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Abstract

In the first part of this work we introduce the symbolic determinant method (symDET)

for constructing many-body perturbative expansions which is motivated by the Algo-

rithmic Matsubara Integration (AMI) algorithm introduced recently [Taheridehkordi,

A., Curnoe, S. H., & LeBlanc, J. P. F. PRB, 99(3), 035120, (2019)]. This algorithm

is capable of performing both imaginary and real frequency calculations of physical

observables at all coupling parameters, temperatures, etc., making it a promising tool

for studying a variety of problems from lattice models to molecular chemistry prob-

lems. The current form of our symDET applies to both single and multiband systems

with general two-body interactions, but it can be easily extended to beyond two-body

interactions by the proper handling of Wick contractions. Although the computa-

tional expense increases for multiband problems at higher order perturbation theory,

our algorithm is still parallelizable. Furthermore, optimizations still exist. One way

could be by following the steps of the connected determinant method (cDET) [ R.

Rossi, Phys. Rev. Lett. 119, 045701 (2017)] and the minimal determinant algorithms

introduced recently [Šimkovic IV, F., & Ferrero, M. PRB, 105(12), 125104, (2022)].

As an illustration, we applied symDET to a variety of problems such as the hydrogen

molecule with 2 and 10 bases, the Hubbard dimer model which is an effective 4 bands

system, and the Hubbard model with an effective doubly degenerate band.

In the second part of this thesis, we review the Floquet method which is used
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to study non-equilibrium systems. In particular, we focused on its application to

twisted multilayered systems for which the appearance of flat bands at magic angles

is a sign of interesting physical states, such as superconductivity which can observed

experimentally in those systems. As an illustration, we applied this method to twisted

bilayer and trilayer graphene systems. For the first example, we considered the twisted

trilayer graphene (TTLG) system with different types of light applied vertically onto

layers, mainly circularly polarized light and light from a waveguide, and we focused

on the topological maps where we found that for the special case of ABC stacking,

those maps are dependent on the handedness of the circularly polarized light. This

dependence can be captured via optical conductivity measurements. Secondly, we

studied the twisted bilayer graphene (TBLG), with the usual tight binding Hamilto-

nian together with interlayer hopping interactions, and then on top of that we included

the Haldane interaction. The application of circularly polarized and waveguide lights

were discussed where we considered the effects of light on the band structure of this

model. For the Haldane TBLG we found that the band structure depends on the

polarization of the incident light, something that was observed in the TTLG with

ABC stacking but never seen in the usual TBLG system, hence we owe that to time

reversal symmetry breaking.

Lastly, we discuss the possible extensions of symDET to bosonic systems and the

possible future application of symDET to twisted multilayer systems that has rich

physics with a wide range of applications.
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Chapter 1

Introduction

In condensed matter systems, collective interactions between the constituent parti-

cles or ions give rise to interesting physical properties that make the bulk mate-

rial hosting these characteristics useful in technology, medicine, and other parts of

everyday life. For example, superconductivity (SC) is a state for which the resis-

tance of a conductor drops to zero at certain critical temperatures. According to

Bardeen–Cooper–Schrieffer (BCS) theory, the superconducting state is due to the for-

mation of electron pairs via electron-phonon interactions (a.k.a. Cooper pairs) [3–5].

Intensive studies have been ongoing from both experimental and theoretical sides to

better understand this behaviour, and most importantly the search for room tempera-

ture superconductors for further technological and economical benefits to mankind [6].

For instance, recent discovery of superconductivity of lanthanum hydride at relatively

high temperature of 250 K and high pressure of 150 GPa motivates a search for

similar behaviour to occur at room temperatures and pressures [7–11]. Collective

phenomena occur in other condensed matter systems such as, but not limited to, spin

liquid [12–14], spin ice [13, 15, 16], superfludity [17, 18], insulating state [17, 18], and

ferromagnetism [19–21].
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Exact solutions of condensed matter problems are very useful in studying mate-

rials properties and help us to gain a deep theoretical understanding of microscopic

interactions between the constituent particles (e.g. electrons) that lead to different

macroscopic behaviours and the possible limitations of the model under study, espe-

cially when accompanied by experimental data. Examples of exactly solvable models

include the one-dimensional Hubbard model [22], the 1D t − J model [23], and the

Kitaev honeycomb model [24].

Most of the realistic condensed matter models in two and three dimensions lack

exact solutions. Those limitations are due to the fact that condensed matter systems

contain an exponentially large number of particles or ions, whose quantum degrees

of freedom make the full Hilbert space too large to obtain exact solutions within the

mathematical methods that exist today. Hence the need of approximate numerical

approaches to tackle the properties of the physical system of interest.

First, we start with condensed matter systems at equilibrium. Different numerical

methods have arisen to treat such systems where the success of some can be limited.

The simplest among these is mean field theory (MFT), where each ion in the system

is assumed to experience a mean field which then turns the many-body problem into

an effective single particle model. Although MFT seems to be an oversimplification,

in fact it is useful to at least give qualitative predictions, such as the ferromagnetic

to paramagnetic phase transition in the 3D Ising model but fails to predict the exact

transition temperature [25]. In other situations the effective one-particle mean field

is dynamical, like the case of Weiss treatment of the Ising model [26].

An improved version of MFT is called the dynamical mean field theory (DMFT).

In DMFT, local quantum fluctuations are included, which provides a more realistic

approach to the physical systems of interest [27–30]. Other iterative schemes were

built on top of these approximations, such as the dynamical cluster approximation
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(DCA) where short range correlations were included [31–33]. Some numerical methods

such as exact diagonalization are only reachable for finite system sizes due to the large

number of degrees of freedom and this becomes a biger obstacle when one moves from

one-dimensional to higher dimensional systems [34–37].

For one dimensional problems, one of the most reliable methods today is the

density matrix renormalization group (DMRG) introduced in the 1990s by S. R. White

[38–40]. DMRG uses exact diagonalization coupled with entanglement as the basis for

its algorithm to compute the physical observables of several one dimensional systems

[41–43]. The method then was extended to study two dimensional systems [44–46],

however its accuracy might be low for some systems [47].

Alternatively, one could rely on other methods to study two dimensional systems

such as the projected entangled pair states (PEPS) [48–53] and the multiscale en-

tanglement renormalization ansatz (MERA) [54–56]. The computational cost of the

MERA is bigger than that of the PEPS but the advantage of MERA over PEPS is

that it allows efficient and accurate evaluation of different observables of interest (re-

fer to Table 1 in [47]). The bigger field that includes the PEPS, MERA, the DMRG

and other tensor structures is called tensor networks (TNs) [57–63].

Many body perturbation theory (MBPT) is one of the famous methods that is

used to study physical systems in arbitrary dimension in the thermodynamic limit.

The basic idea revolves around Wick’s theorem where all the elements of the pertur-

bative series (aka Wick contractions) are evaluated independently [64–66]. Feynman

diagrams are graphical representation of those contractions which rely on the basics of

graph theory to evaluate the corrections to the physical observable of interest at any

arbitrary perturbation order cutoff [67, 68]. Graphically, Wick contractions could be

represented by either a connected graph or a disconnected one. However, it turns out

that only connected diagrams contribute to the perturbative series. Nonetheless, the
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number of contractions that correspond to connected graphs grows exponentially and

factorially with perturbation order putting some limitations on the highest order we

can reach via the available computational tools. Approximations were also introduced

in this regard where the focus is on including certain types of diagrams such as the

random phase approximation (RPA) where only bubble diagrams are included, and

then the perturbative series computed to an infinite order [69–72] and the GW ap-

proximation where the self-energy is approximated in terms of the screened potential

W and the single-particle propagator G [73, 74].

One of the ways to treat MBPT numerically is via diagrammatic Monte Carlo

(DiagMC) methods which have been used to solve variety of physical systems of

interest [75–78]. However, DiagMC methods suffer from the famous sign problem

[75], which was suppressed recently by the development of determinant methods [79–

81]. Several optimizations have been introduced to overcome the factorial scaling

of diagrammatic expansions [1, 82–84]. Those methods, however, require numerical

schemes to calculate the dynamic properties of the system on the real frequency

axis [85, 85–87].

The recently developed algorithmic Matsubara integration (AMI) algorithm al-

lows the performance of analytic continuation analytically, hence avoiding ill-posed

numerical analytical continuation schemes [88, 89]. The AMI has been used to solve

different problems such as the two-dimensional Hubbard model [90, 91], and the uni-

form electron gas [92, 93]. Following the development of the AMI, we developed an

algorithm that performs the MBPT symbolically at all coupling constants, temper-

atures, and at an arbitrary perturbation order. We refer to this algorithm as the

symbolic determinant (symDET) method [94]. Our algorithm generates Wick con-

tractions from the determinant structure where we then perform the symbolic Fourier

transformation (SFT) after which the AMI is used to perform the summations over
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the internal Matusbara frequencies. Between the SFT and the AMI, optimal sampling

of internal variables such as band indices, momenta, etc., is performed. The structure

of symDET allows it to study generally any multiband system ranging from molecular

chemistry problems to a variety of lattice models. Despite the fact that the factorial

cost of evaluating Wick contractions is not lifted in the current status of the symDET

structure, our method is parallelizable and one can run the codes on more CPU units

and for a longer time to perform higher order calculations. However, we should stress

that optimizations are always possible, but this is beyond the scope of this thesis.

In the second part of this thesis, we focus on a particular class of non-equilibrium

systems (NES). Generally speaking, the main difficulty in the NES is that computing

the time evolution operator is extremely hard, hence the difficulty in understanding

the physics of those systems theoretically. Despite that, non-equilibrium phenom-

ena are of great interest due to several factors such as the ability to control material

properties [95, 96], and the emergence of interesting phases of matter such as su-

perconductivity [97], time crystals [98, 99], topological Floquet phases [100,101], and

others [102–104]. Thus, several theoretical methods were developed to study those sys-

tems. For example, tensor networks were used to variety of NES such as the classical

2D systems [105], the Anderson impurity problem [106], XXZ Heisenberg chains [107],

and others [108–111]. We should note that some of the previously mentioned methods

also have extensions to non-equilibrium problems such as the density matrix renor-

malization group which was also applied to time-dependent Hamiltonians [112–114].

Several experimental techniques were developed to study those interesting properties

of NES for practical applications [95, 115–117]. In practice, equilibrium systems can

be brought to non-equilibrium via an application of an external field such as illumi-

nation with a laser light which can lift the system to an entirely new phase [118].

Clearly, NES share more physics than their equilibrium counterparts, yet are difficult
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to understand from the theoretical point of view due to the fact that solving the

problem requires the knowledge of the full Hilbert space which is impossible for most

of the condensed matter systems. Hence, approximation methods are necessary.

A very interesting class of non-equilibrium systems are the periodically driven

materials where the model Hamiltonians are periodic and thus can be described by

Floquet theory [119]. In this theory one basically describes such systems via time-

independent Hamiltonian known as Floquet Hamiltonian HF which is used to describe

the physics of the system at experimental time scale. We should note that obtaining

such effective Hamiltonian is generally difficult, thereby approximation techniques

have been developed to estimate HF [120–124]. Despite this difficulty, it is worth the

effort to engineer an effective HF that can model interesting physical behaviours such

as Floquet topological insulators [125–128], or it could be used to describe new phases

that don’t occur in equilibrium systems [98,99].

Recently, experimental tools were developed to manufacture a special class of con-

densed matter system that is designed precisely and was found to host a rich class

of physical phenomena. These systems are referred to as Van der Waals heterostruc-

tures [129, 130]. The famous example is the twisted bilayer graphene (TBLG) which

is a test bed for strongly correlated physics phenomena [131–140]. Certain choices

of the twist angle (know as the magic angle) results in the emergence of flat bands

which signals the dominant interaction effects occurring in those systems [141, 142].

Furthermore, it was found that the application of circularly polarized light to TBLG

system could induce topological phase transitions and flat bands at higher magic

angles observed in the otherwise non-driven system [143, 144]. Magic angles can be

tuned via the application of waveguide light on the TBLG planes [145]. We should

stress that other similar systems host such properties such as the transition metal

dichalcogenide homobilayer [146, 147], and multilayered graphene systems [148, 149].
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All of these interesting physical properties found in Van der Waals systems motivate

both experimentalists and theorists to investigate such systems thoroughly from both

view points, for a better understanding of the corresponding many-body phenomena

and also to make use of these systems for practical applications such as in technology

and industry.

The thesis is organized as follows. In Chapter 2, we introduce our symDET al-

gorithm in deep details and we then show variety of applications to molecular and

lattice models. The material in Ch. 2 including figures is based on results from our

article [Assi, I., & LeBlanc, J. P. F. (2023). Symbolic determinant construction of per-

turbative expansions. arXiv preprint arXiv:2305.09103.] and follows closely the text

within. Next, in Chapter 3, we apply Floquet theory to different graphene systems.

In particular, we discuss the effect of both circularly polarized light and waveguide

light on these systems and we compute the corresponding topological maps in the

case of circularly polarized light for the twisted trilayer graphene system. Moreover,

we studied the TBLG system with the inclusion of Haldane interactions under the

influence of light. The material in Section 3.2 is based on our published work [Assi, I.

A., LeBlanc, J. P. F., Rodriguez-Vega, M., Bahlouli, H., & Vogl, M. (2021); Floquet

engineering and nonequilibrium topological maps in twisted trilayer graphene; Phys-

ical Review B, 104(19), 195429.]; and follows closely the text within. Finally, we give

our conclusions and future work in Chapter 4.
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Chapter 2

Symbolic Determinant Method for

Equilibrium Many-Body Systems

This chapter is organized as follows. In Section 2.1 we review the basic concepts in

many-body physics that are important for many-body perturbation theory (MBPT).

Next, we review the elements of the algorithmic Matsubara integration (AMI) tool

in Section 2.2 which is one of the main parts of our symDET algorithm discussed in

Section 2.3. Moreover, we apply our algorithm to a variety of problems in Section

2.4. Finally, we provide a summary in Sec. 2.5.

2.1 Basic Concepts for Quantum Many-Body The-

ory

This section is organized as follows: In Sec. 2.1.1 we review Schrodinger equation

and it’s importance in quantum physics. Next, we discuss second quantization and

how one can express the general two-body interaction Hamiltonians in terms of Fock-

space creation and annihilation operators in Sec. 2.1.2. Thirdly, we go through the
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definitions of real and imaginary time Green functions in Sections 2.1.3 and 2.1.4.

Furthermore, we present the iterative procedure to obtain solutions of the interacting

Green’s function in Sec. 2.1.5. Finally, in Sections 2.1.6 & 2.1.7 we go through Wick’s

theorem and Feynman diagrams as the usual (alternative) methods used to evaluate

the time-ordered averages appear in the many-body perturbative series.

2.1.1 The Schrodinger Equation

The dynamics of a system of particles within the quantum theory is governed by the

time-dependent Schrodinger’s equation,

Ĥ |Ψ〉 = i~
∂

∂t
|Ψ〉 , (2.1)

where Ĥ is the Hamiltonian operator that models the system of interest, |Ψ〉 is

the wavefunction which signifies the state that the system pertains to, and ~ =

6.582119569 × 10−16 eV · s is the reduced Planck’s constant. The general solution

of the above equation for time-independent Hamiltonians is of the form

|Ψ(t)〉 =
∑
n

cne
−iEnt/~ |φn〉 , (2.2)

where |φn〉 is an eigenstate of the stationary Schrodinger equation,

Ĥ |φn〉 = En |φn〉 , (2.3)

with En being the quantized energy eigenvalue. For orthonormal states {|φn〉}, i.e.

〈φn|φm〉 = δn,m, the requirement that the full wavefunction |Ψ〉 is normalized results

in the condition ∑
n

|cn|2 = 1. (2.4)

9



where |cn|2 represents the probability that the system is found in the state |φn〉 with

energy En. We should note in general, one can expand the solutions in terms of any

complete basis and not just the eigenstates of the stationary problem. Once obtained,

the wavefunction can be used to calculate the average of any observable O via

〈O〉 = 〈Ψ| O |Ψ〉 . (2.5)

For the majority of condensed matter problems, it is impossible to solve the wave

equation due to the large number of particles and the associated degrees of freedom,

making it hard to tackle with the available mathematical tools and the computer

resources. Hence, it is necessary to look for approximate numerical solutions that

help us in achieving our goal.

2.1.2 Second Quantization

The first quantization is usually referred to the quantum theory described in the

previous section where the energy of the particle (En) is quantized. However, when

extending the theory to fields rather than particles only, the quantization of fields is

referred to as second quantization.

For an N particle interacting system, the N -particle wavefunction can be written

in symmetrized/antisymmetrized form of single particle states for bosons/fermions.

This representation is cumbersome to deal with due to the complexity of the full

wavefunction as N increases in a real condensed matter system. Thus, to reduce this

complexity one deals with an alternative basis, namely the particle number repre-

sentation where the states belong to Fock space. The first step to achieve this is by

introducing creation and annihilation operators for fermions and bosons. First, for a
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system of fermions, those operators (c†s and cs respectively) are defined as

c†s |0, φs1 , φs2 , . . . , φsN 〉 = |φs, φs1 , φs2 , . . . , φsN 〉 . (2.6)

which creates a Fermion in state s provided that s 6= sj, otherwise the action of this

operator on the state ket is zero. The operator

cs |φs, φs1 , φs2 , . . . , φsN 〉 = |φs1 , φs2 , . . . , φsN 〉 , (2.7)

annihilates a fermion in the state s. Those operators satisfy the anti-commutation

relations

{cp, cq} = {c†p, c†q} = 0, {cp, c†q} = δp,q, (2.8)

where {A,B} = AB + BA. The basis state of fermion Fock space takes the general

form |n1, n2, . . . , nN〉, with nj = {0, 1}.

On the other hand, for bosons, the corresponding creation and annihilation oper-

ators a†i and ai respectively, satisfy the commutation relations,

[ap, aq] = [a†p, a†q] = 0, [ap, a†q] = δp,q, (2.9)

where [A,B] = AB −BA. However, unlike fermions, there is no limit on the number

of bosons that can occupy the same state, i.e. for the basis ket |n1, n2, . . . , nN〉, the

occupancy per lattice site takes possible values nj = 0, 1, 2, . . . , N, ∀j.

The general N -particle Hamiltonian with two-body interactions takes the form

Ĥ =
N∑
i=1

h(i) + 1
2
∑
i 6=j

V (i, j), (2.10)

where h(i) is the single particle Hamiltonian while V (i, j) is the interaction potential
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between the ith and the jth particles. The first term in the above Hamiltonian is

expressed in the second quantization formalism as

N∑
i=1

h(i) =
∑
pq

〈φp|h |φq〉 c†pcq, (2.11)

whereas the two-particle operator is expressed as

1
2
∑
i 6=j

V (i, j) = 1
2
∑
klmn

〈φkφl|V |φmφn〉 c†kc
†
l cncm. (2.12)

The final expression of the Hamiltonian Ĥ in the second quantization form is the type

of Hamiltonian of interest to many applications.

In the case of lattice systems, the simplest form of such generic Hamiltonian is the

Hubbard model which takes the form

Ĥ = −t
∑
iσ

[
c†i,σci+1,σ + h.c.

]
+ U

∑
i

n̂i↑n̂i↓, (2.13)

which represents local Coulomb interactions between electrons in the lattice. Here t

is the hopping amplitude between two sites and the onsite interaction of strength U

is given by the second term of the Hamiltonian. Here, h.c. stands for the Hermitian

conjugate. The number operator n̂iσ = c†iσciσ represents the number of Fermions at

the ith site with spin σ = {↑, ↓}.

2.1.3 Real-Time Green’s Function

The spectrum of a many body system is almost continuous and the full wavefunction

is very complicated, and it’s not possible to obtain the analytic solution of the wave

equation for most problems of interest. The most interesting thing we look for in

a given many-body system at equilibrium is how the system responds to small per-
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turbations such as an applied electric or magnetic field, or changes in the number

of particles etc. The Green’s function formalism fulfills such an investigation of the

system’s response. Considering a many-body system with Hamiltonian Ĥ which is

allowed to exchange energy and particles with a reservoir, with the system being at

temperature T = β−1, the system is then represented by the grand canonical ensem-

ble where the effective Hamiltonian to be used is Ĥ − µN̂ , where µ is the chemical

potential, N̂ = c†c is the number operator. For any two operators O and P , their

correlation function is defined as,

COP(t, t′) = −i〈T̂ O(t)P(t′)〉, (2.14)

where T̂ is the time ordering operator, and the average of an observable x̂ is taken with

respect to the grand canonical ensemble with partition function ZG = Tr
[
e−βĤ+βµN̂

]
,

that is

〈x̂〉 =
Tr
[
e−βĤ+βµN̂ x̂

]
ZG

. (2.15)

where time enters into these operators via Heisenberg representation with Hamiltonian

Ĥ − µN̂ . For example, a single particle described by creation and annihilation field

operators Ψ†σ(~r) and Ψσ(~r), which create or annihilate a particle with spin σ at position

~r, a special case of real-time correlation functions known as the Green’s function is

defined as

Gσσ′(~rt, ~r′t′) = −i〈T̂ Ψσ(~r, t)Ψ†σ′(~r′, t′)〉. (2.16)

There are other definitions of Green’s functions like the retarded and advanced Green’s

functions that are useful in certain calculations. Assuming t > t′, the physical mean-

ing of the Green’s function in Eq. 2.16 is the ensemble average of the propagation

amplitude of a particle from a point (~r′, t′) at spin σ′ to another point at (~r, t) with
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a spin σ. The reverse argument follows when t < t′.

Another useful correlation function is the retarded Green’s function defined as

GR
σσ′(~rt, ~r′t′) = −iθ(t− t′)〈[Ψσ(~r, t),Ψ†σ′(~r′, t′)]±〉, (2.17)

where θ(t − t′) is 1 when its argument is positive and zero otherwise, and [A,B]± =

AB ±BA were the plus is for fermions and the minus for bosons. When this Green’s

function is transformed via Fourier transformation, its imaginary part gives the spec-

tral density function, A(~k, ω) = −Im
(
GR
σσ′(~k, ω)

)
.

2.1.4 Imaginary-Time Green’s Function

In order to allow perturbative expansions for finite temperature Green’s function of

an interacting system, the imaginary time Green’s functions is introduced,

Gσσ′(~rτ, ~r′τ ′) = −〈T̂ Ψσ(~r, τ)Ψ†σ′(~r′, τ ′)〉, (2.18)

where {τ, τ ′} are the imaginary times which are obtained via the replacement it→ τ

in the Heisenberg representation. For a time-independent and spin-independent inter-

actions with translational symmetry, the imaginary-time Green’s function is related

to the particle number density as

n(~r) = ±
∑
σ

Gσσ′(~rτ, ~rτ+), (2.19)

where the minus sign is for fermions and the plus sign is for bosons, and Gσσ′(~rτ, ~rτ+) is

called the same-time Green’s function with τ+ = τ+0+. Other physical quantities can

also shown to be expressed in terms of such correlation functions. Denoting G(~kσ, iωn)

as the spatial and time Fourier transformation of the imaginary time Green’s function,
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with ωn being the Matusbara frequency, then one can recover the retarded (real time)

Green’s function GR(~kσ, ω) via analytic continuation iωn → ω + i0+. This analytic

recovery of real time propagators is done exactly via the symDET algorithm as will

be discussed later in Section 2.3.

2.1.5 Perturbative Expansion

First, we recall that the Heisenberg representation of an operator Â in the imaginary

time (τ) frame is

ÂH(τ) = eĤτ/~Âe−Ĥτ/~, (2.20)

where Ĥ = H0 + V̂ is the Hamiltonian of the interacting system with H0 being an

exactly solvable Hamiltonian (aka the reference Hamiltonian), and V̂ is the interaction

term. In the interaction picture, the operator Â is represented as

ÂI(τ) = eH0τ/~Âe−H0τ/~. (2.21)

To proceed further, we introduce the time evolution operator in the interaction rep-

resentation

Û(τ, τ ′) = eH0τ/~e−Ĥ(τ−τ ′)/~e−H0τ/~, (2.22)

Note that Û(τ ′, τ ′) = 1 and Û(τ, τ ′′) = Û(τ, τ ′)Û(τ ′, τ ′′). This operator is very useful

when expressing perturbative solution of the full propagator as will be shown later.

Furthermore, the above operator satisfies the following differential equation

∂

∂τ
Û(τ, τ ′) = −1

~
V̂I(τ)Û(τ, τ ′). (2.23)

where V̂I(τ) = eH0τ/~V̂ e−H0τ/~ is the interaction representation of the perturbation V̂ .

Without going to any further details, the iterative solution of the above differential
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equation is [64]

Û(τ, τ ′) =
∞∑
n=0

(−1)n
n!~n

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2· · ·

∫ τ

τ ′
dτnT̂

[
V̂ (τ1)V̂ (τ2) . . . V̂ (τn)

]
. (2.24)

Using τ = β~ and τ ′ = 0, together with the imaginary time Green’s function

G(~kσ, τ) = −〈T̂ c~kσ(τ)c†~kσ(0)〉, one finds [64]

G(~kσ, τ) = −
〈T̂ ĉ~kσ(τ)ĉ†~kσ(0)Û(β~, 0)〉0

〈Û(β~, 0)〉0
, (2.25)

where ĉ~kσ(τ)(ĉ†~kσ(0)) is the interaction representation of c~kσ(τ) (c†~kσ(0)), and 〈x〉0 rep-

resents the ensemble average of x with respect to H0. Consequently, the perturbation

series of the imaginary time Green’s function is

G(~kσ, τ) = −
∑∞
n=0

(−1)n
n!~n 〈

∫ β~
0 dτ1

∫ β~
0 dτ2· · ·

∫ β~
0 dτnT̂

[
ĉ~kσ(τ)ĉ†~kσ(0)V̂ (τ1)V̂ (τ2) . . . V̂ (τn)

]
〉0∑∞

n=0
(−1)n
n!~n 〈

∫ β~
0 dτ1

∫ β~
0 dτ2· · ·

∫ β~
0 dτnT̂

[
V̂ (τ1)V̂ (τ2) . . . V̂ (τn)

]
〉0

.

(2.26)

In the next section, we will discuss how to evaluate the above averages using Wick’s

theorem where we end up with an infinite series in terms of the free particle propa-

gators.

2.1.6 Wick’s Theorem

In simple words, Wick’s theorem targets ensemble averages of a time ordered product

of operators and expresses them in terms of all possible contracted pairs. Basically, if

we have n creation and n annihilation Fermionic operators appearing in an ensemble

average as 〈T̂ ∏i=2n
i=1 Ai〉0 where Ai can be a creation or an annihilation operator, then

Wick’s theorem states that this average can be expressed as a sum of all possible
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pair-wise contractions [64]

〈T̂
i=2n∏
i=1
Ai〉0 =

∑
P

(−1)χP
∏
jk

〈T̂AjAk〉0, (2.27)

where χP is the signature of the permutation P of the Fermionic operators which is

+1 for odd permutation and 0 for even rearrangements. The right-hand side of the

above equation can be expressed as a product of the imaginary time Green’s function

of the non-interacting system which has an exact form for a given energy dispersion.

We should note that for the bosonic case, we end up with similar equation as Eq. 2.27

without the prefactor (−1)χP .

Dealing with the above equation can be cumbersome in this current form, thus we

need a more systematic way to treat this equation via Feynman diagrams which will

be discussed further in the next section. Alternatively, determinant methods can be

used to systematically evaluate those contractions as discussed in Sec. 2.3.

2.1.7 Feynman Diagrams

The non-interacting imaginary-time Green’s function can be thought of as a prop-

agator and is represented by an arrow leaving one point (in space and time) and

entering another. One can visualize every term in Wick’s theorem as a graph called

a Feynman diagram. As with any graph, Feynman diagrams can be connected or dis-

connected, but only connected ones appear in the calculations while the disconnected

diagrams cancel out in a perturbative expansion of Eq.2.26 [64]. Thus, Eq. 2.26 can

be rewritten as

G(~kσ, τ) = −
∞∑
n=0

(−1)n
n!~n 〈

n∏
i=1

∫ β~

0
dτiT̂

[
ĉ~kσ(τ)ĉ†~kσ(0)

n∏
i=1

V̂ (τi)
]
〉0,c, (2.28)
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where the subscript c stands for connected diagrams. For further details on the proof

of this result, the reader is advised to refer to Ref. 64.

(τ ;~kσ) (τ1;~k1σ1)

(τ1;~k2σ2)

(τ1;~k1 − ~qσ1)
~q

(τ1;~k2 + ~qσ2)

(0;~kσ)

(0;~kσ)

(τ ;~kσ)

(τ1;~k1σ1)

(τ1;~k2σ2)

(τ1;~k1 − ~q1σ1)
~q1

(τ1;~k2 + ~q1σ2)

(τ2;~k3σ3)

(τ2;~k4σ4)

(τ2;~k3 − ~q2σ3)
~q2

(τ2;~k4 + ~q2σ4)

Figure 2.1: A draw map of the Feynman diagram setup for first order (top row) and
second order (bottom row) perturbation theory.

Considering a two-body interaction of the form

V̂ (τ) = 1
2
∑
~q

∑
~k1,~k2,σ1,σ2

Vq ĉ
†
~k1+~q,σ1

(τ)ĉ†~k2−~q,σ2
(τ)ĉ~k2,σ2

(τ)ĉ~k1,σ1
(τ), (2.29)

let us assume that we want to calculate the imaginary-time Green’s function (Eq.

2.26). In this case, all the possible Wick contractions can be understood graphically

as follows: At first order, n = 1, these contractions correspond to all possible ways of

connecting an arrow leaving one vertex (external or internal) to another arrow entering

the same or different vertex as shown in Fig.2.1 (top row). This will result in four

connected and two disconnected graphs, where the latter are to be excluded following

Eq. 2.28. Similarly, for n = 2, the graphs that describe the Wick contractions can

be generated from Fig. 2.1(bottom row) which will be 80 connected diagrams and

40 disconnected ones where the latter is to be excluded. The number of Feynman

diagrams grows factorially with the perturbation order, in fact, at every perturbation
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order n, there are total of (2n + 1)! diagrams (connected and disconnected) for the

case of the imaginary-time Green’s function.

In standard diagrammatics, simplifications can be done as follows. First, one has

to filter the disconnected diagrams when studying a given observable. The next is to

identify the distinct topologies for the given graphs which reduces the computational

costs. In fact, if there are M connected diagrams at a given perturbation order n

for the case of general two-body interaction Hamiltonian, then the number of distinct

topologies isM/2nn!. Of course identifying those topologies might be computationally

expensive to find, but it is a great reduction whenever possible.

For the purpose of our calculations, we would like to stick with the frequency-

momentum space representation of Green’s functions where we perform the Fourier

transformation

G(~kσ, τ) = 1
β~

n=+∞∑
n=−∞

G(~kσ, iΩn)e−iΩnτ , (2.30)

where Ωn is the Matsubara frequency. For fermions Ωn = (2n+1)/β~, and for bosons

we have Ωn = 2n/β~, where those frequencies are the complex poles of Fermi and

Bose functions. This transformation also applies to the non-interacting imaginary-

time Green’s functions G(0)(~kσ, τ) which occur due to the Wick’s theorem in the

perturbative expansion Eq.2.28. Consequently, the time integrals in Eq. 2.28 will dis-

appear and the only thing left is to use the correct frequency label for every fermion

line so that the conservation laws at every vertex hold. This procedure is done system-

atically using our labeling scheme discussed in Section 2.3.4. Moreover, an important

step in this representation is to evaluate the discrete summations over the internal

Matsubara frequencies with the help of the residue theorem using the algorithmic

Matsubara integration [88].

Lastly, we would like to state the Feynman rules for the diagrams in the momentum-

frequency space for two-body interactions (Eq. 2.29) [64]:
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1. Draw all of the 2n+ 1 Fermion lines for a given nth order contraction.

2. The two external lines with coordinates (~kσ, ωex) are denoted by G(0)(~kσ, iωex),

while any of the internal Fermion line with coordinates (~pσ, iΩn) is denoted by

G(0)(~pσ,Ωn).

3. We apply conservation laws at each internal vertex to obtain the correct fre-

quency label of each propagator.

4. Multiply all of the Green’s functions together with the corresponding Vq’s, then

summing over all internal variables (spin, momenta, frequency, etc.).

5. Multiply the above result by (−1/β~2)n (−1)F , where n is the perturbation

order and F is the number of closed Fermion loop. The prefactor (−1)F serves

as the sign of the Wick contraction represented by a Feynman graph.

2.2 Algorithmic Matsubara Integration

The starting point of the AMI procedure is the evaluation of a general term that takes

the following form

Jn = 1
βn

∑
Ω1

∑
Ω2

· · ·
∑
Ωn

`=2n−1∏
`=1

G(0)
` (~α`, ε`), (2.31)

where n is the perturbation order, β is the inverse temperature and G(0)
` (~α`, ε`) is the

non-interacting Green’s function,

G(0)
` (~α`, ε`) = 1

i~α` · ~Ω− ε`
, (2.32)
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where ~α` =
(
α`1, α

`
2, . . . , α

`
n, α

`
n+1

)t
with α`j = {0,±1}, ~Ω = (Ω1,Ω2, . . . ,Ωn, ωex)t with

Ωj and ωex being the internal and the external Matubara frequencies, respectively,

and ε` being the dispersion. For example, in first order perturbation theory one could

have

J1 = 1
β

∑
Ωn

1
iΩn − ε

(2.33)

where ε could depend on the external frequency. In order to evaluate J1, we use the

contour integration method and the residue theorem where we end up with [64]

J1 = f(ε)Res{ 1
z − ε

}z=ε = f(ε) (2.34)

where Res{h(z)}z=z0 is the residue of h(z) at z = z0 and f(ε) = (eβε + 1)−1 is the

Fermi-Dirac distribution function. Generally speaking, the nested summations in Jn

could have more than one pole each of which can have multiplicity greater than 1.

Hence, a single Matsubara summation in Jn is evaluated via the following standard

equation
1
β

∑
iΩs

h(iΩs) =
∑
zp

f(zp)Res{h(z)}z=zp (2.35)

for the set of poles {zp} and the residue has the following general formula

Res{h(z)}z=zp = 1
(M − 1)! lim

z=zp

d(M−1)

dzM−1 {(z − zp)
Mh(z)} (2.36)

where M = 1, 2, · · · is the multiplicity of the pole zp.

The AMI algorithm uses the above equations to evaluate the general summation

in Eq. 2.31 where at each step it identifies the poles of the integrand and then uses

the residue theorem to find the result at every step. This process will contain lots

of nested terms due to the use of the residue theorem at every step, thus a careful

analysis is needed to do these calculations symbolically. As a starting point, the
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non-interacting Green’s function is expressed in the following array form

G(0)
` (~α`, ε`) := [ε`, ~α`] . (2.37)

Consequently, we have

`=N∏
`=1
G(0)
` (~α`, ε`) := [[ε1, ~α1] ; [ε2, ~α2] ; . . . ; [εN , ~αN ]] , (2.38)

which is an array of size N × (n + 1). Supposes that we start by evaluating the

summation over the jth internal frequency,

J (j) = 1
β

∑
Ωj

`=N∏
`=1
G(0)
` (~α`, ε`). (2.39)

If the product in the above summation has rj simple poles, then due to the residue

theorem we end up with a sum of rj terms which can be expressed in an array of size

rj × (N − 1) × (n + 1). At every later step, the size of this three-dimensional array

is changing where rj increases while N decreases until we finish the procedure with

a final array of size r1r2 . . . rn × 1 × (n + 1) which will be a function of the external

frequency (ωex). Algorithmically, this recursive procedure is done first by introducing

three arrays R, P , and S defined as follows [88]. First, the Rj array represents the

configurations of the Green’s functions obtained after summing over the jth frequency,

i.e. the three dimensional array discussed above. Second, Pj is the array of poles of

the Green’s functions obtained in the previous summation Rj−1,

Pj :=
[
P

(1)
j , P

(2)
j , . . . , P

(rj−1)
j

]
, (2.40)
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where

P
(q)
j :=

[
z

(i1)
jq , z

(i2)
jq , . . . , z

(irq )
jq

]
. (2.41)

The third array, which has the size of Pj, is

Sj :=
[
S

(1)
j , S

(2)
j , . . . , S

(rj−1)
j

]
, (2.42)

where

S
(q)
j :=

[
α

(i1)
jq , α

(i2)
jq , . . . , α

(irq )
jq

]
. (2.43)

with α(im)
jq = {±1, 0}. Consequently, the final result of the summation in Eq. 2.31

is [88]

J = K ·Rn, (2.44)

where

K = [S1 ? f(P1)]× [S2 ? f(P2)]× · · · × [Sn ? f(Pn)], (2.45)

with f(Pj) being the Fermi function of an array,

[f(Pj)]i` = f
(
z

(i)
j`

)
. (2.46)

It is important to define the operations between the arrays that provides the final

result in Eq. 2.44 [88]

(F ? G)ji = F ji G
j
i ≡ O

j
i , (2.47)

(O ×H)ji = OiHj
i , (2.48)
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H · Q =
∑
i

HiQi. (2.49)

where objects with two indices are 2 dimensional arrays and the location of the indices

is just for our own convention. We should mention that some of the poles can have

multiplicity greater than 1. In this case, one needs to account for that by performing

automatic derivatives [88]. This will increase the sizes of the arrays P and R with the

array S having entries ± 1
(M−1)! instead of ±1 and the final AMI result in Eq. 2.44 is

still valid.

2.3 Symbolic Determinant Construction of Pertur-

bative Expansions

2.3.1 Motivations: Why symDET?

Perturbation theories are a fundamental tool in a physicist’s arsenal for tackling in-

teracting electron systems. In many body perturbation theory (MBPT), physical

observables are expressed as an infinite series where each subsequent order is rep-

resented by an exponentially large number of contractions generated from Wick’s

theorem. Each contraction requires the evaluation of integrals over the set of all

internal variables. There are several ways to treat MBPT numerically, the most pop-

ular perhaps being Diagrammatic Monte Carlo (DiagMC) algorithms [75,78,150,151].

Standard DiagMC methods suffer from the fermionic sign problem that results from

the large number of contractions (diagrams) with alternating sign. [75,150] In recent

years, determinant methods have been introduced that can somewhat mitigate this

issue. [79–81] The connected determinant diagrammatic Monte Carlo (CDet) method

was introduced to treat perturbative expansions and avoids the factorial scaling of
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diagrams at exponential cost [1, 82, 84].

Those methods, however, are based on the Matsubara formalism for finite tem-

peratures and require numerical forms of analytic continuation in order to produce

dynamical properties in real-frequency or real-time. More recently the advent of al-

gorithmic Matsubara integration (AMI) [88, 152] method allowed us to symbolically

evaluate summations over Matsubara frequencies and has been successfully applied to

a number of physical problems such as the 2D Hubbard model [77,90,91,153] as well

as the uniform electron gas. [92,93] AMI provides access to real frequency calculations

via textbook analytic continuation, the replacement iωn → ω + iΓ with the regulator

Γ → 0+, which avoids ill-posed numerical analytic continuation schemes [154]. It

reduces the sampling space of internal variables minimizing the effect of the curse of

dimensionality and reducing overall numerical uncertainty.

Taking into account the advantages of both determinantal methods as well as the

AMI, we introduce a fully algorithmic approach which we call the symbolic determi-

nant method (symDET) that can treat a very general class of Hamiltonians that are

relevant to quantum chemistry and condensed matter physics. We start by generating

Wick contractions symbolically via determinant and then proceed to Fourier trans-

form those contractions also symbolically. We then perform the integrals over the

internal variables with the use of AMI for evaluating the Matsubara summations. We

discuss all of the elements of this algorithm in the next few sections. We then apply

symDET to several applications for fermionic systems in Section 2.4 [94]. Finally, we

provide a summary at the end of this chapter.
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2.3.2 General Model

The current structure of our symDET algorithm assumes the following very general

two-body interaction Hamiltonian

H =
∑
a

εaf
†
afa + 1

2
∑
abcd

Vabcdf
†
af
†
c fdfb, (2.50)

where a, b, c, d are general indices that could represent orbital quantum numbers in

molecular chemistry problems, or can be a combination of momentum and spin indices

for lattice models, εa is the free particle dispersion, f †a (fa) is the creation (annihi-

lation) operator of fermions and Vabcd is the general two-body interaction strength.

We always assume the quadratic part of the Hamiltonian to be diagonal (of the form

f †afa) which is very important for the AMI part of the algorithm [88].

2.3.3 Wick Contractions via Determinant

The main goal of MBPT is to calculate the mth order correction to the imaginary

time Green’s function,

G
(m)
ba (τ) = (−1)m

m!

〈
T̂

 m∏
`=1

∫ β

0
dτ`HV (τ`)

fb(τ)f †a(0)
〉

0

(2.51)

, where HV (τ`) is the quartic part of the general Hamiltonian (Eq. 2.50) in the

interaction picture. We see that at order m we must compute the expectation value

of a sequence of 4m creation and annihilation operators attached to times τm, in

addition to the external operators fb(τ) and f †a(0).

This expectation value can be evaluated using Wick’s theorem, replacing the ex-

pectation value with a sum of all possible contractions of creation and annihilation

operators. This is typically accomplished in matrix form with rows and columns
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represented by annihilation and creation operators, respectively. One can then gen-

erate all possible contractions - while also keeping correct track of the fermionic sign

arising from commuting fermionic operators - by just taking the determinant of said

matrix [82, 84].

For this we define G to be a (2m + 1) × (2m + 1) matrix in which the rows

(columns) correspond to the 2m annihilation (creation) operators plus an additional

entry in each for the external vertices. We introduce column and row indices `, s such

that

{a`} := {a1, c1, a2, c2, . . . , am, cm, aout},

{bs} := {b1, d1, b2, d2, . . . , bm, dm, bin},
(2.52)

and define the matrix elements [1]

Gs` := −〈fbs(τs)f †a`(τ`)〉0 = gbsa`(τs − τ` + 0−) = g`s. (2.53)

The full matrix can then be written

G :=



g11 g12 · · · g1M

g21 g22 · · · g2M

... ... . . . ...

gM1 gM2 · · · gMM


, (2.54)

where M = 2m+ 1.

This construction has been presented numerous times and forms the basis for de-

terminant Monte Carlo methods applied to many-body systems [1, 82,82,84,155]. In

the standard prescription, theGmatrix is populated in real space and imaginary-time.

The determinant procedure is typically evaluated numerically by inserting numerical
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values for the imaginary time Green’s function, and sampling over all continuous times

τm. There is one caveat to doing this is that the terms generated represent both con-

nected and disconnected Feynman graphs. Removing the disconnected components

can be accomplished with the recent method described by Rossi et al. [82].

When creating a symbolic representation of the matrix form of Eq. (2.54) each

element with row and column indices ` and s is just a function of those indices. We

can therefore generate a symbolic representation by replacing the entries with their

row and column indices, G`s → (`, s).

If we can take a determinant of this matrix and store each term separately, we

will have generated the expressions that represent the n! connected and disconnected

diagrams. Evaluation of numerical determinants can be accomplished in O(n3) time,

an advantage of modern determinantal methods [82, 156, 157], but since we want to

proceed symbolically there is no obvious route to such fast evaluations. Instead, we

take the most pedantic approach and simply store the explicit parameters of each term

in the determinant. While this factorial scaling sounds problematic, the tradeoff is

an analytic expression that is exact to machine precision. This is in lieu of stochastic

methods that, while they can evaluate determinants quickly, must perform temporal

integrals via Monte-Carlo sampling, a process that for high accuracy requires typically

106 to 108 samples. We expect that for low orders we will arrive at a precise numerical

result with fewer operations despite this factorial scaling. Furthermore, using our

symDET algorithm one can recover the real-frequency observables analytically via

the replacement iωex → ωex + i0+.

To proceed we use the Leibniz formula for an n× n matrix, A with elements ai,j:

det(A) =
∑
p∈Pn

(
(−1)p

n∏
i=1

ai,pi

)
. (2.55)

In this expression, p = (p1, p2, · · · , pn) is a permutation of the set {1, 2, . . . , n} and Pn
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is the set of all such permutations. Finding the permutations of p and the associated

signs is a straightforward computational problem. To do this symbolically we generate

a permutation p and then store the indices of ai,pi , i.e. (i, pi) for each i. Each term in

Eq. 2.55 is then completely defined by a vector of such pairs, and a single +1/-1 sign

prefactor.

This represents a major departure from typical determinantal QMC methods [83,

158] where such a matrix is filled with numerical values. In our case we have yet to

assign values to the entries and instead we want to store the information required to

later symbolically construct the expression.

2.3.4 Symbolic Fourier Transform

A very interesting and useful property of Feynman diagrams is that the set of possible

diagram topologies is independent of coordinate and temporal labelling of each vertex.

However, in the contractions of Eq. 2.54 each topology may appear multiple times - as

is famously the case for a single-band problem where the m! denominator is precisely

cancelled by m! duplicates of each topology. Since we have each contraction - we

are free to represent each as a graph in momentum and Matsubara frequency space.

However, in doing so one would need to develop an internally consistent labelling of

each graph - a process that is fundamentally non-local in diagram topology and also

is not unique.

Instead we choose to mimic the analytic process and have devised an analytic

representation of the temporal Fourier transform. The procedure, detailed in Ap-

pendix A, sorts the contraction pairs (i, j) that represent imaginary time Green’s

functions spanning between internal times τb i2 c and τb j2 c
. The pairs are then sepa-

rated into three lists A, B, and C. Graphically, A contains all edges (n − 1) of a

directed tree that connects the internal n vertices, B contains the external edges that
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connects internal vertices to the external vertex, and C has the remaining edges of

the full directed graph. Since the contraction pairs are effectively source/target sets,

the connectivity of the contraction can be determined directly as is done in graph

theory, identical to a depth first search, at minimal expense, scaling with the number

of vertices, n, which is typically small and scales as 2n for perturbation order n. If

at the end of the process the number of pairs in A is n − 1, in B is 2 and in C we

have n pairs, then the diagram is connected. Now, the symbolic Fourier transform

(SFT) of the time integrals is done by simply converting those three lists to matrices

as described in Appendix A. The advantage of this is that one obtains a unique set

of internal labels that obey energy and momentum conservation at all vertices. The

main result is given in Eq. A.13 which is a matrix with entries zero, and ±1. We

should stress that our SFT procedure does two jobs at once. First, if the sizes of the

A, B, and C lists match the above listed sizes then the contraction is equivalent to

a connected Feynman diagram and it automatically gives the conserving frequency

labels, else it omits the contraction as it is equivalent to a disconnected Feynman

diagram.

2.3.5 Minimal Sampling of Internal Variables

Once the proper frequency labels are assigned, our nth order perturbative expansion

is of the form

G
(n)
ba (ωex) = (−1)n

n! gb(iωex)ga(iωex)×

∑
e1,...,e2n−1

∑
{Ωn}

∑
c∈C

sgn(c)
2n−1∏
j

gjej(αj · ω) (2.56)

where the first summation is over the internal variables ei (e.g. orbital numbers,

momenta, spin, or a mix of them), where the space of such variables reduces from

N4n to N2n−1 with N being the size of such basis, the second summation is over the
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set of internal Matsubara frequencies, and the last is over all contractions belonging

to the set C obtained from the determinant of the matrix Eq. 2.54 with contractions

equivalent to disconnected diagrams omitted via the SFT procedure, and sgn(c) being

the sign of the corresponding contraction. Here αj is the jth row in Eq. A.13,

ω = (Ω1, . . . ,Ωn, ωex)T and

gjej(αj · ω) = 1
iαj · ω − εej

(2.57)

is the Fourier transformed free propagator. The usual process of evaluating the above

nested summation is done with the use of the Monte Carlo sampling of the internal

variables {ei,Ωi} [78, 159, 160]. To reduce this larger space of samples, one only

samples over {ei} while the summations over the Matsubara frequencies {Ωi} at every

sample of {ei} is performed analytically via the algorithmic Matsubara integration

(AMI) [88, 152]. In the case of molecular problems, or generically discrete systems,

one performs the ei summations directly such that our algorithm gives the exact

value of the perturbative expansion. However, in the case of lattice problems, we use

stochastic sampling over momenta and we obtain results with stochastic error bars.

In both cases, the Matsubara summations are evaluated exactly using the AMI. We

summarize the symDET procedure in Fig. 2.2.

2.4 Applications to Fermionic Systems

2.4.1 Molecular Chemistry Problems: H2

Molecular hydrogen is the simplest system to consider as a test-bed for method devel-

opment and here we start with the simplest representation in the Slater-type orbitals

basis STO-6g which describes the interaction between the two hydrogen atoms having
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Matubara Axis? Real Axis?

Figure 2.2: Flow chart of the symDET steps. First, contractions are generated from
the determinant of Eq. 2.54, then the SFT is used to filter contractions and provide the
correct conserving labels to contractions that are equivalent to connected diagrams.
Thirdly, we sample over all internal non-frequency variables and perform the nested
Matsubara summations via the AMI. At this stage, analytic expressions are stored
and if real frequency calculations are needed, the analytic continuation is performed
exactly from those expressions.
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only 1s orbitals. In particular, we will see later in Section 2.4.3 that the two state

problem is the basic component of a single-band with spin ↑/↓ and therefore correct

results for the STO-6g basis are paramount in developing the method beyond simple

problems. We use the Python-based Simulations of Chemistry Framework (PySCF)

package [161] to obtain the Hartree-Fock solutions for the STO-6g basis from which

we compute the self energy on the Matsubara axis illustrated in Fig. 2.3. We compare

our results in detail to those in Ref. [1] and find that our exact result is within stochas-

tic error bars of that work. Different from their result, our starting eigenstates are

asymmetic, resulting in distinct values of Σ00 and Σ11, while the off-diagonal self en-

ergy terms are zero in this case. While we stop at fourth order, there is no conceptual

hurdle to evaluating higher orders or larger basis sets. However, the computational

expense is factorial in order and exponential in basis. Nevertheless, the procedure is

easily parallelizeable.

The real advantage to our approach is the direct evaluation of real frequency

properties. By symbolically replacing iωn → ω+ iΓ we can plot the self energy in real

frequencies shown in Fig. 2.4 for a particular choice of Γ that can be made arbitrarily

small. Here we focus on a relevant frequency range where there is an expected new

peak that is created by a sharp feature in ReΣ(ω) such that the interacting Green’s

function gains one or more additional poles. This is seen in the spectral function

A(ω) = Im{G(ω)} as shown in Fig. 2.5. The dominant peaks remain those of the

non-interacting dispersion while additional peaks - shown in the insets - appear at

energies offset by the peak difference ∆E = h11 − h00 which is expected based on the

second order expansion. At fourth order shown, there are two additional poles instead

of a single peak near ω = ±2 as we can see in Fig.2.5 which accounts for interactions.

As an example for a larger basis set, we compute the self-energy for H2 in the

10 orbital cc-pVDZ basis representation as shown Fig.2.6. This basis is five times
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larger than its STO-6g counterpart, stressing our ability to study larger molecules

with symDET.

An interesting implication of these calculations is the ability to perform self-

consistent perturbation theory beyond the well-known second order Green’s Function

method (GF2)0 [158]. In GF2, one uses the truncated Green’s function at second order

as the starting free propagator for the next iteration and this process is repeated until

convergence occurred. For molecular chemistry problems, this implementation of GFn

(where n ≥ 2) is exact at each order and is valid at finite or zero temperatures, and at

any physical parameters. For example, the binding energy for molecules is obtained

by generating the poles of the full propagator which is easy via the AMI part of our

code.

2.4.2 The Dimer Model

To demonstrate the versatility of our approach we study the Hubbard dimer. The

model consists of two sites each of which has a spin 1/2 particle. The model we use

is [87]

H = H0 +HU +HH +HSB − µ
∑
i,σ

c†iσciσ (2.58)

where H0 = −t∑σ=↑,↓(c†0σc1σ + c0σc
†
1σ) is the hopping term for electrons between

the two sites, HU = U
∑
i ni↑ni↓ − U

2
∑
iσ niσ describes the onsite interaction, HH =

H
∑
i(ni↑ − ni↓) is the interaction due to an applied magnetic field, and HSB =

Ua(n0↑n0↓ − n1↑n1↓) + µa(n0↑ + n0↓ − n1↑ − n1↓) + Ha(n0↑ − n0↓ − n1↑ + n1↓) is a

symmetry-breaking term. The quadratic part of the above Hamiltonian is not di-

agonal, hence we perform the proper diagonalization to bring it to the form in Eq.

2.50 with an effective four-bands system (two spin orientations and two sites). In this

example, the self-energy in this basis is not diagonal but rather block-diagonal. As an
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Figure 2.3: (a) and (b) The real and imaginary parts of the self-energy for H2 in the
STO-6g basis with external band indices aex = bex = 0. (c) and (d) plots of the real
and imaginary parts of ΣH2 for aex = bex = 1. Here β = 50.0. The dashed curves are
the corresponding data obtained in Ref. 1
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Figure 2.4: (a) and (b) the real and imaginary parts of Σ00, while (c) & (d) are the
components of the self-energy for the second band for H2 (in the STO-6g basis) on
the real frequency axes. Here the regulator is Γ = 0.05
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Figure 2.5: The spectral function for H2 in the STO-6g basis is truncated at 4th order.
The inset data is a zoom in of the extra peaks with lower intensity. Here the regulator
0.05.
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Figure 2.6: The self-energy for H2 in the cc-pVDZ basis versus the Matsubara fre-
quency with β = 50.0. (a) The real part of the self-energy components (0, 0) and
(1, 1) truncated at second (nmax = 2) and third (nmax = 3) orders, and (b) are the
imaginary counterparts.
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Figure 2.7: (a) and (b) the real and imaginary parts of the diagonal elements of the
self-energy matrix for nmax = 2, 3 for the Hubbard Dimer model (Eq.2.58). Here we
took t = 1.0, U = 2.5, µ = 0.70, H = 0.30, Ua = 0.50, µa = 0.20, Ha = 0.030, and
β = 2.0.

illustration, we plot the imaginary and real parts of Σ00 and Σ01 up to fourth order

for U = 2.5t = 5.0, µ = 0.7, H = 0.30, Ua = 0.5, µa = 0.20, Ha = 0.030 and β = 2.0

in Fig.2.7.

2.4.3 Single-Band Hubbard Model on Square Lattice

The simplest starting point for considering a lattice Hamiltonian is the single-band

Hubbard model of spin-1/2 Fermions on a square lattice. The model is typically

written in real-space notation as

H =
∑
〈ij〉

∑
σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (2.59)

where tij is the hopping amplitude, c(†)
iσ is the annihilation (creation) operator at site i,

σ ∈ {↑, ↓} is the spin, U is the onsite Hubbard interaction, niσ = c†iσciσ is the number

operator, µ is the chemical potential, and 〈ij〉 restricts the sum to nearest neighbors.
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For a 2D square lattice we take tij = −t, resulting in the free particle energy

ε(k) = −2t[cos(kx) + cos(ky)]− µ. (2.60)

Mapping this problem to Eq. 2.50 leads to an effective model of two degenerate

bands with states ↑:= (k, σ =↑) and ↓:= (k, σ =↓) and the band indices are then

summed over up and down basis. This leads to a diagonal and spin independent

hab = εkδab and an interaction term independent of momentum with entries U↑↑↓↓ =

U↓↓↑↑ = U and all other elements of U are zero.

Due to the additional k-indices, after processing with AMI each mth order Wick

contraction contains anm-dimensional integral over internal momentum vectors which

requires approximate numerical integration methods to evaluate. Otherwise the pro-

cedure is unchanged from the two-band case of H2 in the STO-6g basis which high-

lights the importance of that problem as a benchmark. As an illustration, we have

calculated the self-energy for the 2D square lattice on the Matsubara axis shown in

Fig. 2.8 for doped cases (µ 6= 0). Moreover, the exact same expressions can be used

to generate the matching real-frequency results which we show in Fig 2.9.

2.5 Summary

In this chapter we have presented an algorithm which we developed that can evaluate

the coefficients of the many-body perturbation series for single and multiband prob-

lems with a general two-body interaction models at equilibrium. The steps to our

determinant method are: (1) Generate contractions by evaluating the determinant of

Eq.2.54, (2) perform the symbolic Fourier transform, (3) perform AMI to evaluate the

Matsubara summations exactly, (4) sum or sample any remaining internal degrees of

freedom. If we are interested in real-frequency calculations, analytic continuation is
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Figure 2.8: (a) The real part of the (spin up) self-energy of the two dimensional
Hubbard model for t = 1.0, U = 3.0, β = 8.33, ~k = (0, π), and at different values of
µ as indicated, and (b) are the imaginary counterparts.
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Figure 2.9: (a) and (b) the real and imaginary parts of the self-energy (truncated at
third order) versus the real frequency for the 2D Hubbard model evaluated for the
parameters choice: U = 3t = 3.0, β = 8.33, and ~k = (0, π) with different values of µ
as indicated. We took a Monte-Carlo sample of size 1×108 and the regulator Γ = 0.2.
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automatically applied in the analytic expressions.

We have applied our algorithm to a variety of problems from molecular chemistry

to lattice models up to fourth order perturbation theory. The method is therefore

flexible and can solve different models in both real and imaginary frequency domains

allowing it to be of great importance for both quantum chemistry and lattice system

applications. The bottleneck in computation of lattice systems remains the numerical

integration over remaining spatial degrees of freedom. When the numerical regulator

Γ is small this becomes difficult due to the sharp nature of the integrands. The

use of renormalized perturbation theory might help alleviate these difficulties. [91]

Finally, our algorithm, equivalent to a single shot GFn exceeds what is currently

available within the second-order Green’s function method (GF2) [158]. Although

we limited ourselves to fourth order calculations, higher order corrections can be

achieved, since the algorithm is valid at any arbitrary perturbation order and system

size. Of particular interest is molecular problems where we are able to evaluate each

perturbative order exactly to machine precision. In these cases, regardless of the

computational expense of higher orders, since the result is exact it needs only be

computed once.
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Chapter 3

Floquet Theory for Driven Layered

Twisted Systems

3.1 Review

In the previous chapter, we have shown how one can solve the generic two-body inter-

action Hamiltonian using symDET. This Hamiltonian spans a class of Hubbard-like

models that describes electron interactions in twisted graphene systems at equilib-

rium [162–164]. In this chapter, we will study these twisted systems in the non-

equilibrium case using Floquet theory within the non-interacting limit. The possible

connection between Floquet theory and symDET is discussed in the next chapter.

A Floquet system is a physical system that is described via a periodic Hamiltonian

H(t), i.e. H(t + T ) = H(t) for some period T . One example is a graphene layer

interacting with circularly polarized light. The system evolves in time according

to the Schrodinger equation H(t) |ψ(t)〉 = i~∂t |ψ(t)〉. To solve this equation, one

generally follow two choices: (1) the time evolution operator approach and (2) the

quasi-energy operator method. For the first method, we recall that the time-evolution
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operator U(t) satisfies the following first order differential equation

i
∂U(t)
∂t

= H(t)U(t) (3.1)

where the above equation has the following general solution (a.k.a. time ordered

exponential),

U(t) = T̂ exp
(
−i
∫
dtH(t)

)
= lim

δt→0

j=t/δt∏
j=1

exp (−iδtH(nδt)) (3.2)

where T̂ is the time-ordering operator. In Floquet methods, we generally focus on the

physics averaged over a time interval, typically over one or more full periods. Hence,

one can conclude the following property of the time evolution operator

U(nT ) = [U(T )]n (3.3)

which leads us to define the Floquet Hamiltonian HF as

U(T ) = e−iHFT (3.4)

As we can tell, this is similar to the situation of the time-independent Schrodinger

equation. Hence the Floquet Hamiltonian is an effective time-independent Hamilto-

nian that describes the non-equilibrium system. Such a coarse-grained Hamiltonian

can be used to describe different phases of the original physical system (modeled by

H(t)) without the need to rely on the methods of time-dependent quantum mechan-

ics. However, it can be challenging to obtain such a Hamiltonian due to the fact that

computing the time evolution operator at stroboscopic times (multiples of period T )

is still hard and finding the logarithm of a matrix is a difficult task (Eq.3.4). However,
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approximations can be used to simplify the computations which gives solutions that

are valid in high, low, and medium frequency regimes [165].

On the other hand, in the quasi-energy approach one adopts a general Bloch

wavefunction (in the time domain) of the form ψ(t) = e−iεtu(t), for some periodic

function u(t) and ε is the quasi-energy. Hence, the Schrodinger equation reduces to

the following eigenvalue equation

[H(t)− i∂t]u(t) = εu(t), (3.5)

where Q(t) = H(t)− i∂t is the quasi-energy operator. Expanding u(t) in the Fourier

basis as u(t) = ∑
n e

inωtun, the above eigenvalue equation reduces to

∑
`

[
H(j−`) + δ`,j`ω

]
u` = εuj, (3.6)

where H(M) = T−1 ∫ T
0 dte−iMωtH and T = 2π/ω [165]. Consequently, the problem

becomes equivalent to a time-independent system. However, the price is that the

corresponding matrix is infinite and hence truncations are a must. Thus, obtained

solutions are limited to a range of frequency regimes. In the limits of high frequency

regime, Eq. 3.6 predicts multiple copies of the non-interacting system shifted by the

same frequency and this was confirmed experimentally [166,167].

So far we have seen the complexity of such non-equilibrium systems. Hence, ap-

proximations are necessary means to move forward. One example of approximations

is the Van Vleck expansion where, to first order approximation, the effective Hamil-

tonian reads [122,168]

H
(1)
vV = H(0) +

∑
m6=0

H(−m)H(m)

mω
, (3.7)

where H(m) is the Fourier transform of H(t). Other approximations work for larger

44



frequency regimes such as the rotating frame approximation which was used to study

twisted bilayer and trilayer graphene systems under the influence of circularly polar-

ized and waveguide lights [2, 169]. For further details on different kinds of approxi-

mations, it is recommended to read Ref. 165 and references therein.

An interesting class of materials where one can apply the above methods is the

twisted layered graphene systems. The relative twist between the layers results in

the appearance of moiré patterns which can be observed experimentally via scanning

tunneling microscopy tools [170]. Moiré materials are characterized by magic angles

at which flat bands appear in the band structure, for the case of twisted bilayer

graphene this angle was found to be θ ≈ 1.05 degrees [171]. These flat bands are

signature of strong electron-electron interactions, hence the possibility of different

interesting states of matter to emerge. The vast majority of interesting states of

matter appear in systems where electrons interact strongly with each other. Examples

of such many body phenomenon are: heavy fermions [172], spin liquids [173], and

high temperature superconductivity [174]. Thus, great efforts have been invested

in investigating twisted materials near magic angles especially after the discovery of

superconductivity in twisted bilayer graphene (TBLG) [175]. Moving forward, moiré

materials were found to host variety of strongly correlated phases such as correlated

insulators and ferrimagnetism [175–192].

An alternative approach to modify the band structure in graphene systems is

to apply different forms of light onto the system such as circularly polarized light

[193–197]. In this context, one needs to solve the associated time-dependent wave

equation via Floquet methods, perturbative methods and other techniques [122–124,

198–202]. In recent years, both Floquet and moiré methods were combined resulting

in additional features such as modified band structures, light-induced flat bands, and

other interesting topological properties were theoretically predicted [143–146,169,203–
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205].

In the next sections, we will apply Floquet engineering methods to two interesting

physical systems. Firstly, we study the twisted trilayer graphene system under the

influence of circularly polarized light and waveguide light and compute the topological

maps in the case of circularly polarized light [2]. Secondly, we investigate the twisted

bilayer graphene system with the inclusion of Haldane interactions along with the

same forms of light and compute the band structure for the equilibrium and non-

equilibrium cases.

3.2 Floquet Engineering and Topological Maps in

Twisted Trilayer Graphene (TTLG)

3.2.1 Why TTLG?

Motivated by the recent experimental realization of twisted trilayer graphene (TTLG)

and the observed superconductivity that is associated with its flat bands at specific

angles [206], we study trilayer graphene under the influence of different forms of light

in the non-interacting limit. Specifically, we study four different types of stacking

configurations with a single twisted layer. In all four cases, we study the impact of

circularly polarized light and longitudinal light coming from a waveguide. We derive

effective time-independent Floquet Hamiltonians and review light-induced changes

to the band structure. For circularly polarized light, we find band flattening effects

as well as band gap openings. We emphasize that there is a rich band topology,

which we summarize in Chern number maps that are different for all four studied

lattice configurations. The case of a so-called ABC stacking with top layer twist is

especially rich and shows a different phase diagram depending on the handedness of
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the circularly polarized light. Consequently, we propose an experiment where this

difference in typologies could be captured via optical conductivity measurements. In

contrast, for the case of longitudinal light that is coming from a waveguide, we find

that the band structure is very closely related to the equilibrium one but the magic

angles can be tuned in-situ by varying the intensity of the incident beam of light.

The next few sections are organized as follows. In Sec. 3.2.2 we describe twisted tri-

layer graphene in equilibrium, introduce the model, and review some of its properties.

In Sec. 3.2.3, we focus on circularly polarized light where we first analyze the band

structures for the different TTLGs. We then derive effective time-independent Hamil-

tonians that allow for less computationally costly treatment of light-driven TTLG.

These effective Hamiltonians are then used to study the band topology and suggest

an experimental setup to test some of our predictions. Finally, in section 3.2.4 we

consider longitudinal light coming from a waveguide. Here, we focus exclusively on

changes to band structure and the effective Hamiltonian. We find that this type of

light makes it possible to tune the magic angles, where flat bands appear. The effective

Hamiltonian allows us to gain insight into the mechanism behind this observation.

3.2.2 Equilibrium Model

The system we will study in this work is twisted trilayer graphene in its various

stacking configurations subjected to different forms of light. Here, we briefly review

some of its equilibrium properties.

Trilayer graphene is formed by three layers of graphene stacked on top of one

another. If two sheets are stacked in such a way that all the carbon atoms of one

layer are exactly on top of an atom in the layer below this is called AA stacking. The

case where only half of the atoms in the top layer have an atom exactly below it is

referred to as either AB or BA stacking (there are two possible orderings). For trilayer
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graphene there can be various possible configurations such as AAA, ABA and ABC

stacking. To obtain twisted trilayer graphene each of these stackings can then have

either the top or middle layer rotated with respect to the other layers, which will lead

to a moiré pattern that is associated with a smaller moiré Brillouin zone (MBZ), as

we show in Fig. 3.1.

(a) (b)

Figure 3.1: (a) The moiré Brillouin zone for a twisted trilayer graphene (TTLG)
system with only one layer twisted. (b) Schematic plot of the TTLG system for the
AAA stacking with middle layer twist showing the moiré pattern [2].

The static Hamiltonian for twisted trilayer graphene we will work with is based

on the Hamiltonian introduced in earlier works [207,208]. It is given as

H(~x,~k) =


h1(θ1, ~k − ~κ1) T12(~x) 0

T †12(~x) h1(θ2, ~k − ~κ2) T23(~x)

0 T †23(~x) h3(θ3, ~k − ~κ3)

 , (3.8)

where

h`(θ`, ~k) = γ

 0 f
(
R(θ`)~k

)
f ∗
(
R(θ`)~k

)
0

 , (3.9)
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is the single layer graphene Hamiltonian with hoppings between graphene’s sublattices

given as f(~k) = e−i2a0ky/3 +2eia0ky/3 sin
(
a0kx/

√
3− π/6

)
, R(θ`) as the rotation matrix

in the layer plane, and γ = ~vF/a0 = 2.364 eV is the strength of the interlayer hoping,

where vF = 106 m/s is the Fermi velocity and a0 = 0.246Å is the lattice constant [209].

Here, we used the bounded tight binding form of f(~k) for single layer graphene rather

than a linearized dispersion used in Ref. [208] because bounded Hamiltonians are more

well-behaved for the purposes of Floquet theory.

The Hamiltonian above can be used to model the various possible configurations

of twisted trilayer graphene we will consider. Particularly at twist angle θ, a top layer

twist (TLT) can be modelled with parameter choices θ1 = −θ2 = −θ3 = θ/2, ~κ1 = ~κ−

and ~κ2,3 = ~κ+ where ~κ± = kθ
2

(
−
√

3,±1
)
and kθ = 8π sin(θ/2)/3a0. Similarly, for a

middle layer twist (MLT), one would have to set θ1 = −θ2 = θ3 = θ/2, ~κ1,3 = ~κ− and

~κ2 = ~κ+.

The ~κ± shifts were introduced into the Hamiltonian through a unitary transfor-

mation that ensures that the momenta in all three layers are measured with respect

to the Γ point in the moiré Brillouin zone seen in Fig. 3.1. This transformation is

also the reason why our T (~x) matrices, where x is the spatial coordinate, at first

glance seem to differ by the choice of ~q vectors from those used in [208] as we will

see below. The advantage of this approach is that an expansion of the Hamiltonian

in terms of plane waves can be done in a conventional way (without the need to

introduce additional phases for the different layer components of the wavefunction).

In our case, the T matrices for a middle twist are given as T12(~x) = ∑3
`=1 e

−i~q`·~xT`,

T23(~x) = ∑3
`=1 e

+i~q`·~xT`. The case of a top twist differs in that T23(~x) = ∑3
`=1 T`. In

addition, we have ~q1,2 =
√

3kθ
2 (±1,

√
3) and ~q3 = (0, 0). Finally, the matrices T` are
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defined as follows [208]

TAB` =
[
TBA`

]†
=

 w0e
i 2`π

3 w1

w1e
−i 2`π

3 w0e
i 2`π

3

 , (3.10)

TAA` =

 w0 w1e
−i 2`π

3

w1e
i 2`π

3 w0

 (3.11)

where the superscripts refer to the type of stacking we have which can be AA, AB, or

BA stacking. We choose the tunneling parameters w1 = 110 meV and w0 ≈ 0.8w1 so

that they are close to those in twisted bilayer graphene where distortions in a relaxed

lattice can be modelled this way [145, 203], which is expected to happen for twisted

trilayer graphene if we neglect next nearest layer interactions.

To provide a reference for our discussion of the non-equilibrium case, we remind

the reader of some equilibrium properties of twisted trilayer graphene. We plotted

the band structure for the AAA and ABC stacked twisted trilayer graphene with top

and middle layers twisted as shown in Fig. 3.2. We have omitted the ABA stacking

case because we find that top layer twisted ABA TTG has a band structure that

for small twist angles is equivalent to the top layer twisted ABC case. Similarly, the

middle layer twisted ABA case has a band structure that is equivalent to middle layer

twisted AAA TTG . This phenomenon is similar to twisted bilayer graphene where

for small twist angles it does not matter whether one started from AA stacking or AB

stacking. This property is also preserved once we introduce circularly polarized light

and longitudinal light coming from a waveguide.
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Figure 3.2: Band structure of the TTG with equilibrium Hamiltonian (Eq. 3.8) top
layer twisted (top row) and middle layer twisted (bottom row) with twist angle θ =
1.6◦. (a,c) Starting from AAA stacking and (b,d) starting from ABC stacking [2].
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3.2.3 TTLG Under the Influence of Circularly Polarized Light

If this light is applied perpendicular to the graphene layers, at frequency ω and driving

strength A, then we include its effect in a semi-classical fashion - assuming large

photon numbers- by making use of the minimal substitution prescription kx → kx −

A cos(ωt) and ky → ky −A sin(ωt) [169]. Thus, we have a time-periodic Hamiltonian

satisfying H(~x,~k, t) = H(~x,~k, t + 2π/ω). We should mention that small deviations

from normal incidence leads to small corrections in the high-frequency limit, which is

the case in this work, and thus it can be neglected. For a study of oblique incidence

light in bilayer graphene, see [210]. In the next few sections we discuss our numerical

results for both band structure and topological phase diagrams of the TTLG under

the influence of this form of light.

3.2.3.1 Numerical results of the band structure using the quasi-operator

approach

In this section we study the effects that circularly polarized light has on the band

structure of the various twisted trilayer graphene systems. To do this we evaluate the

Floquet-Schrödinger equation (3.6) numerically.

In Figs. 3.3 & 3.4 we plotted the band structure for different driving strengths,

driving frequencies and twist angles in the vicinity of the magic angle of the TTG.

We show both the driven case as well as the undriven case to allow for a comparison.

The cases we consider are twisted configurations that start from both AAA and ABC

stacking and in each case we consider both top layer and middle layer twists.

An interesting effect of circularly polarized light is that for certain choices of the

twist angle, driving strength A and the driving frequency ω, one can flatten the central

bands making it a very interesting candidate for strongly correlated phases because

one can expect interactions to be dominant in this case. For example, in Fig. 3.4 (a),
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Figure 3.3: Band structure (left column) for TTLG driven by circularly polarized
light. (a) Starting with AAA stacking with TTLG and parameters (θ, Aa0, ω) =
(1.8◦, 0.25, 2γ), and (b) the ABC with TTLG and (θ, Aa0, ω) = (1.0◦, 0.15, 3γ). In
the above plots, the dash-doted lines represent the undriven case and the solid lines
represent the driven case. The corresponding density of states plots (DOS) are on
the right column rescaled by DM(E) which is the maximum value of the DOS of the
driven case [2].
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Figure 3.4: Reproduction of Fig. 3.3 for the case of middle layer twist (MLT). (a)
AAA stacking with (θ, Aa0, ω) = (1.6◦, 0.15, 3γ), and (b) ABC configuration for the
parameters (θ, Aa0, ω) = (1.6◦, 0.15, 3γ) [2].

54



we see that the two middle bands are less dispersive than their equilibrium counter-

parts. We observe that not all configurations in Figs. 3.3 & 3.4 yield less dispersive

bands such as the case of AAA stacked top layer twist. The effect depends on the

relative location of the Dirac cones, and subsequent hybridization due to interlayer

couplings. In the same figure, we also plotted the density of states associated with

each case. The plots reflect the flattening of the bands via the appearance of sharper

peaks as can be seen in the case of AAA stacking with a middle layer twist. Moreover,

Figs. 3.3 & 3.4 show the appearance of gap openings which is another rationale for

using this type of light. Consequently, this opens up the possibility to discuss topo-

logical effects that are characterized by the Chern number of isolated bands. Since we

work in the high frequency regime (the driving frequency is larger than the bandwidth

of the model Hamiltonian) this allows access to information about topological edge

states [211]. This is unlike the low frequency regime that requires the calculation of

the winding numbers for a proper description of band topology - in this regime the

connection between relative Chern numbers and number of edge states is not imme-

diate anymore. Since such calculations can be computationally very expensive when

working with the full quasi-energy operator, it will turn out to be convenient to rely

on approximate time independent Floquet Hamiltonians that will be introduced in

next two sections.

3.2.3.2 Band structure via the Van-Vleck approximation

It will be useful to linearize the Hamiltonian (3.8). However, since we want to capture

the effect of periodic drive as accurately as possible instead of just linearizing by a

Taylor expansion we first expand the Hamiltonian to first order in a Fourier series
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and subsequently linearize it in momenta. The result is that

f(~k − ~A) ≈ a0(kx − iky)J0(2Aa0/3) + 3J1(2Aa0/3)eiωt (3.12)

where Jn(x) is the Bessel function of the first kind. We use this approximation in (3.8)

along with the second order Van-Vleck approximation (VVA) Eq. 3.7. As an illus-

tration, we compare the results from VVA and with those obtained from truncation

of Eq. 3.6 as shown in Fig.3.5.

3.2.3.3 The rotating frame effective Hamiltonian

An alternative but non-perturbative scheme is to transform to a rotating frame (RF)

HamiltonianHR = U(t)†(H−i∂t)U(t) that has a less important time dependence than

the original Hamiltonian. A subsequent time average yields a Hamiltonian that is more

accurate than the vV Hamiltonian. It cannot be stressed enough that special care has

to be taken in that the rotating frame transformation is chosen such that the terms

that are neglected in the time average do not cause breaking of the six-fold rotational

symmetry in momentum space. Here, we provide a simple generalization of the unitary

transformation that was introduced in [169] and that fulfills this property. We start

with linearized dispersion f(~k) Eq. 3.12 in the full Hamiltonian, the time dependent

Hamiltonian becomes H(x,~k, t) = H(x,~k) + V (t). The unitary transformation can

be proposed in the form [169] UR(t) = e−i
∫
dtV1(t)e−i

∫
dtV2(t) with a properly chosen

decomposition of the time periodic part of the Hamiltonian V (t) = V1(t) + V2(t).

Here, V1(t) is the part of the Hamiltonian that is ∝ cos(ωt), while V2(t) is ∝ sin(ωt).
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Figure 3.5: Comparison between the exact quasi-energies and the energies from the
VVA for the band structure of the TTLG with AAA stacking and middle layer twisted,
driven by circularly polarized light θ = 1.6◦, Aa0 = 0.4, and Ω = 3γ. Here solid lines
represent the VVA results and the dashed lines are the exact quasi-energies Eq. 3.6.
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The transformation then is given as

UR(t) = diag[uR(θ1, t), uR(θ2, t), uR(θ2, t)]

uR(θ, t) = uR,1(θ, t)uR,2(θ, t)

uR,n = cos[γn(t)]− i sin[γn(t)]σθn

, (3.13)

where γ1(t) = BΩ sin(ωt), γ2(t) = BΩ(1 − cos(ωt)), BΩ = 3J1(2Aa0/3)γ/Ω and ap-

propriately rotated Pauli matrices are given as σθn = e−iθ/2σ3σne
iθ/2σ3 .

After taking the time average we arrive at an effective Hamiltonian H(bare)
eff , which

still has a form that is too cumbersome to display here and is hard to interpret.

Therefore we apply another unitary transformation that is given by

R = diag[eiBΩσ
θ1
2 , eiBΩσ

θ2
2 , eiBΩσ

θ3
2 ], (3.14)

where we used definitions for rotated Pauli matrices from above. Consequently, we

calculate our effective Hamiltonian in the rotating frame as

H(~x,~k) =


h̃(θ1, ~k − ~κ1) T̃12(~x) 0

T̃ †12(~x) h̃(θ2, ~k − ~κ2) T̃23(~x)

0 T̃ †23(~x) h̃(θ3, ~k − ~κ3)

, (3.15)

where the single layer graphene blocks are modified as follows

h̃(θ,~k) = a0γRFR(θ)~k · ~σ −∆RFσ3, (3.16)

the interlayer hoppings become

γRF = γJ0

(
−6γ

Ω J1

(2Aa0

3

))
J0

(2Aa0

3

)
(3.17)
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and a Dirac gap that is given as

∆RF = − 3γ√
2
J1

(2Aa0

3

)
J1

(
−6
√

2γ
Ω J1

(2Aa0

3

))
(3.18)

is introduced.

The effective tunneling matrices are modified as follows: We first recognize that

the original hopping matrices Tij can be expressed in terms of Pauli matrices as

Tij = T 0
ijσ0 +T 1

ijσ1 +T 2
ijσ2 +T 3

ijσ3, where T nij are expansion coefficients. The modified

interlayer hopping matrices T̃ij are then found if we replace the Pauli matrices by

new matrices σi → σ̃i. That is we have T̃ij = T 0
ijσ̃0 + T 1

ijσ̃1 + T 2
ijσ̃2 + T 3

ijσ̃3, where

σ̃1,2 = J0(ν)σ1,2 and

σ̃0 = σ0 + (J0(
√

2ν)− 1)
[
σ0 sin2

(
θi − θj

2

)
− i

2σ3 sin(θi − θj)
]
, (3.19)

σ̃3 = σ3 + (J0(
√

2ν)− 1)
[
σ3 cos2

(
θi − θj

2

)
+ i

2σ0 sin(θi − θj)
]
, (3.20)

with ν = (−6γ/ω)J1(2Aa0/3).

This Hamiltonian offers a huge reduction in computational cost when compared

to the exact case where the quasi-energy operator - if we include a large number of

Fourier modes - is very large. The approximation offers highly reliable results for the

experimentally accessible range of driving strengths in the high frequency regime. For

illustration, we compare the rotating frame Hamiltonian results with those obtained

from Eq. 3.6 in Fig. 3.6.

Comparing Fig. 3.5 with Fig. 3.6, we find that the rotating frame effective Hamil-

tonian is systematically closer to the exact quasi-energy than the truncated Van Vleck

Hamiltonian. To further quantify the efficiency of both approximations and get a feel

59



K2 K1 K2 K ′
2

200
150
100

50
0

50
100
150
200

(k
)[m

eV
]

Figure 3.6: Comparison between the exact quasi-energies and the energies from the
rotating frame Hamiltonians for the band structure of the TTLG with AAA stacking
and middle layer twisted, driven by circularly polarized light θ = 1.6◦, Aa0 = 0.4, and
Ω = 3γ. Here, the solid lines represent rotating frame results while the dashed lines
represent the exact results.
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for their range of validity, we computed the relative error in the center gap at the K1

point for both methods and plotted the result as a function of driving strengths and

frequencies as shown in Fig. 3.7.
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Figure 3.7: Plot of relative error for the gap at the K1 symmetry point for the TTG
system with AAA stacking and middle layer twisted driven by circularly polarized
light (a) as function of Aa0, with θ = 1.6◦, and Ω = 2γ, (b) and as a function of ω/γ
with Aa0 = 0.5.

3.2.3.4 Topological phase diagrams

Next, we make use of the rotating frame Hamiltonian to compute maps of Chern

numbers. First, however, let us give a brief summary of the algorithm due to Fukui

[211] that we used in our computations.

To compute the Chern number we divide the moiré Brillouin zone into uniform

small rectangles of size dkx × dky. Then we compute the so-called link variables

U
(`)
~kj û

[211],

U
(`)
~kj û

= 〈ψ(`)(~kj)|ψ(`)(~kj + û)〉
|〈ψ(`)(~kj)|ψ(`)(~kj + û)〉|

(3.21)

where ψ(`)(~kj) is the eigenvector of the Hamiltonian corresponding to the band with
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index `, and û := ûx = (dkx, 0) or û := ûy = (0, dky). Next, we calculate the field

strength [211]

F
(`)
~kj

= ln
[
U

(`)
~kj ûx

U
(`)
~kj+ûx,ûy

U
(`)
~kj+ûx+ûy ,~kj+ûy

U
(`)
~kj+ûy ,~kj

]
. (3.22)

Finally, the Chern number for the `th band is given as

c` = 1
2πi

∑
~kj

F
(`)
~kj
, (3.23)

where the sum is taken over all plaquettes in the Brillouin zone.

In this study, we restrict ourselves to the topology of the six central bands and we

use the rotating frame Hamiltonian to be able to compute Chern numbers sufficiently

quickly. We have spot-checked our results against results that we obtained when we

were working with the full quasi-energy operator. Since we work in the high frequency

regime, where the frequency is larger than the bandwidth of the included bands, it is

sufficient to consider the Chern numbers to learn more about topological properties.

We computed Chern numbers for the six central bands and for various values of the

driving strength Aa0 and the twist angle θ at a fixed driving frequency ω = 2γ.

The resulting topological phase diagrams are shown in Fig.3.8. Due to the high

computational cost, we limited ourselves to driving strengths between Aa0 = 0 and

Aa0 = 0.3 (this for frequencies larger than the bandwidth which is the experimentally

favorable regime), and twist angle ranging from 1.5◦ to 2.85◦.

Each color in the diagrams represents a list of Chern numbers for the six central

bands C = {c1, c2, c3, c4, c5, c6}. Mathematically, if we have N bands {εi(~k)}i=Ni=0 , then

the six bands are εN/2−3(~k), εN/2−2(~k), εN/2−1(~k), εN/2(~k), εN/2+1(~k), and εN/2+2(~k).

As an illustration, we plotted the band structure for the ABC stacking case with

middle layer twist in Fig. 3.9, where we labeled the six central bands. We have
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Figure 3.8: (Color online) The topological phase diagrams for the TTG system for a
range of values Aa0 and the twist angle θ with ω = 2γ. (a) AAA stacking and top layer
twist, (b) ABC stacking with top layer twisted, (c) AAA stacking with middle layer
twisted, and (d) ABC stacking with middle layer twisted. Each color represents a set
of values for the Chern numbers of the central six bands as indicated in Table. 3.1.
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tabulated the corresponding values for each color in Table 3.1.

We find that each of the different TTLG realizations has its own unique topological

structure. The bands in most cases - except for the AAA middle twist - are also found

to be gapped. Quite generally, we find a rich structure of Chern numbers and for

certain parameter pairs (Aa0, θ) we find very large Chern number of 4 or 5 for some

of the bands.

For all cases except the ABC top twist we find that the handedness of the incident

circularly polarized light has no influence on the topological structure. In Fig.3.10 we

see that for this case, however, there are large changes in the topological structure if

we change from left handed (LH) to right handed (RH) circularly polarized light.

3.2.3.5 Experimental proposal

Motivated by the rich topological structure of the different types of TTGs (see Fig.

3.8), and the different responses of ABC to left and right-handed light we also propose

the following experiment: For a large-enough ABC TTG sample, we shine light with

opposite handedness next to each other, as depicted in Fig. 3.11. By bringing the light

beam edges very close to each other, we can expect to create three distinct topological

regions, one for each laser pulse and one more at the intersection between the laser

pulses. From the bulk-edge correspondence, we expect edge states at the boundary

between the driven and undriven regions and at boundaries between the topological

regions. These boundary states, indicated in blue in Fig. 3.11, could be manifest

in optical conductivity measurements [212, 213]. This measurement would require

employing a pump-probe experimental setup, where the probe amplitude a0Aprobe is

weak compared with the pump pulse a0A employed to create the Floquet states.
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color c1 c2 c3 c4 c5 c6
AAA top layer twisted

� -5 3 -1 1 -3 5
� -5 3 -1 1 0 2
� -4 1 0 0 -1 4
� -4 1 0 0 2 1
� -4 2 -1 1 0 2
� -3 0 0 0 2 1
� -2 0 -1 1 0 2
� -2 0 2 -2 0 2
� -2 3 -1 1 -3 2
� -2 3 -1 1 0 -1
� -1 -2 0 0 2 1
� -1 -1 -1 1 1 1
� 1 -3 -1 1 3 -1
� 1 3 -1 1 -3 -1
� ν ν -1 1 0 2

AAA middle layer twisted
� v v 0 0 v v
� v v 1 -1 v v
� v v 1 v v v
� v v v v v v

ABC top layer twisted(RH)
� -3 0 -1 2 0 -3
� -3 0 1 0 0 -3
� -3 0 2 -1 0 -3
� -2 0 -1 2 0 -3
� -2 0 -1 2 1 -4
� 0 0 -1 2 0 -3
� 1 -1 0 2 -2 -1
� 1 0 -1 2 1 -4

ABC top layer twisted(LH)
� -4 1 2 -1 0 -3
� -4 1 2 -1 0 -2
� -4 1 2 -1 0 1
� -3 0 2 -1 0 -3
� -3 0 2 -1 0 0
� -1 -2 2 -1 0 1
� -1 -2 2 0 -1 1

ABC middle layer twisted
� -1 0 1 -1 0 1
� -1 1 0 0 2 -2
� 0 -1 1 -1 1 0
� 0 -1 1 -1 1 ν
� 2 -3 1 -1 3 -2

Table 3.1: Color codes for the topological phase diagrams Figs. 3.8&3.10. Here, the
term v represents a band closing that was confirmed up to numerical accuracy. The
term ν corresponds to a Chern number that did not converge even when more than
104 k points were used in the Chern number computation. RH: right-handed polarized
light, and LH: left handed polarized light.
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Figure 3.9: Band structure for the ABC MLT showing the six bands labeled c1 → c6.
Parameters Aa0 = 0.26375, θ = 1.65◦ and ω = 2γ were chosen for the plot.
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Figure 3.10: (Color online) The topological phase diagrams for the TTG system with
ABC stacking and top layer twisted where (a) for the left-handed circularly polarized
light and (b) the right-handed circularly polarized light, where we took ω = 2γ. For
color codes, please refer to Table. 3.1.

3.2.4 The Effect of Waveguide Light on TTLG

In this situation, we have longitudinal light coming from a waveguide. Here, the

boundary conditions of a waveguide allow for light with longitudinal components to

exist, which is not possible in vacuum [177]. The semi-classical Peierls substitution

teaches us how to include a vector potential in a tight binding model [177]. Since

our model can be derived from a tight binding model, it becomes clear that the

effect of this type of light is included in the Hamiltonian via the substitution w0 →

w0e
−iaAAA cos(ωt) and w1 → w1e

−iaABA cos(ωt), where aAA = 0.36 nm and aAB = 0.34

nm are interlayer distances in AA and AB regions of the twisted materials [165]. The

effect of this type of light therefore is to turn interlayer hoppings time-dependent.

3.2.4.1 Numerical calculations of dispersions

Following the mapping of the tunneling parameters mentioned above, we obtained

the band structure numerically by solving equation (3.6) that was truncated to finite

order. For all cases the resultant band structure reaches convergence when we include

the first 3 Floquet copies (n = −1, 0, 1). In Figs.3.12 & 3.13 we plot the band structure
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Figure 3.11: Sketch of a two laser procedure to create light-induced topological bound-
aries in ABC TTLG samples.
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for four different configurations (AAA/ABC stacking, top and middle layer twists).

For convenience we also include the undriven case for comparison plus the plots of

the density of states for each case.

When comparing the ABC case (top and middle layers twists) and the AAA

stacking (middle layer twisted) for the undriven (dashed lines) against the driven case

(solid lines), we find that we can flatten the central bands without introducing a band

opening as in the case of circularly polarized light. This means that we can tune band

flatness, which can be convenient when trying to realize strongly correlated phases

such as superconductivity.

To understand this effect even better, we have plotted the velocity of electrons

near theK1 symmetry point for the AAA and ABC stacking with middle layer twisted

versus θ−1 in Fig. 3.14.

We find that the introduction of light from a waveguide can shift the magic angles.

This gives us the opportunity to speculate a bit about possible applications. For

instance, this observation could be useful in an experiment where one wants to realize

strongly correlated phases. This is because when one produces a twisted trilayer

graphene sample for use in experiments with strongly correlated phases one has to

try to match the magic angle as precisely as possible. If there is a small deviation

from the angle with flat bands the setup with waveguide light could be used to correct

for these deviations. Alternatively it could even be possible to use light of this sort

to switch between strongly correlated phases and other phases.

3.2.4.2 Exact versus Van-Vleck results

Considering the Van-Vleck approximation (Eq. 3.7), we find that in our case the

term ∑
m 6=0

HmH−m
mω

= 0 vanishes and therefore the Floquet Hamiltonian is given by

HF = H0 +O(ω−2). Consequently, the effective approximate Hamiltonian is obtained
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Figure 3.12: Left Column: Band structure of the TTG driven by waveguide light with
Aa0 = 0.3. (a) The AAA stacking with TLT and (θ, ω) = (2.000◦, 2γ), (b) the ABC
configuration with TLT and (θ, ω) = (1.040◦, 2γ). The solid lines are for the driven
and the dash-doted lines for the undriven case. Right Column: The density of states
plots associated with the configurations on the left column rescaled by the maximum
value DM(E) of the driven case.
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Figure 3.13: Left Column: Band structure of the TTG driven by waveguide light with
Aa0 = 0.3. (a) AAA with MLT and parameters (θ, ω) = (1.450◦, 3γ), and (b) the
ABC stacking with MLT and (θ, ω) = (1.157◦, 2γ). The solid lines are for the driven
and the dash-doted lines for the undriven case. Right Column: The density of states
plots associated with the configurations on the left column rescaled by the maximum
value DM(E) of the driven case.
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(a) AAA (MLT) (b) ABC (MLT)

Figure 3.14: Plot of velocity as function of 1/θ for the center bands near K1 in the
twisted TTG system driven by waveguide light compared with the undriven case with
Aa0 = 0.3, and Ω = 3γ. (a) Starting from AAA stacking middle layer twist (b)
starting from ABC stacking middle layer twist. Here, ṽx is the velocity at θ = 2.0◦.
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by simply replacing the interlayer couplings as follows

w0 → w0J0(AaAA); w1 → w1J0(AaAB), (3.24)

The interlayer hoppings are weakened by Bessel functions as it was also found in [145].

In twisted bilayer graphene it was found that the value of the magic angles was

interlayer hopping dependent [214]. If we assume the same is true for twisted trilayer

graphene then this explains the shift of magic angles that we observed in Fig.3.14.

Lastly, to see quantitatively how good this approximation is we have plotted both

the exact quasi-energy spectrum as well as the one from this simple approximation.

The result is shown in Fig. 3.15.

We find that the result even for a very large driving strength Aa0 = 0.8 and

relatively low frequencies ω = 1.5γ is almost perfect. For weaker driving strengths

and higher frequencies it was even hard to see any discernible difference between the

approximate and exact quasi-energies.

3.3 Haldane-Moiré Model in Driven Twisted Bi-

layer Graphene (TBLG)

3.3.1 Importance of Haldane Model

The quantum Hall effect is a phenomena where the Hall conductance become quan-

tized in the corresponding physical system under applied external magnetic field [215].

This was the case until late 1980s when Duncan Haldane introduced his famous toy

model (a.k.a. Haldane model) where he showed that similar features could occur

without magnetic field and instead by introducing breaking time symmetry [216].

This effect is referred to by anomalous Hall effect or Chern insulator. While the
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Figure 3.15: Comparison of the band structure for TTLG with ABA stacking and
middle layer twisted driven by waveguide light with θ = 1.3◦, Aa0 = 0.8, and Ω = 1.5γ.
obtained via the quasi-energy operator Eq. 3.6 (dashed lines) versus the zeroth order
van Vleck Hamiltonian H0 (solid lines).
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total Chern number of the two bands within this model vanishes, both bands still

have nonzero Chern numbers with opposite values. One interesting thing about Hal-

dane model is the existence of topologically protected edge states that can propagate

between the valence and conduction bands. Although we don’t have experimental

realization of this model in real graphene, it was observed in other systems via exper-

iments [217, 218]. Considering the importance of Haldane interactions for producing

interesting topological properties, including it in twisted bilayer graphene (TBLG) is

expected to yield new topological properties that were not observed in the normal

TBLG [169].

In the next section, we will introduce the model within the context of twisted

bilayer graphene and study the band structure. We will also consider the effect of

light on this model on the band structure and identify the important features of this

model in the following sections.

3.3.2 The Model

An important property of graphene tight-binding model is time-reversal symmetry

which in momentum space reads

h∗(~k) = h(−~k) (3.25)

where h(~k) is the single layer tight-biding Hamiltonian of graphene. In order to make

graphene topological, Haldane suggested the inclusion of second nearest neighbor

interaction that breaks time symmetry while preserving other symmetries of graphene.

Haldane interaction is illustrated in Fig. 3.16.

This leads us to introduce the following equilibrium Hamiltonian that describes
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the intralayer and interlayer interactions for our twisted bilayer graphene system,

H(~x,~k) =

h(−θ/2, ~k − ~κ−) T (~x)

T †(~x) h(θ/2, ~k − ~κ+)

 , (3.26)

where h(θ,~k) is the single layer Hamiltonian that contains the Haldane term which

reads

h(θ,~k) =

 M + 2t2g
(
R(θ)~k

)
t1f

(
R(θ)~k

)
t1f
∗
(
R(θ)~k

)
−M − 2t2g

(
R(θ)~k

)
 , (3.27)

with

f(~k) = e−i(λ++λ−) + eiλ+ + eiλ− , (3.28)

and,

g(~k) = − sin (α+ + α−) + sinα+ + sinα−, (3.29)

Here λ± = ± a0√
3kx+

a0
3 ky∓

2π
3 , α± = a0√

3kx±a0ky−2π
3 , a0 = 2.46A◦ is the lattice constant

for graphene, t1 is the nearest neighbor hopping amplitude, M is the onsite energy

(site A has M and site B has −M), and t2 is the second-nearest neighbor hopping

amplitude. The Haldane term is represented by the diagonal parts of Eq. 3.27. We

should note that in our model we shifted the reciprocal lattice by κ± = kθ
2

(
−
√

3,±1
)
,

where kθ = (8π/3a0) sin(θ/2). Finally, the interlayer tunneling matrix takes the form

T (~x) = ∑i=+1
i=−1 e

−i~bi·~xTi, where

Ti = w0I + w1

[
cos

(2nπ
3

)
σ1 + sin

(2nπ
3

)
σ2

]
(3.30)

with b±1 = kθ
2

(
±
√

3, 3
)
, ~b0 = (0, 0), and w0,1 measure the strength of the interlayer

hoping amplitude. As in illustration, we plot the band structure for our model in

Fig.3.17.
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Figure 3.16: The second nearest neighbor Haldane interaction between the A and B
sites in honeycomb lattice.
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Figure 3.17: The equilibrium band structure of TBLG with Haldane interaction (a)
M = 9

√
3t2/4 and (b) M = 3

√
3t2. Here we took t1 = 2360, t2 = 0.05t1,θ = 1.05, and

w0 = w1 = 110
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3.3.3 The Effect of Circularly Polarized Light

Following Section 3.2.3, we apply the minimal substitution to our Hamiltonian Eq.

3.26 and use the quasi-operator approach to obtain the quasi-energy. It’s important

to note that when doing the proper mathematical formalism, one needs to Fourier

transform both f(~k) and g(~k) (Eqns. 3.28 & 3.29) and those results are shown in

Appendix B. We plot the equilibrium band structure in Fig. 3.17. In this figure, we

consider two values of the mass termM = {3
√

3t2, 2.25
√

3t2} versus the two situations

when the incident light is left handed (LH) and right handed (RH).

Two things we can take from Fig. 3.2.3. First, the mass term M when chosen

arbitrarily, the physics of the system will be dominated by gaped bands that is ex-

pected from Haldane interaction, but choosing M = 3
√

3t2 minimizes the effect of

this term as it cancels the Haldane term at the γ point [169]. The second important

finding is that the band structure is dependent of the handiness of light as shown in

the same figure. This dependence on light polarization was never a feature of the

regular TBLG [169], but was observed in TTLG [2]. This results in different phase

diagrams as the situation in TTLG Fig.3.10, hence a similar thought out experiment

as in Section 3.2.3.5 can be followed.

3.3.4 Waveguide Light

Following Sec. 3.2.4, we apply the maps w0 → w0e
−iaAAA cos(ωt) and w1 → w1e

−iaABA cos(ωt)

to Eq. 3.26. Here aAA = 0.36 nm and aAB = 0.34 nm are interlayer distances in AA

and AB regions of the twisted materials [165]. The corresponding Fourier transforma-

tion of our Hamiltonian is obtained by the simple mapping of these hoping parameters

as given in Appendix B. We plot the corresponding band structure in Fig. 3.19. Unlike

circularly polarized light, waveguide light (WGL) does not cause band gap opening, a

78



+

200

100

0

100

200
(k

)

(a)

+

200

100

0

100

200

(k
)

(b)

+

200

100

0

100

200

(k
)

(c)

+

200

100

0

100

200
(k

)

(d)

Figure 3.18: The band structure of TBLG with Haldane interaction showing the
static case (solid black lines) versus the case with circularly polarized light (dashed
blue lines). (a) M = 9

√
3t2/4 with RH light, (b) M = 9

√
3t2/4 with LH light, (c)

M = 3
√

3t2 for RH light and (c) M = 3
√

3t2 with LH light. Here we took Aa0 = 0.4,
ω = 2t1 and the other values as in Fig. 3.2.
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feature that is shared with other systems [2,169]. However, the WGL can be basically

used to shift the magic angle of the system as observed in TTLG Fig. 3.14.
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Figure 3.19: The band structure of TBLG with Haldane interaction for the static
case (solid black lines) versus that with waveguide light (dashed blue lines) (a) M =
9
√

3t2/4 and (b) M = 3
√

3t2. Here we took t1 = 2360, t2 = 0.05t1, θ = 1.05,
w0 = w1 = 110, Aa0 = 0.4, and ω = 1.5t1.

3.4 Summary

In this chapter, we reviewed Floquet theory as an approach to study periodic time-

dependent Hamiltonians with the focus on moiré materials. In Sec. 3.2, we have

studied four different stacking configurations of twisted trilayer graphene (TTLG).

First we reviewed the equilibrium properties and then went on to study various non-

equilibrium scenarios. In the presence of a circularly polarized light, we found that

we were able to flatten the two middle bands compared to the equilibrium case which

could open the door to experiments with strongly correlated non-equlibrium phases.

Even more exciting, is the fact that this type of light causes gap openings, which

then allowed us to study the topological properties of the TTLG configurations that
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are characterized by single-band Chern numbers. Here, we focused on the six middle

bands and generated topological phase diagrams for a range of different values of

the driving strength and the twist angle. These diagrams revealed that TTLG has

a rich topological structure. Moreover, we found that the topological structure of

ABC stacked TTLG with a top-layer twist is sensitive to the handedness of circularly

polarized light. This is in stark contrast with the other three configurations that we

have studied.

The fact that top twisted ABC stacked bilayer graphene has different topological

phase diagrams depending on the the polarization of circularly polarized light led

us to propose an experiment where this difference in topologies could be captured

via optical conductivity measurements. Here, one takes two sources of circularly

polarized light with different handedness and lets them shine on TTLG such that

the two illuminated regions intersect. This creates three distinct regions of different

topology, and thus edge states are expected on the boundaries between these regions

and their boundary with the undriven regions. The different topological properties

are expected to be measurable in optical conductivity measurements.

In addition, to circularly polarized light we also studied the effects that longitudi-

nally polarized light, coming from a waveguide, has on the band structure. We found

that the presence of this light source can make the central bands less dispersive with-

out the introduction of band gap openings like in the case of circularly polarized light.

This means that effectively we were able to shift the magic angle where flat-bands

appear without introducing additional side-effects that complicate the Hamiltonian

description. This observation might be useful for the realization of strongly correlated

phases in TTLG that closely resemble the equilibrium case at a different twist angle.

Our second system was the twisted bilayer graphene (TBLG) with Haldane inter-

action driven by two different light sources. Such interaction breaks time symmetry
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and results in rich topological features. We limited ourselves to band structure cal-

culations using Floquet theory for the equilibrium and non-equilibrium situations as

shown in Figures 3.17, 3.2.3 & 3.19. An interesting sign of rich topological phase

diagram is the handiness dependence of band structure on the incident light as shown

in Fig. 3.18. This feature was not observed on normal TBLG but was observed in

TTLG system. One could generate the topological phase diagrams for our TBLG

system by following the same steps mentioned in Sec. 3.2.3.4.
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Chapter 4

Conclusions and future Work

In the first part of this thesis, we have introduced a novel algorithm that is able to

systematically study many-body perturbative expansions on the imaginary and real

frequency axes for a general two-body interaction Hamiltonian. For discrete systems

such as molecular chemistry problems, our results are exact at any perturbation order

regardless of the parameters and temperatures used. On the other hand, for lattice

models the accuracy is directly connected to the stochastic sampling of momenta

that is used in our calculations and can always be improved by increasing the sample

size, hence is referred to semi-exact results. Note that this is very different from the

usual diagrammatic Monte Marlo methods because we perform exact evaluation of

the Matsubara summations via the algorithmic Matsubara integration (AMI) tool

[88,152,219].

An interesting part of our symDET algorithm is the ability to study multiband

systems which makes our method applicable to a larger class of Hamiltonians that are

used to model wide range of real physical systems that are relevant to both physicists

and chemists [1, 81, 220–226]. Nonetheless, our symDET method is equivalent to

a single shot nth order Green’s function method GFn, exceeding what is currently
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available [227].

While we focused solely on fermionic systems, we would like to stress that our

algorithm can be easily used to study bosonic systems as well as mixed systems (i.e.

fermionic and bosonic mixture). This can be essentially done in two steps. First,

one needs to alter the contraction generator so that we generate the proper Wick

contractions for bosons. Once this step is done, the remaining part is to modify the

structure of Matsubara summations to allow us to use the AMI since its current form

evaluates fermionic summations. This can be done as follows. In the perturbative

expansions associated with bosons we end up with a similar Matsubara summation

as in the Fermionic case

Jn = 1
βn

∑
{ωn}

N∏
i=1

di(εi, ~αi) (4.1)

where

di(εi, ~αi) = 1
i~αi · ~vν − εi

(4.2)

is the imaginary-time bosonic free propagator in the frequency space with ~vν =

{ν1, ν2, · · · , νn, νex} and the Matsubara frequency is ν` = 2nπ/β. To make use of

the AMI, we can express ν` in terms of the fermionic frequency νn = Ωn− π/β. Con-

sequently, the bosonic propagator is expressed as a fermionic propagator with complex

energy,

di(εi, ~αi) := gi(ε̃i, ~αi) = 1
i~αi · ~Ω− ε̃i

(4.3)

where ε̃i = εi + iπ
β

∑j=n+1
j=1 αj. Consequently, the bosonic sum in Eq. 4.1 takes the

exact form of the fermionic summation in Eq. 2.31 and the AMI can now be applied

easily. The construction of the frequency labels and the complex energies is done with

the help of the symbolic Fourier transformation. In the case with mixed systems, one

can follow the same steps and do the transformation of the bosonic propagators as

explained above. A direct application of this extension would be the Bose-Hubbard
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model [228–231].

Another possible application of the bosonic version of symDET could be the quan-

tum rare-earth pyrochlores that are characterized by an effective pseudo-spin 1/2

Hamiltonian [16, 232–235]. One can simply apply exact Holstein-Primakoff for spin

one-half operators that were introduced in Ref. [236] which results in an effective

Hamiltonian with an extra sextic term that can be carefully included via a proper

Wick contraction generator while the rest of the steps are pretty much the same.

So far, we have seen that the elements of our algorithm can be extended to study

a much larger class of problems that have direct real applications. This is pretty

exciting and investigating these different models would help develop deeper insights

into many-body phenomena.

The second part of this thesis focused on driven twisted graphene systems and

how to study their properties via Floquet theory. Twisted graphene systems are

characterized by magic angles whereby the emergence of flat bands occur in the band

structure. Those flat bands are a signature of strong electron-electron correlations

and give rise to interesting many-body phases that make those systems so exciting.

Such states could be, but not limited to, superconductivity, correlated insulators, and

ferromagnetism.

As a first application, we considered twisted trilayer graphene (TTLG) driven by

two types of light, circularly polarized light and waveguide light. We applied Floquet

theory to study the non-equilibrium cases and obtained the associated band structures

as well as the topological phase diagrams. An interesting finding was the case of ABC

stacked TTLG that was shown to depend on the handedness of circularly polarized

light which lead us to propose an experiment where one can verify these findings via

optical conductivity measurements as discussed in Sec.3.2. The TTLG system also

has rich topological phase diagrams for the different stacking configurations.
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In the second example we studied the band structure of twisted bilayer graphene

(TBLG) with Haldane second nearest neighbor interactions. This was motivated by

the rich topological properties that emerge from the Haldane term which breaks time-

reversal symmetry in the effective Hamiltonian. Similar to TTLG, we considered the

two scenarios with circularly polarized light and light coming from waveguide and we

generated the band structure for each case using the quasi-operator formalism. An

interesting feature of the band structure in the case of circularly polarized light is the

dependence of the quasi-energies on the handedness of the incident light as illustrated

in Fig. 3.18. Based on our results, we expect this model to have richer topological

properties that are otherwise not common in the normal TBLG without the Haldane

term.

An interesting question one may ask: Is it possible to use symDET to study

twisted graphene systems, or generally twisted 2D systems? To answer this question,

we consider two different situations. If the twisted system is at equilibrium, then

the straight answer is yes. Different Hubbard-like models were introduced to model

twisted 2D systems [164, 237–239]. We should note that those models are general

multiband and hence make a perfect fit for our symDET algorithm. On the other

hand, the situation with periodically driven twisted systems is a little difficult but is

not impossible. One needs to find the effective Floquet Hamiltonian that brings the

system to an equivalent (quasi) equilibrium model which can then be analyzed via

symDET. Finding the so-called Floquet Gibbs states is the central part of constructing

such Hamiltonian, which can be engineered given certain boundary conditions [240–

242]. Considering the exotic properties of twisted systems, it would be interesting to

pursue this task in the future.
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Appendix A

Steps of the SFT

A.1 Sorting Wick’s contractions

An important step to perform the symbolic Fourier transformation is to sort the

given Wick contraction that corresponds to a connected diagram as follows. First,

let’s represent the given contraction as C = [ ~P , s] where ~P = (p1, p2, · · · , p2n+1) is a

vector of pairs representing each Fermion line with pj = (τ j0 , τ j1 ), and s is the sign of

the contraction. In the language of graph theory, ~P contains the edges of the graph.

To check if the diagram is connected or not, one can use the Depth First Search (DFS)

which requires ~P as an input. If C is connected, then we introduce three vectors of

pairs ~A, ~B, and ~C where we store the pairs from ~P into these three vectors based

on the following convention. The pairs representing connection with external vertices

are stored in ~B and the pairs which represent loops, i.e. tadpole/clamshell structures,

are stored in ~C.

The next step is to reduce the number of pairs in ~A to n − 1 which is adopted

from basic graph theory fact that a given connected graph with n vertices has n− 1

edges connecting all the vertices together (plus the extra edges). This can be done
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recursively using the DFS by removing one pair at a time from ~A and applying the

DFS to check if the remaining pairs keeps all the vertices connected or not. If the

removal of a given pair doesn’t affect the connectedness, then the pair should be added

to ~C, otherwise it should be put back into ~A and then move to the next pair in ~A and

do the same steps until the number of pairs is n − 1. At this moment, the numbers

of pairs in ~C is n, with the total number of pairs in all the three vectors is 2n+ 1 as

expected. The contraction C will have the form

C = [ ~A, ~B, ~C, s] (A.1)

A.2 Array representation of the non-interacting

Green’s function

Let us assume that the fermionic line connecting two vertices τi and τj in an nth

order Feynman diagram is represented by a Green’s function of the form g(η; τi − τj)

where η is a set of quantum labels attached to the corresponding Green’s function.

We introduce the following useful array representation of g(η; τi − τj)

g(η; τi − τj) = [Vj(1− δij), η], (A.2)

where Vj ∈ Rn is an n-dimensional vector defined in the following way:

• If the fermionic line is connecting two different internal vertices, then Vj has +1

at the ith row, −1 at the jth row, and zeros elsewhere.

• Vj is the n-dimensional zero vector if τi = τj. This is guaranteed by δij in the

equation above.
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• The two external fermionic lines are represented with n-dimensional vector with

only one nonzero entry ±1. Basically, when τj external time and τi is internal

time then Vj has entry of +1 at the ith row and zeros elsewhere. On the other

hand, if τi is the external time, and τj is an internal time then Vj is an entry

−1 at the ith row and zeros elsewhere.

Following this notation, we can represent a Wick contraction (A.1) as

C = [M, s] (A.3)

where M = (A|B|C) is an n × 2n + 1 matrix obtained by mapping the pairs in

{ ~A, ~B, ~C} into column vectors using the convention explained above. Basically, the

n− 1 pairs in ~A form an n× (n− 1) matrix A, the 2 pairs in ~B form an n× 2 matrix

B, and the n pairs in ~C form an n× n matrix C. In the next section, we will use this

result to obtain the Fourier transformation of the contraction C.

A.3 The Symbolic Fourier Transform (SFT)

Let us assume that the fermionic lines whose vectors stored in A has the dependent

Matsubara frequencies {ω1, ω2, · · ·ωn−1}, the ones stored in B has the external fre-

quency ωex, and the vectors stored in C has the independent Matsubara frequencies

{Ω1,Ω2, · · ·Ωn}. Defining ~Ω = (ω1, ω2, · · · , ωn−1, ωex, ωex,Ω1,Ω2, · · ·Ωn)t, then one

can show that the equation that connects all the frequencies together is

M~Ω = ~0. (A.4)

The above equation is thought of as the set of delta functions which act to enforce

conservation laws at each vertex so long as Eq. A.4 is satisfied. Our task is to represent
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the dependent frequencies in terms of the other frequencies which is obtained using

the above equation, giving



ω1

ω2

ω3

...

ωn−1


= αωex + β



Ω1

Ω2

...

Ωn


, (A.5)

where

α = −J−1ATB

 1

1

 , β = −J−1ATC (A.6)

with J = ATA is an n − 1 × n − 1 matrix. The above Eq. A.5 gives a unique

representation of the frequency labels which satisfies the conservation laws at all

internal vertices. Using this notation, a Green’s function with a dependent frequency

ωj, i.e. g(η;ωj), will be represented as

gk(ηk;ωj) = 1
iβj · ~Ωind + iαjωex − εηk

(A.7)

where βj is the jth row in β, αj is the jth entry in α, and ~Ωind = (Ω1,Ω2, · · ·Ωn)t.

Consequently, we introduce the Fourier transformation of the Wick contraction (A.1)

as

F [C] := [gA, gB, gC , s], (A.8)

where

gA = [g1(η1;ω1), g2(η2;ω2), · · · , gn−1(ηn−1;ωn−1)] (A.9)

gB = [gn(ηn;ωex), g2(ηn+1;ωex)] (A.10)
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and

gC = [gn+2(ηn+2; Ω1), · · · , g2n+1(η2n+1; Ωn)] (A.11)

where the Fourier transformed Green’s functions in {gB, gC} takes the following simple

form

g`(η`;ω) = 1
iω − εη`

(A.12)

Finally, the AMI frequency input will simply be

ωAMI =

 β α

In 0

 (A.13)

where In is an n × n identity matrix and 0 here represents an n-dimensional zero

vector.

Theorem A.3.1. Let M be an n× (2n+ 1) matrix representing one particular con-

traction belonging to specific topology T with M satisfying (A.4), then the frequency

matrix ωAMI (A.13) is unique for all contractions belonging to the same T .

Proof. We know that there are 2nn! contractions per topology T at nth order. The

factor 2n coming from inverting the interaction line at each vertex which essential

keeps M invariant. The factorial part coming from relabelling the vertices which is

equivalent to re-arranging the rows in M . Let P be an n× n orthogonal matrix that

permutes the rows in M bringing it to a new matrix M̃ := (Ã|B̃|C̃) = PM . This

is equivalent to setting Ã = PA, B̃ = PB, and C̃ = PC. Clearly, J̃ = ÃT Ã = J ,

ÃT B̃ = ATB and ÃT C̃ = ATC. Thus, α̃ = α and β̃ = β.

The frequency labels can be not unique for a given diagram due to the several

possible options of our choice of A and equivalently C. In graph theory language,

this has to do with the existence of several directed trees that are consisting of n− 1
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edges connecting the n vertices. Regardless of this starting choice, the above theorem

implies that all of the sibling diagrams in the same topology will always have the same

frequency labels once the labels are fixed for one diagram (the AMI input matrix Eq.

A.13).
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Appendix B

Fourier Transform of

Haldane-Moiré Bilayer Graphene

Hamiltonian

The Fourier transform of a function W (~k, t) is defined as

Wn(~k) = T−1
∫ T

0
dte−inωtW (~k, t) (B.1)

where T is the period and n is an integer (Fourier mode). Applying this definition to

Eqns. 3.28 & 3.29, we obtain the following Fourier transforms

fn(~k) = einθ
{
e−i

2a0
3 ky + 2ei

a0
3 kye−inπ sin

[
a0√

3
kx −

π

6 + nπ

3

]}
Jn

(2Aa0

3

)
(B.2)

and

gn(~k) = einθ

 sin
[
−2a0kx√

3
+ 4π

3 + nπ

2

]
+ e−inπeia0ky sin

[
a0√

3
kx −

2π
3 + nπ

6

]
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+ e−ia0ky sin
[
a0√

3
kx −

2π
3 −

nπ

6

]Jn
(

2Aa0√
3

)
(B.3)

where Jn(x) is Bessel function of second kind. Those functions are very important

for the circularly polarized light case. However, for the waveguide light situation,

the Fourier transform of our Haldane TBLG Hamiltonian is obtained by the simple

replacement

w0 → w0J0(AaAA); w1 → w1J0(AaAB), (B.4)
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