number of the hidden layers or hidden layer size (default = 100), the activation

function (default = “relu”) and the solver (default = “adam”) used to optimize the weight

of each node to node link.

MLPR output with default hyperparameters is show in Figure 5.2, and presents a reasonably

good starting point for the optimization of the model. The generalization of the model is

acceptable, however the abrupt turning point in the trend lines at approximately 0.5m2 is

undesirable requiring further tuning.

(a) Training data (b) Test data

Figure 5.2: MLPR: Default parameters

Using the optimization tool a new set of hyperparameters were established, with the hidden

layer size changing to (5,5), the activation function set to “tanh” and the solver was switched
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to “adam”. MLPR output using this new model is presented in in Figure 5.3 however, it is

obvious that the newly established hyperparameters have resulted in the model overfitting

the data and further tuning is required.

(a) Training data (b) Test data

Figure 5.3: MLPR: Grid search selected parameters

With the grid search optimizer not performing as desired, a manual tuning of the hyper-

parameters was required, and the default parameters were selected as the starting point.

Throughout the manual tuning process both the “relu” and “tanh” activation functions

were compared. Two hyperparameters were adjusted during the manual tuning processing.

Firstly the learning rate term was incrementally increased from the default value (0.001)

with the optimal value found to be around 13. As the hidden layer size was incrementally

decreased from the default value the overall model accuracy improved along with the model

fit to the data, a value of 10 was ultimately chosen for the hidden layer size. During the

manual tuning process the overall model accuracy as well as the fit of the model to the ob-

served and simulated datasets were used as indicators when adjusting the hyperparameters.

Results from the manually tuned model are provided in Figure 5.4 for both the training and

test data sets. A summary of the MLPR hyperparameter selections are provided in Table

5.1.
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(a) Training data (b) Test data

Figure 5.4: MLPR: Manually tuned hyperparameters

Table 5.1: MLPR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Size of hidden layer 100 (5,5) 10
alpha 0.001 0.001 13
Activation function “relu” “tanh” “relu”
Solver “adam” “lbfgs” “adam”

5.2.2.2 Extra Trees Regressor

As discussed in Section 4.2.2.1 the ETR algorithm has a number of hyperparameters which

require tuning to achieve an optimized model. Three of most influential hyperparameters

were found to be the maximum depth (default = “none”), number of trees (default = 100)

and minimum samples per leaf (default = 2).

ETR output with default hyperparameters is shown in Figure 5.5. The maximum depth

default of “none” provides an unlimited number of splits in the tree. From Figure 5.5

it is clear that the model is very complex and is overfitting to the data. The parameter

optimization tools were employed and the optimal number of trees, maximum depth and
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minimum samples per leaf were determined to be 50, 11 and 2 respectively. The result of

the ETR model based on these optimization parameters is shown in Figure 5.6.

(a) Training data (b) Test data

Figure 5.5: ETR: Default parameters

(a) Training data (b) Test data

Figure 5.6: ETR: Grid search selected parameters

The parameters defined by the optimization tool greatly reduced the overfitting observed

in the default model however, the model is still showing signs of overfitting in particular

for beam volumes exceeding 0.2m2. As discussed in Section 5.2.3 some of the variability

seen for beam volumes exceeding 0.2m2 can be explained by the ice temperature. Further

tweaking of the parameters was considered worthwhile in an effort to improve the fit of
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the model. Various combinations of parameters were tested, in the end the selection of

number of estimators was increased to 100, max depth was decreased to 8 and the minimum

samples per leaf was increased to 5, the results of the ETR model using these modified

hyperparameters are shown in Figure 5.7. These modification were successful in improving

the overfitting of the data, and while some overfitting is still present in beam volumes greater

than 0.2m2, a reduction in variance within this region has been observed. A summary of the

ETR hyperparameter selections are provided in Table 5.2.

(a) Training data (b) Test data

Figure 5.7: ETR: Manually tuned parameters

Table 5.2: ETR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Maximum Depth “none” 11 8
Number of Estimators 100 50 100
Minimum samples per leaf 2 2 5

5.2.2.3 Gradient Boosted Trees

As discussed in Section 4.2.2.2, the GBR algorithm has a number of hyperparameters which

require tuning to achieve an optimized model. Four of most influential hyperparameters
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were found to be the maximum depth (default = 3), number of estimators (default = 100),

minimum samples per leaf (default = 1) and learning rate (default = 0.01).

GBR output with default hyperparameters is show in Figure 5.8, from which it is clearly

evident that the model is overfitting the data. The parameter optimization tools were em-

ployed resulting in an optimal hyperparameters settings with number of estimators equal to

200, learning rate equal to 0.02, minimum samples per leaf is 3 and max depth equal to 4,

as shown in Figure 5.9.

(a) GBT: Training data (b) GBT: Test data

Figure 5.8: GBT: Default parameters

(a) GBT: Training data (b) GBT: Test data

Figure 5.9: GBT: Grid search selected hyperparameters
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After optimization the GBR is still overfitting and not generalizing to the overall trend.

This is particularly true for beam volumes exceeding 0.2m2. Manual tuning of the GBR

hyperparameters was attempted, decreasing the learning rate and maximum depth to 0.01

and 2 respectively and increasing the minimum samples per leaf to 15. Results from manual

tuning are provided in Figure 5.10 where overfitting has been decreased and while the overall

general trend has improved, the trendlines are less continuous resulting in a more descretized

output. A summary of the GBR hyperparameter selections are provided in Table 5.3.

(a) GBT: Training data (b) GBT: Test data

Figure 5.10: GBT: Manually tuned hyperparameters

Table 5.3: GBR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Maximum Depth 3 4 2
Number of Estimators 100 200 200
Minimum samples per leaf 1 3 15
Learning rate 0.01 0.02 0.01

5.2.2.4 k-nearest Neighbours

As discussed in Section 4.2.3, the KNR algorithm is the simplest of the ML algorithms

introduced in this work, and has only 3 hyperparameters which require tuning to achieve an
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optimized model including number of neighbours (default = 5), weighting method (default =

“uniform”) and the algorithm used to compute the nearest neighbor (default = “auto”).

KNR output with default hyperparameters is show in Figure 5.11, and presents a model

which is overfitting the data. The parameter optimization tools were employed resulting in

the number of neighbours increasing to 20 and the weighting method changing to “distance”.

The results of these alterations to the hyperparameters are shown in Figure 5.12 and show

an increase in the overfitting of the model.

(a) KNR: Training data (b) KNR: Test data

Figure 5.11: KNR: Default parameters

(a) KNR: Training data (b) KNR: Test data

Figure 5.12: KNR: Grid search selected hyperparameters
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The effect of the optimization tool on the KNR model was counter productive and overfitting

of the data is more prevalent, therefore it was necessary to tune the model manually. The

weighting method was returned to “uniform” and overfitting decreased significantly. Further

attempts to decrease overfitting by increasing the number of neighbours were unsuccessful,

therefore the number of neighbours was kept constant at 20. Results of the manual tuning

are provided in Figure 5.13. A summary of the KNR hyperparameter selections are provided

in Table 5.4.

(a) KNR: Training data (b) KNR: Test data

Figure 5.13: KNR: Manually tuned hyperparameters

Table 5.4: KNR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Number of Neighbours 5 20 20
Weighting Method “uniform” “distance” “uniform”
Algorithm “auto” “auto” “auto”

5.2.3 Temperature Effects

The effect of temperature on the flexural strength of freshwater ice is expected to follow an

inverse relationship, where strength increases as temperature decreases. Within the database

there are large variations in ice strength across the whole range of recorded ice temperatures.
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As a result, Aly et al. (2019) concluded that temperature does not have a significant effect

on the flexural strength of freshwater ice.

To investigate the effect of temperature within the ML models, the model outputs were

divided into two groups according to temperature. The first group contained all data points

with recorded temperatures greater than or equal to -2.5°C, while group 2 contained all

data points less than -2.5°C. The results are presented in Figures 5.14, 5.15, 5.16, and 5.17

for the MLPR, ETR, GBR and KNR models respectively. The effects of temperature are

most clearly observed for beam volumes exceeding 0.1m3, where a separation between the

temperature groups is apparent. While there is overlap between the groups, the colder

temperature group clearly demonstrates higher flexural strength. Therefore, temperature

variations within the observed data are expected to account for the majority of the scatter

observed in the model predictions.

(a) MPR: Training data (b) MPR: Test data

Figure 5.14: MPR: Temperature effects

71



(a) ETR: Training data (b) ETR: Test data

Figure 5.15: ETR: Temperature effects

(a) GBR: Training data (b) GBR: Test data

Figure 5.16: GBR: Temperature effects

72



(a) KNR: Training data (b) KNR: Test data

Figure 5.17: KNR: Temperature effects

In addition to observed data, the models were run using simulated datasets as discussed

previously. The four machine learning models were run using simulated data sets with ice

temperatures of -1, -5 and -10◦C, and the results are presented in Figure 5.18 below. It is

clear from these results that all four models demonstrate a temperature dependency within

the model. The magnitude of this dependency varies from model to model, however it is

clear that ice temperature should be a feature in the modelling of freshwater ice flexural

strength.
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(a) MLP: Simulated data (b) ETR: Simulated data

(c) GBR: Simulated data (d) KNR: Simulated data

Figure 5.18: Temperature effects (simulated data)

5.2.4 Ensemble Models

The use of models employing a single algorithm can result in accurate predictions, how-

ever models employing multiple algorithms often outperform their single counterparts. An

averaging ensemble method was employed to average the efforts of two single algorithms.

Averaging ensembles help to balance out the individual weakness (e.g. variance and bias)

of the independent models. In this work the four independent models were combined to

form six two pair ensemble models, Figure 5.19 presents the ensemble predictions based on

the observed database, and Figure 5.20 presents the ensemble models results using the sim-
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ulated datasets. Further discussion on the ensemble models will be presented in the next

section.

(a) MLPR + ETR (b) MLPR + GBR

(c) MLPR + KNR (d) ETR + GBR

(e) ETR + KNR (f) GBR + KNR

Figure 5.19: Ensemble models: Observed data
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(a) MLPR + ETR (b) MLPR + GBR

(c) MLPR + KNR (d) ETR + GBR

(e) ETR + KNR (f) GBR + KNR

Figure 5.20: Ensemble models: Simulated data
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5.2.5 Observed vs Predicted

A comparison between observed and predicted values was conducted to further observe the

performance of the individual and ensemble ML models, the results are presented in Figures

5.21 and 5.22. A summary of each model (individual and ensemble) was generated by

categorizing the data according to the error between predicted and observed values, based

on Equation 5.5. Errors greater than +10% were categorized as overpredicted, errors less

than -10% are under-predicted while the remainder are considered approximately equivalent.

A summary of all ten models showing the percentage of predicted data in each category is

provided in Table 5.5.

err =
Predicted−Observed

Observed
(5.5)

Table 5.5: Percent error: Observed vs predicted (test data)

Model Over Under Approx

MLPR 41 47 12
ETR 29 25 46
GBR 32 29 39
KNR 32 32 36
MLPR + ETR 37 47 16
MLPR + GBR 38 42 20
MLPR + KNR 37 40 23
ETR + GBR 31 27. 42
ETR + KNR 30 30 40
GBR + KNR 33 30 37

Comparing the observed vs predicted plots and summary tables, the difference between the

ML models is generally not significant. The scatter present in each of the individual plots is

to be expected when compared to the variability present in the observed data. In general the

individual ML models have a slight tendency towards an overprediction of flexural strength,

while the ensemble models are more prone to an under-prediction. The scatter within the
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individual models is similar with the exception of the GBR model, which appears to discretize

the data into distinct bands. This descretization of data is less prevalent in the ensemble

models where the GBR model is employed.

(a) MLPR (b) ETR

(c) GBR (d) KNR

Figure 5.21: ML: Observed vs predicted
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(a) MLPR + ETR (b) MLPR + GBR

(c) MLPR + KNR (d) ETR + GBR

(e) ETR + KNR (f) GBR + KNR

Figure 5.22: ML: Observed vs predicted (ensemble)
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5.2.6 Model Comparison

The trendlines presented by each of the four individual ML models are in general agreement

with the expected relationship trends discussed in Section 2.3. Employing the simulated

datasets these relationships trends are presented in Figure 5.23 for flexural strength as a

function of beam volume. The statistical accuracy metrics of R2 and RMSE for each of

the four models are presented in Table 5.6. Based on these statistical metrics, the MLPR

and ETR models are the weakest and strongest models respectively. And while KNR and

GBR both outperform MLPR with respect to statistical metrics, these models are not well

suited to data extrapolation and their respective trendlines are less favorable compared to

MLPR.

Table 5.6: Comparisons of independent models

Model R2 Train R2 Test RMSE Train RMSE Test

MLPR 0.522 0.519 0.430 0.432
ETR 0.809 0.819 0.271 0.265
GBR 0.777 0.774 0.294 0.296
KNR 0.750 0.752 0.311 0.310
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Figure 5.23: Comparison of independent models (freshwater)

All six ensemble models produced trendlines in general agreement with the expected trends

discussed in Section 2.3. Ensemble model trendlines are presented in Figure 5.24, and sta-

tistical accuracy metrics are provided in Table 5.7.

The ability of an ensemble model to handle data extrapolation in an effective and expected

manner is important in model selection. As discussed in Chapter 4.2, the internal processes

of the ETR, GBR and KNR algorithms result in less than favorable extrapolated results.

In short, when extrapolating these three algorithms tend to base their predictions on the

same estimators resulting in constant predictions for extrapolation. The MLPR algorithm

is more adaptable to extrapolation than the other three making it the ideal companion

when exploring ensemble modelling. Reviewing the model statistics, observed trendlines

and extrapolation characteristics, the most favourable model is the “MLPR + ETR” ensem-

ble.
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Figure 5.24: Comparison of ensemble models (freshwater)

Table 5.7: Comparisons of ensemble models

Ensemble R2 Train R2 Test RMSE Train RMSE Test

MLPR + ETR 0.718 0.724 0.33 0.327

MLPR + GBR 0.691 0.69 0.345 0.347

MLPR + KNR 0.698 0.698 0.342 0.343

ETR + GBR 0.800 0.803 0.278 0.276

ETR + KNR 0.790 0.796 0.285 0.281

GBR + KNR 0.780 0.777 0.292 0.294

5.3 Level Ice Loads

Considering the presence of temperature dependencies in the ML flexural strength models,

the potential effects of temperature on structural loads and annual exceedance probabilities
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are of interest. The MLPR+ETR machine learning model was subjected to a probabilistic

design load calculation and compared with conventional approaches for a wind turbine instal-

lation in Lake Erie, including linear and constant strength models. Level ice load calculations

are governed by the structure geometry and the level ice thickness to which the structure is

exposed. Structural geometry of the wind turbine consists of a 60 degree downward breaking

cone with a mean waterline diameter of 8m, as described in Croasdale et al. (2019). The level

ice thickness (hice) is estimated based on the Accumulated Freezing Degree Days (AFDD)

as discussed by Daly (2016) and presented in Equation 5.6. The calculation of ice loads were

then generated based upon the methodology discussed in Brown et al. (2001).

hice = α
√︁
AFDDn − AFDDo (5.6)

In Equation 5.6, AFDDn is the number of AFDD recorded during the winter up to day n,

AFDDo is the number of AFDD recorded before ice is first present, and α is a coefficient

which can vary depending on the geographical location. For the Lake Erie region, the

coefficient α and AFDDo were determined by Daly (2016) to be 2.39 and 43.4 respectively.

The AFDD were sampled from a Weibull distribution based on Daly (2016), and ice beam

volumes were estimated as 7h3
ice based on recommendations by Schwarz et al. (1981).

Annual level ice loads were estimated using the constant, linear, and ML ensemble flexural

strength models, and then ranked to produce an annual probability of exceedance for each

model, as shown in Figure 5.25. For the constant flexural strength model a flexural strength

value of 538 kPa was chosen based on Karulina et al. (2019). The linear model was based

on the Aly et al. (2019) model (see Equation 5.3) using simulated ice thicknesses. The ML

ensemble model used both simulated ice thicknesses and a constant temperature of -5°C to

estimate flexural strength. The constant strength model produces the lowest global loads

while the highest loads are predicted by the ML ensemble model.
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Figure 5.25: Level ice loads for various models

The MLPR+ETR ensemble model was also run for ice temperatures of -1°C and -10°C to

determine the effect of temperature on global loads, the results are shown in Figure 5.26.

The global loads for a 50-year return period for the linear model and the three MLPR+ETR

models from Figure 5.26 are presented in Table 5.8. The ML and linear model are gen-

erally comparable at -1°C with the ensemble model being an average of 6% higher than

the linear model. Separation between the linear and ML models increases as temperature

decreases.

It can be observed from Figure 5.26, that for the same probability of exceedance the level

ice loads decreases as temperatures increase. This trend is not unexpected as it mirrors

the behaviour of decreasing flexural strength with increasing ice temperatures as presented

earlier. For the scenario presented here, the MLPR+ETR model shows an approximate 18%

decrease in global loads when ice temperatures increase from -10°C to -1°C. This is a very

interesting trend as many regions are experiencing a rise in average annual temperatures

as a result of climate change. Rising temperatures combined with the flexural strength
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temperature dependencies discussed here, could result in reductions to global ice loads for

future freshwater structures.

Figure 5.26: Level ice loads for ML model with various temperatures

Table 5.8: 50-year return period

Model Global Load Percent Increase
[MN] over Linear Model

Linear 1.43 -
MLPR+ETR (-1◦C) 1.52 6.3%
MLPR+ETR (-5◦C) 1.73 21.0%
MLPR+ETR (-10◦C) 1.84 29.4%

5.4 Summary

Freshwater flexural strength was found to have a dependence on both beam volume and

temperature. The relationship between flexural strength and beam volume has been docu-

mented by several researchers and has also been demonstrated here in using the traditional

methods as well as the ML models. The ML models have shown a significant decrease in
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strength with increasing beam volume, with the largest reductions being present in beams

greater than 0.1m3.

Most researchers have ignored the effects of temperature on flexural strength of freshwater ice

suggesting that no discernible relationship exists. However, with the implementation of ML

models the effects of temperature on flexural strength are clearly evident. All 10 ML models

(4 individual and 6 ensemble) indicated some degree of dependence of flexural strength on

temperature. Further investigation into this relationship using current and additional ML

algorithms is warranted, and could improved on the relationships presented here. With

many regions experiencing an increase in average annual temperatures, the potential of

flexural strength dependencies on temperature could result in lower expected global ice

loads on future structures. While a reduction in flexural strength might be advantageous

for structures in ice, it would have the opposite effect for industries reliant on the bearing

capacity of ice, such as ice road transportation. It is recommended that further research

exploring ML modeling should continue to further develop the potential of this new modelling

approach.
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6 Sea Ice Analysis

In the following sections an investigation of sea ice flexural strength is presented with a

discussion on both traditional and ML methods. A portion of the work in this Chapter has

been published in a paper entitled “Estimating Level Sea Ice Loads on Sloping Structures

Using Machine Learning-Derived Flexural Strength,” and presented at the 27th International

Conference on Port and Ocean Engineering under Arctic Conditions (POAC 2023); see

Burton et al. (2023). Co-authors Dr. Rocky Taylor and Dr. Renat Yulmetov served in

conceptualizing the research, securing funding, and providing guidance and support during

data analysis and interpretation as well as reviewing and editing the manuscript. The author

took on the primary role in research execution, compiling and analyzing data, leading the

organization, synthesis and interpretation of results, as well as preparation and revision of

the manuscript.

6.1 Traditional Methods: Empirical Models

Traditionally the flexural strength of sea ice was either assumed to be constant, or was

estimated through the use of empirical models. These empirical models generally take the

form of a single or double parameter model, both single and multi-parameter models are

discussed below.
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6.1.1 Single Parameter Regression Models

Three common single parameter models include linear, polynomial, and exponential decay.

Generic forms for these models can be found in Equations 6.1, 6.2 and 6.3 for linear, poly-

nomial and exponential models respectively:

σf = c0 · P + c1 (6.1)

σf = c0 · P c1 (6.2)

σf = c0 · exp (c1 · P ) (6.3)

where σf is the flexural strength of ice, c0 and c1 are constants, and P is a physical property

of the ice sample such as temperature or brine volume.

The most common ice properties employed in single parameter models are brine volume and

temperature, beam volume is generally only included in multi-parameter models.

6.1.1.1 Brine Volume

As discussed in Section 2.3.3, the relationship between the flexural strength of sea ice (σf )

and brine volume (vb) has been documented by a number of researchers (Aly et al. (2019),

Ji et al. (2011), Barrette et al. (1999), Blanchet et al. (1997), Timco and O’Brien (1994),

Christensen (1986), Schwarz and Weeks (1977), Weeks and Assur (1967), and Butkovich

(1959)). A number of researchers have developed flexural strength models following an

exponential decay in relation to brine volume, including Karulina et al. (2019) (Equation

6.4), Ji et al. (2011) (Equation 6.5) and Timco and O’Brien (1994) (Equation 6.6).
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σf = 0.5266 · exp (−2.804
√
vb) (6.4)

σf = 2.41 · exp (−4.29
√
vb) (6.5)

σf = 1.760 · exp (−5.88
√
vb) (6.6)

Other researchers took a linear approach such as Blanchet et al. (1997) (Equation 6.7) and

Schwarz and Weeks (1977) (Equation 6.8).

σf = 1.0− 1.85
√
vb (6.7)

σf = 1.03 ·
(︃
1−

√︃
vb

0.209

)︃
(6.8)

Using the generic exponential decay formulae (Equation 6.3), an empirical model was derived

based on the observed data as shown in Equation 6.9. A comparison between the models is

provided in Figure 6.1, and upon observation one can determine that the new model appears

to operate within the bounds set by the Timco and O’Brien and Ji et al. models. At lower

brine volumes the new model approaches the Timco and O’Brien model, while at higher

brine volumes the model approaches the Ji et al. model.

σf = 1.70 · exp (−4.21
√
vb) (6.9)
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Figure 6.1: Single parameter empirical model : Flexural strength as a function of the square
root of brine volume fraction

Brine volume was not documented by every author in the database, and as discussed previ-

ously entries without a brine volume were subject to removal from the database. However, if

both salinity and temperature are available than brine volume can be approximated using the

equation derived by Frankenstein and Garner (1967), see Equation 2.31 reproduced below,

thus preserving the entry in the database using a calculated value for brine volume.

vb = S

(︃
49.185

T
+ 0.532

)︃
(2.31 revisited)

6.1.1.2 Temperature

As discussed in Section 2.3.4, there is a general consensus that flexural strength of sea

ice decreases with increasing ice temperatures (e.g. Timco and O’Brien, 1994). The use of

temperature alone to model flexural strength seems to be employed less frequently than brine
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volume however, linear models for deriving flexural strength based solely on ice temperature

were presented by Ji et al. (2011) (see Equation 2.39) and Saeki et al. (1978) (see Equation

2.37).

σf = 0.35− 0.09 · T [MPa] (2.39 revisited)

σf = 3.4− 0.64 · T [kg/cm2] (2.37 revisited)

Two additional models were developed based on the observed data, one based on a linear

model (Equation 6.10) while the other based on a polynomial model (Equation 6.11).

σf = 0.482− 0.046 · T (6.10)

σf = 0.378 |T |0.424 (6.11)

The Ji et al. (2011) and Saeki et al. (1978) models along with the two new models are

presented in Figure 6.2 for comparison, overall it appears the polynomial model has a better

fit to the data.
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Figure 6.2: Single parameter empirical model : Flexural strength as a function of temperature

6.1.1.3 Beam Volume

As discussed in Section 2.3.2, the relationship between decreasing flexural strength with

increasing beam volume has been demonstrated by a number of researchers (e.g. Frederking

and Sudom (2013), Lau et al. (2001), Williams and Parsons (1994), Maattanen (1975) and

Lavrov (1971)). This relationship is often referred to as a “scale-effect” and while it is

accepted by many its significance is still debated among researchers. For example, Blanchet

et al. (1997), Timco and O’Brien (1994), Parsons et al. (1992), Parsons and Lal (1991) found

no significant evidence of scale-effect as related to the flexural strength of sea ice.

The relationship between the flexural strength of sea ice and beam volume is generally

modelled in conjunction with another ice parameters such as brine volume. Flexural strength

models based solely on beam volume are not readily available in literature and during this

research no published models were found to serve as a benchmark for this ice parameter. A
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polynomial regression model was applied to the prediction of flexural strength based solely

on beam volume and fit to the current database, the resultant model is presented in Equation

6.12 and Figure 6.3.

σf = 0.392 · V −0.155 (6.12)

Figure 6.3: Single parameter empirical model : Flexural strength as a function of beam
volume

6.1.2 Multi-Parameter Regression

The empirical representation of the relationship between flexural strength and sea ice pa-

rameters cannot be fully explained by any single ice property. Furthermore, individual ice

properties are not necessarily independent and underlining correlations can and do exist

between the various properties. For instance, temperature and brine volume are correlated

through salinity as discussed in Section 2.3.4.1. One common multiple parameter regression
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model employs features of both polynomial and exponential decay models, and a generic

form of this model is provided in Equation 6.13:

σf = c0 · P c1
1 · ec2·P2 (6.13)

where σf is the flexural strength of ice, c0, c1, and c2 are constants, and P1 and P2 are

physical properties of the ice sample such as temperature or brine volume.

One of the most common multi-parameter parings is that of beam volume and brine volume,

and has been employed by several researchers including Aly et al. (2019) and Williams and

Parsons (1994) as shown in Equations 6.14 and 6.15 respectively.

σf = 1760 ·
(︃
V

V1

)︃−0.057

e−5.395
√
vb (6.14)

σf = 1324 ·
(︃
V

V1

)︃−0.054

e−4.969
√
vb (6.15)

where V is beam volume, V1 is a reference volume and vb is brine volume. A reference volume

of 0.01m3 was set by Williams and Parsons (1994) and 1.0m3 by Aly et al. (2019).

Using the same generic formulae a two-parameter model of flexural strength (see Equation

6.16) was developed based on the current database and is presented along with the previously

discussed models in Figure 6.4 as a function of beam volume, and in Figure 6.5 as a function

of brine volume. The results generated by the Aly et al. and Williams and Parsons models

are very similar. The new model is similar to the others but tends to result in higher strength

values.
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Figure 6.4: Multi-parameter empirical model: Flexural strength as a function of beam vol-
ume

Figure 6.5: Multi-parameter empirical model: Flexural strength as a function of brine volume
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σf = 559

(︃
V

V1

)︃−0.128

e−1.358
√
vb (6.16)

6.2 Machine Learning

In this work, ML regression algorithms were developed and applied to predict the flexural

strength of sea ice. Four machine learning models were developed based on the MLPR, ETR,

GBR and KNR algorithms. All models were generated and tuned using a Python machine

learning library developed by Scikit-learn (2021). These models were compared and con-

trasted looking at model bias, accuracy and generalization as well as their ability to extrap-

olate and predict strengths for values outside of the training data. The application of ensem-

ble modelling was also investigated, in which two or more models were blended, attempting

to overcome their individual weaknesses by building upon their combined strengths.

6.2.1 Observed and Simulated Data

There are two primary datasets used during model development, observed data and simulated

data. Observed data refers to the data as originally presented within the flexural strength

database (see Section 3) and forms the basis for model development. Simulated data refers to

data which has been generated based on original observed data, for the purpose of enhancing

the visibility of data trends. Details on the simulated dataset are provided in the following

section.

6.2.1.1 Simulated Data

As evident from the observed data, the flexural strength of sea ice exhibits a high degree of

variability. Models fitted to the observed data tend to mirror this variability making data

trends harder to observe. To help reduce this variability the observed data were simplified
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into four relationships: brine volume vs beam volume (Figure 6.6a), brine volume vs temper-

ature (Figure 6.6b), beam volume vs brine volume (Figure 6.6c) and temperature vs brine

volume (Figure 6.6d).

To improve the visual representation of data trends three simulated databases were developed

based from beam volume, brine volume and temperature. The simulated database based on

brine volume defines both beam volume (V ) and temperature (T ) as a function of brine

volume (vb), as shown in Equations 6.17 and 6.18 and presented in Figure 6.6a and 6.6b.

For the simulated database based on beam volume, vb is defined as function of beam volume

using Equation 6.19 and presented in Figure 6.6c. Temperature is then estimated based on

Equation 6.18 in the same manner as the simulated brine volume database. For the simulated

database based on temperature, vb is defined as a function of temperature as described in

Equation 6.20 and presented in Figure 6.6d, V is then defined as a function of vb as presented

in Equation 6.17.

V = 0.0384vb − 6.203 (6.17)

T = −18.838 + 3.164 · ln vb (6.18)

vb = 5.151 · lnV + 60.896 (6.19)

vb = 120.414 · exp(0.187T ) (6.20)

The ability to decipher a relationship between brine volume and temperature based on

observed data is expected based on the correlation between these two properties as discussed
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in Section 2.3. However, beam volume has no direct correlation with the other parameters, as

this property is selected by the researcher when determining the appropriate size for a given

test program, hence the large amount of scatter seen in the observed data of Figures 6.6a and

6.6c. However, to complete the simulated database a reasonable assumption of beam volume

was required, either a constant or some relationship with the another parameter would be

required. Therefore the linear trends between beam volume and brine volume, as presented

above, were selected as they provided a monotonic trend which helped promote trendline

presentations.

(a) Brine volume vs beam volume (b) Brine volume vs temperature

(c) Beam volume vs brine volume (d) Temperature vs brine volume

Figure 6.6: Trendlines of simulated database based on the observed data
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6.2.2 Independent Models

In the following sections the implementation of the four ML algorithms mentioned above

will be discussed. The general process for tuning the model to the data began with the

default hyperparameters, followed by hyperparameters selected using Scikit-Learn’s param-

eter optimization tool, and finally a manual tuning of the hyperparameters. The parameter

optimization tool within scikit-learn performs a cross-validated search across a matrix of

user supplied hyperparameters.

When tuning the models careful consideration is given to both the statistical accuracy metrics

and the generalization of the model. As noted earlier when plotting model predictions using

the observed data a higher degree of variability in the predictions is expected in comparison

to the simulated data. However, careful observation of the model predictions using the

observed data must be performed to distinguish between variability within the model and

the overfitting of the model.

6.2.2.1 Multilayer Perceptron Regressor

As discussed in Section 4.2.1 the the MLPR algorithm has a number of hyperparameters

which require tuning to achieve an optimized model. Four of most influential hyperparame-

ters were found to be alpha or the strength of the L2 regularization term (default = 0.001),

the size of hidden layer (default = 100), the activation function (default = “relu”) and the

solver (default = “adam”) used to optimize the weight of each node to node link.

MLPR output with default hyperparameters is show in Figure 6.7, and presents a very rea-

sonable starting point for the optimization of the model. Using the optimization tool a new

set of hyperparameters were established, with the resultant model presented in Figure 6.8.

However, upon viewing the output it is obvious that the newly established hyperparameters

are overfitting the data and further tuning is required.
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The results of the optimizations tool were not satisfactory, requiring further tuning of the

hyperparameters. Using the default hyperparameters as the basis, the alpha parameter

was incrementally increased from the default value (0.001) until an optimum value was

determined at 13. The size of the hidden layer was subsequently decreased from 100 to

20. During the manual tuning process the overall model accuracy as well as the fit of

the model to the observed and simulated datasets were used as indicators when adjusting

the hyperparameters. Results for the manual tuning are provided in Figure 6.9 for both

the training and test data sets. A summary of the default, optimizer and manually tuned

hyperparameters are provided in Table 6.1.
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.7: MLPR: Default parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.8: MLPR: Grid search selected parameters

102



(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.9: MLPR: Manually tuned parameters
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Table 6.1: MLPR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Size of hidden layer 100 (7,7) 20
alpha 0.001 0.001 13
Activation function relu tanh relu
Solver adam lgfbs lgfbs

6.2.2.2 Extra Trees

As discussed in Section 4.2.2.1 the ETR algorithm has a number of hyperparameters which

require tuning to achieve an optimized model. Three of most influential hyperparameters

were found to be the maximum depth (default = “none”), number of estimators (default =

100) and minimum samples per leaf (default = 2).

A ETR has been applied to the data using the Scikit-learn library function within Python.

The ETR regressor was run by tuning three input parameters: max depth, number of esti-

mators and minimum samples per leaf.

The first tuning attempt began with the default settings, and the results are presented in

Figure 6.10. The general overall trends presented using the default parameters are very

good for both the observed and simulated datasets. However, there is evidence of overfitting

within the model which is clearly evident when inspecting the observed data. As a result

further tuning was considered necessary. Parameter optimization tools were employed and

the optimal number of estimators, maximum depth and minimum samples per leaf were

determined to be 30, 11 and 1 respectively. The result of the ETR model based on these

optimization parameters is shown in Figure 6.11.
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Training data

Figure 6.10: ETR: Default parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.11: ETR: Grid search parameters

The parameters defined by the optimization tool helped slightly in reducing the overfitting

tendency observed in the default model. However, the model is still showing significant

signs of overfitting. Further tuning of the input parameters was considered necessary in an
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effort to improve the fit of the model. Various combinations of parameters were tested, the

number of estimators was increased to 75, max depth was decreased to 5 and the minimum

samples per leaf was kept at 1, the results are shown in Figure 6.12. These modification

were successful in improving the overall fit of the data, although some overfitting is still

present the overall model was significantly improved. A summary of the default, optimizer

and manually tuned hyperparameters are provided in Table 6.2.
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.12: ETR: Manually tuned parameters
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Table 6.2: ETR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Maximum Depth “none” 11 5
Number of Estimators 100 30 75
Minimum samples per leaf 2 1 1

6.2.2.3 Gradient Boosted Trees

As discussed in Section 4.2.2.2 the GBR algorithm has a number of hyperparameters which

require tuning to achieve an optimized model. Four of the most influential hyperparameters

were found to be the maximum depth (default = 3), number of estimators (default = 100),

minimum samples per leaf (default = 1) and learning rate (default = 0.1).

GBR output with default hyperparameters is show in Figure 6.13 and clearly indicates that

the model is overfitting the data. The parameter optimization tools were employed resulting

in an optimal hyperparameters settings with the number of estimators equal to 500, learning

rate of 0.2, minimum samples per leaf equal to 5 and max depth equal to 7. Output using

the grid search is shown in Figure 6.14.

The optimization tool did not perform well for the GBR model resulting in an increase in

model overfitting. The application of manual tuning of the hyperparameters was performed

resulting in the number of estimators equal to 500, learning rate equal to 0.01, minimum

samples per leaf of 5 and max depth equal to 2. Output using the manual hyperparameters

is presented in Figure 6.15 and demonstrates a significant improvement over the previous

GBR models. A summary of the default, optimizer and manually tuned hyperparameters

are provided in Table 6.3.
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.13: GBR: Default parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.14: GBR: Grid search selected parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.15: GBR: Manual search selected parameters
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Table 6.3: GBR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Maximum Depth 3 7 2
Number of Estimators 100 500 500
Minimum samples per leaf 1 3 5
Learning rate 0.01 0.02 0.01

6.2.2.4 k-nearest Neighbours

As discussed in Section 4.2.3, the KNR algorithm is the simplest of the ML algorithms

introduced in this work, and has only 3 hyperparameters which require tuning to achieve an

optimized model including number of neighbors (default = 5), weighting method (default =

uniform) and the algorithm used to compute the nearest neighbor (default = auto).

KNR output with default hyperparameters is shown in Figure 6.16, and presents a model

which is overfitting the data. The parameter optimization tools were employed resulting in

the number of neighbors increasing to 10 and the weighting method changing to “distance”.

The results of these modifications to the hyperparameters are shown in Figure 6.17 and

shows an increase in the overfitting of the model.

The effect of the optimization tool on the KNR model was ineffective and overfitting of the

data is still prevalent. It was therefore necessary to tune the model manually, and after

several rounds of adjustments the final hyperparameters consisted of the model weighting

method returning to “uniform” and the number of neighbors increasing to 50. KNR output

with manual hyperparameters is presented in Figure 6.18 and demonstrates a significant

reduction in overfitting. Model trend lines are also improved, where the simulated data

trends present a significant reduction in the number of local maximum and minimums.

There does appear to be a tendency towards a less continuous trend line when observing
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strength versus beam volume and brine volume. A summary of the default, optimizer and

manually tuned hyperparameters are provided in Table 6.4.

(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.16: KNR: Default parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.17: KNR: Grid search selected parameters
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(a) Strength vs beam volume: Training data (b) Strength vs beam volume: Test data

(c) Strength vs temperature: Training data (d) Strength vs temperature: Test data

(e) Strength vs brine volume: Training data (f) Strength vs brine volume: Test data

Figure 6.18: KNR: Manually tuned parameters
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Table 6.4: KNR: Hyperparameter summary

Hyperparameter Default Grid Manual
Search

Number of Neighbors 5 10 50
Weighting Method “uniform” “distance” “uniform”
Algorithm “auto” “ball tree” “auto”

6.2.3 Ensemble Models

The use of single algorithm models can result in accurate predictions however, models em-

ploying an ensemble approach using multiple algorithms often outperform their single algo-

rithm counterparts. Averaging ensembles help to balance out the individual weaknesses (e.g.

variance and bias) of the independent models. In this section the four independent models

were combined for form six ensemble models each composed of two individual ML models.

The predictions from the ensemble modes are shown in Figures 6.19 through 6.24 and include

trendlines based on the observed (training and test data) and simulated datasets.

In Figures 6.19 and 6.20 each of the six ensembles are plotted against the square root of

brine volume fraction and compared against the Timco and O’Brien (1994) brine model.

Each of the ensemble models tends to overpredict in comparison to the empirical model. In

Figures 6.21 and 6.22 the ensemble models are plotted against temperature and compared to

the Saeki et al. (1978) temperature model. For temperatures above -10◦C the ensemble and

empirical models have good agreement, with the ensemble models generally overpredicting at

lower temperatures. In Figures 6.23 and 6.24 the ensemble models are plotted against beam

volume, however, there is no published empirical model for comparison. The trendlines from

all six models indicate the expected trend of decreasing flexural strength with increasing

brine volume, temperature and beam volume. In all cases the “MLPR + ETR” ensemble

produced the smoothest trendline out of the six ensemble models tested. Further discussion

on the ensemble models will be presented in the next section.
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(a) MLPR + ETR (b) MLPR + ETR

(c) MLPR + GBR (d) MLPR + GBR

(e) MLPR + KNR (f) MLPR + KNR

Figure 6.19: Ensemble models: Flexural strength as a function of brine volume (Part 1)
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(a) ETR + GBR (b) ETR + GBR

(c) ETR + KNR (d) ETR + KNR

(e) GBR + KNR (f) GBR + KNR

Figure 6.20: Ensemble models: Flexural strength as a function of brine volume (Part 2)
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(a) MLPR + ETR (b) MLPR + ETR

(c) MLPR + GBR (d) MLPR + GBR

(e) MLPR + KNR (f) MLPR + KNR

Figure 6.21: Ensemble models: Flexural strength as a function of temperature (Part 1)
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(a) ETR + GBR (b) ETR + GBR

(c) ETR + KNR (d) ETR + KNR

(e) GBR + KNR (f) GBR + KNR

Figure 6.22: Ensemble models: Flexural strength as a function of temperature (Part 2)
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(a) MLPR + ETR (b) MLPR + ETR

(c) MLPR + GBR (d) MLPR + GBR

(e) MLPR + KNR (f) MLPR + KNR

Figure 6.23: Ensemble models: Flexural strength as a function of beam volume (Part 1)
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(a) ETR + GBR (b) ETR + GBR

(c) ETR + KNR (d) ETR + KNR

(e) GBR + KNR (f) GBR + KNR

Figure 6.24: Ensemble models: Flexural strength as a function of beam volume (Part 2)
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6.2.4 Observed vs Predicted

A comparison between observed and predicted values was conducted to further observe

the performance of the individual and ensemble ML models, the results are presented in

Figures 6.25 and 6.26. A summary of each model (individual and ensemble) was generated

by categorizing the data according to the error between predicted and observed values,

based on Equation 5.5 reproduced below. Errors greater than +10% were categorized as

overpredicted, errors less than -10% are under-predicted while the remainder are considered

approximately equivalent. A summary of all ten models showing the percentage of predicted

data in each category is provided in Table 6.5.

err =
Predicted−Observed

Observed
(5.5 revisited)

Table 6.5: Percent error: Observed vs predicted (test data)

Model Over Under Approx

MLPR 57 29 14
ETR 55 24 21
GBR 42 27 31
KNR 52 27 21
MLPR + ETR 55 26 19
MLPR + GBR 54 24 22
MLPR + KNR 57 27 16
ETR + GBR 49 23 28
ETR + KNR 52 23 25
GBR + KNR 49 23 28

Comparing the observed vs predicted plots and summary table, the difference between the

ML models is not significant. The scatter present in each of the plots is to be expected when

compared to the variability present in the observed data. In general the ML models tend

towards an overprediction of flexural strength. The scatter within the individual models

is similar with the exception of the KNR model, which appears to discretize the data into
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distinct bands. This descretization of data is less prevalent in the ensemble models where

the KNR model is employed.

(a) MLPR (b) ETR

(c) GBR (d) KNR

Figure 6.25: ML: Observed vs predicted (individual)
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(a) MLPR + ETR (b) MLPR + GBR

(c) MLPR + KNR (d) ETR + GBR

(e) ETR + KNR (f) GBR + KNR

Figure 6.26: ML: Observed vs predicted (ensemble)
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6.2.5 Model Comparison

Each of the four ML models resulted in overall trendlines which are in agreement with the

expected relationship trends discussed in Section 2.3. Employing the simulated datasets

these relationship trends are presented in Figure 6.27 for flexural strength as a function of

beam volume, brine volume and temperature. The statistical accuracy metrics of R2 and

RMSE for each of the four models are presented in Table 6.6 below. The GBR model has

the lowest error values and highest R2 of the four models presented however, this accuracy

comes at a cost as it also experiences the highest degree of variability across all three model

features. The MLPR on the other hand has the least desirable accuracy metrics yet produces

the smoothest trendlines out of the four models presented.

Table 6.6: Comparisons of independent models

Model R2 Train R2 Test RMSE Train RMSE Test

MLPR 0.357 0.318 0.465 0.502

ETR 0.562 0.518 0.384 0.422

GBR 0.636 0.580 0.350 0.394

KNR 0.436 0.417 0.435 0.464
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(a) Flexural strength as a function of beam volume

(b) Flexural strength as a function of the square root of the brine volume fraction

(c) Flexural strength as a function of temperature

Figure 6.27: Comparisons of independent models
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All six ensemble models produced trendlines which were in agreement with the expected

relationship trends as discussed in Section 2.3, these trends are presented in Figure 6.28

employing the simulated datasets. The statistical accuracy metrics for the ensemble models

are provided in Table 6.7.

Ensemble models employing the GBR have the most favourable accuracy metrics however,

like the individual models these models also demonstrated higher variability across the three

model features. Also in similar fashion to the individual models, the ensemble models with

the least favourable accuracy metrics (“MLPR + ETR” and “MLPR + KNR”) have the

smoothest trendlines.

The ability of an ensemble model to handle data extrapolation in an effective and expected

manner is important in model selection. As discussed in Chapter 4.2, the internal processes

of the ETR, GBR and KNR algorithms result in less than favorable extrapolated results.

In short, when extrapolating these three algorithms tend to base their predictions on the

same estimators resulting in constant predictions for extrapolation. The MLPR algorithm

is more adaptable to extrapolation than the other three making it the ideal companion

when exploring ensemble modelling. Reviewing the model statistics, observed trendlines

and extrapolation characteristics, the most favourable model is the “MLPR + ETR” ensem-

ble.
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Table 6.7: Comparisons of ensemble models

Model R2 Train R2 Test RMSE Train RMSE Test

MLPR + ETR 0.479 0.441 0.418 0.454

MLPR + GBR 0.542 0.498 0.393 0.431

MLPR + KNR 0.428 0.401 0.439 0.470

ETR + GBR 0.611 0.561 0.362 0.403

ETR + KNR 0.512 0.478 0.405 0.439

GBR + KNR 0.567 0.525 0.382 0.419

130



(a) Flexural strength as a function of beam volume

(b) Flexural strength as a function of the square root of the brine volume fraction

(c) Flexural strength as a function of temperature

Figure 6.28: Comparisons of ensemble models
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6.3 Level Ice Loads

A comparison study was conducted to determine how the modelling of flexural strength could

impact the level ice loads on a structure, and how the variability in the ice parameters can

impact these loads. A single pier from the Confederation Bridge was chosen as the reference

structure for the study, and the relevant geometry are provide in Figure 6.29. These bridge

piers have a conical ice shield conical near the waterline with an approximate diameter (D)

of 13.9m at the mean sea level (MSL).

Figure 6.29: Confederation bridge pier geometry

The force required to initiate the flexural failure of an ice sheet impacting the bridge pier is

based on the method discussed in Brown et al. (2001) and presented in Equation 6.21:

132



Fsheet =

{︄
0.68ζσfD

[︃
ρwgh

5
ice

E

]︃0.25
⏞ ⏟⏟ ⏞

Flexural Failure Force

+

[︃
ζ(sinα + µ cosα)) +

sinα + µ cosα)

tanα

]︃
hfhiceρigD⏞ ⏟⏟ ⏞

Ride-up Force

}︄ (︃
1 +

π2lc
4D

)︃
⏞ ⏟⏟ ⏞
Correction Factor

(6.21)

where ζ is defined in Equation 6.22, σf is the flexural strength of the ice, ρw is the density of

surrounding water, g is gravity, h is the ice thickness, E is the Young’s moduls of ice, α is the

cone angle, µ is the ice-cone coefficient of friction, hf is the ride-up height, ρi is the density

of ice, lc is the elastic critical length defined in Equation 6.23, and v is poissons ratio. There

are three primary components in Equation 6.21 including the forces to cause flexural failure

of the ice sheet, the forces required to push broken ice blocks up the sloped surface and a

correction factor as discussed in Croasdale et al. (1994) to account for a under-prediction of

loads when lc is not sufficiently small compared to diameter of the structure. The ride-up

force is independent of the flexural strength of the ice sheet and is an unnecessary term in

a comparative study such as being discussed here. As a result the flexural load calculation

can be simplified as shown in Equation 6.24

ζ =
sinα + µ cosα)

cosα− µ sinα
(6.22)

lc =

(︃
Eh3

12ρwg (1− v2)

)︃1/4

(6.23)

FFlex = 0.68σfD

[︃
sinα + µ cosα

cosα− µ sinα

]︃ [︃
ρwgh

5

E

]︃0.25 [︃
1 +

π2lc
4D

]︃
(6.24)
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Deterministic design loads were calculated using the flexural strength outputs from the

“MLPR + ETR” ensemble model using simulated ice parameters. For comparison these

simulated ice parameters were also feed into select empirical models.

The first comparison study examines the impact of temperature on the level ice loads as

shown in Figure 6.30. In this study three databases are generated with constant temperatures

of -1, -5 and -10◦C, each having a constant brine volume of 35 ppt and beam volume was

estimated at 7h3 based upon recommendations by Schwarz et al. (1981). The empirical

benchmark for this comparison employed the temperature model developed by Saeki et al.

(1978) (see Equation 2.37). The ML and empirical predictions are very similar at warmer

temperatures (-1◦C), however as temperatures decrease the separation between Saeki et al.

and the ML model rapidly increases, with the ML predictions being approximately 750 kPa

lower at -10◦C.

Figure 6.30: Level ice loads: As a function of temperature and beam volume

The second comparison study examines the impact of brine volume and temperature on the

level ice loads as shown in Figure 6.31. In this study temperature was varied from -1 to
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-20◦C, beam volume was held constant at approximately 0.45m3 (estimated based on a level

ice thickness of 0.4m), and brine volume was estimated based on temperature using Equation

6.20. In this comparison, the ML model is compared against the empirical models of Saeki

et al. (1978), Timco and O’Brien (1994), Ji et al. (2011) and Aly et al. (2019). In general as

the temperatures decrease the separation between the empirical models increases. Overall

the empirical models by Timco and O’Brien (1994) and Aly et al. (2019) are reasonable

close, in particular for temperatures above -10◦C. For temperatures greater than -12◦C the

Saeki et al. and ML models have nearly identical trends. The ML model predictions are

about halfway between Aly et al. and Ji et al. from -1 to -12◦C, however for temperatures

below -12◦C the ML is relatively constant.

Figure 6.31: Level ice loads: As a function of temperature and brine volume

6.4 Summary

The influence of beam volume, brine volume and ice temperature on the flexural strength

of sea ice was investigated using ML algorithms, and compared with traditional empirical
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models. A total of ten ML models (four individual models and six ensemble models) were

developed and tested, and have shown great promise in demonstrating the presence of scale

effects trends as well as temperature and brine volume dependencies.

Summary plots of the flexural strength as a function of beam volume, brine volume and

temperature are provided in Figure 6.32. These comparison plots present the MLPR and

“MLPR + ETR” ensemble models, the newly developed empirical models and select pub-

lished empirical models depending on the ice parameters under comparison. When comparing

models as a function of beam volume the empirical models presented are those published

by Williams and Parsons (1994) and Aly et al. (2019), which employ both beam volume

and brine volume. When comparing models as a function of brine volume the empirical

models also include the brine model published by Timco and O’Brien (1994). The linear

model presented by Ji et al. (2011) was used when comparing temperature models. To aid

in the presentation of smoother trend lines, the simulated databases were used with the ML

models.

As demonstrated in Figure 6.32 the empirical and ML models display similar overall trends.

For beam volume and brine volume the ML models generally result in slightly higher flexural

strengths. When comparing temperature dependencies, the ML models are generally slightly

lower than the empirical.

The flexural strength of sea ice was found to have dependence on beam volume, brine volume

and ice temperature, these relationships have been demonstrated here through the applica-

tion of both traditional models and ML models as demonstrated in Figure 6.32. All ten ML

models investigated showed a degree of dependence of flexural strength on beam volume,

brine volume and temperature.
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(a) Flexural strength as a function of beam volume

(b) Flexural strength as a function of the square root of the brine volume fraction

(c) Flexural strength as a function of temperature

Figure 6.32: Summary of ML and select empirical models
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The relationship between flexural strength and brine volume has been well documented by

multiple researchers, as discussed in Section 2.3.3. The inclusion of beam volume in the

formulation of flexural strength is generally coupled with brine volume (see Section 2.3.2).

The effect of temperature is often ignored completely, however two empirical models based

on temperature (Saeki et al. (1978) and Ji et al. (2011)) were included in this work.

An analysis of level ice loads using the ML and empirical models mirrored the trends observed

in flexural strength with higher temperatures, brine volumes and beam volumes resulted in

lower ice loads. The ML ensemble model was on average 15% higher than the Timco and

O’Brien (1994), 26% higher than Aly et al. (2019) models, and about 28% lower than the

Ji et al. (2011) model. Overall, the use of ML has shown promissing results in modelling

the dependicies of flexural strength on temperature, brine volume and beam volume. The

continuation of research in this area is recommended.
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7 Conclusions and Recommendations

The goal of this work was to explore the potential application of ML algorithms to the

prediction of sea ice and freshwater ice flexural strength. ML can be a very useful tool and

has been used with much success in many fields, however it is not necessarily the solution

to every data problem. In this work ML predictions were compared against those from

more traditional empirical methods, as well as the expected physical trends based on ice

properties as a means to determine the applicability of ML to ice mechanics issues such as

the estimation of flexural strength.

7.1 Discussions and Conclusions

The development of any ML model requires a large quantity of quality data. The majority

of data used in this work were extracted from an extensive database compiled by Aly et

al. (2019), containing flexural strength measurements for both freshwater and sea ice test

programs. ML models were developed for predicting the flexural strength of freshwater

ice and sea ice based on beam volume, temperature and brine volume. The database was

filtered to ensure data was present for each of these three parameters with additional filtering

limiting the database to only naturally occurring ice samples. The resultant database had

approximately 640 and 800 freshwater and sea ice entries respectively. The performance

of each model was evaluated against three key metrics: statistical accuracy, prediction of

expected physical behaviours, and the ability of the model to generalize to new unseen

data.

139



A total of ten ML models were developed, four based on individual algorithms plus six

ensemble models. The four individual regression algorithms were multilayer perceptron,

extra trees, gradient boosted trees and k-nearest neighbour, the six ensemble models were

composed of pairs of these four individual models.

To evaluate the ability of each model to predict the underlining expected physical behaviours,

these behaviours had to be defined. An investigation was performed to determine the the-

oretical and observational influence of beam volume, brine volume and temperature on the

flexural strength of ice. A brief summary of the relationship between these three ice proper-

ties and the flexural strength of ice are discussed below.

Brine Volume: The influence of brine volume on ice strength has been investigated by

a number of researchers and it is generally well accepted that ice strength is inversely pro-

portional to brine volume (e.g. Weeks and Assur (1967), Dykins (1968), Weeks and Assur

(1972), Tozawa and Taguchi (1986), Timco and O’Brien (1994) and Frederking and Sudom

(2013)). The ML models aligned well with the expected trends, showing clear trends of lower

flexural strength with increasing brine volume.

Scale Effect: The presence, or at least the significance, of scale effect trends in both sea ice

and freshwater ice has been debated in the literature. The existence of scale effect trends have

been deemed inconclusive by several researchers (e.g. Gow and Ueda (1989) and Parsons and

Lal (1991))). Conversely, researchers have also found that the presence of scale effects trends

in ice are of significance (e.g. Tozawa and Taguchi (1986), Williams and Parsons (1994) and

Lau et al. (2001)) and should be considered when modelling flexural strength. The ML

models clearly demonstrate the presence of scale effect trends in both freshwater and saline

ice, aligning well with work of researchers such as Williams and Parsons (1994).

Temperature: Like beam volume, the effects of temperature are debated in the literature,

and have varying results depending on whether the discussion is on freshwater ice or sea
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ice. Weeks and Assur (1972) noted a dependency between strength and temperature in

both freshwater and sea ice. Maattanen (1975) noted a reduction in flexural strength with

temperature in brackish and low salinity ice, while Gow (1977) and Gow et al., 1978 noted

a dependence between strength and temperature in freshwater beams. Several authors (e.g.

Lainey and Tinawi (1984) and Gow and Ueda (1989)) noted that a link between flexural

strength and temperature exists within freshwater ice, however the link is not significant.

Brine volume is highly correlated to temperature, or at least to the temperature history of

an ice sample, therefore it can be difficult to determine the influence of these individuals

parameters. In general, the flexural strength is expected to decrease with increasing tem-

peratures. The ML models were able to demonstrate trend of decreasing flexural strength

with increasing ice temperature.

This investigation into the expected physical behaviour determined that any flexural strength

model should present trends of decreasing flexural strength as beam volume, brine volume

and/or temperature increases.

The application of ML algorithms for the estimation of ice flexural strength (saline and

freshwater) has shown great promise. In freshwater ice, the ML models were able to demon-

strate the presence of scale effect trends as well as temperature dependencies. The impact

of temperature on the flexural strength of freshwater ice is generally considered insignificant

by many researchers and is likewise omitted from flexural strength models. Through the

application of ML as discussed here, the influence of temperature on the flexural strength of

freshwater ice is clearly evident. When investigating 50-year design loads on a representative

structure the ML experienced an approximate 18% decrease in load when temperatures were

increased from -20 to -1 ◦C.

When considering sea ice, the ML models demonstrated flexural strength dependencies on

brine volume, beam volume and temperature. Previously published models of sea ice flexural
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strength are generally limited to single or double parameters where temperature is often

ignored. The implementation of ML models marks the first time a three parameter model

has been used to estimate sea ice flexural strength. In general there was good agreement

between the ML and traditional models, although ML predictions were on average about

16% higher.

7.2 Recommendations for future research

There are a number of recommendations which could improve upon the current work:

1. Further development of the current models and investigation into the use of additional

algorithms is recommended. In the present work a good deal of effort was employed

in training and tuning the algorithms presented. However, there is always room for

improvement and potential exists for the progression of the models through further

tuning of these algorithms. Similarly, the work here was also limited to four super-

vised learning regression algorithms, exploring additional algorithms may highlight

algorithms which offer improvements over the current selection.

2. The addition of new data is recommended as it becomes available. ML models are

sensitive to the quality and quantity of the input data. ML algorithms perform better

on large datasets, therefore updating the model should be considered as new data

becomes available.

3. An investigation into the impact of skewed and clustered dataset on ML models versus

more “traditional” models is recommended. The nature of flexural strength testing

often results in a database that is highly skewed or subjected to data clustering. Testing

programs often involve a multitude of tests, where a large number of ice samples could

be extracted from the same ice sheet resulting in nearly identical conditions such as

temperature and brine volume. Beam volume is often restricted by the limitations
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of the testing equipment and can likewise contribute to a clustered dataset. Within

the sea ice database, over 85% of data are for beam volumes less than 0.6m3, more

than 50% of data have brine volumes of 25� or less, while approximately 30% of the

data are for tests between −15◦ to −16◦C and −8◦ to −9◦C. Therefore, further work to

investigate the influence of data skewing and clustering on the ML models compared

with the more “traditional” models is recommended.

4. Further investigation into the expected minimum strength of an ice beam is recom-

mended. During the discussion of Weibull weakest link modelling, it was stated that

the lower limit of ice beam strength is often assumed to be zero, this is a common

assumption as it allows for a simplification of the model. While zero would be an

acceptable “theoretical” minimum, the actual expected minimum would not be zero.

5. The current models (freshwater and sea ice) would benefit from the addition of new

flexural strength tests, in particular field testing of large scale beams would be of

benefit. The majority of each database is composed of relatively small scale beam

tests, therefore the addition of large scale test would help offset the skewness of the

current databases.

6. There are a few improvements which could be made to the collection and or reporting

of flexural strength test results which would benefit all researchers.

� Additional test parameters and ice properties : The inclusion of additional model

features in the form of physical ice properties (e.g. grain size or grain structure)

or testing parameters (e.g. loading direction and rate) would be beneficial. In

the current work, physical parameters such as grain size, grain structure, ice

density and total porosity were not included in the development of the ML models.

The reason for their exclusion is the inconsistency in which they are recorded or

presented in technical publications. The ML algorithms used in the current work
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do not accept null values, therefore the inclusion of such parameters would reduce

the number of entries in the model feature database decreasing the performance of

the models. Therefore should the recording of additional model features become

more prevalent in future publications, their inclusion should be considered in the

models.

� Total porosity, weight and density : The inclusion of total porosity in the model

development would be an improvement over brine volume alone. The effect of the

total ice porosity on the flexural strength of ice was discussed briefly in Section

2.3.3. In order to determine the total porosity of an ice sample, careful measure-

ments of beam volume and weight are required along with the density of the solid

ice forming the sample. The total porosity (or the necessary information upon

which to calculate total porosity) are rarely provided in technical publications

however their inclusion would be beneficial.

� A standard loading rate: The use of a standard loading rate would allow for

a better more direct comparison between test programs. As the loading rate

and other test parameters are not generally provided, it is reasonable to assume

that some degree of the variability within the flexural strength database could be

attributed to the loading rate or other missing parameters. A standard loading

rate could also help eliminate the impact of beam mass and the hydrodynamic

effect.

� A standard testing method : The use of a standard testing method, in a similar

manner as a standard loading rate, would remove one variable from the equa-

tion when looking at the variability between results from different test programs.

Four-point bending tests should be the favoured testing method as they offer

measurements accuracy improvements over both cantilever and three-point bend-
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ing. However, it is well understood that each method has its own merits and

method selection is based on the needs of the test program. That being said,

where possible four-point bending tests should be the method of choice.

The application of ML to the field of ice mechanics, specifically the estimation of flexural

strength, has shown great promise. The expansion of the flexural strength databases, further

tuning of the current algorithms, and the addition of new ML algorithms are key components

moving forward. With further research and development the ML model predictions are

expected to improve and become more robust. The continuation of research in the area of

ML and ice mechanics has the potential to add real value to the field.
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607–619.

Lainey, L., & Tinawi, R. (1984). The mechanical properties of sea ice—a compilation of

available data. Canadian Journal of Civil Engineering, 11 (4), 884–923.

Lau, M., Phillips, R., McKenna, R., & Jones, S. (2001). Size effect on the flexural strength of

ice in model testing. 16th International Conference on Port and Ocean Engineering

Under Arctic Conditions, Ottawa, ON, Canada, 12–17.

Lavrov, V. V. (1971). Deformation and strength of ice (tech. rep.).

Maattanen, M. (1975). On the flexural strength of brackish water ice by in situ test. Pro-

ceedings of the International Conference on Port and Ocean Engineering under Arctic

Conditions.

Palmer, A., Goodman, D., Ashby, M., Evans, A., Hutchinson, J., & Ponter, A. (1983). Frac-

ture and its role in determining ice forces on offshore structures. Annals of glaciology,

4, 216–221.

Parsons, B., Lal, M., Williams, F., Dempsey, J., Snellen, J., Everard, J., Slade, T., &

Williams, J. (1992). The influence of beam size on the flexural strength of sea ice,

freshwater ice and iceberg ice. Philosophical Magazine A, 66 (6), 1017–1036.

Parsons, B., & Lal, M. (1991). Distribution parameters for flexural strength of ice. Cold

regions science and technology, 19 (3), 285–293.

Saeki, H., Nomura, T., & Ozaki, A. (1978). Experimental study on the testing methods of

strength and mechanical properties for sea ice. Proc. of 4th IAHR Symposium on Ice,

part, 1.

149



Saeki, H., Ozaki, A., & Kubo, Y. (1981). Experimental study on flexural strength and elastic

modulus of sea ice. Proceedings of Port and Ocean Engineering under Arctic Condi-

tions, POAC, 81, 536–547.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of research and development, 3 (3), 206–226.

Sanderson, T. J. (1988). Ice mechanics and risks to offshore structures.

Schwarz, J. (1975). On the flexural strength and elasticity of saline ice. Proc. IAHR 3rd Int.

Symp. on Ice Problems, Hanover, NH, 373–386.

Schwarz, J., Frederking, R., Gavrillo, V., Petrov, I., Hirayama, K.-I., Mellor, M., Tryde,

P., & Vaudrey, K. (1981). Standardized testing methods for measuring mechanical

properties of ice. Cold Regions Science and Technology, 4 (3), 245–253.

Schwarz, J., & Weeks, W. (1977). Engineering properties of sea ice. Journal of Glaciology,

19 (81), 499–531.

Scikit-learn. (2021). Userguide. Retrieved September 30, 2021, from https://scikit-learn.org/

stable/user guide.html

Timco, G. (1985). Flexural strength and fracture toughness of urea model ice.

Timco, G., & Weeks, W. (2010). A review of the engineering properties of sea ice. Cold

regions science and technology, 60 (2), 107–129.

Timco, G., & Frederking, R. (1990). Compressive strength of sea ice sheets. Cold Regions

Science and Technology, 17 (3), 227–240.

Timco, G., & O’Brien, S. (1994). Flexural strength equation for sea ice. Cold Regions Science

and Technology, 22, 285–298.

Tozawa, S., & Taguchi, Y. (1986). A preliminary study of scale effect on structural strength

of ice specimen. International offshore mechanics and arctic engineering. Symposium.

5, 336–340.

150

https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html


Vaudrey, K. (1977). Ice engineering-study of related properties of floating sea-ice sheets and

summary of elastic and viscoelastic analyses (tech. rep.). CIVIL ENGINEERING

LAB (NAVY) PORT HUENEME CA.

Wang, J., Brown, J., & Frederking, R. (2020). Full-scale/model-scale comparison of podded

icebreaker’s performance in ice with flexural strength measurement study. SNAME

Maritime Convention, D023S007R001.

Weeks, W., & Ackley, S. F. (1986). The growth, structure, and properties of sea ice. Springer.

Weeks, W., & Assur, A. (1967). The mechanical properties of sea ice (Vol. 2). US Army

Materiel Command Cold Regions Research & Engineering Laboratory.

Weeks, W., & Assur, A. (1972). Fracture of lake and sea ice. In Fracture of nonmetals and

composites (pp. 879–978). Elsevier.

Weeks, W., & Gow, A. (1980). Crystal alignments in the fast ice of arctic alaska. Journal of

Geophysical Research: Oceans, 85 (C2), 1137–1146.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of ap-

plied mechanics.

Williams, F., Crocker, G., & Butt, S. (1993). Northumberland strait ice properties measure-

ments. National Research Council, Institute for Marine Dynamic, St. John’s, NL,

Canada, Technical Report No. TR-1993-06.

Williams, F., Everard, J., & Butt, S. (1992). Ice and snow measurements in support of the

operational evaluation of the nathaniel b. palmer in the antarctic winter environment.

Institute for Marine Dynamics.

Williams, F., Kirby, C., & Slade, T. (1993). Strength and fracture toughness of first-year

arctic sea ice. Institute for Marine Dynamics TR-1993-12, St. John’s, NF, Canada.

Williams, F., & Parsons, B. (1994). Size effect in the flexural strength of ice.

151



Williams, F., Spencer, D., Parsons, B., Hackett, P., Gagnon, R., Everard, J., & Butt, S.

(1991). Full-scale ice breaker trials ccgs sir john franklin indian arm/little burnt bay

1991. National Research Council Canada, St. John’s, NL, Canada, Technical Report

No. TR-1991-03.

Zhou, Z.-H. (2021). Machine learning. Springer Nature.

152


	Abstract
	Acknowledgements
	Co-Authorship Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Introduction
	Overview
	Purpose
	Outline of thesis

	Literature Review
	Ice Failure Methods
	Flexural Strength
	Simple Beam Theory
	Simple Beam Theory Assumptions
	Physical Testing of Flexural Strength
	Cantilever Beam Tests
	3-point and 4-point Bending Tests


	Ice Properties and Ice Mechanics
	Physics of Ice Growth
	Formation of Brine Pockets
	Grain Structures

	Beam Volume - Scale Effects
	Scale-Effect Theory
	Past Work on Scale Effect

	Brine Volume
	Brine Expulsion
	Past Work on Brine Volume

	Temperature
	Impact on Brine Volume
	Past work on Temperature


	Summary

	Flexural Strength Database
	Data Source
	Data Preprocessing
	Data Filtering
	Data Adjustment: Cantilevered Tests

	Summary

	Machine Learning
	Background
	Algorithms
	Multi-layer Perceptron Regression
	Decision Trees
	Extra Trees Regression
	Gradient Boosted Trees Regression

	k-Nearest Neighbours Regression

	Ensemble Modelling
	Model Evaluation and Selection
	Root Mean Square Error
	Coefficient of Determination
	Expected Physical Behaviour
	Generalization and Overfitting


	Freshwater Ice Analysis
	Traditional Methods: Non-linear Regression
	Machine Learning
	Observed and Simulated Data
	Independent Models
	Multilayer Perceptron Regressor
	Extra Trees Regressor
	Gradient Boosted Trees
	k-nearest Neighbours

	Temperature Effects
	Ensemble Models
	Observed vs Predicted
	Model Comparison

	Level Ice Loads
	Summary

	Sea Ice Analysis
	Traditional Methods: Empirical Models
	Single Parameter Regression Models
	Brine Volume
	Temperature
	Beam Volume

	Multi-Parameter Regression

	Machine Learning
	Observed and Simulated Data
	Simulated Data

	Independent Models
	Multilayer Perceptron Regressor
	Extra Trees
	Gradient Boosted Trees
	k-nearest Neighbours

	Ensemble Models
	Observed vs Predicted
	Model Comparison

	Level Ice Loads
	Summary

	Conclusions and Recommendations
	Discussions and Conclusions
	Recommendations for future research

	References

