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Abstract

The application of land nutrient limitation has been shown to improve the accuracy
of carbon cycle estimates in Earth system models simulations. As the main limiting
nutrients in terrestrial systems nitrogen and phosphorus cycles are crucial for the ter-
restrial carbon cycle representation. In this thesis a terrestrial nitrogen and phospho-
rus cycles modules were developed for Earth system models, utilizing the University
of Victoria Earth System Climate Model. Both nitrogen and phosphorus cycles were
then applied to assess the impact of nutrient limitation on remaining carbon budget
estimations. Moreover, the nitrogen cycle representation was used to simulate terres-
trial N2O emissions. After coupling with an existing ocean N2O emission module, the
N2O dynamics were used to project N2O concentrations to the end of the 21st century.
This represents the first fully coupled terrestrial-ocean N2O dynamic module in exis-
tence. The terrestrial nutrient limitation reduced the capacity of terrestrial vegetation
to uptake carbon, decreasing the land primary productivity. This decrease improved
the representation of terrestrial productivity in comparison with observations. The
remaining carbon budgets were reduced by 19 and 21% for the 1.5◦C warming target
with the application of nutrient limitation in different Shared Socioeconomic Path-
ways, re-enforcing the importance of nutrient limitation in the uncertainties of the
carbon cycle. As remaining carbon budgets are an important decision-making metric,
nutrient limitation is suggested to be taken into account when analyzing or estimating
these budgets. The projection of N2O concentration was between 401 to 418 ppb in
the year 2100. These simulations show that N2O concentrations are insensitive to
mitigation efforts currently represented in the Shared Socioeconomic Pathways sce-
narios, showing similar values in low and high-emission scenarios. Overall, terrestrial
nitrogen and phosphorus are an integral part of terrestrial systems and have improved
the capacity of the University of Victoria Earth System Climate Model to represent
the terrestrial carbon cycle.

ii



Acknowledgements

I am grateful for the support from the Natural Sciences and Engineering Research
Council of Canada’s Discovery Grants programme and support from Compute Canada
(now the Digital Research Alliance of Canada). I am indebted to Michael Eby for
early advice on implementing the nitrogen version of the model and for providing the
model code for the original N cycle version of UVic ESCM.

I want to express my gratitude to my supervisors Dr. Andrew MacDougall and Dr.
Joseph Daraio. The supervision and guiding of Dr. Andrew MacDougall made this
work possible, I am grateful and lucky to have such great supervisor. Furthermore,
I would like to thank the supervisory committee members Dr. Lisa Kellman and Dr.
Entcho Demirov for their invaluable support.

I am forever grateful and fortunate for the support I received from Sophia. Let this
be an achievement that represents a victory for all our efforts. Without your support
and encouragement this work would not exist.

iii



Table of contents

Title page i

Abstract ii

Acknowledgements iii

Table of contents iv

List of tables vii

List of figures viii

1 Introduction 1
1.1 Scientific questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 How does the terrestrial nutrient anthropogenic forcing impact
Earth system model carbon cycle estimates? . . . . . . . . . . . 4

1.1.2 What is the role of terrestrial nutrient limitation in Earth sys-
tem models carbon cycle uncertainties? . . . . . . . . . . . . . . 5

1.1.3 How much will atmospheric N2O increase by the end of the 21st
century? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 What is the impact of terrestrial nutrient limitation on the sen-
sitivity of the terrestrial carbon cycle to changes in atmospheric
CO2 concentrations? . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Purpose of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature review 11
2.1 Nutrients in plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iv



2.2 Nitrogen impacts on plant growth . . . . . . . . . . . . . . . . . . . . . 12
2.3 Nitrogen in soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Terrestrial nitrogen cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Inputs of N to terrestrial systems . . . . . . . . . . . . . . . . . 13
2.4.2 Biological nitrogen fixation . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Organic matter decomposition, mineralization and immobilization 15
2.4.4 Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Plant uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 Denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Phosphorus impacts on plant growth . . . . . . . . . . . . . . . . . . . 17
2.6 Phosphorus in soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Terrestrial phosphorus cycle . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Phosphorus input . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.2 Mineralization and immobilisation . . . . . . . . . . . . . . . . . 20

2.8 Modelling the terrestrial nitrogen and phosphorus cycles in Earth sys-
tem models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Applicability of Earth system models and the development of nitrogen
and phosphorus cycles modules to engineering . . . . . . . . . . . . . . 24

3 Modelling the terrestrial nitrogen and phosphorus cycle in the UVic
ESCM version 2.10 27
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Nitrogen cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Phosphorus cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Nitrogen and phosphorus limitation . . . . . . . . . . . . . . . . 47
3.3.5 Model runs and validation . . . . . . . . . . . . . . . . . . . . . 48

3.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Carbon cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Nitrogen cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Phosphorus cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Parameter sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Limitations and applications of the terrestrial nutrient modules . . . . 67

v



3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Effect of terrestrial nutrient limitation on the estimation of the re-
maining carbon budget 77
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.1 Historical human-induced warming to date . . . . . . . . . . . . 91
4.4.2 Transient climate response to cumulative CO2 emissions . . . . 92
4.4.3 Zero Emission Commitment . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Estimated contribution of non-CO2 climate forcing to future

warming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Projecting atmospheric N2O rise until the end of the 21st century 109
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Historical and projected N2O atmospheric concentrations and
emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Model uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Summary and future work 137
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 145

vi



List of tables

3.1 Updated nitrogen cycle module pools, rates and variables. . . . . . . . 40
3.2 Updated nitrogen cycle parameters. . . . . . . . . . . . . . . . . . . . . 41
3.3 Constants for P input from Wang et al. 2010. The values change

depending on the weathering state of the soil type. Highly weathered
soils have lower values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Maximum leaf C:P and C:N in the CNP simulation by PFTs. . . . . . . 48
3.5 Phoshorus cycle model pools and variables. . . . . . . . . . . . . . . . . 51
3.6 Phosphorus cycle model parameters. . . . . . . . . . . . . . . . . . . . 52
3.7 Phosphorus cycle model pools and values for literature. . . . . . . . . . 65
3.8 Cumulative atmosphere-land carbon flux anomaly from baseline (%).

The parameters were perturbed by increasing and reducing 10 and 20
% of their value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Remaining carbon budgets from the Shared Socioeconomic Pathways:
SSP 2- 4.5, 3- 7.0 and 4- 3.4 simulations for 1.5, 2◦C targets relative to
a warming from 1850-1900. . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Remaining carbon budgets from the Shared Socioeconomic Pathways
simulations: SSP 4- 6.0, 5- 3.4 and 5- 8.5 for 1.5, 2◦C targets relative
to a warming from 1850-1900. . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Remaining carbon budgets from the Shared Socioeconomic Pathways
simulations: SSP-2.45, SSP 3-7.0, 4-6.0 and 5-8.5 for 2.5, 3◦C targets
relative to a warming from 1850-1900. . . . . . . . . . . . . . . . . . . . 143

vii



List of figures

3.1 Diagram representing the UVic ESCM nitrogen cycle. . . . . . . . . . . 36
3.2 Diagram representing the UVic ESCM CNP P cycle. Weathering from

mineral P is the only input into the soils. There are 4 inorganic pools
(Dissolved inorganic, adsorbed, stronged sorbed and occluded P) and 3
organic pools (vegetation (root, wood and leaf), litter and soil organic
matter). As in Wang et al. (2010) the flux from strongly sorbed P to
the occluded pool is not represented here, instead it is assumed to be
a fraction of total soil P. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Modelled yearly Gross Primary Productivity (GPP) from 2001 to 2015
versus FLUXCOM GPP dataset (Jung et al. , 2019). . . . . . . . . . . 54

3.4 a. FLUXCOM GPP dataset from 2000-2010, b. Seasonal GPP from
1990-2015 for Baseline, CN and CNP. c. Second line shows the global
GPP from 2000-2010 for Baseline, CN and CNP. d. The third line
shows the difference between Baseline, CN and CNP and FLUXCOM
GPP datasets. e. Shows the correlation of Baseline, CN and CNP to
FLUXCOM GPP dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Atmospheric CO2 concentration in CNP, CN and baseline simulations
compared to the keeling curve from the Mauna Loa observatory (Keel-
ing et al., 2005; grey line). . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 PFTs fractions in the UVic ESCM for 1980-2010, CNP minus baseline.
The bottom last plot shows CNP global biomass distribution. . . . . . 59

3.7 PFTs fractions in the UVic ESCM for 2008-2012, CNP minus Poulter
et al. 2015 PFTs dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 PFTs fractions across grid cells in the UVic ESCM for 2008-2012, CNP
correlation to Poulter et al. (2015) PFTs dataset. . . . . . . . . . . . . 71

viii



3.9 Modelled global soil and vegetation N in the CNP version of the UVic
ESCM from 1980-1999. Lower right map corresponds to the soil N from
the IGBP-DIS dataset (Global Soil Data Task Group , 2000) . . . . . . 72

3.10 CNP and CN global soil N2O emissions vs EDGAR version 6.0 N2O
dataset (Crippa et al. , 2021). . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Soil and vegetation P global distribution. Modelled total P in soil, total
P in soil as in He et al. 2021, soil P, labile P, vegetation biomass and
the difference between modelled and observational P from He et al.
(2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.12 Modelled N:P leaf ratios trend vs an empirical relationship derived from
Reich and Oleksyn (2004). . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Historical temperature relative to 1951-1980 of C-only, CN and CNP
compared to GISS historical temperature dataset (GISTEMP Team ,
2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Historical 1850-2021 cumulative land carbon sink, ocean sink, land use
change emissions and diagnosed CO2 emissions simulated compared to
Friedlingstein et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Zero Emissions Commitment following the cessation of emissions during
the experiment wherein 1000 PgC was emitted following the 1pctCO2
experiment. ZEC is the temperature anomaly relative to the estimated
temperature at the year of cessation. Note the UVic ESCM lacks in-
ternal variability. The rapid changes in global temperature seen in the
top panel are due to disruptions to the ocean meridional overturning
circulation (Mengis et al. , 2020) . . . . . . . . . . . . . . . . . . . . . 98

4.4 Carbon budgets for the 1.5 ◦C target for SSP 1-1.9 and 1-2.6. Three
model sensitivities are shown as: ECS 4.5 dark blue, ECS 3.4 green
and ECS 2 orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Carbon budgets for the 1.5 and 2 ◦C targets for SSP 2-4.5, 3-7.0 and
4-3.4. Three model sensitivities are shown as: ECS 4.5 dark blue, ECS
3.4 green and ECS 2 orange. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Carbon budgets for the 1.5 and 2 ◦C targets for SSP 4-6.0, 5-3.4 and
5-8.5. Three model sensitivities are shown as: ECS 4.5 dark blue, ECS
3.4 green and ECS 2 orange. . . . . . . . . . . . . . . . . . . . . . . . 101

ix



4.7 Carbon budgets for the 2.5, 3 ◦C targets for SSP 3-7.0, 4-6.0 and 5-8.5.
These were the only scenarios that reached the targets. Three model
sensitivities are shown as: ECS 4.5 dark blue, ECS 3.4 green and ECS
2 orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Mean SSP carbon budgets for the 1.5 and 2 ◦C temperature targets. . . 103
4.9 Mean SSP carbon budgets for Fossil Fuel (FF) and LUC emissions for

the 1.5 ◦C temperature target. . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Historical atmospheric N2O concentrations, estimated using a terres-
trial and ocean N2O modules in the UVic ESCM version 2.10. Machida
et al. 2015 measured the concentration of N2O from Antarctic ice cores,
the N2O measurement covers 1735 to 1965. AGAGE (Prinn et al. ,
2023) and NOAA (Lan et al. , 2023) show monthly atmospheric N2O
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Ocean N2O relevant variables: ocean N2O emissions, oxygen concen-
tration, NPP and mixed layer depth for each SSPs simulations. The
final two maps show the mean ocean NPP and ocean N2O production
from 2090 to 2100 relative to 1850-1860 in SSPs simulations. . . . . . . 125

5.3 Terrestrial N2O emissions, N2 emissions and wetland area for each SSPs
simulations from 2010 to 2100. . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Top left: atmospheric N2O projection from year 2015 until 2100 for
each SSP simulation in the UVic ESCM-CNP. Top right: atmospheric
N2O projection from year 2080 until 2100 for each SSP simulation in the
UVic ESCM-CNP. The background grey lines in the top panels repre-
sent Meinhaussen et al. (2020) projections. Bottom left: atmospheric
N2O projection from year 2015 until 2100 projected by Meinhaussen et
al. (2020). Bottom right: atmospheric N2O projection from year 2080
until 2100 projected by Meinhaussen et al. (2020). . . . . . . . . . . . 134

5.5 Atmospheric N2O concentration sensitivity to equilibrium climate sen-
sitivity (ECS). Three sensitivities were simulated for each SSP scenario:
ECS 2, 3.4 and 4.5 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

x



5.6 N2O forcing effect on atmospheric temperature in a dynamic (current
UVic ESCM-CNP simulations) and prescribed (Meinhaussen et al. ,
2020) N2O concentrations projections averaged over year 2080 to 2100.
Lower temperature differences reflect scenarios were the UVic ESCM-
CNP and Meinhaussen et al. (2020) N2O concentrations are more
similar. ECS is Equilibrium Climate Sensitivity. . . . . . . . . . . . . . 136

6.1 SSP temperature anomaly relative to 1850-1900 of C-only, CN and
CNP simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



Chapter 1

Introduction

Terrestrial nutrient biogeochemical cycles are sensitive to changes in atmospheric CO2

concentrations and climate. Presently land biosphere absorbs around 25% of human

CO2 emissions (Friedlingstein et al. , 2022). In terrestrial ecosystems, carbon cycle

feedbacks are constrained in part by the availability of nutrients (Fisher et al. , 2012;

Zaehle et al. , 2014; Wieder et al. , 2015; Du et al , 2020). Among nutrients nitro-

gen and phosphorus are considered to be the most critical for limiting the primary

productivity (Filipelli , 2002; Fowler et al. , 2013). Both are fundamental functional

needs for plant biochemistry and their requirement is common in all vegetation taxa

(Filipelli , 2002; Vitousek et al. , 2010; Du et al , 2020). Regionally, the scarcity of

nutrients can impair the photosynthetic efficiency of terrestrial vegetation and conse-

quently their response to increasing atmospheric CO2 concentration. Hence, in Earth

System Models (ESMs) the representation of nutrient limitations is imperative to im-

prove the accuracy of carbon feedback projections and estimation of carbon budgets

compatible with temperature guardrails, such as the 1.5 and 2.0 ◦C targets from the

Paris Agreement (UNFCCC 2015).
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The global distribution of N and P is dependent on the biogeochemical characteristics

of each nutrient. N inputs are mainly from Biological Nitrogen Fixation (BNF) and

atmospheric deposition (Fowler et al. , 2013; Du et al , 2020). In contrast, the main

input of P comes from local rock weathering (mainly of the mineral apatite). The

sourcing of P from local rocks are among the reasons for a global spatial pattern

where young soils are usually N limited and old soil are usually P limited (Filipelli ,

2002; Fowler et al. , 2013; Du et al , 2020). N accumulates rapidly from BNF where

nitrogen fixers are abundant and slowly where atmospheric deposition is dominant.

Thereby, old soils have a larger accumulation of N especially in regions where nitrogen

fixers are abundant. On the other hand, P input is limited by the parent material and

the bioavailability is further constrained by the retention of recalcitrant P in soils.

Walker and Syers (1976) even suggested that P storage has a fixed total that cannot

be rapidly replenished as parent material is limited.

These notions led to the common conceptualization that high latitudes are N-limited

while tropical regions are P limited. While this generalization is correct in most

observational studies, the complex pattern of limitation is more intricate, and P lim-

itation could be more common than is commonly inferred. Du et al (2020) found

that globally 43% of the terrestrial system is limited by P while only 18% is limited

by N with the rest being co-limited by both. The addition of P has been shown

to be positive for nitrogen fixation, leading to the replenishment of N in ecosystems

(Eisele et al. , 1989). N supply on the other hand regulates the production of the

enzyme phosphatase that cleaves ester-P bonds in soil organic matter (McGill and

Cole , 1981; Olander and Vitousek , 2000; Wang et al. , 2007). Vegetation species

variable adaption to nutrient concentrations also plays a role in the availability of

nutrients in soils and the biogeography of terrestrial vegetation. Several studies have

found that in some ecosystems lack of N in soil usually leads to dominance of woody
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symbiotic nitrogen fixers (e.g. Menge et al. , 2012). The availability of P is also

impacted by the geochemical interactions in terrestrial soils. Vitousek et al. (2010)

defined six mechanisms by which P becomes limited: 1) driven (dissolved inorganic

and organic phosphorus) loss by leaching; 2) soil barriers (soil layer that physically

prevents access to roots); 3) transactional (slow release of mineral P forms); 4) P par-

ent material; 5) sink driven (sequestration of P in soils and pools in the ecosystem);

and 6) anthropogenic input of other nutrients (typically N input).

Earth system models represent biogeochemical processes such as the carbon cycle cou-

pled to a physical climate system (Kawamiya et al. , 2020). Given the importance of

terrestrial nitrogen and phosphorus on terrestrial ecosystems in Earth system models,

the representation of nutrient limitation in terrestrial structure is thereby crucial to

improve the representation of the terrestrial carbon cycle (Wang et al. , 2010; Goll

et al. , 2017; Wang and Goll , 2021). The inclusion of nutrient limitation in Earth

system models has been considered globally in several Earth system modelling groups

with the recent Intergovernmental Panel on Climate Change (IPCC) report using

six ESMs containing a terrestrial nitrogen cycle and only one containing a terrestrial

phosphorus cycle (Spafford and MacDougall , 2021). However, the role of nutrient lim-

itation in Earth system model global carbon cycle uncertainties is still understudied.

Furthermore, the emission of N2O from terrestrial systems from the nitrogen cycle

is rarely simulated in Earth system model structures and no model has dynamically

modelled a coupled terrestrial-ocean N2O dynamics to project N2O concentrations in

the atmosphere.
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1.1 Scientific questions

In this study, I address the role of terrestrial nutrient limitation in Earth system

model projections and uncertainties. The most common issue is overestimating the

land carbon sink in simulations without nutrient limitation. Other terrestrial nu-

trient limitation impacts on Earth system model uncertainties include: 1) missing

anthropogenic impacts on terrestrial nutrient concentrations, 2) terrestrial phospho-

rus is rarely included in Earth system models but has been suggested to be necessary

for accurate tropical forest representation and 3) missing non-CO2 greenhouse gasses

emissions simulation from terrestrial N2O fluxes.

1.1.1 How does the terrestrial nutrient anthropogenic forcing

impact Earth system model carbon cycle estimates?

The nitrogen and phosphorus cycles have been shown to be impacted by human

activities (Filipelli , 2002; Fowler et al. , 2013). Human impact on ecosystems is

altering the abundance of N and P globally (Harrison et al. , 2010; Beusen et al.

, 2013; Harrison et al., 2019). A significant change in the export of particulate and

dissolved nutrients from land to rivers, and ultimately to coastal seas, has been caused

by human activities on land (Mayorga et al , 2010). For example, fertilizer application

for agriculture is a key factor that has reduced nitrogen and phosphorus limitations in

agricultural areas (Vitousek et al. , 1997; Tilman et al. , 2002). In nature, nitrogen

input from biological nitrogen fixation is estimated to be between 52 to 130 TgN yr−1

and the input of phosphorus from rock weathering is estimated to be between 1 to

3 TgP yr−1 (Filipelli , 2002; Wang et al. , 2010; Fowler et al. , 2013). Globally,

the rise of food demand has increased the application of agricultural fertilizer (Smil

, 2002). The increasing and excessive use of fertilizers is resulting in a variety of
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environmental problems (Bouwman et al. , 2016; Vitousek et al. , 2009). Lu and

Tian (2017) show that synthetic N and P fertilizer use worldwide increased by 85

Tg N yr−1 and 10 Tg P N yr−1, respectively, from 1960 to 2013. On a global scale,

Southern Asia (which includes East Asia, South Asia, and Southeast Asia) accounted

for 71 % of the increase in N fertilizer use, followed by North America (11 %), Europe

(7 %), and South America (6 %). In addition, there has been a significant increase in

the amount of P available in the environment due to mining and its use as fertilizer,

detergent additives, sewage and animal feed supplements (Seitzinger et al. , 2010).

Furthermore, Beusen et al. (2022) projected increases in global river dissolve in-

organic phosphorus export are projected in all sustainable socioeconomic pathways.

This is primarily due to an increase in sewage, fertilizer, P-based detergents, and

manure input. This has direct implications for the environment, affecting biological

productivity, diversity and abundance of species (Modolo et al , 2018; Pesce et al. ,

2018). A healthy ecosystem is dependent on biodiversity to maintain its functioning.

Consequently, these alterations have profound effects on the carbon cycle and feedback

in most ecosystems (Shibata et al. , 2015). Earth system models that lack nutrient

cycles overlook the anthropogenic impact in terrestrial systems and thus, their effects

on the carbon cycle.

1.1.2 What is the role of terrestrial nutrient limitation in Earth

system models carbon cycle uncertainties?

The change of nutrient concentration in terrestrial systems is an uncertainty in de-

termining the degree of nutrient limitation impact on land carbon sink over the next

decades (Shibata et al. , 2010, 2015; Menge et al. , 2012). Anthropogenic input of

N and P via agricultural fertilization (artificial and manure), atmospheric deposition
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and urban waste waters account for a large portion of nutrient concentration in land

and, for some regions, have even doubled the natural coastal input (Lu and Tian ,

2017). This has resulted in unwanted ecosystem changes such as eutrophication, hy-

poxia, and anoxia (Selman et al. , 2008). Artificial and biogenic nitrogen fertilization

data for different Shared Socioeconomic Pathways are already available for model use,

but similar gridded data for P does not exist at present.

By 2050, global income levels and population levels are expected to increase. Con-

sequently, there is a likelihood that the amount of food consumed and the number

of livestock-based products will increase (Bodirsky et al. , 2015), thus increasing the

environmental impact of agriculture. Future demand for agricultural goods, as well

as land use dynamics, are uncertain. Increasing populations, changes in dietary pref-

erences, and changes in trade patterns will increase the need for non-food products

such as bioenergy, and the development of agricultural yields will be influenced by

relevant policies that will lead to a further increase in these demands (Popp et al. ,

2014).

Many of the critical processes involved in land biogeochemical models are difficult to

parameterize due to a lack of observational datasets, thereby decreasing the quanti-

tative understanding of key processes and their interactions (Wang and Goll , 2021).

It is important to ensure that these models remain up to date with the increasing

availability of observation-based data. Improvement and further development is re-

quired in Earth system models to ensure they remain relevant to the current state of

knowledge in theory (Achad et al. , 2016).
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1.1.3 How much will atmospheric N2O increase by the end of

the 21st century?

CO2 emissions are the primary source of greenhouse gasses (GHGs) accumulation in

the atmosphere. The total anthropogenic radiative forcing from greenhouse gasses

between 1960-2019 was 63% for CO2, 11% for CH4, 6% for N2O, and 17% for the

halogenated species (Canadel et al. , 2021). CH4 and N2O are the most critical non-

CO2 GHGs emissions contributors accounting for between 11.5 - 14 and 5.8 - 6.8 % of

global emissions respectively from 1990 to 2018 (Crippa et al. , 2021). In comparison

to CH4, N2O has a longer atmospheric lifetime (Myhre et al. , 2013; Prather et al.

, 2023). Considering that N2O is one of the most significant contributors to net an-

thropogenic climate forcing, global climate change policies in the twenty-first century

must take its fluxes into consideration. A number of factors are expected to con-

tribute significantly to agricultural N2O emissions, including population growth, per

capita calorie intake, and livestock consumption. It is possible to improve estimates

of current and future agricultural N2O emissions around the world by simulating and

quantifying the relationship between perturbations in N inputs and increases in N2O

emissions by simulating the nitrogen cycle and more precisely quantifying the effects

of perturbations in N inputs in terrestrial systems. Projections from non-dynamic at-

mospheric N2O concentration, where the N2O is estimated with a simplified equation,

show a significant increase of N2O by the end of the century, dependent on the as-

sumptions of different future projections N2O management and overall model forcing

(Meinhaussen et al. , 2020).
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1.1.4 What is the impact of terrestrial nutrient limitation on

the sensitivity of the terrestrial carbon cycle to changes

in atmospheric CO2 concentrations?

The response of terrestrial ecosystems to climate changes involves the model to rep-

resent the interactions between climate and carbon. N and P control, in part, the

response of the carbon cycle to environmental disturbances. Hence, N and P are

crucial for accurately representing the terrestrial system in Earth system models to

changes in atmospheric CO2 concentrations.

The simulations from first-generation ESMs with carbon-only schemes have very likely

overestimated the response of the terrestrial ecosystem to the increase of atmospheric

CO2 concentrations (Hungate et al. , 2003; Thorton et al. , 2007), showing a high

terrestrial carbon uptake response which would require an unrealistic large nutrient

supply. The addition of a nitrogen cycle to the land system in ESMs has shown an

overall reduction in the effect of CO2 fertilization, especially in high latitudes, with

a weaker response in low latitudes which are typically P limited in natural systems

(Wang et al. , 2007, 2010; Du et al , 2020). However, the effect of N and P limita-

tion on carbon budgets for given temperature guardrails has yet to be systematically

quantified.

Despite its importance P terrestrial limitation has been neglected in Earth system

modelling. The effect of P in tropical forests may be the key to better representing the

vegetation biomass and the response to CO2 fertilization, in these systems. The lack of

P observational data is partly responsible for the difficulty of simulating P limitation

in Earth system models (Spafford and MacDougall , 2021). However, several studies

have attempted to provide reliable global P datasets (Yang et al. , 2013; Hartmann

et al. , 2014; He et al. , 2021) that could be used to develop more accurate models.
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Furthermore, many studies have shown that the inclusion of P into ESM structures

is possible and that it improves the representation of vegetation biomass in tropical

regions (Wang et al. , 2007, 2010; Goll et al. , 2017; Nakhavali et al. , 2021).

1.2 Purpose of study

The current generation Earth system models are developing or have already devel-

oped nitrogen and phosphorus cycles and nutrient limitation to their model structure.

While carbon-nitrogen (CN) models are more common, carbon-nitrogen-phosphorus

(CNP) models remain rarer. However, P cycles have been suggested to be included in

Earth system model for their importance in tropical regions (Wang et al. , 2010; Goll

et al. , 2012). The first attempt to include nutrient limitation in the University of

Victoria Earth system climate model (UVic ESCM) was done by Wania et al. (2012)

but was not included in the current publically available version of the model due to

the need of further improvement. In order to improve the carbon cycle projections

here I intend to improve the current state of the previous N cycle, develop a new P

cycle and couple CNP in the UVic ESCM version 2.10. Thereby, allowing the assess-

ment of carbon budget uncertainties and the simulation of terrestrial N2O emissions

and atmospheric N2O concentrations in long-term projections. The assessment of ter-

restrial N and P limitations on the estimation of carbon budgets, and the coupling of

terrestrial N2O emissions modules with ocean N2O emissions presented here are the

first study of their kind. The following specific objectives set in the present study are:

1. Develop an improved nitrogen cycle for the UVic ESCM version 2.10.

2. Develop a phosphorus cycle for the UVic ESCM version 2.10.

3. Add agricultural fertilization to the terrestrial nitrogen and phosphorus cycles.
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4. Determine the impact of nutrient limitation on the global carbon cycle in future

projections.

5. Determine the impact of nutrient limitation on remaining carbon budgets de-

rived from future projections.

6. Assess the modelled N2O flux estimations in future climate projections.

1.3 Thesis outline

The following chapters describe the development and application of a terrestrial ni-

trogen and phosphorus cycles in an Earth system model of intermediate complexity.

Chapter two is a relevant literature review on the terrestrial nitrogen and phosphorus

cycles and a short description of the current modelling approaches. Chapter three

contains details of the development of terrestrial nitrogen and phosphorus cycles on

an intermediate complexity Earth system climate model. Chapter four applies the

nitrogen and phosphorus modules to assess the impact of terrestrial nutrient limita-

tion on the estimation of remaining carbon budgets. Finally, chapter five applies the

new terrestrial nutrient modules to project of atmospheric N2O concentrations. The

projection of atmospheric N2O using a coupled terrestrial and marine N2O modules

in an Earth system model, is, to my knowledge, the first of its kind.



Chapter 2

Literature review

In this chapter, I will review the importance of nitrogen and phosphorus for plant

biochemistry and their terrestrial biogeochemical cycles. The importance of N and

P in terrestrial ecosystems is widely known. Nutrient limitation occurs globally and

impacts the potential plant growth. Thereby, affecting human activities such as agri-

culture and placing a natural constraint on global terrestrial vegetation productivity.

2.1 Nutrients in plants

Nutrients play a crucial role in the metabolism of plants. Organic molecules such

as sugar, nucleic acids, and proteins are generally synthesized through biochemical

processes involving just six elements (C, H, O, N, P, and S) (Maathuis , 2009; Travers

and Muskhelishvili , 2015). Nutrients are divided into macronutrients and micronu-

trients according to their concentration requirements (de Bang et al. , 2021). Plants,

for example, utilize macronutrients (K, Ca, C, P, N and Mg) to control pH, osmotic

pressure, and enzyme activity. Six micronutrients (Fe, Mn, Zn, Cu, Mo, and Ni)

are metals that are essential for oxidative, reductive reactions in enzymes or heme.
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Plant metabolism is consequently affected by the concentration of core nutrients in

plant structures and the availability to obtain said elements from their environment

(Maathuis , 2009; DalCorso et al. , 2014).

2.2 Nitrogen impacts on plant growth

Various environmental factors affect plant growth, including temperature, water sup-

ply, nutrients, and light intensity (Atilio and Causin , 1995). Nitrogen availability in

soil is essential for plant growth (Gruber and Galloway , 1995). Hence, the supply

of nitrogen has been linked to the growth of vegetation (Coskun et al. , 2016). It

is essential for plant development that N is available to roots during the plant’s life

cycle. Nitrogen influences a wide range of physiological processes (Atilio and Causin

, 1995; Munawar et al. , 2017). The growth and development of leaves stems, and

parts are promoted by N. With abundant N, leafy vegetables grow more rapidly, and

early growth is accelerated (Leghari et al. , 2016). Additionally, it facilitates the

uptake and utilization of other nutrients, such as potassium and phosphorus (Dun-

can et al. , 2018), and regulates the growth of the plant as a whole. All organisms,

both prokaryotes and eukaryotes, rely on N for several essential compounds, includ-

ing membrane lipids, amino acids, proteins, nucleic acids (DNA, RNA), nicotinamide

adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, co-enzymes, sec-

ondary metabolites, photosynthesis pigments, and many others (Maathuis , 2009).

2.3 Nitrogen in soils

There are two predominant forms of inorganic nitrogen in soils, nitrate (NO−
3 ) and

ammonium (NH+
4 ) (Bronson et al. , 2008) as well as organic nitrogen compounds.

In general, organic nitrogen consists of urea, free amino acids, and short peptides
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(Farzadfar et al. , 2021). In aerobic soils, NO−
3 is the most abundant form of in-

organic nitrogen and is readily leached (Bronson et al. , 2008). While NH+
4 tends

to be adsorbed strongly to soil particles(Kothawala and Moore , 2009). Due to soil

heterogeneity and dynamic microbial conversions, as well as agronomic practices and

environmental conditions, the availability of these resources by roots varies consider-

ably over time and space (Farzadfar et al. , 2021).

2.4 Terrestrial nitrogen cycle

Nitrogen is an essential element for the survival of terrestrial life. Therefore, it is evi-

dent that the N biogeochemical cycle plays a significant role in terrestrial ecosystems.

Overall, the N cycle is driven by microbial and plant processes (Fowler et al. , 2013;

Isobe and Nobuhito , 2014). Furthermore, there are a number of physicochemical pro-

cesses that contribute to the distribution of nitrogen concentrations on land. These

processes include diffusion, emission, volatilization, leaching, and erosion. A variety

of nitrogen transformations take place in terrestrial ecosystems, including the uptake

and immobilization of nitrogen by microbes and plants, as well as the production and

decomposition of litter (McNeill and Unkovich , 2007; Fowler et al. , 2013). The

following short review of the N cycle will show the flow of N through the terrestrial

system.

2.4.1 Inputs of N to terrestrial systems

The primary natural source of nitrogen in the terrestrial N cycle is biological fixa-

tion, followed by wet and dry deposition of N, with lightning providing a relatively

minor contribution (Fowler et al. , 2013). Anthropogenic sources of nitrogen include
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agriculture fertilizers (artificial and manure), wastewater from urban areas and atmo-

spheric deposition (Lu and Tian , 2017). N input is primarily derived from BNF in

the absence of human influences (Fowler et al. , 2013; Vitousek et al. , 2013).

2.4.2 Biological nitrogen fixation

Despite of the fact that nitrogen gas (N2) makes up 78% of the Earth’s atmosphere

and is indispensable for the survival of all life forms, biological systems cannot utilize

atmospheric nitrogen directly. In order to break the triple bond of N2, substantial

amounts of energy are required, as well as the addition of three hydrogen atoms to

each N atom to produce ammonium (Ward , 2012). Prokaryotes, including Archaea

and Bacteria, are the only organisms capable of fixing nitrogen. These use the energy

derived from the oxidation of carbohydrates to reduce molecular nitrogen (N2) to

ammonia (NH3) (Halbleib et al , 2000). The chemical reaction for the fixation of

atmospheric N is:

N2 + 16ATP + 8e− + 8H+→ 2NH3 + H2 + 16ADP + 16P, (2.1)

where ATP is Adenosine Triphosphate and ADP is Adenosine Diphosphate, both of

which have an important role in cellular energy. A substantial amount of N2 can be

converted into organic N by biological N fixers, which is sufficient for maintaining

N pools in ecosystems and replenishing N losses (Fowler et al. , 2013). A variety

of factors constrain nitrogen-fixer organisms, including individual biochemistry and

environmental conditions. For example: 1) Abiotic controls such as temperature,

moisture, and pH can impact the enzymatic rate. 2) The presence of O2 can inhibit

the biochemical nitrogen fixation pathway. 3) Molybdenum is required for the function

of most nitrogenases. 4) High concentrations of nitrogen can also inhibit the synthesis



15

and/or activity of nitrogenase (Vitousek et al. , 2002). However, there is currently

no consensus regarding the limitations on biological nitrogen fixation (Barnard and

Friedlingstein , 2020)

2.4.3 Organic matter decomposition, mineralization and im-

mobilization

Litter production and decomposition are key contributors to the turnover of nitrogen

in the terrestrial environment (Giweta , 2020). Through internal nitrogen cycling,

nitrogen enters the soil organic matter pool. The decomposition of organic matter is

largely mediated by soil microbes. This ultimately results in the release of nutrients

in mineral form and the loss of carbon from the soil (Khatoon et al. , 2017). The

bioavailable nitrogen resulting from macromolecule cleavage can be utilized by both

plants and microorganisms. The mineralization of nitrogen in soil involves the release

of NH3 or NH+
4 by heterotrophic soil microbial communities (Giweta , 2020). Miner-

alization of nitrogen occurs in biologically active horizons of soils that contain a large

amount of dead and decomposing plants and other organisms (Ward , 2012). N can

be immobilized by microbial assimilation (Bengston and Bengtson , 2005). Alterna-

tively, adsorption to organic matter or fixation in clay can immobilize ammonium and

reduce concentrations in soil.

2.4.4 Nitrification

The process of nitrification involves the oxidation of reduced nitrogen forms in order

to produce nitrate (NO−
3 ) yielding energy to microbes. There are two steps involved:

1) Ammonia is oxidized to hydroxylamine by the enzyme ammonia monooxygenase.

2) Hydroxylamine is oxidized by hydroxylamine oxidoreductase using oxygen from
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water. Ammonia oxidation requires two electrons, while the remaining electrons pass

through the electron transport chain (Norton , 2008). The process is mediated by

three types of microorganisms: 1) autotrophic ammonia oxidizers, (2) autotrophic

nitrite oxidizers, and (3) heterotrophic nitrifiers (Ward , 2008).

2.4.5 Plant uptake

Abiotic factors such as temperature and soil pH influence the acquisition of nitrogen

by plants, in addition to the genetic characteristics of the plant species (Santoyo

et al. , 2017). N can be acquired by plants from the soil in the form of NH+
4 ,

NO−
3 or NO−

2 , or as simple organic compounds (Bronson et al. , 2008). Generally,

plants prefer inorganic N forms, and some species may show a preference for NH+
4 or

NO−
3 . Regulation of nutrient uptake by roots is governed by root system architecture

and mechanisms that control transport system activity (Masclaux et al. , 2010).

Allocation of nutrients to plant structures will depend on the metabolic health of

plants.

2.4.6 Denitrification

Nitrate is converted into gaseous nitrogen compounds such as N2O, NO, and N2 during

denitrification under anaerobic conditions. NO3 is reduced to NO2, followed by NO,

N2O, and N2. Nitrogen oxides serve as electron acceptors during the process, which is

similar to the electron transport chain involved in aerobic respiration (Spanning and

Delgado , 2006). There are four stages involved in denitrification: reducing nitrates,

reducing nitrites, reducing nitric oxides, and reducing nitrous oxides. They are cat-

alyzed by a specific reductase enzyme. An incomplete process results in the emission

of NO and N2O, which are major atmospheric pollutants (MacDuffie et al. , 2020).

The emission of intermediates is caused when electron fluxes are unbalanced over the
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four subsequent steps of denitrification or when incomplete pathways are expressed

or present in denitrifying organisms (Ward , 2012). Multiple promoters regulate gene

expression during the induction of the denitrification pathway after oxygen depletion.

In spite of the fact that many types of bacteria have similar promoters, the exact

mechanism of regulation varies from one species to another (Carreira et al. , 2018).

Specific environmental factors such as oxygen and nitrogen oxide concentrations, as

well as metal ions, affect gene expression.

2.5 Phosphorus impacts on plant growth

For terrestrial plants, phosphorus availability in soils is a significant challenge (Du et

al , 2020; Hou et al. , 2020). The availability of P is limited for plant uptake (Penn

and Camberato , 2019). P deficiency generally results in a reduction in plant growth

due to a decrease in the photosynthetic rate (Cartensen et al. , 2018). In cells, it

maintains the structure of the cell membrane, and phospholipids are an essential com-

ponent of the membrane. A vital role is also played by phosphorus in the synthesis

and formation of biomolecules. There are many energy-rich compounds that contain

this compound, such as adenosine triphosphate (ATP), cytidine triphosphate (CTP),

guanosine triphosphate (GTP), uridine triphosphate (UTP), phosphoenol pyruvate,

and others. By transferring energy to acceptor molecules, these phosphate-containing

compounds serve as cellular energy carriers. Furthermore, it participates in the di-

vision of cells, the activation and inactivation of enzymes, and the metabolism of

carbohydrates. As a result, P promotes the germination of seeds, the development of

roots, stalks, and stems, the production of flowers and seeds, the quality and yield of

crops, and the production of the seed itself (Malhotra et al. , 2018). Plant growth

parameters and photosynthesis are sensitive to P concentration in plant structures.
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Walker et al. (2014) found a significant correlation between leaf phosphorus con-

centration and photosynthetic rate. A low concentration of cytoplasmic P inhibits

photosynthesis as a result of end-product inhibition (Rychter et al. , 2016). It has

also been demonstrated that P is essential for the activation of RuBisCO, the key

enzyme used to fix CO2 for photosynthesis (Marcus et al. , 2011).

2.6 Phosphorus in soils

Various forms of phosphorus are found in soils, and their distribution changes with

time and soil development (Walker and Syers , 1976; Yang et al. , 2013). P in soil

can be divided into inorganic and organic. Inorganic phosphorus is predominantly

present as H2PO−
4 and HPO−2

4 adsorbed onto oxides or hydroxides of Fe or Al, organic

matter, or bound to calcium (Muindi , 2019). The pH and clay minerals of soil

affect the adsorption of P in soil (Lopez and Burnham , 2006). A low pH value

results in insoluble compounds with iron and aluminium, a neutral pH value results in

more soluble compounds with calcium and magnesium, and a higher pH value results

in insoluble compounds with calcium. Soil inorganic P compounds are grouped as

calcium, magnesium-bound, iron and aluminium-bound (Muindi , 2019).

In soils, native phosphorus is mainly derived from disintegrated and transformed rocks

containing mineral apatite, Ca10(PO4)6(F.Cl.OH)2. Due to its low solubility and rate

of solubilization, apatite in its primary form does not provide available phosphate

to plants. Apatites, strengite, and variscite, are generally stable in acidic soils and

release a minimum amount of P into the soil solution when weathered. Depending

on particle size and soil pH, secondary phosphate minerals containing calcium, iron,

and/or aluminium dissolve differently. In general, increasing soil pH increases the

solubility of iron and aluminum phosphates, but decreases the solubility of calcium
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phosphates until pH values are above 8, at which point the solubility of calcium phos-

phates begins (Muindi , 2019). As the soil weathers, bases, silicates, and carbonates

are removed, iron and aluminum are concentrated, and phosphorus is released into

the soil solution (Filipelli , 2002; Hartmann et al. , 2014). The soluble P can also be

sorbed or desorbed into or out of secondary minerals, becoming available as labile P

or unavailable for plant uptake (Wang et al. , 2010; Yang et al. , 2013). A variety

of mechanisms retain P in soils, including ligand exchange, adsorption, and precip-

itation. These mechanisms vary with soil pH. In acid soils, adsorption of P occurs

primarily via a complex formed between orthophosphate anions and metal cations or

metal oxyhydroxides (such as Fe and Al). P retention in alkaline and calcareous soils

usually occurs as a result of precipitation of calcium phosphate minerals or as a result

of adsorption on iron impurities within the carbonates (Muindi , 2019).

2.7 Terrestrial phosphorus cycle

The P cycle, as N, plays an important role in terrestrial ecosystems. A deep under-

standing of P soil chemistry is essential in order to understand the flow of P through

life and the soil. P speciation varies in relation to soil pH, mineral content, tempera-

ture, and other soil characteristics (Walker and Syers , 1976; Hartmann et al. , 2014).

There is typically a low concentration of P that is available for uptake by plants and

microbes (Filipelli , 2002). According to the climate, the type of soil, and the level

of the ecosystem, P is generally vigorously recycled to varying extents in ecosystems

(Yang et al. , 2013).
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2.7.1 Phosphorus input

P is released primarily from apatite minerals and is made soluble and bioavailable

by weathering (Filipelli , 2002). Unlike this chemical weathering process, physical

weathering and erosion of continents release P that is typically not available for life

on Earth. The chemistry and structure of apatite minerals vary greatly depending on

the environments in which the apatite-bearing rocks where form, including igneous,

metamorphic, sedimentary, and biogenic environments (Malhotra et al. , 2018). P is

also added to the ecosystem by human influence. Fertilizers and urban wastewater

are both significant inputs that some studies have identified to surpass natural inputs

(Lu and Tian , 2017).

2.7.2 Mineralization and immobilisation

P mineralization includes biological and biochemical processes (McGill and Cole ,

1981). The process of biological mineralization involves the conversion of organic

P into bioavailable orthophosphates as a result of the oxidation of carbon by soil

organisms (Samal et al , 2020). Biochemical mineralization is the process of releasing

inorganic P from organic compounds by way of enzymatic hydrolysis outside of the

cell membrane. The need for phosphate by microorganisms is thought to control

this type of mineralization because of the negative feedback between P availability in

the organism and phosphatase biosynthesis in the cell (Oehl et al , 2004). Finally,

P immobilization by biological processes refers to the assimilation of P in soil by

microorganisms. Due to this conversion, the P becomes inaccessible to plants as

organic forms. In the course of time, microbial P will become available as the microbes

die (Waithaisong et al. , 2022).
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2.8 Modelling the terrestrial nitrogen and phospho-

rus cycles in Earth system models

In terrestrial Earth system model structures, the representation of nutrient limitation

on the carbon cycle is a major factor that needs to be considered, as it constrains the

capacity of plants to uptake carbon (Wang et al. , 2010; Goll et al. , 2017; Wang

and Goll , 2021). The lack of nutrient limitation usually leads to high estimations

of terrestrial carbon uptake, as shown in Wieder et al. (2015). The uncertainty

of nutrient limitation has been addressed in Earth system models in the last two

decades but has only begun to be systematically included in Earth system models in

the previous decade (Wang et al. , 2007; Yang et al. , 2009; Wang et al. , 2010; Yang

et al. , 2013; Goll et al. , 2017; Wang and Goll , 2021). The latest Intergovernmental

Panel on Climate Change report (IPCC) included six models with terrestrial nitrogen

and one with a terrestrial nitrogen-phosphorus cycle (Arora et al. , 2020; Spafford

and MacDougall , 2021)

Developing modules for Earth system models is closely linked to the availability of

observational and experimental studies that provide model equations to represent na-

ture processes and datasets to calibrate and validate model outputs. Globally, the

terrestrial nitrogen and phosphorus cycles generally lack observational and experi-

mental studies (Wang and Goll , 2021). Hence, the estimation of the global nitrogen

and phosphorus cycle is challenging and large ranges of uncertainty are embedded in

global attempts to improve their representation. These uncertainties plague the ac-

curacy of estimations. Intermediate complexity models suffer, especially as validation

through downscaling to site scale may not be used due to low resolution. However,

new studies are emerging showing global terrestrial nutrient datasets processed with

artificial intelligence (He et al. , 2021). Again, these studies are challenged by the
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lack of global data as input to train machine learning processes.

Early attempts to include nutrients in model structures consisted of the use of constant

carbon-to-nutrient ratios e.g.(Mengis et al. , 2020). This has gradually has been

shifting to dynamic carbon-to-nutrient ratios. The advantage is the capture of the

time-variation of nutrients and, thereby, a more accurate representation of nutrient

limitation in terrestrial systems that can reflect changes to global warming, land use

change and agricultural activities (Wang et al. , 2010; Goll et al. , 2017).

The nitrogen inputs in Earth system models generally consist of biological nitrogen

fixation, atmospheric nitrogen deposition and fertilizers inputs, with rock weathering

and lightning sources being disregarded in most cases (Yang et al. , 2009; Gerber et

al. , 2010; Wang et al. , 2010; Zaehle et al. , 2010; Wania et al. , 2012; Goll et al.

, 2017; Wang et al. , 2020). Biological nitrogen fixation can be represented through

empirical relationships with ecosystem productivity (Gerber et al. , 2010; Wania et

al. , 2012). The uptake of inorganic nutrients by plant roots can be simulated by

direct plant uptake or/and by mycorrhizae symbiosis (Wang et al. , 2010; Wania

et al. , 2012; Braghiere et al. , 2021, 2022). The carbon cost for nitrogen uptake

by mycorrhizae is also considered in some models as a constraint to the amount of

nitrogen plants can uptake (Braghiere et al. , 2022)

The plant structural division varies among models. The simplest models contain three

basic compartments: roots, wood and leaves with a constant or flexible stoichiometry

(Wang et al. , 2010; Gerber et al. , 2010; Wania et al. , 2012; Goll et al. , 2017;

Wang and Goll , 2021). These three compartments are connected to a litter pool,

and this pool can be divided further into metabolic, structural and coarse woody

debris in some models (Wang et al. , 2010). The litter is usually dependent on plant

functional types parameterization and temperature-dependent equations (Wania et
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al. , 2012). The resorption of nutrients during senescence is usually constant (Gerber

et al. , 2010; Wania et al. , 2012). However, Reed et al. (2012) has shown interesting

patterns of nutrient resorption which suggest the need for a dynamic structure. The

recycling of nutrients in leaves is an important uncertainty as some models define

nutrient limitation based on nutrient concentrations in leaves (Wania et al. , 2012;

Mengis et al. , 2020). In soils, the recycling of soil organic matter is controlled by

environmental conditions and soil type, with microbial processes being simplified as

most Earth system models do not represent microbes explicitly (Wang and Goll ,

2021).

The loss of nutrients varies among models containing leaching, harvesting, fire, nitri-

fication and denitrification processes (Yang et al. , 2009; Wang et al. , 2010; Gerber

et al. , 2010; Wania et al. , 2012; Goll et al. , 2017). The leaching of nitrogen is

generally dependent on the inorganic nitrogen concentration in soils, drainages and

soil moisture (Wang and Goll , 2021). The flux of leach nitrogen is further controlled

by the runoff of water through the soil structures (Wania et al. , 2012). Gaseous

loss from nitrification and denitrification represents much of the total nitrogen loss

(Fowler et al. , 2013). Denitrification can only be simulated in land model structures

with the capacity to estimate a low fraction of oxygen in soils. The requirement is

often the simulation of aquatic-terrestrial interfaces such as wetlands or inundated

soil grids (Grosso et al. , 2020).

The phosphorus cycle inputs generally consist of constant rates applied to global

soil type order distribution maps (Wang et al. , 2010; Yang et al. , 2013). The

release rate of P is differentiated in low-high weathered soils and given a constant

value (Wang et al. , 2010; Goll et al. , 2017). These values are then applied to

global maps. Another way of simulating global phosphorus inputs is by estimating
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the phosphorus release from parent material as a function of runoff, temperature and

wind as shown in (Hartmann et al. , 2014). In soil, sorption-desorption processes

are generally accounted for. In equilibrium, sorption-desorption processes can be

determined using non-linear Langmuir equations, while in disequilibrium, kinetic-

type Langmuir equations are better suited (Wang et al. , 2010, 2020). Usually,

models assume rapid equilibrium on each time step. Others, such as Goll et al.

(2017), use a much simpler approach, where the amount of phosphorus sorbed out of

the labile solution is determined by global constant rates per soil type. Furthermore,

there can be a division between sorption and strong sorption, where the strongly

sorbed is considered to be a loss of phosphorus of the terrestrial structure (Wang et

al. , 2010). The microbial turnover of phosphorus in soils also depends on soil types

and environmental conditions, mainly soil moisture and temperature (Wang et al. ,

2010; Goll et al. , 2017; Wang et al. , 2020). Some models account for the nitrogen

cost for phosphorus-related enzymes (Wang et al. , 2010). This represents a subtle

co-limitation in Earth system models. The outputs of phosphorus consist mainly of

strong sorption and leaching (Wang et al. , 2010; Goll et al. , 2017; Wang et al. ,

2020). Leaching is generally modelled as a function of soluble phosphorus and runoff

flux (Goll et al. , 2017).

2.9 Applicability of Earth system models and the

development of nitrogen and phosphorus cycles

modules to engineering

There are several uses of Earth system models in engineering and these are mostly

dependent on model resolution. As tools for projecting long-term changes in the
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Earth systems, Earth system models are valuable to assess future impacts caused by

anthropogenic climate change. Hence, Earth system models can be used to predict

threats to livelihood and infrastructure, and can be used to project conditions in long-

term scenarios (Gelbrecht et al. , 2023). The different projections are dependent on

the forcing data input fed into the model simulations (Meinhaussen et al. , 2020).

Important variables, such as sea level rise, storm surges and other extreme events can

be predicted with a reasonable uncertainty (Siahaan et al. , 2022). In coastal regions,

for example, the improvement of infrastructure resilience is imperative under climate

change (Chester et al. , 2021). However, the regional application of global models

with downscaling approaches is limited to relatively high-resolved models (Rockel ,

2015).

The following studies tackle uncertainties in the global carbon cycle with the develop-

ment and application of terrestrial nutrient limitation and the addition of atmospheric

N2O forcing. These uncertainties affect our prediction for future warming and hence,

the prediction of variables related to human activities and infractures. While the

following terrestrial nitrogen and phosphorus cycle is applied in an intermediate com-

plexity Earth system and climate model, by itself, it represents a stand-alone coding

structure that can be ported to other models, improving their capacity to represent

the global carbon cycles and allowing for the estimation of N2O emissions. Hence,

improving the accuracy of models to predict future warming, climate extremes and

important variables for the life of humans, their activities and their infractures.

Finally, Earth system models can be used to assess the effect of climate engineering

schemes to reduce the amount of CO2 in the atmosphere or to directly reduce at-

mospheric temperatures (Keller et al. , 2014). Earth system models have been used
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to assess a wide array of climate geoengineering schemes such as ocean iron fertiliza-

tion, artificial ocean alkalinization, direct air capture and storage, afforestation and

bioenergy with carbon capture and storage (Keller et al. , 2014; Feng et al. , 2016;

Richter et al. , 2022) Giving Earth system models great value as tools to test and

idealize climate geoengineering ideas, their impacts on the global environment and

their potency to mitigate climate change.



Chapter 3

Modelling the terrestrial nitrogen and

phosphorus cycle in the UVic ESCM

version 2.10

Preface.

A version of this chapter has been published in the Journal of Geoscientific model

development issued in 2023, 16: 4113–4136. I am the primary author. Along with

Co-authors, Andrew MacDougall, Nadine Mengis and Sophia Antoniello. I devel-

oped the model code for the terrestrial nitrogen and phosphorus cycle. I have car-

ried out the simulations and validations of the model outputs. I have prepared the

first draft of the manuscript and subsequently revised the manuscript, based on the

feedback from Co-authors and also peer review process. As Co-author, Andrew Mac-

Dougall assisted in the development of the concept and provided supervisory feedback

by reviewing and revising the manuscript. Nadine Mengis contributed to the calibra-

tion of the terrestrial modules. Sophia Antoniello contributed to the visualization of
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the new terrestrial nutrient modules. The article can be access with the following link

https://doi.org/10.5194/gmd-16-4113-2023.

3.1 Abstract

Nitrogen (N) and Phosphorus (P) biogeochemical dynamics are crucial for the regu-

lation of the terrestrial carbon cycle. In Earth System Models (ESMs) the implemen-

tation of nutrient limitations has been shown to improve the carbon cycle feedback

representation and hence, improve the fidelity of the response of land to simulated

atmospheric CO2 rise. Here we aimed to implement a terrestrial N and P cycle in

an Earth system model of intermediate complexity to improve projections of the fu-

ture CO2 fertilization feedback. The N cycle is an improved version of the Wania

et al. (2012) N module, with enforcement of N mass conservation and the merger

with a deep land-surface and wetland module that allows for the estimation of N2O

and NO fluxes. The N cycle module estimates fluxes from three organic (litter, soil

organic matter and vegetation) and two inorganic (NH+
4 +and NO−

3 ) pools, accounts

for inputs from biological N fixation and N deposition. The P cycle module contains

the same organic pools with one inorganic P pool, it estimates the influx of P from

rock weathering and losses from leaching and occlusion. Two historical simulations

are carried out for the different nutrient limitation setups of the model: Carbon and

Nitrogen (CN) and Carbon, Nitrogen and Phosphorus (CNP), with a baseline carbon-

only simulation. The improved N cycle module now conserves mass and the added

fluxes (NO and N2O), along with the N and P pools are within the range of other

studies and literature. For the years 2001-2015 the nutrient limitation resulted in a

reduction of GPP from the Carbon-only value of 143 PgC yr−1 to 130 PgC yr−1 in

the CN version and 127 PgC yr−1 in the CNP version. This implies that the model

https://doi.org/10.5194/gmd-16-4113-2023
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efficiently represents a nutrient limitation over the CO2 fertilization effect. CNP sim-

ulation resulted in a reduction of 11% of the mean GPP and a reduction of 23% of the

vegetation biomass compared to baseline C simulation. These results are in better

agreement with observations, particularly in tropical regions where P limitation is

known to be important. In summary, the implementation of the N and P cycle have

successfully enforced a nutrient limitation in the terrestrial system, which now has

reduced the primary productivity and the capacity of the land to uptake atmospheric

carbon better-matching observations.

3.2 Introduction

Terrestrial biogeochemical cycles are sensitive to changes in atmospheric CO2 concen-

trations and climate. Their global evolution will determine the capacity of vegetation

and soils to store anthropogenic carbon (Goll et al. , 2012). In terrestrial ecosystems,

carbon cycle feedbacks are constrained in part by the availability of nutrients (Fisher

et al. , 2012; Zaehle et al. , 2014; Wieder et al. , 2015; Du et al , 2020). Among

nutrients Nitrogen (N) and Phosphorus (P) are considered to be the most critical for

limiting the primary productivity (Filipelli , 2002; Fowler et al. , 2013). Both are

fundamental functional needs for plant biochemistry and their requirement is com-

mon in all vegetation taxa (Filipelli , 2002; Vitousek et al. , 2010; Du et al , 2020).

Regionally, the availability of nutrients can impair the photosynthetic efficiency of

terrestrial vegetation and consequently their response to increasing atmospheric CO2.

Hence, in Earth System Models (ESMs) the representation of nutrient limitations is

imperative to improve the accuracy of carbon feedback projections and estimation of

carbon budgets.

The simulations from first-generation ESMs with carbon-only schemes have very likely
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overestimated the response of the terrestrial ecosystem to the increase of atmospheric

CO2 concentrations (Hungate et al. , 2003; Thorton et al. , 2007), showing a high

terrestrial carbon uptake response which would require an unrealistic large nutrient

supply. The addition of a N cycle to the land system in ESMs has shown an overall

reduction in the effect of CO2 fertilization especially in high latitudes, with a weaker

response in low latitudes which are typically P limited in natural systems (Wang et

al. , 2007, 2010; Goll et al. , 2017; Du et al , 2020; Wang et al. , 2020).

The global distribution of N and P is dependent on the biogeochemical characteristics

of each nutrient. N inputs are mainly from Biological Nitrogen Fixation (BNF) and

atmospheric deposition with little addition from rock weathering (Du et al , 2020).

There are two types of N deposition from the atmosphere: wet (precipitation) and dry

(particles). Among the two, wet deposition represents most of the atmospheric N input

(Fowler et al. , 2013; Dynarski et al. , 2019). In contrast, the main input of P comes

from rock weathering (mainly apatite) with lesser inputs from atmospheric deposition

as dust particles. These characteristics are among the reasons of a global spatial

pattern where young soils are usually N limited and old soil are P limited (Filipelli

, 2002; Fowler et al. , 2013; Du et al , 2020). N accumulates rapidly from BNF

where N fixers are abundant and slowly where atmospheric deposition is dominant.

Thereby, old soils have a larger accumulation of N especially in regions where N fixers

are abundant. On the other hand, P input is limited by the parent material and

the bioavailability is further constrained by the retention of recalcitrant P in soils.

Walker and Syers (1976) even suggested that P storage has a fixed total that cannot

be rapidly replenished as parent material is limited.

These notions led to the common conceptualization that high latitudes are N-limited
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while tropical regions are P limited. While this generalization is correct in most obser-

vational studies, the complex pattern of limitation is more intricate, and P limitation

could be more common than is commonly inferred. Du et al (2020) found that glob-

ally 43% of the terrestrial system is relatively limited by P while only 18% is limited

by N with the rest being co-limited by both. Biochemically, the availability of N and

P can directly limit one another. The addition of P has been shown to be positive for

the N fixation, leading to the replenishment of N in ecosystems (Eisele et al. , 1989).

N supply on the other hand regulates the production of the enzyme phosphatase that

cleaves ester-P bonds in soil organic matter (McGill and Cole , 1981; Olander and

Vitousek , 2000; Wang et al. , 2007).

Biodiversity plays a crucial role in biogeochemical cycles. The fluxes and availability

of N and P in soils depend on the interactions between soil mineral matrix, plants and

microbes (Cotrufo et al. , 2013). For example, N input from atmospheric N2 fixation

is mediated by a specialized group of microorganisms. Furthermore, the recycling of

N from plants-soil-microbes determines the availability of N for plant uptake. Overall,

the land biota dynamics impact productivity, ecosystem resilience and stability (Yang

et al. , 2018). High diversity has been linked to enhanced vegetation productivity

(Wagg et al. , 2014). The diversity in terrestrial ecosystems is determined by bio-

logical, environmental and physicochemical processes. Anthropogenic activities can

influence soil diversity, impacting the availability and cycling of N and P (Chen et al.

, 2019). For example, N and P fertilization, have been shown to affect soil microbial

biomass and composition (Ryan et al. , 2009). Plant diversity is linked to soil health

and functioning, and is core for the N and P cycles. Vegetation species variable adap-

tion to nutrient concentrations also plays a role in the availability of nutrients in soils

and the biogeography of terrestrial vegetation. Overall, biodiversity constitutes an

environmental resilience factor to abrupt changes (Van Oijen et al. , 2020). However,
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implementing such dynamics remains far beyond the capabilities of the present gener-

ation Earth systems models. Several studies have found that in some ecosystems lack

of N in soil usually leads to dominance of woody symbiotic N fixers (e.g. Menge et

al. , 2012). The availability of P is also impacted by the geochemical interactions in

terrestrial soils, Vitousek et al. (2010) defined six mechanisms by which P is driven

to limitation: loss by leaching, soil barriers that physically prevent access to roots,

slow release of mineral P forms, P parent material, sequestration of P in soils and

pools in the ecosystem and finally, anthropogenic input of nutrients.

Despite its importance P terrestrial limitation has been rare in Earth system mod-

elling. The effect of P in tropical forests may be the key to better representing the

vegetation biomass and the response to CO2 fertilization. The lack of P observational

data is partly responsible for the difficulty of simulating P limitation in Earth system

models (Spafford and MacDougall , 2021). However, several studies have attempted

to provide reliable global P datasets (Yang et al. , 2013; Hartmann et al. , 2014; He et

al. , 2021) that could be used to develop more accurate models. Furthermore, many

studies have shown that the inclusion of P into ESM structures is possible and that

it improves the representation of vegetation biomass in tropical regions (Wang et al.

, 2007, 2010; Goll et al. , 2012, 2017; Fleischer et al. , 2019; Thum et al. , 2019; Yang

et al. , 2019; Wang et al. , 2020; Nakhavali et al. , 2021). The addition of nutrient

limitation has been observed to mainly affect the capacity of vegetation to uptake

carbon (Wang et al. , 2010; Goll et al. , 2017; Wang et al. , 2020). Therefore, the

accumulation of carbon in the atmosphere is enhanced, leading to increases in tem-

perature in simulations. These temperature changes are likely to have some impact

on variables sensitive to atmospheric temperature changes. Furthermore, the decrease

in vegetation biomass affects variables affected by the distribution and composition

of plant functional types, such as changes in terrestrial albedo.



33

Intermediate complexity Earth system models have a lower spatial representation, and

model structures that have been intentionally simplified in one or more ways. This

simplification allows for long-term simulations that are typically not feasible in higher-

complexity models. This class of model is not suitable for studying processes at small

spatial scales. Hence, they are used in research questions that require large spatial

and temporal scales (Weber , 2010). Current generation Earth system models are or

have already developed nutrient limitation to their model structure (e.g., Community

Land Model (Lawrence et al. , 2019), Joint UK Land Environment Simulator (Clark

et al. , 2011), Community Atmosphere–Biosphere Land Exchange model (Haverd et

al. , 2018), Australian Community Climate and Earth System Simulator (Ziehn et

al. , 2020)). While CN models are more common CNP models remain to be rarer.

However, P cycles have been suggested to be included into Earth system model for

its importance in tropical regions (Wang et al. , 2010; Goll et al. , 2012). The first

attempt to include nutrient limitation in the University of Victoria Earth system and

climate model (UVic ESCM) was done by Wania et al. (2012) but was not included

in the current publically available version of the model due to the need of further

improvement. We aim to describe a terrestrial N and P cycle adapted, developed

and implemented for the UVic ESCM version 2.10. The main dynamics captured in

this study are in the terrestrial system, especially vegetation. Furthermore, I intend

to improve the current state of the previous N cycle implement in the UVic ESCM,

develop a new P cycle and couple carbon N and P, in order to improve the carbon

cycle feedbacks projections.
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3.3 Methodology

3.3.1 Model description

The UVic ESCM is a climate model of intermediate complexity (ver. 2.10, Weaver et

al. (2001); Mengis et al. (2020)), it contains a simplified moisture-energy balance

atmosphere coupled with a three-dimensional ocean general circulation (Pacanowski

, 1995) and a thermodynamic sea-ice model (Bitz et al. , 2001). The model has

a common horizontal resolution of 3.6◦ longitude and 1.8◦ latitude and the oceanic

module has a vertical resolution of 19 levels with a varying vertical thickness (50m

near the surface to 500m in the deep ocean).

In version 2.10, the soil is represented by 14 subsurface layers with thickness exponen-

tially increasing with depth with a surface layer of 0.1m, a bottom layer of 104.4m

and a total layer of 250m. Only the first 8 layers have active hydrological processes

(top 10m), below that lays bedrock with thermal characteristics of granitic rocks.

The soil carbon cycle is active in the top 6 layers up to a depth of 3.35m (Avis ,

2012; MacDougall et al. , 2012) the soil respiration is a function of temperature and

moisture (Meissner et al. , 2003). The terrestrial vegetation is simulated by a top-

down representation of interactive foliage and flora including dynamics (TRIFFID)

representing vegetation interaction between 5 functional plant types: broadleaf trees,

needleleaf trees, shrubs, C3 grasses, and C4 grasses that compete for space in the grid

following the Lotka-Volterra equations (Cox , 2001). Net carbon fluxes estimated in

the model update the total areal coverage, leaf area indexes and canopy height for

each PFT. For each PFT the carbon fluxes are derived from a photosyntesis-stomatal

conductance model (Cox et al. , 1998). The carbon uptake through photosynthesis is

allocated into growth and respiration and the vegetation carbon is transferred to the
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soil via litter fall and allocated in the soil as a decreasing function of depth (propor-

tional to root distribution) and except for the top layer is only added to soil layers

with temperature above 1◦C.

Furthermore, permafrost carbon is prognostically generated within the model using

a diffusion-based scheme meant to approximate the process of cryoturbation (Mac-

Dougall and Knutti , 2016). The sediment processes are modelled using an oxic-only

calcium carbonate scheme (Archer , 1996). Terrestrial weathering is diagnosed from

the spin-up net sediment flux and stays fixed at the preindustrial equilibrium value

(Meissner et al. , 2012). Mengis et al. (2020) merged the previous version of the

UVic ESCM and evaluated its performance representing carbon and heat fluxes, water

cycle and ocean tracers. A full description of the model can be found in Mengis et al.

(2020).

3.3.2 Nitrogen cycle

Nitrogen uptake

The new N cycle module was adapted from Wania et al. (2012). The module contains

three organic (litter, soil organic matter and vegetation) and two inorganic (NH4+,

NO3−) N pools. The base structure is based on Gerber et al. (2010) with further

modifications to fit the UVic ESCM scheme. NH4+ is produced both from BNF and

mineralization of organic N, it can be taken up by plants (vegetation), leached, or

transformed into NO3− via nitrification. NO3− is produced through nitrification, and

can be taken up by plants, leached or denitrified into NO, N2O or N2. The inorganic

N is distributed between leaf, root and wood, with wood having a fixed stoichiometry

ratio and variable ratios for the leaf and root pools. Organic N leaves the living pools

via litter-fall into the litter pool, which is either mineralized or transferred to the
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Figure 3.1: Diagram representing the UVic ESCM nitrogen cycle.

organic soil pool, part of this N can be mineralized into the inorganic N pools. At the

same time, N can flow from the inorganic to the soil organic pool via immobilization.

The CN ratios in leaves are determined by Eq. (1):

CNleaf =
Cleaf

Nleaf

, (3.1)

where Cleaf is the carbon content in leafs and Nleaf is the N content in leafs. CNleaf is

one of the most important nutrient limitations in the model. It controls the maximum

carboxylation rate of RuBISCO. Furthermore, it controls vegetation biomass. If leaf

C:N ratio is higher than CNleafmax (the maximum CN ratio parameter) terrestrial

vegetation biomass is reduced.

The new version of the N cycle has been merged with a deep land-surface (MacDougall

and Knutti , 2016) and a new wetland module (Nzotungicimpaye et al. , 2021). Both
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inorganic N pools are transferred between soil layers following ground-water flow.

Given this flow, the distribution of N in layers was taken into account in the uptake

calculations in Eq. (2) and (3), a root fraction was added (4) fixing the amount of

root biomass per PFTs per layer depth. The equations governing N uptake are:

NHUP
4 =

∑
PFT

(
VmaxnCroot [NH4 (av)]Froot

Kn,1/2 + [Nmin (av)]
+ [NH4 (av)] ∗Qt), (3.2)

NOUP
3 =

∑
PFT

(
VmaxnCroot [NO3 (av)]Froot

Kn,1/2 + [Nmin (av)]
+ [NO3 (av)] ∗Qt), (3.3)

where NHUP
4 and NOUP

3 represent the N uptake, the left term is the active uptake

while the right term is the passive uptake (see table 3.1), the latter is the transport

of N via the transpiration water stream. Vmaxn is the maximum uptake rate for N,

Croot is the root carbon biomass, [NH4(av)], [NO3(av)] and [Nmin(av)] are the NH4,

NO3 and mineral N concentrations, Kn,1/2 is the half saturation constant for N and

Qt is the transpiration rate. av represents the available portion of NH4 and NO3 in

soil. This fraction is calculated as the total concentration of NH4 and NO3 divided by

sorption factors (10 and 1 respectively) following Wania et al. (2012). The equation

for root fraction is:

Froot,PFT =
eztop,n/dr,PFT − ezbot,n/dr,PFT

1− eD/dr,PFT
, (3.4)

where Ztop and Zbot represent the top layer and bottom layer depth respectively, while

D and dr are the depth of the soil layer and the root depth. The depth of the soil layer

represents the depth of each specific soil layer. Root depth is a PFT-based parameter

that represents the depth of the roots. Given the multiple soil layer setup, the root

fraction modifies the value of root carbon, creating a more realistic representation of



38

the uptake root depth reaches for each PFT given the multiple soil layer setup.

Denitrification

The N cycle was merged with a wetland module that allowed the estimation of anoxic

fractions for each soil layer, based on Gedney and Cox (2003). The anoxic fraction

is taken to be the saturated fraction of the soil layer that is shielded from O2 by

the saturated soil layer above. The Anoxia representation led to denitrification to be

added to the N model, accounting for the largest exit pathway for N in the terrestrial

biosphere. The anaerobic respiration is estimated from eq. (5):

Ran = KrNO3ftfmCsAf
[NO3(av)]

[NO3(av)] +Kn

, (3.5)

where Ran is the anaerobic respiration, KrNO3 is the ideal respiration rate via NO3

reduction, ft and fm are temperature and moisture functions, Cs is the concentration

of organic carbon, Af is the anaerobic fraction, Kn is the half-saturation of N-oxides

(Li et al. , 2000). The temperature and moisture soil functions are taken directly

from Cox (2001), and are represented by the following equations:

ft = q
0.1(ts−25)
10 , (3.6)

fm =


1− 0.8(S − S0) for S > S0,

0.2 + 0.5( S−SW

S0−SW
) for SW < S S0,

0.2 for S SW ,

(3.7)
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where in ft, q10 = 2 and ts is the soil temperature in ◦C. In fm, S is the soil moisture, SW

is the wilting point of soil moisture, S0 is the optimum soil moisture. Fluxes of N2O

and NO to the atmosphere are computed based on the ‘leaky-pipe’ conceptualization of

soil-nitrogen processes (Firestone and Davidson , 1989). In the leaky pipe conceptual

model N2O and NO leak out of reactions of one species of nitrogen into another,

namely nitrification (NH4 to NO3) and denitrification (NO3 to N2). The size of the

holes is determined by the soil processes. For implementation in the UVic ESCM

the size of the holes is fixed but the partitioning ratio between NO and N2O changes

based on water-filled pore space of the soil layer. The ratio is parameterized based on

an empirical relationship derived by Davidson et al. (2000):

N2O

NO
= 102.6SU−1.66, (3.8)

where SU is the water-filled pore space. Thus, the model produces a total flux of both

NO and N2O for nitrification and denitrification, which is partitioned between the

two species based on the above relationship. The NO flux is added to the atmosphere

and redeposited as part of the N deposition flux. The N2O flux is added to the N2O

pool in the atmosphere which has a characteristic half-life of 90.78 years (Myhre et

al. , 2013). Decayed N2O is assumed to become part of the atmospheric N2 pool.

Mass balance N cycle

In Wania et al. (2012) N cycle module, under N limitation (CNleaf > CNleafmax) the

N available was increased artificially by reducing the leaching by up to 100% and if
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necessary, the immobilization by 50%. These mechanics created an unrealistic increase

of N in soils and thereby, defying the mass balance conservation of the module.

Here, the vegetation can no longer uptake extra N from leaching or immobilization

under nutrient limitation. Instead, under nutrient limitation wood and root carbon

mass is transferred as litter (emulating a dying vegetation) until the correct ratio is

met. Section 2.4 presents a detailed explanation of nutrient limitation for N and P.

Table 3.1: Updated nitrogen cycle module pools, rates and variables.

Variables Units Type Descriptions
NHUP

4 kg N m−2 yr−1 Rate NH4 vegetation uptake
NOUP

3 kg N m−2 yr−1 Rate NO3 vegetation uptake
Croot Kg C m−2 Pool Root carbon

[NH4(av)] kg N m−3 Pool Available NH4 concentration
[NO3(av)] kg N m−3 Pool Available NO3 concentration

Froot - Variable Root fraction
[Nmin(av)] kg N m−3 Pool Available mineral N concentration

Ran kg C m−3 s−1 Rate Anaerobic respiration rate
Cs kg C m−3 Pool Density of soil carbon in each layer
Af - Variable Anaerobic saturation fraction
N2O kg N m−2 yr−1 Rate Nitrous oxide flux
NO kg N m−2yr−1 Rate Nitric oxide flux

3.3.3 Phosphorus cycle

The P cycle is based on Wang et al. (2007, 2010) and Goll et al. (2017) with some

equations where modified from Wania et al. (2012) to have better consistency with N

estimations in the new soil layer model. The module contains four inorganic (labile,

sorbed, strongly sorbed and occluded) and three organic P pools: Vegetation (leaf,

root and wood), litter and soil organic P.
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Table 3.2: Updated nitrogen cycle parameters.

Variables Units Value Description Source
Kn,1/2 kg N m−3 0.003 Half saturation constant for

N uptake
Gerber et
al. (2010)

V maxn kg N (kg root
C−1 )yr−1

Varies with
PFTs

Maximum uptake rate for N Wania et
al. (2012)

D m Varies with
soil layer

Soil layer depth MacDougall
and Knutti
(2016)

Qt m yr−1 Varies with
PFTs

Transpiration rate Wania et
al. (2012)

ztop,n m Varies with
soil layer

Top layer soil depth Avis
(2012)

zbot,n m Varies with
soil layer

Bottom soil layer depth Avis
(2012)

dr m Varies with
PFTs

Root depth Avis
(2012)

KrNO3 10 −9 s−1 5 Soil respiration rate for Ni-
trate respiration

Kn kg N m−3 0.083 Half saturation constant for
N-oxides

Li et al.
(2000)

CNleafmax kg C (kg N)−1 Varies with
PFTs

Maximum CN ratio Wania et
al. (2012)

Input

The P module estimates weathering input following Wang et al. (2010) and is driven

by a fixed estimate (Table 3.3) of P release assigned by soil order divided in 12 classes

from U.S. department of agriculture (USDA) soil order map.

Additionally, an extra input structure was tested in the model but was not used for

the P results in this study. It was implemented to compare the benefits of a static and

a dynamic weathering scheme into the P pool. In this method weathering depends

on runoff following Hartmann et al. (2014) using the lithological world map with

16 different classes generated by Hartmann and Moosdorf (2012). Eq. 9 shows the

estimation of the chemical weathering rate:
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Figure 3.2: Diagram representing the UVic ESCM CNP P cycle. Weathering from
mineral P is the only input into the soils. There are 4 inorganic pools (Dissolved
inorganic, adsorbed, stronged sorbed and occluded P) and 3 organic pools (vegetation
(root, wood and leaf), litter and soil organic matter). As in Wang et al. (2010) the
flux from strongly sorbed P to the occluded pool is not represented here, instead it is
assumed to be a fraction of total soil P.

FCW = biq, (3.9)

bi = bcarbonate + bsilicate, (3.10)

where FCW (t km−2 yr−1) is the chemical weathering rate, q is the runoff (mm yr−1)

and bi is the factor for each lithological class i; shielding correction functions were

not applied. The chemical weathering is defined as the total fluvial export of Ca
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Table 3.3: Constants for P input from Wang et al. 2010. The values change depending
on the weathering state of the soil type. Highly weathered soils have lower values.

Soil order Value (gP m−2 yr−1)
Entisol 0.05

Inceptisol,Gellisol,Histosol 0.05
Vertisol 0.01

Aridisol,Andisol 0.01
Mollisol 0.01

Alfisoil,Spodosol 0.01
Ultisoil 0.005
Oxisoil 0.003

+ Mg + K + SiO2 and carbonate derived CO3, bcarbonate and bsilicate are chemical

weathering parameters associated to carbonate and silicate rocks respectively found

in Hartmann et al. (2014). Here we only apply Wang et al. (2010) approach as

we found it to be more controllable and an advantage to the planned coupling of P

flux from land into the ocean. Hartmann et al. (2014) requires the estimation of

runoff by the model structure. Hence, while representing a dynamical P release it

needs to be carefully assessed so that no extreme overestimation or underestimation

are represented regionally. Wang et al. (2010) approach provides constant input

without variability which in this particular case is favorable.

Inorganic soil phosphorus

Inorganic P (Psoil) in soil follows the dynamics described in (Goll et al. , 2017) in eq.

(11), where each time step a fix fraction (ks) of P is adsorbed and the rest is dissolved

(1-ks). This fraction is based on Hedley fractionation method (Hedley and Stewart

, 1982) which is dependent on soil orders, the dataset has been commonly used to

assess the different P forms in soil. The adsorbed P is regulated by ks in eq. (12) as

determined by the soil order in Hedley dataset:
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dPsoil

dt
= (1−Ks)(Pwea +Plitmin +Porgmin−Pleach−Pup− τsorbPsorb−Pimm), (3.11)

dPsorb

dt
= Ks

dPsoil

dt
, (3.12)

where Pwea is the P released by rock weathering, Plitmin is the P mineralized from the

P litter pool, Porgmin is the P mineralized from the soil organic P, Pleachis the leached

inorganic P, Pup is the P uptake by plants, Psorb is the amount of P sorbed, τsorb is

the rate of strong sorption and Pimm is the P immobilized from the inorganic P pool.

The estimation of Psoil based on Goll et al. (2017), is originally taken from Goll

et al. (2012). Here, the sum Psorb and Psoil constitute the inorganic P pool in soil.

Hence, the loss given by the rate of strong sorption is applied to the total inorganic

P pool. The estimation of occluded P followed Wang et al. (2010) approach, based

in Cross and Schlesinger (1995) the pool was assumed to be 35 % of the total soil P.

Pleach and Pup were determined as in eq. (13), (14) based on an adaptation of Wania

et al. (2012) representation of leaching and uptake of N in the new soil layer model

version:

Pleach = QDPsoil, (3.13)

PUP =
∑
PFT

(
VmaxpCroot[Psoil]Froot

Kp,1/2 + [Psoil]
), (3.14)

where QD is the runoff. Vmaxp is the P maximum uptake rate, Kp,1/2 is the half-

saturation constant for P, Croot is the root carbon and Froot is the root fraction.
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Organic soil phosphorus

After uptake, P is distributed in three vegetation compartments: leaf, root and wood.

Leaf and root have a dynamic value that varies between a minimum and a maximum,

while wood has a fix CP ratio. The vegetation P biomass dynamics is determined

from the difference between the amount of uptake and the loss from litterfall as in eq.

(15) and the litterfall is estimated as the CP ratio of the original model litterfall as

in eq. (16):

dV egp

dt
= PUP − PLF , (3.15)

PLF =
∑
PFT

Litleaf
CPleaf

(1−Rleafp) +
Litroot
CProot

+
Litwood

CPwood

, (3.16)

where Vegp is the vegetation P change over time, PLF is the P litterfall and Litleaf ,

Litroot, Litwood are the carbon litterfall rates for vegetation carbon. The leaf CP ratio

is determined as:

CPleaf =
Cleaf

Pleaf

, (3.17)

where Cleaf is the carbon content in leafs and Pleaf is the P content in leafs. CPleaf

is one of the most important nutrient limitation in the model. The limiting effect of

CPleaf is when its value is higher than the maximum CPleaf ratio parameter CPleafmax.

This leads to biomass reduction. In contrast to CNleaf , CPleaf does not control the

maximum carboxylation rate of RuBISCO. A more detailed description of nutrient

limitation can be found in section 2.4. The litter biomass is added to the P litter pool

(Plit), and its dynamic is based on Wang et al. (2007) as in eq. (18):
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dPLit

dt
= PLF − τlitPlit − Plitmin, (3.18)

Plitmin =
Plit

Psom + Plit

Ptase, (3.19)

Ptase = Utase
λup − λPtase

λup − λPtase + Kptase

, (3.20)

where τlit is a rate constant for litter carbon decomposition (0.42 yr−1), Plitmin is the

biochemical P litter mineralization, Ptase is the biochemical P mineralization rate,

Utase is the maximum rate of P biochemical mineralization, λup is the N plant root

cost to uptake P, λPtase is the critical value of N cost of root P uptake above which

phosphate production starts and Kptase is the Michaelis-Menten constant for biochem-

ical P mineralization. Here, the N cost refers to the N required for protein structures

involved in the metabolization of P in plants. Ptase is a constant value.

The soil litter decomposed is transferred to the soil organic P pool (Psom); the dy-

namics of Psom are adapted from Wang et al. (2007) as in eq. (21):

dPsom

dt
= τlitPlitε− τsPsom − Porgmin, (3.21)

Porgmin =
Psom

Plit + Psom

Ptase, (3.22)

where the first term represents the litter P input, while the other two are the Psom

decomposition and mineralization. ε is a microbial growth efficiency (0.6), τs is the
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rate constant for soil carbon decomposition and Porgmin is the biochemical P mineral-

ization. The immobilization is determined from the NP ratio of the N immobilization

estimated by Wania et al. (2012).

3.3.4 Nitrogen and phosphorus limitation

The N cycle limits the terrestrial vegetation productivity in two distinct ways: the first

limits the photosynthesis efficiency by controlling the maximum carboxylation rate of

Rubisco (Vcmax). The Rubisco enzyme plays a crucial role in the photosynthesis

biochemistry by catalyzing the carboxylation reactions in the Calvin cycle and has

been found to be linearly related to the N leaf content (Walker et al. , 2014). The

original equation for Vcmax takes into account a fix N leaf (Cox et al. , 1999), this

was replaced by Wania et al. (2012) implemented in the first N cycle where it is

replaced by the calculated inverse average canopy leaf C/N ratio (CNinvleaf ), in this

representation the plant productivity is reduced when CNleaf increases. Vcmax is

calculated as:

Vcmax = λCNinvleaf , (3.23)

where λ is a constant of proportionality, 0.004 for C3 and 0.008 for C4 PFTs (Cox et

al. , 1999). N and P both share the second form of limitation, where stoichiometrically

N and P limitation reduce the vegetation biomass. If C:N ratios is too high, wood

and root carbon biomass is transferred to the litter pool until the normal C:N ratio

is reached (See table 3.4).

The model assumes nutrient limitation when the estimated CN and CP leaf ratio is

higher than the maximum CN (CNleafmax) and CP (CPleafmax) ratio in leaves. For

grids with nutrient limitation, the carbon in leaves is reduced to match the maximum
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CN or CP ratios in leaves. The carbon that is reduced is transferred to the litter

pool. This reduction can happen for one or both nutrients until the ratio is met. The

following equations regulate the reduction of biomass based on nutrient limitation:

Cleaflimitedn = NleafCNleafmax, (3.24)

Cleafdiffn = Cleaf − Cleaflimitedn, (3.25)

Cleaflimitedp = NleafCPleafmax, (3.26)

Cleafdiffp = Cleaf − Cleaflimitedp, (3.27)

where Cleaflimitedn and Cleaflimitedp are the carbon concentration in leaves if the system

is considered to be limited. Cleafdiffn and Cleafdiffp are the carbon lost due to nutrient

limitation and their value are the sum in the litterfall equation when the system is in

nutrient limitation.

Table 3.4: Maximum leaf C:P and C:N in the CNP simulation by PFTs.

Variables Broadleaf trees Needleleaf trees C3 C4 Shrubs
CPleafmax 225 250 500 500 450
CNleafmax 70 80 60 80 80

3.3.5 Model runs and validation

The three different terrestrial biogeochemical versions: C, CN and CNP, were run for

a historical simulation from 1850 to 2020. The C version served as a baseline run

representing the original version of the UVic ESCM ver. 2.10 (Mengis et al. , 2020),

the CN version is the modified version of Wania et al. (2012) N model, and CNP

is the newest coupled model that includes P. Historical simulations are forced with

fossil CO2 emissions, dynamically determined land use change emissions, non-CO2
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GHG forcing, sulphate aerosol forcing, volcanic anomalies forcing, and solar forcing.

Furthermore, 24 historical simulations were run to assess the model sensitivity of 6

key parameters (CPleafmax, CNleafmax, Rleafp, Rleafn, Vmaxp, Vmaxn ) in N and P

limitation over terrestrial vegetation. The parameters were perturbed by increasing

and reducing their value by 10 % and 20 % individually. CPleafmax and CNleafmax are

the maximum leaf CP or CN ratios respectively. If the values of CPleaf and CNleaf

are above these thresholds the model will take the system to be nutrient limited by

either P or N. RleafN and RleafP are parameters that represent the resorption of N

and P in leaves. This partly controls the loss of N and P from vegetation to the litter

pool. Vmaxp and Vmaxn are the P and N maximum uptake rates.

It should be noted that the porting of the N cycle from version 2.9 to 2.10 of the UVic

ESCM and later model spin-up, could slightly alter the results presented in Mengis

et al. (2020). Hence, the baseline model is slightly different from the standard UVIC

ESCM ver. 2.10. The N cycle is compared to Zaehle et al. (2010); Li et al. (2000)

and Yang et al. (2009) as well as Wania et al. (2012). The N2O flux was compared

with the Emissions Database for Global Atmospheric Research (EDGAR ver. 6.0,

Crippa et al. (2021)) dataset, it provides emission time series from 1970 until 2015

for non-CO2 GHGs for all countries.

For the P cycle, I used as a benchmark for the carbon cycle the UVic ESCM version

2.10 model calibration values and references, which included the Le Quere et al.

(2018) datasets. The total soil P was calibrated with the He et al. (2021) dataset.

The labile and sorbed pools were calibrated using Yang et al. (2013) P distributions

map dataset. For the use of He et al. (2021) dataset, I transformed the units with

Eq. 28:
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Psoil = Bkdensity ∗ SLD ∗ Pdataset, (3.28)

where Psoil is the total P soil concentration (kg P m−2), Bkdensity (kg m−3) is the

bulk density taken from International Geosphere-Biosphere Programme Data and

Information System (IGBP-DIS) (Global Soil Data Task Group , 2014), SLD (m) is

the soil layer depth and Pdataset (kg P (kg soil)1) is He et al. (2021) dataset. The

foliar stoichiometry was compared to the latitudinal trend from Reich and Oleksyn

(2004) N:P observations.

One of the challenges of modelling nutrients in terrestrial systems is the lack of ob-

servations and validation datasets. Furthermore, the existing range of values for N

and P variables are highly uncertain. This large range in values makes it difficult

to accurately tune models. Although, improvements are in sight, with new artificial

intelligence-derived global datasets beginning to become available (He et al. 2021).

Model validation has been advancing quickly in the last decade (Spafford and Mac-

Dougall , 2021) with tools such as the International Land Model Benchmarking (Col-

lier et al. , 2018) that significantly improves terrestrial model validation. However,

there are limited variables available to compare to nutrient model development. The

increase of the addition of nutrient structures in ESMs (Arora et al. , 2020) suggests

the need of terrestrial nutrient validation tools to improve model accuracy in the de-

velopmental phase. Moreover, a terrestrial nutrient model intercomparison project

would unify global efforts to improve the representation of N and P in ESMs.
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Table 3.5: Phoshorus cycle model pools and variables.

Variables Units Descriptions
Plitmin kg P m−2 yr−1 P litter mineralization
Porgmin kg P m−2 yr−1 P organic matter mineralization
Pleach kg P m−2 yr−1 P leaching
Pup kg P m−2 yr−1 P uptake
Psorb kg P m−2 yr−1 P sorbtion
Pimm kg P m−2 yr−1 P immobilization
[Psoil] kg P m−3 Soil layers labile P concentration
Psoil kg P m−2 Labile P
Litleaf kg C m−2 yr−1 Leaf literfall rate
CPleaf kg C (kg P)−1 CP leaf ratio
Litroot kg C m−2 yr−1 Root literfall rate
CProot kg C (kg P)−1 CP root ratio
Litwood kg C m−2 yr−1 Wood literfall rate
CPwood kg C (kg P)−1 CP wood ratio
Ftase kg P m−2 yr−1 Rate of P biochemical mineralization
Psom kg P m−2 P soil organic matter pool
Plit kg P m−2 P litter pool
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Table 3.6: Phosphorus cycle model parameters.

Variables Units Value Description Source
Ks - Varies with

soil order
Fraction of P sorbed Goll et al.

(2017)
Pwea kg P m−2

yr−1

Varies with
soil order

P flux from weathering Wang et al.
(2010)

τsorb yr−1 0.067 Rate of P strong soil sorp-
tion

Wang et al.
(2010)

Kp,1/2 kg P m−3 0.002 Half saturation constant for
P uptake

Machado
and
Furlani
(2004)

Vmaxp kg P (kg root
C−1 )yr−1

0.46 Maximum uptake rate for P Tuned

Rleaf - 0.5 Leaf P readsorption rate Tuned
Utase kg P m−2

yr−1

0.0001 Maximum biochemical min-
eralization rate

Wang et al.
(2007)

λup kg C (kg P)−1 25 N cost of plant root P up-
take

Wang et al.
(2007)

λptase kg C (kg P)−1 15 Critical N cost of root P up-
take

Wang et al.
(2007)

Kptase kg C (kg P)−1 150 Constant for biochemical P
mineralization

Wang et al.
(2007)

τlit yr−1 0.42 Rate constant for litter C
decomposition

Wang et al.
(2007)

ε - 0.6 Microbial growth efficiency Wang et al.
(2007)

τs yr−1 0.02 Constant for soil carbon de-
composition

Wang et al.
(2007)

λ - Varies with
PFTs

Constant of proportionality Cox et al.
(1999)

CPleafmax kg C (kg P)−1 Varies with
PFTs

Maximum CP ratio Tuned
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3.4 Results and Discussions

3.4.1 Carbon cycle

Land global primary productivity

The global gross productivity in CN and CNP resulted in a better agreement with

the FLUXCOM GPP dataset (Jung et al. , 2019) as shown in Fig. 3.3, with both

CN and CNP overestimating the terrestrial global GPP average less than the baseline

simulation. Compared to the baseline simulation (143 Pg yr−1) both nutrient-limited

model versions showed a reduced mean GPP from the years 2001-2015 with CN at

130 Pg yr−1 and CNP at 127 Pg yr−1. Furthermore, the modifications for the N cycle

in regards to the mass balance changes resulted in the reduction of mean GPP from

129 Pg yr−1 (Wania et al. , 2012) to 122 Pg yr−1 in the 1990s. The GPP distribution

from Baseline, CN and CNP reproduce FLUXCOM dataset values reasonably well

(Fig. 3.4). The seasonal pattern of GPP is also well represented within the UVic

ESCM simulations as shown in Fig. 3.4. The addition of nutrients improves the rep-

resentation of GPP, where CNP had the highest correlation with FLUXCOM GPP

dataset. The high GPP in the baseline simulation can be explained by the overestima-

tion of the vegetation biomass especially broadleaf trees in tropical regions stated in

Mengis et al. (2020). The representation of vegetation biomass is linked to the PFTs

fractions in the model. In the CN and CNP simulations, the reduction of biomass

is critical for the reduction of terrestrial productivity, especially in tropical regions

where P availability has been shown to be a limiting factor for GPP (Du et al , 2020).

Similar to Wania et al. (2012), Bonan and Levis (2010), and Zaehle et al. (2010)

the addition of nutrient limitation in ESM seems to reduce GPP. Furthermore, locally

in Amazonia soils, Nakhavali et al. (2021) found that the inclusion of P reduces

the model GPP and NPP outputs by 5.1 and 4.5% respectively for a site simulation.
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Similar to Nakhavali et al. (2021) I found an overall reduction of GPP in the Amazon

region.

Baseline FLUXCOMCN CNP
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Figure 3.3: Modelled yearly Gross Primary Productivity (GPP) from 2001 to 2015
versus FLUXCOM GPP dataset (Jung et al. , 2019).

The nutrient limitation reduced the amount of land-atmosphere carbon flux in the

simulations. The cumulative land uptake from 1850-2005 was 150 Pg C yr−1 in CNP,

lower than version 2.10 calibration in Mengis et al. (2020) (177 PgC yr−1). This

change in response is crucial for understanding the future dynamics in the Shared

Socio-Economic Pathways Projections as terrestrial vegetation is expected to decrease

its capacity to store carbon in the future (Goll et al. , 2012). Overall, the carbon

feedback values are in concordance with the ranges of the global carbon project used

in Mengis et al. (2020) (Le Quere et al. , 2018) where the cumulative carbon flux

was estimated to be 141 PgC yr−1 from 1850-2005. The atmosphere-to-land carbon

flux follows the GCP dataset (Le Quere et al. , 2018) magnitude closely.

Similar to Wania et al. (2012), I found higher values of NPP for CN (77.4 Pg C

yr1) compared to the baseline simulation (74.2 Pg C yr1). While CNP (72 Pg C yr1)
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Figure 3.4: a. FLUXCOM GPP dataset from 2000-2010, b. Seasonal GPP from 1990-
2015 for Baseline, CN and CNP. c. Second line shows the global GPP from 2000-2010
for Baseline, CN and CNP. d. The third line shows the difference between Baseline,
CN and CNP and FLUXCOM GPP datasets. e. Shows the correlation of Baseline,
CN and CNP to FLUXCOM GPP dataset.
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resulted in lower values, due to the reduction of tropical vegetation biomass. CN and

CNP results are close to the upper range (21.5 to 69.3 Pg C yr1) of simulated NPP

showed in Li et al. (2015). The reduction of tropical biomass mainly in broadleaf

trees carbon is reflected in the fraction of the PFT shown in the model output. Wania

et al. (2012), argued that the reason behind the high NPP was the dependence

of autotrophic respiration on N content in leaf, root and stem which are based on

the original MOSES/TRIFFID version (Cox et al. , 1999). In CN and CNP, the

reduction of wood CN ratios and higher leaf content than in CN and CNP which

fluctuates from a minimum to a maximum value gives place to the reduction of the

maintenance respiration which reduces the autotrophic respiration and consequently

NPP. Furthermore, in the new CNP version while wood CN remains to be fixed the

stoichiometric reduction of wood carbon by the lack of P availability decreases wood

carbon even more especially in tropical forests and other tropical ecosystems.

Atmospheric CO2 concentration

The simulated CNP atmospheric CO2 concentration matches observations very closely

and the addition of N and P has shown an improvement in the representation of

the model accumulation of carbon in the atmosphere. The CO2 concentration has

improved compared to the evaluated 2.10 version of the UVic ESCM where from 1960

to 2010 the simulation deviates above the observed curve (∆78 ppm in the simulation

compared to ∆73 ppm observations; Mengis et al. (2020)). Compared with the CN

and baseline simulations (Fig. 3.5), CNP provides a more accurate representation

of the atmospheric CO2 concentration. Thus the nutrient limitation has effectively

reduced the CO2 fertilization effect on the terrestrial vegetation. Consequently, the

CN and CNP show a larger pool of atmospheric CO2.
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Figure 3.5: Atmospheric CO2 concentration in CNP, CN and baseline simulations
compared to the keeling curve from the Mauna Loa observatory (Keeling et al., 2005;
grey line).

Terrestrial vegetation

Given that tropical forests and savannas are commonly limited by the availability

of P, the simulated vegetation biomass representation is affected by the absence of

nutrient limitation in ESMs. Nakhavali et al. (2021) found that the addition of

P improved the vegetation estimations and the carbon cycle response to rising CO2

for the Amazonian region, basing their study in a site representative for 60% of the

Amazon soils.

In the CNP version of the model, Broadleaf trees coverage declined in tropical and

subtropical latitudes (Fig. 3.6) with the largest changes located in South East Asia,

Africa and South America. The reduction of vegetation biomass ranged from 6-20 %

in South America and Africa, while a higher reduction of 20-30% was present in South

Eastern Asia. The magnitude of continental difference can be attributed to the base

internal vegetation biomass model version bias (Mengis et al. , 2020). Additionally,
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CN and CNP show a shift of coverage where broadleaf trees is taken over by C3 grass.

Needleleaf trees were reduced in North America and Europe. Both CN and CNP

simulations of vegetation carbon resulted in a decrease of vegetation biomass with

456 Pg C and 525 Pg C respectively compared to baseline simulation (594 Pg C),

similar to Zaehle et al. (2010). Overall CNP shows a high correlation with all PFTs

coverage when compared with Poulter et al. (2015) PFTs dataset. In tropical regions,

the UVic ESCM seems to represent vegetation closely to the data (Fig. 3.7, 3.8).
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Figure 3.6: PFTs fractions in the UVic ESCM for 1980-2010, CNP minus baseline.
The bottom last plot shows CNP global biomass distribution.
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The total vegetation carbon is similar to Wania et al. (2012), with tropical forest

having a range from 8-16 kgC m−2 and 4-12 kgC m−2 in temperate and boreal forest

with means of 10.50 and 6.7 kgC m−2 respectively compared to 12-16 kgC m−2 and

4-12 kgC m−2 and means of 13.4 and 7.3 kgC m−2. The latitudinal mean shows a

decrease in the range of vegetation carbon in tropical latitudes of 1-1.5 kgC m−2 and

0.4-0.8 kgC m−2 in northern template latitudes. These results indicate that the main

reduction of vegetation carbon is in the tropics, which agrees with the general N and P

global pattern (Du et al , 2020). Consistent with Wania et al. (2012) the vegetation

carbon outputs are similar to 12.1 kgC m−2 for tropical and 5.7–6.4 for temperate

and boreal forests to Malhi et al. (1999).

3.4.2 Nitrogen cycle

Nitrogen distribution

The soil N ranges from 0 to 1.5kgN m−2 with lower N in the tropics increasing towards

the temperate regions. Globally, the CNP simulated soil N is reduced compared to

the original N structure in the UVic ESCM version 2.9 presented by Wania et al.

(2012). The primary differences between Wania et al. (2012) N cycle and the current

version are the soil layer structure and the stochiometry response to N limitation. In

the former, N could be transferred from other pools when N was outside of the ratio

threshold and thereby be considered to be limiting vegetation.

This result is also lower than the 0 to 4.8 kgN m−2 from IGBP-DIS data base (Global

Soil Data Task Group , 2000). Wania et al. (2012) stated that the N content in the

model is dependent to soil carbon fixed via a fixed CN ratio. Given this, lower carbon

values can lower soil N values in CN simulations. Thereby, lower carbon in soil could

be a strong reason why these results have less N than IGBP-DIS database (Global
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Soil Data Task Group , 2000) and Wania et al. (2012). However, the values of this

study fall within the range of uncertainty. The UVic ESCM estimates a mean BNF

for 2010-2020 of 119 Tg N yr−1. This value is above 35 Tg N yr−1 from Braghiere

et al. (2022) and within the range of 52–130 Tg N yr−1 presented by Barnard and

Friedlingstein (2020)

Vegetation nitrogen

The total amount of vegetation N (2.20 Pg N) was lower than the previous N cycle

(2.94 Pg N, Wania et al. (2012)). These values are similar to Zaehle et al. (2010)

(3.8 Pg N) and Wang et al. (2018) (3.9 PgN) but lower than Li et al. (2000) (16Pg

N) and Yang et al. (2009) (18 Pg N). The tropical (30 to 45gN m2 ) and boreal forest

vegetation N (20 to 35gN m2 ) results are lower than from Wania et al. (2012) (30

to 40gN m2 ), and those of Xu-ri and Prentice (2008) and Yang et al. (2009) (both

studies ranged between of 150 to 400 gN m2)

The global pattern of CN ratio is similar to Wania et al. (2012) structure with the

highest located in tropical regions especially South America and South East Asia.

Tropical forests show a value that ranges from 230-280 C:N (Figure 3.9) compared

to 250-300 C:N to Wania et al. (2012). The reduction in wood carbon in tropics

by P limitation in CNP lowered the C:N ratios. The values simulated are within the

observational range of uncertainty (95-730) stated in Martius (1992).

The distribution of vegetation N resembles the results of Du et al (2020) where N

primary effect in higher latitudes. The PFTs fraction changes show that N mainly

limits North and central America (BR and NL), Chile (BR), Argentinian Patagonia

(BR), North Europe (NL) and East Asia (BR)(Fig. 3.6). However, there seems to be

N limitation in the tropical Africa and Asia in the model simulations. Even though
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the model does not represent co-limitation the stochiometric limitation does seem to

indirectly capture this effect.

N2O fluxes

The multilayer model has allowed the estimations of anoxic regions and hence, a ma-

jor improvement in the model is the quantification of terrestrial N2O flux. Figure 3.10

shows CN and CNP N2O fluxes from 1990 to 2018. Compared to EDGAR version 6

dataset (Crippa et al. , 2021) the UVic ESCM simulates N2O fluxes relatively well,

agreeing mostly in the last 10 years of the values. However, I observed an overesti-

mation from 1990 to 2010. The CN version of the model fits within the lower natural

(Natural soil, Atmospheric N deposition on land) + anthropogenic (Agriculture, Fos-

sil fuel and industry) emission range (8.9 -14.3 Tg N yr−1) given by the global carbon

project (Tian et al. , 2020) while CNP falls just below the lower range value. The

reduction of N in the model system by P effect is shown by these results, the reduc-

tion of vegetation biomass and then litterfall reduces the amount of N transfer to

the N soil pool limiting the natural denitrification. The lack of oceanic production of

N2O in the model makes the comparison with the global total N2O flux impossible

at the moment. The total estimates for N2O emissions being 4.2 to 11.4 Tg N yr−1

anthropogenic and 8.0 to 12.0 Tg N yr−1 natural given by global carbon project (Tian

et al. , 2020). Assuming an ocean output of a mid-range emission (3.4 Tg N yr−1)

the model simulations are close to the lower range of the emission reported with CN

(13.3 Tg N yr−1) and CNP (12.1 Tg N yr−1). Lighting and atmospheric production,

biomass burning (addition of N2O to the atmospheric pool) and post-deforestation

pulse effect are not taken into account in the model structure and that could improve

the fit of the simulation to a mid-range level value.
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3.4.3 Phosphorus cycle

Inputs and losses

The P global weathering rate estimated is 3 Tg P yr−1 similar to 2 Tg P yr−1 in

Wang et al. (2010). Fertilization inputs of 1 Tg P yr−1 (Filipelli , 2002) were

added as an option to the model but were not used for the current simulations and

dust deposition is not accounted for. Hence, the only P input into the system in

this experimental setup comes from rock weathering. Regarding the P weathering

representation Hartmann et al. (2014) approach was tested at first, but Wang et

al. (2010) weathering scheme resulted in a better, simplified and controllable input.

Although, Hartmann et al. (2014) was found to be superior since P input is dynamic,

incorporating model runoff and lithological map distribution. A dynamic P input will

also require a better representation of P losses in order to maintain a steady state.

The P weathering was set so the loss by leaching (3 Tg P yr−1) was in accordance

with the rates of was comparable with to the riverine input stated in Filipelli (2002)

of 4-6 Tg P yr−1. The gap corresponds to anthropogenic inputs not included here, the

pre-industrial P input to the ocean from riverine input is 2-3 Tg P yr−1 and the human

activities, especially agriculture (fertilizers) and water wastes, roughly correspond to

a doubling of the P input.

Land P pools and storages

The total inorganic and organic P values are similar to those shown in the results of

Smil (2000), Mackenzie (2002) and Wang et al. (2010) (Table 3.7), although organic

P is slightly underestimated in the model (3.5 Pg P). This underestimation is likely

the result of the lack of P fertilization on land. The labile, sorbed, strongly sorbed P

and occluded pools are comparable values to Wang et al. (2010).
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Globally the total soil P distribution (Fig. 3.11) is comparable to the He et al.

(2021) dataset, which is one of the few terrestrial P concentrations maps available.

Overall, the model simulates less global P, especially in northern latitudes most likely

due to the oversimplified weathering scheme that underestimated the inputs in higher

latitudes.

Latitudinally, the tropical soils showed the lowest P with the exception of highlands

and mountains while increasing sequentially to the northern latitudes as showed in

He et al. (2021). The labile P shows a similar distribution to Yang et al. (2013)

with tropical regions being relatively depleted compared to other regions due to the

high adsorption and occlusion by the soils.

In contrast with N, P inputs are limited by the mineral (apatite) concentration and

weathering rate rather than biologically fixed. Most of the P is retained by soils

leaving a small labile fraction for biological uptake. Because P mineral weathering

and chemical recycling in the soils are so constraining, the linear model approach for

adsorption based on Goll et al. (2017) might overestimate the impact of adsorption

and occlusion in tropical soils. It is also worth noting that the biological impact

on the adsorption-desorption dynamics is missing in most P modules in ESMs. The

release of P from mineral grains can be enhanced by either the reduction of pH due to

respiration, or the direct addition of organic acids by plants roots Schlesinger (1997).

Phosphorus in vegetation

The terrestrial vegetation shows a slight underestimation in comparison with other

models. The new stochiometry limitation scheme of the model plays an important

role in the vegetation biomass and could be the reason for the underestimated values

especially for tropical regions. However, the range of P in terrestrial vegetation is
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still uncertain with several studies showing a range from 1.8-3.0 Pg P (Smil , 2000).

Although Wang et al. (2010) have dismissed those values as overestimations given

an overall N:P ratio of 10-20 gN gP −1, 3 Pg P is simply too high to be met.

Table 3.7: Phosphorus cycle model pools and values for literature.

Variables Value (Pg P ) References (Pg P )
Total inorganic P 20.8 35-40 Smil (2000)

36 Mackenzie (2002)
26.5 Wang et al. (2010)
13.7 Wang et al. (2018)

Total organic P 3.5 5-10 Smil (2000)
5 Mackenzie (2002)

5.7 Wang et al. (2010)
8.6 Yang et al. (2013)

Labile P 1.4 1.5 Wang et al. (2010)
3.6 Yang et al. (2013)

Sorbed P 1.1 1.7 Wang et al. (2010)
Strongly sorbed P 12 7.6 Wang et al. (2010)

Occluded 6.3 9.0 Wang et al. (2010)
Vegetation P 0.2 0.4 Wang et al. (2010)

0.5 Smil (2000)
0.5 Wang et al. (2018)
0.2 Wang et al. (2018)
0.5 Mackenzie (2002)

P Litter 0.01 0.04 Wang et al. (2010)
0.03 Wang et al. (2018)

The foliar stoichiometry seems to approximately follow the N:P ratio field measure-

ments of Reich and Oleksyn (2004) (Fig. 3.12). The tropical regions show some

underestimated values in the UVic ESCM, the low amount of labile P and the latter

decrease in broadleaf trees biomass could be responsible for the low numbers. Simi-

larly, Nakhavali et al. (2021) show model values of 4-15 gP m−2 for an Amazonian

site which surpasses the results of this study.

A more complex adsorption–desorption scheme might be beneficial to solve the un-

derestimation for tropical latitudes as those regions are heavily sorbed and lose most
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of the input P, even though, the need of a proper global P vegetation dataset is im-

perative to have proper ranges in global distributions. The mechanical reduction of

vegetation stoichiometrically by the model structure might also be too simplistic to

represent P limitation in the tropics.

3.4.4 Parameter sensitivity

I perturbed 6 parameters (CPleafmax, CNleafmax, Rleafp, Rleafn, Vmaxp, Vmaxn ) over

historical simulations to assess the model sensitivity in terms of limitation of N and P.

All of the above parameters play an important role in the nutrient limitation structure

of the model. Pleafmax, Nleafmax control when the stochiometrical limitation is set to

be enforced on terrestrial vegetation and Rleafp, Rleafp, Vmaxp and Vmaxn control the

uptake, litterfall and allocation of nutrients in leaves. In each case, default values were

increased and decreased by 10% and 20% while holding other parameters constant.

The results were compared to model simulations with all parameters held constant

and set to default values. The cumulative atmosphere-land carbon flux was used to

measure the effect of the perturbation since the limitation directly affects this flux.

The results of the sensitivity study show that model sensitivity varies with differ-

ent parameters (Table 3.8). The UVic ESCM is most sensitive to perturbations of

CPleafmax and CNleafmax because both determine directly the threshold by which

vegetation carbon is reduced and nutrient limitation is defined. The model seems to

be most sensitive to changes in CPleafmax. The regulation of this parameter is very

useful to calibrate woody vegetation in tropical regions to improve cover representa-

tion. The other parameters have a lower impact on the atmosphere-land carbon flux

ranging from -3.23% to +1.60%.
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Table 3.8: Cumulative atmosphere-land carbon flux anomaly from baseline (%). The
parameters were perturbed by increasing and reducing 10 and 20 % of their value.

Parameters -20% -10% +10% +20%
CPleafmax -16.04% -3.03% +0.25% +0.26%
CNleafmax -6.46 % -2.10 % +8.63% +12.58%
Rleafp -0.23% -0.12% +0.22% +0.26%
Rleafn -0.98% -0.76% +1.20% +1.60%
Vmaxp -3.23% -0.94% +0.18% +0.22%
Vmaxn -1.30% -1.10% +0.95% +1.45%

3.5 Limitations and applications of the terrestrial

nutrient modules

The UVic ESCM has been a critical tool in developing the cumulative emissions

framework for climate mitigation (Zickfeld et al. , 2009; Matthews et al. , 2009;

Matthews and Weaver , 2009; MacDougall and Knutti , 2016; Mengis et al. , 2018;

Tokarska et al. , 2019) due to its low computations cost and strict enforcement of

matter and energy conservation the model is capable of conducting a host of simulation

beyond the limits of most other models, but with higher resolution than other EMICs

(e.g. Montenegro et al. (2007); Matthews and Caldeira (2008); Keller et al. (2014);

MacDougall and Knutti (2016); MacDougall (2017); Kvale et al. (2021)). As

terrestrial nutrient limitation constrains the carbon cycle in nature, the new N and P

modules allow addressing research questions relating to carbon budgets, carbon cycle

and CH4 feedbacks, carbon dioxide removal and permafrost carbon cycle, among other

questions. Furthermore, the N and P cycles can represent environmental and climate

critical processes such as the release of N2O, agricultural impacts on terrestrial soils

and coastal lines, eutrophication, anoxic events and nutrient fluxes from land to ocean.

A number of limitations have been identified with the developed N and P modules that

relate to the degree of complexity or the lack of large-scale datasets available. Due to
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the lack of global estimates of nutrient pools and fluxes based on field measurements,

many of the parameters or parameterizations in this model are poorly constrained. In

general, these are the following model limitation that is plan to be improved in future

model development projects:

1. The model does not include a dynamic nutrient leaf resorption rate. Under

nutrient limitations, this rate can increase as a strategy to conserve nutrients

(Reed et al. , 2012). Thus, the effect of limitation in the UVic ESCM might be

overestimated.

2. There is a static input of P from weathering. To control the P input I chose

to estimate weathering flux by adding a fixed amount. This oversimplification

could add more uncertainty to the P pools and can be overcome using a runoff-

based weathering scheme. Moreover, I do not account for P atmospheric dust

deposition.

3. The sorption-desorption dynamics of P in soil are oversimplified. We chose Goll

et al. (2017) approach because it was a simpler way to represent this process.

However, a more complex solution might improve the distribution of P globally.

4. The absence of an ocean N2O output. Consequently, I am unable to estimate

the total amount of a dynamically evolving N2O concentration at this time. As

N2O is the 3rd most important greenhouse gas (IPCC , 2022), its incorporation

into the model is a priority.

5. The model does not account for root uptake constraints of N and P on terrestrial

vegetation. This includes spatial representations of mycorrhizal associations and

the carbon cost of nitrogen and phosphorus uptake from soil (Shi et al. , 2016;

Braghiere et al. , 2021, 2022).
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The CNP model is primarily designed to improve carbon cycle feedback under current

and future climate conditions. The use of nutrient limitation improves the land-

atmosphere dynamics. In simulations, this improvement has a significant impact on

atmospheric CO2 concentrations. In future studies, I intend to assess the impact

of nutrient limitation on different SSP scenarios and key carbon cycle benchmark

metrics. Furthermore, the model can be used to improve the vegetation representation

in ESMs. Finally, the CNP model may be used to generate coastal nutrient input and

integrate terrestrial nutrient biogeochemical processes with oceanic processes.
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Figure 3.7: PFTs fractions in the UVic ESCM for 2008-2012, CNP minus Poulter et
al. 2015 PFTs dataset.
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Figure 3.8: PFTs fractions across grid cells in the UVic ESCM for 2008-2012, CNP
correlation to Poulter et al. (2015) PFTs dataset.
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Figure 3.9: Modelled global soil and vegetation N in the CNP version of the UVic
ESCM from 1980-1999. Lower right map corresponds to the soil N from the IGBP-DIS
dataset (Global Soil Data Task Group , 2000)



73

1990 1995 2000 2005 2010 2015
Time(years)

7.0

7.5

8.0

8.5

9.0

Te
rr

es
tri

al
 N

20
 fl

ux
 (T

g 
N

 y
r−

1 )

CNP
CN
EDGAR v6.0, Crippa et al. 2021

Figure 3.10: CNP and CN global soil N2O emissions vs EDGAR version 6.0 N2O
dataset (Crippa et al. , 2021).
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Figure 3.11: Soil and vegetation P global distribution. Modelled total P in soil, total
P in soil as in He et al. 2021, soil P, labile P, vegetation biomass and the difference
between modelled and observational P from He et al. (2021).
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Figure 3.12: Modelled N:P leaf ratios trend vs an empirical relationship derived from
Reich and Oleksyn (2004).
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3.6 Conclusion

The N and P cycles simulated here fit the range of uncertainty shown in datasets and

other modelling efforts. Generally, the simulated values fall into the lower range of

the spectrum. N limits mainly high latitudes, especially in northern regions, but do

show some limitation in tropical Africa and Asia. P limitations are greater in tropical

regions and reduced vegetation biomass compared to the carbon-only version of the

model bringing the model closer in line with observation (Mengis et al. (2020)).

The two nutrient limitations have improved the representation of the atmospheric

carbon concentration in simulations forced with CO2 emissions, using the Keeling

curve as benchmark data. The land-atmospheric flux fits other simulations datasets

and has been reduced fromMengis et al. (2020) values. Overall N and P addition have

improved the carbon cycle feedbacks simulated in historical simulations. The GPP

is lowered especially in the tropics mainly due to the reduction of woody vegetation

biomass.

Many improvements remain to be made in the UVic ESCM structure. In regards to

N cycle denitrification processes that need to be improved, N2O fluxes while in the

same magnitude as observations lack the trend showed in other benchmark datasets.

The complexity of the P cycle could be improved especially the input and sorption

processes. Finally, both N and P cycles could gain accuracy from adding dynamics

leaf re-absorption rates that have been shown to change when nutrient limitation is

present in the ecosystem and that can be used as in Du et al (2020) to clearly map the

limitation pattern. Despite these limitations, the improved model has shown higher

fidelity to observations and is expected to improve projections of the future of key

carbon cycle feedbacks.
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4.1 Abstract

The carbon cycle plays a foundational role in the estimation of the remaining car-

bon budget. It is intrinsic for the determination of the transient climate response

to cumulative CO2 emissions and the zero-emissions commitment. For the terrestrial

carbon cycle, nutrient limitation has a core regulation on the amount of carbon fixed

by terrestrial vegetation. Hence, the addition of nutrients such as nitrogen and phos-

phorus in land model structures in Earth system models is essential for an accurate

representation of the carbon cycle feedback in future climate projections. Thereby,

the estimation of the remaining carbon budget is impacted by the representation of

nutrient limitation in modelled terrestrial ecosystems, yet it is rarely accounted for.

Here, I estimate the carbon budget and remaining carbon budget of a nutrient-limited

Earth system model, using nitrogen and phosphorus cycles to limit vegetation pro-

ductivity and biomass. I use eight Shared Socioeconomic Pathways scenarios and

idealized experiments on three distinct model structures: 1) carbon cycle without

nutrient limitation, 2) carbon cycle with terrestrial nitrogen limitation and 3) carbon

cycle with terrestrial nitrogen and phosphorus limitation. To capture the uncertainty

of the remaining carbon budget, three different climate sensitives were tuned for each

model version. The results of this study show that overall the nutrient limitation

reduced the remaining carbon budget for all simulations in comparison with the car-

bon cycle without nutrient limitation. Between the nitrogen and nitrogen-phosphorus

limitation, the latter had the lowest remaining carbon budget. The mean remaining

carbon budget from the Shared Socioeconomic Pathways scenarios simulations for the

1.5 ◦C target in the no nutrient limitation, nitrogen-limited and nitrogen-phosphorus

limited models obtained were 228, 185 and 175 Pg C respectively, relative to the year

2020. For the 2 ◦C target the mean remaining carbon budget was 471, 373 and 351
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Pg C for the no-nutrient limitation, nitrogen-limited and nitrogen-phosphorus lim-

ited models respectively, relative to the year 2020. This represents a reduction of 19

and 24 % for the 1.5 ◦C target and 21 and 26 % for the 2 ◦C target in the nitrogen

and nitrogen-phosphorus limited simulations compared to the no nutrient limitation

model. These results show that terrestrial nutrient limitations constitute an important

factor to be considered when estimating or interpreting remaining carbon budgets and

are an essential uncertainty of remaining carbon budgets from Earth system model

simulations.



80

4.2 Introduction

Future climate projections have only rarely accounted for nutrient limitation of the

land carbon sink (Wang and Goll , 2021). For the sixth phase of the Coupled Model

Intercomparison Project (CMIP6) this weakness was partially overcome with more

Earth system models (ESMs) embracing nitrogen limitation as a standard for ter-

restrial system structures. However, the inclusion of phosphorus remains rare and

representation of micro-nutrients remains a distant ambition (Arora et al. , 2020;

Spafford and MacDougall , 2021). Thus, the future of the land carbon sink remains

uncertain as projecting the interactions between the terrestrial system and atmosphere

is a challenge without fully accounting for nutrient limitations (Achad et al. , 2016).

Since year 1850, the cumulative CO2 land sink has been estimated to be 210±45 PgC,

which represents 31% of all anthropogenic carbon emissions. The terrestrial carbon

sink has increased historically with increasing CO2 emission rate, such that the pro-

portion of carbon taken up by land has remained close to constant (Friedlingstein et

al. , 2022). Nutrient availability constrains the capacity and rate at which terrestrial

plants assimilate carbon (Goll et al. , 2012). Nitrogen and phosphorus are the nu-

trients that most commonly limit vegetation growth (Filipelli , 2002; Fowler et al. ,

2013; Wang et al. , 2010; Du et al , 2020) and hence have been the subject of most

research and large-scale modelling efforts. Globally, this effect varies. Most of the

terrestrial biosphere is co-limited by both N and P, with N being the dominant nu-

trient limitation in higher latitudes while phosphorus predominates in lower latitudes

(Du et al , 2020). Earth system models are designed to account for land use change,

and biological productivity when estimating the carbon sink on land (Kiwamiya ,

2020). The change of nutrient concentration in terrestrial systems in future simula-

tions is an uncertainty for determining the land carbon sink over the next decades
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(Shibata et al. , 2010, 2015; Menge et al. , 2012). Complicating this problem further,

a large portion of nutrients on land is derived from anthropogenic sources, including

agricultural fertilization (artificial, compost and manure), atmospheric deposition of

N-bearing pollutants, and urban wastewaters (Lu and Tian , 2017; van Puijenbroek

et al. , 2019).

It is likely that the first generation of ESMs simulations overestimated how much

terrestrial ecosystems would respond to an increase in atmospheric carbon dioxide

concentrations based on carbon-only schemes (Wieder et al. , 2015). A large amount

of terrestrial carbon uptake was predicted by those simulations, which would result

in unrealistic nutrient requirements. For example, in a study by Wieder et al. (2015)

ESMs with nitrogen and nitrogen–phosphorus limitation were projected to decrease

net primary productivity by 19% and 25%. Hence, the implementation of nutrient

limitation in ESMs has been shown to improve the representation of carbon uptake

in land (Wang et al. , 2007, 2010; Goll et al. , 2017; De Sisto et al. , 2023), and thus

will affect the carbon budget.

The carbon budgets can be seen from two perspectives, the first describes pools and

fluxes of carbon within the Earth system (Friedlingstein et al. , 2022). This per-

spective serves to understand how natural sinks respond to changes in climate, CO2

and CH4. The second is the remaining carbon budget, which describes the allowable

future CO2 emissions to reach a temperature target, commonly 1.5 and 2 ◦C, which

is derived from another metric, the transient climate response to cumulative CO2

emission (TCRE), which quantifies how global surface temperatures are nearly pro-

portional to cumulative CO2 emissions (Matthews et al. , 2009; MacDougall , 2016;

Spafford and MacDougall , 2020). As TCRE represents the proportionality of cumu-

lative CO2 emission to its accompanying temperature change, its inverse can be used
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to estimate the remaining carbon budget for temperature targets (Matthews et al. ,

2020). The TCRE has been shown to be a good metric for predicting the response

of temperature to cumulative CO2 emissions. However, the TCRE only represented

warming from CO2 emissions, excluding the impacts of non-CO2 forcing agents. A

method to account for this issue is to use simulations with all anthropogenic forcing

and plot the total anthropogenic warming as a function of cumulative CO2 emissions,

also known as effective TCRE (Tokarska et al. , 2018). There is a large uncertainty

in the TCRE estimates, with a likely range from 1.0 to 2.3 K EgC−1 (IPCC , 2021).

For idealized experiments, the Transient Climate Response (TCR) can be used to

quantify the physical uncertainty in TCRE. TCR is the change of temperature at the

time of doubling atmospheric CO2 concentrations (year 70 in a 1pctCO2 experiment).

However, unlike TCRE, the TCR is dependent on the scenario used to compute it

(e.g. MacDougall (2017)). The other important source of variability among TCRE

estimates comes from uncertainties in carbon uptake by the ocean and terrestrial

biosphere.

Terrestrial system nutrient limitation plays a vital role in the estimations of remaining

carbon budgets due to their effect on the carbon cycle. Accounting for phosphorus

limitation in carbon budget estimations is desirable due to its limiting effect at low

latitudes (Du et al , 2020). Hence, P impact on terrestrial vegetation biomass and lim-

itation of carbon sink almost certainly affect the remaining carbon budget estimates.

The remaining carbon budget framework used in this study follows Rojeli et al.

(2018), and assesses how nutrient limitation affects several uncertainties in remaining

carbon budgets estimates, such as the TCRE, the estimated contribution of non-CO2

climate forcings to future warming, the correction for the feedback processes presently

unrepresented by Earth System Models, and response of temperature after emission

have ceased, called the zero emissions commitment (ZEC) (Rojeli et al. , 2018). In
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addition to these four factors knowledge of the human-induced warming to date is

needed to compute the remaining carbon budget. This value is well estimated from

historical records (Arias et al. , 2021). Nutrient limitation can be used to improve

historical warming accuracy in emission-forced ESMs simulations (De Sisto et al. ,

2023). The TCRE represents the response of temperatures to CO2 emissions, hence

different models can represent different remaining carbon budgets based on different

carbon-climate sensitivities. The non-CO2 emissions affect the change of temperatures

and need to be understood to maintain desired temperature targets. Moreover, the

change in temperature after emission cessation is an important dynamic that should

be understood and considered in remaining carbon budget estimations. In future pro-

jections non-CO2 climate forcings are likely affected by the introduction of nutrient

limitation in ESMs. The main impacts include feedback changes due to land carbon

sink and land use change emissions variation (including albedo changes), either by

photosynthesis limitation or the reduction of terrestrial vegetation biomass. These

changes might also impact the expected warming contribution after CO2 emissions

are ceased. Lastly, within this remaining carbon budget framework, N and P consti-

tute an unrepresented sources of Earth system feedbacks that now is accounted in the

present simulations.

A good representation of the carbon cycle response to CO2 increase is vital for an

accurate estimations of the remaining carbon budget for climate policies and man-

agement. The remaining carbon budget estimates need to account for feedback not

usually represented in ESMs. As such, isolating the effects of N and P terrestrial

limitation give a novel insight into how these underrepresented process in terrestrial

systems have contributed to remaining carbon budget uncertainties. It is therefore

important to understand ESMs carbon cycle sensitivity to nutrient limitation con-

strain of the land carbon sink in future simulations. Hence, I explore the effect of



84

terrestrial nitrogen and phosphorus limitation in the remaining carbon budget in an

intermediate complexity Earth system and climate model under historical, idealized,

and Shared Socioeconomic Pathways projections.
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4.3 Methodology

4.3.1 Model description

Simulations to quantify the remaining carbon budgets were carried out with the Uni-

versity of Victoria Earth System Climate Model (UVic ESCM). The UVic ESCM

version 2.10, is a global intermediate complexity model (Weaver et al. , 2001; Mengis

et al. , 2020). The model is comprised of a 3D dynamic ocean circulation model

(Pacanowski , 1995), along with a simplified moisture-energy balance atmosphere

(Fanning and Weaver , 1996), a dynamic-thermodynamic sea ice model (Bitz et al. ,

2001) and a land surface model (Meissner et al. , 2003).

In the model, the terrestrial and oceanic carbon cycles are represented. The ocean

comprises 19 vertical levels that become thicker with depth (50m near the surface to

500m in the deep ocean). Ocean biogeochemistry is based on a simple nutrient-

phytoplankton-zooplankton-detritus model (Keller et al., 2012; Schmittner et al.,

2005), with the representation of ocean carbonate chemistry and sediments (Mengis

et al. , 2020).

In the 2.10 version of the model, the soil is represented by 14 subsurface layers with

their thickness increasing exponentially with depth, with the surface layer measuring

0.1 m, the bottom layer measuring 104.4 m, and the total layer measuring 250 m.

Hydrological processes are active in the first eight soil layers (top 10m), while the

layers below have granitic characteristics. The soil carbon cycle is active up to a

depth of 3.35 m (6 layers) (Avis , 2012; MacDougall et al. , 2012). TRIFFID (top-

down representation of interactive foliage and flora including dynamics) represents

vegetation interaction between 5 functional plant types within the terrestrial vegeta-

tion. Based on the Lotka-Volterra equations (Cox , 2001), broadleaf trees, needleleaf
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trees, shrubs, C3 grasses, and C4 grasses compete for space in the grid. Through

photosynthesis, carbon is uptaken and allocated to growth and respiration, whereas

the vegetation carbon is transferred to the soil through litter fall and allocated to the

soil in a decreasing function of depth. Permafrost carbon is prognostically generated

within the model using a diffusion-based scheme meant to approximate the process of

cryoturbation (MacDougall and Knutti , 2016).

The UVic ESCM prescribes anthropogenic land-use changes based on standardized

CMIP6 land-use forcing (Ma et al., 2020) regridded to the UVic ESCM grids. Land-

use data products have been modified for UVic ESCM use by aggregating cropland

and grazing land into one crop type, representing any of the five functional types of

crops, and one grazing variable, representing pastures and rangelands. By using this

forcing, the model determines the fraction of grid cells that contain crops and grazing

areas, and these fractions are assigned to C3 and C4 grasses and excluded from the

vegetation competition routine of TRIFFID. A full description of the model can be

found in Mengis et al. (2020).

A terrestrial nitrogen and phosphorous model has recently been developed for the

UVic ESCM (De Sisto et al. , 2023). The nitrogen cycle module consists of three

organic pools (litter, soil organic matter, and vegetation) and two inorganic pools

(NH+
4 and NO−

3 ). Biological nitrogen fixation and mineralization of organic nitrogen

produce NH+
4 , which can be absorbed by plants (vegetation), leached, or transformed

into NO−
3 via nitrification. NO−

3 is produced through nitrification, can be taken up by

plants, leached or denitrified into NO, N2O or N2. Inorganic N is distributed between

leaf, root, and wood, with wood having a fixed stoichiometric ratio and leaf and root

pools having a variable ratio. Organic N leaves the living pools via litter-fall into the

litter pool, which is either mineralized or transferred to the organic soil pool, part of
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this N can be mineralized into the inorganic N pools. At the same time, N can flow

from the inorganic to the soil organic pool via immobilization. A complete description

of the nitrogen cycle can be found in Wania et al. (2012) and De Sisto et al. (2023).

The phosphorus module included three inorganic (labile, sorbed and strongly sorbed)

and three organic P pools: Vegetation (leaf, root and wood), litter and soil organic

P. The P input is driven by a fixed estimates of P release per global soil type as in

Wang et al. (2010). Inorganic P (Psoil) in soil follows the dynamics described in Goll

et al. (2017). After uptake, P is distributed in three vegetation compartments: leaf,

root and wood. Leaf and root have a dynamic value that varies between a minimum

and a maximum, while wood has a fix C:P ratio. The vegetation P biomass dynamics

is determined from the difference between the amount of uptake and the loss from

litterfall. The soil litter decomposed is transferred to the soil organic P pool. The

dynamics of P organic matter are adapted from Wang et al. (2007). A complete

description of the P cycle can be found in De Sisto et al. (2023). Nitrogen and

phosphorus limit terrestrial vegetation growth in the model in two different ways: 1)

Nitrogen limits the photosynthetical activity (by regulating the maximum carboxila-

tion rate of RuBISCO) and directly by reducing biomass. This reduction is controlled

by the maximum C:N leaf ratio, where reducing this value corresponds to a larger

reduction of vegetation biomass. 2) Phosphorus only limits vegetation biomass based

on maximum C:P leaf ratios.

4.3.2 Experimental set-up

The effects of nitrogen and phosphorus were analyzed from the perspective of the

sources of uncertainty in the remaining carbon budget estimates. Here, the framework

includes how nitrogen and phosphorus impact the representation of: 1) Model fidelity
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of human warming to date, 2) the TCRE, 3) the unrealized warming from past CO2

emissions (zero emissions commitment) and, 4) the estimated contribution of non-CO2

climate forcings to future warming. I run three different versions of the UVic ESCM

version 2.10: 1) Carbon only (C-only), 2) Carbon Nitrogen (CN) and Carbon Nitrogen

and Phosphorus (CNP). Furthermore, to capture the uncertainty of the carbon budget

estimates the climate sensitivity was tuned using an equilibrium climate sensitivity

parameter designed by Zickfeld et al. (2009) to alter climate sensitivity in the UVic

ESCM by altering the flow of long-wave radiation back to space. Model variants were

tuned to have Equilibrium Climate Sensitivities (ECSs) per doubling of CO2 of 2.0◦C,

4.5◦C to represent the "likely bounds" (IPCC , 2021), as well as using the emergent

climate sensitivity of the model (3.4◦C) as the central estimate.

Historical human-induced warming to date

I conducted three historical simulations to assess the historical climate response dif-

ferences between the C-only and CN and CNP. Each model structure was calibrated

using aerosol scaling so that historical temperatures matches observations. Three-

dimensional aerosol optical depth can be scaled by a fraction in the UVic ESCM and

was used in version 2.10 to calibrate aerosol forcing to fit current values (Mengis et

al. , 2020). Thus the historical warming to date is similar for all model variants but

the estimated historical emissions vary, allowing model validation.

Transient climate response to cumulative emissions

To diagnose the TCR and the TCRE, I run simulations starting with a 1% yr−1 in-

crease in CO2 concentrations until a doubling and quadrupling(2x and 4xCO2) were

reached after which the concentration was kept constant (Eyring et al. , 2016). Both



89

TCR and TCRE are computed at year 70 of this 1pctCO2 experiment, when atmo-

spheric CO2 concentration has doubled. To account for non-CO2 forcing effect on

climate sensitivity, I applied Tokarska et al. (2018) approach to compute effective-

TCRE. Using a SSP 5-8.5 a high emission scenario I determined the response of

temperature to cumulative emissions including all forcing accounted in the SSP sce-

nario.

Zero emissions commitment

To explore the effects of nutrient limitation on zero emission commitment, an ex-

periment following the Zero Emission Commitment Model Intercomparison Project

(ZECMIP) protocol was conducted (Jones et al. , 2019) for C-only, CN and CNP.

For these experiments the 1pctCO2 experiment is followed until diagnosed cumulative

emissions of CO2 reaches 1000 PgC thereafter emissions are set to zero further CO2

emissions. I diagnosed three emissions pathways corresponding to C-only, CN and

CNP simulations. I used two metrics to assess the nutrient limitation effect on ZEC.

The first is the temperature at the 50th year after emissions have ceased relative to

the global average temperature when emissions ceased, averaged from year 40 to year

59 after emissions cease (ZEC50) as in MacDougall et al. (2020). The second is the

mean ZEC for 100 years after emissions have ceased.

Estimated contribution of non-CO2 climate forcings to future warming

To estimate the impact of nutrient limitation on the contribution of non-CO2 climate

forcings to future warming, eight SSPs scenarios for the C-only, CN and CNP ver-

sion of the UVic ESCM version 2.10 were run. I included the CMIP6 SSPs array

scenarios representing each distinct future (1-5) narrative. The following scenarios

were run: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4-OS
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and SSP5-8.5. SSP1 represents a low challenge scenario for mitigation and adapta-

tion, where both social and energy aspects evolve so that the anthropogenic climate

impact decrease in the future. SSP2 described a future of medium challenges where

the change of society and technology is not remarkably different from the historical

baseline. SSP3 and SSP5 describe a high challenge to mitigation, the difference be-

tween the two being that SSP3 described high challenge for adaptation while SSP5

does not. SSP4 describes a scenario where there a low challenges for mitigation but

there are high challenges for adaptation.

The carbon budget follows temperature anomalies normalized to 1850-1900 mean for

1.5, 2, 2.5 and 3 ◦C targets. For the four overshoot scenarios (SSP1-1.9, SSP1-2.6,

SSP4-3.4, and SSP5-3.4-OS) the remaining carbon budget is computed for the time

when the target is first breached. To estimate the effect of nutrient limitation in

land use change emissions and terrestrial albedo an extra set of three simulations for

C-only, CN and CNP and the same eight SSP scenario simulations were conducted.

In these simulations land use change forcing was set to the pre-industrial year 1850

value. The model adjusts its diagnosed CO2 emissions to account for the missing

forcing. Hence, the diagnosed emission difference between the simulations with land

use change forcing and without forcing corresponds to the estimated amount of land

use change emissions (Mengis et al. , 2018) These values also carry the effect of albedo

change due to land use change. Hence, the UVic ESCM model values show the total

land use change emission + albedo effect simulated in the model.
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4.4 Results

4.4.1 Historical human-induced warming to date

For each model structure, the historical temperature was calibrated to match historical

observations by altering the efficacy of aerosol forcing. Figure 4.1 shows the resulting

near-surface air temperature anomalies for UVic ESCM C-only, CN, and CNP con-

figurations after calibration relative to 1951-1980 climate normal. The temperature

anomalies were plotted against GISS near-surface air temperature anomalies relative

to 1951-1980 (GISTEMP Team , 2023). For the three different versions of the model,

the resulting calibrated simulations reproduced well the historical temperature trend

when compared to GISS observations. As shown in De Sisto et al. (2023) without

calibration the UVic ESCM CN and CNP have higher temperatures when compared

to C-only, given that nutrients limit the capacity of the terrestrial system to uptake

atmospheric CO2. That is, atmospheric CO2 is higher given the same total emissions

of CO2. Between CN and CNP, CNP results in higher temperature response mainly

as a result of tropical terrestrial nutrient limitation and extra phosphorus limitation

in higher latitudes.

Figure 4.2 shows the historical global carbon cycle from 1850-2021 for C-only, CN

and CNP. There are two main impacts of nutrient limitation on terrestrial systems:

1) reduction of the land carbon sink and 2) reduction of the land use change emissions.

The reduction of the land carbon sink is related to the decrease of the photosynthetic

capacity and the regulation of terrestrial vegetation biomass. This biomass reduc-

tion leads to the reduction of land use change emissions, especially as N and P affect

woody biomass greatly. The global reduction of carbon uptake increases the concen-

tration of CO2 in emission-driven simulations. Following this logic and given that
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concentration-driven simulations have a set atmospheric CO2 concentrations, the di-

agnosed emissions estimated in the UVic ESCm simulations were reduced in CN and

CNP compared to C-only. The model estimates less emissions to be necessary to

keep the CO2 concentration on track as less carbon is uptake from land. In order

to be comparable to the latest carbon budget report, the estimation of the histor-

ical carbon cycle follows carbon fluxes from 1850-2021 while the estimation of the

remaining carbon budgets starts from the year 2020 following different future SSPs

scenarios pathways. From 1850-2021 (Figure 4.2) the range of reduction in the CN

and CNP nutrient-limited simulations for the cumulative land carbon sink was 75 to

106 Pg C compared to C-only. The range of reduction for cumulative land use change

emission was 60 to 93 Pg C. Finally, the range of reduction of the cumulative carbon

emissions diagnosed by the concentration-driven simulations was 11 to 29 Pg C. The

CNP cumulative fossil fuel CO2 emissions of 483 PgC is within the value of 465±25

PgC given by Friedlingstein et al. (2022) while C-only and CN are slightly over the

estimate with 501 and 512 PgC (Figure 4.2).

4.4.2 Transient climate response to cumulative CO2 emissions

The TCR for doubling CO2 concentrations was 1.78, 1.79 and 1.79 ◦C in C-only, CN

and CNP. Corresponding to a small difference, driven by albedo changes. Between

CNP and CN, the albedo change has a small increase effect of 0.004 ◦C in CNP

compared to CN (note the UVic ESCM lacks internal variability, so this very small

difference is computable). The TCRE for C-only resulted in 1.74 K EgC−1 compared

to CN 1.94 K EgC−1 and CNP 2.07 K EgC−1. The TCRE values for all the simulations

are within the range of 1 - 2.3 K EgC−1 given by the IPCC AR6 Summary for Policy

Makers (IPCC, 2021). Under a 1% atmospheric CO2 increase per year experiment,

nutrient limitation has a heavy restriction on terrestrial vegetation uptake due to much
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faster rise in CO2 relative to the historical trajectory (MacDougall et al. , 2019). If

vegetation were free to uptake carbon, in such a steep increase scenario terrestrial

plants are expected to increase biomass as a corresponding response. However, the

limit of uptake given by the concentration and availability of nutrients regulate the

rate at which vegetation metabolizes carbon. Hence, despite the high concentration

of CO2 in the atmosphere, terrestrial vegetation is constrain nutrient limitation. The

effective TCRE estimated from SSP5-8.5 resulted in 1.97, 2.27 and 2.36 K EgC −1 for

C-only, CN and CNP. Overall the TCRE and effective TCRE were increased in the

nutrient-limited simulations. The range of increase for TCRE was: 0.2 to 0.3 K EgC

−1. The range of increase of the effective TCRE was: 0.3 to 0.4 K EgC −1. Figure

4.2 shows how terrestrial carbon cycle fluxes change in historical simulations. Due to

these changes the diagnosed CO2 emissions are reduced, hence, for any temperature

target less CO2 emissions need to be emitted in the nutrient-limited simulations. This

translates into a more sensitive models, where for 1000Pg C emitted, the nutrient

limiting simulations are going to result in higher temperatures.

1880 1900 1920 1940 1960 1980 2000 2020
Year

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔT
 r.

t. 
19

51
-8

0 
(°

 C
)

Historical temperatures
CNP
CN
C only

Figure 4.1: Historical temperature relative to 1951-1980 of C-only, CN and CNP
compared to GISS historical temperature dataset (GISTEMP Team , 2023).
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Figure 4.2: Historical 1850-2021 cumulative land carbon sink, ocean sink, land use
change emissions and diagnosed CO2 emissions simulated compared to Friedlingstein
et al. (2022).
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4.4.3 Zero Emission Commitment

To analyze the impact of nutrient limitation in zero-emission scenarios, ZECMIP type

experiments were conducted in C-only, CN and CNP. Figure 4.3 show the temper-

ature anomaly relative to the estimated temperature at the year of cessation. The

temperature pattern in the 100 years following cessation is similar for all the model

structures. There is an initial rise of temperature around the 20th year and a quick

decline on the 35-40th year, followed by an increase around the 70-80th year. A dif-

ference between C-only and CN and CNP is that the C-only simulation increase is

lower than the nutrient-limited simulations. The overall ZEC value is higher in CNP

and CN than in C-only. For CN and CNP the ZEC50 value resulted in 0.07 and 0.09

◦C compared to 0.02 ◦C in C-only. These values are similar to the ZEC50 of 0.03 ◦C

shown in MacDougall et al. (2020) for the same model. The ZEC across 100 years of

simulation after emission has ceased show a larger difference in temperature change

after emission has ceased. C-only resulted in 0.05 ◦C compared to 0.17 ◦C in CN and

0.21 ◦C in CNP. This represents a relevant increase of temperature after emissions

have ceased in the nutrient-limited simulations.

4.4.4 Estimated contribution of non-CO2 climate forcing to

future warming

In this section, I assessed the remaining carbon budget variability between different

nutrient limitation model structures in the eight SSPs used in CMIP6. Furthermore,

the emphasis was to show the role of N and P representation in remaining carbon

budget estimates from different future scenarios. Figures 4.3, 4.4, 4.5, 4,6, 4.7 and

4.8 show the resulting remaining carbon budgets for SSP 1-1.9, 1-2.6, 2-4.5, 3-7.0,

4-3.4, 4-6.0, 5-3.4 and 5-8.5. Among these projections, not all reached the 1.5, 2,
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2.5 and 3 ◦C targets. SSP1-1.9 and SSP1-2.6 only reached the 1.5 ◦C target, SSP

4-3.4 and SSP 5-3.4 only reached the 2 ◦C target, SSP 2-4.5 reached the 2.5 ◦C target

and SSP 3-7.0, SSP 4-6.0 and SSP 5-8.5 reached the 3 ◦C target. The remaining

carbon budget estimates and the SSP temperature anomalies can be seen in more

detailed in Appendix A1, A2, A3, B1, B2 and B3. Overall, the application of nutrient

limitation increased the TCRE and hence, decrease the carbon budget for all set

targets. As expected, among CN and CNP simulations phosphorus limitation reduced

the remaining carbon budgets. The mean remaining carbon budgets estimated among

the SSPs simulations for ECS 3.4 [ECS 4.5 to ECS 2] in the C-only, CN and CNP for

1.5 ◦C target were: 228[31 to 291], 185[25 to 259] and 175[9 to 223] Pg C respectively.

For the 2 ◦C target the mean remaining carbon budget were 471[205 to 554], 373[154

to 479] and 351[137 to 402] Pg C for the C, CN and CNP configurations respectively.

The remaining carbon budgets for the 2.5 ◦C target were 719[378 to 869], 591[321

to 725] and 596[315 to 673] Pg C. Finally, the remaining carbon budgets for the 3

◦C target were 974.4[546 to 1174], 798[460 to 986] and 796[467 to 920] Pg C. This

represents a reduction of 19 and 24 % for the 1.5 ◦C target, 21 and 26 % for the 2 ◦C

target, 18 and 17% for the 2.5 ◦C target and finally 18 and 19 % for the 3 ◦C target

in CN and CNP compared to C-only.

One of the impacts of nutrient limitation is in the change of land use change emissions

corresponding to the reduction and change of vegetation. I found that the mean land

use change emission budget among SSPs simulation from year 2020 to the 1.5 ◦C tar-

get in the ECS 3.4[ECS 4.5 to ECS 2] were: 31[2 to 39], 20[2 to 40] and 13[1 to 23] Pg

C for C-only, CN and CNP respectively (Figure 4.9). Corresponding to a reduction of

11.2 and 18.4 Pg C in CN and CNP compared to C-only. These results demonstrate

that the remaining carbon budgets is clearly sensitive to the availability of nutrients

represented in SSPs model simulations. As shown in figures 4.2,4.3,4.4,4.5,4.6,4.7
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and 4.8 the remaining carbon budgets vary between the SSPs scenarios as temper-

ature rises are affected by non-CO2 forcings, corresponding to socioeconomic global

uncertainties. Furthermore, the land carbon cycle in this case nutrient limitation,

represents an implicit uncertainty under these different socioeconomic projections.
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Figure 4.3: Zero Emissions Commitment following the cessation of emissions during
the experiment wherein 1000 PgC was emitted following the 1pctCO2 experiment.
ZEC is the temperature anomaly relative to the estimated temperature at the year
of cessation. Note the UVic ESCM lacks internal variability. The rapid changes in
global temperature seen in the top panel are due to disruptions to the ocean meridional
overturning circulation (Mengis et al. , 2020)
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Figure 4.4: Carbon budgets for the 1.5 ◦C target for SSP 1-1.9 and 1-2.6. Three model
sensitivities are shown as: ECS 4.5 dark blue, ECS 3.4 green and ECS 2 orange.
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Figure 4.5: Carbon budgets for the 1.5 and 2 ◦C targets for SSP 2-4.5, 3-7.0 and 4-3.4.
Three model sensitivities are shown as: ECS 4.5 dark blue, ECS 3.4 green and ECS
2 orange.
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Figure 4.6: Carbon budgets for the 1.5 and 2 ◦C targets for SSP 4-6.0, 5-3.4 and 5-8.5.
Three model sensitivities are shown as: ECS 4.5 dark blue, ECS 3.4 green and ECS
2 orange.



102

0 200 400 600 800 1000 1200 1400 1600

CNP 2.5°C

CN 2.5°C

C only 2.5°C

SSP 2-4.5
ECS 4.5
ECS 3.4
ECS 2

0 200 400 600 800 1000 1200 1400 1600
CNP 3°C

CN 3°C
C only 3°C
CNP 2.5°C
CN 2.5°C

C only 2.5°C
SSP 3-7.0

ECS 4.5
ECS 3.4
ECS 2

0 200 400 600 800 1000 1200 1400 1600
CNP 3°C

CN 3°C
C only 3°C
CNP 2.5°C
CN 2.5°C

C only 2.5°C
SSP 4-6.0

ECS 4.5
ECS 3.4
ECS 2

0 200 400 600 800 1000 1200 1400 1600
Pg C

CNP 3°C
CN 3°C

C only 3°C
CNP 2.5°C
CN 2.5°C

C only 2.5°C
SSP 5-8.5

ECS 4.5
ECS 3.4
ECS 2

Figure 4.7: Carbon budgets for the 2.5, 3 ◦C targets for SSP 3-7.0, 4-6.0 and 5-8.5.
These were the only scenarios that reached the targets. Three model sensitivities are
shown as: ECS 4.5 dark blue, ECS 3.4 green and ECS 2 orange.
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Figure 4.8: Mean SSP carbon budgets for the 1.5 and 2 ◦C temperature targets.
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Figure 4.9: Mean SSP carbon budgets for Fossil Fuel (FF) and LUC emissions for the
1.5 ◦C temperature target.

4.5 Discussion

In nature, N and P limitation or co-limitation has a core regulation on vegetation

productivity. Hence, it is expected that the inclusion of both in ESMs improves the

presentation of vegetation productivity and biomass representation. Being core reg-

ulators of terrestrial vegetation, adding N and P in model structures influences the
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carbon dynamics in terrestrial systems. These changes include: 1) vegetation biomass,

2) vegetation distribution, 3) primary productivity, 4) land use change emissions and,

5) terrestrial albedo. In the UVic ESCM version 2.10, the vegetation biomass, dis-

tribution and productivity were addressed in (De Sisto et al. , 2023), while land use

change emission and albedo remained unexplored. In this study, land use change

emission accounts for albedo changes due to plant functional types changes in model

simulations. As the model reduces vegetation due to nutrient limitation and trees are

replaced by grassed, the land surface albedo is increased. Hence, CNP and CN has a

larger albedo value than C-only for land. I have identified that a terrestrial system

stressed with nutrient limitation reduces the land use change emissions budget and

increases land surface albedo.

The terrestrial carbon cycle in nutrient-limiting model structures is usually suppressed

by the capacity of primary producers to uptake carbon, either by controlling the

photosynthesis or reducing the biomass directly by setting maximum nutrient ratios

boundaries. In this case the terrestrial nitrogen and phosphorus act as a limiting

factor for terrestrial vegetation by restricting the photosynthesis (N) and by reducing

the biomass given a set ratio value (N and P). N and P control biomass directly by the

maximum C:N or C:P leaf ratio threshold. The lower the set ratio is the higher impact

will the nutrients have. When the diagnosed C:N or C:P leaf ratios are higher than the

set maximum leaf ratio, the vegetation biomass dies so that the leaf ratios decrease

back to the maximum ratio threshold. The nutrient limitation is also different for

plant functional types and hence, the change in vegetation biomass is dependent on

differences among the limitation applied to each PFTs. Therefore, the application of

multiple nutrient-limiting stressors such as nitrogen and phosphorus should be applied

carefully as a high limitation of phosphorus can easily underestimate the land sink

capacity of tropical vegetation.
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It is clear then that the representation of the carbon cycle in model structures affects

the estimation of the remaining carbon budgets. Permafrost thawing for example has

been studied for its carbon budget reduction effect in ESMs (MacDougall and Knutti

, 2016; MacDougall et al. , 2021). In this study, the effect of the terrestrial carbon

dynamics has a direct impact on the reduction of the remaining carbon budgets.

The impact of nitrogen and phosphorus limitation due to the reduction of the land

carbon sink should be explicitly considered as a variable that can reduce the remaining

carbon budgets for any temperature target. Furthermore, a significant number of

socioeconomic uncertainties exist in the remaining carbon budget estimates, including

the inability to predict future levels of carbon dioxide emissions based on sociopolitical

system dynamics and technological advancements, such as the one represented in the

different Shared Socioeconomic Pathways. Hence the carbon budgets are ultimately

linked to the rate of emissions and the measures taken to mitigate carbon emissions

in the future (Matthews et al. , 2020).

The IPCC AR6 (IPCC , 2021) reports remaining carbon budget estimates from 2020

of 245, 177, 136, 108 and 82 PgC for the 1.5 ◦C target with a probability of 17, 33, 50,

67 and 83% respectively. Compared to the 50% of probability of 136 PgC, the UVic

ESCM nutrient limited model simulations, CN 185 PgC and CNP 175 PgC estimated

a closer value than the C-only 228 PgC. C-only tending more to the 17% probability

value. Hence, nutrient-limited simulations bring the estimate from the UVic ESCM

closer to the multi-model mean.

As shown in this study the representation of carbon processes can affect the estimation

of remaining carbon budgets in ESMs. As unrepresented processes in other models

nitrogen and phosphorus limitation reduced the estimated remaining carbon budget in

CN and CNP by 43 and 53 PgC for the 1.5 ◦C target and 98 and 120 PgC for the 2 ◦C
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target when compared to the C-only simulation. These estimations are larger than

the roughly estimate of 27 PgC reduction of carbon budgets due to unrepresented

carbon feedbacks (Rojeli et al. , 2018), suggesting that this value may have been

underestimated in the IPCC 1.5◦C report.

The TCRE shows that nitrogen and phosphorus limitation had a direct effect on the

temperature-to-carbon emission proportionality. The nutrient limitation on biomass

and photosynthesis has a direct impact on the temperature-to-carbon emission pro-

portionality. Mainly impacting the carbon fluxes, reducing the land carbon sink and

increasing the ocean carbon sink, leading ultimately to a net decrease of the carbon

uptake from land and ocean. In emission-driven simulations, this will lead to a high

buildup of atmospheric CO2. Although, it is clear that more understanding of nutri-

ent distribution is necessary to build even more reliable nutrient-limited models. The

effort should be directed towards the creation of reliable data including global nutrient

distribution, global nutrient inputs and future fertilization projections encompassing

agriculture and human waste load into terrestrial, riverine and aquatic systems.

The inclusion of P in ESMs and the benefits of CNP models have been shown to

improve the accuracy of the terrestrial carbon cycle (Wang et al. , 2010; Goll et

al. , 2017; De Sisto et al. , 2023). However, the necessity of models of including

P in their structures is debatable. If the objective is to improve the carbon cycle

accuracy the inclusion of P is advisable for its limiting role in tropical regions. From

a carbon budget estimations view, I observed similar results for CN and CNP. Overall,

the results of this study show that the remaining carbon budgets estimated in CNP

simulations were lower than CN. In SSPs were this was not the case, a medium

or high land use regulation was implicit in the scenario. Hence, one of the main

differences between CN and CNP models is how the model responds to land use
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change management in different future projections scenarios. The inclusion of P in

ESMs has been shown to improve the terrestrial model performance and hence, I

believe that the addition of P limitation should be thought in the development plans

of different model working groups.

4.6 Conclusion

The remaining carbon budgets are crucial for climate policy and management. As the

remaining carbon budgets are intrinsically linked to the TCRE and the dynamics of

the global carbon budget, it is important to consider the uncertainties that nutrient

limitation has on model terrestrial model structures. In this study, I found that

nutrient limitation, in this case N and P had a considerable effect on the remaining

carbon budget estimates. Historically, N and P limitations reduced the land carbon

sink and land use change emission. The range of reduction of land carbon sink was:

75 to 106 Pg C and the range of reduction for the land use change emission was: 60

to 93 Pg C. Overall under the Shared Socioeconomic Pathways, N and P reduced the

remaining carbon budgets estimates for 1.5, 2, 2.5 and 3 ◦C targets. CN and CNP

showed a reduction of 43 and 53 Pg C for the 1.5 C target and 98 and 120 Pg C

for the 2 C target, respectively when compared to C-only. Theses values represent a

reduction of 19 and 24 % for the 1.5 ◦C target, 21 and 26 % for the 2 ◦C target. After

emission has ceased N and P had a relevant impact on the temperature change, the

ZEC across 100 years of simulations after emission have ceased showed an increase

in temperature for the nutrient-limited simulations CN and CNP of 0.12 and 0.16 ◦C

when compared to C-only. The uncertainty of the magnitude of the reduction in the

remaining carbon budget from nutrient limitation will be more clear if a multimodel

assessment is conducted. Overall I assess that accounting for nutrient limitations will
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lead to a substantial reduction in the estimated remaining carbon budget.



Chapter 5

Projecting atmospheric N2O rise until

the end of the 21st century

Preface.

A version of this chapter has been submitted for publication in Environmental Research

Letters. I am the primary author. Along with Co-authors, Andrew MacDougall,

Christopher Somes and Angela Landolfi. I developed the model code for the terrestrial

N2O dynamics and coupled the existing ocean N2O module into the current model

structure. I have carried out the simulations and validations of the model outputs. I

have prepared the first draft of the manuscript and subsequently revised the manuscript,

based on the feedback from Co-authors. As Co-author, Andrew MacDougall assisted

in the development of the concept and provided supervisory feedback by reviewing and

revising the manuscript. Christopher Somes contributed in the calibration of the model

and provided feedbacks to the manuscript. Angela Landolfi developed the ocean N2O

module and contributed by providing feedbacks to the manuscript.
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5.1 Abstract

Nitrous Oxide (N2O) is a potent greenhouse gas with a centennial-scale lifetime that

contributes significantly to global warming. It is emitted from natural and anthro-

pogenic sources. In nature, N2O is released mainly from nitrification and denitrifi-

cation from the ocean and terrestrial systems. The use of agricultural fertilizers has

significantly increased the emission of N2O in the past century. Here I present, to

my knowledge, the first coupled ocean and terrestrial N2O modules within an Earth

System Model. The coupled modules were used to simulate the six Shared Socioe-

conomic Pathways scenarios with available nitrogen fertilizer inputs. The results of

this study are compared to projections of atmospheric N2O concentrations used for

SSPs scenario experiments. Further simulations were prescribed with this available

N2O concentrations. I report three main drivers for terrestrial N2O uncertainties:

atmospheric temperature, agricultural fertilizers input and wetland extent. I project

an atmospheric N2O concentration range from 401 to 418 ppb in six SSPs simulations

with a robust lack of sensitivity to equilibrium climate sensitivity. I found a large dif-

ference between the results of the low emission scenarios N2O concentrations by 2100

in this study compared to the concentration provided for SSPs experiments. This gap

is likely explained by strong mitigation assumptions that were not accounted for in

this study, which would require a substantial decrease of agricultural N2O emissions,

and the lack of atmospheric N2O dynamics. The coupled model and the simulations

prescribed with N2O concentrations showed a difference between -0.02 and 0.09 ◦C

by 2100. The UVic ESCM simulation shows a lack of sensitivity to climate mitiga-

tion efforts projecting similar N2O concentration in low and high mitigation scenarios.

Further improvements in Earth system models should focus on the impact of oxygen

decline on N2O dynamics in the ocean and the representation of anaerobic soils and
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agricultural dynamics on land, including mitigation methods on nitrogen fertilizers.

5.2 Introduction

Despite carbon dioxide being the largest contributor to anthropogenic climate warm-

ing, other naturally occurring but anthropogenically produced greenhouse gasses,

such as methane and nitrous oxide (N2O), also contribute substantially to warming

(Montzka et al. , 2011; Tian et al. , 2016; IPCC , 2022). N2O is a powerful greenhouse

gas with a lengthy lifetime and a strong global warming potential. It is removed from

the atmosphere slowly with a lifetime of about 120 years (Prather et al. , 2015), an

order of magnitude longer than the lifetime of CH4 but far shorter than CO2 (IPCC ,

2022). In nature, N2O is released as an intermediate product during nitrification and

denitrification in terrestrial and aquatic ecosystems, both of which are mediated by

microorganisms (Fowler et al. , 2013). Total N2O emissions are enhanced by anthro-

pogenic activities including agriculture, industry (chemical processing), wastewater

management and fossil fuel combustion (Tian et al. , 2016; IPCC , 2022).

The release of N2O during nitrification occurs as a product of the intermediate com-

pound HNO during oxidation of NH2OH to NO2. NH4 is oxidized to NO−
2 via NH2OH,

followed by a the oxidation of NO−
2 to NO−

3 (Caranto and Lancaster , 2017). During

denitrification NO−
3 is converted into gaseous nitrogen compounds such as N2O, NO,

and N2. NO−
3 is reduced to NO−

2 , followed by NO, N2O, and N2 (Scheer et al. ,

2020). Nitrogen oxides serve as electron acceptor during the process, similar to the

electron transport chain involved in aerobic respiration. There are four stages in-

volved in denitrification: reducing nitrates, reducing nitrites, reducing nitric oxides,

and reducing nitrous oxides. They are catalyzed by a specific reductase enzyme. An

incomplete process results in the emission of NO and N2O (Chen and Storus , 2012).
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The emission of intermediates is caused when electron fluxes are unbalanced over the

four subsequent steps of denitrification or when incomplete pathways are expressed

or present in denitrifying organisms (Ward , 2012). Multiple promoters regulate gene

expression during the induction of the denitrification pathway after oxygen depletion.

Despite of the fact that many types of bacteria have similar promoters, the exact

mechanism of regulation varies from one species to another. Specific environmental

factors such as oxygen and nitrogen oxide concentrations, as well as metal ions, affect

gene expression (Carreira et al. , 2018).

A large portion of atmospheric N2O is photolyzed at ultraviolet wavelengths around

200 nm, in the stratosphere. The photodissociation of N2O is important for the

photochemical balance of ozone and is the major contributor to NOx species in the

stratosphere (Nishida et al. , 2004). The lifetime of N2O is therefore associated

to the photolysis rate of N2O in the stratopshere. Considering the Brewer-Dobson

circulation that describes tropospheric air ascending in tropical stratopshere, where

photochemical reaction takes place and later distribution across latitudes with descent

in mid-high latitudes, the increase of N2O abundances are expected to reach higher

stratospheric altitudes leading to increase photochemical destruction (Prather et al.

, 2023). Consequently, the lifetime of N2O is expected to decrease with higher N2O

abundances.

In the oceans, N2O production can occur both in the water column and marine sed-

iments (Landolfi et al. , 2017) and is sensitive to the rate of remineralization of

organic matter. The reduction of oxygen and expansion of oxygen minimum zones

are expected to increase the oceanic N2O production (Landolfi et al. , 2017; Yang

et al , 2020). Conversely, N2O is consumed in oxygen depleted waters, which could

compensate the aformentioned increased production, albeit likely to a small extent
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given the small volume of oxygen deficient waters. Marine N2O is released into the

atmosphere where N2O rich waters resurface and diffuse to the atmosphere (Yang et

al , 2020). Other variables such as irrandiance, temperature, and substrate supply

also affect the rate of N2O production in marine systems (Martinez et al. , 2015;

Battliaga and Joos , 2018). The main locations for N2O production in the ocean has

been identified to be low oxygen waters in the eastern upwelling systems (Battliaga

and Joos , 2018). On land, denitrification has been identified as the main pathways of

nitrogen loss for agricultural soils and natural ecosystems. Combined global marine

and terrestrial denitrification estimates range from 220 to 570 Tg N yr−1 (Scheer et

al. , 2020). In terrestrial systems, denitrification estimates range from 100 to 250 Tg

N yr−1 most of which occurs in soils and half of it on agricultural land followed by

lakes, rivers and groundwater (Groffman , 2012; Scheer et al. , 2020). Denitrification

is usually found in the interface of aquatic and soil ecosystems.

Based on NOAA atmospheric measurements, N2O concentrations reached 336 ppb in

2023 with a tropospheric growth rate of 0.71 ppb yr−1 (Lan et al. , 2023). This repre-

sents an increase of 24% over preindustrial concentrations (270 ppb). Emissions from

agricultural activities are a major source of atmospheric N2O (Tian et al. , 2020).

Agricultural fertilizers are the primary contributor to N2O emissions in agricultural

systems. Fertilizer application increases the release of N2O by increasing nitrogen

concentration in soils leading to an increase of nitrification and denitrification pro-

cesses. Tian et al. (2020) estimated an increase of 31 ppb of atmospheric N2O from

1980-2019 due to synthetic fertilizers and manure, nitrogen deposition from agricul-

ture and fossil fuel burning. Various strategies have been proposed to mitigate N2O

emissions from agricultural sources. These include improving fertilizer management

practices, developing best management practices for animal manure management,

and utilizing cover crops and crop rotations (Hassan et al. , 2022). Additionally, a
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number of technologies have been developed to reduce N2O emissions from agricul-

tural sources, such as nitrification inhibitors, nitrification-denitrification inhibitors,

and nitrification-denitrification reactors (Norton et al. , 2019; Saud et al. , 2022).

Non-agricultural sources of N2O include industry (chemical processing), wastewater

and fossil fuel combustions. Industrial emission are mainly due to nitric and adipic

acid production (Berstein et al. , 2007). Sewage from domestic and industrial sources

are estimated to emit from 0.2 to 0.5 TgN yr−1 from 1980 and 2016 (Tian et al. ,

2020). Terrestrial biomass burning (crop residue, grassland, savannahs, forests) also

emit around 0.6 TgN yr−1 of N2O.

In the ocean, climate projections have suggested that N2O emissions are likely to de-

cline during the current century. Mainly due to warming induced ocean stratification

that decreases nutrient supply to the surface ocean, lowering productivity and organic

matter export (Steinacher et al. , 2010; Bopp et al. , 2013; Landolfi et al. , 2017). Al-

though, the reduction of nutrient supply might be offset by the increase of metabolic

rates in nitrogen fixers. The warming induced changes in nutrient distribution and

marine production is an uncertainty that affects the representation of deoxygenation

and denitrification, and hence, the oceanic N2O production and emission.

The total N2O emissions from 2007 to 2016 were estimated to be 17.0 (12.2 to 23.5)

TgN yr−1 (Tian et al. , 2020). These estimations are a result of a combination

of multiple approaches and not a single model that combines both terrestrial and

oceanic, natural and anthropogenic N2O sources. The terrestrial sources contribute

to a total of 11.3 (10.2 to 13.2) TgN yr−1 and the ocean 5.7 (3.4 to 7.2) TgN yr−1.

Anthropogenic emission of N2O are estimated to be around 40% of the total. From

a modelling perspective, oceanic and terrestrial N2O emission have been represented

separately in Earth system models previously (Manizza et al. , 2012; Suntharalingam
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et al. , 2012; Davidson and Kanter , 2014; Martinez-Rey et al. , 2015; Landolfi et

al. , 2017; Buitenhuis et al. , 2018; Tian et al. , 2020). The model estimates are

usually constrained by the effectiveness of the model to represent denitrification and

nitrification processes. The challenges include the definition of the dynamics of inland

waters, estuaries, oxygen in soil and column of water. The multimodel ocean and land

(no agriculture) estimate N2O emission to be 3.4 (2.5 to 4.3) and 6.7 (5.3 to 8.1) TgN

yr−1 (IPCC , 2022).

The total anthropogenic radiative forcing of greenhouse gasses between 1960-2019

was 63% for CO2, 11% for CH4, 6% for N2O, and 17% for the halogenated species

(Canadel et al. , 2021). The future N2O in highly uncertain given that is highly

dependent on anthropogenic sources (e.g. agriculture fertilization). Martinez-Rey et

al. (2015) projected oceanic N2O emissions from 2005 to 2100 and found a decrease

from 4.03 to 3.54 TgN yr1 similar to (Landolfi et al. , 2017) and (Battliaga and Joos

, 2018). A larger decline is projected in Landolfi et al. (2017), which also considers

the atmospheric N2O increase relative to a fixed preindustrial value. Davidson and

Kanter (2014) found an almost 50% increase of total global N2O emissions in high

emission scenarios, while only 22% increase in low emission scenarios when compared

to 2005. In this novel study, I couple terrestrial and oceanic N2O emissions modules

of an Earth system model and assess long term impacts and forcing of atmospheric

N2O concentrations on different future emission scenarios.
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5.3 Methodology

5.3.1 Model description

The University of Victoria Earth system climate model (UVic ESCM version 2.10),

is a global intermediate complexity climate model (Weaver et al. (2001); Mengis et

al. (2020)). It has a three dimensional ocean general circulation represented by the

Modular Ocean Model version 2 (MOM2), coupled to a simple atmosphere represented

by a simplified moisture-energy balance structure (Fanning and Weaver , 1996). The

ocean is coupled to a thermodynamic-dynamic sea-ice model (Bitz et al. , 2001).

The ocean module contains ocean biogeochemistry (Keller et al. , 2012; Somes and Os-

chlies , 2015; Landolfi et al. , 2017). The ocean biogeochemistry module includes two

phytoplankton classes, N2-fixing diazotrophs and other phytoplankton, zooplankton,

particulate detritus, nitrate, phosphate, dissolved oxygen, dissolved organic nitrogen,

dissolved organic phosphorus, dissolved inorganic carbon, and N2O. The prognostic

global nitrogen budget includes atmospheric N deposition, N2 fixation, water column

denitrification, and benthic denitrification (Somes and Oschlies , 2015; Somes et al.

, 2016). The oceanic subsurface N2O production is a function of O2 consumption

with a linear O2 dependency, including both nitrification and denitrification (Zamora

et al. , 2012; Zamora and Oschlies , 2014; Landolfi et al. , 2017). In O2-deficient

waters (<4 mmol m3), denitrification becomes a sink of N2O in the UVic ESCM,

that is consumed at a constant rate. The gradient driving the air-sea N2O gas ex-

change, computed based on the departure of the surface ocean concentration from

the saturation value using the solubility coefficients of Weiss and Price (1980) and

varying prescribed atmospheric N2O concentrations. A detailed description of the

N2O module can be found in Landolfi et al. (2017).
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The terrestrial module represents vegetation dynamics via TRIFFID (top-down rep-

resentation of interactive foliage and flora including dynamics). Plants are classified

into five functional types that interact with each other. Broadleaf trees, needleleaf

trees, shrubs, C3 grasses, and C4 grasses compete for space within the grid following

Lotka-Volterra equations (Cox , 2001). As a result of photosynthesis, carbon is cap-

tured and allocated to growth and respiration, whereas vegetation provides carbon to

the soil in the form of litter fall. The soil is divided in 14 subsurface layers that grow

exponentially in thickness with depth. Hydrological procesess occurs in the first eight

soil layers (top 10 m), while the layers below have granitic characteristics. The carbon

cycle is active until a depth of 3.35 m (Avis , 2012; MacDougall et al. , 2012). The

model contains crops and grazing lands that were adapted by aggregating croplands

and grazing lands into a single “crop” type. The crops are represented as a fraction

of each grid cell and are assigned to C3 and C4 grasses (Mengis et al. , 2020).

The model has recently been upgraded to include a terrestrial nitrogen and phos-

phorus cycle. In this variant called UVic ESCM-CNP. The terrestrial nitrogen cycle

module represents the flow of nitrogen among three organic pools (litter, soil organic

matter, and vegetation) and two inorganic pools (NH+
4 and NO−

3 ). Inorganic nitrogen

inputs consists of Biological Nitrogen Fixation (BNF), atmopsheric deposition and

agricultural fertilization. NH4 can be absorbed by plants, leached, or transformed

into NO3− via nitrification. NO−
3 is produced through nitrification, can be taken up

by plants, leached or denitrified into NO, N2O or N2. Inorganic N is taken up by

plants and allocated among leaf, root, and wood. Wood has a fixed stoichiometric

ratio, while leaf and root pools have variable ratio. Organic nitrogen from vegetation

compartments is transported to soil via litterfall. This pool is either mineralized or

transferred to the organic soil pool. A portion of the organic N can be then min-

eralized into the inorganic N pools. Conversely, immobilization moves N from the
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inorganic to the soil organic pool.

In the UVic ESCM-CNP (De Sisto et al. , 2023), the wetland module determines

anoxic fractions for each soil layer, based on the wetland scheme of Gedney and Cox

(2003). Nzotungicimpaye et al. (2021) implemented the determination of inundated

soils and saturated layer fraction in the UVic ESCM. In here the hydrology is combined

with a prescribed topographic index to determine the presence of wetlands at the sub-

grid scale. The model assumes a wetland in an area with a topographic index (λ) that

satisfies:

λmin ≤ λ ≤ λmax, (5.1)

where λmin is a lower threshold representing under-saturation and λmax represents is

an upper threshold or over-saturation.

The anoxic fraction, is taken to be the saturated fraction of the soil layer that is

shielded from O2. Denitrification is only allowed to be estimated in soils with anoxic

fractions and is calculated as in equation 5.2:

Ran = KrNO3ftfmCsAf
[NO3(av)]

[NO3(av)] +Kn

, (5.2)

where Ran is the anaerobic respiration, KrNO3 is the ideal respiration rate via NO3

reduction, ft and fm are temperature and moisture functions, Cs is the concentration of

organic carbon, Af is the anaerobic fraction of the soil layer, Kn is the half-saturation

of N-oxides (Li et al. , 2000).

As N2O and NO are intermediate products of denitrification and nitrification the



119

complex modelling representation is handled as a ‘leaky-pipe’ conceptualization of soil-

nitrogen processes as in Firestone and Davidson (1989). In this conceptual model

N2O and NO leak out of reactions of one species of nitrogen into another, during

nitrification (NH4 to NO3) and denitrification (NO3 to N2). The size of the holes is

determined by the soil processes. In the UVic ESCM version 2.10 the size of the holes

controlling the amount of gas that can be leaked is fixed. Using Davidson et al.

(2000) equation the partitioning ratio between NO and N2O changes based on water

filled pore space of the soil layer. The ratio is estimated as in equation 5.3:

N2O

NO
= 102.6SU−1.66, (5.3)

where SU is the waterfilled pore space. Thus, the model produces a total flux of both

NO and N2O for nitrification and denitrification, which is partitioned between the two

species based on the above relationship. The NO flux is added to the atmosphere and

redeposited as part of the nitrogen deposition flux. The N2O has a constant lifetime

of 100 years. Decayed N2O is assumed to become part of the atmospheric N2 pool.

The implementation of terrestrial N2O in the UVic ESCM version 2.10 was shown in

(De Sisto et al., 2023).

Experimental design and forcing data

The CNP version of the UVic ESCM version 2.10 (Mengis et al. , 2020; De Sisto et al. ,

2023) was coupled to the ocean N2O module developed by Landolfi et al. (2017). The

new coupled terrestrial and ocean N2O modules were used to run all the simulations

in this study. The model was spun up for 6000 years with boundary conditions as

outlined in the CMIP6 protocol (Eyring et al. , 2016) and fixed atmospheric N2O

concentration of 270 ppb. Historical N2O emissions were tuned to match historical
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observations by adjusting the denitrification N2O ‘leakage‘ hole size from NO3 to

N2. Historical temperatures were calibrated using aerosol scaling to match historical

observations. Three-dimensional aerosol optical depth can be scaled by a fraction in

the UVic ESCM and was used in version 2.10 to calibrate aerosol forcing to fit current

values (Mengis et al. , 2020).

Given that N2O is closely linked to anthropogenic inputs and socioeconomically fac-

tors, the simulations of this study project emission using Shared Socioeconomic Path-

ways (SSPs) to represent different future scenarios (Gidden et al. , 2019). Six SSPs

scenarios were run, I included the following: SSP1-1.9, SSP2-4.6, SSP2-4.5, SSP3-

7.0, SSP5-3.4-OS and SSP5-8.5 ext. SSP4-3.4 and SSP4-6.0 were excluded from the

study due to lack of nitrogen fertilizers inputs for these scenarios. These scenarios

are the same used in the Coupled Model Intercomparison Project phase 6 (CMIP6)

(Eyring et al. , 2016). Artificial and manure fertilizers data were used in the model

simulations. The historical and SPPs fertilizer data were obtained from the publicly

available CMIP6 data (Tachirii et al. , 2019). The datasets represent N fertilization

from 1850-2100.

I have compared the atmospheric N2O concentration simulated in this study with

the projected by Meinhaussen et al. (2020). In their study Meinhaussen et al.

(2020) provided atmospheric N2O concentrations for long-term climate analysis using

the reduced-complexity climate–carbon-cycle model MAGICC 7. Meinhaussen et al.

(2020) used Prather et al. (2012) model to set N2O assumptions and lifetimes to cal-

ibrate MAGICC 7. To assess the response of the temperature to N2O concentrations

between the UVic ESCM structure and Meinhaussen et al. (2020) results, I have pre-

scribed N2O concentrations using Meinhaussen et al. (2020) projected atmospheric
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N2O into the UVic ESCM N2O module and compared the resulting temperature re-

sponse to the UVic ESCM- CNP with N2O dynamics. As temperature response varies

depending on model climate sensitivity I have set three different model variants tuned

to have Equilibrium Climate Sensitivities (ECSs) per doubling of CO2 of 2.0◦C, 4.5◦C

to represent the ‘likely bounds’ (IPCC , 2021), as well as using the emergent climate

sensitivity of the model (3.4◦C) as the central estimate. The climate sensitivity was

tuned using an equilibrium climate sensitivity parameter designed by Zickfeld et al.

(2009) to alter climate sensitivity in the UVic ESCM by altering the flow of long-

wave radiation back to space. Furthermore, the model sensitivity variants serve to

assess the impact of climate sensitivity on the UVic ESCM N2O emissions and hence,

atmospheric N2O concentrations.

5.4 Results & Discussion

5.4.1 Historical and projected N2O atmospheric concentra-

tions and emissions

The coupled terrestrial and ocean N2O dynamics from De Sisto et al. (2023) and Lan-

dolfi et al. (2017) were tuned to match historical atmospheric N2O concentrations.

Figure 1 shows the N2O concentration simulated with the UVic ESCM compared to

Machida et al. (2015), Lan et al. (2023) and Prinn et al. (2023). The model out-

puts follow observations closely. The preindustrial atmospheric N2O concentration

captures the ice cores observations from Machida et al. (2015) with high fidelity.

After 1945 I observed a gap between the Uvic ESCM increase of N2O concentrations

and atmospheric measurements. This gap is likely a consequence of a simplified repre-

sentation of agriculture, where in both natural and agricultural fractions of grid cells
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feed into the same subsurface soil column in the UVic ESCM. Despite this limita-

tion the model fairly represents the historical trends and magnitudes. For the year

2023 I estimate a N2O concentration of 335 ppb, close to the NOAA (Lan et al. ,

2023) measurement of 336 ppb locating the UVic ESCM results close to historical

atmospheric N2O concentrations. From 2000-2005 I simulated an atmospheric N2O

growth rate between 0.86 to 0.89 ppb yr−1 similar to the value of 0.73 reported by

NOAA (Hall et al. , 2007). However, the UVic ESCM lacks the annual variability of

atmospheric growth rate shown in Tian et al. (2020). This lack of variability can

be attributed to the lack of internal variability in the UVic ESCM and a constant

N2O decay prescribed in the UVic ESCM rather than a dynamic change as shown in

Prather et al. (2023). Prather et al. (2023) simulated a reduction of N2O lifetime

over the period of 2005-2100 that indicates that the accumulation of N2O could be

slowed down as N2O is reduced more rapidly photochemically from the atmosphere.

The lack of decay dynamics in the UVic ESCM can lead to overestimation in the UVic

ESCM simulations results by the end of the 21st century.

Oceanic N2O emissions

Both terrestrial and oceanic N2O modules simulate fluxes within the range of uncer-

tainty of other studies. The ocean N2O is similar to Landolfi et al. (2017) oceanic

N2O emissions. The UVic ESCM simulations represents a decline in ocean N2O emis-

sions from 3.6 to 3.0 Tg N yr−1 from 1850 to 2020 and to 2.7 [2.6 to 2.8] Tg N yr−1

by 2100. The historical results are consistent with the IPCC range of 1.8 to 9.45 Tg

N yr −1 and other studies such as Martinez-Rey et al. (2015) estimating a range of

3.71 to 4.03 Tg N yr−1 (2005), Landolfi et al. (2017) with a value of around 3.2 Tg

N yr−1 and Yang et al (2020) with a value of 4.2 1.0 TgN yr −1. For the end of

the 21st century, I simulate a reduction of 0.9 TgN yr−1 [0.8 to 1 TgN yr−1] . This
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Figure 5.1: Historical atmospheric N2O concentrations, estimated using a terrestrial
and ocean N2O modules in the UVic ESCM version 2.10. Machida et al. 2015 mea-
sured the concentration of N2O from Antarctic ice cores, the N2O measurement covers
1735 to 1965. AGAGE (Prinn et al. , 2023) and NOAA (Lan et al. , 2023) show
monthly atmospheric N2O measurements.

decline is also shown by Landolfi et al. (2017) where by 2100 ocean N2O emissions

decline by around 1.1 TgN yr −1 for most simulations from 1850 to 2100 mainly due

to reduced temperature-dependent surface solubility and transport to greater depths.

Furthermore, Martinez-Rey et al. (2015) reports a decline between 0.15 to 0.49 TgN

yr −1 from 2005 to 2100. These values are comparable to the UVic ESCM value of

0.3 TgN yr −1[0.2 to 0.4 TgN yr −1] decline simulated from 2020 to 2100.

As in Landolfi et al. (2017), the warming-induced mean reduction of the mixed
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layer depth of -5% [-9% to 1%] from 1850 to 2100, increases the nutrient limitation

by declining the supply of nutrients to primary producers in tropical latitudes. The

reduced supply increases nitrogen and phosphorus limitation to phytoplankton and

hence, reduces ocean productivity. On the other hand, the ocean oxygen concentra-

tion declines overall from 197 to 188 mmol m−3 [186 to 190] between 1850 to 2100.

Consequently, this leads to an increase in the size of oxygen deficient zones where

water column denitrification and N2O consumption occur. This increase is overcom-

pensated by the decline in export production and consequently, the decline of N2O

production in water with high oxygen concentrations via nitrification. However, in

the high emissions scenario with highest levels of oxygen decline, marine N2O produc-

tion reaches an inflection point where marine N2O emissions begin increasing before

the year 2100. This indicates that severe ocean oxygen decline can eventually drive

increased ocean N2O emissions on long time scales. The reduction of fluxes reduces

the growth rate of N2O concentration in the atmosphere, but it is rapidly overcome

by the terrestrial increase of N2O due to fertilizer inputs.
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Terrestrial N2O emissions

The terrestrial N2O emissions in 2020 was estimated to be 11 TgN yr yr−1. This value

is within the range of 8-12 TgN yr−1 reported in Tian et al. (2020) and Crippa et

al. (2021). In preindustrial years, the UVic ESCM fluxes underestimate the value of

around 6 TgN yr−1 reported in Tian et al. (2020) by 2 TgN yr−1. However, as shown in

figure 1, this magnitude of emissions seems to represent the preindustrial atmospheric

N2O concentrations along with the marine N2O emissions with high fidelity. After

1945 the increasing nitrogen fertilizers led to the rise of N2O emissions and are a

key factor for the rise of N2O concentrations in the atmosphere. The UVic ESCM

model shows a good fit with concentration measurements, as shown in Figure 1. With

decreasing ocean emission rates, the terrestrial system is primarily responsible for the

future rise of N2O concentrations. I found a historical rise of 6 TgN yr−1 between

1850 and 2020. The total oceanic and terrestrial N2O emissions for the year 2020

was simulated to be 13 TgN yr−1. This value falls within the range of uncertainty

presented by the IPCC AR6 report and Tian et al. (2020).

The UVic ESCM model estimates different terrestrial N2O emissions for six SSP

simulations. There are three main reasons behind this difference: 1) the change of

temperature that determines the rate of biological processes, 2) the rate of N fertilizers

input, projected differently based on each scenario narrative, and 3) the reduction of

wetland areas that determines the anaerobic fractions in the UVic ESCM. Among

these, the wetland area reduction is by far the most important (Figure 3). For the

year 2050 the UVic ESCM simulates a mean terrestrial N2O emission of 13 TgN yr−1

[12 to 14 TgN yr−1]. By 2100 I simulated a mean terrestrial N2O emission of 14

TgN yr−1 [12 to 16 TgN yr−1]. The differences between terrestrial N2O emissions

among SSPs simulations coincide with the rate of increase or decrease of wetlands
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areas and consequently the anaerobic fractions in soils estimated by the model. In

the UVic ESCM-CNP the anaerobic fraction is estimated from grid inundations given

by a wetland scheme. These terrestrial aquatic interfaces simulated by the model

peak from around 2030 in low-emission scenarios and continue to increase in high-

emission scenarios. This feedback gives a clear hint of a possible reduction of N2O

increase in natural systems in the future due to the reductions of terrestrial-aquatic

interphases. As the UVic ESCM does not have a dedicated agricultural subsurface

module, the reduction of N2O emission is likely overestimated as agricultural irrigation

is not accounted for in this simulation and hence, the anaerobic fractions estimated

here are uncertain. However, it is possible that the anaerobic respiration in natural

systems will reduce the rate of increase of N2O emissions as aquatic systems dry.

Our simulations show that in Earth system models the simulation of N2O emissions in

terrestrial systems is sensitive to the representation of anaerobic respiration processes,

as the utilization of increasing nitrogen concentrations in soil due to agricultural in-

put can only be utilized by microbes when the right abiotic conditions are met. With

the reduction of atmospheric N2O lifetime and the limitation from anaerobic respi-

ration, the accelerated increase rate of N2O concentrations can be expected to slow.

Nonetheless, if agricultural factors not included in this model simulations maintain

the increase of anaerobic conditions, the nitrogen utilization by microbes will maintain

the rise of N2O in the future. Conversely, the assumption of targeted N2O manage-

ment schemes over the SSPs scenarios could imply a reduction of N2O emission that

is not represented in this model.
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Predicted N2O concentration for 2100

Terrestrial N2O emissions are the most important source of N2O to atmospheric con-

centrations. Given that atmospheric temperature, N fertilizers, and anaerobic frac-

tions vary among SSP narratives the UVic ESCM simulated different atmospheric

N2O concentrations by the 21st century (Figure 4). This array of results is more

similar among each other than that projected by Meinhaussen et al. (2020), where

in year 2100 SSP1-1.9 N2O concentration is projected to have a value of 351 ppb

and SSP3-7.0 N2O concentration of 421 ppb, representing the lowest and the highest

concentrations. For 2100 the UVic ESCM projects SSP1-1.9 N2O concentration of

401 ppb and SSP2-4.5 N2O concentration of 418 ppb representing the lowest and the

highest concentrations. These results show that the difference between the low to

the high range of atmospheric N2O concentration is 67 ppb in Meinhaussen et al.

(2020) and 17 ppb for the UVic ESCM-CNP simulations. Furthermore, our lowest

estimate for future N2O concentration by 2100 is higher than the value projected by

Meinhaussen et al. (2020). This lowest estimate corresponds to low-emission SSPs

scenarios.

Atmospheric N2O concentration from different equilibrium climate sensitivities vari-

ants of the models (ECS 2, 3.4 and 4.5 ◦C) did not show a large difference between

lower a high climate sensitivities as shown in Figure 5. The mean difference between

the lower has higher sensitivity among SSP simulations was 2.5 ppbv [1.5 to 2.9 ppbv].

These small changes demonstrate a robust lack of sensitivity of N2O projections to

different climate sensitivities.

These results and differences reflect important dynamics in N2O systems and uncer-

tainties of Earth system models when simulating N2O emissions. The first observable
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dynamic is that N2O concentration will keep rising until it peaks beyond the 21st-

century timeline, even in low emission scenarios where terrestrial N2O emission peaks

around the year 2030. The second dynamic is that in the UVic ESCM, wetland ar-

eas slow the accumulation of atmospheric N2O concentrations by constraining the

terrestrial N2O emitted. The wetland constraint is due to how anaerobic soils are

determined in the model structure. This means that the representation of anaerobic

soil dynamics in Earth system model is of utmost importance for accurately estimat-

ing N2O concentration in future simulations. Furthermore, the difference in the lower

range of Meinhaussen et al. (2020) and our results may indicate that low emission

scenarios in Meinhaussen et al. (2020) have idealistic assumptions for atmospheric

N2O concentration projection that would require a substantial decrease of terrestrial

N2O emissions in the UVic ESCM. The equation determining N2O emission input

used in Meinhaussen et al. (2020) is determined by the emissions of the specific

pollutant per country, the absence of any emission control measures, the reduction

efficiency and the actual implementation rate of the considered abatement. Hence,

the variables that determine the N2O emission in Meinhaussen et al. (2020) account

for mitigation efforts per SSPs. Furthermore, Meinhaussen et al. (2020) account for

dynamic changes of N2O lifetimes. Both N2O mitigations and dynamic lifetime are

not accounted for in the UVic ESCMling structure. Consequently, the reduction of

atmospheric N2O concentration would likely come from intensive management prac-

tices to reduce agricultural N2O emissions and a slower increase of atmospheric N2O

concentration due to the projected decrease of N2O lifetime.

The difference between our simulated atmospheric N2O with a dynamic N2O structure

and simulations with Meinhaussen et al. (2020) N2O concentrations forcing resulted

in contrasting global temperatures among the SSPs scenarios (Figure 6). I report a

range of -0.02 to 0.09 ◦C difference between the dynamic atmospheric N2O simulated
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and the prescribed simulations with Meinhaussen et al. (2020) data. In scenarios

where our atmospheric N2O concentrations were close to Meinhaussen et al. (2020)

concentrations, the temperature difference was the lowest. Conversely, where large

gaps of N2O concentrations were observed, the temperature difference was larger as

a result. For negative temperature differences, the UVic ESCM simulates lower at-

mospheric N2O concentrations than Meinhaussen et al. (2020) while the opposite

corresponds to positive temperature differences. Our simulations for low emission

SSP scenarios have higher atmospheric N2O concentration than Meinhaussen et al.

(2020), while our high emission scenarios simulations tend to have lower N2O con-

centrations than Meinhaussen et al. (2020). The temperature difference between

the N2O dynamic and prescribed simulations impacted the years where the 1.5 and 2

◦C targets are reached. The temperature targets were established as threshold goals,

where global efforts were agreed to be carried to maintain the global temperature

increase under a limit by the end of the 21st century (IPCC , 2018). As forcing are

different within the SSPs scenarios, some may reach the 1.5 ◦C target but not the 2

◦C target, while others may reach both targets and beyond. The dynamic structure

decreased the time for our simulations to reach 1.5 and 2 ◦C among the SSP scenarios

by one to two years.

One of the most remarkable results of this study is that N2O is shown to be relatively

insensitive to mitigation efforts among the SSP simulations. Compared to CO2 and

methane, which are projected to decrease with mitigation efforts, N2O projections

seem to increase at a similar rate regardless of the scenario. Our simulations show

a lack of sensitivity to mitigation in SSPs scenarios. I have identified the lack of

agricultural N2O mitigation and a constant lifetime as responsible for this lack of

sensitivity in the UVic ESCM simulations. Currently, I are unable to quantify the

individual impact of each. However, a takeaway message from our simulations is
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that mitigation efforts directed at carbon emissions, which ideally have a significant

effect on atmospheric temperature, have only a slight effect on the projected N2O

emissions. The little effect is reflected in the gap between Meinhaussen et al. (2020)

and our low emission scenarios. Under idealistic scenarios, the mitigation of N2O

should be targeted directly with proper management schemes. Future coupled N2O

models should in theory take into account N2O management practices to avoid this

lack of sensitivity. However, global estimates of mitigation efficiency and deployment

feasibility needs to be assessed before such mitigation could be part of N2O dynamic

models.

5.4.2 Model uncertainties

There are many model uncertainties around the estimation of N2O emission and the

atmospheric chemistry of N2O. In the ocean, N2O production representation is sensi-

tive to estimations of productivity, oxygen concentration and oxygen minimum zones.

Consequently, the marine biogeochemical uncertainties over these variables are crucial

for a more accurate estimation of marine N2O emissions. On land, the representation

of anaerobic dynamics limits the capacity of the utilization of nitrogen agricultural

fertilizers. Thereby, the anaerobic fractions limit the increase of terrestrial N2O emis-

sions and can impact the accuracy of projections. In the UVic ESCM, the lack of

agricultural dynamics lead to low sensitivity to N fertilizers. Furthermore, the lack

of N2O mitigation is a source of uncertainty in future N2O projections as our simula-

tions show low sensitivity to the mitigation efforts represented in the SSPs scenarios.

Among the possible N2O mitigation efforts that could be included are slow-release

fertilizers, nitrification inhibitors, appropriate crop rotations and schemes, tillage and

irrigation practices and the use of biochar and lime. The plausibility of the global

application of terrestrial N2O mitigation strategies needs to be addressed in future
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studies to assess the effectiveness and, consequently, reassess if these mitigation ef-

forts can be realistically deployed and added to the SSP mitigation efforts for N2O

projections. Finally, the UVic ESCM lacks dynamic N2O atmospheric chemistry dy-

namics. Hence, N2O lifetimes remain to be constant in the UVic ESCM simulation,

underestimating the sensitivity of atmospheric N2O accumulation to changes if N2O

lifetimes.

5.5 Conclusions

To my knowledge, this study is the first to successfully couple an ocean and terrestrial

N2O modules and the resulting model to project atmospheric N2O concentrations to

the end of the 21st century. In the ocean, I project a decline of N2O emissions from 3.7

to around 2.6 TgN yr−1 by 2100. On land, I simulated N2O emission from 4 TgN yr−1

in preindustrial times to between 12 to 16 TgN yr−1 depending on SSP scenario in the

year 2100. In the atmosphere, I project an atmospheric N2O concentration between

401 and 418 ppb in six SSPs scenarios. I report at least 49 ppb more atmospheric

N2O concentrations than Meinhaussen et al. (2020) by 2100 corresponding to low-

emission scenarios projections. The UVic ESCM simulations showed a robust lack

of sensitivity to equilibrium climate sensitivity. Finally, I found that the estimation

of wetland areas and resultant anoxic soils is the most important factor controlling

N2O emissions in the future. Therefore improving representations of wetlands be

prioritized to improve the accuracy of terrestrial N2O emissions and atmospheric N2O

concentration representation in simulations. Overall I assess that N2O will remain an

important greenhouse gas for the remainder of the 21st century, with a potential for

larger impacts further into the future.
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Figure 5.4: Top left: atmospheric N2O projection from year 2015 until 2100 for each
SSP simulation in the UVic ESCM-CNP. Top right: atmospheric N2O projection from
year 2080 until 2100 for each SSP simulation in the UVic ESCM-CNP. The background
grey lines in the top panels represent Meinhaussen et al. (2020) projections. Bottom
left: atmospheric N2O projection from year 2015 until 2100 projected by Meinhaussen
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projected by Meinhaussen et al. (2020).
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Chapter 6

Summary and future work

6.1 Summary

The availability of terrestrial nitrogen and phosphorus in soils constrains the uptake

capacity of vegetation. Hence, in Earth system models, the representation of terres-

trial nitrogen and phosphorus cycles is imperative to improve the accuracy of their

carbon cycle representation. In this thesis, a terrestrial nitrogen and phosphorus cy-

cle has been successfully developed and implemented in an intermediate complexity

Earth system climate model. The nutrient concentration in soils represented by the

new models is within the range of uncertainty of observations and modelling studies.

The resulting global pattern is similar to current studies and follows biogeochemical

logic. Nitrogen is a limitation in high latitudes, while phosphorus is the limiting nutri-

ent in low latitudes. The addition of phosphorus reduced tropical forests biomass and

extend, and has improved an overestimation in the previous UVic ESCM state. The

overall reduction of terrestrial vegetation leads to the decrease of atmosphere-land

carbon flux as well as a decrease in simulated land use change emissions.
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The implementation of terrestrial nitrogen and phosphorus limitation reduced the

gross primary productivity by 13 PgC yr−1 in CN and 16 PgC yr−1 in CNP, resulting

in a better match for observations. This implies that the model efficiently represents

a nutrient limitation over the CO2 fertilization effect. Using nutrient limitation, the

model seemed to represent historical temperature with higher accuracy than the base

state of the model. The representation of nitrogen and phosphorus resulted in a

critical tool to improve terrestrial vegetation biomass and distribution.

The remaining carbon budget estimations were affected by the implementation of

terrestrial nitrogen and phosphorus limitation. The nutrient limitation reduced the

carbon budgets estimated in eight SSPs scenarios. Consequently, being an integral

part of the carbon cycle uncertainties that affect carbon budget estimates. Among ni-

trogen and nitrogen-phosphorus structures, nitrogen-phosphorus results in lower car-

bon budgets overall in different SSPs scenarios. Furthermore, the nutrient limitation

increases the response of temperature after cessation of emissions in Zero Emissions

Commitment experiments.

The range of reduction of land carbon sink for the nutrient limited simulations was

75 to 106 Pg C and the reduction for the land use change emission was 60 to 93 Pg C.

Under the Shared Socioeconomic Pathways, CN and CNP showed a reduction of 43

and 53 Pg C for the 1.5 ◦C target and 98 and 120 Pg C for the 2 ◦C target respectively

when compared to the simulation with no nutrient limitation. Theses values represent

a reduction of 19 and 24 % for the 1.5 ◦C target, 21 and 26 % for the 2 ◦C target. The

ZEC across 100 years of simulations after emission have ceased showed an increase

in temperature for the nutrient limited simulations CN and CNP of 0.12 and 0.16 ◦C

when compared to C-only.

Allowing for the estimation of terrestrial N2O emission, this thesis documents the
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first successful attempt to project N2O emission using dynamic coupled ocean and

terrestrial N2O emission modules in an Earth system model. These results show an

estimated atmospheric N2O concentration that ranges from 401 to 418 ppb. These

results are similar to other non-dynamic N2O projections with a range of 350 to 420

ppb by the end of the 21st century. I found a significant difference in the atmospheric

N2O projection in low emissions scenarios and the projected by the available N2O

concentrations in SSPs scenarios. A possible explanation for this difference is the lack

of a dynamic N2O atmospheric decay and a lack of representation of N2O mitigation

assumptions in agricultural technologies. However, given that the projection shown

in other non-dynamic atmospheric studies, in theory, would require a significant re-

duction of terrestrial N2O emissions, such projections have idealistic expectations of

mitigation efforts that are yet to be tested to be plausible and effective in a global

scale. In this study, even with strong mitigation scenarios N2O rise will continue until

the end of the 21st century, similar to the expected in higher emission-less mitigated

scenarios.

6.2 Future work

Future work should be directed to improve the terrestrial nitrogen and phosphorus

cycles. There are many uncertainties that can be improved by the availability of

global observations. Certainly, over time more global datasets will be available as the

use of machine learning techniques will likely provide reasonably accurate datasets.

Hence, there is a need for observations and machine learning studies to provide reli-

able datasets for model improvement. In Earth system models, changing parameters

to dynamic structures could improve the terrestrial nitrogen and phosphorus cycles.

Examples of this are the resorption of nitrogen and phosphorus in leaves, microbial
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processes and soil sorption-resorption dynamics. Furthermore, limitations to the vege-

tation uptake capacity, including carbon costs and mycorrhizal, could help to improve

the representation of both nutrient cycles. For the UVic ESCM, the next step should

be the connection between the land-ocean coastal continuum of nutrient flux. More-

over, the implementation of dedicated agricultural dynamics could help to improve

the representation of N2O emissions, especially in low mitigation scenarios. The irri-

gation in agricultural fields should be revisited as anaerobic fractions plays a crucial

role in terrestrial N2O emissions.

This thesis has shown a successful development and implementation of terrestrial

nitrogen and phosphorus cycles. The implementation has improved the land produc-

tivity estimates in comparison with the no-nutrient base version of the model. The

change in land by nutrient limitation reduced the estimation of remaining carbon bud-

gets, showing that it is integral in the uncertainties of the carbon cycle. Finally, the

first coupled ocean-land N2O dynamics show that N2O emission is relatively insensi-

tive to mitigation efforts, projecting similar values among different future scenarios.
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Appendix A

Table 6.1: Remaining carbon budgets from the Shared Socioeconomic Pathways: SSP
2- 4.5, 3- 7.0 and 4- 3.4 simulations for 1.5, 2◦C targets relative to a warming from
1850-1900.

SSP scenarios Target Climate sensitivity C-only(PgC) CN(PgC) CNP(PgC)
1- 1.9 1.5 ◦C 4.5 20 22 8
1- 1.9 1.5 ◦C 3.4 163 110 108
1- 1.9 1.5 ◦C 2 Not reached Not reached Not reached
1- 2.6 1.5 ◦C 4.5 21 27 9
1- 2.6 1.5 ◦C 3.4 173 142 137
1- 2.6 1.5 ◦C 2 332 235 167
2- 4.5 1.5 ◦C 4.5 21 37 9
2- 4.5 1.5 ◦C 3.4 189 161 144
2- 4.5 1.5 ◦C 2 231 231 208
2- 4.5 2 ◦C 4.5 197 191 144
2- 4.5 2 ◦C 3.4 397 325 288
2- 4.5 2 ◦C 2 516 433 406
3- 7.0 1.5 ◦C 4.5 23 19 9
3- 7.0 1.5 ◦C 3.4 204 189 170
3- 7.0 1.5 ◦C 2 255 244 184
3- 7.0 2 ◦C 4.5 220 155 161
3- 7.0 2 ◦C 3.4 435 359 343
3- 7.0 2 ◦C 2 532 473 416
4- 3.4 1.5 ◦C 4.5 22 9 - 9
4- 3.4 1.5 ◦C 3.4 168 141 150
4- 3.4 1.5 ◦C 2 226 190 178
4- 3.4 2 ◦C 4.5 174 119 125
4- 3.4 2 ◦C 3.4 324 233 250
4- 3.4 2 ◦C 2 Not reached Not reached Not reached
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Table 6.2: Remaining carbon budgets from the Shared Socioeconomic Pathways sim-
ulations: SSP 4- 6.0, 5- 3.4 and 5- 8.5 for 1.5, 2◦C targets relative to a warming from
1850-1900.

SSP scenarios Target Climate sensitivity C-only(PgC) CN(PgC) CNP(PgC)
4- 6.0 1.5 ◦C 4.5 32 8 10
4- 6.0 1.5 ◦C 3.4 194 177 157
4- 6.0 1.5 ◦C 2 238 236 215
4- 6.0 2 ◦C 4.5 174 119 125
4- 6.0 2 ◦C 3.4 324 233 250
4- 6.0 2 ◦C 2 Not reached Not reached Not reached
5- 3.4 1.5 ◦C 4.5 25 12 10
5- 3.4 1.5 ◦C 3.4 219 189 204
5- 3.4 1.5 ◦C 2 255 251 236
5- 3.4 2 ◦C 4.5 238 169 174
5- 3.4 2 ◦C 3.4 509 359 378
5- 3.4 2 ◦C 2 1129 800 785
5- 8.5 1.5 ◦C 4.5 22 52 12
5- 8.5 1.5 ◦C 3.4 211 199 198
5- 8.5 1.5 ◦C 2 270 264 210
5- 8.5 2 ◦C 4.5 233 232 183
5- 8.5 2 ◦C 3.4 446 380 403
5- 8.5 2 ◦C 2 570 504 446
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Table 6.3: Remaining carbon budgets from the Shared Socioeconomic Pathways simu-
lations: SSP-2.45, SSP 3-7.0, 4-6.0 and 5-8.5 for 2.5, 3◦C targets relative to a warming
from 1850-1900.

SSP scenarios Target Climate sensitivity C-only(PgC) CN(PgC) CNP(PgC)
2- 4.5 2.5 ◦C 4.5 373 321 282
2- 4.5 2.5 ◦C 3.4 721 567 584
2- 4.5 2.5 ◦C 2 Not reached Not reached Not reached
3- 7.0 2.5 ◦C 4.5 405 303 325
3- 7.0 2.5 ◦C 3.4 722 616 591
3- 7.0 2.5 ◦C 2 830 714 676
3- 7.0 3 ◦C 4.5 580 444 490
3- 7.0 3 ◦C 3.4 967 820 816
3- 7.0 3 ◦C 2 1118 939 942
4- 6.0 2.5 ◦C 4.5 380 271 303
4- 6.0 2.5 ◦C 3.4 670 528 542
4- 6.0 2.5 ◦C 2 830 658 601
4- 6.0 3 ◦C 4.5 545 391 454
4- 6.0 3 ◦C 3.4 756 703 717
4- 6.0 3 ◦C 2 Not reached Not reached Not reached
5- 8.5 2.5 ◦C 3.4 437 398 356
5- 8.5 2.5 ◦C 3.4 742 648 658
5- 8.5 2.5 ◦C 2 900 809 742
5- 8.5 3 ◦C 4.5 615 552 521
5- 8.5 3 ◦C 3.4 1037 875 918
5- 8.5 3 ◦C 2 1260 1093 1080
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