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Abstract

Many real-world science and engineering problems are described mathematically by

partial differential equations (PDEs). Most of these PDEs can not be solved an-

alytically and instead their solutions must be approximated on a computer. One

numerical method capable of high accuracy solutions is the finite element method

where the physical system is discretized using set of elements called a mesh. These

elements consist of nodes or points, and the PDE is solved at each node of the mesh.

We need high-quality meshes in order to achieve accurate numerical solutions to

PDEs and an adaptive mesh that moves as the system evolves has many desirable

properties. Moving meshes are now widely used in the numerical solution of PDEs,

especially when dealing with problems that involve significant changes in the solution,

such as fast-moving fronts, or moving boundary problems. A nonuniform mesh can

maintain accuracy and also boost the efficiency of existing methods by automatically

adjusting to solution behaviour and concentrating mesh points in critical areas, while

minimizing the number of mesh nodes.

The main focus of this thesis is the design and implementation of an adaptive

moving mesh method for a moving boundary problem related to pitting corrosion

with homogeneous and heterogeneous materials. Pitting corrosion is one of the most

devastating localized forms of corrosion generating a small pit, cavity or hole in the

metal. Damage due to pitting corrosion of metals cost governments and industry

billions of dollars per year and can put human lives at risk.

The first part of this research develops an adaptive moving mesh method for sim-

ulating pitting corrosion. The adaptive mesh is generated automatically by solving a

mesh PDE coupled to the pitting corrosion PDE model. The moving mesh approach

is shown to enable initial mesh generation, provide mesh recovery, and is able to

smoothly tackle changing pit geometry. Materials with varying crystallography are

considered as are single and multiple pits. A procedure is presented which allows pits

to merge without a change in mesh topology, allowing computation to proceed with-
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out restarting. We have presented a robust, fully automatic, moving mesh solution

framework for pitting corrosion.

The second part of this research is aimed at developing an adaptive moving

mesh method for simulating pitting corrosion in materials containing heterogeneous

inclusions. Inclusions are regions of a material that have a different composition or

properties than the surrounding material. This makes for a challenging task due to

the presence of the inclusion-type domains. In order to handle moving boundary

domains with an inclusion, the metric is modified according to the location of the

inclusions. The moving mesh approach using r-refinement is shown to handle chang-

ing pit geometry, including materials with varying crystallography, corrosion-resistant

inclusions, and material voids.

r-refinement alone was not able to provide high mesh density near the inclusion(s)

for long simulation times due to the obstacle(s) and the moving front. To overcome

this issue, we propose a combination of h- and r- refinement, which is the focus of

the third part of the research. h-refinement adds mesh elements by dividing each

existing element into two or more elements and maintaining the type of element

used. We design and implement an adaptive hr-refinement procedure for the simu-

lation of pitting corrosion with heterogeneous materials. The adaptive hr-refinement

is demonstrated to handle changing pit geometry, including materials with varying

crystallography and corrosion-resistant inclusions.

The three main components of the research include theory, modeling, and ap-

plication, which aim to provide effective and efficient meshes over complex moving

domains in the solution of the pitting corrosion problem. The research is also fo-

cused on the development of software providing a new extension of MMPDElab with

hr–refinement.
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Lay Summary

Many mathematical models that involve PDEs cannot be solved analytically. To

overcome this, numerical methods are used to approximate the solutions. A popular

approach is to discretize the physical system and solve the resulting discrete version

of the problem. An effective method is the finite element method, where the physical

system is divided into smaller elements called a mesh. These elements consist of

nodes or points, and the model problem is solved at each node of the mesh. In order

to achieve accurate numerical solutions for the model problem, we need high-quality

meshes.

The goal of this research work is to design and implement an adaptive moving mesh

method for a moving boundary problem related to pitting corrosion. Pitting corrosion

is localized corrosion; it occurs on metal surfaces and creates small holes, cavities or

pits in the metal. Additionally, leaks can be caused by pitting that penetrates too

deeply into the metal leading to further physical damage and degradation of the metal.

Accurately detecting pit shapes is challenging due to the complex nature of pitting

corrosion. The shapes of the pits depend on many factors, such as the components of

the metal, the surface orientation, and the physical and chemical environment during

the corrosion process. The question arises: How can predict pit shapes accurately?

One approach is that a set of nodes with connected edges can detect the pit shapes

easily. Obtaining pit shapes more accurately requires increasing the number of nodes

in the regions around the pits. As time progress, the pit evolves, and additional nodes

are needed to represent the actual pit shapes. Therefore, to precisely predict the pit

shape over time, we need to adjust the position of the nodes near the pit boundary

or add extra points on the pits. This technique is known as mesh adaptation.

In the first phase of the thesis, we develop an adaptive moving mesh framework

for pitting corrosion with single and multiple pits. An adaptive moving mesh method

is a powerful technique to achieve a more accurate solution. Based on the pitting

corrosion mathematical model, we have shown that moving mesh methods automat-
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ically redistribute mesh nodes to increase the nodes around the pit(s) area as time

progresses. This technique is known as r-refinement. During the corrosion process,

the material crystallography considered. In addition, a procedure is presented which

allows pits to merge without a change in mesh topology. We have presented a robust,

fully automatic, moving mesh solution framework for pitting corrosion.

In the second phase of the thesis, we develop an adaptive moving mesh framework

for pitting corrosion, involving heterogeneous materials. Inclusion type domains are

regions of a material that have a different composition than the surrounding mate-

rial. We have demonstrated that our technique can smoothly tackle the changing

pit geometry associated with materials with inclusions of varying crystallography,

corrosion-resistant inclusions, and material voids.

Finally, in the third phase of the thesis, we introduce a technique that can redis-

tribute the mesh nodes around the pits and add extra nodes around the pits when

required—this technique is known as hr-refinement. We show that adaptive hr-

refinement can handle changing pit geometry better, including materials with varying

crystallography and corrosion-resistant inclusions.

The research is also focused on developing software, specifically a new extension of

MMPDElab providing hr–refinement. The main focus of this thesis is the design and

implementation of an adaptive moving mesh method for a moving boundary problem

related to pitting corrosion with homogeneous and heterogeneous materials.
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Chapter 1

Introduction

A wide variety of real-world science and engineering problems are challenging to ex-

amine directly, and experimentation in a laboratory can be an expensive and time

consuming task. Computer simulation is indispensable for investigating these types

of problems. Nowadays, computer simulations are widely used in various fields, such

as meteorology, nuclear physics, biomedical, medical sectors, etc., and are expected

to be utilized in nearly all scientific and engineering disciplines eventually. Thus,

scientific simulation is becoming an integral part of the study of both real-world and

theoretical problems. The procedure involves constructing a mathematical represen-

tation of the real-world problem to replicate its dynamic actions accurately. Many

representations of problems are described by a system of differential equations (DEs)

or partial differential equations (PDEs). The mathematical representation is known

as a mathematical model of the problem.

1.1 Motivation

Mathematical models are highly useful tools for comprehending and analyzing the

characteristics of a system. The model equations describing real-world problems can

often be difficult to solve analytically. To overcome this difficulty, various sophisti-

cated numerical methods have been developed over the past few decades, which allow

the calculation of an approximate solution using a computer. Methods like finite dif-
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ferences, finite elements or finite volumes can estimate the solution value at specific

points, known as mesh or grid points. Structured grids consisting of quadrilaterals (in

2D) and hexahedral brick elements (in 3D) are not suitable for discretizing complex

geometries. The finite difference method (FDM) relies on structured grids, as a result

the FDM is not an ideal choice for simulations of such systems. Instead, unstruc-

tured meshes composed of triangles in 2D and tetrahedra in 3D are more effective in

discretizing arbitrary complex geometries. The finite element method (FEM) allows

the use of unstructured meshes and has thus become a popular choice for performing

simulations in various scientific computing fields.

Obtaining accurate numerical solutions requires a high quality mesh tailored to

the specific model problem. Creating meshes for complex 2D or 3D geometries can

be computationally expensive if we require several hundred thousand or even millions

of grid points. Using a uniform mesh across the complex geometry can result in a

significant computational cost, particularly in multidimensional scenarios where the

number of required mesh points may be prohibitively high. Additionally, it can be

extremely challenging, if not impossible, to design a mesh that can accurately capture

the characteristics of the physical phenomenon (such as pitting corrosion) without

prior knowledge. A alternative technique is to concentrate a greater number of mesh

points in regions of significant solution variation and fewer points in the rest of the

domain. By adapting the mesh in this way, the total number of required mesh points

is much lower than with a uniform mesh, which may result in cost savings. Adapting

the mesh for computational simulations becomes extremely challenging due to the

difficulty in identifying regions of significant variation in the solution and the need to

consider complex geometries with moving boundaries. As a result, this challenge has

given rise to considerable research on the topic of adaptive meshing or adaptive mesh

refinement.

Adaptive meshing is a powerful technique that provides accurate and economical

numerical solutions. The method systematically adds more nodes in regions of large

error, which helps to ensure that the solution converges to the desired level of accuracy.

This approach can be cost-effective because it attempts to maximize solution accuracy
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for a given computational budget [47, 53, 85]. The accuracy of an adaptive technique

is limited by how accurately the physical phenomenon is mathematically represented.

For example, modelling pitting corrosion requires a mesh that effectively captures

the movement of boundaries and inclusion regions, while also considering material

properties. The extent to which adaptive meshing can improve solution accuracy

depends on the accuracy of the underlying pitting corrosion model.

Pitting corrosion, our application of interest, is a type of localized corrosion that

causes small pits, cavities, or holes in the metal, and it is considered to be very de-

structive. It can be more hazardous than uniform corrosion since it is challenging to

identify, anticipate, and hence prepare for. Furthermore, the pits are often covered

with corrosion products that make them difficult to detect. Even a small and narrow

pit, which may not result in significant metal loss, could cause a system or metal

to fail [84]. Mathematical models have been used to represent the problem of pit-

ting corrosion, including time-dependent PDEs with complex geometry that involve

the movement of boundaries and/or inclusions. This makes the problem extremely

difficult to adapt the mesh at the moving boundary. In addition, the MMPDElab

package has been extended to handle this type of problem, where MMPDElab is a

general adaptive moving mesh finite element solver for time dependent PDEs.

1.2 Literature review

1.2.1 Moving mesh methods

Moving mesh methods are now widely used numerical techniques for solving PDEs

efficiently and accurately [55]. When dealing with problems that involve substantial

variations in the solution such as rapidly moving fronts, generating an efficient mesh

can be challenging. However, using non-uniform meshes can help maintain accuracy

and improve the efficiency of current methods. These meshes automatically adjust to

solution behavior, allowing for the concentration of mesh points in critical areas.

One of the well-known moving mesh methods is the Arbitrary Lagrangian-Eulerian

(ALE) method, which was first introduced by Hughes [31]. In the ALE method,
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the computational domain is allowed to move relative to a fixed reference frame

in which the computational mesh deforms. The governing equations are written

in a moving reference frame and the mesh points are adjusted to maintain higher

accuracy [31, 52]. One downside of the ALE method is that it may experience mesh

tangling and distortion, especially when the boundary motion is fast or complex. This

can cause numerical instabilities and inaccuracies.

Another well-known moving mesh approach is adaptive moving mesh [29]. Adap-

tive moving mesh methods systematically adds more nodes in regions of large error,

which helps to ensure more accurate and efficient numerical solutions as well as the

solution converges to the desired level of accuracy. Adaptive moving mesh methods

can automatically provide a continuously varying mesh by controlling the size, shape

and orientation of the mesh elements in the domain. There are three general adaptive

strategies: h-refinement, which involves adding or removing nodes to an existing mesh

to improve local grid resolution [3, 9, 54]; p-refinement, which utilizes higher order

schemes to enhance local accuracy when the solution is relatively smooth [15, 20];

and r-refinement, where a fixed number of nodes are moved or relocated with the

solution [5, 29, 54]. These approaches can be applied separately or in combination

to acquire the desired result. The redistribution or r-refinement method can provide

isotropic or anisotropic meshes by changing the functional which is minimized [29].

The equidistribution principle [12], which is a core principle of moving mesh methods,

is typically utilized to implement mesh movement. A more in-depth explanation of

moving mesh methods will be presented in Chapter 2.

Mesh movement approaches are divided into two categories: the velocity-based

approach and the location-based approach [5, 8, 30]. Most of the velocity-based

approaches are motivated by the Lagrangian algorithm, where the computational

mesh flow is tightly associated with the fluid or material particles during movement.

The Eulerian approach has a fixed computational mesh and the continuum moves

respect to mesh nodes. The Eulerian and Lagrangian algorithms are commonly used

in fluid dynamics and structural material problems, respectively [17]. In general,

Eulerian meshes avoid mesh tangling and diffusive solutions, but the method can
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have difficulty adjusting to sharp material interfaces. One benefit of the Lagrangian

approach is that the advective terms do not appear in the governing equations. Thus,

the Lagrangian methods are less diffusive compared to that of the Eulerian method,

while also maintaining sharp material interfaces [29]. The Arbitrary Lagrangian-

Eulerian (ALE) methods are velocity-based methods, which are a combination of

Lagrangian and Eulerian approaches [21, 22, 39, 50, 52, 76].

The main goal of the location-based mesh movement approach is to control the

location of mesh points in particular locations. A typical choice of location-based

mesh movement is the variational approach, which relocates the mesh points and

mesh movement based on minimizing a functional, which is formulated to measure

the difficulty or the error in the numerical solution [29]. A number of location-based

algorithms have been developed based on variational approaches with others devel-

oped based on elliptic PDEs. Elliptic PDEs can be used to generate boundary-fitted

meshes [69, 78], which is sometimes known as Winslow’s approach [79]. Winslow’s

idea is generalized using a functional [4] that controls a combination of the mesh

adaptivity, smoothness, and orthogonality conditions. A number of articles address

the type of mesh adaptation functionals as based on mechanical models [32, 33, 34],

vector fields [37], a weighted Jacobian matrix [38, 39], a matrix-valued diffusion coeffi-

cient [7, 26], and the equidistribution and isotropy (or alignment conditions) presented

in [23]. The moving mesh PDE (MMPDE) method has been developed by several

authors [6, 25, 25, 26, 27, 56], where the mesh movement is determined by a gradient

flow equation and where the functional plays a vital role.

Hence, the adaptive moving mesh method redistributes the mesh in regions where

the solution changes rapidly and keeps the mesh coarse in regions where the solution

varies slowly. This results in redistribution based on error analysis of the solution,

equidistribution and alignment conditions. To generate optimal meshes for moving

boundary problems, an appropriate monitor function (or mesh density function) and

proper values of the parameters of moving mesh PDEs are required. Finally, the

adaptive mesh is generated by solving the moving mesh PDE [29]. A more in-depth

explanation of moving mesh methods will be presented in Chapter 2.
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1.2.2 Moving boundary problems

Moving mesh methods are widely used numerical techniques for solving PDEs with

moving boundaries or interfaces according to the specific problem to be solved [81].

They have a diverse set of applications in many fields of study, including heat transfer,

fluid dynamics, and chemical reaction engineering. Some interesting areas where

moving mesh methods have been recently utilized include:

� The study of the mechanics of cell migration, tissue growth, and simulating

blood flow in arteries and veins in biomechanics [51].

� The simulation of fluid flow problems with moving boundaries or interfaces in

computational fluid dynamics [71].

� The geological simulation of groundwater flow and contaminant transport in

porous media in geosciences [83],

� The growth of crystals and the behavior of materials under stress and deforma-

tion in materials science [67].

Therefore, moving mesh methods have a broad range of applications in various fields

and they continue to be an active scientific area of research. In these problems, the

boundaries of the physical domain can move or deform according to the problem

phenomena, and it is necessary to adapt the mesh in every time to maintain accuracy

of the solution [45, 68]. In recent years, moving mesh methods have been a popular

choice for many researchers and engineers due to their ability to provide accurate

solutions and their ability to efficiently capture the dynamics of moving interfaces.

Moving mesh methods have proven their ability to maintain the accuracy and

efficiency for solving moving boundary problems [28, 81]. However, there are some

challenges associated with moving mesh methods. For example, the choice of mesh

adaptation algorithm or monitor function, the treatment of singularities, and the

stability of the method [16, 46, 55]. In spite of these challenges, moving mesh methods

have gained popularity and have become a necessary technique for solving moving

boundary problems in a wide range of applications. In this thesis, we will apply the
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adaptive moving mesh method for the solving moving boundary problem related to

pitting corrosion in homogeneous and heterogeneous materials.

1.2.3 Corrosion and Pitting corrosion

Corrosion is a deterioration of a metal surface due to chemical or electrochemical

reactions with its surrounding environment. If the total area of the corrosive sites

are smaller than the total surface area, then the metal is said to be undergoing

localized corrosion. Pitting corrosion is one of the most disastrous and devastating

localized forms of corrosion generating a small pit, cavity, or hole in the metal. Pitting

corrosion is difficult to identify and can have a big impact on the structural integrity

of metal [66, 84]. The geometries of the pits depend on many factors such as the

components of the metal, the surface orientation, and the physical and chemical

environment at the time of attack [62]. Corrosion pits can have different shapes [49]

and with the ability to grow over time, failure of engineering structures such as

bridges, pipelines, and nuclear power plants can result [10, 49, 57].

The three basic stages of pitting corrosion are the initiation stage, the metastable

stage, and the stable stage. A pit is identified as stable if it is actively growing

over time [1, 14]. The initiation of a pit is followed by metastable growth that leads

to stable growth under the right balance between electrochemical and mass trans-

port mechanisms. The initiation of the pit is relatively difficult to detect since it

occurs rapidly and penetrates a metal without significant loss of weight. Pit initia-

tion is a random phenomenon on a metal surface with most of the surface remaining

unattacked. This makes pitting corrosion challenging to anticipate, detect, and pre-

vent. Researchers have studied the pitting initiation behavior of different metals,

including stainless steel [19, 43, 58], beryllium [19], pure aluminum, and aluminum

alloys [36, 40, 61, 70, 82]. Davis [11] has discussed metastable pitting corrosion of

aluminum with single crystals. Stable pit growth and a computational model for the

pit growth is discussed in [14].

Computational modeling and simulations of pitting corrosion have proven ben-

eficial for studying pits under a wide range of conditions and materials. Available
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models include partial differential equation (PDE) based models [35, 41], phase-field

models [2, 48] and probabilistic models [65? ]. The PDE based computational model

for pitting corrosion is derived from physical and electrochemical laws. The model

is a fully-coupled system of the electrolyte and solid domains. The complete sys-

tem depends on the time-dependent distortion of the pit and the solution chemistry

within the pit including electrochemical reactions and mass transfer of species. The

electrolyte potential distribution and the concentration of species can be obtained by

solving the governing mass transport equations and the growth rate of the pit can be

found from Faraday’s Law. A complete solution of the mass transport equations is

divided into the process of diffusion, electron-migration and chemical reactions, with

the additional complexity of a moving solid boundary. Recently, an effective PDE-

based model has been proposed which investigates time-dependent pitting corrosion

in the presence of fluid flow [75].

Over the past few years, several review papers have been published with a primary

focus on PDE-based models for pitting corrosion based on finite element or finite

volume methods [13, 14, 42, 44, 60, 63, 64, 73]. In 2019, an extensive overview of the

mathematical models for pitting corrosion based on anodic reaction at the corrosion

front, transportation of ions in the pits of the electrolyte domain, and pit growth over

time was provided [35]. The COMSOL® software package is often used to solve the

PDE in the electrolyte domain and the corrosion front movement is computed by the

arbitrary Lagrangian-Eulerian (ALE) and level set methods [14, 41]. In other studies,

a 2D PDEmodel is solved with the finite element method [18, 72] and the finite volume

method [59, 60]. Pit growth is determined by finite element methods and a level set

approach in [72], and using an extended finite element method (XFEM) and level set

method in [18]. In 2020, an ALE method is implemented to move the mesh at the

pit boundary and analyze the relationship between the corrosion behavior and the

local corrosive environment within a single pit [74]. In most of the existing studies,

the COMSOL® multi-physics software is used for solving the system of PDEs and

pit movement is implemented in a separate MATLAB program [14, 35, 77, 80]. The

implementation details of the movement of the pit and corner nodes have not been
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described in detail in many of these papers. In this study, the implementation of the

pit movement, the corner movement, and the numerical methods are fully described.

Determining the pit behavior experimentally is time consuming, expensive, and

physically difficult or impossible in many situations. However, numerical simula-

tions are suitable for studying pits under a wide range of conditions within a reason-

able time. In our simulations, the stable stage of pit growth is considered. To our

knowledge, an adaptive moving mesh method, our method of choice, has not been

implemented for the PDE-based modeling of stable pitting corrosion. Adaptive mov-

ing mesh approaches have demonstrated great success in many application problems

providing fine control over the spatial adaptivity and recovering numerical solutions

which recover properties of the continuous solution. This serves as strong motivation

to apply a moving mesh approach to our application problem.

In our moving mesh method, the FEM is used for the spatial discretization, and

a solver is built based upon the software package MMPDElab by Huang [24]. MM-

PDElab is a general adaptive moving mesh finite element solver for time dependent

PDEs. An adaptive moving mesh is used to get sufficient mesh elements in regions

of the pit using an alternating mesh and physical solution approach. Movement of

the nodes in the pit and choosing an appropriate monitor function are challenging

tasks. We present numerical results for the electrolyte potential, the evolution of

the corrosion pit front, as well as pit-depth and width at different times for different

crystal orientations, corrosion-resistant inclusions, and material voids.

1.3 Objectives

The purpose of this thesis to provide an in-depth examination of both the theoretical

and practical aspects of mesh adaptivity, with a specific focus on its implementation

for the time-dependent moving boundary problems related to pitting corrosion. The

main objectives of this thesis are given below:

1. Demonstrate the effectiveness of the moving mesh method in recovering meshes

and tackling the changing geometry for the pitting corrosion problem with single
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and multiple pits. We will apply r-refinement and show this technique is capable

of handling the moving boundary smoothly.

2. Illustrate the ability of the moving mesh method for moving boundaries on

inclusion-type domains for pitting corrosion with heterogeneous materials. In-

clusion type domains are regions of a material that have a different composition

compared to the surrounding material. We wish to show that r-refinement is

able to provide sufficient meshes near the inclusion(s) and the pit(s), as required.

3. Present an hr-refinement approach for pitting corrosion with heterogeneous

materials. The hr-refinement approach is a combination of h-refinement and

r-refinement. We wish to demonstrate that hr-refinement can significantly im-

prove the accuracy and efficiency of the simulation compared to r-refinement

alone in some situations.

1.4 Contributions of this thesis

The majority of this work primarily focuses on developing a robust, automatic, adap-

tive moving mesh framework for pitting corrosion. The work involves the implemen-

tation of adaptive algorithms for simulating corrosion processes, as well as improving

the accuracy of numerical simulations based on partial differential equation (PDE)

models of corrosion processes. In the first part of the research, we develop and im-

plement adaptive algorithms for the moving boundary problem, which are related to

pitting corrosion. The r-refinement method provides mesh recovery and is able to

smoothly tackle changing pit geometry. This work is presented in Chapter 3. In the

second part of the research, we study heterogeneous materials with an emphasis on

inclusion type domains and this work is presented in Chapter 4. In our observation

of r-refinement in the second part of our research, we found that the mesh density

near the inclusion decreases due to an obstacle (or inclusion) in front of the moving

part of the boundary. To overcome this situation, h-refinement can be used. The

h-refinement method involves using a more refined mesh consisting of the same type
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of element. This method divides each existing element into two or more elements

while maintaining the type of element used. Therefore, the obvious way to improve

mesh quality for our problem is to use a combination of h- and r- refinements. Fi-

nally, in the third part of the research we implement hr-refinement for heterogeneous

materials with an emphasis on inclusion type domains.

1.5 Thesis organization

An outline of the thesis spread over the six chapters is as follows. Chapter 1 gives the

objectives and scope of the thesis as well as a relevant literature survey. InChapter 2,

we provide background materials for this thesis, including an overview of moving mesh

methods, the preliminaries of the mechanism of pitting corrosion, crystal orientation,

and a model problem. In Chapter 3 we present “Moving Mesh Simulations of Pitting

Corrosion”. In this article we discuss the PDE model of pitting corrosion, proof of

concept for simulations demonstrating the effectiveness of the moving mesh method

for pitting corrosion, and implementation of single and multiple crystal directions to

the package. Chapter 4 presents our article “A moving mesh simulation for pitting

corrosion of heterogeneous materials”. In this article we discuss a PDE model for

pitting corrosion and present a procedure on how to handle different inclusions and

voids in the computational geometry. In Chapter 5 we present our article “An

adaptive hr-refinement simulation for pitting corrosion of heterogeneous materials”.

In this article we give an overview of hr-refinement and its implementation in our

moving boundary problem. The final chapter is Chapter 6, which includes some

important comments and provides several useful conclusions of the present research

work and future research directions.
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Chapter 2

Background

In this chapter, we provide a broad introduction to the key foundational concepts

necessary to understand the adaptive moving mesh methods as well as essential tools

for our later work. We discuss the basic principles of the moving mesh method

including the equidistribution and alignment conditions. Next, the formulation of

the Moving Mesh Partial Differential Equations (MMPDEs), the governing equations

that describe the motion of the mesh points is given. We also discuss the design

of monitor functions or mesh density functions, which are used to guide the mesh

adaptation process. To illustrate mesh adaptation, we introduce the standard moving

mesh algorithm for the well-known one-dimensional Burgers’ equation. We explain

how the mesh is automatically adjusted at the proper location to adapt to the solution

behavior. Finally, we will discuss the fundamentals of corrosion and pitting corrosion.

2.1 Moving mesh methods

Moving meshes have gained popularity in the numerical solution of partial differential

equations (PDEs), as they improve the efficiency and accuracy of existing approxi-

mation techniques by automatically adapting to the solution behavior and concen-

trating mesh points in regions of interest. The moving mesh method automatically

redistributes a fixed number of nodes where additional accuracy is required.

21



2.1.1 Equidistribution principle and MMPDE in 1D

The equidistribution principle (EP) plays a vital role in mesh adaptation. In 1D,

the EP is used to derive the moving mesh PDE (MMPDE). The EP was introduced

by deBoor [7], Dodson [10] and White [33]. It is based on very simple idea: if

some measure of the error or mesh density function ρ = ρ(x) > 0 is given. A

good choice of a mesh would be a mesh for which the error is equally distributed

over all subintervals or the mesh elements in the domain. Given an integer N > 1,

the continuous and bounded function ρ on [a, b] is evenly distributed on the mesh

Th = a = x0 < x1 < ... < xN = b, if∫ x1

x0

ρ(x)dx =

∫ x2

x1

ρ(x)dx = ... =

∫ xN

xN−1

ρ(x)dx. (2.1)

This forces the area under ρ on all subintervals to be the same. A mesh Th is called

an equidistributing mesh if the mesh satisfies the EP. The function ρ is known as the

mesh density function and the function ρ2 is called a monitor function.

Let us derive the mesh PDE using the EP for a general steady-state boundary

value problem in one-dimension

L{u} = 0, u(a) = p, u(b) = q, (2.2)

where L is a spatial differential operator. A uniform mesh does not provide an

accurate and efficient solution when the BVP has a“difficult” solution. The physical

problem in the non-uniform x-coordinate is transformed to the computational uniform

ξ-coordinate with domain Ωc = [0, 1], where x(0) = a and x(1) = b. Here Ω = [a, b]

is known as the physical domain. We attempt to generate a mesh Th using a mesh

transformation x = x(ξ) : Ωc → Ω and a uniform mesh in the ξ-coordinate

ξi =
i

N
, i = 0, 1, ..., N.

Equation (2.1) can be written as∫ xi

a

ρ(x)dx =
i

N

∫ b

a

ρ(x)dx

=
i

N
σ, i = 0, 1, ..., N
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where σ =
∫ b

a
ρ(x)dx. The function

∫ x

a
ρ(x)dx is strictly monotonically increasing if

ρ > 0, and therefore each xi is unique. Here σ and i
N
σ are the total error and average

error in the approximating solution, respectively. Essentially, if ρ is large where the

error of the computed solution is large, then the EP will force the mesh points to be

close to each other in that region. Using the mesh transformation, we have∫ x(ξi)

a

ρ(x̃)dx̃ = ξiσ, i = 0, 1, ..., N.

The continuous version of this equation is∫ x(ξ)

a

ρ(x̃)dx̃ = ξσ, ∀ξ ∈ Ωc. (2.3)

The continuous mapping x = x(ξ) is called the equidistributing coordinate transfor-

mation if it satisfies relation (2.3). Differentiating with respect to ξ gives

ρ(x)
dx

dξ
= σ. (2.4)

Equation (2.4) indicates that dx
dξ

is small when ρ is large. Again, differentiating with

respect to ξ gives
d

dξ

(
ρ(x)

dx

dξ

)
= 0 (2.5)

with the boundary conditions

x(0) = a, x(1) = b. (2.6)

This is a nonlinear boundary value problem for the required mesh transformation and

physical mesh. The mesh is determined by solving the mesh equation (2.2) and the

physical PDE of interest as a coupled system.

The equidistribution principle is used to appropriately manage the desired size of

the mesh elements. In the multidimensional case, an equidistributing mesh can be

represented as a uniform mesh in a metric space [17].

2.1.2 Equidistribution and alignment conditions in multiple

dimensions

An adaptive mesh is generated as an image of a reference mesh using a coordinate

transformation x = x(ξ) : Ωc → Ω, where Ωc is the computational domain (equipped
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usually with a uniform mesh) and Ω is the physical domain (which will have a non-

uniform mesh). The Jacobian matrix J of the coordinate transformation is calculated

by J(ξ) = ∂x
∂ξ
(ξ). By linearizing a series expansion about a point ξ0 in Ωc, we have

x(ξ) = x(ξ0) + J(ξ0)(ξ − ξ0) +O(|ξ − ξ0|)2.

This clearly shows that the Jacobian J(ξ0) determines the behavior of the transfor-

mation around ξ0. Since a uniform mesh is used on Ωc, the Jacobian plays a vital

role in the size, shape, and orientation around ξ0. The matrix J(ξ0) can be expressed

by its singular-value decomposition (SVD)

J(ξ0) = UΣV T ,

where U and V are orthogonal matrices, (i.e, UTU = UUT = I, V TV = V V T = I),

and Σ = diag(σ1, σ2, ..., σd), where σi’s are the square roots of the eigenvalues of

J(ξ0)
TJ(ξ0), or simply the singular values of J(ξ0). Figure 2.1 shows a graphical

v1v2

i

j

σ1i

σ2j

σ1u1

σ2u2

V T Σ U

UΣV T

Figure 2.1: Graphical representation of SVD.

illustration of the SVD of a unit ball. The shape and size are controlled by the

singular values, Σ, and the orientation is controlled by U . Since the V matrix has

no contribution in determining the size, shape, and orientation of the mesh, for mesh

adaptation purposes we use the SVD of J−TJ−1, written as

J−TJ−1 = UΣ−2UT .
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Here, the columns of U are the eigenvectors and σ−2
i are the eigenvalues of J−TJ−1.

So, the metric J−TJ−1 plays a vital role in controlling the mesh elements. Thus,

complete control of size, shape, and orientation of the mesh elements can be obtained

by specifying the matrix J−TJ−1. One choice is

J−TJ−1 = c−1M(x) (2.7)

where c is a constant and M = M(x) is a user specified matrix-valued function, called

a monitor-function. We assume M is a d× d symmetric and positive definite matrix.

Let

σ =

∫
Ω

ρ, ρdx =
√
det(M).

Rewriting equation (2.7) gives

JTMJ = cI, in Ωc. (2.8)

To find the value of c, we take the determinant of both sides

det(J)2det(M) = det(cI).

Since ρ2 = det(M), we have

det(J)2ρ2 = cd.

This implies that

det(J)ρ = c
d
2 .

Integrating over the computational domain Ωc gives us∫
Ωc

det(J)ρdξ =

∫
Ωc

c
d
2dξ

= c
d
2 |Ωc|,

where |Ωc| is the size of the computational domain. Now, changing variables gives∫
Ω

ρdx = c
d
2 |Ωc|.

Hence, we have

c =
( σ

|Ωc|

) 2
d
.
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Substituting the value of c in equation (2.8) we have

JTMJ =
( σ

|Ωc|

) 2
d
I. (2.9)

The monitor function M determines the complete control of size, shape and orien-

tation of the mesh elements in the whole domain if the coordinate transformation

satisfies relation (2.9).

Denote J = det(J) and take the determinant of both sides of the equation (2.9)

J2ρ2 =
( σ

|Ωc|

)2
.

This can be written as

Jρ =
σ

|Ωc|
. (2.10)

This is a multi-dimensional generalization of the equidistribution principle. This im-

plies that J (indicating the size of the mesh element) is large in the region of small ρ

and is small in the region of large ρ.

We observe that the eigenvalues of the matrix JTMJ are the same from equa-

tion (2.9) and all eigenvalues,
(

σ
|Ωc|

) 2
d are positive real numbers. The product of the

eigenvalues is a constant,
(

σ
|Ωc|

)2
, which is the determinant of the matrix JTMJ.

Hence, we obtain (ρJ)2 = det(JTMJ) from equation (2.9) and (2.10). In general,

the arithmetic mean-geometric mean (AM-GM) inequality states that the arithmetic

mean is greater than or equal to the geometric mean of n non-negative real numbers

and the equality holds if the numbers are the same. Suppose λi, i = 1, 2, ...d, are the

positive eigenvalues of the JTMJ. Thus, by the AM-GM equality we have( d∏
i=1

λi

) 1
d
=

1

d

d∑
i=1

λi.

The product of the n eigenvalues is the determinant of the matrix JTMJ and the

sum of n eigenvalues is the trace of the matrix, so we obtain

det(JTMJ)
1
d =

1

d
tr(JTMJ). (2.11)

The equivalent form of this equation is J−TJ−1 = 1
c
M , where c is positive constant.

This can be verified by taking the determinant and trace of JTMJ = cI, which
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implies det(JTMJ)
1
d = c and 1

d
tr(JTMJ) = c. The eigenvectors of the matrix

J−TJ−1 specify the shape and orientation, or alignment of the mesh elements, as

discussed above. This is controlled by M . In summary, for a given monitor function

M satisfying the equidistribution (2.10) and alignment (2.11) conditions, we can

control the size, shape, and orientation of the mesh elements through the physical

domain.

Now, we will derive a functional for the inverse coordinate transformation ξ =

ξ(x) : Ω → Ωc that depends on the equidistribution (2.10) and alignment (2.11)

conditions. Assume ζ1, ζ2, ..., ζd are the eigenvalues of the matrix J−1M−1J−T . The

well-known AM-GM inequality is used for the developing functional and gives us

( n∏
i=1

ζi

) 1
d ≤ 1

d

d∑
i=1

ζi. (2.12)

The coordinate transformation that satisfies the approximate alignment condition

minimizes this inequality. In other words, in order to satisfy the alignment condition

we minimize the following difference

1

d

n∑
i=1

ζi −
( d∏

i=1

ζi

) 1
d
.

We have

d∑
i=1

ζi = tr
(
J−1M−1J−T

)
=
∑
i

(∇ξi)
TM−1∇ξi,

and
d∏

i=1

ζi = det
(
J−1M−1J−T

)
=

1

(Jρ)2
.

Equation (2.12) gives the following inequality( 1

Jρ

) 2
d ≤ 1

d

∑
i

(∇ξi)
TM−1∇ξi

or equivalently,

d
dγ
2

ρ

(Jρ)γ
≤ ρ

(∑
i

(∇ξi)
TM−1∇ξi

) dγ
2
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for any real number γ ≥ 1. Thus, the coordinate transformation determined by the

alignment condition can be defined as a minimizer of the functional∫
Ω

[
ρ
(∑

i

(∇ξi)
TM−1∇ξi

) dγ
2 − d

dγ
2

ρ

(Jρ)γ

]
dx. (2.13)

Moreover, in [14, 15] the inequality∫
Ω

ρ

Jρ
dx =

∫
Ωc

dξ ≤
(∫

Ω

ρ

(Jρ)γ
dx

) 1
γ

,

is shown to be the special case of a more general inequality, for any real number γ > 1,

with equality holding when Jρ is constant. Thus, the coordinate transformation based

on equidistribution principle (2.10) can be defined as a minimizer of the following

functional ∫
Ω

ρ

(Jρ)γ
dx−

(∫
Ωc

dξ

)γ

. (2.14)

Neither functional (2.13) nor (2.14) alone provides a reasonable adaptive-mesh method

and it is necessary to combine them together. For a given θ ∈ [0, 1], we can combine

the functionals for the equidistribution and alignment conditions (2.13) and (2.14),

as

θ

∫
Ω

[
ρ
(∑

i

(∇ξi)
TM−1∇ξi

) dγ
2 −d

dγ
2

ρ

(Jρ)γ

]
dx+(1−θ)d

dγ
2

[ ∫
Ω

ρ

(Jρ)γ
dx−

(∫
Ωc

dξ

)γ]
.

(2.15)

Since
∫
Ωc

dξ is constant, we can omit this term from the functional. Hence, the

functional which balances the equidistribution and alignment conditions is given by

I[ξ] = θ

∫
Ω

ρ ·
(∑

i

(∇ξi)
TM−1∇ξi

) dγ
2
dx+ (1− 2θ)d

dγ
2

∫
Ω

ρ

(Jρ)γ
dx, (2.16)

for θ ∈ [0, 1] and γ > 1.

Hence, an adaptive mesh is generated an image of a reference mesh using a coor-

dinate transformation from the computational domain to the physical domain. The

coordinate transformation can be determined by minimizing the functional (2.16).

To describe the equidistribution and alignment condition at the discrete level, we

consider a mesh Th of N elements with Nv vertices in the physical domain Ω ∈ Rd

28



(d ≥ 1). We consider an invertible affine mapping FK : K̂ → K and its Jacobian

matrix by F
′
K , where K̂ is the reference or master element for a physical element K

in Th. Assume that a metric tensor (or a monitor function) M = M(x) is given on

Ω which provides the shape, size, and orientation of mesh elements of the domain Ω.

Generally, a mesh is uniform if all of its elements have the same size and is similar

to a reference element K̂. So, the main idea of the MMPDE method is to view

any adaptive mesh Th as a uniform mesh in the metric M. The requirements of the

equidistribution and alignment conditions can be expressed mathematically at the

discrete level [17] as

|K|
√
det(MK) =

σh

N
,∀K ∈ Th,

1

n
tr((F

′

K)
TMKF

′

K) = det((F
′

K)
TMKF

′

K)
1
d ,∀k ∈ Th,

where |K| is the volume of K and σ =
∑

K∈Th |K|
√
det(Mk).

A standard choice of M is the symmetric and positive definite piecewise function

MK = det(I + α−1
h |HK |)−

1
d+4 (I + α−1

h |HK |),∀K ∈ Th, (2.17)

where Th is the physical mesh and HK is the approximate Hessian of the solution on

element K. HK can be calculated by a least-squares Hessian recovery technique, and

the regularity parameter αh is chosen so that∑
K∈Th

|K|
√
det(MK) = 2|Ω|.

The choice of M in (2.17) is known to be optimal with respect to the L2 norm

of the linear interpolation error [16]. The mesh points will concentrate where the

determinant of the Hessian is large.

A discrete functional associated with the equidistribution and alignment condi-

tions is given by

I[Th] =
∑
K∈Th

|K|
√
det(MK)

[
θ
(
tr(JM−1

K JT )
) dγ

2
+(1− 2θ)d

dγ
2

( det(J)√
det(MK)

)γ]
, (2.18)

where J = (F
′
K)

−1.Minimizing this functional I[Th] approximately satisfies the equidis-

tribution and alignment conditions [15]. The value of the parameters θ = 1
3
, and γ = 3

2

are used for our numerical experiments.
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Moving Mesh PDE The moving mesh PDE (MMPDE) equation can be defined as

the (modified) gradient system (or gradient flow equation) for the energy functional,

i.e.,
dxi

dt
= −Pi

τ

∂I[Th]

∂xi

, i = 1, 2, .., Nv, t ∈ (tn, tn+1], (2.19)

where Pi = det(Mi)
1

d+2 is a scalar function that can be used to make the equation

have invariance properties and τ is a positive parameter used to adjust the response

time of mesh movement to the change in M. A smaller value of τ provides faster

response. τ = 10−4 is used for our computation.

2.1.3 Choosing the mesh density function

The Hessian based monitor function is a great choice for some problems by setting

proper values of the parameters. Sometimes we require modification of the Hessian -

based metric tensor in order to achieve a level of mesh concentration around a specific

geometric location and the moving front of the domain. A reasonable way to modify

the standard Hessian-based metric tensor is by designing a function β based on a

specific location or the moving front and then combining it with the Hessian-based

metric tensor as follows

M̃K ≃ µMK + βI, (2.20)

where µ is a positive scalar used to adjust the contribution of the Hessian based metric

tensor (2.17) and β is designed based on the specific location or moving front. Here

are some examples and techniques for designing β, which aim to achieve a reasonable

mesh concentration around the moving boundary or a specific geometric region Γq.

Example 2.1.1. Consider a rectangular domain Ω containing a circular hole Γq

centered at (h, k) with radius r. To achieve a reasonable mesh concentration around

the Γq, β is designed as follows

β =
[
e4(r−

√
(x−h)2+(y−k)2) − 1 +

1

maxK∈Th
√

det(MK)

]−1

,

and µ = 1 is chosen for (2.20). The β function gives a larger positive value on a circle.
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We can easily observe that for mesh points (x, y) on the hole or circle gives us

M̃K ≃ MK + max
K∈Th

√
det(MK).

This will provide a mesh concentration around the circle which is similar to the con-

centration in regions with the largest value of
√
det(MK). The exponential term in β

ensures that the concentration decreases rapidly enough to prevent over concentration

of mesh elements near the circle [9].

Example 2.1.2. Consider a rectangular domain Ω with a circular void in the do-

main centered at (h, k) and the radius of the void r. To achieve a reasonable mesh

concentration around the void and a relatively uniform mesh inside the void, we can

design β as follows

β =

⎧⎪⎨⎪⎩
ν, if ((x− h)2 + (y − k)2) ≤ r2[
eν(r−

√
(x−h)2+(y−k)2) − 1 + 1

maxK∈Th

√
det(MK)

]−1

, otherwise,

where ν is a positive constant. This β is a piecewise defined function combining

both locations inside and outside of the circular void. The constant ν will ensure a

relatively uniform mesh distribution inside the void and the other function in β will

provide a high mesh concentration near the edges of the circular void.

Example 2.1.3. Consider a rectangular type domain Ω = [−1, 1]× [0, 1]
⋃
Γq which

has a semicircular boundary that is situated at the bottom boundary of the rectangle,

where the semi-circle is centered at (h = 0, k = 0) with radius r = 0.2. To achieve

the reasonable mesh concentration around the semi-circle, β is designed as follows

β =
[
min
Γq

(
||(x, y)− (xq, yq)||2

)2
+

1√
N

]−1

, (xq, yq) ∈ Γq,

where N is the total number of mesh points. This is known as a distance-based

function, where β is maximum on the boundary of the semi-circle. A combination

of the standard Hessian-based approach and a distance-based approach is able to

provide a reasonable mesh concentration near the semi-circle.
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2.1.4 Implementation of mesh and physical solve

There are two approaches that can be used to solve the physical PDE and the mesh

equation: simultaneously or alternately. In a simultaneous solution approach, the

discrete physical PDE and the mesh equation provide a coupled system. Figure 2.2

represents the simultaneous solution strategy. The main disadvantage of this approach

is that it has highly nonlinear coupling between the physical solution and the mesh.

On the other hand, an alternating solution approach generates the mesh xn+1 at a

new time step using the physical solution φn and the mesh xn at the current time, and

then computes the solution φn+1 at the new time step. This is shown in Figure 2.3.

In this approach, there is a lags in time because xn+1 depends on the solution and

the mesh at the previous time. This does not create any trouble if the time step

is reasonably small. The main advantages of the alternating approach are the mesh

generation code is used separately so it is flexible and improves the efficiency at each

step, and the mesh adaptation is not tightly coupled with the physical PDE. The

xn, φn
Adaptive Mesh Generator

PDE Solver

xn+1, φn+1

Figure 2.2: Simultaneous solution approach.

xn, φn

Adaptive Mesh

Generator

PDE Solver
xn+1 φn+1

Iterations

Figure 2.3: Alternate solution approach.

simultaneous solution approach is mainly used to solve one-dimensional problems, and

the alternating solution approach is mainly used to solve multidimensional problems.
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The alternating solution procedure is used for our model problem.

2.2 Finite element method

The Finite Element Method (FEM) is a widely used numerical method to approxi-

mate the solution of PDEs. If the PDE is time dependent, then we can convert the

problem to a system of ordinary differential equations once the PDE is discretized

spatially by the FEM method. This system of ordinary differential equation can be

integrated numerically by well known techniques. The main advantage of this ap-

proach is separate treatment of the spatial and temporal components of the PDE.

This technique is also known as the method of lines.

To illustrate the finite element method, we consider the well-known one-dimensional

Burgers’ equation, which is a nonlinear PDE that describes the motion of a viscous

fluid,

ut = εuxx −
(u2

2

)
x
, x ∈ (0, 1), t > 0, (2.21)

subject to the following boundary conditions

u(0, t) = u(1, t) = 0, (2.22)

and initial condition

u(x, 0) =
0.1e

−x+0.5
20ε + 0.5e

−x+0.5
4ε + e

−x+0.375
2ε

e
−x+0.5

20ε + e
−x+0.5

4ε + e
−x+0.375

2ε

, (2.23)

where ε is a positive physical parameter. For our experimental purposes, ε is chosen

as 10−4.

2.2.1 Finite element method on a fixed mesh

To obtain a numerical solution using the FEM based on the Galerkin formulation

for differential equations, the following procedure is used. The procedure begins by

deriving a variational or weak formulation by multiplying both sides of the PDE (2.21)

by a test function ϕ(x, t), which satisfies the boundary conditions ϕ(0, t) = ϕ(1, t) = 0
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and then integrating in space from x = 0 to x = 1. Then, we find u(·, t) ∈ V for t > 0

such that ∫ 1

0

utϕdx =

∫ 1

0

(
εux −

(u2

2

)
xx

)
ϕdx,

= εϕux

⏐⏐⏐1
0
−
∫ 1

0

εϕxuxdx− ϕ
u2

2

⏐⏐⏐1
0
+

∫ 1

0

ϕx
u2

2
dx,

=

∫ 1

0

(
− εux +

1

2
u2
)
ϕxdx, ∀ϕ ∈ V, 0 < t ≤ T (2.24)

where V is the solution space, and is defined by

V = H1
0 (0, 1) ≡ {u|u ∈ H1(0, 1), u(0) = u(1) = 0}.

Equation (2.24) is the weak or variational form of the PDE. The problem is still in

continuous form in an infinite dimensional space V . In order to solve the problem

numerically, we need to represent the problem in a finite dimensional space.

In the second step, we generate a finite element mesh. We divide the domain

Ω = [0, 1] into finite elements or non-overlapping subintervals Ωe, e = 1, 2, ..., N − 1

0

x1 x2 x3 xN−1 xN

1
Ω1 Ω2 ΩN−1

such that

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN−1.

We introduce a set of points on each element called nodes, which are uniformly spaced

throughout the element. For a given positive integer N , we can define the mesh

Th = {xj|xj = (j − 1)h, j = 1, ..., N}

where h = 1
N−1

. Thus, the nodes xj and the elements Ωe, e = 1, 2, ..., N − 1 uniquely

define a finite element mesh on which we obtain our discrete representation of the

solution.
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In the third step, we construct a finite dimensional space V h, which is a subspace

of V , i.e., Vh ⊂ V . Since Vh has finite dimension, we choose a set of basis functions

that are linearly independent. Thus, V h is spanned by the basis functions. We wish

to use standard piecewise linear basis functions for our approximations on the uniform

mesh Th are represented by

ϕj(x) =

⎧⎪⎪⎨⎪⎪⎩
x−xj−1

xj−xj−1
, for x ∈ [xj−1, xj] ,

xj+1−x

xj+1−xj
, for x ∈ [xj, xj+1] ,

0, otherwise.

j = 1, . . . , N

For our problem, we assume V h is the (N − 2) dimensional subspace of V , which is

spanned by the linear basis functions ϕ2, . . . , ϕN−1, such that

V h = span {ϕ2, . . . , ϕN−1} .

In the fourth step, we represent a finite element solution using a linear combination

of the basis functions. A finite element approximation uh(·, t) ∈ V h for 0 < t ≤ T of

the physical problem must satisfy∫ 1

0

uh
t ϕdx =

∫ 1

0

(
− εuh

x +
1

2

(
uh
)2 )

ϕxdx, ∀ϕ ∈ V h, 0 < t ≤ T, (2.25)

and the initial conditions

uh (xj, 0) = u (xj, 0) , j = 1, . . . , N. (2.26)

Now, we form an approximation of u(x, t) in the finite dimensional space V h by setting

uh to be a linear combination of the basis functions, i.e.:

uh(x, t) =
N−1∑
j=2

uj(t)ϕj(x), (2.27)

where uj(t) represents the nodal unknown value of u(xj, t) at the jth node at time t,

i.e., uj(t) ≈ u (xj, t). Now, taking ϕ = ϕk(x), k = 2, . . . , N − 1 gives us

N∑
j=1

duj

dt

∫ 1

0

ϕj(x)ϕk(x)dx = −ε
N∑
j=1

uj

∫ 1

0

ϕ′
j(x)ϕ

′
k(x)dx+

1

2

∫ 1

0

( N∑
j=1

ujϕj(x)
)2
ϕ′
k(x)dx,

k = 2, . . . , N − 1. (2.28)
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In order to implement the ordinary differential equation solver, the boundary condi-

tions

uh
1 (t) = 0, uh

N (t) = 0, t > 0

can be put in the ordinary differential equation form

duh
1

dt
= 0,

duh
N

dt
= 0, t > 0. (2.29)

The set of equations presented in (2.28) and boundary conditions (2.29) form a non-

linear system of N ordinary differential equations.

In the final step of our implementation of the FEM, we solve the system of ordinary

differential equations. The initial value problem consisting of the ordinary differential

equation system (2.28) and (2.29), with initial conditions (2.26), can be solved using

a standard ordinary differential equation solver, which gives the solution for the nodal

unknown variables u1(t), ..., uN(t).

2.2.2 Finite element method on an adaptive moving mesh

To achieve an adaptive solution for the model problem we wish to place mesh points

in the steep front of the solution and continually adjust the mesh as the front propa-

gates in time. Such a mesh is called an adaptive moving mesh. To better understand

adaptive mesh movement, we can implement a coordinate transformation. In partic-

ular, consider that we have a time-dependent coordinate transformation, denoted as

x = x(ξ, t) : Ωc ≡ [0, 1] −→ Ω ≡ [0, 1], where Ωc and Ω represent the computational

and physical domains, respectively. This transformation is chosen in such a way that

the solution can be represented using the transformed spatial variable,

û(ξ, t) = u(x(ξ, t), t).

A corresponding moving mesh can be presented as

Th(t) : xj(t) = x(ξj, t), j = 1, ..., N

for the fixed, uniform mesh on Ωc,

T c
h : ξj =

j − 1

N − 1
, j = 1, ..., N.
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The basis functions and the approximation function space are now time-dependent

ϕj(x, t) =

⎧⎪⎪⎨⎪⎪⎩
x−xj−1(t)

xj(t)−xj−1(t)
, for x ∈ [xj−1(t), xj(t)] ,

xj+1(t)−x

xj+1(t)−xj(t)
, for x ∈ [xj(t), xj+1(t)] ,

0, otherwise,

j = 1, . . . , N, (2.30)

and the finite dimensional space is also time dependent:

V h(t) = span {ϕ2(·, t), . . . , ϕN−1(·, t)} . (2.31)

We now find uh(·, t) ∈ V h(t) for 0 < t ≤ T that satisfies∫ 1

0

uh
t ϕdx =

∫ 1

0

(
−εuh

x +
1

2

(
uh
)2)

ϕxdx ∀ϕ ∈ V h(t), 0 < t ≤ T, (2.32)

and the initial condition

uh(xj(0), 0) = u(xj(0), 0), j = 1, ..., N. (2.33)

Now, the FEM approximation, uh, is time dependent so we need a special treatment

for the time derivative of uh. The form of the approximation is given by

uh(x, t) =
N∑
j=1

uj(t)ϕj(x, t), (2.34)

where uj(t) ≈ u(xj(t), t). Now, differentiating both sides with respect to t, we get

the time derivative using the chain rule as

uh
t (x, t) =

N∑
j=1

(
duj

dt
(t)ϕj(x, t) + uj(t)

∂ϕj

∂t
(x, t)

)
. (2.35)

In similar fashion, the time derivative of the basis function ϕj becomes

∂ϕj

∂t
(x, t) = −∂ϕj

∂x
(x, t)Xt(x, t), (2.36)

where Xt(x; t) is the linear interpolant of the nodal mesh speeds, i.e.,

Xt(x, t) =
N∑
j=1

dxj

dt
(t)ϕj(x, t). (2.37)
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Therefore, we have

uh
i (x, t) =

N∑
j=1

(
duj

dt
(t)ϕj(x, t)− uj(t)

∂ϕj

∂x
(x, t)Xt(x, t)

)

=
N∑
j=1

duj

dt
(t)ϕj(x, t)−

∂uh

∂x
(x, t)Xt(x, t).

(2.38)

Inserting this expression into (2.32) we obtain∫ 1

0

(
N∑
j=1

duj

dt
ϕj −

∂uh

∂x
Xt

)
ϕdx =

∫ 1

0

(
−ϵuh

x +
1

2

(
uh
)2)

ϕxdx. (2.39)

We obtain a system of ODEs for u1(t), u2(t), . . . , uN(t) by substituting ϕ = ϕk(x, t)

into (2.39) for k = 2, ..., N − 1,

∫ 1

0

(
N∑
j=1

duj

dt
ϕj −

∂uh

∂x
Xi

)
ϕkdx =

∫ 1

0

(
−εuh

x +
1

2

(
uh
)2)

(ϕk)xdx, (2.40)

with the boundary conditions given by equation (2.29) and the initial condition (2.23),

the system can be integrated in time.

The resulting system is solved along with the mesh equations (2.5) incorporating

the boundary conditions and a suitable choice of monitor function for the adaptive

numerical solution.

2.2.3 An example: Burgers’ equation with an exact solution

To illustrate mesh adaptation a using moving mesh, we consider the well-known one-

dimensional Burgers’ equation (2.21) together with boundary conditions (2.22) and

initial condition (2.23). The initial condition has two steep fronts, which are known

as shock waves in a fluid, and the waves are traveling towards the right. As time

progresses, the two shock fronts gradually move closer together, finally merging and

forming a steeper shock wave around t = 0.55. This phenomenon of two waves

merging is commonly observed in fluid mechanics and can result in the formation of

complex wave patterns. The merging of these two fronts may substantially impact the
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Figure 2.4: A plot of the initial solution (2.41) displayed on an adaptive initial mesh

comprising 71 points.

behavior of the fluid system and may cause an increase or decrease in the steepness

of resulting shock wave.

The exact solution of the Burgers’ equation (2.21) with boundary and initial

conditions is

u(x, t) =
0.1e

−x+0.5−4.95t
20ε + 0.5e

−x+0.5−0.75t
4ε + e

−x+0.375
2ε

e
−x+0.5−4.95t

20ε + e
−x+0.5−0.75t

4ε + e
−x+0.375

2ε

, (2.41)

(a) t = 0 s (b) t = 0.5 s (c) t = 1 s

Figure 2.5: FEM solution on a fixed mesh consisting of 101 points.

Figure 2.5 represents the numerical results on a fixed mesh having 101 points and

it is observed that the numerical solution still contains oscillations near the steep

fronts. Figure 2.6 demonstrates the moving mesh approach with 81 mesh points,
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(a) t = 0 s (b) t = 0.5 s (c) t = 1 s

Figure 2.6: FEM solution on a adaptive moving mesh consisting of 81 points.

which prevented the oscillations near steep fronts. Note that the Hessian-based func-

tion ρ =
(
1 + 1

α
|uxx|2

)1/3
is used as a monitor function in the mesh equation.

2.3 Corrosion

2.3.1 Corrosion Basics

Corrosion is the degradation of a metal surface caused by chemical or electrochemical

reactions with its surrounding environment. Metals mostly corrode by electrochemical

reactions and non-metals corrode by chemical reactions. A chemical reaction is a

process where the reactants are converted into different products. However, at least

one of the species changes its number of valance electrons during the electrochemical

reaction. As our interest is in metallic corrosion, the following discussion will primarily

focus on this topic.

2.3.1.1 Corrosion electrochemistry

Usually, metals are in high energy state and have a tendency to go to a lower energy

state by forming oxides or hydroxides depending on their environment. The tendency

to oxidize depends on the position of the metal in the Galvanic series table [20, 22],

with metals located at the top of the galvanic series being more active and typically

acting as an anode. It is the anode that is usually corroded in its environment.
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Corrosion processes in metals occur due to electrochemical reactions in a corrosion

cell. Within the corrosion cell, there are mainly two reactions that occur and the

generic forms of the reactions are

M Mn+ + ne– (anodic reaction or oxidation)

nX+ + ne– Xn (cathodic reaction or reduction)

where M is the generic metal atom, Mn+ is the dissolved metal ion with a charge

number of n, and e– is an electron. There are four necessary components for any

metallic corrosion to occur [22]:

1. There must be a sacrificial metal that tends to corrode called the anode.

2. There must be a less corrosive conductive metal called the cathode.

3. The anode and cathode should be in direct physical contact (or by a wire) to

allow electrons to flow from anode to cathode.

4. The anode and cathode must be exposed to an electrolyte that provides a con-

ductive liquid path, which allows ions to exchange between anode to cathode

and hence completing an electric circuit.

These four elements: anode, cathode, electrical path, and electrolyte, form a corrosion

cell. The corrosion process cannot occur if any corrosion cell elements are absent.

Figure 2.7 presents an example of a corrosion cell for iron.

The most common electrolytes are water, acid, and alkaline. Tap water is less

corrosive than rainwater because rainwater has a lower pH level, which indicates a

higher acid content. Some water is even more corrosive than rainwater due to its high

salinity, which makes a stronger electrolyte. Many conditions influence the initiation

and impact of corrosion, such as the type of electrolyte, the availability of oxygen, the

time of exposure, the temperature, the stress, and other biological conditions. One of

the most corrosive environments is found in coastal regions with high humidity and

salt concentration, creating an especially strong electrolyte.

The process of corrosion involves: the material dissolving by electrochemical re-

actions on the metal surface in the presence of an electrolyte, and then the dissolved

41



Water

Iron

Rust

Fe2+

O2

H2O O2

e−Anodic site

Cathodic site

Figure 2.7: A basic depiction of the corrosion cell and the process of pitting corrosion

of iron. Figure adapted from [5].

metal atoms traveling into the electrolyte or the surrounding metal surface. During

the electrochemical reactions, the anodic reaction produces electron(s); the electrons

travel in the metal and reach (generally outside of the corroded area) a point on

the surface and then participate in a cathodic reaction. The resulting cathodic reac-

tions produce a corrosion product. The impact of corrosion is the loss of mechanical

strength, which leads to physical damage or degradation of metals [18].

In the corrosion process, there is a transfer of electrons and ions between two

metal areas, and these transfers can happen in two ways. The first way is when

two connected metals, with sufficient potential differences, are in an electrolyte. The

metal with a higher potential becomes an anode which may corrode faster, and the

metal with a lower potential becomes a cathode that may corrode slower. The second

way is when different areas on the same metal have enough potential difference,

allowing ions and electrons to exchange. This phenomenon is commonly known as self-

corrosion and can occur for many reasons, such as from differences in microstructure,

composition, or impurities in the metal [18]. An example of self-corrosion is presented

in Figure 2.7. It can take a continuum of forms, from general corrosion to localized

corrosion.

General corrosion leads to the metal surface corroding uniformly over the entire
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surface area, resulting in reduced mass and even thinning of the metal. A familiar

example of general corrosion is rusting of an iron fence. In the case of localized

corrosion, corrosion only occurs in specific area(s) and most of the areas of the metal

surface may remain unaffected. Localized corrosion can occur in different forms such

as pitting corrosion, crevice corrosion, and stress corrosion cracking. These forms

of corrosion can be more dangerous than general corrosion because they can cause

localized damage and lead to failures in engineering systems.

Metals can experience localized corrosion due to the breakdown of a protective

layer, also known as the passivation layer, such as is present in stainless steel. This

protective layer is a barrier between the metal surface and the electrolyte, preventing

electrochemical reactions from occurring on the metal surface. Regardless, when the

protective layer is damaged or broken, the metal surface is exposed to the electrolyte

and forms a corrosion cell. Electrochemical reactions occur in the cell, and the anode

is highly localized in this situation. As a result, the anode undergoes corrosion and

penetrates the depth of the metal, forming a tiny pit, hole, or cavity, whereas the

surrounding metal surface remains unaffected. This form of corrosion is called pitting

corrosion [18, 27].

2.3.1.2 The electric potential, corrosion potential and applied potential

The electric potential, also known as the electrostatic potential, represents the amount

of energy needed to move or transport a unit of electric charge within an electric field

from a reference point to a specific point. Note that the electric potential is obtained

at a single point, whereas the potential difference is measured between two distinct

points.

The corrosion potential is a measure of a metal’s tendency to corrode; in other

words, the corrosion potential is the tendency of the metal to lose electrons (oxidation)

in the presence of the electrolyte. However, it does not provide a corrosion rate

directly; the corrosion rate is proportional to the electron transfer between electrodes

in the electrolyte. Two electrodes are formed spontaneously during the corrosion

process, an anode and a cathode [34]. Normally, electrons move from the electrode
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with the most negative potential to the one with the most positive potential in a

circuit, and the current flows in the opposite direction. Electric potential for general

metals are found using the known potential for “standard” electrodes. The standard

electrode in a laboratory is the Standard Hydrogen Electrode (SHE) and Table 2.1

gives the electrode potentials with respect to the SHE. It shows that zero potential

Table 2.1: Electrode potential relative to SHE [19]

Reaction V

Cu2+ + 2e− → Cu +0.342

2H+ + 2e− → H2 0.00

Fe2+ + 2e− → Fe -0.447

is at the hydrogen electrode. The electrode potential determines the direction of

electron flow. Therefore, given the electrode potentials of two metals in contact, one

can evaluate the anode and cathode of the electrochemical cell. For instance, from

the table, copper has a higher potential than iron and electrons will transfer from

iron to copper. According to the above discussion of corrosion phenomena, iron will

behave as the anode and undergo corrosion [18].

Applied potential is also known as an external electrical potential, which is ap-

plied intentionally to a system. It is an external force that influences the movement

of electrons within the system. One can control the electrochemical reactions at the

electrode-electrolyte interface by applying a specific potential. This applied potential

can alter the rate and direction of electron transfer, consequently affecting corrosion,

electrolysis, and electroplating processes. The chemist uses the applied potential

for different tests in the electrochemical industry. One example is accelerating the

electrochemical corrosion testing processes. In summary, the applied potential delib-

erately manipulates the electrical potential to regulate or induce desired reactions in

an electrochemical system.
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2.3.2 Pitting corrosion

2.3.2.1 Concept of pitting corrosion

Pitting corrosion is a localized form of corrosion that generates pits, cavities, or holes

in the metal. It occurs when the protective or passive layer of the metal surface

breaks down. Usually, the passive layer prevents the metal surface from undergoing

chemical reactions with its surrounding environment and the metal does not corrode.

When the layer is broken, the metal surface is exposed to the environment forming a

corrosion cell (in the presence of electrolyte) in that specific area and initiating the

corrosion process. The corrosion process is highly localized and penetrates the metal.

As a result, small pits, cavities, or holes are formed on the metal surface, whereas the

other parts of the surface remain protected. This phenomenon is known as pitting

corrosion and the mechanism of pitting corrosion is demonstrated in Figure 2.7.

Hence, pitting corrosion occurs through electrochemical corrosion, as discussed

in the previous section. When a small part of the passive layer breaks, the metal

surface is exposed to the environment and electrochemical reactions take place if

the environment is conductive to the exchange of current. Electrons move from the

exposed area (which is the active or anodic area) to the surrounding area or cathodic

area, which is highly passive. If the cathodic area is very large, the demand for

electrons is high and cannot be fulfilled by the small anodic area. Thus, the localized

attack is caused by the large difference between the passive surface area and the

active (or anodic) area inside the pit. This causes corrosion in the depth direction.

The danger of pitting corrosion lies in the defects that form on the metallic body

during the formation of the pits. These pits are regions of high stress and reduce the

strength of the metal, shortening its service life. Additionally, leaks can be caused by

pitting that penetrates too deeply into the metal leading to further physical damage

and degradation of the metal [18, 27].
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2.3.2.2 Pit shapes and growth

Pitting corrosion generates pits on the metal surface that can have various shapes,

including hemispherical, cup-shaped, wide-and-shallow, or deep and narrow troughs,

etc. [13, 22]. The shape and growth rate of the pit is influenced by the type of metal

and its environment. Figure 2.8 presents examples of commonly observed pitting

shapes in experiments.

(a) Narrow and deep. (b) Elliptical. (c) Wide and shallow.

(d) Subsurface. (e) Undercutting. (f) Shapes influenced by

micro-structural orienta-

tion.

Figure 2.8: Some examples of common shapes of pitting corrosion. Figure adapted

from [13].

Several studies have indicated three distinct stages in the development of pitting

corrosion: the initiation stage, the metastable stage, and the stable stage. The ini-

tiation of a pit is followed by metastable growth that leads to stable growth under

the right balance between electrochemical and mass transport mechanisms. The ini-

tiation stage of pitting corrosion is not well understood and continues to be a topic

of significant discussion and research [13, 22, 24]. After the passive layer breaks

down and a pit initiates, the pit may or may not be stable, which is referred to as a
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metastable pit. A pit is identified as stable if it is actively growing over time [1, 8].

In this thesis work, we consider the pit to be in the stable stage.

2.3.2.3 Transport in solution

In the corrosion process, species move or transport, in the solution or are deposited

nearby. Under certain circumstances, the rate of corrosion is controlled by the speed of

the transport process, which depends on diffusion, migration, and convection within

the electrolyte. Diffusion and migration are the two process involved primarily in

pitting corrosion [27].

Diffusion is a movement of species driven by concentration gradients. Usually,

species move from a higher concentration to a lower concentration area until all species

reach an even concentration or equilibrium state. Fick’s first law states that the

diffusion flux Ndiffusion is directly proportional to the concentration gradient [11, 12],

Nj,diffusion ∝ ∇cj

= −Dj∇cj

where ∇ is the gradient operator (i.e, ∇ = î ∂
∂x

+ ĵ ∂
∂y

in two dimensions), Dj is

diffusion coefficient or diffusivity of species j, and cj is the concentration of species j.

The negative sign indicates that the flow occurs from a higher to a lower concentration

region. In our work, the flux will be assumed to be independent of time.

Migration is a movement of a charged species driven by an electric field. In other

words, migration is the phenomenon in which charged species are transported across

a solution due to the presence of an electric voltage gradient, commonly referred to

as the potential gradient. The flux of a charged species j induced by migration in the

solution is expressed by [2, 27]:

Nj,migration = −zj
FDj

RT
cj∇φ

where zj is the charge number of the species j, φ is the electric potential, F is Fara-

day’s constant (9.649×104 C/mol), R is the universal gas constant (8.314 Jmol−1K−1)

and T is the absolute temperature (294K).
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Convection occurs when a fluid or solution moves from one location to another

under the influence of applied forces.

Nj,convection = cjv

The Nernst-Plank equation (2.42) is a widely used equation for describing the

transport flux of chemically charged species [3] within an electrolyte:

Nj = − Dj∇cj − zjujFcj∇φ + cjv (2.42)

where Nj is the flux of species j, cj is the concentration of species j, v is the solvent

velocity, and uj is the mobility of the species j, which follows the expression

uj =
Dj

RT
.

Hence, the right side of (2.42) represents three fluxes; the first term -Dj∇cj expresses

the transport rate of ionic diffusion flux, the second term -zjuiFcj∇φ describes the

electro-migration flux for charge species, and the third term cjv represents the con-

vection flux.

Computational governing equation: The transport of species in the solution can

be derived from the conservation of mass principle [3, 21, 28], which is represented

by the equation
∂cj
∂t

Storage

= −∇ ·Nj  
Flux in- Flux out

+ Rj
Generation

where Rj is the rate of production of species generation due to chemical reactions.

We used a negative sign in front of the ∇Nj term because we are considering flux

in minus flux out. Substituting Nj into the previous equation gives the following

equation

∂cj
∂t

= − Dj∇2cj − zjuiF∇(cj∇φ) + ∇(cjv) + Rj (2.43)

This equation represents the rate of change of concentration driven by the diffusion,

migration, convection, and rate of production of species.
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The Nernst-Planck equation is solved for each species involved in the model and

when electromigration is included in the model, an extra equation is necessary to

determine the potential φ. A commonly employed equation for this purpose is the

Poisson-type equation, as described by Sharland et al. [29]. Thus, the potential can

be obtained by solving Poisson’s equation

∇2φ =
σ

ε
(2.44)

where ε is the permittivity of the electrolyte and σ is the charge density. In situations

where the charge density is considerably smaller than the electric permittivity of the

electrolyte, this equation simplifies to the electro-neutrality equation, and Poisson’s

equation is substituted with the local charge neutrality equation, which is expressed

as [28, 29] ∑
j

zjcj = 0. (2.45)

2.3.2.4 Rate of corrosion at the pits

Faraday’s law of electrolysis determines the corrosion rate by establishing a connec-

tion between the electric charge and the amount of substance (m) involved in the

electrochemical reaction [25]. Thus, the mass of the substance deposited or removed

is given by:

m ∝ Q

=
MQ

zF

where Q is the total amount of charge passed in t seconds, z is the number of electrons

participating in the redox reaction, and M is the molar mass or molecular weight

(g/mol). Thus the total amount of charge is obtained from the product of current

(I) and time (i.e., Q = It), and inserting into the above equation gives:

m =
MIt

zF

=
MA

zF
it,

(2.46)
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where i is the current density which represents the amount of electric current flowing

through a specific area, i = I
A
. If equation (2.46) is divided by the density ρ of the

electrode material and the geometric surface area A, the loss per unit time t gives the

corrosion penetration rate (CPR), vcpr.

vcpr =
M

ρzF
i

=
i

zFc
, (2.47)

where c is the concentration and is related to the molar mass and density by c = ρ
M
.

2.3.3 Crystallography for Corrosion

2.3.3.1 Crystal structure and unit cell

Crystal structure refers to the arrangement of atoms, ions, or molecules in a crys-

talline material. Crystals are solids with a regular and repeating three-dimensional

pattern known as a lattice as demonstrated in Figure 2.9. This lattice structure is re-

sponsible for the characteristic geometric shapes and symmetries observed in crystals.

The importance of crystal structure to various scientific disciplines and industries is

due to its significant impact on material properties and behavior. For example, the

arrangement of atoms in a crystal lattice directly influences material properties such

as mechanical strength, thermal conductivity, electrical conductivity, and optical be-

havior, etc, [6]. Understanding crystal structure is essential for designing and tailoring

materials with specific properties for various applications.

A unit cell is the basic building block of a crystal lattice, representing the smallest

repeating unit of a crystal structure as represented in Figure 2.9. It is a three-

dimensional parallelepiped (a six-faced figure with each face being a parallelogram)

with edges defined by lattice parameters a, b, and c, and interaxial angles α, β, and

γ.

There are several types of unit cells, with the most common for metals being the

primitive cubic, body-centered cubic, and face-centered cubic unit cells, which repre-

sent different crystal structures based on the arrangement of atoms within the unit
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Figure 2.9: Crystal lattice of a simple cubic material with some atomic layers and a

unit cell displayed.

cell. The unit cell allows scientists and researchers to predict and analyze the physi-

cal, mechanical, and thermal properties of crystals, as well as predict their diffraction

patterns using techniques like X-ray crystallography.

2.3.3.2 Miller indices, directions and planes

Miller indices represent the three-dimensional coordinate system for crystals, based

on their unit cell. The indices are used in crystallography to describe the orientation

of crystal planes and directions within a crystal lattice. The indices are represented

by three integers denoted by [h k l]. Note that the values of Miller indices cannot be

fractions, and there is no need for commas to separate the values of Miller indices.

In crystallography, square brackets [ ] represent a particular direction and angle

brackets <> denote a family of directions. Parentheses () denote a specific plane, and

curly brackets {} indicate a family of symmetrically equivalent planes. Miller indices

use a unique notation for negatives, represented by a “bar” symbol (e.g., 1̄ for -1).

For example, [0 1̄ 0] is pronounced as “the zero, bar one, zero direction.”

In a cubic system, [1 0 0] and [ 0 1 0] are perpendicular directions and < 1 0 0 >

includes the directions [1 0 0], [1̄ 0 0], [0 1 0], [0 1̄ 0], [0 0 1], and [0 0 1̄]. The example

of a direction for a face diagonal is [1 1 0] as shown in Figure 2.10(a), and [1 1 1]

represents body diagonal for a cubic unit cell as displayed in Figure 2.10(b).
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Figure 2.10: Miller indices of some directions within a cubic crystal.

Miller indices are defined with respect to a coordinate system so the first definition

we need is an origin. The origin is a point (0,0,0) and we can define it anywhere in the

crystal since the crystal is assumed to be infinite in all direction. For a given crystal

direction, let’s take the example of [2̄ 1 2], we can draw the direction vector in the

unit cell using Miller indices. It is important to note that Miller indices of directions

always translate the direction so that it starts at the origin. The drawing procedure

is as follows: first, determine the origin as the tail of the direction vector (if there is

a negative number in the direction vector, move the origin in the positive direction

for the axis). Then, determine the vector endpoint (remove a common factor if any

of the indices are larger than 1). Finally, draw the vector. For our example: we start

by pulling the common factor 2 out, i.e., [2̄12] = 2[1̄1
2
1]. Then we draw the direction

as shown in Figure 2.10(c).

Consider a unit cubic cell atoms at each corner. Now let us assume an imaginary

plane passing through the unit cell (or lattice points of the unit cell). Miller indices

z

y
x

(0, 0, 0)

(a) Lattice plane (0 1 0).

z

y
x

(0, 0, 0)

(b) Lattice plane at origin.

z

y
x

(0, 0, 0)

(c) Lattice plane (1 1 1).

Figure 2.11: Lattice Planes.
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for the plane are calculated by determining the intercepts made by the plane on the

x, y, and z axes, respectively, and then take the reciprocals of these intercepts. If the

plane passes through the origin, in this situation we need to shift the origin to the

nearest lattice point on the parallel face.

Example 2.3.1. A plane which perpendicular to y-axis at y = 1 as shown in Fig-

ure 2.11(a). . Since the reciprocals of x, y and z intercepts are 0, 1, and 0 respectively,

the Miller indices of this plane is (0 1 0).

Example 2.3.2. In Figure 2.11(b), since the plane passes through the origin, we

shift the origin to the nearest lattice point on the parallel face. Then the reciprocals

of x-intercept, y-intercept and z-intercept are 0, −1, and 0 respectively. Therefore

the Miller indices of this plane are (0 1̄ 0).

Example 2.3.3. The reciprocals of the x, y and z intercepts are 1, 1 and 1, respec-

tively for the plane shown in Figure 2.11(c). Therefore, the Miller indices of this

plane are (1 1 1).

Why are the crystal directions and planes important? They provide essential

information about the arrangement and symmetry of atoms within a crystal lattice,

which profoundly impacts the material’s properties and behavior. In our work, crystal

directions and planes plays an important role in the calculation of the corrosion

potential for a non-homogeneous material.

2.3.3.3 Relation between crystal coordinate and Cartesian coordinates

systems using a rotation matrix

The relation between crystal coordinates and Cartesian coordinate systems is essential

because it allows us to describe the position and orientation of crystallographic fea-

tures within a crystal in terms of familiar three-dimensional Cartesian coordinates.

This relationship is crucial for understanding and analyzing the crystal’s physical

properties and behavior.

Let D represent the original set of basis vectors for cubic crystal,

D = {[100], [010], [001]}.
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In a cubic crystal system, the basis vectors are perpendicular to each other. Now, let

us define a generalized set of vectors for a given crystal direction [h k l]:

C = {î, ĵ, [h k l]}

where ĵ can be found from the relation ĵ = [h k l] × î, and we just need to set the

vector î. This turns out to be easy for a cubic crystal system since the equation for

a dot product is straightforward. Thus, any vector that satisfies:

î · [h k l] = 0 =⇒ ixh+ iyk + izl = 0.

where ix, iy and iz can be the components of the vector î.

Now let us look at an example. Assume we have [1 1 1] coming out of the page

(defined as the zone axis of the crystal), h = 1, k = 1, l = 1. Then we get:

ix + iy + iz = 0

Since there are two independent variables, we can choose iz = 0 for simplicity, thus

that the vector lies in the xy-plane (no component out of the plane). The simplest

choice is ix = 1, and we get:

1 + iy + 0 = 0 =⇒ iy = −1

This gives us î = [1 − 1 0] (we neglect the normalizing factor), and

ĵ = k̂ × î

=

⏐⏐⏐⏐⏐⏐⏐⏐
x̂ ŷ ẑ

1 1 1

1 −1 0

⏐⏐⏐⏐⏐⏐⏐⏐
= [x̂ ŷ ẑ]

= [1 1 − 2]

where x̂, ŷ and ẑ are the unit vectors. Hence the matrix which converts vectors from
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one basis to another is [26]:

A−1 =

⎡⎢⎢⎣ î ĵ k̂

⎤⎥⎥⎦ ,

=

⎡⎢⎢⎣
1 1 1

−1 1 1

0 −2 1

⎤⎥⎥⎦ .

Now the question is how do we use this matrix? Let nCD be the outward unit

normal in the crystal coordinate system, and using the notation given in [4, 26], its

relationship to unit normal n in the Cartesian coordinate system is

nCD = A−1n. (2.48)

For our [1 1 1] example, we have

nCD =

⎡⎢⎢⎣
1 1 1

−1 1 1

0 −2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

nx

ny

nz

⎤⎥⎥⎦

=

⎡⎢⎢⎣
nx + ny + nz

−nx + ny + nz

−2ny + nz

⎤⎥⎥⎦ .

Table 2.2 displays the relation between n and nCD. Hence A−1 matrix is a transfor-

n nCD

[1 0 0] [1 1̄ 1]

[0 1 0] [1 1 2̄]

[0 0 1] [1 1 1]

Table 2.2: The values of n and nCD for a zone axis of [1 1 1] .
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mation matrix which can be calculated for any crystal orientation defined normal to

the plane of the given crystal. The î vector can be chosen in any crystalline direction,

therefore the crystal is rotated about [0 0 1] any way we wish.

2.3.4 Modeling approach of pitting corrosion

The computational models for pitting corrosion can be divided into two principal

categories based on how they compute the corrosion front: non-autonomous and

autonomous models. In non-autonomous models, numerical methods are used to

solve the transport equation separately for the motion of the corrosion front and the

evolution of the pit domain. On the other hand, autonomous models describe the

dissolution or transport mechanism together with the pit propagation. Since non-

autonomous models are a well-established framework and commercially used [18],

we have chosen the non-autonomous model for this thesis work. Particularly, non-

autonomous models use the FEM and track the evolution of pit growth using a moving

boundary technique. The velocity vector (2.47) is computed at each boundary node

for pit propagation.

The thesis does not focus on atomistic models for corrosion processes that study

chemical reactions in detail. Instead, we focus on a mathematical model and solve

the model using the adaptive moving mesh approach. If the reader is interested in

atomistic models or related matters, please refer to articles [23, 30, 31, 32].

Most researchers choose micrometer to millimeter length scales for better under-

standing the initial formation and propagation of corrosion pits. All simulations in

this thesis are computed at the micrometer scale.
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Chapter 3

Moving mesh simulation of pitting

corrosion

Abstract

1 Damages due to pitting corrosion of metals cost industry billions of dollars per year

and can put human lives at risk. The design and implementation of an adaptive

moving mesh method is provided for a moving boundary problem related to pitting

corrosion. The adaptive mesh is generated automatically by solving a mesh PDE

coupled to the nonlinear potential problem. The moving mesh approach is shown

to enable initial mesh generation, provide mesh recovery and is able to smoothly

tackle changing pit geometry. Materials with varying crystallography are considered.

Changing mesh topology due to the merging of pits is also handled. The evolution of

the pit shape, the pit depth and the pit width are computed and compared to existing

results in the literature.

Keywords: Pitting Corrosion, Adaptive Moving Mesh, MMPDE, FEM, Crystallog-

raphy
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3.1 Introduction

Corrosion is a deterioration or breakdown of a material due to chemical or electro-

chemical reactions. In particular, pitting corrosion is one of the most disastrous and

devastating localized forms of corrosion; generating a small pit, cavity or hole in the

metal. Pitting corrosion is difficult to identify, and can have a big impact on the

structural integrity of metal [47, 56]. The pit geometry depends on many factors

such as the components of the metal, the surface orientation, and the physical and

chemical environment at the time of attack [43]. Corrosion pits can have different

shapes [34] and with the ability to grow over time, failure of engineering structures

such as bridges, pipelines and nuclear power plants may result [9, 34, 39].

Computational modeling and simulations have been a tremendous asset in the

study of pitting corrosion over a wide range of conditions and materials. Determin-

ing the pitting behavior experimentally is time consuming, expensive and physically

difficult or impossible in many situations. Numerical simulations allow us to study

pitting under a wide range of conditions within a reasonable time.

In last few decades, several review papers that have focused on partial differential

equation (PDE) based models for pitting corrosion based on finite element or finite

volume methods [10, 11, 31, 32, 42, 44, 46, 50]. In 2019, an extensive overview of

the mathematical models for pitting corrosion based on the anodic reaction at the

corrosion front, the transportation of ions in the pits of the electrolyte domain and

the pit growth over time is provided in [26]. In many of these studies COMSOL® is

used to solve the PDE in the electrolyte domain and the corrosion front movement

and meshing is computed by the arbitrary Lagrangian-Eulerian (ALE) approach and

the level set method [11, 30]. In other studies, a 2D PDE model is solved with the

finite element method [13, 49] and the finite volume method [41, 42]. Pit growth

is determined by finite element methods and a level set approach in [49], and using

an extended finite element method (XFEM) and level set method in [13]. In 2020,

an ALE method is implemented to move the mesh at the pit boundary and analyze

the relationship between the corrosion behavior and the local corrosive environment

within a single pit [51].
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The previously mentioned FEM approaches relied on a complete remeshing of

the domain at every time step. An alternative technique, presented here, uses an

adaptive moving mesh method where the mesh size, shape and orientation of the

mesh elements are automatically and continuously varied for each time step, while

keeping the number of nodes and mesh topology fixed throughout the computation.

Continuous mesh movement approaches are divided into two main categories:

velocity-based approaches and location-based approaches. Most velocity-based ap-

proaches are motivated by the Lagrangian algorithm, where the mesh movement is

tightly associated with the fluid or material particle flow. The Eulerian approach

has a fixed computational mesh and the continuum moves with respect to the mesh

nodes. The Eulerian and Lagrangian algorithms are commonly used in fluid dynamics

and structural material problems, respectively [12]. In general, Eulerian meshes avoid

mesh tangling and diffusive solutions, but the method can have difficulty adjusting to

sharp material interfaces. One of the advantages of the Lagrangian approach is that

the advective terms do not appear in the governing equations. Thus, the Lagrangian

methods are less diffusive compared to the Eulerian approach, while also maintaining

sharp material interfaces [22]. The ALE methods are velocity-based methods, which

provide a combination of Lagrangian and Eulerian approaches [14, 15, 29, 35, 37, 52].

The main goal of the location-based mesh movement approach is to directly control

the location of mesh points in particular regions of the computational domain. A typi-

cal location-based method is the variational approach, which relocates the mesh points

by movements that are based on minimizing a functional formulated to measure the

difficulty or the error in the numerical solution [22]. Other location-based algorithms

are based on elliptic PDE descriptions which can be used to generate boundary-fitted

meshes [48, 53], sometimes known as Winslow’s approach [54]. Winslow’s idea can be

generalized using a functional [6], which provides a combination of the mesh adap-

tivity, smoothness, and orthogonality conditions.

A number of articles consider mesh adaptation functionals including mechanical

models [23, 24, 25], vector fields [27], a weighted Jacobian matrix [28, 29], a matrix-

valued diffusion coefficient [8, 20], and the equidistribution and isotropy (or alignment
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conditions) presented in [16]. The moving mesh PDE (MMPDE) method that we use

has been developed by several authors [7, 19, 19, 20, 21, 38]. Therein, the mesh

movement is determined by a gradient flow equation, and the functional plays the

vital role.

To our knowledge, an adaptive moving mesh method, our method of choice, has

not been implemented for PDE-based modelling of pitting corrosion. In our moving

mesh method, the FEM provides the spatial discretization and our computational

framework is built upon the package MMPDElab by Huang [18]. MMPDElab is a

general adaptive moving mesh finite element solver for time dependent PDEs based on

integration of the MMPDE. The solver uses an alternating mesh and physical solution

approach, and we used the solver to achieve an adaptive moving mesh which provides

sufficient mesh elements in and around the pit. We focus on the development of

an appropriate mesh density function which implicitly and automatically determines

an appropriate distribution of nodes as the pit evolves. Our paper provides: 1) a

proof of concept implementation of the moving mesh approach for pitting corrosion,

2) an adaptive solver for both single and multiple crystal directions, 3) the ability to

handle single and multiple pits, and 4) the ability to provide (provably) nonsingular

quality evolving meshes in an automatic way. The test material for demonstrating

these techniques is 316 stainless steel using the parameters provided in [11, 30]. This

paper is organized as follows. We discuss the preliminaries of the pitting corrosion

mechanism, the crystal orientation, the PDE-model, and an overview of the moving

mesh methodology in Section 3.2. The finite element method approach for the phys-

ical PDE, the choice of mesh density function and moving mesh parameters, initial

mesh generation, the boundary movement strategy, and the overall alternating solu-

tion approach are discussed in Section 3.3. Section 3.4 is devoted to our numerical

results and validation.
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3.2 Model problem

In this section we detail our prototype model problem and adaptive solution strategy

including the description of the domain, model PDEs and boundary conditions, the

necessary crystallography, and an overview of the moving mesh strategy.

3.2.1 PDE model equation

The transport of species in the solution can be modeled by the conservation of

mass [45, 55], which leads to the mathematical form

∂cj
∂t

Storage

= −∇ ·Nj  
Flux in - Flux out

+ Rj
Generation

, (3.1)

where t is time, cj is the concentration of the jth species, Nj is the flux of the jth

species, and Rj is the rate of species generation due to chemical reactions. The ionic

flux depends on the gradient of ion concentration, electro-migration and convection

(or flow in a liquid medium). For each individual species i, the transport of the species

in the electrolyte is described by the Nernst-Planck equation as

Nj = −Dj∇cj − zjFujcj∇φ+ cjv, (3.2)

where Dj is the diffusion coefficient of the jth species, uj is the mobility of the species,

zj is the charge of the species, φ is the electric potential, F is Faraday’s constant,

and v is the solvent velocity [2]. Equation (3.2) gives the flux of the species as a

combination of three contributing fluxes. The term −Dj∇cj describes the diffusive

flux, the term −zjFujcj∇φ gives the electro-migration flux and the term cjv is the

convection flux. Generally, the diffusion coefficient varies with the position of the

species but we assume the diffusion coefficient is constant in our model.

While equation (3.2) represents the complete coupled behavior observed in the

electrolyte domain during pitting corrosion, certain physically motivated assump-

tions are made in arriving at our simplified model: a) the absence of gradients in

the species concentration due to the rapid mixing of the electrolyte; b) the incom-

pressibility of the solvent; c) the zero net production of the reactants; and d) the
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electro-neutrality of the electrolyte solution. These assumptions simplify (3.1) to

the well-known Laplace equation. In this case, the electrolyte potential can be found

by solving (on the electrolyte domain, Ω, shown in Figure 3.1)

∇2φ = 0 in Ω, (3.3)

with the following boundary conditions

φ = 0 on Γ1,

∇φ · n = 0 on Γ2,Γ3,Γ4,

∇φ · n =
ia(φ)

σc

on Γp,

(3.4)

Γ1

Γ2 Γ3

Γ4 Γ4
Γp

Electrolyte Domain (Ω)

Solid Domain

Figure 3.1: The 2D computational

domain.

where ∇φ ·n = ∂φ
∂n
, n is the (outward) unit normal vector with respect to Ω, ia(φ)

is the anodic current density, σc is the electrical conductivity of the electrolyte, Γp is

the pit boundary, and Γ1, Γ2, Γ3 and Γ4 are the top, left, right and bottom of the

domain (excluding the pit boundaries), respectively. The boundary condition ∂φ
∂n

= 0

enforced on Γ2, Γ3 and Γ4 ensures there is no flow of ions across these boundaries.

We denote the horizontal and vertical co-ordinates of the electrolyte region in Figure

3.1 by x and y, respectively.

The current density is modelled by the Butler-Volmer relation

ia(φ) = zFAs · e

(
zF (Vcorr+αηa)

RT

)
, (3.5)

where α is the transfer coefficient, z is the average charge number for the dissolving

metal, AS is the material dissolution affinity, T is the temperature and R is the

universal gas constant [3].

The Butler-Volmer relation is used to describe the experimental data as a function

of the applied over-potential

ηa = Vapp − Vcorr − φ,

where Vapp and Vcorr are the applied and the corrosion potentials, respectively [42].
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Parameter : Description Value

z : Average charge number for the metal 2.19

F : Faraday’s constant 96485 C/mol

R : Universal gas constant 8.315 J/(mol K)

T : Temperature 298.15 K

Vcorr : Mean corrosion potential (homogeneous) -0.24 V

Vapp : Applied potential -0.14 V

Adiss : Dissolution affinity 4 mol/cm2s

Csolid : Solid concentration 143 mol/l

∆t : Time step size 1

Table 3.1: List of parameters used in the corrosion model.

As the metal corrodes, the pit boundary moves as the pit becomes larger. In our

model the new position of corrosion front, Xnew, is computed from the old position,

Xold, by a simple time stepping procedure

Xnew = Xold +∆tVnn,

where Vn is the magnitude of normal velocity. The magnitude of normal velocity at

the corrosion interface (or the movement of the corrosion front) is described using

Faraday’s law

Vn =
ia(φ)

zFcsolid
, (3.6)

where csolid is the atomic mass concentration of the metal and z is the average charge

number for the metal. Table 3.1 gives a list of parameters.

3.2.2 Crystal orientation and corrosion potential

The corrosion potential is the mathematical link between the etching effects of the

electrolyte and the material undergoing pitting. This potential term is present in the

Butler-Volmer equation (3.5) and is an important parameter governing the velocity
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of the sides of the pit during corrosion. If the electrolyte etches the material homo-

geneously in all directions then the crystal structure is not a variable in the modeling

and only one number is required for Vcorr. However, if the material is crystalline then

the corrosion potential may vary dependent on the particular crystallographic surface

exposed to the electrolyte. Hence, a connection between the Cartesian (x, y, 0) ge-

ometry used for defining the computational domains as presented in Figure 3.1 and

the directions in the crystal, is needed. In general, these two geometries will not

align since crystals can be rotated to lie along an infinite number of directions and

a transformation will be required to relate the two coordinate systems. Letting nCD

represent the outward unit normal in the crystal coordinate system, and using the

notation given in [5, 40], its relationship to n is

nCD = A−1n. (3.7)

The matrix A−1 is defined by

A−1 =

⎡⎢⎢⎣ i j k

⎤⎥⎥⎦ , (3.8)

where i, j and k are orthogonal unit column vectors in Cartesian space. k is chosen

as the desired zone axis of the crystal and i is chosen as the direction perpendicular

to k which will be oriented along the x axis in the computational domain. Thus,

the crystal can be rotated in any direction about the zone axis offering maximum

flexibility in the problems that can be studied. The third unit vector, j, is found

using the perpendicularity property of vector cross products

j = k× i.

In order to better see how to form theA−1 matrix, two examples will be presented.

First, select a crystal orientation where the zone axis is aligned along k = [001]. Next,

choose the i = [100] direction to be along the x computational domain direction.

Performing the j = k × i cross product, it is found that j = [010]. Hence, the
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transformation matrix is

A−1
001 =

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ .

In this case, the transformation matrix is the identity matrix and the crystal coordi-

nate system is the same as the computational domain coordinate system, ie. nCD = n.

For the second example, choose the zone axis to be along the [101] direction and the

[1̄01] crystal direction to be along the x computational domain direction. This leads

to j = [010]. After normalizing the vectors, the transformation matrix in this case is

A−1
110 =

⎡⎢⎢⎣
−1√
2

0 1√
2

0 1 0

1√
2

0 1√
2

⎤⎥⎥⎦ .

The next step is to define a corrosion potential for each crystallographic direc-

tion. Unfortunately, experimental data giving the corrosion potential as a function of

crystallographic surface is usually not available, hence we will adopt a similar form

of semi-empirical potential for 316 stainless steel

Vcorr = k − s [1− (⟨001⟩ · nCD)max] , (3.9)

where k = −0.2297 and s = 0.054 gives a 10% difference between the maximum and

minimum Vcorr values, that is between the [001] and [111] crystal planes as used by

DeGiorgi et al. in [30]. We write (⟨001⟩ · nCD)max, rather than [001] · nCD as used

in [30]. In our case, ⟨001⟩ represents any one of the six cryptographically equivalent

[001], [1̄00], [010], [01̄0], [001], [001̄] directions that maximizes the dot product with

the crystal direction normal vector. Maximizing this dot product minimizes the angle

between the normal vector and the particular ⟨001⟩ vector so that an equivalent result

to the standard stereographic triangle is obtained. Figure 3.2 is an example of this

procedure is provided in where a single crystal has been oriented along the [001]

zone axis. The semicircle represents the pit boundary, the black lines and arrows the

outward pit normal vectors, and the heavy blue line is the value of Vcorr as a function

of position along the edge of the pit. Highlighted by the three colours are sections
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along the pit boundary that have a different ⟨001⟩ vector for use in equation (3.9).

These vectors are presented in blue text and are [001], [01̄0] and [1̄00] for the right,

centre and left sections of the pit, respectively.

Figure 3.2: A plot of Vcorr as a function of location around the pit boundary. The

blue, green and yellow sections of the pit edge require different < 001> vectors for

use in equation (3.9).

3.2.3 Overview of the moving mesh strategy

The basic idea of the moving mesh method is to automatically redistribute a fixed

number of nodes where additional accuracy is required. The mesh moves or evolves

automatically as the solution or domain evolves and is obtained by solving a MMPDE.

This MMPDE depends on a mesh density or monitor function, which is large where

the mesh density is needed to be large. The mesh density function is often chosen

to depend on variations or errors in the solution of the physical PDE or is chosen by

geometrical considerations (as in this paper).

In 1D, the equidistribution principle (EP) is used to derive the moving mesh

system. The EP uses a mesh density function ρ = ρ(x) > 0 which is to be dis-
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tributed evenly among the mesh elements in the domain. Given an integer N > 1,

the continuous and bounded function ρ on [a, b] is evenly distributed on the mesh

Th = a = x0 < x1 < · · · < xN = b, if∫ x1

x0

ρ(x)dx =

∫ x2

x1

ρ(x)dx = · · · =
∫ xN

xN−1

ρ(x)dx. (3.10)

A mesh Th is called an equidistributing mesh if the mesh satisfies the equidistribution

principle.

The physical problem is assumed to require a non-uniform x-coordinate, x ∈ Ω.

This physical coordinate, x, is a mapping of the computational ξ-coordinate where

ξ ∈ Ωc = [0, 1], and x(0) = a and x(1) = b, if Ω = [a, b]. We attempt to generate

a physical mesh Th using a mesh transformation x = x(ξ) : Ωc → Ω and a uniform

mesh in the ξ-coordinate

ξi =
i

N
, i = 0, 1, . . . , N.

The equidistribution principle (3.10) can then be written as∫ xi

a

ρ(x̃)dx̃ =
i

N

∫ b

a

ρ(x̃)dx̃

=
i

N
σ, i = 0, 1, . . . , N,

where σ =
∫ b

a
ρ(x̃)dx̃. The function

∫ x

a
ρ(x̃)dx̃ is strictly monotonically increasing if

ρ > 0, therefore each xi is unique. Here σ and i
N
σ are the total error and average

error in the approximating solution, respectively.

Using the mesh transformation we have∫ x(ξi)

a

ρ(x̃)dx̃ = ξiσ, i = 0, 1, . . . , N,

and the continuous version is given by∫ x(ξ)

a

ρ(x̃)dx̃ = ξσ, ∀ξ ∈ Ωc. (3.11)

The continuous mapping x = x(ξ) is called a equidistributing coordinate transfor-

mation for ρ if it satisfies relation (3.11). Differentiating (3.11) with respect to ξ

gives

ρ(x)
dx

dξ
= σ. (3.12)
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Equation (3.12) indicates that dx
dξ

is small when ρ is large. Again, differentiating with

respect to ξ gives
d

dξ

(
ρ(x)

dx

dξ

)
= 0, (3.13)

with the boundary conditions

x(0) = a, x(1) = b. (3.14)

This is a nonlinear boundary value problem (BVP) for the required mesh transforma-

tion and physical mesh. The mesh and physical solution on that mesh is determined

by solving this BVP and the physical PDE as a coupled system.

In higher dimensions, in order to describe the equidistribution and alignment

conditions at the discrete level, we consider a mesh Th of N triangular elements with

Nv vertices in the physical domain Ω ∈ Rd (d ≥ 1). Furthermore, we consider an

invertible affine mapping FK : K̂ → K and its Jacobian matrix, F
′
K , where K̂ is the

reference or master element for a physical element K in Th. Assume that a metric

tensor (or a monitor function) M = M(x) is given on Ω which determines the shape,

size and orientation of mesh elements of the domain Ω. Generally, a mesh is uniform

if all of its elements have the same size and is similar to a reference element K̂. So,

the main idea of the MMPDE method is to view any adaptive mesh Th as a uniform

mesh in the metric M.

The requirements of the equidistribution and alignment in higher dimensions can

be expressed mathematically at the discrete level [22] as

|K|
√
det(MK) =

σh

N
,∀K ∈ Th,

and
1

n
tr((F

′

K)
TMKF

′

K) = det((F
′

K)
TMKF

′

K)
1
d ,∀k ∈ Th,

where |K| is the volume of K and σ =
∑

K∈Th |K|
√
det(Mk).

A standard choice bases the metric tensor M on the approximate Hessian of the

solution. This choice of M is known to be optimal with respect to the L2 norm of

the linear interpolation error [17]. Here we focus on the evolution of the pit geometry

and choose M through geometrical considerations (see Section 3.3.2).
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A discrete functional associated with the equidistribution and alignment condi-

tions is given by

I[Th] =
∑
K∈Th

|K|
√

det(MK)
[
θ
(
tr(JM−1

K JT )
) dγ

2
+(1−2θ)d

dγ
2

( det(J)√
det(MK)

)γ]
, (3.15)

where J = (F
′
K)

−1.Minimizing this functional I[Th] approximately satisfies the equidis-

tribution and alignment conditions [16]. The value of the parameters θ = 1
3
, and γ = 3

2

are used for our numerical experiments.

The MMPDE moving mesh equation can then be defined as the (modified) gra-

dient system (or gradient flow equation) for the energy functional, i.e.,

dxi

dt
= −Pi

τ

∂I[Th]

∂xi

, i = 1, 2, . . . , Nv, t ∈ (tn, tn+1], (3.16)

where Pi = det(Mi)
1

d+2 is a scalar function used to ensure the mesh equation has

invariance properties and τ is a positive parameter used to adjust the response time

of mesh movement to the change inM. A smaller value of τ provides a faster response.

3.3 The numerical implementation

This section describes the details of the adaptive MMPDE strategy used to solve the

PDE pitting corrosion model using a customized version of MMPDELab [18].

3.3.1 Discretization of the physical PDE

MMPDElab requires the user to specify the physical PDE in weak form, where the

strong form of our model problem is given in equations (3.3) and (3.4). Let V be the

trial space, chosen in this case as

V = {v ∈ H1(Ω(t)) : v = 0 on Γ1} ⊂ H1(Ω(t)),

where H1(Ω(t)) is, roughly speaking, the function space whose members, and their

first derivatives, are square integrable (see, for example, [1] for details). At any time

t the weak form is constructed as follows: find φ ∈ V such that∫
Ω(t)

∇φ · ∇vdΩ =

∫
Γp(t)

v
i(φ)

σc

ds, ∀v ∈ V, (3.17)
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where Γp(t) is the boundary of the pit at time t. Here Vh denotes a finite dimen-

sional subspace of V spanned by a collection of finitely many basis functions (often

associated with a mesh). We discretize the weak form (3.17) to find a solution in the

discrete trial space. The discrete FEM solution is then found by finding φh ∈ Vh ⊂ V ,

such that ∫
Ω(t)

∇φh · ∇vhdΩ =

∫
Γp(t)

i(φh)

σc

vhds, ∀vh ∈ V. (3.18)

We can solve the discrete variational problem (3.18) in the following way. First,

introduce
{
ϕj

}N
j=1

as a basis for Vh and V . Let φh ∈ Vh be a linear combination of

the basis functions ϕj, j = 1, 2, . . . , N , with coefficients φ̃j, given by

φh =
N∑
j=1

φ̃jϕj. (3.19)

Considering v = ϕk, for k = 1, 2, . . . , N , and using relation (3.19) gives

N∑
j=1

φ̃j

∫
Ω

∇ϕj.∇ϕkdΩ− 1

σc

∫
Γp

i
( N∑

j=1

φ̃jϕj

)
ϕkds = 0, k = 1, 2, . . . , N.

For each time, t, this is a system of non-linear equations which is solved using New-

ton’s method.

3.3.2 The choice of the mesh density function

The appropriate specification of the mesh density tensor is crucial — it controls how

the mesh automatically adapts to the changing solution features.

As mentioned, for problems with fixed domain boundaries, the Hessian based

monitor function is an often used, general purpose, driver of the adaptive mesh.

Here, however, we wish to ensure sufficient resolution of the pit geometry. To ensure

a sufficient number of elements in the evolving pit and near the pit boundary, we use

a modified version of MacKenzie’s distance-based monitor function

MK(x, y) =

(
1 +

µ1√
µ2
2d

2 + 1

)
I, (3.20)

where

d(x, y) = min
p

∥(x, y)− (xp, yp)∥,
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and (xp, yp) denotes any point on the boundary of the pit, Γpit, cf. [4]. At any point

(x, y) ∈ Ω the value of the monitor function involves the minimum distance, measured

in the two-norm ∥ · ∥, from (x, y) to any point on the pit boundary. The reciprocal of

MK indicates that MK will be largest in (x, y) regions where the distance to the pit

boundary is the smallest, and hence the mesh spacing will be automatically smaller

in these regions. The parameter µ1 controls the minimum mesh spacing whereas µ2

(and τ) will control the rate at which mesh clustering occurs during the integration

of the MMPDE [33].

To understand the effect of the µ1 and µ2 parameters we consider a simple exper-

iment, simulating the evolution of a single pit in a homogeneous material. A quality

initial mesh, generated using the process outlined in Section 3.3.3 is used for this

experiment.

We begin by fixing µ2, at µ2 = 1, and consider the effect of increasing µ1. The

plots on the left of each row in Figure 3.3 show a representative mesh density function

(computed at t = 2s), while the computed mesh after t = 120s is shown on the

right. The results show that increasing µ1 leads to a monitor function which is

(relatively) larger near the pit boundary and hence gives smaller grid spacings near

the pit boundary. The value µ1 = 100 provides a balance between increased mesh

density near the pit boundary and sufficient resolution throughout the rest of the

computational domain.

Mackenzie [33] reports that increasing µ2 reduces the spatial extent of node clus-

tering near the pit boundary. To explore this we fix µ1 = 100 and vary µ2, recording

representative mesh density function values and the final mesh obtained for the pro-

pogation of a homogeneous pit is shown in Figure 3.4. The figure shows that increasing

µ2 to 20 is better able to keep the mesh focused on the feature of interest (the pit

boundary in this case), consistent with the general findings in [33].

3.3.3 Initial mesh generation

The numerical simulations in this paper require an initial pit geometry and an initial

spatial grid. With a prescription of the spatial domain many software platforms
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(a) Monitor function, µ1 = 1. (b) The mesh at t = 120 s with µ1 = 1.

(c) Monitor function, µ1 = 10. (d) The mesh at t = 120 s with µ1 = 10.

(e) Monitor function, µ1 = 100. (f) The mesh at t = 120 s with µ1 = 100.

Figure 3.3: Effect of µ1 on the mesh at t = 120 s for the simulation of a pit in a

homogeneous material with the monitor function (3.20) and µ2 = 1.

provide tools known as mesh generators for this purpose, for example initmesh in

Matlab or the mesh node in COMSOL. These tools require a description of the

domain boundary and then generate a mesh subject to constraints on the mesh size

(or number of nodes) and aspect ratios of the mesh elements.
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(a) Monitor function, µ2 = 1. (b) The mesh at t = 120 s using µ2 = 1.

(c) Monitor function, µ2 = 10. (d) The mesh at t = 120 s using µ2 = 10.

(e) Monitor function, µ2 = 20. (f) The mesh at t = 120 s using µ2 = 20.

Figure 3.4: Effect of µ2 on the mesh at t = 120 s during the simulation of a pit in a

homogeneous material with the monitor function (3.20) and using µ1 = 100.

In most cases the solutions found on the initial meshes generated by these ap-

proaches will not be optimal — for example, there is no guarantee that the error

in the numerical solution will be minimized. There are alternatives for initial mesh

generation that involve the MMPDE approach considered in this paper, and hence
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are consistent with the technique used for all subsequent time steps.

One technique for initial mesh tuning begins by using the simple mesh generators

mentioned above to find a (nearly) uniform mesh. The physical problem defined by

equations (3.3) and (3.4) is then solved on this mesh to give an initial potential.

Using this initial potential and its associated mesh density function MK , the gradient

flow equation (3.16) can be solved to a steady state (alternating its solution with

physical solves). The result is a mesh which minimizes the discrete functional (3.15),

equidistributing the initial potential over the initial computational domain. Should

a more sophisticated non-uniform mesh generator be available, then an initial non–

uniform mesh can be smoothed in the same manner. In practice, equation (3.16) may

not solved to a steady state. Instead, equation (3.16) can be integrated for a specified

number of time steps, or can be integrated until a specified difference between two

meshes is found. We will call this mesh smoothing. The number of steps required

to reach a suitable approximation of the steady state is a function of the physical

solution, the number of mesh nodes, and the mesh density parameters. This idea

of using the MMPDE to tune the initial mesh has the added benefit of giving a

mesh which has the same properties as all subsequent meshes, while using the same

code base as the rest of the simulation. We note that this process can also be used

to provide small scale mesh smoothing during the solution of the moving boundary

problem. This is particularly useful should the pit boundary movement be large or if

the pit boundary movement induces a discontinuous change in the geometry (during

pit merging for example).

In Figure 3.5 we show the evolution of the pit geometry in a homogeneous material.

The moving mesh method is implemented with the monitor function (3.20) starting

from the initial uniform mesh shown in Figure 3.5a. The non-uniform mesh resulting

from the solution of the gradient flow equation, shown in Figure 3.5c, has successfully

concentrated the mesh elements in the initial pit and near the initial pit boundary.

The convergence to a steady state solution of the gradient flow equation is shown in

Figure 3.5b. This resulting non-uniform mesh is now an appropriate initial mesh to

use to evolve the pitting corrosion problem forward in time. It is important to stress
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that no hand-tuning of the initial mesh is necessary, it is generated automatically

during the smoothing process based on the characteristics of the chosen mesh density

function. The final mesh after t = 60 s is given in Figure 3.5d.

Presented in Figure 3.6a is the non-uniform initial mesh generated with the Mat-

lab function initmesh where 45 nodes are located on the pit boundary. In order

to optimize this mesh, smoothing steps were performed and the sum of the absolute

differences in position of the nodes between subsequent smoothing iterations is dis-

played in Figure 3.6b. The motion of the nodes decreases with iteration number and

after 17 iterations the absolute difference is down to 10−2. The optimized mesh is

shown in Figure 3.6c and significant differences in the locations of the nodes both

inside and outside the pit are observed. Note that this smoothing operation only

needs to be performed once since the results can be saved and used as the starting

mesh in subsequent experiments. The computational mesh after the pit has evolved

for 60 s is presented in Figure 3.6d and it is observed that node spacing within the

pit remains very good.

The results in Figures 3.5 and 3.6 show that the MMPDE approach is robust with

respect to the initial grid, continuously evolving the mesh according to changing do-

main and solution features. Even with a uniform initial mesh, the MMPDE approach

does quite well, automatically recovering the requested increased mesh density near

the pit boundary. We do notice, however, some additional stretching of the nodes in

this case as compared to the simulation which starts from an improved non-uniform

initial mesh. The stretching of the mesh can be reduced through the use of monitor

functions designed to control the shape of the elements.

The relatively small scale mesh smoothing is particularly useful should the pit

boundary movement be large or if the pit boundary movement induces a discontinuous

change in the geometry (during pit merging for example). We will see this in Section

3.4.
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(a) An uniform initial mesh. (b) The convergence of the initial mesh

smoothing.

(c) The smoothed initial mesh. (d) The mesh after 60 s.

Figure 3.5: (a) Uniform initial mesh, (b) convergence of the mesh smoothing process

(c), initial mesh after mesh smoothing, and (d) the mesh after 60 s using the monitor

function (3.20).

3.3.4 Effect of τ on the moving mesh

At the end of Section 2.3 we mentioned the MMPDE (relaxation) parameter τ and

here we demonstrate the effect of τ on the moving mesh. Instead of forcing exact

equidistribution each time t, we relax the condition and require equidistribution at

time t+τ . Hence, the smaller the size of τ the quicker the mesh will react to changing

features in the solution. To demonstrate this effect, we start from a uniform initial

grid and show the resulting meshes after t = 60 s using three values of τ , as shown

in Figure 3.7. We observe a greater concentration of nodes near the pit boundary for

79



(a) A nonuniform initial mesh. (b) The convergence of the initial mesh

smoothing.

(c) The smoothed initial mesh. (d) The mesh after t = 60 s.

Figure 3.6: (a) A nonuniform initial mesh, (b) the effect of mesh smoothing on the

positions of the nodes, (c) the mesh after smoothing, and (d) the mesh a t = 60 s

using the monitor function (3.20).

smaller values of τ . Larger values of τ lead to stretched elements; the mesh is not able

to keep up with the changing computational domain. This relaxation does come at a

cost, however, as smaller values of τ require more time steps for the integration of the

MMPDE. In practice, one should select τ in tandem with mesh density parameters,

choosing the largest value of τ which allows a balance of computational cost and mesh

quality.
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(a) Using τ = 10−2. (b) Using τ = 10−4. (c) Using τ = 10−6.

Figure 3.7: Effect of τ on the mesh after 120 s with the monitor function (3.20) using

µ1 = 100 and µ2 = 1.

3.3.5 Alternating mesh and physical PDE iteration

There are two approaches that can be used to solve the coupled physical PDE and

mesh equation: a simultaneous or an alternating approach. In a simultaneous ap-

proach, the discrete physical PDE and the discrete mesh equation provide a fully

coupled system for both the mesh and solution unknowns, as shown in Figure 3.8a.

The disadvantage of this approach is the highly nonlinear coupling between the phys-

ical solution and the mesh, resulting in a potentially difficult, large discrete system.

xn, φn
Adaptive Mesh Generator

PDE Solver

xn+1, φn+1

(a) The simultaneous solution approach.

xn, φn

Adaptive Mesh

Generator
PDE Solver

xn+1 φn+1

time stepping

(b) The alternating solution approach.

Figure 3.8: The (a) simultaneous and (b) alternating approaches to solve the coupled

corrosion model and mesh PDE.
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On the other hand, the alternating solution approach generates the mesh xn+1 at

a new time step using the physical solution φn and the mesh xn at the current time.

Then the solution φn+1 at the new time level is computed, as shown in Figure 3.8b.

In this approach, there may be a lag between the solution and the mesh. Generally,

this does not create any difficulties if the time step is reasonably small. The main

advantages of the alternating approach are: (i) the mesh generation code is not di-

rectly coupled to the physical PDE solve thereby increasing flexibility and reusability

of code, (ii) the mesh PDE and physical PDE solvers can be developed and optimized

in a modular way, and hence (iii) the individual mesh and physical PDE solvers are

more efficient. MMPDElab uses this alternating approach.

3.3.6 Solution of the moving boundary value problem

The flowchart in Figure 3.9 outlines the implementation of our computational pitting

corrosion model using MMPDElab framework. The first two steps are the same as

the alternating step approach given in Figure 3.8b. The pit boundary is then moved

based on the new positions of the adaptive mesh, followed by the movement of the

corners of the pit. These last steps are detailed in the following section.

xn, φn

Adaptive

Mesh

xn+1
PDE Solver Pit Boundary

Movement

φn+1
Corner Pit

Movement

time stepping

Figure 3.9: Flow chart for the physical PDE solve, the mesh PDE solve, and the pit

boundary movement.

3.3.7 Details of the pit boundary movement

To get the new position of the pit we have to specify a direction and magnitude of

movement for each node on the boundary of the pit and the appropriate movement

for each corner of the pit. A pit corner is a vertex which is part of the pit boundary
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and has a y–coordinate of zero.

As shown in Figure 3.10, a face normal is the outward pointing vector perpendic-

ular to an edge or segment joining vertices. Taking the average of two face normals

on adjacent edges gives us the vertex normal for the vertex between those edges. The

vertex normals give the direction of movement for the pit boundary.

Face

normal

Vertex

normal

Figure 3.10: Definitions of face and vertex normals.

As mentioned in Section 2.1, the magnitude of the normal velocity of each vertex

on the boundary of the pit is given by (3.6), which we may write as

Vn =
1

csolid
· Adiss · e

(
zF (Vcorr+α(Vapp−Vcorr−φ))

RT

)
. (3.21)

Once the vertices on the pit boundary are moved, the location of the corner nodes for

the pit are updated using the following procedure. A linear extrapolation of the edge

joining the two vertices that are closest to the corner and lie on the pit boundary is

computed. The new corner location is given by the intersection of this line and y = 0,

as necessary.

There are two situations which may arise as shown in Figure 3.11. If the new

corner is close to the old corner (Figure 3.11a), then no further changes are required.

If the new corner is not close to the old corner (Figure 3.11b) then the old corner is

moved into the pit using the same extrapolation line. The idea here is to support

large movements of the pit boundary by moving grid points along y = 0 into the pit

boundary.

3.3.8 Merging pits

As multiple pits evolve, two pits may merge and form a single, larger pit. We visualize

the pit merging procedure in Figure 3.13. The merging process is initiated (Figure
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new position

of interior nodes

new corner

(a) New corner remains on y = 0.

new corner

new position of

the old corner node

(b) Corner node movement onto the pit

boundary.

Figure 3.11: Updating the corner position: (a) the corner is moved to its new location

along y = 0 or (b) the (old) corner is moved onto the boundary of the pit.

3.13a) when there is a single edge between two pits that is less than the user prescribed

tolerance. The left and right endpoints of that edge are tagged with red and black,

respectively. In Figure 3.13b these two points merge to a single point. In order to

avoid changing the number of mesh nodes and mesh topology, either the black or the

red node in Figure 3.13a has to move into the pit boundary either on the left or the

right side of the apex. For example, the black and red nodes can merge, creating a

new red node (see Figure 3.13b), and the black node will move half-way between the

red and green nodes. Alternately, the black and red node merge, creating a new black

node and the red node moves half-way between the red node and green node (not

shown). We choose the vertex corresponding to the larger angle in the element whose

bottom edge is the single edge between the pits, see Figure 3.12. Once the merge has

occurred, a mesh smoothing procedure is used to obtain the mesh shown in Figure

3.13c. We can see that the mesh smoothing has evened out the size and shape of the

elements to the right of the red apex node.

T1

1 2

(a)

T2

1 2

(b)

T3

1 2

(c)

Figure 3.12: Three possible element orientations between the pits at the time of a

merge
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(a) A pit merge is initiated. (b) A merge with no mesh

topology change.

(c) Post merge mesh

smoothing.

Figure 3.13: The pit merging process.

For each time step after the merge the location of the apex is obtained as the

intersection point of the linear extrapolations of the second last edges to the left and

right of the apex.

3.4 Numerical results

Based on the simple experiments in Section 3, throughout this numerical results

section a constant value of τ = 10−5 is used in the MMPDE, and the constants

µ1 = 100 and µ2 = 1 are used as default values for the mesh density function (3.20).

The initial number of mesh points inside the pit is set to 61.

3.4.1 Single pit simulations

We begin by using our computational framework to compare the evolution of a single

pit in three cases: a homogeneous solid material (without a crystal direction), a solid

material with a specified crystal direction, and a solid material with a discontinuity

in the crystal direction. All simulations use an initial mesh constructed by smoothing

the non-uniform mesh generated using initmesh as discussed in Section 3.3.

Figures 3.14a 3.14b, 3.14c and 3.14d show the final pit geometry and final meshes

for a homogeneous material, a material with crystal direction [001], a material with

crystal direction [101], and a material with a discontinuity in crystal directions, [001]
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to the left of x = 0 and [101] to the right of x = 0.

It is observed in Figure 3.14a that the final shape of the homogeneous pit is the

same as the initial pit since the chosen Vcorr is a constant value of −0.24 V, that is,

the same in every direction within the pit. Hence, from equation (3.21) the normal

velocity at all locations within the pit will be equal. The situation is not the same

for pits with a crystalline structure since Vcorr will vary with crystal direction. For

example, for crystal directions of the forms ⟨001⟩, ⟨011⟩ and ⟨111⟩, Vcorr will have

values of -0.2297 V, -0.2455 V, and -0.2525 V, respectively. Again from equation

(3.21), we see that the normal velocity is greater for lower magnitude Vcorr values;

that is, Vn (111) < Vn (011) < Vn (001). The effect of this Vcorr dependent velocity

is displayed in Figure 3.14b where we observe that the sides of the pit have become

straight and angled 90 degrees with one another (when axes are equally scaled). This

behaviour is expected. As shown in Figure 3.2, for a crystal oriented with a zone

axis along [001], ⟨001⟩ directions are located along the horizontal and vertical axes

and ⟨011⟩ directions midway in between. Thus, we expect that the [100] and [01̄0]

directions will move faster than the [11̄0] direction. As the faster locations on the

pit boundary move, their orientation will change and eventually become the same

direction as the slowest moving axis, in this case [11̄0]. For all future times, the sides

of the pit will move outward perpendicular to these two lines while maintaining the

same angular relationship. We observe the same effect in Figure 3.14c where the

crystal has been oriented along a zone axis of [101]. In this case, the slowest moving

directions are along ⟨111⟩ and the angle between the [111̄] and [1̄11] planes agrees

with the expected value of 70.5 degrees. Figure 3.14d displays the final pit shape

where there is a discontinuity in the crystal directions and the left and right sides

of the crystal were oriented along zone axes of [001] and [101], respectively. The left

and right sides of the pit are straight lines moving along [1̄1̄0] and [1̄11] directions,

respectively.
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(a) Mesh for a homogeneous crystal. (b) Mesh for a crystal with direction [001].

(c) Mesh for a crystal with direction [101]. (d) Mesh for a crystal with two directions

[001] and [101].

Figure 3.14: Pit configurations and meshes at t = 120 s for a) a homogeneous material,

b) a single crystal oriented with a zone axis along [001], c) a single crystal oriented

with a zone axis along [101], and d) a crystal with an interface at x = 0; the crystal

directions to the left and right of x = 0 are [001] and [101], respectively.

3.4.2 Multiple pit simulations

As mentioned previously, if multiple pits exist in a material and the pits grow large

enough, there is the potential that the pits will merge during the simulation. The

imminent merge needs to be detected, the boundaries of each of the previously isolated

pits need to be updated in a way which avoids boundary crossing, and the mesh
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around merge location needs to be adjusted smoothly and without topology changes.

Once complete the merged pit is then treated as one larger pit, and the evolution

continues. See Section 3.3.8 for details.

To demonstrate the robustness of our adaptive simulation framework for the evolu-

tion of multiple pits we start with two pits relatively close together in a homogeneous

material, as shown in plot Figure 3.15a. A quality initial mesh which concentrates

nodes near the boundary of both pits is generated as discussed in Section 3.3.3. As

the corrosion continues the pits grow, and hence grow closer together. The pits then

merge and continue to evolve as shown in Figure 3.15b. Figure 3.15c provides the

result of a similar simulation with a material oriented in the [101] crystal direction.

The crystal direction clearly affects the geometry of the merged pit. Figure 3.15d

shows the resulting pit geometry and associated mesh for merged pits in a material

with two crystal directions, where the discontinuity in crystal direction is located at

x = 0.

We now more closely study the pit depth and width as a function of time for a

single homogeneous pit, a single crystal oriented with a zone axis along [001], and two

crystals with an interface at x = 0 where the left and right crystals are oriented along

[001] and [101] zone axes, respectively. Recall, the initial and final pit configurations

for these three situations are displayed in Figures 3.14a, 3.14b and 3.14d, respectively.

Plotting pit depth and width as a function of time leads to nonlinear curves as shown

in Figures 3.16a and 3.16b. It has been common practice to fit corrosion loss curves

using a power-law equation and for the initial stages of corrosion it seems to work well,

see [36]. Since the loss of material due to corrosion is a function of the dimensions

of the pit, it is expected that the same power-law behaviour should hold for our pit

depth and width data. The model we use is

depth(t) (or) width(t) = atb + c,

where a, b and c are fitting parameters and the initial pit is defined when t = 1.

The curve fits were excellent and the fitting parameters found are presented in Table

2. The initial pit width and depth were 10 microns and 5 microns, respectively, and
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(a) Initial mesh for two pits. (b) Mesh for merged pits at t = 120 s.

(c) Mesh for merged pits for a material with

a single crystal direction [101] at t = 120 s.

(d) Mesh for merged pits for a material with

two crystal directions, [001] if x < 0 and [101]

if x > 0, at t = 120 s.

Figure 3.15: Pit evolution and adaptive mesh generation for merging multiple pits

for three material configurations.

these values are close to the value of a+ c; the initial dimension of the pit predicted

from the fitting procedure. It is reassuring to note that the modelled pitting corrosion

behaviour follows an expression used to fit experimental corrosion losses.

Figure 3.17 displays the pit depths and pit widths for various initial numbers of

mesh points using both the moving mesh approach and the re-meshing technique at

each time step. For a lower number of initial mesh points (i.e., INPPit = 31) on the

pit, do not match the pit depth and width obtained by using the remeshing technique
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(a) Pit-depth over time for homogeneous and

non-homogeneous crystals.

(b) Pit-width over time for homogeneous and

non-homogeneous crystals.

Figure 3.16: Pit-depths and widths for homogeneous and non-homogeneous crystals.

Case
Width Depth

a b c a b c

Homogeneous 0.142(2) 0.980(3) 9.83(2) 0.076(1) 0.917(3) 4.95(1)

[001] 0.243(8) 0.907(6) 9.62(5) 0.116(3) 0.886(4) 4.89(2)

[001]/[101] 0.181(5) 0.927(6) 9.74(4) 0.121(3) 0.877(6) 4.89(2)

Table 3.2: Power-law model fitting parameters for the 6 curves presented in Fig-

ure 3.16. The numbers in brackets represent uncertainty in the last significant digit.

at every time step as time increases. However, with more than 50 initial mesh points

on the pit, the pit depths and pit widths for both approaches converge to the same

solution. Thus, we can conclude that the adaptive moving mesh approach provides a

reasonable solution accuracy by delivering precise pit depth and width measurements.

Figure 3.17 shows the numerical error in pit depths and widths when comparing

the remeshing technique with the adaptive moving mesh approach for various initial

numbers of mesh points on the pit. The absolute error is calculated by comparing the

remeshing solution with the moving mesh solution at every step. For a lower number
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(a) Pit-depth over time. (b) Pit-width over time.

Figure 3.17: Pit-depths and widths for homogeneous case for various initial number

of mesh point on the pit.

(a) Error in pit depth. (b) Error in pit depth.

Figure 3.18: The numerical error for pit depths and widths for various initial numbers

of mesh points on the pit.

of initial mesh points (i.e., INPPit = 31) on the pit, the error increases over time.

However, with more than 50 initial mesh points on the pit, the error becomes bounded.

Certainly, the adaptive moving mesh is able to provide a reasonable solution, as shown

in Figure 3.17. These numerical results ensure that the adaptive moving mesh is a

suitable choice for solving the moving boundary problem related to pitting corrosion.
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3.5 Conclusion

We have presented a robust, fully automatic, moving mesh solution framework for

pitting corrosion. The moving mesh approach continuously and smoothly evolves a

fixed mesh topology according to changing pit geometry. Single and multiple pits

are considered, as are materials with different crystal direction(s). A procedure is

presented which allows pits to merge without a change in mesh topology, allowing

computation to proceed without restarting the computation.

The simulation of large pit growth or the initiation of many pits would likely

benefit from an hr–refinement strategy (which both redistributes nodes as we have

presented here but also allows periodic changes to the number of mesh nodes) cou-

pled with a domain decomposition approach to allow the problem to be spatially

partitioned and the computation distributed to harness additional processors. This

will be the subject of future work. Current work includes extending the computa-

tional framework to allow for more heterogenous materials, with corrosive resistant

“pockets” or holes or voids.
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Chapter 4

A moving mesh simulation for

pitting corrosion of heterogeneous

materials

Abstract

1 The design and implementation of an adaptive moving mesh method is provided for

the simulation of pitting corrosion for materials with heterogeneous inclusions. The

adaptive mesh is generated automatically by solving a mesh PDE coupled to a non-

linear potential problem. The moving mesh approach is able to smoothly tackle the

changing pit geometry associated with materials with inclusions of varying crystallog-

raphy, with corrosion-resistant inclusions, and material voids. This project presented

a robust, fully automatic, moving mesh solution framework for pitting corrosion in

materials with heterogeneous inclusions.

Keywords: Pitting Corrosion, Adaptive Moving Mesh, MMPDE, FEM, Crystallog-

raphy, Heterogeneous Materials, Corrosion-resistant Inclusions.
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4.1 Introduction

Pitting corrosion is a particularly insidious, localized form of corrosion which gener-

ates a small pit, cavity or hole in the metal. Detecting pitting corrosion is difficult,

and hence can impact the structural integrity of metal before it is observed [49, 58].

The shape and size of the pits depend on many factors: the components of the metal,

the orientation of metal’s surface, and the local chemical environment [46].

Researchers have studied pitting initiation behavior of different metals including

stainless steel [12, 34, 42], beryllium [12], pure aluminum and aluminum alloys [27,

31, 45, 51, 57]. Davis [7] has shown the behavior of metastable pitting corrosion of

aluminum single crystals.

Determining the pitting behavior experimentally is time consuming, expensive and

physically difficult or impossible in many situations. Hence, numerical simulations

have been used to efficiently study pitting corrosion under a wide range of conditions.

Recently, [8, 9, 11, 32, 33, 35, 43, 44, 44, 47, 48, 52, 53, 54] have provided FEM

or finite volume solution approaches for partial differential equation (PDE) based

models for pitting corrosion. An extensive overview [25] discusses models based on

the anodic reaction at the corrosion front and the transportation of ions in the pits

of the electrolyte domain. In many of these previous studies the commerical software

COMSOL® is used to solve the PDE in the electrolyte domain.

Most of the previously mentioned FEM approaches relied on a complete remeshing

of the domain at every time step provided by the arbitrary Lagrangian-Eulerian (ALE)

approach. Here we provide an alternative approach which uses an adaptive moving

mesh method, automatically and continuously varying the size, shape and orientation

of the mesh elements during each time step while keeping the number of nodes and

mesh topology fixed throughout the computation. As a result, the moving mesh

method is also able to resolve pits which may evolve on length scales that are much

smaller than the computational domain.

Continuous mesh movement approaches are often divided into two main categories:

velocity-based approaches and location-based approaches. Most velocity-based or La-

grangian approaches determine the mesh movement based on the fluid or material
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particle flow. The Eulerian approach fixes the computational mesh and instead as-

sumes the continuum moves with respect to the mesh nodes. In general, Eulerian

meshes avoid mesh tangling and overly diffuse solutions, but the method can have

difficulty resolving sharp material interfaces. The lack of advective terms in the gov-

erning equations with the Lagrangian approach make the method less diffusive than

the Eulerian method. Hence, the Lagrangian approach is able to resolve sharp mate-

rial interfaces [21]. A combination of Lagrangian and Eulerian approaches are used

in the ALE methods [13, 14, 30, 37, 38, 55] and the ALE approach provides the basis

of mesh adaptivity in COMSOL.

Location-based mesh movement directly controls the location of mesh points in

particular regions of the computational domain. An example is the variational ap-

proach, which relocates the mesh points by movements derived by minimizing a

functional which measures the difficulty or the error in the numerical solution [21].

Another location-based algorithm is based on an elliptic PDE descriptions. These

methods can, for example, generate boundary-fitted meshes [50, 56]. This idea can

be generalized using a functional [4], which provides meshes satisfying a combination

of adaptivity, smoothness, and orthogonality.

Mesh adaptation functionals have been considered by many authors including the

mechanical models in [22, 23, 24], vector fields in [28], a weighted Jacobian matrix

approach in [29, 30], a matrix-valued diffusion coefficient in [6, 19], and the equidistri-

bution and alignment conditions presented in [15]. The moving mesh PDE (MMPDE)

method used here is based on the work in [5, 18, 18, 19, 20, 40]. Therein, a gradient

flow equation determines the mesh movement, and as in the approaches above, a

functional plays a vital role.

An adaptive moving mesh method, our method of choice, was proposed for rel-

atively simple pitting corrosion problems in [41]. Our computational framework is

based on the package MMPDElab by Huang [17]. MMPDElab is a general MATLAB-

based adaptive moving mesh solver for time dependent PDEs where the PDEs are

discretized in space using the FEM. An alternating mesh and physical solution ap-

proach is implemented to automatically obtain sufficient mesh elements in and around
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the evolving pit. An appropriate mesh density function, which implicitly determines

an appropriate (time-dependent) distribution of elements, is constructed to track the

pit growth and its interaction with any material heterogeneities.

Our test material will be stainless steel. Stainless steel is a heterogeneous, poly-

crystalline material where grains of differing orientations are randomly distributed

through the metal [39]. In addition, further heterogeneities are invariably introduced

into the structure of the steel during the steelmaking process and include defects

such as voids, and metallic and non-metallic inclusions. Non-metallic inclusions such

as sulphides and oxides can have widely ranging dissolution rates compared to the

surrounding steel, and it has been observed that preferential dissolution can initiate

corrosion pitting.

In this paper, we provide an automatic, fully adaptive simulator for pitting cor-

rosion for arbitrary heterogeneous materials. Simulations are presented for materials

containing analomous regions with varying crystallography, corrosion-resistant mate-

rials, and materials with voids.

The remainer of the paper is organized as follows. We provide a brief descrip-

tion of the pitting corrosion mechanism, the crystal orientation, and the associated

PDE model(s) in Section 4.2. Section 4.3 provides an overview of the moving mesh

methodology used in our simulations, including the specification of the mesh density

function and initial mesh, as well as the FEM discretization used in MMPDElab for

the physical PDE, and the overall alternating solution approach. Section 4.4 is de-

voted to our numerical results. The focus here is the simulation of pitting corrosion in

heterogeneous materials that contain one or more regions of varying crystallography,

corrosion-resistant material, or voids.

4.2 A heterogeneous PDE model for pitting cor-

rosion

In this section, we detail our prototype model problem and adaptive solution strategy,

including the description of the domain, model PDEs, boundary conditions, and
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necessary crystallography.

Using the conservation of mass and assuming constant diffusion, a well-mixed elec-

trolyte and a zero net production of reactants, we arrive at the well-known Laplace’s

equation for the potential on the electrolyte domain, Ω, shown in Figure 4.1. Specif-

ically, the model equations are

∇2φ = 0 in Ω, (4.1)

with the following boundary conditions

φ = 0 on Γ1,

∇φ · n = 0 on Γ2,Γ3,Γ4,

∇φ · n =
ia(φ)

σc

on Γp,

(4.2)

Γ1

Γ2 Γ3

Γ4 Γ4Γp

Electrolyte DomainElectrolyte Domain

Solid Domain

I1 I2

Figure 4.1: The 2D computational

domain with heterogeneities.

where ∇φ · n = ∂φ
∂n
, n is the (outward) unit normal vector, ia(φ) is the current den-

sity, σc is the electrical conductivity of the electrolyte, Γp is the pit boundary, and

Γ1, Γ2, Γ3 and Γ4 are the top, left, right and bottom of the domain, respectively.

The boundary condition ∂φ
∂n

= 0 enforced on Γ2, Γ3 and Γ4 ensures there is no flow

of ions across these boundaries. We denote the horizontal and vertical co-ordinates

of the electrolyte region in Figure 4.1 by x and y, respectively. The shapes I1 and

I2 represent heterogeneities in the corroding material. In practice, these could be of

arbitrary number and shape.

The current density is modelled by the Butler-Volmer relation

ia(φ) = zFAdiss · e

(
zF (Vcorr+αηa)

RT

)
, (4.3)

where F is Faraday’s constant, z is the average charge number for the metal, α is

the transfer coefficient, Adiss is the material dissolution affinity, T is the temperature,

and R is the universal gas constant [2]. The values of these constants are recorded in

Table 1. The Butler-Volmer relation is used to describe the experimental data as a
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Parameter : Description Value

z : Average charge number for the metal 2.19

F : Faraday’s constant 96485 C/mol

R : Universal gas constant 8.315 J/(mol K)

T : Temperature 298.15 K

Vcorr : Mean corrosion potential (homogeneous) -0.24 V

Vapp : Applied potential -0.14 V

Adiss : Dissolution affinity 4 mol/cm2s

Csolid : Solid concentration 143 mol/l

α : Transfer coefficient 0.65

∆t : Time step size 1

Table 4.1: List of parameters used in the corrosion model.

function of the applied over-potential

ηa = Vapp − Vcorr − φ,

where Vapp and Vcorr are the applied and the corrosion potentials, respectively [44].

As the metal corrodes, the pit becomes larger and possibly changes shape depend-

ing on the local crystallography. In our model, the new position of corrosion front,

Xnew, is computed from the old position, Xold, by a simple time stepping procedure

Xnew = Xold +∆tVnn,

where Vn is the magnitude of normal velocity. The magnitude of normal velocity, Vn,

at the corrosion interface (or the movement of the corrosion front) is described using

Faraday’s law

Vn =
i(φ)

zFcsolid
, (4.4)

where csolid is the atomic mass concentration of the metal and z is the average charge

number for the metal.
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The corrosion potential as a function of crystal direction for 316 stainless steel

will follow the form given by DeGiorgi et al. [32]

Vcorr = k − s [1− (⟨001⟩ · nCD)max] , (4.5)

where k = −0.2297 and s = 0.054. This gives a 10% difference between the maximum

and minimum Vcorr values, and further details on the application of this equation are

given in [41]. A continuous spectrum of hypothetical etch rates for other materials

can be obtained by varying k and s values. In addition to the simulation of the

etching of stainless steel using equation (4.5), we will investigate 3 limiting cases.

For simulations of a (1) homogeneous material we choose k = −0.24 and s = 0; (2)

for non-etching material we set k = −999999999 and 0 ≤ s ≤ 1; and (3) for a void

k = s = 0.

4.3 The numerical approach

4.3.1 The adaptive moving mesh strategy

A moving mesh method automatically and continuously redistributes a fixed number

of nodes where additional accuracy is required. The mesh evolves simultaneously

with the solution or underlying domain by solving a MMPDE which depends on a

chosen mesh density function and the (changing) boundary of the domain. The mesh

density function is chosen to be large where a large mesh density is needed. This

is accomplished by choosing a mesh density function which is often correlated with

variations or errors in the solution of the physical PDE. If a well-resolved feature of

the solution is sought at a particular location in space (here the moving pit boundary)

then the mesh density function can be chosen by geometrical considerations.

Such a strategy in one spatial dimension, based on the equidistribution principle,

was reviewed in paper [41]. Essentially, a mesh which equally distributes the mesh

density function (in an integral sense) is found by solving a two point boundary value

problem. In practice, the mesh density function depends on (features of) the solution
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of the physical PDE and hence the physical PDE and mesh PDE form a coupled

system of equations.

In higher dimensions, we consider a mesh Th of N triangular elements with Nv

vertices in the physical domain Ω ∈ Rd (d ≥ 1). An invertible affine mapping

FK : K̂ → K and its Jacobian matrix, F
′
K , maps K̂, the reference or master element,

to a physical element K in Th. Suppose we prescribe a metric mesh tensor M = M(x)

on Ω which determines the shape, size and orientation of mesh elements of the domain

Ω. A mesh is considered M–uniform if all of its elements have the same size and is

similar to K̂. The main idea of the MMPDE method then is to view any adaptive

mesh Th as a uniform mesh in the metric M. A standard choice of the metric tensor

M is based on the approximate Hessian of the numerical solution. This choice of M

is optimal in the L2 norm of the linear interpolation error in the numerical solution

of the physical PDE [16]. As discussed later, we are focused on resolving the pit

geometry and hence choose M through these geometrical considerations.

In higher dimensions it is possible to choose M to control both the size and align-

ment of the mesh. Such a mesh is then found by minimizing a discrete functional [15]

given by

I[Th] =
∑
K∈Th

|K|
√

det(MK)
[
θ
(
tr(JM−1

K JT )
) dγ

2
+(1−2θ)d

dγ
2

( det(J)√
det(MK)

)γ]
, (4.6)

where J = (F
′
K)

−1. The parameters θ = 1
3
, and γ = 3

2
are used for our numerical

experiments.

This minimizing mesh can then be found by solving the gradient flow equation

dxi

dt
= −Pi

τ

∂I[Th]

∂xi

, i = 1, 2, . . . , Nv, t ∈ (tn, tn+1], (4.7)

where Pi = det(Mi)
1

d+2 is a scalar function that can be used to ensure the mesh

equation has invariance properties and τ is a positive parameter used to adjust the

response time of mesh movement to the change in M.
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4.3.2 Discretization and MMPDElab overview

A customized version of MMPDELab [17] is used to solve the heterogeneous corrosion

problem on a grid which automatically adapts to the evolving pit geometry. A weak

form of the physical PDE given by (4.1) and (4.2), is required by MMPDElab. Let

V be the trial space

V = {v ∈ H1(Ω(t)) : v = 0 on Γ1} ⊂ H1(Ω(t)),

where H1(Ω(t)) is, roughly speaking, the function space whose members, and their

first derivatives, are square integrable (see, for example, [1] for details). At any time

t the weak form is constructed as follows: find φ ∈ V such that∫
Ω(t)

∇φ · ∇vdΩ =

∫
Γp(t)

v
i(φ)

σc

ds, ∀v ∈ V, (4.8)

where Γp(t) is the boundary of the pit at time t. At time t, suppose Vh is a finite

dimensional subspace of V spanned by a collection basis functions associated with

the mesh at that instant of time. We discretize the weak form (4.8) to find a solution

in the discrete trial space. The FEM solution φh in the discrete trial space Vh ⊂ V is

then found by solving∫
Ω(t)

∇φh · ∇vhdΩ =

∫
Γp(t)

i(φh)

σc

vhds, ∀vh ∈ V. (4.9)

We can solve the discrete variational problem (4.9) in the following way. Let

φh ∈ Vh be a linear combination of the basis functions for Vh, ϕj, j = 1, 2, . . . , N ,

with coefficients φ̃j, given by

φh =
N∑
j=1

φ̃jϕj. (4.10)

Considering v = ϕk, for k = 1, 2, . . . , N , and using relation (4.10) gives

N∑
j=1

φ̃j

∫
Ω

∇ϕj.∇ϕkdΩ− 1

σc

∫
Γp

i
( N∑

j=1

φ̃jϕj

)
ϕkds = 0, k = 1, 2, . . . , N.

For each time, t, this system of non-linear equations is solved using Newton’s method.
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MMPDELab requires the user to prescribe an appropiate mesh tensor, MK (see

(4.6)), to precisely control how the mesh automatically adapts to the changing solu-

tion and domain features. Here, however, we wish to ensure sufficient resolution of

the pit geometry using a modified distance-based monitor function given by

MK(x, y) =

(
1 +

µ1√
µ2
2d

2 + 1

)
I, (4.11)

where

d(x, y) = min
p

|(x, y)− (xp, yp)|,

and (xp, yp) denotes any point on the boundary of the pit, Γpit, cf. [3]. At any point

(x, y) ∈ Ω, the value of the monitor function depends on the minimum distance, d,

from (x, y) to any point on the pit boundary. MK will be largest in (x, y) regions

where the distance to the pit boundary is the smallest, and hence the mesh spacing

will be automatically smaller in these regions. The parameters µ1 and µ2 control the

minimum mesh spacing and the rate at which mesh clustering occurs [36]. The effect

of these parameters has been evaluated in [41].

To ensure additional resolution near material heterogeneities or inclusions we will

also use

MK(x, y) =

⎧⎪⎨⎪⎩1, if r ≤
√

(x− h)2 + (y − k)2),

200

e|r−
√

(x−h)2+(y−k)2|
, if r >

√
(x− h)2 + (y − k)2),

(4.12)

where the quantities (h, k) and r are chosen so that a circle with radius r centered

at (h, k) encloses the inclusion of interest, cf. [10]. This monitor function is able to

focus mesh points in a target region and a combination of (4.11) and (4.12) maybe

used to resolve the required features.

The numerical simulations in this paper require the initial pit geometry and the

corresponding initial spatial grid to be specified. As discussed in [41], the initial mesh

on the domain may be obtained with using a tool like initmesh in Matlab or mesh

node in COMSOL, or indeed using the MMPDE above. The routine initmesh is used

in this paper, and with this initial mesh, MMPDELab uses an alternating strategy to
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solve the (often highly nonlinear) coupled physical PDEs and mesh equation forward

in time.

The direction of pit growth is normal to the pit boundary and the magnitude of

the normal velocity of each vertex on the boundary of the pit is given by (4.4). The

positions of any corner nodes are moved as described in [41].

4.4 Numerical results

Throughout this section a constant value of τ = 10−5 is used in the MMPDE, and

the constants µ1 = 100 and µ2 = 1 are used as default values for the mesh density

function (4.11). The initial number of mesh points on the boundary of the pit is set

to 61.

4.4.1 Case I: Inclusion(s) with different crystallography

We begin by considering a single circular crystalline inclusion centered at (0,−7) with

radius 1.5 and crystal direction [001] as defined by the zone axis of the inclusion. The

location and size of the inclusion are highlighted by the red circles in Figure 4.2.

For these simulations, we use a combination of two monitor functions. First, the

distance based monitor function (4.11) is applied to track the pit boundary. Once the

pit boundary reaches the green circle around the inclusion (with radius 2.5) a mesh

solve using the distance-based monitor function is followed by a mesh solve using the

exponential-based monitor function (4.12) in order to get increased resolution of the

mesh near (and around) the inclusion. The sequential use of the two monitor functions

continues as long as the pit boundary lies within the green circle. Presented in Figure

4.2 are meshes at 6 time steps ranging from 0 s to 180 s. It is observed that the circular

inclusion etches faster than the surrounding homogeneous material as highlighted by

the protrusion of the pit boundary at x = 0, and this effect can be attributed to the

difference in Vcorr values between the two materials. The Vcorr value for the inclusion

is -0.2294 V, as calculated from equation (9), and for the surrounding homogeneous

material Vcorr is -0.24 V. Hence, the inclusion will have a greater normal velocity
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of pit boundary movement as indicated by equations (4.3) to (4.5). Once the lower

boundary of the inclusion has been reached, pit boundary movement returns to the

behaviour of the homogeneous material over the entire boundary. In addition, it is

observed that the pit boundary near the protrusion smooths out with time due to

averaging of the Vcorr values at the boundary nodes.

Some stretching of the elements is noticeable at the corners of the pit by t = 90

s. This effect can be reduced by using a monitor function which will be larger near

the pit corners. Alternatively, a periodic h-refinement could be used to increase the

total number of mesh points which will be the focus of future study, cf. [26].

We now consider a pit encountering two circular inclusions located at (-3, -6.5)

and (3, 6.5) as shown in Figure 4.3. Unlike the geometry for a single inclusion shown

in Figure 2, where the bottom of the pit boundary contacted the top of the inclusion

with a crystal direction of [010], the sides of the pit boundary contact close to the side

of the inclusion orientated along [1̄10]. The [1̄10] direction of the inclusion has a Vcorr

value of -0.2455 V, a magnitude about 2.3% larger than the surrounding homogeneous

material, and we would expect the inclusion to etch a little slower than the adjacent

homogenous material. As the pit boundary outside of the inclusion travels faster

than inside the inclusion, it will contact the inclusion and then slow down. In fact, it

is expected that the rate of boundary movement within the inclusion will equilibrate

along the crystallographic direction with the lowest rate, which in this case is [1̄10],

thereby producing a crystallographic facet on the pit boundary along the (1̄10) plane.

The remaining features to be explained for the two-inclusion case are the two

protrusions located at the inner edges of the inclusion closest to the pit boundary at

x = 0, as evident in Figure 4.3 for times 60 s and greater. The pit boundary move-

ment velocity varies with direction within the crystal, and plotted in Figure 4.4(a)

are the Vcorr values as a function of crystallographic direction, where ‘Faster’ and

‘Slower’ denote pit boundary velocities within the inclusion that are faster and slower

than the surrounding homogeneous material, respectively. It is observed that only

for a narrow range of directions about [1̄10] is the boundary movement within the

inclusion slower than the homogeneous material. Outside of this region, the velocity
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(a) Initial mesh (b) t = 30 s

(c) t = 60 s (d) t = 90 s

(e) t = 120 s (f) t = 180 s

Figure 4.2: Meshes for a corrosion pit at various times as the pit encounters a single

crystalline inclusion (outlined by the red circles) with crystal direction [001]. The

green circles outline the locations where the monitor function changes to achieve

greater node resolution at the surface of the inclusion.

of the pit boundary movement is greater. Now, consider Figure 4.4(b) which displays

the crystallographic directions of the inclusion with respect to the pit boundary. The
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(a) Initial mesh (b) t = 30 s

(c) t = 60 s (d) t = 90 s

Figure 4.3: Meshes at various times for a pit encountering two circular inclusions with

crystal direction [001].

region within the cone centered about [1̄10] will have velocities less than the homoge-

neous material. As the pit boundary proceeds through the inclusion, the boundary to

the left of the cone will move faster than the surrounding homogenous material for a

period of time before slowing as it approaches the (1̄10) plane causing the protrusion.

4.4.2 Case II: Corrosion-resistant inclusions

Corrosion resistance is achieved in the model by setting the k value in equation (4.5)

to a very large negative number so that the current density within the inclusion is

effectively zero, leading to a normal velocity of the pit boundary of also zero. As was

the case for the crystalline inclusions, single and double corrosion-resistant inclusions
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(a) (b)

Figure 4.4: (a) Plot of Vcorr as a function of direction within the crystalline inclusion.

More negative Vcorr values lead to slower movement of the pit boundary. (b) A

diagram displaying the relationship of the crystallographic directions of the inclusion

with respect to the pit boundary.

with a radius of 1.5 were studied. The single inclusion was located at the bottom

of the pit at coordinates (0, -7), and the two-inclusion simulations had inclusions

located at (-3, -6.5) and (3, 6.5). The same meshing strategy as for the crystalline

inclusions was followed, and mesh plots at various times for the single and double

inclusion cases are shown in Figures 4.5 and 4.6, respectively. In both cases, this

meshing procedure performs well up to t = 30 s, but by t = 60 s the mesh quality

degrades, particularly for the double inclusion case where the mesh appears inside one

of the inclusions. By definition, the material within a corrosion-resistant inclusion

should not be removed during the corrosion process, and this is a serious artefact.

The reason for this behaviour is low mesh density right at the leading edge of the

boundary adjacent to the inclusion. A meshing strategy involving h-refinement in

addition to the r-refinement presently being used is expected to improve the mesh

quality around the pit and is presently under investigation.
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(a) Initial mesh (b) t = 9 s

(c) t = 30 s (d) t = 60 s

Figure 4.5: Meshes at various times as a pit encounters a single circular corrosion-

resistant inclusion outlined in red. The surrounding green circle indicates the region

where the monitor function changes from purely distance-based (4.11) to a sequence

of distance- and exponential-based (4.12) monitor functions to increase mesh density

at the inclusion.

4.4.3 Case III: A pit encountering material voids

At the other extreme from a corrosion-resistant inclusion is a void in the material,

which can be common in stainless steels. Voids present a unique challenge since there

is a topography change when the pit boundary encounters the void. Moving mesh

methods are not able to continuously handle the abrupt topography change, instead

the electrolyte domain must be remeshed prior to continuation of the adaptive moving

mesh procedure. The remeshing is triggered when any pit boundary edge encounters

the void.
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(a) Initial mesh (b) t = 12 s

(c) t = 30 s (d) t = 60 s

Figure 4.6: Meshes at various times as a pit encounters multiple corrosion resistant

inclusions.

The single void was located at (0, -7), and in the two void case the voids were

located at (0, -7) and (6, -7). The two voids were not symmetrically located about

the pit in order to trigger two topology changes requiring remeshing as a test of the

robustness of the technique. Only the distance-based monitor function was used to

position the nodes on the pit boundary.

Figures 4.7 and 4.8 display the meshes for single and double voids, respectively.

In both cases, the first void was detected at t = 11 s, triggering a remeshing operation

using initmesh. A high density of nodes is placed within the void and at the point

where the pit boundary and node touched. Time stepping proceeded as per normal,

with the nodes redistributing as required by the distance-based monitor function.

In the case of two voids, the second void intersected the pit boundary at t = 60,

triggering another remeshing, and this technique can be extended to an arbitrary
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number of voids with varying shapes.

(a) Initial mesh (b) Remesh at time t = 11 s

(c) t = 30 s (d) t = 60 s

Figure 4.7: Meshes at various times as a pit encounters a single material void.

4.5 Conclusion

This paper presents a robust, fully automatic, moving mesh solution framework for

pitting corrosion in heterogeneous materials or situations where material voids are

present. The moving mesh approach is able to continuously and smoothly evolve a

fixed mesh topology according to the changing pit geometry as the pits encounter

inclusions with varying crystallography or voids.

Designing mesh density functions capable of resolving corrosion dynamics in situa-

tions with several competing regions of interest is difficult and would certainly benefit
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(a) Initial mesh (b) Remesh at time t = 11 s

(c) t = 30 s (d) Second remesh at time t = 60 s

Figure 4.8: Meshes at various times as a pit encounters multiple circular material

voids.

from an hr-refinement strategy, which both redistributes nodes as we have presented

here, but also allows periodic changes to the number of mesh nodes. This work is

ongoing and will appear in a subsequent paper.

4.6 Data availability

The raw or processed data required to reproduce these figures and findings are avail-

able from the authors upon request.
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Chapter 5

An adaptive hr-refinement

simulation for pitting corrosion of

heterogeneous materials

Abstract

1 The design and implementation of an hr–refinement method is provided for the sim-

ulation of pitting corrosion for materials with heterogeneous inclusions. The adaptive

mesh is generated automatically by alternating mesh PDE solves (which are coupled

to a nonlinear potential problem) and h-refinements. h-refinement is triggered once

an appropriate mesh quality measure exceeds a prescribed tolerance. The result is a

new extension of MMPDElab which provides hr–refinement. In the context of pitting

corrosion, the method is able to resolve pit growth in complex domains corresponding

to heterogeneous materials. The software is able to smoothly tackle the changing pit

geometry associated with materials with inclusions of varying crystallography and

corrosion resistance.

Keywords: Pitting Corrosion, Adaptive Moving Mesh, MMPDE, FEM, h-refinement,

1This work is under revision as “An adaptive hr-refinement simulation for pitting corrosion of

heterogeneous materials”, by A. N. Sarker, R. D. Haynes, and M. D. Robertson, 2023, Preprint.
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Crystallography, Heterogeneous Materials

5.1 Introduction

Damage due to pitting corrosion of metals cost governments and industries billions of

dollars per year and can put human lives at risk. It is a particularly insidious, localized

form of corrosion which generates small pits, cavities, or holes in metal. Pits may

be small on the surface but larger below, making physical detection quite difficult.

Hence, the structural integrity of metal may be impacted before it is observed [34, 41].

The shape and size of a pit depend on the components of the metal, the orientation

of metal surface, and the local chemical environment [31].

Pitting corrosion has two main phases: an initiation phase and a growth phase.

The initiation of corrosion pits on various metals has been studied including stainless

steel [7, 20, 27], beryllium [7], pure aluminum and aluminum alloys [15, 17, 30, 35, 40].

Experimental studies of pit initiation and growth is often time consuming, expensive,

and physically difficult in many situations. Mathematical modelling and numerical

simulations can supplement the experimentation of corrosion for a wide range of ma-

terials and environmental conditions. In this study, our test material is 316 stainless

steel as described by the parameters provided in [5, 18].

Recently, [4, 5, 6, 18, 19, 21, 28, 29, 29, 32, 33, 36, 37, 38] have developed finite

element (FEM) or finite volume approaches for partial differential equation (PDE)

based models of pitting corrosion. An extensive overview discusses of models of the

anodic reaction at the corrosion front and the transportation of ions in the electrolyte

[13]. In many of these papers, the commercial software COMSOL® has been used to

solve the PDE model in the electrolyte domain.

As we will see in Section 5.2, the model of interest is a moving boundary problem

due to the growth of the electrolyte domain as the corrosion proceeds. Numerical ap-

proximations of the solution of the moving boundary problem necessitates a remesh-

ing of the time dependent computational domain at each time step. The COMSOL®

implementations mentioned above utilizes an adaptive meshing routine based on an
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arbitrary Lagrangian-Eulerian (ALE) approach [8, 9, 16, 23, 24, 39]. An alterna-

tive approach is considered here. An adaptive moving mesh method which allows us

to automatically and continuously vary the size, shape and orientation of the mesh

elements, while keeping the number of nodes and mesh topology fixed throughout

the computation was used in [25, 26]. By specifying an appropriate mesh density

function, this approach was shown to give fine (automatic) control over the quality

of the underlying mesh throughout the computation for many test situations. For

heterogeneous materials, however, there was some difficulty in prescribing a mesh

density function which was capable of balancing the competing features of the so-

lution. Moreover, it is clear that as the pit continues to grow, the fixed number of

nodes in the moving mesh approach will not be sufficient to resolve the quantities of

interest to the required accuracy.

The moving mesh approach used in this paper is a location-based method which

relocates (the r in r-refinement) the mesh points in particular regions of the compu-

tational domain by minimizing a functional which measures the difficulty or the error

in the numerical solution [12]. Our solver builds upon the general moving mesh PDE

(MMPDE) approach provided by the software MMPDElab [11]. Therein, a gradient

flow equation is used to find the minimizer of the prescribed functional.

To deal with the stress that is applied to a r-refinement approach by a growing

corrosion pit in a heterogeneous material, here we couple the r-refinement strategy

with h-refinement that adds mesh elements automatically in regions with poor grid

quality. h-refinement is a standard approach in FEM simulation, usually coupled in

a hp-refinement strategy which automatically controls in the number of elements and

the order of the FEM approximation as the simulation progresses. Here we couple

h-refinement with r-refinement to provide an hr-refinement solver (cf. [14]) for pitting

corrosion.

In this paper, we provide an automatic, fully adaptive simulator for pitting cor-

rosion generalizable to arbitrary heterogeneous materials. By providing appropriate

mesh density functions, simulations of pit growth are presented for materials contain-

ing anomalous regions with varying crystallography, corrosion resistant materials, and

127



materials with voids.

The remainder of the paper is organized as follows. We provide a brief descrip-

tion of the pitting corrosion mechanism, the crystal orientation, and the associated

PDE-model(s) in Section 5.2. Section 5.3 provides an overview of the moving mesh

methodology used in our simulations including the specification of the mesh density

functions, the FEM method used in MMPDElab for the physical PDE, the bound-

ary movement strategy, and the overall alternating solution approach. Section 5.4 is

devoted to our numerical results.

5.2 A heterogeneous PDE model for pitting cor-

rosion

This section provides our prototype model problem including a description of the do-

main, the model PDEs and boundary conditions, and the necessary crystallography.

Using the conservation of mass and assuming a constant diffusion, a well-mixed elec-

trolyte and a zero net production of reactants, we arrive at the well-known Laplace’s

equation for the electrical potential on the electrolyte domain, Ω, as shown in Figure

5.1. Specifically, the model equations are

∇2φ = 0 in Ω, (5.1)

with the following boundary conditions

φ = 0 on Γ1,

∇φ · n = 0 on Γ2,Γ3,Γ4,

∇φ · n =
ia(φ)

σc

on Γp,

(5.2)

Γ1

Γ2 Γ3

Γ4 Γ4Γp

Electrolyte DomainElectrolyte Domain

Solid Domain

I1 I2

Figure 5.1: The 2D computational

domain with heterogeneities.

where ∇φ ·n = ∂φ
∂n
, n is the (outward) unit normal vector, ia(φ) is the current density,
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σc is the electrical conductivity of the electrolyte, Γp is the pit boundary, and Γ1, Γ2,

Γ3 and Γ4 are the top, left, right and bottom of the domain, respectively. No flow of

ions is permitted across Γ2, Γ3 and Γ4. This is enforced by the boundary condition

∂φ
∂n

= 0. The horizontal and vertical co-ordinates of the electrolyte region in Figure

5.1 are labelled x and y, respectively. The shapes I1 and I2 represent heterogeneities

in the corroding material.

The Butler-Volmer relation models the current density as

ia(φ) = zFAs · e

(
zF (Vcorr+αηa)

RT

)
, (5.3)

where F is Faraday’s constant, z is the average charge number for the metal, α is

the transfer coefficient, Adiss is the material dissolution affinity, T is the temperature

and R is the universal gas constant [2]. The values of these constants are recorded in

Table 1. The applied over-potential is given as

ηa = Vapp − Vcorr − φ,

where Vapp and Vcorr are the applied and the corrosion potentials, respectively [29].

As the metal corrodes, the pit becomes larger and possibly changes shape as

the metal corrodes. In our model the new position of the corrosion front, Xnew, is

computed from the old position, Xold, by a simple time stepping procedure

Xnew = Xold +∆tVnn,

where Vn is the magnitude of normal velocity at the corrosion interface given by

Faraday’s law

Vn =
i(φ)

zFcsolid
. (5.4)

Here csolid is the atomic mass concentration and z is the average charge number of

the metal. The values of these parameters are summarized in Table 5.1.

DeGiorgi et al. [18] gives the corrosion potential as a function of crystal direction

for 316 stainless steel as

Vcorr = k − s [1− (⟨001⟩ · nCD)max] , (5.5)
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Parameter : Description Value

z : Average charge number for the metal 2.19

F : Faraday’s constant 96485 C/mol

R : Universal gas constant 8.315 J/(mol K)

T : Temperature 298.15 K

Vcorr : Mean corrosion potential (homogeneous) -0.24 V

Vapp : Applied potential -0.14 V

α : Transfer coefficient 0.65

Adiss : Dissolution affinity 4 mol/cm2s

Csolid : Solid concentration 143 mol/l

∆t : Time step size 1

Table 5.1: List of parameters used in the corrosion model.

where k = −0.2297 and s = 0.054. This gives a 10% difference between the maximum

and minimum Vcorr values. See [26] for further details on the application of this

equation. A continuous spectrum of hypothetical etch rates for other materials can

be obtained by varying the k and s values. We will illustrate our hr-refinement

approach using various limiting cases: (1) a homogeneous material with k = −0.24

and s = 0; (2) a non-etching material with k = −999999999; and (3) a void or hole

with k = s = 0.

5.3 The numerical approach

5.3.1 The adaptive moving mesh strategy

Moving mesh methods automatically and continuously redistribute a fixed number

of nodes where additional accuracy is required. The mesh is obtained by solving

a MMPDE which depends on a chosen mesh density function and the possibly time

dependent computational domain. The mesh density function is often correlated with

estimated errors in the approximate solution of the physical PDE or by geometrical
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considerations.

In two dimensions, we consider a mesh Th ofN triangular elements withNv vertices

in the physical domain Ω ∈ R2. An invertible affine mapping FK : K̂ → K and its

Jacobian matrix, F
′
K , maps K̂, the reference or master element, to a physical element

K in Th. A metric mesh tensor M = M(x) is prescribed on Ω which determines the

shape, size and orientation of mesh elements of the domain Ω. A mesh is considered

M–uniform if all of its elements have the same size and is similar to K̂. The adaptive

mesh Th obtained by the MMPDE approach is a uniform mesh in the metric M. As

our goal is automatic resolution of pit geometry, we choose M based on geometrical

considerations.

It is possible [10] to construct M to control both the size and alignment of the

mesh, and then minimize,

I[Th] =
∑
K∈Th

|K|
√

det(MK)
[
θ
(
tr(JM−1

K JT )
) dγ

2
+(1−2θ)d

dγ
2

( det(J)√
det(MK)

)γ]
, (5.6)

where J = (F
′
K)

−1. The parameters θ = 1
3
, and γ = 3

2
are used for our numerical

experiments.

This functional is minimized by integrating the gradient flow equation

dxi

dt
= −Pi

τ

∂I[Th]

∂xi

, i = 1, 2, . . . , Nv, t ∈ (tn, tn+1], (5.7)

where Pi = det(Mi)
1

d+2 ensures that the mesh equation has invariance properties and

τ adjusts the response time of mesh movement to the change in M.

5.3.2 Discretization and MMPDElab overview

The moving boundary problem associated with pitting corrosion is solved using a

customized version of MMPDELab [11] on a grid which automatically adapts to

the evolving pit geometry and heterogeneities. As is typical for FEM simulations,

MMPDElab requires a weak form of the physical PDE (5.1) and (5.2).

At any time t the weak form is constructed as follows: find φ ∈ V such that∫
Ω(t)

∇φ · ∇vdΩ =

∫
Γp(t)

v
i(φ)

σc

ds, ∀v ∈ V, (5.8)
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where Γp(t) is the boundary of the pit at time t. Here V is the trial space

V = {v ∈ H1(Ω(t)) : v = 0 on Γ1} ⊂ H1(Ω(t)),

where H1(Ω(t)) is a function space whose members, and their first derivatives, are

square integrable (see, for example, [1] for details).

Suppose Vh is a finite dimensional subspace of V spanned by a collection basis

functions. The FEM solution φh in Vh ⊂ V is then found by solving∫
Ω(t)

∇φh · ∇vhdΩ =

∫
Γp(t)

i(φh)

σc

vhds, ∀vh ∈ V. (5.9)

Let φh ∈ Vh be given as the linear combination

φh =
N∑
j=1

φ̃jϕj. (5.10)

Choosing vh = ϕk, for k = 1, 2, . . . , N , and using relation (5.10) gives

N∑
j=1

φ̃j

∫
Ω

∇ϕj.∇ϕkdΩ− 1

σc

∫
Γp

i
( N∑

j=1

φ̃jϕj

)
ϕkds = 0, k = 1, 2, . . . , N.

For each time, t, this is a system of non-linear equations which is solved using New-

ton’s method.

MMPDELab requires the user to prescribe an appropriate mesh tensor, MK (see

(5.6)), to precisely control how the mesh automatically adapts to the changing solu-

tion and domain features. To ensure a sufficient number of elements in the evolving

pit and around the heterogeneities we use a combination of mesh density functions.

As in [25, 26] to resolve the pit boundary we use a modification of a distance-based

monitor function given by

MK(x, y) =

(
1 +

µ1√
µ2
2d

2 + 1

)
I, (5.11)

where

d(x, y) = min
p

|(x, y)− (xp, yp)|,

and (xp, yp) denotes any point on the boundary of the pit, Γpit, cf. [3]. This ensures

that MK will be largest in (x, y) regions where the distance to the pit boundary is
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the smallest; hence increasing the mesh resolution in these regions. The parameters

µ1 and µ2 control the minimum mesh spacing and the rate at which mesh clustering

occurs [22]. The effect of these parameters has been evaluated in [26].

To ensure additional resolution near material heterogeneities or inclusions we will

also use the re-scaled version of Mackenzie’s distance-based monitor function:

M̃K(x, y) =

⎧⎪⎨⎪⎩10 ∗max(MK(x, y)) if |MK(x, y)− (1 + µ1)I| ≤ 2.5 and dic(x, y)) ≤ 1

MK(x, y) otherwise,

(5.12)

where dic = |(x, y)− (xic, yic)|, and (xic,yic) is the left or right corner of the inclusion.

where the quantities (h, k) and r are chosen so that a circle with radius r and centered

at (h, k) encloses the inclusion of interest. This monitor function is able to focus

mesh points in the target region around the heterogeneities. Once the pit boundary

encounters a material anomaly, two mesh solves are completed consecutively, first

using the mesh density function (5.11) to resolve the pit boundary, and then using

(??) to further refine the inclusion.

As discussed in [26], the initial mesh covering the initial pit geometry may be

obtained with using a tool like initmesh in Matlab or mesh node in COMSOL, or

indeed using the MMPDE above to ensure the initial pit geometry is resolved.

5.3.3 Mesh quality indicators

Throughout the simulation the mesh quality measure is monitored, and any elements

with a mesh quality measure above a user prescribed tolerance are marked for refine-

ment. These elements are then refined as described in the next section.

The equidistribution mesh quality measure of an element K used here is defined

as

Qeq(K) =
NMK |K|

σh

,

where |K| is the area of element K, N is the number of elements and

σh =
∑∫

K

MKdx,
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where the sum is taken over all elements in the mesh. Other mesh quality measures

are available, see [12]. Qeq is chosen as our mesh density function and is isotropic.

From the definition it is clear that Qeq(K) > 0 for all elements K and

1

N

∑
Qeq(K) = 1.

Larger values of maxKQeq indicate that the mesh does not satisfactorily equidistribute

M.

5.3.4 A simple h-refinement strategy

Each element in the pit flagged as unsatisfactory as based on the mesh quality indica-

tor is subdivided into 4 elements. This is accomplished by connecting the midpoints

of each side of the triangular element, as shown in Figure 5.2.

(a) (b) (c)

Figure 5.2: A simple h-refinement strategy: (a) mesh element to be refined, (b) add

vertices on the midpoint of edges of the element, and (c) subdivide the element into

4 elements

Due to h-refinement, hanging nodes may appear on a refined element’s edge and

not coincide with nodes on the adjacent coarser element. For example, if one triangle

is refined but not its neighbors. How to handle the hanging nodes in h-refinement

strategy? We follow the steps below to fix the hanging nodes:

� Identify the hanging node(s) and neighboring coarse element (as shown in Fig-

ure 5.3(a)).
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(a) (b)

Figure 5.3: (a) Hanging node due to h-refinement, (b) Fixing the hanging node by

subdividing the neighboring coarse element into 2 elements.

� Interpolate the values at the hanging nodes from the adjacent coarser element

(as shown in Figure 5.3(b)).

� Finally update the element connectivity to include the newly created elements.

Once a h-refinement is complete, a mesh solve is performed to smooth the refined

grid. Multiple mesh solves (or smoothing steps) may be completed to allow the now

larger mesh to become a better approximation to the minimizer of the grid functional.
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5.4 Numerical results

Table 5.2 illustrates the trends in the mesh quality measure, Qeq, as the pit grows

and interacts with a material anomaly when using r-refinement alone. Each cell in

the table gives the number of elements on the pit and number of total elements which

have a mesh quality measure above the specified tolerance as a pair. Generally, Table

5.2 shows that when using r-refinement on its own, the number of elements with

a poor mesh quality measure increases as t increases, i.e., as the pit grows. Also

as expected, the number of elements with poor mesh quality increases as the mesh

quality tolerance decreases.

Table 5.2: The number of elements in the pit and on the whole domain with a Qeq

value larger than the tolerance for various times when using r-refinement alone.

PPPPPPPPPPPPP
Tolerance

Time (s)
50 51 70 71 90 91

1.01 4 580 4 579 3 572 3 572 5 562 5 560

1.03 3 572 4 571 3 564 3 563 5 557 6 558

1.05 3 562 4 563 2 551 3 551 5 542 6 541

1.15 2 506 3 506 1 505 2 504 2 488 2 488

1.25 1 457 2 458 0 455 1 454 1 454 1 453

1.35 1 414 1 413 0 404 1 404 0 404 0 403

1.45 0 360 1 360 0 344 0 341 3 339 3 337

1.55 0 293 0 291 2 277 1 277 3 267 3 265

1.65 0 239 0 237 4 232 3 234 3 228 3 225

1.75 0 214 0 212 3 205 3 207 3 194 3 191
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Table 5.3 indicates that completing h-refinements every 20 time steps is able

to only slightly decrease the number of elements on the whole domain with poor

grid quality. In fact, the number of poor quality elements in the pit itself actually

increases with each h-refinement. This result is, in fact, not surprising. Dividing

elements with poor mesh quality into 4 smaller elements does not generally improve

the equidistribution of the mesh density function over the domain.

Table 5.3: The number of elements in the pit and on the whole domain with a

Qeq value larger than the tolerance for various times when using r-refinement and

h-refinements every 20 s.

PPPPPPPPPPPPP
Tolerance

Time (s)
50 51 70 71 90 91

1.01 4 580 4 579 9 569 10 570 15 555 16 556

1.03 3 572 4 571 9 557 10 558 15 547 15 546

1.05 3 562 4 563 7 546 8 545 15 536 15 535

1.15 2 506 3 506 6 497 6 496 11 484 12 485

1.25 1 457 2 458 4 455 6 453 9 439 9 438

1.35 1 414 1 413 4 400 4 398 7 380 7 380

1.45 0 360 1 360 4 333 4 332 7 317 7 317

1.55 0 293 0 291 3 265 4 265 5 252 5 250

1.65 0 239 0 237 3 229 3 226 5 220 5 215

1.75 0 214 0 212 2 202 3 200 5 187 5 186

In Table 5.4, however, we see that if additional mesh PDE solves (or mesh smooth-

ings) are performed then the additional elements provided by the h-refinement is

ultimately able to improve the overall quality of the mesh.
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Table 5.4: The number of elements in the pit and on the whole domain with a

Qeq value larger than the tolerance for various times when using r-refinement and

h-refinements every 20 s followed by an additional 2 mesh smoothing steps.

PPPPPPPPPPPPP
Tolerance

Time (s)
50 51 70 71 90 91

1.01 4 585 4 584 3 593 4 593 3 595 3 598

1.03 3 575 4 575 4 582 4 582 5 582 5 579

1.05 3 564 4 560 4 568 4 569 5 569 4 567

1.15 2 510 3 509 2 509 3 512 6 509 5 508

1.25 1 454 2 455 1 447 0 447 7 442 6 441

1.35 0 409 1 406 1 395 0 394 3 394 4 393

1.45 0 351 0 350 0 337 0 336 3 321 5 322

1.55 0 291 0 290 1 271 1 269 3 256 3 255

1.65 0 237 0 238 0 225 1 225 1 209 3 208

1.75 0 212 0 209 0 191 0 188 2 170 1 169

In Figure 5.4 we show a typical sequence in our hr-refinement approach. We

simulate the growth of a corrosion pit as the boundary interacts with a corrosion

resistant inclusion (outlined in red). In plot (a) the elements in the pit with a mesh

quality measure larger than the tolerance 1.03 are highlighted in red. In plot (b)

we show that each of these 6 red elements have now been refined once using the

process described above. In plot (c) we show the mesh after one subsequent mesh

solve or smoothing step. For reference, we have left the outline of the original red

elements in place. After this single mesh solve, the mesh quality of each element can

be computed again. We can see that we are still left with 6 red elements which are

now much smaller than in plot (a).
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(a) After boundary movement at t = 50 s. (b) After h-refinement at t = 50 s.

(c) After mesh solve at t = 51 s. (d) After mesh solve at t = 51 s.

Figure 5.4: Identification of elements with poor mesh quality, h-refinement and sub-

sequent smoothing for the simulation of a corrosion pit interacting with a corrosion

resistant material.

In Figure 5.5 we continue a simulation of a corrosion pit interacting with a corro-

sion resistant material. We show 3 sets of results: using r-refinement alone (Figures

(a) and (b)), h-refinement every 20 s (Figures (c) and (d)), and using h-refinement

after r-refinement at every iteration (Figures (e) and (f)). Again mesh elements with

poor mesh quality are highlighted in red. There are three obvious observations: (i)

due to the increasing size of the pit and the fixed number of nodes used, the number
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(a) Using r-refinement only, t = 80 s. (b) Using r-refinement only, t = 100 s.

(c) r-refinement with h-refinement at every

20 time steps, t = 80 s.

(d) r-refinement with h-refinement at every

20 time steps, t = 100 s.

(e) r-refinement with h-refinement at every

time step, t = 80 s.

(f) r-refinement with h-refinement at every

time step, t = 100 s.

Figure 5.5: Meshes for a pit encountering a corrosion resistant inclusion at t = 80 and

100 s with r-refinement (top row), r-refinement with periodic h-refinement (middle

row), and hr-refinement at every time step (bottom row).
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of elements with poor mesh quality will generally increase with time if no h-refinement

is used, (ii) periodic h-refinements can improve the resulting meshes — improving the

resolution of the mesh in the targeted regions and in this simulation ultimately im-

proving the overall mesh quality, and (iii) increasing the frequency of the h-refinement

further improves the results, but of course at an increasing cost.

For the simulation above, in Figure 5.6 we plot the maximum and grid 2-norm of

the mesh quality measure (in the corrosion pit) for the r-refinement (only) simulation

and for the hybrid hr algorithm where h-refinement is completed at every 20 time

steps. The maximum and grid 2-norm of the mesh quality increases with time, as

the pit grows, when r-refinement is used without h-refinement. h refinement every

20 time steps reduces the norms of the mesh quality measure. In Figure 5.7, we plot

(a) Maximum norm. (b) Grid 2-norm.

Figure 5.6: Norms of the mesh quality measure, Qeq, computed in the pit for the (a)

r-refinement and (b) hr-refinement algorithms (with h-refinement used every 20 time

steps).

the maximum norm of the mesh quality measure (in the corrosion pit) for 4 variants

of the hr approach: (i) r-refinement alone, (ii) r-refinement with two additional

smoothing steps at each time step, (iii) hr-refinement at every time step, and (iv) hr-

refinement at every time step followed by two additional smoothing steps. Generally
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the maximum norm of the grid quality measures increases if r-refinement is used alone

with mesh smoothing steps improving the results some. Periodic h refinements help

with results improving more significantly as the frequency of the h refinements and

the number of smoothing steps increases.

(a) r-refinement and hr-refinement at every

time step without mesh smoothing.

(b) hr-refinement at every time step fol-

lowed two mesh smoothing steps.

(c) hr-refinement with various frequencies

of h-refinements.

(d) hr-refinement followed by two smooth-

ing steps with various frequencies of h-

refinement.

Figure 5.7: The maximum norm of the mesh quality, Qeq, on the pit as a function of

time for r-refinement alone and various variants of hr-refinement.
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In Figure 5.8 we see that the maximum norm of the mesh quality measure is

improved by h-refinement at t = 50 s if followed by smoothing steps, and the result

is further improved with each successive mesh smoothing step.

(a) Without h-refinement (b) Using h-refinement at t = 50 s

Figure 5.8: The impact of the number of smoothing steps on the maximum norm of

the mesh quality, Qeq, with (a) and without (b) h-refinement at t = 50 s.

In Figure 5.9 we see that if we compute the norms of the mesh quality measure

just over the elements whose mesh quality measure exceeds the mesh quality tolerance

of 1.03, then both the maximum and grid 2-norms are greatly reduced with periodic

h-refinements. Above, we saw that the grid 2-norm of the mesh quality measure

over the pit was reduced, but only slightly so, by the h-refinement. This is sensible

since the grid 2-norm over the whole pit is influenced greatly by the large number of

elements with mesh qualities below the mesh quality tolerance.
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(a) Maximum norm (b) Grid norm

Figure 5.9: Mesh quality Qeq for the bad elements on the pit, hr-refinement is used

at every 20 iterations.

As we saw in [25], designing mesh density functions capable of maintaining suffi-

cient mesh resolution and quality in the presence of multiple heterogeneities is rather

difficult. Indeed, this was one of the primary reasons to propose an hr-refinement

strategy. In Figure 5.10 we illustrate the simulation of pit growth as the pit en-

counters two corrosion resistant inclusions. We see that r-refinement alone has diffi-

culty with the competing features of the solution, and there is a loss of mesh quality

around, and in between, the corrosion resistant anomalies. Following the r-refinement

with h-refinements every 20 time steps improves the results. As the frequency of h-

refinements is increased (in tandem with the r-refinement) we recover a high quality

resolution of the pit geometry as the pit grows around the inclusions.
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(a) Using r-refinement only, t = 80 s. (b) Using r-refinement only, t = 100 s.

(c) r-refinement with h-refinement at ev-

ery 20 time steps, t = 80 s.

(d) r-refinement with h-refinement at ev-

ery 20 time steps, t = 100 s.

(e) r-refinement with h-refinement at ev-

ery time step, t = 80 s.

(f) r-refinement with h-refinement at ev-

ery time step, t = 100 s.

Figure 5.10: Meshes for a pit encountering two corrosion resistant inclusions at t =

80 and 100 s with r-refinement (top row), r-refinement with periodic h-refinement

(middle row), and hr-refinement at every time step (bottom row).
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5.5 Conclusion

This paper presents a robust, fully automatic, moving mesh solution framework for

pitting corrosion in heterogeneous materials or situations where material voids are

present. The moving mesh approach is able to continuously and smoothly evolve a

fixed mesh topology according to the changing pit geometry as the pits encounter

inclusions with varying crystallography or voids.

Designing mesh density functions capable of resolving corrosion dynamics in sit-

uations with several competing regions of interest in difficult and would certainly

benefit from an hr–refinement strategy (which both redistributes nodes as we have

presented here but also allows periodic changes to the number of mesh nodes). This

work is ongoing and will appear in a subsequent paper.

5.6 Data availability

The raw or processed data required to reproduce these figures and findings cannot be

shared at this time due to technical or time limitations, but are available from the

authors upon request.
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Chapter 6

Conclusion and future work

In this chapter, we present a summary, the key contributions of this thesis, and rec-

ommendations for future work. Our research focuses on the areas of adaptive moving

meshes, pitting corrosion, and finite element methods. Specifically, we have con-

tributed to the development of software for adaptive algorithms in complex domains,

the study of heterogeneous materials with an emphasis on inclusion-type domains, and

the r and hr-refinement methodology, which enhances the accuracy and efficiency of

numerical simulations of moving boundary problems. Our recommendations for fu-

ture work include further studies on moving boundary problems, numerical analysis

of the methods, corrosion simulations for different metals, and coupling our approach

with domain decomposition strategies.

6.1 Summary of the thesis and our contribution

This thesis presents a proof of concept r and hr refinement approach to solving the

moving boundary problem related to pitting corrosion. Firstly, we demonstrated the

effectiveness of the r refinement approach in handling moving boundaries and chang-

ing topology due to merging pits in pitting corrosion problems. Secondly, we con-

ducted numerical simulations of pitting corrosion in heterogeneous materials, which is

challenging due to the presence of inclusion-type domains. We have shown that r re-

finement could provide quality meshes near the inclusion and pit as required. Finally,
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we have demonstrated that hr-refinement can significantly improve the resolution

near the features of interest.

An adaptive moving mesh method is a powerful technique for obtaining a more

accurate solution. This thesis has reviewed two types of adaptive moving mesh tech-

niques: r-refinement and h-refinement. In Chapter 1, we discussed the objectives

and scope of the thesis, as well as relevant literature on moving mesh and moving

boundary problems, including pitting corrosion. In Chapter 2, we provided back-

ground materials for this thesis, including an overview of the moving mesh method,

the formulation of MMPDEs, mesh adaptation functions, and solution techniques

for the physical PDE and mesh equation. There are two ways to solve the physical

PDE and mesh equation: simultaneously and alternately. However, the simultaneous

approach has a highly nonlinear coupling between the physical PDE and mesh PDE.

Therefore, we have chosen the simplest approach to the moving boundary problem

and then decoupled the boundary movement from the mesh generation. We have gen-

erated the mesh and solution using the alternating approach. In addition, we have

presented the preliminaries of the mechanism of pitting corrosion, crystal orientation

and a model problem.

In Chapter 3 we have shown how to design and implement an adaptive moving

mesh method for a moving boundary problem related to pitting corrosion with single

and multiple pits. The adaptive mesh is generated automatically by solving a mesh

PDE coupled to the nonlinear potential problem. We have shown the moving mesh

approach enables initial mesh generation, provides mesh recovery, and is able to tackle

changing pit geometry smoothly. To do this, we designed a metric for mesh adaptation

based on geometric considerations and on the solution of the PDEs, indicating where

the mesh needs to be moved to capture fine-scale features or moving boundaries. In

addition, we have introduced a technique to move the corner nodes of the pits. Single

and multiple pits are considered, as are materials with different crystal direction(s).

A procedure has been presented which allows pits to merge without a change in

mesh topology, allowing computation to proceed without completely restarting the

computation.
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Chapter 4 is devoted to demonstrating an adaptive moving mesh method for

simulating pitting corrosion in materials containing heterogeneous inclusions. Inclu-

sions are regions of a material that have a different composition or properties than the

surrounding material. In this chapter, we discussed how to handle multiple inclusions

and voids in the computational domain. We compute a metric for mesh adaptation

based on the solution of PDEs, indicating where the mesh needs to be moved to

capture the moving boundary and the metric was modified to handle inclusions. We

have shown that r-refinement approach is capable of handling changing pit geometry

and materials with varying crystallography and corrosion-resistant inclusions.

We observed that in some cases, r-refinement alone could not provide high mesh

density near the inclusion(s) for a long simulation time due to the obstacle(s) and the

moving front. We proposed a combination of h- and r- refinement to overcome this.

h-refinement adds mesh elements by dividing each existing element into two or more

elements and maintaining the type of element used.

InChapter 5, we designed and implemented an adaptive hr-refinement procedure

for the simulation of pitting corrosion with heterogeneous materials. The adaptive

hr-refinement was able to handle changing pit geometry, including materials with

varying crystallography and corrosion-resistant inclusions. We have shown that hr-

refinement can significantly improve the mesh quality of the simulation compared to

r-refinement alone.

In summary, we have presented a robust, fully automatic, moving mesh solution

framework for pitting corrosion in materials with homogeneous and heterogeneous

with and without inclusions. The research also focused on developing software, a new

extension of MMPDElab providing hr–refinement.

6.2 Recommendations for future work

Future research primarily falls under the umbrellas of adaptive moving meshes, corro-

sion processes, and domain decomposition methods. This involves the development of

adaptive algorithms in complex domains, the further study of heterogeneous materials
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with an emphasis on inclusion-type domains of an arbitrary number, and improve-

ments to the hr-refinement methodology. Since this thesis work is interdisciplinary,

there are various areas where future work can be conducted and some recommenda-

tions for future work are given below.

1. Numerical simulation of pitting corrosion for many pits: We presented a

proof of concept r and hr refinement approach to the moving boundary problem

related to pitting corrosion. The simulation of large pit growth or the initiation

of many pits would likely benefit from an hr–refinement strategy which both

redistributes nodes as we have presented here but also allows periodic changes

to the number of mesh nodes.

2. Coupling the boundary movement with the mesh movement: In this

thesis work, the boundary movement and mesh movement are handled sepa-

rately. Coupling the boundary movement implicitly with the mesh movement

would also be a subject of future work. This will require further modification

of the MMPDElab software.

3. Improvements to the model by including more physics: In the existing

model we can include more physics, which will modify the physical PDE to

more accurately model the physical problem.

4. Simultaneous approach for solving the pitting corrosion PDE model

and the mesh movement: As we discussed, to solve the physical PDE and

mesh equation, we may solve the physical and mesh PDEs in a simultaneous or

alternating fashion. We have taken the simplest (alternating) approach for solv-

ing the moving boundary problem and have decoupled the boundary movement

from the mesh generation. In future work, the simultaneous solution approach

will be explored. The main disadvantage of this approach is that it has highly

nonlinear coupling between the physical solution and the mesh. The advantage

is the reduction in the time lag between the solution and the mesh.
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5. Error based hr-refinement methods for pitting corrosion: The MM-

PDE software only provides a P1 finite element of the solution. Extending the

software to give both a P1 and P2 finite element solution would allow the com-

putation of an error estimate. This error estimate could then be used as part

of the mesh density function and as a trigger for h-refinement.

6. Domain decomposition simulation for pitting corrosion: Domain de-

composition methods are widely used in scientific computing community to

solve the problem efficiently and quickly. The simulation of large pit growth

or the initiation of many pits would likely benefit from an hr–refinement strat-

egy coupled with a domain decomposition approach to allow the problem to

be spatially partitioned and the computation distributed to harness additional

processors.

7. Parallel domain decomposition approach for simulating pitting corro-

sion PDE model in 3D: Other future work could include looking at pitting

corrosion in 3D on general surfaces. Recently, a closest-point method library for

solving PDEs on surfaces with parallel domain decomposition was introduced

by May et al. [1]. In particular, the library is able to solve elliptic and parabolic

equations including reaction-diffusion equations. This parallel domain decom-

position technique can be used for simulation of pitting corrosion PDE model

in 3D.

In conclusion, moving mesh approaches show a lot of promise for dealing with moving

boundary problems, especially when working with complex domains with inclusions.

Although, moving mesh techniques have been employed in a variety areas, the field

will benefit from further uptake in application areas. The MMPDElab package should

be made accessible in a number of programming languages and integrated with other

software applications, such as the PETSc (Portable, Extensible Toolkit for Scientific

Computation) library, for the benefit of the scientific computing community and

numerical analysts.
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