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Abstract

In analyzing longitudinal hemoglobin data for low-birth-weight infants, it is of
interest to examine the effects of iron fortification and other covariates such
as gender and gestation weeks on the hemoglobin status of the infants over
the months. As the hemoglobin data are collected repeatedly over a period of
time, the longitudinal correlations of the responses must be taken into account
in finding the covariate effects. Further problems get mounted when some

of the responses are missing. In this practicum, we conducted a regression

analysis after dating the 1 dinal and missi nature of the
data into account. Also, several non-parametric tests were applied to examine

any possible ic trend in the longitudinal } lobin data.
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Chapter 1

Introduction

1.1 Motivation of the Problem

Very low birth weight infants, defined as weighing less than 1500 gram at birth
are known to be at high risk of iron deficiency. These infants are born prema-
turely and some experience lower than expected birth weight for gestational
age. Iron deficiency in the premature infants usually affects their growth and
these infants may be prone to various pathological conditions. As a counter
measure to this problem, it is standard to feed these infants certain formula
fortified with iron. Although the fortification amount is usually determined
by comparing with the iron level of full-term infants as a standard measure,
the fortification amount may however vary depending on other characterstics
of the individual infants such as gender, his or her individual gestation week
as well as the initial level of the iron at birth, and so on. This problem of

determining the iron intake amount based on other covariates is however not



adequately studied in the literature.
To study this important issue, biochemist/nutritionists usually conduct
experiments where the necessary data are collected from a group of infants over

a period of time. The statistical analysis of such longitudinal data however

appears to be quite challenging. This is because in such cases one needs to
find the effect of the treatment (iron intake level) and other covariates on
responses after taking their longitudinal correlations into account. Further
problems may occur when some responses are missing. Based on the above
issues, we were motivated to study the problem of determining the effect of iron
intake on the health status of the premature infants by applying appropriate
statistical methods. This study should be useful for determining the iron
needs of individual infants based on their background information, i.e., history
of covariates, whereas the current recommendations for iron intake by the
Canadian Paediatric Society [2 mg/kg (2 mg of iron intake per 1 kg weight of
the infant)] and American Academy of Pediatrics [2 to 3 mg/kg] do not vary

based on the covariate information of the individuals.

1.2 Objective of the Practicum

The main objective of the practicum is to use an appropriate statistical model
to examine the level of hemoglobin attained by an infant resulting from iron
intake over a period of time, conditional on his or her other covariates. Note
that as this type of nutritional experiment is usnally conducted over a period of

time, it is likely that the h lobi of an individual infant collected




over time will be longitudinally correlated. The selected statistical model must
accomodate this longitudinal correlation.

When the data are collected longitudinally, it frequently happens that some
data for some infants may be partially missing. This makes the longitudinal
study further complicated. For example, if the missing values occur completely
at random, the available data can be analyzed but the estimation may be
difficult as one needs to deal with unbalanced data. If however the responses
are missing at random, they require to be imputed which may not be easy
in the longitudinal set up. It is also our objective to deal with this type of
missing problem while finding the effect of iron intake or the hemoglobin level
of the infants.

Next, we will apply certain suitable statistical tests to see whether there is

any i inal pattern in | lobi

levels because of iron intake

over the times.
The specific plan of the practicum is as follows:
1. In chapter 2, we provide an exploratory analysis of the covariates and

response variable of the Hemoglobin data before we undertake any con-

firmatory analyses.

L

As the hemoglobin data collected over times are continuous and they are

correlated, in chapter 3, we introduce a linear model for autocorrelated

h lobi. This longitudinal analysis is done for complete

data, i.e we ignore the missing responses to calculate regression param-
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eters and autocorrelations.

In chapter 4, we consider certain possible missing mechanisms and carry
out the longitudinal analysis after taking the missingness nature of the
data into account. More specifically, in this chapter, we analyze the
longitudinal data with non-responses under the assumption that they

occured completely at random.

We continue analyzing longitudinal missing data in chapter 5, mainly
under the assumption that the missingness occured at random. Thus

the analysis is done based on certain imputations.

. As it is also important to study the longitudinal pattern in hemoglobin

levels, in chapter 6, we conduct certain non-parametric tests in order to

test such patterns.

We conclude the practicum in chapter 7.



Chapter 2

Background of the Study

2.1 Preamble

Infants of very low birth weight (defined as less than 1500 g) are at high risk
for iron deficiency because of low stores of iron at birth (Gortem and Cross,
1964), rapid growth in the erythrocyte mass, which depletes the iron reserves
(Worwood, 1977), and uncertainty about their iron requirements (Report by
Committe on Nutrition, American Academy of Pediatrics, 1985). The Cana-
dian Pediatric Society (Nutrition Committe, Canadian Pediatric Society, 1981)
has recommended that the low-birth-weight infant receive iron in the amount
of 2 mg/kg daily, either in formula or as a supplement, from about 2 months
of age onward. The American Academy of Pediatrics has recommended 2 to
3 mg/kg daily for very-low-birth-weight infants and has stated that formulas
with iron usually contain sufficient supplemental iron

Note that even though the recommendations by the Canadian Pediatric



Society and American Academy of Pediatrics are available for general fortifi-
cation purposes, more detailed studies are necessary to improve the iron intake
standard. With this in view, Yeung and associates (Yeung et al, 1981) for ex-
ample, studied the iron status of Canadian infants. Their study however was
confined to the term infants only. Later on, Friel et al (1990) examined the
iron status of very-low-birth-weight infants given iron-fortified formula during
early infancy who were part of a prospective study of the effects of zinc supple-
ments on growth and development. These authors concluded that because of
delayed development, very-low-birth-weight infants eat small amounts of ce-
real and therefore require iron-fortified formula throughout infancy. For some
other studies similar to Friel et al (1990), we refer to Ehrenkranz (1993) which
shows that there has to be good nutritional management in preterm infants so
that there can be sufficient iron supplementation to enhance iron stores and
to prevent the development of iron deficiency.

Note however that in studying the effects of fortification, the above studies
do not appear to have used the longitudinal correlations that may be present
among the hemoglobin responses of the same infant. To be specific, no attempt
has been made to understand the longitudinal correlation of the responses of
the same infant, which appears to be an important issue to understand the
changes in hemoglobin level for an infant. As mentioned in chapter 1, the
purpose of our study, unlike the previous work, is to apply a valid statistical
approach after taking the longitudinal correlations of the responses into ac-
count. Further note that for recommendations for the appropriate amount of

fortification, it is also important to take the individual’s characterstics into ac-



count. This is because, there may be some variable effects between female and
male, for example, and among the infants belonging to different gestational
age. For this purpose, we plan to conduct a comprehensive longitudinal regres-
sion analysis after taking the longitudinal correlations into account. Since the
longitudinal data collected over time may also be partially missing, we require
to estimate the missing values in such cases before doing further statistical
analyses. In our study, we also deal with this type of missing data problem
while finding the effect of iron intake on the hemoglobin levels of the infants.

In the next section, we describe in detail a hemoglobin data set collected
by Dr. James Friel and his associates during June 1995 to May 1996. The

statistical analyses will be given in the subsequent chapters.

2.2 Hemoglobin Data

In order to examine the effect of iron intake on premature children with low

hemoglobin level, James Friel and his associates of the Department of Biochem-

istry, Memorial University of N d, collected a in data set

from two different hospitals namely Janeway Child Health Center and Grace
General Hospital at St. John’s, Newfoundland. More specifically, data were
collected from 42 prematurely born infants. To begin with, the hemoglobin
data were first collected for these 42 infants within the first week of their
birth in June 1995. The data are referred to as baseline hemoglobin data. To
study the effect of iron intake, these 42 infants were randomly assigned to two

groups namely placcbo and treatment groups. The gender and weeks of gesta-



tion the infants were also recorded. After collecting the baseline hemoglobin
data, the hemoglobin measurements were also recorded longitudinally at 3, 6,
9 and 12 months for all these infants. Note that all of these children were
healthy, eligible and had no birth defects at the time of birth, although they
were premature. Further note that it was however not possible to collect the
hemoglobin data for all 5 time points for each of the 42 infants. This is because
some of the responses were subject to non-response or were partially missing,
which may have happened because of iron intolerence, blood clotting, refused
to eat, left the province, and so on. It was observed that some individuals
were missing for one or two times but they continued to take the treatment
again. To be specific, 25 observations were completely observed for all 5 time
points and the remaining 17 were partially missing, that is, some left after
some weeks or months, some joined again and some did not. As mentioned
before, the treatment (iron) and placebo were given randomly, irrespective of
the gender and the gestational age.

In this study, the main scientific interest is to find the effect of treatment as
well as other covariates such as gender and gestational age on the hemoglobin
level after taking the longitudinal and missingness nature of the data into

account.

2.3 Distribution of the Variables

We now provide the sample distribution for all the fixed covariates (gender,

treatment, gestation weeks and baseline hemoglobin level) and the response



variable (} lobin) collected longitudinall

The histogram for gender for example, is shown in figure B.1. This shows
that among 42 infants, 22 were boys and 20 were girls. The number of individ-
uals in the treatment and placebo groups are shown in figure B.2. In fact, the
number in each group was same, that is, 21 in each group. The distribution of
the infants according to 3 gestation groups (26-29 weeks, 30-34 weeks and 35-38
weeks) is shown in figure B.3. It was observed that there were 7 infants in the
very-low-birth gestation week (26-29), 32 were in the middle group gestation
week (30-34) and another 4 were in the last group (35-38). The distribution
of baselevel hemoglobin is presented in figure B.4. A small number of infants
were found to have either very small or very large hemoglobin levels. A large
number of infants (40) were found with 8.0 to 10.0 mg/dl hemoglobin level.
‘We have also plotted the baseline hemoglobin data as opposed to the ordered
gestation weeks, which is exhibited in figure B.10. This figure shows that the
baseline hemoglobin is higher for the infants with higher gestation week.

The original data set under study is shown in Table A.1 in appendix A.
Figure B.5 in Appendix B shows the longitudinal plot of hemoglobin levels
for 42 individuals at 5 different time points. Note that although most of the
observations were available for all time points, some of them are imputed based
on mean imputation technique explained in chapter 5. There is high variations
in hemoglobin levels at the first time point, where hemoglobin values range
from minimum of 8.0 mg/dl to maximum of 16.0 mg/dl. But from the second
time point and on, the variation in hemoglobin value was comparatively smaller

than at the first time point.
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Figure B.6 shows the plot of baseline hemoglobin, hemoglobin at first
time point and hemoglobin at fifth time point to illustrate the effect of treat-
ment and other covariates over time. This figure indicates more variation of
hemoglobin level at baseline and first time point, but at the fifth time point,
the hemoglobin level appear to be smoother. When the baseline hemoglobin
level is compared with the level at time point 5, there appear to be an overall
increase at the fifth time point. But the changes were more for those infants
with smaller baseline hemoglobin values as compared to other infants with

higher hemoglobin values (see Figure B.6).

2.4 Notations

In this section, we develop some notations for the longitudinal hemoglobin
data that we explained in section 2.3. These notations will be used for the
confirmatory analysis in the subsequent chapters.

Let Yy denote the Hemoglobin level collected at % time for the ¢4 (i =
1,2,...,1) individual under study. Also, let =}y = (Tit1, ..., Titus - - -, Tip) be
the corresponding p x 1 covariate vector. In the present set up, / = 42 and
p = 4. To be specific z; will denote the Gender (1=male, 0=female) for the i**
individual, and z;; will denote the treatment given (1=treatment, 0=Placebo)
where iron is taken to be the treatment. Likewise z;3 denotes the gestation
period of the child expressed in number of weeks. Any baby having gestation
period less than 38 weeks is regarded as low gestation period. Finally, z;s

denotes the baselevel hemoglobin of the i individual. Note that although all
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these covariates are written as time (¢) dependent, but in our studies, these
covariates are actually time independent, whereas y; really depends on t.

As it is seen from the data presented in Table A.1, all z values were available
for all 42 individuals under study. The y values however were not available for
all 5 time points. Moreover, the responses y;1,..., %, ...,y for T = 5 are

correlated as they are reported hi levels over T' ive periods.

The purpose of this study is to find the effect of covariates z on the responses
y, after taking the missingness and the longitudinal nature of the data into

account.



Chapter 3

Longitudinal Analysis for
Complete Data

3.1 Linear Model for Autocorrelated Responses

As the hemoglobin data collected over time for each of the infants are contin-
uous by nature, one may exploit a lincar regression model with autocorrelated
error to examine the effect of covariates on the hemoglobin labels recorded for
each individuals.

Let yie be the Hemoglobin level recorded at the #(t = 1,2, ..., T) occasion
for ith(i =1,..., 1) infant. Also let T = (Zut, - -, Titus - - -» Titp)’ be the p x 1
vector of covariates corresponding to yi. For the present Hemoglobin data,
the covariates are however not time dependent. More specifically, we denote
‘intercept” covariate with the code 2, = 1, ‘gender’ by @y with the code 0 for

female and 1 for male. Likewise, we denote the covarite ‘formula’ by 2,3 with

12
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the code 1 for treatment and 0 for placebo and finally we denote the covariate
‘gestation week’ by s with 26 < zy, < 38 and ‘baseline Hemoglobin’ by s
with 76 < s < 175,

Note that 1, . .

Yit, - -, Yir are the repeated observations collected for the

it infant. Consequently, it is natural to expect that these observations will

be correlated. In the longitudinal set up, T is usually small. Tn the present
longitudinal data set up T = 5. As y.s are continuous, one may fit a linear

model

yi=Xif+e (3.1)

and compute the p x 1 regression vector 8 = (By, fa, fs, B, Bs)' after taking
the longitudinal correlations of the observations into account.

In equation (3.1), 4 = (it > Yitr - - yur)' is the T'x 1 vector of responses
for the it infant, ¢ = (€i1, ..., €, ., &) is the corresponding error vector

and X; is the T x p covariate matrix for the i** individual defined as

'
Tiy

Tip

'
it



where a, is the 1 x p covariate vector as defined earlier.
As far as the error variable is concerned, we may assume that e, ~ (0, 0:2).
Further to accomodate the longitudinal correlations of the responses, we as-

sume that the error vector ¢ has the autocorrelation structure given by

Lo op oo pra
T opoooo pra
Clor,--rpr1) = HI (3.3)
1
1

(Sutradhar and Das, 1999) where p(l = 1,2,...,T — 1) denotes the " lag

autocorrelation defined as

Cov(eir, €i+1)

p =,
Vvar(yie)var (Y1)

(3.4)

Note that the correlation structure (3.3) is suggested by Sutradhar and Das
(1999) in a non-linear regression set-up, whereas in our context, the regres-
sion model is linear as in equation (3.1). Under the assumption that y; ~

(},8,0:%), one can fit the linear model (3.1), i.e.,

%= Xif +e. (3.5)
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Note that the autocorrelation structure (3.3) is quite general as it can acco-
modate the Gaussian type AR(1), MA(1) or exchangeable correlation pattern.
For example, if error vector follows Gaussian type AR(1) process, then p, = g,

where p is a suitable parameter ranging from —1 to +1.

3.2 Estimation of Regression Parameters

By using the equation (3.4), we now express the 7' x T' covariance matrix of

the error vector ¢; as,

=A%Clpy, ., pr) A, (3.6)

where A; = diag[var(e),...,var(ex), . .., var(exr)] = 02Ip with Ip as the
T x T identity matrix. Next, by applying the generalized least square theory,

one may minimize the genaralized error sums of square L given by

L=éd5'e 3.7)

with respect to 4 and obtain the complete data based generalized least square

estimate for the regression parameter § as

Zx’z Foa sz ) (3.8)



with

5 = A0, bro1) AV = 62C(rer ., Pror)

3.3 Estimation of Longitudinal Correlations

In equation (3.8), ji,c denotes the estimator of p; based on the complete data.
This estimator has to be consistent for p, which can be obtained using the

formula

_ T i a1~ 1) 39)
© ShZhanr '

2t

where 2, = (yi — i) and iy = 7,8 and 0,2 is estimated by

-
=" — =BT (3.10)
=

and the variance of J is given by

g
Vg =X x) (3.11)
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3.4 Application to Complete Hemoglobin Data.

In this sub-section we now apply the procedure discussed in section 3.1 to ana-
lyze the longitudinal hemoglobin data from the children’s hospital discussed in
chapter 2. To begin with we choose a subset of size 25 out, of 42 children with
complete information available for all five time points. This means we consider
I = 25. The objective is to compute the values of ﬁc,: and py,...,pr-1,. for
25 individuals by nsing the formulas (3.8) and (3.9).

The hemoglobin data for the i*(i = 1,2,...,25) child collected at time
points (¢ = 1,2,...,5) is denoted by y;. Next as mentioned earlier, we con-
sider all five covariates including the intercept. These covariates are 1. ‘inter-
cept’ zip; 2. ‘gender’ zip; 3. ‘formula’ zys; 4. ‘gestation’ z; 5. ‘basclevel

hemoglobin’ z;5. Here, in general, z;, represents the ut"(u = 1,2,...,5) co-

variate for the i individual. We also examine the autocorrelation structure
of the longitudinal responses.

Note that to compute B¢, one requires to know the values of py.c, .. ., pr—1.c

as well as 62. To begin with we consider jy . = 0,

for (i = 1,2,

chr-1c=0and 62 =1

,25) and solve equation (3.8) for fg. Denote this solution

by faay as the first step estimate of 5. This estimate we then use in equa-
tion (3.9) to compute the first step estimate of autocorrelations denoted by
Pr(1)s - - -+ Pr—1(1)- The first step estimate of § is used as well in equation (3.10)
to compute 57. Next the first step values of p and 67 are used in equation
(3.8) to obtain an improved estimate of #, which in turn is used in equation
(3.9) and (3.10) to compute improved estimates of longitudinal correlations

and 62. This constitute a cycle of iterations which we continue until con-



Type of Parameter | Parameter Estimate | Standard errors
Intercept 117.187 0.170
Gender 4697 0.177
Regression Treatment 1.850 0.176
effects Gestation week | -0.215 0.048
B:5x1 Bascline Hemo. | 0.008 0.004
n 0.149
Auto lag m 0.005
correlation s 0.178
o -0.401

Table 3.1: Estimates of Regression and Autocorrelation Parameters for com-

plete He lobin Data from 25 individuals.

vergence in the values of 4 and py,...,pr_1.. The convergence estimates
are summarized in Table 3.1. The standard error of fig, are computed by
taking the square root of the estimate of diagonal elements of V(3) given by
V(B) = (CL, X!5% " X;)~L. They are also shown in Table 3.1.
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It is clear from the table 3.1 that the auto lag correlations decrease from
moderately positive values to a large negative value. This shows an unusual
pattern which does not appear to satisfy the well known lower order such
as AR(1) or MA(1) or other correlation models. Rather lag 1 correlation is

somewhat positively large, p, is almost same and other are negatively small.

The intercept effect is found to be significant. The gender effect is also
significant. This shows that the change in the hemoglobin level of an individual
child depends upon the gender. Here the treatment seems more effective in

males than in females. Likewise, the ‘treatment’ covariate has a positive effect

upon the I lobin level, i.e., b lobin levels increased signifi for

the infants those who were given the treatment.

Note that unlike the other covariates, gestation week was found to have
negative regression effects (-0.215) on the hemoglobin level. This however does
not mean that the infants with larger gestation week had smaller baseline
hemoglobin level. That the baseline hemoglobin was more for infants with
larger gestation week is shown in figure B.10. But as is seen from figure
B.9, the predicted hemoglobin for the infants with smaller gestation week
has increased to large extent, whereas the increase in hemoglobin level was
moderate or small for the infants with higher gestation week. This resulted
in negative effects of gestation week. Once again, it seems from these results
that the treatment and other covariates worked favourably for the infants
with smaller gestation week as compared to the infants with higher gestation

week. Finally, the small positive value (0.008) of baseline hemoglobin indicates
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that the predicted hemoglobin was higher for the infants with higher baseline
hemoglobin.



Chapter 4

Longitudinal Analysis For
Incomplete Data Without Any

Estimation of Missing Values

4.1 Estimation of Regression Parameters In
The Presence of Missing Data

In chapter 3 we estimated regression parameters of a linear model with cor-
related errors based on complete data. Among 42 children, all together there
were 25 children with complete responses for 5 time points. There was at least
one observation missing for each of the remaining 17 children. To be specific,
10 individuals had one value missing at the first time point, 3 individuals had

one value missing at the third time point, 2 individuals had one value missing
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at the fifth time point. Likewise, one individual had 2 values missing at the
first and second time points. Finally, one individual had 3 values missing at
third, fourth and fifth time points. Thus including the group with complete
information, there are 6 groups of children with 6 different types of missing
cases. Let g denote the g™ group and n, be the number of children in that g
group for g =1,2,...,6.

Next i) be the T' dimensional vector containing T = Ti = 5 repeated
observations for the i** child of the first group. In general yi(,) may be defined
as a T, dimensional vector for the i child of the g** group. Here T, < Ti(= T).
As there are 2 missing values in the 5% (g = 5) group, yy(s) will indicate a vector
of dimension T = 3. Suppose that () denotes the expectation of yj(,) and
Si(y) denotes the covariance matrix of yi(,). For example, for g=5, the Ty(= 3)

dimensional vector yi(s) has the mean

as the first two values are missing for the i** child. Consequently we can write

i) as

Oi33 Oiza Oizs

= Oi43 Oisd Oiss | >

Ois3  Oisa Oiss

where Sy = A5 Cis) Ajf5 and Cigs) can be written as,



1 pop
Cen=|m 1 p
o1

Note however that when responses are missing in a non-monotonic way, then
the mean vector, covariance matrix and correlation matrix may be similarly
computed by deleting the rows and columns of the T, x T, matrix correspond-
ing to the missing responses. For example, for the third group, the T3(= 4)

dimensional vector yi(z) has mean

as the third response is missing for the i child. Consequently we can write

the covariance matrix of the third group s as

Jinl Oiiz Oiaa Oils
Oin1 Oiz2 Oing Oins

Jia1 Oid2 Oiaa Tids

Ois1 Ois2 Oisa Oiss

where Sigg) = A5 Ciyy Aily) with Cigs) given by
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1 pop3m

1 pops
Ciay =

mop 1 op

popop 1

Let N(yi)|tite)» Sitg)) denote the Ty-dimensional (T, < T, = T = 5) multi-
normal density for g with mean i) and covariance i), One can then

write the likelihood function for all indivi as follows:

G g

L HH (Wita) 1i6): i) (41)

Note that for the purpose of the estimation of the regression vector f, the
maximization of likelihood function (4.1) in fact is equivalent to minimization
of the quadratic function given by

G ng

DD ita) — i) iy Wite) — b)) (42)

g=1i=1

where jig) = Xi(B. After some algebra, minimization of the function (4.2)

yields the incomplete data based estimator of 3 as

G ng G ng
Bone =D D X S Xl 132 D Xt Zigy¥io] (4.3)
= = =1 i=1
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Note that the construction of the likelihood function (4.1) is quite similar
to that of the likelihood function discussed by Krisnamoorthy and Panala
(1999) for the estimation of the parameters of multivariate normal distribution
with missing cases. The difference between the present case and that of these

authors is that while they esti 1 the sina ion set up,

we are dealing with the estimation of the parameters in an extended regression

set up.

4.2 Estimation of Longitudinal Correlations With
Presence of Missing Data

Next, similar to the estimation of § by (3.8), the estimation of 8 by (4.3)
also requires the longitudinal correlations to be known. Note however that
unlike in (3.8), the j estimation in (4.3) is done based on unequal number
of observations under different groups. The estimation of correlations for this
type of unbalanced data is complicated. We however develop a mechanism
that we describe below for the purpose of estimation of correlation in such a
case.

Let ry = 1 if y; is present, otherwise ryy = 0 for all 2 = 1,2,...,I and
t=1,2,...,T. As in the present approach, the missing values are ignored in

B estimation, they have to be ignored for the estimation of the lag correlations

as well. C the lag auto correlation can be 1 by using a

general formula given by
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TitTig (44)

where zi = (yit— B inc) i 72 = 1. For ryy = 0, it is not necessary to compute
2y as this quantity does not contribute towards p; computation. Instead, for
simplicity, one can use 0 or some constant value for such z’s.

The computation of i) in (4.3) also requires the estimation of o2, which

in the present case is computed by using the formula

s r,,(y,;‘ ;,Bc,mc)’_ @5)
e Tiire
Further we compute the variance of g e as
G ng 1
V(Beame) = (3.3 XigZin Xial™ (4.6)

o=1 i=1

4.3 Application to Incomplete Hemoglobin Data

In this sub-section we apply the techniques discussed in section 4.1-4.2 to
analyze the incomplete longitudinal hemoglobin data without any imputations.

Note that all together there were 42 children among whom 25 children had
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complete responses for 5 time points and the remaining 17 had at least one
observation missing. As mentioned in section 4.1, 10 individuals had one
value missing at the first time point, 3 had one value missing at the third time
point, 2 individuals had one value missing at the fifth time point. Likewise, 1
individual had 2 values missing at the first and second time points and finally
one individual had 3 values missing at third, fourth and fifth time points.
All these six size groups of responses including the group of individuals with
complete information are identified by the values of g = 1,2,...,6 where g
stands for the g group.

By using the estimating formulas (4.3) for 8 and (4.4) for autocorrelation

structure, we obtain their estimates as reported in Table 4.1



Type of Parameter | Parameter Estimate | Standard errors
Intercept, 123.3 0.937
Gender 2.395 0.142
Regression Treatment 0.646 0.144
effects Gestation week | -0.265 0.03
B:5x1 Baseline Hem. | 0.004 0.003
P 0.232
Auto lag P2 0.008
correlation I3 -0.118
n -0.380

Table 4.1: The values of estimates of f,. for u = 1,2,...,5 and autocorre-

lation values f for I = 1,2,3,4 for Incomplete Hemoglobin Data from all 42

individuals
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From the above table, we can see that the intercept has a significant effect
on the model. The gender effect also seems significant which indicates that the
increase in hemoglobin level depends upon gender and is higher for males than
for females. Also the treatment plays a positive role to increase the hemoglobin
level of the individual children. One can see from the above table that the lag
correlation values decrease from moderately positive values to large negative
values. Clearly, this correlation pattern does not seem to satisfy the well known

lower order AR(1) or MA(1) or other correlation models. We are however not

about specifying any ion structure. Rather we have used
a robust correlation structure which can be valid for lower as well as higher
order correlation process.

‘When the results of Table 4.1 are compared to that of Table 3.1, the re-
gression estimates are found to be smaller except for the intercept parameter.
As we have used information from 42 children from Table 4.1 as opposed to
the information from 25 children from Table 3.1, the standard errors for the
regression estimates from Table 4.1 are found to be smaller than those of Table
3.1 as expected. Thus the estimates found in Table 4.1 are more efficient than
those in Table 3.1.

The interpretation of the results of Table 4.1 are similar to those of Table

3.1. Consequently, we are not repeating the interpretation here.



Chapter 5

Imputation Based Longitudinal

Analysis For Incomplete Data

5.1 Estimation of Parameters Under MCAR
and MAR Mechanisms

In chapter 4, we have ignored the missing values in estimating the parameters,
which one can do provided the missing responses occur completely at random
(MCAR). In the present set up, it is however not clear whether the missingness
occured following such a simple missing response mechanism. As a remedy,
one needs to model the missingness mechanism, which is however very difficult
to do. To ease the situation, we assume that the missingness in this data set
is dependent on the first response i.e, baseline hemoglobin recorded for the

particular child. This mechanism is referred to as missing at random (MAR)
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Number of responses

present from beginning | t=1 | t=2 [t=3 [t=4 |t=5 t=6
1 (2,1) * | (3,1) * | (4,1) (5,1) (6,1)
2 (32) 4,2) (5,2) (6,2)
3 (4,3) x| (5,3) % | (6,3) *
4 (5,4) (6,4)
5 (6,5) *
6

Table 5.1: Missing Pattern

of type I (see Paik, 1997). Under such MAR mechanism, one may conslstomly

impute the missing values by using a ial mean i

The sequence of imputation may be clearly identified by following the missing

pattern shown in the above table 5.1.

The asteriks on the above table indicate the missing positions for the
present data set. Except the missing value at (6, 3), none of the others require
sequential imputation. This is because under the columns corresponding to
t=2,3,4 and 5, there is only one missing position, whereas under the column
with ¢ = 6, there are two missing positions to fit out. Consequently, to obtain
approximately consistent imputed values, for all possible missing values, we
simply follow the regular mean imputation technique.

Suppose that for the i" child, we need to impute the value missing at the

t* time. Let §j;; denote this imputed value. Then the simple mean imputation



formula for this is given by

gz ¥itriel (Dyeo = Dig1)
Srsititl Dy = Digy)

Ui = (6.1)

where y;, is the response at t* time point for the j child, r;, is the response
indicator for the j* child at ¢*" time as in the previous chapters and I(D;_y =
D;_y) is the indicator variable which takes value 1 if the covariate history of
the j™ child upto time ¢ — 1 is same as the covariate history of the i** child,
otherwise I(D;y—1 = Dis—1) = 0. For example, for i = 26 child whose value
is missing at second time period (¢ = 2) only, the imputed value was found
to be 110.25 which is computed as fas2 = (Y2 + Y72 + Y112 + V102)/4 =
(139 + 115 + 92 + 95)/4 = 110.25 i.c., a2 = 110.2. Likewise the imputed
value denoted by fisz,g for i = 42 child at sixth time point is 134.3. Note that
unlike in the previous chapters we have 6 time points here. This is because
the baseline hemoglobin is treated as the first response at the first time point,
whereas this was treated as a covariate in previous chapters.

Next to compute the regression effects of the covarites for such imputations
based data, we first show how to compute the A; matrix defined in equation
(3.6). For the " child with ¢ missing values, the variance at time point ¢ (¢
response is being observed) is calculated by using

T—c

=D (o = B/ (T = ). (5:2)

u=1
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For ¢ = 0, it reduces to 67 in equation (3.10) exactly.
Next to find the variance of an imputed observation i, say, defined in

equation (5.1), we write

Ssvar(i)ryl(Dye1 = Do)

Lyl Dy = Dev- )P &

(i) =

which may be rewritten as

V(i) = of/m (5.4)

where m denotes the number of individuals whose responses were used to
compute fi. In equation (5.4), we have used v(y;e) = o2, as the j**(j # i)
individual has the same history as the i* individual. Consequently for the i
individual with one imputed missing value, the diagonal matrix A; defined in

equation (3.9) may be written as

A; = diagloy, .., 04,54, .., 03] = diag[g, ..., 04,05/, 01 (55)

We however estimate this o by pooling the available information from all

m + 1 individuals including the i** child, and the formula is given by



. Zm Tl relgn— 715 + T ralye — Iuﬂ)
' S Tttt T i

(5.6)

where the j* child has the same history as the i child, where r; = 1 if the
response of the i*" child at #" time is observed and 0 otherwise.

Next to compute the auto lag correlation, define z; = riyi + (1 — 73¢) U

and wy = [ryoie + (1 — 13¢)53) ™. Also define 2 = (21, 2i2, ..., zi7) asa T x 1
vector with individual element z;;. As y;, i and hence z; has the same mean

24,8, the I"* auto lag correlation can be computed as

_ T S wawien (2 — o) (it — 7uB)/L(T — 1)
i S whia — B2/ IT

(5.7)

Next, the full vector 2 containing original and/or imputed values, along
with the values of A; and j, are used to estimate the regression coefficient by

using the formula

I
B=03 X:i:‘x‘r‘[Z XiE s, (5.8)

i=1

which is similar but different than that of equation (3.8). Here % is the
variance of z, whereas in equation 3.8, ¥, is the covariance matrix of y; with

no missing responses.
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5.2 Application to Hemoglobin Data based on
Imputaion Technique

In this subsection we include the imputed values discussed in subsection 5.1 to
analyze the longitudinal hemoglobin data. There were 17 children whose val-
ues were missing at least for one time point and the remaining 25 children had
the complete information. The missing pattern and the position are presented
in Table 5.1. We followed the regular mean imputation technique to obtain
approximately consistent imputed values. The imputed values are given in
Appendix A Table A.1. We used those imputed values to calculate the regres-
sion coefficients and autocorrelation. These estimated values are presented in

the following table 5.2.



Type of Parameter | Parameter Estimate | Standard errors
Intercept 119.79 0.130
Gender 2.74 0.137
Regression Treatment 0.381 0.138
effects Gestation week | -0.304 0.028
Braxi
n 0.244
Auto lag P2 0.076
correlation ps -0.115
Pa -0.178

Table 5.2: The values of estimates of 3 for u = 1,2,

values g; for I = 1,2,3,4 for Hemoglobin Data using imputed values.

..., 4 and autocorrelation
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It will be meaningful to compare the results of Table 5.2 with the results
from the previous two tables 3.1 and 4.1. Table 3.1 shows the regression
and autocorrelation estimates from complete data only. Similarly, Table 4.1
shows these estimates using the incomplete or observed data available from 42

individuals. Here missing values are ignored under the assumption that the

occured y at random.The ion and
estimates in Table 5.2 are more or less similar to table 3.1 and 4.1 but they

are found from full data containing both original and imputed values.



Chapter 6

Non-parametric Testing For
Longitudinal Monotonic

Changes

In the longitudinal studies, it is of interest to estimate the regression effects af-
ter taking the longitudinal correlations into account. Also it may be of interest
to study the longitudinal changes in hemoglobin levels for an individual over
a period of time. To be specific, one may be interested to know whether there
is any longitudinal pattern in the responses such as increasing or decreasing
trend in hemoglobin levels over the period of time. To examine the presence of
any such trend, in this chapter, we apply severel non-parametric tests to the
full hemoglobin data obtained after imputations as in the previous chapter.
Recall that in the previous chapters, we have considered time as a stochas-

tic factor so that the hemoglobin observation vector y; for the i individual

38



39

had T- dimensional symmetric distribution with mean ;8 and covariance ma-
trix ¥;(3.5-3.6), where ¥; was constructed based on longitudinal correlation
structure appropriate for repeated data. In this chapter, we introduce a fixed

time factor say 7, and modify the linear model (3.5) as
Yir = B + e+ €y (6.1)

and examine whether there is any trend in the time effects 71,73,...,75. In

modifying the linear model, we now assume that €} for t = 1,2,...,T are

and i i istril with median 0 and a scale parameter
o2, Thus, the time factor in equation (6.1) is no longer stochastic, rather the
time effect is represented by 7 only. We now test whether there is any trend in
time effects 71,7, . . ., 75 for the hemoglobin data by applying three distribution

free tests.

6.1 Jonckheere-Terpstra Distribution Free Test

Note that this Jonckheere-Terpstra distribution free test {ure (Holland

and Wolfe, (1999), chapter 6, section 6.2, page 202) tests the null hypothesis

Him=m=..=1 (62)

against the alternative hypothesis



Hin<n<..<n, (6.3)

with at least one strict inequality. Although this test could be performed under
the general regression model (6.1), we however, to begin with, use 8 = 0 and
examine the time effect only on the responses.

For a selected pair (u,v) so that 1 < u < v < T, let Uy, be a Mann-Whitney

count defined as

1
>av: (6.4)

15=1

M~

B

where Y, for example, is the ut* hemoglobin level for the i** child, ¢(a,b) = 1
if @ < b, 0 otherwise. We now add all (T — 1)/2 values of Uy, and form the

J statistic given by

r
T=3" 3 Uw (635)

This J statistic is now standardized as

_ F=B ©6)
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where E,(J) and var,(J) are the expectation and variance of J respectively
under the null hypothesis H,, The formulas for mean and variance are

E(J) =

N =Y w2
R 6.7
7 (6.7)

N2(2N +3) = ¥ n3(2n; + 3)

var,(J) = = ? (6.8)

where n; is the number of individuals at j* time point which is I i.e., n; =1
in our case and N =T x n; = T1I.
But if there is any tic among data, the null variance will be slightly different.

In such a case, the test statistic is modified as

oo == Eol)
’ vary(J)

(6.9)

where var3(J), the null variance, is different than the var,(J) in equation (6.8)

and it is given by

T 9
varo(J) = %[N(N —1)(2N +5) = D milm — 1)(2ni +5) — D t;(t; — 1)(2t; +5)]
=

=1
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g2 e~ Dl = 20t ~ 1t~ )

1 x 9
+m[z ni(n; — 1)][; t(t; — 1))-

i=1

In equation (6.10), g denotes the number of tied groups in the data and t; is
the size of tied group j. Note that an untied observation is considered to be
a tied group of size 1. But if there are no ties, then g = N and t; = 1, for
j=1,2,...,N. Furthermore, ¢(a, b) used in the calculation of Mann-Whitney
counts Uy, is replaced by ¢"(a,b) = 1,1/2,0 if a <,=,or > b, respectively. If
there are no ties, the variance expression in (6.10) reduces to the usual null

variance of J as given before in equation (6.8).

6.1.1 Application

For the hemoglobin data set, we have observed a number of situations with
ties among the responses. Consequently we compute J** for our purpose and
the value of the null test statistics is found to be J** = 6.87. At the a level of
significance, we reject H, if J** > j,; otherwise do not reject. The constant j,
is chosen to make the type I error probability equal to a. To be specific, at 5
percent level of significance, |jo| = 1.96. Since J** > ja, we conclude that the
null hypothesis is rejected and according to the Jonckeere-Terpstra test, there

is no trend in hemoglobin data.

(6.10)
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6.2 Kendall Distribution Free Test For Inde-
pendence Based on Signs

6.2.1 Observation Based Test

In this section, we test the longitudinal pattern in a different way than in
section 6.1. Following Mann (1945) and Kendall (1962), we test whether 5
longitudinal observations are correlated or not. That is, whether g1, ..., yis
are correlated or not for all i = 1,2,...,42. Let p; denote this correlation for
given i, and we are interested to test the null hypothesis that there is no time

effect, ie.,

H,:pi=0 (6.11)
against the alternative that time as a specific factor positively influencing the
responses, i.e.,

Hy:pi>0 (6.12)

To test the above hypothesis in 6.11 versus 6.12, we first write the Kendall

sample correlation statistic K; given by
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T-1 T

K=Y > QX Yia), (X Yo, (613)

=1 v=utl

where for two bivariate observations (Xiy, Yiu) and (X, Yi)(1 Su<v < T),

Q; function is defined as

1, if (d=b)c—a)>0
Qil(a,b), (c,d)] = -1, if (d—=b)(c—a)<0
0, if (d—b)(c—a)=0

Next, by taking X;, = u, foru=1,2,..., T and i = 1,2,...,1, we reex-

press the Kendall sample correlation statistic & in (6.13) as

T-1 T
K =Z Z (8, Yau), (v, Vi), (6.14)

which was suggested by Mann (1945) to test for a time trend in the data.
In our set up, this is equivalent to a test for a time trend in 7' longitudinal
responses Yii, ..., Yiu, ..., Yiy,. .., Yip for the i individual.

The K; test statistics in equation (6.13) has Kendall distribution which
may be found in any standard non-parametric text book, such as, Hollander
and Wolfe, (1999), Table A.30 page 724.



6.2.2 Residual Based Test

In section 6.2.1 we have performed a non-parametric test to examine whether
there is any trend in the observations collected longitudinally. Note that as
apart from time, the hemoglobin responses may also be affected by treatment
and other covariates, to understand any trend because of the time, we now per-
form a test based on the residuals rather than observations. More specifically,

we compute

ra = (g — 7o) /6. (6.15)

and use them in place of y;; in the test developed in the last section.

6.2.3 Application

‘We calculate the Kendall test statistics K, (i = 1,2,...,42) from the response
of the individuals as well as from the residuals and examine whether p; is
rejected or not.

At the a level of significance, we reject H, if K; > ko; otherwise do not
reject, where k, will be calculated from Table A.30 in Hollander (1999), page
724. Note that the observation based values were found to be
K;=3,8,3,10,5,0,8,2,2,-2,6,2,3,-2,5,3,8,2,5,0,6, 8,10, 4, 4, 3, 8,
8,-5,8,4,4,1,2,1,-4,6,6,8, 8, 6, 6.

Similarly, residuals based K;’s were found to be
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K;=3,8,310,50,84,2-26,2,3,-2,5,3,8,4,5,0,6, 8,10, 4, 4, 3, 8,
8,-5,8,2,4,1,2,1,-4,6,8,8,8,4,6.

Further note that at 4 percent level of significance, k, is found to be k, = 8
for T=5 (sec Hollander, 1999, Table A.30 page 724). So by comparing the
values of K; with theoretical k, values, we find that K; > k, holds for 11
individuals out of 42, in the observation group. Likewise, 12 out of 42 indi-

viduals had K; > k, in residual group. This test leads to the conclusion that

there is no highly significant 1 linal correlations among the observation:
as well as residuals. This conclusion appears to be in agreement with the test

performed in the previous section.

6.3 Ranks Based Spearman Distribution-Free
Test For Independence

In this section, we test for the longitudinal pattern using the concepts of
positive or negative association. Let (Xj,Yi),...,(Xir,Yir) be a random
sample from a continuous bivariate population. To compute the Spearman
rank correlation coefficient, we first order the X, ..., X;r observations from
least to greatest and let Ry, denote the rank of Xy, u = 1,2,...,T for the
" individual at the u* time period. Likewise, we order the longitudinal
observations Y, .., Yir from least to greatest and let Sy, denote the rank of

Y, u = 1,2,...,T for the i* individual at u time period. The Spearman

(1904) rank correlation coefficient is defined by



1250 {[Riu — T[S0 — T2}
- re-y
6% D2

e T (6.16)

where Diy, = Siy — Ruyu=1,2,...,T. Note that in our set up, Xy, = u for
u=1,2,...,T. Thus R;, = u. Now to test whether there is any dependence
of the responses on the time (u = 1,2,...,T), we simply test whether the
population correlation between u(u = 1,2,...,T) and Y, for a given i is
significant or not. Consequently, by putting R;,, = u in (6.16) and computing
the rank S;, as mentioned above, we find the value of ry, in (6.16). The null

hypothesis may be written as

Hyipis (6.17)

against the alternative,

H, : pis >0, (6.18)

where p;, is the population counterpart of 7.

For the observed data as well as for the residuals, we now compute 74, by

(6.16). We compare this value with that of its tabulated value (see Hollander,



48

1999, Table A.31, page 732) and reject the null hypothesis if [ris| > 7sa, Tsa
being the tabulated value at o level of significance.

Note that for the observed data, the values of |r;, i

1,2,...,42 exceed
Tsa, 11 times. Similarly, for the residuals based test, the values of |r;,| exceed
Tsq in 12 cases out of 42. These results show that the dependence of hemoglobin
on the time is not really significant. Thus the conclusions in all three sections
remain the same that there is actually no longitudinal monotonic trend in the
data. This however does not mean that there were no changes in hemoglobin
levels over the time. This is because, as is apparent from Figure B.6, compared
to the baseline level, the hemoglobin levels at different times were either higher
or lower, indicating clear changes, although there was no specific monotonic

trend.



Chapter 7

Concluding Remarks

In the practicum, we have analyzed a hemoglobin data set which is longitudinal
by nature. Also the data had missing responses at times. The statistical

analysis of such longitudinal data subject to non-response requires careful

solution of the hodologi llowing the ion of dhar and Das
(1999), we have used a general auto-correlation structure in our linear model
set up and computed the regression effects efficiently. To compute the covariate
effects in the presence of missing values, we have followed Krishnamoorthy and
Pannala (1999) as well as the imputation technique used by Paik (1997). We
have further studied certain tests for examining possible longitudinal changes
in hemoglobin levels. This, we have done using non-parametric tests.

The results of the regression analysis for the complete data were computed
based on 25 complete longitudinal observations for 5 time points. For in-
complete data, we have used 42 observations under two situations: first, the

results were computed from available responses, and second, they were com-

49
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puted based on suitable imputations. In all three cases, it was clear that the
predicted hemoglobin level of males was higher as compared to that of females.
As the treatment effect was positive, it was clear that the treatment was effec-
tive to increase the hemoglobin levels for the infants treated as compared to
the placebo group. The baseline hemoglobin levels were higher for the infants
with larger gestation week. It however became clear that the hemoglobin level
for the infants with lower gestational age eventually increased more compared
to the infants with larger gestational age. Finally, the non parametric tests
showed that there was no longitudinal pattern (monotonic increasing or de-
creasing) in the data, although there were changes in hemoglobin levels over
the months.

In conclusion, this statistical study should be useful for the scientists to
prescribe better recommendation than those are available in the current liter-

ature, ding the iron-intake by the low-birth-weight infants.
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Appendix A

Hemoglobin Data



Sn T1 T2 T3 T4 T BHGB Gender Formula Gestation
1 122 135 129 135 134 86 0 1 26
2 100 117 136 124 138 91 1 0 28
3 87 126 135 128 125 7% 0 0 31
4 80 122 132 139 129 86 1 30
5 86 125 129 127 139 95 0 1 28
6 139 126 143 137 133 146 1 1 33
7 115 128 134 134 132 135 1 1 33
8 127 133 127 124 126 148 1 0 34
9 100 125 120 124 122 114 0 1 34
10 138 122 127 128 126 157 0 1 34
b5 § 92 132 132 135 131 114 1 1 32
12 106 114 118 122 114 115 0 1 31
13 96 122 128 118 131 109 0 0 34
14 110 125 112 136 118 120 1 0 31
16 124 124 118 121 128 175 0 0 32
16 99 133 132 134 131 122 1 1 28
17 87 119 122 116 114 93 0 1 31
18 119 122 129 128 132 154 1 0 34
19 95 17 114 131 135 148 ¥ 1 31
20 86 119 117 115 117 93 0 0 28
21 99 110 116 125 123 140 0 1 32



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2%
2%
2%
6%
5%
0%
0%
0%
0%

.3%

113
110

114.

123

3%

126
105
142
125
119
128
118
114
129
108
17
128
107
130

120.
120.

121
131
121

124.

6%
6%

6%

0%

118
123
129
128
117
126

130
126
119
112
120
117
136
131
129
130
135
128
123

115
118
123
140
115
139
139
130
123
127
118
114
110
129
130
123
132

116.
123.

112

5%

119
96

130.6% 134.3% 88
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Table A.1: Hemoglobin Data from Janeway Child Health Center and Grace
General Hospital for 42 Children for the Period of 3 Months (June 1995-May

1996) After Birth, With Imputed Values Shown With a ‘+* Mark.
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Graphs
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Gonder

Figure B.1: Histogram of Distribution of Gender as an Explanatory Variable
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Figure B.2: Histogram of Distribution of Treatment as an Explanatory Vari-
able
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Figure B.3: Histogram of Distribution of Gestation Week as an Explanatory

Variable
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Figure B.4: Histogram of Distribution of Basclevel Hemoglobin as an Explana-
tory Variable



Figure B.5: Longitudinal Plot of F lobin Levels for 42 Individuals at 5

Different Times
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Figure B.6: Plot of Hemoglobin Values For 42 Individuals for Time T1, T5

and Baselevel Hemoglobin
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Figure B.7: Plot of Predicted Hemoglobin Values for Males and Females
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Figure B.8: Plot of Predicted Hemoglobin Values for Treatment Group and
Placebo Group
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Figure B.9: Plot of Predicted Hemoglobin Values for Different Gestation Week
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Figure B.10: Plot of Baselevel Hemoglobin Values for Different Gestation Week
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