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Abstract

In passive brain computer interface (BCI) studies, a common approach is to collect

data from mental states of interest during relatively long trials and divide these trials

into shorter “epochs” to serve as individual samples in classification. While it is

known that using k-fold cross-validation (CV) in this scenario can result in unreliable

estimates of mental state separability (due to autocorrelation in the samples derived

from the same trial), k-fold CV is still commonly used and reported in passive BCI

studies. What is not known is the extent to which k-fold CV misrepresents true mental

state separability. This makes it difficult to interpret the results of studies that use

it. Furthermore, if the seriousness of the problem were clearly known, perhaps more

researchers would be aware that they should avoid it. In this work, a novel experiment

explored how the degree of correlation among samples within a class affects EEG-based

mental state classification accuracy estimated by k-fold CV. Results were compared

to a ground-truth (GT) accuracy and to “block-wise” CV, an alternative to k-fold

which is purported to alleviate the autocorrelation issues. Factors such as the degree

of true class separability and the feature set and classifier used were also explored.

The results show that, under some conditions, k-fold CV inflated the GT classification

accuracy by up to 25%. It is our recommendation that the number of samples derived

from the same trial should be reduced whenever possible in single-subject analysis,

and that both the k-fold and block-wise CV results are reported.
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Chapter 1

Introduction

1.1 Problem Statement

A brain computer interface (BCI) is a system that translates information obtained via

neurophysiological signals into commands for controlling an external device. Active

BCI systems aim to provide individuals with severe motor disabilities a movement-free

means of communication and environmental control by translating intentionally-

modulated patterns of brain activity into control commands for external devices.

Passive brain computer interface (pBCI) systems are potentially more broadly appli-

cable; such systems are not for the intentional control of external devices, but rather

they aim to enhance human-computer interactions by providing implicit information

about the user’s mental state (e.g., cognitive or emotional) [1]. An example would

be a system that monitors a driver’s level of fatigue/alertness and provides an alarm

when a state of drowsiness is detected.

Due to the advantages it offers in terms of non-invasiveness, cost-effectiveness,

portability, and high temporal resolution, the most common technique used in BCI

research for obtaining the neurophysiological signals is electroencephalogram (EEG)
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[2, 3]. How the recorded data is collected and used is largely based on the stage of

development the system is in, and can be broadly grouped into two methodologies:

online and offline systems. For a BCI to be functional and useable, online methods are

used so that the system is capable of processing incoming information and evaluating

the user’s mental state in real-time. Therefore online implementations are the ultimate

goal to be reached when developing BCIs, but to reach that point, the preliminary

studies that develop and compare strategies make use of offline implementations. In

offline implementations, a set of data is collected before any processing takes place.

Machine learning and statistical techniques are used to interpret the neurophysio-

logical signals, and can be used to classify the mental states of interest. To evaluate

the performance of classifiers trained offline, cross-validation (CV) techniques are

used, the most common of which is randomized k-fold. In randomized k-fold CV,

the data set is randomly partitioned into k subsets, and all but one of those subsets

are used to train the classifier, while the remaining subset is used for testing. This

process is repeated k times until all subsets have been used for testing the classifier

exactly once, and the overall performance of the classifier (commonly the accuracy), is

estimated as the mean performance of all k iterations of the CV process. This strategy,

while very common, presents issues when used with temporally-structured data. As

explained by Roberts [4], when data within a class is autocorrelated in time, it causes

non-independence of residuals which violates core assumptions of many statistical

methods. These violations can lead to overfitting and overly-optimistic results when

verifying and comparing models.

Unfortunately, despite the potential issues, it is still very common to see k-fold

CV used in pBCI studies with longer experimental trial durations that allow for

within-class temporal correlations to be problematic. For example, in active BCI

motor imagery studies trial durations are typically in the range of 5-10 seconds with
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only a single sample taken from each trial. Comparatively, in a pBCI study attempting

to classify emotion, trial durations can be upwards of 60 seconds or more with multiple

samples taken from each trial. Having multiple samples taken from a single trial

leads to the issue that Roberts [4] discussed such that if samples within a class are

temporally correlated, the classification results you get via k-fold CV might make

it seem like the mental states are more separable than they truly are due to the

influence of the correlated samples. Also discussed in [4] was an alternative to k-fold

cross-validation, known as block-wise cross-validation that purports to be better as

it alleviates temporal correlations. However, like k-fold CV, block-wise CV has not

been empirically tested to determine how factors such as the strength of within-class

correlation, class separability, and various classification algorithm specifics impact

cross-validation biases. Understanding the potential magnitude of these effects, and

under what conditions they exist is critical as offline studies serve to inform future

and online studies. Therefore prior results must be able to be interpreted properly so

that future studies are not based on unreliable results, and so that best practices are

used going forward.

1.2 Research Objectives

The objective of this research is to investigate the reliability of EEG-based mental

state classification results obtained using two common cross-validation techniques,

namely k-fold and block-wise, when within-class temporal autocorrelation is present

in the data. In this investigation, the effects of several different experimental and

analytical factors will be considered, including:

1. The degree of within-class temporal correlation;
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2. The true separability of the classes;

3. The classification algorithm used, and

4. The type of features used for classification.

1.3 Thesis Organization

The remainder of this thesis is organized into four chapters as described below.

Chapter 2 details the literature review for topics relevant to this thesis research.

Passive brain-computer interfaces, signal acquisition and processing techniques, and

classification and cross-validation methods are introduced and discussed. Relevant

studies are also discussed to frame the purpose of the research objectives.

Chapter 3 contains the methods, results and discussion for the first study, which

was an exploration of pre-existing data sets that guided the development of the novel

study described in Chapter 4. The analytical methods used throughout both studies

are introduced.

Chapter 4 contains the methods, results and discussion for the second study, which

was based on an original experiment designed to meet the specific objectives of the

work, as stated above.

Chapter 5 summarizes the primary conclusions of the study. It provides recom-

mendations and guidelines for pBCI studies that follow the discussed data collection

and analysis patterns. Study limitations and potential future work are also discussed.

Please note that parts of Chapters 1, 2, and 5, and the entirety of Chapters 3 and

4 of this thesis have been taken from a manuscript titled “k-Fold Cross-Validation

Can Significantly Over-Estimate True Classification Accuracy in Common EEG-Based

Passive BCI Experimental Designs: An Empirical Investigation,” by J. White and S.
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D. Power that was published in the special issue “Advanced Machine Intelligence for

Biomedical Signal Processing,” of the journal Sensors [5].
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Chapter 2

Literature Review

As noted at the end of Section 1.3, portions of this chapter and others were taken from

J. White and S. D. Power, “k-fold Cross-Validation Can Significantly Over-Estimate

True Classification Accuracy in Common EEG-Based Passive BCI Experimental

Designs: An Empirical Investigation,” Sensors, vol. 23, no. 13, 2023, issn: 1424-8220.

doi: 10.3390/s23136077, [5].

2.1 Brain Computer Interfaces (BCI)

A BCI is a system that translates information obtained via neurophysiological signals

into commands for controlling an external device. Active BCIs aim to provide

individuals with severe motor disabilities a movement-free means of communication

and control, whereas passive BCI (pBCI) systems aim to enhance human-computer

interactions by relaying implicit information about the user’s mental state (e.g.,

cognitive or emotional) to a computer [1, 6], and using this information to adapt the

interaction to the user’s state in some useful way

Typically, a practical BCI system, whether active or passive, works as follows: 1)
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signals are acquired from the user via EEG, 2) the raw signals are pre-processed to

remove unwanted artifacts, 3) features of the signals that are useful in discriminating

the different mental states the BCI is meant to detect are calculated over many short

segments/epochs of EEG to create samples, 4) this feature data is fed to a machine

learning algorithm trained on previously collected neural data to classify/predict the

current mental state, and 5) appropriate commands are sent to modify the connected

external device as appropriate. This process is depicted in Figure 2.1.

Figure 2.1: BCI system overview.

The description of a practical BCI given above describes real-time, or “online”,

classification. In online classification, the training data has been previously collected

and used to pre-train the classifier, and then the user’s mental state is predicted in

real-time as they use the device. The performance of the classifier can be assessed

based on the accuracy of those real-time predictions versus the user’s true state.

However, when investigating BCI systems for new applications (e.g. when considering

previously unexplored mental states, user populations, or environmental conditions) or

when testing/comparing new classification algorithms even in established applications,

it is often more useful or convenient to perform the classification “offline”. In offline

analysis, a relatively large set of neural data is collected from a group of participants
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that includes the different mental states of interest and any relevant experimental

conditions, and the data is then stored to be analyzed later; there is no “real-time”

prediction of the user’s mental state. This allows the researcher to explore and compare

different techniques for classifying the mental states of interest, or examine the effects

of different experimental conditions, much more efficiently than would be possible with

online analysis. Offline analysis is often used in proof-of-concept studies to determine

the best approaches to use in subsequent online studies.

2.2 Data Acquisition

Several devices can be used to obtain the neurophysiological signals that enable BCIs

to function, and can broadly be categorized into invasive techniques, and non-invasive

techniques. An invasive technique traditionally is applied via a break in the skin, or

through an opening in the body. For BCI applications an invasive technique “must

cross the scalp-skull level” [7], and could involve placing electrodes directly on the

brain’s surface or in the tissue to be able to collect data directly from the brain, for

example, electrocorticography (ECoG) or deep brain stimulation (DBS) [7–11]. The

opposite of these are non-invasive techniques, which, as the name suggests, do not

enter the body. Non-invasive techniques are typically applied on the surface of the

skin, and for BCIs choices include EEG and near-infrared spectroscopy (NIRS) [7, 12,

13] among others.

Another consideration about the recording technology is its spatial and temporal

resolution. With non-invasive techniques, there is often a trade-off between the two;

EEG will provide high temporal resolution, but poor spatial resolution, whereas

NIRS provides high spatial resolution, but poor temporal resolution [7, 14]. Other

non-invasive techniques like functional magnetic resonance imaging (fMRI) [15, 16]
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and magnetoencephalography (MEG) [17, 18] can provide both a high temporal and

spatial resolution, however, the bulk and cost of these techniques prohibit them from

being widely applicable [14]. Invasive techniques like ECoG can obtain a better

signal quality [19], however, the inherent risks prohibit them from common usage

on humans [7]. BCI systems can receive supplementary physiological signals from

non-brain sources such as electromyography (EMG), electrocardiography (ECG), or

electrooculography (EOG) to improve performance in some cases, these systems are

known as hybrid BCIs [7, 20].

2.2.1 Electroencephalography (EEG)

The most popular recording technology for BCIs is EEG [3, 7, 12]. For most practical

EEG applications, multi-channel systems are used to record signals over the surface

of the entire head. Common amounts range from 16-256 channels, and an example

can be seen in Figure 2.2 (a). These are placed in standardized locations [21, 22]

(see Section 2.2.3), typically pre-placed via an EEG cap which allows for greater

convenience and improved readings due to superior fit. Looking at the system from

the perspective of a single electrode however, one can see that there are four main

components: signals obtained from the electrode are sent to an EEG amplifier, where

the signal is conditioned so that it can be digitally sampled via an analogue-to-digital

(A/D) converter and then finally sent to a computer for storage and further processing

[21].

2.2.2 Electrode Options

Three broad categories exist for EEG electrodes: passive-wet, active wet or dry

electrodes. Passive electrodes, simply put, are just electrical contacts. In order to
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Figure 2.2: A 64-channel EEG-cap

obtain clear readings from passive electrodes a low electrode-tissue interface impedance

is required, typically up to a value of 5kΩ [21, 23]. This is obtained by applying

an electrolytic gel/paste to the interfacing region to facilitate increased contact and

conduction, hence, passive-wet.

Active-wet electrodes contain impedance conversion and active noise isolation

circuitry. These additions allow active electrodes to measure signals with a low

signal-to-noise ratio (SNR) while also having a much higher input interface impedance

than passive electrodes, up to 50kΩ [23, 24]. Like passive-wet electrodes, active-wet

electrodes also require conductive gel. Active-dry electrodes, on the other hand, require

no conductive medium to help facilitate connection but instead use force to push the

electrode against the scalp. This system allows for faster setup times but introduces

more noise into recordings compared to the wet electrodes [24, 25]. Active electrodes

can also provide feedback to the user via integrated LEDs that convey the interface

impedance - this allows for a faster setup as the user does not have to switch their

focus from the electrodes to a computer screen constantly.
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2.2.3 Standardized EEG Placement Systems

To ensure consistency and reproducibility, the International 10-20 system was developed

to standardize electrode placement for EEG. The 10 and 20 refer to the distances

placed between electrodes being 10% and 20% of the total distance across the skull [12,

22, 26, 27]. Extensions to the 10-20 system, the 10-10 and 10-5 systems, are used for

higher resolution EEG systems that contain more electrodes [26, 27]. Alpha-numerical

designations are given to each electrode, with letters representing specific coronal

planes, whereas numbers designate sagittal planes [12, 22]. The 10-10 system is

depicted in Figure 2.3.

Figure 2.3: 10-10 electrode placement guide for higher-channel EEG systems.

11



2.3 Data Processing

2.3.1 Signal Pre-Processing

Due to EEG signals often being noisy and containing artifacts, the low signal-to-noise

ratio (SNR) can lead to important information being obscured [28]. As such, rather

than utilizing the raw EEG data, the recorded neurophysiological signals undergo a

pre-processing procedure to prepare the data for further processing. Common sources

of artifacts can broadly be grouped as physiological or non-physiological [28–30], some

examples of which are explained below:

1. Ocular Artifacts: Eye movement and blinks can generate artifacts in EEG

signals, particularly in the frontal electrode regions. They can introduce high-

amplitude and high-frequency voltage changes that are often much larger than the

EEG signal itself. Ocular artifacts can also be recorded via an electrooculogram

which can be used to denoise the EEG signal [28, 31].

2. Muscle Artifacts: Muscle activity from talking, clenching, or swallowing

among other possibilities, can contaminate EEG recordings [28, 29, 31]. Muscle

artifacts can exist across a broad range of frequencies and are present across

the entire scalp which can make them particularly difficult to eliminate unlike

ocular artifacts [28, 30, 31].

3. Power Line Interference: Electrical interference from power lines, typically

at 50 or 60 Hz, can contaminate EEG recordings [32, 33]. This interference

manifests as rhythmic voltage fluctuations in the EEG signal.

4. Electrode Impedance: as the conductive gel dries after being applied, the
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impedance between the scalp/electrode interface can change. High electrode

impedance is known to increase noise and reduce signal quality [30, 34].

Several techniques are available to help negate these artifacts. For ocular and

muscle artifacts, independant component analysis (ICA) is a ubiquitous technique

used to identify sources of EEG activity that are localized to specific areas around the

head [35], and is used to reject sources of eye and muscle activity [28–31, 36]. Power

line interference can be removed simply through the usage of low-pass or notch filters,

entirely removing the frequency that may cause issues, however, notch filters can cause

ringing in the time-domain due to their sharp cut-off frequencies thus introducing an

extra source of artifacts [32]. As such, alternatives to common filtering have been

explored to remove power line interference, with extended-Infomax ICA [33] and

spectrum interpolation [32] appearing as alternatives. As for conductive medium

deterioration, while not an algorithmic solution, regular electrode impedance checks

and proper electrode preparation techniques can help minimize impedance-related

artifacts.

2.3.2 Feature Calculation

While raw EEG data can be directly used to classify mental states, generally the EEG

data is subdivided into short time segments, less than 10 seconds, called “epochs.”

Summarizing and more informative values, known as features, are then calculated

from the epochs to represent the EEG signals in a compact form. When features are

grouped together for classification, the combined unit for a given epoch is known as

an n-dimensional feature vector, where n is the total number of features.

Features can be calculated across the entire frequency range or can be subdivided

further into frequency bands. Five commonly used frequency bands and some of their
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potential use cases are described below:

• Delta (δ), 1-4 Hz: are associated with deep sleep, slow-wave sleep, quality of

sleep [37, 38], and basic adult processes [39].

• Theta (θ), 4-8 Hz: are often seen during light sleep, and are also associated

with memory and the processing of new information [40, 41]. They have also

been shown to be related to movement through one’s environment [42]

• Alpha (α), 8-12 Hz: are prominent when an individual is awake but relaxed

with closed eyes [21]. Alpha activity is often used as an indicator of cognitive

workload [43, 44], and is also related to long-term memory recollection [40, 41,

43].

• Beta (β), 12-30 Hz: are associated with motor and cognitive processes [41],

and are prominent in wakefulness [21]. They have also been noted when stopping

memory recall [45].

• Gamma (γ), 30-50 Hz: are the highest frequency categorization, and are

involved in higher-level cognitive processes. Gamma activity is believed to

represent the cognitive processing of sensory information [41, 46], and serves a

function in working memory [41, 47].

Commonly used features include, but are not limited to, band power, time point,

and connectivity features [48]. The features used in this thesis are discussed briefly in

the following sections.

2.3.2.1 Band power

Band power features represent the average power of the EEG signal within a specified

frequency range, such as the commonly used five frequency bands discussed above,
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and are widely used to determine when activity is occurring [48, 49]. They are used for

a variety of classification scenarios, from motor imagery tasks [50], to mental workload

tasks [51].

2.3.2.2 Differential Entropy

Classifying the emotion of the user is an area of interest in pBCI research, and to this

end, differential entropy (DE) was found to be an effective feature [52, 53]. DE is

defined as the logarithm of the energy spectrum of the signal as per Equation (2.1),

for a time series X that obeys the Gaussian distribution N(µ, σ2). It is suggested that

DE should be calculated for each of the five frequency bands [52].

h(X) = 1
2 log(2πeσ2) (2.1)

2.3.2.3 Statistical Features

Statistical features capture various statistical properties of the EEG signals, such

as mean, variance and standard deviation, root mean square (RMS), skewness, or

kurtosis [49, 54]. These features provide information about signal amplitude distribu-

tion, symmetry, or shape characteristics. Statistical features are often used as basic

descriptors in EEG classification tasks and can be combined with others.

2.3.3 Feature Selection

Once features have been calculated, the feature selection process typically follows in

which only a subset of the total features calculated are ultimately used. Reducing

the number of features used, also known as reducing the dimensionality of the data,

helps prevent overfitting by reducing noise and irrelevant patterns that might bias the
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classifier [55]. This in turn can result in improved performance as high-dimensioned

data can suffer from what is known as “the curse of dimensionality;” as the number

of features increases, the amount of data required for the model to generalize also

increases exponentially [50]. Reducing the dimension of the data has the additional

benefit of being more computationally efficient, as larger dimension datasets require

more resources and time to train.

The minimal-redundancy-maximal-relevance (mRMR) algorithm is a feature se-

lection method that aims to identify the most informative and relevant subset of

features from a larger set of available features [56]. MRMR is widely used in machine

learning tasks and has been shown to be effective in pBCI classification [57] to improve

classification accuracy and reduce the dimensionality of feature sets.

2.4 Classification

Classifiers serve as the means of turning recorded brain activity into actionable

commands for BCIs. For EEG-based BCIs, common classifiers include linear classifiers,

neural networks, and nearest-neighbour classifiers. Of these, linear classifiers are the

most popular [48] and include options such as linear discriminant analysis (LDA), or

support vector machine (SVM). As the name suggests, linear classifiers find a linear

plane to divide the classes. Neural networks and nearest neighbour classifiers, such

as k-nearest neighbour (KNN), allow BCIs to approximate non-linear functions to

separate classes if needed. The following sections elaborate on how and under what

conditions the mentioned classifiers perform best.
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2.4.1 Linear Discriminant Analysis (LDA)

To be able to determine which class a previously unseen feature vector belongs to,

LDA creates a decision boundary to separate the classes by using linear hyperplanes

[50]. A hyperplane is a subspace that is one dimension less than the space it exists

in, for example, in a 3-d space the hyperplane would be a 2-d plane. For binary

classification, like in this work, newly presented feature vectors are classified by the

side of the hyperplane they are on. For an example of this, see Figure 2.4. The LDA

algorithm assumes a gaussian distribution for the data, and that all classes share the

same covariance matrix [50, 58]. Despite EEG data being nonlinear [59], LDA often

performs well and has low computational requirements, which is why it remains a

popular choice for EEG-based BCI applications [48, 50, 60].

2.4.2 Support Vector Machine (SVM)

Similar to LDA, SVMs also use hyperplanes to identify classes. However, the hyper-

plane chosen is the one that maximizes the distance from the nearest training points

of the classes, therefore creating an optimal decision boundary between the classes as

seen in Figure 2.4. SVMs can also make use of kernel functions, that allow them to

better handle non-linear data [58], as well as higher-dimensioned data [50, 58]. SVMs

have been shown to be more effective for BCI systems than LDA [50], but also come

with some additional disadvantages, such as being more difficult to find the optimal

decision boundary when the dataset is noisy [58].
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Figure 2.4: Linear hyperplanes that separate class 1 (solid dots) from class 2 (hollow dots).
Boundary H1 successfully divides the two classes and could be the decision boundary of

LDA. Boundary H2 divides the two classes optimally as it lies on the plane that maximally
separates the classes, such a boundary could be found using an SVM classifier. Boundary

H3 fails to separate the classes.

2.4.3 K-Nearest Neighbour (KNN)

The KNNs algorithm at its core works by assuming similar things exist within close

proximity to each other. KNN algorithms will classify unknown samples by finding the

dominant class among its k nearest neighbours of the training data set [50], as seen

in Figure 2.5 [61]. There are multiple ways to calculate what is considered “nearest,”

but a common method is to calculate the euclidean, or straight line, distance between

the point and each neighbour. Weighting neighbours that are closer to the sample in

question can also be used to aid in determining which surrounding class is the most

dominant. KNN can handle noisy data with the right selection of k [58], however, it
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is known that KNN classifiers are very sensitive to the curse of dimensionality [50], or

in other words, the size of the feature vector compared to the training data set. For

this reason, they are not very popular for BCI applications that use high-dimension

feature vectors [50].

Figure 2.5: A depiction of the regions (colours) that would determine which class an unseen
point belongs to based on the training data. [61]

2.5 Cross Validation (CV)

One important consideration in offline studies is how the data is divided into training

and test sets to estimate the classifier performance. This can be performed in a single

train/test split of the samples or by cross-validation (CV). The most common CV

technique is k-fold CV, in which the full dataset is randomly partitioned into k subsets

of samples, and one of those subsets is retained for testing the classifier, while the

remaining k−1 subsets comprise the training set. This process is repeated k times

until all subsets (and thus, all individual samples) have been used for testing the

classifier exactly once. The overall classifier performance is then estimated as the

average of the resulting k classification accuracies from each step of the CV. Because
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there can be significant variation in the accuracy obtained with different train/test

splits, this method yields a more generalizable estimate of classifier performance than

taking just a single split.

While k-fold cross-validation is a very commonly used technique for evaluating

machine learning algorithms offline, it can present issues with some types of data

when the samples within classes are collected in close proximity in time, without

randomization with the other class(es). For time-series data, similar to EEG, the

process of randomly dividing all samples into k partitions results in the training and

test sets containing samples from the same class that are highly correlated due to

their proximity in time. This violates the assumption of independence that is critical

to the validity of k-fold cross-validation [4]. The result is that the classifier could

pick up differences between the classes that are actually just related to this temporal

correlation of some samples, rather than to any true class-related difference.

This is typically not an issue in active BCI research, where most often (1) the trials

collected are relatively short (less than 10 s) and, thus, only one EEG sample/epoch

is calculated from each trial, and (2) the trial order of the mental states of interest

(usually different mental tasks, such as motor imagery of different body parts) is

randomized. However, for passive BCI studies, where the mental state (e.g., mental

workload, fatigue) data often must be collected over longer trials (e.g., 30 s up to several

minutes), this is a common issue. In such studies, in order to produce a sufficient

number of samples in a reasonable period of time, multiple EEG samples/epochs are

typically calculated from a single trial. For example, for a trial 1 minute in duration

that represents a single mental state (e.g., high mental workload), it would be common

to extract 60 individual samples calculated over consecutive 1-second, non-overlapping

epochs. However, due to their proximity in time, these samples will likely be more

highly correlated with one another than they would with samples from other trials,
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regardless of their class membership. As such, in a k-fold cross-validation analysis,

when some of these 60 samples end up in the training set while others end up in the

test set, this could result in the classifier being tuned to pick up these time-related

similarities among samples instead of (or in addition to) any actually related to

workload level. The consequence would be that the true mental state separability

could be significantly overestimated.

An alternative approach that mitigates this issue in experiments with this trial

structure and associated autocorrelation of samples is to perform block-wise (or trial-

wise) cross-validation. In each step of block-wise CV, the trials are first randomly

divided into a number of subsets b. The samples derived from the trials in one subset

are held back for testing, while the samples from the remaining trials are used to

train the classifier. This is repeated b times until all trials have appeared in the test

set exactly once. The overall classifier performance is estimated as the average of

the b resulting accuracies from each step. This partitioning strategy ensures that all

samples from a single trial always remain together in either the training or test set,

and, thus, temporal correlations will not influence the results as described above for

k-fold CV. k-fold and block-wise cross-validation, as performed on datasets where

multiple samples are extracted from a single class’s trials, are illustrated in Figures

2.6a and b, respectively.

21



(a) (b)

Figure 2.6: (a) An example of k-fold CV; all folds result in epochs from a single trial being
mixed into both the training and testing sets, like the example combination at the bottom.
(b) An example of block-wise CV; by not breaking up the trial structure, epochs from a

given trial remain exclusively in either the training or testing set.

While this issue has been acknowledged in some BCI papers [62–64] and it has been

suggested that block-wise cross-validation should be the preferred approach [62, 65],

the effects of using k-fold CV in such scenarios has not been explicitly investigated, and

it is not clear how significantly (and under what circumstances) it can overestimate

true mental state separability. Furthermore, it is not clear if block-wise CV will

actually accurately estimate class separability. Unfortunately, despite the potential

issues, it is still very common to see k-fold CV used in pBCI studies with longer

experimental trial structures that allow for block-level temporal correlations to be

problematic, so it is important that the effects are understood in order to help inform

the best methodology for researchers to use in future studies and to help with the

interpretation of the results of past studies that have used this approach.
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2.6 Relevant Studies in Literature

The goal of this work is to improve our understanding of how common CV techniques

perform under a variety of non-ideal circumstances, so as to better inform researchers

on how to interpret results that they may see or to guide them towards better study

design. To the best of our knowledge, no other studies have attempted to quantify

the effects of intra-class auto-correlation on results obtained via cross-validation, as

this work does. However, one other study has investigated alternate CV methods for

use with EEG-based mental state classification.

In their study, Kingphai and Moshfeghi [63] acknowledge that the time series nature

of EEG data does not suit traditional randomized CV and may violate the assumption

of independence noted from [4], and proposed two alternative techniques to handle the

evolving nature of mental workload and fatigue. The alternatives proposed were an

expanding and rolling window strategy that does not take data from the future into

account so as to not bias the forecasting of future mental states. These techniques

were shown to provide high accuracies (upwards of 85-95% for the given tasks). While

promising, this study did not compare these alternatives to results from k-fold CV,

thus leaving uncertainty about if these alternatives provide superior classification

accuracy, or rather a more “true” accuracy that is lower but more emblematic of the

realistic capabilities of the model.
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Chapter 3

Study 1: Preliminary Analysis on

Existing Databases

3.1 Materials and Methods

3.1.1 SEED and DEAP Datasets

The SEED dataset [52, 53] is a popular EEG dataset for emotion recognition, consisting

of fifteen subjects, each participating in three separate sessions. During each session,

EEG was recorded while participants observed fifteen movie clips, each chosen to

elicit one of three emotional categories: positive, neutral, and negative (five clips

per category). The duration of each clip ranged from 3 to 4 min. Data collection

was performed via an ESI NeuroScan System using a 62-channel EEG cap with the

international 10–20 placement system at a sampling rate of 1000 Hz [53].

For the present study, only the first session from each subject was analyzed, and

all trials were truncated to the length of the shortest trial, which was 185 s. Only

four of the five trials for each emotion were used to allow for balanced trial-level
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randomization as an even number of trials per class is required (for reasons described

later in section 3.1.3). Differential entropy (DE) features were calculated, since they

have been shown to be effective for classifying emotional states [52]. Samples for

classification were obtained by extracting 185 1-second non-overlapping epochs from

each trial, and, for each one, calculating DE in the delta (1–4 Hz), theta (4–8 Hz),

alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz) frequency bands, for each of

the 62 electrodes. This resulted in a 310-dimensional feature vector per sample. The

minimum-redundancy maximal-relevance (mRMR) algorithm [56] was used during

classification to reduce the feature set dimensionality to 30. The features of the

training and testing sets were then z-score normalized separately, for each fold.

The DEAP dataset [66] is another popular EEG dataset for emotion classification,

containing EEG data from 32 participants as they watched 40 1-minute music video

clips. Unlike the movie clip stimuli used in the SEED experiment, the music clips

shown during the DEAP trials were not specifically selected to elicit a particular

emotion; instead, each participant rated the level of arousal, valence, like/dislike,

dominance, and familiarity for each trial. Data was collected using a 32-channel EEG

system with the international 10–20 placement at a sampling rate of 512 Hz.

For the present study, to facilitate binary classification, the trials were sorted

in order of ascending valence rating and quantized into three levels: the top 10

trials were labelled as positive valence (+), the bottom 10 trials were labelled as

negative valence (−), and the middle ten trials (i.e., trials 15–25) were labelled as

neutral valence (0). Samples were calculated in the same way that they were for

the SEED data: 60 1-second non-overlapping epochs were extracted from each trial,

and differential entropy was calculated for the 5 standard frequency bands for each

electrode. With 32 electrodes, this resulted in a 160-dimension feature vector for each

sample. For consistency with SEED, the mRMR algorithm [56] was again used within
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each classification fold to reduce the feature set dimensionality to 30. Similar to SEED,

the training and testing features were then separately z-score normalized for each fold.

For both the SEED and DEAP datasets, in the analysis described below, all binary

combinations of the three emotional states were considered (i.e., positive vs. negative,

positive vs. neutral, and negative vs. neutral).

3.1.2 k-Fold and Block-Wise Cross-Validation with True Class

Labels

The first step in this preliminary analysis of SEED and DEAP datasets was to compare

the classification accuracies estimated via both k-fold and block-wise cross-validation.

For both datasets and each of the binary classification problems, 5 runs of 4-fold cross-

validation for SEED and 5 runs of 5-fold cross-validation for DEAP were performed

on each individual subject’s data. The average of the runs-by-folds accuracies was

calculated as an estimate of classifier performance.

Next, for both datasets and each of the binary classification problems, block-wise

cross-validation was performed as follows: 5 runs of 4-block cross-validation for SEED

and 5 runs of 5-block cross-validation for DEAP. For SEED, this resulted in a block

consisting of three complete trials per class used for training and one complete trial

per class for testing, and for DEAP, a block containing eight complete trials per class

for training and two complete trials per class for testing. Block creation continues

until all trials have been used for testing once. As with k-fold cross-validation, the

average of the runs-by-blocks accuracies was calculated as an estimate of classifier

performance. Note that the number of training and test samples for each step was the

same between the k-fold and block-wise CV approaches.

For all scenarios, three different classifiers were considered: linear discriminant
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analysis (LDA), linear support vector machines (SVM), and k-nearest neighbour

(KNN).

3.1.3 k-Fold and Block-Wise Cross-Validation with Random-

ized Class Labels

While useful, the results of the analysis above only tell us whether the accuracies

estimated by the two different cross-validation methods are different from one another,

but not whether the k-fold cross-validation is actually over-estimating the accuracy

due to the trial structure of the experiment. To further investigate the effect of the

temporal correlation among samples extracted from the same trial on the estimation

of classification accuracy, we repeated the k-fold and block-wise cross-validation, but

this time, we randomly shuffled the class labels first. The class labels were shuffled in

two ways:

• Trial-level randomization. In this case, half of the trials from Class 1 were

randomly selected, and all samples extracted from those trials were re-labelled

as Class 2, after which the same was carried out for Class 2. This completely

masked any true differences between the classes, while leaving the temporal

correlations related to the trial structure intact. As half of the trials are swapped,

this necessitates that the number of total trials per class be even to maintain

balanced randomization.

• Sample-level randomization. In this case, half of the samples from Class 1

were randomly selected and re-labelled as Class 2, and then the same was carried

out for Class 2. This again completely masked any true differences between

the classes, but it also eliminated the temporal correlations related to the trial

structure.
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By combining the two CV techniques and two label randomization techniques, three

additional tests of interest were included in the analysis: k-fold CV with sample-level

randomization, k-fold CV with trial-level randomization, and block-wise CV with

trial-level randomization. Through investigation of these hybrid k-fold and block-wise

CV techniques with class label randomization tests, the potential effect of the trial

structure on the classifier performance can be seen in the absence of any true class

differences.

Again in all scenarios, three different classifiers were considered: linear discriminant

analysis (LDA), linear support vector machines (SVM), and k-nearest neighbour

(KNN).

3.2 Results

Table 3.1 shows all the classification accuracies (i.e., k-fold CV with true labels,

block-wise CV with true labels, k-fold CV with trial-randomized labels, block-wise

CV with trial-randomized labels, and block-wise CV with sample-randomized labels),

averaged across 32 participants for DEAP and 15 for SEED, for each of the three

classifiers (LDA, SVM, KNN) and binary classifications.

Figure 3.1 depicts a comparison of the classification accuracies for the k-fold and

block-wise CVs. For both the SEED and DEAP datasets, the k-fold CV was found

via paired t-tests to be significantly greater than the block-wise CV for all cases.

Figure 3.2 compares the random-labelled CV accuracies for the trial-randomized

with k-fold, trial-randomized with block, and sample-randomized with k-fold CVs.

Significance for these tests was determined via one-sample t-tests between the CV

accuracies and chance (50%).

For both the DEAP and SEED datasets, trial-randomization with k-fold CV was
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Table 3.1: Classification accuracies and statistical significance for the primary tests on
DEAP and SEED. Columns denoted by 1 were compared together via a paired t-test, and

columns denoted by 2 were compared to chance (%50) via one-sample t-tests. Bolded
p-values indicate statistical significance. Under randomized labels, t.r. k-f, t.r. bl., and s.r.
k-f, are short for trial-randomized k-fold, trial-randomized block, and sample-randomized

k-fold CV, respectively.

True Labels Random Labels
Dataset Classifier Classification k-fold1 block1 1 t.r. k-f2 t.r. bl.2 s.r. k-f2

DEAP

SVM
Pos-Neu 70.00 58.91 p<.001 63.28 p<.001 47.91 p=.027 50.05 p=.830
Neg-Neu 65.90 53.75 p<.001 63.44 p<.001 51.43 p=.400 49.82 p=.533
Pos-Neg 72.29 63.13 p<.001 62.70 p<.001 50.82 p=.512 49.84 p=.478

LDA
Pos-Neu 69.44 59.63 p<.001 62.49 p<.001 50.16 p=.922 50.19 p=.487
Neg-Neu 65.37 53.42 p<.001 64.57 p<.001 50.39 p=.793 50.14 p=.553
Pos-Neg 71.83 62.81 p<.001 63.86 p<.001 50.06 p=.964 50.16 p=.378

KNN
Pos-Neu 70.83 58.89 p<.001 65.07 p<.001 50.26 p=.823 50.17 p=.391
Neg-Neu 67.45 54.01 p<.001 64.30 p<.001 50.03 p=.972 49.84 p=.371
Pos-Neg 72.02 62.31 p<.001 63.80 p<.001 49.05 p=.370 50.21 p=.212

SEED

SVM
Pos-Neu 95.70 81.57 p<.001 83.86 p<.001 48.03 p=.484 49.63 p=.317
Neg-Neu 88.89 57.95 p<.001 86.75 p<.001 42.88 p=.028 49.63 p=.480
Pos-Neg 96.54 85.22 p<.001 83.83 p<.001 45.97 p=.143 49.71 p=.351

LDA
Pos-Neu 95.10 83.80 p<.001 84.21 p<.001 41.35 p=.018 49.88 p=.699
Neg-Neu 88.42 60.48 p<.001 84.79 p<.001 46.25 p=.278 50.06 p=.840
Pos-Neg 95.85 87.86 p=.001 83.44 p<.001 45.44 p=.185 49.75 p=.288

KNN
Pos-Neu 96.44 78.51 p<.001 91.52 p<.001 46.70 p=.560 50.21 p=.358
Neg-Neu 90.94 51.73 p<.001 92.14 p<.001 48.17 p=.541 50.11 p=.723
Pos-Neg 97.04 80.24 p<.001 91.53 p<.001 44.08 p=.217 49.83 p=.386

found to be significantly greater than chance for all scenarios. With any real class

differences masked due to the class label randomization, it stands to reason that the

classifier had been biased due to “high class-specific temporal correlations” among

samples in the training and test sets resulting from the random partitioning of samples.

When using trial-randomization with blocked CV, most scenarios were not found

to be significantly different from chance except for three outliers. The positive–neutral

classification with the SVM classifier for the DEAP data, and the negative–neutral

classification with the SVM classifier and positive–neutral classification with the LDA

classifier for the SEED data were all found to be significantly less than chance.
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(a) DEAP (b) SEED

Figure 3.1: Comparison of true-labeled classification accuracies when using k-fold and
blocked CV. +/0, −/0, and +/− are the positive/neutral, negative/neutral, and

positive/negative classifications, respectively.

(a) DEAP (b) SEED

Figure 3.2: Comparison of randomized-labeled classification accuracies of k-fold and blocked
CV. +/0, −/0, and +/− are the positive/neutral, negative/neutral, and positive/negative

classifications, respectively.

3.3 Discussion

This initial study provides the ground-work evidence of a latent problem within pBCI

experiments that use longer duration trials in which many samples are extracted. As

previously discussed, k-fold CV is a k-step process in which the samples are randomly

divided into k partitions (maintaining class balance within each partition), and, at each

step, one of the partitions is retained as the test set while the remaining k−1 partitions

are used to train the classifier. The overall classifier performance is estimated as the

average of the resulting k accuracies from each step. For both the SEED and DEAP
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data, relatively long trials of the different mental states of interest were collected, and

we have extracted many different samples (60 for DEAP, 185 for SEED) from each

trial. Thus, the random partitioning of the data in k-fold CV will result in the test set

containing samples that are highly temporally correlated with samples in the training

set. The concern is that this will bias the classifier and yield inflated classification

accuracies that do not necessarily reflect the true separability of the mental states.

This concern was shown to be real, as can be seen when comparing the accuracies

of the k-fold and blocked CV methods in Figure 3.1. Across all classification categories

for the SVM classifier, with true class labels, the blocked CV accuracy was found to be

significantly lower than its k-fold counterpart. Providing additional, and perhaps even

more compelling, evidence of the temporal correlation effects were the randomized

label tests, as seen in Figure 3.2. Whenever k-fold CV was used after trial-level class

label randomization, results were found to be significantly greater than chance. With

the SEED database, the k-fold CV results for the true and trial-randomized labels were

all within approximately 5% of each other, and for the negative/neutral classification,

the classification accuracy for the randomized labels was actually 1.2% higher than for

the true labels (rand: 92.1%; true: 90.9%). With all real class differences masked due

to class label randomization, these randomized test results indicate that k-fold CV

results can be significantly inflated entirely due to the trial structure and associated

underlying autocorrelation of the samples within trials. This casts doubt on the

reliability of classification results obtained via k-fold CV under similar experimental

conditions.
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Chapter 4

Study 2: Original Experiment

4.1 Objectives

While Study 1 was able to show the presence of time-correlation effects on the cross-

validation processes, the pre-existing datasets used were insufficient to be able to

provide answers as to how much of an effect trial length, among other factors, has on

these cross-validation techniques. As such, an original study was conducted to better

answer these questions. By using multiple trial lengths within the same experiment, this

study aimed to determine how trial length and class separability influence the outcomes

of cross-validation techniques, how susceptible common classifiers and features sets

are to time correlations in cross-validation, and whether current cross-validation

techniques are over- or under-estimating a potential “ground-truth” accuracy.
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4.2 Materials and Methods

4.2.1 Participants

In all, 12 healthy participants were recruited for this study (aged 24.75 ± 1.64 years;

11 male; 11 right-handed). Inclusion criteria required participants to be between 18

and 65 years old, have normal or corrected-to-normal vision and hearing, have no

history of neurological disease, disorder, or injury, and have no cognitive impairment.

Participants were asked not to exercise, smoke, or consume caffeine, alcohol, or other

drugs within four hours of starting the experimental session. All participants provided

written informed consent before participating. This study was approved by the

Interdisciplinary Committee on Ethics in Human Research (ICEHR) at Memorial

University of Newfoundland, NL, Canada.

4.2.2 Instrumentation

EEG signals were acquired via a 64-channel actiCHamp system (Brain Products

GmbH, Gilching, Germany) at a sampling rate of 500 Hz. Electrodes were placed

according to the international 10–10 system. The reference and ground electrodes

were set as FCz and FPz, respectively. Electrode impedances were initially lowered

to ≤ 10 kΩ and were then checked periodically during the session and reduced as

necessary.

4.2.3 Experimental Protocol

Following set-up of the EEG system, participants were asked to complete two one-

minute baseline trials—one with eyes open and one with eyes closed. During the rest
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of the session, participants completed three different types of trials: reading, listening,

and rest. In order to investigate the effect of increasing the number of samples

extracted from the same trial on the performance of the different cross-validation

methods, 3 different trial lengths Tn (for n = 5, 15, and 60 s) were considered. The

session was divided into three main sections, one for each of the trial lengths. There

are six possible permutations of the three lengths, so each participant was pre-assigned

a unique order in which they would complete the three sections (each permutation

was completed by two participants).

For each section (i.e., trial length), a total of six minutes of data were recorded for

each of the three tasks. These six minutes were divided into trials of the appropriate

length for that section (i.e., for the T5, T15, and T60 sections, there were 72, 24, and 6

trials per task, respectively). Each section was divided into three blocks (two minutes

of recording per task, per block). Participants were allowed to rest as needed between

blocks. The order of presentation of the task trials was random in each section.

Trials began with an image and text cue, indicating the upcoming trial type and

prompting the participant to press space when ready to start. Upon pressing space, a

one-second blank transition screen appeared, followed by the appropriate task stimulus

(described below) for Tn + 1 s. A one-second buffer (blank screen) was presented at

the end, after which the next trial’s prompt appeared. This protocol is summarized in

Figure 4.1.

For the reading tasks, a passage (in English) was presented on the screen during

the stimulus period. Participants were instructed to read at a comfortable pace in

their head (not out loud) until the trial ended. The text passages, which were gathered

from online free-to-use paragraph generators, were carefully selected to take slightly

longer than the average adult reading speed for the given trial length; however, if

a participant did finish before the end of the trial, they were asked to start reading
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again from the beginning of the passage. Auditory stimuli for the listening trials

were generated via a paid online text-to-speech bot (from the same text passages

used for the reading trials) so that all trials would have a consistent pacing, volume,

and pronunciation. During these trials, the passages were played through computer

speakers placed on the desk in front of the participant. For rest trials, a cross was

presented on a blank screen for the participants to focus on (this cross was presented

for the listening trials as well).

Figure 4.1: Overview of the experimental protocol for recording multiple trial lengths.
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4.2.4 Data Analysis

4.2.4.1 Pre-Processing

All pre-processing was performed on the aggregate of each participant’s data. Pre-

processing was completed in Matlab using the package EEGLab [36]. The following

steps were used:

• Downsampling from 500 Hz to 250 Hz;

• Bandpass filtering from 0.5 Hz to 55 Hz;

• Artifact Subspace Reconstruction (ASR), using default settings, to remove

channels that were poorly correlated with adjacent channels and to remove

non-stationary high-amplitude bursts;

• Interpolating channels removed from ASR;

• Re-referencing data to the common average.

4.2.4.2 Feature Calculation

After pre-processing, the EEG data from each trial (of all trial lengths) was then

segmented into five-second non-overlapping epochs. Next, the following features were

calculated over each epoch: band power in the delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (12–30 Hz), and gamma bands (30–50 Hz), spectral entropy in the

delta band, and root-mean-square (RMS) and variance across the entire spectrum

(0.5–55 Hz), as they have been shown previously to be effective for reading tasks [51,

67]. All electrodes (excluding FPz as ground) were used for feature calculation. All

features were z-score normalized based on the training set during each fold/block of

cross-validation.
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Note that samples were extracted from 5-second non-overlapping epochs because 5

seconds was the shortest trial length recorded. The T5 trials were used to represent the

“ground truth” class separability because, for these trials, only 1 sample was extracted

per trial and because the task order was random; this means that, for the T5 trials,

the samples used for classification were completely randomized between classes across

time (and thus contain no class-specific temporal correlations). The T15- (with 3

samples extracted per trial) and T60 (with 12 samples extracted per trial)-length trials

are meant to represent datasets with relatively low and relatively high (respectively)

temporal correlations among samples within a class.

4.2.4.3 Classification: k-Fold and Block-Wise Cross-Validation

For each classification scenario considered, the following analyses were performed:

k-fold cross-validation: Samples were randomly divided into six (i.e., k =

6) equal subsets (balanced between classes). One of the subsets was retained for

testing, while the remaining five subsets were used to train the classifier. Classification

accuracy was then calculated. This was repeated six times, until all subsets (and

thus, all individual samples) were used for testing the classifier exactly once. This

whole process, starting with the random division of the samples into six subsets, was

repeated five times. The overall estimate of classification accuracy was calculated as

the average of the 30 resulting classification accuracies.

This six-fold CV process was performed with (1) true class labels, (2) trial-

randomized class labels (see Section 3.1.3)), and (3) sample-randomized class labels

(see Section 3.1.3);

Block-wise cross-validation: Trials were randomly divided into six equal subsets

(balanced between classes). All samples from the trials in one of the subsets were

retained for testing, while the samples from the trials in the remaining five subsets
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were used for training the classifier. Classification accuracy was then calculated. This

was repeated until all subsets (and thus, all individual samples) were used for testing

the classifier exactly once. This whole process, starting with the random division of the

trials into six subsets, was repeated five times. The overall estimate of classification

accuracy was calculated as the average of the 30 resulting classification accuracies.

Unlike in the six-fold CV described above, in this approach, all samples extracted

from a given trial always remain together in either the training or the test set.

This process was performed with (1) true class labels and (2) trial-randomized

class labels (see Section 3.1.3).

4.2.4.4 Classification: Factors Considered

To move towards the objectives of Study 2, we investigated how the following factors

influence the effect that temporal correlations have on the classification results from

the k-fold and block-wise CV approaches:

• Class separability: Two different task pairs were considered: (1) read vs.

rest, which represented the high-separability case, and (2) listen vs. rest, which

represented the low separability case. These task pairs were chosen based on

the results of pilot data; in preliminary analysis, the read vs. rest and listen

vs. rest pairs were found to be separable, with approximately 96% and 68%

accuracy, respectively, as determined using bandpower features and an SVM

classifier. Note that read vs. listen was initially considered as well, but, because

it was determined to have approximately the same separability as read vs. rest

and, thus, provided no additional insights related to our research questions, it is

not reported here;

• Amount of class-specific temporal correlation: Classification of the data
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from each trial length was considered separately, so that the results from each

could then be compared. Because six minutes of data were collected (per task)

for each trial length, once divided into five-second epochs, the number of samples

used for classification was identical for the three different trial lengths. The

only difference was the amount of temporal correlation that existed within the

data for the 3 conditions; the 15 s length (with 3 samples per trial) represented

relatively low temporal correlation, while the 60 s length (with 12 samples per

trial) represented relatively high temporal correlation;

• Feature types: All calculated feature categories (i.e., band power, spectral

entropy, RMS, variance) were treated separately and were not combined for clas-

sification. For all classification problems considered, feature set dimensionality

was reduced to 30 via the mRMR algorithm [56] (this was performed using just

the training set at the appropriate time within the cross-validation analyses);

• Classifier: The same as in the first study, three different classifiers were

investigated: LDA, SVM, and KNN. Hyperparameters were optimized for each

classification using Matlab’s default automatic hyperparameter optimizer.

To summarize, we investigated the combination of 2 binary classification problems

(the low and high separability cases), 4 feature sets (bandpower, spectral entropy,

RMS, variance), and 3 classifiers (SVM, LDA, KNN), for a total of 24 classification

scenarios. When considering the individual cross-validation tests, 5 were performed

for the 15 and 60 s trial lengths (2 for true labels, 3 for randomized labels), and 2

were performed for the 5-second trial length (one for each the true and randomized

labels, because k-fold and block-wise CV are identical in this case, as are sample-wise

and trial-wise label randomization). This resulted in 288 individual cross-validation

tests per participant.
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4.2.5 Statistical Analysis

To better understand if and how factors such as amount of temporal correlation and

true class separability influence the effect of the temporal correlation on the k-fold and

block-wise cross-validation approaches, the following statistical tests were performed

for every combination of class separability (low and high), amount of class-specific

temporal correlation (3 samples per trial and 12 samples per trial), classifier, and

feature set:

Classification with true labels: Accuracies for the k-fold and block-wise CV ap-

proaches were compared to the ground truth accuracy (as determined by the 5-second

trials) via individual paired t-tests;

Randomized labels: Accuracies for the k-fold CV with trial-randomization and

block-wise CV with trial-randomization were each compared to chance (50% for binary

classification) via one-sample t-tests. Note that for the randomized label scenarios,

the “ground truth” class separability is chance.

4.3 Results

Table 4.1 shows the most pertinent classification results (i.e., ground truth, k-fold

CV with true labels, block-wise CV with true labels, k-fold CV with trial-randomized

labels, and block-wise CV with trial-randomized labels) for all combinations of class

separability, trial length, classifier, and feature set. For the “true-label” scenarios, over-

estimations and under-estimations from the k-fold and block-wise CVs compared to the

ground-truth are represented in blue and red, respectively. For the trial-randomized

k-fold CV and trial-randomized block-wise CV tests, blue and red are used to indicate

over-estimation and under-estimation compared to chance (i.e., 50%). Statistically
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significant results, as determined by the statistical tests described in Section 4.2.5, are

denoted by bold font. Note that, for the k-fold CV with sample-randomized labels

analysis, as expected, all scenarios were not significantly different from chance (average

accuracies ranged from 48.4–52.0%, so they are not shown in the table).

To aid in visualization of the trends in the different cross-validation analysis for the

factors of class separability and amount of temporal correlation, Figure 4.2 represents

all classification results for the SVM classifier and bandpower feature set (general

trends across these factors were similar for all classifier/feature set combinations).

Table 4.1: Classification accuracies for all classifiers and feature sets. Blue/red intensities
denote the overestimation/underestimation of the CV techniques compared to the ground
truth (G.T.) for k-fold and block columns, and compared to chance (50%) for trial-random

k-fold (t.r. k-f) and trial-random block (t.r. bl.) columns. Heat map intensities are
calculated separately for the ranges in 1, 2, and 3. Bolded values were found to be

significantly different as per Section 4.2.5.

High Seperability Low Seperability
Classifier Trial Duration Feature G.T. k-fold1 block1 t.r. k-f2 t.r. bl.3 G.T. k-fold1 block1 t.r. k-f2 t.r. bl.3

Band power 94.58 93.43 92.41 55.67 49.73 67.41 67.34 62.07 55.06 49.32
Spectral Ent. 95.02 93.68 92.29 57.14 49.21 65.71 67.36 64.62 55.08 51.72
RMS 91.53 90.09 89.12 55.38 49.54 62.14 66.64 63.11 53.41 46.96
Variance 91.83 90.29 89.11 52.92 50.07 62.18 65.59 63.84 52.85 48.84

15s

15s avg 93.24 91.87 90.73 55.28 49.64 64.36 66.73 63.41 54.10 49.21
Band power 94.58 94.58 91.57 71.82 50.61 67.41 77.37 56.30 73.33 46.22
Spectral Ent. 95.02 94.43 91.17 70.84 45.53 65.71 77.80 55.16 71.84 58.40
RMS 91.53 90.47 86.53 62.52 42.67 62.14 72.05 59.51 64.47 48.56
Variance 91.83 90.58 86.62 62.40 41.74 62.18 71.16 58.50 60.37 53.85

SVM

60s

60s avg 93.24 92.52 88.97 66.90 45.14 64.36 74.59 57.37 67.50 51.76
Band power 95.05 93.23 93.14 55.96 51.78 66.72 67.55 64.54 55.87 47.82
Spectral Ent. 95.24 93.32 92.97 54.98 50.34 66.18 68.26 65.52 54.46 52.62
RMS 92.55 90.31 89.55 53.54 47.60 63.18 66.46 63.76 53.15 46.82
Variance 91.67 89.44 88.32 53.44 48.37 64.10 67.15 64.36 53.41 51.68

15s

15s avg 93.63 91.58 91.00 54.48 49.52 65.05 67.36 64.55 54.22 49.73
Band power 95.05 94.05 91.00 73.58 50.39 66.72 78.08 56.97 73.45 48.43
Spectral Ent. 95.24 93.92 90.60 72.50 40.96 66.18 77.89 57.78 72.25 55.96
RMS 92.55 91.60 87.63 63.61 46.83 63.18 72.63 61.47 64.99 48.62
Variance 91.67 90.59 85.74 64.26 43.47 64.10 71.96 57.91 65.07 51.24

LDA

60s

60s avg 93.63 92.54 88.74 68.49 45.41 65.05 75.14 58.53 68.94 51.06
Band power 92.85 92.23 91.76 54.06 50.39 62.78 65.06 61.50 54.86 50.00
Spectral Ent. 93.09 92.75 91.93 57.57 46.70 62.67 66.57 62.67 56.08 49.58
RMS 88.51 86.22 84.86 56.04 49.71 59.19 63.00 59.86 51.81 47.99
Variance 87.77 85.82 84.72 53.74 49.19 60.87 62.55 59.84 53.47 51.94

15s

15s avg 90.55 89.26 88.32 55.35 49.00 61.38 64.29 60.97 54.05 49.88
Band power 92.85 93.65 88.53 78.67 41.70 62.78 78.00 51.50 76.66 51.27
Spectral Ent. 93.09 93.84 88.32 75.10 48.26 62.67 74.71 53.83 73.56 46.25
RMS 88.51 87.29 81.34 64.70 45.24 59.19 67.55 55.71 65.25 48.82
Variance 87.77 87.57 80.72 64.19 47.28 60.87 67.08 54.81 62.94 49.13

KNN

60s

60s avg 90.55 90.59 84.73 70.67 45.62 61.38 71.83 53.96 69.60 48.87
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Figure 4.2: SVM-band power accuracies for true and random labelled cross validations.

4.4 Discussion

This study explored the limitations of conventional cross-validation techniques on

single-subject EEG signal classification in scenarios where there was time-related

correlation among samples within a class. Such scenarios are very common in offline

passive BCI studies where, typically, relatively long trials of different mental states

(e.g., low and high workload) are recorded, and multiple short epochs are extracted

from these trials and serve as samples for classification. In this scenario, the use

of k-fold cross-validation is problematic because the randomized division of samples

into the k subsets means that, in any given “fold”, some samples from a single trial

end up in the training set while others end up in the test set. Additionally, because

samples from a single trial will be highly correlated due to their proximity in time,

this can potentially influence the classification accuracy and cause over-estimation of

the true class separability. An alternative to k-fold CV is “block-wise” or “trial-wise”

cross-validation, where trials are randomly divided into subsets, and short epochs

are extracted from these trials to serve as samples for classification. In this case, all

samples from a single trial always stay together in either the training or test set, and

so the problem inherent in k-fold cross-validation should be eliminated. To the best
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of our knowledge, however, the actual effects of using k-fold CV in such scenarios

had not been investigated, and it was not clear how significantly (and under what

circumstances) it can overestimate true mental state separability. Furthermore, it

was not clear if block-wise CV actually accurately estimates class separability. The

motivation behind this work was to investigate the extent to which standard cross-

validation techniques may misrepresent “true” class separability of EEG data, whether

that may be over- or under- estimation, in scenarios where time-related correlations

exist among samples within a class. The tests used in this study could be broadly

applied to any EEG dataset using single-subject classification and a similar trial

structure, to gauge the potential impact on the results.

For the case of high true class separability, k-fold CV produced results very close

to the “ground truth” accuracies (as determined by the 5-second trials) which were

between approximately 88% and 95%, depending on the specific classifier and feature

set used. This was true for both the “low class-specific temporal correlations” and “high

class-specific temporal correlations” conditions. There were only a few scenarios where

the k-fold CV accuracy was significantly different from the ground-truth according

to a paired t-test (and, in these cases, the k-fold CV result did not overestimate,

but rather was actually less than the ground truth by about 2%). In the high true

class separability case, block-wise CV did not perform quite as well as k-fold CV;

while many results were fairly close, there were more scenarios where the results were

significantly less than the “ground truth” accuracies. This was more pronounced for

the case of “high class-specific temporal correlations,” where the blockwise CV result

was, on average, 5% less than the ground-truth.

For the case of low true class separability, the amount of class-specific temporal

correlation strongly affected the outcomes of the two CV methods. When there are

low amounts of class-specific temporal correlation, both k-fold and block-wise CV

43



provided results similar to the “ground-truth.” There were only three scenarios which

were found to be significantly different from the ground-truth according to paired

t-tests, two of which were over-estimations by k-fold CV (by about 4%) and one of

which was under-estimation by block-wise CV (by about 5%). On average, k-fold

and block-wise CV over- and under- estimated the ground-truth by 2.5% and 0.6%,

respectively.

Lastly, for the case of low true class separability and high amounts of class-specific

temporal correlation, the majority of both k-fold and block-wise CV methods were

significantly different from the ground-truth. For k-fold CV, 11 of 12 scenarios were

found to significantly overestimate the ground-truth and by a substantially greater

degree (significant overestimations ranged from 7.86% to 12.09%) than in the previous

case of low amounts of class-specific temporal correlation. For block-wise CV, 8

of 12 scenarios were found to significantly underestimate the ground truth, also by

a substantially greater degree than the previous case (significant underestimations

ranged from −6.05% to −11.11%).

Broadly speaking, the case of low class separability with low amounts of class

specific temporal correlation (where we only used three samples per trial) performed

adequately in comparison to the ground-truth; however, when high amounts of class-

specific temporal correlation are present (for this study, 12 samples per trial), one

can begin to see how k-fold CV becomes unreliable as the temporal correlation begins

inflating the accuracies. To further highlight how the amount of class-specific temporal

correlation can inflate accuracies, the randomized label tests from Section 3.1.3 were

also used—of specific note are the trial-randomized k-fold (t.r. k-f) tests. This

combination effectively negates any true class differences while retaining the amount

of class-specific temporal correlation, and, in Table 4.1, all 24 scenarios of t.r. k-f

were found to be significantly greater than chance. For the case of low true class
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separability, the t.r. k-f CV accuracies were often within a few percentage points of

the true labeled k-fold CV accuracies, thus casting significant doubt on the veracity

of those accuracy figures.

As mentioned in Section 4.3, epoch-level label randomization with k-fold CV tests

were also performed to verify that, when no class differences and no time correlation

were present, the outcomes of classifications were consistently chance. Trial-level label

randomization with block-wise CV tests were performed to verify if block-wise CV was

able to negate the time correlations present when using k-fold CV. This did generally

result in accuracies much closer to chance, but the accuracies did not always average

to exactly chance, rather showing some over- and under-shooting. It could be that

block-wise CV introduces additional shortcomings into the cross-validation process

that are not fully understood.

For the true labelled tests, the magnitude of over- and underestimation varied by

feature. The bandpower and spectral entropy features consistently overestimated (with

k-fold CV) and underestimated (with block-wise CV) the ground-truth accuracy by

the greatest margins. On the other hand, RMS features consistently underestimated

the ground-truth by a smaller margin when using block-wise CV, as compared to

the other features, such that it was never found to be significantly different from the

ground-truth in any of low class separability scenarios, regardless of the amount of

class-specific temporal correlation. The choice of classifier also appeared to have a

slight impact on the extent to which k-fold CV overestimated and block-wise CV

underestimated the ground-truth accuracy, as can be seen in the feature average rows

of Table 4.1. In the low class separability/long trial length case, where the differences

from ground-truth were the greatest across the board, the overestimatation via k-fold

CV and the underestimatation via block-wise CV were both larger on average for the

KNN classifier than for either SVM or LDA. Given our previous explanation of the
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issue arising due to time-related correlations among samples from a single trial, it is

not surprising that a classifier that predicts the class of a test sample based on the

class membership of the nearest training samples would not be reliable.

With the evidence collected throughout this original study, it is the recommendation

of this paper that, when reporting the results of analysis based on single-subject

classification for pBCI applications that use a longer trial duration, authors should

provide both the k-fold and block-wise cross-validation accuracies, as well as the

accuracies for trial-level label randomization with k-fold cross-validation. Together,

these metrics provide stronger evidence regarding the efficacy of new neural indicators

presented to the field, as they indicate the influence of the possible compounding factor

of time correlation between samples due to trial duration and experimental protocol.

Nevertheless, it is worth nothing that, in passive BCIs, the block-wise CV scenario

more accurately reflects the training/testing conditions for an online BCI, so even if it

does underestimate the “true” class separability, it might represent what is practically

achievable. Authors should also carefully consider trial duration during study design

and attempt to reduce the duration of individual trials as much as possible, as this

has been seen to have a positive effect on reducing time correlation effects.
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Chapter 5

Conclusions

5.1 Primary Conclusions

We have evaluated two popular pBCI datasets (SEED and DEAP) using multiple

cross-validation approaches and tests, and have also conducted an original study in

which EEG signals were recorded while participants read and listened to selected

text and audio prompts for three different trial durations (5 s, 15 s, and 60 s). After

training three common classifiers (SVM, LDA, KNN) on four proposed features

(bandpower, spectral entropy, RMS, variance), for each trial duration, the various

cross-validation procedures were evaluated. This work evaluated how the degree of

within-class temporal correlation and true class separability affect CV. In cases of

high class separability, k-fold cross-validation produced a reasonably close estimate of

the proposed ground-truth, while block-wise cross-validation produced a significant

underestimation of the ground-truth. In cases of low class separability and longer

trial durations, it was evident that the time correlations can begin to overtake the

inherent class separability and cause an overestimation in classification accuracy

when using standard k-fold cross-validation. This could lead to faulty conclusions
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about class separability to be drawn from the data. The results also showed that

block-wise cross-validation may not be a perfect k-fold substitute, as, when used

in the previous conditions, block-wise CV was found to significantly underestimate

classification accuracies. This work also evaluated how cross-validation outcomes when

using various classifiers and feature sets, were influenced when changing the amount of

within-class temporal correlation and found that classifiers and features are not equally

affected. This work also evaluated how several classifiers and feature sets were affected

by the degree of within-class temporal correlation present, and found that classifiers

and features are not equally affected. For instance, the KNN classifier produced

more significantly divergent results than the LDA or SVM classifiers. By providing

quantitative evidence, this work will make researchers more aware of the potential

magnitude of the problem of using k-fold CV on data with temporal correlations, and

encourage them to either avoid the problem all together through more appropriate

experimental design, or if the problem is not feasible to avoid, report both the k-fold

and block-wise results to allow readers to better interpret the results.

5.2 Study Limitations and Future Work

Though the experiment was very carefully designed and the analytical methods

carefully chosen, there are some limitations of the study that are worth noting. Due to

practical limitations on the duration of the experimental session, we were only able to

use three different trial durations, representing three different “amounts” of temporal

correlation, and also could only investigate three different levels of class separability

(e.g., not separable/random, low separability, high separability). It would have been

ideal to use additional trial durations and additional degrees of true separability to

give a more precise picture of the conditions under which k-fold cross-validation results
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in a statistically significant divergence from the ground truth accuracy. It may be

worth further investigating these factors in the future.

While we have focused on the common passive BCI experimental paradigm where

multiple EEG samples from a given mental state are derived from a single long trial,

this issue would also exist for paradigms where a single sample is taken per trial, but

where the trials are not completely randomized across states/classes. Additionally,

the results of this study are likely relevant to other commonly used physiological

time-series signals, such as ECG, EMG, and fMRI, to name a few examples. Further

investigation with these signal types may help to broaden the understanding of this

issue.
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