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Abstract

In analyzing longitudinal hemoglobin data for low-hirth-weight infants, it is of

interest to examine the effects of iron fortification and other covariates such

as gender alld gestation weeks 011 the hemoglobin status of the infants over

the months. As the hemoglobin data are collected repeatedly over a period of

time, the longitudinal correlations of the responses must be taken into account

in finding the covariate effects. Further problems get mOllllted when some

of tile responses are missing. In this practicum, we conducted a regression

analysis after accomodating the longitudinal and missingness nature of the

data into account. Also, several non~parametric tests were applied to examine

any possible monotonic trend in the longitudinal hemoglobin data.
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Chapter 1

Introduction

1.1 Motivation of the Problem

Very low birth weight infants, defined as weighing less than 1500 gram at birth

are known to be at high risk of iron deficiency. These infants arc born prema­

turely and some experience lower than expected birth weight for gestational

age. Iron deficiency in the premature infants usually affects their growth and

these infants may be prone to various pathological conditions. As a counter

measure to this problem, it is standard to feed these infants certain formula

fortified with iron. Although the fortification amount is usually determined

by comparing with the iron level of full-term infants as a standard measure,

the fortification amount may howc\·er vary depending on other characterstics

of the individual infants such as gender, his or her individual gestation week

as well as the initial level of the iron at birth, and so 011. This problem of

determining the iron intake amount based on other covariates is however not



adequately studied in the literature.

To study this important issue, biochemist/nutritionists usually conduct

experiments where the necessary data are collected from a group of infants over

a period of time. The statistical analysis of such longitudinal data however

appears to be quite challenging. This is because in such cases one needs to

find the effect of the treatment (iron intake level) and other covariates on

responses aftcr taking their longitudinal correlations into account. Further

problems may occur when some responses arc missing:. Based on tile above

issucs, we were motivated to study the problcm of determining the cffect of iron

intake on the health status of the premature infants by applying appropriate

statistical methods. This study should be useful for determining the iron

needs of individual infants based on their backgrollnd information, i.e., history

of covariates, whereas the current recommendations for iwn intake by the

Canadian Paediatric Society [2 mg/kg (2 mg of iron intake per 1 kg weight of

the infant)} and American Academy of Pediatrics [2 to 3 mg/kg] do not vary

based on the covariate information of the individuals.

1.2 Objective of the Practicum

The main objective of the practicum is to use all appropriate statistical model

to examine the level of hemoglobin attained by an infant resulting from iron

intake over a period of time, conditional on his or her other covariates. Note

that as this type of nutritional experiment is usually conducted over a period of

time, it is likely that the hemoglobin responses of an individual infant collected



over tillle will be longitudinally correlated. The selected statistical model must

accomodate this longitudinal correlation

When the data are collected longitudinally, it frequently happens that some

data for some infants may be partially missing. This makes the longitudinal

study further complicated. For example, if the missing values occur completely

at ralldom, the available data can be analyzed but the estimation may be

difficult as one needs to deal with unbalanced data. If however the responses

are mis..'lillg at random, they reqnire to be imputed which may not be easy

in the longitudinal set up. It is also our objective to deal with this type of

missing problem while finding the effect of iron intake or the hemoglobin level

of the infants.

Next, we will apply certain suitable statistical tests to sec whether there is

any monotonic longitudinal pattern in hemoglobin levels because of iron intake

over the times.

The specific plan of the practicum is as follows:

1. In chapter 2, we provide an exploratory analysis of the covariates and

response variable of the Hemoglobin data before we undertake any con­

firmatory analyses.

2. As the hemoglobin data collected over times arc continuous and they are

correlated, in chapter 3, we introduce a linear model for autocorrelated

hemoglobin responses. This longitudinal analysis is done for complete

data, i.e we ignore the missing responses to calculate regression paralll-



ctcrs and autocorrelations.

3 In chapter 4, we consider certain possible missing mechanisms and carry

out the longitudinal analysis after taking the missingness nature of the

data into account. More specifically, in this chapter, we analyze the

longitudinal data with non-responses under the assumption that they

occurcd completely at random.

4. We contiuue analyzing longitudinal missing data in chapter 5, mainly

nnder the assumption that the missingness occured at random. Thus

thc analysis is dOllC based on certain imputations.

5. As it is also important to study the longitudinal pattern in hemoglobin

levels, in chaptcr 6, we conduct certain non-parametric tests in order to

tcst such patterns.

6. Wc conclude the practicum in chapter 7.



Chapter 2

Background of the Study

2.1 Preamble

Infants of very low birth weight (defined as less than 1500 g) are at high risk

for iron deficiency because of low stores of iron at birth (Gortcm and Cross,

1964), rapid growth in the erythrocyte mass, which depletes the iron reserves

(Warwood, 1977), and ullcertainty about their iron requirement... (Report by

Committe on Nutrition, American Academy of Pediatrics, 1985). The Cana­

dian Pediatric Society (Nutrition Commit-te, Canadian Pediatric Society, 1981)

has recommended that the low-birth-weight infant receive iron in the amount

of 2 mg/kg daily, either in formula or as a supplement, from about 2 months

of age onward. The American Academy of Pediatrics has recommended 2 to

3 mg/kg daily for very-low-birth-weigh~ infants and has stated that formulas

with irou usually contain sufficient supplemental iron

Note that even though the recommendations by the Canadian Pediatric



Society and American Academy of Pediatrics arc available for general fortifi.­

cation purposes, more detailed studies are necessary to improve the iron intake

standard. With this in view, Yeung and associates (Yeung et ai, 1981) for ex­

ample, studied the iron status of Canadian infants. Their study however was

confined to the term infants only. Later on, Friel et al (1990) examined the

iron status of very-low-birth-weight infants given iroll-fort.ified formula during

early infancy who were part of a prospective study of the effects of zinc supple­

ments on growth and development. These authors concluded that because of

delayed development, very-low-birth-weight infants cat small amounts of ce­

real and therefore require iron-fortified formula throughout infancy. For some

other studies similar to Friel ct al (1990), we refer to Ehrellkranz (1993) which

shows that there has to be good nlltrit.ional management in preterm infants so

that there call be sufficient iron supplementation to enhance iron stores and

to prevent the development of iron deficiency.

Note however that in studying the effects of fortificat.ion, the above studies

do 1I0t appear to have used the longitudinal correlations that may be present

among the hemoglobin responses of the same infant. To be specific, 110 attempt

has been made to understand the longitudinal correlation of the responses of

the same infant, which appears to be an important issue 1O understand the

changes in hemoglobin level for an infant. As mentioned in chapter 1, the

purpose of our study, unlike the previous work, is to apply a valid statistical

approach after taking the longitudinal correlations of the responses into ac­

count. Further note that for recomlllendations for the appropriate amount of

fortification, it is also important to take the individual's characterstics into ac-



count. This is because, there may be some variable effects between female and

male, for example, and among the infants belonging to different gestational

age. For this purpose, we plan to conduct a comprehensive longitudinal regn~­

sion analysis after taking the longitudinal correlations into accoullt. Since the

longitudinal data collected ovcr time may also be partially missing, we require

to estimate the missing valucs in such cases before doing further statistical

analyses. In our study, we also deal with this type of missing data problem

while finding the effect of iron intake on the hemoglobin levels of the infants.

In the next section, we describe in detail a hemoglobin data set collected

by Dr. James Friel and his associates during June 1995 to May 1996. The

statistical analyses will be given in the subsequent chapters.

2.2 Hemoglobin Data

11\ order to examine the effect of iron intake on premature children with low

hemoglobin level, James Friel and his associates of the Department of Biochem­

istry, Memorial University of Newfoundland, collected a hemoglobin data set

from two different hospitals namely Janeway Child Health Center and Grace

General Hospital at St. John's, Newfoundland. More specifically, data were

collected from 42 prematurely born infants. To begin with, the hemoglobin

data were first collected for these 42 infants within the first week of their

birth in June 1995. The data are referred to as baseline hemoglobin data. To

study the effect of iron intake, these 42 infants were randomly assigned to two

groups namely placebo and treatment groups. The gender and weeks of gesta-



tion the infants were also recorded. After collecting the baseline hemoglobin

data, the hemoglobin measurements were also recorded longitudinally at 3, 6,

9 and 12 months for all these infants. Note that all of these children were

healthy, eligible and had no birth defects at the time of birth, although they

were premature. Further note that it was however not possible to collect the

hemoglobin data for all 5 time points for each of the 42 infants. This is because

some of the responses were subject to non-response or were partially missing,

which may have happened because of iron intolerence, blood dotting, refused

to eat, left the province, and so Oil. It was observed that some individuals

were missing for one or two times but they continued to take the treatment

again. To be specific, 25 observations were completely observed for all 5 time

points and the remaining 17 were partially missing, that is, some left after

some weeks or months, some joined again and some did not. As mentioned

before, the treatment (iron) and placebo were given randomly, irrespective of

the gender and the gestational age.

In this study, the main scientific interest is to fllld the effect of treatment as

well as other covariatcs such as gender and gestational age on the hemoglobin

level after taking the longitudinal and missingncss nature of the data into

2.3 Distribution of the Variables

We now provide the sample distribution for all the fixed covariates (gender,

treatment, gestation wt-'eks and baseline hemoglobin level) awl the response



variable (hemoglobin) collected longitudinally.

TIle histogram for gender for example, is shown in figure B.1. This shows

that among 42 infants, 22 were boys and 20 were girls. The number of individ­

uals in the treatment and placebo groups are shown in figure 8.2. In fact, the

number in each group was same, that is, 21 in each group. The distribution of

the infants according to 3 gestation groups (26-29 weeks, 30-34 weeks and 35-38

weeks) is shown in figure 8.3. It was observed that there were 7 infants in the

very-low-birth gestation week (26-29), 32 were in the middle group gestation

week (30-34) and another 4 were in the last group (35-38). The distribution

of baselevel hemoglobin is presented ill figure BA. A small number of infants

were found to have either very small or very large hemoglobin levels. A large

llumber of infants (40) were found Witil 8.0 to to.O mg/dl hemoglobin level.

We have also plotted the baseline hemoglobin data as opposed to the ordered

gestation weeks, which is exhibited in figure B.IO. This figure shows that the

baseline hemoglobin is higher for the infants with higher gestation week.

The original data set under study is shown in Table A.l in appendix A.

F'igure B.5 in Appendix B shows the longitudinal plot of hemoglobin levels

for 42 individuals at 5 different time points. Note that although most of the

observations were available for all time points, SOUle of them are imputed based

on mean imputation technique explained in chapter 5. There is high variations

ill hemoglobin levels at the first time point, where hemoglobin values range

from minimum of 8.0 mg/dl to maximum of 16.0 mg/dl. Bur. from the second

time point and 011, the variation in hemoglobin value was comparatively smaller

thau at the first time point.
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Figure 8.6 shows the plot of baseline hemoglobin, hemoglobin at first

time point and hemoglobin at fifth time point to illustrate the effect of treat­

ment and other covariatcs over time. This figure indicates more variation of

hemoglobin level at baseline and first time point, but at the fifth time point,

the hemoglobin level appear to be smoother. When the baseline hemoglobin

level is compared with the level at time point 5, there appear to be an overall

increase at the fifth time point. But the changes were more for those infants

with smaller baseline hemoglobin values as COIllI)arOO to other infants with

higher hemoglobin values (see Figure B.6).

2.4 Notations

In this SL'Ction, we develop some lIotations for the longitudinal hemoglobin

data that we explained in section 2.3. These notations will be used for the

confirmatory analysis in the subsequent chapters.

Let l'il denote the Hemoglobin level collected at tth time for the i1h(i =

1,2, .. ,1) individual under study. Also, let x:t = (Xill' .. ,Xitu"",Xilp) be

the corresponding p x 1 covariate vector. In the present set up, I = 42 and

p = 4. To be specific Xit! will denote the Gender (l=male, O=femalc) for the i1h

individual, aud Xi/2 will denote the treatment given (l=treatment, O=Placebo)

where iron is taken to be the treatment. Likewise X;t:J denotes the gestation

period of the child expressed in number of weeks. Any baby having gestation

period less than 38 weeks is regarded as low g('_~tation period. Finally, Xil4

denotes the basclcvcl hemoglobin of the ith individual. Note that althongh all
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these covariatc.s arc written as time (t) dependent, but in OUf studies, these

covariates are actually time independent, whereas Yi/ really depends on t.

As it is seen from the data presented ill Table A.l, all x values were available

for all 42 individuals under study. The y values however were not available for

ailS time points. Moreover, the responses Yil, .. ,Yit, ... ,YiT for T = 5 arc

correlated as they are reported hemoglobin levels over T consecutive periods.

The purpose of this study is to find the effect of covariates x on the responses

y, after taking the missingness and the longitudinal nature of the data into

account.



Chapter 3

Longitudinal Analysis for

Complete Data

3.1 Linear Model for Autocorrelated Responses

As the hemoglobin data collected over time for each of the infants arc contin­

uous by nature, one may exploit a linear regression model with autocorrelate<!

error to examine the effect of covariates on the hemoglobin labels recorded for

each individuals.

Let Yi! bB the HemoglobiTl level recorded at the tth(t = 1,2, ... , T) occasion

for ifh(i = 1, ... , I) infant. Also let Xii = (Xill, .. ,Xu", .. ,Xifp)' be the p xl

vector of covariatcs corres!>ouding to Vit. For the present Hemoglobin data,

the covariates are however not time dependent. More specifically, we denote

'intercept' covariate with the code Xjfl = 1, 'gender' by X;rl with the code 0 for

female and 1 for male. Likewise, we denote the covarite 'formula' by XilJ with

12
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the code 1 for treatment and 0 for placebo and finally we denote the covariate

'gestation week' by Xi14 with 26::; Xit4 :=::; 38 and 'baseline Hemoglobin' by Xi~

with 76 ::; XitS ::; 175,

Note that !Iii, ... , !lit, . , !liT are the repeated observations collected for the

i1h infant. Consequently, it is natural to expect that these observations will

be correlated. In the longitudinal set up, T is usually small. In the present

longitudinal data set up T = 5. As Y:tS are continuous, one may fit a linear

model

Yi= Xi f3 + t:, (3.1)

and compute the p x 1 regression vector 13 = (/311132,/33,f3~,135)' after Laking

the longitudinal correlations of the observations into account.

In equation (3.1), Yi = (!Iii, ... , !lit, .. ,YiT)' is the T x 1 vector of responses

for the i1h infant, fi = (fil •... , (it, .. . , fiT)' is the corresponding error vector

and Xi is the T x p covariate matrix for the i 1h individual defined as

X:1
x:2

X j = (3.2)
x:t

x:T
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where xit is the 1 )( IJ covariate vector as defined earlier.

As far as the error variable is concerned, we may assume that (il '" (0, a;2),

Funher to accomodate the longitudinal correlations of the responses, we as­

sume that the error vector t:; has the autocorrelation structure given by

[

I p, p,

1 p,

C(P1>···,P"r-d=

PT_1

h'-2

p,

(3.3)

(Sutradhar and Das, 1999) where PI(l = 1,2, . ,T - 1) denotes the llh lag

autocorrelation defined as

_ COV(tit, (i,l+d

PI - JvaT(Yir)var(Yil+d'
(3.4)

Note that the correlation structure (3.3) is suggested by Sutradhar and Das

(1999) in a non-linear regression sct.-up, whereas in our context, the regres­

sion model is linear as in equation (3.1). Under the assumption that Yi( '"

(r;tP',o}), one can fit the linear model (3.1), i.e.,

y;=Xi{3+tj (3.5)
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Note that the autocorrelation structure (3.3) is quite general as it can acco­

modate the Gallssian type AR(l), MA(l) or exchangeable correlation pattern.

For example, if error vector follows Gaussian type AR(l) process, then PI = rJ.
where p is a suitable parameter ranging from -1 to +1

3.2 Estimation of Regression Parameters

By using the equation (3.4), we now express the TxT covariance matrix of

the error vector £i as,

(3.6)

where Ai = diag[var((id, ... , var(t;t), .. , var(t{I')] = CT;21T with IT as the

TxT identity matrix. Next, by applying the generalized least square theory,

one may minimize the gcnaralizcd error slims of square L given by

(37)

with respect to fJ and obtain the complete data based generalized least SQuare

estimate for the regression parameter {3 as
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with

3.3 Estimation of Longitudinal Correlations

III equation (3.8), PI", denotes the estimator of PI based on the complete data.

This estimator has to be consistent for PI which can be obtained using the

formula

where Zit = (Yil - J.£id and Jjit = xitP and a;2 is estimated by

T

a} = 2,)Yil - Xit,B)2/T
1=1

and the variance of ,8 is given by

(3.9)

(3.l0)

(3.1l)
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3.4 Application to Complete Hemoglobin Data.

In thi~ sub-section we now apply the procedure discussed in section 3.1 to ana­

lyze the longitudinal hemoglobin data from the children's hospital discussed ill

chapter 2. To begin with we choose a subset of size 25 out of 42 children with

complete information available for all five time points. This means we consider

I = 25. The objcctive is to compute the values of PC,e and ih,c, .. ,PT-I,e for

25 individuals by using the formulas (3.8) and (3.9).

The hemoglobin data for the il"(i = 1,2, ... ,25) child collected at time

points (t = 1,2, .. ,5) is denoted by Yit. Next as mentioned earlier, we con­

sider all five covariates including (,he intc[u:pt. These covariates 3rc 1. 'inter-

cept' XiH; 2. 'gender' Xi12; 3. <formula' Xita; 4. 'gestation' Xit4; 5. 'basclevel

hemoglobin' XiIS, Here, in general, Xii.. represents the uth(u = 1,2, ... ,5) co­

variate for the i lh individual. We also examine the autocorrelation structure

of t.he longit.l1dinal respouses.

Note that to compute Pa,c, one requires to know the values of Pi,c, ... , P-r-l.c

as well as a}. To begin with we consider Pl,c = O, ... ,P-r-l,<:. = 0 and a} = 1

for (i = 1,2, ... ,25) and solve equation (3.8) for Pa. Denote this solution

by PO(l) as the first step estimate of fJ. This estimate we then usc in equa­

tion (3.9) to compute the first step estimate of autocorrelations denoted by

Pl(l)," ., h-l(l}' The first step estimate of fJ is used as well in equation (3.10)

to compute &f. Next the first step values of Pand &f arc used in equation

(3.8) to obtain an improved estimate of {3, which in turn is used in equatiou

(3.9) and (3.10) to compute improved estimates of longitudinal correlations

and &f. This constitute a cycle of iterations which we continue until con-
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Type of Parameter Parameter Estimate Standard errors

Intercept 117.187 0.170

Gender 4.fi97 0.177

Regression Treatment 1.850 0.176

effects Gestation week -0.215 0.048

,8: [j x I Baseline Hemo. 0.008 0.004

p, 0.149

Auto lag '" 0.005

correlation '" -0.178

p, -0.401

Table 3.1: Estimates of Regression and Autocorrelation Parameters for com­

plete Hemoglobin Data from 25 individuals.

vergence in the values of i3 and Pl,c,"" Pr-I,c' The convergence estimates

are summarized ill Table 3.1. The standard error of {JG,£ arc computed by

taking the square root of the estimate of diagonal clements of V(.B) given by

V(.Bl = {Z=::l x;ti -1 X;)-I. They arc also shown in Table 3.1.
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It is clear from the table 3.1 that the auto lag correlations decrease from

moderately positive values to a large negative value. This shows an unusual

pattern which does not appear to satisfy the well known lower order such

as AR(l) or MA(I) or other correlatioll models. Rather lag 1 correlation is

wmcwhat positively large, P2 is almost same and other are negatively small.

The intercept effect is found to be significant. The gender effect is also

significant. This shows that the change in the hemoglobin level of an individual

child depends upon the gender. Here the treatment seems more effective in

males than in females. Likewise, the 'treatment' covariate has a positive effect

upon the hemoglobin level, i.e., hemoglobin levels increased significantly for

the infants those who were given the treatment.

Note that unlike the other covariates, gestation week was found to have

negative regression effecL~ (-0.215) on the hCllloglobinlevcl. This howcver docs

not mean that the infants with larger gestation week had smaller baseline

hemoglobin level. That the baseline hcmoglobin was more for infants with

larger gestation week is shown in figure 8.10. But as is seen from fignre

B.9, the predicted hemoglobin for the infants with smaller gestation week

has increased to large extent, whereas the increase in hemoglobin level was

moderate or small for the infants with higher gestation week. This resulted

in negative effects of gestation week. Once again, it seems from these results

that the treat.ment and other covariates worked favourably for the infants

with smaller gestation week as ooln!)ared to the infants with higher gestation

week. Finally, the small positive value (0.008) of baseline hemoglobin indicates
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that the predicted hemoglobin was higher for the infants with higher baseline

hemoglobin.



Chapter 4

Longitudinal Analysis For

Incomplete Data Without Any

Estimation of Missing Values

4.1 Estimation of Regression Parameters In

The Presence of Missing Data

In chapter 3 we estimated regression parameters of a linear model with cor­

related errors based on complete data. Among 42 children, all together there

were 25 children with complete responses for 5 time points. There was at least

onc observat.ion missing for each of the remaining 17 children. To be specific,

10 individuals had one value missing at the first time point, 3 individuals had

one value missing at the third time point, 2 individuals had one value missing

21
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at the fifth time point. Likewise, one individual had 2 values missing at the

first and second time points. Finally, one individual had 3 values missing at

third, fourth and fifth time points. Thus including the group with complete

information, there are 6 groups of children with 6 different types of missing

cases. Let 9 denote the l" group and ng be the Humber of children in that gill

group for 9 = 1,2, ... ,6.

Next Y;(l) be the T dimensional vector containing T = T j = 5 rcpeated

observations for the ith child of the first group. In general Yi(g) may be defined

asa Tg dimensional vector for the ith child of the glh group. HereTg "; Td= T).

As there are 2 missing values in the 5 th (9 = 5) group, Yi(S) will indicate a vcctor

of dimension T s = 3. Suppose that 1-';(9) denotes the expectation of Y;(g) and

Ei(g) denotes the covariance matrix of Yi(g). For example, for g=5, the T~(= 3)

dimensional vector Y;(~) has the mean

(",,)
,...(~) = 144

Il ;r>

as the first two values are missing for the i 1h child. Consequently we can write

Ei(~} as

(
",~ "'M "'~)

r:i(~) = O"i13 0";44 0"i15 ,

O"iSJ O"i~ O"iM
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(

1 p, p,)
C;(5) = Pl 1 PI .

P2 (11 1

Note however that when responses are missing in a non-monotonic way, then

the mean vector, covariance matrix and correlation matrix may be similarly

computed by deleting the rows and columns of the Tg x Tg matrix correspond­

ing to the missing responses. For example, for the third group, the T3(= 4)

dimensional vector Yi(J) has mean

(

PH 1/1;2
Ili(J) = .P.,

/1,5

as the third response is missing for the i 1h child. Consequently we call write

the covariance matrix of the third group Bi(l) as

[

a,,, am a,,, ",,, 1
Li(3) = am 0",22 0"'24 ai2,~ ,

(1;41 0".42 (1;44 (Ji15

0"'51 0",52 aiM O'~
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[

l

p
,p,r,)

C;(3} = PI 1 P2 P3

P:l (h 1 Pl

P4 P3 PI 1

Let N(Yi(g)I/L;(g),Ei(g)) denote the Trdimensional (Tg ::; T l = r = 5) multi­

normal density for Yi(g) with mean 11-;(g) and covariance Ei(g). One can then

write the likelihood fUllction for all individuals as follows:

G ".

L ~ IIIIN(.",)I",,), E",»)
9=1 ;=1

(4.1)

Note that for the purpose of the estimation of the regression vector {3, the

maximization of likelihood function (4.1) in fact is equivalent to minimization

of the quadratic function given by

G ..,

LL(Yi(9) - J1-i(g»)'Ei(~)(Y;(g) ~ J%»)
9=1 i=l

(4.2)

where P,i{g) = X;(9)/3· After some algebra, minimization of the function (4.2)

yields the incomplete data based estimator of f3 as

G ". G ".

PC,inc = ILL X:(g)Ei(~)Xi(9)rl[LL X:(g)Ei(~)Yi(9)1 (4.3)
9=1 ;=1 9=1 ;=1
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Note that the construction of the likelihood function (4.1) is quite similar

to that of the likelihood function discussed by Krisnamoorthy and Panala

(1999) for the estimation or the parameters of multivariate normal distribution

with missing cases. The difference betwccn the present case and that of these

authors is that while they estimated the parameters in a non-regression sct up,

we arc dealing with the estimation of the parameters in all extended regrC'>sion

set up.

4.2 Estimation of Longitudinal Correlations With

Presence of Missing Data

Next, similar to the estimation of fJ by (3.8), the estimation of fJ by (4.3)

also requires the longitudinal correlations to he known. Note however that

unlike in (3.8), the /3 estimation in (4.3) is done based on unequal number

of observations under different groups. The estimation of correlations for this

type of unbalanced data is complicated. We however develop a mechanism

that we describe below for the purpose of estimation of correlation in such a

Let Til = 1 if Yil is present, otherwise Til = 0 for all i = 1,2, .. ,I and

t = 1,2, .. ,T. As in the present approach, the missing values are ignored in

f3 estimation, they have to be ignored for the estimation of the lag correlations

as well. Consequently, the lag auto correlation can be computed by using a

general formula given by



, 2::-1 L:;~ll rjfTi,f+/Z'tZi,f+d 2::-1 'L,;---i rilr;,t+l

PI = 2::=1 L?~l ritz?!/ E:"'1 L;:~1 rif
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(44)

where Zil = (Yit-X:t.BC,i"") ifri! = 1. For rit = 0, it is not necessary to compute

Z;r as this quantity does not contribute towards PI computation, Instead, for

simplicity, one can use 0 or some constant value for such Zit'S

The computation of E;(9) in (4.3) also requires the estimation of ul, which

in the present case is computed by using the formula

(45)

Further we compute the variance of fJG,iTl~ as

c ".
V(PG,;m) ~ [I: I: X:",E:", -,X;("t' (4.6)

9=1 ;=1

4.3 Application to Incomplete Hemoglobin Data

In this sub-section we apply the techniques discussed in section 4.1-4.2 to

analyze t.he illcomplete longitudinal hemoglobin data without any imputatiolilS.

Note that all together there were 42 children among whom 25 children had
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complete fCliponscs for 5 time points and the remaining 17 had at least one

observation missing. As mentioned in section 4.1, 10 individuals had olle

value missing at the first time point, 3 had one value missing at the third time

point, 2 individuals had aue value missing at the fifth time point. Likewise, 1

individual had 2 values missing at the first and second time points and finally

one individual had 3 values missing at third, fourth and fifth time points.

All these six size groups of responses including the group of individuals with

complete information are identified by the values of 9 = 1,2, ... ,6 where 9

stands for the .qth group.

By mling the estimating formulas (4.3) for f3 and (4.4) for autocorrelation

structure, we obtain their estimates as reported in Table 4.1
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Type of Parameter Parameter Estimate Standard errors

Intercept 123.3 0.937

Gender 2.395 0.142

Regression Treatment 0.646 0.144

effects Gestation week -0.265 0.03

,B: 5 x 1 BaselincHcm. 0.004 0.003

p, 0.232

Auto lag '" 0.008

correlatioll p, -0.118

p, -0.380

Table 4.1: The values of estimates of Pu,e for u = 1,2, .. ,5 and autocorre­

lation values PI for I = 1,2,3,4 for Incomplete Hemoglobin Data from all 42

individuals
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From the above table, we can see that the intercept has a significant effect

on the modeL The gender effect also seems significant which indicatcs that the

increase in hemoglobin level depends upon gender and is higher for males than

for females. Also the treatment plays a positive role to increase the hemoglobin

level of the individual children. One can see from the above table that the lag

correlation values decrease from moderately positive values to large negative

vahles. Clearly, I,his correlation pattern docs not seem to satisfy the well known

lower order AR(l) or MA(l) or other correlation models. We arc however not

concerned about specifying allY correlation structure. Rather we have used

a robust correlation structure which can be valid for lower as well as higher

order correlation process.

\Vhen the results of Table 4.1 are compared to that of Table 3.1, the re­

gression estimates are found to be smaller except for the intercept parameter.

As we have used information from 42 children from Table 4.1 as opposed to

the information from 25 children from Table 3.1, the standard errors for the

regression estimates from Table 4.1 are found to be smaller than those of Table

3.1 as expected. Thus the estimates found in Table 4.1 are more efficient than

those in Table 3.1.

The interpretation of the results of Table 4.1 are similar to those of Table

3.1. ConseQuently, we are not repeating the interpretation here.



Chapter 5

Imputation Based Longitudinal

Analysis For Incomplete Data

5.1 Estimation of Parameters Under MCAR

and MAR Mechanisms

In chapter 4, we have ignored the missing values in estimating the parameters,

which one can do provided the missing respouses occur completely at random

(MCAR). III the present set up, it is however not clear whether the missingness

accured following such a simple missing response mcchanism. As a remedy,

one needs to model the missingllcss mechanism, which is however very difficult

to do. To ease the situation, we assume that the missingness in this data set

is dependent all the first response i.e, baseline hemoglobin recorded for the

particular child. This mechanism is referred to as missing at random (MAR)

30
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Number of responses

present from beginning t=l t=2 t=3 t=4 t=5 t=6

(2,1). (3,1). (4,1)

(3,2) (4,2)

(4,3).

Table 5.1: Missing Pattern

(5,1)

(5,2)

(5,3) •

(5,4)

(6,1)

(6,2)

(6,3) •

(6,4)

(6,5) '"

of type J (see Paik, 1997). Under such MAR mechanism, one lllay consistently

impute the missing values by using a sequential mean imputation technique.

The sequence of imputation may he clearly identified by following the missing

pattern shown in the above table 5.1.

The asteriks on the above table indicate the missing positions for the

present data set. Except the missing value at (6, 3)*, 110ne of the others require

sequential imputation. This is because under the columns corresponding to

t = 2,3,4 and 5, there is only one missing position, whereas under the column

with t = 6, there are two missing positions to fit out. Consequently, to obtain

approximately consistent imputed values, for all possible missing values, we

simply follow the regular mean imputation tcchnique.

Suppose that for the i lll child, we need to impute the value missing at the

till time. Let !iii denote this imputed value. Then the simple mean imputation
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formula for this is given by

_ L:~;tiYjlrjtl(Dj,I-I:::; D"t_d
Yi! = L,~#rjd(Dj,H _ D.,H)

(5.1)

where Yjt is the respouse at t'h time point for the ill child, fit is the response

indicator for the ill child at tIll time as in the previous chapters and I(Dj,t_l :::;

Di,l~d is the indicator variable which takes value I if the covariate history of

the /11 child upta time t - 1 is same as the covariate history of the i 1h child,

otherwise I(Dj,I_1 :::; Di,t-d :::; O. For example, for i:::; 26110 child whose value

is missing at second time period (t :::; 2) only, the imputed value was found

to be 110.25 which is computed as Y26,2 :::; (Y6,2 + Yr,2 + Y1L2 + Y19,2)/4 :::;

(139 + 115 + 92 + 95)/4 :::; 110.25 i.e., Y26,2 :::; 110.2. Likewise the imputed

value denoted by Y42,6 for i :::; 42th child at sixth time point is 134.3. Note that

unlike in the previous chapters we have 6 time points here. This is because

the baseline hemoglobin is treated as the first rcsponse at the first time point,

whereas this was treated as a covariate in previous chapters.

Next to compute the regression effects of the covarites for such imputations

based data, we first show how to compute the Ai matrix defined in equation

(3.6). For the ilk child with c missing valucs, t.he variance at time point t (tth

response is being observed) is calculated by using

T-o

iii ~ L(Y;" - x:JJj'/(T- oj.
"",I

(5.2)
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For c = 0, it reduces to a} in equation (3.10) exactl)'.

Next to find the variance of an imputed observation Vit, say, defined in

l.'quation (5.1), we write

which may be rewritten as

(5.4)

where m denotes the number of individuals whose responses werc used to

compute iii(. In equation (5.4), we have used v(Yjd = CJ[, as the lh(j ¥ i)

individual has the same history as the jtll individual. Consequently for the jtll

individual with one imputed missing value, the diagonal matrix Ai defined in

equation (3,9) may be written as

Ai = diag[O";, . . , ai, o7il' .. ,0";] = diag[O";, .. , O"j, crd.;m, .. ,0";1 (5.5)

\Ve however estimate this o'f by pooling the available information from all

m + 1 individuals including the illl child, and the formula is given by



2 E;#i E:~l Tj/(Yjl - XjtP)2 + 2:;=1 T;t(Yif - X:I.8)2

OJ = 2:;l"" E;"'l Tjl + L:~l Til '
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(5.6)

where the ph child has the same history as the it" child, where Tit = 1 if the

f(,'!;pOllse of the i '" child at till time is observed and 0 otherwise.

Next to compute the auto lag correlation, define Zit = T,lYil + (1 - TidY;t

and Wit = [rilait + (1- fil)a-ill- I
, Also define z;:: (ZibZi2' .• ,ZiT)' as a T xl

vector with individual element Zit. As Yil, Yit and hence Zit has the same mean

x:I.B, the IIIl auto lag correlation can be computed as

_ 2:: 1 L,r~1 WiIWiHI(Zil - xil.B)(Zi,HI - xid))/ItT - I)

PI= L::",IL;{':iwMz,t x:t!3P/IT
(5.7)

Next, the full vector Zi containing original and/or imputed values, along

with the values of Ai and P, arc used to estimate the regression coefficient by

using the formula

, ,
iJ ~ It;X:f:,' X,I-' It; X:f:,' ',I. (5.8)

which is similar but different than that of equation (3.8). Here E, is the

variance of z;, whereas ill equation 3.8, E i is the covariance matrix of Yi with

no missing responses.
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5.2 Application to Hemoglobin Data based on

Imputaion Technique

In ~his subsection we include the imputed values discussed ill subsection 5.1 to

analyze the longitudinal hemoglobin data. There were 17 children whose val­

ues were missing at least for one time point and the remaining 25 children had

the complete information. The missing pattern and the position are presented

in Table 5.1. We followed the regular mean imputation technique to obtain

approximately consistent imputed values. The imputed values are given in

Appendix A Table A.1. We used those imputed values to calculate the regres­

sion coefficients and autocorrelation. These estimated values are presented in

the following table 5.2.
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Type of Parameter Parameter Estimate Standard errors

Intercept 119.79 0.130

Geuder 2.74 0.137

Regression Treatment 0.381 0.138

effects Gestation week -0.304 0.D28

fi: 4 x 1

p, 0.244

Auto lag '" 0,076

correlation p, -0.115

p, -0.178

Table 5.2: The values of estimates of iJ for u = 1,2, .. ,4 and autocorrelation

values PI for I = 1,2,3,4 for Hemoglobin Data using imputed values.
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It will be meaninbrful to compare the results of Table 5.2 with the results

from the previous two tables 3.1 and 4.1. Table 3.1 shows the regression

and autocorrelation estimates from complete data only. Similarly, Table 4.1

shows these estimates using the incomplete or observed data available from 42

individuals. Here missing values arc ignored under the assumption that the

missingness occurcd completely at random.The regression and autocorrelation

estimates in Table 5.2 are more or less similar to table 3.1 and 4.1 but they

are found from full data colltaining both original and imputed values.



Chapter 6

Non-parametric Testing For

Longitudinal Monotonic

Changes

In the longitudinal studies, it is of interest to estimate the regression effects af­

ter taking the longitudinal correlations into account. Also it may be of interest

to study the longitudinal changes in hemoglobin levels for an individual over

a period of time. To be specific, one may be interested to know whether there

is any longitudinal pattern in the responses such as increasing or decreasing

trend in hemoglobin levels over the period of t.ime. To examine the presence of

any such trend, in this chapter, we apply sevcrcl non-parametric tcsts to the

full hemoglobin data obtained after imputations as in the previous chapter

Recall that in the previOlls chapters, we have considered time as a stochas­

tic factor so that the hemoglobin observation vector Yi for the i th individual

38
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had T- dimensional symmetric distribution with mean x;fJ and covariance ma­

trix E;(3.5-3.6), where E; was constructed based all longitudinal correlation

structure appropriate for repeated data. In this chapter, we introduce a fixed

time factor say Tt and modify the linear model (3.5) as

(6.1)

and examine whether there is any trend in the time effects '1'1,7'2, ",T~. In

modifying the linear model, we 1I0W aSSllmc that (it for t = 1,2, .. ,T are

independently and identically distributed with median 0 and a scale parameter

al. Thus, the time factor in equation (6.1) is 110 longer stochastic, rather the

time effect is represented by -r,1' only. We now test whether there is any trend in

time effects T], '1'2, .. , TS for the hemoglobin data by applying three distribution

free tests.

6.1 Jonckheere-Terpstra Distribution Free Test

Note that this Jonckheere-Terpstra distribution free test procedure (Hollander

and Wolfe, (1999), chapter 6, section 6.2, page 202) tests the null hypothesis

(62)

against the alternative hypothesis
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(63)

with at least one strict inequality. Although this test could be performed under

the general regression model (6.1), we however, to begin with, usc {3 = 0 and

examine the time effect only 011 the rcsponses.

For a selected pair (u,v) so that 1:::; u < v:5 T, letU"v beaMann-Whitney

count defined as

, ,
U•• ~ I:I: ¢(Y,., y,.),

;",Ij"'\

(64)

where Y; .. , for example, is the utll hemoglobin level for the ifI> child, t,6(a, b) = 1

if a < b, 0 otherwise. We now add all T(T - 1)/2 values of U"v and form the

J statistic given by

T-l T

J=I: I: u."
"",10=11+1

This J statistic is now standardized as

(6.5)

(6.6)
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where Eo(J) and varo(J) are the expectation and variance of J respectively

under the null hypothesis fIo . The formulas for mean and variance arc

and

E,,(J) = N
2

- L;~l n1
4

(67)

N 2 (2N + 3) - "L;-1 nJ{2n; + 3)
varo(J) = 72 ' (6.8)

where Tlj is t.hc number of individuals at jlh time point which is 1 Le., nj = I

in our case and N = T x n] = TJ.

But iftherc is any tie among data, the null variance will be slightly different.

III such a case, the test statistic is modified as

(69)

where var~(J), the null variance, is different than the var,,(J) in equation (6.8)

and it is given by

IT'
n[N(N -1)(2N + 5) - Lni(n. -1)(2n; +5) - Ltj(tj -1)(2tj+5)]

.=1 j=!
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+36N(N IliN 2) d:: ",(n; - I)(n; - 2)ICt ,,(t, - I)(t, - 2)]
;=[ j=1

1 T ,

+8N(N _l)[~n;(n;-1)][f;t,(t, -1)1· (6.10)

In equation (6.10), 9 denotes the number of tied groups ill the data and tj is

the size of tied group J. Note that an untied observation is considered to be

a tied group of size 1. But if there are no ties, then 9 = Nand t j = 1, for

j = 1,2, ... ,N. FUrthermore, ¢l(a,b) used in the calculation of Mann-Whitney

counts Uuv is replaced by ¢'(a,b) = 1,1/2,0 if a <,=,or > b, respectively. If

there are 110 tics, the variance expression in (6.10) reduces to the usuaillull

variance of J as given before in equation (6.8).

6.1.1 Application

For the hemoglobin data set, we have observed a number of situations with

ties among the respouses. Consequently we compute JO' for our purpose and

the value of the null test statistics is found to be P* = 6.87. At the 0' level of

significance, we reject H" if J** :2: ia.; othcrwise do not reject. The constant ia.

i~ choscn to make thc type I error probability equal to 0'. To be specific, at ,j

percent level of significance, li"e1 = 1.96. Since J** > ia., we conclude that the

!lull hypothesis is rejected and according to the Jonckccrc-Terpstra test, there

is no trcnd in hemoglobin data.



6.2 Kendall Distribution Free Test For Inde-

pendence Based on Signs

6.2.1 Observation Based Test

In this section, we tcst the longitudinal pattern in a different way than in

section 6.1. Following Maull (1945) and Kendall (1962), we test whether 5

longitudinal observations are correlated or not. That is, whether Yil, ... , Y;s

arc correlated or not for all i = 1,2,. ,.,42. Let Pi denote this correlation for

given i, and we are interested to test the Hull hypothesis that there is no time

effect, Le.,

H,,:Pi=O (6.11)

against the alternative that time as a specific factor positively influencing the

responses, Le"

HI :Pi > 0 (6.12)

To test the above hypothesis in 6.11 versus 6.12, we first write the Kendall

sample correlation statistic K; given by
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K, ~ ~ .~, Q,[(X,., Y;,,), (X,,, Y;.)I, (6.13)

where for two bivariate observations (Xi.. , Y;.. ) and (Xiv, Yj..)(l ::5 u < v ::5 T),

Q; fUllction is defined as

{

1, il (d - b)(, - a) > 0

Q,[(a, b), (a, d)1 ~ -1, 'I (d - b)(, - a) < 0

0, ,I (d - b)(, - a) ~ 0

Next, by taking Xi" = U, for tI = 1,2, .. ,T and i = 1,2, .,1, we reex­

press the Kendall sample correlation statistic K; in (6.13) a~

T-l T

K, ~ I: I: Q,[(u, Y;.), (a, Y;.)],
u=J ,,=,,+1

(6.14)

which was suggcst~d by Mann (1945) to test for a time trend in the data

In OUf set up, this is equivalent to a tcst for a time trend in T longitudinal

respouses Y,), ... , Y,,,, .. , Y,.. , .. . , y;,1' for the it" individual

The J(i test statistics in equation (6.13) has Kendall distribution which

may be found in any standard non-parametric text book, such as, Hollander

and Wolfe, (1999), Table A.3D page 724.
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6.2.2 Residual Based Test

In section 6.2.1 we have performed a nOll-parametric test to examine whether

there is any trend in the observations collected longitudinally. Note that as

apart from time, the hemoglobin responses may also be affected by treatment

and other covariates, to understand any trend because of the time, we now per­

[arm a test based 011 the residuals rather I.han observations. More specifically,

we compute

(6.15)

and use them in place of Yi/ in the test developed in the last section

6.2.3 Application

We calculate the Kendall test statistics K;, (i = 1,2, .. ,42) from the response

of the individuals as well as from the residuals and examine whether Pi is

rejected or not.

At the 0' level of significance, we reject Ho if K; ~ ka ; otherwise do not

reject, where k" will be calculated from Table A.30 in Hollander (1999), page

724. Note that the observation based vaJues were found to be

K i ::::;' 3, 8, 3, 10, 5, 0, 8, 2, 2, -2, 6, 2, 3, -2, 5, 3, 8, 2, 5, 0, 6, 8, 10, 4, 4, 3, 8,

8, -5, 8, 4, 4, 1, 2, 1, -4, 6, 6, 8, 8, 6, 6.

Similarly, rCl;iduals based Ki's were found to be
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~~3,8,3,10,5,O,8,4,2,~,6,2,3,-2,5,3,8,4,5,~6,8,lO,4,4,3,8,

8, -5, 8, 2, 4, 1,2,1, -4, 6, 8, 8, 8, 4, 6.

Further note that at 4 percent level of significance, k" is found to be k" = 8

for T=5 (sec Hollander, 1999, Table A.30 page 724). So by comparing the

values of K; with thooretical ka values, we find that K; > k" holds for 11

individuals out of 42, in the observation group. Likewise, 12 out of 42 indi­

viduals had K; > ka ill residual group. This test leads to the conclusion that

there is no highly significant longitudinal correlations among the observations

as well as residuals. This conclusion appears to be in agreement with the test

performed in the previous section.

6.3 Ranks Based Spearman Distribution-Free

Test For Independence

In this section, we test for the longitudinal pattern using the concepts of

positive or negative association. Let (Xih Yid, ... , (Xi'1', Y,y}') be a random

sample from a continuous bivariate population. To compute the Spearman

rank correlation coefficient, we first order the Xii, . ,XiT observations from

least to greatest and let R;u denote the rank of X iu , u = 1,2, .. ,T for the

i lA individual at the U'A time period. Likewise, we order the longitudinal

observations Yil, .. , YiT from least to greatest and let Siu denote the rank of

Yiu,u = 1,2, ... ,T for the ith individual at utA time period. The Spearman

(1904) rank correlation coefficiellt is defined by



122:;_,([R," - "fils," - "fJ}
T(T2 1)

1- 6L~=1 01..
T(T'-I) ,
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(6.16)

where Diti = $;" - R i", U = 1,2, ... ,T. Note that in our set up, Xi" = u for

u = 1,2, .. ,T. Thus R;" = u. Now to test whether there is any dependence

of the responses on the time (u = 1,2, .. ,T), we simply tcst whether the

population correlation between u(u = 1,2, .. ,T) and ti" for a given i is

significant or not. Consequently, by putting R;.. = u in (6.16) and computing

the rank S;u as mentioned above, we find the value of f"i, in (6.16). The null

hypothesis may be written as

against the alternative,

Ho : Pi. =0

Ho:Pi. >0,

(6.17)

(6.18)

where Pi. is the population counterpart of Ti"

For the observed data as well as for the residuals, we 1I0W compute rio by

(6.16). We compare this value with that of its tabulated value (sec Hollander,
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1999, Table A.31, page 732) and reject the null hypothesis if IT;.I ~ T,,,, r..,

being the tabulated value at a level of significance.

Note that for the observed data, the values of IT;.I, i = 1,2, .. ,42 exceed

T.", 11 times. Similarly, for the residuals based test, the values of 11';.1 exceed

r." in 12 cases out of 42. These results show that the dependence of hemoglobin

on the time is not really significant. Thus the conclusions in all three sections

remain the same that there is actually no longitudinal monotonic trend in the

dat.a. This however does not mean that there werc no changes ill hemoglobin

levels over the time. This is because, as is apparent from Figure RB, compared

to the baseline level, the hemoglobin le\'c1s at different times were either higher

or lower, indicating clear changes, although there was no specific monotonic

trend.



Chapter 7

Concluding Remarks

III the practicum, we have analyzed a hemoglobin dataset which is longitudinal

by nature. Also the data had missing responses at times. The statistical

analysis of such longitudinal data subject to non-respollse requires careful

solution of the methodologies. Following the suggestion of Sutradhar and Das

(1999), we have used a general auto-correlation structure in our linear model

set IIp and computed the regression cffl.-'Cts efficiently. To compute the covariate

effects in the presence of missing values, we have followed Krishnamoorthy and

Pannala (1999) as well as the imputat.ion technique used by Paik (1997). We

have further studied certain tcsts for examining possible longitudinal changes

ill hemoglobin Ic\"cls. This, we have done using non-parametric tests.

The results of the regression analysis for the complete data were computed

based on 25 complete longitudinal observations for 5 time points. for in-

complete data, we have used 42 observations under twO situations: first, the

results were computed from available responses, and second, they were com-

49



50

puted based on suitable imputations. In all three cases, it was clear that the

predicted. hemoglobin level of males was higher as compared to that of females.

As the treatment effect was positive, it was clear that the treatment was cffcc·

ti\"c to increase the hemoglobin levels for the infants treated as compared to

the placebo group. The baseline hemoglobin levels were higher for the infants

with larger gestation week. It however became clear that the hemoglobin level

for the infants with lower gestational age eventually increased more compared

to the infants with larger gestational age. Finally, the non parametric tests

showed that there was no longitudinal pattern (monotonic increasing or de­

creasing) in the data, although there were changes in hemoglobin levels over

the months

In conclusion, this statistical study should be useful for the scientists to

prescribe better recommendation than those are available in the current liter­

ature, regarding the iron-intake by the low-birth-weight infants.
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----------------------------------------------------------------------
Sn T1 T2 T3 T4 T5 BHGB Gender Formula Gestation

"''''=-==================================================================

1 122 135 129 135 134 86 26

2 100 117 136 124 138 91 28

87 126 135 128 125 76 31

80 122 132 139 129 86 30

86 125 129 127 139 95 28

6 139 126 143 137 133 146 33

7 115 128 134 134 132 135 33

8 127 133 127 124 126 148 34

9 100 125 120 124 122 114 34

10 138 122 127 128 126 157 34

11 92 132 132 135 131 114 32

12 106 114 118 122 114 115 31

13 96 122 128 118 131 109 34

14 110 125 112 136 118 120 31

15 124 124 118 121 128 175 32

16 99 133 132 134 131 122 28

17 87 119 122 116 114 93 31

18 119 122 129 128 132 154 34

19 95 117 114 131 135 148 31

20 86 119 117 115 117 93 28

21 99 110 116 125 123 140 32
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22 160 107 l26 118 115 136 33

23 103 116 105 123 118 133 33

24 107 123 142 129 123 97 27

25 92 113 125 128 140 103 29

26 110.2* 109 119 117 115 118 32

27 116.2* 114 l28 l26 139 101 31

28 116.2· 112 118 132 139 87 31

29 102.6* 145 114 130 130 85 30

30 107.5* 118 l29 l26 l23 99 33

31 123.0* 111 108 119 127 144 36

32 112.0* 112 117 112 118 91 34

33 112.0* 121 l28 l20 114 91 34

34 96.0* 108 107 117 110 90 35

35 123.0* 104 130 136 l29 82 38

36 112 131 120.6*131 130 101 31

37 104 119 120.6*129 l23 143 32

38 107 129 121.6*130 132 91 32

39 112 113 131 135 116.0. 103 35

40 104 110 121 l28 123.5* 119 31

41 97.3. 114.3* 124 l23 112 96 32

42 100 l23 124.0* 130.6* 134.3* 88 30

--------------------------------------------------------------------

Table A.I: Hemoglobin Data from Janeway Child Health Center and Grace

General Hospital for 42 Children for t.he Period of 3 Months (June 1995-May

1996) After Birth, With Imputed Values Shown With a '.' Mark.
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Figure B.l: Histogram of Distribution of Gender as an Explanatory Variable
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Figure 8.2: Hi~togram of Distribution of Treatment as an Explanatory Vari­

able
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Figure 8.3: Histogram of Distribution of Gestation Week as an Explanatory

Variable
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Figure B.4: Histogram of Distribution of Basclcvel Hemoglobin as an Explana­

tory Variable
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Figure 8.5: Longitudinal Plot of Hemoglobin Levels for 42 Individuals at 5

DiffcrelitTillles
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Figure 8.6: Plot of Hemoglobin Values For 42 Individuals for Time TI, T5

and Baselcvcl Hemoglobin
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Figure B.7· Plo~ of Predicted Hemoglobin Values for Males and Females
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Figure 13.8: Plot of Predicted Hemoglobin Values for Treatment Group 311d

Placebo Group



26·29 week 30-34 week
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t:I~lf:I~1
35-38 week

Figure 8.9: Plot of Predicted Hemoglobin Values for Different Gcst.atioll Week
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35-38 week

Figure B.I0: Plot of Basclevcl Hemoglobin Values for Different Gestation Week
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