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Abstract

A colloid-polymer mixture with an applied electric field is subject to two categories of

forces, the induced dipole-dipole interactions and depletion forces due to the polymer.

The combination of these forces with different polymer concentrations and external

electric fields results in the formation of various structures with different local or-

ders. To study these structures in more detail, the colloid-polymer system can be

replicated computationally using the molecular dynamics method which enables us to

calculate particle features such as bond order parameters computationally and further

investigate these features using advanced methods such as machine learning. In this

thesis, we apply a multi-step machine learning algorithm to dipolar-depletion systems

and identify the local structure of atoms in the simulation box using the algorithm.

The machine learning algorithm is a combination of multiple cutting-edge machine

learning techniques including autoencoders, Gaussian mixture models, and a cluster

merging technique. These algorithms are combined to create a multi-step process

that can identify different structures of matter in any molecular dynamics simulation

output. This algorithm utilizes unsupervised machine learning which does not require

labeled data and is applicable to known and unknown local structures. The machine

learning model can identify different local structures in colloid-polymer systems and

the identified clusters of atoms in the systems is in complete agreement with our

understanding of the systems.
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Chapter 1

Introduction

1.1 Overview

The purpose of this study is to identify local structures present in colloid-polymer

mixtures that include dipolar interactions. To achieve this goal, we first introduce

dipolar-depletion systems and describe different forces in these systems. We then

introduce molecular dynamics simulations and the software, LAMMPS [1], which we

use to carry out the simulations, together with some of the details of simulating the

dipolar-depletion systems. Then we describe averaged bond order parameters that we

use as the input for the machine learning algorithm and the cutoff distance measure

that we use to identify the particle neighbours. In chapter 2, we introduce step-by-step

the unsupervised machine learning algorithm that we use to identify local structures.

The first step of the machine learning algorithm is an autoencoder, which is a form of

feed-forward neural network. The second step is a Gaussian mixture model (GMM)

and the final step is a merging algorithm that we use to merge the GMM clusters

and obtain the final results. The description of the machine learning algorithm is
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followed by an illustrative case of a simple system containing one hexagonal close

packed (hcp) and one face-centred cubic (fcc) crystal to validate the algorithm and

compare the obtained results with our knowledge of the system. fcc and hcp crystal

differences are as follows. The most direct difference between hcp and fcc crystals is

in the atomic arrangements. Both hcp and fcc are close-packed, which means they

have the maximum theoretical packing density of about 74%, but the fcc structure is

a cube with an atom at all 8 corner positions, and at the center of all 6 faces and the

hcp structure is a hexagonal prism with an atom at all 12 corner positions, an atom

in the middle of both the top and bottom faces, and 3 atoms in the central layer.

In both crystals, the structure consist of repeated layers of 2D triangular lattices. If

the layers repeat with an abc-abc-abc. . . arrangement then the crystal is fcc. If the

layers repeat with an ab-ab-ab. . . arrangement then the crystal is hcp. In chapter 3,

we apply the machine learning algorithm on the dipolar-depletion systems simulated

using molecular dynamics and report the results. Finally, in chapter 4, we discuss the

results and provide a path for further research and continuation of this thesis topic.

1.2 Dipolar Depletion Systems

Lekkerkerker et al. [2] describe the colloid-polymer system as analogous to a restau-

rant room on two different occasions. In a regular time of the day, the tables are

arranged in a typical restaurant fashion. But when the restaurant is booked for a

busy party, the tables are pushed to a certain area of the restaurant (usually near a

wall) to clear more area for the people present in the party. The new configuration

allows more space for the movements of the guests. This transition of the tables and

the apparent attraction between the tables is due to repulsive interaction between the

guests. In other words, people do not like to be too close to each other, and also like
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to have maximum freedom in the space while they still have access to the tables.

In other words, in a colloid-polymer mixture, the formation of a depletion layer –

a shell where the centre of mass of a polymer does not enter – around the colloidal

hard spheres creates an effective attractive force between the hard spheres of the

colloid. In figure 1.1 the depletion layer is shown by the dashed circles around the

hard spheres. When the depletion layers of the hard spheres overlap, the volume

available for polymer chains increases. This means that the entropy of the mixture

is maximized if the colloidal hard spheres are close together, and so the colloids act

as if there were an attractive force between them. The picture sketched above first

became clear in the 1950s through the work of Asakura and Oosawa [3].

The system that is used for the purpose of this thesis is the computational replica

of the system used by Semwal et al. [4], one comprised of fluorescently labeled poly-

methyl methacrylate (PMMA) colloidal microspheres dispersed in a density-matched

solvent mixture of cyclohexyl bromide (CHB) and cis-trans decalin. As a depletant,

non-adsorbing polymer, polystyrene (PS) was used. To suppress Coulomb interac-

tions and obtain a hard-sphere-like system, they added a salt, tetrabutylammonium

bromide (TBAB). For this system, the colloidal particles behaved approximately as

hard spheres. The colloid-polymer suspension was then transferred to an electric field

cell. In the Semwal et al. experiments, the field strength E applied to the sample

ranged between 0 and 0.53 V/µm, and the polymer concentration cp ranged from

0 to 10.3 mg/ml. Semwal et al. characterized the system’s structure through both

the two-dimension radial distribution function g(r), and the fraction of particles with

high average bond order parameter ψs, denoted as fs, where s is an index quantifying

the local symmetry. We only analyze the difference between systems based on the

difference in their ψs, as bond order parameters are the only features of the systems
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Figure 1.1: The colloidal spheres in a solution with non-adsorbing polymers. The depletion
layers are indicated by short dash lines.
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that are relevant to our research. The significance of these features and their usage

in our machine learning algorithm is later described in Chapter 3.

When an electric field is applied to the suspension of colloidal particles with a

dielectric constant mismatch between the particles and solvent, it creates a dipole

moment parallel to the field in the particles. The stable structure at high electric

fields (i.e., high dipolar strength) is known to be the body-centered tetragonal (bct)

crystal [4]. A field-induced change in crystal structure will result in a change in the

bond order parameters ψs and fractions fs.

1.3 Molecular Dynamics Simulation

The molecular dynamics (MD) simulation method applies classical Newtonian me-

chanics to describe the movements of atoms. Since the modeling of the systems is

based on a solid physical foundation, the MD method can be used to obtain the prop-

erties of the system with high accuracy. The MD simulation method is simple and

computationally efficient compared to quantum mechanical methods and the results

are in good agreement with the quantum mechanical models at sufficiently high tem-

peratures [5]. Different types of force fields for various molecular systems, such as

biomolecules, polymers, metals, and semiconductors have been developed for use in

MD simulations. Large systems and sophisticated models can be simulated using MD

as a result of the versatility of the tools and features developed for MD simulations.

There are several popular MD simulation software packages that also allow paral-

lel computing including NAMD, AMBER, CHARMM, LAMMPS, and GROMACS.

Among them, LAMMPS, and GROMACS are the most widely used due to their paral-

lel computing features, free accessibility, and frequent updates. GROMACS is mainly
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used in modeling biochemical molecules, such as proteins and lipids due to being ca-

pable of calculating complicated interactions. GROMACS also has been widely used

in modeling non-biological systems including polymers [5].

1.4 LAMMPS

LAMMPS (large-scale atomic/molecular massively parallel simulator) is one of the

most popular MD simulation software for the modeling of condensed matter [1].

LAMMPS is highly efficient and allows the usage of a variety of potential energies for

a wide range of materials including solid-state materials and soft matter. LAMMPS

is an open-source software with the flexibility that allows users to develop code based

on the problem at hand [5].

1.4.1 LAMMPS Configuration

In this section, I explain the configuration that I use for modeling the experimental

system created by Semwal et al. [4]. The modeling methods of this research are based

on the work done by Semwal et al. [4] and Clowe-Coish [6].

To model the depletion interaction with molecular dynamics (MD) simulations, we

use the general short-range pair potential presented by Wang et al. [7]. This potential

is defined as:

Uc(r)

kBT
= αε

([σ
r

]2
− 1

)([rc
r

]2
− 1

)2

, (1.1)

where r is the distance between two particles, rc is the cutoff distance for the potential,

σ is the colloid diameter, and α is a dimensionless normalization parameter that

ensures that the well depth is ε. We assume that this ε is the parameter that is
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obtained experimentally and increases with polymer concentration cp. Wang et al.

[7] suggest a value of rc = 1.2σ to produce a narrow potential well. In this case, the

location of the minimum of the potential is rmin ≈ 1.055σ, a value that is consistent

with the scale of the polymer-colloid size ratio ξ = 0.066 in Ref. [4]. In all our

simulations, kBT is set to 1.

To model the effect of the electric field, we add point dipolar interactions between

the colloidal particles, where all dipole moment vectors are aligned along the z direc-

tion. The dipole-dipole interaction energy between two dipoles ~p1 at the origin and

~p2 at position ~r is:

Ud(~r ) = Λ
(σ
r

)3
[~p1 · ~p2 − 3 (~p1 · r̂) (~p2 · r̂)] (1.2)

In our system, ~pi = pẑ. Λ is the strength of the dipolar interaction,

Λp2 =
1

16
πε0εsσ

3β2E2
0 (1.3)

where ε0 is the permittivity of free space, εs = 6.1 is the dielectric constant of the

solvent, εc = 2.6 is that of the colloid, and β is the dielectric mismatch matching the

experimental parameters in Ref. [4],

β =
−1 + εc/εs
2 + εc/εs

≈ −0.24. (1.4)

MD simulations are performed for multiple values of dimensionless depletion strength

ε, and for multiple values of dimensionless dipole moment µ =
√
p2Λ/kBT . While

the range of µ values that we use in the simulations is different from the values that

were used in the experiment by Semwal et al., we believe that the state points simu-

lated in this research yield dipolar structures representative of those observed in the
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experiments. We use the values of µ = 0, 2, 4 and ε = 0, 1, 3.25 in this research to

generate nine state points, reflecting all nine ε-µ pairs.

1.5 Bond Order Parameters

The complex vector qlm is defined as,

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij) (1.5)

where Nb(i) is the number of the nearest neighbors of particle i, l is a free integer

parameter, and m is an integer that runs from m = −l to m = +l. The Ylm(rij)

functions are the spherical harmonics and rij is the vector pointing from particle i to

particle j. A set of parameters that hold the information of the local structure are

the local bond order parameters, or the Steinhardt order parameters, defined as,

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2. (1.6)

Depending on the choice of l, these parameters are sensitive to different crystal sym-

metries. Each of them depends on the angles between the vectors to the neighbour-

ing particles only and therefore these parameters are independent of the reference

frame [8].
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1.5.1 Averaged Bond Order Parameters

The crystal structure determination described above can be improved by using the

following averaged form of the local bond order parameters,

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2 (1.7)

where

q̄lm(i) =
1

Ñb(i)

Ñb(i)∑
k=0

qlm(k) (1.8)

Here, the sum from k = 0 to Ñb(i) runs over all neighbors of particle i plus the

particle i itself. Thus, to calculate q̄l(i), one uses the local orientational order vectors

qlm averaged over particle i and its surroundings. While ql(i) holds the information

of the structure of the first shell around particle i, its averaged version q̃l(i) also takes

into account the second shell. [8]

1.5.2 Determining the cutoff distance

We use solid-angle based, nearest-neighbor algorithm (SANN) to determine the cut-

off distance and find the neighbors of the particles [9]. SANN is a parameter-free

algorithm which makes it a better choice for creation of a parameter-free machine

learning algorithm. In addition, the cutoff distance is a local property, which makes

the SANN algorithm suitable for systems with inhomogeneous densities. The SANN

algorithm is preferred over the usual fixed cutoff algorithm because the fixed cutoff

algorithm results are very sensitive to the value of the cutoff and determining the

value of the cutoff for our system is difficult due to the complexity of the system’s
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Figure 1.2: Definition of the solid angle θi,j for neighbour j of particle i.

structure. The cutoff required for the fixed cutoff method should be defined manu-

ally or using other algorithms which adds another step and more complexity to our

algorithm while SANN, by itself, determines the cutoff locally and does not require a

cutoff determination step.

Consider particle i located at position ri surrounded by particles labeled by j. For

each particle i, SANN determines an individual cutoff distance R
(m)
i , which we call

the shell radius. First, we sort the particles j surrounding i such that ri,j ≤ ri,j+1 for

all j which also means:

ri,m < R
(m)
i < ri,m+1 (1.9)

Then starting with the particle closest to i, we associate an angle θi,j with each particle

j, based on the distance between the particles ri,j = |rj − ri|. Figure 1.2 depicts the

definition of solid angle (θi,j) associated with neighbour j of particle i. We define the

neighbourhood of a particle i to consist of the nearest m particles such that the sum
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of their solid angles (θi,j) equals 4π.

4π =
m∑
j=1

2π[1− cos(θi,j)] =
m∑
j=1

2π[1− ri,j/R(m)
i ] (1.10)

In other words, combining Eqs. 1.9 and 1.10 gives:

R
(m)
i =

∑m
j=1 ri,j

m− 2
< ri,m+1 (1.11)

To solve this inequality, we start with m = 3 and increase m iteratively. During each

iteration, we evaluate Eq. 1.11 and the smallest m that satisfies this equation yields

the number of neighbors Nb(i) and the shell radius R
(m)
i . The m particles inside the

shell radius are the particle i’s nearest neighbors [9].

The process of finding neighbors and calculating bond order parameters of the

systems simulated by LAMMPS is implemented in python’s pyscal library which

uses C++ as the backend for these calculations. In my research, I used this library

for these calculations in all the systems.



Chapter 2

Machine Learning

2.1 Overview

In this section, I describe the machine learning algorithm that is used to classify dif-

ferent structures of atoms in the systems simulated by LAMMPS. The overall process

consists of five steps. Step one is generating a sample system of particles using the

LAMMPS software, which implements the molecular dynamics simulation method.

Step two is importing the results of the LAMMPS simulation into the Python envi-

ronment and calculating the values of the bond orientational order parameters of the

system. Step three is implementing the autoencoder based on the article by Boat-

tini et al. [10]. The output of the autoencoder is a set of points in a plane, where

points that are close together represent particles with similar structural environments.

Clusters of points represent particles that belong to the same structure. Step four is

implementing the Gaussian mixture model (GMM), which identifies clusters, and us-

ing the Bayesian information criterion (BIC) values to find the optimal number of

clusters for the GMM based on the article by Boattini et al. [10]. Step five is using
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the cluster merging algorithm by Baudry et al. to merge the particularly similar clus-

ters [11]. The optimal number of clusters of particles and the ability to label particles

as belonging to a particular cluster/structure in the simulated box is the result of the

final step. We first apply the algorithm to the test case of a system containing only

face-centered cubic (fcc) and hexagonally close-packed (hcp) structures. We then ap-

ply the algorithm to the configurations drawn from the simulation of dipolar-depletion

systems in Chapter 3.

The remainder of this chapter is organized as follows: First, I give a brief intro-

duction to perceptrons, neural networks, and backpropagation, and then I describe a

specific type of neural network called autoencoder, that we use in this research. Then,

I describe the details of the autoencoder that we use such as regularized autoencoders

and the weight-decay regularization followed by the Gaussian mixture model and the

merging algorithm. Finally, I explain how all these machine learning methods come

together and create a single machine learning algorithm by applying the machine

learning algorithm on an illustrative case and providing the results.

2.2 Neural Networks

To understand Neural networks we should understand their most important compo-

nents which are perceptrons and the backpropagation scheme that is used to train the

network. This section summarizes the discussion of the neural networks in Refs. [12]

and [13].
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Figure 2.1: An artificial neuron that computes a weighted sum of its inputs and then applies
a step function.

2.2.1 The Perceptron

Aurelien Geron in [12] describes perceptrons as follows. The perceptron (also called

an artificial neuron) refers to a single unit of an artificial neural network (ANN).

The inputs and output are real numbers, and each input connection has a weight

associated with it. Figure 2.1 depicts a perceptron and its internal process. In this

figure, X is the vector of inputs to the perceptron, W is the weights vector, W1, W2,

and W3 are the individual weights for the individual inputs X1, X2 and X3, and b is the

individual neuron’s bias. The perceptron computes a weighted sum of its inputs and

adds the biases (XTW + b), then applies an activation function φ, which for example

could be a step function, to that sum and outputs the result: hW,b(X) = φ(z), where

z = XTW +b. A neural network is simply composed of multiple layers of perceptrons.

The first layer of perceptrons (also called passthrough neurons) is fed the input dataset

and outputs whatever input it is fed. The perceptrons in subsequent so-called hidden

layers are connected to the previous layer of perceptrons, receiving the output of the
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previous layer as their input. When all the neurons in a layer are connected to every

neuron in the previous layer, the layer is called a fully connected layer, or a dense

layer. To summarize, the output of a single neuron can be calculated using,

hW,b(X) = φ(XTW + b) (2.1)

In this equation:

• As always, X represents the matrix of inputs. It has one row per observation

and one column per feature.

• The weight matrix W contains all the connection weights except for the ones

from the bias neuron. It has one row per input neuron and one column per

artificial neuron in the layer.

• The bias vector b contains all the connection weights between the bias neuron

and the artificial neurons. It has one bias term per artificial neuron.

• The function φ is called the activation function: when the artificial neurons

are TLUs, it is a step function (but we will discuss other activation functions

shortly).

2.2.2 Gradient Descent Backpropagation

Sergios Theodoridis in Ref. [13] explains the backpropagation training scheme as fol-

lows: Let (yn, xn), n = 1, 2, ..., N, be the set of training samples. Note that we

have assumed multiple output variables assembled as a vector. We assume that the

network comprises L layers; L − 1 hidden layers and one output layer. Each layer
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consists of kr, r = 1, 2, ..., L, neurons. Thus, the (target/desired) output vectors are

yn = [yn1, yn2, ..., ynkL ]T ∈ RkL , n = 1, 2, , . . . , N. (2.2)

For the sake of the mathematical derivations, we also denote the number of input

nodes as k0; that is, k0 = l, where l is the dimensionality of the input feature space.

Let θrj denote the vector of the synaptic weights associated with the jth neuron in the

rth layer, with j = 1, 2, . . . , kr and r = 1, 2, . . . , L, where the bias term is included

in θrj , that is,

θrj := [θrj0, θ
r
j1, ..., θ

r
jkr−1

]T . (2.3)

The weights link the respective neuron to all neurons in layer kr−1. The basic iterative

step for the gradient descent scheme is written as

θrj (new) = θrj (old) + ∆θrj (2.4)

∆θrj ≡ µ
∂J

∂θrj

∣∣∣∣
θrj (old)

(2.5)

where the parameter µ is the learning-rate, an empirical parameter which we set to

µ = 10−5 following [10], and J is the cost function defined as:

J =
N∑
n=1

L(yn, ŷn) (2.6)

where ŷn = fθ(xn) is the target predicted by the neural network, and L is a loss

function that quantifies the difference between predicted outputs and true values. A

difficulty arises from calculating the gradients of a multi-layer network. To calculate

the gradients in Eq. 2.5, for all neurons in all layers, the following steps should be
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implemented in the neural network algorithms:

• Forward computations: For a given input vector xn ,n = 1, 2, . . . , N, use the

current estimates of the parameters (weights) [θrj (old)] and compute all the

outputs of all the neurons in all layers.

• Backward computations: Using the above computed neuronal outputs together

with the known target values, ynkL , of the output layer, compute the gradients

of the cost function. This involves L steps, that is, as many as the number of

layers. The sequence of the algorithmic steps is given below:

– Compute the gradient of the cost function with respect to the parameters

of the neurons of the last layer, i.e., ∂J
∂θLj

, j = 1, 2, . . . . kL.

– For r = L− 1 to 1, Do

Compute the gradients with respect to the parameters associated with the

neurons of the rth layer with respect to the parameters of the layer r + 1

that have been computed in the previous step

– End For

The backward computations scheme is a direct application of the chain rule for deriva-

tives, and it starts with the initial step of computing the derivatives associated with

the last (output) layer, which turns out to be straightforward. Then the algorithm

“flows” backward in the hierarchy of layers. This is because of the nature of the

multi-layer network, where the outputs, layer after layer, are formed as functions of

functions [13].
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2.3 Autoencoders

An autoencoder is a neural network that is trained to attempt to reproduce its input

as its output. Internally, it has a hidden layer h that describes the code or the process

used to recreate the input. The network consists of two parts: an encoder function

h = f(x) and a decoder that produces a reconstruction of the input r = g(h). If an

autoencoder succeeds in simply learning to exactly set g(f(x)) = x everywhere, then

it is not generally useful. Instead, autoencoders are designed in a way to be unable

to learn to copy the input blindly and perfectly. To make autoencoders more useful,

they are usually restricted in ways that allow them to reproduce input values only

approximately. The autoencoder learns important properties of the input because it

is restricted to copying only the important features of the data.

Feedforward neural networks are a form of fully-connected neural network. The

inputs are fed to the first layer, and subsequently the outputs of a layer are fed forward

as inputs to the next layer. Weights are adjusted backward using back-propagation.

Autoencoders are really a special case of feedforward networks, so they are trained

with the same techniques, typically gradient descent following gradients computed

by back-propagation. Autoencoders are mostly used for dimensionality reduction or

feature learning. In our algorithm, they are used for both purposes. We train the

autoencoder to reduce the dimensionality of the input vectors and learn which features

are the most important in minimizing the network loss function.

2.3.1 Undercomplete Autoencoders

While copying the input to the output is not useful, in the autoencoder’s case we

are typically not interested in the output of the decoder. Instead, we hope that
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training the autoencoder will result in h taking on useful properties. One way for the

autoencoder to figure out the useful features of the training dataset is to constrain h to

have a smaller dimension than x. An autoencoder whose bottleneck dimension is less

than the input dimension is called undercomplete. The smaller bottleneck dimension

forces the autoencoder to capture the most important features of the training data.

The learning process is described simply as minimizing a loss function.

L(x, g(f(x))) (2.7)

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as the

mean squared error (MSE).

2.3.2 Regularized Autoencoders

Undercomplete autoencoders, with bottleneck layer dimension less than the input

dimension, can learn the most salient features of the data distribution. The bottle-

neck later is the layer with smallest number of neurons. We have seen that these

autoencoders fail to learn anything useful if the encoder and decoder are given too

much capacity. A similar problem occurs if the bottleneck layer is allowed to have a

dimension equal to the input, and in the overcomplete case in which the bottleneck

layer has a dimension greater than the input. In these cases, the autoencoder can

learn to copy the input to the output without learning anything useful about the data

distribution.

Regularized autoencoders provide the ability to train any architecture of autoen-

coder successfully, determining the bottleneck dimension, the number of hidden layers,

and the number of neurons in each layer (including both the encoder and decoder)
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based on the complexity of the distribution of the input data. Regularized autoen-

coders use a loss function that encourages the model to have other properties such

as smallness of the derivative of the representation function (i.e., avoid very large

weights), and robustness to noise besides the ability to copy its input to its output.

A regularized autoencoder can be overcomplete but still learn something useful about

the data distribution. The strategy for regularizing an autoencoder is to use a penalty

Ω such that:

Loss = L(x, g(f(x))) + Ω(h, x), (2.8)

where L(x, g(f(x))) can be any loss function such as mean squared error (MSE), and

Ω(h, x) is the penalty term. In this research, we use weight-decay autoencoders to

avoid overfitting the autoencoder on the training data set.

2.3.3 Weight Decay Regularization

One of the simplest regularizers is the weight decay regularizer. This regularizer

simply uses some of the squares of the weights of the layers as the penalty term. The

weight decay regularizer is defined as:

Loss = L(x, g(f(x))) + λ
∑
i

wi
2 (2.9)

where the sum runs over all the weights of the neural network and thus depends on the

shape of the network, and λ is the coefficient of the penalty term. The justification

for this penalty term is that producing an overfitted result requires large values of

the weights. This regularizer encourages the network weights to be small and thus

prevents overfitting [14].
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2.4 Gaussian Mixture Models

A GMM is a probabilistic model that assumes that the data points are generated from

a mixture of multiple Gaussian distributions with unknown parameters. All the data

points that are generated from a single Gaussian distribution form a cluster. The

task of clustering is to assign a number of points, x1, ..., xN , into K groups or clusters.

Points that are assigned to the same cluster must be more “similar” than points that

are assigned to different clusters. Some clustering algorithms need the number of

clusters, K, to be provided by the user as an input variable. Other schemes treat it

as a free parameter to be recovered from the data by the algorithm. There are also

several GMM variants. The simplest variant is implemented in the GaussianMixture

class of the scikit-learn library in Python. In this simple variant, you need to

know the number of Gaussian distributions that you want to use for the clustering

algorithm in advance.

The other major issue in clustering is quantifying “similarity”. Different definitions

end up with different clustering results. A clustering is a specific allocation of the

points to clusters. Thus, in general, any clustering algorithm provides a suboptimal

solution. Gaussian mixture modeling is among the popular clustering algorithms. The

main assumption is that the points which belong to the same cluster are distributed

according to the same Gaussian distribution (this is how similarity is defined in this

case), of unknown mean and covariance matrix. This is can be written mathematically

as:

p(x) =
K∑
k=1

Pkp(k|xn) (2.10)

where Pk is the parameter weighting the specific contributing probability distribution

function (PDF). To guarantee that p(x) is a PDF, the weighting parameters must

be nonnegative and add up to one. Each mixture component defines a different
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cluster. Thus, the goal is to run the Expectation Maximization (EM) algorithm over

the available data points to provide, after convergence, the probabilities p(k|xn), k =

1, 2, . . . , K, n = 1, 2, . . . , N , where each k corresponds to a cluster. Then, each point

is assigned to cluster k according to the following rule: Assign xn to cluster k that

maximizes p(i|xn), i = 1, 2, . . . , K [13]. The number of clusters K is a parameter of

the model that is provided by the user. To calculate K we use a common technique

that chooses the value of k by minimizing the Bayesian information criterion (BIC).

2.5 Bayesian Information Criterion (BIC)

The BIC balances the number of model parameters d and the number of data points

n against the maximum likelihood function L̂ defined as,

BIC = −2 log(L̂) + log(n)d (2.11)

where n is the number of samples, and d is the number of model parameters. For a

Gaussian model, the maximum log-likelihood is defined as,

log(L̂) = −n
2

log(2π)− n

2
ln(σ2)−

∑n
i=1(yi − ŷi)2

2σ2
(2.12)

where σ2 is an estimate of the noise variance, and yi and ŷi are respectively the true

and predicted targets. The noise variance is defined as,

σ2 =

∑n
i=1(yi − ŷ

′
i)

2

n− p
(2.13)

where p is the number of data features and ŷ
′
i is the predicted target using an ordinary

least squares regression. Note that Eq. 2.13 is only valid when n > p [13].
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While this procedure works perfectly for clusters that are actually generated from

a mixture of separate multivariate normal distributions, the clusters that underlie our

data are very often far from being Gaussian distributed in space. As a consequence, a

single cluster in the data may be detected as two or more mixture components (if its

distribution is indeed better approximated by a mixture of Gaussians than by a single

Gaussian function), meaning that the number of clusters in the data may, in general,

be different from the number of components found by minimizing the BIC [10].

2.6 Merging Algorithm

To overcome this problem, we use the method proposed by Baudry et al. [11]. The

idea is to first use the BIC in order to find a GMM with NG components that fits

the data well. Then, a sequence of candidate clusterings with K = NG, NG − 1, . . . , 1

clusters is formed by successively merging a pair of components. At each step, the two

mixture components to be merged are chosen to minimize the entropy of the resulting

clustering, defined as

SK = −
n∑
i=1

K∑
j=1

pij ln(pij) (2.14)

where n is the number of observations and K is the number of clusters. The entropy

of the classification decreases with increasing probability that a point belongs to a

specific cluster. As a result, higher probabilities result in a smaller entropy. Finally,

the optimal number of clusters is found by looking for the existence of an elbow in

the entropy SK as a function of K [10].



24

2.7 Illustrative Case

In order to validate and optimize the machine learning algorithm for our purpose, the

machine learning algorithm is applied to a specific case that only includes fcc and hcp

crystals. We then compared the results of the algorithm with our knowledge of the

system to validate the results of the algorithm.

The first step is of the algorithm is to read the results of the LAMMPS simulation

in Python and calculate the bond orientational order parameters(BOPs) associated

with each crystal using the pyscal Python library. [15] Using C++ as the backend for

the calculations of BOPs, pyscal is one of the fastest libraries for these calculations

compared to other libraries that are also tested for this task including the partycls

Python library. For the purpose of this research, a total of eight BOP values (l ranging

from 2 to 9 in Eq. 1.8) is calculated and used as the input vector for the training of

the autoencoder.

In our research, we employ feedforward and fully connected regularized autoen-

coder with weight decay. The number of input and output layer neurons is determined

by the dimensionality of the input vector (eight in our case). The autoencoder consists

of two hidden layers each consisting of eighty neurons (10 times the number of input

neurons). The bottleneck layer of the autoencoder consists of two neurons which is

the low-dimensional projection of the input vector and thus is used to reduce the

dimensionality of the input vectors from an N by eight matrix to an N by two ma-

trix. The weights and biases of the autoencoder are initialized with the normalization

initialization proposed by Glorot and Bengio [16].

Figure 2.2 shows the architecture of the autoencoder used for the purpose of this

research. This structure follows the structure of the autoencoder that is designed
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Figure 2.2: Architecture of a neural-network based autoencoder. The encoder network
finds a low-dimensional representation of the input, from which the decoder reconstructs an
approximation of the input as output.
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by Boattini et al.[10] for the purpose of classification of crystal and liquid systems.

Note that the number of hidden layers, the number of neurons in the bottleneck layer,

and the hyperparameters of the encoder (including the batch size and the number of

epochs) were determined empirically by monitoring the result for the case of classi-

fication of crystal systems. The number of epochs is the number of times that the

training procedure of the neural network is applied to the entire input dataset.

Among the hyperparameters, the number of epochs is of high importance because

changing the number of epochs could actually change the distribution of points in

lower-dimensionality space. To choose the optimum number of epochs for our autoen-

coder, we trained the autoencoder for a large number of epochs, a thousand in our

case, and found the optimal number of epochs based on the graph of the validation

loss versus the number of epochs that we used to train the autoencoder. We divide

our dataset into training and validation datasets which we then feed to the neural

network. The training dataset is used for training and the validation dataset is used

at the end of training to validate the results on a dataset that has not been seen by the

neural network. Validation loss is the value of the loss of function calculated using the

validation dataset at the end of each epoch. The graph is shown in figure 2.3. As it

can be understood from the graph, the validation loss does not improve substantially

after two hundred epochs. Figure 2.4 shows a close-up of the validation loss graph,

where the number of epochs is two hundred. It can be understood from the graphs

that the validation loss curve decreases much more slowly beyond two hundred epochs

so we chose to train our autoencoders for two hundred epochs.

To uncover the inner workings of the autoencoder, we need to implement a method

to figure out which features of the input vector are more important for the autoen-

coder and by how much. Machine learning and especially neural networks are often
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Figure 2.3: Validation loss vs number of epochs for 1000 epochs of training
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Figure 2.4: Validation loss versus the number of epochs for 200 epochs of training
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regarded as blackboxes. This phrase means that they do something but it is difficult

or sometimes impossible to understand how. In our case, the autoencoder reduces

the dimensionality of the input vector from eight features to two important features

which are the non-linear combination of input vector features with some weights and

biases, and recreates the input vector with a very small error. But how? To find

the answer to this question there is no straightforward method. Drawing the graph

of the autoencoder or exporting the weights and biases would not give us any useful

information. Instead, we use the input perturbation method introduced by Scardi et

al. [17] to create the feature importance graph shown in Figure 2.5. The input per-

turbation method assesses the variation in the MSE of the autoencoder by adding, in

turn, a small amount of white noise to the kth input while holding all the other inputs

at their observed values. Here, we set the white noise to 10% and 50% of each input.

The input variables that lead to the largest increase in the mean squared error are

the ones that have the most relative influence. In both cases, a quantitative measure

of the relative importance, RIk, of the kth input can be obtained as

RIk =
∆Ek∑d
j=1 ∆Ej

(2.15)

where ∆Ek is the variation in the MSE caused by the change applied to the kth input

and the sum in the denominator runs over all the input variables. Figure 2.5 shows

that q6 and q8 are the most important features of the input vector and other features

of very low importance for this system of fcc and hcp crystals.

The number of Gaussian components in the mixture, NG, is usually found by

minimizing the Bayesian information criterion (BIC), which measures how well a

GMM fits the observed data while penalizing models with many parameters to prevent

overfitting. Figure 2.6 shows the value of BIC for the different number of clusters used
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Figure 2.5: The graph of autoencoder feature importance calculated using the input per-
turbation method for 10% and 50% white noise
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Figure 2.6: The graph of BIC values for the number of clusters from 1 to 9. The star denotes
the number of components with the lowest BIC.

in the GMM. It is understood from the graph that the minimum BIC can be achieved

by using four clusters for the number of components of the Gaussian mixture model

which makes it the best number of clusters for our illustrative case.

Figure 2.7 shows two outputs of the encoder part of the autoencoder y1 and y2

plotted in the same graph. The colours represent the clusters distinguished by the

GMM. The number of components for this GMM is set to four based on the results

of the BIC minimization graph. While minimizing the BIC gives an estimate of the

Gaussian distributions that reproduce our data points, it usually gives a number that

is greater than an actual number of clusters present in our data points, as we clearly

see from Fig 2.7. As pointed out in Ref. [10], this fact justifies the need for adding

another piece to our algorithm that merges the redundant clusters.



32

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450
y1

0.26

0.24

0.22

0.20

0.18

y2

Figure 2.7: The graph of y1 versus y2 and the clusters. The number of components of the
GMM is set to 4.
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Figure 2.8: The graph of entropy of the GMM clusters after merging from 4 to 1 clusters.
Two, the location of the elbow of the graph, is the best number of clusters.

The output of a trained GMM, pij, is the probability that the ith data point

belongs to the jth component of the GMM. Using these probabilities, the value of

entropy defined in equation 2.14 is calculated for each pair of clusters, and the pair

of clusters that reduces the entropy by the greatest amount is merged. The graph of

entropy versus the number of clusters is generated by repeating the merging procedure

and the best number of clusters is found using the elbow method. Figure 2.8 shows

that after merging four clusters to three and then to two clusters, the entropy is

reduced to a value close to zero, and so two clusters is the best number of components

for the GMM clustering algorithm.

Figure 2.9 shows the graph of y1 versus y2 with colours representing the clusters

distinguished using a merged GMM. The number of components of the GMM is set
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Figure 2.9: The graph of y1 versus y2 and the clusters. The number of components of the
GMM is set to 2.

to two based on the output of the merging algorithm. The graph clearly shows that

in the lower-dimensionality space generated by the autoencoder, the clusters that are

identified by the GMM using the number of clusters that the merging algorithm finds,

are correct.

Figure 2.10 shows a 3D representation of the two crystals. The colouring of the

atoms is based on the labels that are the output of the Gaussian mixture model. Blue

atoms are the atoms that belong to the first cluster and red are the atoms that belong

to the second cluster. Figure 2.11 shows the cross-section of the crystals with colours

describing the clusters of the atoms.

The graph of the probability distributions of the two most important BOPs (q6

and q8) of the two crystals is shown in Figure 2.12. The graph shows that the q6
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Figure 2.10: 3D representation of thermalized hcp (left) and thermalized fcc (right) crystals
side by side. Colours identify different clusters found by the machine learning algorithm:
blue for the first cluster and red for the second cluster.

Figure 2.11: 2D representation of thermalized hcp (left) and thermalized fcc (right) crystals
side by side. colours identify different clusters found by the machine learning algorithm:
blue for the first cluster and red for the second cluster.
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Figure 2.12: The graph of probability distribution of the q6 and q8 values of the hcp and
fcc crystals

values of the hcp crystal (blue curves) peak at a greater value than the q6 values of

the fcc crystal (red curves). The same is true for q8 values; the orange curve peaks at

a greater value than the red curve.

Figure 2.13 shows the graph of q6 versus q8 for the simple illustrative case which

only includes hcp and fcc clusters. As can be seen from the graph, the two crystal

structures are clearly distinguished in terms of their q6 and q8 values. We shall see

that such clean separation is not always achieved.
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Figure 2.13: The graph of q6 versus q8. The different colours represent the clusters in the
space of y1 and y2.



Chapter 3

Results

The results of MD simulation for the case of µ = 0 are shown in Figure 3.1. As can

be seen in the results for µ = 0, ε = 0, and ε = 1, we see liquid-like structure. For

the case of µ = 0 and ε = 3.25, we see that a denser structure forms as the system

begins to phase separate. The simulation results for µ = 2, which are shown in Figure

3.2, depict the formation of more ordered structures, especially for higher values of ε.

Figure 3.3 which is for µ = 4 and different values of ε shows the formation of dipolar

chains and also the formation of body-centered tetragonal (bct) crystallites, which

appear to become disrupted at ε = 3.25.

The following results are obtained after applying the machine learning algorithm

to the LAMMPS output. In particular, the machine learning algorithm is trained on

the BOP values of each system separately and then the atoms in each system are used

for the clustering process. In other words, the algorithm is applied to each state point

separately; e.g. when analyzing the data from µ = 0 and ε = 0, no information from

other values of µ and ε is used.

For the case of µ = 0 and all values of the ε and for the case of µ = 2 and all values



39

(a) µ = 0, ε = 0. View off axis. (b) µ = 0, ε = 0. View down the Z axis.

(c) µ = 0, ε = 1. View off axis. (d) µ = 0, ε = 1. View down the Z axis.

(e) µ = 0, ε = 3.25. View off axis.
(f) µ = 0, ε = 3.25. View down the Z
axis.

Figure 3.1: Simulation results for µ = 0 and different values of ε.
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(a) µ = 2, ε = 0. View off axis. (b) µ = 2, ε = 0. View down the Z axis.

(c) µ = 2, ε = 1. View off axis. (d) µ = 2, ε = 1. View down the Z axis.

(e) µ = 2, ε = 1. View off axis. (f) µ = 2, ε = 1. View down the Z axis.

Figure 3.2: Simulation results for µ = 2 and different values of ε.
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(a) µ = 4, ε = 0. View off axis. (b) µ = 4, ε = 0. View down the Z axis.

(c) µ = 4, ε = 1. View off axis. (d) µ = 4, ε = 1. View down the Z axis.

(e) µ = 4, ε = 3.25. View off axis.
(f) µ = 4, ε = 3.25. View down the Z
axis.

Figure 3.3: Simulation results for µ = 4 and different values of ε.
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of the ε, only one single cluster type is identified in the systems meaning that only

one type of structure is found. While the results might be reasonable for µ = 0 and

low values of the ε, for high values of ε and for the case of µ = 2, one would expect

the algorithm to detect new local structures. Figure 3.4 shows the results of applying

the clustering algorithm on the systems with µ = 4. In this figure, for the system

with µ = 4 and ε = 0 and also ε = 1 the clustering algorithm detects two types of

atoms. The red cluster in figure 3.4a and 3.4b, clearly identifies a single separated

chain. On the other hand, for the case of µ = 4 and ε = 1, the red cluster in 3.4c and

3.4d corresponds to a local structure that is not bct. While the result of the applying

clustering algorithm on the mentioned cases looks reasonable, the clustering algorithm

results for the case µ = 4 and ε = 3.25 does not agree with our expectations. Figure

3.4e and 3.4f show that the clustering algorithm detects only one type of structure for

the µ = 4 and ε = 3.25 system, while we expect at least the two types of structures.

Unfortunately, this system is only identified as having one type of structure, which is

an unreasonable result.

To summarize, applying the machine learning algorithm on one state point at a

time yields results that do not agree with our understanding of the system. We suspect

that this might be due to the fact that the set of samples that we use to train our

machine learning model is too small or too sparse, meaning that the training set is not

a good representative of all the values that we want to identify using the clustering

algorithm.

To solve this problem, we feed the algorithm data from all nine state points that

we have created. This approach includes a sample from all the BOPs from all the

local structures that we want to identify and so it is a good representation of all the

state points. To create this dataset, we take the first octant of all the state points
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(a) µ = 4, ε = 0. View off axis (b) µ = 4, ε = 0. View down the Z axis

(c) µ = 4, ε = 1. View off axis (d) µ = 4, ε = 1. View down the Z axis

(e) µ = 4, ε = 3.25. View off axis
(f) µ = 4, ε = 3.25. View down the Z
axis

Figure 3.4: The results of the clustering algorithm for µ = 4 and different values of ε
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and use it as input to the machine learning algorithm.

Figure 3.5 shows the result of applying the Gaussian mixture model on the output

of the autoencoder for this combined data set. The number of clusters of the Gaussian

mixture model is set to seven, which is the number of clusters that minimizes the BIC.

Applying the next step of the algorithm (cluster merging process) on the combined

system gives five clusters as the optimal number of clusters for this system. Figure

3.6 shows the result of the cluster merging process.

Using the labels obtained from the merging process, we visualize the combined

system (all the octants). Figures 3.7 and 3.8 shows the system from different angles.

As can be seen in the figures, each cluster of atoms clearly identifies a different local

structure. The majority of the (µ = 0, ε = 0), (µ = 0, ε = 1), (µ = 2, ε = 0)

and (µ = 2, ε = 1) state points consist of the blue cluster, which represents fluid-

like structures at low values of µ and ε. The gray cluster shows up in the (µ = 2,

ε = 1) state point for the first time and consists of particles with relatively high local

density and some sort of local non-crystalline order like a dense liquid. The red cluster

dominates the systems with high values of µ and represents the bct structures that

are formed at high µ. The green structure is also present in state points with a high

value of µ and especially a high value of ε, and is representative of the crystalline

structures other than bct, such as fcc and hcp. Finally, the purple structure is formed

from sheet-like structures with local orders similar to bct but in sheet form.

Figure 3.9 shows the graph of q6 versus q8 for the combined system. The compar-

ison of figure 3.9 and figure 3.6 leads to an interesting conclusion. While one might

assume that using q6 and q8 as the input for clustering and then the merging algo-

rithm might yield the same results, the graph of q6 versus q8 shows that the outputs

of the autoencoder, y1, and y2 do not only represent q6 and q8 because one of the
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Figure 3.5: The scatter plot of y1 versus y2. colours identify the clusters detected by the
Gaussian mixture model
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Figure 3.6: The scatter plot of y1 versus y2. colours identify the clusters after the cluster
merging process
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Figure 3.7: The combined system. colours represent clusters. View down the Z axis
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Figure 3.8: The combined system. colours represent clusters. View off axis
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Figure 3.9: The graph of q6 versus q8 for the combined system. The colours represent
different clusters

clusters that are identified from the graph y1 and y2 (the pink cluster) is completely

unidentifiable in the graph of q6 and q8. This means that even though y1 and y2

depend on q6 and q8 as their most important components, they are a non-linear

combination of all eight features.



Chapter 4

Discussion and Future Work

As discussed in the results section, the results of applying the machine learning algo-

rithm on dipolar-depletion systems vary with changing the training set. While using

a single state point BOP values as the training set, for the case of µ = 0 and µ = 2

leads to reasonable results, the results for the state points with µ = 4 and different ε

do not agree with our understanding of the physics of the systems. Checking multiple

data sets for the training of the machine learning algorithm showed that the best

results are achieved by using a combination of all state points for the training of the

machine learning algorithm. We created this data set by attaching the first octants

of all state points together. Using the combined system as the training set yields the

most promising results in this research. The mentioned results are in good agreement

with our understanding of the system.

This algorithm helps us answer important questions about the nature of the

dipolar-depletion systems. For example, to simulate the dipolar depletion system

with µ = 2, and ε = 3.25, two possible methods can be adopted. In the first method,

we create a simple-cubic crystal and apply both dipole-dipole interactions (µ = 2)
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and short-range depletion interactions (ε = 3.25) on the system simultaneously from

the beginning of the simulation and let it run until the system reaches equilibrium.

In the second method, we create the simple-cubic crystal, apply µ = 2 and let it run

until the system reaches equilibrium and then restart the simulation with the value

of ε = 3.25 applied until the system reaches the equilibrium again. The question is

do we get different results as the result of these two methods? In other words, do the

simulation results depend on the path or are they path-independent? The machine

learning algorithm allows us to answer this question by identifying the different struc-

tures in the final states of the simulations. Preliminary analysis shows that the final

configurations of both simulations have the same distribution of structures. While this

suggests that the results are path independent, we leave a detailed study for future

work.

Although the results of applying the machine learning algorithm on dipolar-depletion

systems in this research are promising, there is always room for improvement. As a

general rule, we know that in machine learning methods bigger training data sets lead

to better results. In our research, since the results of training the model on only one

state point were inconsistent and unacceptable we can reasonably conclude that we

need bigger, more comprehensive data sets to improve the accuracy of our machine

learning algorithm results. To achieve this goal, we can simulate multiple other state

points and train the machine learning algorithm while including those state points to

get better results.

While we only used an octant of each state-point and only eight bond order param-

eters to create our input vector, we realized that the amount of needed computational

power needed was already too high for a laptop and training the machine learning



52

algorithm was taking too long. As a result, adding more features and using big-

ger systems will only be possible if we are using a system with high computational

power. Additionally, there are various other features that can be extracted from the

simulation results. While we only extract eight bond order parameters from the sim-

ulation results and feed them as the input of the machine learning algorithm, there

are dozens of other features such as Voronoi volume, symmetry features, etc. that

can be extracted in the feature extraction process to improve the clustering algorithm

results.

In my view, the main ambiguity of this machine learning algorithm is the fact

that even though for some state points we know what local structure each cluster of

particles corresponds to, for other state points we can only guess. I believe the best

solution for this problem is to use supervised learning in addition to unsupervised

learning. While in the unsupervised machine learning methods the dataset does not

have any labels, in supervised learning machine learning methods each observation

has an identifying label that specifies the category that the observation belongs to (in

our case different types of crystals). The machine learning model is trained on the

labeled dataset. The trained model predicts the labels of unseen test datasets. Using

supervised learning techniques will give the label for each cluster and the probability

that each atom belongs to each cluster, which is what we eventually want as the result.



Appendix A

Source Codes

A.1 Bond Order Parameters

import pyscal.traj_process as ptp

import pyscal as pc

trajfile = "thermalized_hcp.xyz"

files = ptp.split_trajectory(trajfile)

part_sys1 = pc.System()

part_sys1.read_inputfile(files[1], format="lammps-dump")

part_sys1.find_neighbors(method='cutoff', cutoff=cutoff)

part_sys1.calculate_q(qs, averaged=True)

q_hcp = part_sys1.get_qvals(qs, averaged=True)

trajfile = "thermalized_fcc.xyz"

files = ptp.split_trajectory(trajfile)
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part_sys2 = pc.System()

part_sys2.read_inputfile(files[1], format="lammps-dump")

part_sys2.find_neighbors(method='cutoff', cutoff=cutoff)

part_sys2.calculate_q(qs, averaged=True)

q_fcc = part_sys2.get_qvals(qs, averaged=True)

A.2 Autoencoder

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import backend as K

lam = 1e-5

def contractive_loss(y_pred, y_true):

mse = K.mean(K.square(y_true - y_pred), axis=1)

W1 = stacked_encoder.get_layer('encoder_l1').weights[0]

W1 = K.transpose(W1)

W2 = stacked_encoder.get_layer('encoder_l2').weights[0]

W2 = K.transpose(W2)

W3 = stacked_encoder.get_layer('encoder_l3').weights[0]

W3 = K.transpose(W3)
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W4 = stacked_decoder.get_layer('decoder_l1').weights[0]

W4 = K.transpose(W4)

W5 = stacked_decoder.get_layer('decoder_l2').weights[0]

W5 = K.transpose(W5)

contractive = K.sum(lam * W1**2, axis=(0,1)) + \

K.sum(lam * W2**2, axis=(0,1)) + \

K.sum(lam * W3**2, axis=(0,1)) + \

K.sum(lam * W4**2, axis=(0,1)) + \

K.sum(lam * W5**2, axis=(0,1))

return mse + contractive

stacked_encoder = keras.models.Sequential([

keras.layers.Dense(8, name='encoder_l1', input_shape=[8]),

keras.layers.Dense(80, activation="tanh",

name='encoder_l2',

kernel_initializer="glorot_normal"),

keras.layers.Dense(2, activation='linear',

name='encoder_l3',

kernel_initializer="glorot_normal"),

])

stacked_decoder = keras.models.Sequential([

keras.layers.Dense(80, activation="tanh",

name='decoder_l1',

input_shape=[2],
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kernel_initializer="glorot_normal"),

keras.layers.Dense(8, activation='linear',

name='decoder_l2',

kernel_initializer="glorot_normal"),

])

stacked_ae = keras.models.Sequential([stacked_encoder,

stacked_decoder])

stacked_ae.compile(loss=contractive_loss,

optimizer=keras.optimizers.SGD(learning_rate=0.01,

momentum=0.9),

metrics=['mean_squared_error'])

history = stacked_ae.fit(X_train,

X_train,

epochs=200,

batch_size=128,

validation_data=(X_test, X_test))

A.3 Autoencoder Feature Importance

import matplotlib.pyplot as plt

params = [0.1, 0.5]

plt.figure(figsize=(10,7))

width= 0.35

ax = plt.gca()
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origin_mse = np.mean((K.mean(K.square(X - stacked_ae(X)),

axis=1)).numpy())

for j ,param in enumerate(params):

importances = []

for i in range(X.shape[1]):

my_rand = np.random.uniform(low=0,

high=param,

size=(X.shape[0], 1))

new_col = np.multiply(my_rand, X[:, i].reshape(-1,1))

purt_X = X.copy()

purt_X[:, i] = purt_X[:,i] + new_col.flatten()

mse = K.mean(K.square(purt_X - stacked_ae(X)), axis=1)

importances.append(abs(np.mean(mse.numpy() - origin_mse)))

RI = importances/np.sum(importances)

plt.bar([j*width+x for x in range(2, len(RI)+2)], RI,

width=width,

label=f'Input purturbation {str(int(param*100))}%')

ax.set_xticks([x+width/2 for x in range(2,len(importances)+2)])

ax.set_xticklabels(['q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'q8', 'q9'],

fontsize=12)

ax.tick_params(axis='both', which='major', labelsize=12)

ax.set_xlabel("Feature", fontsize=14)

ax.set_ylabel("Feature Importance",
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fontsize=14)

ax.legend(fontsize=12)

plt.show()

A.4 Gaussian Mixture Model

# training gaussian mixture model

import pandas as pd

from sklearn.mixture import GaussianMixture

plt.figure(figsize=(10,7))

gmm = GaussianMixture(n_components=n_clusters,

covariance_type='full',

random_state=42)

gmm.fit(X_hat)

#predictions from gmm

labels = gmm.predict(X_hat_test)

df = pd.DataFrame(X_hat_test)

df['cluster'] = labels

df.columns = ['y1', 'y2', 'cluster']

for k in range(0, n_clusters):

data = df[df["cluster"] == k]

plt.scatter(data["y1"], data["y2"], s=4, color=colors[k])
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plt.xlabel("y1")

plt.ylabel("y2")

plt.show()

A.5 Merging Algorithm

from partycls.helpers import merge_clusters, _compute_ICL_ent

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 7))

# Use weights from GMM to merge the clusters into `n_cluster_min`

# this returns new weights and new labels

weights = gmm.predict_proba(X_hat_test)

weights[np.where(weights < 1e-13)] = 1e-10

s_ls = []

nrange = range(n_clusters, 0, -1)

for i in nrange:

new_weights, new_labels = merge_clusters(weights,

n_clusters_min=i)

new_weights[np.where(new_weights < 1e-13)] = 1e-10

ent = _compute_ICL_ent(new_weights, 1e-15)

s_ls.append(ent)

s_ls = np.array(s_ls)
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plt.scatter(nrange, s_ls)

plt.plot(nrange, s_ls)

plt.xlabel("Number of Clusters")

plt.ylabel("Entropy")

plt.show()

A.6 Particle System Visualization using Ovito

try:

from ovito.io import import_file

except ImportError:

print('install ovito to display the particles')

from ovito.vis import Viewport, TachyonRenderer

import os

import tempfile

from IPython.display import Image

from matplotlib import colors as cls

view='top'

size = (1024, 1024)

outfile = 'g7.png'

box_size = []

box_size.append(part_sys.box[0][0])

box_size.append(part_sys.box[1][1])
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box_size.append(part_sys.box[2][2])

# Get a temporary file to write the sample

fh = tempfile.NamedTemporaryFile('w', suffix='.xyz', delete=False)

tmp_file = fh.name

fh.write('{}\n'.format(len(part_sys.atoms)))

fh.write('Properties=species:S:1:pos:R:3:radius:R:1:color:R:3\

Lattice="{},0.,0.,0.,{},0.,0.,0.,{}"\n'.format(*box_size))

for i, p in enumerate(part_sys.atoms):

fh.write('{} {} {} {} {} {} {} {} \

\n'.format(1, *p.pos, 0.7,

*cls.to_rgb(colors[labels[i]])))

fh.close()

# Ovito stuff. Can be customized by client code.

pipeline = import_file(tmp_file)

pipeline.add_to_scene()

cell_vis = pipeline.source.data.cell.vis

cell_vis.line_width = 0.

views = { 'top': Viewport.Type.Top,

'bottom': Viewport.Type.Bottom,

'front': Viewport.Type.Front,

'back': Viewport.Type.Back,

'left': Viewport.Type.Left,
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'right': Viewport.Type.Right}

vp_type = views[view]

vp = Viewport(type=vp_type)

vp.zoom_all()

vp.render_image(filename=outfile,

size=size,

renderer=TachyonRenderer())

# Scene is a singleton, so we must clear it

pipeline.remove_from_scene()

del pipeline

# remove temporary exyz file

os.remove(tmp_file)
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