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Abstract 

 

 

Human Activity Recognition (HAR) using smartphone sensors can offer multiple applications in 

different spheres. Using deep learning classifiers such as Convolutional Neural Networks (CNN), 

Short-Term Long Memory (LSTM), or their hybrid showed promising improvement in HAR. 

However, using these deep learning networks requires segmenting the input data into multiple data 

windows of similar length. The length of the data windows can significantly affect HAR's 

performance. Therefore, the influence of the window lengths needs to be investigated to choose 

an optimal window length. Additionally, the orientation and placement of the smartphone sensor 

also present significant challenges to HAR. Many approaches have been proposed to solve the 

orientation and placement problems. In my study, I first evaluated the effects of window length on 

1D-CNN-LSTM in HAR for six activities: Lying, Sitting, Walking, and Running at 3-METs 

(Metabolic Equivalent of Tasks), 5-METs and 7-METs. Subsequently, I evaluated the 

effectiveness of the heuristic features in HAR in solving sensor orientation and sensor placement 

problems for three smartphone locations: Pocket, Backpack and Hand. I performed this evaluation 

using 1D-CNN-LSTM by using the optimal window length found in the first part. 
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General Summary 

 

Perfecting Human Activity Recognition (HAR) using smartphone sensors can allow us to innovate 

multiple essential functions for our daily lives. The smartphone contains multiple sensors, such as 

an accelerometer, gyroscope, magnetometer, etc. The sensors can generate different signal values 

and patterns for the same activities if the smartphone is fixed at constant orientation and location. 

Consequently, researchers conducted many studies to remove the influence of sensor orientation 

and locations on smartphone sensors. One of these approaches proposed heuristic features to solve 

these problems. They evaluated the features' effectiveness for sensor orientation problems on 

synthetically modified datasets. In addition, the window length of the input data segment can affect 

the performance of deep learning classifiers used vastly in HAR. Therefore, my study explored the 

influence of window length and the heuristic features’ effectiveness in HAR in solving sensor 

orientation and placement problems on a dataset replicating practical daily life scenarios. 
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Chapter 1 

 

Overview 

 
1.1. Background 

 

Human Activity Recognition(HAR) is the process of enabling a machine to identify human 

activities by processing raw data accumulated in appropriate mediums. Researchers have been 

using various types of data in HAR, such as data from accelerometer sensors[1-3], gyroscope 

sensors[4-6], magnetometer sensors[7-9], images[10] and videos[11]. The advantages of using 

sensor units rather than images or videos are their flexibility, availability, privacy, and lower 

computational complexity[12]. The availability of the mentioned sensors in present-day 

smartphones has motivated researchers to accomplish HAR using smartphone sensors.  

The two primary sensors in modern smartphones are the accelerometer and gyroscope sensors. An 

accelerometer sensor in a smartphone computes the smartphone's acceleration over the sensor's 

three axes. On the other hand, the gyroscope sensor measures the angular velocity and the 

smartphone's orientation. When a user keeps the smartphone attached to his body and performs 

different activities, the accelerometer and gyroscope sensors generate unique sensor values and 

patterns that can be used to recognize human activities using machine learning classifiers. 

However, when using smartphone sensors in HAR, researchers ran into some major problems 

related to the smartphone's orientation and placement[13]. Therefore, many studies have proposed 

different methods to eliminate these problems to perfect the HAR using smartphone sensors. 

 



2 
 

1.2. Problem Statement 

 
Implementing Human Activity Recognition (HAR) using smartphone sensors requires us to 

consider two major scenarios. A user may keep the smartphone attached to the body in multiple 

places, such as the hand, pocket or backpack, and perform different human activities. In a particular 

location, the user can place the smartphone in multiple orientations, as depicted in Figure  1.1. The 

smartphone sensor may generate unique sensor values or patterns for a particular human activity 

depending on the location and orientation. However, for a particular activity, Researchers want 

sensor values to stay in a constant range and follow a uniform pattern despite the different 

smartphone locations or orientations of the sensors.  

 

Figure  1.1. Possible orientations for a smartphone in a particular placement. 
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To address these challenges, different studies proposed distinct methods. These proposed methods 

include two major types of approaches. The first approach needs the sensor values to be sent into 

a universal reference frame from the sensor frame[14]. This approach requires a gyroscope and 

magnetometer sensor along with the accelerometer sensor. The other approach includes extracting 

meaningful features from the raw sensor signals, which can significantly reduce the influence of 

sensors' orientations and locations[15] [16] [17] [18-20]. In this approach, the studies used one or 

multiple types of sensors. Some studies followed this approach using a single smartphone 

accelerometer, which could reduce the time complexity as data volume was low. Researchers 

investigated different extracted features, including time-domain, frequency domain, statistical, and 

heuristic features. To achieve an orientation- and location-independent HAR system, studies had 

to extract numerous time-domain, frequency-domain, and statistical features. The number of 

extracted features multiplies with the number of sensors used.  

Along with the proposed approaches for solving orientation and location problems, researchers 

had to carefully select proper machine learning classifiers with proper parameter tuning for an 

efficient HAR system. Generally, two types of machine learning classifiers are used in HAR: deep 

learning classifiers and simple machine learning classifiers. Deep learning classifiers include 

Convolutional Neural Networks (CNN) [21] [22] [23] [24-26], Recurrent Neural Networks(RNN) 

[27-29], and their different variants or hybrids. Among the different variants of RNN, Long Short-

Term Memory (LSTM) has been utilized by researchers in recent studies.  Simple or conventional 

machine learning refers to classifiers such as Support Vector Machine (SVM), K-Nearest 

Neighbour (KNN), Random Forest, Decision Tree, etc. Between these two types of classifiers, 

deep classifiers gained comparatively more popularity with the advancement of computational 

resources and their high efficiency. Among the deep learning classifiers, CNN, LSTM and their 
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hybrid were found to be sufficiently effective for an improved HAR system[30] [31] [32]. When 

using these deep classifiers, the input data needs to be segmented into fixed-length data windows. 

However, previous studies for HAR rarely investigated the influence of window lengths on the 

performance of these classifiers in HAR and chose the window length arbitrarily. Choosing a 

proper window length for the deep classifiers can improve the accuracy of the HAR system, and 

investigating the effects of window lengths can help other researchers choose the window length 

in future work more efficiently.  

In addition, the dataset and validation procedure also play an important role in bringing out proper 

findings in HAR. Most publicly available datasets had very few samples[33] [34] [35] that do not 

offer sufficient variations to replicate the real-life scenario. The scenario is the same for the other 

non-public datasets used in HAR. Besides, the validation procedure also needs to be appropriately 

selected to evaluate the credibility of a HAR system in a practical scenario. Previous HAR studies 

generally used validation techniques such as the holdout method[36-40], K-Fold cross-

validation[41, 42], and Leave-N-out cross-validation[43, 44]. Due to data leakage, these validation 

techniques, except for Leave-N-out cross-validation, can not offer many challenges to the 

classifiers. The classifiers must be tested using unseen participants' data for proper evaluation. To 

accomplish this, some studies performed Leave-One-Subject-Out cross-validation, but still, it 

should not be enough to assess the classifier and methods in a practical scenario. 

Considering the above-mentioned issues, there should be studies regarding HAR with simple 

features with low sensor units and evaluating the effectiveness in both intra-location and inter-

location scenarios. Besides, the influence of window lengths on deep classifiers in HAR needs to 

be investigated. Finally, we need to replicate the real-life scenario during the evaluation of the 

HAR system. 
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1.3. Literature Review 

 
A lot of studies have proposed different methods to improve the HAR system using smartphone 

sensors to tackle the typical challenges. These studies included different types of sensors, numbers 

of sensor units, machine learning models, smartphone orientations, placements and activities. 

Studies acquired different results depending on the sensor types and the number of sensor units 

available in different public HAR datasets accumulated from smartphones.  

One of the most popular public datasets is the WISDM [35]. For this dataset, data was collected 

from a single smartphone accelerometer while 29 participants carried the smartphone in their front 

pant leg pockets and performed walking, jogging, ascending stairs, descending stairs, sitting, and 

standing. The publisher of the dataset used decision trees (J48), logistic regression and multilayer 

neural networks with the help of extracted features to record the activity recognition accuracy for 

the dataset. They achieved the highest accuracy of 91.7% using neural networks. Another popular 

public dataset is the UCI-HAR [34] dataset. For this dataset, the publisher collected data from 30 

volunteers who performed six daily activities in two trials. In the first trial, the smartphone was 

mounted on the waist, whereas in the second trial, the volunteers kept the phone as they preferred. 

The collected data was raw signals from the smartphone's accelerometer and gyroscope sensors. 

They primarily used an SVM classifier and achieved an accuracy of 96% using 561 extracted 

features. Another comparatively new dataset was published in [45]. They collected a huge dataset 

containing almost 29 million samples collected from 19 participants. The dataset contained signals 

from the smartphone's accelerometer, gyroscope, magnetometer and GPS for four generalized 

activities related to smartphone conditions. Besides, they filtered the accelerometer data to keep it 

safe from the influence of smartphone rotation. They used an SVM classifier and acquired an 
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accuracy of 69.28%. There are some other public datasets for HAR, but the data was not collected 

from the smartphone. Many studies used these public datasets with different methods and reported 

different results. The studies mentioned above suggest that different datasets used different types 

and a different number of sensor units. It also seems that the number of extracted features also 

increased with an increase in sensor units.  However, the datasets rarely introduced smartphone 

orientation and placement issues. Still, many studies considered these issues and proposed 

different approaches to solve them.  

Previous studies used two major approaches to eliminate the sensor orientation and placement 

problem. The first approach mainly deals with the problem by transforming raw signals from the 

smartphone to a reference frame from the sensor frame, which we can also refer to as coordinate 

transformation. Some of the studies which used these approaches are [46], [47], [48]. However, 

for the coordinate transformation approach, the studies always required gyroscope or 

magnetometer signals along with accelerometer signals. These studies will be further discussed in 

Chapter 3 with detailed descriptions.  The second approach is extracting orientation-invariant 

features. In this approach, studies extracted different types of feature sets, such as time-domain, 

frequency domain, statistical and heuristic features. [18] extracted 31 time and frequency domain 

features from the raw signal of a single smartphone accelerometer to implement a HAR system for 

recognizing five human activities: walking, limping, jogging, walking upstairs, and walking 

downstairs. They placed the smartphone near the waist in arbitrary orientations and accumulated 

data from only 3 participants. They used both passive and active learning classifiers to reach a 

classification rate of 84.40%. [19] extracted magnitude norm vector and rotation feature (pitch and 

roll angles) from raw signals of a tri-axial accelerometer of a smartphone for classifying 13 human 

activities. They used a deep stacked encoder to extract further feature representation and acquired 
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a 97.13% accuracy using a combination of extracted features with raw signals. For their dataset, 

they collected about 1 million samples from 10 participants fixing the smartphone in two locations: 

wrist and pockets. For their dataset using only the raw signals, they achieved 92.92% accuracy. It 

seems that the raw signals could achieve higher accuracy in their study, and one possible reason 

could be their validation method. They used a holdout validation method, which is prone to data 

leakage. Another study extracted 21 features from the raw signals of a single smartphone 

accelerometer for a HAR system capable of classifying five human activities. They collected their 

dataset from 8 participants, and they had the freedom to keep the phone in their right or left trouser 

pocket. They performed online and offline activity recognition using KNN and Quadratic 

Discriminant Analysis (QDA) and achieved accuracies of about 93%-95% for all cases. Along 

with the previously mentioned studies, many other available studies [15] [16] used extracted 

features for implementing a HAR system. One of the important studies to follow for my thesis is 

[17]. This study introduced nine simple orientation-invariant heuristic features and evaluated their 

effectiveness on five publicly available datasets. The features they introduced were simple, but 

they did not evaluate their performance on datasets with practical orientations and placement 

problems. They also did not evaluate the performance of heuristic features in solving placement 

problems. I could have used the first approach, but it was not applicable as I used a single 

accelerometer sensor. I preferred this study to others for the second approach because other studies 

used many extracted features to solve the orientation and placement problem. However, choosing 

an effective approach alone cannot make a HAR system accurate. Researchers should also choose 

their classification algorithm and parameters wisely. 

Initially, previous studies used simple machine learning algorithms like SVM [18, 49-51], KNN 

[52, 53], Decision tree [54, 55], Random forest [56-58], etc in HAR. They were used because of 
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their simplicity, and those algorithms offered less computational complexity. However, 

advancements in computational resources have helped the studies use deep learning classifiers 

such as CNN, Recurrent Neural Network (RNN), LSTM, Gated Recurrent Unit (GRU), etc. 

Moreover, these deep classifiers had additional capabilities to enhance the performance of the 

classification system. For instance, CNN can extract compact feature representations, and LSTM 

or GRU can maintain a flow of old information hidden in the time series data. Due to these 

additional capabilities, new studies chose CNN [21] [22] [23] [24-26] or LSTM [59-61] for their 

HAR systems. Furthermore, studies started to combine the abilities of CNN and LSTM by 

hybridizing them into a single model and achieved better performance in HAR [30] [31] [32] [62-

65]. However, in almost all studies, the researchers did not evaluate one significant parameter of 

CNN, LSTM, or their hybrid (CNN-LSMT), which was the window length. Deep classifiers such 

as CNN or LSTM need windows of data as input. A data window contains multiple data samples. 

Depending on the data window length, the models' performance can vary. Again, choosing a very 

high window length increases computational complexity, whereas a low window length can 

degrade the model's performance. So, choosing the correct window length can significantly affect 

a model’s performance. For HAR systems, previous studies rarely investigated the influence of the 

window length on the performance of these deep classifiers. Therefore, in my thesis, another major 

investigation was the influence of window length on performance of 1D-CNN-LSTM in HAR. I 

choose the hybrid CNN-LSTM by seeing its effectiveness in earlier studies. Besides choosing the 

correct classification algorithms, researchers also need to prepare a proper dataset that would have 

required variations and samples to make the HAR process more practical. In addition, studies 

should also choose a validation method that would help to assess the performance of the HAR 

process in real-life scenarios.. 
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The size of a HAR dataset and variations in it can significantly impact the models' performance. 

Some datasets contain very few samples from a few participants and fewer variations to replicate 

the real-life scenario. For instance, this dataset [33] only had 9120 feature vectors from 8 

participants, although it contained data for 19 activities. Another vastly used dataset had only 

165,633 samples from 4 participants for five activities. The UCI-HAR [34] and WISDM [35] 

datasets mentioned before only had 10299 samples and 5424 samples, respectively. A relatively 

new dataset: KU-HAR [66] only had 1945 samples, although they accumulated data from 90 

participants and 17 activities. I went through many other studies, where I noticed that the dataset 

contained very few samples which could not offer many variations. Considering the number of 

samples in previous studies, I used a dataset containing about 12 million smartphone accelerometer 

samples from 42 participants for six activities by keeping the smartphone in three different places. 

In addition, I considered the validation method adopted by previous studies. Many studies in the 

HAR domain used various validation procedures such as the Holdout method [36-40], K-Fold 

cross-validation method [41, 42], Leave-N-Subject-Out Cross-Validation Method [43, 44] etc. 

Among these methods, the Holdout and K-Fold cross-validation methods are unsuitable for 

evaluating the HAR system. When these methods are used, random samples are taken from the 

primary dataset for training and testing. As a result, the training and test data may contain samples 

from the same participant. But in real life, the test data remains unseen to the model. Therefore, 

these methods do not replicate the real-life scenario. A proper validation method is the Leave-N-

Subject-Out Cross-Validation Method, in which the test dataset contains a dataset of some 

participants unseen to the trained model. Few studies adopted this procedure in their study, but 

they mostly did Leave-1-Subject-Out Cross-Validation probably because of a low number of 

participants, which means the test dataset would contain data from only one participant. If the test 
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dataset contains more participants' data, I can evaluate the model’s performance more practically. 

Considering the above discussion, I followed a Leave-10-subject-Out Cross-Validation method in 

which the test dataset contained data from 10 participants unseen to the trained model. 

Furthermore, I also performed intra-location and inter-location validation methods. Previous 

studies used the terms “location-dependent” and “location-independent” instead of “intra-

location” and “inter-location”, respectively. In the intra-location method, the model was trained 

and tested using data from the same smartphone location, whereas, in the inter-location, the model 

was trained using data from one smartphone location but tested using data from other smartphone 

locations. Therefore, I could evaluate the heuristic features' effectiveness in intra-location and 

inter-location scenarios.  

 

1.4. Thesis Work 

 
In this thesis, I performed two major analyses. Firstly, I investigated the effects of window length 

on the performance of 1D-CNN-LSTM in HAR. In my second analysis, I inspected the 

effectiveness of heuristic features in HAR for intra-location and inter-location scenarios, where 

the same 1D-CNN-LSTM model was used. My first analysis aimed to find a suitable range for 

window length, which would be appropriate for a better performance from the model and reduce 

the resource and time complexity. I used that suitable window length in my second analysis to 

train the 1D-CNN-LSTM model when inspecting the effectiveness of the heuristic features. In 

addition to this major investigation, I also emphasized some other issues. For instance, I used a 

Leave-10-Subject-Out Cross-Validation technique in my second analysis to make the evaluation 

process more realistic and complex for the HAR system. Furthermore, fusing my adapted cross-

validation approach with inter-location analysis made the evaluation procedure more challenging.  
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In Chapter 2, I investigated the influence of the window length on 1D-CNN-LSTM in HAR for 

only one smartphone location: pocket. I extracted the heuristic features to solve the orientation 

problem. I trained and tested the 1D-CNN-LSTM model using the heuristic features for 20 

different window lengths starting from 5 and ending at 195 with a gap of 10. I followed the Leave-

1-Subject-Out Cross-Validation Procedure. I inspected the effects of window length on the 

models’ overall performance. I also analysed the effects of window length on the model’s 

performance for individual participants and activity classes. This investigation revealed that, up to 

a specific window length, the model's accuracy increases as the window length increases. After 

that certain window length, the model's performance stabilises. So, rather than choosing a long 

window length, we should choose one after which the model's performance becomes steady.  

In Chapter 3, I focused on investigating the effectiveness of the heuristic features for different 

smartphone locations.  The heuristic features were generally proposed for solving the orientation 

problem, but I also wanted to observe how well they were in solving the placement problem. By 

placement problem, I mean that if the HAR system is trained using data for one smartphone 

location, such as a pocket, what will be its performance if the test data comes from another 

smartphone location, such as a hand or backpack? This study has the important implication that 

the model would be location-invariant in real-life applications. Besides, in the study where the 

heuristic features were introduced, the researchers did not evaluate the heuristic features’ 

effectiveness in solving the orientation using data with practically introduced orientation. In my 

study, I first evaluated the efficiency of the heuristic features in solving the sensor orientation 

problem for three smartphone locations: pocket, hand and backpack. I called it intra-location 

evaluation. In this part, a 1D-CNN-LSTM model was trained and tested using data from the same 

smartphone location. So, I could observe the performance of the heuristic features in solving 



12 
 

orientation problems for three smartphone locations. I had 42 participants who performed six 

activities: lying, sitting, walking, and running at 3-METs, 5-METs and 7-METs by keeping three 

smartphones in three different locations/locations: pocket, backpack and hand. I collected data 

from the accelerometer signal of the smartphone. For intra-location evaluation, I followed the 

Leave-10-Subject-Out Cross-Validation technique. I depicted three types of results: overall 

performance, participant-specific performance and activity-specific performance. I had a similar 

overall performance for every smartphone location. However, the performance was better for the 

location “Backpack” as the smartphone stayed less shaky in the backpack than the location of the 

pocket and hand.  

I conducted an inter-location evaluation to inspect the effectiveness of the heuristic features in 

solving the placement problem. In inter-location evaluation, I trained the model using heuristic 

features extracted from the raw signal of one smartphone location. I tested the model using the 

heuristic features extracted from the other two smartphone locations. I followed the same Leave-

10-Subject-Out Cross-Validation technique with the 1D-CNN-LSTM model. I depicted the results 

as I depicted for the intra-location evaluation. The performance of the heuristic features was lower 

than the intra-location evaluation results. However, considering the difficulties offered, such as the 

use of only one single accelerometer’s data, Leave-10-Subject-Out Cross-Validation and simple 

heuristic features, the results seemed promising. It should be mentioned that, in Chapter 3, all the 

models were trained using a suitable window length, which I found in Chapter 2.  

To summarize, I investigated the influence of window lengths on the 1D-CNN-LSTM model’s 

performance to select the optimal window length. Using the optimal window length, I trained all 

the models to inspect the effectiveness of heuristic features in intra-location and inter-location 

scenarios. I found that the heuristic features are considerably effective in solving orientation 
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problems. With further analysis, I can also achieve a better result using the heuristic features for 

inter-location evaluation. 

1.5. Contributions 

 
I prepared the report for this thesis in “Manuscript Style”. The work in this thesis is published and 

under review in peer-reviewed journals.  I have the appropriate permission from the publisher to 

use the findings in my thesis. The published or under-review versions are included as Chapter 2 

and Chapter 3 as follows: 

• Chapter 2 has been published as "Barua, A.; Fuller, D.; Musa, S.; Jiang, X. Exploring 

Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM 

in Human Activity Recognition. Biosensors 2022, 12, 549. 

https://doi.org/10.3390/bios12070549". In this study, we explored the influence of window 

lengths on the performance of the 1D-CNN-LSTM model in HAR. 

• Chapter 3 is under review in the journal “Biomedical Engineering Online”, titled “The 

Effectiveness of Simple Heuristic Features in Sensor Orientation and Placement Problems 

in Human Activity Recognition Using A Single Smartphone Accelerometer”. The authors 

are Arnab Barua, Dr. Daniel Fuller and Dr. Xianta Jiang.  

It is important to note that due to the manuscript style of this thesis, there may be instances of 

repeated text between chapters 2 and 3. 

 

 

 

https://doi.org/10.3390/bios12070549
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Chapter 2 

 

Exploring Orientation Invariant Heuristic Features 

with VariantWindow Length of 1D-CNN-LSTM in 

Human Activity Recognition 
2.1. Introduction 

 
Human Activity Recognition (HAR) has allowed for the implementation of distinct applications 

such as user identification[67], health monitoring[68], identifying the early stage of depression 

[69], fall detection[70] and more. Improving these applications requires ongoing methodological 

development. Researchers have conducted many studies to improve HAR by introducing the 

recognition of various daily activities using distinct approaches that include non-identical machine 

learning algorithms. Improving HAR requires considering some inevitable challenges, which 

involve sensor orientation, sensor location, device independency, study sample length, and data 

volume [71-74]. Among the mentioned challenged the most signifiacnt issue to solve is problem 

of sensor orientation and location. 

For solving the orientational and locational problem due to sensor placement, different studies 

introduced techniques such as transforming the sensor signals to a universal frame, extracting 

orientation-invariant features from raw signals, removing orientation and location-specific 

information by introducing statistical alterations, estimating the orientation of the sensor to the 

earth frame by using the tri-axial sensors (accelerometer, magnetometer and gyroscope) and then 

transforming the raw signals from sensor frame to the earth frame. Using the earth frame 

transformation approach, [14] achieved an average accuracy of 86.4% in recognizing 19 activities 

using Support Vector Machine (SVM). [17] introduced heuristic orientation invariant 
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transformation and singular value decomposition-based transformation to tackle sensor orientation 

problems. They evaluated their approaches using 4 different classifiers on 5 distinct datasets. They 

found out that their proposed approaches can reduce the accuracy drop by a considerable margin 

compared to other state-of-the-art approaches. [15] decomposed the accelerometer signal into 

horizontal and vertical acceleration. They extracted 9 features from the tri-axial gyroscope sensor 

and horizontal and vertical acceleration signals to solve the location and orientation dependency 

problem. They acquired an accuracy of 91.27%, employing SVM to recognize 5 activities using 

the data from a smartphone in 4 different locations. For our study, we decided to utilize the features 

proposed by [17] since it requires extracting 9 simple features to eliminate the variation in data 

produced from sensor orientation and location. Along with the orientational and locational 

dependency obstacles, we should also consider the number of participants and activities appraised 

in former studies. 

As the number of participants and activities varies, distinct variations in sensor signals appear due 

to the differences in the participants' body attributes and the uniqueness in movements of the body 

parts for different activities. The number of participants matters, especially for studies where the 

inter-participant evaluation technique is accepted as the validation method. There are many 

publicly available datasets to work with, and they have already been used in several studies that 

introduced different numbers of participants and activities [75-79]. However, inter-participant 

evaluation for a large number of participants in the field of HAR is yet to be explored.  

Regarding the employed classifiers for HAR, researchers evaluated the performance of both 

machine learning and deep learning algorithms. Research primarily assessed the performance of 

conventional machine learning algorithms such as Support Vector Machine (SVM), Decision Tree, 

K-Nearest Neighbor, and Random Forest [47, 80-82]. However, with the emergence of advanced 
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computational power, deep learning algorithms became more common in HAR. [75] evaluated the 

performance of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), 

Bidirectional-LSTM, and Multilayer Perceptron (MLP) using two public datasets named UCI[83] 

and Pamap2[84]. They found that CNN outperformed other classifiers with 92.71% and 91% 

accuracy on UCI and Pamap2, respectively. [85] compared CNN with state-of-the-art classifiers 

for classifying six activities and showed that CNN performed better than all other classifiers using 

features extracted by Fast Fourier Transform (FFT) with an accuracy of 95.75%. CNN remains 

favoured for executing HAR because of its powerful ability to automatically extract features from 

raw signals using multiple filters[21]. Studies then tried to combine the feature extraction power 

of CNN with the LSTM's power of persisting old information about time-series data. LSTM is an 

upgraded version of the Recurrent Neural Network (RNN) that can preserve older information than 

RNN [86]. The hybrid of CNN and LSTM, also called CNN-LSTM, has been used in different 

HAR studies. [30] evaluated the performance of CNN-LSTM on HAR using three public datasets 

named UCI[83], WISDM[87], and OPPORTUNITY[88]. They achieved accuracies of 95.78%, 

95.85% and 92.63% on UCI, WISDM, and OPPORTUNITY datasets, respectively, using a CNN-

LSTM architecture. [89] explored distinct deep learning architectures, including CNN-LSTM with 

their proposed margin-based loss function on OPPORTUNITY, UniMiB-SHAR[78], and 

PAMAP2 datasets. [90] ensembled three models, namely CNN-Net, Encoded-Net, CNN-LSTM 

and found the performance of the ensembled model superior over 6 benchmark datasets.  

There are a number of different implementations of CNN for sensor data. Typically, 1-

Dimensional CNN (1D-CNN) is used for accelerometer, gyroscope and magnetometer signals. An 

important consideration with 1D-CNN, LSTM, or their hybrid is that these methods require data 

windows as inputs. Each window resembles a data matrix with a fixed number of samples as rows 
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and the features as columns. Each consecutive window may or may not overlap. 1D-CNN uses 

filters on each window to extract features automatically. 1D-CNN maps these internally extracted 

features to different activities in HAR research. However, when 1D-CNN is combined with LSTM, 

the internally extracted features from 1D-CNN work as inputs to the LSTM layers. These LSTM 

layers further process these automatically extracted features. The advantage of using a 1D-CNN-

LSTM hybrid rather than using a single CNN or single LSTM is that 1D-CNN-LSTM can use the 

ability of CNN to extract spatial features present in the input data as well as preserve the temporal 

information present in the extracted spatial features using the ability of LSTM. Although a 1D-

CNN-LSTM system takes more time in training than a single CNN, it should not impose any 

problem in the deployment of real-life applications since, in real life, pre-trained models are 

deployed. A detailed explanation of the working mechanism of 1D-CNN-LSTM will be given in 

a later section. Now that 1D-CNN works with windows of data, the length of windows can affect 

the performance of 1D-CNN. With a large window length, the model will have a bigger picture of 

the signals' nature at a particular time. In contrast, a smaller window length portrays comparatively 

less information regarding the signal nature at any specific time. Again, bigger windows increase 

the computational complexity and time complexity, whereas smaller windows keep the 

computational burden and processing time considerably lower. Previous studies selected the 

window length arbitrarily in HAR execution while using CNN, LSTM or their hybridization, or 

they did not provide any discussion regarding window length selection [29, 85, 91-94]. It is yet to 

be explored how different window length s may affect the performance of CNN, LSTM, or their 

hybrid models in HAR research. 

Considering the shortcomings mentioned above, the orientation problem, study sample lengths, 

and window length considerations, this paper systematically examines these limitations using 
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feature extraction methods and window length experiments with 1D-CNN-LSTM models. A 

pictorial view of the overall procedure is portrayed in Figure 2.1. Data from a study including 42 

 

Figure 2.1. Structural diagram of our overall study. 

 

participants performing 6 activities, namely, sitting, lying, walking, and running at 3 Metabolic 

Equivalent Tasks (METs), 5 METs, and 7 METs pace, were used. Data were collected using an 

accelerometer sensor of a smartphone carried by participants in their pockets. Specific research 

questions were: 

• How can sensor orientation be solved?  
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To solve the sensor orientation problem due to the flippable locations of the smartphone in 

the pocket, we selected 4 orientation-invariant heuristic features from the proposed 9 heuristic 

features in [17].  

• What is the impact of window length on model accuracy?  

Results show that after a particular window length, the performance of 1D-CNN-LSTM is 

not influenced by the window length. Further examination explores how different window lengths 

influence the recognition metrics for high and low-intensity activities. 

• What is the impact of the inter-participant validation method in the case of a vast number 

of participants?  

We found that the model did not produce the same performance when evaluated using data 

from different participants. Still, the effects of window length on the performance of the different 

participants were the same. 

2.2. Materials and Methods 

 
In this section, we will start by discussing the data accumulation process. Then we will explain the 

data preprocessing step and the features we extracted to solve the smartphone orientation problem. 

Following, we will present the structure of the 1D-CNN-LSTM we employed in our study to 

discuss its effectiveness briefly. Finally, we will elaborate on the validation procedure, evaluation 

metrics and data reshaping process. We presented the discussion regarding the window lengths 

and their impact in the next section. 

2.3.1. Data Accumulation 
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We acquired verbal and written consent from 42 healthy participants above 18 years to collect the 

required data. Before participating in the protocol, the participants completed the Physical Activity 

Readiness Questionnaire (PAR-Q). We acquired the necessary ethical approvals from the 

Memorial University Interdisciplinary Committee on Ethics in Human Research (ICEHR 

#20180188-EX). A summary of the demographics (gender, age, height and weight) is presented in 

Table 2.1. We did not include the participants' demographics as attributes in our dataset because, 

in another study[95], we found that these attributes did not significantly influence the performance 

of the machine learning models. 

Table 2.1. Demographics of the participants. 

Number of 

participants 

Age (years) Height (centimetres) Weight (kilograms) 

Mal

e 

Fema

le 

Avera

ge 

Maximu

m 

Minimu

m 

Avera

ge 

Maximu

m 

Minimu

m 

Avera

ge 

Maximu

m 

Minimu

m 

18 24 29 56 18 169.17 185 143 68.19 95.2 43 

 

Each participant carried a Samsung Galaxy S7(SM-G930W8) smartphone in their pocket with a 

pre-installed Ethica application[96] that recorded the X, Y and Z-axis values of the Accelerometer 

sensor embedded in the mentioned smartphone while completing the protocol. The lab-based 

protocol required 65 minutes for each participant to be completed entirely. During the 65 minutes, 

each participant conducted the activities according to the order and for the time presented in Table 

2.2. The Rank column in Table 2.2 resembles the order of the activity trial. Rank 1 means each 

participant started with the corresponding activity trial, and Rank 9 points to the activity trial that 

each participant completed at the end. Participants had the freedom to keep the smartphone in their 

pocket in any arbitrary orientation. 

Table 2.2. Duration and order of activities performed by each participant. 

Rank Activity Duration (minutes) 
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The participants walked and ran on a treadmill set up in the lab. To measure the intensities of 

Running, we used the Metabolic Equivalent of Task (MET)[97], a relative measure of energy 

expenditure related to the participant's weight and volume of oxygen consumed per minute. We 

used METs rather than walking speed, cadence or stride length because we wanted to quantify the 

intensity of activities using energy expenditure. For the same walking speed, cadence or stride 

length, we may experience different energy expenditures from different participants. Furthermore, 

MET has been highly recommended by other studies to measure energy expenditure. We ensured 

that the participants ran at a particular intensity (MET) by setting up the intensity level on the 

treadmill. In the treadmill, there were options to select a particular intensity, such as 3-METs, 5-

METs, or 7-METs. Equation 1 defines the calculation process of METs. 

𝑀𝐸𝑇𝑠 =  
𝑂𝑥𝑦𝑔𝑒𝑛 𝐶𝑜𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑚𝑙
minute)

3.5 × 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)
 

Here 𝒎𝒍 is a unit of volume of oxygen that stands for millilitre, and kg stands for Kilogram, which 

is a unit for measuring weight.  

The reason for choosing the aforementioned activity types and activity intensities was that these 

were reported to be the most common type of activities included in former studies[98]. Besides, 

walking or running with different intensities was overlooked in most of the former studies. 

1 Lying down 5 

2 Sitting 5 

3 Walking 10 

4 Lying down 5 

5 Running at 3-METs 10 

6 Lying down 5 

7 Running at 5-METs 10 

8 Sitting 5 

9 Running at 7-METs 10 
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Therefore we focused on studying the effects of window length for 1D-CNN-LSTM on HAR for 

common types of activities and intensities.  

2.3.2. Data Preprocessing and Feature Extraction 

We used programming languages R 3.6.1 and Python 3.9.7 to execute the required preprocessing 

of the data and extract heuristic features, respectively. We used Python packages named Pandas 

1.3.4 and Numpy 1.20.3 for performing feature extraction.  

2.3.3. Data Resampling and Data Imputation 

The Ethica App could not accumulate the sensor data in a constant frequency; rather, the frequency 

varied from 5Hz to 19Hz. The reason behind this varying frequency was the application's forced 

optimization technique to keep the app running by constraining the amount of data uploaded to the 

server. Because of this varying frequency, each activity class had a very different number of 

observations, although they should have an almost similar amount of observations. We upsampled 

the data to a constant frequency of 30Hz by using the resampling method introduced in [33] to 

eliminate this data imbalance. In addition, we also experienced missing values in our accumulated 

data. This problem happened due to the momentary connection loss between the Ethica App and 

the server. To get rid of the problem regarding these missing values, we conducted data imputation. 

For performing linear imputation, we used the R package named ImputeTS. After data resampling 

and imputation execution, we had the following amount of data points for each activity presented 

in Table 2.3. 

Table 2.3. Number and ratio of samples for each type of activity class. 

Activity Number of data points Ratio to total dataset 

Running 7 METs 926606 21.43% 

Running 5 METs 812135 18.78% 
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Running 3 METs 815498 18.86% 

Self Pace walk 609406 14.09% 

lying 696329 16.10% 

sitting 464559 10.74% 

 

2.3.4. Feature Extraction and Selection 

We extracted some suitable heuristic features to resolve the sensor orientation problem. As 

mentioned earlier, during the data collection phase, the participants had the freedom to keep the 

mobile phone in their pocket in any arbitrary orientation. Therefore, different participants might 

perform the same activity trial while keeping the smartphone in a non-identical orientation. 

 

Figure 2.2. The direction of three axes of an accelerometer sensor in a smartphone. 

 

If we observe Figure 2.2, we can see the direction of the axes of the accelerometer with respect to 

the smartphone. The X-axis goes from left to right of the smartphone screen, Y-axis goes from top 

to bottom, and Z-axis goes perpendicularly through the screen. As we orient the smartphone, the 
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axes also get oriented accordingly. As a result, we observed different Accelerometer X, Y and Z-

axis values for the same activity if the users kept the smartphone in different orientations while 

performing the same activity.  

If we observe Figure 2.3, we can see how the values of the axes of the accelerometer differ in 

values while different participants ran at a speed of 9 METs. To solve this problem, we extracted 

4 simple heuristic features which were proposed in [17]. This study originally proposed 9 sensor 

invariant heuristic features. They defined each data vector of the accelerometer as 𝑣𝑛⃗⃗⃗⃗ =

(𝑣𝑥[𝑛], 𝑣𝑦[𝑛], 𝑣𝑧[𝑛]) where 𝑣𝑥[𝑛], 𝑣𝑦[𝑛], 𝑣𝑧[𝑛], were values of the accelerometer x-axis, y-axis 

and z-axis, respectively, at any time-sample n. They also defined first-order and second-order time 

differences  as ∆𝑣𝑛⃗⃗⃗⃗ =  𝑣𝑛+1 − 𝑣𝑛 and ∆2𝑣𝑛⃗⃗⃗⃗ =  𝑣𝑛+1 − 𝑣𝑛 respectively. The equations for 

computing the 9 heuristic features are given below, 

𝑤1[𝑛] = ‖𝑣𝑛⃗⃗⃗⃗ ‖           (1) 

𝑤2[𝑛] =  ‖∆𝑣𝑛⃗⃗⃗⃗ ‖          (2) 

𝑤3[𝑛] =  ‖∆2𝑣𝑛⃗⃗⃗⃗ ‖          (3) 

𝑤4[𝑛] =  ∠(𝑣𝑛⃗⃗⃗⃗ , 𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)          (4) 

𝑤4[𝑛] =  ∠(∆𝑣𝑛⃗⃗⃗⃗ , ∆𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)          (5) 

𝑤4[𝑛] =  ∠(∆2𝑣𝑛⃗⃗⃗⃗ , ∆
2𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)          (6) 

𝑤7[𝑛] =  ∠(𝑝𝑛⃗⃗⃗⃗ , 𝑝𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) where 𝑝𝑛⃗⃗⃗⃗ =  𝑣𝑛⃗⃗⃗⃗  ×  𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      (7) 

𝑤8[𝑛] =  ∠(𝑞𝑛⃗⃗⃗⃗ , 𝑞𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) where 𝑞𝑛⃗⃗⃗⃗ =  ∆𝑣𝑛⃗⃗⃗⃗  ×  ∆𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      (8) 

𝑤9[𝑛] =  ∠(𝑟𝑛⃗⃗  ⃗, 𝑟𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) where 𝑟𝑛⃗⃗  ⃗ =  ∆2𝑣𝑛⃗⃗⃗⃗  ×  ∆2𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      (9) 
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Here, 

𝑤𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑡 = 1 𝑡𝑜 9 

‖�⃗⃗� ‖ = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑛𝑜𝑟𝑚 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚 

 ∠(𝑎 , �⃗� ) =  𝑐𝑜𝑠−1 (
�⃗�  ∙ �⃗� 

 ‖�⃗� ‖ ‖�⃗� ‖
) = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑎  ∙

 �⃗�  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒𝑖𝑟 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

 

Figure 2.3. Values of three accelerometer axes for the same activity performed by two 

different participants. 

 

They claimed these 9 heuristic features to be irresponsive to the orientation of the sensor and 

mathematical elaborated on the reason behind being invariant to the orientation. Further analysis 

can be found in [17]. Although they examined the performance of all 9 features in HAR execution, 
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we conducted a more detailed analysis of these features. We found that the first 4 features 

𝑤1, 𝑤2, 𝑤3 and 𝑤4 are most important and distinguishable for different activities. In Figure 2.4, we 

can observe the pattern and magnitude range of the first 4 heuristic features for two participants 

performing the same running activity at a speed of 7  METs. We can observe some similarities in 

the pattern and magnitude range of 4 heuristic features. 

  

Figure 2.4. Values of the first four heuristic features for activity running at 9 METs from two 

different participants. 

 

In Figure 2.5, we plotted the values of the first 4 heuristic features for different participants 

performing two different activities named lying and running at a speed of 7 METs. We can observe 

a considerable difference in the patterns and magnitude of the first 4 features for two different 

activities performed by two different participants. That means the first 4 heuristic features showed 
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similarities in their values for the same activity and dissimilarities for different activities, which is 

essential for any classifier to distinguish them. 

 

Figure 2.5. Values of the first four heuristic features for two different activities from two 

different participants. 

 

In addition, we computed the feature importance of all the 9 features using the two classifiers 

named Decision Tree (DT) and the Random Forest (RF). Here feature importances define how 

impactful a feature is to a classifier to make a prediction. We chose these two classifiers for 

computing feature importance because they are proven to be very effective. There are different 

versions of DT. We used the version named Classification and Regression Tree (CART). DT and 
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RF have two metrics to decide the importance of features, named Gini Impurity and Information 

Gain.  

Our study used both as metrics to calculate the feature importance. Although RF uses multiple 

decision trees to compute its result and is comparatively better than DT, there are still differences 

between DT and RF regarding how they use the whole dataset. Therefore, we wanted to compute 

feature importance using both classifiers because of their different nature. For functioning these 

classifiers in Python 3.8.10, we used their implementation provided in the package named scikit-

learn 0.22.1. We feed the whole dataset to both classifiers to calculate the feature importance. 

Feature importance for the 9 features is depicted graphically in Figure 2.6. 

 

Figure 2.6. Feature importance of the 9 heuristic features. 
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From Figure 2.6, we can see that the first four features had greater feature importance than the last 

5 heuristic features when we used RF using Gini impurity and information gain to compute the 

feature importance. In the case of the DT, it assigned greater feature importance for the first 4 

heuristic features using Gini impurity and information gain; it also assigned considerable 

importance for the 7th feature. However, considering all four scenarios of feature importance, we 

elected to use the first four features as they were assigned greater feature importance in all cases. 

We also wanted to find if scaling the data had an impact on feature selection and which is why we 

computed the feature importance after scaling the features between 0 and 1. The result did not 

change. Even after scaling, the first 4 heuristic features had superior feature importance. Since we 

used the raw heuristic features for our study, we did not present the feature importance found after 

scaling the data in this paper. 

2.3.5. The architecture of 1D-CNN-LSTM 

A conventional CNN consists of an input, convolution, pooling, fully connected, and output layer. 

The input layer takes the data matrix as input. A data matrix encapsulates a portion of the data. 

The convolution layer consists of multiple filters, where each filter is also a matrix with lower 

dimensions than the feed data matrix. Each filter can move on the input data matrix in two 

directions or one direction for 2D-CNN and 1D-CNN, respectively. Each filter performs a 

convolution operation and constructs a feature map when moving on the input data matrix. A 

convolution layer with n number of filters constructs n number of feature maps for a single data 

matrix. We can define a feature map as a representation of the original data matrix with equal or 

lower dimensions but concentrate on prioritizing a particular feature of the data matrix. The 

pooling layer reduces the length of feature maps by moving averaging filter or max filter on them. 

We can feed these feature maps into an LSTM model. An LSTM model[86] can have one or more 
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LSTM layers. Each LSTM layer consists of multiple LSTM cells. Each cell encapsulates three 

gates named Forget gate, Input gate and Output gate. The forget gate is responsible for removing 

unnecessary information from the previous time step, where the time step resembles a row in a 

data matrix. The input gate processes the current data fed into the cell, and the output gate generates 

the output to be combined with the next input to the LSTM cell. In our hybrid 1D-CNN-LSTM[99], 

we had Convolution and pooling layers followed by an LSTM and fully connected layers, as 

depicted in Figure 2.7. The final pooling layer generates final feature maps fed into LSTM cells. 

The LSTM cells then consider each feature map as a timestep and try to learn from it and propagate 

the information to use it in processing the next feature map (time step). The LSTM layer's output 

then goes to the fully connected layer, composed of conventional neurons of Artificial Neural 

Network (ANN). The predictive result comes out of the final fully connected layer.  

Our proposed 1D-CNN-LSTM architecture started with a CNN encompassing 6 convolutional 

layers, 3 pooling layers and 4 dropout layers. The convolution layers used different kernel lengths 

and Rectified Linear Units (relu) as their activation function. We introduced dropout layers in the 

model to reduce the risk of overfitting. For LSTM's portion, we used an LSTM layer with 512 

hidden units and tanh as its activation function. 4 fully connected dense layers followed the LSTM 

layer. The first 3 layers had a different number of neurons and relu as their activation function.  

The last dense layer had 6 neurons with softmax as its activation function to render the probability 

regarding 6 types of activity. Although many former studies used the concept of the CNN-LSTM 

hybrid model, the elements, including the number of layers, filters, LSTM cells, neurons and 
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dropout rate in the structure we proposed here, were determined by us. 

 

Figure 2.7. Proposed structure of the 1D-CNN-LSTM model. 

 

We implemented the 1D-CNN-LSTM model in the programming language Python 3.8.10 using a 

package called Tensorflow 2.5.0. We used the ‘Adam’ optimizer for training our model with a 

learning rate of 0.001. We trained each model for 500 epochs using a batch size of 2000. After 

each epoch, we evaluated the performance of our model using the test data and saved the best 

model that showed the best accuracy on test data to calculate other evaluation metrics. The model 

can be reimplemented easily, and the results are completely reproducible. It should be mentioned 

that the parameters of our model were decided by trial and error method. We know that deciding 

the parameters of the deep learning model is challenging and time-consuming if we use a parameter 

optimization technique. Therefore, using a comparatively small sample size, I tried several layers, 
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filters and LSTM units with variable learning rates and activation functions. Finally, I used the model 

for which I found the best result. A detailed summary of the overall architecture is presented in 

Table 2.4, 

Table 2.4. A detailed description of our proposed 1D-CNN-LSTM model. 

 

2.3.6. Validation Procedure 

We accumulated data from 42 participants. We used the leave-one-out cross-validation method for 

our study, which we can also refer to as inter-participant evaluation. We had to train and test our 

model 42 times to execute this procedure. Each time we had data from 41 participants in the 

training data and data from the other participant in the test data. Every time we trained and tested 

Parts of 

Architecture Components of each part (blank cell = not available for this layer) 

CNN 

Layer's 

Name 

Number 

of Filters 

Kernel 

Size 

Activation 

Function 

Dropout 

Ratio 

Pooling 

Type 

Pool 

Size 

Padding 

type 

Convolution 512 5 relu    same 

Dropout    0.3    

Pooling     Average 3 same 

Convolution 256 3 relu    same 

Dropout    0.3    

Convolution 64 3 relu    same 

Pooling     Average 3 same 

Convolution 128 3 relu    same 

Convolution 256 5 relu    same 

Dropout   N/A 0.3    

Convolution 512 7 relu    same 

Dropout    0.3    

Pooling     Average 3 same 

LSTM 
Layer's Name Number of Units Activation Function 

LSTM 512 tanh 

Fully 

Connected 

Network 

Layer's Name Number of Neurons Activation Function 

Dense 100 relu 

Dense 28 relu 

Dense 64 relu 

Dense 6 softmax 
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our model, we had data from a different participant in the test set. We were able to investigate the 

overall impact of our study on each participant. 

2.3.7. Evaluation Metrics 

To evaluate the performance of our findings, we used 4 evaluation metrics; accuracy, precision, 

recall and f1-measure. The definition and purpose of using each metric are given below: 

2.2.7.1. Accuracy 

Accuracy[100] is defined by the ratio of the correct number of predictions to the total number of 

predictions. It is well suited for the classification task where each class has an almost similar 

number of samples. It can be calculated using the following formula, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

2.2.7.2. Precision 

This metric is used to identify if the model is equally capable of identifying each class. This metric 

is helpful in evaluating the model's performance for each class separately. High precision for a 

class refers to the model's efficient performance in identifying that class. Low precision for a class 

means that the model is not considered capable of recognizing that class. We can calculate 

precision[100] for any class A using the following formula, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Here, 

True positives = number of correctly predicted samples of class A 
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False positives = number of samples predicted as class A but not belonging to the class 

2.2.7.3. Recall 

This metric is also suitable for evaluating models’ performance for each class separately. It helps 

determine if the model is pruned to misclassification for a particular class. High recall for a class 

means that the model is not pruned to misclassify that class as another class. Low recall for a class 

refers to models’ proneness in misclassifying that class as another class. We use the following 

formula to calculate recall[100] for any class A, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Here, 

True positives = number of correctly predicted samples of class A 

False negatives = number of samples not predicted as class A but belonging to the class 

2.2.7.4. F1-measure: 

From the definition of Precision and Recall, precision emphasizes keeping the predictions 

accurate, whereas recall prioritizes increasing the number of correct predictions. For any model, 

we need to maintain a precision-recall trade-off, where we want to increase the number of correct 

predictions while keeping the predictions as accurate as possible. The F1 measure[101] represents 

a model's ability to maintain proper precision and recall. It does so by computing a harmonic mean 

of precision and recall using the following formula, 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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A model with a high F1 measure represents the model's ability in maintaining both high recall and 

precision, whereas a low F1 measure represents the opposite. 

2.3.8.  Data Reshaping 

CNN was the first part of our proposed architecture of 1D-CNN-LSTM. So we initially reshaped 

the data to feed into CNN's first Convolution layer. As mentioned earlier, CNN works with a data 

matrix or data window. Each window may consist of a particular portion of data. This window 

helps CNN grasp knowledge about a current data point by providing some past data points or 

future data points. We can also refer to this data matrix as an image form where the CNN will 

extract features to learn more efficiently. Since CNN requires a data window as its input, we had 

to construct windows of data from our whole dataset. The number of samples each window 

contains is called window length. The training and test sets need to be segmented into windows of 

equal length. Each consecutive window may have common training samples. The number of 

common training samples between each window depends on the overlapping ratio[102]. We can 

use the following formula to calculate the overlapping ratio, 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑊𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ
 

In our study, we wanted to observe how different window length influences the performance of 

the 1D-CNN-LSTM model in the case of HAR. To conduct this study, we recorded the 

performance of our model for different window lengths. We started by segmenting the training set 

and test set into windows with a window length of 5 and then evaluated the model's performance. 

We then raised the window length by 10 and re-recorded the model's performance. We continued 

the process until we reached a window length of 195. We did not increase the window length 

further because it increased the training time considerably. The number of common samples 
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between each consecutive window for a particular window length was 𝑤𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 1. So 

the overlapping ratio for a particular window length was, 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑤𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑡𝑔ℎ =  
𝑊𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ − 1

𝑊𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ
 

It should be mentioned that although each window had multiple samples, there was only one label 

(activity) that corresponded to each window. The label for each window was the activity 

corresponding to the last sample of that window. Detailed information about the segmented 

datasets is illustrated in Table 2.5 below: 

Table 2.5. The number of windows in the training set and the test set for each window 

length. 

Window length Overlapping ratio (%) No. of windows in the 

training set ± standard 

deviation 

No. of windows in 

the test set ± 

standard deviation 

5 80.00 4221561 ± 31399 102959 ± 31399 

15 93.33 4221551 ± 31399 102949 ± 31399 

25 96.00 4221541 ± 31399 102939 ± 31399 

35 97.14 4221531 ± 31399 102929 ± 31399 

45 97.77 4221521 ± 31399 102919 ± 31399 

55 98.18 4221511 ± 31399 102909 ± 31399 

65 98.46 4221501 ± 31399 102899 ± 31399 

75 98.66 4221491 ± 31399 102889 ± 31399 

85 98.82 4221481 ± 31399 102879 ± 31399 

95 98.94 4221471 ± 31399 102869 ± 31399 

105 99.04 4221461 ± 31399 102859 ± 31399 

115 99.13 4221451 ± 31399 102849 ± 31399 

125 99.20 4221441 ± 31399 102839 ± 31399 

135 99.25 4221431 ± 31399 102829 ± 31399 

145 99.31 4221421 ± 31399 102819 ± 31399 

155 99.35 4221411 ± 31399 102809 ± 31399 

165 99.39 4221401 ± 31399 102799 ± 31399 

175 99.42 4221391 ± 31399 102789 ± 31399 

185 99.46 4221381 ± 31399 102779 ± 31399 

195 99.49 4221371 ± 31399 102769 ± 31399 

 

 

 



37 
 

2.3. Results 
 

This section will discuss the effect of window length on the overall result using different evaluation 

metrics and the effect of window length on each activity.  

2.3.1. Effects of window length on the overall result: 

We averaged the accuracy for all the participants at each window length, and the average accuracy 

gradually increased until we reached the window length of 55. We can observe the effect of 

window length on average accuracy in Figure 2.8. At the lowest window length, which is 5, the

  

Figure 2.8. Box plot showing spreads of results for each participant for all window lengths. A 

red line connects the points, indicating average accuracy at each window length. The red 

horizontal line in the bar denotes the median values, whereas the green dashed horizontal line 

denotes the average values. 

 

average accuracy was 67.04%. At a window length of 55, the average accuracy was 79.74%, and 

as the window length became greater than 55, we could not see considerable change. For the 

window length from 65 to 195, the average accuracy was around 80%. We recorded the highest 

average accuracy for the window length of 105, which was 80.91%. It is clear that the window 
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length influenced the model's performance, but after a certain length, there was hardly any 

influence on the model's performance.  

Furthermore, we can also observe the spread of accuracy for all the participants. The highest 

accuracy was about 81% for a particular participant at the lowest window length, and the lowest 

recorded accuracy was about 56%. However, as the window length increased, the highest recorded 

accuracy for any window length also increased. We recorded the highest accuracy, around 97%  

for a particular participant, for the window length of 155. Although the highest recorded accuracy 

for any window length increased with the increment of window length, the lowest recorded 

accuracy for any window length did not improve considerably. It seemed that the accuracy 

remained poor for some participants, even for bigger window lengths. This scenario can be 

explained better with participant-wise analysis. 

2.3.2. Effect of window length on models performance for individual 

participants: 

From the previous section, we found out that the average accuracy for all the participants became 

steady with an increment of window length. We will now observe if the scenario was the same for 

the individual participant. We can determine the effect of window length for each participant from 

Figure 2.9.  

From Figure 2.9, we can see that the accuracy improved for the first 14 participants as the window 

length increased and remained steady after the window length of 55. Most of the participants 

showed a slight increment in the accuracy for the window length of 105. Among participants 1 to 

participant 14, the model performed best when we tested the model using the data from participant 

10. We recorded the highest accuracy, around 97%, for participant 11 at a window length of 155; 
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however, the performance was not consistent. For participants 15 to 28, the scenario was almost 

the same as we had for the first 14 participants, but for participant 16, the accuracy did not improve 

with window length; rather, we found a downward trend. We recorded the highest accuracy for 

participant 16 at a window length of 65, which was about 65%. Accuracy for participant 19 was 

found to be as poor as we saw for participant 16. Although accuracy for participant 10 had an 

increased accuracy of around 70% at a window length of 105. From participants 15 to 28, we 

recorded the best performance for participant 20 almost at every window length. Regarding the 

model's performance for participants 29 to 42, we observed poor outcomes from the model for 

participant 37, which resembled the model performance for participant 16. The best performance 

from the model was recorded for participant 33, almost for every window length. 

 

Figure 2.9. Accuracies for each participant for different window lengths. 
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2.3.3. Effect of window length on models performance for each activity 

As mentioned earlier, we considered the metrics precision, recall, and F1 measure to evaluate the 

impacts of window length on each activity. We calculated the precision for each activity class at 

each window length for all participants and averaged the precision depicted in Figure 2.10. 

 

Figure 2.10. Precision, recall and f1-measure for each activity class at different window 

lengths. 

 

From Figure 2.10, we can see that precision increased until a certain window length for all six 

different activities. After a window length of 45, precision either remained steady or improved for 

all activities except for sitting. In addition, we experienced high precision for high-intensity 

activities such as walking and running at 3 METs, 5 METs and 7 METs. Still, the precision was 

comparatively poor for low-intensity activities such as lying and sitting. We recorded higher 
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precision for activity walking than all other activities for every window length, which means that 

the models were highly accurate in predicting activity walking.  A more detailed scenario of 

precision is shown in Table 2.6. We can see the models' highest average precision for each activity 

and the window length at which the highest precision we recorded in Table 2.6.  

Regarding recall, we observed very poor recall for the activity sitting. Experiencing poor precision 

and recall for the activity sitting means that the models experienced difficulties correctly 

identifying it. It also means that the models misclassified many samples belonging to other 

activities as sitting and many samples from the activity sitting as other activities. We recorded 

impressive recall for the activities walking and running at 3 METs. Recalls recorded for the other 

3 activities were considerably decent. An interesting trend we observed for the activity lying is 

that the recall was about 90% at the lowest window length, and the recall reduced as the window 

length increased. In contrast, recalls for all other activities increased until a certain window length 

and then became steady. A detailed numerical description of recall is given in Table 2.6. 

The F1 measure depicted similar trends in precision and recall. We recorded a high F1 measure 

for walking and running at 3 METs. We had a decent F1 measure for all other activities except for 

sitting. The F1 measure was very poor to consider for activity sitting. F1 measures increased until 

a certain window length for all the activities and remained steady as window length increased. We 

also provided a numerical description of the F1 measure in Table 2.6.  

Table 2.6. Highest and lowest averaged precision, recall and f1-measure for each activity 

and respective window length 

Activities Properties (Highest 

Precision) 

Properties 

(Lowest Precision) 

Properties (Highest 

Recall) 

Properties 

(Lowest Recall) 

Properties for the 

(Highest F1 

Measure) 

Properties (Lowest 

F1 Measure) 

Highest 

Value 

Window 

Length 

Lowes

t 

Value 

Window 

Length 

Highest 

Value 

Window 

Length 

Lowes

t 

Value 

Window 

Length 

Highest 

Value 

Window 

Length 

Lowes

t 

Value 

Window 

Length 

Lying 76.16 75 65.63 5 89.38 5 77.58 195 79.30 45 73.55 175 

Sitting 73.53 45 62.34 5 61.41 175 29.91 5 62.15 75 38.74 5 

Walking 96.10 175 82.99 5 92.29 195 82.00 5 93.46 175 82.07 5 
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2.4. Discussion 

 
In [17], they studied the performance of heuristic features for 5 publicly available datasets, which 

they labelled as A[33], B[103], C[83], D[104], and E[105]. Besides using the 9 features altogether, 

they also used only the first 3 or the first 6 heuristic features and recorded the performance of 4 

classifiers Bayesian Decision Making (BDM), K- Nearest Neighbours (KNN), Support Vector 

Machine (SVM) and Artificial Neural Network (ANN). They used a 10-fold cross-validation 

technique where each fold contained data for a particular participant. We can call our used inter-

participant validation technique a 42-fold cross-validation technique where each fold contains data 

for a particular participant. They recorded accuracy from each classifier using first 3 heuristic 

features, first 6 heuristic features and all 9 heuristic features. They achieved the highest accuracy 

for datasets B, C, and D using the first 3 heuristic features. To acquire the highest accuracy for 

datasets A and E, they used the first 6 and all 9 heuristic features, respectively. For all the datasets, 

they found the best performance using SVM. From their results, it was clear that all 9 heuristic 

features were not critically important to model performance since, for 3 of their datasets, they 

recorded the best performance using only the first 3 heuristic features. However, they did not try 

all the combinations of features, and there was no analysis to select the most significant features. 

We performed that analysis and found the first 4 features to be the most important. We plotted the 

highest accuracy they achieved using the heuristic features for each dataset and also indicated the 

number of features for which they found the best performance in Error! Reference source not 

found.. We also included the highest average accuracy we achieved, using the 4 most important 

Running 
3 METS 

91.98 195 67.73 5 90.26 165 74.04 5 88.76 195 69.30 5 

Running 

5 METS 

79.48 185 53.87 5 81.99 195 51.30 5 78.08 175 51.95 5 

Running 
7 METS 

88.49 165 75.08 5 82.62 135 66.57 5 81.26 135 67.39 5 
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features we found in the plot to provide a comparative perspective. 

 

Figure 2.11. The highest accuracies achieved for datasets A, B, C, D and E by the different 

number of heuristic features by [17], along with the accuracy we found for our dataset denoted 

by S using 4 most significant heuristic features. 

 

Although it is not feasible to compare our results with the results found in [17]since they used 

different classifiers and datasets, we acquired results comparable to their performance, even with 

more participants than they had for an inter-participant validation method. However, our main 

objective was to explore the effects of window length in HAR execution for 1D-CNN-LSTM.  

Many studies have explored HAR using deep neural networks like CNN, LSTM or hybrids. But 

few studies in HAR reported the effects of window length or time steps. Most of the studies chose 

the time steps or window length, claiming that they achieved the best performance using that 

particular window length. For instance, [106] used a CNN and Gated Recurrent Unit (GRU) hybrid 

 



44 
 

on three datasets named UCI-HAR, WISDM, PAMAP2 and acquired 96.20%, 97.21%, 95.27%, 

respectively. Still, they did not mention how they chose the window length of 128 for their model 

 

. In another study [65], which used the same dataset as in [106], they also did not mention the 

reason behind choosing 128 as their window lengths rather, they emphasized their proposed CNN, 

Bidirectional LSTM hybrid model architecture and acquired accuracies. Many other studies[76, 

107-109] explored non-identical forms of deep learning architectures using the popular UCI-HAR 

dataset and used the same window length of 128 samples. Another study[110] using a dataset 

called "Complex Human Activities using smartphones and smartwatch sensors" explored the 

performance of different deep neural networks, including LSTM, Bidirectional LSTM, GRU, 

Bidirectional GRU, CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU for 5 differents 

window lengths(in seconds) of 5, 10, 20, 30 and 40s. They achieved the highest accuracy of 

98.78% using CNN-BiGRU when they used the window length of 40. However, exploring only 5 

different window lengths was insufficient to depict the influence of window lengths. Therefore in 

our study, we explored the performance of 1D-CNN-LSTM for 19 different window lengths. We 

can observe from Figure 2.8 that the recorded results showed that window length had a significant 

impact on the performance of the models in HAR. However, the impact was noticeable until we 

reached a window length between 45 to 75 in the study. After that, the performance was not 

influenced substantially by incremental increases in window length. We can call the window 

length range of 45 to 75 the saturation range for the models' performance. The reason behind such 

a trend could be that, after a certain length, even if we increase the window length, the model could 

not extract significant knowledge to enhance its performance. Although Figure 2.8 displayed the 

averaged effect of window length, we observed the influence on individual participants in Error! 

Reference source not found.. We experienced a similar trend for almost all participants. We had 
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a contradictory trend in performance for participants 16 and 37. After the saturation range with 

increments in window length models, performance for those participants was reduced. Although 

the decrement was not considered important, it was not usual if we observed the performance trend 

for other participants. This could happen due to noisy samples in the datasets belonging to those 

two participants, which need to be further analyzed. Observing the effect of window length on 

each activity class, we found that precision, recall, and f1-measure had very poor values for the 

sitting activity. In addition, the values of evaluation metrics were reduced with an increase in 

window length for lower-intensity activities like sitting and lying. For instance, recall for lying 

was about 90% when the window length was the smallest, but as the window length increased, the 

recall decreased. The effect of window length on lower-intensity activities was an interesting 

observation which was not evaluated in previous studies. We can assume that window length had 

different effects for activities with different intensities considering our outcome. When choosing 

a window length, we should also consider a window length that will help generate a better outcome 

for lower and higher-intensity activities. Another reason behind such poor performance could be 

the lower number of samples for activity sitting, which we can see in Table 2.3. Balancing the 

classes could have helped to improve the situation. Still, we did not do it in our study as our main 

objective was to observe the influence of window length rather than increasing the models' 

performance.  

From Table 2.6, we can see that for most of the activity classes highest metric values we found 

were when the window length was above 150, but the highest values were not considerably greater 

than the values we found at the saturation point. That means we need not choose a very high 

window length to achieve the best performance from the model rather, we need to select a window 

length around the saturation range that will be considerably smaller than the window lengths where 
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we found the highest metric values. If we manage to keep the window length smaller, it would 

reduce the time complexity for the models and increase the computational efficiency.   

Although we have conducted analysis participant-wise and activity-wise, some analysis is yet to 

be done. For instance, we achieved very high performance for some participants, such as 

participants 26, 27 and 33 and very poor performance for participants 16, 19 and 37. Still, we did 

not try to determine why the model performed differently, especially for these participants; as we 

mentioned earlier, our objective was to study the effect of window length in 1D-CNN-LSTM in 

HAR.  

In brief, we found that window length in 1D-CNN-LSTM had a significant effect on HAR. We 

found that the training time was affected by the window length. As the window length increased, 

the training time also increased. The approximate training time for the model using the lowest 

window length of 5 was about 40 minutes and almost 20 hours for the highest window length of 

195. For our suggested saturation range of 55 to 85, the training time was about 4 hours. Here we 

approximated the mentioned training time for each iteration of inter-subject validation, which 

means there were data from 41 subjects in training data, and test data included data from 1 subject, 

which we did not include in the training data. So, window length should not be arbitrarily long; 

rather, it should be chosen wisely by correctly identifying the saturation range so that the model 

offers less time complexity while training and more efficiency. In addition, for the 1D-CNN-

LSTM model, other studies may choose a window length from our suggested saturation range of 

55 to 85 for HAR. We resampled the whole dataset to 30Hz, so our proposed saturation range 

should be 1.83s to 2.83s in seconds.  

There are a number of limitations to our current study. We only used one accelerometer for our 

study to keep the computation complexity low, as we conducted inter-participant validation for 42 
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participants. But we may experience improvements in our study if the gyroscope sensor was also 

used with the accelerometer sensor since the gyroscope sensor can provide substantial information 

regarding the rotational nature. Moreover, the data was collected from only one smartphone 

location, a phone in the pocket, and we did not study how much the analysis would get affected if 

we used data from different body parts. In addition, we studied the effect of window length on one 

type of model, but other models also take windows of data as input. We do not know if the effect 

would be the same for those models. However, we initiated this type of analysis using many 

participants, one accelerometer sensor, data from one smartphone location and only one type of 

model. In future, we will try to conduct the same study using different models and settings. 

 

2.5. Conclusions 

 
Our study wanted to depict the influence of window length in 1D-CNN-LSTM on HAR. We used 

a large dataset accumulated from 42 participants for six different activities. The samples were from 

the accelerometer sensor in a smartphone kept in the pocket.  We used 4 heuristic features to 

eliminate variations produced due to the rotation of the smartphone. We found a saturation range 

for window length, after which the model does not get considerably influenced by the window 

length.  
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Chapter 3 

 

The Effectiveness of Simple Heuristic Features in 

Sensor Orientation and Placement Problems in Human 

Activity Recognition Using A Single Smartphone 

Accelerometer 

 

3.1. Introduction 

 

Human Activity Recognition (HAR) is a critical research area because of its multiple applications 

that are beneficial for humanity. HAR is the process of enabling computers to recognize human 

activities by analyzing patterns in different data types, including sensor data, images, and videos. 

Research on HAR is important as it is the principal method for accomplishing applications such 

as identifying risk factors regarding depression[69], diabetes[111], health condition 

surveillance[112], eldercare[113], sports performance analysis[114], and abnormal activity 

identification[115]. Since HAR is the primary foundation for the successful implementation of 

many applications, researchers are trying to overcome the challenges which cause inaccuracy in 

HAR. Sensor data is one of the most reliable and popular types of data used in HAR. Sensor data 

includes data from accelerometers, gyroscopes, and magnetometers [4, 82, 116]. Studies have used 

these sensors in distinct ways to accumulate data for HAR. Some researchers attached the sensors 

separately to different body parts[80, 117, 118], and some used sensors embedded in 

smartphones[85, 119-122] or smartwatches[123-125]. Among these different types of sensory 

devices and placements, smartphones are efficient, feasible and beneficial to for HAR research 
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because they address a number of advantages including applicability to a large population. Almost 

every smartphone contains an accelerometer and gyroscope sensor. Data from both of these 

sensors are capable of distinguishing different human activities, which means they are feasible for 

HAR applications. Smartphones are also an inseparable part of daily human life. As a result, 

researchers emphasized perfecting the HAR using smartphone sensors by adapting various 

techniques to diminish the difficulties posed by smartphones in HAR.  

Perfecting the HAR process using smartphone sensors requires the researchers to overcome some 

significant challenges related to sensor orientation, sensor placement, and algorithm choice. The 

sensor orientation problem is one of the most concerning issues faced when using smartphones in 

HAR, as a smartphone can be kept in different orientations. A user can keep the smartphone in any 

orientation and perform different activities. When two different users perform the same activity 

while keeping the smartphone in different orientations, the sensor data is different, and it becomes 

hard for HAR methods to identify the sensor data as the same activity. Many studies have proposed 

different methods to deal with the sensor orientation problem of the smartphone in HAR. 

Researchers also had to propose various approaches to diminish the sensor placement problem 

along with the sensor orientation problem. The sensor placement problem happens as smartphone 

users tend to keep their smartphones in different body locations, including backpacks, hands, or 

pockets. The smartphone sensors, particularly the accelerometer and gyroscope sensors, generate 

non-identical patterns for similar activity if the smartphone is kept in non-identical locations. For 

dealing with the sensor orientation and placement problem, researchers generally try to extract 

features with no orientation or placement effect that could generate substantially different sensor 

patterns for different activities. For example, [15] used extracted features in their proposed activity 

recognition process where they included data from four different body locations (coat pocket, 
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hand, trouser pocket and bag) and for five human activities (going upstairs, going downstairs, 

walking, standing and running). They started by extracting horizontal and vertical acceleration 

data from a raw accelerometer to diminish the influence of device orientation. Later they extracted 

eight features from the raw gyroscope signal and separated horizontal and vertical accelerations to 

develop a location identification system. Finally, they performed feature selection, and using this 

location recognition system, they conducted some data adjustments to the selected features, which 

were later used in their activity recognition process. They achieved an accuracy of 91.27% using 

Support Vector Machine (SVM) with a four folds cross-validation technique. [16] extracted 89 

time and frequency domain features from the accelerometer and gyroscope sensor of smartphones 

to make the activity recognition process orientation invariant and location independent. They then 

performed feature selection and feature normalization on the extracted features. Using these 

features, they evaluated the performance of three classifiers, K-Nearest Neighbours (KNN), 

Random Forest (RF), and SVM in recognition of five human activities (descending stairs, 

ascending stairs, walking, jogging and jumping) for five non-identical smartphone locations 

(trousers pocket, jacket pocket, hand and upper arm). They considered different validation 

procedures named one-to-one, all-to-one and rest-to-one and compared the performance of the 

classifiers for different validation procedures. [17] extracted 9 heuristic features from the data of 

different sensors available in five public datasets, which they claimed to be free of the influence 

of sensor orientation. They evaluated the performance of these 9 features in HAR using four 

machine learning algorithms and found the features to be effective enough to diminish the 

orientational effects. Along with these studies, many other studies extracted features to solve the 

sensor orientation and location dependency problem[18-20]. However, along with feature 
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extraction process, coordinate transformation is a promising method to address the sensor 

orientation and location dependency problem. 

In the coordinate transformation approach, first, a global reference coordinate system is 

discovered, and then all the signals are projected to that reference system. [46] used the gyroscope 

signal from a smartphone to develop the global reference coordinate system and then transformed 

the acceleration signal into that uniform reference coordinate system. Following this, they used a 

motif discovery algorithm to find activity patterns and then developed a Vector Space Model for  

classification purposes. They used their approach on a dataset containing smartphone signals from 

four different body locations (the left upper arm, the shirt pocket, the trousers front pocket, and 

the behind trouser pocket) and four different orientations and performed cross-orientation and 

cross-placement validation. [47] also performed coordination transformation by calculating 

quaternion to transform the linear acceleration signal from the device-coordinate system to the 

earth-coordinate system. Followed they extracted the first two principal components from the 

transformed acceleration signal to eliminate the direction effect for different activities. In addition, 

they extracted time and frequency domain features to make their approach more reliable and 

accurate. To validate their method, they collected data from a smartphone placed in three different 

locations pants' pocket, shirt's pocket and backpack) and three different orientations. They 

performed leave one orientation out cross-validation technique using an Online SVM algorithm 

and compared results for different orientations, placements and participants. [48] also performed 

coordinate transformation and feature extraction using an accelerometer, gyroscope and magnetic 

sensor to eliminate the orientational effect of the smartphone sensor and evaluated their method 

for two smartphone orientations (vertical and horizontal) placed in trouser pockets. They achieved 

97% accuracy in recognizing five human activities using a KNN classifier. In brief, a number of 
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studies and methods have been used to address the sensor orientation and placement problem. 

However, the classification algorithm also plays an important role in HAR classification accuracy; 

in particular, deep learning algorithms are potentially promising given a sufficiently large dataset. 

Studies have evaluated the performance of different machine learning algorithms in HAR and 

provided comparisons to decide the most suitable classifiers to use. Early classification studies 

used simple machine learning classifiers such as SVM[18, 49-51], RF[56-58], KNN[52, 53], and 

Decision Trees[54, 55]. These were employed because of their low complexity and resource-

efficient nature. However, the advancement of computational resources enabled the usage of deep 

learning algorithms such as Artificial Neural Networks (ANN), Convolutional Neural 

Networks(CNN), Recurrent Neural Networks(RNN), Long Short-Term Memory(LSTM), and 

Gaited Recurrent units(GRU). These deep learning algorithms offer additional advantages in HAR, 

especially CNN and LSTM because of CNN's automated feature extraction capability and LSTM's 

ability to persist older information from time series data. [21] used CNN's ability of automatic 

feature learning and found it to outperform four conventional machine learning algorithms in 

recognizing 18 human activities and 12 hand gestures. They also concluded that CNN was suitable 

for online HAR. [22] also exploited the feature extraction ability of CNN for HAR on three public 

datasets (Opportunity, Skoda and Actitracker) and acquired an accuracy of 88.19%, 76.83%, and 

96.88% on Skoda, Opp, and Antitracker, respectively, using the CNN-based model. [23] evaluated 

the feature extraction capability of CNN as well in recognizing six daily human activities (sitting, 

standing, walking, jogging, upstairs, and downstairs) using accelerometer signals. They achieved 

an accuracy of 94.2% which outperformed traditional machine learning algorithms such as 

Decision Trees (J48) and SVM. There are also other studies that used CNN as their final 

classification model, along with their early data pre-processing layer, to enhance the recognition 
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rate of human activities[24-26]. Along with CNN, another deep neural network variation called 

RNN is being widely used in HAR[27-29]. RNN has few variations of itself and among them, 

LSTM is useful in HAR, especially when studies combined the information persisting ability of 

LSTM with the feature extraction capability of CNN. [30] utilized the combination of CNN and 

LSTM, also called CNN-LSTM, to evaluate its performance in HAR for two datasets (iSPL and 

UCI HAR). They acquired accuracies of 99.06% and 92.13% on iSPL and UCI HAR datasets, 

respectively. [31] also employed the CNN-LSTM model for HAR using data from smartwatch 

sensors from 44 subjects performing 18 activities. They achieved an accuracy of 96.20% using 

CNN-LSTM, which was found to be better than the performance of CNN and LSTM when the 

models were used separately. [32] proposed a 4-layered CNN-LSTM model and evaluated its 

performance using the UCI HAR dataset. They found that the CNN-LSTM hybrid model can 

outperform Vanilla LSTM network, 2-Stacked LSTM network, 3-Stacked LSTM network with an 

accuracy of 99.39% using a 10-fold cross-validation technique. Many other researchers have used 

CNN-LSTM in HAR to utilize its capabilities of feature extraction and preserving temporal 

dependencies[62-65]. There has been considerable research for HAR which proposed non-

identical techniques to solve the major challenges including sensor orientation, sensor placement, 

and algorithm choice. 

In this study, we contributed to this field by evaluating the performance of previously introduced 

heuristic features[17] using our dataset in both intra-location (i.e. senor orientation) and inter-

location. (ie. sensor placement) scenarios. In the original study[17], the researchers introduced 

heuristic features to tackle the sensor orientation problem. However, they evaluated those heuristic 

features' performance by introducing orientation in the dataset synthetically. In our study, we 

evaluated the performance of these features in solving the orientation problem for three different 
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smartphone locations where the sensor orientations were ensured during the data accumulation 

process. Moreover, we assessed the performance of those heuristic features in solving the sensor 

placement problem. By doing this, we wanted to inspect if the heuristic features alone can solve 

the sensor placement issue. In addition, only a few studies adopted the leave N-Subject-out cross-

validation approach and did it for a considerably small-scale dataset. In our study, we adopted the 

Leave-N-Subject-out cross-validation approach for a dataset accumulated from 42 subjects and 

consisted over 12 million samples. To be precise, we worked on the following points in this study, 

• We evaluated the effectiveness of previously proposed sensor invariant features[17] 

performance in the case of sensor orientation problem in HAR for a large-scale dataset 

where the sensor orientations were introduced practically. (Intra-location Evaluation) 

• We assessed the performance of heuristic features in tackling the sensor placement issue 

in HAR. (Inter-location Evaluation) 

• We analyzed the performance of the proposed approach in HAR using a leave N-out cross-

validation technique for a huge dataset containing enormous variations. 

• We analyzed the performance of the proposed architecture for six activities with varying 

intensities (Lying, Sitting, Walking, Running at 3-METs, Running at 5-METs, and 

Running at 7-METs).  

The rest of the paper is arranged as follows. Section 2 introduces the materials and methods where 

we discuss the data accumulation procedures, data pre-processing and feature extraction approach, 

the architecture of the models and its workflow. Section 3 describes activity-specific and 

participant-specific results for both intra-location and inter-location scenarios. Section 4 discusses 

our findings, and we conclude our study in Section 5. The entire study procedure is depicted in 
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Figure  3.1. 

 

Figure  3.1. Overall workflow diagram of our study. 

 

3.2. Materials and Methods 

 

In this section, we will first discuss the data accumulation process. Following, we will explain the 

data pre-processing and feature extraction procedure. Then, we will briefly discuss the feature 

selection approach and describe the CNN-LSTM architecture we used. 

3.2.1. Data Accumulation 

 

This section has segments similar to section 2.2.1. The sole difference was introducing data 

collection from the smartphone location backpack and right hand. For our study, we collected data 

from 42 healthy participants for six different activities with varying intensities: Lying, Sitting, 
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Walking, Running at 3-METs, Running at 5-METs, and Running at 7-METs. We acquired ethical 

approval from the Memorial University Interdisciplinary Committee on Ethics in Human Research 

(ICEHR #20180188-EX). Before commencing the data accumulation procedure, each participant 

had to complete the Physical Activity Readiness Questionnaire (PAR-Q). There were 18 male and 

24 female participants. The average age, height and weight were 29 (range = 18-56 years) years, 

169.17cm (range = 143-185cm) and 68.19 kg (range = 43-95.2kg), respectively. Each participant 

performed nine trials to complete the data collection protocol. While performing the trials, the 

participant carried three Samsung Galaxy S7 smartphones (SM-G930W8) in three locations. The 

locations were the participant's right pocket, backpack and right hand. The data accumulation 

process was 65 minutes long. The order of the trials with duration is given in Table 3.1. Trial 1 is 

the trial with which the participants started the data collection protocol, and Trial 9 refers to the 

last trial to be completed.  

An android application called Ethica Data[96] was used to collect sensor data. The application 

recorded the data from the accelerometer sensor's X, Y and Z axes embedded into the smartphone. 

The application continuously recorded the sensor's value and uploaded the value to the server. 

During the data collection procedure, the participants were free to keep the smartphone in any 

arbitrary orientation. We collected the data in an indoor environment. We used a treadmill to 

accumulate data for walking and running at three speeds. We used the Metabolic Equivalent of 

Task (MET) to quantify the running intensities or speeds. METs are a ratio of the oxygen 

consumption rate of a person to the corresponding person's weight. We preferred MET to walk 

speed, cadence or stride length to measure the intensity because those units are prone to generate 

different expenditures for different persons. We wanted to ensure that the participants performed 
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the activity with the same intensity. The mathematical equation to define the MET is given in 

equation 1, 

𝑀𝐸𝑇 =  
𝑂𝑥𝑦𝑔𝑒𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (

𝑚𝑖𝑙𝑖𝑙𝑒𝑡𝑒𝑟

𝑚𝑖𝑛𝑢𝑡𝑒
)

3.5 ×𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)
                                                             

We selected these particular activities in our study to ensure the presence of the most common 

daily activities. As well, few HAR studies combined activity types and activity intensity 

recognition in their work.   

Table 3.1. Trial order and duration of data collection protocol. 

Trial Order Activity Duration (Minutes) 

1 Lying down 5 

2 Sitting 5 

3 Walking 10 

4 Lying down 5 

5 Running at 3-METs 10 

6 Lying down 5 

7 Running at 5-METs 10 

8 Sitting 5 

9 Running at 7-METs 10 

 

3.2.2. Data Pre-processing 

 

This section has repeated segments from section 2.2.3. The new addition in this section was the 

sample counts for the smartphone location backpack and right hand. We performed data 

resampling and data imputation on the dataset. The optimization technique of the Ethica App did 

not let the app maintain the same data uploading frequency. As a result, the frequency ranged from 

5 Hz to 19 Hz. We upsampled the dataset to a constant frequency of 30 Hz to eliminate this data 

imbalance using a published method [33]. Another challenge with the data was missing values. 

Missing data occurred because of the temporal connection loss between the Ethica App and the 

server. We used linear data imputation to impute missing values using the ImputeTS package in 
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R. The number of samples for each activity at each smartphone location after pre-processing is 

shown in Table 3.2, 

Table 3.2. Number of samples for each activity class at each location after pre-processing. 

Location: Pocket Location: Backpack Location: Hand 

Activity Name Sample Count Activity Name Sample Count Activity Name Sample Count 

Sitting 879325 Sitting 879612 Sitting 879855 

Lying 1266292 Lying 1268078 Lying 1269428 

Walking 765246 Walking 765375 Walking 765266 

Running at 3 

METS 

984997 Running at 3 

METS 

986512 Running at 3 

METS 

986310 

Running at 5 

METS 

986446 Running at 5 

METS 

986064 Running at 5 

METS 

985187 

Running at 7 

METS 

992654 Running at 7 

METS 

995726 Running at 7 

METS 

992154 

 

3.2.3. Feature Extraction 
 

The feature extraction process and formulas have already been discussed in section 2.24. This 

section has been added to this chapter for the reader’s convenience. Some new segments and 

figures have been added in this section to show the effect of the extracted features for different 

smartphone locations. We extracted 9 orientation-invariant heuristic features using the formulas 

in [17] to address the orientational dependency problem. Since the participants had the freedom to 

place the smartphones in the pre-determined smartphone location in any orientation, we 

experienced different ranges and patterns in sensor values for different participants even though 

they were performing the same activity. Figure  3.2 shows the differences in patterns and ranges 

of accelerometer axes due to the sensor orientation while different participants performed the same 

activity (Running at 7 METs), keeping the smartphone in their backpacks. We extracted the 
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previously introduced 9 orientation invariant 

 

Figure  3.2. The difference in range and patterns of accelerometer axes due to orientation 

(Backpack) 

 

heuristic features to eliminate this problem. The formulas to extract the 9 orientation-invariant 

heuristic features are given below, 

𝑤1[𝑛] = ‖𝑣𝑛⃗⃗⃗⃗ ‖ (1) 

𝑤2[𝑛] = ‖∆𝑣𝑛⃗⃗⃗⃗ ‖ (2) 

𝑤3[𝑛] = ‖∆2𝑣𝑛⃗⃗⃗⃗ ‖ (3) 

𝑤4[𝑛] = ∠(𝑣𝑛⃗⃗⃗⃗ , 𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (4) 
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Here, 

𝑣𝑛⃗⃗⃗⃗ = (𝑣𝑥[𝑛], 𝑣𝑦[𝑛], 𝑣𝑧[𝑛]) defines a vector where 𝑣𝑥[𝑛], 𝑣𝑦[𝑛], 𝑣𝑧[𝑛], were values of the 

accelerometer x-axis, y-axis, and z-axis, respectively, at any time sample n. ∆𝑣𝑛⃗⃗⃗⃗ =  𝑣𝑛+1 − 𝑣𝑛 

and ∆2𝑣𝑛⃗⃗⃗⃗ =  𝑣𝑛+1 − 𝑣𝑛, defined first-order and second-order time differences, respectively. 

𝑤𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑡 = 1 𝑡𝑜 9 

‖�⃗⃗� ‖ = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑛𝑜𝑟𝑚 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚 

∠(𝑎 , �⃗� ) =  𝑐𝑜𝑠−1 (
𝑎  ∙  �⃗� 

 ‖𝑎 ‖ ‖�⃗� ‖
)

= 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑎  ∙  �⃗�  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒𝑖𝑟 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

A more detailed explanation of the features can be found in [17]. Although they introduced the 

nine features mentioned and used them to eliminate the orientational effect, in a previous 

study[126], we found the first four features 𝑤1, 𝑤2, 𝑤3, and 𝑤4, to be the most significant and 

effective in reducing the orientational effect. Therefore, for our study, we only used the first four 

𝑤4[𝑛] = ∠(∆𝑣𝑛⃗⃗⃗⃗ , ∆𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (5) 

𝑤4[𝑛] = ∠(∆2𝑣𝑛⃗⃗⃗⃗ , ∆
2𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (6) 

𝑤7[𝑛] = ∠(𝑝𝑛⃗⃗⃗⃗ , 𝑝𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) where 𝑝𝑛⃗⃗⃗⃗ =  𝑣𝑛⃗⃗⃗⃗  ×  𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (7) 

𝑤8[𝑛] = ∠(𝑞𝑛⃗⃗⃗⃗ , 𝑞𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) where 𝑞𝑛⃗⃗⃗⃗ =  ∆𝑣𝑛⃗⃗⃗⃗  ×  ∆𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (8) 

𝑤9[𝑛] = ∠(𝑟𝑛⃗⃗  ⃗, 𝑟𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) where 𝑟𝑛⃗⃗  ⃗ =  ∆2𝑣𝑛⃗⃗⃗⃗  ×  ∆2𝑣𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (9) 
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features. 

 

Figure  3.3. The similarity in pattern and ranges of heuristic features while two participants 

performed the same activity (Backpack) 

 

From Figure  3.3, we can observe that the 4 heuristic features were able to introduce enough 

similarity for the feature values while two different participants placed the smartphone in a 

backpack and performed the same activity (Running at 7 METs). Visual inspection of Figure  3.4 

shows that features were able to maintain dissimilarity for the accelerometer values while two 

different participants placed the smartphone in a backpack and performed different activities 

(Sitting and Running at 5 METs). The heuristic features reduced the sensor orientation effect from 

the sensor values. The four features are also simple to extract, which can reduce computational 

complexity compared to the other feature-extracting methods with numerous features that need to 
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be extracted to eliminate the orientational problem. 

 

Figure  3.4. Dissimilarity in pattern and ranges of heuristic features while two participants 

performed different activities. (Backpack) 

 

We investigated the patterns and ranges of the raw accelerometer values and heuristic features in 

different smartphone locations. The raw accelerometer values should differ in ranges and patterns 

for the same activity performed by different participants when keeping the smartphone in different 

locations. From Figure  3.5, we can observe the dissimilarity in patterns and ranges of raw 

accelerometer values while two participants performed running at 5-METs, keeping the 
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smartphone in two different locations (Backpack and Pocket). 

 

Figure  3.5. The difference in range and patterns of accelerometer axes due to different sensor 

placements 

 

From Figure  3.6, we can observe that the first heuristic feature showed similarities in the values 

and patterns while the two participants performed the same activity, running at 5-METs by keeping 

the smartphones in different locations (Backpack and Pocket). For the remaining 3 heuristic 

features, the similarities in ranges looked promising, but the patterns differed substantially. 

Besides, the heuristic features could maintain the dissimilarity in the feature values and range for 

different activities (Sitting and Running at 5 METs) performed by different participants, keeping 
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the smartphone in different locations (Backpack and Pocket), as depicted in Figure  3.7. 

 

Figure  3.6. The similarity in pattern and ranges of heuristic features while two participants 

performed Running at 5-METs, keeping the smartphone in different locations (Backpack and 

Pocket) 
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Figure  3.7. Dissimilarity in pattern and ranges of heuristic features while two participants 

performed Sitting and Running at 5 METs, keeping the smartphone in different locations 

(Backpack and Pocket) 

 

3.2.4. 1D-CNN-LSTM Architecture 
 

The structure of the 1D-CNN-LSTM model has already been discussed in section 2.2.5. This 

section has been repeated for the reader’s convenience. In this section, we will discuss our deep-

learning approach. Although the heuristic features tried to reduce the gap between the sensor 
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values for the same activity in different placements (i.e., hand, pocket or backpack), there were 

still substantial differences among the sensor values for different placements.  

We decided to use a hybrid 1D-CNN-LSTM Architecture to address the sensor placement 

problem. In our proposed model architecture, there were two major parts. The first part contained 

the CNN model, and the second part included the LSTM and fully connected layers. The reason 

behind using CNN was its automatic feature extraction capability. Generally, a CNN model takes 

images or data matrices as input. The convolution layer of CNN applies multiple filters or kernels 

on the feed images or data matrices and extracts meaningful feature maps. The number of feature 

maps depends on the number of filters applied. If 𝑛 number of filters are applied on a single data 

matrix, then we will get 𝑛 number of feature maps where each feature map will try to extract a 

distinctive feature for that data matrix. After extracting the data matrix, CNN uses the pooling 

layer to reduce the size of the filter maps.  

The average or max pooling layer is used to reduce the feature map's size. The feature maps can 

be regarded as the automatically extracted features for the input data matrices. In the convolution 

layer, we propagate the kernels or filters on the data matrices in two different ways. If we propagate 

the filters in two directions at a time, we call the model 2D-CNN or conventional CNN. If we 

propagate the filters in only one direction, we call it 1D-CNN. Generally, we use 2D-CNN for 

images and 1D-CNN for data matrices. As mentioned earlier, CNN can be combined with LSTM 

to maintain temporal and spatial dependency. In an LSTM model, there can be one or more LSTM 

layers. Each LSTM contains multiple LSTM cells, and each LSTM cell contains three gates named 

Forget gate, Input gate and Output gate. We need to feed data matrices as input to the LSTM 

model. If a data matrix has n samples, then we can denote the samples as 𝑡𝑖 where 𝑖 = 1,2,3……𝑛. 

When the Input gate processes any particular sample 𝑡𝑖, the forget gate decides the information to 
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preserve from the previous sample 𝑡𝑖−1. The output gate then combines the information from the 

Input gate and Forget gate to make a prediction for the current sequence or data matrix. If an LSTM 

model follows a CNN model, then the feature maps generated by the CNN model act as input to 

the LSTM model. Using the extracted feature maps of the CNN model, the LSTM model can find 

better temporal dependency for a sequence or data matrix. The output from the LSTM model goes 

to the fully connected layers made of conventional neurons to make the final prediction. We 

assumed that the CNN portion of the proposed architecture would be capable of bringing 

meaningful feature maps, which will help reduce the similarity gap in heuristic feature values 

observed in the case of non-identical placements of smartphones. 

Our proposed 1D-CNN-LSTM architecture was designed as a classification model for classifying 

human activities. The 1D-CNN-LSTM model contained six convolution layers with 512, 256, 64,  

128, 256, and 512 filters, followed by an LSTM layer with 512 LSTM cells. Then, we added four 

fully connected layers with 100, 28, 64 and 6 neurons. We had average pooling layers after the  

first, third and final convolution layers with a pool size of 3. We also introduced some dropout 

layers to reduce the overfitting issue in our model. A more detailed description of the model is 

depicted in Table 3.3. We used an "Adam" optimizer with a learning rate of 0.0001. We 

implemented the model using the programming language Python with the "Tensorflow" and 

"Keras" packages. 

Table 3.3. The architecture of the 1D-CNN-LSTM Model 

Parts of 

Architectu

re 

Components of Each Part 

CNN Layer's 

Name 

Number of 

Filters 

Kernel 

Size 

Pool 

Size 

Activation 

Function 

Padding 

Type 

Dropout 

Ratio 

Convolution 512 5  relu same  

Dropout      0.3 

Average 

Pooling 

  3  same  

Convolution 256 3  relu same  
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Dropout      0.3 

Convolution 64 3  relu same  

Average 

Pooling 

  3  same  

Convolution 128 3  relu same  

Convolution 256 5  relu same  

Dropout      0.3 

Convolution 512 7  relu same  

Dropout      0.3 

Average 

Pooling 

  3  same  

LSTM Layer's Name Number of Units Activation Function 

LSTM 256 tanh 

Fully 

Connected 

Network 

Layer's Name Number of Neurons Activation Function 

Dense 100 relu 

Dense 28 relu 

Dense 64 relu 

Dense 6 softmax 

 

3.2.5. Validation Procedure 
 

There were data from 42 participants. We used 30 participants' data in the training phase, 10 for 

testing and 2 for validation. The participant's data in the validation set were constant, but the 

training data and test data changed as we used Leave-N-Subject-Out Cross-Validation. In our case, 

the value of N was 10, which made our procedure a Leave-10-Subject-Out Cross-Validation 

technique. As we had 40 participants' data for the training and testing phase, 4 iterations were 

required for the whole validation procedure. We had 10 different participants' data in the test set 

at each iteration. As mentioned before, we decided to inspect two separate kinds of scenarios: 

intra-location (i.e., sensor orientation) and inter-location (i.e., sensor placement) evaluations. In 

the intra-location evaluation, the 1D-CNN-LSTM model was trained and tested using the data from 

the same smartphone location, and in the inter-location scenario, the model was trained using data 

from one smartphone location but tested using the data from the other two smartphone locations. 

To accomplish the intra-location and inter-location evaluation, we trained the 1D-CNN-LSTM 

model for a particular smartphone location using the heuristic features for the 30 participants in 
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the training set. Then, we computed the evaluation metrics using the data of 10 participants in the 

test set for all three smartphone locations. For instance, if the model was trained using the heuristic 

features of 30 participants in the training set for the pocket location, then we computed the 

evaluation metrics using the heuristic features of 10 participants in the test set for all three 

smartphone locations: pocket, hand and backpack. In this manner, both intra-location and inter-

location results were accumulated for all three smartphone locations. According to our validation 

approach, we had to train the model 4 times to follow the Leave-10-Out Cross-Validation 

technique for each smartphone location. Since we were conducting our study for 3 different 

smartphone locations, we needed to train the model 12 times in total. We used an early-stopping 

technique in the training of the 1D-CNN-LSTM model. The early stopping technique was designed 

so that the model would stop training if the accuracy of the model for the validation data did not 

improve within the successive 20 epochs. The 1D-CNN-LSTM model needed the training and test 

data to be segmented into data matrices or data windows because 1D-CNN-LSTM works with data 

windows or data matrices. We segmented the training and test data in each iteration using a 

window length of 65 samples with an overlapping ratio of 98.46%. That means each window had 

65 samples, and two consecutive windows had 64 samples in common. We used the window length 

of 65 because we found it to be both computational and time-efficient in our previous study [126]. 

The information for the validation approach is organized in Table 3.4. 

Table 3.4. A detailed description of the validation procedure for each model in each iteration 

of the Leave-10-Out Cross-Validation technique. 

Locations of smartphone Number of participants Parameter Values 

Training data Test data for 

intra-location 

validation 

Test data for 

inter-location 

validation 

Training set Test set Window size Batch 

Size 

Pocket Pocket Backpack and 

Hand 

30 10 65 2000 

Backpack Backpack Pocket and 

Hand 

30 10 65 2000 
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Hand Hand Pocket and 

Backpack 

30 10 65 2000 

 

3.3. Results 
 

We used data from three smartphone locations, and the users had the freedom to keep the 

smartphone in each smartphone location at any orientation. We used the four most common 

evaluation metrics for multi-class classification studies: Accuracy[100], Precision[100], 

Recall[100], and F1-Score[101]. Accuracy is the most suitable metric to present a classification 

model's overall performance. The other three metrics are well-suited to describe the model's 

performance for the class-specific scenario.  

3.3.1. Results for Intra-Location Scenario 
 

In Intra-location evaluation, we first analysed the model's overall performance for each smartphone 

location. Following, we performed participant-specific and activity-specific analyses. 

 

3.3.1.1. Overall Result 

 

For the intra-location case, the model was trained and tested using the heuristic features 

corresponding to the same smartphone location. We computed results using the Leave-10-Out 

Cross-Validation procedure and averaged the test results. The average accuracy, recall, precision 
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and F1-Score for each smartphone location are depicted in Error! Reference source not found.. 

 

Figure  3.8. Bar plots with error bars showing averaged evaluation metrics for the intra-

position scenario. 

 

In the intra-location scenario, we achieved the highest result for the location backpack for every 

evaluation metric. We recorded 73.65% accuracy, 73.34% recall, 76.83% precision and 72.36% 

F1-score for the location backpack. We recorded the second-best results for the location pocket. 

For the location pocket, the accuracy, recall, precision and F1-score were 71.46%, 71.07%, 73.66% 

and 69.82%, respectively. Although the results were lower for the location hand among all the 

smartphone locations, it was not much lower if compared with the results for the location pocket. 

We recorded 70.10% accuracy, 69.68% recall, 72.47% precision and 69.04% F1-score for the 

location hand. We hypothesize better results for the backpack location because the smartphone 

was more stable in the backpack than in the other smartphone locations. For activities with high 

intensities, such as walking or running, the hand frequently moved with the body, which allowed 

additional variations for the values from the accelerator sensor of the smartphone. Consequently, 
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the values for the heuristic features were affected for the location hand, and the results became 

lower. If we observe the overall results, the evaluation metrics ranged between 69%-74% for all 

the smartphone locations. We cannot consider it the best result compared to the previously 

conducted studies. Still, considering the number of participants, the volume of the dataset and the 

number of sensors, the results seem promising.  

The accuracies were over 70% for all the smartphone locations, which means that the 1D-CNN-

LSTM model performed decently as a classification model. The average precision and recall were 

good, indicating that our model tried to keep the number of false predictions lower and true 

predictions higher for each activity class. However, these two metrics will be more meaningful 

when we observe their value for the activity-specific scenario. The satisfactory F1-Scores meant 

that the 1D-CNN-LSTM model tried to maintain a balanced trade-off between precision and recall. 

3.3.1.2. Participant-Specific Scenario 

 

We only considered accuracy as a summary metric of model performance for the participant-

specific result analysis in the intra-location scenario. We wanted to observe how consistent the 

model's performance was for each subject. The accuracy of each participant for each smartphone 

location is depicted using a line plot in Error! Reference source not found.. For the location 

pocket, we achieved the highest accuracy of 88.49% for participant 20. For most participants, the 

accuracy ranged from 60% to 80%. However, we recorded inferior accuracy in the case of some 

participants, such as participants 16, 35, 37 and 38. For the location backpack, we recorded the 

highest accuracy of 90.29% for participant 27. The accuracy range for most participants was the 

same as we observed in the pocket case. We also observed very poor performance from the model 

for some participants, such as participants 4, 16, 22 and 37. For the location hand, the highest 
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accuracy was 84.25% for participant 33. The overall accuracy range was the same as we observed 

for other smartphone locations. Again, for participants such as 19, 25 and 37, the model rendered 

insufficient accuracy. Considering the overall pictures, for the intra-location scenario, the 

performance of heuristic features can be considered sufficient and propitious. Some participants, 

including 16 and 37, consistently had low accuracy across all intra-location scenarios. It is 

somewhat unclear why this is the case, but the result is likely due to noise in the raw data. 

 

Figure  3.9. Line plot showing accuracies for all participants at every position in the intra-

position scenario. 

 

3.3.1.3. Activity-Specific Scenario 

 

We also analysed the result of the intra-location scenario for the activity-specific case. For this 

analysis, we considered the evaluation metrics such as recall, precision and F1-Score to 

demonstrate how the heuristic features performed with the help of the 1D-CNN-LSTM model for 

each activity class. The results for the activity-specific case are depicted in Error! Reference 
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source not found.. First, we will discuss the values of evaluation metrics for the pocket location. 

We recorded the highest precision of 86.58% for the activity "Walking". We generally expect a 

model to generate high precision for all the classes. Our 1D-CNN-LSTM model generated high 

precision for high-intensity activities such as Walking and running at 3, 5 and 7 METs for the data 

of the location pocket. However, the precision for low-intensity activities such as Sitting (61.61%) 

and Lying (63.70%) was low. This is a well-known result because sensor signals tend to be small, 

and models misclassify these activities. 

 

Figure  3.10. Bar plot showing activity-specific results with error bars for the intra-position 

scenario. 

 

For the pocket location, all activity classes, except Sitting, had a model-generated recall greater 

than 70%. We recorded the highest recall of 83.96% for the activity Running at 5 METs. We also 

expect high recall from a classification model along with high precision. However, our model for 

the pocket location generated very poor recall (43.76%) for the low-intensity activity of Sitting. 

Now, the F1-Score in our classification model is a very important metric to consider because it 
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explains how well-balanced our model is for precision and recall. For the pocket location, the F1-

Score was promising for all the activities except for Sitting. For the activity class Sitting, the F1-

Score was only 48.65%. The F1-Score was expected to be low for the activity Sitting as we 

experienced low precision and recall for that same activity. We acquired the highest F1-Score for 

the activity of walking (82.46%). 

For the backpack location, we recorded the highest precision of 87.98% for activity Running at 7 

METs. The precision was lower for activities such as lying (66.26%) and running at 5 METs 

(69.31%). The precision for the activity Sitting was poor for the pocket location; however, for the 

location backpack, it was improved (76.60%). The recall for the backpack location was similar to 

the pocket location. We recorded the lowest recall of 55.55% for the activity Sitting. The highest 

recall was found for the activity of Walking (81.42%). The recall ranged between 70% to 80% for 

all other activities. The scenario for F1-Score for the location backpack was similar to the location 

pocket. The lowest F1-Score was recorded for the activity of Sitting (61.41%), and the highest F1-

Score was recorded for the activity of Walking (80.95%). Considering the evaluation metrics for 

the location backpack, our model seemed to struggle to identify the activity of Sitting correctly.  

For the hand location, we expected the evaluation metrics to be poorer than the metrics for the 

other smartphone locations. This is because, as we mentioned before, the continuous movement of 

the hand during high-intensity activities causes extensive variations in the data collected from the 

accelerometer sensor. The precision values for the hand location had a pattern similar to that 

observed for the pocket location. We recorded the highest and lowest precision for the walking 
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(87.17%) and sitting (55.76%) activities, respectively. In the case of recall for the hand location, 

the scenario was the same as we observed for the pocket location.  

The recall was highest for the activity Running at 3-METs (81.41%) and lowest for the activity 

Sitting (50.95%). The recall was poor for the activity Running at 5 METs. The lowest F1-Score 

for the hand location was recorded for the activity Sitting (51.25%), and the highest F1-Score was 

for the activity Walking (81.99%). Considering the precision, recall and F1-Score for all the 

smartphone locations, we found that the model struggled to recognize the activity Sitting for all 

three smartphone locations. For other activities, the model performed well using the heuristic 

features, especially for the activity of Walking. 

3.3.2. Results for Inter-Location Scenario 

 

In the case of the inter-location scenario, we performed the same analysis. We will start by 

discussing the overall results. Following, we will describe the participant-specific and activity-

specific results. 

3.3.2.1. Overall Results 

 

We trained our model using heuristic features extracted from the raw accelerometer data from one 

smartphone location and tested the model's performance using the heuristic features extracted from 

the raw accelerometer data from a different smartphone location. We averaged the evaluation 

metrics over all the iterations of the validation procedure to calculate the final overall results. The 

results are shown in Table 3.5. The highest accuracy was for the backpack location when the model 

was trained using the data from the hand location. We recorded 68.66% accuracy, 69.95% 

precision, 67.07% recall and 64.77% F1-Score in this case. The lowest accuracy result was 
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recorded for the data from the hand location when the model was trained using data from the 

backpack location. The accuracy and F1-Score were below 60% in this case. When the model was 

trained using data from the pocket location and tested using data from the backpack location, we 

acquired results that were almost similar to the case where the model was trained using the data 

from hand and tested using the data from the backpack. For other cases, the metrics ranged between 

62% to 66%.  

Table 3.5. Averaged values of evaluation metrics for each inter-location case. 

Smartphone 

location for the 

training set 

Smartphone 

location for test 

set 

Accuracy Precision Recall F1-Score 

Pocket Backpack 67.80% 69.56% 66.93% 65.00% 

Hand 62.39% 63.27% 64.20% 60.86% 

Backpack Pocket 62.62% 66.68% 63.59% 61.45% 

Hand 59.03% 61.64% 60.60% 58.23% 

Hand Pocket 64.10% 66.09% 62.92% 60.38% 

Backpack 68.66% 69.95% 67.07% 64.77% 

 

We assumed to have poorer results in the case of inter-location evaluation since the training data 

and test data were from different smartphone locations and different participants. The values for 

the evaluation metrics were below 70%. However, the result seems acceptable considering the 

simple heuristic features and only data from a single accelerometer.  The model seemed to perform 

the best when trained using the data from hand. 

3.3.2.2. Participant-Specific Result 

 

We only considered accuracy as an evaluation metric for participant-specific evaluation. As 

mentioned before, the principal purpose of this analysis was to observe the number of participants 

for whom the model's performance was poor. The analysis is depicted graphically in Figure  3.11. 

When the model was trained using data from the pocket location and tested using the data from 
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other smartphone locations, the accuracies were above 60% for most of the participants. In 

addition, the accuracies were consistent for each participant for every smartphone location, i.e., 

for a particular participant, if the model performed well for the data from the hand location, the 

model performed well for the data from the backpack location. However, there were some 

exceptions; for instance, for participant 22, the accuracy of the data from the backpack was the 

lowest (40.71%), but the accuracy of the data from hand was 76.81%. For participant 23, the 

accuracy was 42.05% when the model was tested using data from the hand location, but for the 

same participant, the accuracy was 75.97% when tested using data from the backpack location. 

 

Figure  3.11. Participant-specific results for the inter-location scenario. 
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When the model was trained using the data from the backpack, for some participants, the model 

performed very well when the test data was from the pocket. For example, for participants 20, 31 

and 33, the accuracies were 86.22%, 83.69% and 88.13%, respectively. However, the scenario was 

not the same when the test data was from the hand location. The highest accuracy recorded when 

the test data was from the hand location was 75.91% for Participant 28. When the test data was 

from the hand location, the lowest accuracy was below 47% for some participants, such as 19, 26 

and 35. Similar accuracies were recorded for participants 6, 16, 21, 24 and 37 when the test data 

was from pocket.  

For the final case, where the model was trained using data from hand and tested for two other 

smartphone locations, the results were better for most participants when the test data was from the 

backpack location. For most of the participants, the accuracies were about 70%. We recorded the 

highest accuracy of 82.67% for participant 27 when the training data was from the hand location, 

and test data was from the backpack location. Still, there were some participants, such as 19, 22, 

35, and 37, for whom the accuracy was very low. When the test data was from the pocket location, 

we recorded the best accuracy (78.15%) for participant 21. For most of the participants, accuracies 

were around 60%, except for participants 21, 35 and 39, when the accuracies were below 50%. 

3.3.2.3.  Activity-Specific Result 

 

For the activity-specific results, we will discuss each evaluation metric for all the cases 

individually. The evaluation metrics for each inter-location scenario and every activity class are 

depicted in Figure  3.12. For precision, we can see that the lowest values were found for the activity 

Sitting. For all the inter-location cases, the precision for the activity Sitting was around 50%. We 

encountered similar results for intra-location cases. The model found it difficult to identify the 
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activity Sitting correctly in both inter-location and intra-location situations. The precision for the 

activity Walking was satisfactory for all the inter-location cases and was around 80%. For the 

activity Lying, we experienced precision ranging between 50% to 60%. This means the model 

mislabelled many samples from other high-intensity activities to Sitting and Lying. For the activity 

Running at 3 METs, the precision was lower than 60% for two cases, and in both cases, the test 

data was from the hand location. For other cases, the precision was around 70%. For the activity 

Running at 5 METs, the precision was approximately 70% when test data was from the backpack 

location. For other cases, the precisions were around 60%. Finally, for the activity Running at 7 

METs, the precision was approximately 80% except for two cases. The test data were from the 

pocket in both cases, and the precision was around 65%. Observing the precision for all activity 

classes, it is clear that the model had lower accuracy from low-intensity activities, which decreased 

overall precision.  

Regarding the recall for all the inter-location cases, we recorded the poorest performance for two 

activity classes, Sitting and Running, at 5 METs. For the activity Sitting, we recorded poor 

precision (between 20% and 30%) in three cases. In two of those three cases, the test data was 

from the backpack location, and the other had data from the pocket location as test data and training 

data from the hand location. For other cases, the precision was between 55% to 70%. Poor 

precision and recall for the activity Sitting means that the model mislabelled other activities as the 
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activity Sitting and mislabelled many samples from Sitting activities to other activities. 

 

Figure  3.12. Activity-specific results for the inter-location scenario. 

 

Although the precision was around 60% for all the cases of activity Lying, the recall was 

comparatively better and around 80% for three cases. In two of those three cases, the train data 

was from hand, and the other case had training data from the pocket location and test data from 

the backpack location. For Walking and Running at 3-METs activities, the recall was satisfactory 

and ranged between 70% and 80% for most inter-location cases. As mentioned before, the recall 

was poor for the activity Running at 5 METs. The recall (above 60%) was comparatively better 

for the activity running at 5 METs only when the test data was from the backpack. For the activity 
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Running at 7 METs, the recall was satisfactory. After observing the precision and recall, one 

significant finding was that the metrics were always better when the test data was from the 

backpack location.  

In the case of F1-Score, the result was similar to the previous two metrics as it is a harmonic mean 

of recall and precision. The F1-Score was promising for the activity Walking, at approximately 

80%, and Running at 7-METs, at approximately 70%, for all the cases. The F1-Score was low for 

the 

 activities Sitting and Running at 5-METs. The low value of F1-Score for the activities Sitting and 

Running was expected as we experienced low precision and recall for those activities. For the 

activities Lying and Running at 3-METS, the F1-Score was better for three cases. Among those 

three cases, two cases had the data from the hand as train data, and in the other case, the test data 

was from the backpack, and the train data was from the pocket.  

Considering all evaluation metrics for all the inter-location cases, we can conclude that the 

heuristic features with the 1D-CNN-LSTM model struggled with low-intensity activities in both 

intra-location and inter-location cases. Along with the low-intensity activities, we also found poor 

performance for the activity Running at 5-METs.  

3.4. Discussion 

 

In our study, we wanted to explore the effectiveness of heuristic features in reducing the effect of 

sensor orientation and sensor placement on sensor data with the help of a 1D-CNN-LSTM model. 

We collected data from only a smartphone accelerometer sensor. We had 42 participants, and we 

followed the Leave-10-Subject-Out Cross-Validation approach. Our study had two types of 

analysis: intra-location (i.e., sensor orientation) and inter-location (i.e., sensor placement) 
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analyses. In the intra-location scenario, we checked the effectiveness of the heuristic features on a 

dataset where the orientations were introduced during data collection. In the study[17], where the 

heuristic features were introduced, they evaluated the performance of the heuristic features on five 

public datasets, which they named A [33], B [103], C [83], D [104], and E [105]. These datasets 

were accumulated using sensors fixed at a constant orientation. So, the datasets had orientation 

information for only one orientation. Their study claimed that the heuristic features removed the 

orientational information from the dataset. Since the orientation information was removed, the 

dataset simulated the scenario where the orientation of the sensor did not matter anymore. 

However, their dataset did not represent a practical scenario where multiple orientations can be 

present. Since, in our case, different orientations of smartphone accelerometer were ensured, we 

were able to evaluate the performance of the heuristic features in a practical scenario. In addition, 

the dataset on which [17] performed the evaluation had a low volume of data. They had the highest 

number of data windows for dataset C (30 subjects); the number of data windows was 10,299, with 

a 50% overlapping ratio. In our case, we had around 4 million data windows for each smartphone 

location. For 3 smartphone locations, the number of data windows was about 12 million. 

Moreover, we had 42 participants' data, which offered more diversity for our dataset. Their study 

followed the Leave-1-Subject-Out Cross Validation approach, whereas Our Leave-10-Subject-Out 

Cross Validation approach ensured a more practical test case where 10 test participants offered 

completely unseen data to the model. In their study, three of their five datasets had more than one 

type of sensor. Datasets B and E only used a single accelerometer as we did. To be brief, our study 

protocol was more practical and simulated a real-life scenario, ensuring a more reliable evaluation 

of the heuristic features.  



85 
 

The study [23] followed two validation approaches: P-Fold Cross Validation and Leave-1-Out 

Cross-Validation. The Leave-1-Out Cross Validation approach and our Leave-10-Out Cross 

Validation approach tested the model using data from participants unseen by the model. As 

mentioned earlier, they introduced 9 heuristic features. They used these features in dividing them 

into 3 sets. The first set had the first 3 heuristic features, the second set had the first 6 features, and 

the third one had all 9 heuristic features. They evaluated the effectiveness of these features for 4 

different classifiers: Bayesian Decision Making (BDM), K-Nearest Neighbour (KNN), Support 

Vector Machine (SVM) and Artificial Neural Network. In Table 3.6, we have tabulated the best 

result found for each dataset using the heuristic features, number of features used, name of the 

classifier, types of sensors, number of sensor units and the same information in our intra-location 

cases. We only included intra-location cases because their study was conducted to solve sensor 

orientation for a fixed smartphone location. We found better accuracies for all the intra-location 

cases when compared with the accuracies they found for datasets C, D and E. Moreover, from their 

results, we can see that they found the best result for three of their datasets using only the first 3 

heuristic features. So, their study's findings supported selecting the first four heuristic features 

based on feature importance. In addition, the satisfactory results we found for intra-location cases 

depict that the heuristic features are effective in solving the orientation problem even for practical 

scenarios.  

Table 3.6. Accuracy comparison between the result obtained in [23] and our study. 

Dataset Types of 

Sensors 

Number of 

sensor units 

Classifier Number of 

Features 

Best Accuracy 

A Accelerometer, 

Gyroscope, 

Magnetometer 

5 SVM 6 77.66% 

B Accelerometer 4 SVM 3 86.92% 

C Accelerometer, 

Gyroscope 

1 SVM 3 66.69% 



86 
 

D Accelerometer, 

Gyroscope 

1 SVM 3 50.62% 

E Accelerometer 1 SVM 9 55.19% 

Our Dataset 

(Pocket) 

Accelerometer 1 1D-CNN-LSTM 4 71.46% 

Our Dataset 

(Backpack) 

Accelerometer 1 1D-CNN-LSTM 4 73.65% 

Our Dataset 

(Hand) 

Accelerometer 1 1D-CNN-LSTM 4 70.10% 

 

In our study, we also presented the performance of the heuristic features in participant-specific and 

activity-specific scenarios. In participant-specific cases, we found that, for most of the participants 

at each smartphone location, the accuracies were around 70%. There were some participants for 

which the models' performance was reduced drastically. Moreover, the participants for whom we 

found poor performance for the model changed according to the sensor placement. For activity-

specific scenarios, in intra-location cases, we found that the heuristic features work better for high-

intensity activities. We recorded poor precision, recall, and F1-Score for low-intensity activities 

such as lying and sitting. 

Regarding the inter-location cases, we found comparatively better results when we trained the 

model using the data from the hand location. The worst result we found was when we trained the 

model using the data from the backpack location. One interesting finding is the model trained using 

the data from the hand location, which encompasses data of comparatively more variations because 

of the frequent movement of the hand, showed the highest accuracy when using backpack or pocket 

location test data. On the contrary, the model performed poorly when it was trained using the data 

from the backpack, which encompasses fewer data variations because of the less frequent 

movements of the backpack. The difference between the values of the evaluation metrics for intra-

location and inter-location cases was approximately 10%. The accuracies for the inter-location 

cases were around 65%. The model performance was informative, considering we used data from 
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one single accelerometer and simple heuristic features. The heuristics features were particularly 

proposed for solving the orientation problem, and we wanted to find out the heuristic features' 

effectiveness in the placement problem. The performance of the heuristic features in inter-location 

cases indicates that if we fuse the heuristic features with other proposed approaches to solve the 

sensor-placement issue, then there is a high chance that the performance will increase. In addition, 

for both intra-location and inter-location cases, if we use other types of sensors, such as a 

Gyroscope and Magnetometer along with an accelerometer, we may find better results using the 

heuristic features.  

We had some interesting findings regarding the participant-specific and activity-specific scenarios 

for inter-location cases. We observed that, in some cases, when we had good accuracy for a 

particular subject's data from a particular smartphone location, we had low accuracy for that same 

subject's data from a different smartphone location. Such a case was for Participant 22 when the 

model was trained using the data from the backpack location and tested using the data from the 

other two smartphone locations. Similar to the intra-location scenario, in inter-location scenarios, 

we observed that the models performed poorly for some participants in every inter-location case, 

reducing the average accuracy for all cases. In the activity-specific scenario, the findings' pattern 

was similar to those for intra-location cases. The heuristic features could not perform well for low-

intensity activities, but the result was good for high-intensity activities, especially for Walking. 

However, among the high-intensity activities, the performance for Running at 5-METs was 

unsatisfactory.  

In summary, the performance of the heuristic features with 1D-CNN-LSTM was promising in both 

intra-location and inter-location cases. We used data from only one accelerometer and performed 

a Leave-10-Subject-Out Cross Validation approach. We tried to replicate a practical scenario for 
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a machine learning model and evaluate the performance of the heuristic feature in such cases. For 

inter-location cases, using other types of sensors might help. An interesting future study would be 

to observe how the heuristic features perform if fused with existing or newly collected data 

designed to solve the sensor placement problem. 

Our study had research gaps that we would like to explore in future work. We explore the 

effectiveness of the heuristic features using one type of model. There are several other classifiers 

which could be promising. For our dataset, we used signals from a single smartphone 

accelerometer. We need to explore the results if we include signals from a gyroscope and other 

smartphone sensors. We can fuse the heuristic features with other proposed techniques for solving 

the sensor placement problem and evaluate its effectiveness for inter-location cases. We only 

conducted our study for six activities. In future, we intend to conduct the same study with more 

activities and variations. However, we think that exploring the effectiveness of the heuristic 

features for different smartphone locations in a practical manner would help other studies have a 

proper idea about the potency of the heuristic features and develop accuracy by using other 

techniques with these heuristic features. 

3.5. Conclusion 
 

This study aimed to examine if simple heuristic features could help solve the sensor orientation 

and sensor placement problems when conducting HAR using a single smartphone accelerometer. 

Our study concludes that the heuristic features adequately solve the sensor orientation problem 

despite a very simple study protocol.  
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Chapter 4 

 

Discussion and Conclusion 

 

In this thesis, I represented two major findings. I depicted how window lengths affected the 

performance of 1D-CNN-LSTM in recognizing six human activities: lying, sitting, walking, and 

running at 3-METS, 5-METs and 7-METS. I also inspected how simple heuristic features 

effectively solved sensor orientation and placement problems. For the study, I only used data from 

a single smartphone accelerometer sensor from 42 participants for three smartphone locations: 

pocket, hand and backpack.  

To observe the effect of window length, I only used data from the smartphone location of the 

pocket. To solve the orientation problem, I used the heuristic features. I observed that the 

performance of 1D-CNN-LSTM increased at first as the window length increased. After a window 

length of 55, the performance did not improve considerably with an increment in window lengths. 

I recorded the highest average accuracy of 80.91% at a window length of 105. The average 

accuracy at a window length of 55 was 79.74%. I can see that the highest average accuracy and 

the accuracy at the window length of 55 had a shallow difference. This suggests that window 

length impacts the performance of 1D-CN-LSTM until a certain window length. After that certain 

window length, the performance of the model gets saturated. Therefore, when using deep 

classifiers like 1D-CNN-LSTM, I need not select a very high window length for better 

performance. I should investigate the effects and choose a window length where the performance 

becomes almost constant. In this way, I can reduce the resource and time complexity I encounter 

in case of long window length. Another interesting finding from this part was that the values of 
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evaluation metrics such as precision, recall, and F1-Score were reduced for low-intensity activities 

such as lying and sitting when I increased the window length. The increment in the window length 

worked oppositely for high and low-intensity activities. Therefore, researchers should also select 

a window length at which the model performs well for high and low-intensity activities. It should 

be mentioned that for this part, I followed the Leave-1-Subject-Out Cross-Validation technique, 

but for my second study, I followed the Leave-10-Subject-Out Cross-Validation technique, so the 

evaluation scenario in my second part became harder for the model.  

In the second part of my study, I investigated the effectiveness of the heuristic features in solving 

sensor orientation and sensor placement problems for different smartphone locations: pocket, hand 

and backpack. In my first part, along with investigating the effects of the window length, I also 

observed how effective the heuristic features were in solving the orientation problem for one 

smartphone location: pocket. I introduced more challenges for the heuristic features in the second 

part of the study. Instead of one smartphone location, I wanted to observe how effective the 

heuristic features were in solving the sensor orientation problem in three different smartphone 

locations. I called this investigation intra-location evaluation. Furthermore, instead of the Leave-

1-Subject-Out Cross-Validation technique, I followed the Leave-10-Subject-Out Cross-Validation 

technique, making the evaluation process more challenging for both the 1D-CNN-LSTM model 

and the heuristic features. My intra-location evaluation found that the average accuracy for all 

three smartphone locations was close, around 70%-73%. The values of all the evaluation metrics, 

accuracy, precision, recall, and F1-Score, were higher for the location backpack. I assumed the 

reason behind achieving a better result for the location of the backpack was the smartphone 

remained steadier in the backpack compared to the location pocket and hand. The second-best 

result I achieved was for the location pocket. The poorest result was found for the location hand 



92 
 

as there was a possibility of the smartphone being the shakiest when carried in hand. I also 

performed participant-specific analysis for intra-location evaluation. I found that the accuracy was 

very low for some participants, which reduced the overall average accuracy for all the participants. 

However, for different smartphone locations, I had a poor performance for different participants. 

I also performed activity-specific analysis for intra-location evaluation. I found that the heuristic 

features with the 1D-CNN-LSTM model performed better for high-intensity activities, especially 

for walking and running at 7-METs. For low-intensity activities, the values of evaluation metrics 

were very poor, especially for an activity like sitting. I observed that the heuristic features were 

more effective for high-intensity activities. After evaluating the intra-location scenario, I opted to 

check the effectiveness of the heuristic features for the inter-location scenarios, i.e., solving the 

sensor placement problem.  

In inter-location evaluation, I found the best values of evaluation metrics from my model when I 

trained it using the data from hand and tested it using the data from the other two smartphone 

locations. The lowest performance I recorded was when I trained the model using the data from 

the backpack. The average results for all inter-location scenarios were between 59%-69%. After 

inspecting the overall performance, I conducted a participant-specific analysis. I found that for all 

inter-location scenarios, the models’ accuracies were low for some participants, which lowered the 

overall accuracies. Another interesting finding was that the accuracy differed considerably for 

some participants if the test data were from different smartphone locations. I finally performed 

activity-specific analysis for all inter-location scenarios. From the activity-specific analysis, I 

found similar results for the activity classes I found in the intra-location evaluation. The values of 

the evaluation metrics were higher for high-intensity activities and lower for low-intensity 

activities. I recorded the worst performance for the activity of sitting and the best for the activity 
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of walking. However, I found that the heuristic features in solving the placement problem were 

not considered effective. However, the effectiveness of heuristic features can be considered 

acceptable when accounting for the high number of variations in the dataset, simple study protocol, 

and Leave-10-Subject-Out Cross-Validation technique. It should be mentioned that for the second 

study, when I trained the 1D-CNN-LSTM model for intra-location and inter-location scenarios, I 

used a window length found suitable according to the investigation of my first study. 

My study evaluated the effectiveness of heuristic features for the raw data from a single 

smartphone accelerometer signal. I am assuming that the result would have been better if I 

considered other sensors, such as a gyroscope and magnetometer. So, in future, I can explore the 

effectiveness of the heuristic features using more sensor types. In addition, many studies proposed 

different approaches to solve the sensor placement problem. Researchers can fuse one of those 

approaches with the heuristic features to see how much improvement they may get in solving the 

sensor placement problem. I also performed my investigation using only one type of classifier. I 

need to perform the same investigation on other types of classifiers to see the performance 

difference for different classifiers. Furthermore, I conducted very little data pre-processing, but I 

may get better results with further pre-processing. In my study, I considered just six activities. In 

the future, I plan to do the same investigation for other activities.  

In brief, my study depicted the influence of window length on the performance of the 1D-CNN-

LSTM, which will help other studies choose the proper window length for their studies with HAR. 

I also presented the effectiveness of the heuristic features for different smartphone locations. Other 

studies may fuse these heuristic features with other proposed methods and improve the 

performance of HAR. Finally, my findings will help other researchers understand the influence of 

different smartphone locations in HAR when using a smartphone.  
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