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Abstract

Marine ecosystems are undergoing increasing environmental pressure from climate

change and industry developments. These environmental pressures are particularly

impacting in the Arctic. Increased monitoring of Arctic marine ecosystems with ac-

tive acoustic surveys could improve our understanding of the ecological impacts from

climate change stressors. However, traditional research vessel-based surveys are very

expensive, have limited availability and measure a disrupted pelagic environment by

introducing light and noise. We propose that broadband echosounders mounted on

uncrewed vehicles, moorings or lowered probes would provide complementary mea-

surements to address these shortcomings. In the case of uncrewed vehicles, they could

complement traditional vessel-based surveys by extending the temporal and spatial

extent. Because broadband echosounders are relatively new technologies, methods

and standard processing procedures need to be modified and tested. The present the-

sis studies three methods for broadband echosounders to increase the independence

of acoustic data from research vessels for monitoring marine ecosystems, with the

Arctic as a case study. The three methods are the inverse method, model-informed

classification and mesocosm-informed classification. These methods aim to increase

the information retrieved from acoustic data by maximizing the use of the broadband

target spectra measurements. The methods are applied to sound scattering layers of

zooplankton aggregations, individual zooplankton, shrimp, and fish to advance meth-

ods for analyzing broadband acoustic data from uncrewed vehicles or moorings where

few or no direct sampling data are available. However, new challenges intrinsic to

broadband echosounders and their signal processing arise, such as understanding the
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sensitivity of broadband measurements of targets as individuals and as aggregations.

To conclude, I discuss the applicability of these methods for ecosystem-based fisheries

management and commercial fishing. I conclude on the progress towards fulfilling the

promise of broadband acoustics for species identification.
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General Summary

In the Arctic, climate change is affecting the environment at unprecedented rates.

The warming is melting sea ice and increasing access to the Arctic; therefore, there is

an increase in industrial developments (shipping, oil exploration, fishing). The com-

bination of these factors is imposing new stressors on the ecosystems in the Arctic.

Increased monitoring of Arctic marine ecosystems could prepare us for the effects of

climate change and industrial development to ensure a sustainable future. Normally,

the Arctic marine ecosystems are monitored with large research ships. Ship surveys

are critical for validating the acoustic signal by collecting samples of fish and zoo-

plankton with trawls and nets for information on size distributions and community

composition. However, these ships are very expensive to use, have limited availability

and disturb the fish and other species near the surface because of the ship’s lights,

noise and draft. We propose complementing ship surveys with acoustics mounted

on uncrewed vehicles or moorings, where light, noise and vessel draft are reduced.

Uncrewed vehicles are easier and cheaper to deploy and can monitor a region for

extended periods of time (∼ months). Moorings can collect data for months at a sin-

gle location. Furthermore, as with ships, these alternative monitoring methods can

be equipped with the latest technology in active acoustics: broadband echosounders.

These instruments record the presence of fish and zooplankton in the water column

over a wide range of frequencies. The frequency range is considered an important

component for remote species identification of fish and zooplankton because it can

contain information on the size and material properties of the organisms. However,

broadband echosounders are relatively new technologies; therefore, new or modified
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methods are needed to maximize their potential. In this thesis I present three meth-

ods to increase the information retrieved from broadband echosounders to improve

marine ecosystem monitoring. These methods are applied to the Arctic because of the

strong need for complimentary monitoring methods in this region. I demonstrate that

broadband echosounder data can be used to discriminate between coinciding species.

However, I found challenges intrinsic to broadband echosounders, such as understand-

ing the sensitivity of the measured signal. To conclude, I discuss the practical use of

these methods for ecosystem-based fisheries management and commercial fishing and

I discuss the progress towards fulfilling the promise of broadband echosounders for

species identification.
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Chapter 1

Introduction

1.1 Monitoring marine ecosystems

Hydroacoustic surveying is a monitoring approach that is used in combination with

traditional net and trawl sampling. Monitoring pelagic species with traditional meth-

ods introduces bias from the net and trawl avoidance biases (Skjoldal et al., 2013).

In addition, the artificial light from the ship impacts the behaviour of pelagic species

down to at least 200 m (Berge et al., 2020). Acoustic instruments are non-invasive

and can be mounted on a vessel, mooring or buoy to study an undisrupted pelagic

ecosystem (Trenkel et al., 2019). Furthermore, acoustics systems can collect long

time series with minimal impact on the studied species. These data are particularly

valuable for collecting data to increase our understanding of ecosystem processes.

Globally, including in Canada, fisheries management has minimal consideration for

ecosystem processes and is predominantly single-species focused (Pepin et al., 2020;

Skern-Mauritzen et al., 2016). Nevertheless, there is a widespread agreement that,
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to harvest the aquatic environment sustainably, there needs to be a shift towards

an ecosystem-based approach to fisheries management (Brodziak & Link, 2002; FAO,

2003; Hilborn et al., 2004; Pepin et al., 2020). An ecosystem-based approach requires

consideration of the impacts of the fishery on habitat, predator and prey interactions,

as well as social impacts (Link et al., 2011). Ecosystem-based fisheries management

also includes the increasing recognition of the effects of climate, weather, environ-

mental conditions, and food web dynamics on the targeted stock (Fernandino et al.,

2018; Tam et al., 2017). Comprehensive monitoring of living marine resources is fun-

damental to a successful ecosystem-based approach to fisheries management. In fact,

Canada’s Oceans Act states that to perform its duties and function, Fisheries and

Oceans Canada may “conduct marine scientific surveys relating to fisheries resources

and their supporting habitat and ecosystems” and “participate in ocean technology de-

velopment” (Branch, 1867). Ecosystem-based fisheries management requires baseline

data on interspecific interactions and their connections with environmental factors,

which will involve much more data inputs and technologies than traditional ship-based

methods can provide (van Denderen et al., 2013). Efficient ecosystem-based fisheries

management is urgently needed with the current state of declining fish stocks and

increasing fishing efforts (Aronica et al., 2019).

It is imperative to consider the warming of the global ocean due to physical environ-

mental variations driven by climate change in an ecosystem-based fisheries manage-

ment approach. The rapid warming is affecting the ocean environment in many ways,

in particular in the Arctic, e.g. early ice breakup and reduced coverage (Stroeve et al.,

2012), increasing flow of warm Atlantic waters (Wang et al., 2020), and changing the

sea temperatures (Steele et al., 2008). These effects are increasing both the indus-
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trial development (commercial fishing, oil and gas exploration, and shipping) and the

ecosystem changes (Doney et al., 2012; Fossheim et al., 2015; Frainer et al., 2017) in

the Arctic.

Sustainable industrial development in the Arctic requires better ecosystem under-

standing and increased environmental monitoring. However, environmental monitor-

ing in the Arctic can be challenging. The harsh and remote region presents logistical

barriers to frequent ship-based surveys in the Arctic. Furthermore, the Arctic has a

strong seasonal cycle which alternates between polar night in the winter and midnight

sun, with constant sunlight in the summer. Until recently, the polar night, or winter,

was not of interest to ecological studies because it was assumed to be a time of bio-

logical quiescence. However, recent studies have reported ecological processes, such

as trophic interactions and vertical migrations, remain high during this dark period

(Berge et al., 2015a; Geoffroy et al., 2011; Ludvigsen et al., 2018). We still have a lack

of understanding of the extent of biological activity during the polar night, and there-

fore, the full seasonal cycle of the Arctic marine ecosystem should be monitored to

understand the compounding impacts of climate change and industrial developments

in the Arctic (Berge et al., 2015b).

In recent years, there has been significant technology and scientific development in

three fields that are increasing the ecosystem monitoring potential, which are par-

ticularly valuable for addressing the challenges of ecosystem monitoring in the Arc-

tic. These developments are: (1) the commercial availability of scientific broadband

echosounders, (2) reliable uncrewed ocean monitoring vehicles, and (3) the develop-

ment of accessible sound scattering models and machine learning algorithms. In this

thesis, I use recent technological and scientific progress to advance methods for mon-
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itoring and understanding Arctic marine ecosystems.

1.2 Acoustic monitoring

1.2.1 Active acoustics

Traditional large-scale scientific trawl surveys (Chadwick et al., 2007) are routinely

used for stock assessments. Active acoustic monitoring, or hydroacoustics, is gener-

ally combined with these extractive surveys, i.e. acoustic-trawl surveys, where the

targeted sampling is used to validate the species composition, relative abundance

and their sound scattering properties to convert acoustic backscatter into biomass

(Parker-Stetter et al., 2009). Active acoustics is the process of emitting a sound pulse

through the water and recording the echo. The echo of the reflected sound pulse

contains information about the fish or object that reflected the sound; therefore, it is

used for remote sensing observations and monitoring of aquatic species (Simmonds &

MacLennan, 2008). Active acoustics is a powerful tool for aquatic monitoring because

sound travels much further underwater than light. It differs from passive acoustics,

which records sounds emitted by other sources, such as whale songs.

Hydroacoustics surveys use echosounders (Figure 1.1), which consist of a transceiver

and one or more transducers. The transducer converts the electrical energy sent from

the transceiver into mechanical energy, an acoustic pulse (Simmonds & MacLennan,

2008; Urick, 1983). The transducer is typically mounted on a ship’s hull, submerged

in the water and pointing downwards. The acoustic pulse travels through the wa-
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ter column and is reflected by surfaces and objects with an acoustic impedance that

differs from that of the surrounding medium, e.g. seawater or fresh water. The

impedance, z, is the product of the density (ρ) of the object and the speed of sound

(c) (z = ρ ∗ c) (Medwin & Clay, 1998). After transmission, the transducer takes on

a listening role, and records the reflection of the emitted acoustic pulse (the echo),

amplifies, and converts the echo into an electrical signal to send to the transceiver.

The received acoustic pulse contains information on the impedance of scatterers and

backscatter throughout the water column. The temporal delay of the backscatter,

which is a function of the sound speed velocity of the mediums, informs on the range

of the target, i.e. the distance between the target and the transducer face. The

backscatter is also affected by the process of absorption, where some of the sound

wave energy is converted to heat, which is a function of range (Francois & Garrison,

1982). The radial location of the target in the acoustic beam can be calculated with a

calibrated split-beam transducer. The split-beam transducer records the backscatter

through three or four quadrants; the phase difference between the signal from each

quadrant can be used to locate the target in the beam (Ehrenberg & Torkelson, 1996).

Split-beam technology has had an important impact on fisheries acoustics because the

target location can be determined which allows the backscatter to be compensated

for the transducer beam pattern. The transducer beam pattern is conical, much

like a flashlight beam, with most of the energy concentrated in the centre. Further-

more, information on the target’s location in the acoustic beam enables single target

tracking, which provides multiple measurements and replicates of a single organism

as it travels across the beam and reduces the risk of counting the same individual

multiple times. The target tracking technique can be used for echo-counting. An

5



alternative technique used when the density of targets is too high for echo-counting

is echo-integration, for example, in a fish school or aggregation of zooplankton. For

echo integration, the backscatter from all targets is measured over the entire acoustic

beam for a given depth range; therefore, individual targets do not need to be resolved.

Figure 1.1: Image of a wideband autonomous transceiver (yellow cylinder; Kongsberg

Discovery AS, Horten, Norway) with a 38 kHz split-beam transducer (orange). Photo

taken by Stig Falk-Petersen.
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1.2.2 Quantifying acoustic backscatter

The backscattered energy measured by the transducer during hydroacoustic surveys is

typically quantified by the fraction of incident energy scattered back to the transducer,

described as the backscattering cross-section, σbs [m2]:

σbs =
Ibs 10αR/10

Ii
R2, (1.1)

where Ibs is the intensity of the backscattered wave in W m−2, Ii intensity of the

incident wave in W m−2, α is the acoustic absorption coefficient in dB m−1, and R

is the range in m from the target where Ibs and Ii are measured (MacLennan et al.,

2002). In fisheries acoustics, we often use a logarithmic scale, in decibels, because

of the wide dynamic range of acoustic backscatter measured from aquatic organisms,

from zooplankton to fish, covers many orders of magnitude (Simmonds & MacLennan,

2008). The decibel [dB] unit is used for the logarithmic terms, and it describes a ratio

in terms of a reference, re (Medwin & Clay, 1998). The backscattering cross-section

is then commonly described as Target Strength (T S) [dB re 1 m2]:

T S = 10log10 σbs. (1.2)

Typically, TS is used to describe the ability of a single target (fish or zooplankton)

to reflect sound. However, when considering an aggregation or layer of single targets

that are too dense to resolve individuals, it is more appropriate to use the volume

backscattering coefficient, sv [m−1]:

sv =
∑N

i=1 σ i
bs

V
, (1.3)

where N is the number of individual in the volume, σ i
bs is the cross-section of each

individual in m2, V is the sampled volume of the acoustic pulse in m3 (Simmonds
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& MacLennan, 2008). The sampled volume, V [m3], can be related to the acoustic

beam pattern as:

V =
cτψR2

2
, (1.4)

where the range is R in m, the pulse length is τ in s, and the sound speed velocity

is c in m s−1. The sampled volume represents the coverage of the shell thickness of

the acoustic pulse across the area of the beam (Simmonds & MacLennan, 2008). The

equivalent beam angle, ψ [steradian], indicates the solid angle of an idealized acoustic

beam:

ψ =
∫ π

θ=0

∫ 2π

ϕ=0
b4(θ ,ϕ)sin(θ)dθdϕ , (1.5)

where, for an ideal cylindrical transducer, the beam pattern is expressed as:

b =
2 J1(ka sin(θ))

ka sin(θ)
, (1.6)

where k is the wavenumber in m−1, a is the transducer radius in m, and J1 is a Bessel

function of the first kind (Medwin & Clay, 1998). Similarly to the backscattering

cross section (σbs), the volume backscattering coefficient is commonly expressed on a

logarithmic scale as volume backscatter, Sv [dB re 1 m−1]:

Sv = 10log10 sv. (1.7)

The measure of sv summarizes the aggregation inside the acoustic sampling vol-

ume because of the linearity principle of fisheries acoustics (Foote, 1983), which is

expressed as:

Av ε = no < G b2 σbs >, (1.8)

where Av ε is the mean echo energy of the impinged target, no is the number density,

and < G b2 σbs > is the ensemble average of the distribution of the characteristics of
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the targets; G is the gain factor, b2 is the product of transit and received beam pattern

and σbs backscatter cross-section of the targets (Foote, 1983). Equation 1.8 states

that the echo energy from a volume containing a random distribution of scatterers

is, on average, equal to the sum of scattered echo energy from each individual within

the volume (Benoit-Bird, 2009; Greenlaw, 1979).

1.2.3 Hydroacoustic surveys

Based on these fundamental fisheries acoustics principles, hydroacoustic surveys com-

monly use narrowband echosounders (acoustic pulse containing a single frequency)

with trawl data to convert acoustic backscatter into biomass estimates (Parker-Stetter

et al., 2009). Empirically derived regressions for TS values are calculated based on

TS-length or TS-width relationships and the length or width measurements from the

trawls. Once the theoretical mean TS is calculated, the total echo energy can then be

partitioned and scaled to estimate the density of targets corresponding to the mea-

sured Sv (Parker-Stetter et al., 2009). The measured Sv is often integrated between

depth layers to get a measure of the nautical area backscattering coefficient (NASC

or sA, [m2 nmi−2]) for a larger area:

NASC = 4π (1852)2
∫ z2

z1

sv dz, (1.9)

where the 4π is remnants from historic uses of spherical scattering coefficient

(4πσbs, assumes omnidirectional scattering), the integer, 1852, is the conversion for

units from meter to nautical mile in m nmi−1, and z1 and z2 are depths in m (MacLen-

nan et al., 2002). For large-scale hydroacoustic surveys, NASC is a common measure

(MacLennan et al., 2002; Parker-Stetter et al., 2009) where, though technically dimen-
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sionless, the scaling factors are expressed explicitly to distinguish between different

scaling versions of the same measure. However, as demonstrated by the linearity prin-

ciple, many small weak scattering targets can have the equivalent volume backscatter

to fewer targets with a higher impedance. Therefore, narrowband acoustic surveys

rely on trawling for species identification and length composition (De Robertis et al.,

2021).

Hydroacoustic surveys typically do not increase species richness or biodiversity knowl-

edge, but, in addition to abundance estimates, they can inform vertical migrations

and predator-prey interactions (MacAulay et al., 1995; Skaret et al., 2020). Further-

more, a species’ life history can be used to target a specific age group of a species with

pelagic acoustic surveys. For example, many species are pelagic in their juvenile stage,

such as Atlantic cod (Gadus morhua) and polar cod (Boreogadus saida), and can be

detected with pelagic acoustic surveys (Bouchard et al., 2017; Nielsen & Lundgren,

1999). In regions dominated by a single species of a certain size or age class, narrow-

band hydroacoustic surveys can be used without coincident additional evidence (i.e.,

trawling) because all the backscatter can be attributed to a single species (De Rober-

tis et al., 2021; Geoffroy et al., 2011; Reiss et al., 2021). However, hydroacoustic

surveys typically depend on knowledge of species composition, body size and density

data to translate active sonar signals into abundance or biomass (Fernandes et al.,

2016; McClatchie et al., 2000).

To increase the information extracted from hydroacoustic data, different discrete nar-

rowband frequencies at wide frequency intervals can be used to isolate the backscatter

contribution from targets or the volume backscatter of different classes of targets (Fig-

ure 1.2). This method is called multifrequency analysis or dB difference technique
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(Korneliussen, 2018). For example, a common technology used for vertical migrations

and predator-prey interactions is the Acoustic Zooplankton Fish Profiler (AZFP, ASL

Environmental Sciences, Victoria, Canada) because it has a transducer available for

different narrowband frequencies (38 to 2000 kHz). The wide range of available fre-

quencies enables the detection of fish (typically detected with lower frequencies <=200

kHz) and zooplankton (typically detected with higher frequencies >=200 kHz) with

a single instrument (Simmonds & MacLennan, 2008, p.66). For example, AZFPs can

be installed on bottom-mounted moorings or ice-tethered moorings for a high tem-

poral resolution because of their long-term sampling capabilities (Priou et al., 2021;

Wilson, 2011).
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Figure 1.2: Target strength of marine animals at a range of frequencies. Swimblad-

dered fish is representative of a 20 cm Atlantic cod (Gadus morhua), euphausiid is

representative of a 25 mm Thyssanoessa inermis, hydrozoan is representative of 15

mm Aglantha digitale, pteropod is representative of a 1.5 mm Limacina retroversa

and copepod is representative of a 5 mm Calanus spp. The vertical grey dashed lines

indicate commonly used frequencies in fisheries acoustics. The target strength spectra

are calculated using the scattering models described in Section 1.4.

1.2.4 Broadband echosounders

Building on the benefits developed with multifrequency analysis, acoustic remote

sensing technology has advanced from narrowband to broadband echosounders. The

wider bandwidth made available by broadband echosounders returns backscatter mea-
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surements across a wider range of frequencies, offering improved discrimination and

characterization of targets (i.e. fish or zooplankton) (Bassett et al., 2019; Benoit-Bird

& Waluk, 2020; Lavery et al., 2017; Stanton et al., 1994)(Figure 1.2). The broadband

acoustic pulse is called a frequency-modulated chirp, which typically increases lin-

early throughout the acoustic pulse. Broadband echosounders improve the range

resolution and signal-to-noise ratio relative to narrowband echosounders for isolated

finite targets. These improvements result from the single processing technique of

matched filtering (also called pulse compression). The matched filter output, yR(t),

is calculated by:

yR(t) =
vR(t) ⊗ v∗T (t)

|vT (t)|2
, (1.10)

where vR is the received pulse, vT is the transmitted pulse, ⊗ is the cross-correlation

and * is the complex conjugate (Andersen et al., 2023; Loranger et al., 2022). Finally,

the measured target strength is given by (modified from Lavery et al. (2017)):

T S( f ) = 10log10
|YR( f )|2

|YT ( f )|2
−10log10 LT L( f )2 −10log10 PT , (1.11)

where f is the acoustic frequency, YR( f ) and YT ( f ) are the Fourier transform

of yR( f ) and yT ( f ) (the normalized and autocorrelated transmit signal, vT ( f )), re-

spectively. The LT L( f ) term is the frequency dependent transmission loss, and PT

accounts for the transmit power.

Through the cross-correlation (Equation 1.10), the matched filter systematically com-

pares the received signal with the pattern of the emitted signal. Stochastic noise does

not contain the pattern of the emitted signal; therefore, the match filter results in a
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signal with dampened noise. A discrete target, such as a fish, will reflect a reflection

of the emitted pulse and result in a narrow peak in the matched filtered signal. How-

ever, the broader bandwidth opens up the bandwidth of frequency-dependent noise

that can obstruct the target’s backscatter measurements.

Another feature of the matched filter is the improved range resolution. For a narrow-

band (NB) system, the range resolution (ability to resolve two vertically separated

targets) is given by:

∆RNB >
cτ
2
, (1.12)

where ∆R is the range between two resolvable targets (Parker-Stetter et al., 2009;

Simmonds & MacLennan, 2008). It is a function of the pulse duration, τ [s], which

introduces a trade-off between the range resolution and the amount of energy emitted

with the pulse length because two targets cannot be resolved within one narrowband

pulse. Broadband systems decouple the range resolution from the pulse length as

the match filter uses the bandwidth to resolve targets. The range resolution of a

broadband (BB) system is given by:

∆RBB >
c

2 BW
(1.13)

where BW is the bandwidth in Hz ( fmax − fmin) (Ehrenberg & Torkelson, 2000). The

order magnitude improvement in range resolution (varies but generally from 10s of

cm with narrowband to 10s of mm with broad) opens up a lot of potential for finer

scale studies, such as the detection and characterization of individual zooplankton.

Commercial broadband echosounders are relatively new (∼ 2011); therefore, develop-

ing new processing pipelines to process the broadband signal in a fisheries acoustics

context is required (Andersen et al., 2023). For example, the beam width decreases
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with increasing frequency within a chirp (Equation 1.6). As a result, the sampling

volume is reduced throughout a single frequency modulated up-chirp (i.e., the fre-

quency increasing linearly throughout the pulse duration), which is expressed as a

positive trend in volume backscatter with frequency when the sv is not adjusted

(Equation 1.3, 1.4) (Medwin & Clay, 1998; Urmy et al., 2023). Furthermore, the

datasets are ∼10x larger than narrowband datasets. Narrowband data processing

methods that require expert scrutiny and visual assessments do not transfer well to

broadband datasets because of the size of the files. Therefore, smaller subsamples

must be analyzed with expert scrutiny or more powerful algorithms are required.

1.3 Uncrewed ocean monitoring vehicles

Until recently, oceanography was a data-limited field, with data collection solely

dependent on research vessels from large survey campaigns. Recent scientific and

technological advances are moving physical, chemical and biological oceanography to

data-rich fields (Malde et al., 2020). Emerging technologies, particularly uncrewed

ocean monitoring vehicles, stem from these scientific and technological advances and

can provide a new perspective to regions that have traditionally been surveyed with

large research vessels. Uncrewed ocean monitoring vehicles can increase the spatial

extent and temporal resolution of environmental monitoring and provide measure-

ments for biophysical assessments (Greene et al., 2014). Indeed, many scientific and

technological advancements for ecosystem monitoring with uncrewed vehicles are non-

lethal and have minimal impact on the ecosystem (Trenkel et al., 2019).
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A prominent benefit to uncrewed vehicles is the reduced disturbance from light and

noise. Fish within the epipelagic layer (0 - 100 m) react to light from vessels (Lud-

vigsen et al., 2018) and vessel noise (Peña, 2019), even when using noise-reducing

state-of-the-art research vessels (Ona et al., 2007). Therefore, research vessel surveys

report deeper and fewer fish detections for shallowly distributed fish than uncrewed

vehicle surveys (De Robertis et al., 2019).

An additional benefit to uncrewed vehicles is their range in size, speed, endurance,

depth coverage (Benoit-Bird et al., 2018) and sensor capacity. Diving vehicles, such

as gliders, can collect measurements at depths for extended periods of time (Benoit-

Bird et al., 2018), whereas surface vehicles can collect undisturbed near-surface data.

Typically, hydroacoustic surveys have an acoustic blind zone, the depth at which

data collection begins, that can extend ∼15 m below the surface with a hull-mounted

transducer from a research vessel (Scalabrin et al., 2009), but uncrewed surface vehi-

cles tend to be much smaller and have a shallower hull, which reduces the acoustic

blind zone to < 5m.

Despite the clear benefits of uncrewed vehicles, there remains resistance to changing

the status quo because of the complexities involved in integrating new data streams

(Fujita, 2021; Wilson, 2011). For example, data analysis pipelines for large-scale

hydroacoustics surveys have not maintained the same pace as technology advances,

causing a bottleneck and a delay in transferring information to end-users of the data

(managers and policymakers) (Malde et al., 2020). Uncrewed vehicles equipped with

echosounders can be used in areas dominated by a single species because all the

backscatter can be estimated from the single dominant species (Bandara et al., 2022;

De Robertis et al., 2019). De Robertis et al. (2021) presents the first fully uncrewed
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acoustic fisheries survey for stock assessment of walleye pollock (Gadus chalcogram-

mus) without trawling in 2020. Younger pollock, aged 2-4, are more pelagic and can

be attributed to the “pre-recruit” biomass for abundance at age indices for fisheries

management (De Robertis et al., 2021). However, most regions are not dominated

by a single species and hydroacoustic surveys from uncrewed platforms are limited

by their inability to collect trawl and net samples. In addition, uncrewed platforms

are often small and have limited sensor capacity from the payload limitations and

processing power for transmitting data in real time.

The ocean is dynamic and contains diverse species assemblages; therefore, most areas

require ancillary sampling of species and size composition. Broadband echosounders

are a promising tool for species identification in species assemblages because they can

be used to extract a wider backscatter spectrum from a target and, ultimately, to

extract identifying features. Nonetheless, broadband acoustics still relies on ancillary

sampling to contextualize the backscatter spectra (Benoit-Bird & Waluk, 2020; Cot-

ter et al., 2021; Urmy et al., 2023). Methods applied to broadband echosounder data

that could incorporate uncrewed platforms into hydroacoustic surveys could also be

used from moorings, drifting platforms and even large vessels to expand the flexibility

of surveys depending on monitoring needs.

1.4 Scattering models

Technology and computational developments have also improved numerical and ana-

lytical approaches to sound scattering models. Numerical and analytical sound scat-

17



tering models provide estimates of the acoustic reflectivity of a target (typically fish

or zooplankton). These estimates can be used as an alternative technique to esti-

mate target strength when in situ measurements are not possible. Sound scattering

models range in complexity from approximating the acoustic reflectivity of a sphere,

a cylinder or prolate spheroid with homogeneous properties to X-ray images of or-

ganisms with complex internal structures (Jech et al., 2015). The organism’s shape,

orientation, and material properties are key parameters of sound scattering models.

However, these can vary within a population and can be difficult to measure in situ

(Sakinan et al., 2019; Smith et al., 2010). For example, the sound speed contrast of

Calanus finmarchicus can vary by more than 10% over the range of environments they

occupy, which contributes to the variability of more than 10 dB re 1 m2 in their TS

measurements (Sakinan et al., 2019). Whereas, gas-bearing organisms, for which the

swimbladder accounts for most of the sound scattering, differences between modelled

and measured TS greatly depend on tilt angle (Pena & Foote, 2008). Therefore, there

are large sources of uncertainty in modelled TS estimates coming from parameter vari-

ability, in particular material properties for fluid-like scatterers (Smith et al., 2010)

and tilt angles for gas-bearing scatterers (Macaulay et al., 2013).

Several sound scattering models are available depending on the type of acoustic tar-

get; each model has limitations and advantages. A summary of available models is

published in Jech et al. (2015). The following is a summary of two commonly used

scattering models:

Distorted Wave Born Approximation The Distorted Wave Born Approxima-

tion (DWBA) is mainly applied to weak scatterers that have material properties
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similar to water, e.g., plankton (Stanton & Chu, 2000; Stanton et al., 1996, 1993),

and non-swimbladdered fish (Gorska & Ona, 2003). There are a few variants of the

DWBA. For example, the stochastic variant (SDWBA), which is commonly used for

Antarctic krill (Euphausia superba), to account for the stochastic nature of the scat-

tering as the results of body curvature changes while swimming (Calise & Skaret,

2011; Demer & Conti, 2003). Another variant is the phase-compensated version

(PC-DWBA), which accounts for the scattering-induced attenuation due to densely

aggregated zooplankton (Chu & Ye, 1999) (Figure 1.2, euphausiid, hydrozoan and

copepod). Overall, the advantages of the DWBA and its variants are the flexibility

to scattering geometry, orientation and acoustic frequency (Jech et al., 2015). The

main limitation is that it is only applicable to fluid-like scatterers.

Viscous-elastic model Feuillade & Nero (1998) developed the viscous-elastic scat-

tering model to include the scattering of the swimbladder wall (elastic shell), surround-

ing flesh (outer shell) and the gas enclosed (inner layer). Together, the shells affect

the resonance of the swimbladder and its backscatter. Khodabandeloo et al. (2021)

applied the model to mesopelagic fish and compared it with in situ measurements.

The advantage of the viscous elastic model is that it includes the higher modes of scat-

tering, which is particularly important for higher frequencies (Khodabandeloo et al.,

2021) (Figure 1.2, swimbladdered fish and pteropod). As implemented in Khodaban-

deloo et al. (2021), a prominent limitation of this method is the assumption that the

gas enclosure is spherical. The simple sphere shape was chosen to reduce the compu-

tational expense, but it ignores the realistic aspect ratios of the swimbladder, which

tend to have the shape of a prolate spheroid (Khodabandeloo et al., 2021).
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For all models, assumptions have to be made for morphological and material prop-

erties parameters, which can affect the shape and amplitude of the results. Sound

scattering models can be run as ensembles to capture the study region’s variabil-

ity in shape, orientation, and material properties. Model ensembles repeat calcula-

tions with a random selection of parameters within the given parameter distributions.

Model ensembles can be particularly valuable for averaging over orientation for vol-

ume backscatter inversions (Amakasu et al., 2017; Stanton et al., 1993).

1.5 Machine learning in fisheries acoustics

From face recognition to self-driving cars, artificial intelligence is increasingly being

applied to datasets of all types. Machine learning, a subfield of artificial intelligence,

implements models for data-driven decisions in various domains, including fisheries

acoustics (Beyan & Browman, 2020). Machine learning supports data-driven learning

and results in automated decision-making (Beyan & Browman, 2020), thus potentially

reducing human review effort and user subjective bias from visual assessments during

data analysis. Statistical algorithms learn from training data by detecting patterns,

such as reoccurring characteristics in text or images, to be able to generalize to unseen

data (Nguyen & Armitage, 2008; Theodoridis & Koutroumbas, 2006). In particular,

machine learning algorithms are practical for sensors and vehicles that collect large

amounts of data, like uncrewed vehicles and broadband echosounders.

Machine learning can be categorized into four learning methods: supervised learning,

unsupervised learning, semi-supervised learning and reinforcement learning (Zhao

et al., 2021). Supervised learning is the most common type of learning, including
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in fisheries acoustics. With supervised learning, predictions are made on new data

through continuous learning from training data based on predictor features (Kot-

siantis et al., 2007). Classification and regression type of problems are commonly

solved with supervised learning (Zhao et al., 2021). Example uses of supervised learn-

ing in fisheries acoustics are predicting the dominant species of an aggregation or

school by using multifrequency Sv of acoustic fish school and other fish school descrip-

tions (morphological, bathymetric and positional) (e.g., Fallon et al., 2016; Fernandes,

2009)) or, more recently, classifying species using modelled target strength spectra

(Cotter et al., 2021; Roa et al., 2022). Unsupervised learning finds patterns and

representations in the data without requiring labelled training data (Yassir et al.,

2023). Unsupervised learning is predominantly used for clustering or dimensionality

reduction. Unsupervised learning may be preferred in fisheries acoustics for studies

with minimal supporting biological information, e.g., differentiating between scatter-

ing layers based on volume backscatter spectra, Sv( f ) (Ross et al., 2013), clustering

mesopelagic targets based on their target spectra, T S( f ), (Agersted et al., 2021), or

optimizing parameters in regression TS to length models (Stevens et al., 2021).

Semi-supervised learning combines supervised and unsupervised learning, where la-

belled and unlabelled datasets are used to realize a combination of classification, clus-

tering and regression (Zhao et al., 2021). Semi-supervised classification was used by

Choi et al. (2021) to delineate sandeel schools in Sv measurements by clustering and

classification trained by labelled and unlabelled data. The semi-supervised method

requires only 10% of the training data to be labelled, thus reducing the dependency

on user expert knowledge and visual assessments (Choi et al., 2021). Meanwhile,

reinforcement learning is used for autopilot and uncrewed operations because it is
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a complex ML method that constantly interacts with the outside world, i.e., new

information (Montague, 1999; Zhao et al., 2021). It is not commonly directly used

for fisheries acoustics, but it is used for uncrewed marine vehicles. For example, re-

inforcement learning has been used for obstacle detection and avoidance (Cheng &

Zhang, 2018).

A particular limitation of machine learning is feature engineering. That is the selec-

tion, manipulation and transformation of the raw input data into new variables for

the ML algorithms. These are predominantly the steps in machine learning where

data processing workflow continues to require user manipulation and decisions. Deep

learning methods automate the feature engineering component and reduce the need

for user data preprocessing (Yassir et al., 2023). The feature engineering components

are either predefined between convolutional layers, such as scaling and statistics, or

learnt and modified by adjusting to important features in the training dataset (Yassir

et al., 2023). Generally, deep learning methods outperform machine learning. How-

ever, they are not always used because they require larger amounts of data for training.

For example, fish school classification using machine learning methods requires that

the input training data set has already identified schools and additional descriptors to

be calculated (Proud et al., 2020). In deep learning, these features would be automat-

ically learned (Yassir et al., 2023). Deep learning methods are deemed unnecessary

for simpler cases, such as target spectra classification with limited availability for fea-

ture manipulation and training data. However, deep learning would become relevant

for broadband species identification on field data with an entire echogram (Brautaset

et al., 2020; Roa et al., 2022).
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1.6 Chapter outline and research objectives

The goal of the present thesis is to contribute to advancing and testing methods that

increase the independence of acoustic surveys for monitoring marine ecosystems. The

goal was achieved by advancing and testing methods for broadband echosounders

compatible with uncrewed platforms, moorings, lowered probes, and ships.

This thesis is structured in 5 chapters. Chapter 1 provides an introduction to the

main themes discussed throughout the thesis, Chapters 2, 3, and 4 are core research

papers, and Chapter 5 provides the general conclusions.

Chapter 2 aimed to complete a comparative study of the zooplankton and ichthy-

oplankton density estimates in near-surface sound scattering layers using four differ-

ent methods. Two of the methods were by direct sampling from a research vessel

(mesozooplankton net (MultiNet), macrozooplankton trawl (Tucker trawl)) and the

other two methods used data collected from an uncrewed vehicle, one with single

frequency data and the other with the broadband data. The main objective of this

chapter was to compare the density estimates of the sound scattering layers from

these four methods and contextualize the results in terms of each method’s expected

biases and calculated uncertainties. I discussed the importance of new solutions for

surveying ecosystems. This chapter was published with co-authors. I contributed to

the conceptualization of the comparative study. I completed the methodology, the

data analysis, and wrote the original draft.

Chapter 3 aimed to increase the taxonomic resolution of acoustic surveys by classifying

the target spectra of zooplankton using sound scattering models. I trained three con-

ceptually different supervised learning classification algorithms with modelled target
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spectra of four different Arctic zooplankton groups. I validated the classification pre-

dictions against observations collected in a mesocosm of a known mixed zooplankton

community. I discussed the limitations of the tested method and provided recom-

mendations for model-informed classification of zooplankton. This paper is published

and co-led with Chelsey McGowan-Yallop. I participated in the conceptualization

and data collection. I ran the sound scattering models and the final machine learning

algorithms. I participated in the data analysis and co-wrote the original draft.

Chapter 4 aimed to investigate the potential of discriminating between coincident

species in the Arctic using only their measured target spectra. I conducted single-

species mesocosm experiments to collect the target spectra of free-swimming Atlantic

cod, polar cod and northern shrimp. I used the target spectra measurements to train

three machine learning classification algorithms. I discussed the feasibility of expand-

ing the supervised classification of mesocosm-informed classification for in situ mea-

surements of coincident species from a lowered acoustic probe or glider. Co-authors

contributed to the realization of this chapter. I contributed to the conceptualization.

I performed the data collection, the data analysis, and wrote the original draft.

In Chapter 5, I summarized the results and contributions of the research from Chap-

ters 2, 3 and 4. I discussed the limited availability of ecosystem monitoring data in

the Arctic and the use of uncrewed vehicles equipped with broadband echosounders

as a tool to increase the monitoring potential and ecosystem understanding in the

Arctic. I propose directions for future research to incorporate acoustic measurements

in ecosystem-based fisheries management and discuss the promise and limitations of

broadband echosounders in fisheries.

The thesis was funded through Glider II (2 years), Polar Front (1 year) and Bioglider (1
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year). This thesis’s core research paper chapters contain objectives to develop and/or

incorporate new technologies and techniques into traditional monitoring methods.

Modernizing ecosystem monitoring methods requires substantial research and devel-

opment on multiple fronts (technological, management and implementation). The

present thesis was part of an incremental process to facilitate incorporating modern

technologies in ecosystem monitoring.
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2.1 Abstract

Throughout all oceans, aggregations of zooplankton and ichthyoplankton appear as

horizontal sound scattering layers (SSLs) when detected with active acoustic tech-

niques. Quantifying the composition and density of these layers is prone to sampling

biases. We conducted a net and trawl survey of the epipelagic fauna in northern

Norway (70◦N) in June 2018 while an autonomous surface vehicle equipped with

a broadband echosounder (283-383 kHz) surveyed the same region. Densities from

the autonomous hydroacoustic survey were calculated using forward estimates from

the relative density from the net and trawl, and inversion estimates with statistical

data-fitting. All four methods (net, trawl, acoustic forward and inverse methods)

identified that copepods dominated the epipelagic SSL, while pteropods, amphipods
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and fish larvae were present in low densities. The density estimates calculated with

the inverse method were higher for mobile zooplankton, such as euphausiid larvae,

than with the other methods. We concluded that the inverse method applied to

broadband autonomous acoustic surveys can improve density estimates of epipelagic

organisms by diminishing avoidance biases and increasing the spatio-temporal resolu-

tion of ship-based surveys.

Keywords: broadband acoustics, inversion, machine learning, autonomous surface

vehicle, zooplankton

2.2 Introduction

Pelagic zooplankton and ichthyoplankton form dense horizontal aggregations through-

out all oceans and represent an easily accessible food source for higher trophic levels.

In the North Atlantic, these organisms funnel energy from primary producers to

top predators such as marine mammals, seabirds, and the pelagic early life stages

of larger fishes targeted by commercial fisheries, e.g., Atlantic cod (Gadus morhua)

(Falk-Petersen et al., 1981; Solvang et al., 2021). Accurate density estimates of zoo-

plankton and ichthyoplankton are thus needed to calculate and model energy transfer

in marine environments.

The density of zooplankton and ichthyoplankton can be calculated for large volumes

of water using hydroacoustic surveys because the aggregations appear as sound scat-

tering layers (SSLs) when detected with echosounders (Barham, 1966; Dietz, 1948;

Proud et al., 2018). At high latitudes, for example in the Fram Strait, the passage

between Greenland and Svalbard, the backscatter from the SSLs is usually much
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stronger in the epipelagic zone (< 200 m) than in the mesopelagic zone (> 200 m),

suggesting that there is a higher density of biomass near the surface than below 200 m

(Gjøsæter et al., 2020; Knutsen et al., 2017). Epipelagic SSLs of zooplankton, mainly

euphausiids, copepods, amphipods, pteropods, and juvenile fish, have been detected

with acoustics over high latitude shelves (Bandara et al., 2022; Knutsen et al., 2017),

in fjords in Northern Norway (Falk-Petersen et al., 1981; Falk-Petersen & Kristensen,

1985), and in deeper basins of the Barents Sea (Gjøsæter et al., 2020). However,

density estimates of epipelagic organisms generally contain several biases because of

1) the draft of research vessels and the near-field of acoustic instruments which form

a blind zone in the top ca. 10 m (e.g., Pedersen et al., 2019); 2) variation in de-

tection probability with density and range (Appenzeller & Leggett, 1992; Demer &

Hewitt, 1995; Simmonds & MacLennan, 2008); and 3) the sound and light emitted by

research vessels (Berge et al., 2020; De Robertis et al., 2012; Peña, 2019; Trevorrow

et al., 2005).

New technology can contribute to minimizing uncertainties in the detection and den-

sity estimates of epipelagic organisms. The recent development of autonomous surface

and subsurface vehicles with compact and energy-efficient active acoustic systems re-

duces the blind zone as well as artificial noise and light sources compared to traditional

acoustic surveys conducted from research vessels. These autonomous platforms also

have the potential to increase the temporal and spatial scale of acoustic surveys (e.g.,

De Robertis et al., 2019; Mordy et al., 2017; Verfuss et al., 2019). Concomitantly,

the development of broadband echosounders (Andersen et al., 2023) and scattering

models for several taxonomic groups (Jech et al., 2015) have improved our ability to

detect and characterize small (<1 cm) acoustic targets at a high vertical resolution.
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Two methods can be used to estimate density from the acoustic signal scattered from

dense epipelagic aggregations of zooplankton and ichthyoplankton in SSLs: the for-

ward method and the inverse method. The forward method uses the relative density

of each taxonomic group based on net and trawl samples from the survey region to

allocate a proportion of the backscatter, the sound intensity reflected by the targets,

for a density estimate of each taxonomic group (Love, 1975; Simmonds & MacLen-

nan, 2008). However, each net or trawl is inherently selective (Skjoldal et al., 2013)

depending on mesh size, net/trawl opening, tow speed, and species density (Battaglia

et al., 2006; Moriarty et al., 2018; Pearcy et al., 1983). Ultimately, with the forward

method, biases from net and trawl selectivity are transferred to the species density

estimates. The inverse method rather directly calculates the density of each taxo-

nomic group from acoustic data by optimising the densities based on the received

backscatter and the scattering models of each species (Holliday, 1977). When apply-

ing the inverse method to broadband acoustics, the spectrum of the acoustic signal

can be fully exploited to optimize the model fitting and calculations of density for

each taxonomic group. Applying the inverse method to broadband acoustic data has

the potential to reduce the bias from net and trawl selectivity and could increase

the value of datasets from autonomous or remotely operated platforms with sparse

net validation. However, because the inverse problem is typically an underdetermined

problem, it implies that solutions will not be unique (Urmy et al., 2023). For example,

two solutions may have similar errors but widely different compositions of taxonomic

groups. In this study, we used a least-squares inversion which has been used previ-

ously in studies with similar taxonomic groups (Lavery et al., 2007; Trevorrow et al.,

2005; Warren et al., 2003). Alternatively, a Bayesian statistical framework could be
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used to provide a probability distribution for each solution (Urmy et al., 2023).

This study assessed zooplankton and ichthyoplankton density estimates in a near-

surface SSL using four different methods: mesozooplankton net (MultiNet), macro-

zooplankton trawl (Tucker trawl), and the forward and inverse methods applied to

broadband acoustic data collected with an autonomous surface vehicle. The survey

was conducted as a case study in the Tromsøflaket area, a bank north of the north-

ern Norwegian Sea (70◦N). We deployed nets and trawls from a research vessel while

an autonomous surface vehicle equipped with a broadband echosounder surveyed the

same region (Camus et al., 2019). We also tested the applicability of using theoretical

scattering models (Chu & Ye, 1999; Khodabandeloo et al., 2021) to reduce the de-

pendence on relative density estimates from net and trawl sampling when conducting

autonomous hydroacoustic surveys. The limitations of each method are discussed

and we provide recommendations on combining sampling methods to increase the

accuracy of zooplankton and ichthyoplankton studies.

2.3 Materials and methods

2.3.1 Study area and survey design

Tromsøflaket is comprised of a plateau (150 – 250 m depth) located at the southwest-

ern entrance of the Barents Sea (Figure 2.1). The plateau is an area of high biological

activity; some bank areas are heavily trawled as they support a rich community of

commercially harvested fish (Olsen et al., 2010). It is a difficult region for traditional

ecosystem sampling activity despite the relatively shallow bank because of the strong
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and variable currents (Bellec et al., 2008; Kędra et al., 2017).

Figure 2.1: Map of the Norwegian Sea and Norway’s coasts. The red box in the

inset indicates the area shown in the large bathymetric map of Tromsøflaket. The

Tromsøflaket map indicates the vessel-based research cruise track in red as it trav-

elled between sampling stations (black stars). Time and GPS location of stations are

described in Table 1, and the Sailbuoy track in purple is the autonomous acoustic

survey. Map produced with cartopy (ver. 0.18.0; scitools.org.uk/cartopy) in ortho-

graphic projection and the inset in plate carrée projection (UTM coordinate system).
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Tromsøflaket was surveyed from June 20th to 29th, 2018, from the R/V Helmer

Hanssen and an autonomous surface vehicle (Sailbuoy, Offshore Sensing, Bergen, Nor-

way, www.sailbuoy.no). During the R/V Helmer Hanssen cruise, environmental data

and biological samples were collected at 11 stations to estimate zooplankton and fish

composition, density, and vertical distribution (Stations 7 to 17; Table 2.1). The

Sailbuoy was deployed from the vessel at Station 7 on June 21st. It was picked up

from Station 11 on June 22nd to fix issues with the storage of acoustic data and

relaunched on June 24th at Station 9. The Sailbuoy left the study area on June 29th

and was recovered south of Lofoten on August 22nd. The ship left the study area on

June 25th. For this study, we only used the data from the Tromsøflaket region as

delimited in Figure 2.1.
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Table 2.1: The location and time of sampling stations within the Tromsøflaket region

during the SeaPatches research cruise with R/V Helmer Hanssen.

Station Date Time (UTC) Latitude (oN) Longitude (oE)

S7 21/06/2018 03:53:00 70.836 17.996

S8 22/06/2018 03:48:00 70.345 19.028

S9 22/06/2018 17:15:00 70.636 18.595

S10 23/06/2018 01:01:00 70.831 18.988

S11 23/06/2018 05:50:00 70.833 18.597

S12 23/06/2018 13:40:00 70.606 18.999

S13 23/06/2018 22:45:00 70.268 18.581

S14 24/06/2018 02:14:00 70.091 18.169

S15 24/06/2018 10:57:00 70.525 18.166

S16 25/06/2018 05:35:00 70.500 16.936

S17 25/06/2018 20:26:00 70.493 17.636

2.3.2 Biological sampling

Mesozooplankton were sampled by vertical hauls (towing speed of 0.5 m s−1) using a

multiple opening/closing net (MultiNet, Hydro-Bios, Kiel, Germany, www.hydrobios.de;

mouth opening 0.25 m2, mesh size 180 µm). Five depth strata (bottom-100, 100-30,

30-10, 10-5, and 5-0 m) were sampled at each station, but data below 100 m were not

used in this study because it was outside the range of the echosounder mounted on

the Sailbuoy. At station 13, samples were taken by a ring net (WP2 net, Hydro-Bios),

with the same mouth opening, mesh size and depth strata as the MultiNet, but did
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not include the 0-5 m depth stratum. All samples were preserved in 4% formaldehyde-

in-seawater solution buffered with hexamine. Taxonomic analyses were completed in

the laboratory. Large organisms (total length > 5 mm) were picked out using for-

ceps, identified, and counted from the whole sample. The remainder of the sample

was examined by sub-sampling with aliquots obtained with a 5 ml automatic pipette,

with the pipette tip cut at 5 mm diameter to allow a free collection of mesozooplank-

ton. The number of subsamples analyzed was chosen so that at least 150 individuals

of copepods (Calanus spp.) and 300 other organisms were counted. To assess the

length frequency distribution of the Calanus population, the prosome length of all

counted individuals of Calanus spp. was measured from the tip of the cephalosome

to the distal lateral end of the last thoracic segment. In addition, body length of

euphausiids, amphipods, pteropods, and fish larvae were measured from subsamples

of Mulitnet samples taken at stations 8 through 17. Body length of euphausiids and

amphipods was measured on stretched animals along the dorsal line from the tip of

the rostrum (euphausiids) or the anterior edge of the eye (amphipods) to the tip of

the telson. Body length of pteropods was measured as the diameter of their shell.

The total length of fish larvae was measured as the most forward point of the head

to the farthest tip of the tail with the fish lying on its side. Zooplankton density

(individuals per m3) was estimated for each species by stratum by correcting for the

mouth-opening area of the net and vertical hauling distance of the stratum, assuming

100% filtration efficiency. The weighted mean density estimate for each species per

station over the 0-100 m range was calculated using the following equation:
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ρ =
∑n

i=1 ρ idzi

∑n
i=1 dzi , (2.1)

where n is the number of strata, ρ i is the density of the species in the stratum

i in individuals per m3 (ind. m−3) and dzi is the thickness of each stratum i in

meters. Macrozooplankton and ichthyoplankton were sampled with a Tucker trawl

(1 m2 opening and 1000 µm mesh size) towed for 15 minutes at 2 knots between

20 to 40 m depth. The targeted depth at each station was determined from the

epipelagic SSL identified in the echogram from the vessel’s echosounders (Kongsberg

Discovery AS, Horten, Norway, www.kongsberg.com; Simrad EK60, 18 and 38 kHz,

1.024 ms pulse duration, 2 Hz pulse repetition). All samples were preserved in a 4%

formaldehyde-in-seawater solution buffered with hexamine. Density estimates from

the Tucker trawl samples were analyzed per station. Each station was sub-sampled

using a plankton splitter and counted until at least 300 individuals were identified.

The count of each species was extrapolated to the entire sample size and converted

to density by accounting for the mouth-opening area, deployment speed and time.

To document the length distribution of dominant macrozooplankton species captured

with the Tucker trawl, random subsamples of euphausiids, amphipods, pteropods

and fish larvae were taken from samples of stations 7, 8 and 9 and body length was

measured as described above.

For both MultiNet and Tucker trawl samples, species were grouped by taxon. Four

taxonomic groups were most abundant: copepods, euphausiid larvae, amphipods, and

pteropods. Additionally, fish larvae were included in the analysis because of the high

sonar reflectivity of their swimbladder and their socio-economic importance.
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2.3.3 Acoustic sampling

2.3.3.1 Acoustic data processing

The autonomous hydroacoustic survey was completed using a Sailbuoy equipped with

a WBT Mini (Kongsberg Discovery AS) with a 333 kHz transducer (ES333-7CDK

split-beam) operating in broadband mode (283-383 kHz, 1.024 ms pulse duration, 0.5

Hz pulse repetition, fast ramping) for 5 minutes every half hour. The transducer was

mounted on a gimbal on the bottom of the Sailbuoy keel at 0.5 m depth. The Sailbuoy

keel was always in the water and the transducer was always submerged. Echosounder

calibration was performed before the deployment and after the retrieval with a 22.0

mm tungsten carbide (6% cobalt binding) calibration sphere (Demer et al., 2015).

Broadband calibration parameters were calculated with the EK80 calibration wizard

(version 2.0.1, EK80 software, Kongsberg Discovery AS), and the parameter values

were linearly interpolated over the inhibition bands that covered the nulls. Data

were calibrated and processed in Echoview (version 12.1, Echoview Software Pty Ltd,

Hobart, Australia, www.echoview.com). The maximum range for the analysis was

set to 50 m (50.5 m depth) because the signal to background noise ratio diminished

below 10 dB (for a signal of -70 dB) at greater ranges.

2.3.3.2 Sound scattering layer backscatter spectra

Sound scattering layers forming discrete horizontal bands of backscatter above the

background noise (Proud et al., 2015) were identified using k-means clustering, an

unsupervised machine learning algorithm (Lloyd, 1982). Each raw data file output

from the echosounder was converted into a netCDF4 file with the open-source software
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echopype (version 0.5.3; Lee et al., 2021; Figure 2.2a). Data analysis was restricted to

the region between the near-field (3 m range) and the signal-to-noise ratio limit (50

m range). In all echograms, a maximum of one SSL was detected by the clustering

algorithm in the upper 50.5 m of the water column. The SSL varied in strength,

thickness, and depth. The pulse-compressed volume backscattering strength (Sv [dB

re 1 m−1]) averaged over the frequency spectrum was pre-processed with a mean filter

to smooth the backscatter in time (35 pings; or 70 s) and depth (15 bins; or 0.09 m)

(Figure 2.2b). The pre-processing filter revealed the SSL on the depth/Sv projection,

as shown in the comparison between the unfiltered data in Figure 2.2c and the filtered

data in Figure 2.2d.
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Figure 2.2: Example of a) raw pulse-compressed volume backscattering strength (Sv)

echogram data upper and lower boundaries of Cluster 0 in red; b) echogram after the

mean filtering in time and depth (70 s and 0.09 m filter, respectively); c) projection

of raw data by removing the time dimension; and d) projection of filtered data in

the depth/Sv dimensions classified into clusters (k=3 in this example) obtained by

k-means clustering. In this example, the cluster corresponding to the SSL is Cluster

0.
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After the pre-processing, we applied k-means clustering on the depth/Sv dimen-

sions of each data file (between 3 to 5 minutes of data, depending on the file size).

The k-means clustering algorithm categorizes all the data points into different groups,

i.e., clusters. The only parameter adjusted for each SSL was the number of clusters.

The other k-means parameters stayed the same for each iteration (k-mean++ ini-

tialization, 10 separate runs, tolerance of 1e−4, and a maximum of 300 iterations).

Selecting the optimal number of clusters is an intrinsic challenge with k-means clus-

tering. Here, the number of clusters was optimal when the entire SSL was grouped

in a single cluster. The SSLs were easier to delineate by clustering when they were

thick, had a high Sv and had a distinct separation from surface bubbles or entrained

air (Anderson et al., 2007). We typically selected between 3-7 clusters. For example,

in Figure 2.2d where Cluster 0 corresponds to the SSL, we chose to separate the

backscatter profile into 3 clusters because of the relatively high Sv within the SSL

(i.e., strong backscatter in the SSL relative to the background level).

The upper and lower boundaries of the SSLs identified by the clustering algorithm

were imported to Echoview as editable line files to delineate SSL regions (e.g., red lines

in Figure 2.2a which delimit the upper and lower boundaries of the SSL associated

with Cluster 0). The broadband spectra of pulse-compressed volume backscattering

strength (Sv(f)) were extracted from each identified SSL using Echoview’s “Wideband

Frequency Response” export option. Broadband frequency response values were con-

verted to the linear domain (volume backscattering coefficient spectra, sv(f) [m−1]).

We selected a Fourier transform window size of 0.4 m at a frequency resolution of

100 Hz over the entire bandwidth for a total of 1001 values per SSL. The Fourier

transform window size was selected as a compromise between high frequency resolu-
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tion and a high range resolution (Benoit-Bird & Waluk, 2020). The median and the

interquartile range of sv(f) from each SSL were calculated for further analysis.

2.3.3.3 Sound scattering models

We ran scattering model ensembles per taxonomic group to calculate the theoretical

backscatter for the forward and inverse acoustic density estimates. The taxonomic

groups were selected from the net and trawl density data.

Weakly scattering fluid-like zooplankton The weakly scatterers were copepods,

euphausiid larvae, and amphipods, which were modelled using a prolate spheroid for

the copepods and a finite uniformly-bent cylinder for the euphausiid larvae and am-

phipods. Weakly scatterers have a sound speed contrast (h) and density contrast (g) of

1± 5%. A near-unity sound speed and density contrast implies that the material prop-

erties of the scatterers are not significantly different from the surrounding medium

(seawater). We chose the phase-compensated distorted wave Born approximation

(PC-DWBA) model for the weakly scatterers in our domain because it is specifically

adapted to densely aggregated zooplankton (Chu & Ye, 1999). Also, the PC-DWBA

is adequate for the range of fluid-like taxonomic groups in the Tromsøflaket epipelagic

layer because the parameters are flexible to geometry, material properties, and acous-

tic frequency changes (Chu & Ye, 1999; Gastauer et al., 2019). We identified the

most abundant species of each taxonomic group to determine the model parameters.

Copepods were modelled as Calanus finmarchicus copepodite stage V (CV) (61% of

copepods in the MultiNet samples, Appendix A Table S1), euphausiid larvae were

modelled as Thyssanoessa inermis (100% of euphausiid larvae in the Tucker Trawl
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samples, Appendix A Table S2) and amphipods were modelled as Themisto abyssorum

(100% of amphipods in the MultiNet samples, Appendix A Table S1). We ran 1000

model simulations for each taxonomic group using the ZooScatR package (version 0.5;

Gastauer et al., 2019) with varying shape, size, and material properties parameters.

These parameters were selected based on literature or net and trawl samples (Table

2.2). The length distribution for euphausiid larvae was calculated using the measure-

ments of Thyssanoessa inermis in the Tucker trawl subsamples from stations 7, 8

and 9 (Figure 2.1). The length distribution for amphipods was identified by pooling

measurements of Themisto abyssorum in MultiNet samples from stations 8-17 and

Tucker Trawl samples from stations 7, 8 and 9. We repeated 1000 model simulations

with random sampling within the distribution of each model parameter (Table 2.2) to

calculate the variance in the cross-sectional backscatter across the available frequency

spectrum (283-383 kHz) of each weakly scattering taxonomic group.
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Table 2.2: PC-DWBA model parameter distributions for each taxonomic group. The

distribution used are gamma: Γ(shape, rate), log normal: L(meanlog, sigmalog) and

normal: N(mean, sigma).

Parameters Copepods Euphausiid larvae Amphipods

Scattering model DWBA DWBA DWBA

Prolate spheroid Uniformly-bent Uniformly-bent

cylinder cylinder

Length N(2.62, 0.09)a L(1.5, 0.3)b Γ(10.3, 2.3)c

Length-to-width ratio N(2.7, 0.2)a N(10.5, 0.3)d N(3, 0.5)d

Density contrast (g) N(0.996, 0.003)e, f N(1.036, 0.005)e N(1.058, 0.005)d

Sound speed contrast (h) N(1.027, 0.005)e N(1.026, 0.005)e N(1.058, 0.005)d

Orientation N(90, 30)g N(20, 20)d N(0, 30)d

a Santana Hernández (2019)

b Fit for the length measurements from the Tucker trawl subsamples. The

distribution was assessed as the best fit based on a 1:1 line between theoretical and

empirical quantiles in Q-Q plots.

c Fit for the length measurements from MultiNet and Tucker trawl subsamples. The

distribution was assessed as the best fit based on a 1:1 line between theoretical and

empirical quantiles in Q-Q plots.

d Lavery et al. (2007)

e Kögeler et al. (1987)

f Chu & Wiebe (2005)

g Blanluet et al. (2019)
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Elastic-shelled zooplankton The pteropod taxonomic group was modelled (in

Python version 3.7) with a viscous-elastic model (Feuillade & Nero, 1998), as up-

dated by Khodabandeloo et al. (2021). The model is developed for shapes with four

layers: gas layer (swimbladder), thin elastic layer (swimbladder wall), thicker viscous

layer (fish flesh) and the surrounding medium (seawater). We adjusted the model

for pteropods by reducing the thickness of the viscous layer to zero, increasing the

thickness of the elastic layer to correspond with the shell thickness, and characterizing

the gas layer with the material properties of internal soft tissue. The adjustments to

the boundary conditions fitted with the literature description of pteropods, a roughly

spherical hard aragonite elastic shell with soft and weakly reflecting internal tissue

inside (Lavery et al., 2007; Simmonds & MacLennan, 2008). The model is parameter-

ized by the material properties and size of each layer, including the shape (thickness),

density and sound speed properties (Khodabandeloo et al., 2021). As with the weakly

scatterers, we identified the most abundant species to represent the taxonomic group

in the scattering model. The pteropods were modelled as Limacina retroversa (100%

of pteropods in the Tucker trawl samples, Appendix A Table S2). We assumed a

spherical target for the scattering model. To account for the slightly elongated shape,

we determined the radii distributions using both the width and length of the subsam-

pled Limacina retroversa from the Tucker Trawl samples at stations 7, 8 and 9. The

other shape parameters (radius of viscous layer and radius of gas layer; parameter-

ized as a dense fluid layer) were calculated for each ensemble based on the selected

elastic shell radius (Table 2.3). The outer layer was parameterized as aragonite. The

internal layer was parameterized as a dense fluid representing the internal tissue with

g = 1.022 and h = 1.04 (Lavery et al., 2007). The variance from the parameter space
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of the viscous-elastic model was assessed by repeating 1000 model iterations with

random sampling within the distribution of the radius of the elastic shell parameter

(Table 2.3).

Table 2.3: Viscous elastic model ensemble shape and material properties parameters

for pteropods and fish larvae in Tromsøflaket.

Parameters Pteropods Fish larvae

(two-layer sphere) (three-layer sphere)

Radius of elastic shell - R3 Γ(shape = 5.4,rate = 9.17)a L(-1.46,0.45)b

Radius of viscous layer - R2 R3 (8.77R3)+1.62c

Radius of gas layer – R4 R3 − (0.023R3)
d R3 −0.01e

Density (kg/m3)

Surrounding medium – ρ1 1027d 1027d

Viscous layer – ρ2 n/a 1040e

Elastic layer – ρ3 2920 f 1141g

Gas layer – ρ4 1050h 325.1e

Sound speed (m s−1)

Surrounding medium – c1 1480i 1480i

Viscous layer – c2 n/a 1522.92e

Elastic layer – c3 5219e, j 1450e

Gas layer – c4 1522.92h, j 325.1e

Shear viscosity (N/m2) - µ2 n/a 0.8571e,g

Shear modulus (MPa) 35800 j 0.17e

of swimbladder wall - µ3
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a Fit for the length measurements and corresponding widths using length-to-width

ratio from Stanton et al. (2000) (L/a = 1.5). The distribution was assessed as the

best fit based on a 1:1 line between theoretical and empirical quantiles in Q-Q plots.

b Swimbladder radius was calculated based on the measured total length and the

calculated widths using the relationship described by the data in (Chu et al., 2003)

and assuming a linear relationship (R2 = 0.98), as shown in Figure S1. The

distribution was assessed as the best fit based on a 1:1 line between theoretical and

empirical quantiles in Q-Q plots.

c Linear regression (Supplementary material; Figure S1) established from

swimbladder length-to-total length relationship using data from Chu et al. (2003).

d Subtracted shell layer thickness (2.3% of radius) from elastic shell radius based on

value from Lavery et al. (2007)

e Khodabandeloo et al. (2021)

f Stanton et al. (2000)

g Feuillade & Nero (1998)

h Lavery et al. (2007)

i Ship-based CTD measurements

j Liu et al. (2005)

Gas-bearing organisms The fish larvae taxonomic group was modelled with the

viscous-elastic model as juvenile/larvae of Gadus morhua (70% of fish larvae in the

Tucker Trawl, Appendix A Table S2). The main scattering component of a gas-

bearing organism is the gas enclosure, in this case the swimbladder. The radius of

the elastic shell, the swimbladder, including the swimbladder wall, was calculated
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by converting total length measurements to swimbladder length using relationships

from juvenile and larval Gadus morhua studied by Chu et al. (2003) (Appendix A

Figure S1). The corresponding swimbladder widths were also calculated through a

swimbladder length-to-volume linear relationship, assuming a prolate spheroid swim-

bladder shape (Chu et al., 2003). The viscous-elastic model comparison of a sphere

and a prolate spheroid at a range of incident angles indicates that the magnitude

of the frequency response is dependent on the local radius at the angle of incidence

(Figure 10 in Khodabandeloo et al., 2021). The peaks and nulls are horizontally

translated, but these are eliminated through averaging for the volume backscatter

of an aggregation. Therefore, we assumed a spherical target and determined the

distribution of radii of the fish larvae using swimbladder length and width (R3 in Ta-

ble 2.3). The radii distributions were determined from the measured juvenile/larval

Gadus morhua from the Tucker Trawl samples at stations 7, 8 and 9.

The other shape parameters (radius of the viscous layer and the gas layer) were cal-

culated for each model simulation iteration based on the randomly selected elastic

shell radius (Table 2.3). The variance from the parameter space of the viscous elastic

model was assessed by repeating 1000 model iterations with a random selection of

parameters given the distributions in Table 2.3.

2.3.3.4 Density estimates

The acoustic density estimates are based on the linearity principle that the total

scattered energy from a volume is equal to the sum of the scattered energy of each

randomly distributed individual scatterers within that volume (Foote, 1983; Greenlaw,

1979; Lavery et al., 2007), given by:
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sv( f ) =
N

∑
i=1

σ i
bs( f )ρ i (2.2)

Where sv (f) is the volume backscattering coefficient spectra in m2 per m3 with

measurements at all frequencies f in Hz, N is the number of taxonomic groups in the

sampled volume, σ i
bs (f) is the cross-sectional backscatter spectra of a given taxonomic

group i at all frequencies f in m2, and ρ i is the density in individuals per m3 (ind.

m−3) for each taxonomic group i. Estimates based on this equation assume that

the entire volume backscatter is formed by the species or taxonomic groups included

in the cross-sectional backscatter term. For the forward and inverse methods, we

assumed the intensity of the backscattered signal was solely from the five modelled

taxonomic groups.

Forward method The forward method is an approach to calculate density or

biomass estimates of taxonomic groups from hydroacoustic-trawl survey data (Davi-

son et al., 2015; Dornan et al., 2022; Love, 1975). The forward method for density

estimates, as described in Simmonds & MacLennan (2008), was computed at the nom-

inal frequency (333 kHz) to emulate the results from a narrowband (single frequency)

survey, which simplifies Equation 2.2 to:

sv = ⟨σbs⟩ρ total (2.3)

where sv is the volume backscattering coefficient at a given frequency, ⟨σbs⟩ is the

average predicted cross-sectional backscatter weighted by the relative density, ρ i
relative,

from net and trawl sampling, and ρ total is the total density in individuals per m3 (ind.
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m−3).

The relative density is given by:

ρ i
relative = 0.5

(
ρ i

net

ρ total
net

+
ρ i

trawl

ρ total
trawl

)
(2.4)

where ρ i is the density of a given taxonomic group i from the net or trawl samples,

and ρ total is the total density, in individuals per m3 (ind. m−3).

We extracted the median sv at the nominal frequency from the median sv(f) of each

SSL. From the scattering model simulations for each taxonomic group, we extracted

the weighted average ⟨σbs⟩ at the nominal frequency. The weights were calculated

by the mean of the relative densities from the MultiNet and Tucker trawl samples

(Appendix A Table S3 and Table S4). The calculated ρ total for each SSL was divided

among the taxonomic groups based on the relative density.

Inverse method Alternatively, the inversion of the broadband scattering data can

be used to solve Equation 2.1 with a least-squares data fitting solver, as in Lavery

et al. (2010) (Greenlaw, 1979; Lavery et al., 2007). From the scattering model simula-

tions for each taxonomic group, we calculated the median cross-sectional backscatter,

σ i
bs( f ) (Equation 2.2) and 90% bootstrap interval of the median across the frequency

spectrum. To calculate the density of each taxonomic group for the autonomous hy-

droacoustic survey with the inverse method, we solved Equation 2.2 for density ρ i as a

linear least-squares problem by using a Trust Region Reflective algorithm as described

in Branch et al. (1999). The optimizer (Python version 3.7, scipy.optimise.lsq_linear)

determined the best solution by minimizing the following problem with the following

bounds (0 <= ρ i < inf.):
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0.5 |(|σ i
bs( f ) ρ i − sv( f )|)|2 (2.5)

A sensitivity analysis was conducted to quantify the effect of altering species shape

and material properties on the variability of the inverse method density estimates. We

ran 500 random permutations of Equation 2.3 with replacement. The permutations

were run by selecting the cross-sectional backscatter spectra of each species to be

either the median, the 5th or 95th percentile. The sv(f) of each SSL was also selected

between the median, the 5th or 95th percentiles.

2.3.3.5 Comparison analysis

For comparison across all four methods, we performed a Kruskal-Wallis H test. For

non-parametric pairwise comparisons, Dunn’s tests were computed with p-values ad-

justed with the Benjamini-Hochberg adjustment (non-negative) to assess the signifi-

cance of the difference in density estimates between each method pair for each taxo-

nomic group.

2.4 Results

2.4.1 Biological sampling

Copepods dominated the mesozooplankton community sampled with the MultiNet

with a mean density with standard error (± SE) of 1800 ± 300 ind. m−3 (95% of

the community, Figure 2.3). Pteropods were the second most abundant taxonomic

group in the MultiNet samples, with a mean density of 50 ± 30 ind. m−3 (2.8%
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of the community). Euphausiid larvae had a low density (9 ± 2 ind. m−3, 0.5%

of the community); most of these were represented by euphausiid larvae in furcilia

stages (89% of euphausiid larvae over all MultiNet samples). Other species, such as

siphonophores and meroplankton, not included in the selected taxonomic group for

this study, accounted for 30 ± 5 ind. m−3, or 2%, of the MultiNet catch in the study

region. Detailed MultiNet density data are presented in Appendix A Table S1 and

Table S3.
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Figure 2.3: a-e) Density estimates in the logarithmic domain for each dominant

taxonomic group in Tromsøflaket, in units of base 10 logarithm of individuals per

m3. Each box summarises the density measurement from Net (MultiNet; n=11, blue),

Trawl (Tucker trawl; n=11, orange), Forward (acoustic forward method; n=70, green)

or Inverse (acoustic inverse method; n=70, red). Significant differences are denoted

by the number of asterisks (*), with *** p < 0.001, ** p < 0.01 and * p < 0.05

from pairwise Dunn’s tests. f) is the total density estimate (sum of all species) for

all stations (Net and Trawl) and all SSLs (sound scattering layers) (Forward and

Inverse). Note the different y-axis scale in subplot f.

Like the MultiNet samples, the Tucker trawl samples were primarily composed

of copepods (54% of the community, Figure 2.4), but the average density was much
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lower with 19 ± 5 ind. m−3 (Figure 2.3). Small pteropods (mean length = 1.2 mm,

Table 4) were the second most abundant taxonomic group in the trawl samples, with

a mean density of 5 ± 1 ind. m−3 (17% of the community). Euphausiid larvae had

comparable density (3.5 ± 0.7 ind. m−3, 16% of the community); most of these larvae

were Thyssanoessa inermis (99.8% of euphausiid larvae in the Tucker Trawl sample).

The mean length of the larvae was 4.7 mm, suggesting they were still young of the

year, like the furcilia stages from the MultiNet samples (mean length 4.0 mm; Table

4). Other species not included in the selected taxonomic group for this study, such as

siphonophores and decapod crustaceans, accounted for 7% of the Tucker trawl catch

in the study region. Detailed Tucker trawl density data are available in Appendix A

Table S2 and Table S4.
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Table 2.4: The size distribution of the dominant species from each taxonomic group.

MultiNet and Tucker trawl length measurements were taken from subsamples. The

“acoustics” sampling method shows the mean length and standard deviation (SD)

used in the scattering models for the forward and inverse methods.

Taxonomic Sampling Species N Length SD

group method (mm) (mm)

Pteropods MultiNet Limacina retroversa 157 1.5 0.6

Tucker trawl Limacina retroversa 70 1.2 0.3

Acoustics Limacina retroversa 229 1.4 0.6

Copepods MultiNet Calanus finmarchicus CV a 2.62b 0.09

Tucker trawl Calanus finmarchicus CV n/a n/a n/a

Acoustics Calanus finmarchicus CV a 2.62b 0.09

Euphausiid MultiNet Euphausiacea furcilia 105 4.0 1.0

larvae Tucker trawl Thyssanoessa inermis 108 4.7 1.6

Acoustics Thyssanoessa inermis 108 4.7 1.6

Amphipods MultiNet Themisto abyssorum 75 4.6 1.4

Tucker trawl Themisto abyssorum 108 4.3 1.2

Acoustics Themisto abyssorum 183 4.4 1.3

Fish larvae MultiNet Pisces larvae 8 8.3 5.8

Tucker trawl juvenile Gadus morhua 61 9.3 3.2

Acoustics juvenile Gadus morhua 61 7.6 3.1

Note: All measurements are of full length unless otherwise specified.

a Santana Hernández (2019)
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b Prosome Length (PL)

Figure 2.4: Relative density of each taxonomic group as calculated by each sampling

method across the whole survey region of Tromsøflaket with standard deviation error

bars representing variability between stations (Net and Trawl) or SSLs (Inverse).

Taxonomic groups are ordered from smallest (left) to largest (right). Size details of

each taxonomic group are described in Table 2.4.

2.4.2 Acoustics

Sound scattering layer detection The k-means clustering algorithm identified

a total of 70 SSLs over the autonomous acoustic survey period. The SSLs varied

between 1 m to 29 m (min. and max.) in thickness, with the layers centred at an

average depth of 20.6 m. The median volume backscattering strength spectra from
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all the SSLs varied between -75 to -50 dB re 1 m−1 (min. and max.). At the nominal

frequency, the median Sv(f) varied between -73 and -56 dB re 1 m−1 (min. and max.).

Scattering models The target strength (TS) frequency response varied in strength

and shape across the taxonomic groups. The median broadband TS ranged from a

minimum of -100 dB re 1 m2 at the lowest frequency, 283 kHz, for the smallest

fluid-like weakly scatterer, copepod taxonomic group, to a maximum of -65 dB re

1 m2 at 345 kHz from the gas-bearing taxonomic group, fish larvae (Figure 2.5).

Copepods, euphausiid larvae and fish larvae TS spectra had a positive slope with TS

increasing with frequency, whereas amphipods and pteropods had a negative sloping

TS(f) (Appendix A Figure S2, shown as cross-sectional backscatter spectra, i.e., linear

form of TS). The cross-sectional backscatter matrix had a rank of 5, suggesting the

taxonomic groups were linearly independent and can be distinguished by the least-

squares algorithm.

56



Figure 2.5: Median target strength results of ensemble simulations from the scattering

models for each dominant taxonomic group in Tromsøflaket, including the 90% boot-

strap confidence intervals of the median as the shaded region. Vertical grey dashed

line indicates the nominal frequency (333 kHz).

Forward method density estimates Based on the relative density results from

the MultiNet and Tucker trawl, the forward method estimated SSLs dominated by

copepods (56 ± 6 ind. m−3) followed by pteropods (7.0 ± 0.7 ind. m−3), euphausiid

larvae (4.3 ± 0.5 ind. m−3), amphipods (1.6 ± 0.2 ind. m−3) and fish larvae (0.40 ±

0.04 ind. m−3) (Figure 2.3). The relative density was a fixed input parameter in the

calculation; therefore, the forward method was not included in Figure 2.4.
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Inverse method density estimates The density estimates measured from the

inversion of the autonomous acoustic survey showed an SSL dominated by the cope-

pods (3700 ± 200 ind. m−3; 77% of acoustic density estimates), which agreed with

the MultiNet results. The second most abundant group in the acoustic results was

euphausiid larvae (modelled as Thyssanoessa inermis from Tucker trawl), with 1300

± 200 ind. m−3, representing 23% of the total taxonomic composition. In the inverse

method estimates, amphipods had a higher density than pteropods with 10.3 ± 0.5

ind. m−3 (0.2%) and 3.9 ± 0.2 ind. m−3 (0.08%), respectively. The fish larvae had

the lowest density as with the other sampling methods, 0.126 ± 0.001 ind. m−3;

0.002% of the total composition.

The sensitivity analysis showed the variability in the density estimates compared to

the variation in the model parameters and the volume backscatter within each SSL

(standard deviation). The sensitivity of density estimates was compared to the distri-

bution of densities of the 70 SSLs. For the copepods and euphausiid larvae, the effect

of the dispersion in the model parameters and volume backscatter variability was

smaller than the standard deviation from the density estimates of all the SSLs (Fig-

ure 2.6a,b). Conversely, amphipods, fish larvae and pteropods density estimates had

a larger sensitivity to the model parameters and volume backscatter than the variabil-

ity in density estimates across the study region (Figure 2.6c, d, e). Density estimates

of all species showed higher variability in the case of SSLs with high backscatter (e.g.,

SSL no 47-48; Figure 2.6).
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Figure 2.6: The sensitivity analysis results for predicted density estimates of each

taxonomic group (a-e) for the inversion of acoustic data with scattering model re-

sults varying randomly between median, the 5th and 95th percentiles and the volume

backscatter spectra varying randomly between median, and interquartile range for

each SSL (x-axis). The blue line in each panel is the median of the sensitivity analy-

sis, and the shaded region displays the extent of the 5th and 95th percentile. The red

lines indicate the standard deviation of the density estimates for all the SSLs. Note

the difference in scale of the y-axis.
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2.4.3 Density analysis across methods

All four methods compared in this analysis (MultiNet, Tucker trawl, and forward

and inverse method with autonomous acoustic survey data) showed that copepods

dominated the epipelagic SSL across the study area (> 50% density for all sampling

methods, Figure 2.4. However, comparisons of density estimates for all methods

were significantly different for each taxonomic group as revealed by a Kruskal-Wallis

H test, denoted with degrees of freedom in parenthesis (copepods: H(3) = 127.87,

p<0.0001; euphausiid larvae: H(3) = 121.24, p<0.0001; amphipods: H(3) = 115.14,

p<0.0001; fish larvae: H(3) = 118.10, p<0.0001; pteropods: H(3) = 31.89, p<0.0001)

(Figure 2.3).

Density estimates were significantly different between the MultiNet and Tucker trawl

for copepods, pteropods, and fish larvae (Dunn’s test; p<0.01). No significant differ-

ences in density estimates between the net and trawl were found for the other tax-

onomic groups (euphausiid larvae: p=0.19 and amphipods: p=0.79). Results from

pairwise comparisons from Dunn’s tests are shown in Appendix A Figure S3. Density

estimates of euphausiid larvae were almost three times higher based on the MultiNet

samples than the Tucker trawl samples. However, the relative density of euphausiid

larvae in the Tucker trawl samples was higher (11.1%) than in the MultiNet samples

(0.5%) (Figure 2.4). As with the euphausiids, pteropods density was eleven times

higher in the MultiNet samples than in the Tucker trawl samples, but pteropods had

a lower relative density in the MultiNet (2.8% of the community) than in the Tucker

Trawl (16.1%). For amphipods, similar densities were sampled by net and trawl (1.2

± 0.3 ind. m−3 for MultiNet and 1.4 ± 0.3 ind. m−3 for Tucker trawl). Fish larvae
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were found in low densities, on average 0.05 ± 0.02 ind. m−3 in the MultiNet and 0.3

± 0.2 ind. m−3 in the Tucker trawl, and had low relative densities in both net and

trawl (<1% of the total catch in both direct sampling methods).

A pairwise comparison of the forward method for acoustic data analysis showed that

these density estimates were not statistically different from the Tucker trawl estimates

for all taxonomic groups (copepods: p=0.08; euphausiid larvae: p=0.77; amphipods:

p=0.79; fish larvae: p=0.31; pteropods: p=0.07). In contrast, density estimates from

the forward method were statistically different from estimates from the MultiNet sam-

ples for copepods (p<0.01), fish larvae (p<0.001) and pteropods (p<0.01), but not

for the euphausiid larvae (p=0.18) and amphipods (p=0.76). The density estimates

calculated from the autonomous acoustic survey data by the forward and inverse

methods were statistically different for all taxonomic groups (p<0.01).

Pairwise comparisons indicated that the autonomous acoustic survey density esti-

mates calculated through inversion differed significantly from the other sampling

methods for the euphausiid larvae and amphipods (Dunn’s test; p<0.001). However,

for the copepods, the inverse results were not statistically different from the Multi-

Net (p=0.06) but statistically different from the Tucker trawl (p<0.001). The results

from the inverse method were not statistically different from densities measured from

the Tucker trawl for pteropods (p=0.92) but were statistically different from the re-

sults of the MultiNet and forward method (p<0.01). For fish larvae, the densities

measured from the MultiNet were not statistically different from the results of the

inverse method (p=0.58) but were statistically different from the densities measured

from the Tucker trawl and forward method (p<0.001).

Overall, the inverse method reported the highest total average density of 4987 ind.
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m−3, followed by the MultiNet samples (1931 ind. m−3), the forward method (70 ind.

m−3) and the Tucker trawl samples (29 ind. m−3).

2.5 Discussion

2.5.1 Comparison of sampling methods

To our knowledge, this study is one of the first implementations of the inverse method

from an autonomous broadband acoustic survey with TS estimates informed by lo-

cally derived measurements of shape properties. The inverse method yielded higher

density estimates. These density estimates are most likely a more accurate representa-

tion of the sound scattering layers for the five dominant plankton taxonomic groups

in the Norwegian Sea. Net and trawl sampling likely underestimated zooplankton

densities within the SSL because of gear-specific biases when assessing species com-

position across size classes (Hetherington et al., 2022; Skjoldal et al., 2013).

All sampling methods determined that copepods dominated the epipelagic SSL in

Tromsøflaket. The relative density of copepods calculated from the inverse method

(77%) was between the MultiNet (95%) and Tucker trawl (54%). We suspect that

because the copepods were relatively large individuals (mainly Calanus finmarchicus

CV with a mean length of 2.6 mm) organized in dense swarms, the high frequency

and high bandwidth (283-383 kHz) of the acoustic instrument detected most of these

copepods. The agreement of the density estimates from the inverse method and Multi-

Net suggests that the high vertical resolution of the broadband acoustic data could

be used to increase the accuracy of copepod density estimates within the epipelagic
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layer. In the future, satellite observations of ocean colour could compensate for the

blind zone of acoustic measurements near the surface and measure the near-surface

density of copepods (Basedow et al., 2019).

Variations in organism size and swimming abilities must be considered when design-

ing surveys and selecting sampling methods. The MultiNet targets small zooplank-

ton species (>0.3 mm), especially weak swimmers aggregating in high densities. The

Tucker trawl is designed to catch larger, fast-swimming zooplankton and ichthyoplank-

ton species in the epipelagic layer. Therefore, we did not expect to find higher densi-

ties of euphausiid larvae in the MultiNet compared to the Tucker trawl since they are

known to avoid MultiNets and similar gear (Brinton, 1967; Greenlaw, 1979). The in-

verse method estimated densities of euphausiid larvae as more than 100 times higher

than the net, trawl, and forward method. Because of the well-known ability of eu-

phausiids to avoid capture by standard oceanographic nets (Wiebe et al., 1982), we

suggest that the density estimates of euphausiid larvae based on the inverse method

are likely closer to reality than the estimates based on the compared methods. Both

the MultiNet and Tucker trawl captured small euphausiids (mean length in MultiNet

= 4.0 mm and mean length in Tucker trawl = 4.7 mm, Table 2.4), which did not have

the backscattering properties of adults. Young euphausiids have less than 30% of the

lipid content of adults, which reduces their density contrast (Kögeler et al., 1987).

We expect the density difference of the net, trawl, and forward method to the inverse

method to be even larger in the case of adult euphausiids because of their increased

avoidance abilities and stronger sound scattering properties.

The relatively high densities of both small (copepods) and larger mobile (amphipods

and euphausiids) zooplankton measured with the inverse method suggests that this

63



approach can accurately sample a larger size spectrum of targets than the other

methods. Similar to euphausiids, density estimates of amphipods were higher when

calculated with the inverse method. Amphipods are also fairly strong scatterers and

mobile swimmers (Skjoldal et al., 2013). We conclude that the inverse method from

autonomous acoustic surveys provided the best density estimates for agile organisms

that avoid nets and trawls.

The inverse acoustic method could be applied to larger organisms than zooplankton,

such as pelagic fish. Sampling efficiency for fish and their vertical distribution in the

water column has been widely studied because of the socio-economic importance of

fisheries (Handegard & Tjøstheim, 2005). A net comparison study from June 1993

in Storfjorden, Norway, has reported a higher density of ichthyoplankton between

50-100 m than between 0 – 50 m (Skjoldal et al., 2013). The autonomous acoustic

monitoring system used in this study had a maximum depth of 50.5 m, limiting the

detection of fish larvae in deeper regions of the epipelagic layer. Yet, ichthyoplank-

ton densities were comparable between methods. One way of improving estimates

of density and vertical distribution pattern of fish larvae in high latitude shelf areas

could be to use the inverse method with a transducer with a deeper detection range

(lower frequency band or longer pulse length) or using both surface and underwater

vehicles, such as gliders. A lower frequency bandwidth (for example, 185-255 kHz)

would also be beneficial for measuring the density of ichthyoplankton and pteropods

because they have a stronger acoustic backscatter at lower frequencies.

Zooplankton layers are known to exhibit patchiness; therefore, variability in relative

density across the sampling region is expected (Basedow et al., 2006; Trevorrow et al.,

2005; Trudnowska et al., 2016). For example, we found high variability in pteropod
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densities based on net samples between stations (maximum at station 13 with 379

ind. m−3 and minimum at station 17 with 2 ind. m−3), which likely results from

their patchy distribution (Elizondo & Vogt, 2022). The Tucker trawl did not capture

such a broad variability in densities (maximum at station 8 with 16 ind. m−3 and

a minimum at station 17 with 0.5 ind. m−3), which may be due to the larger mesh

underestimating the small pteropods (mean length of 1.2 mm; Table 2.4). Because

the net and trawl sampling and the acoustic measurements are not coincident in time

and space in this study, we used a static average relative density to reflect the species

composition of the region. In contrast, the inverse method provides continuous mea-

surements and is not dependent on punctual sampling.

2.5.2 Assessment of the autonomous acoustic survey and in-

verse method for density estimates

Autonomous acoustic surveys require effective data processing methods that limit the

introduction of biases and can quickly be applied to large datasets. The results of the

k-means clustering algorithm revealed that, despite being ubiquitous over the study

area, the sound scattering layer varied in thickness, volume backscattering strength,

and depth over time and space. This algorithm restricted the user bias of identifying

boundaries and increased reproducibility because the only subjective parameter in

this machine learning algorithm was the number of clusters. The successful applica-

tion of the k-means clustering method for identifying SSLs in the Tromsøflaket area

suggests that it can now be tested on more complex vertical structures with multiple

discrete SSLs in different regions.
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Density estimates were corrected for the sampling volume for each method; however,

the differences in sampling depths could influence the results. The acoustic estimates

were bounded by the edges of the epipelagic SSLs which were determined by k-mean

clustering and typically found between 3.5 – 50 m, whereas the Tucker trawl sampled

0 – 20 or 40 m and the MultiNet sampled 0 – 100 m. The acoustic density estimates

did not incorporate volumes with lower densities above and below the epipelagic SSL.

In contrast, the densities calculated from nets and trawls were averaged over the en-

tire sampling range. The acoustic inversion was only applicable within the boundaries

of the SSL where the density of scatterers is high. If the density of scatterers is too

low, the echo statistics are dependent on the target’s location in the beam rather than

the intensity summation process (Holliday & Pieper, 1995). Under such low-density

scenarios, single echo detections and echo counting (Kieser & Mulligan, 1984; Sim-

monds & MacLennan, 2008) should be used instead of the inverse method. However,

if differences in density estimates were driven by differences in sampling depths, we

would expect high densities from both acoustic methods, not just the inverse method.

In this study, we relied on the size distribution of the dominant species locally de-

rived from nets and trawls to inform the scattering models because the 283-383 kHz

bandwidth only detected the geometric scattering of the targets (ka>1; Lavery et al.,

2010). However, with a broader frequency spectrum that captures the Rayleigh-to-

geometric scattering transition of all taxa, the size classes can be identified within the

inverse method (Cotter et al., 2021; Greenlaw, 1979; Lavery et al., 2007). In that case,

the scattering transition point determines the resonance frequency, which is inversely

proportional to the size of the scatterers and can increase the ability to differentiate

among taxa (Benoit-Bird, 2009; Holliday & Pieper, 1995; Warren et al., 2003). Cap-
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turing the Rayleigh-to-geometric transition would thus improve the method because

it produces a frequency response curve with a more identifiable shape (Cotter et al.,

2021). Nonetheless, we demonstrated that relying on a bandwidth covering the tran-

sition point is not necessary to determine the density of epipelagic organisms using

the inverse method when size distributions are provided by net and trawl samples.

The sensitivity analysis tested the variability in the frequency-response curves com-

pared to the variability in the model parameters and showed that the density esti-

mates of the stronger scatterers (amphipods, fish larvae and pteropods) had a larger

sensitivity to the model parameters than the weaker scatterers (copepods and eu-

phausiid larvae). The inverse method is based on absolute scattering levels, which

rely heavily on calibration (Lavery et al., 2007). A two-sphere calibration covering

the entire broadband signal should be carefully completed for future density calcula-

tions using the inverse method. Careful calibration across the bandwidth is critical,

as with multi-frequency analysis, to avoid artificial trends in the frequency-response

curves. In addition, the inverse method requires knowledge of the scattering model

parameters for each taxonomic group. Here, some of these parameters were informed

by the net and trawl data but others were defined based on previous literature val-

ues. Variability in model parameters like orientation or material properties can affect

the density estimates, especially for the stronger scatterers as shown by the sensitiv-

ity analysis. In situ measurements of material properties, sound speed, and density

contrasts, and more knowledge about the orientation of the scatterers would restrict

the variability of model simulation results and improve the accuracy of the density

estimates. Furthermore, the median was used to have a central measure for the ten-

dency of the taxonomic group’s cross sectional backscatter spectra from the model
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ensembles because of the skewed spread in values, however the mean would be more

appropriate measure for the linearity principle (Foote, 1983).

Because of their low taxonomic resolution, both the forward and inverse acoustic

methods are dependent on the initial taxonomic group selection. Different statistical

or data-fitting approaches with an error term could better account for non-dominant

species, such as meroplankton and decapod larvae. In the current study, errors in the

taxonomic classification would lead to a positive bias in the density estimates from the

acoustic methods. The limited taxonomic resolution of the acoustic inversion method

could be improved by the addition of imaging sensors which are already being inte-

grated on autonomous platforms equipped with a wideband echosounder (Reiss et al.,

2021; Whitmore et al., 2019). Optical sensors could also provide information on the

size and, to some extent, the orientation of the scatterers (Ohman et al., 2019), which

would improve the in situ scattering models.

2.6 Conclusion

The inverse method was used to quantify aggregations of zooplankton and ichthy-

oplankton with a broadband autonomous hydroacoustic survey and detected higher

densities of abundant mobile zooplankton than the net, trawl, and forward acoustic

method. The inverse method also detected similar densities of smaller mesozooplank-

ton to the net samples. We conclude that the inverse method reduced the biases

associated with net avoidance in the density estimates for a broad size spectrum of

zooplankton. This work built on studies on the inverse method for zooplankton layers

(Lavery et al., 2007), autonomous hydroacoustic surveys (De Robertis et al., 2019)
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and broadband data processing (Bassett et al., 2019; Benoit-Bird & Waluk, 2020) in

recent years. We further advanced the field by offering a solution for the limitation

of sparse coexisting biological sampling from autonomous acoustic surveys by using

the inverse method with locally derived size measurements.

Accurate density estimates of pelagic organisms with high spatio-temporal resolution

are critical to conducting stock assessment surveys and understanding the impact of

changes in the epipelagic zone and their effects on food supply to deeper water ecosys-

tems (Rogers, 2015). To this end, we conclude that applying the inverse method to

broadband hydroacoustic data can improve the accuracy of acoustic-trawl surveys.

We further envision that applying the inverse method to acoustic data collected from

autonomous platforms could supplement and extend the spatial resolution of vessel-

based surveys at a lower cost than additional ship time.
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3.1 Abstract

Classification of zooplankton to species with broadband echosounder data could in-

crease the taxonomic resolution of acoustic surveys and reduce the dependence on

net and trawl samples for ‘ground truthing’. Supervised classification with broad-

band echosounder data is limited by the acquisition of validated data required to

train machine learning algorithms (‘classifiers’). We tested the hypothesis that acous-

tic scattering models could be used to train classifiers for remote classification of
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zooplankton. Three classifiers were trained with data from scattering models of four

Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and hydrozoans).

We evaluated classifier predictions against observations of a mixed zooplankton com-

munity in a submerged purpose-built mesocosm (12 m3) insonified with broadband

transmissions (185 to 255 kHz). The mesocosm was deployed from a wharf in Ny-

Ålesund, Svalbard, during the Arctic polar night in January 2022. We detected 7,722

tracked single targets which were used to evaluate the classifier predictions of mea-

sured zooplankton targets. The classifiers could differentiate the copepod modelled

spectra from the other groups, but they could not differentiate euphausiids, chaetog-

naths, and hydrozoans reliably due to the similarities in their modelled target spectra.

We recommend that model-informed classification of zooplankton from broadband

acoustic signals be used with caution until a better understanding of in situ target

spectra variability is gained.

3.2 Introduction

Acoustic target classification of zooplankton is needed to improve our understanding

of variability in zooplankton spatio-temporal distribution and community composi-

tion. In the past decade, the commercial availability of broadband echosounders has

made it possible to characterize the backscattering spectra of aquatic targets over

a continuous frequency range (Bassett et al., 2018). Compared to conventional nar-

rowband echosounder methods, the wider bandwidth of frequency-modulated (FM)

echosounders offers the potential for improved classification of fish and zooplankton

(Benoit-Bird & Waluk, 2020). In addition, pulse-compression signal processing of
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broadband data improves the range resolution and the signal-to-noise ratio, enabling

weak zooplankton targets to stand out above the stochastic background noise (Chu

& Stanton, 1998; Ehrenberg & Torkelson, 2000).These improvements have made it

possible to distinguish smaller and acoustically weaker individual targets, such as

mesozooplankton (0.2 to 20 mm), offering the potential for target classification using

the target strength (TS [db re 1 m2]) - frequency response spectra (TS(f), hereafter

‘target spectra’) as a predictive feature (Bandara et al., 2022).

Machine learning (ML), a field of artificial intelligence, is an increasingly popular

tool for target classification in fisheries acoustics, reflecting a broader trend of AI

applications in the marine sciences (Beyan & Browman, 2020; Malde et al., 2020).

ML methods are objective, efficient, and can handle the large, complex datasets

associated with broadband sampling (Malde et al., 2020). In short, supervised classi-

fication algorithms are trained to predict the class of new, unidentified samples with

reference to scattering spectra from labelled training samples (i.e., samples for which

the class is known) to optimize the classification function. In a fisheries acoustics

context, the class is typically the species (or a broader functional group, e.g., based

on gross anatomical properties) of the target or aggregation. The feature variables

used to predict the class of each target may include various acoustic features (e.g.,

backscattering strength and derived quantities), often in combination with geometric

features (e.g., school length and height; Proud et al., 2020) or bathymetric features

(e.g., distance from the seabed) (Korneliussen, 2018). Machine learning algorithms

improve the potential for real-time target classification and subsequent analysis (such

as density estimates; Blackwell, 2020) for the increasing use of autonomous or re-

motely operated vehicles equipped with echosounders (e.g., De Robertis et al., 2019;
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Dunn et al., 2022; Ludvigsen et al., 2018; Malde et al., 2020). However, a significant

obstacle to applying supervised classification in fisheries acoustics is the collection of

labelled observations to train the algorithms (Handegard et al., 2021).

Labelled observations of TS and target spectra have been measured using various di-

rect sampling or remote sensing methods, all of which have limitations. For example,

directed trawl sampling of acoustic targets in areas with high densities of the species

of interest has been used for jellyfish (Brierley et al., 2001), Antarctic krill (Hewitt &

Demer, 1996) and mesopelagic fish (Sobradillo et al., 2019), but this method is prone

to sampling biases like net avoidance and acoustic shadowing of weaker targets (Peña,

2018). Optical verification has been used to validate acoustic targets, for example,

krill (Lawson et al., 2006) and salps (Wiebe et al., 2010), but has limited range res-

olution, especially for small targets (Trenkel et al., 2011) and is further limited by

avoidance of the external light source (Geoffroy et al., 2021). Controlled tank experi-

ments with zooplankton (e.g., McGehee et al., 1998; Pauly & Penrose, 1998; Stanton

et al., 1998) have typically relied on purpose-built or laboratory sonars (Amakasu &

Furusawa, 2006; Conti et al., 2005) because there are physical limits associated with

(large and powerful) commercially available echosounders (i.e., beam angle and near-

field range; Simmonds & MacLennan, 2008). Controlled cage experiments have been

used to measure the acoustic signal of large Antarctic krill (e.g., Foote et al., 1990),

jellyfish (Monger et al., 1998) and fish (e.g., Gugele et al., 2021; Legua & Lillo, 2017),

but measurements of mesozooplankton remain challenging because detection of weak

scatterers requires a cage designed to minimize noise and reverberation (Knutsen &

Foote, 1997). Furthermore, tank and cage experiments are limited by the near-field

range of each transducer, i.e., the distance from the transducer face where the sound
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pulse is not yet linear, for the choice of frequency because the near-field range depends

on the transducer size and frequency. Smaller transducers typically have a smaller

near-field range.

Model-informed classification theoretically removes the need to collect measurements

of known targets for use as labelled training data (e.g., Cotter et al., 2021). Validated

scattering models (e.g., Cotter et al., 2021; Korneliussen & Ona, 2003; Peña, 2018)

provide theoretical frequency response spectra for each class (e.g., species) expected

to be present in the acoustic data. Sound scattering models are considered validated

when predictions of acoustic backscatter are comparable to benchmark models (Gas-

tauer et al., 2019). Benchmark models are predictions of acoustic backscatter from

exact or approximate analytical models and serve to find the limitations and valid-

ity domain of sound scattering models (Jech et al., 2015). These modelled spectra

are then used as labelled training data for machine learning classification algorithms

(hereafter, ‘classifiers’). This approach has been used to classify scatterers into gross

anatomical groups based on their acoustic properties for mesopelagic species (Cotter

et al., 2021) and reef fish (Roa et al., 2022). However, to our knowledge, model-

informed classification of target spectra has not yet been validated for any species.

This study aims to evaluate the validity and reliability of model-informed classifica-

tion for the target spectra of zooplankton species with similar gross anatomical prop-

erties and size distributions. We applied model-informed classification to a mixed

assemblage of Arctic mesozooplankton that was dominated by fluid-like species, i.e.,

animals with sound scattering properties similar to water (e.g., euphausiids, copepods,

and salps) (Stanton & Chu, 2000). The objectives were threefold: (1) to design an

in situ mesocosm experiment to insonify zooplankton in a near-natural environment
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with minimal background noise and reverberation; (2) to evaluate the performance

of classifiers trained with scattering models for differentiating weakly backscattering

mesozooplankton groups; (3) to validate the classifier predictions on a known commu-

nity of zooplankton. We conclude by providing recommendations for model-informed

classification of target spectra.

3.3 Material and methods

3.3.1 Study area and zooplankton collection

Zooplankton were collected in Kongsfjorden, Svalbard, from the R/V Helmer Hanssen

using a Tucker trawl (1 m2 opening and 1000 µm mesh size, 10 minutes at 3 m s−1))

on the night of 15 January 2022 (Figure 3.1). Twelve Tucker trawl tows were taken

at the depth of the strongest sound scattering layer (∼150 m) as seen from the ves-

sel’s echosounder (Kongsberg Discovery AS, Horten, Norway; Simrad EK60, 18 and

38 kHz, 1.024 ms pulse duration, 2 Hz ping rate). Samples from all tows were com-

bined and kept alive for up to 15 hours in running seawater and delivered unsorted

to the wharf in Ny-Ålesund on 16 January. The zooplankton samples were stored

overnight in three 100 L holding tanks with a low-pressure flow system of filtered am-

bient seawater (∼2◦C) at the Kings Bay Marine Laboratory. An additional Tucker

trawl sample collected on 15 January was preserved in 4% formaldehyde-in-seawater

solution buffered with hexamine and stored for species shape analysis.
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Figure 3.1: Study area in Kongsfjorden with locations of the mesocosm experiment

from the wharf in Ny-Ålesund (red square) and Tucker trawl deployments for the

experiment (blue circles with some overlap; n=12). The yellow circle indicates the

Tucker trawl deployment from which zooplankton was preserved for morphometric

analyses (yellow circle; n=1). The red box in the inset shows the location of the

study area within the Svalbard archipelago.

3.3.2 Mesocosm design and experiment

Acoustic data were collected on 17 January 2022 using a mesocosm deployed from a

wharf in Ny-Ålesund (Figure 3.1). The mesocosm, or AZKABAN (Arrested Zooplank-

ton Kept Alive for Broadband Acoustics Net experiment), was formed by a cuboid

zooplankton net (3 m high, 2 m wide and 2 m long) with a 500 µm-mesh holding a
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volume of 12 m3 (Figure 3.2a). The net was mounted on the top section of an 8 m

high by 2 m wide and 2 m long aluminium frame oriented vertically (Figure 3.2a).

Ropes attached eyelets on the net to the frame at each corner and along the edges.

Figure 3.2: A) Schematic of the AZKABAN mesocosm with the small zooplankton

net (left) and large fish net (left). Only the configuration with a small net (left)

was used for this study to limit the volume of insonified mesozooplankton. The

acoustic transceiver (yellow cylinder) is attached to the frame and the transducer

(orange cylinder). There is a hole at the top of the net for the transducer face to be

unobstructed inside the net. B) The AZKABAN mesocosm was lifted with the crane

at the end of the experiment.
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A 200 kHz nominal frequency transducer (ES200-7CDK-Split; Kongsberg Discov-

ery AS) was mounted on a plate centred inside the mesocosm through a hole on the

top panel of the net with the acoustic axis pointing directly down. A Wideband Au-

tonomous Transceiver (WBAT; Kongsberg Discovery AS) was fastened to the frame

to operate the transducer (Figure 3.2). The AZKABAN frame was purpose-built by

Havbruksstasjonen (Ringvassøya, Norway) and the frame was designed to contain the

entire main lobe of a 7° opening beam angle transducer inside the net.

The AZKABAN mesocosm was deployed by crane and lowered into the sea (Fig-

ure 3.2b). Zippers on the top and bottom panels of the net were used to add the alive

and active species from the holding tanks into the submerged net. The frame was

lowered such that the depth of the transducer face was approximately 0.5 m below

the surface for the duration of the experiment. The mesocosm was recovered after

three hours of data collection (Appendix B Figure S1). The zooplankton were rinsed

off the net and collected for species composition analysis. The species composition of

the recovered mesocosm sample was analyzed by identifying and counting 10% of the

total sample for all species with more than 1000 individuals. All other species were

counted for the entire sample.

The mesocosm experiment was conducted on an unsorted assemblage to maintain

a high detection probability (i.e., with large numbers of target animals in the en-

closure). The sampling effort required to obtain sufficient animals for single-species

experiments was deemed too great in time and hence expense. In addition, sepa-

rating the live mesozooplankton from a mixed assemblage (as caught) into single

species groups would have risked injuring or killing individuals. Using the unsorted

mixed population meant that individual animals were handled minimally and that
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stress to them was minimized: this left it likely that natural swimming behaviour was

preserved.

3.3.3 Acoustic data collection and calibration

During the AZKABAN experiment, the WBAT was programmed to transmit frequency-

modulated pulses covering the entire available bandwidth from 185 to 255 kHz. The

transmitted pulses had fast ramping, a pulse duration of 512 �s with 75 W transmit

power, and a ping interval of 0.35 s. Simultaneous pinging of two split-beam trans-

ducers is not possible with a WBAT, so we had to restrict the bandwidth to that

achievable by one transducer alone for the experiment. The simultaneous pinging

of two or more transducers would improve the classification potential of broadband

signals (Benoit-Bird & Waluk, 2020). Of the available transducers with 7° beam

width (120, 200 and 333 kHz), the 200 kHz transducer was chosen to have the great-

est signal-to-noise ratio of the targeted species (mesozooplankton) while achieving

a small wavelength to detect smaller zooplankton (7 mm; Simmonds & MacLennan,

2008). We used a short pulse length to resolve targets near the net boundary and

reduce reverberation volume (Soule et al., 1997).

The acoustic system was calibrated on 19 January 2022 with two spheres made of

tungsten carbide (WC) with 6% cobalt binder and diameters of 38.1 mm and 22 mm

(Demer et al., 2015). Calibrations were processed with the EK80 software (version

21.15; Kongsberg Discovery AS). The calibration parameters were calculated for each

sphere (Appendix B Figure S2) and combined.
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3.3.4 Scattering models

The training dataset for the classification was created with scattering models for

the most abundant taxonomic groups in the Tucker trawl samples (≤ 1000 individ-

uals). The most abundant were calanoid copepods, euphausiids, chaetognaths, and

hydrozoans. All these groups are considered fluid-like scatterers with sound speed

contrast (h) and density contrast (g) of 1 ± 5% (Stanton & Chu, 2000). Near-unity

sound speed and density contrasts imply that the material properties of the scatter-

ers are similar to the surrounding medium (seawater). To model the scattering of

the zooplankton groups, we chose the phase-compensated distorted wave Born ap-

proximation (PC-DWBA) model because the parameters of this model are flexible to

geometry, material properties, and acoustic frequency ranges, which makes the model

adequate for the broad range of fluid-like zooplankton groups in this study (Chu &

Ye, 1999; Gastauer et al., 2019). The DWBA has been extensively tested (Lavery

et al., 2007), and PC-DWBA model has been used to infer length or material prop-

erties for Antarctic krill, Euphausia superba (Amakasu et al., 2017), decapod shrimp,

Palaemonetes vulgaris (Chu et al., 2000), and eggs of North Atlantic cod, Gadus

morhua (Chu et al., 2003) by comparison of model outputs with measurements of

known species (in controlled laboratory experiments, or concurrent trawl sampling).

We ran 1000 model simulations for each zooplankton group using the ZooScatR pack-

age (version 0.5, Gastauer et al., 2019) with R (version 4.1.2) with shape, size, and

material properties parameters chosen from distributions selected based on the basis

of the mesocosm-experiment samples, the preserved sample or literature (Table 3.1).

The modelled spectra were calculated with a 0.5 kHz frequency resolution.
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Table 3.1: Scattering model parameters distributions for each zooplankton group. The

distributions are log-normal: L(meanlog, sdlog), normal: N(mean, sd) and gamma:

Γ(shape, rate), where sd is the standard deviation.

Parameters Copepods Euphausiids Chaetognaths Hydrozoans

Modelled Calanus Thysanoessa Parasagitta Aglantha

species glacialis inermis elegans digitale

Length (mm) N(3.3, 0.7)a L(2.4, 0.3)d Γ(10.6, 0.6)a L(2.4,0.4)a

Length-to- N(5.3, 0.9)a N(11, 2)a N(26, 8)a N(2.8,0.5)a

width ratio

Density N(0.997, 0.005)b N(1.037, 0.005)b N(1.030, 0.005)e N(1.007, 0.005) f

contrast (g)

Sound speed N(1.027, 0.007)b N(1.026, 0.005)b N(1.030, 0.005)e N(1.007, 0.005) f

contrast (h)

Orientation (◦) N(90, 30)c N(20, 20)e N(0, 30)e N(90, 30)g

a Measurements from the preserved sample with the distribution assessed as the

best fit based on a 1:1 line between theoretical and empirical quantile in Q-Q plots.

b Kögeler et al. (1987); February-March measurements.

c Blanluet et al. (2019)

d Measurements from a subsample of the mesocosm experimental sample. The

distribution was assessed as the best fit based on a 1:1 line between theoretical and

empirical quantiles in Q-Q plots.

e Lavery et al. (2007)

f Inferred from a comparison of measurements of hydrozoans from Monger et al.
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(1998), Brierley et al. (2001) and Brierley et al. (2004) to model predictions.

g Monger et al. (1998) from swimming shape analysis.

The preserved Tucker Trawl sample was diluted and subsampled on 22 June 2022

for imaging of copepods (n=70), euphausiids (n=20), chaetognaths (n=70), and hy-

drozoans (n=70). Images were taken with a Leica M205 C stereomicroscope fitted

with a Leica MC170 HD camera, and shape analysis was performed with an image

processing software, ImageJ (version 1.53, National Institutes of Health, USA). The

shapes were processed with ZooScatR to calculate the length and length-to-width

ratio. Large individuals (>16 mm) were measured with a ruler. For the euphausiids,

the length distribution was calculated from a subsample of 77 individuals from the

mesocosm experiment sample. The processed images were used to create a shape

input for each zooplankton group and its scattering model (Appendix B Figure S3).

Material properties of copepods vary geographically and seasonally, predominantly

because of their lipid reserves required to sustain the winter season (Sakinan et al.,

2019). We selected g and h from Kögeler et al. (1987) because of the availability of

measurements from the winter season (February-March) and the proximity of their

measurements of Calanus spp. to the Arctic, hereby Arctic copepods. For hydrozoans,

literature values for density and sound speed contrast were limited; therefore, we in-

ferred the values for g and h from a comparison of the measurements from Brierley

et al. (2001), Brierley et al. (2004) and Monger et al. (1998) to the model predictions,

a method used by Lavery et al. (2007).
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3.3.5 Acoustic data processing

All acoustic data were processed in Echoview 13.0 (Echoview Software Pty Ltd, Ho-

bart, Tasmania). Data analysis was restricted to the 1.0 to 2.25 m range to exclude

the near-field region (Simmonds & MacLennan, 2008) and the echo from the bottom

of the net. The “Single Target Detection - wideband” operator was applied to the

pulse-compressed wideband data (Appendix B Table S1). The minimum value for

the compensated TS threshold was set to the minimum allowable value, -120 dB re 1

m2, to allow for the detection of the weaker scatterers. The identified single targets

were grouped into tracks using the “Detect Fish Tracks” algorithm. We used conser-

vative parameters to increase the likelihood of each track containing targets from one

individual (Appendix B Table S2). Tracks were visually assessed to remove outlier

targets to further ensure that each track originated from only a single zooplankton

target.

The target spectra of all single targets assigned to a track were exported from Echoview

for analysis. All target spectra were calculated using a Fourier transform window size

of 0.33 times the pulse length (0.25 m) with a 0.5 kHz resolution. The Fourier trans-

form window size was selected as a compromise to maximize frequency resolution

while minimizing the likelihood of incorporating backscattering from multiple targets

(Benoit-Bird & Waluk, 2020).
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3.3.6 Noise level

The noise level inside the mesocosm affected the minimum backscatter detectable

from organisms. In this case, the noise level is considered all unwanted signals, in-

cluding background noise and reverberation from the cage. The noise level within

AZKABAN was calculated using a 1-minute segment of data collected during a pe-

riod of low single echo detections (11:25-11:26 UTC). First, single target detection

was applied to the pulse-compressed TS with less stringent detection thresholds (Ap-

pendix B Table S2) to identify all possible targets. Second, targets were removed from

the dataset using a mask. The target masks covered entire pings to avoid contami-

nation by side lobes associated with pulse compression from targets. The remaining

signal was designated as noise. Weak targets that were not identified by the single

target detection algorithm were included in the noise level estimation. Finally, the

noise level was calculated by exporting the median target strength frequency response

profile for increments of 0.1 m depth bins.

Thereafter, when selecting single targets for the spectra analysis, targets were flagged

(i.e., excluded from the analysis) if their target strength at nominal frequency (200

kHz) had a signal-to-noise ratio (SNR) of less than 10 dB (Simmonds & MacLennan,

2008) when compared to the noise level at nominal frequency at the range of the tar-

get. We calculated the proportion of flagged targets below the SNR threshold relative

to the total amount of targets.
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3.3.7 Classifier training

Various algorithms have been used for acoustic target classification in previous fish-

eries acoustics studies, including k-Nearest Neighbours (Cotter et al., 2021), decision

trees (D’Elia et al., 2014; Fernandes, 2009), random forests (e.g., Gugele et al., 2021;

Proud et al., 2020), gradient boosting (Escobar-Flores et al., 2019), support vector

machines (Roa et al., 2022; Roberts et al., 2011), and neural networks (e.g., Brautaset

et al., 2020; Cabreira et al., 2009; Simmonds et al., 1996). Here, three supervised clas-

sifiers that take different approaches to classification were compared (Table 3.2). The

algorithm k-Nearest Neighbours (kNN; Goldberger et al., 2004) was chosen as it has

been used for model-informed classification previously (Cotter et al., 2021). Light-

GBM (Ke et al., 2017), implementation of gradient boosting (Friedman, 2001), was

considered representative of decision tree-based ensemble methods, with the poten-

tial for improved performance compared to random forest (Fernández-Delgado et al.,

2014), which is widely used in fisheries acoustics (Fernandes, 2009; Gugele et al.,

2021). Finally, the Support vector machine (SVM; Cortes & Vapnik, 1995) was cho-

sen because it is another widely used algorithm that, together with gradient boosting,

has been identified as among the best-performing classification algorithms based on

comparisons of performance on large data set collections (Fernández-Delgado et al.,

2014).

Table 3.2: Overview of the machine learning algorithms compared in this study. The

strengths and limitations are detailed for use in fisheries acoustics.

Classifier Description Strengths Limitations
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k-Nearest

Neigh-

bours

(kNN)

Predicts the class of new

samples by taking a major-

ity vote of the k training

samples which are closest

in distance by some met-

ric (e.g., Euclidean distance)

(Fix & Hodges Jr., 1951).

Few hyperparameters there-

fore easy to implement. In-

terpretable; an “explain-

able artificial intelligence”

algorithm (Islam et al.,

2021). Computationally in-

expensive. Limited ability

to deal with noise and out-

liers (Korneliussen, 2018).

Limited ability

to identify low

abundance groups

(Peña, 2018).

Vulnerable to

overfitting.

LightGBM Implementation of gradient

boosting, a decision tree-

based ensemble method

similar to random forest

(Breiman, 2001; Friedman,

2001). Gradient descent

is used to minimise a loss

function with the addition

of each new tree to the

ensemble. Thus, each new

tree attempts to correctly

classify samples that were

previously misclassified

(Hastie et al., 2009).

Suitable for large datasets

(Ke et al., 2017), robust to

outliers (Hastie et al., 2009).

Reduced risk of overfitting

(Hastie et al., 2009).

Rarely used in

fisheries acous-

tics. Many

hyperparameters,

optimisation is

computationally

expensive.
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Support

Vector

Machine

(SVM)

Maps data to a higher-

dimensional feature space

in which classes are lin-

early separable; the optimal

decision boundary (hyper-

plane) has the maximal dis-

tance between itself and the

closest training data points

(support vectors) of any

class. (Cortes & Vapnik,

1995; Hastie et al., 2009).

Few hyperparameters there-

fore easy to implement. Re-

sults are consistent and re-

producible between repeat

implementations (Bennett

& Campbell, 2000).

Sensitive to out-

liers (Kanamori

et al., 2017). Un-

suitable for large

datasets, as it

is very computa-

tionally expensive

(Cervantes et al.,

2008).

3.3.7.1 Training on modelled target spectra

The ML classifier training was completed with Python 3.9 using the Scikit-Learn li-

brary (version 1.1.1, Pedregosa et al., 2011). An L2-normalization was applied to each

target spectra from individuals modelled with the PC-DWBA model simulations so

that if the values were to be squared and summed, the sum would equal 1 (Komer

et al., 2014). The target variable (i.e., the classification output) was the zooplankton

group: copepod, euphausiid, chaetognath, or hydrozoan.

For each classifier described in Table 3.2, we optimized its hyperparameters (Ap-

pendix B Code S1, S2 and S3) and estimated its performance on a holdout dataset

through cross-validation (CV; Stone, 1974). The dataset was split iteratively into a

training subset (90%) and a testing subset (10%). Nested CV (Wainer & Cawley,
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2021) was used to optimize the hyperparameters and evaluate the performance of the

classifiers (Appendix B Figure S4). Nested CV ensured that separate data were used

to train, validate, and test the classifier and provided an estimate of the classifier’s

true error with minimal bias (Varma & Simon, 2006). We compared the classifiers’

success using mean class-weighted F1 score (Equation 3.1; Pedregosa et al., 2011) be-

cause that is appropriate for scenarios where both false positives and false negatives

are equally undesirable.

The F1 score is a measure of overall accuracy calculated as the harmonic mean of

precision and recall, defined as:

F1 =
2∗Precisioni ∗Recalli

Precisioni +Recalli
=

2∗T Pi

2∗T Pi +FPi +FNi
. (3.1)

Precision reports the relative success of the classifier, expressed as:

Precision =
T Pi

T Pi +FPi
, (3.2)

where T P is the number of true positives and FP is the number of false positives for

each class i (each zooplankton group).

Whereas recall is a measure of the sensitivity from repeat detections, expressed as:

Recall =
T Pi

T Pi +FNi
, (3.3)

where FN is the number of false negatives for each class i (each zooplankton

group). An F1 score of 1.0 would indicate that a classifier could correctly classify

each sample.

Hyperparameter optimization was repeated on the entire modelled dataset (1000 tar-
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get spectra for each of the four zooplankton groups) without subsampling to obtain

the final trained classifiers.

3.3.7.2 Classifier sensitivity

To determine the optimal frequency bandwidth for model-informed classification of

copepods, euphausiids, chaetognaths, and hydrozoans, kNN classifiers were trained

and evaluated with modelled target spectra over the bandwidths commonly used in

fisheries acoustics (Simmonds & MacLennan, 2008). The selected bandwidths were

the individual bandwidths from the 70, 120, 200 and 333 kHz transducers produced

by Kongsberg Discovery AS (45-90 kHz, 90-170 kHz, 185-255 kHz and 283-383 kHz)

and their continuous bandwidth (45-383 kHz). Only kNN was used for this analysis

as it is less computationally expensive than the other algorithms.

A kNN classifier was also trained using modelled cross-sectional backscattering coef-

ficient – frequency spectra, σbs( f ), the linear scale of TS( f ), for the bandwidth of

185-255 kHz to examine the effect of the logarithmic scale of the modelled target

spectra on the classification performance.

Additionally, we evaluated the classifiers’ sensitivities to the parameterization of mate-

rial properties in the scattering models because this can strongly influence backscatter-

ing intensity(Chu & Ye, 1999; Sakinan et al., 2019). A PC-DWBA model was param-

eterized using literature material properties values for Antarctic copepods (Calanus

spp.) (g = 0.995 ± 0.001 and h = 0.959 ± 0.010; Chu & Wiebe, 2005). These val-

ues are from spring (2 May 2002) but from similar water temperatures (-0.8 to 0.4

◦C) as those used for Arctic copepods in this study. All other model parameters for

copepods and the other zooplankton groups remained the same.
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3.3.8 Classification

The trained and optimized classifiers were used to classify the measured in situ target

spectra from AZKABAN into zooplankton groups (copepods, euphausiids, chaetog-

naths, or hydrozoans). The classifier predictions were evaluated by comparing: 1)

the predicted class distributions to the species composition of the zooplankton sam-

ple recovered from AZKABAN; 2) the class predictions from each classifier (classifier

agreement); and 3) the class predictions for targets from the same track (within-track

consistency).

3.4 Results

3.4.1 Species composition

The zooplankton sample collected from AZKABAN after the experiment showed that

copepods were numerically dominant. Over 20 000 copepods were in AZKABAN,

mostly Calanus spp. (> 13 000 individuals; Table 3.3). The second most abundant

group was euphausiids, which were an order of magnitude less abundant in the sam-

ples than copepods. The most common euphausiid was Thysanoessa inermis, and the

population consisted mainly of small juveniles (median length of 11mm; Table 3.3).

The sample contained almost as many chaetognaths as euphausiids, predominantly

Parasagitta elegans. The fourth most abundant group in the sample were hydrozoans,

predominantly Aglantha digitale. All other zooplankton and fish sampled had < 100
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individuals; therefore, we did not include these species in the classification analysis

due to the low likelihood of repeated detections. During the experiment, the AZKA-

BAN mesocosm had a total density of 2203 individual zooplankton per m3.

Table 3.3: Taxonomic group, species, count and proportion of the sample retrieved

from the net after the experiment. Samples with <1000 individuals were counted for

the entire recovered mesocosm sample. The species with a ”Median length” value

were modelled to create the labelled training dataset for the classification algorithms.

Taxonomic group Species Total Proportion of Median length

individuals sample (%) (mm) (± SD)

Copepoda Calanus spp. 13380 50.61 3.3 (± 0.7)

Copepoda Metridia spp. 6310 23.87

Copepoda Paraeuchaeta spp. 710 2.69

Copepoda Other copepods 160 0.61

Euphausiacea Thysanoessa inermis 2485 9.40 11.0 (± 4.0)

Chaetognatha Parasagitta elegans 2220 8.40 17.0 (± 5.0)

Hydrozoa Aglantha digitale 1000 3.78 11.0 (± 5.0)

Decapoda juvenile Pandalus spp. 76 0.29

Decapoda benthic shrimp 2 0.01

Pteropoda Clione limacina 40 0.15

Amphipoda Themisto spp. 27 0.10

Amphipoda Undetermined 14 0.05

Fish (larvae) Leptoclinus maculatus 7 0.03

Mysidacea Undetermined 4 0.02
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3.4.2 Scattering models

Copepods were the smallest scatterers in this experiment with a median total length

(± standard deviation) of 3.3 ± 0.7 mm and an average modelled TS of -113 dB re

1 m2 across the frequency spectrum. The amplitude of the modelled target spectra

was typically lower for the copepods than the other three groups. Modelled Antarctic

copepods had similar target spectra results but with a 5 dB mean increase across the

spectra compared to the Arctic copepods, with an average TS of -107 dB re 1 m2

(Figure 3.3a; blue).

Euphausiids and hydrozoans had the same median total lengths of 11 mm (± 4 mm for

euphausiids and ± 5 mm for hydrozoans). Despite their similar length distributions,

euphausiids had a higher average TS (-89 dB re 1 m2 for euphausiids and -94 dB re

1 m2 for hydrozoans) due to differences in their material properties. However, both

groups had relatively flat average spectra over the measured bandwidth (Figure 3.3b,

d). Lastly, chaetognaths had the longest median length (17 ± 5 mm) but had a

relatively low median TS (-98 dB re 1 m2). The target spectra of chaetognaths had

a slight positive slope and a large dispersion of TS intensity (Figure 3.3c, g).
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Figure 3.3: a-d) All PC-DWBA model simulation results for each dominant zooplank-

ton group. For copepods (a) the model results are shown for Arctic species (black;

Kögeler et al., 1987) and the Antarctic species (blue; Chu & Wiebe, 2005). e-h)

L2-normalised PC-DWBA model simulation results for each dominant zooplankton

group.

3.4.3 Noise level

The noise level inside AZKABAN was low, being below -100 dB re 1 m2 throughout

the mesocosm (Figure 3.4) and across the frequency bandwidth. There were peaks in

the noise level profile at 1.1 m, 1.6 m and 1.9 m range from the transducer (Figure 3.4).

The noise profile followed a similar magnitude and trend across the bandwidth, with

approximately 5 dB re 1 m2 variability. We found that the signal-to-noise ratio at 200

kHz was less than 10 dB re 1 m2 for 10.6% of the single targets used for classification,
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as shown by the overlaid detected target used for classification analysis in Figure 3.4.

This was deemed adequate, and all targets were retained for subsequent analyses.

The full noise spectra was assessed (Figure 3.4) and followed the same trend as the

nominal frequency.

Figure 3.4: Background noise profile inside AZKABAN across the available band-

width (185-255 kHz; blue lines). The grey dots indicate the TS of each detected

tracked target detection at 200 kHz. The detection zone is delimited by the horizon-

tal black lines at 1 m and 2.25 m. The transducer face and top of the net are at 0 m

range and the bottom of the net is at 3 m range.
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3.4.4 Mesocosm target detections

A total of 7,722 tracked single targets were detected during the three-hour AZKABAN

mesocosm experiment. The mesocosm target detections were from a mixed zooplank-

ton assemblage, and individual detections were from targets of unknown identity.

There were 777 distinct tracks, with a mean of 10 single target detections per track.

The minimum number of detections in a track was 4, and the maximum was 178.

3.4.5 Evaluation of classifier training

The optimized kNN classifier used the KDTree algorithm (Pedregosa et al., 2011) and

Euclidean distance as the distance metric. For the kNN classifier, the optimized value

for the number of training samples closest in distance to the query sample used for

predictions, k, was 1. The optimized SVM classifier used a radial basis function kernel,

and the optimized LightGBM comprised 3,400 trees with a maximum tree depth of

seven. Full details of the optimized classifiers are provided in the Appendix B Code

S1, S2 and S3.

3.4.5.1 Classifier performance

The F1 scores reflect the classifiers’ performance at classifying the modelled target

spectra. The highest class-weighted F1 score was achieved using LightGBM (0.71

± 0.02), followed by kNN (0.70 ± 0.03) and SVM (0.59 ± 0.03) for the 185-255

kHz bandwidth. Per-class F1 scores showed consistently highest scores for copepods

(0.71-0.87). The lower per-class F1 scores for euphausiids (0.64-0.72), hydrozoans

(0.58-0.67) and chaetognaths (0.44-0.58) indicated that the classifiers had limited pre-
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cision and/or recall in classifying these groups. The limited precision and recall of

the classifiers were reflected in the confusion matrices for each classifier (i.e., the high

numbers of misclassifications; Appendix B Table S3, S4 and S5).

Table 3.4: Classifier mean F1 scores estimated through nested cross-validation (mean

± standard deviation) for the 185-255 kHz bandwidth. A score of 1.0 indicates that

a classifier could correctly classify each sample (100% classification success).

Classifier kNN LightGBM SVM

Class-weighted 0.70 ± 0.03 0.71 ± 0.02 0.59 ± 0.03

Copepods 0.87 ± 0.02 0.87 ± 0.02 0.71 ± 0.03

Euphausiids 0.70 ± 0.03 0.72 ± 0.03 0.64 ± 0.03

Chaetognaths 0.58 ± 0.04 0.58 ± 0.05 0.44 ± 0.03

Hydrozoans 0.66 ± 0.04 0.67 ± 0.03 0.58 ± 0.04

3.4.5.2 Classifier sensitivity

The nested CV procedure was conducted for modelled target spectra across five dif-

ferent frequency bandwidths (45-90 kHz, 90-170 kHz, 185-255 kHz, 283-383 kHz, and

45-383 kHz) to test the effect of bandwidth selection on classifier performance. The

comparisons were only run with kNN because it was the least computationally ex-

pensive algorithm of those used in this study and, based on the results in Table 3.4,

provided similar performance to LightGBM. The mean class-weighted F1 score for

kNN with the full bandwidth (TS45−383kHz) was 0.92 (± 0.02) (Appendix B Table S6).

The best score for a single “transducer” was 0.86 (± 0.01), using modelled spectra at
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the centre bandwidth of the 120 kHz transducer (TS70−190kHz).

The cross-sectional backscatter spectra (σbs185−255kHz) (i.e., the linear domain represen-

tation of the target spectra) were also used to train a kNN classifier. Using the linear

scale of the target spectra brought a slight improvement to classifier performance

(mean class-weighted F1 score: 0.73 ± 0.03 in the linear domain compared to 0.70 ±

0.02 in the logarithmic domain).

The performance of the kNN classifier trained with modelled target spectra of Antarc-

tic copepods (Appendix B Code S5) (mean class-weighted F1 score: 0.69 ± 0.03;

Appendix B Table S7) was not significantly different from the classifier trained with

modelled target spectra of Arctic copepods (mean class-weighted F1 score: 0.70 ±

0.02).

3.4.6 Classification of in situ measurements

All classifiers predicted a different class distribution to the species composition of the

zooplankton sample recovered from AZKABAN (Figure 3.5). For kNN, hydrozoans

were predicted to be the most abundant class, followed by chaetognaths, euphausi-

ids, and copepods, which was the inverse of the recovered sample (Figure 3.5). For

LightGBM, chaetognaths were predicted as the most abundant class with no cope-

pod detections. The SVM predictions implied a majority of hydrozoans, followed by

euphausiids, chaetognaths, and copepods.
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Figure 3.5: a) Composition of the zooplankton sample used in the mesocosm ex-

periment as a proportion of the total sample for the four most abundant groups

(n=26,435). b-d) the proportion of predicted targets of the total detections for tracked

single targets (n=7,722) assigned to each group by k-nearest neighbours (kNN), Light-

GBM and support vector machine (SVM) classifiers.

The measured in situ target spectra for each class, as classified by kNN and Light-
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GBM, were generally consistent with each other and the modelled spectra (Figure 3.6).

However, the measured in situ target spectra classified as copepods by kNN had a

higher target strength than the copepods’ modelled target spectra (Figure 3.6). Of

the mesocosm targets, those with high intensity and flat target spectra were labelled

as copepods by the SVM classifier. However, the target spectra for euphausiids,

chaetognaths, and hydrozoans predictions from SVM were in general agreement with

the modelled results.
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Figure 3.6: Modelled: PC-DWBA model simulations (theoretical) target spectra for

each zooplankton group. kNN, LightGBM, and SVM : measured target spectra of

tracked single targets from the mesocosm experiment as classified by k-Nearest Neigh-

bours (kNN), LightGBM, and support vector machine (SVM). All panels include the

number (n) of target spectra in each panel.

Only 18.13% of the measured target spectra (1,400 samples) were classified as the

same zooplankton group by all three classifiers: 10.09% were consistently classified
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as hydrozoans, 5.93% as chaetognaths, 1.29% as euphausiids, and 0% for copepods

because no target spectra were labelled as copepods by LightGBM. Pairwise compar-

isons of classifiers show that 50.62% of tracked single target spectra (3,909 samples)

were classified as the same zooplankton group by kNN and LightGBM, compared

to 42.55% (3,286 samples) by kNN and LightGBM, and 29.31% (17,103 samples) by

LightGBM and SVM.

SVM had the highest within-track prediction consistency: on average, 75% of targets

within a track were assigned the same class label. However, 70% of tracks included

at least two different classes. For LightGBM, 67% of detections within a track were

assigned to the same class, and 100% of tracks included at least two classes, compared

to 62% and 93%, respectively, for kNN.

3.5 Discussion

3.5.1 AZKABAN: A mesocosm for in situ broadband acous-

tic backscatter measurements

AZKABAN was designed to facilitate in situ broadband acoustic backscatter mea-

surements of caged fish and zooplankton. The estimated noise level of AZKABAN

was sufficiently low to enable the detection of mesozooplankton. Noise and reverbera-

tion from mesocosm walls have been a major challenge in past experiments with weak

scatterers (Knutsen & Foote, 1997). The successful detection of weak targets in the

AZKABAN mesocosm was partly due to the improvements in signal-to-noise ratio

and range resolution associated with pulse compression of the broadband received
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signal.

The purpose-built mesocosm offered a practical platform for broadband measurements

of mesozooplankton. The design enabled the zooplankton sample to be added to the

submerged net from a small boat, minimizing stress on the animals. It was also pos-

sible to recover the samples after the experiment for enumeration and morphometric

analysis. Therefore, this mesocosm could be an effective experimental setup for con-

trolled behavioural experiments, such as reactions to different sources and intensities

of light and sound.

3.5.2 Performance of classifiers trained by modelled target

spectra

Of the three conceptually different classifiers trained on modelled target spectra, the

best-performing classifier was LightGBM, with a mean class-weighted success rate of

0.71. Copepods consistently had the highest mean F1 score (0.71-0.87), indicating

that copepods’ modelled target spectra could be discriminated from the others. The

sensitivity analysis with the copepods parameterized with Arctic or Antarctic material

properties demonstrated that changes in g and h have little effect on the normalized

target spectra (Figure 3.3a,e) or classification success (Table 3.4, Appendix B Table

S7). All the classifiers were limited in their ability to discriminate between euphausi-

ids, chaetognaths and hydrozoans. Despite parameterizing the scattering models with

representative parameters and shapes of the different zooplankton group organisms,

these groups had overlapping modelled target spectra. Presumably, the overlap in

the modelled target spectra of euphausiids, chaetognaths and hydrozoans is due to
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the close similarity of the parameter distributions. The model’s inability to resolve

the target spectra of different fluid-like zooplankton directly introduces consequences

for target detection and classification. This suggests that thresholds should be es-

tablished to determine possible taxonomic resolution for the classification of species

with overlapping model parameter distributions. Ross et al. (2013) report a similar

effect with juvenile euphausiids and pteropods and conclude that the similarity in

frequency responses of these groups may render them indistinguishable.

Previous studies on supervised classification of target spectra have used coarse taxo-

nomic resolution to manually label measured target spectra to create a training set

based on model-informed classes. Cotter et al. (2021) achieved a class-weighted F1

score of 0.90 for the classification of manually labelled fluid-like and gas-bearing tar-

gets detected with a broadband echosounder (25-40 kHz) using k-Nearest Neighbours.

(Roa et al., 2022) classified six reef fish using scattering models with a wide band-

width (30-200 kHz) and found high classification accuracy (F1 score > 80%). We

also found a wide bandwidth (45-383 kHz) resulted in high classification performance

(class weighted mean F1 score of 0.92 ± 0.02). However, the wide bandwidth (45-383

kHz) results were not possible to validate within the mesocosm experimental setup

because of the hardware and space requirements of four simultaneously pinging trans-

ducers. Furthermore, we achieved higher accuracy with lower frequencies (90-170

kHz; class weighted mean F1 score of 0.86 ± 0.01) than the ones used in the meso-

cosm (185-255 kHz). Despite the higher F1 scores at lower frequencies (90-170 kHz),

we used 185-255 kHz for its smaller wavelength and shorter near-field range. For

the classification of in situ measurements, physical and practical limitations of target

size and echosounder properties (beamwidth, wavelength, transmit power, near-field
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range) must be considered in addition to the F1 score of the classifier. While previous

model-informed classification studies (Cotter et al., 2021; Roa et al., 2022) may have

achieved better classification performances because the classes they used had distinct

acoustic properties, in contrast to our study their model-informed classifiers were not

validated with in situ measurements.

3.5.3 Discrepancies between classifiers predictions and in situ

measurements

We used the AZKABAN mesocosm experiment to validate the performance of three

model-trained classifiers using measurements of a mesozooplankton community sam-

ple for which the species composition was known. Overall, the zooplankton commu-

nity composition determined by the classifiers differed from the actual composition

in the mesocosm. Copepods were overwhelmingly the most abundant group in the

mesocosm (Figure 3.5a) but were consistently the least abundant class in the classi-

fier predictions (Figure 3.5b-d). Hydrozoans were the least abundant group in the

mesocosm but the most abundant predicted class for kNN and SVM. Whereas for

LightGBM, chaetognaths were the most abundant class. These major discrepancies

show that model-informed classification was not successful on in situ target detec-

tions.

Small copepods in the mesocosm (3 mm length) were probably not detected, given

the spatial resolution of the wavelength (7 mm at 200 kHz; Simmonds & MacLennan,

2008). The classifier predictions reflected this, with few copepod predictions and the

target strength mismatch between the modelled and predicted results (Figure 3.6)
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despite the relatively high F1 scores for copepods. Therefore, while the larger cope-

pods were detected acoustically, the majority of copepods were likely not identified by

the echosounder. A higher frequency range (283-383 kHz) with a shorter wavelength

would theoretically resolve the issue, but previous noise level tests (not presented

here) showed that the increased noise level higher frequencies would not allow the

detection of individual weak scatterers (< -100 dB re 1 m2). Future studies testing

model-informed classification of zooplankton with the 200 kHz transducer should only

select the zooplankton fraction > 7mm. In that case, if the model-informed classifi-

cation is successful the proportion of each zooplankton group calculated from in situ

target detections may match the real proportion in the zooplankton sample.

The in situ target detections were also used to assess the within-track consistency

of predictions between classifiers. The target tracking algorithm associates many

single target detections to an individual organism as it travels across the acoustic

beam. There was a high variability of zooplankton groups assigned to each track,

highlighting the large variability in target spectra from an individual organism. The

inhomogeneity of predictions per track and poor agreement between classifiers provide

compelling evidence that model-informed classification of fluid-like mesozooplankton

is unreliable.

3.5.4 Recommendations to improve model-informed classifi-

cation of zooplankton

Our results on classifier training with modelled target spectra suggest that the classi-

fication performance is highly dependent on the choice of algorithm when the groups
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cannot be reliably differentiated. Good practice for machine-learning-based science

typically requires that a classifier’s performance is evaluated on a test set ‘drawn from

the distribution of scientific interest’ (Kapoor & Narayanan, 2022). Model-informed

acoustic target classification is appealing because it avoids the practical challenges

and cost of obtaining labelled measurements of known species empirically (by sam-

pling in the field or tank). However, using model-informed classification inevitably

means that the samples used to train, validate, and test a classifier are not drawn

from the distribution of scientific interest.

This study used a scattering model flexible to geometry, material properties, and

acoustic frequency changes to generate training data for supervised machine learning

classifiers. For future studies, we suggest that model-informed classification could

be useful in assessing the theoretical classification potential of different bandwidths.

However, classifier performance must be considered in the context of factors such as

the target strength of the species of interest at a given frequency and the frequency’s

range resolution for the classification of in situ measurements. We conclude that a

better understanding of the variability in the acoustic measurements from individuals

is required before model-informed classification of target spectra can be implemented

reliably. Features in broadband spectra, such as the locations of nulls and peaks,

can provide insight into morphological characteristics of individuals (Kubilius et al.,

2020; Reeder et al., 2004). A better understanding of these features could increase

classification potential and the information we can extract from target spectra.
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3.6 Summary and conclusions

This study evaluated a model-informed classification of zooplankton from broadband

echosounder data using in situ measurements (185 to 255 kHz) of a mixed Arctic

mesozooplankton assemblage in a purpose-built mesocosm. Acoustic scattering mod-

els generated modelled target spectra for the four most abundant zooplankton groups

in the mesocosm: copepods, euphausiids, chaetognaths and hydrozoans. Three dif-

ferent supervised machine learning algorithms were trained using modelled target

spectra, and then compared in terms of their ability to classify the in situ measured

target spectra obtained from the mesocosm experiment. Investigations of the classifier

training using modelled target spectra showed that kNN and LightGBM classifiers

could not differentiate euphausiids, chaetognaths, and hydrozoans reliably. The clas-

sifier training results were confirmed by their inconsistent predictions within-track

and between classifiers for the in situ mesocosm measurements. The lack of consis-

tent predictions within a track suggests that the variability in target spectra per class

is greater than in the target spectra between the different zooplankton groups from

the sound scattering models. The outstanding challenge remaining is to understand

the ping-to-ping variability in the spectra of individual scatterers (Dunning et al.,

2023; Martin et al., 1996).

Another remaining challenge for this method is the requirement to model the dom-

inant taxa that are expected to be found in the study area. An Arctic fjord was

selected as the study location in part because of the low species diversity. For regions

with higher diversity, similar taxa could be grouped based on their material proper-

ties and shape to expand model-informed classification. In addition, in situ imaging
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could complement the acoustic measurements to increase the taxonomic resolution of

model-informed classification (Ohman et al., 2019).

The mesocosm design used in this study was an effective platform for measurements

of fluid-like scatterers, which could be used to develop a better understanding of mea-

sured variability in target spectra. For example, mesocosm experiments with fewer

individuals or a series of single species experiments could improve model validation

for broadband echosounder measurements of freely swimming individuals. However, a

semi-permanent installation for longer experiment periods, visual validation through

video or imaging for swimming behaviour information and repeat experiments would

be required to complete such comparative studies.
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4.1 Abstract

The northern shrimp (Pandalus borealis) fishery, an important commercial fishery in

the eastern Canadian Arctic and the Barents Sea, is reporting increasing bycatch of

polar cod (Boreogadus saida), a key Arctic forage fish species. Furthermore, northern

shrimp and polar cod spatial distributions increasingly coincide with that of Atlantic

cod (Gadus morhua). Discrimination between the acoustic signals of Atlantic cod,

polar cod and northern shrimp could provide more information on the risk of polar cod

bycatch in the northern shrimp fishery and improve the accuracy of stock assessment

surveys. We conducted a series of single-species mesocosm experiments for target

strength measurements of Atlantic cod, polar cod and northern shrimp to assess

the potential for species discrimination using their target strength spectra, TS(f).

Mesocosm experiments were completed with a Wideband Autonomous Transceiver

(WBAT) and collected broadband TS(f) (90-170 kHz and 185-255 kHz) of individual

targets. Hundreds of TS(f) were extracted for each species and used to train machine-
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learning classification algorithms (“classifiers”). We found that a simple classifier,

k-Nearest Neighbor, and a single 200 kHz transducer operating in broadband mode

are sufficient to achieve high classification performance (97%). The promising results

from mesocosm-trained acoustic classifiers are an important step towards classifying

coinciding marine species in situ and increasing the sustainability of fisheries.

4.2 Introduction

The northern shrimp fishery, Pandalus borealis, is one of the most valuable fisheries

in the Northwest Atlantic, the eastern Canadian Arctic, and the Barents Sea. It

generates 90% of Greenland’s export value (Garcia, 2007), and is the most valuable

invertebrate fishery in the Barents Sea (Berenboim et al., 2000). However, shrimp

fisheries are associated with bycatch problems (Grimaldo & Larsen, 2005; Howell &

Langan, 1992). Currently, bycatch reduction strategies in the shrimp trawl fishery

focus on gear modification, such as rigid sorting grids (Hannah & Jones, 2007), which

has a limited effect on separating small gadoids (Grimaldo & Larsen, 2005; Isaksen

et al., 1992), in particular Atlantic cod (Gadus morhua) and polar cod (Boreogadus

saida) (Walkusz et al., 2020). Atlantic cod is an important predator of northern

shrimp and influences the stock size (Garcia, 2007). Polar cod can account for > 95%

of the pelagic fish assemblage in the Arctic and has a pivotal role in the Arctic food

web as a key forage fish species (Geoffroy et al., 2023). A better understanding of the

spatial dynamics of Atlantic cod, polar cod, and northern shrimp would help forecast

stock changes and bycatch risk. Hydroacoustic surveys are widely used for expanding

the spatial footprint of ecosystem assessments (Bassett et al., 2018). They support
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high-resolution fish abundance, biomass, and movement estimates and are less inva-

sive than traditional trawl monitoring (Trenkel et al., 2019). Because the acoustic

scattering of a target, which depends on size, orientation, and acoustic properties, is

also dependent on frequency, broadband echosounders have been increasingly used

to infer species composition (e.g., Loranger et al., 2022; Ross et al., 2013). However,

broadband acoustic scattering measurements of an individual target, conventionally

recorded as target strength spectra (TS(f) [dB re 1 m2]; hereby target spectra), has

been found to have large variability, which cannot be explained by length or orien-

tation (Briseño-Avena et al., 2015; Dunning et al., 2023). The increased variability,

complexity and size of broadband data have required powerful data analysis tools,

such as machine learning algorithms (Malde et al., 2020). However, supervised ma-

chine learning algorithms require training datasets containing measurements of known

targets. Schooling pelagic fish has been a common test for acoustic classification of

monospecific aggregations (e.g., Bassett et al., 2020; Brautaset et al., 2020) because of

the possibility of validation by trawl. Less invasive measures applicable to individual

targets, such as camera validation (Benoit-Bird &Waluk, 2020), have successfully clas-

sified acoustic signals. However, these methods are limited by the ability to identify

the acoustically detected individuals when multiple species are present. Mesocosm

classification of target spectra has been successfully used to differentiate between

two conincident swim-bladdered fish species: whitefish (Coregonus wartmanni) and

stickleback (Gasterosteus aculeatus) (Gugele et al., 2021). A mesocosm-trained clas-

sification approach represents a promising avenue to improve taxonomic resolution

from broadband hydroacoustics because a high number of detections can be collected

for a known population with semi-natural swimming behaviours for a range of dif-
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ferent species. For the shrimp fishery, the classification of coincident species could

help assess the bycatch risk of fishing grounds prior to setting the trawls or to inform

policy and models on ecosystem distribution patterns. Remote target classification

with broadband acoustics could also benefit stock assessment surveys and estimates

by increasing spatial resolution, access to remote areas, and sustainability by reduc-

ing survey time and costs. This study reports on a series of single-species mesocosm

experiments with broadband hydroacoustics to classify the acoustic backscatter from

three coinciding species: Atlantic cod, polar cod, and northern shrimp. In addi-

tion, these experiments further improve our understanding of the potential use of

mesocosm-trained classification of broadband acoustic backscatter.

4.3 Methods

4.3.1 Species collection

The three coinciding species (Atlantic cod, polar cod, and northern shrimp) were

collected from R/V Helmer Hanssen using a Harstad pelagic trawl (8 mm mesh) and

bottom trawl (Campelan 1800 shrimp trawl with rockhopper gear) at 3 knots for

15 to 20 minutes in three fjords in Svalbard (Billefjorden, Krossfjorden, and Kons-

gsfjorden) (Figure 4.1) on 17 and 19 January 2023 (Table 4.1). The trawled depth

was selected based on the depth of the strongest scattering layer seen on the vessel’s

echosounder (Kongsberg Discovery AS; Simrad EK60, 18 and 38 kHz, 1.024 ms pulse

duration, 2 Hz pulse repetition). A FISH-LIFT, an aquarium attached to the trawl

codend that reduces turbulence and minimizes the impact of trawling on the caught
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animals (Holst & McDonald, 2000), was used to maximize the fitness and health of

the live fish and shrimp. The fish and shrimp were kept on board in large tanks

(1 m3) with running seawater and delivered to the wharf in Ny-Ålesund in Kongs-

fjorden. At the Kings Bay Marine Laboratory, the fish and shrimp were sorted by

species and stored in 6 m3 holding tanks with a flow-through system of filtered am-

bient seawater (∼1◦C) for 2 to 7 days, depending on weather and experiment priority.

Table 4.1: Overview of the trawling when the catch was used for single species meso-

cosm experiments. The pelagic trawl was used unless otherwise noted. All dates are

in 2023.

Trawl date Location Collection Experiment Species (n) Experiment

(UTC) (◦N, ◦E) depth (m) date duration (h)

17 Jan Billefjorden 102 19 Jan Polar cod (90) 6

22:26 (78.62, 16.54) 24 Jan Polar cod (133) 6.5

19 Jan Outer 150 26 Jan Northern 5.25

00:10 Krossfjorden shrimp (100)

(79.05, 11.35) 20 Jan Atlantic cod (5) 8

19 Jan Outer 352* Atlantic cod (11)

19:54 Kongsfjorden

(79.04, 11.34)

* Bottom depth – bottom trawl was used.
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Figure 4.1: A) Map of the Svalbard archipelago. B) Map of two species collection

location (blue circles) and experiment location at the Ny-Ålesund wharf (red square)

in Outer Krossfjorden and Outer Kongsfjorden. C) Map of a species collection loca-

tion in Billefjorden in relation to Longyearbyen (red square).

4.3.2 Mesocosm experiment

Broadband target strength data of single species were collected during four exper-

iments in January 2023 (Table 4.1) using a mesocosm deployed from a wharf in

Ny-Ålesund, Svalbard (red square; Figure 4.1B). The mesocosm, or AFKABAN (Ar-

rested Fish Kept Alive for Broadband Acoustics Net experiment), was fitted with a

large cuboid fish net (H7 x W2 x L2 m) with a 6 mm by 3 mm oval mesh or a small

cuboid zooplankton net (H3 x W2 x L2 m) with a 500 µm-mesh (Figure 4.2A). The

net was mounted on an 8 m high by 2 m wide and 2 m long aluminium frame oriented

vertically (Figure 4.2A). Ropes with hook and loop straps attached the eyelets on the

net to the frame at each corner and along the edges. A zipper on the top panel was
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opened to introduce species into the submerged mesocosm.

The transducers (ES120-7CD and ES200-7CDK-split; Kongsberg Discovery AS, Horten,

Norway) were mounted side by side on a plate centred inside the mesocosm through

a hole on the top panel of the net with the acoustic axis pointing directly down. The

smaller transducer (ES200-7CDK-split) was mounted on raisers to level the trans-

ducer faces. The transducer plate was fixed to the frame to ensure the transducer,

the frame, and the net moved as a unit under the stress of currents. AFKABAN was

suspended from a crane and lowered into the sea (Figure 4.2B) until the depth of the

transducer face was approximately 1 m below the surface. A Wideband Autonomous

Transceiver (WBAT, SN:253120; Kongsberg Discovery AS) was fastened horizontally

to the frame to operate the transducers (Figure 4.2). The AFKABAN frame was

purpose-built by Havbruksstasjonen (Ringvassøya, Norway) and wide enough to have

two side-by-side beams of 7◦ opening angle transducers inside the net.

The acoustic data were collected using a WBAT programmed to emit frequency-

modulated chirps multiplexing between bandwidths 90-170 kHz and 185-255 kHz.

The emitted pulse had a fast taper, a pulse duration of 0.512 ms with 200 and 113

W emitted power for the 120 kHz and 200 kHz transducers, respectively. The ping

interval was set to the minimum allowable value, between 2 and 2.5 s, to maximize the

number of single detections and tracks; it was limited by factors such as the internal

processing time and range. We selected a fast taper to have the maximal bandwidth

available at full power for the classifier. A short pulse length was selected to resolve

targets near the net boundary, reduce reverberation volume (Soule et al., 1997), and

increase the chances of sampling clean echoes from single targets in the mesocosm

(Gugele et al., 2021). Data collection for analysis started at least 25 minutes after the
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mesocosm was fully submerged with the species inside the net to leave enough time

for the organisms to acclimate and bubbles to disperse. Continuous conductivity,

temperature, and pressure data measurements were collected during all experiments

with a Sea-Bird SBE19plus (SN 01908096) for the fish experiments and SeaBird 37SI

MicroCAT CTD (SN 37SI31215-2767) for the northern shrimp experiment.

Immediately after the experiment, the frame was lifted to the wharf and the species

were removed from the net via a zipper on the bottom panel. The shrimp and fish

were euthanized in an overdose of Finquel MS-222 (tricaine methane sulfonate) com-

pound solution (500-600 mg l−1). Length and weight measurements were taken on

the euthanized individuals after the experiment. The treatment and use of species

in these experiments were approved by the Norwegian Food Safety Authority (FOT

29801, 22/231325) (Appendix C).
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Figure 4.2: A) Schematic of the frame with the small zooplankton net (left; northern

shrimp experiment) and large fish net (right; Atlantic cod and polar cod experiments).

The acoustic transceiver (yellow cylinder) is attached to the frame and the transducers

(orange cylinder, two in this experiment). There is a hole at the top of the net for the

transducer faces to be unobstructed inside the net. B) The AFKABAN mesocosm

with the large fish net lifted with the crane at the end of the experiment.

4.3.3 Acoustic data analysis

Acoustic data were calibrated using the sphere method adapted to broadband echosounders

(Andersen et al., 2023; Demer et al., 2015). The calibrations required two spheres for

each transducer (38.1 mm and 22 mm) to collect calibration parameters for the avail-

able frequency bandwidths (Appendix D Figure S1, S2). Calibrations were performed

on 26 January 2023 in Ny-Ålesund, Svalbard. The theoretical nulls of the 38.1 mm
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sphere did not match the measurements during the calibration. Therefore, the 22 mm

calibrations parameters were preferred over the 38.1 mm values (Appendix D Figure

S3). Since the 38.1 mm sphere had been used for a successful calibration previously

(Appendix B Figure S2) and the magnitude of the target spectra match reasonably

well, these calibrations values were used when values from the 22 mm sphere were

unavailable due to the inhibition bands. All acoustic data were processed in Echoview

13.1 (Echoview Software Pty Ltd, Hobart, Tasmania). The data analysis range was

bounded by the near-field region (Simmonds & MacLennan, 2008), and by the echo

from the bottom of the net (i.e., 1.0 m - 6.8 m for the fish experiments and 1.0 m - 2.4

m for the shrimp experiments). The “Single target detection – wideband 1” operator

was applied to select qualifying targets for each transducer (Table 4.2). The target

strength, TS, threshold was adjusted for the different experimental species; all other

parameters were consistent between experiments.

Table 4.2: Single echo detection - wideband 1 detector settings, where TS is target

strength.

Parameter Value

TS threshold (dB re 1 m2) fish: -75

shrimp: -120

Pulse length determination level (dB re 1 W2) 8

Normalized pulse length (min, max) (0.5, 1.5)

Minimum target separation (m) 0

Off-axis angle filter (degrees) 4
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1 Dunning et al. (2023).

All the single targets accepted by single echo detection (SED) parameters of both

transducers were merged for manual target selection. The selected single echo detec-

tions were manually organized into tracks by visual assessment to ensure each track

had a high probability of being from a single organism (Khodabandeloo et al., 2021).

We selected isolated SEDs that did not contain adjacent targets in the Fourier trans-

form window (0.25 m above and below) (Figure 4.3D-F). Adjacent targets can distort

the frequency response because of interference between the backscattered signals. Tar-

get spectra graphs (Figure 4.3G-I) were used to assess the presence of adjacent targets;

these can be identified by regularly spaced nulls (Khodabandeloo et al., 2021; Reeder

et al., 2004; Stanton et al., 1996). The single target tracks were formed by following

SEDs traces from ping to ping and verifying the location sequence of the single target

tracks across the acoustic beam. We ensured each selected track had a minimum of 4

SEDs to have enough information for the target trajectory across the acoustic beam.

Only one SED per ping could be selected, in the case of multiple SED candidates in

a single ping, the center, strongest SED was selected for the track. A single organism

likely formed each track because we used both frequency response patterns and target

tracking location in the acoustic beam to select targets and create tracks (Figure 4.3).
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Figure 4.3: Examples of the target spectra of each selected detection from an indi-

vidual track of each species using multiplexing broadband echosounders. An image

of the species from the experiment: A) Atlantic cod (Gadus morhua), B) polar cod

(Boreogardus saida) C) northern shrimp (Pandalus borealis). D-F) Echogram of a

selected isolated track from each species labelled above. Measured target spectra of

the selected tracks; G) Atlantic cod with 19 detections in the 94-158 kHz bandwidth

and 13 detections in the 189-249 kHz bandwidth (grey lines), H) polar cod track with

6 in the 94-158 kHz bandwidth and 4 target spectra in the 189-249 kHz bandwidth,

I) northern shrimp track with 9 target spectra in the 94-158 kHz bandwidth and 10

target spectra in the 189-249 kHz bandwidth. Photo in Panel B was taken by Hauke

Flores.
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All target spectra were calculated using a Fourier transform window length of

0.33 times the pulse length (i.e., 0.25 m) and exported from Echoview with a 2 kHz

frequency resolution, determined by the pulse duration (Khodabandeloo et al., 2021;

Medwin & Clay, 1998). The Fourier transform window size was selected to maximize

the information from the echo while reducing the risk of contamination from nearby

targets.

The first and last 5% of each target spectra were removed to eliminate the effects

of the pulse taper. The frequency band from 162-170 kHz was removed because of

inconsistent calibration results at this frequency range (Appendix D Figure S2). The

trimmed target spectra were used to train the classifiers.

4.3.4 Classifier training

Classifier training was performed in Python (version 3.9.15) using the Scikit-Learn

library (version 1.1.3, Pedregosa et al., 2011) and Hyperopt-Sklearn library (version

1.0.3; Komer et al., 2014). An L2-normalization was applied to each target spectra

so that if the values were to be squared and summed, the sum would equal 1 (Komer

et al., 2014). Preprocessing with normalizing by observation removed the influence

of intensity on the off-axis compensation of the target spectra. The normalization is

a standard data preparation step for machine learning to stabilize training, reduce

the impact of outliers and improve performance. The number of target spectra per

class was balanced by applying an over-sampling technique. Over-sampling was used

to avoid removing samples and the classes were not severely unbalanced (6:1). The
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samples in the minority classes (Atlantic cod and northern shrimp) were resampled

randomly until they were balanced with the majority class (polar cod) to reduce

the risk of bias in the model predictions (Goodfellow et al., 2016), reaching a total

of 695 and 699 samples per class for the 94-158 kHz and 189-249 kHz bandwidths,

respectively.

Three classifiers, K-Nearest Neighbours (kNN; Goldberger et al., 2004), LightGBM

(Ke et al., 2017), and support vector machine (SVM; Cortes & Vapnik, 1995), were

trained and Bayesian hyperparameter optimization was used for parameter selection.

The classifiers were trained using a 10-fold cross-validation method (Stone, 1974) to

split the data iteratively into a training subset (90%) and a testing subset (10%) of the

single species target spectra from the mesocosm experiments. Classifier performance

was evaluated using a mean class-weighted F1 score because it is an evaluation metric

that penalizes false positives and false negatives equally. The class-weighted F1 score

was averaged by class and weighted by the number of true instances for each class

(Pedregosa et al., 2011).

4.4 Results

4.4.1 Species composition

The 16 Atlantic cod in AFKABAN had a mean length of 52 ± 8 cm (L ± standard

deviation (SD)), and their mean weight was 978 ± 346 g (W ± SD). The individuals

were smaller for both polar cod experiments than for the Atlantic cod experiment.

The first polar cod experiment had fewer but larger individuals (n = 90; L = 19 ±
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2 cm; W = 50 ± 10 g), whereas the second experiment had more individuals that

were, on average, smaller (n = 133; L = 18 ± 2 cm; W = 30 g; weighed as a group

and divided by the number of individuals). For the shrimp experiment, we added 100

shrimps with an average length of 8 ± 1 cm (measured from eye to telson) inside the

small mesocosm configuration of AFKABAN (Figure 4.1A left). The shrimps were

weighed as a group and divided by the number of individuals, which resulted in an

average individual weight of 6 g.

4.4.2 Single species target spectra

There were 60 selected tracks in the Atlantic cod dataset, comprised of 345 target

spectra in the 94-158 kHz bandwidth and 273 target spectra in the 189-249 kHz band-

width (Figure 4.4A). The first polar cod experiment resulted in 62 selected tracks with

345 target spectra in the 94-158 kHz bandwidth frequency bandwidth and 362 target

spectra in the 189-249 kHz frequency bandwidth (Figure 4.4B). The second polar

cod experiment was slightly shorter in length but had more individuals in the net

(Table 4.1) and had slightly more tracks, a total of 66 tracks with 350 target spectra

in the 94-158 kHz bandwidth and 337 target spectra in the 189-249 kHz bandwidth

(Figure 4.4C). Lastly, the northern shrimp experiment had the fewest tracks because

of the low number of individuals, the shorter duration of the experiment and the

small size of the individuals (Table 4.1). There were 25 selected tracks composed of

108 target spectra in the 94-158 kHz bandwidth and 180 target spectra in the 189-249

kHz bandwidth (Figure 4.4D).
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Figure 4.4: Target spectra of all single target detections from all single species experi-

ments. Each target spectra was recorded as target strength (TS) over the 94-158 kHz

or the 189-249 kHz bandwidth. Panel A-D: target spectra of single echo detections

organized by species. Panel E-H : L2-normalized target spectra, each target spectra

have a unit norm.

The classification analysis used all the selected target spectra and, in the case of

Atlantic cod and northern shrimps, the replicates added to achieve balanced classes

(Figure 4.4). Atlantic cod had the strongest average echo intensity with a mean tar-

get strength of -34 dB re 1 m2 for the 94-158 kHz bandwidth and -38 dB re 1 m2 for

the 189-249 kHz bandwidth. Both polar cod experiments resulted in similar target

strength values with a mean target strength of -41 dB re 1 m2 for the 94-158 kHz

bandwidth for the first polar cod experiment with the slightly larger individuals and
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-42 dB re 1 m2 for the 94-158 kHz bandwidth for the smaller polar cod experiment. In

the 189-249 kHz bandwidth, both polar cod experiments resulted in an average target

strength of -44 dB re 1 m2. The northern shrimp had the weakest echo intensity with

a mean target strength of -78 dB re 1 m2 and -82 re 1 m2 in the 94-158 kHz and

189-249 kHz bandwidth, respectively. All species had a mean target strength that

decreased in the higher frequency range.

Atlantic cod had the largest variability in target strength intensity per individual

(i.e., among pings forming a track) with a maximum range of 43 dB re 1 m2 at the

nominal frequency, 120 kHz, and 33 dB re 1 m2 at the nominal frequency, 200 kHz.

The variability in target strength intensity per track at the nominal frequency for the

polar cod and northern shrimps were largest at 200 kHz but smaller than the Atlantic

cod target strength intensity variability. During the second polar cod experiment, the

polar cod had a maximum target strength intensity range within a track of 21 dB re

1 m2 at 200 kHz, and for northern shrimp it was 8 dB re 1 m2 at 200 kHz.

4.4.3 Classifier training

The three classifiers trained on the normalized target spectra (Figure 4.4E-H) showed

a high performance in classifying the frequency response of polar cod, Atlantic cod,

and northern shrimp across both the 94-158 kHz and 189-249 kHz bandwidths (mean

class-weighted F1 scores: >95%; Tables 4.3). The northern shrimp target spectra had

the highest mean per-class classification performance in the 94-158 kHz bandwidth for

all three classifiers (≥98%; Table 4.3). Atlantic cod had a slightly higher performance
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than polar cod (up to 0.03 increase) in both bandwidths. Both complex and com-

putationally expensive classifiers, LightGBM and SVM, did not have notably higher

performance than kNN, and the kNN classifier required at least 10x less computing

time to train. The preprocessing with an L2-normalization resulted in a marginal

overall improvement to the classification results, ∼ 0.02 increase in F1 scores.

Table 4.3: Classifier F1 scores estimated by classifier training (mean ± SD) of the

normalized target spectra collected with the 120 kHz and 200 kHz transducer.

120 kHz 200 kHz

kNN LightGBM SVM kNN LightGBM SVM

Mean

class-weighted 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.02

Atlantic cod 0.95 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.96 ± 0.04

Polar cod 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.95 ± 0.03 0.96 ± 0.03

Northern

shrimp 0.98 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.98 ± 0.0 0.99 ± 0.01 1.0 ± 0.0

4.5 Discussion

4.5.1 Species-specific patterns

The high classification performance (mean class-weighted F1 score of 97%) for three

coincident species is a promising result for in situ classification of targets from broad-

band echosounders. The results show that three coincident species, Atlantic cod,
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polar cod, and northern shrimp, can be differentiated using their target spectra with

a single transducer and a relatively simple classification algorithm. Presumably, the

range of target spectra complexity and morphological differences of the three species

ensured the high performance of the classifiers.

Atlantic cod’s target spectra were found to be the most complex, defined by closer and

more intense peaks and null across the bandwidth. The spectral complexity observed

in the Atlantic cod target spectra could have suggested that the SED contained inter-

ference from other targets (Figure 4.3G; Khodabandeloo et al., 2021; Stanton et al.,

1996). However, the rigorous manual target selection process ensured that only one

individual was included per SED and no adjacent targets were included in the Fourier

transform window (∼0.25 m above and below the target). Therefore, the multiple

scattering features (constructive and destructive interference) within the individual

Atlantic cod targets must have originated from the backscatter of different organs

interfering with each other (Demer et al., 2017; Reeder et al., 2004). We thus expect

that discriminating and classifying several morphologically complex targets, such as

Atlantic cod, will be more challenging (Au & Benoit-Bird, 2003; Clay, 1991, 1992).

In contrast, polar cod target spectra had an intermediate complexity with some rip-

ples and a relatively consistent slope across the spectra. During the target selection

of polar cod, there was only one central dominant SED per ping, which suggested

each individual had a single dominant scattering feature (i.e., the swimbladder) and

explained the absence of large nulls and peaks (Figure 4.3H). The northern shrimp

had a mixed spectral complexity in the target spectra with some ripples in the 94-158

kHz bandwidth but predominantly flat normalized target spectra, especially in the

189-249 kHz bandwidth (Figure 4.4D). The emitted chirp from the 120 kHz trans-
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ducer had a 10 kHz wider bandwidth than the 200 kHz transducer, which increased

the spatial resolution to 9 mm (compared to 11 mm for the 200 kHz). The finer tem-

poral resolution from the wider bandwidth may have revealed finer-scale scattering

features, which are typically only discernible with higher frequencies (Reeder et al.,

2004).

Target spectra complexity was used by Cotter et al. (2021) to scrutinize target spec-

tra into four classes based on selected scattering models (i.e., above, at, or below

resonance for gas-bearing organisms or fluid-like organisms). These categories were

used to classify mesopelagic fish into size classes with a mean F1 score of 0.90. Sim-

ilarly, Roa et al. (2022) had a high performance (the best mean class-weighted F1

score was 0.96) with classifiers trained on scattering models for six different reef fish.

They found that the nodes or “ripples”, typically found at higher frequencies, were

the prominent source of discriminating information. Discriminating nodes and ripples

were not found in three of the four modelled zooplankton groups in Dunn et al. (2023),

which resulted in moderate performance for the classifiers (best mean class-weighted

F1 score was 0.71). Based on previous studies and the results from this study, we con-

clude that classifying targets with different spectral complexity can positively impact

classification performance.

4.5.2 Intensity variability of broadband target spectra

Broadband acoustic backscattering signals exhibit large unexplained variability be-

tween detections of a single target (Dunning et al., 2023; Gugele et al., 2021; Reeder

et al., 2004). For example, an Atlantic cod target spectra study recorded a maximum
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target strength variation of 30 dB re 1 m2 within a track of a single fish at 38 kHz

(Dunning et al., 2023). Here, we observed a comparable maximum variation in target

strength of 33 dB re 1 m2 at 200 kHz with an Atlantic cod track. However, polar cod

and northern shrimp exhibited a smaller variation of target strength per track. The

target strength variability in broadband acoustics for a single target was found to be

greater than could be explained with tilt angle or fish length (Dunning et al., 2023),

which are traditionally used to explain the variability in narrowband target strength

measurements (Khodabandeloo et al., 2021; Zhang et al., 2021). Presumably, the

stochasticity found in the Atlantic cod target spectra tracks could be due to varia-

tions in the section of the fish being ensonified from ping to ping. In particular, the

Atlantic cod had a similar length to the beam width; therefore, different parts of the

fish body were likely impinged separately, adding variability to the measurements.

Different target spectra could be obtained at a farther detection range in the wild. A

mesocosm experiment, similar to this study but with fewer individuals with a larger

measurement range and optical verification, could develop a better understanding of

broadband acoustic target strength variability.

In the classification, the normalizing preprocessing algorithm removes the intensity

component of the target spectra (Figure 4.4I-L). Normalizing the target spectra had

the largest effect on the intensity variability of northern shrimp spectra. Though

northern shrimp had the smallest maximum variability per track, 7 dB re 1 m2 at 120

kHz and 8 dB re 1 m2 at 200 kHz, the intensity between individuals varied greatly,

especially over the 189-249 kHz bandwidth (Figure 4.4D). The normalized shrimp

target spectra reduced variance, which showed that the northern shrimp had the

most consistent target spectra pattern despite the large variability in target strength
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intensity.

4.5.3 Classification of in situ targets

The high performance of the classifiers in a controlled experiment is an important

step towards in situ target classification. However, fundamental challenges should be

addressed before in situ target classification can be achieved with mesocosm-trained

classifiers. A significant limitation of supervised classification is the dependence on

collecting training datasets for all classes (Handegard et al., 2021). Collecting tar-

get spectra from mesocosm experiments for all species and size groups in complex

and dynamic environments such as the ocean, even in Arctic regions with relatively

low species diversity, is unrealistic. A series of ship-based downward-looking low-

ered acoustic probe experiments were completed as part of this study, attempting

to classify in situ targets using the trained classifiers. However, the trawls showed

the community was dominated by herring and capelin among the Atlantic cod, po-

lar cod and northern shrimps, which prevented validation of in situ classification.

One method to validate the classifiers would be to repeat the lowered acoustic probe

experiments in an enclosed region, such as a lake or smaller fjord, dominated by a

single species to assess the error for that class. Single species-dominated regions are

commonly used in fisheries acoustics to associate the backscatter to a single species

(e.g., De Robertis et al., 2019; Geoffroy et al., 2016). A more widespread method

to use mesocosm-trained classifiers would be to have broader classes and to group

species based on morphological features and expected backscattering (Gugele et al.,

2021). However, better knowledge of the impact of multiple scattering features and

132



their contribution to target spectra complexity will also be necessary to successfully

classify in situ broadband acoustic signals.

Another practical limitation to in situ broadband acoustic target classification is

the rigorous track selection requirements. Better tracking algorithms for broadband

data with reduced risk of interference from contaminating targets within the Fourier

transform window will need to be developed. Currently, tracks tend to be manually

selected in broadband acoustics studies (Dunning et al., 2023; Khodabandeloo et al.,

2021), which is time-consuming and subjective. Manual selection of single echoes and

tracks halts the potential of automation and reproducibility. With automatic and

reproducible track selections, classifiers could be quickly applied to new datasets for

large-scale analysis of hydroacoustic survey datasets (Chawarski et al., In prep).

Another challenge with applying mesocosm results to in situ measurements is the lim-

ited possible replicates of target spectra available from the enclosed species. There is

a much wider range of shapes and swimming behaviour found in naturally occurring

individuals. For the Atlantic cod experiment, only 16 individuals were enclosed in

the mesocosm. Therefore, there were limited detection replicates possible from the

experiment and their swimming behaviour, which may have been affected by the han-

dling and transport, is a limited representation of that from fish in the wild. The

repeatability of the results from the two polar cod experiments showed consistency in

the target spectra results between two groups of the same species; however, they were

from the same fjord and trawl haul. Further mesocosm experiments with populations

from different fjords could improve our understanding of the interspecies variability of

target spectra and limit pseudoreplication (Hurlbert, 1984). Furthermore, the results

were possibly biased because of the occurrence of detections from tracks being used
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for testing and training at the same time. The potential autocorrelation risk could

be mitigated by using all detections from a track either in the testing or the training

set. The individual detections were used for the study because target spectra were

variable within a track, and the spectral complexity factors from the target spectra

would be flattened by combining multiple detections from a track. However, tracks

could be added as a feature to the classifiers to test if detections within a track are

more similar than between tracks. Incidentally, this type of test could inform on

intraspecies variability.

4.6 Conclusion

Three coincident species (Atlantic cod, polar cod, and northern shrimp) were found to

have distinct enough target spectra relative to each other in monospecific mesocosm

experiments, despite their intraspecies variability. The high performance of the ma-

chine learning classifiers was due to the different levels of target spectra complexity

observed across the selected species. Further mesocosm studies will determine the

taxonomic resolution to which mesocosm-trained classifiers can be used for in situ

classification, either by adding new classes of additional coinciding species, such as

herring and capelin, or by joining new classes in the existing ones based on their target

spectra complexity. This study paves the way toward automating in situ species clas-

sification using lowered acoustic probes or autonomous underwater vehicles equipped

with broadband echosounders, which opens the possibility to real-time warnings of by-

catch risks to reduce cost and trawling impact. Forecasting bycatch risks could greatly

impact the shrimp fishery because excessive retention of non-regulated bycatch can
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increase fuel costs, loss of revenue, and practical problems of onboard with sorting

the catch (Jacques et al., 2022). Finally, automated acoustic classification methods

could increase our ability to measure ecosystem changes and distribution shifts of fish

species, for instance in the North Atlantic and the Barents Sea (Fossheim et al., 2015;

Morato et al., 2020; Morley et al., 2018).
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Chapter 5

General conclusions

5.1 Overview of research goal

The overarching goal of the present thesis is to contribute to advancing and testing

methods that increase the independence of acoustic surveys for monitoring marine

ecosystems. The goal was achieved by contributing the three methods below:

• reducing the dependence on relative density estimates of sound scattering lay-

ers from net and trawl sampling by using scattering models for hydroacoustic

surveys with uncrewed vehicles;

• training classification algorithms with scattering models to classify the target

spectra of individual zooplankton;

• training classification algorithms with mesocosm measurement of target spectra

to discriminate morphologically different species.

These methods addressed some of the key challenges in fisheries acoustics research,
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such as increasing the value of acoustic data when concomitant trawl or net data is

not possible or limited (Fernandes et al., 2016; Horne, 2000) and utilizing target spec-

tra patterns from scattering models and mesocosm measurements for classification

and determining their limitations (Gugele et al., 2021; Roa et al., 2022).

The methods studied in this thesis were advanced while keeping in mind the unique

challenges of monitoring the Arctic, such as behavioural effects of lights from vessels

during polar night (Berge et al., 2020) and rapid ecosystem changes (Florko et al.,

2021; Kebir et al., 2023). To sustainably fish, develop industries and advance re-

search in the Arctic, we need to increase and improve the monitoring and baseline

assessments. Some of these assessments can be done by complementing traditional

vessel-based surveys with uncrewed vehicles equipped with broadband echosounders.

In addition, the Arctic was a practical region to advance and test multispecies discrim-

ination methods because of the relatively low species diversity and the relatively larger

size structure of zooplankton at higher latitudes (Brandão et al., 2021). However, the

limitations and recommendations resulting from this thesis are not restricted to Arc-

tic waters nor uncrewed vehicles. They are relevant and can be modified for use in

different marine environments. The results emerging from this thesis demonstrate the

potential for incorporating hydroacoustic surveys with broadband echosounders for

ecosystem research, ecosystem-based fisheries management, and commercial fishing

in the Arctic and beyond.
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5.2 The role of acoustic surveys with uncrewed ve-

hicles in fisheries

5.2.1 Ecosystem-based fisheries management

A successful implementation of ecosystem-based fisheries management requires more

information than single-species stock assessments, especially in light of climate change

stressors (Andersson et al., 2015; Kebir et al., 2023). Active acoustic methods, in-

cluding echosounders, have been identified as having a strong potential to contribute

to implementing ecosystem-based management (Trenkel et al., 2011). In particular,

echosounders can be used to study organisms ranging from euphausiids and large

copepods to large fish, depending on the selected frequency, and can provide high

spatial resolution compared to traditional station-based sampling.

Acoustic-trawl surveys are currently implemented for a few pelagic fisheries stock as-

sessments (e.g., capelin and herring, (Toresen et al., 1998), anchovy (Trenkel et al.,

2009)) to provide an estimate of biomass and provide valuable samples to infer age,

diet and other information. The methods explored in this thesis can complement tra-

ditional surveys by allowing more independence to uncrewed vehicles for the acous-

tic transects while the ship can do more extensive direct biological sampling work

(Chapter 2, Dunn et al., 2022). There is a high potential and low threshold for un-

crewed vehicles equipped with broadband echosounders to complement vessel-based

acoustic-trawl surveys. Furthermore, vessel-based surveys can be complemented with

moorings equipped with broadband echosounders to increase the temporal extent of

surveys (De Robertis et al., 2018; Ross et al., 2013), and lowered acoustic probes or
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towed lowered platforms can be used for close proximity high range resolution mea-

surements of organisms at depth (Khodabandeloo et al., 2021).

Broadband echosounders can be used on uncrewed vehicles, acoustic probes, or re-

search vessels to extend temporal and spatial coverage of density estimates when

concurrent species and size composition sampling is available through validation with

nets and trawls (Chapter 2, forward method, Dunn et al., 2022). When it is not

possible to obtain information on the community composition directly from nets and

trawls, the inverse method can help to optimize the density solution from modelled

target spectra of the species expected to be present (Chapter 2, inverse method, Dunn

et al., 2022. The inversion still requires a strong knowledge of the species composition

and length distributions for the study region and, therefore, still depends on some

level of traditional net and trawl sampling. However, it can allow for more flexibility

in the survey transects in well studied regions. The inverse method with broadband

target spectra has also been simulated under a Bayesian framework, which requires

auxiliary information (biological knowledge or nets and trawls) to be explicitly ex-

pressed as priors (Urmy et al., 2023) as opposed to the frequentist approach used in

Chapter 2. Extending the spatial and temporal coverage increases the information on

the state and functioning of the ecosystems which reduces the uncertainty in fisheries

assessments and improves management strategies (Chen et al., 2003).

In addition, uncrewed vehicles, mooring and lowered probes can be outfitted with

different sensors to contextualize acoustic data with environmental (e.g., PAR, chloro-

phyll a) or chemical data streams (e.g., pH). The present thesis focused on methods

to increase the independence of broadband echosounders, but concomitant data can

provide additional insights for ecosystem-based management. Future works should
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enable acoustic data to be coupled to other data streams for additional information

on the ecosystem and its environment rather than for validating the acoustic signal.

Ecological, oceanographic, and climate variability can substantially impact stocks. A

source of parallel data streams to collect measurements for these factors, in addition to

biomass estimates, could facilitate the quantitative incorporation of ecosystem-based

considerations in fisheries assessments (Boyce et al., 2021).

5.2.2 Commercial fishing

My research has shown that northern shrimp, polar cod and Atlantic cod can be

discriminated remotely using their target spectra (Chapter 4), which can be valu-

able for commercial fishing to reduce the operational and environmental concerns.

These results are also valuable in increasing the possibilities for scientific monitoring.

These findings pave the way for uncrewed acoustic surveys of fishing grounds before

setting the trawls to assess the risk of bycatch. Mesocosm-informed classification

could be tested for other commercially important species with high bycatch risks to

reduce impacts on the environment, associated costs and fishing grounds closures.

Mesocosm-informed classification (Chapter 4) demonstrated that a single transducer

and simple machine learning classification algorithm were sufficient for a high clas-

sification performance. These results indicate that on-board processing of acoustic

data for the classification of morphologically different species could be implemented

for species discrimination of commercially important species.

Alternatively, the TS intensity discrepancy between the fish (polar cod, Atlantic cod)

and northern shrimp found in Chapter 4 suggests that, in this case, thresholding nar-
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rowband echosounder measurements may be enough to discriminate between these

species because the mean TS of each species is strongly different. Thresholding nar-

rowband TS is an accessible method to be implemented with fish finders mounted on

fishing or research vessels for a rough idea of the community composition of dominant

species.

5.3 The promise of broadband fisheries echosounders

5.3.1 The use of broadband echosounders

Broadband echosounders are an encouraging technology development for fisheries

acoustics because of the spectra resolution, range resolution and dampening of stochas-

tic noise (Bassett et al., 2020; Benoit-Bird &Waluk, 2020). The promise of broadband

fisheries echosounders is rooted in the anticipation that it will resolve the grand chal-

lenge of species identification through the spectra resolution (MacLennan & Menz,

1996). However, the increase in size and complexity of the data collect by broadband

echosounders requires new methods and standards for data processing and analysis

procedures (Benoit-Bird & Waluk, 2020). The promise of broadband acoustics is

tested in the present thesis through model-informed (Chapter 3, (Dunn et al., 2023))

and mesocosm-informed (Chapter 4) classification methods. These methods leverage

the large volume datasets output from broadband echosounders to train supervised

classification algorithms. Through controlled mesocosm experiments, we tested and

explored the advantages and limitations of broadband echosounders.
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5.3.2 Broadband sensitivity

One of the promising properties of broadband echosounders is the fine-scale range res-

olution from the matched filtering. With this technique, the range resolution is not

dependent on the pulse length, as with narrowband systems, but rather on the band-

width (Equation 1.13). Targets closer to each other than the transmit pulse length or

a strong boundary (e.g., seafloor, a net) can be resolved with pulse compression. How-

ever, the processing side lobes are a side effect of the match filtering technique that

are dependent on the pulse length (Lavery et al., 2017) (Figure 5.1A). When these

processing sidelobes of nearby targets overlap, they contaminate the target spectra

by introducing evenly spaced peaks and nulls (Demer et al., 2017)(Figure 5.1B,D).

Therefore, even though targets closer than the pulse length can be resolved spatially,

their target spectra may be distorted (Khodabandeloo et al., 2021)(Figure 5.1D).

Processing sidelobe contamination was particularly problematic while selecting tar-

gets for analysis where the large fish targets had strong processing sidelobes in the

pulse-compressed target strength echogram (Chapter 4). The processing sidelobes

can be reduced with a slow amplitude ramping (gradual increase to full power of

the broadband chirp), but the slow ramping reduces the available bandwidth, which

in turn reduces the spectral range and range resolution. The standard single echo

detection and target tracking algorithms were no longer robust enough to ensure the

selection of isolated and uncontaminated target spectra. Recent works with broad-

band echosounders and target spectra have had to manually select targets and tracks

(Chapter 4, Dunning et al., 2023; Khodabandeloo et al., 2021) which is a significant

limitation to upscaling broadband echosounder and data processing methods to sur-
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veys with uncrewed vehicles.

Figure 5.1: A) Echogram of a single fish track with clear processing sidelobes above

and below the track. B) Echogram of a single fish track that is intercepted by another

fish on the right end of the track, last two selected single echos. C) Target spectra of

each selected single echo of the single fish. D) Target spectra of each selected single

echo of the single fish with interference in two of the target spectra.

Another unexpected feature of the broadband echosounder system’s high resolu-
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tion is the ability to resolve the echo of different parts of a fish. On one hand, the

echoes from the different acoustic boundaries found in a fish (e.g., seawater to flesh,

flesh to swimbladder) can be studied in the time-domain to estimate the fish size

(Kubilius et al., 2020, 2023). On the other hand, when studied in the frequency

domain, the multiple neighbouring echoes for a single fish return target spectra that

have properties indicative of being contaminated (e.g., Figure 4.3G). This interference

can be observed for an in situ single target spectrum which tends to appear consider-

ably more complex than the relatively smooth output from scattering models (Reeder

et al., 2004). The sensitivity and high range resolution of broadband systems lead

to high variability and complexity in target spectra measurements (Dunning et al.,

2023). Understanding and testing the benefits and limits of broadband systems is a

critical component of advancing the grand challenge of species identification.

5.4 Limitations of study and recommendations for

future research

In Chapter 2, I present promising results for the inversion of aggregations of fluid-like

species in an SSL using scattering models as the input for the least-squares algorithm.

However, in Chapter 3, I present that model-informed classification of individual fluid-

like species was unreliable based on a mesocosm validation of the method. I concluded

that the poor classifier performance was due to the large variability and complexity

in the measured in situ target spectra versus the relatively smooth modelled spectra.
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Both can be valid when considering that the variability of a single individual’s target

spectra, T S( f ), has the potential to be larger than the volume backscatter spectra,

Sv( f ), of a large number of individuals, where orientation, material properties and

shape differences are averaged (Stanton et al., 1993). Therefore, an important consid-

eration is the effect of the interference from neighbouring targets in an aggregation

and the impacts on volume backscatter spectra (Demer et al., 2017). Then, the appli-

cability of using modelled target spectra for individuals and for aggregations should

be explored in more detail with experiments with reduced complexity, such as single

species in situ aggregations or schools. Furthermore, the models may need to include

the effects of multiple scattering on the attenuation and the spectra for aggregations

(Chu & Ye, 1999) and for the acoustic boundaries of individual larger targets. To-

gether, these chapters highlight the limitations of our current knowledge and reveal

an important area of future work for continuing to integrate broadband systems in

fisheries.

Finally, to maximize the potential of uncrewed vehicles equipped with broadband

echosounders, the ability to combine data streams from different sensors should be

developed. A limitation of the methods developed in this thesis is that only broad-

band echosounder data was considered, all complimentary datasets were collected by

ships using nets and trawls. To use the benefits of uncrewed vehicles to the fullest,

there needs to be further research in identifying other sensors that could provide

near-coincident complimentary data to broadband echosounders. A promising com-

plementary data stream would be optical sensors such as UVP6 (Hydroptic, France,

www.hydroptic.com) for extending the size range of target detections Ponçon et al.

(2023) or camera systems for quantifying and identifying species (Ohman et al., 2019).
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The technology developments of sensors, machine learning algorithms and novel mon-

itoring platforms will continue to evolve, and establishing methods and standard

processing tools that maximize the potential of these technologies will give us a bet-

ter chance at keeping up with the rapidly changing Arctic ecosystem.
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Collection/Net type MPS180 MPS180 MPS180 MPS180 MPS MPS MPS MPS MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180
Date 21.06.2018 21.06.2019 21.06.2020 21.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018
Area/Station name 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10
Layer [m] 5-0 10-5 10-30 30-100 100-30 30-10 10-5 5-0 100-30  30-10  10-5 5-0 100-30  30-10  10-5
Calanus finmarchicus AM 0.95 5.00 0.63 5.00 1.48 0.57 7.62 6.66
C. finmarchicus AF 64.00 19.20 38.40 117.03 33.33 45.00 64.00 12.00 5.71 115.00 28.57 22.22 2.29 205.71 300.00
C. finmarchicus CV 1280.00 524.80 3046.40 431.54 375.24 1160.00 1708.00 796.00 148.57 770.00 777.14 711.11 51.43 6811.43 6200.00
C. finmarchicus CIV 102.40 22.40 38.40 138.97 20.95 70.00 68.00 8.00 49.52 25.00 22.86 35.55 6.29 114.29 100.00
C. finmarchicus CIII 3.20 12.80 14.63 5.71 1.25 7.62 1.67 1.48 0.19 7.62
C. finmarchicus CII 0.00 7.31 3.81 1.25 4.00 4.00 1.90 1.48 0.19
C. finmarchicus CI 1.90 12.00 0.63 1.67 1.48 0.57 3.81
C. hyperboreus CV 1.60
C. hyperboreus CIV 2.50 4.00 0.63 5.00 8.89 0.19 7.62 6.66
C. hyperboreus CIII 0.95 1.25 3.81 5.71 8.89 0.57 7.62
Microcalanus  spp. 230.40 28.80 25.60 343.77 32.38 5.00 32.00 8.00 17.14 10.00 11.43 48.89 32.00 22.86 6.66
Pseudocalanus spp. AM 76.80 6.40 0.00 131.66 0.95 0.63 0.19
Pseudocalanus spp. AF 7.62 1.25 2.00 11.43 1.67 2.29 7.62 6.66
Pseudocalanus spp. CV 24.76 15.00 16.00 3.81 5.00 1.90 4.44 2.29 7.62 6.66
Pseudocalanus spp. CIV 26.67 5.71 5.00 4.40 4.57 22.86 6.66
Pseudocalanus spp. CI-CIII 20.95 1.25 4.00 1.90 10.00 4.44 0.19 68.57 6.66
Metridia longa AM
M. longa AF 38.40 6.40 36.57 0.63 1.67 5.71 6.66
M. longa CV 25.60 58.51 0.95 0.63 5.00 1.90 4.44 0.19 6.66
M. longa CIV 36.57 1.90 5.00 1.48 0.57
M. longa CIII 1.90
M. longa CII 3.81
M. longa CI 3.20 3.81
Paraeuchaeta norvegica AF
Paraeuchaeta spp. CV 0.06 0.80
Paraeuchaeta spp. CIV 0.19
Paraeuchaeta spp. CIII 0.63 0.19
Paraeuchaeta spp. CII 0.63
Paraeuchaeta spp. CI
Acartia spp.
Chiridius obtusifrons 12.80
Heterorhabdus norvegicus 12.80
Metridia lucens AM 2.86 3.33 1.90 1.67 1.90 8.89 1.14 6.66
Metridia lucens AF 5.71 3.33 4.00 3.81 4.44 14.86 7.62 6.66
M. lucens CI-CV 25.71 3.33 8.00 4.00 7.62 1.67 1.48 10.29 6.66
Anomalocera patersoni 0.20
Scaphocalanus magnus 3.20
Scolecithricella minor 0.63
Temora longicornis
Microsetella norvegica 1.9
Harpacticoida indet. 8.0
Oithona  atlantica 12.80 60.95 65.00 16.00 4.00 15.24 1.67 5.71 8.89 25.71 6.66
Oithona  similis 1049.60 185.60 345.60 1367.77 1603.81 1465.00 1072.00 316.00 647.62 460.00 771.43 680.00 195.24 388.57 300.00
Oncaea spp. 
Triconia (=Oncaea) borealis 9.60 21.94 3.81 2.50 3.81 1.67 4.44 3.43 3.81 6.66
Copepoda  nauplii 19.20 7.31 1.90 5.00 16.00 12.00 7.62 1.67 11.43 4.44 1.14 7.62 40.00
Ostracoda 1.67
Cirripedia nauplii 10.00 112.00 28.00 5.00 1.90

Table S1: Density values in individuals per m3 from MultiNet tows throughout the study region. Values combined using a weighted average over depth for a single value of density for each stations for each species in the upper 100 m. The 
species are colour coded by taxonomic group (Copepods in purple; Euphausiids in red; Amphipods in green; Gelatinous in pink; Fish larvae in blue; Pteropods in orange; and Others in white).



Collection/Net type MPS180 MPS180 MPS180 MPS180 MPS MPS MPS MPS MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180
Date 21.06.2018 21.06.2019 21.06.2020 21.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018 22.06.2018
Area/Station name 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10
Layer [m] 5-0 10-5 10-30 30-100 100-30 30-10 10-5 5-0 100-30  30-10  10-5 5-0 100-30  30-10  10-5
Cirripedia cypris
Cirripedia Facetotecta nauplii
Themisto abyssorum 12.80 0.74 1.60 0.75 2.87 0.00 0.80 0.06 4.61 6.66
Themisto  libellula 0.06
Themisto spp. <1mm
Isopoda Bopyridae 0.63 1.67 0.19 7.62 6.66
Isopoda indet.
Thysanoessa inermis 0.6 0.4
Thysanoessa longicaudata
Thysanoessa raschii 1.5 0.2
Euphausiacea nauplii 1.9
Euphausiacea calyptopis 0.5 1.67 0.19
Euphausiacea furcilia 25.60 51.20 21.94 1.43 2.20 1.60 7.66 6.07 5.71 0.80 1.71 9.22 6.66
Eupagurus zoea
Eupagurus megalopa
Decapoda indet. larvae 1.26 1.20 0.80 0.29 1.40 2.40 0.17 1.80 0.80
Aglantha digitale 51.20 32.00 2.86 5.00 28.00 28.00 5.00 29.37 8.89 0.19 7.62 6.66
Hydrozoa medusae indet.
Hydrozoa larvae
Dimophyes arctica
Ctenophora  larvae
Nemertea pilidium

Clione limacina veliger 2.50
Limacina helicina veliger 0.95 15.00 32.00 20.00 1.67
Limacina retroversa 25.60 102.40 7.31 3.33 1.25 68.00 9.60 13.33 25.00 5.71 4.44 1.14 22.86 20.00
Gastropoda veliger 0.63 1.67 5.71 4.44 0.57
Bivalvia  veliger 0.95 2.50 32.00 4.00 0.63 5.00 1.90 7.62
Polychaeta larvae
Polychaeta larvae mitraria
Polychaeta secondary larvae 5.71 3.81
Echinodermata larvae 12.80 7.31 1.90 0.57
Bryozoa larvae 1.90 24.00 8.00 1.90 10.00 4.44 7.62 20.00
Eukrohnia hamata 12.80 21.94 0.34 0.20 1.20 0.80 0.80 0.91 4.01 2.40
Sagitta elegans 0.00 0.17 0.60 0.34 5.00 0.69
Fritillaria borealis 25.60 0.00 1.90
Oikopleura spp. 7.31 2.86 6.67 4.00 0.00 11.49 1.67 1.90 8.89 5.14 22.86
Appendicularia larvae
Pisces larvae 0.06 0.40 0.80 0.80 0.80 0.20
Paracalanus spp. 3.81



Collection/Net type
Date
Area/Station name
Layer [m]
Calanus finmarchicus AM 
C. finmarchicus AF
C. finmarchicus CV
C. finmarchicus CIV
C. finmarchicus CIII
C. finmarchicus CII
C. finmarchicus CI
C. hyperboreus CV
C. hyperboreus CIV
C. hyperboreus CIII
Microcalanus  spp.
Pseudocalanus spp. AM
Pseudocalanus spp. AF
Pseudocalanus spp. CV
Pseudocalanus spp. CIV
Pseudocalanus spp. CI-CIII
Metridia longa AM
M. longa AF
M. longa CV
M. longa CIV
M. longa CIII
M. longa CII
M. longa CI
Paraeuchaeta norvegica AF
Paraeuchaeta spp. CV
Paraeuchaeta spp. CIV
Paraeuchaeta spp. CIII
Paraeuchaeta spp. CII
Paraeuchaeta spp. CI
Acartia spp.
Chiridius obtusifrons
Heterorhabdus norvegicus
Metridia lucens AM
Metridia lucens AF
M. lucens CI-CV
Anomalocera patersoni
Scaphocalanus magnus
Scolecithricella minor
Temora longicornis
Microsetella norvegica
Harpacticoida indet.
Oithona  atlantica
Oithona  similis
Oncaea spp. 
Triconia (=Oncaea) borealis
Copepoda  nauplii
Ostracoda 
Cirripedia nauplii

Table S1: Density values in individuals per m
species are colour coded by taxonomic group (Copepods in purple; Euphausiids in red; Amphipods in green; Gelatinous in pink; Fish larvae in blue; Pteropods in orange; and Others in white).

MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 WP2 WP2 WP2 MPS MPS MPS
22.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018

10 11 11 11 11 12 12 12 12 13 13 13 14 14 14
5-0 100-30  30-10  10-5 5-0 100-30  30-10  10-5 5-0 100-30 30-10 10-0 100-30 30-10 10-5

6.66 1.90 16.00 8.00 1.43 1.11 3.34 5.28 11.43 1.90
240.00 38.10 96.00 20.00 40.00 43.57 30.00 90.00 144.00 74.29 68.57 230.00 11.43 76.00 208.00

5973.34 339.05 4464.00 672.00 1440.00 21.43 366.67 2310.00 3408.00 491.43 4068.57 3445.00 76.19 680.00 2320.00
120.00 13.33 64.00 28.00 24.00 7.86 13.33 60.00 48.00 17.14 51.43 35.00 43.81 32.00 104.00

2.66 1.43 13.33 10.00 16.00 2.86 4.00 11.43 6.00 8.00
6.66 2.14 6.67 3.34 16.00 3.81 2.86 4.00 8.00
6.66 3.33 3.34 16.00 0.95 1.90 4.00 8.00

0.63 0.71 3.33 5.34 0.29 0.11
20.00 3.81 2.67 8.00 2.66 1.90 1.11 0.57 0.11
20.00 43.81 5.33 28.00 48.00 15.24 3.33 50.00 16.00 240.00 17.14 12.00 4.00

0.24
6.66 0.63 2.66 3.81 3.33 5.34 8.57 0.80 1.90 4.00
6.66 11.43 5.33 2.66 45.71 23.33 3.34 32.00 91.43 0.80 30.48 32.00 16.00

20.00 7.62 16.00 32.38 20.00 10.00 32.00 34.29 13.33
1.90 2.66 17.14 23.33 3.34 16.00 45.71 15.24 12.00

1.34
6.66 2.66
6.66 0.63 1.34 2.66 3.34
6.66 0.63 2.67 5.71

5.71
2.86 1.90
2.86 3.81

4.00
0.40 0.06
0.63 0.24 10.00

0.71 5.34
0.24

3.34 8.00

6.66 2.86 1.11 2.86 1.90
20.00 1.90 2.67 2.66 7.14 3.33 3.34 5.34 2.86 1.90
20.00 3.81 4.00 16.00 12.86 1.11 16.00 24.76 6.67 0.40

20.00 0.63

5.34
6.66 11.43 5.33 16.00 34.29 33.33 3.34 16.00 68.57 76.19 4.00

220.00 451.43 32.00 492.00 480.00 394.29 1390.00 490.00 1056.00 2202.86 200.00 12.00 1676.19 488.00 224.00
2.66 3.34

6.66 0.63 2.66 3.81 1.11 5.34 22.86 5.71 4.00
20.00 1.90 4.00 2.66 13.33 23.33 30.00 64.00 17.14 2.00 1.90 4.00 4.00

0.63 1.34 0.24
6.00 56.00



Collection/Net type
Date
Area/Station name
Layer [m]
Cirripedia cypris
Cirripedia Facetotecta nauplii
Themisto abyssorum
Themisto  libellula
Themisto spp. <1mm
Isopoda Bopyridae
Isopoda indet.
Thysanoessa inermis
Thysanoessa longicaudata
Thysanoessa raschii
Euphausiacea nauplii
Euphausiacea calyptopis
Euphausiacea furcilia 
Eupagurus zoea
Eupagurus megalopa
Decapoda indet. larvae
Aglantha digitale
Hydrozoa medusae indet.
Hydrozoa larvae
Dimophyes arctica
Ctenophora  larvae
Nemertea pilidium

Clione limacina veliger
Limacina helicina veliger
Limacina retroversa
Gastropoda veliger
Bivalvia  veliger
Polychaeta larvae
Polychaeta larvae mitraria
Polychaeta secondary larvae
Echinodermata larvae
Bryozoa larvae
Eukrohnia hamata 
Sagitta elegans
Fritillaria borealis
Oikopleura spp.
Appendicularia larvae
Pisces larvae
Paracalanus spp.

MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 MPS180 WP2 WP2 WP2 MPS MPS MPS
22.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 23.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018 24.06.2018

10 11 11 11 11 12 12 12 12 13 13 13 14 14 14
5-0 100-30  30-10  10-5 5-0 100-30  30-10  10-5 5-0 100-30 30-10 10-0 100-30 30-10 10-5

0.23
0.69 3.33

9.86 1.38 0.40 1.34 3.46 3.37 1.11 3.34 0.00 0.51 2.40 0.00 0.57 1.40 0.80

1.90 8.00 0.24 1.11
0.24

0.20 0.57
0.17 0.11
0.40 0.51 0.80

0.63 0.24 3.34 0.95 0.48
9.06 7.07 11.33 1.34 5.06 4.84 20.40 20.80 6.94 18.10 20.00 2.00 7.62 16.00 2.40

0.40 0.40 0.80 0.46 0.80
0.40

1.60 0.46 0.40 0.06 0.40 2.40 5.40 2.40
40.00 11.60 16.20 76.00 129.60 7.96 30.40 30.80 80.00 9.31 80.00 0.11 33.33 16.00

1.34

2.66

0.24 0.11
2.00 1.90 4.00 4.00

20.00 13.33 80.00 1.34 56.00 7.62 83.33 100.00 224.00 2.571428571 1840.00 6.00 4.76 26.80 29.60
2.9

0.63 1.11 5.34 8.6 3.81 4.00
6.66 2.9 0.95

4.00
6.66 1.90 1.34 16.00 6.67 10.00 5.34

3.33
6.66 0.63 5.33 4.00 2.66 0.71 5.34 2.9 2.00 0.95
1.60 3.90 0.20 1.60 3.26 0.80 0.80 3.20 0.628571429 3.50 0.20 0.80

0.46 5.33 4.00 2.66 1.11 2.11 7.74 1.885714286 1.83 1.00

6.66 19.05 32.00 16.00 73.60 34.40 16.67 3.34 6.14 24.76190476 11.43

0.80 0.06 0.80 0.20 0.40
20.00 1.90 1.34 5.71



Collection/Net type
Date
Area/Station name
Layer [m]
Calanus finmarchicus AM 
C. finmarchicus AF
C. finmarchicus CV
C. finmarchicus CIV
C. finmarchicus CIII
C. finmarchicus CII
C. finmarchicus CI
C. hyperboreus CV
C. hyperboreus CIV
C. hyperboreus CIII
Microcalanus  spp.
Pseudocalanus spp. AM
Pseudocalanus spp. AF
Pseudocalanus spp. CV
Pseudocalanus spp. CIV
Pseudocalanus spp. CI-CIII
Metridia longa AM
M. longa AF
M. longa CV
M. longa CIV
M. longa CIII
M. longa CII
M. longa CI
Paraeuchaeta norvegica AF
Paraeuchaeta spp. CV
Paraeuchaeta spp. CIV
Paraeuchaeta spp. CIII
Paraeuchaeta spp. CII
Paraeuchaeta spp. CI
Acartia spp.
Chiridius obtusifrons
Heterorhabdus norvegicus
Metridia lucens AM
Metridia lucens AF
M. lucens CI-CV
Anomalocera patersoni
Scaphocalanus magnus
Scolecithricella minor
Temora longicornis
Microsetella norvegica
Harpacticoida indet.
Oithona  atlantica
Oithona  similis
Oncaea spp. 
Triconia (=Oncaea) borealis
Copepoda  nauplii
Ostracoda 
Cirripedia nauplii

Table S1: Density values in individuals per m
species are colour coded by taxonomic group (Copepods in purple; Euphausiids in red; Amphipods in green; Gelatinous in pink; Fish larvae in blue; Pteropods in orange; and Others in white).

MPS MPS180 MPS180 MPS180 MPS180 MPS MPS MPS MPS MPS MPS MPS
24.06.2018 24.06.2018 24.06.2018 24.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018

14 15 15 15 16 16 16 16 17 17 17 17
5-0 100-30  30-10  10-5 5-0 100-30 30-5 5-0 100-30 30-10 10-5 5-0

3.43 1.67 2.22 1.34 0.48 5.33 0.86 1.00 5.33 Legend
232.00 12.57 135.00 186.66 64.00 44.76 16.00 88.00 0.57 15.00 8.00 4.00 Copepods

3224.00 88.00 645.00 1086.66 348.00 493.33 1411.20 2208.00 1.71 144.00 136.00 112.00 Euphausiids
152.00 5.71 25.00 33.34 16.00 3.81 64.00 122.67 1.14 21.00 5.33 16.00 Amphipods

8.00 2.29 5.00 6.66 1.34 1.90 6.40 26.67 1.00 2.67 4.00 Gelatinous
8.00 1.14 5.00 6.66 1.34 9.60 5.33 2.00 5.33 8.00 Fish larvae

16.00 1.14 10.00 6.66 1.34 16.00 5.33 0.19 1.00 2.67 20.00 Pteropods
Other

2.67 1.14 1.67 6.66 0.80 0.80
0.38 2.22 0.95 1.60

53.33 1.67 6.66 68.00 64.00 35.43 24.00 74.67 176.00
1.67 1.14

1.60 5.71 1.67 2.22 4.00 0.95 3.20 4.00 4.00 4.00
8.00 5.71 25.00 13.34 12.00 5.71 12.80 24.00 2.86 22.00 8.00 4.00

6.86 5.00 2.22 4.00 1.90 6.40 4.00 16.00 2.67 8.00
2.29 5.00 2.22 8.00 48.00 1.43 12.00 10.67 8.00

0.48 0.29 5.33 0.80
5.33 1.14 1.67 2.22 3.33 1.60 0.86 5.33 0.80

1.34 5.33
5.33 1.60 0.19 2.00 2.67

2.22 2.00
0.29 2.00 2.67

0.06 0.80
0.38 1.34 1.43 0.11
0.38 2.22 1.43 0.80 0.17 0.20

0.95 0.23
0.48

1.67

0.19 0.80
5.33 0.38 1.67 2.22 1.34 0.57 1.00 12.00
1.60 17.14 5.00 6.66 4.00 3.33 0.80 7.43 4.00 2.67 8.00

10.67 28.57 10.00 2.22 8.00 0.48 5.43 9.00 2.67 16.00

0.95 4.00
1.67

32.00 12.57 1.67 6.66 32.00 17.14 21.14 22.00 21.33 3.20
544.00 384.76 505.00 326.66 872.00 272.38 419.20 464.00 133.71 796.00 597.33 656.00

0.38
8.00 3.43 1.67 6.66 12.00 1.90 32.00 4.00 16.00

4.57 25.00 33.34 104.00 1.90 201.60 544.00 14.00 101.33 72.00
0.76 0.95 17.60

80.00 1.67 2.67 2.67



Collection/Net type
Date
Area/Station name
Layer [m]
Cirripedia cypris
Cirripedia Facetotecta nauplii
Themisto abyssorum
Themisto  libellula
Themisto spp. <1mm
Isopoda Bopyridae
Isopoda indet.
Thysanoessa inermis
Thysanoessa longicaudata
Thysanoessa raschii
Euphausiacea nauplii
Euphausiacea calyptopis
Euphausiacea furcilia 
Eupagurus zoea
Eupagurus megalopa
Decapoda indet. larvae
Aglantha digitale
Hydrozoa medusae indet.
Hydrozoa larvae
Dimophyes arctica
Ctenophora  larvae
Nemertea pilidium

Clione limacina veliger
Limacina helicina veliger
Limacina retroversa
Gastropoda veliger
Bivalvia  veliger
Polychaeta larvae
Polychaeta larvae mitraria
Polychaeta secondary larvae
Echinodermata larvae
Bryozoa larvae
Eukrohnia hamata 
Sagitta elegans
Fritillaria borealis
Oikopleura spp.
Appendicularia larvae
Pisces larvae
Paracalanus spp.

MPS MPS180 MPS180 MPS180 MPS180 MPS MPS MPS MPS MPS MPS MPS
24.06.2018 24.06.2018 24.06.2018 24.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018 25.06.2018

14 15 15 15 16 16 16 16 17 17 17 17
5-0 100-30  30-10  10-5 5-0 100-30 30-5 5-0 100-30 30-10 10-5 5-0

0.4 1.3
0.84 1.87 2.14 0.32 0.80

0.17
0.38

0.06 0.11
0.06
0.46

1.67 2.00 2.67 2.67
1.14 5.00 1.34 1.07 0.23 3.20

2.40 11.71 2.46 0.00 4.80 0.97 3.20 0.80 0.29 2.20 1.60 0.00

0.20
0.17 0.20 0.80 0.06

75.47 5.71 20.20 33.34 44.00 0.34 2.45 2.40 1.66 3.20 61.33 96.00
2.22 4.00

0.80
0.14 2.00

2.22

2.67
32.00 0.48 6.40 8.00 4.00 2.67 4.00
36.00 10.29 180.00 73.34 40.00 12.63 7.47 0.00 0.00 0.80 0.80 1.60

1.34 2.67
8.00 1.14 1.67 13.34 4.00 1.00 2.67

0.38 1.34 1.00 8.00

5.00 4.00
0.38 4.00

40.00 5.00 8.00 12.00 24.00
0.80 4.32 1.87 1.60 6.34 3.52 7.20 0.46 0.20 0.80
0.00 0.23 4.00 0.11 0.40 0.00

4.00 3.43 4.00 10.67
13.94 20.00 26.66 32.00 0.48 3.20 1.14 19.00 32.00 24.00

1.14 4.00



Stations 7 8 9 10 11 12 13 14 15 16 17
Target depth (m) 25 30 40 30 30 30 30 30 30 20 20

Calanus spp. 52.332 9.735 19.469 42.598 28.306 8.837 28.168 4.798 5.316 11.599 1.381 Legend
Thyssanoessa inermis 8.975 1.864 1.726 3.314 5.523 2.209 4.142 1.691 1.726 4.453 2.813 Copepods
Themisto abyssorum 1.381 1.381 1.588 1.036 3.452 1.105 1.795 0.552 2.002 0.587 0.311 Euphausiids
Limacina retroversa 10.770 16.017 0.759 2.209 8.837 6.559 2.693 2.002 1.519 3.866 0.483 Amphipods
Munida rugosa 1.795 2.900 1.795 1.657 1.795 0.759 1.381 1.761 0.863 0.104 0.155 Gelatinous
Chaetognata (Eukrohnia ?) 0.138 0.069 0.242 0.173 Fish larvae
Aglantha digitale 0.138 0.242 0.173 0.035 Pteropods
Mertensia ovum 0.276 0.035 Others
Gadidae juveniles 1.933 0.069 0.207 0.000 0.138 0.138 0.138 0.069 0.104 0.173 0.069
Capelin juveniles 0.069 0.069 0.069 0.138 0.069 0.276
Thyssanoessa longicaudata 0.069
Calianassa (tyrrhena ?) 0.138 0.069 0.138 0.069
Megalopa larvae 0.069 0.138 0.017
Brachyuria larvae 0.069 0.035
Isopoda sp. 0.276
Copepod paraeuchatea sp. 2.624
Total 80.362 32.311 25.683 51.090 48.466 19.745 38.593 11.150 11.771 21.195 5.437

Table S2: Density values in individuals per m3 from Tucker Trawl tows throughout the study region. Values extrapolated from subsample counts to total sample and divided by 
opening area (1m2), tow speed (1.03 m/s) and tow time (900 s). The species are colour coded by taxonomic group (Copepods in purple; Euphausiids in red; Amphipods in 
green; Gelatinous in pink; Fish larvae in blue; Pteropods in orange and Others in white).



Taxonomic group Station 7 Station 8 Station 9 Station 10 Station 11 Station 12 Station 13 Station 14 Station 15 Station 16 Station 17
Copepods 0.97 0.99 0.96 0.99 0.95 0.92 0.89 0.97 0.90 0.98 0.94
Euphausiid larvae 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Amphipods 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gelatinous 0.01 0.00 0.01 0.01 0.03 0.04 0.01 0.01 0.03 0.01 0.04
Fish larvae 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pteropods 0.01 0.01 0.02 0.00 0.02 0.03 0.09 0.01 0.05 0.01 0.00
Other 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Taxonomic group Station 7 Station 8 Station 9 Station 10 Station 11 Station 12 Station 13 Station 14 Station 15 Station 16 Station 17
Copepods 0.65 0.30 0.76 0.83 0.58 0.45 0.73 0.43 0.45 0.55 0.25
Euphausiid larvae 0.11 0.06 0.07 0.07 0.11 0.11 0.11 0.15 0.15 0.21 0.52
Amphipods 0.02 0.04 0.06 0.02 0.07 0.06 0.05 0.05 0.17 0.03 0.06
Gelatinous 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.04
Fish larvae 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Pteropods 0.13 0.50 0.03 0.04 0.18 0.33 0.07 0.18 0.13 0.18 0.09
Other 0.06 0.10 0.07 0.04 0.04 0.04 0.04 0.18 0.07 0.00 0.03

Table S4: Relative density of each taxonomic groups at each station of Tucker Trawl samples from Table S2.

Table S3: Relative density of each taxonomic group at each station of MultiNet samples from Table S1.



 

Figure S1: Fish total length to swimbladder length for the range of total fish length measurements 
from Tromsøflaket with Tucker trawl samples. The literature values used to determine the linear 
regression are in green and the Tucker trawl measurements are in black. 

 



 

Figure S2: Theoretical cross-sectional backscatter for each taxonomic group (a-e) summarized for 
1000 model simulations. The solid line represents the median and the shaded region represents the 
5th and 95th percentiles. Note the different scales of each panel. 

 

 



 

Figure S3: Sign plots to denote the statistical significance between density estimates for each 
taxonomic group (a-e) and total density (f) of the four measurement methods. Net represents 
MultiNet estimates, and Trawl is Tucker Trawl estimates. The acoustic survey density estimates are 
Forward for the forward method and Inverse for the inverse method. 
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Figure S1. Left: Pulse compressed target strength echogram excerpt of 3.5 minutes from the total 3 
hours of data collected during the AZKABAN mesocosm experiment. The bottom of the net is at 3 m. The 
tracks were identified from single target detections and are highlighted as bright coloured tracks 
superimposed on the echogram. The analysis domain for the experiment was bounded by the green 
horizontal lines at 1 m and 2.25 m to minimize interference from near-field and net bottom. Image was 
exported directly from Echoview using the "Export to Image" option. Right: Graphed ping at the dotted 
vertical line in the left panel. The graphed ping is bounded by the analysis domain limits (1 m and 2.25 
m). Note the stronger signal at 1.9 meters shows the dark blue track that coincides with the dotted 
vertical line. 
 



 

Figure S2. Theoretical target strength spectra (solid line) and calibrated target strength spectra (dashed 
line) for the a) 38.1 mm diameter tungsten carbide (WC) sphere and b) 22 mm diameter tungsten 
carbide (WC) sphere. The inhibition bands for each sphere are indicated by the grey area and were not 
used for to calculate the final calibration parameters. 

The calibration results from the 38.1 mm sphere were preferred over the 22 mm when both spheres had 
available calibrations values because of the lower root mean square values (~0.2), a measure of error, 
and a higher signal-to-noise ratio. We observed a lateral shift in the nulls between 220 - 240 kHz and 
between 195- 205 kHz with the 22 mm sphere which had a spark-eroded suspension point 
(Supplementary Information Figure S1b). Large inhibition bands were used to reduce the effect of the 
spark-eroded suspension point (Renfree et al., 2020). 



 

Figure S3: Shape files for each species scattering model ensembles. The shapes are selected as a 
representative and the best picture of an individual from each species. 



 

Figure S4:  Nested cross-validation procedure used to estimate performance for a classifier trained on 
the entire labelled modelled dataset. The 'Model Data' block includes the target spectra results 
calculated by the scattering models for each taxonomic group, the labels are the associated taxonomic 
group parameterised for the scattering model result. F1 score is used as the evaluation metric. 

 



Table S1: Single Target Detection - wideband algorithm parameters for target analysis (target detection) 
and for target removal in noise level analysis (noise level). 

Parameter Target detection Noise level 

Compensated TS Threshold (dB re 1m2) -120.0 -120.0 

Pulse Length Determination Level (dB re 1W) 6.0 5.0 

Min. Normalised Pulse Length 0.5 0.05 

Max. Normalised Pulse Length  1.5 1.5 

Min. Target Separation (m) 0.5 0.001 

Max. Beam Compensation (dB re 1m2) 39.0 18.0 

Max SD of Minor-Axis Angle (deg) 0.6 0.5 

Max SD of Major-Axis Angle (deg) 0.6 0.5 

 
We used the pulse length determination level parameter to threshold the signal strength of the 
broadband targets relative to the background noise. The pulse length determination level is the value 
below the peak value at which pulse length is measured (Soule et al., 1996). Here, the pulse length 
determination level parameter provided some noise filtering by ensuring that accepted peaks have a 
prominence of at least 6 dB re 1W (Table 2). If the noise level were within 6 dB re 1W of the peak value, 
the normalised pulse length should exceed the thresholds typically used in single target detection, and 
the peak would be rejected. A maximum two-way beam compensation of 6 dB re 1m2 was used to 
restrict all targets to the 3 dB re 1m2 beam angle. A minimum target separation of 0.4 m was used to 
reduce the likelihood of incorporating multiple targets into each target spectra. We further filtered the 
detected targets to be within the 4 degrees off-axis angle and 6 dB re 1m2 beam compensation. 

Table S2: Target tracking algorithm parameters. 

 Major axis 
(degree) 

Minor axis 
(degree) 

Range (m) TS  
(dB re 1m2) 

Ping gap 

Track detection 

Alpha 0.7 0.7 0.5   

Beta 0.5 0.5 0.3   

Target gates 

Exclusion distance (m) 0.15 0.15 0.1   



Missed ping expansion 0 0 0   

Weights 30 30 60 60 0 

Track acceptance 

Minimum number of single targets in a track 4 

Minimum number of pings in track  4 pings 

Maximum gap between single targets  2 pings 

 

Table S3. Confusion matrix averaged over all folds in the outer stratified 10-fold cross-validation for kNN 
(mean ± standard deviation) for normalized modelled target spectra. 

 Predicted species 

Species Chaetognaths Copepods Euphausiids Hydrozoans 

Chaetognaths 56.6 ± 5.0 8.9 ± 1.4 13.1 ± 2.5 22.3 ± 2.9 

Copepods 2.7 ± 1.2 93.3 ± 3.1 3.8 ± 2.4 0.2 ± 0.4 

Euphausiids 11.8 ± 3.6 12.5 ± 3.7 69.2 ± 4.1 6.5 ± 1.7 

Hydrozoans 23.7 ± 5.2 1.7 ± 1.3 11.0 ± 3.3 63.6 ± 5.2 

 
Table S4. Confusion matrix averaged over all folds in the outer stratified 10-fold cross-validation for 
LightGBM (mean ± standard deviation) for normalized modelled target spectra. 

 Predicted species 

Species Chaetognaths Copepods Euphausiids Hydrozoans 

Chaetognaths 53.2 ± 4.9 6.8 ± 1.5 13.4 ± 3.7 26.6 ± 4.3 

Copepods 2.6 ± 1.4 90.8 ± 2.7 5.2 ± 2.0 1.4 ± 1.1 

Euphausiids 9.1 ± 2.3 8.9 ± 2.6 72.2 ± 3.8 9.8 ± 2.2 

Hydrozoans 18.9 ± 5.6 1.6 ± 1.1 10.4 ± 2.2 69.1 ± 5.3 

 
Table S5. Confusion matrix averaged over all folds in the outer stratified 10-fold cross-validation for SVM 
(mean ± standard deviation) for normalized modelled target spectra. 



 Predicted species 

Species Chaetognaths Copepods Euphausiids Hydrozoans 

Chaetognaths 36.8 ± 3.9 20.5 ± 3.1 19.0 ± 4.9 23.7 ± 2.5 

Copepods 0.9 ± 1.2 79.7 ± 3.0 16.5 ± 2.5 2.9 ± 1.4 

Euphausiids 4.0 ± 2.1 18.4 ± 4.9 70.2 ± 4.1 7.4 ± 2.6 

Hydrozoans 24.7 ± 4.7 5.8 ± 2.9 14.7 ± 2.6 54.8 ± 5.6 

 

Table S6. Classifier F1 scores estimated through nested cross-validation for kNN (mean ± standard 
deviation) for 5 different continuous frequency bandwidths. 

 70 kHz 
(45 - 90 kHz) 

120 kHz 
(90 - 170 
kHz) 

200 kHz 
(185 - 255 kHz) 

333 kHz 
(283 - 383 kHz) 

Full 
(45-383 kHz) 

Class-weighted 0.78 ± 0.02 0.86 ± 0.01 0.70 ± 0.02 0.64 ± 0.02 0.92 ± 0.02 

Chaetognaths 0.60 ± 0.03 0.76 ± 0.03 0.58 ± 0.04 0.59 ± 0.03 0.88 ± 0.02 

Copepods  0.93 ± 0.01 0.90 ± 0.02 0.87 ± 0.02 0.82 ± 0.03 0.95 ± 0.01 

Euphausiids 0.76 ± 0.03 0.85 ± 0.02 0.70 ± 0.03 0.57 ± 0.03 0.89 ± 0.03 

Hydrozoa 0.81 ± 0.01 0.92 ± 0.02 0.66 ± 0.04 0.57 ± 0.04 0.96 ± 0.01 

 

Table S7. Classifier F1 scores estimated through nested cross-validation for kNN (mean ± standard 
deviation) for normalized scattering models with copepod material properties from Antarctica. 

 Predicted species 

Species Chaetognaths Copepods Euphausiids Hydrozoans 

Chaetognaths 57.0 ± 6.7 10.0 ± 2.6 13.8 ± 4.4 19.1 ± 4.8 

Copepods 3.7 ± 2.5 91.3 ± 2.8 4.7 ± 1.7 0.3 ± 0.6 

Euphausiids 10.7 ± 3.1 13.3 ± 5.3 68.9 ± 6.2 7.1 ± 2.0 

Hydrozoans 24.5 ± 3.6 2.8 ± 1.5 11.1 ± 3.1 61.6 ± 4.2 

 



Code S1. Optimised kNN model as determined by Bayesian hyperparameter optimisation using 
HyperOpt-Sklearn 1.0.3. 
 
KNeighborsClassifier(algorithm='kd_tree', leaf_size=36, metric='l2', n_jobs=-1, 
                      n_neighbors=1, p=1.6822439326937353, weights='distance') 

Code S2. Optimised LightGBM model as determined by Bayesian hyperparameter optimisation using 
HyperOpt-Sklearn 1.0.3. 

LGBMClassifier(boosting_type='goss', colsample_bytree=0.5097647467361791, 
                learning_rate=0.012631457372918417, max_delta_step=0, 
                max_depth=7, min_child_weight=1, n_estimators=3400, 
                num_leaves=46, objective='binary', 
                reg_alpha=0.0002621872624005705, reg_lambda=1.8302350814675785, 
                scale_pos_weight=1, seed=0, subsample=0.810277827141478) 

Code S3. Optimised SVM model as determined by Bayesian hyperparameter optimisation using 
HyperOpt-Sklearn 1.0.3. 

SVC(C=3.003839970561586, coef0=0.4612291525680026, 
    decision_function_shape='ovo', degree=1, random_state=3, shrinking=False, 
    tol=5.715337840164192e-05) 

 

 
Code S4. Optimised kNN model as determined by Bayesian hyperparameter optimisation using 
HyperOpt-Sklearn 1.0.3. trained with copepod parametrised with Antarctic waters material properties 
 
KNeighborsClassifier(leaf_size=22, n_jobs=-1, n_neighbors=4, 
                      p=2.6840910661386785, weights='distance') 
 
References. 

Renfree, J.S., Andersen, L.N., Macaulay, G., Sessions, T.S., Demer, D.A. 2020. Effects of sphere suspension on 
echosounder calibrations. ICES Journal of Marine Science, 77: 2945-2953. 
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Figure S1: Theoretical target spectra for a) 38.1 mm and b) 22 mm tungsten carbide calibration spheres 

(black line) for the 185-255 kHz frequency bandwidth. Averaged measured target strength with 

calibration parameters applied for each sphere (dotted line). The calibration parameters applied to the 

measured target strength measurements were linearly interpolated over the inhibition band (shaded 

regions) because of the non-flat theoretical target spectra in these regions. 



 

Figure S2: Theoretical target spectra for a) 38.1 mm and b) 22 mm tungsten carbide calibration spheres 

(black line) for the 90-170 kHz frequency bandwidth. Averaged measured target strength with 

calibration parameters applied for each sphere (dotted line). The calibration parameters applied to the 

measured target strength measurements were linearly interpolated over the inhibition band (shaded 

regions) because of the non-flat theoretical target spectra in these regions. 

 

 

 



A) 

 

 

B) 

 
Figure S3: The resulting gain from calibrations for A) the 200 kHz transducer and B) the 120 kHz 
transducer. Both transducers were calibrated using two spheres of different diameters (38.1 mm and 22 
mm). The gain values are not available across the entire bandwidths because of the inhibition bands 
determined by the nulls in the target spectra of each sphere. Where gain values from both spheres were 
available generally the 22 mm results were used because of the better-quality measurements (except 
for <205 kHz for the 200 kHz transducer). 
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