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Abstract

Understanding the mechanisms by which bacteria cause disease, such as apopto-

sis and inflammatory signals, necessitates a comprehensive knowledge of the genes

expressed during infection by both the host and the pathogen. Dual RNA-seq tech-

nology enables simultaneous detection of transcripts of the pathogen and host during

an infection. In this study, we utilized machine learning to predict the expression

levels of genes involved in bacterial infection from their RNA sequence using dual

RNA-seq data to obtain gene expression levels. We developed two predictive models:

one specifically tailored to the host and the other to the pathogen. Results from

these models are promising in terms of macro-average F1-score and macro-average

Area Under Receiver Operating Characteristic Curve (AUROC) and demonstrate

that machine learning can be applied to dual RNA-seq data to predict gene expres-

sion levels during bacterial infection, opening new prospects for future research to

build upon these methods and insights.
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Chapter 1

Introduction

Eukaryotic cells are susceptible to various types of infections, ranging from viruses

and bacteria to eukaryotic parasites like fungi and protozoa [1]. During bacterial

infections, a complex interplay occurs between the bacteria and host eukaryotic cells

as they navigate their survival and defense strategies [2]. Understanding the interac-

tions between host cells and bacterial pathogens is crucial for advancing therapeutics,

diagnostics, and the development of new drugs. One way to unveil these interactions

is performing Differential Gene Expression (DGE) analysis to identify host and bac-

terial genes that show significant changes in expression levels between infected and

uninfected cells.

RNA-seq is a technique to get abundance of RNA molecules in a biological sample

and widely recognized as a powerful technique for analyzing DGE due to its ability to

provide quantitative, comprehensive, and unbiased measurements of gene expression,
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thereby facilitating the identification of Differentially Expressed Genes (DEG) [1,

3]. However, a limitation of traditional RNA-seq approaches is their inability to

simultaneously analyze the pathogen and host cell without physically separating them

[4]. To overcome this constraint, recent advancements known as dual RNA-seq [1]

and Path-seq [5] have emerged. These technologies enable the concurrent capture of

host and bacterial transcriptomes from infected cells, preserving the intricate host-

bacteria interactions within the sample [2]. By maintaining this complex interplay,

dual RNA-seq empowers researchers to delve into the dynamic relationship between

the host and pathogen, opening up new avenues for comprehensive analysis.

Machine learning algorithms have gained significant traction in biological research,

encompassing areas such as biological image analysis [6], cancer studies [7], and pro-

tein function prediction [8]. Several studies utilizing single-cell RNA-seq have demon-

strated the effectiveness of machine learning and deep learning approaches in iden-

tifying DEG that are often missed by traditional RNA-seq data analysis techniques

[9, 10, 11, 12]. However, current investigations of dual RNA-seq analysis primarily

rely on traditional bioinformatics approaches [13, 14, 15].

In this study, we collected and processed nine published dual RNA-seq datasets

to develop and evaluate machine learning models capable of predicting host and

bacterial DEG during an infection based on their sequence. We categorized DEG

into three classes: up-regulated, down-regulated, and not-differentially expressed.

The performance of our models was assessed using the macro-average AUROC metric,
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which is the average AUROC across all classes, treating each class equally regardless

of their distribution in the dataset. For the host RNAs, our models achieved a

mean macro-average AUROC score of 71.06%±1.82% over a 10-fold cross-validation.

Similarly, for bacterial RNAs, the models recorded a score of 66.14% ± 0.73%. While

a random classifier obtained a macro-average AUROC score of 50% for both host and

bacterial datasets.

This thesis is structured as follows: Chapter 2 provides the background relevant

to our study. Chapter 3 describes our research methods. Chapter 4 presents our find-

ings and interprets these results and discusses their implications. Lastly, Chapter 5

provides a summary of the research, its limitations, and suggestions for future work.
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Chapter 2

Background

In this chapter, we first provide a biological context before reviewing bioinformatics

dual RNA-seq pipelines used in published studies. These studies employed a range of

experimental designs and bioinformatics analysis techniques to explore the dynamic

interactions between hosts and bacterial pathogens. The last section of this chapter

describes the use of machine learning for predicting DEGs.

2.1 Biological Background

Every living organism’s blueprint is encoded within its Deoxyribonucleic Acid (DNA).

This molecule, with its iconic double helix structure, contains the genetic instructions

necessary for life’s development, functioning, and reproduction. As the first step for

the cells to use the information stored in the DNA, the information contained in the

DNA is copied through a process known as transcription into a variety of Ribonucleic
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Acid (RNA) molecules, which then perform various functions or are translated into

proteins. While structurally similar to DNA, RNA typically exists in a single-stranded

form, contains uracil instead of thymine, and plays multiple roles within the cellular

environment [16, 17].

Pathogens have the ability to interact with host cells in various ways to multiply

and spread in host cells, but these interactions between hosts and pathogens are quite

diverse. Pathogens typically start by establishing themselves within the host, either

by sticking to or penetrating the surfaces that line the lungs, gut, bladder, and other

parts of the body that are directly exposed to the outside world. Some pathogens,

such as viruses and certain bacteria, invade host cells to replicate within them using

various methods. Bacteria rely on cell adhesion and processes similar to how cells

engulf particles (phagocytic pathways). Once inside, these intracellular pathogens

look for a suitable environment where they can multiply. They often manipulate

the host cell’s traffic and utilize the cell’s cytoskeleton for moving around within it.

Besides affecting individual host cells, pathogens can also change the behavior of the

entire host organism in ways that help them spread to new hosts [17].

The dynamic relationship between host and pathogen leads to changes in gene

expression patterns in both the host and the microbe [18]. These interactions demon-

strate their strategies for surviving and spreading. As the host tries to eliminate the

invading microbe, the microbe employs its own tactics to live on and propagate inside

the host. This tug-of-war is central to the evolving relationship between pathogens
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and their hosts [17].

2.2 Bioinformatics analysis of dual RNA-seq data

Dual RNA-seq analysis has emerged as a tool to study interactions between host

and pathogen during an infection [1]. This technique simultaneously captures the

genes activated as a response to the infection in both host and pathogen, providing

a comprehensive view of the molecular interaction during infection.

Figure 2.1 shows the workflow of a dual RNA-seq analysis pipeline. The sequenc-

ing machine will generate reads given as FASTQ files. A read refer to a short sequence

of nucleotides obtained from the sequencing machine. The first step in a dual RNA-

seq analysis pipeline is often trimming. Since RNA sequencing can produce reads

with artifacts or low-quality bases, especially at their ends, trimming ensures that

only high-quality, relevant sequences are retained for further analysis.

Following trimming, the next phase is alignment. The cleaned RNA sequences,

or reads, are mapped to a reference genome. This process is for determining the

origin of each read, be it from the host or the pathogen. By aligning reads to their

respective locations on the reference genome, researchers can discern which genes are

being expressed and at what levels.

The final step in this pipeline is read counting. Once the reads are aligned to

their respective genes, the number of reads mapped to each gene is counted. This

quantification provides a measure of gene expression levels. By comparing read counts
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Figure 2.1: Workflow for dual RNA-seq datasets. Figure taken from [14] under CC-

BY 4.0.

between different conditions or time points, researchers can identify up-regulated or

down-regulated genes, offering insights into the dynamic interplay between host and

pathogen during infection.

In several recent studies, various bioinformatics tools and techniques have been

utilized. In the initial stage of sequence quality control and trimming, tools such as

Trimmomatic [19], FastQC [20], Trim Galore (https://github.com/FelixKrueger/

TrimGalore), and cutadapt [21] have been widely used. For instance, the studies by

Wu et al. [22], Yang et al. [23], Kachroo et al. [24], Farman et al. [25], and Goldmann

et al. [26] employed aforementioned tools to ensure the quality of data for further
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analysis.

Moving to sequence alignment, tools like STAR [27], TopHat [28], EDGE-Pro [29],

Bowtie2 [30], and segemehl [31] are often selected. Specifically, Wu et al. [22] and

Kachroo et al. [24] utilized STAR for mapping reads to the human genome, while Yang

et al. [23] used TopHat for aligning reads to the channel catfish (Ictalurus punctatus)

and Yersinia ruckeri (Y. ruckeri) genomes. Peterson et al. [5] chose Bowtie2, and

Damron et al. [32] used CLC Genomics Workbench (digitalinsights.qiagen.com)

which is not commonly done by other studies.

In the gene expression quantification step, various methods are employed across

studies. Wu et al. [22] used featureCounts [33], Yang et al. [23] used RSEM [34], and

Baddal et al. [35] used HTSeq [36]. A distinct approach was seen in Farman et al.

[25] where Salmon [37] was used for quantification.

For DGE analysis, DESeq [38], DESeq2 [39], and edgeR [40] are commonly used

across different studies. However, Baddal et al. [35] employed limma [41], showcasing

a unique choice among these studies.

The criteria for identifying DEG also varied among different studies. For instance,

Wu et al. [22] identified DEG using a False Discovery Rate (FDR) p − value < 0.05

and the absolute of the logarithm base 2 of the fold change (∣log2FC ∣ ≥ 1) as criteria,

while Yang et al. [23] set a two-fold change and a p−value < 0.05 as the threshold for

DEG identification. On the other hand, Peterson et al. [5] applied a more stringent

cutoff with ∣log2FC ∣ > 1 and multiple hypothesis-adjusted p − value < 0.01.
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In other miscellaneous steps and tools, Peterson et al. [5] employed a three-

stage alignment pipeline using the R package DuffyNGS (https://github.com/

robertdouglasmorrison/DuffyNGS), a unique approach in this context. Farman

et al. [25] used RUVseq [42] in R for removing unwanted variations, which was not

observed in other studies.

Comparative assessments, such as those by K.S.Mehta et al. [43], Li et al. [44] and

Schaarschmidt et al. [45], provide critical insights into the performance and suitability

of various RNA-seq analysis tools. K.S.Mehta et al. [43] underscores the importance of

quality control in Next-Generation Sequencing (NGS) data for accurate disease diag-

nosis, focusing on the cleaning phase to remove unwanted sequences. Among the tools

discussed, FastQC provides a comprehensive quality profile of reads, Trimmomatic

excels in trimming and cropping Illumina data, Trim Galore uses the functionality of

Cutadapt and FastQC to address specific sequencing datasets, and Cutadapt removes

adapters and primers in an error-tolerant manner.

The choice of DESeq, DESeq2, and edgeR for RNA-seq differential analysis can

be justified based on their performance in different distribution scenarios according to

Li et al. [44]. For RNA-seq count data with a negative binomial distribution, DESeq2

demonstrated slightly better performance than other methods. In the scenario where

RNA-seq count data followed a log-normal distribution, both DESeq and DESeq2

were recommended due to better control of the FDR, power, and stability across

different conditions. edgeR, on the other hand, did not exhibit strong performance
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compared to DESeq2 and DESeq under the same conditions but is still among the

commonly utilized methods for differential expression analysis.

Schaarschmidt et al. [45] evaluates seven RNA-Seq alignment tools, revealing that

each tool has distinct strengths. STAR and HISAT2, being splice-aware aligners,

exhibited high accuracy in mapping reads against a reference genome, with STAR

achieving the highest fraction of mapped reads among all tools. On the other hand,

Salmon showed a high level of consistency in identifying differentially expressed genes,

suggesting its reliability for differential gene expression analysis. The commercial

software CLC provided divergent results in DGE analysis, indicating a difference in

normalization and statistical tests used [45].

2.3 Machine Learning for Gene Expression Pre-

diction

By now, we have reviewed bioinformatics tools to analyze dual RNA-seq data to

identify host and pathogen DEG during infection. Here, we review three studies that

used machine learning and deep learning techniques for gene expression prediction.

To identify DEG from RNA-seq data using machine learning, Kakati et al. [46]

proposed DEGnext, a Convolutional Neural Network (CNN) based model to predict

up-regulated and down-regulated genes using gene expression data sourced from The

Cancer Genome Atlas (TCGA) database [47]. Moreover, to overcome the challenge
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of small sample sizes and the absence of appropriate labels inherent to RNA-seq data,

the authors incorporated transfer learning. This technique leverages patterns learned

from related data, making DEGnext adaptable to new datasets without the need

for retraining from scratch. When evaluated, DEGnext showcased reliable results,

achieving AUROC scores between 88% and 99%, outperforming or matching tradi-

tional machine learning methods such as Decision Tree, K-Nearest Neighbors, Ran-

dom Forest, Support Vector Machine, and eXtreme Gradient Boosting (XGBoost).

Li et al. [48] introduces an algorithm based on XGBoost [49] to predict gene ex-

pression values. The dataset used in this paper is a Gene Expression Omnibus (GEO)

[50] dataset and a RNA-Seq expression data, which was from the Genotype-Tissue

Expression (GTEx) project [51]. When evaluated on the GEO data, the XGBoost

algorithm showcasing superior performance, achieving a lower Mean Absolute Er-

ror (MAE) than Linear Regression and K-Nearest Neighbors (KNN), on 91.5% of the

target genes. Furthermore, regarding overall error on the validation and test sets,

XGBoost obtains an error of 0.280 and 0.282, respectively, which was lower than the

other models. For instance, KNN obtains errors of 0.586 on the validation set and

0.587 on the test set. In additional testing on RNA-Seq expression data, XGBoost

again outperforms the other methods. XGBoost achieves 0.439, while KNN achieves

0.652 in terms of overall error.

Avsec et al. [52] addresses the challenge of predicting gene expression from non-

coding DNA sequences using a deep learning architecture named Enformer. This
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architecture, inspired by transformers used in natural language processing, can inte-

grate information from long-range interactions in the genome, up to 100kb away. The

Enformer model achieved an increase in gene expression prediction accuracy, moving

from a correlation of 0.81 to 0.85, edging closer to the experimental-level accuracy of

0.94.

Although these studies successfully utilized machine learning for gene expression

prediction, there is a gap in examining gene behavior during infections. Our research

fills this gap by examining how host and pathogen genes behave during infections,

categorizing them as either up-regulated, down-regulated, or not differentially ex-

pressed.

2.4 Summary

In this chapter, we first reviewed the relevant biological background on bacterial

infections. We then delved into current practices used to analyze dual RNA-seq data.

Lastly, we reviewed how machine learning is used for predicting gene expression levels.

To the best of our current knowledge, the prediction of gene expression levels in the

course of an infection utilizing RNA sequences annotated according to RNA-seq data

remains unexplored. Therefore, the goal of this research is to develop a species-

agnostic system that can predict gene expression levels in both the host and bacteria

during infection.
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Chapter 3

Methods

The primary objective of this study was to predict host and bacterial gene expression

levels during a bacterial infection from their RNA sequence. To do that, we labeled

the expression level of each host and pathogen gene using dual RNA-seq data and

generated a separate model for host and pathogen. The main steps taken are described

below:

1. Data Collection: We collected ten dual RNA-seq gene expression datasets

from a variety of host cells infected by different bacterial species. Data collection

is described in Section 3.1.

2. Data Preprocessing: The raw RNA-seq data was preprocessed using a custom

bioinformatics pipeline. This pipeline involved read quality control and trim-

ming, genome alignment, and read counting. Following this, we performed DGE

analysis to identify genes with statistically significant changes in expression be-
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Figure 3.1: Workflow of our dual RNA-seq analysis pipeline.

tween infected and uninfected conditions. Data preprocessing is described in

Section 3.2. The visualization of this pipeline is provided in Figure 3.1. Upon

finishing the DGE analysis, we performed data labeling and encoded the se-

quences into numerical features.

3. Machine Learning Model Training and Selection: The preprocessed data

was used to train several machine learning models for host and bacteria samples
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separately. These models were trained using features obtained from numerical

encodings of the RNA expression reads. We performed hyper-parameter tun-

ing to determine the optimal settings for each model. The models were then

ranked based on their performance, in terms of macro-average AUROC and

macro-average F1-score, and the top-performing models were selected for fur-

ther analysis. Machine Learning model training and selection are described in

Section 3.3.

3.1 Data Collection

The data used in this study was collected through a literature search of published

dual RNA-seq datasets. Our search strategy involved two main approaches:

1. Keyword Search: We conducted a search in PubMed [53] using the following

keywords: dual RNA-seq, host-pathogen interaction, and bacterial infection.

This search was aimed at identifying studies that performed dual RNA-seq on

host cells infected with a bacterial species.

2. Citation Review: We also reviewed all papers that cited the work by West-

ermann et al. [1], which first introduced dual RNA-seq. This allowed us to

identify additional studies that may have used dual RNA-seq but did not nec-

essarily include our specific keywords in their title or abstract.

Through these combined search strategies, we identified nine datasets that met the
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following criteria:

1. The dataset must include dual RNA-seq data from infected host cells and control

samples for host and bacteria.

2. The dataset’s metadata must provide sufficient information about the experi-

mental conditions, including the host species, bacterial species, and their genome

accessions.

3. The genome file and its corresponding genome annotation for the studied or-

ganisms (both host and bacteria) must be available in the NCBI Reference

Sequence Database (RefSeq) database [54].

4. The dataset must meet certain quality standards. Specifically, the host mapping

rate must be above 50%, indicating a sufficient level of host gene expression data.

Additionally, the pathogen mapping rate must not be zero, ensuring that there

is detectable bacterial gene expression.

These datasets represented a variety of host cells, bacterial species, culture con-

ditions, and Multiplicity of Infection (MOI). MOI refers to the ratio of infectious

agents (here bacteria) to infection targets (here host cells). The specific details

of each dataset, including the host species, bacterial species, MOI, Hours Post-

Infection (HPI), and other relevant information are provided in Table 3.1.

16



Table 3.1: Collected dual RNA-seq datasets for our study. Datasets 1, 4, 5, 6, 8 and 9 were selected for training and

2,3 and 7 for validating. HUVECs: Human Umbilical Vein Endothelial, BMDM: Bone-Marrow-Derived Macrophage,

NHBE: Normal Human Bronchial Epithelial, HMC-1: Human Mast Cell line 1, THP-1: Tohoku Hospital Pediatrics-1.

Pathogen Host SRA/ENA Run ID
No. Study

Dataset

Accession Number Name RefSeq Assembly ID Name RefSeq Assembly ID Tissue/Cell type Pathogen Host Infected
HPI MOI

1 Wu et al. [22] GSE184085
Porphyromonas

gingivalis

GCF 000010505.1 Homo sapiens GCF 000001405.40 HUVECs

SRR15886831

SRR15886832

SRR15886833

SRR15886837

SRR15886838

SRR15886839

Host only:

SRR15886840

SRR15886841

SRR15886842

Pathogen Only:

SRR15886834

SRR15886835

SRR15886836

24 100

2 Yang et al. [23] PRJNA760961
Yersinia ruckeri

strain YZ

GCF 017498685.1 Ictalurus punctatus GCF 001660625.2 Trunk Kidney

SRR15827093

SRR15827092

SRR15827086

SRR15827085

SRR15827084

SRR15827083

SRR15827089

SRR15827088

SRR15827087

24 -

3 Kachroo et al. [24] GSE144100
Streptococcus pyogenes

strain MGAS2221

GCF 012572265.1 Macaca fascicularis GCF 012559485.2
Quadriceps

Skeletal Muscle

SRR10954321

SRR10954322

SRR10954323

SRR10954345

SRR10954350

SRR10954355

SRR10954327

SRR10954332

SRR10954337

24 -

4 Peterson et al. [5] GSE116357
Mycobacterium

tuberculosis H37Rv

GCF 000195955.2 Mus musculus GCF 000001635.27 BMDM

SRR7444071

SRR7444072

SRR7444073

SRR7444077

SRR7444078

SRR7444079

SRR7444104

SRR7444105

SRR7444106

24 10

5 Baddal et al. [35] GSE63900
Haemophilus influenzae

Fi176, Hi176

GCF 004327565.1 Homo sapiens GCF 000001405.40 NHBE

SRR1714478

SRR1714479

SRR1714480

SRR1714496

SRR1714497

SRR1714498

SRR1714499

SRR1714500

SRR1714501

72 100
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Pathogen Host Sequencing Run ID
No. Study

Dataset

Accession Number Name RefSeq Assembly ID Name RefSeq Assembly ID Tissue/Cell type Pathogen Host Infected
HPI MOI

6 Farman et al. [25] PRJEB33395
Bordetella pertussis

Tohama I

GCF 000195715.1 Homo sapiens GCF 000001405.40 THP-1 Cells

ERR3419003

ERR3419004

ERR3419005

ERR3419018

ERR3419019

ERR3419020

ERR3419042

ERR3419043

ERR3419044

12 50

7 Rienksma et al. [55] PRJEB6552

Mycobacterium

tuberculosis variant

bovis BCG

str. ATCC 35733

GCF 000194035.1 Homo sapiens GCF 000001405.40 THP-1 Cells ERR560450 ERR560452
ERR560444

ERR560446

24 10

8 Damron et al. [32] PRJNA343201
Pseudomonas

aeruginosa PAO1

GCF 000006765.1 Mus musculus GCF 000001635.27 Lung Tissue

SRR4279868

SRR4279869

SRR4279872

SRR4279876

SRR4279877

SRR4279878

Host only:

SRR4279870

SRR4279871

SRR4279879

Pathogen only:

SRR4279873

SRR4279874

SRR4279875

16 -

9 Goldmann et al. [26] PRJEB43874

Staphylococcus aureus

subsp. aureus

NCTC 8325

GCF 000013425.1 Homo sapiens GCF 000001405.40 HMC-1 Cells

ERR5530739

ERR5530740

ERR5531330

ERR5530731

ERR5530732

ERR5530733

ERR5530707

ERR5530723

ERR5530726

24 5
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3.1.1 Downloading Genomes and Annotations

For our dual RNA-seq data analysis, we required complete genome sequences and

annotations for both the host and the pathogen. To acquire these resources, we used

the datasets command from NCBI Datasets’ command line tools (version 1.0) [56].

The command we used to download the genome sequence and annotation for each

species was as follows:

1 datasets download genome accession <accession...> \

2 --include seq,rna,gtf \

3 --filename file_name.zip

In this command:

• accession specifies Assembly or BioProject accession number.

• --include specifies the data files to include are genomic sequence, transcript

and annotation in GTF format.

• --filename specifies a custom file name for the downloaded data package.
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3.1.2 Downloading FASTQ Files

The raw sequencing data for each dataset was downloaded from the Sequence Read

Archive (SRA) [57] and European Nucleotide Archive (ENA) [58] using the fasterq-

dump tool which is part of SRA-Toolkit (version 2.9.6) [59].

3.2 Data Preprocessing

The raw RNA-seq data from each study was preprocessed using a custom bioinfor-

matics pipeline. In the development of our bioinformatics pipeline, we adapted the

approach outlined by Marsh et al. [2]. While we used their pipeline as a foundation,

we opted to utilize alternative software tools in read trimming, genome alignment,

read counting and DGE analysis to increase the accuracy of read mapping and speed.

Each step in our pipeline is described in the following sections:

3.2.1 Quality Control

Prior to any preprocessing steps, we performed an initial quality control check on the

raw reads using FastQC (version 2) [20].

3.2.2 Read Trimming

Read trimming is a crucial preprocessing step in the analysis of NGS data, including

dual RNA-seq data. During the sequencing process, it is common for the quality of the
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sequencing reads to drop off towards the end [43]. This is due to technical limitations

of the sequencing technology, and it can result in the inclusion of incorrect bases

(nucleotides) in the sequencing reads. Additionally, the sequencing process often

involves the use of adapter sequences, which are small pieces of DNA that are added

to the ends of the sequencing reads to facilitate the sequencing process. However,

these adapter sequences are not part of the original biological sample and need to be

removed before the data can be analyzed. Read trimming involves removing these

low-quality bases and adapter sequences from the sequencing reads.

We chose to use fastp (version 0.23.1) [60] for read trimming over other tools

such as Trimmomatic [19] due to its speed, which was found to be approximately

9 times faster than Trimmomatic [61], and active development, ensuring efficient

preprocessing and compatibility with the latest sequencing technologies. We used the

default parameters of fastp for read trimming.

3.2.3 Genome Alignment

This step is necessary to determine the genomic origin of the sequencing reads. It

involves aligning the sequenced reads to a reference genome.

For the host reads, we used STAR (version 2.7.9a) [27] with default parameters. In

a comparative assessment study conducted by Yao et al. [62], RNA-Seq data derived

from the Arabidopsis thaliana accessions Col-0 and N14 were mapped using seven

tools: BWA, CLC, HISAT2, kallisto, RSEM, Salmon, and STAR. As illustrated in
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Table 3.2: Percentage of mapped reads for each mapper and sample. Results taken

from Yao et al. [62].

Sample BWA CLC HISAT2 kallisto RSEM Salmon STAR

Col-0 % 95.9 96.2 98.9 97.2 96.4 97.9 99.5

N14 % 92.4 95.2 94.9 94.2 93.6 94.6 98.1

Total % 94.1 95.7 96.9 95.7 95.0 96.3 98.8

Table 3.2, STAR excelled in read alignment compared to the other tools, by mapping

98.8% reads.

Following the mapping of reads to the host genome, the unaligned reads were

then mapped to the bacterial genome. For this, we used segemehl (version 0.3.4)

[31]. Segemehl is known for accurately aligning short-reads and showed four times

better performance in aligning more reads compared to Bowtie2 in the Saccharomyces

cerevisiae yeast genome [63]. We used segemehl’s default parameters for this step.

This two-step alignment process maximized the use of our sequencing data, capturing

both host and bacterial gene expression.

3.2.3.1 Building Genome Index

Before the alignment of reads can occur, an index of the reference genome must

be built. The genome index is essentially a data structure that allows the alignment

software to quickly and efficiently find the positions where the sequencing reads match

the reference genome.

We utilized STAR and segemehl to generate genome indices for the host and
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bacterial reference genomes, respectively. Specifically, in STAR, we employed the

--runMode genomeGenerate option to direct the software towards the genome indices

generation task. For segemehl, the genome indexing was achieved using the -x option.

3.2.4 Read Counting

Following the alignment of reads to the reference genomes, the next step in the RNA-

seq analysis pipeline is read counting. This process quantifies the number of reads

aligned to each gene in the genome, providing a measure of gene expression levels in

the sample.

For this task, we utilized featureCounts (version 2.0.3) [33]. featureCounts assigns

each read to a genomic feature (in our case, a gene) based on the read’s alignment to

the reference genome. While featureCounts demonstrates a level of accuracy in quan-

tification of gene expression comparable to HTSeq [64], it significantly outperforms

in speed, being 30 times faster in counting reads [65]. In our analysis, we specifically

used the -t gene option to ensure that reads were assigned to genes, allowing for a

precise quantification of gene expression.

Since segemehl outputs a SAM file, we first needed to convert this to a BAM file,

a binary version of the SAM file that is more space-efficient and faster to process. We

used the sambamba-view tool from sambamba (version 0.8.0) [66] for this conversion.

To adhere to the requirements of featureCounts, the generated host and pathogen

BAM files needed to be sorted by name. We utilized sambamba-sort tool from
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sambamba for this purpose.

Additionally, the strandness of the reads, which is necessary for accurate read

counting in featureCounts, was inferred using the infer experiment.py script from

RSeQC (version 5.0.1) [67].

3.2.5 DGE Analysis

After read counting, the next step in our dual RNA-seq analysis pipeline is DGE

analysis. This process involves comparing the gene expression levels between different

conditions or groups to identify genes that are differentially expressed. In the context

of our study, we are interested in identifying genes whose expression levels change

significantly during a bacterial infection compared to a non-infected condition.

In our study, we performed DGE analysis using DESeq2 (version 1.40.1) [39]. DE-

Seq2 is a tool for analyzing count data from high-throughput sequencing assays such

as RNA-seq. It uses a model based on the negative binomial distribution to estimate

variance and test for differential expression, which allows it to account for both bi-

ological and technical variability in the data. In a comparative study conducted by

Li et al. [68], DESeq2 exhibited better results in negative binomial and log-normal

distributed data in terms of FDR control, power, and stability across all sample sizes,

outperforming other methods, including EdgeR and limma.

Two statistics provided by DESeq2 are the Log2 Fold Change (log2FC) and the

adjusted p-value (p-adj).
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• log2FC: This is a measure of the magnitude of change in gene expression be-

tween two conditions. It is calculated as the logarithm to the base 2 of the fold

change, which is the ratio of the average expression levels between two condi-

tions. Specifically, the log2FC is determined as log2(A/B), where A and B are

the expression levels of a given gene in conditions A and B, respectively. A pos-

itive log2FC indicates that a gene is up-regulated (i.e., more highly expressed)

in condition A compared to condition B, while a negative log2FC indicates that

a gene is down-regulated (i.e., less highly expressed) in condition B compared

to condition A.

• Adjusted P-value (p-adj): This is a measure of the statistical significance

of the observed change in gene expression. It is calculated from the p-value,

which is the probability of observing a change in expression at least as extreme

as the one measured if there were no real difference in expression between the

conditions. The p-value is adjusted for multiple testing to control the false

discovery rate, which is the expected proportion of false positives among all

genes declared differentially expressed. A lower p-adj indicates a higher level of

statistical significance.

3.2.6 Data Labeling

For the machine learning part of our study, we labeled our data based on the DGE

results. We used less strict thresholds for labeling genes than those usually used in
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transcriptional profiling studies to increase the number of labeled genes for training.

Furthermore, we later filtered those genes for consistency, so we needed a larger pool

of genes to have enough data to train our machine learning classifier. We classified

genes as Up-regulated (UP) if they had a p-adj less than 0.1 and a log2FC greater

than or equal to 1. Genes with a p-adj less than 0.1 and a log2FC less than or equal to

-1 were classified as Down-regulated (DOWN). All other genes, which did not meet

these criteria for significant differential expression, were classified as Not differentially

expressed (ND). Figure 3.2 shows the labeling’s criteria.

The chosen thresholds of p−adj < 0.1 and ∣log2FC ∣ ≥ 1 for classifying genes as UP

or DOWN regulated are relatively common in differential expression analysis [69, 70].

A log2FC threshold of 1 or -1 represents a two-fold change in expression, often deemed

biologically significant, while a p-adj threshold of 0.1 helps control false discovery rate

in large-scale comparisons.

Gene label ≙

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UP if (log2FC ≥ 1) and (padj < 0.1),

DOWN if (log2FC ≤ −1) and (padj < 0.1),

ND if (−1 < log2FC < 1) and (padj > 0.1).

Figure 3.2: Criteria for labeling genes based on their differential expression.

In our study, we selected datasets 1, 4, 5, 6, 8 and 9 in Table 3.1 for training and

2, 3, 7 for validating. This means we have four studies with humans and two studies
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with mice in host train set. Given the inherent biological variability and potential

differences in experimental conditions, it is plausible that the same gene might exhibit

different expression levels across these studies. To only label as UP or DOWN genes

with a consistent pattern across different bacterial infection, we further established

the following criteria:

For the human host studies:

1. If a gene obtained either UP or DOWN labels in two experiments and ND in

the other one experiment, we assigned it the UP or DOWN label, respectively.

This was based on the assumption that a consistent change in expression in two

out of three experiments likely indicates a genuine biological effect.

2. If a gene maintained the same expression level (UP, DOWN, or ND) across all

three experiments, we retained that expression level as the label for the gene.

This consistency across experiments suggests a robust response.

3. Genes that did not conform to either of the above criteria were excluded from

our analysis.

For the mice host experiments:

1. If a gene displayed the same expression level (UP, DOWN, or ND) in both

experiments, we preserved that expression level as the label for the gene. This

consistency across both experiments indicates a stable response.

2. Genes that did not meet the above criterion were discarded from our analysis.

27



This was implemented to ensure our analysis focused on genes with consistent

expression patterns during a bacterial infection, thereby reducing potential noise and

enhancing the reliability of our results.

3.2.7 Sequence Encoding

Sequence encoding is the process of transforming sequences into a format that can be

used as input for machine learning models. While the RNA sequences contain rich

information about the genes, they are not in a format that can be directly used by

most machine learning models, which require numerical input. Therefore, we need

the sequence of each gene from the genome file (for bacteria) and RNA transcripts

(for hosts), and then transform these sequences into numerical features that capture

the important characteristics of the sequences.

The reason we use the raw sequence from the genome file for bacteria is that

bacteria do not undergo splicing, a process in which non-coding regions (introns) are

removed from the pre-mRNA transcript and the remaining coding regions (exons) are

joined together. Therefore, the sequence of a bacterial gene in the genome file is the

same as the sequence of the corresponding RNA transcript.

On the other hand, for hosts, we use the sequence of the RNA transcripts rather

than the raw sequence from the genome file. This is because hosts, being eukaryotes,

do undergo splicing. The sequence of a gene in the genome file includes both exons

and introns, but only the exons are included in the RNA transcript. Therefore, the
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sequence of the RNA transcript provides a more accurate representation of the gene

as it is expressed in the cell.

Since eukaryotic genes can have multiple transcripts, we selected the longest tran-

script for our analysis. This decision was based on the rationale that the longest

transcript would likely contain the most comprehensive representation of the gene’s

potential information.

In this study, we employed MathFeature (version 1.0) [71], a software tool specif-

ically designed for feature extraction from biological sequences. MathFeature was

successfully employed in previous studies [72, 73], thereby demonstrating its effec-

tiveness for this type of analysis.

A key consideration in our choice of sequence encoding methods was the ability

to generate feature vectors of consistent length for all sequences, irrespective of the

input sequence length. This ensures that the resulting feature vectors are compatible

with the requirements of our machine learning models. The methods utilized in our

study for feature extraction are detailed in Table 3.3. For k-mer and RC k-mer

methods, we used N ≙ 4. In the case of kGap, three distinct settings were tested:

(k ≙ 2, x ≙ 1, y ≙ 2), (k ≙ 3, x ≙ 1, y ≙ 3), and (k ≙ 3, x ≙ 2, y ≙ 2).

After this step in the pipeline, each sequence is encoded into 1513 numerical

features, and associated with a label as described in Section 3.2.6.
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Table 3.3: Mathematical descriptors in our study. Explanations derived from [71, 74].

Descriptor Explanation

Binary + Fourier Represents nucleotides in binary, then applies Fourier transform for frequency analysis.

Z-curve + Fourier Uses Z-curve representation of DNA sequences followed by Fourier transform.

Real + Fourier
Represents sequences in real numbers, then applies Fourier transform.

G, A, C, and T are -0.5, -1.5, 0.5, and 1.5, respectively.

Integer + Fourier
Uses integer values for nucleotides, then applies Fourier transform.

G, A, C, and T are 3, 2, 1, and 0, respectively.

EIIP + Fourier
Uses Electron-Ion Interaction Pseudopotential values for nucleotides, then applies Fourier transform.

G, A, C, and T are 0.0806, 0.1260, 0.1340, and 0.1335, respectively.

Complex Number + Fourier
Represents sequences as complex numbers, then applies Fourier transform.

G, A, C, and T are -1-j, 1+j, -1+j, and 1-j, respectively.

Atomic Number + Fourier
Uses atomic numbers, the total number of protons in each nucleotide then applies Fourier transform.

G, A, C, and T are 78, 70, 58, and 66, respectively.

Shanon Measures uncertainty or information content in DNA sequences.

Tsallis A generalization of Shannon entropy, measures degree of disorder in sequences.

ORF Features or Coding Features Features derived from Open Reading Frames or coding regions of sequences.

Fickett score A measure used for prediction of protein-coding regions in DNA sequences.

k-mer Represents sequences as overlapping substrings of length k.

Reverse Complement k-mer (RC k-mer) Represents sequences and their reverse complements as overlapping substrings.

Xmer k-Spaced Ymer Composition Frequency (kGap) Represents sequences based on the frequency of the pattern with X-mer follows k-gaps follows Y-mer.

3.3 Machine Learning Model Training

Upon preparing our dataset, the subsequent step in our analysis pipeline is to train

machine learning models. Given the high dimensionality of our dataset, with each

gene represented by 1513 features, we also incorporated dimensionality reduction

methods into our pipeline.

In our study, we explored three dimensionality reduction methods: Principal Com-

ponent Analysis (PCA) [75], Variational Autoencoders (VAE) [76], and Minimum Re-

dundancy Maximum Relevance (mRMR) [77]. These methods were examined under

30



different conditions. Specifically, for PCA, we varied the number of components; for

VAE, we changed the dimension of the latent space; and for mRMR, we adjusted

the number of features selected. For each of these aspects across the three methods,

we conducted tests at five different settings. This testing allowed us to explore the

impact of these parameters on our models’ performance.

PCA is a dimensionality reduction technique that transforms the original features

into a new set of features, called principal components, which are linear combinations

of the original features. VAE is a type of autoencoder, a neural network that is trained

to reconstruct its input data, and it learns a lower-dimensional representation of the

data in the process. mRMR is a dimensionality reduction method that aims to select

features that are highly correlated with the target variable (maximum relevance) but

have low correlation with each other (minimum redundancy).

Following the dimensionality reduction, we then chose three machine learning

methods to determine the pairing of dimensionality reduction and machine learning

model that generate the best performing model in terms of macro-average F1-score

and macro-average AUROC. We evaluated Random Forests [78], XGBoost [49], and

Light Gradient Boosted Machine (LightGBM) [79].

Our choice of models was influenced by the findings of Grinsztajn et al. [80], who

demonstrated tree-based models such as Random Forests and XGBoost often outper-

form deep learning models on tabular data. This is due to their ability to effectively

handle tabular data without relying on the invariances and spatial dependencies that
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deep learning architectures are designed to capture. Additionally, tree-based models

are more resistant to overfitting, especially when the data dimension is large relative

to the number of examples—a common scenario in real-world tabular datasets.

3.4 Model hyper-parameters and implementation

3.4.1 Dimensionality Reduction

PCA

We implemented PCA using the PCA function in scikit-learn [81] (version 1.2.1),

with the number of components (n components) varying across five settings: 10, 20,

30, 40, and 50.

VAE

We implemented VAE using PyTorch [82] (version 2.0.1), spanning across 100 epochs

with a learning rate of 0.002 using the Adam optimizer [83]. During the dimensionality

reduction phase, the VAE’s encoder transformed the original data into a latent space

representation, which then served as input to our models. The VAE architecture,

as shown in Figure 3.3 follows the design proposed by Wei and Ramsey [84]. It

comprises an encoder with six hidden layers of sizes 1024, 512, 256, 128, 64, all using

ReLU activation functions and Batch Normalization. Correspondingly, the decoder

consists of six hidden layers of sizes 64, 128, 256, 512 and 1024 also employing ReLU

32



ReLUBatch NormDense Layer Sampling Sigmoid

In
p

u
t 

(1
5

1
3

)

µ
 

!

S
am

p
li

n
g

Decoder

R
eL

U

B
at

ch
 N

o
rm

1
0

2
4

R
eL

U

B
at

ch
 N

o
rm

5
1

2

R
eL

U

B
at

ch
 N

o
rm

2
5

6

R
eL

U

B
at

ch
 N

o
rm

1
2

8

R
eL

U

B
at

ch
 N

o
rm

6
4

D
e
fi

n
e
d

 V
e
c
to

r 
S

iz
e

O
u

tp
u

t 
(1

5
1

3
)

D
e
fi

n
e
d

 V
e
c
to

r 
S

iz
e

R
eL

U

6
4

R
eL

U

1
2

8

R
eL

U

2
5

6

R
eL

U

5
1

2

R
eL

U

1
0

2
4

Encoder

Figure 3.3: VAE architecture diagram. The vector sizes tested were 16, 32, 64, 128,

and 256.

activation functions. The VAE was tested across five levels of features: 16, 32, 64,

128, and 256.

mRMR

We implemented mRMR feature selection method using the algorithm from a GitHub

repository (https://github.com/smazzanti/mrmr). The mRMR was tested across

five number of features: 300, 400, 500, 600, and 700.
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3.4.2 Machine learning methods

Random Forest

The Random Forest model was generated using the scikit-learn Python package (ver-

sion 1.2.1) [81]. This model was obtained with default parameters as per the package’s

settings.

XGBoost

The XGBoost model was generated via the XGBoost Python package (version 1.7.6)

[49]. This model, too, was obtained with the package’s preset default parameters.

LightGBM

The LightGBM model was generated using the LightGBM Python package (version

4.0.0) [79]. As with the other models, we used the default parameters provided by

the package.

By keeping the parameters at their default settings across all three models, we

maintained consistency during evaluation. The performance of each model was then

assessed using the transformed datasets obtained from the PCA, VAE, and mRMR

dimensionality reduction methods.
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3.4.3 Performance Comparison

We integrated each machine learning method into our pipeline for the evaluation of

all dimensionality reduction and machine learning method pairs. This allowed us to

streamline the process from dimensionality reduction to model fitting and evaluation.

To assess model performance, we employed a stratified 10-fold cross-validation

technique. This method ensured that each fold maintained the same proportions of

sample labels as the complete set, thus providing a robust estimate of model perfor-

mance.

Our evaluation metrics were macro-average F1-score and macro-average AUROC.

The macro-average F1-score is a metric that conveys the balance between precision

and recall, averaged across all classes in a multi-class classification setting. Precision

is defined as the ratio of true positive predictions to the sum of true positive and false

positive predictions, as given by the formula:

Precision ≙
True Positives

True Positives +False Positives

Recall, also referred to as sensitivity, is the ratio of true positive predictions to the

sum of true positive and false negative predictions, as given by the formula:

Recall ≙
True Positives

True Positives +False Negatives

The F1-score is the harmonic mean of precision and recall, given by the formula:

F1 − score ≙
2 ×Precision ×Recall

Precision +Recall
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F1-score tries to find balance between precision and recall. The macro-average F1-

score computes the F1-score for each class independently and then takes the average,

which gives equal weight to all classes regardless of their size.

AUROC is a measure that evaluates the model’s capability to distinguish be-

tween classes across various threshold settings. The Receiver Operating Charac-

teristic (ROC) curve is a graphical plot that illustrates the true positive rate (re-

call) against the false positive rate (1-specificity) for different threshold values. The

AUROC quantifies the overall ability of the model to discriminate between positive

and negative instances across all threshold values, providing an overview of model

performance that is independent of the decision threshold. The false positive rate is

given by the formula:

False Positive Rate ≙
False Positives

False Positives +True Negatives

Macro-average AUROC is employed in multi-class classification settings to average

the AUROC values obtained for each class against all others. In a multi-class clas-

sification, each class is considered as the positive class, and the rest are grouped as

the negative class, and an AUROC is computed for each class in this manner. The

macro-average AUROC is then the average of these AUROC values, calculated as:

macro-average AUROC ≙
1

N

N

∑
i=1

AUROCi

where N is the number of classes, and AUROCi is the AUROC for class i.

This approach gives equal weight to each class, irrespective of its size, which can

be especially useful for our data since there are imbalances in class distribution. It
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provides an equalized measure of the model’s discriminative ability across all classes

[85].

3.4.4 Hyper-Parameter Tuning

Upon comparing all combinations of dimensionality reduction and machine learning

methods, we identified the most promising pair (dimensionality reduction and ma-

chine learning method combination) with the highest macro-average F1-score and

macro-average AUROC. For these selected pairs, we proceeded to fine-tune their

hyper-parameters to optimize their performance. We carried out this optimization

using a Bayesian optimization approach via HyperOpt (version 0.2.7) [86]. This

method of optimization allows for a more efficient search over the hyper-parameter

space.

3.4.5 Model Training

Following the hyper-parameter tuning, we utilized the best parameters identified in

that process to train the models on the complete training datasets. With these

optimally-tuned models in hand, we then proceeded to evaluate their performance on

the validation datasets.
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3.5 Summary

We started our study by systematically collecting dual RNA-seq datasets from a

variety of scientific literature sources. Our initial steps involved setting up a robust

bioinformatics pipeline to process these raw data. This pipeline streamlined the

transformation of raw sequencing reads into count tables. It included stages like

quality control, facilitated by the fastp tool, followed by genome alignment, where we

employed the STAR tool for host genomes and segemehl for pathogen genomes. The

read counting was done by using the featureCounts tool.

Subsequently, we carried out a DGE analysis. This step was crucial for labeling

the genes, using a predetermined set of criteria to ensure accuracy and consistency.

As we transitioned to the machine learning phase, we have to convert the sequences

into a format amenable for machine learning methods. This conversion was achieved

using MathFeature, which transformed these sequences into numerical features.

For the dimensionality reduction phase, we tested three methods: PCA, VAE,

and mRMR. Each method underwent evaluation under varied conditions to ascertain

its efficacy. We selected Random Forests, XGBoost, and LightGBM as the machine

learning methods to use, primarily because of their proven track record with tabular

data and their resistance to overfitting.

To accurately assess model performance, we implemented a stratified 10-fold cross-

validation technique using macro-average F1-score and macro-average AUROC. Ad-

ditionally, we undertook a hyper-parameter tuning process to optimize the perfor-

38



mance of our models using a Bayesian optimization approach.
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Chapter 4

Results and Discussion

In this chapter, we first present and discuss the outcomes derived from our bioin-

formatics pipeline. Subsequently, we provide the results of machine learning model

selection and performed feature analysis to identify the variance captured by each

principal component in PCA and the most important features in mRMR. Then,

we assessed the performance of trained models on validation data. Finally, we per-

form Gene Ontology (GO) enrichment analysis to delve deeper into the biological

significance of the predicted DEG.

4.1 Data

We used our bioinformatics pipeline to process the collected dual RNA-seq data to

obtain log2 ratios and p-values per gene, and then used the criteria described in Sec-

tion 3.2.6 to label each gene. The percentage of reads aligned, and the number of
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Table 4.1: Percentage of reads aligned to host and pathogen genome for control (unin-

fected) samples and infected samples (genome alignment is described in Section 3.2.3)

and number of genes assigned to each label per study (labeling is described in Sec-

tion 3.2.6). Study No. corresponds to study numbers in Table 3.1. Studies 1, 4,

5, 6, 8, and 9 are selected for training and 2, 3, and 7 for validating. ND = not

differentially expressed.

Uniquely Mapped Reads (%) Number of genes per label

Uninfected Samples Infected Samples Pathogen HostStudy No.

Pathogen Host Host Pathogen DOWN ND UP DOWN ND UP

1 81.88% 84.35% 80.86% 0.02% 446 553 711 426 13541 818

2 92.72% 92.56% 63.65% 0.01% 743 500 168 4379 8328 4162

3 99.50% 91.14% 89.67% 0.64% 303 522 429 2683 10732 3193

4 92.23% 82.61% 82.13% 2.94% 416 1534 660 1937 8034 3249

5 68.11% 79.89% 66.12% 1.32% 221 617 240 811 14721 538

6 90.23% 73.62% 60.51% 0.09% 756 1483 738 2271 1347 2229

7 90.88% 72.49% 86.30% 2.92% 73 3430 193 1841 11380 989

8 98.58% 88.17% 88.98% 94.43% 1464 1347 1087 3577 6525 3716

9 57.71% 52.85% 51.26% 0.17% 194 631 103 1005 12522 1301

genes assigned to each of the three labels per study are shown in Table 4.1. Once in-

dividual study labels were obtained, we merged the study labels of the same organism

as described in Section 3.2.6. Noteworthy, in study 8, reads for host and pathogen in

infected samples were separated. Consequently, the percentages of uniquely mapped

reads for each are independently determined.

The number of genes per each class for each organism in the final host and
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Table 4.2: Number of genes per label in each host organism. ND = not differentially

expressed.

Dataset Name DOWN ND UP

Homo sapiens 86 2140 99

Mus musculus 471 1359 921Train

Total 557 3499 1020

Ictalurus punctatus 4379 8328 4162

Macaca fascicularis 2683 10732 3193

Homo sapiens 1841 11380 989
Test

Total 8903 30440 8344

pathogen datasets is shown in Tables 4.2 and 4.3, respectively. In the training set

in Table 4.2, the Homo sapiens and Mus musculus consists of three and two studies,

respectively, and after applying the filtering criteria (labeling is described in Sec-

tion 3.2.6), the number of genes per label got reduced.

4.2 Model Assessment

In our study, we assessed the performance of 45 models in total generated by com-

bining dimensionality reduction algorithms and machine learning methods. To gen-

erate the classifiers, we used three dimensionality reduction algorithms, three ma-

chine learning methods, and we assessed the models performance using 10-fold cross-

validation. A detailed breakdown of these comparisons can be found in Table 4.4 and
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Table 4.3: Number of genes per label in each pathogen organism. ND = not differ-

entially expressed.

Dataset Name DOWN ND UP

Porphyromonas gingivalis 446 553 711

Mycobacterium tuberculosis H37Rv 416 1534 660

Haemophilus influenzae Fi176, Hi176 221 617 240

Bordetella pertussis Tohama I 756 1483 738

Pseudomonas aeruginosa PAO1 1464 1347 1087

Staphylococcus aureus subsp. aureus NCTC 8325 194 631 103

Train

Total 3497 6165 3539

Yersinia ruckeri strain YZ 743 500 168

Streptococcus pyogenes strain MGAS2221 303 522 429

Mycobacterium tuberculosis variant bovis BCG str. ATCC 35733 73 3430 193
Test

Total 1119 4452 790

Table 4.5 for host and pathogen, respectively.

In the evaluation of our classifiers, models were primarily assessed based on their

accuracy, macro-average F1-score and macro-average AUROC. For the host dataset,

the leading configurations were XGBoost combined with mRMR (500 features), Ran-

dom Forest coupled with mRMR (400 features), and LightGBM with mRMR (600

features). In the context of the pathogen dataset, the standout configurations were

XGBoost paired with PCA (with the first 30 components), Random Forest with PCA

(with the first 20 components), and LightGBM combined with mRMR (400 features).

Subsequently, a hyper-parameter optimization was conducted on these configurations
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Table 4.4: Cross-validation results of different classifiers for host gene expression

prediction. Best performing model for each classifier is highlighted.

Classifier Dimensionality 
Reduction Algorithm

Feature Vector 
Size Accuracy Macro-Average

F1-Score
Macro-Average 

AUROC

XGBoost

VAE

16 0.6753 ± 0.0083 0.3813 ± 0.0138 0.6145 ± 0.0167
32 0.6684 ± 0.0161 0.3614 ± 0.0253 0.6109 ± 0.0156
64 0.6682 ± 0.0141 0.3716 ± 0.0165 0.6077 ± 0.0261

128 0.6740 ± 0.0128 0.3811 ± 0.0198 0.6172 ± 0.0229
256 0.6698 ± 0.0146 0.3801 ± 0.0164 0.6127 ± 0.0254

PCA

10 0.6895 ± 0.0177 0.4075 ± 0.0269 0.6483 ± 0.0264
20 0.6992 ± 0.0138 0.4236 ± 0.0203 0.6891 ± 0.0105
30 0.7053 ± 0.0146 0.4268 ± 0.0171 0.6966 ± 0.0186
40 0.7094 ± 0.0122 0.4304 ± 0.0134 0.7005 ± 0.0115
50 0.7055 ± 0.0110 0.4180 ± 0.0144 0.6978 ± 0.0193

MRMR

300 0.7126 ± 0.0088 0.4334 ± 0.0127 0.7078 ± 0.0221
400 0.7159 ± 0.0109 0.4337 ± 0.0151 0.7144 ± 0.0225
500 0.7177 ± 0.0114 0.4361 ± 0.0181 0.7202 ± 0.0171
600 0.7155 ± 0.0121 0.4306 ± 0.0194 0.7133 ± 0.0262
700 0.7161 ± 0.0141 0.4352 ± 0.0218 0.7118 ± 0.0190

Random Forest

VAE

16 0.6783 ± 0.0117 0.3653 ± 0.0152 0.6113 ± 0.0173
32 0.6795 ± 0.0127 0.3663 ± 0.0196 0.6126 ± 0.0234
64 0.6757 ± 0.0125 0.3584 ± 0.0171 0.6127 ± 0.0267

128 0.6742 ± 0.0168 0.3681 ± 0.0209 0.6180 ± 0.0236
256 0.6797 ± 0.0107 0.3698 ± 0.0183 0.6173 ± 0.0224

PCA

10 0.7047 ± 0.0120 0.3904 ± 0.0136 0.6592 ± 0.0208
20 0.7096 ± 0.0077 0.3853 ± 0.0134 0.6886 ± 0.0264
30 0.7090 ± 0.0055 0.3732 ± 0.0114 0.6895 ± 0.0245
40 0.7055 ± 0.0050 0.3586 ± 0.0155 0.6908 ± 0.0243
50 0.7029 ± 0.0030 0.3464 ± 0.0085 0.6917 ± 0.0267

MRMR

300 0.7136 ± 0.0082 0.3928 ± 0.0154 0.6905 ± 0.0222
400 0.7143 ± 0.0099 0.3943 ± 0.0164 0.6946 ± 0.0262
500 0.7114 ± 0.0080 0.3891 ± 0.0158 0.6936 ± 0.0224
600 0.7118 ± 0.0066 0.3839 ± 0.0157 0.6940 ± 0.0231
700 0.7122 ± 0.0077 0.3874 ± 0.0107 0.6919 ± 0.0202

LightGBM

VAE

16 0.6726 ± 0.0123 0.3660 ± 0.0181 0.6215 ± 0.0183
32 0.6734 ± 0.0111 0.3600 ± 0.0161 0.6100 ± 0.0142
64 0.6730 ± 0.0133 0.3629 ± 0.0230 0.6167 ± 0.0225

128 0.6726 ± 0.0092 0.3617 ± 0.0160 0.6214 ± 0.0229
256 0.6751 ± 0.0148 0.3750 ± 0.0193 0.6206 ± 0.0179

PCA

10 0.6962 ± 0.0185 0.4043 ± 0.0238 0.6685 ± 0.0236
20 0.7078 ± 0.0148 0.4332 ± 0.0207 0.6962 ± 0.0136
30 0.7108 ± 0.0102 0.4289 ± 0.0112 0.7027 ± 0.0160
40 0.7090 ± 0.0136 0.4215 ± 0.0164 0.7106 ± 0.0170
50 0.7122 ± 0.0100 0.4234 ± 0.0150 0.7060 ± 0.0123

MRMR

300 0.7139 ± 0.0092 0.4298 ± 0.0141 0.7171 ± 0.0282
400 0.7157 ± 0.0110 0.4318 ± 0.0191 0.7223 ± 0.0253
500 0.7177 ± 0.0075 0.4309 ± 0.0165 0.7191 ± 0.0246
600 0.7205 ± 0.0107 0.4382 ± 0.0126 0.7244 ± 0.0222
700 0.7169 ± 0.0106 0.4310 ± 0.0167 0.7243 ± 0.0256

44



Table 4.5: Cross-validation results of different classifiers for pathogen gene expression

prediction. Best performing model for each classifier is highlighted.

Classifier Dimensionality 
Reduction Algorithm

Feature Vector 
Size Accuracy Macro-Average

F1-Score
Macro-Average 

AUROC

XGBoost

VAE

16 0.4765 ± 0.0137 0.3919 ± 0.0249 0.5976 ± 0.0235
32 0.4718 ± 0.0108 0.3999 ± 0.0166 0.6048 ± 0.0125
64 0.4629 ± 0.0172 0.3896 ± 0.0281 0.5881 ± 0.0299

128 0.4735 ± 0.0166 0.4045 ± 0.0260 0.6101 ± 0.0241
256 0.4734 ± 0.0178 0.4104 ± 0.0276 0.6092 ± 0.0223

PCA

10 0.4767 ± 0.0124 0.4039 ± 0.0142 0.6199 ± 0.0084
20 0.4897 ± 0.0083 0.4208 ± 0.0087 0.6344 ± 0.0069
30 0.4938 ± 0.0103 0.4282 ± 0.0129 0.6360 ± 0.0097
40 0.4887 ± 0.0116 0.4247 ± 0.0142 0.6292 ± 0.0085
50 0.4907 ± 0.0087 0.4247 ± 0.0110 0.6301 ± 0.0068

MRMR

300 0.4910 ± 0.0055 0.4232 ± 0.0084 0.6275 ± 0.0065
400 0.4908 ± 0.0102 0.4212 ± 0.0127 0.6288 ± 0.0112
500 0.4909 ± 0.0058 0.4226 ± 0.0078 0.6323 ± 0.0071
600 0.4938 ± 0.0113 0.4268 ± 0.0121 0.6309 ± 0.0063
700 0.4926 ± 0.0129 0.4250 ± 0.0150 0.6322 ± 0.0070

Random Forest

VAE

16 0.4719 ± 0.0314 0.4060 ± 0.0335 0.6080 ± 0.0356
32 0.4705 ± 0.0245 0.3944 ± 0.0367 0.6023 ± 0.0281
64 0.4705 ± 0.0180 0.3961 ± 0.0337 0.6061 ± 0.0291

128 0.4617 ± 0.0284 0.4015 ± 0.0254 0.6023 ± 0.0272
256 0.4790 ± 0.0199 0.4160 ± 0.0188 0.6174 ± 0.0194

PCA

10 0.4863 ± 0.0105 0.4143 ± 0.0128 0.6314 ± 0.0083
20 0.5122 ± 0.0078 0.4312 ± 0.0118 0.6543 ± 0.0108
30 0.5104 ± 0.0089 0.4228 ± 0.0118 0.6498 ± 0.0098
40 0.5100 ± 0.0109 0.4158 ± 0.0155 0.6513 ± 0.0082
50 0.5029 ± 0.0075 0.4051 ± 0.0087 0.6486 ± 0.0078

MRMR

300 0.5062 ± 0.0075 0.4081 ± 0.0112 0.6411 ± 0.0089
400 0.5073 ± 0.0082 0.4069 ± 0.0123 0.6416 ± 0.0090
500 0.5037 ± 0.0102 0.4022 ± 0.0132 0.6434 ± 0.0088
600 0.5018 ± 0.0079 0.4006 ± 0.0122 0.6433 ± 0.0073
700 0.5025 ± 0.0080 0.3978 ± 0.0117 0.6389 ± 0.0097

LightGBM

VAE

16 0.4899 ± 0.0071 0.4040 ± 0.0133 0.6271 ± 0.0109
32 0.4887 ± 0.0258 0.3941 ± 0.0478 0.6123 ± 0.0402
64 0.4742 ± 0.0215 0.3741 ± 0.0430 0.5947 ± 0.0314

128 0.4847 ± 0.0167 0.4042 ± 0.0247 0.6194 ± 0.0214
256 0.4763 ± 0.0182 0.3870 ± 0.0286 0.6071 ± 0.0249

PCA

10 0.4942 ± 0.0097 0.4103 ± 0.0134 0.6330 ± 0.0074
20 0.4995 ± 0.0070 0.4181 ± 0.0078 0.6461 ± 0.0058
30 0.5032 ± 0.0080 0.4213 ± 0.0093 0.6460 ± 0.0102
40 0.5016 ± 0.0108 0.4193 ± 0.0145 0.6443 ± 0.0091
50 0.5042 ± 0.0112 0.4227 ± 0.0139 0.6438 ± 0.0086

MRMR

300 0.5044 ± 0.0119 0.4215 ± 0.0162 0.6439 ± 0.0088
400 0.5038 ± 0.0094 0.4200 ± 0.0092 0.6406 ± 0.0083
500 0.5045 ± 0.0092 0.4226 ± 0.0124 0.6446 ± 0.0065
600 0.5061 ± 0.0122 0.4234 ± 0.0154 0.6461 ± 0.0097
700 0.5050 ± 0.0090 0.4219 ± 0.0113 0.6432 ± 0.0043
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Table 4.6: Cross-validation results of candidate classifiers (highlighted on Table 4.4)

with optimal hyper-parameters on host dataset.

Classifier Accuracy
Macro-Average

F1-Score

Macro-Average

AUROC

XGBoost with mRMR (500 features) 0.7021 ± 0.0164 0.4462 ± 0.0228 0.6916 ± 0.0206

Random Forest with mRMR (400 features) 0.6322 ± 0.0238 0.4985 ± 0.0215 0.7106 ± 0.0182

LightGBM with mRMR (600 features) 0.6976 ± 0.0126 0.4537 ± 0.0244 0.6899 ± 0.0220

Table 4.7: Cross-validation results of candidate classifiers (highlighted on Table 4.5)

with optimal hyper-parameters on pathogen dataset.

Classifier Accuracy
Macro-Average

F1-Score

Macro-Average

AUROC

XGBoost with PCA (30 components) 0.5086 ± 0.0088 0.4501 ± 0.0107 0.6516 ± 0.0104

Random Forest with PCA (20 components) 0.4939 ± 0.0097 0.4680 ± 0.0108 0.6614 ± 0.0073

LightGBM with mRMR (600 features) 0.5066 ± 0.0101 0.4446 ± 0.0125 0.6447 ± 0.0062

using HyperOpt. Tables 4.6 and 4.7 present the results of hyper-parameter optimiza-

tion on classifiers on host and pathogen datasets, respectively. Our final selections

were Random Forest with mRMR (600 features) for the host and Random Forest

with PCA (with the first 20 components) for the pathogen. The optimal parameter’s

spaces for host and pathogen classifiers are provided in Table 4.8.
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Table 4.8: Optimal hyper-parameters for Random Forest classifiers on host and

pathogen datasets.

Values
Parameter

Host Classifier Pathogen Classifier

bootstrap FALSE TRUE

class weight balanced balanced

max depth 11 14

max features sqrt sqrt

min samples leaf 13 3

min samples split 2 17

n estimators 100 400

4.3 Feature Analysis

Before proceeding with the validation tests, we performed the feature analysis for

both dimensionality reduction algorithms to identify the variance captured by each

principal component in PCA and the most important features in mRMR.

4.3.1 Feature Importance Analysis

Pathogen model - Random Forest and PCA

To effectively illustrate how the variance in the pathogen data is distributed among

the different principal components, we utilize a scree plot as shown in Figure 4.1.

The scree plot graphically displays the fraction of total variance explained by each
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Figure 4.1: Scree plot for the first 30 principal components from the pathogen dataset

using PCA.

principal component. It aids in determining the optimal number of components to

retain for further analysis.

Figure 4.1 illustrates that the first two principal components collectively account

for approximately 35% of the total variance in the pathogen data, suggesting sub-

stantial redundancy or correlation among the original features. Beyond the second

component, there is a noticeable diminishing return in variance explained. Specifi-

cally, from the fifth to the thirtieth component, only an additional 20% of the variance

is captured.

Upon training our model using the parameters identified during hyper-parameter

tuning (detailed in Section 3.3), we evaluated the importance of the chosen 20 compo-
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nents. We used the feature importances attribute of the Random Forest Classifier

for this purpose. The components exhibited an average importance score of 0.05, with

a standard deviation of 0.01063. This narrow spread in importance scores indicates a

consistent value being assigned to each component, implying that they all play nearly

equivalent roles in determining the model’s predictions. This observation further sup-

ports the idea that our selected components effectively capture a comprehensive range

of relevant information from the dataset.

Following the feature importance analysis, we further investigated the relevance

of each of the 20 selected components through permutation importance analysis

through applying the permutation importance function from scikit-learn, utilizing

the macro-average F1-score for scoring.

Figure 4.2 reveals the importances scores, with 10 components exhibiting posi-

tive scores and the remaining 10 showcasing negative scores. Positive scores in this

context imply that the corresponding components possess a substantial influence on

the predictive accuracy of the model; a permutation in the values of these compo-

nents leads to a noticeable decrease in the macro-average F1-score, underlining their

importance in the model. The components with positive importance scores can be

viewed as integral factors underpinning the predictive capacity of the model. Their

values hold meaningful information that allows the model to steer towards accurate

predictions.

Conversely, the components that received negative scores in the permutation im-
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Figure 4.2: Permutation importance scores of the first 20 principal components in

pathogen dataset. Each bar represents a component’s influence on the model’s macro-

average F1-score.

portance analysis signal a contrary phenomenon. A permutation in the values of these

components tends to increase the macro-average F1-score, suggesting that these com-

ponents, in their original state, might have been introducing noise to the model,

potentially misguiding the predictions. These components appear to have a counter-

productive effect on the model’s predictive accuracy, necessitating a critical exami-

nation to discover whether keeping them in the model is beneficial.
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Figure 4.3: Distribution of feature importance scores of 400 features obtained from

mRMR in host dataset.

Host model - Random Forest and mRMR

To delve deeper into the impact of the 400 features curated through the mRMR

dimensionality reduction process, we applied the permutation importance function

from scikit-learn, utilizing the macro-average F1-score for scoring.

The distribution of the permutation importance scores for all the features is de-

picted in Figure 4.3. The analysis returned both positive and negative scores, with

138 features having a positive score and 262 yielding a negative score.
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Table 4.9: Top 20 mRMR features with the highest importance scores for the host

classifier.

Feature Importance Score Descriptor
ACGT 0.002201 k-mer

AG---CG 0.001648 kGap
A---CTC 0.001502 kGap
AG---AA 0.001433 kGap

A--AT 0.001364 kGap
CA---CT 0.000975 kGap
A---AAT 0.000933 kGap
CA---CG 0.000861 kGap
A---CAG 0.000793 kGap
CA---TG 0.000788 kGap

ATGC 0.000756 RC k-mer
A---CCT 0.000746 kGap

ATAA 0.000704 RC k-mer
ACT 0.000698 k-mer

AGAG 0.000696 k-mer
A---CGG 0.000681 kGap
AC---CT 0.000676 kGap
ACAC 0.000667 k-mer
A--GG 0.000647 kGap
ATGT 0.000592 k-mer

Positive scores in this context suggest features that actively enhance the model’s

performance, while the negative scores tend to indicate features that could potentially

be impairing the predictive power.

Table 4.9 shows the top 20 mRMR features, ranked by their importance scores.

The table also lists the descriptor groups to which each feature belongs.
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Table 4.10: Cross-validation results for the host classifier, using features with positive

importance scores (138 features) and those in the original set of 400 features.

Classifier Accuracy Macro-Average
F1-Score

Macro-Average
AUROC

Random Forest with mRMR (138 features) 0.6146 ± 0.0195 0.4624 ± 0.0230 0.6908 ± 0.0203

Random Forest with mRMR (400 features) 0.6322 ± 0.0238 0.4985 ± 0.0215 0.7106 ± 0.0182

Addressing Negative Permutation Importance Scores

In response to the results derived from the permutation importance analysis, an

explorative step was undertaken to understand the implications of the negatively

scored components on the predictive models. This involved removing the compo-

nents and features with negative scores in PCA and mRMR to observe any poten-

tial enhancements in the model’s performance. Contrary to expectations, removing

these components did not improve performance, as shown in Table 4.10 and 4.11.

This incident emphasizes the intricate and potentially non-linear relationships these

features/components may share with others in influencing the predictive outcomes,

where information that seems to have a negative influence in isolation can play a

supportive role in the context of other features/components.

4.4 Model Assessment

In each ROC plot in Figures 4.4 and 4.5, a shaded area depicts the range of ROC

curves observed across different folds, showcasing the area between the maximum and
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Table 4.11: Cross-validation results for the pathogen classifier, using components

with positive importance scores (10 components) and those in the original set of 20

components.

Classifier Accuracy Macro-Average
F1-Score

Macro-Average
AUROC

Random Forest with PCA (10 components) 0.4634 ± 0.0076 0.4372 ± 0.0089 0.6297 ± 0.0080

Random Forest with PCA (20 components) 0.4939 ± 0.0097 0.4680 ± 0.0108 0.6614 ± 0.0073

minimum ROC curves for each class. This visual depiction helps in understanding the

extent of performance variance across different data subsets and provides a measure

of the classifier’s stability.

4.4.1 Training Performance Analysis for Host

Figure 4.4 illustrates the ROC curves during cross-validation for all three classes along

with the macro-average, with a relatively narrow shaded area, indicating a consistent

performance across different folds.

• The macro-average ROC curve shows an Area Under Curve (AUC) of 0.71,

reflecting a good general performance of the classifier.

• Classification of ND genes achieved an AUC of 0.71, mirroring the macro-

average, and denoting competent classifier performance in this class.

• Classification of UP genes achieved an AUC of 0.74, indicating the classifier can

distinguish genes in this class.
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ROC curve from cross-validation of the Host classifier.
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Figure 4.4: ROC curve from cross-validation results of the Host classifier.

• Classification of DOWN genes achieved an AUC of 0.68, which, although slightly

lower than the AUC obtained for the other two classes, still denotes a reasonable

classifier performance.

The closeness of the ROC curves and the narrow shaded area signify a stable

performance of the host classifier across the three gene expression classes.

4.4.2 Training Performance Analysis for Pathogen

Figure 4.5 depicts the ROC curves during cross-validation for all three classes and the

macro-average exhibit close proximity to each other, with a relatively narrow shaded

area indicating a consistent performance across different folds.
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ROC curve from cross-validation of the Pathogen classifier.
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Figure 4.5: ROC curve from cross-validation results of the Pathogen classifier.

• The macro-average ROC curve presents an AUC of 0.66, reflecting a fair general

performance of the classifier.

• Classification of ND genes achieved an AUC of 0.66, mirroring the macro-

average, and signifying a decent classifier performance in this class.

• Classification of ND genes achieved an AUC of 0.67, indicating an enhanced

ability of the classifier to distinguish genes in this class.

• Classification of ND genes achieved an AUC of 0.66, consistent with the macro-

average and ND class, demonstrating a reasonable classifier performance.

The closeness of the ROC curves and the narrow shaded area signify a stable
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performance of the pathogen classifier across the three gene expression classes, albeit

at a modest level.

The performance of the classifier on the host data is better compared to the

performance on the pathogen data. There potential reason for this observation is

that we used data from four human (Homo sapiens) and two mouse (Mus musculus)

studies and chose genes that showed clear patterns across these studies (as discussed

in Section 3.2.6). This means the host classifier had clear and consistent information

to learn from. On the other hand, the pathogen classifier used mixed data from six

different bacteria. Mixing all this data might have made it harder for the pathogen

classifier to find clear patterns, which could explain why it did not do as well as the

host classifier.

4.4.3 Test Performance Analysis for Host

For the independent test data, genes were labeled based on a single study, and thus,

there are more genes per each label for the hosts in the test data (as shown in Ta-

ble 4.2). As the host genes were not filtered for consistency across studies, it is likely

that the host gene labels in the test data are noisier than those in the training data.

Homo sapiens

Figure 4.6 shows that the classifier performs better than random guessing, as the curve

lies above the diagonal line representing random classification. The macro-average
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Figure 4.6: ROC Curve of Homo sapiens.

ROC curve, which provides an average performance measure across all classes, has

an AUC of 0.60. This suggests that the classifier’s overall performance for predicting

gene expression levels during a bacterial infection in Homo sapiens is better than

random guessing. When considering the individual classes:

• Classification of ND genes achieved an AUC of 0.54, indicating a performance

slightly better than random.

• Classification of UP genes achieved an AUC of 0.62, aligning closely with the

macro-average.

• Classification of DOWN genes achieved an AUC of 0.63, which is the highest

among the three classes.
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In summary, the Host classifier is able to classify genes according to their ex-

pression level during infection substantially better than a random classifier. As the

classifier was trained with human data from other studies, this result suggests that

the model is able to generalize to an organism seen during training responding to a

different bacterial infection.

Macaca fascicularis

Figure 4.7 depicts the ROC curve for Macaca fascicularis (crab-eating macaque) and

suggests a performance closer to the diagonal line representing random classification

than the model performance for the other two hosts (human and channel catfish)

used for validation. This visual observation aligns with the provided AUC values,

indicating that the classifier’s performance for this species is slightly better than

random guessing.

The macro-average ROC curve, representing an average performance across all

classes, has an AUC of 0.51. This demonstrates that the classifier’s overall ability

to predict gene expression levels in Macaca fascicularis is slightly above random

classification. When examining the individual classes:

• Classification of ND genes achieved an AUC of 0.52, reflecting a performance

just a notch above random.

• Classification of UP genes achieved an AUC of 0.54. This suggests a slight

edge in the classifier’s capability to distinguish up-regulated genes relative to
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Figure 4.7: ROC Curve of Macaca fascicularis.

the other categories.

• Classification of DOWN genes achieved an AUC of 0.48, which is worse than

random guessing. This indicates that the classifier struggles to differentiate

down-regulated genes effectively.

The lower macro-average AUC achieved by the host classifier for Macaca fascicu-

laris is surprising as we have hypothesized that prediction of expression levels in the

Macaca fascicularis would be similar to that in human.
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Figure 4.8: ROC Curve of Ictalurus punctatus.

Ictalurus punctatus

Figure 4.8 suggests that the classifier’s performance is above the diagonal line indica-

tive of random classification for Ictalurus punctatus (channel catfish). The macro-

average ROC curve, reflecting an average performance metric across all classes, yields

an AUC of 0.57. This suggests that the classifier’s overall proficiency in predicting

gene expression levels in Ictalurus punctatus is above random guessing. Delving into

the performance for individual classes:

• Classification of ND genes achieved an AUC of 0.51, which is narrowly above

the threshold for random classification. This indicates modest performance in

this category.
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• Classification of UP genes achieved an AUC of 0.62, suggesting the classifier

has an enhanced ability to discern up-regulated genes compared to the other

classes.

• Classification of DOWN genes achieved an AUC of 0.59, situating it between

the ND and UP classes in terms of performance.

To summarize, the ROC curve for Ictalurus punctatus implies a performance that

is superior to random guessing. Among the gene expression categories, the clas-

sifier exhibits its best performance for the up-regulated and down-regulated genes.

This achieved classification performance is quite remarkable if one considers that the

training data only contained mammalian hosts. This result suggests that responses

to some bacterial infections are similar among diverse hosts.

4.4.4 Test Performance Analysis for Pathogen

Mycobacterium tuberculosis (M. tuberculosis)

Figure 4.9 visualizes the ROC curve for M. tuberculosis and suggests a performance

better than random classification. This visual observation is further nuanced by the

AUC values. The macro-average ROC curve reveals an AUC of 0.55, suggesting a

performance above random classification. Among the individual classes:

• Classification of ND genes achieved an AUC of 0.63, indicating a relatively good

ability to predict this category.
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Figure 4.9: ROC Curve of M. tuberculosis.

• Classification of UP genes achieved an AUC of 0.68, suggesting a decent profi-

ciency in distinguishing up-regulated genes.

• Classification of DOWN genes achieved an AUC of 0.34, implying significant

challenges in effectively classifying these genes.

To summarize, the ROC curve for M. tuberculosis implies a performance that is supe-

rior to random guessing. Among the gene expression categories, the classifier exhibits

its best performance for the up-regulated genes.

63



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

macro-average (AUC = 0.53)
ND (AUC = 0.55)
UP (AUC = 0.46)
DOWN (AUC = 0.57)
Random Classifier
Perfect Classifier

Figure 4.10: ROC Curve of S. pyogenes.

Streptococcus pyogenes (S. pyogenes)

Figure 4.11 displays a performance above random guessing for S. pyogenes , albeit

not significantly. The macro-average AUC stands at 0.53, further confirming this

observation. Delving into individual classes:

• Classification of ND genes achieved an AUC of 0.55, slightly better than the

macro-average.

• Classification of UP genes achieved an AUC of 0.46, underperform, indicating

difficulties in differentiating up-regulated genes for this bacterium.

• Classification of DOWN genes achieved an AUC of 0.57, positioning it as the
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Figure 4.11: ROC Curve of Y. ruckeri.

best-performing class for this bacterium, albeit only marginally.

To summarize, the ROC curve for S. pyogenes suggests a performance that is slightly

better than random guessing. Among the gene expression categories, the classifier

exhibits its best performance for the down-regulated genes, with challenges evident

in identifying up-regulated genes.

Y. ruckeri

Figure 4.11 suggests a performance close to random classification for Y. ruckeri . Ex-

amining the individual classes:

• Classification of ND genes achieved an AUC of 0.48, slightly below random
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guessing.

• Classification of UP genes achieved an AUC of 0.56, suggesting a modest ability

to identify up-regulated genes.

• Classification of DOWN genes achieved an AUC of 0.45, hint at challenges in

distinguishing down-regulated genes.

To summarize, the ROC curve for Y. ruckeri essentially aligns with random guessing

in terms of performance. Among the gene expression categories, the classifier ex-

hibits its best performance for the up-regulated genes, but overall, the differentiation

between classes remains minimal.

Our results suggest that our models perform better predicting the host gene ex-

pression level during a bacterial infection than the pathogen gene expression level.

4.5 Phylum Assessment

Following model assessment, we investigated to discern whether there are patterns

in gene expression prediction that might be tied to broader bacterial evolutionary

lineages, by categorizing bacteria at the Phylum level, one of the broader taxonomic

classifications, as shown in Table 4.12. The hypothesis is that bacteria within the

same Phylum might share certain genomic or regulatory similarities that affect their

gene expression profiles. Notably, Y. ruckeri underperformed in comparison to other

bacteria, despite belonging to the phylum with the highest bacterial count, which
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Table 4.12: Bacteria used in our study grouped by Phylum.

Phylum Bacteria

Bacteroidetes Porphyromonas gingivalis

Yersinia ruckeri strain YZ

Haemophilus influenzae Fi176, Hi176

Bordetella pertussis Tohama I
Proteobacteria

Pseudomonas aeruginosa PAO1

Streptococcus pyogenes strain MGAS2221
Firmicutes

Staphylococcus aureus subsp. aureus NCTC 8325

Mycobacterium tuberculosis H37Rv
Actinobacteria

Mycobacterium tuberculosis variant bovis BCG str. ATCC 35733

indicates that the number of species within a given phylum does not necessarily

correlate with predictive accuracy for gene expression.

4.6 GO Enrichment Analysis

In our study, we performed GO enrichment analysis on the predicted UP and DOWN

genes to investigate whether certain functions were over-represented among the genes

predicted by our model.

After classifying the DEGs into ND, UP, and DOWN genes using our models, we

assessed the GO enrichment analysis of the predicted UP and DOWN genes using

STRING (version 12.0) [87]. STRING has a comprehensive database, encompassing

numerous organisms. STRING integrates experimental data, computational predic-
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Table 4.13: Analysis of GO enrichment of predicted ND, UP and DOWN genes for

host validation datasets

Organism Term ID Term Description Observed Gene count Background Gene Count Strength FDR

GO:0006807 Nitrogen compound metabolic process 344 6643 0.1 0.0035

GO:0044237 Cellular metabolic process 343 6568 0.1 0.0035

GO:0044238 Primary metabolic process 370 7156 0.09 0.0035

GO:0071704 Organic substance metabolic process 384 7522 0.09 0.0035

GO:0008152 Metabolic process 399 7988 0.08 0.0063

GO:0034641 Cellular nitrogen compound metabolic process 198 3463 0.14 0.0063

GO:0043170 Macromolecule metabolic process 302 5781 0.1 0.0077

GO:0006139 Nucleobase-containing compound metabolic process 158 2722 0.14 0.0271

Homo sapiens

GO:0046483 Heterocycle metabolic process 165 2891 0.14 0.0361

GO:0046777 Protein autophosphorylation 29 183 0.51 0.0033

GO:0001819 Positive regulation of cytokine production 49 466 0.33 0.0170

GO:0006468 Protein phosphorylation 67 742 0.26 0.0241

GO:0009987 Cellular process 866 16285 0.03 0.0305

Macaca fascicularis

GO:0016310 Phosphorylation 82 1003 0.22 0.0424

GO:0005622 Intracellular anatomical structure 960 16117 0.03 0.0084

GO:0005737 Cytoplasm 750 12322 0.04 0.0207

GO:0043227 Membrane-bounded organelle 743 12169 0.05 0.0207

GO:0005746 Mitochondrial respirasome 14 73 0.54 0.0297

GO:0043226 Organelle 825 13770 0.04 0.0297

GO:0043231 Intracellular membrane-bounded organelle 705 11569 0.04 0.0297

GO:0070469 Respirasome 16 93 0.5 0.0297

Ictalurus punctatus

GO:0098803 Respiratory chain complex 15 80 0.53 0.0297
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tion methods, and public text collections [87].

For our analysis, we first predicted the gene expression levels in host and pathogen

test dataset. Genes were subsequently sorted based on the probability of their classi-

fication into one of the three classes. We then selected the top 30% predicted genes

from the host organisms and the top 40% from the pathogen. The reasons behind

these specific percentages were:

1. to ensure that the chosen genes were not merely random predictions,

2. to maximize the number of enriched terms derived from our analysis.

We did not include M. tuberculosis in the STRING pathogen dataset, since the an-

notation file did not have gene symbols to use in STRING.

Tables 4.13 and 4.14 show the GO terms found to be over-represented among

the top UP and DOWN predicted genes. In these tables, the data are presented in

four columns. The Observed Gene Count details the number of genes in our specific

network that are annotated with a given GO term. The Background Gene Count

provides the total number of genes, encompassing those within our network and in

the background dataset, annotated with the same term. The Strength column is

expressed as log10 ( observedexpected
), quantifying the enrichment effect. It reflects the ratio

of the number of genes in our network annotated with a term to the expected count

of such annotations in a random network of the same size. This metric indicates

how much more frequently certain terms are annotated in our network compared to

what might be expected by chance. Finally, the FDR column provides a statistical

69



Table 4.14: Analysis of GO enrichment of predicted ND, UP and DOWN genes for

bacteria validation datasets

Organism Term ID Term Description Observed Gene count Background Gene Count Strength FDR

GO:0008152 Metabolic process 114 1605 0.14 0.00093

GO:0071704 Organic substance metabolic process 103 1423 0.15 0.0022

GO:0006807 Nitrogen compound metabolic process 84 1100 0.17 0.0047

GO:0009987 Cellular process 135 2143 0.09 0.0047

GO:0044237 Cellular metabolic process 98 1358 0.15 0.0047

GO:0044238 Primary metabolic process 90 1210 0.16 0.0047

GO:1901566 Organonitrogen compound biosynthetic process 44 436 0.29 0.0047

GO:0034641 Cellular nitrogen compound metabolic process 59 717 0.2 0.0164

GO:0044249 Cellular biosynthetic process 55 658 0.21 0.0164

GO:1901564 Organonitrogen compound metabolic process 60 733 0.2 0.0164

GO:1901576 Organic substance biosynthetic process 56 669 0.21 0.0164

GO:0010467 Gene expression 28 251 0.34 0.0177

Y. ruckeri

GO:0006412 Translation 16 113 0.44 0.0478

GO:1901564 Organonitrogen compound metabolic process 34 440 0.29 0.0269

GO:0006807 Nitrogen compound metabolic process 45 718 0.2 0.0462

GO:0044271 Cellular nitrogen compound biosynthetic process 23 260 0.35 0.0462

GO:0071704 Organic substance metabolic process 51 884 0.16 0.0462

S. pyogenes

GO:1901566 Organonitrogen compound biosynthetic process 23 257 0.35 0.0462

significance measure for the observed enrichments. These values are p-values adjusted

using the Benjamini–Hochberg procedure [88] to correct for multiple testing within

each category. The FDR offers a critical balance between identifying as many relevant

terms as possible and limiting the inclusion of terms that might appear significant

only due to random variation in the data.

In this analysis, there are GO terms that are associated with infection. For exam-

ple, Nitrogen-related GO terms (e.g., GO:0006807, GO:1901566, and GO:0034641)

as Nitrogen availability affects the progression of a bacterial infection [89, 90]. Posi-
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tive regulation of cytokine production (GO:0001819) as cytokines are involved in the

host defense against pathogens [91]. Phosphorylation (GO:0006468, GO:0046777 and

GO:0016310) has also been associated with viral and bacterial infections [92, 93, 94].

Heterocyclic compounds (GO:0046483) also play a role during infection [95, 96]. Fi-

nally, the mitochondria (GO:0005746 and GO:0070469) also play a role in fighting

infections [97]. These results suggest that the top predicted genes are indeed involved

in infection-related processes, and even though our classifiers show a moderate per-

formance in terms of AUROC, the GO analysis suggests a reasonable performance in

identifying DEGs that play a role in bacterial infection.

4.7 Summary

In this chapter, we presented and discussed the results from our study predicting host

and pathogen up and down-regulated genes during infection.

We assessed 45 machine learning models generated by combining dimensionality

reduction and classification algorithms. For the host, the top models were XGBoost

+ mRMR (500 features), Random Forest + mRMR (400 features), and LightGBM +

mRMR (600 features). For the pathogen, the leading models were XGBoost + PCA

(first 30 components), Random Forest + PCA (first 20 components), and LightGBM

+ mRMR (600 features). After hyperparameter optimization, the selected models

were Random Forest + mRMR (400 features) for host and Random Forest + PCA

(first 20 components) for pathogen.
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We then analyzed feature importance to understand how the selected features

contribute to model predictions and demonstrated removing features with negative

permutation importance scores did not improve performance, indicating complex fea-

ture relationships.

Following feature analysis, the models were trained on training data and the per-

formance was evaluated using 10-fold cross-validation. The host and pathogen mod-

els achieved consistent performance across folds for all classes, with a macro-average

AUROC score of 71.06%± 1.82% and 66.14%± 0.73%, respectively. The models were

then tested on independent validation data. The host model performed better than

random on human and channel catfish test data with a macro-average AUROC score

of 0.60 and 0.57, respectively. The pathogen model also performed slightly better than

random for M. tuberculosis and S. pyogenes test data with a macro-average AUROC

score of 0.55 and 0.53, respectively.

Finally, we performed a GO enrichment analysis and found several GO terms

related to infection over-represented among the top predicted genes.
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Chapter 5

Conclusion

In this study, we developed a dual RNA-seq bioinformatics pipeline utilizing accu-

rate and fast bioinformatics tools. Additionally, for the first time, we used machine

learning for predicting gene expression levels during an infection using dual RNA-seq

data to label genes for training the classifiers. We explored dimensionality reduction

techniques (PCA, VAE, mRMR) and machine learning algorithms (Random For-

est, XGBoost, LightGBM), implementing two machine learning models that achieved

above-random performance in predicting expression levels for host and pathogen dur-

ing a bacterial infection.

This thesis contributes to the field of bioinformatics as follows:

• Development of Dual RNA-seq Bioinformatics Pipeline: A dual RNA-

seq bioinformatics pipeline was developed which is available at https://github.

com/BioinformaticsLabAtMUN/DualRNA-infection.
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• Demonstrating the feasibility of learning task: For the first time, we

demonstrated that it is feasible to generate a model for predicting gene ex-

pression levels during infection from RNA sequences. The models exhibited a

macro-average AUROC scores of 71.06%±1.82% and 66.14%±0.73% for the host

and pathogen classifiers, respectively in a 10-fold cross-validation on training

set.

A limitation is the limited dataset size and the model’s generalizability across

different pathogen species. Expanding the dataset size and exploring models with

broader generalizability could be steps forward.

For future work, deeper exploration into alternative dimensionality reduction tech-

niques, machine learning methods, and sequence encodings is proposed. This is an-

ticipated to yield novel insights from dual RNA-seq experiments.

In conclusion, this thesis establishes a framework for utilizing machine learning to

derive novel insights from dual RNA-seq experiments, laying a foundation for further

advancements in this field.
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L F de Carvalho. MathFeature: feature extraction package for DNA, RNA

and protein sequences based on mathematical descriptors. Briefings in Bioin-

90



formatics, 11 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab434. URL https:

//doi.org/10.1093/bib/bbab434. bbab434.

[72] Chin Ka Yin, Shoichi Ishida, and Kei Terayama. Predicting condensate formation

of protein and RNA under various environmental conditions. bioRxiv, 2023. doi:

10.1101/2023.06.01.543215. URL https://www.biorxiv.org/content/early/

2023/06/05/2023.06.01.543215.

[73] Dheeraj Raya, Vincent Peta, Alain Bomgni, Tuyen Du Do, Jawaharraj

Kalimuthu, David R. Salem, Venkataramana Gadhamshetty, Etienne Z. Gn-

impieba, and Saurabh Sudha Dhiman. Classification of bacterial nanowire pro-

teins using machine learning and feature engineering model. bioRxiv, 2023. doi:

10.1101/2023.05.03.539336. URL https://www.biorxiv.org/content/early/

2023/05/05/2023.05.03.539336.

[74] Robson Parmezan Bonidia, Lucas Dias Hiera Sampaio, Douglas Silva Domingues,
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