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Abstract

This thesis introduces an idealized silicon solar cell with Lambertian front and

back surfaces. We assume that the reflection coefficient of the back surface is 1.

When a photon enters the solar cell, it gets refracted by a randomly corrugated

front surface and subsequently undergoes random reflections by back and front

surfaces until it either gets absorbed or escapes the material with the probability

that depends on the material’s refractive index. After each reflection event, the

angle of photon propagation relative to the normal is randomized with Lambertian

distribution.

This thesis is focused on the photons produced in the radiative recombination

events inside the cell. An exact analytical expression for the probability of photon

reabsorption and recycling in an idealized solar cell with two Lambertian surfaces

is derived. The existing approximations are found to agree with the exact formula

to within 5 %. The most accurate approximation turned out to be the simplest

one that sets the reabsorption probability to the weak-absorption limit of the cell

absorptance. The maximal photoconversion efficiency of a silicon solar cell is eval-

uated to be 29.5 % at the base thickness of 98 µm.
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Chapter 1

Introduction

1.1 Photovoltaic system

Photovoltaic (PV) systems represent an eminent renewable energy technology rooted

in the principles of semiconductor physics and the photovoltaic effect. They di-

rectly convert incident solar radiation into electrical energy using semiconduc-

tor materials, predominantly silicon. When illuminated by sunlight, these solar

cells perform photovoltaic conversion, wherein photons with energies exceeding

the semiconductor bandgap promote electrons from the valence to the conduction

band, generating electron-hole pairs.

The spatial separation of these electron-hole pairs by the built-in electric field

of the p-n junction or heterojunction of the solar cell results in a photo-induced
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electric current. The photocurrent collection and efficient extraction constitute the

foundation of the photovoltaic energy conversion process.

The fundamental unit of the PV system is the solar panel, which consists of mul-

tiple interconnected solar cells [1]. Each solar cell comprises a thin semiconductor

layer carefully designed with specific doping profiles to establish the desired junc-

tion characteristics.

The conversion of the generated direct current (DC) power into alternating cur-

rent (AC) electricity, the standard form of electrical energy used in power distribu-

tion and consumption, necessitates the incorporation of an inverter. The inverter

accomplishes this task through pulse-width modulation and other techniques to

produce AC output conforming to the requisite voltage and frequency specifica-

tions. An assemblage of balance of system (BOS) components is integrated to en-

sure the reliable and efficient operation of the PV system. These components en-

compass wiring, junction boxes, protective devices (e.g., fuses, circuit breakers),

and monitoring systems. Wiring facilitates the interconnection of solar panels,

the inverter, and associated equipment, allowing for the smooth flow of electric

current. Junction boxes serve as connection nodes while protecting the solar cell

arrays within the panels. Protective devices are essential for safeguarding the sys-

tem against overcurrent and fault conditions [2] . Monitoring systems, increasingly

equipped with data-driven capabilities, enable real-time performance monitoring,
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fault detection, and optimization of system parameters. In specific applications,

the integration of energy storage systems, often relying on battery technology, en-

hances the autonomy of the PV system by enabling the storage of surplus elec-

tricity during periods of high solar irradiance. This stored energy can be utilized

during low sunlight periods or at night, contributing to the stability and continuity

of the electricity supply [3] .

The operational configuration of the PV system may entail either grid-tied or

off-grid operation. In grid-tied systems, the surplus electricity produced by the PV

system can be fed back into the utility grid, with compensation arrangements such

as net metering or feed-in tariffs facilitating a symbiotic relationship between the

PV system owner and the grid operator [1] .

Ultimately, the efficacy of the PV system is contingent on various factors, in-

cluding solar irradiance levels, ambient temperature, system design, and the ef-

ficiency of solar cells. As a key contributor to sustainable and environmentally

conscious energy generation, the PV system continues to experience technological

advancements, efficiency improvements, and cost reduction, bolstering its adop-

tion and integration within the global energy landscape.

Wafer-based crystalline silicon solar cells are a prominent and extensively used

photovoltaic device in the solar energy sector. These solar cells are characterized by

using thin slices of crystalline silicon wafers as an active semiconductor material
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[4] .

The fabrication process of wafer-based silicon solar cells involves several essen-

tial stages. First, large cylindrical silicon ingots are grown using the Czochralski or

Float Zone method. These silicon ingots are then sliced into thin wafers, typically

around 150-200 micrometers thick, using wire sawing techniques [5], [4].

After slicing, the surfaces of the silicon wafers undergo treatment to remove

impurities and optimize their light absorption capability. Specific impurities are

introduced through doping, which creates a p-n junction within the silicon, facili-

tating the photovoltaic effect. This doping process establishes regions with excess

electrons (n-type) and holes (p-type).

Multiple solar cells are interconnected to form a solar module or panel, which

can be further integrated into solar arrays for practical applications. Wafer-based

silicon solar cells can be further categorized into two main types based on the

type of silicon employed. Monocrystalline silicon solar cells are constructed us-

ing single-crystal silicon wafers, offering higher efficiency due to their uniform

crystal structure and low recombination rate. On the other hand, polycrystalline

silicon solar cells are fabricated using multiple silicon crystals, resulting in slightly

lower efficiency compared to monocrystalline cells but offering cost-effectiveness,

making them popular for residential and commercial solar installations [4].

To optimize the extraction of the photogenerated charge carriers, metal contacts
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are applied to the silicon wafer’s front and back surfaces. The front surface, di-

rectly exposed to sunlight, may undergo texturing to reduce reflection losses and

enhance light absorption. Anti-reflective coatings are also commonly employed

to enhance solar cells’ light-harvesting capabilities further. In operation, incident

photons with energies greater than the silicon bandgap impart sufficient energy

to electrons, promoting them across the p-n junction and creating electron-hole

pairs. The built-in electric field within the p-n junction then facilitates the sepa-

ration of these charge carriers, directing electrons toward the n-type region and

holes toward the p-type region. This spatial separation gives rise to the photocur-

rent, constituting the fundamental basis for generating electrical power within the

solar cell [4] .

As the demand for sustainable and renewable energy sources intensifies, re-

search and development efforts are ongoing to further enhance the efficiency of

wafer-based silicon solar cells. Innovations in material quality, advanced cell archi-

tectures, and manufacturing techniques hold the potential to optimize their perfor-

mance further and contribute to their continued prominence in the global pursuit

of clean and renewable energy.

The limit efficiency of single-junction solar cells is a prominent scientific sub-

ject, garnering substantial interest due to its relevance in assessing such devices’

maximum achievable energy conversion efficiency. This concept encapsulates the
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theoretical upper bound on the efficiency of a solar cell utilizing a single semicon-

ductor material [6]. Scientific investigations into the limiting efficiency involve a

comprehensive exploration of the fundamental processes governing energy con-

version within the device. Key factors under scrutiny include the absorption of

incident photons, the conversion of absorbed light into charge carriers, and the

subsequent extraction of these carriers to generate electrical current.

Detailed analyses encompass the examination of thermodynamic limits, ra-

diative and non-radiative recombination mechanisms, and the impact of mate-

rial properties, such as the bandgap and mobility [7]. Furthermore, sophisticated

theoretical models and numerical simulations contribute to understanding car-

rier dynamics, light trapping strategies, and optimizing device architecture. By

delving into the scientific intricacies surrounding the limiting efficiency of single-

junction solar cells, researchers aim to unravel fundamental principles, identify

performance bottlenecks, and drive advancements toward achieving higher en-

ergy conversion efficiencies in solar cell technologies.

Maximizing the efficiency of solar cells constitutes a paramount research en-

deavor within the scientific community, as it holds profound implications for the

advancement and widespread adoption of photovoltaic technologies. This pursuit

necessitates a multidimensional approach encompassing materials engineering,

device physics, and system-level optimization. Scientific investigations into max-
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imizing solar cell efficiency involve meticulously exploring various fundamental

processes governing light absorption, charge carrier generation, and extraction.

Researchers scrutinize the bandgap engineering of semiconductor materials, ex-

ploring novel materials, multi-junction configurations, and thin-film technologies

to enhance the utilization of a broad spectrum of incident photons [8] . Advanced

strategies for light management, such as nanostructuring, photon trapping, and

anti-reflection coatings, are pursued to optimize light absorption within the active

layer.

Additionally, meticulous attention is paid to reducing energy losses due to re-

combination, employing surface passivation techniques, defect mitigation strate-

gies, and innovative contact designs. Moreover, optimizing charge carrier trans-

port and extraction through efficient charge collection architectures, carrier mo-

bility enhancement, and electrode engineering is paramount [9]. Researchers also

harness advanced modeling, simulation, and optimization techniques to explore

optimal device architectures, system-level integration, and energy conversion opti-

mization under diverse operating conditions. Through rigorous scientific inquiry,

researchers endeavor to push the boundaries of solar cell efficiency to realize high-

performance, economically viable solar energy conversion technologies to sustain-

ably meet the escalating global energy demands.
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1.2 Recombination Processes

The recombination process in semiconductors is a fundamental phenomenon that

significantly impacts the behavior and performance of electronic devices. It in-

volves the annihilation of charge carriers, namely electrons, and holes, leading to

the release of energy. The understanding and control of recombination mecha-

nisms are of paramount importance in semiconductor physics and device engi-

neering.

Recombination is an elementary process occurring in semiconductors, wherein

a conduction electron reoccupies an empty state in the valence band, creating what

is known as a hole [10]. Conservation of energy and momentum is crucial dur-

ing electron-hole recombination. Notably, most conduction electrons occupy states

near the bottom of the conduction bands, while most holes are localized near the

top of the valence band. Consequently, the energy released during recombination

is approximately equivalent to the bandgap energy, denoted as Eg. The momen-

tum released in a recombination event depends on the semiconductor’s intrinsic

characteristics. In direct-bandgap semiconductors, the conduction band’s bottom

aligns with the valence band’s top in momentum space, releasing no momentum

during recombination.

Recombination can occur through various channels, including radiative recom-

bination, where photons are emitted, and non-radiative recombination, which in-
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volves energy dissipation without photon emission [10]. Intrinsic recombination

processes, such as radiative and Auger recombination, are inherent to the semicon-

ductor material. Extrinsic recombination processes, such as surface recombination

and impurity- assisted Shockley-Read-Hall mechanism are influenced by external

factors such as interfaces and impurities [11].

Additionally, defects play a crucial role in modifying the recombination kinet-

ics. A comprehensive understanding of recombination processes is essential for

optimizing carrier lifetime and minimizing losses, thereby enhancing the perfor-

mance of semiconductor devices.

Radiative recombination is a process, in which a photon is emitted [12]. Due

to energy conservation, the energy disparity between the electron and hole states

equals the photon energy. Radiative recombination is more relevant in direct-

bandgap semiconductors, wherein the electron and hole states overlap in the mo-

mentum space [10, 13]. This overlap facilitates a favorable coupling of the elec-

tron and hole wavefunctions, thereby augmenting the probability of radiative re-

combination. The radiative recombination process’s ramifications are instrumental

in optoelectronic devices, including light-emitting diodes and lasers, wherein the

generation of photons constitutes a core objective [14]. Hence, comprehending

and governing radiative recombination mechanisms’ intricacies are indispensable

for optimizing these devices. To this end, diverse strategies encompassing mate-
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rial engineering, defect management, and interface design are employed [15]. In

the indirect-bandgap semiconductors, including silicon, radiative recombination

proceeds about 104 − 105 time more slowly than in the direct-bandgap semicon-

ductors.

Auger recombination proceeds via concurrent interaction of three charge car-

riers, either two electrons and a hole or two holes and an electron [16]. Differing

from radiative recombination, Auger recombination does not involve the emission

of photons. Instead, it entails the transfer of excess energy from one carrier to

another, generating a high-energy carrier. Auger recombination can significantly

impede the overall efficiency of semiconductor devices, as the excess energy is

dissipated as heat rather than light emission. Multiple factors, including carrier

concentrations, doping levels, and the availability of energy states within the band

structure, influence the rate of Auger recombination [17]. A comprehensive un-

derstanding and meticulous control of Auger recombination are of utmost impor-

tance for enhancing the performance of semiconductor devices and minimizing

non-radiative losses. Consequently, a range of strategies encompassing bandgap

engineering, defect management, and material optimization are pursued to effec-

tively mitigate Auger recombination and enhance the overall efficiency of semi-

conductor devices.

Trap-assisted Shockley-Read-Hall (SRH) recombination is a prominent non-
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radiative recombination process observed in semiconductors, wherein traps sig-

nificantly influence the carrier recombination dynamics. This phenomenon occurs

when a charge carrier is captured by a trap – an impurity atom whose energy level

happens to be approximately in the middle of the bandgap [16]. The captured car-

rier becomes immobile. Subsequently, a recombination event occurs when another

charge carrier of opposite polarity encounters the trap. The rate of trap-assisted

SRH recombination depends on several factors, including trap densities, trap en-

ergy levels, and carrier concentrations.

Finally, surface recombination is a consequential phenomenon in semiconduc-

tors that occurs at the interfaces between the semiconductor material and its sur-

rounding environment. Surface recombination is primarily caused by surface states,

defects, and impurities that act as recombination centers, facilitating the annihila-

tion of charge carriers. As charge carriers approach the surface, they encounter

these surface recombination centers, resulting in their capture and subsequent re-

combination. This process negatively impacts the efficiency and performance of

semiconductor devices, particularly in applications where high carrier lifetimes are

desired. Therefore, understanding and controlling surface recombination mech-

anisms are crucial for optimizing device performance [18]. Techniques such as

surface passivation, surface cleaning, and interface engineering are employed to

reduce surface recombination rates and enhance carrier lifetime, ultimately im-
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proving the overall efficiency of semiconductor devices.

1.3 Objectives

Technological progress in semiconductor processing has brought about a transfor-

mative capability: the production of crystalline silicon distinguished by signifi-

cantly extended charge carrier lifetimes [19–21] and notably reduced surface re-

combination velocity [19, 22–26]. This has shown in a new era where silicon solar

cells can achieve efficiencies surpassing 20%, with some even achieving a remark-

able 26% and beyond [27, 28].

Within this context of advanced solar cells, the fundamental limit on efficiency

lies in intrinsic radiative and Auger recombination mechanisms. Radiative recom-

bination takes precedence, especially when excess carrier concentrations dip below

roughly 1015 cm−3, a range commonly observed near the point of maximal power

output in an ideal solar cell. It is important to note that radiative recombination

differs from Auger recombination in reversibility. Specifically, photons generated

during radiative recombination events can be reabsorbed by the semiconductor

material, creating new electron-hole pairs, a phenomenon known as ”photon recy-

cling.”

Various approximations have been proposed to quantify the probability of pho-

12



ton reabsorption within these solar cells. As documented in prior research [29, 30],

the most straightforward approach involves equating this probability with absorp-

tance, representing the probability of a photon entering the material from an ex-

ternal source being absorbed. Nevertheless, it is imperative to acknowledge that

this approximation overlooks the potential variation in absorption probability con-

tingent upon the photon’s position within the cell at the moment of generation.

Such simplifications remain valid under specific conditions, notably when αL ≪ 1,

where α signifies the absorption coefficient and L denotes the thickness of the

cell. Recent developments have yielded a more refined approximate formula [31],

which accounts for the spatial distribution of photon generation within the solar

cell.

This thesis gives a detailed account of the result reported in the joint publica-

tion [32] by the author and her research supervisor. While the main result of [32],

namely, the photon reabsorption probability, was derived by Dr. Evstigneev, the

author of this thesis has confirmed its correctness by performing a numerical ex-

periment using the ray tracing technique, applied it to calculate the limit efficiency

of a silicon solar cell, and participated in the write-up of the paper.

The thesis embarks on a comprehensive exploration of photon recycling prob-

ability within an idealized solar cell distinguished by Lambertian front and back

surfaces. It involves a comparative analysis of the prevailing approximations [29–

13



31] and the exact results. Ultimately, this examination reveals that the simplest

approximation outlined in [29] provides the most precise depiction of photon re-

absorption. Subsequently, the exact formula is applied to ascertain the limiting

efficiency of silicon solar cells, and the findings indicate a remarkable efficiency of

29.5% when the cell has a thickness of 97.6 µm.
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Chapter 2

Absorptance and reabsorption

probability for Lambertian front and

back surfaces

2.1 Introduction

Surface reflection can be broadly categorized into four types: diffuse, glossy spec-

ular, perfect specular, and retro-reflective. Most real surfaces display a combina-

tion of these four types [33]. Diffuse surfaces scatter light uniformly in all direc-

tions. While having an utterly diffuse surface is impossible, some surfaces, like

dull chalkboards and matte paint, come quite close to it. Conversely, glossy spec-
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ular surfaces, including high-gloss paint and plastic, reflect light in specific pre-

ferred directions, which causes surrounding objects to have blurred reflections.

Perfect specular surfaces reflect light in only one direction, with mirrors and glass

as prime examples. Retro-reflective surfaces, such as velvet and the moon’s sur-

face, scatter light primarily in the same direction it came from.

The traditional way of representing how surfaces reflect light assumes that tiny,

uniform facets are scattered in all directions [34]. This uniform distribution of

facets serves to randomize the direction of reflected light, resulting in a consistent

isotropic behavior. However, some surfaces have a specific directional pattern,

such as those created by sanding or machining. These surfaces exhibit anisotropic

lighting properties. Even though the facets or grooves are not visible to the naked

eye, their effect on the lighting is noticeable. Some everyday objects that display

anisotropic lighting are CDs and vinyl records.

In the next section of this chapter, ideally diffusive Lambertian reflection is ex-

plained together with its use to trap light by a solar cell. Then, absorptance in a

solar cell with Lambertian front and back surfaces is discussed. Finally, an analyti-

cal expression for the probability of reabsorption of photons produced in radiative

recombination events is derived in the last section, which is taken with minimal

modifications from the recently published paper [32].
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2.2 Lambertian Light Trapping

2.2.1 Lambertian Reflection of Light

Lambertian reflection of light, a well-known phenomenon studied within optics,

has garnered substantial scientific attention owing to its broad applicability in

various fields, including lighting, imaging, and solar energy conversion. This

phenomenon describes the diffuse light reflected by a surface that exhibits ideal

Lambertian behavior. Lambertian reflection is characterized by the property of

isotropy, where incident light is scattered uniformly in all directions, regardless of

the angle of incidence. Scientific investigations into Lambertian reflection encom-

pass a comprehensive exploration of the underlying physical mechanisms govern-

ing light scattering by microstructural and macrostructural features of a surface[35].

Studying the Lambertian reflection extends to understanding the impact of sur-

face roughness, material properties, and environmental factors on scattering be-

havior, thereby enabling the design and optimization of optical systems, light ex-

traction strategies, and solar concentrators. Theoretical models based on radiative

transfer theory and scattering theories, such as Mie theory or Rayleigh scattering,

are employed to analyze and predict the intensity and angular distribution of the

reflected light.

Consider a system where a flux of photons, represented by j, hits a rough sur-
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face. Due to the roughness of the surface, the photons scatter randomly in all

directions with an equal probability. If we take a small circular area on the surface,

denoted as ∆A0, it will scatter ∆I0 = j∆A0 photons per unit of time into a solid

angle of 2π, which corresponds to a hemisphere. The angle between the surface

normal that goes through the center of ∆A0 and the scattering direction is repre-

sented by θ. If the surface element is viewed from an angle θ, its apparent area

equals ∆A(θ) = ∆A0 cos(θ). At large distances, this surface element appears as a

point-like intensity source proportional to ∆A(θ):

∆I(θ) = j∆A0 cos(θ) = ∆I0 cos(θ) (2.1)

independent of the angle of incidence. This is Lambert’s cosine law. The probabil-

ity for a photon to be reflected at an angle between θ and θ + dθ is proportional to

∆I(θ), and the solid angle dΩ = 2π sin(θ)dθ :

f (θ) = 2sin(θ)cos(θ) = sin(2θ) (2.2)

where factor 2 follows from the normalization condition
∫ π/2

0 f (θ)dθ = 1 .

2.3 Absorptance

Absorptance quantifies the efficacy with which a material absorbs incident elec-

tromagnetic radiation. In classical electromagnetism, absorptance measures the

18



fraction of power absorbed by a material relative to the incident power [36]. It is

determined by the complex refractive index of the material, which incorporates

both the real part representing the refractive properties and the imaginary part

associated with absorption. The interaction of electromagnetic waves with a mate-

rial gives rise to various absorption mechanisms, including electronic transitions,

vibrational modes, and lattice excitations.

2.3.1 Absorptance Near the Absorption Edge

The absorption edge denotes the wavelength range at which a semiconductor ma-

terial experiences a substantial increase in light absorption. This region corre-

sponds to energy levels near the bandgap, where optical transitions occur, leading

to the excitation of electrons from the valence band to the conduction band.

The absorption coefficient quantifies the photon absorption probability per unit

path length. In the vicinity of the absorption edge, the absorption coefficient ex-

hibits a steep rise due to the increased availability of electronic states for absorp-

tion, resulting in enhanced light harvesting capabilities [37]. The density of states

within the conduction and valence bands and the presence of defects and impu-

rities in the material also affect the absorptance behavior. Understanding and op-

timizing the absorptance characteristics near the absorption edge are crucial for

developing solar cells with improved performance and increased energy conver-
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sion efficiency.

Various material parameters govern the absorptance characteristics of solar

cells near the absorption edge. The bandgap width of the semiconductor material

plays a critical role in determining the absorptance behavior. A narrower bandgap

shifts the absorption edge to longer wavelengths, allowing for the absorption of

higher energy photons and thereby enhancing the overall absorptance in this spec-

tral region [38].

Furthermore, the thickness of the absorber layer in the solar cell structure im-

pacts the absorptance near the absorption edge. A thicker absorber layer allows for

a higher probability of photon absorption, resulting in enhanced light absorption

efficiency. By precisely controlling these material parameters, the absorptance near

the absorption edge can be optimized, leading to improved solar cell performance

and increased solar energy conversion efficiency.

Outlined below is the derivation of an asymptotic formula described in the ref-

erence [39]. The subject of study is a semiconductor slab with a thickness of L

and two rough surfaces. The front surface is treated so that all incident photons

at a normal angle enter the material, and their direction of propagation is immedi-

ately randomized upon refraction. The reflection of both surfaces is assumed to be

Lambertian, with the back surface having a reflection coefficient of 1 and the front
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surface reflecting photons incident at an angle higher than the critical angle [39]

θc = sin−1 n−1
r (2.3)

relative to the local normal to the surface. If the front surface were flat, then pho-

tons with an angle of incidence θ < θc escape the material, whereas the photons

incident at an angle θ > θc undergo total internal reflection with the angle or re-

flection equal the angle of incidence.

For a corrugated surface, photon escape and reflection are random events, for

which only the probabilities can be defined. Furthermore, if the photon gets re-

flected, its angle of reflection is characterized by the Lambertian probability distri-

bution (2.2) independent of the angle of incidence. It is postulated that the proba-

bility for a photon to escape is obtained by integrating this distribution from zero

to the critical angle [39, 40]:

pe =
∫ θc

0
sin(2θ)dθ = n−2

r (2.4)

The average distance traveled by a photon before two successive contacts with

the front surface is

⟨l⟩ = 2
∫ π/2

0
f (θ)

L

cosθ
dθ = 4L

∫ π/2

0
sinθ dθ = 4L (2.5)

Near the absorption edge, where the energy of a photon h f only slightly exceeds

to the bandgap energy Eg, the photon moves back and forth between two surfaces
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multiple times before being absorbed or escaping. The coefficient for band-to-band

absorption is labeled as αb, while the coefficient for parasitic absorption, that part

of the incident sunlight absorbed by the device does not contribute to the obtain-

able photocurrent, is labeled as αp. Additionally, the escape coefficient, which is

the probability of a photon escaping per unit path length, can be introduced:

αe =
pe

⟨l⟩ =
1

4Ln2
r

(2.6)

The absorptance is defined as the probability for a photon that entered the material

to be absorbed with the generation of an electron-hole pair:

Ab =
α

α + αe
(2.7)

In this limit with α = αb + αp and αe given by the expression above, we obtain the

Tiedje-Yablonovitch formula [39]

A =
1

1 +
1

4αLn2
r

(2.8)

2.3.2 Absorptance for Lambertian Front and Back Surfaces

The scattering of incident photons by a Lambertian surface occurs in a manner

that increases the optical path length within the absorber layer. This enhances

the absorption probability, improving light harvesting capabilities. The diffuse
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scattering also reduces the reflectance from the front surface, minimizing the loss

of incident photons.

This phenomenon is especially relevant for thin-film solar cells, where the ab-

sorption path is typically shorter. The diffuse scattering at the back surface en-

hances the absorption of photons that would otherwise escape the device, increas-

ing the overall absorptance [41]. Therefore, a comprehensive understanding of the

absorptance behavior for Lambertian front and back surfaces is crucial for design-

ing and optimizing solar cells to maximize light absorption and improve device

performance.

Here, we obtain a general equation for the absorptance of a semiconductor slab

with two irregular surfaces by referring to [42] . We define TL as the probability of

a photon passing from one surface to another without absorption. After entering

the material, the probability for a photon not be absorbed is

1 − A = T2
L pe + T2

L(1 − pe)T2
L pe + T2

L(1 − pe)T2
L(1 − pe)T2

L pe + · · · . (2.9)

The initial term denotes the probability of escaping after making a round trip, then

traveling back and escaping again. The second term indicates the probability of

escaping after two round trips, and so on. By recognizing that this is the sum of a

geometric series, we can simplify the equation to:

1 − A =
T2

L pe

1 − T2
L(1 − pe)

(2.10)
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and from Equation (2.4) absorptance is

A =
1 − T2

L

1 − T2
L(1 − n−2

r )
(2.11)

The probability of traveling from one surface to the other without absorption is

TL =
∫ π/2

0
f (θ)e−αL/cosθ dθ = 2

∫ 1

0
ce−αL/c dc (2.12)

where we used Lambertian expression from Equation (2.4) and changed the in-

tegration variable to c = cosθ. Employing a different variable for integration x =

αL/c we have

TL = 2(αL)2
∫ ∞

αL

e−x

x3 dx = −(αL)2
∫ ∞

αL
e−x

d

dx

1

x2 dx

= −(αL)2

 e−αL

(αL)2 +
∫ ∞

αL

e−x

x2 dx


(2.13)

We have performed integration by parts. Performing another integration by parts

[43], we obtain

TL = (αL)2E1(αL) + (1 − αL)e−αL (2.14)

where

E1(x) =
∫ ∞

x

e−t

x
dt (2.15)

is the exponential integral.
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The probability of absorption with a generation of an electron-hole pair is

Ab =
αb

αb + αp
A (2.16)

2.4 Photon reabsorption probability

Let us discuss the photons generated during the radiative recombination process.

Right after recombination, the resulting photon has a uniform distribution of an-

gles in all directions.

fi(θ) =
1

2
sinθ 0 < θ < π (2.17)

The angle θ is calculated relative to the perpendicular line of the rear surface. The

newly formed photon can either be reabsorbed or it may eventually escape, with a

probability of Pesc = 1 − Preabs.

Consider the photons produced at a distance x > 0 from the front surface in

the x = 0 plane. Among those photons, half travel towards the front surface and

half towards the back surface. The chance of reaching front surface without being

absorbed is considered for photons traveling toward the front surface.

For those photons which propagate toward the front surface, the probability of

reaching it without absorption is

∫ π/2

0
fi(θ)e−αx/cosθ dθ =

1

2

∫ 1

0
e−αx/c dc , (2.18)
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where we changed the integration variable to c = cosθ. Assuming that photons are

created uniformly throughout the material, we can calculate the average probabil-

ity of a photon generated through radiative recombination reach the front surface:

P1 =
1

2

∫ L

0

dx

L

∫ 1

0
e−αx/cdc =

1

2αL

∫ 1

0
c(1 − e−αx/c)dc

=
1

2αL

(1

2
−
∫ 1

0
ce−αx/c dc

) (2.19)

The integral in the brackets appears in Equation (2.13) and has the value of TL/2.

Thus

P1 =
1 − TL

4αL
(2.20)

Dissecting limiting weak and strong absorption cases is helpful to understand this

statement better. When a photon travels between two surfaces, the probability of

it passing through in the case of weak absorption is

TL ≈ e−2αL = 1 − 2αL + · · · (2.21)

And thus, P1 = 1/2 is in the leading order of αL. Indeed, without absorption, a

photon produced in a recombination event reaches either surface with the proba-

bility of 1/2.

Now let us discuss the converse scenario of strong absorption, where αL is

greater than 1. When a photon is produced at a distance x from the surface and
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moves at an angle θ, it must travel a distance of x/cos(θ) to reach the surface.

Considering the isotropic angular distribution described in Equation (2.17), we

can determine the proportion of photons that manage to escape

∫ 1/α

0

dx

L

∫ cos−1(αx)

0
fi(θ)dθ =

1

4αL
(2.22)

The same result is obtained from Equation (2.20) with TL set to 0.

Next, let us focus on the photons that are moving in the direction of the back

surface. These photons have the same probability of reaching the back surface as

the previous ones, P1. Once they reach the back surface, they bounce off it, and

their angular distribution changes from isotropic (as described in Equation (2.17))

to Lambertian (as defined in Equation (2.2)). Then, the photons have a probability

of TL reaching the front surface. Therefore, the probability that a photon reaches

the front surface after being reflected by the back surface is given by

P2 = P1TL (2.23)

The probability for a newly created photon to reach the front surface via either of

these routes is

Pf = P1 + P2 = P1(1 + TL) =
1 − T2

L

4αL
(2.24)

Once the photon reaches the front surface, there are two possible outcomes: it

can either escape with the probability of pe or be reflected with the probability of
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1 − pe. In the latter case, the photon still has a chance to escape the material with

the probability of 1 − A, where A is the absorptance of the material as defined

in Equation (2.11). Therefore, we can calculate the reabsorption probability by

subtracting the escape probability from 1

Pesc = Pf pe + Pf (1 − pe)(1 − A) (2.25)

After a straightforward algebra, we obtain the probability of photon reabsorption

using Equation (2.4) and Equation (2.11).

Preabs = 1 − Pesc = 1 −
1 − T2

L

4αL(n2
r − T2

L(n
2
r − 1))

(2.26)

This is the main result of this thesis [32].

To ensure complete accuracy, we confirmed the validity of Equation (2.26) by

running Monte Carlo simulations on a vast number of photons (108) that were

uniformly generated between 0 and L using the method outlined in reference [44].

Across all tested parameters, we determined the reabsorption probability by cal-

culating the fraction of photons that failed to exit the semiconductor slab. This

numerical result aligned with the value predicted by Equation (2.26) within the

statistical margin of error in the simulations. Any dissimilarities between the nu-

merical and theoretical results were minimal, at approximately 0.1%.
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Chapter 3

Solar cell limit efficiency

3.1 Introduction

Because silicon is the most popular material from which solar cells are made, de-

termination of their maximal possible efficiency is an important research question

which has been pursued in a number of papers [29, 30, 39, 44–47]. These calcula-

tions are based on the model, in which 100 % of the incident sunlight enters the

cell (i.e. no reflection by the front surface), only intrinsic recombination mech-

anisms are operative, and the effects of the parasitic series and shunt resistance

are neglected. Since intrinsic recombination is minimized if the concentrations of

electrons and holes are equal, the cell material must be intrinsic rather than doped

silicon. For this reason, the next section of this chapter briefly recalls the properties
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of the intrinsic semiconductors. Next, the derivation of the radiative recombina-

tion coefficient in a semiconductor based on the seminal work by Peter Würfel

[48]. In the next section, which is taken from the author’s earlier publication [32],

the analytical result for photon reabsorption probability is compared with the ap-

proximate expressions found in the literature. Finally, following the same work

[32], the new efficiency limit of a silicon solar cell is established in the concluding

section of this chapter.

3.2 Intrinsic Semiconductors

A semiconductor is a material with an innate ability to conduct electricity, even

to a limited extent, due to thermally generated charge carriers. Unlike extrinsic

semiconductors intentionally doped with impurities to enhance their conductiv-

ity, intrinsic semiconductors exhibit a natural balance between electrons and holes

in thermal equilibrium. In this state, the Fermi level resides at the center of the

energy band gap, resulting in a relatively low electrical conductivity. The intrin-

sic semiconductors’ fundamental properties are governed by energy band struc-

ture, carrier mobility, and recombination processes. Understanding the intricacies

of intrinsic semiconductors is paramount in various fields, including solid-state

physics, electronics, and semiconductor device engineering.
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Charge carriers refer to entities, such as electrons or electron deficiencies (holes),

that possess an electric charge and are responsible for the conduction of electricity

in materials. These carriers can move through a material in response to an applied

electric field, thereby contributing to the flow of electric current. In the case of met-

als, the charge carriers are electrons detached from their parent atoms and capable

of moving freely throughout the material.

In contrast, semiconductors’ charge carriers can be electrons and holes. Elec-

trons, as negatively charged carriers, contribute to the current by their motion,

while holes, representing the absence of an electron in an otherwise filled electron

state, behave as positively charged carriers and drift in the opposite direction.

The Fermi level signifies the energy level where all electronic states are occu-

pied by electrons below it, while states above it remain unoccupied at absolute zero

temperature. The Fermi level plays a critical role in determining materials’ electri-

cal and thermal properties, especially in semiconductors and metals, as it dictates

the distribution of electrons and their availability for conduction. Additionally,

the position of the Fermi level relative to the energy band structure influences phe-

nomena such as carrier concentration, electrical conductivity, and formation of en-

ergy barriers and junctions in electronic devices. Understanding and controlling

the Fermi level is essential for designing and optimizing the performance of elec-

tronic devices and materials in various scientific and technological applications.
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3.3 The effective radiative recombination coefficient

We now consider an idealized solar cell with the non-equilibrium electron and hole

concentrations, n and p, uniformly distributed within the cell volume. In a non-

degenerate semiconductor, they are related by the generalized mass action law

np = n2
i (V) eqV/kT (3.1)

in which V is the voltage across the cell, q is the elementary charge, and kT is

the thermal energy. The intrinsic concentration ni is corrected with respect to the

bandgap narrowing effect [49],

ni(V) = ni0e∆Eg(V)/(2kT) , (3.2)

where ni0 is the carrier concentration in an undoped semiconductor at zero excita-

tion level and ∆Eg(V) is the size of bandgap narrowing that depends on the volt-

age via the carrier concentrations n(V) and p(V) [49]. Together with the charge

neutrality condition,

n + Na = p + Nd , (3.3)

in which Na,d are the concentrations of the ionized acceptors and donors, Equation

(3.1) and Equation (3.2) allow to numerically determine the carrier concentrations

n(V), p(V) and the effective intrinsic concentration ni(V).

When a semiconductor device operates, it deviates from a state of equilibrium.

It experiences the flow of electric current caused by various factors, such as an
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applied electric field or the generation of electron-hole pairs due to incident solar

radiation [10].

Fortunately, in most practical scenarios, when a semiconductor device is not

in equilibrium, the changes in its macroscopic parameters, such as temperature,

chemical potential, and electric field, tend to be gradual across space. This al-

lows us to divide the semiconductor into small elements of volume dV mentally.

Each element can be considered a system that closely approximates thermody-

namic equilibrium. Each element is characterized by its quantities, including the

number of electrons and holes (dNe and dNh), energy levels E, and Fermi energy

EF [10].

Assuming that the small volume dV is centered around a generic point r⃗, we

can define the local density of electrons and holes as n(⃗r) = dNe/dV and p(⃗r) =

dNh/dV.

When a semiconductor is subjected to non-equilibrium conditions caused by

an external disturbance, such as an electric field, and that disturbance is subse-

quently turned off, the system begins a process of equilibration until it returns to

equilibrium. The restoration of equilibrium occurs through various mechanisms,

including the lattice’s scattering of electrons and holes and collisions between elec-

trons and holes. Additionally, there are generation processes in which electron-

hole pairs are created due to the promotion of electrons from the valence band to
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the conduction band and recombination processes where electron-hole pairs are

mutually annihilated.

Each of these processes exhibits its special rate. Typically, the equilibration of

electrons within the same band, either valence or conduction, occurs much more

rapidly than achieving a balance between electrons from different bands. The at-

tainment of equilibrium between electrons and holes happens significantly slower

than the equilibration processes occurring independently within the electron and

hole subsystems.

Therefore, Fermi-Dirac equations can describe the probability distributions of

electrons and holes within a specific small volume dV.

fe(E) =
1

1 + e(E−EFe )/kT
, fh(E) =

1

1 + e(EFh
−E)/kT

(3.4)

be the probabilities for a state with the energy E in the conduction and valence

bands, respectively, to be occupied by an electron or a hole.

The concentration of particles is closely linked to the respective Fermi energy

[10]. Consequently, we can deduce that the electron and hole subsystems must

possess distinct Fermi energies, referred to as EFe for electrons and EFh for holes.

Up to notational differences, the treatment here follows [48].
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3.3.1 Einstein’s Coefficients

Einstein’s coefficients are a paramount theoretical construct in quantum mechan-

ics. They constitute a fundamental framework that enables a profound compre-

hension of radiative transitions occurring in atoms and molecules, specifically re-

garding their interaction with light.

Absorption enables an atom to transition from its ground state to an excited

state; a photon with a frequency f transfers its energy h f . This transfer can only

occur if the photon’s frequency precisely matches the excitation energy divided by

Planck’s constant [50].

f = ∆E/h = (E2 − E1)/h (3.5)

An atom cannot be excited by a photon with a frequency lower than this value

because of energy conservation. On the other hand, it needs to be clarified why a

photon with a frequency higher than ∆E/h cannot transfer a portion of its energy

to an atom. This limitation is related to the particle nature of photons. As particles,

photons cannot be partially absorbed; they can only be either fully absorbed or not

absorbed at all.

Spontaneous emission is a process in which an excited atom reverts to its

ground state by releasing a photon with energy h f = E. This emitted photon trav-

els in a random direction.
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Spontaneous emission arises from the inherently probabilistic nature of quan-

tum mechanics. When an atom or molecule in an excited state undergoes sponta-

neous emission, it transitions to a lower energy state by releasing a photon without

external stimulation [50]. This process occurs independently of incident photons

or external fields, distinct from stimulated processes. Einstein’s Coefficient here

quantifies the rate at which spontaneous emission occurs.

Stimulated emission refers to a process where an excited atom transitions to

its ground state upon being exposed to an incoming photon while simultaneously

emitting an additional photon. For this process to proceed, it is necessary for the

incident and emitted photon to have nearly identical frequencies, very close to the

value of ∆E/h, where ∆E represents the energy difference between the excited and

ground state of the atom. Following a stimulated emission, the initial photon does

not vanish, resulting in the presence of two photons. Each of these photons has

the potential to induce another emission event, leading to a total of four photons,

then eight photons, and so on [50]. The number of photons may increase rapidly,

resembling an avalanche effect. An essential aspect of stimulated emission is that

all the generated photons move in the same direction. This characteristic lies at the

core of the principle of lasing.

Stimulated emission results from the delicate interplay between photons and

quantum systems. When an atom or molecule in an excited state is stimulated by
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an external photon that matches the energy level spacing of the transition, it under-

goes a transition to a lower energy state while emitting a photon identical to the

stimulating photon. This process fundamentally differs from spontaneous emis-

sion, as it is triggered by an external photon rather than spontaneously occurring

[50].

The significance of Einstein’s Coefficients is not confined to theoretical con-

structs; they find wide-ranging applications in diverse scientific disciplines and

practical technologies. In laser physics, the principles of stimulated emission are

fundamental to the operation of lasers, enabling the production of coherent and

highly amplified light beams. Furthermore, in astrophysics, these coefficients are

indispensable in analyzing radiative processes occurring in stars and interstellar

media, shedding light on the intricate behavior of celestial objects. Additionally, in

the burgeoning domain of quantum optics, Einstein’s Coefficients hold profound

implications, allowing for a comprehensive description of light-matter interactions

at the quantum level and offering promising avenues for quantum information

processing and communication technologies.

The densities of states gC(E) and gV(E) give the concentration of electron and

hole spin and momentum states per unit energy interval [48]. Hence, the concen-

trations of electrons and holes are

n(E) = gC(E) fe(E) , p(E) = gV(E) fh(E) (3.6)
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They change in time due to photon absorption, spontaneous emission, and stimu-

lated emission. The respective rates of these processes are

(dn(E + h f )

dt

)
abs

= A(E, f )ρ( f )gV(E)(1 − fh(E))gC(E + h f )× · · ·

· · · (1 − fe(E + h f ))

(3.7)

(dn(E + h f )

dt

)
spon

= −B(E, f )gV(E) fh(E)gC(E + h f ) fe(E + h f ) (3.8)

(dn(E + h f )

dt

)
stim

= −C(E, f )ρ( f )gV(E) fh(E)gC(E + h f ) fe(E + h f ) (3.9)

In this context, ”spectral concentration,” denoted by ρ( f ), refers to the photons

at a specific frequency f . The parameter A(E, f ) > 0 is the probability of photon

absorption by an atom per unit time. The parameter B(E, f ) is the probability of

photon absorption by an atom per unit time. The physical meaning of the param-

eter C(E, f ) is the probability for the emission to be stimulated by a single photon

per unit time. The values A(E, f ), B(E, f ), and C(E, f ) are called Einstein’s coef-

ficients and determined by both the energy and frequency but not by the electron

and hole statistics. Their dimensions are

[A(E, f )] = [B(E, f )] = [C(E, f )] = s−1 (3.10)
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More importantly, the occupation probability combinations that determine the rates

of spontaneous and stimulated emission are the same. Regarding the absorption

rate, the mentioned combination can be expressed as follows.

(1 − fh(E))(1 − fe(E + h f )) =
1

(1 + e(E−EFh)/kT)(1 + e−(E+h f−EFe)/kT)

=
1

(1 + e−(E−EFh)/kT)e(E−EFh)/kT(1 + e−(E+h f−EFe)/kT)

=
fh(E)

e(E−EFh)/kT + e−(h f−EFe+EFh)/kT
= fe(E + h f ) fh(E)e(h f−qeV)/kT

(3.11)

where we multiplied the numerator and the denominator with e−(h f−EFe+EFh)/kT

and used the identity

EFe − EFh = qeV (3.12)

Where qe is the elementary charge. With this observation and using the definitions

of the electron and hole concentrations, the rates can be written as(dn(E + h f )

dt

)
abs

= A(E, f )ρ( f )p(E)n(E + h f )e(h f−qeV)/kT (3.13)

(dn(E + h f )

dt

)
spon

= −B(E, f )p(E)n(E + h f ) (3.14)

(dn(E + h f )

dt

)
stim

= −C(E, f )ρ( f )p(E)n(E + h f ) (3.15)
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Consecutively, for the total rate of change of the electron concentration to be zero,

the sum of the absorption and the stimulated emission rates must be balanced by

the spontaneous emission rate:

(dn(E + h f )

dt

)
abs

+

(dn(E + h f )

dt

)
spon

+

(dn(E + h f )

dt

)
stim

= 0 (3.16)

ρ( f )(A(E, f )e(h f−qeV)/kT − C(E, f )) = B(E, f ) (3.17)

This can only be achieved if

A(E, f ) = C(E, f ) , B(E, f ) = A(E, f )gph( f ) (3.18)

and

ρ( f ) =
gph( f )

e(h f−qeV)/kT − 1
(3.19)

where gph( f ) is the density of phonon states. In contrast to the standard Planck

formula, photons in a semiconductor have a chemical potential of

µph = qeV (3.20)

We assume that the material and the photons find themselves in a cube of side

length L with periodic boundary conditions. Then, the allowed wave vectors are

k⃗ =
2π

L
l⃗ (3.21)
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Where l⃗ is a vector whose all three components are integers. The number of photon

states with the wave number k = |⃗k| smaller than a given value in a unit volume is

N(k) = 2.
4πk3

3
.

1

8π3 =
k3

3π2 (3.22)

where factor 2 comes from 2 spins allowed for each and k⃗ and
1

8π3 is the volume

that a state occupies according to Equation (3.21).

The frequency is related to the wave number by

k =
2πnr( f )

c
f (3.23)

where nr( f ) is the material’s refraction index. Then, the photon density of states is

given by

gph( f ) =
dN

dk

dk

d f
=

8π f 2n3
r ( f )

c3

(
1 +

f

nr

dnr

d f

)
(3.24)

where the second term in the brackets is neglected in [48].

The absorption coefficient, denoted by αb( f ), represents the probability of a

photon being absorbed per unit path length. In a design with only absorption and

stimulated emission within the material, the number of photons would decrease

at a specific rate over time.

(dρ( f )

dt

)
abs+stim

= −
∫ ((dn(E + h f )

dt

)
abs

−
(dn(E + h f )

dt

)
stim

)
dE

= αb( f )ρ( f )cg( f )

(3.25)
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where the group velocity of light in the material is

cg( f ) =
2π

dk/d f
=

c

nr

(
1 +

f

nr

dnr

d f

) . (3.26)

Using the expressions above, we obtain

∫
A(E, f )p(E)n(E + h f )dE = αb( f )

c

nr( f )

(
1 +

f

nr

dnr

d f

)−1

e(h f−qeV)/kT − 1
(3.27)

The radiative recombination rate refers to the frequency of recombination events

where photons are emitted, reckoned as the number of these events per unit vol-

ume and time. This rate is proportional to the product of electron and hole con-

centrations Rr = Brnp, where the proportionality constant is the radiative recom-

bination coefficient Br [48]. Hence,

Br( f )np =
∫ (dn(E)

dt

)
spon

dE =
∫

A(E, f )gph( f )p(E)n(E + h f )dE (3.28)

Combining the last two equations, we obtain the radiative recombination coeffi-

cient

Br( f ) =
αb( f )

np

c

nr( f )
ρ( f )

(
1 +

f

nr

dnr

d f

)−1

(3.29)

This can be expressed in terms of the photon energy as

Br(E) = αb( f )
n2

r ( f )

c2

8πE2

h3np

1

e(h f−qeV)/kT − 1
(3.30)
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The extra factor of h in the denominator comes from the fact that d f ρ f ( f ) = dEρE(E),

giving

ρE(E) = ρ f (E/h)/h (3.31)

where the subscripts f and E indicate the type of the argument of the radiation

spectrum.

In a non-degenerate semiconductor

qeV < Eg < h f = E , e(E−qeV)/kT ≫ 1 , np = n2
i (V)eqeV/kT (3.32)

where ni(V) = ni0e∆Eg(V)/(2kT) is the intrinsic concentration corrected with respect

to the bandgap narrowing effect [49]. Therefore, we can approximate

Br( f ) ≈ αb( f )
n2

r ( f )

c2

8π f 2

n2
i (V)

e−h f /kT (3.33)

as stated in [51] and [29], This can be expressed in terms of the photon energy

E = h f as

Br( f ) ≈ αb(E)
n2

r (E)

c2

8πE2

h3n2
i

e−E/kT (3.34)

The function Br(E) is proportional to the probability that in a radiative recombina-

tion event, a photon of energy E will be emitted. The net radiative recombination

coefficient is

Br =
∫ ∞

0
Br(E)dE (3.35)
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If the parasitic absorption were not in operation, we could calculate the effective

recombination coefficient by multiplying Equation (3.34) by the probability of es-

cape, Pesc = 1 − Preabs and integrating it over the energy. However, because only

the photons that undergo band-to-band transitions of the electrons are recycled

through reabsorption, the reabsorption probability Preabs needs to be multiplied by

the probability of the band-to-band transition during that event. As a result, the

effective recombination coefficient is modified accordingly

Br,e f f =
∫ ∞

0
Br(E)

(
1 −

αb(E)

α(E)
Preabs(E)

)
dE (3.36)

and this can be expressed as [29] , [52] :

Br,e f f = (1 − PPR)Br (3.37)

and the net photon recycling probability is [29] , [52]

PPR = B−1
r

∫ ∞

0
Br(E)

αb(E)

α(E)
Preabs(E)dE (3.38)

3.4 Ideal solar cell model

3.4.1 Solar cell architecture

The design of the solar cell considered in this thesis and its energy band diagram is

shown schematically in Figure 3.1(a) and (b). Generation of the electron-hole pairs
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proceeds in the i-Si region of width L sandwiched between thin n- and p-type Si

layers, which collect the photogenerated charge carriers of the same polarity. The

outer surfaces of the p- and n-Si layers are made rough for Lambertian trapping of

the incident photons. The bottom layer is a metal (M) electrode forming an ideal

ohmic contact with the p-Si layer. The top layer is an antireflecting coating (ARC)

to make sure that the incident photons enter the cell without optical losses. It is

combined with a transparent conducting oxide (TCO) layer for current collection.

In real solar cells, the front and back surfaces are not Lambertian; rather, they

are textured [53, 54]. Lambertian surfaces assumed here can be viewed as a mathe-

matical limit of high texturing, at which surface reflection in all directions becomes

equally probable.

The solar cell design shown in Figure 3.1 is reminiscent of the silicon solar cells

with the efficiency approaching [55] and exceeding 25 % [27, 28, 56, 57], see [53, 54]

for review. This value is already quite close to the limit efficiency of Si solar cells,

evaluated to be about 29.5 % [29, 32, 47]. In those solar cells, the electron-hole

pair generation proceeds in a relatively weakly doped Si base region sandwiched

between two heavily doped n+- and p+-Si layers. For instance, the doping level in

the base region of the solar cell with the record efficiency of above 26 % [27, 57] is

1.5 · 1015 cm−3, as inferred from the resisitivity value of 3Ωcm.

The reason why intrinsic rather than doped silicon is chosen as a base material
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Figure 3.1: (a) Solar cell model considered in this thesis. (b) Energy band diagram

of this solar cell, showing the Fermi energy EFi in i-Si and electron and hole quasi-

Fermi energies EFe and EFh; their difference equals the voltage across the cell, EFe −

EFh = qeV. The photogenerated electrons and holes are collected by the n-Si and

p-Si layers, respectively.
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is that the recombination rate is minimal in an intrinsic semiconductor. Indeed, let

us consider radiative recombination, which proceeds with the rate Ur = Br(np −

n0p0). Keeping in mind that the non-equilibrium concentrations are n = n0 + ∆n

and p = p0 + ∆n, the above equation can be rewritten as

Ur = Br

(
n0 + n2

i /n0 + ∆n
)

∆n , (3.39)

where we expressed hole equilibrium concentration in terms of the electron con-

centration according to the mass action law p0 = n2
i /n0. At a fixed excess carrier

concentration ∆n, the radiative recombination rate (3.39) can be minimized with

respect to the equilibrium electron concentration n0, which is directly related to

the doping level by [10]

n0 =
Nd − Na

2
+

√
(Nd − Na)2

4
+ n2

i . (3.40)

It immediately follows that Ur is minimal when n0 = ni, i.e. when the semiconduc-

tor is intrinsic.

A similar reasoning applies to Auger recombination with the rate

UA = Ce(n2p − n2
0p0) + Ch(np2 − n0p2

0) , (3.41)

where Ce and Ch are Auger coefficients [10]. More precisely, minimization of UA

is achieved at the optimal doping level that depends on the ratio of the Auger

coefficients Ce/Ch; however, if this ratio equals to 1, the optimal doping level again
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turns out to be zero. In silicon, as in most semiconductors, both coefficients have

similar values, which still implies a negligibly small doping level of the same order

of magnitude as the intrinsic concentration ni.

3.4.2 Photoconversion parameters

When the thickness of the solar cell is much smaller than the diffusion length,

L ≪
√

Dτ (3.42)

where D is the ambipolar diffusion coefficient and τ is the average lifetime, we

can use thin-base approximation, within which the excess carrier concentration

∆n is taken to be constant in the base region. This approximation was originally

introduced by Green [58], and is used extensively to model high-efficiency solar

cells [29, 32, 47, 57]. Indeed, the typical recombination time value is of the order τ ∼

1ms [57], and the diffusion coefficient D ∼ 10cm2/s, giving the diffusion length

of the order of 1 mm. It is an order of magnitude higher than the optimal base

thickness of about 100 µm, see below.

With the expression (3.38) for photon recycling probability, we now reassess the

maximal efficiency of an i-Si solar cell within the thin-base approximation, assum-

ing the current density to be

J(V) = JL(V)− qeL∆n(V)

(
1
τr

+
1

τA

)
. (3.43)
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The spectral flux density Φ(E) is taken to be the AM1.5G spectrum and its product

with the absorptance corrected for interband transitions is integrated to find the

light-generated current

JL = qe

∫
dE Φ(E)

αb(E)
α(E)

A(E) , (3.44)

∆n(V) = n(V)− ni0 is the excess carrier concentration, the radiative recombination

time is found as

τ−1
r = (1 − PPR)(2ni0 + ∆n)Br , (3.45)

and Auger lifetime τA is taken from the most recent evaluation [31]

τA =
∆n

Cege(n2p − n2
0p0) + Chgh(np2 − n0p2

0)
=

∆n

∆RAuger
(3.46)

where Ce and Ch are Auger coefficients and the correction factors ge and gh are

functions of charge carrier density and describe the transition between pronounced

Coulomb enhancement for low carrier concentrations to its absence at higher con-

centrations [31]. The maximal power condition d(JV)/dV = 0 yields the voltage

Vm and the current density Jm, which then give the cell efficiency

η =
JmVm∫

dE E Φ(E)
. (3.47)
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3.5 Results and discussion

3.5.1 Exact vs. approximate expressions for reabsorbption proba-

bility

When an incident photon is absorbed in the semiconductor material of a solar cell,

it excites an electron from the valence band to the conduction band. This creates

an electron-hole pair. However, a non-negligible probability exists that this excited

electron will recombine with a hole in the valence band, emitting a photon with

similar energy. This reabsorption process, often termed photon recycling, can lead

to a reduced effective path length of photons within the absorber material, limiting

the overall absorption efficiency and degrading solar cell performance.

Several factors influence photon reabsorption probability. Notably, the bandgap

of the semiconductor material plays a critical role. A narrower bandgap results in

a higher reabsorption probability, as many photons possess energy levels suitable

for exciting electrons across the bandgap. Furthermore, the optical properties of

the material, such as its refractive index and absorption coefficient, affect the reab-

sorption probability. Various optical structures, such as antireflective coatings and

light-trapping techniques, affect the probability of photon escape and reabsorption

in the solar cell.

It is instructive to compare the exact formula, Equation (2.26), with the approx-
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imations for the reabsorption probability used in the literature. The first one, em-

ployed by Richter et al. [29], sets

Preabs,1 = Aweak abs. (3.48)

with Aweak abs. given by Equation (2.11). This approximation neglects the depen-

dence of the reabsorption probability on the position x of the origin of a photon,

the isotropy of the initial angular distribution, and assumes that all photons are

weakly absorbed.

The second approximation, used in [30], replaces the approximate expression

for the absorptance with the exact one from Equation (2.8):

Preabs,2 = A . (3.49)

Finally, a more elaborate approximate expression was derived recently by Fell

et al. [31]:

Preabs,3 = 1 − 1 − TL

ln T−1
L

(
1 − (1 − TL)(1 − 1/(2n2

r ))

1 − TL(1 − 1/(2n2
r ))

)
, (3.50)

where TL is given by Equation (2.14).

The relative error of each approximation is calculated as

100% × (Preabs,i − Preabs)/Preabs (3.51)

with i = 1,2,3. Its sign indicates whether the ith approximation overestimates or

underestimates the reabsorption probability.
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All three approximate formulas, as well as the exact result, Equation (2.26), de-

pend on two non-dimensional parameters: the refractive index nr and the product

αL. We have found numerically that increasing nr results in a better accuracy of

all three approximations. Therefore, we plot Preabs vs. αL for a low value nr = 1.5

and for the value nr = 3.5 typical for Si in Figure (3.2) and the relative error of each

approximation in Figures (3.3(a) and (b)).

It can be concluded from Figure (3.2) that all three approximations qualitatively

agree with the exact curve. In particular, at high values of αL ≫ 1, all approxima-

tions give Preabs → 1 with the relative error tending to zero. In the opposite limit

αL ≪ 1, all three approximations underestimate Preabs with the relative error in-

creasing in magnitude with decreasing αL. However, this error should play no

role in the practical applications, because Preabs itself tends to 0 at small αL.

Out of all three approximations, it is the second one, Preabs,2, that deviates the

most from the exact curve, while the most recent Equation (3.50) and the simplest

expression, Equation (3.48), have about the same accuracy, see Figures (3.3(a) and

(b)). In particular, for nr = 1.5, the deviation of the simplest approximation, Equa-

tion (3.48), from the exact curve has the peak value of about 7 % at αL = 0.07 and is

similar to the error of the formula, Equation (3.50), at the same αL. For a more real-

istic refractive index value of 3.5, this approximation overestimates the reabsorp-

tion probability by only 0.5 % at αL = 0.03, whereas Equation (3.50) underestimates
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Figure 3.2: The probability of photon reabsorption as a function of the product

of the absorption coefficient and the thickness of a slab with the refractive index

nr = 1.5 and nr = 3.5. Solid line: exact result Equation (2.26). The dashed line, the

dotted line, and the dash-dotted lines are obtained with the approximations (3.48),

(3.49), and (3.50), respectively. The relative error of each approximation, whose

number is indicated near each curve, is shown in panel
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Figure 3.3: The relative error of each approximation, whose number is indicated

near each curve, is shown in panel (a) for nr = 1.5 and in panel (b) for nr = 3.5.

it by 2 % at this αL value.

The spectral dependence of the reabsorption coefficient of a Si slab of 100 µm

thickness at 300 K is presented in Figure (3.4) with the relative error of each ap-

proximation shown in the inset of this figure. Again, it is seen that the simplest

approximation, Equation (3.48), is the most accurate one, as it agrees with the ex-

act curve to within 0.05 % at λ < 1µm and overestimates Preabs by only 0.5 % at the

wavelength corresponding to the bandgap energy in Si. The other two approxima-

tions, Equation (3.49) and (3.50), perform reasonably well, but have a significantly

higher inaccuracy within 2 %.

The quite good agreement of all three approximations with the exact expres-
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Figure 3.4: Spectral dependence of the reabsorption probability in a Si slab of thick-

ness L = 100µm at 300 K with the relative error of each approximation shown in

the inset.
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sion may be attributed to the fact that all of them have correct asymptotic limits

Preabs → 0 and 1 at low and high αL, respectively. In the intermediate αL range,

the photons produced in the recombination events have a decent chance to reach

the front surface and get reflected from it. From that point on, their reabsorp-

tion probability equals absorptance, which is the basis of all three approximations,

Equations ((3.48)-(3.50)). The high accuracy of the simplest approximation, Equa-

tion (3.48), is nevertheless surprising, as its derivation involves more simplifying

assumptions than the other two approximations do.

It is known from studies of photon recycling in thin film GaAs cells [59] that

the quality of the reflector has a decisive impact on the potential benefit from pho-

ton recycling. This can be taken into account by introducing an additional model

parameter, the reflection coefficient rB(λ) of the back surface as a function of the

wavelength. To be consistent with the assumption of Lambertian scattering, it

should be assumed independent of the photon angle of incidence.

It is possible to derive the photon reabsorption probability within the so gener-

alized model. Here, given the high accuracy of the simplest approximation, Equa-

tion (3.48), obtained in the special case rB = 1, we would like to propose a simpler

option. It consists in correcting the escape probability Equation (2.4) with respect

to absorption by the back reflector

pe = n−2
r + 1 − rB (3.52)
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and modifying the Tiedje-Yablonovitch formula, Equation (2.8), accordingly. The

resulting approximation, namely,

Preabs =

(
1 +

1 + n2
r (1 − rB)

4n2
r αL

)−1

, (3.53)

is expected to be accurate to within 0.5 % for most practical purposes.

3.5.2 Photon recycling probability

Figure 3.5(a) shows the behavior of the photon recycling probability PPR of an in-

trinsic Si cell as a function of its thickness L at 25 ◦C according to Equations ((2.26)

and (3.38)). In the calculations, the most recent optical data of Si were used [60]. It

was assumed that parasitic absorption stems entirely from the free carriers, and so

αp was parameterized according to [61].

The free-carrier absorption coefficient αp increases with the excess concentra-

tion of charge carries, which is given by the generalized mass action law (3.1). The

electron and hole concentrations in an intrinsic semiconductor are equal to each

other, n = p = ni(V) + ∆n(V), where the intrinsic concentration slightly changes

with voltage due to the bandgap narrowing, see Equation (3.2), and

∆n(V) = ni(V)(eqV/(2kT) − 1) (3.54)

is the excess concentration that follows from Equation (3.1). Hence, due to the term

αb/(αb + αp) in Equation (3.38), the photon recycling probability decreases with V.

57



Table 3.1: Expansion coefficients in Equation (3.56)
a0 a1 a2 a3 a4 a5 a6 a7

P0(L) 0.06076 0.04689 0.01409 0.00134 −1.4903 · 10−4 −2.2623 · 10−5 −2.4513 · 10−6 4.283 · 10−7

V0(L) 1.01518 −0.00817 −0.002 −6.974 · 10−5 4.746 · 10−5 9.547 · 10−7 −3.762 · 10−7 0

∆V(L) 0.05487 4.671 · 10−4 2.333 · 10−4 −9.221 · 10−6 −8.915 · 10−6 1.746 · 10−6 −9.26 · 10−8 0

However, this decrease is insignificant for V < 0.75 V, i.e. for the voltages below

the open-circuit voltage of a Si solar cell.

The relative error or each approximation at V = 0 is shown in Figure (3.5(b)). It

is seen that the most accurate approximation is the simplest one, given by Equa-

tions ((3.48), (2.8)) with the accuracy better than 0.3 %. The other two approxima-

tions, Equations ((3.49) and (3.50)), are of comparable quality. As the voltage is

increased, all three relative error curves get shifted up, so that at V = 0.75 V, the

approximation of Equation (3.50), becomes the most accurate out of all three, see

Figure (3.5(c)).

The photon recycling probability as a function of voltage for different cell thick-

nesses is shown in Figure (3.6(a)). For most practical purposes, it can be fitted with

a sigmoid function

PPR(V, L) =
P0(L)

1 + e(V−V0(L))/∆V(L)
. (3.55)

The accuracy of this fit is better than 0.5 %. At the standard testing temperature T =

25◦C,the reabsorption probability at V ≪ V0 can be approximated with a seventh-
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Figure 3.5: (a) The photon recycling probability (2.26), (3.38) as a function of an

i-Si cell thickness at different values of the voltage across the cell, as indicated near

each solid curve. (b) The relative error of the photon recycling probability obtained

with Equation (3.38) and the approximations (3.48) (dashed line 1), (3.49) (dotted

line 2), and (3.50) (dash-dotted line 3) at V = 0 and (c) V = 0.75.
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of the parameters V0 and (c) ∆V from the fitting formula (3.55) corresponding to

the case of i-Si.
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order polynomial in x = L/(1µm) as

f (L) =
7

∑
k=0

ak xk (3.56)

with f (L) = P0(L), V0(L), or ∆V(L). The coefficients of this expansion are given in

Table 3.1. This approximation is accurate in the range 100nm < L < 1mm. It also

applies to the case of doped Si to a reasonable accuracy, as long as the charge carrier

concentration does not exceed about 1016 cm−3; at higher ∆n values, the Auger

recombination time is so short that the diffusion length becomes comparable to

the cell thickness, which implies the breakdown of the thin-base approximation.

Note that the parameters V0 and ∆V depend very weakly on the cell thickness,

see Figures (3.6 (b) and (c)), which shows that a change of L by a thousand times

results in their variation by less than 10 % and less than 15 %, respectively. In view

of the fact that at V = 0 the factor e−V0(L)/∆V(L) in the denominator of Equation

(3.55) is negligible, the upper curve in Figure (3.6(a)) is just PPR(0, L) = P0(L) to a

very high accuracy.

3.5.3 Maximal efficiency of a Si solar cell

The cell efficiency as a function of thickness at 25◦C is shown in Figure (3.7). Lm

is the thickness at the maximum efficiency, ηm is the maximum efficiency, and VOC

is the open-circuit voltage which is the difference of electrical potential between

two terminals of an electronic device when disconnected from any circuit. JSC
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Figure 3.7: Thickness dependence of the photoconversion efficiency of an ideal

solar cell with an i-Si base at 298.15 K. The inset shows the values of the thickness

at the efficiency maximum, the maximal efficiency, the open circuit voltage, the

short circuit current density, the fill factor, voltage, current density, and the excess

carrier concentration at the maximal output power.
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is the short-circuit current density at zero voltage, Vm is maximum voltage, Jm is

maximum current density and ∆nm is excess carrier concentration at maximum

power. FF or fill factor is the ratio of the actual maximum obtainable power to the

product of short circuit current and open circuit voltage

FF =
JmVm

JSCVOC
. (3.57)

The non-monotonic behaviour of efficiency with the cell thickness has been

reported in similar theoretical works [20, 29, 47], but we are unaware of analo-

gous experimental studies. This dependence can be understood as resulting from

the competition of two effects. At small thickness, the photons that enter the cell

have a very high probability of escape, and this η should decrease as L is made

smaller. On the other hand, at large thickness, practically all incident photons are

absorbed by the material. However, the concentration of the excess electron-hole

pairs should decrease with L at a constant generation rate, ∆n ∝ 1/L. Therefore,

also the photoconversion efficiency should get smaller as L is increased above the

optimal value.

The efficiency maximum value of 29.5 % is found at the cell thickness of 97.6 µm;

other parameters that characterize the current-voltage curve are indicated in the

inset of Figure (3.7). The maximal efficiency reported here is practically the same

as calculated in [20].
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The obtained maximal efficiency exceeds the most recent estimate [31] by 0.1 %-

abs. This difference may be attributed to the fact that the authors of [31] performed

numerical integration of the stationary diffusion equation using Quokka3 soft-

ware. On the other hand, the thin-base approximation takes the excess carrier

concentration as uniform within the base region and therefore neglects the trans-

port losses of the photogenerated electron-hole pairs.

We note that the approximation of uniform excess concentration is consistent

with the assumption of uniform photon production inside the base. On the other

hand, correct incorporation of photon recycling effect in a model with non-uniform

concentration profile is a highly non-trivial task, as the electron-hole pair genera-

tion rate at a given point x would have to include an extra term that depends on

the integral of the radiative recombination rate over the whole cell:

GPR(x) =
∫ L

0
dx′

∆n(x′)
τr(x′)

PPR(x|x′) , (3.58)

where PPR(x|x′) is the conditional probability for a photon produced at a point x′

to be recycled at a point x. But without performing this calculation, we can reason-

ably expect that the effect of this extra term would be to reduce the non-uniformity

of ∆n(x). The reason is that radiative recombination proceeds at a higher rate in

the region of high excess carrier concentration, while the so produced photons are

more likely to get recycled in the region of low carrier concentration.
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Chapter 4

Conclusions

This research delves into how Lambertian surfaces play a crucial role in shaping

how photons move within solar cell structures. The study uncovers a significant

way to boost solar cell efficiency by examining how these ideal scatterers influ-

ence photon movement. Using reflective surfaces strategically helps capture es-

caping photons, absorbing them again within the semiconductor material, creating

electron-hole pairs. This process of reabsorption and reuse offers an exciting av-

enue to significantly increase the overall efficiency of solar cells, pushing forward

advancements in renewable energy technologies.

Moreover, the study emphasizes the practical usefulness of the thin-base ap-

proximation method in understanding how photons recycle within solar cells. This

analytical approach simplifies how we understand this process and gives us a clear
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view of how reabsorption mechanisms impact solar cell efficiency. The insights

from this study lay the groundwork for improving how we analyze and model

solar cell designs to make them perform even better.

This study focused on deriving an analytical expression that explicitly calcu-

lated the probability of reabsorption and recycling of photons generated during

a radiative recombination event within a semiconductor slab. What is intriguing

is that our results remain remarkably accurate even when accounting for the as-

sumption of ideal Lambertian scatterers on both slab surfaces. We evaluated vari-

ous approximations to estimate reabsorption probability against our exact results,

demonstrating a remarkable level of precision with deviations within a narrow

range of just a few percentage points.

Particular interest is the discovery that the simplest approximation sourced

from [29], which involves aligning Preabs with the absorptance asymptotic formula

from [39], emerged as the most accurate among the methods evaluated. This

seemingly straightforward approximation surprisingly stood out for its precision,

showcasing the intriguing interplay between simplicity and accuracy in our re-

search.

Furthermore, our investigation brought to light an interesting observation re-

garding the role of free carrier absorption in photon recycling. Contrary to some

expectations, our findings indicate that free carrier absorption only influences pho-
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ton recycling, particularly at voltages operating below the open-circuit threshold.

This understanding enriches our comprehension of the complex mechanisms gov-

erning photon recycling within semiconductor slabs.

Moreover, operating within the framework of the thin-base approximation, our

study extended its exploration to determine the efficiency of a silicon solar cell.

Our rigorous analysis unveiled an impressive limiting efficiency of 29.5 % for such

a solar cell configuration, specifically observed at a thickness of 98 µm. These find-

ings underscore the precision of our analytical approach and hold significant im-

plications for advancing solar cell technology.
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Tournié, editors, Semiconductor Lasers, Woodhead Publishing Series in Elec-

tronic and Optical Materials, pages 3–55. Woodhead Publishing, 2013.

[18] Annamraju Kasi Viswanath. Surface and interfacial recombination in semi-

conductors. In Hari Singh Nalwa, editor, Handbook of surfaces and interfaces of

materials, pages 217–284. Academic Press, Burlington, 2001.

[19] M.J. Kerr and A. Cuevas. Recombination at the interface between silicon and

stoichiometric plasma silicon nitride. Semicond. Sci. Technol., 17:166–172, 2002.
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