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General Summary

Oil well drill strings, which are used to drill through the rock, are highly susceptible
to sudden failure due to fatigue. This is caused by repetitive loading and unloading
caused by excessive vibrations. Currently available technologies have some limita-
tions in real-time detection of downhole vibrations to mitigate these conditions. The
current study proposes a novel approach to identify the vibration types with their
severities and estimate the remaining useful lifetime of the drill string based on var-
ious measurements made at the surface level. A computer algorithm is employed to
classify them. Algorithms need to be trained to perform these types of tasks, ideally
with real-world data. Nevertheless, these data are not widely available due to the
limitations of the available technologies and various company policies. Therefore, the
current study proposes using a simulation of the drill string to produce the necessary
training data. This simulation is developed based on an approach called bond graphs
which is very efficient in simulating dynamic systems. To make the bond graph ready
to simulate a given drill string, it needs to be provided with certain parameters re-
lated to the geometry of the drill pipe, and the interaction with the drilling mud
flow. They are determined through techniques called finite element method (FEM)
and fluid-structure interaction (FSI) simulations, respectively. The customized Bond
graph (BG) is then used to simulate the drill string for different ‘what if’ scenarios,
and the synthesized data are used to train the aforementioned computer algorithm.
Also, the bond graph provides the stress history that each drill pipe experiences dur-
ing a particular period, and that stress history is used to estimate the remaining useful
time of the drill string using an open-source software code. This entire workflow is
termed a digital twin. This digital twin framework is applied for a laboratory-scale
apparatus as a proof of concept and has also shown to be useful in decision-making
to optimize the useful lifetime. This thesis presents three case studies. The first one
emphasizes the benefit of using a non-linear fluid drag model over the static models
currently used. The second case study uses a proposed fatigue damage estimation
method as a tool to optimize the lifetime of drill collars by reducing fatigue damage.
The third case study provides a proof of concept in using the proposed digital twin
framework on a laboratory scale apparatus to determine fatigue damage by analyzing
the surface level measurements.
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Abstract

This thesis presents a novel methodology for fatigue life prognosis of vertical oil well
drill strings through the development of a digital twin framework. A technique is
proposed to classify vibration types with their severities and estimate the remaining
useful lifetime of the drill string based on various indirect measurements made at
the surface level. The classification was done using a machine learning algorithm
developed based on a Hidden Markov Model (HMM). Training data for the algorithm
were generated using a bond graph simulation of a vertical drill string. A three-
dimensional lumped segment bond graph element and an interface element available
in the literature were used to develop the simulation. The bond graph elements are
developed based on a Newton-Eular formulation and body-fixed coordinates. The
simulation was upgraded by introducing a fluid drag model and refining it with ac-
curate element compliance values. Nonlinear fluid drag force statistical models were
developed through the design of experiments (DoE) approach considering the non-
linear geometry of the drill pipes, the drilling fluid rheology, and fluid velocity. A
series of fluid-structure interaction (FSI) simulations were employed to develop the
statistical models for the lateral vibration damping and the axial drag force due to
the drilling fluid flow through the pipe and the annular space. An apparatus was
designed and fabricated to verify the FSI simulation. Further, a method was intro-
duced to accurately determine the axial, shear, bending, and torsional compliances of
geometrically-complex drill string segments represented by the bond graph elements.
The trained HMM-based classifier using bond graph-generated training data selects
the appropriate parameter set for the same bond graph to generate stress history
for fatigue life prognosis. A generalized fatigue life estimation method was developed
using SalomeMeca�, an open-source finite element analysis code. A detailed workflow
for multi-axial, non-proportional, and variable amplitude (MNV) fatigue analysis is
also provided. Three case studies are presented to demonstrate the significance of the
nonlinear fluid drag models, the fatigue prognosis framework, and the digital twin
development framework. In the first case study, the bond graph with the developed
drag models showed higher stress fluctuations at the drill pipe threaded connection
than the one with a static model. The second case study demonstrated the function
of the proposed fatigue life prognosis framework as an optimization tool. In the case
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study, the optimum placement of the stabilizers reduced the drill collar damage by
66% compared to the worst-case scenario. The third case study used a laboratory-
scale vertical drillstring vibration simulator apparatus designed and fabricated to
implement the framework as a proof of concept. It demonstrated the potential to use
surface measurements to classify the vibration type and its severity for fatigue life
prognosis.

keywords: Bond graph, Cumulative fatigue, Oil well drill strings, Finite element
method, Fluid-structure interaction, Digital twin
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Chapter 1

Introduction

This chapter provides an overview of the problem addressed through this thesis and

the solution approaches taken. The chapter begins with the motivation of the re-

search, followed by the problem statement, the thesis statement, the list of contribu-

tions, and the organization of the thesis.

1.1 Motivation

Metallurgical and mechanical failures of drill strings are primarily due to fatigue crack

propagation driven by severe vibrations [1]. Statistics show that fatigue causes more

than 50% of drill string failures. As a result, drill string fatigue failure has drawn

attention from academics worldwide [2, 3]. Threaded connections of the drill pipes

and collars, shown in Figure 1.1, consist of high stress concentration sites due to

their geometric features and hence are more susceptible to fatigue damage. Mechan-

ical vibrations are the main cause of fatigue damage of drill strings. Although the

commercially available down-hole measurement tools can pick up low-frequency vi-

brations, their limited bandwidth hinders the ability to rapidly detect high-frequency

1



Figure 1.1: A fatigue crack initiated in an API pipe specimen [4]

vibrations. Moreover, the high-frequency content can get damped out while travelling

to the surface along the drill string. Hence, there is a higher chance of misinterpret-

ing a severe vibration as a smooth operation until a catastrophic failure occurs [5].

This leads to an increase in the overall risk of the drilling operation. On the other

hand, drill string vibrations and shocks can limit the drilling performance, a critical

problem in trajectory optimizing, wellbore design, and intelligent drilling [6, 7].

Although there are a number of attempts made to understand specific types of

vibrations and how to avoid them [8], there is no evidence of a broader approach

which simultaneously considers: well bore friction and impact; the influence of the

drilling fluid on vibration damping; and fatigue life prognosis under multi-axial, non-

proportional, and variable amplitude (MNV) load fluctuations. Despite the presence

of discussions and numerous studies in the literature [9–11], an application of the

digital twin concept for minimizing fatigue damage in a drill string, through the

analysis of surface level measurements, has never been reported.

Figure 1.2 depicts a vertical well drill string. Mechanical vibrations occurring at

the drill bit level can result in various indirect responses at the surface level. These

responses include, but are not limited to, 1.) mechanical vibrations of the derrick, 2.)

induction motor current, 3.) engine torque, 4.) rotary speed, and 5.) mud flow pres-

sure fluctuations. In this thesis, they are designated as ‘surface-level measurements’.
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Figure 1.2: A vertical oilwell drillstring [12]

Assuming each response has three different characteristics A,B, and C, there is an

opportunity to define the 35 number of different response combinations of the surface

level measurements corresponding to different vibration states happening downhole.

A technique that can distinguish between some combinations for critical vibration

conditions has the potential to be developed into a useful tool that can rapidly detect

downhole vibration conditions. This assists the driller in taking suitable mitigative

actions to reduce the risk of a drill string failure.

This thesis addresses this challenge by developing a digital twin framework for

vertical oil well drill strings, improving the parameterization of the simulation models

required for digital twinning, and facilitating optimization of drillstring features such

as stabilizer configuration for maximal fatigue life.
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1.2 Problem statement

Fatigue is a significant cause of drill string failures [2, 3], drawing global attention

from researchers. Rapid detection and estimation of the vibration type and its severity

are essential because there is a risk of misinterpreting downhole severe vibrations as

normal operation until a catastrophic failure happens [5]. However, existing down-

hole measurement tools have limitations in detecting high-frequency vibrations [13].

The inability to detect severe vibrations and avoid a drill string failure may cause

the driller’s financial loss of millions of dollars due to fishing operations, nonproductive

time, bottom hole assembly lost in hole, and tool replacements. This affects the entire

set of project stakeholders and hence must be avoided [14, 15].

The literature proposes indirect measurement approaches for rapid drill string

vibration detection based on machine learning techniques [16]. Nevertheless, there

is a very limited training data available to be used by the researchers as a result of

the current industrial data sharing practices [17]. Training data can be generated

using a drill string simulation model considering the well bore interactions, drilling

fluid interactions, and other drill string dynamics. Analytical models have limitations

due to the complexity of the phenomena [18–21] involved, while multi-physics FEM

simulations suffer from the computational cost. BG simulations have been introduced

to be efficient and successful in this context, with some potential upgrades, such as

incorporating fluid drag models.

This thesis investigates the problem of simulation-enabled vibration characteriza-

tion of drill strings, and subsequent fatigue failure prognosis, using practical surface-

level measurements. The thesis will develop a digital twin framework to address this

problem, using BG, fluid-structure interaction simulation, finite element modeling,

and machine learning.
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1.2.1 Thesis statement

To reach this goal, first, the high-level efficient BG simulations need to be employed

with a systematic parameterization approach to refine them with realistic element

compliance values. Secondly, the BG simulations need to be upgraded with fluid

drag models in order to capture the spectrum of real-world vibration conditions.

Thirdly, a fatigue life prognosis method needs to be introduced using BG and finite

element method (FEM) combined approach for MNV loading conditions. Finally, a

digital twin framework needs to be developed by integrating the first three solutions

and further strengthened with the surface-level monitoring feature.

The following objectives were set with the defined tasks presented under each

objective.

Objective 1 Develop 2D and 3D multi-body BG models with realistic drill string

parameters.

� Task 1: Develop a methodology to quantify the structural properties of any

given drill pipe with finer details based on a FEM based approach.

� Task 2: Develop a methodology to quantify the lateral vibration damping and

axial drag effects exerted on a drill pipe by the drilling fluid based on a fluid-

structure interaction (FSI) simulation approach with experimental verification.

Objective 2 Develop a methodology to estimate the cumulative fatigue damage of

a drill pipe for MNV loading conditions.

� Task 3: Use the BG model to generate the stress history of a given drill pipe in a

vertical well and the prognosis of the remaining lifetime using a FEM approach

for MNV loading conditions.
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� Task 4: Optimize the placement of the drillstring stabilizers to minimize the

vibration damage of drill collars.

Objective 3 Create a digital twin for a laboratory-scale apparatus that can be

adapted for a specific vertical well drillstring, enabling estimation of the remaining

fatigue life of a drill pipe or drill collar.

� Task 5: Design and fabrication of an experimental apparatus to demonstrate

stick-slip, bit bounce, and whirling vibrations.

� Task 6: Validation of the BG model using the experimental apparatus

� Task 7: Use the refined and validated BG to train a machine learning algorithm

for real-time classification of vibration states of the drill string.

� Task 8: Develop a digital twin of the experimental apparatus which is adaptable

to a given scenario and dynamically determine the stress history based on the

vibration measurements taken at the ‘surface level’.

1.2.2 Contributions

At the successful completion of the defined tasks in Section 1.2.1, the following main

contributions were made.

� Contribution 1: A digital twin framework to predict the type and severity of

downhole vibrations using practically-available surface level measurements. The

framework used a BG simulation model to generate training data for a machine

learning algorithm developed based on HMM.

� Contribution 2: a ‘cascaded modelling’ approach to improve the parameter esti-

mation for simulation models that are required for the digital twinning process.
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High-order models of complex components generated improved stiffness and

fluid damping parameters, which were then used in computationally efficient

reduced-order top level models.

� Contribution 3: A simulation-based fatigue prognosis and optimization method.

Efficient lumped-segment BG simulations were coupled with design of experi-

ments (DOE) to determine optimal stabilizer location for improved vibration

response and fatigue life

1.3 Organization of the thesis

This is a manuscripts-based thesis and the first two chapters are allocated for the

introduction and the literature survey. Chapter 2 provides the essence of the in-

depth literature surveys presented in future chapters. The main contributions are

presented from Chapter 3 to Chapter 6 while the conclusion and further research

opportunities are presented in Chapter 7.

Figure 1.3 illustrates the overview of the content and the respective publication.

The contributions of Chapters 3 to 5 are utilized in the digital twin framework de-

velopment in Chapter 6 in addition to the introduction of surface monitoring feature

using the vibration simulator apparatus. Chapters 3, 5, and 6 also present case studies

of the respective contributions of the chapter.

1.4 Publications

(1) M. Galagedarage Don and G. Rideout, “An experimentally-verified approach for

enhancing fluid drag force simulation in vertical oilwell drill strings”, Mathematical

and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 197–228, 2022.
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(2) M. Galagedarage Don and Geoff Rideout, “Fatigue Failure Prognosis of an Oil

Well Drill String Using a Lumped Segment BG Model and Finite Element Method”.

14th International Conference on BG Simulations (ICBGM’)2021 Nov 8-10, 2021- San

Diego, California USA.

(3) M. Galagedarage Don and Rideout, G., “Fatigue Life Prognosis of an Oil Well

Drill String Using Cascaded Dynamic Models”. Engineering Failure Analysis, Else-

vier [Under review]

(4) M. Galagedarage Don and Rideout, G., “A digital twinning methodology for vi-

bration prediction and fatigue life prognosis of vertical oil well drillstrings”. IEEE

Access, [Under review]
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Chapter 2

Literature Review

This chapter overviews the detailed literature surveys presented in Chapters 3 to 6.

Fatigue failure of drill strings, bond graph approach in drill string simulation, fatigue

life estimation techniques, and digital twins are discussed in this chapter.

2.1 Fatigue failure

Metal components experience repeated loading and unloading or cyclic stresses in

numerous engineering applications. Despite being exposed to stresses below the yield

stress, this increases the chances of component failure. Such failures are commonly

known as ‘fatigue failures’.

Fatigue failure occurs in three main stages: initiation, propagation, and failure.

When a component has areas with high stress concentration, either due to design flaws

or geometry, those areas become more susceptible to developing cracks. Imperfections

in the material, such as voids; inclusions; or hard particles, can also create stress fields.

Residual stresses can result from uneven heating and cooling during manufacturing,

while surface damages can be caused by improper handling and corrosion, leading to
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crack initiation. During operation, the crack propagates through repeated loading and

unloading, with tensile loads accelerating its growth by facilitating crack opening. If

the stress on the component exceeds its endurance limit, the component will fail after

a certain number of cycles. In the context of a rail, the stages of fatigue failure are

illustrated in Figure 2.1, with point A representing the fracture initiation region and

regions B and C showing crack propagation and sudden failure regions, respectively

[1, 2].

Figure 2.1: Nature of fatigue failure fracture surface [3]

2.1.1 Fatigue failure of oil well drill strings

Drill strings are widely used in industries such as oil and gas and geothermal energy.

Rotary drilling is the most common type of drilling technique used in the oil and gas

industry [4]. Severe vibrations of the drill string create complex stress fluctuations,

which lead to structural failure due to fatigue. Drill pipe and collar failure carry enor-

mous risks to the overall project due to the high degree of consequences [5]. Drill pipe
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threaded connectors are particularly vulnerable to high stress concentration leading

to initiation and propagation of fatigue cracks [6–8] which can get accelerated due to

various downhole chemical and physical conditions [9]. A drill pipe failure may result

in a costly fishing operation, side-tracking or re-drilling to follow an alternative path,

completing the well at a shallower depth than originally planned, or even abandoning

the well. Therefore, taking precautions to avoid drill string fatigue failure is essential.

Consequently, preventive techniques are highly demanded in the industry [10].

2.1.2 Different drill string simulation approaches

The determination of the stress history that a drill string has been exposed to is

a crucial step in fatigue life prognosis. Several types of attempts are reported in

the literature and can be categorized under mathematical models [11–13], numerical

models [14–17], and physical models [18, 19].

Mathematical models often use simplifying assumptions; hence including the entire

complexity of the drill string vibration may not always be feasible. Also, the complex

interactions with the well bore and complex damping phenomena [20] cannot be

conveniently integrated. On the other hand, numerical techniques such as transient

FEM also carry a large computational burden, making them inefficient to apply in

design applications [14]. On the other hand, physical modelling involves costly initial

investments and additional operational costs in running experiments for different drill

pipes. Considering all those facts, the drill string simulation using the bond graph

approach is identified as an efficient alternative [14, 15].
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2.1.3 Drill string simulation using bond graph

2.1.3.1 The bond graph formalism

Bond graph simulation environment provides a common platform for the natural

phenomena to represent them in terms of interactions of generalized elements such

as energy storage C and dissipators R, inertia I, transformers TF , gyrators GY ,

and power conserving junctions. Energy plays the role of ‘common currency’ [21]

hence the mechanical, electrical, thermal, and hydraulic systems can be unified by

the fact that their components exchange energy [22] through ‘Energy Ports’. The

system interacts with its surroundings using sources of effort Se and flow Sf ports.

In other words, bond graph modelling can be considered as an analogous approach to

solve technological problems in various domains as mentioned in [23]. There are two

generalized power variables, effort(e) and flow(f) which are the time derivatives of

generalized momentum(p) and displacement(q), the product of which is power.

Further, the power conserving 0 − junction and 1 − junction model Kirchoff’s

node and loop laws, respectively. Efforts at 0 − junctions sum to zero while flows

are identical along all the bonds connected to the 1 − junction and vice versa. The

algebraically positive power flow is indicated with a half arrow while the short per-

pendicular line segment to the bond indicates the causal stroke which means whether

the effort or flow is the input or output from the constitutive law of the connected ele-

ment. The powerless signal flow is denoted by a full arrow such as angular speeds and

orientation angles. A systematic learning aid of the bond graph concepts is presented

in [22].
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2.1.3.2 Currently available bond graph drillstring models and their po-

tential improvements

Accurate determination of element stiffness values

Several drill string simulation contributions are available in the literature developed

using the bond graph approach [14, 15, 24, 25]. They are highly efficient in simulat-

ing wellbore interactions and other vibration types in comparison with most of the

currently available numerical drillstring simulations. A three-dimensional bond graph

element is employed with an interface element, illustrated in Figures 2.2 and 2.3, to de-

velop the lumped segment models of vibrating drill strings in three-dimensional space.

The Newton-Euler formulation and body-fixed coordinate system are the foundation

of the two sub-models. The lumped segment model is developed by introducing

compliance (reciprocal of the stiffness) values in between two three-dimensional el-

ements which are conceptually illustrated in Figure 2.4. The axial, bending, and

shear compliances are illustrated while the torsional compliance can be illustrated in

a similar manner to the bending compliance but with the spiral spring fixed in an

orthogonal plane. The bond graph models are currently parameterized based on the

theoretical calculations of stiffness values, shear; bending; axial; and torsional, ap-

proximating the drillstring to a tubular structure [26, 27]. This introduces an error in

the simulation which makes the simulation less accurate in determining the vibration

characteristics.

Usually, the manufacturer specification of a drill pipe contains details on Elastic

Modulus, Yield Point, Tensile Strength, Impact Strength, and Hardness only. The-

oretical calculations can be performed to evaluate the compliance values using the

equations 2.1 to 2.4 respectively which becomes impractical when it comes to threaded
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connections and the transition region between the connection and the pipe.
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where Cs, Ca, Cb, CT are shear, axial, bending, and torsional compliances respectively;

l is the length of the beam, κ is the shear coefficient, G is the shear modulus, E is

the Young’s Modulus, A is the cross-sectional area, I is the area moment of inertia,

and J is the polar moment of inertia.

The threaded joint regions consist of complex geometries and frictional contacts,

which may cause deviations from the theoretical results with simplifying assumptions.

The effect of these factors needs to be investigated, and the bond graph parameters

need to be refined accordingly. Further, a systematic procedure that can be adapted

to determine the stiffness parameters of any slender structure with complex geome-

tries, such as drill pipes and collars, needs to be introduced. Further background

information is presented in Chapters 4 and 5.
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Figure 2.4: BG element compliances

Modelling of fluid drag phenomena on drill string

There are numerous studies available in the literature on dynamic models of drill

strings [28–30]. A common feature of the available models is that they simulate a

selected limited number of phenomena using mathematical or simulation approaches.

None of them provide a methodology to determine the damping coefficient for a given

Newtonian or non-Newtonian fluid and a drill pipe geometry. Hence a detailed study

of the fluid damping due to drilling fluid and its variations due to other parameter

changes is an open research topic.

As stated above, almost all the mathematical and numerical models available in

the literature either do not consider the fluid drag effect or use a constant value of

fluid drag to represent it. Nevertheless, [31–34] have shown that the drilling mud
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flowing through the drill string and the annular space governs the lateral vibration

damping of the drill string. This factor has to be considered in further developing the

bond graph. An experimental and/or simulation-based statistical drag model needs

to be developed to incorporate the lateral vibration damping and the axial drag effects

into the bond graph. Lateral vibration is directly related to drill string fatigue life.

In contrast, weight on bit (WOB) is indirectly related to stick-slip and bit bounce

vibration, which contribute to fatigue damage of the drill string. A FSI simulation

can be employed to investigate this damping phenomenon [35]. The drilling fluid can

be modelled as a Herschel Bulkley fluid in a commercial multi-physics software [36].

The Herschel Bulkley model is given in Equation 2.5.

τ = τ0 + κγ̇n
c (2.5)

where τ is the shear stress, τ0 is the yield stress, n is the power law index, κ is the

consistency index, and γ̇c is the critical shear rate.

The damping effect depends on a variety of factors such as flow speed, radial

clearance, well-depth, and the rheology of the drilling fluid. These changing param-

eters can cause a mass effect or a stiffness effect on the drill pipe. For example, the

presence of drilling fluid creates an added mass effect compared to dry conditions.

Hence the natural frequency will be lower when the pipe is immersed in a stationary

drilling fluid. On the other hand, when a fluid flow is established, the pipe will ex-

perience a resistance to displace from the equilibrium state. This introduces a spring

effect which increases the natural frequency. A displacement-time graph of a vibrat-

ing mass, illustrated in Figure 2.5, can be taken through a physical experiment or an

FSI simulation from which the natural frequency (ωn) and damping ratio (ζ) can be

determined using the Equations 2.6 to 2.9.
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)
(2.7)

ζ =
δ√

4π2 + δ2
(2.8)

ωn =

√
4π2 + δ2

T
(2.9)

where T is the periodic time, δ is the logarithmic decrement, ζ is the damping ratio,

and ωn is the natural frequency.

A design of experiment (DoE) approach can be employed to develop the mathe-

matical model to be implemented in the bond graph model. Further detailed back-

ground information is presented in Chapter 3.
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2.1.4 Fatigue life prediction methods for multi-axial, non-

proportional, and variable amplitude (MNV) loading

The very first experimentally validated variable amplitude, multi-axial and non-

proportional fatigue estimation is presented by [37]. Their study is based on the

critical plane concept. The input data is taken from strain gauge rosettes and analyt-

ical strain data. A computer model is developed to identify the plane with maximum

damage called the critical plane. The damage that occurs in an arbitrary plane is

quantified by Rainflow counting on the respective plane. Critical multi-axial damage

models are used appropriately, and finally, the damage is accumulated throughout

the total loading history.

A technique for monitoring and detecting the critical planes is presented by [38].

The method they introduce, ‘Multi-axial Rainflow’, does not limit the user to examine

the rain flow on the coordinate system but in any direction.

A software tool is developed by [39], which can handle fatigue life (Nf ) estimations

due to multi-axial, random, and non-proportional loading conditions. This method

is named ‘IS Method’ and has been verified with the Mansion-Coffin Equation.

All three techniques mentioned above are not practical to use in the current study

due to the unavailability of software codes in the public domain. Meanwhile, the com-

mercial finite element analysis (FEA) codes with the ability to accept MNV loading

conditions for fatigue analysis are not accessible to most of the researchers. Therefore,

the use of open-source software is an ideal alternative.

Using open-source software is advantageous in many ways. The main strength is

that they are freely available and can be used for any commercial or research work

without cost. Also, they can run on cloud servers, so a lot of computation power can

be used. Concurrently, there are some challenges in going open source because the
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user has to identify the source code and understand how to make it run, which is not

straightforward. SalomeMeca� is an open-source FEA code which has the capability

to estimate fatigue damage due to MNV loading conditions. Salome� is the facilitator

of a generic platform for pre-and-post processing of numerical simulations. It does

not provide any codes related to calculations. On the other hand, CodeAster� is an

open-source FEA Code. In CodeAster�, the modules are coded in Python�, while the

software’s core is developed on FORTRAN�. SalomeMeca� hosts CodeAster� and

Salome� to create a standalone application. Here, the CodeAster� solver gets inte-

grated with the Salome� platform. SalomeMeca� is equipped with tools for creating

the geometry (Geometry module), meshing (Mesh Module), Solving (Aster Study),

and post-processing (ParaVis�) [40].

Considering the above facts, SalomeMeca� can be identified as the most suitable

option to carry out the fatigue life prognosis based on performance and availability.

The stress fluctuation can be given in as a time series for bending in two orthogonal

planes, shear in two orthogonal planes, torsion, and axial tension and compression.

The load fluctuation data in each plane is subjected to ‘rain flow counting’, and the

sum of the fatigue damage is calculated.

SalomeMeca� offers a diverse range of options to calculate fatigue damage. Among

the other fatigue calculation methods such as: MANSON COFFIN; TAHERI MANSON; and

TAHERI MIXTE, WOHLER method stands out as a suitable option for high cycle and

multi-axial fatigue calculations. Wöhler’s Diagram (S-N Curve) can be defined at the

point of the definition of the material and used to evaluate the remaining lifetime in

number of cycles. For a stress-type loading history, the number of cycles to failure

is determined by interpolating the Wöhler curve of the material at a given level of

alternating stress. Each elementary cycle corresponds to a specific stress amplitude

(∆σ = |σmax − σmin|) and an alternating stress (Salt = 1/2∆σ). To introduce the
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Wöhler curve of the material, it needs to use the DEFI MATERIAU operator. There

are three possible forms for specifying the Wöhler curve: Discretized point-by-point

function; Analytical form of Basquin; and “Current zone” form. These forms allow

defining the Wöhler curve for the material, which is necessary for calculating the

number of cycles to failure and determining the damage for a given stress-type loading

history. Further detailed information is presented in Chapter 5 [41].

2.1.5 Digital twins

According to [42], the concept of ‘digital twin’ was first introduced by Michael Grieves

at the University of Michigan in 2003. As mentioned in [43], a digital twin is

“an integrated multi-physics, multi-scale, probabilistic simulation of an as-built sys-

tem, enabled by digital thread, that uses the best available models, sensor information,

and input data to mirror and predict activities or performance over the life of its cor-

responding physical twin”.

Meanwhile, [44] confirms that this is the currently available broadest definition of

the term ‘digital twin’.

A digital twin concept is presented by [45], highlighting potential opportunities

and challenges associated with digital twin applications in the civil aerospace indus-

try. The prediction of the structural life of specific aeroplane parts based on sensor

data and other inputs while in operation is further explained. This concept can be

employed in predicting the remaining fatigue life of a drill string.

Currently, there are some major limitations in near real-time high-frequency vi-

bration data logging while drilling due to bandwidth limitations [46, 47]. Real-time,

or more realistically ‘near real-time data’, in a wide frequency spectrum is one of the

most essential factors required to implement a digital twin of a drill string with the
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ability of fatigue life prognosis. A digital twin that assists in surface-level response

monitoring of a drillstring has the potential to solve this problem.

Many researchers have attempted surface-level monitoring of drill string vibra-

tions since the 1960s [48]. The bit wear estimation through surface-level monitoring

has been explored by [49] and [50], which requires downhole measurement data for

algorithm training. The studies presented in [51] and [52] also require the downhole

measurements at some point in the training process. There is no evidence available in

the literature on training algorithms for surface monitoring using drillstring simula-

tions which considers dynamics and interactions with the drilling fluid and wellbore.

Among the numerous possible options for machine learning algorithms, hidden

Markov model (HMM) is a suitable option to be used as a classification algorithm of

different downhole vibrations through surface-level monitoring. The measurements,

such as axial and lateral accelerations, motor current fluctuation, rotational speed,

and drilling fluid flow rate and pressure pulses, can be used as inputs to a trained

HMM algorithm to classify different vibration scenarios. The algorithm training can

be done using the drillstring simulation for different vibration conditions and their

severity levels. Further detailed background information is presented in Chapter 6.
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Chapter 3

An Experimentally-Verified
Approach for Enhancing Fluid
Drag Force Simulation in Vertical
Oilwell Drill Strings

Abstract

The oilwell drilling fluid flows cause viscous and hydrodynamic forces on drill strings.

This effect is ignored or treated as a constant in most drill string models. The present

study introduces mathematical models for lateral vibration damping and axial drag

forces that are employable in lumped segment drill string models. First, the variables

to which drilling fluid-generated forces are most sensitive were identified and the Re-

sponse Surface Method was applied to design the experiment matrix. The lateral

vibration-damping experiments, which were validated using a scaled-down physical

model, and the axial drag experiments were done using Fluid-Structure Interaction

simulations. The results were statistically analyzed to acquire the models and were

implemented in a 3D lumped segment bond graph developed using the Newton-Euler

formulation and body-fixed coordinates. The results indicate a considerable effect of

the extended treatment of damping and axial drag on bending moment fluctuation,

wellbore interactions, and weight on bit.

32



Keywords: Drill string damping; Bond graph; Fluid-structure interaction

Co-authorship Statement

This chapter is a manuscript of a full paper that is published in Journal of Mathemat-

ical and Computer Modelling of Dynamical Systems. The co-authorship statement

for this chapter follows:

The declaration applies to the following article

M. Galagedarage Don and G. Rideout, “An experimentally-verified approach
for Enhancing Fluid Drag Force Simulation in Vertical Oilwell Drill Strings”,
Mathematical and Computer Modelling of Dynamical Systems, vol. 28, no. 1,
pp. 197–228, 2022.
Article status: Published
The PhD student analyzed the literature, performed the experiments, collected the
data, developed the codes and prepared the manuscript. The supervisor edited,
helped organize the manuscript, and contributed to the choice of case studies.

3.1 Introduction

Vibrating slender structures such as fluid conveying pipes are not rare in engineering

applications. Therefore, many researchers have investigated the vibration and stabil-

ity of a tubular beam system subjected to internal and external axial flows [1–5]. Oil

well drill strings are special among them as they transmit fluids and highly complex

loads. Therefore, pure mathematical modelling of a drill string to the near realistic

level is quite cumbersome. Numerous attempts have been made to model this prob-

lem using both mathematical and simulation-based approaches [6]. Although most

studies have adequately modelled the drill-string dynamics, the bulk of the literature

makes simplifying assumptions about fluid damping and axial drag effects. For exam-

ple, some models use Stokes friction [2, 3, 7] while others use viscoelastic mechanical
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models such as Maxwell, Rayleigh, or Kelvin–Voigt [8–10]. Most of the simulation

models either do not consider the damping effect or treat it as a constant or a linear

viscous damper [11–14].

This study specifically targets the development of a lateral vibration damping

model that can be implemented in drill string lumped segment simulation models. A

series of FSI simulations and the Design of Experiments (DoE) approach are used to

develop the statistical model. Being a simulation-based statistical model, it has the

privilege of assessing most of the contributing variables within their respective ranges.

Therefore, it has the potential to capture the effects of fluid rheological properties as

well as the geometry and position of the drill string. In addition, a separate statistical

model is presented to estimate the viscous and hydrodynamic forces using the same

approach.

Along with estimating the buoyant force acting on the structure, this study provides

a complete solution to estimate the overall effect of drilling fluid on lateral vibration

damping and the WOB. The FSI simulations are partially validated for lateral vibra-

tion damping using an experimental apparatus for a non-Newtonian fluid. Finally,

the developed statistical models are implemented in a 3D lumped segment bond graph

to assess the importance of having such a model in a lumped segment model.

A Background Study is provided in Section 3.1 to explore a variety of analytical

and numerical drill string models. This provides a thorough insight into the variables

to consider in developing the damping and drag models. Further, it describes the

tools and techniques that can be used in developing them. Section 3.2 provides the

methodology followed in developing both lateral damping and axial drag force models.

The screening process to identify the most contributing variables, assumptions, simu-

lation approach, analysis of results, and the experimental validation are presented in

this section. In Section 3.3, a case study is presented to evaluate the significance of
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the two mathematical models when employed in a lumped segment model, followed

by a Discussion, Conclusion, and Further Work.

3.1.1 Background study

Analytical, experimental, and numerical approaches have been used to understand

drill string vibrations and damping. This section highlights previous attempts to

model drill string dynamics and the damping effect. Further, it provides background

information on FSI simulations, statistical model development, and 3D lumped seg-

ment bond graph simulations.

3.1.1.1 Analytical modelling of fluid conveying pipe dynamics and damp-

ing

As mentioned by Päıdoussis [5], the first-ever studies regarding the dynamics of fluid

conveying pipes, supported at both ends, were done by Feodos’ev [15], Housner [16],

and Niordson [17] in 1951, 1952, and 1953 respectively. They have developed linear

equations and drawn conclusions on stability.

Drill string vibrations are primarily damped by the viscous drilling fluid passing

through the drill string as well as the annular space between the drill string and the

wellbore. As mentioned in [18], the drilling fluid generates a reaction force on the

vibrating structure. This reaction force can be interpreted as an added mass and

a damping contribution to the dynamic response of the component. Based on that

concept, they have presented a closed-form solution for a cylindrical rod vibrating in

a viscous fluid that was validated using experimental results. They have concluded

that both the added mass factor and the damping coefficient depend on the kinematic

viscosity. As further mentioned in [18], this behaviour has also been mentioned in [19]
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which motivates to consider the rheological properties and the density of the drilling

fluid in modelling the damping ratio of the vibrating structure.

Further to that, [1] explains that the fluid flow-related forces acting on cylindrical

rods may switch from damping to destabilization. Also, [1] describes the effect of

the eccentricity of the inner cylindrical rod on the added mass factor (CM) and the

viscous damping coefficient (CV ). This study has been done using the Finite Element

Method (FEM) and indicates that both (CM) and (CV ) increase with the eccentricity.

This motivates us to consider that the eccentricity of the drill string in the wellbore

is an important variable in modelling the damping effect.

The behaviour of added mass and damping of cylindrical structures in confined fluids

is presented in [20]. A finite element analysis approach has been taken and continu-

ously deforming space-time finite elements are used to capture the effect of moving

cylinders and changing shapes of the fluid domain. It is further reported that the fluid

damping coefficients tend to rise with increasing vibration amplitude. This indicates

that the wall effect has a considerable influence on the damping ratio and should

be included. On the other hand, the added mass coefficient can either increase or

decrease with increasing vibration amplitude.

A flow-velocity-dependent damping, in addition to the damping associated with fluid

friction, is presented by [1]. The overall damping is considered as the summation of

the two variants. This suggests that the velocity through the pipe and the annulus

has an effect on the damping ratio of the drill string. According to [8], the dynamics

are mainly governed by the inner pipe flow when the annulus is wider. The damping

effect increases with increasing inner pipe flow velocities. Narrow annuli flows can

overcome the effect of the inner pipe flow and destabilize the system. The model

presented in [8] is limited to laminar flow, while the drill pipe is considered a simple

hollow cylindrical structure.
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Based on the linearized equation of motion introduced by [4], Kjolsing and Todd [21]

presented a modified version of the equation, introducing the annulus fluid effects.

The analytical developments were limited to small vibration amplitude and steady

plug-flow conditions. The damping ratio increased with increasing conveyed fluid ve-

locity through the pipe. This is yet to be further studied for different velocity ranges

with both Newtonian and non-Newtonian fluids.

A Coriolis force gets established when the fluid conveying pipe is under vibration

[1, 22]. This force becomes a damping mechanism if the tube is movable at the ends,

causing energy dissipation due to work done. Conversely, if the two ends are non-

movable, there will be no effect from the Coriolis force, especially at lower speeds [23].

Therefore, disregarding the effect of the Coriolis force will still give a reasonable ap-

proximation in modelling a drill string in operation.

In summary, the analysis of the above-mentioned analytical modelling approaches

shows that the damping ratio of a drill string depends on the drilling fluid rheology,

density, velocity, and position of the drill string in the wellbore.

3.1.1.2 Drill string numerical simulation models

In addition to the above-mentioned analytical approaches, several numerical model

developments to study the vibration behaviour of drill strings are also available in

the literature.

Nonlinear three-dimensional lumped segment shaft models are presented in [9, 24],

which resemble a vertical drill string. They have used the bond graph-based approach

to simulate axial, torsional, and lateral vibrations with wellbore contact. The damp-

ing effect is modelled as a resistive element with a constant damping ratio which

requires further improvements in order to capture the nonlinearities. The developed

model is used to investigate the use of an active lateral vibration control with a closed-
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loop control system targeting drilling performance optimization.

Based on the bond graph simulation infrastructure presented by [9], the longitudinal

motion, torsional motion, and combinations thereof in a horizontal oilwell drill string

were developed by [13]. The model contains the dynamic wellbore friction in the

‘built’ and ‘horizontal’ sections. The effects from the drilling fluid are incorporated

with Newtonian flow formulations.

Several finite element method (FEM) based models are also available in the literature.

The model presented in [25] studies the combined axial-torsional vibration of a drill

string under combined deterministic and random excitations. The damping matrix

is considered a linear combination of mass and stiffness matrices. Also, drill string

vibrations in 3D space were analyzed by [26] with finite shaft elements consisting

of 12 degrees of freedom. As further investigations, [27] proposed a coupled lateral-

torsional elastodynamic model with consideration of string–borehole interaction. It

was later experimentally validated by their study presented in [28]. As mentioned

in [9], although those finite element models can be easily reconfigured, they are not

time-efficient to be used in closed-loop dynamic response simulations.

In summary, in the area of drill string simulation, analytical models need simplifying

assumptions; hence the ability to capture the effect of all the variables is restricted to

some extent. The FEM approaches contribute generously, but the available compu-

tation power limits their usage in simulating dynamic responses. On the other hand,

a lumped segment Newtonian approach can be a good compromise. Accurate results

can be obtained with fewer degrees of freedom than a finite element model and less

formulation difficulty than an analytical elastodynamic model. As such, it has nu-

merous strengths over the former two as it requires comparatively less computation

power, making it suitable to be used in applications where rapid results are required.

Also, it is convenient to use the bond graph approach in modelling and integrating
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different domains such as fluid, structural, and external contacts. The effect of the

drilling fluid is not yet modelled such that it can be employed in a computationally

efficient model such as a lumped segment bond graph model. This will be addressed

in this paper.

3.1.1.3 Fluid structure interaction (FSI) simulation

Drill string vibrations are subjected to damping due to the flow through the annular

space and the pipe. An FSI simulation can be used to investigate this phenomenon

as it allows a large number of virtual experiments to be conducted with low cost and

high repeatability to quantify the effect of multiple variables on fluid-related damping

[5, 29].

ANSYS® Workbench provides the necessary tools for these kinds of simulations. The

‘Transient Structural’ (TS) software in Workbench facilitates the simulation of the

structural component in the domain of FEM, while the ‘Fluid Flow (Fluent) package’

is equipped with the necessary tools for the fluid flow simulation [29].

In TS, a fluid-solid interface on surfaces is defined, identifying surfaces in the struc-

tural model that will accept fluid forces from the computational fluid dynamics (CFD)

code (i.e. Fluent). On the other side, Fluent defines a system coupling dynamic mesh

zone, which identifies surfaces in the CFD model that will accept the motion from the

calculated structural deformations. The coordination of the data transfer between TS

and Fluent is done by the ‘System Coupling’ software. It provides one-way and two-

way force-displacement coupling between ANSYS® Fluent and ANSYS® Mechanical

software for FSI simulations. Further, system coupling synchronizes the individual

solvers, manages data transfers between solvers, and monitors the overall convergence

of the FSI solution [29]. The FSI simulation can be used to determine the vibration

amplitude decay for a given impulse.
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3.1.1.4 Damping ratio determination

As described in [30], if a system can be modelled as a spring-mass-damper system,

the damping ratio (ζ) can be calculated from the time response using logarithmic

decrement. Equations 3.1 and 3.2 can be used to determine the damping ratio.

The damping ratios determined through this approach can be used in the design of

experiments (DoE) process to develop a mathematical model with variables such as

pipe eccentricity, fluid velocity, and fluid rheology.

δ =
1

n
log

(
x(t0)

x(tn+1)

)
(3.1)

ζ =
δ√

4π2 + δ2
(3.2)

where δ is the logarithmic decrement, t0 is the time corresponding to the first peak, n

is the number of peaks considered after t0, x is the displacement, and ζ is the damping

ratio.

3.1.1.5 Design of experiments (DoE)

The ‘best-guess’ (with engineering judgment) is a commonly-used approach in engi-

neering, while the one-factor-at-a-time (OFAT) approach is considered the standard

and systematic strategy for experimentation. Nevertheless, according to [31], both

of these approaches are identified as less efficient for a higher number of variables.

More efficient methods such as factorial design and RSM were introduced in the early

1920s, based on statistics theories. Currently, they are called the design of experiment

(DoE) methods in general [32].

DoE, in essence, is a way of using statistics for experimentation in a methodical

manner. It enables researchers to build mathematical models that predict how input
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factors interact to produce output variables of a system or a process. Moreover, this

approach can be used to: understand the process, filter out important parameters,

understand the interactions of each parameter, and optimize the response variable.

Hence, DoE is recognized as the most suitable and efficient method in experimenta-

tion [32].

The RSM provides experimental designs for fitting models of arbitrary order [33].

The second-order design facilitates the approximation of a response surface relation-

ship with a fitted second-order regression model to include nonlinearities [32]. The

procedure presented in Figure 3.1 must be followed in order to accurately use the

RSM method [34]. Problem identification is crucial at the beginning of the pro-

cess, where all the variables involved are identified. Next, those variables should be

sorted into two categories: independent variables (factors) and dependant variables

(responses). Then the most important variables are to be selected through a screen-

ing process. After that, the appropriate design should be selected which suits the

problem. Box-Behnken Designs (BBD), Central Composite Design (CCD), Central

Composite Rotatable Design (CCRD), and Face Central Composite Design (FCCD)

are some of the available options. Once the proper design is selected, the experiments

can be performed accordingly to get the responses.

3.1.1.6 Drilling fluid generated forces

There are mainly four types of forces acting on a drill pipe in operation due to the

presence of the drilling fluid: 1) viscous forces 2.) inertial forces due to the upset

construction 3.) Coriolis forces and 4.) upthhrust.

The tangential viscous forces acting on the drill string surfaces generate an axial

load. By intuition, it can be roughly estimated that the drag force acting on the
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Figure 3.1: Procedure for RSM

inner surface is less than that of the outer surface because the outer surface has a

comparatively higher surface area. In addition to that, the outer surface has an upset

construction at the threaded joint that creates a higher resistance to flow hence a

higher thrust. If the drilling fluid is sent down through the pipe and rises through

the annular space, the drill string will experience this upward hydrodynamic force.

Thirdly, a Coriolis force acts in the system if the drill string vibrates off the ground.

The Coriolis effect can be neglected when the drill bit is connected with the rock

[1] as explained in Section 3.1.1.1. Finally, the upthrust or the buoyant force due to

the immersion in the drilling fluid also plays a role. One should consider these forces

carefully when determining the WOB. The density ratio between the drilling fluid

and the drill string material, which is usually steel, determines the buoyancy factor

that relates the weight of the drill string in the air to the weight when suspended in

the drilling fluid [35].
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3.2 Materials and methods

This section presents the methodologies followed to develop the lateral vibration

damping and axial drag models. An FSI simulation was employed in developing each

model with different boundary conditions and excitations. After identifying the gov-

erning variables, a screening process was carried out using the FSI simulation following

a ‘one factor at a time’ approach. After identifying the most contributing variables,

the design of experiments (DoE) approach was used to reduce the required number

of FSI simulations. Based on the simulation results, the mathematical models were

developed through statistical analysis which can be employed in lumped segment drill

string models.

The detailed methodology followed in developing the lateral damping model is pre-

sented in Sub-section 3.2.1. The methodology for drag-model development is pre-

sented in Section 3.2.2. Further, the experimental validations of the FSI simulation

used for both Newtonian and non-Newtonian fluids are presented in Section 3.2.3.

3.2.1 Lateral vibration damping model

In finding a mathematical model of the lateral damping ratio (ζ), as a function of the

most contributing variables, the initial step was to determine all the variables that

considerably influence the damping constant. The variables identified are presented

in Table 3.1 and Equation 3.3.

ζ = f(κ, n, τ, v, γ̇c, dmin, ρ) (3.3)

Through further simulations, it was identified that the damping ratio also depends

on the combined effect of eccentricity (e) and the wellbore diameter (rwell). The
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Figure 3.2: Damping ratio (ζ) vs. individual variables

minimum distance between the drill pipe and the wellbore (dmin), which is a derived

variable of (e) and (rwell), was considered important. It is presented in Equation 3.5.

The individual effect on the damping ratio of each variable is illustrated in Figure 3.2.

They were evaluated through FSI simulations for non-Newtonian fluids.

ζ = f(κ, τ, v, dmin, ρ) (3.4)

dmin = rwell − rpipe − e (3.5)
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In summary, the simulations were performed according to Table 3.2, and the results

Table 3.1: Variables that affect the damping ratio

Variable of control Minimum Maximum Symbol Units
Consistency index 0 2 κ kg/ms
Power law (Flow behaviour) index NA NA n -
Yield stress 0 10 τ Pa
Velocity through pipe 0.1 1.5 v m/s
Critical shear rate NA NA γ̇c 1/s
Minimum distance between wellbore and pipe 6.46 36.46 dmin mm
Density of drilling fluid 1000 2000 ρ kg/m3

for ζ and ωn were determined using the method described in Section 3.1.1.4. The

FSI simulations were done using ANSYS® Workbench, while the RSM was used to

analyze the data statistically. Design-Expert� 13 software was used to design the

experiment grid and analyze the results. All the FSI simulations were done using the

high-performance computing resources provided by ACENET Canada. The results

are presented in the last two columns of Table 3.2. A similar approach was taken in

developing the axial drag model. Therefore, only the results of axial drag, and not

the detailed steps, are presented in the interest of brevity.

3.2.1.1 Approximation of the continuous FSI simulation element to a

lumped segment system element

The FSI simulation and the lumped segment model, illustrated in Figure 3.3.a and

b respectively, can be considered as approximately equivalent for lateral vibration

damping. Figure 3.3.a represents a flexible body while Figure 3.3.b represents a

rigid body. Both the bodies oscillate with small amplitudes in comparison with

their lengths. For example, the length of the beam is approximately 10 m while

the maximum amplitude is around 10 mm. Therefore, the movement of the two ends

can be neglected and hence can be approximated to a fixed-fixed case.
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Table 3.2: Experiments and the respective results

Sim dmin τ κ ρ v e ζ F
1 36.46 10 0 1750 1.5 0 14.02 12.91
2 21.46 5 1 1000 0.8 15 11.54 9.34
3 36.46 0 0 1000 0.1 0 4.45 0.00
4 6.46 10 2 1750 1.5 30 23.49 65.19
5 6.46 0 2 1750 0.1 30 17.30 11.50
6 6.46 10 0 1750 0.1 30 16.96 8.51
7 21.46 5 1 1750 0.8 15 11.86 9.03
8 21.46 5 1 1375 0.8 15 11.83 9.15
9 36.46 0 2 1000 1.5 0 7.93 162.14
10 6.46 10 2 1750 0.1 30 22.14 20.08
11 21.46 5 0 1375 0.8 15 9.34 2.76
12 6.46 0 2 1750 1.5 30 19.47 81.20
13 21.46 10 1 1375 0.8 15 13.90 5.14
14 36.46 10 2 1750 0.1 0 14.02 29.59
15 36.46 10 0 1000 0.1 0 8.95 12.82
16 36.46 10 0 1000 1.5 0 12.69 17.25
17 6.46 0 2 1000 0.1 30 17.34 11.52
18 36.46 0 0 1750 1.5 0 8.37 2.97
19 21.46 5 1 1375 0.8 15 11.83 9.22
20 6.46 10 2 1000 1.5 30 15.58 62.52
21 6.46 0 0 1750 1.5 30 8.37 2.97
22 21.46 5 1 1375 0.8 15 11.83 9.23
23 6.46 10 2 1000 0.1 30 23.20 20.08
24 6.46 0 2 1000 1.5 30 14.47 67.26
25 21.46 5 1 1375 0.8 15 11.83 9.23
26 36.46 0 2 1000 0.1 0 17.34 11.52
27 36.46 0 0 1750 0.1 0 8.33 0.02
28 36.46 5 1 1375 0.8 0 14.45 20.91
29 21.46 5 1 1375 0.1 15 14.07 7.65
30 21.46 5 1 1375 0.8 15 11.83 9.23
31 6.46 5 1 1375 0.8 30 14.45 20.93
32 36.46 0 2 1750 0.1 0 17.30 11.51
33 6.46 0 0 1000 1.5 30 7.26 1.70
34 6.46 10 0 1000 1.5 30 12.69 17.27
35 36.46 10 0 1750 0.1 0 16.96 8.52
36 21.46 5 1 1375 0.8 15 11.83 9.23
37 6.46 0 0 1750 0.1 30 8.33 0.02
38 36.46 10 2 1750 1.5 0 11.91 178.88
39 36.46 0 2 1750 1.5 0 9.51 175.48
40 21.46 5 1 1375 0.8 15 11.83 9.23
41 36.46 10 2 1000 1.5 0 7.59 165.65
42 21.46 5 2 1375 0.8 15 14.28 23.30
43 36.46 10 2 1000 0.1 0 13.57 28.84
44 21.46 5 1 1375 0.8 15 11.83 9.23
45 6.46 0 0 1000 0.1 30 7.25 0.01
46 6.46 10 0 1750 1.5 30 12.94 26.18
47 6.46 10 0 1000 0.1 30 17.74 8.53
48 36.46 0 0 1000 1.5 0 4.21 0.71
49 21.46 0 1 1375 0.8 15 11.54 9.37
50 21.46 5 1 1375 1.5 15 11.00 9.23
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Figure 3.3: The approximation to a spring-mass-damper system

3.2.1.2 The FSI simulation

The maximum angular oscillation is approximately 1 degree for a given drill pipe in

operation. This is applicable for most of the drill pipe-wellbore radii combinations

and was verified through calculations. Therefore, the angular orientation effect on

lateral damping can be neglected. Hence, this small vibration amplitude assumption

allows the flexible body oscillation to be approximated to a translational lumped

segment spring-mass-damper system. Based on this approximation, the damper with

damping constant C is employed to represent the damping experienced by the flexible

body, while the effective stiffness of the springs (k) represents the bending stiffness

of the flexible body. This approximation is further justified in Section 3.4.

The bending stiffness is defined as the force required to laterally displace the mid-

point of the flexible beam by a unit displacement. One can argue that the fixed-fixed
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boundary condition may be too rigid to simulate the actual dynamics of the drill

pipe, and instead, a flexible boundary condition is more appropriate. Nevertheless,

the fixed-fixed boundary conditions were introduced to establish the computational

stability of the FSI simulation as there are still some limitations that exist in com-

mercial software, in the domain of FSI simulations, at the time of these experiments.

The structural part of the FSI simulation consists of a threaded connection of two

drill pipes and two half lengths of the respective pipe as shown in Figure 3.4. This

is taken as the ‘repeating unit’ of the BG lumped segment simulation presented in

Section 3.3. The fixed-fixed boundary condition provides a sufficient approximation

to actual scenarios where the clearance between the wellbore and the drill string is

small in comparison with the length of the structure as described in Section 3.4. The

material assigned is Structural Steel with Young’s Modulus of 2 × 1011 Pa. The time

step for the simulation was 0.03 s. Grid dependency tests were done for the structural

and fluid simulation meshes separately. The number of elements was doubled and was

checked for the consistency of the damping ratio (ζ). Hex dominant method was used

for both the domains while keeping the element quality above 0.5. As excitation, an

impulse was given at the mid-span of the beam with a maximum amplitude of 100 N.

On the other hand, there are two separate fluid bodies in the fluid flow simulation:

the pipe flow and the annular flow. The two flows are concurrent, resembling the fluid

flow in an actual drilling process. In Fluent®, the k-omega viscous model was used,

and a new fluid was defined to meet the rheology of the drilling fluid. The density

(ρ), Consistency Index (κ), and Yield Stress Threshold (τ) were defined according to

the respective experiment listed in Table 3.2. The Power-law Index (n) was kept at

0.7, while the Critical Shear Stress (γ̇c) was kept at 10 due to the lack of contribution

to the damping effect in the range considered. The Herschel Bulkley model was used

to simulate the drilling fluid by activating the turbulent non-Newtonian feature of
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Figure 3.4: Repeating unit of the lumped segment model

ANSYS® Fluent (i.e. turb-non-newtonian) [36].

In defining the boundary conditions of the fluid domains, the inlets of both the

pipe and the annulus were given velocity inlet conditions while the outlets were set

as pressure outlets. Also, the structural body’s inner and outer surfaces were set as

stationary walls with no-slip shear conditions. The surfaces that touch the structural

body’s inner and outer surfaces were defined as dynamic mesh zones.

After setting up the structural and fluid simulations, System Coupling is used

to communicate between the two domains. Setting up the data transfer between

the domains is the key step of this section. Here a two-way data transfer should be

implemented: between the annular flow and the outer surface of the structural body,

and between the pipe flow and the inner surface of the structural body. Further, the

time step must be consistent between the structural and fluid simulations.
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Finally, the setup applications of TS and Fluent are connected to the setup of

System Coupling to synchronize the individual solvers, manage data transfers between

solvers, and monitor the overall convergence of the FSI solution.

In summary, a fluid-solid interface on surfaces is defined in ANSYS® Structural,

and it identifies surfaces in the structural model that accept fluid forces from the CFD

analysis. Meanwhile, in ANSYS® Fluent, a dynamic mesh zone is defined while it

identifies surfaces in the CFD model that accept the motion from the calculated struc-

tural deformations. The System Coupling also plays a major role by synchronizing

the individual solvers while managing data transfers between solvers and monitoring

the FSI solution’s overall convergence.

3.2.1.3 Analysis of data

The most important application of Design Expert software is the statistical analysis of

the experimental results. The quality of the model is evaluated based on the analysis

of variance (ANOVA) including R2 and lack of fit. These results are presented in

Table 3.3. Figure 3.5 illustrates the scatter plot of the predicted values versus the

actual values. According to the analysis results, R2 was 0.97 while the Predicted R2

is 0.80. The latter is in reasonable agreement with the Adjusted R2 of 0.94 as their

difference is less than 0.2. The Adequate Precision Ratio measures the signal-to-noise

ratio. It was estimated as 20.5, where a ratio greater than 4 is desirable. In other

words, it indicates an adequate signal. The backward elimination method was used in

refining the model terms to get a better approximation. Equation 3.6 and Figure 3.6

represent the mathematical model generated through the statistical analysis using

Design-Expert�.
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Figure 3.5: ζ- Predicted vs. actual

ζ = +12.54627− 0.693954 dmin − 0.084 τ + 4.24983 κ− 0.001892 ρ− 2.20353v

+ 0.042799 dmin τ + 0.184160 dmin κ+ 0.000276 dmin ρ+ 0.157667 dmin v

− 0.115017 τ κ− 0.357980 τ v + 0.000089 κ ρ− 3.34267 κ v + 0.001447

+ ρ v + 0.006495 d2min + 0.109795 τ 2 − 0.007902 dmin τ κ

+ 0.014765 dmin τ v − 0.000118 dmin κ ρ− 0.083163 dmin κ v

− 0.000127 dmin ρ v + 0.002956 κ ρ v − 0.005616 dmin τ 2

(3.6)
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Figure 3.6: Damping ratio model

3.2.2 Axial drag model

The DoE with a statistical analysis approach used to develop the lateral damping

model was utilized to establish the axial drag force model. The same set of FSI sim-

ulations was utilized to extract the axial drag force using a Probe tool in ANSYS®

Transient Structural. Figure 3.7 illustrates the scatter plot of the predicted values

versus the actual values. The mathematical model generated through the statistical

analysis using Design-Expert� is presented as Equation 3.7 and Figure 3.8. As de-

picted in Figure 3.8, the increasing τ has a considerably high effect on the axial drag.

In refining the model terms, the Backward Elimination Method was followed to get

the best-fit statistics. The R2 was 0.99 while the Predicted R2 of 0.97 was in rea-

sonable agreement with the Adjusted R2 of 0.99. The Adequate Precision Ratio was

estimated as 67 which indicates an adequate signal. Equation 3.7 and Figure 3.8
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represent the axial drag model.

Table 3.3: ANOVA for reduced cubic model

Source Sum of Squares df Mean Square F-value p-value
Model 882.42 23 38.37 39.83 <0.0001
A-d min 1.137E-13 1 1.137E-13 1.180E-13 1.0000
B-Tau 142.48 1 142.48 147.92 <0.0001
C-K 225.37 1 225.37 233.98 <0.0001
D-Rho 41.36 1 41.36 42.94 <0.0001
E-v 56.25 1 56.25 58.40 <0.0001
AB 16.07 1 16.07 16.69 0.0004
AC 50.65 1 50.65 52.59 <0.0001
AD 3.28 1 3.28 3.41 0.0764
AE 2.36 1 2.36 2.45 0.1294
BC 64.79 1 64.79 67.27 <0.0001
BE 0.6626 1 0.6626 0.6880 0.4144
CD 0.0250 1 0.0250 0.0260 0.8732
CE 17.73 1 17.73 18.41 0.0002
DE 6.25 1 6.25 6.49 0.0171
A² 7.76 1 7.76 8.05 0.0087
B² 0.2610 1 0.2610 0.2709 0.6071
ABC 11.24 1 11.24 11.67 0.0021
ABE 19.23 1 19.23 19.96 0.0001
ACD 14.05 1 14.05 14.59 0.0007
ACE 24.40 1 24.40 25.33 <0.0001
ADE 7.96 1 7.96 8.27 0.0079
CDE 19.26 1 19.26 20.00 0.0001
AB² 8.35 1 8.35 8.67 0.0067
Residual 25.04 26 0.9632
Lack of Fit 25.04 19 1.32
Pure Error 0.0000 7 0.0000
Cor Total 907.46 49
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Figure 3.7: Drag force: predicted vs. actual√
1

Faxial + 6
= 0.458515− 0.008247 dmin − 0.038522 τ − 0.082539 κ+ 1.1× 10−6 ρ

− 0.091565 v + 0.002308 dmin τ − 0.000031 dmin κ− 2.1× 10−7 dmin ρ

+ 0.009765 dmin v + 0.006870 τ κ+ 1.01× 10−6 τ ρ− 0.000888 τ v

+ 1.4× 10−6 κ ρ− 0.035233 κ v − 0.000028 ρ v + 0.000201 d2min

+ 0.000949 τ 2 + 0.020037 v2 + 1.1342110−7 dmin τ ρ+ 0.000058 dmin τ v

− 0.000650 dmin κ v − 1.6× 10−6 τ κ ρ+ 0.001970 τ κ v + 0.000012 κ ρ v

− 0.000059 d2min τ − 0.000219 d2min v

(3.7)
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Figure 3.8: Axial drag model

3.2.3 Validation of the FSI simulation

The main goal of this experiment is to improve the confidence of the FSI simulation,

which is used to develop the lateral damping and axial drag models. The simulation

was scaled down to match the laboratory scale model, and the experimental results

were compared with the simulation results.

3.2.3.1 Laboratory apparatus and experiment procedure

The apparatus used in the experimental work was first designed in SolidWorks® as

shown in Figure 3.9 while the fabricated model is shown in Figure 3.10. Fluid driven

by a centrifugal pump enters the inner vertical pipe through the inlet (A) at the top,

fills the chamber at the bottom (C) and rises through the annulus. The inner pipe
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can be excited using a permanent magnet placed at the steel fitting (F ), which re-

sembles the drill string threaded connection. The oscillation is captured using a laser

displacement sensor (i.e. Acuity� AR 200) and the data acquisition system.

The experiment was performed for Newtonian and non-Newtonian fluids separately.
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Figure 3.9: The 3D CAD model of the apparatus

For the Newtonian fluid case, the apparatus was directly connected to the labora-

tory water supply, which can drive water with a maximum rate of 3.7 × 10−4 m3/s.

The method presented in 3.1.1.4 was used to estimate the damping ratios while the
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Figure 3.10: Laboratory scale apparatus

respective steady flow velocities were determined using the flow meter reading. A

sample reading taken using Acuity AR 200 is shown in Figure 3.11. The results are

illustrated in Figure 3.12 along with the simulation results.

The non-Newtonian fluid was made using 30 g of Xanthan Gum dissolved in 100

litres of water. The rheological properties of the fluid were determined using the

OFITE model 800 viscometer shown in Figure 3.10. The shear stress versus shear

rate curve determined using the viscometer is illustrated in Figure 3.13. A centrifugal
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Figure 3.11: Sample experimental data

pump of 372 W was used to drive the fluid through the apparatus. Damping mea-

surements were taken following the same procedure used in the Newtonian fluid case.

The experimental and simulation results are presented in Figure 3.14.

The experimental and the simulation results are in reasonable agreement for both

Newtonian and non-Newtonian fluids as shown in Figures 3.12 and 3.14. The exper-

imental curves in both cases at lower speeds show a reduction of the damping ratio

with increasing flow speed which is also reflected in the simulation result. However,

the experimental results corresponding to the second half of the speed range indi-

cate an increase of the damping ratio, which is not evident in the simulation results.

Nevertheless, the simulation can capture the overall reduction of the damping ratio

with increasing fluid speed. The technical difficulties faced in FSI simulations and

techniques used to overcome them are discussed in Section 3.4.

3.3 Case study and results

The damping and drag models were implemented in a 3D multi-segment bond graph.

The damping ratio (ζ) changes continuously depending on the respective values of
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Figure 3.12: Damping ratio change in Newtonian fluid

κ, τ , v, dmin, and ρ. The lateral damping model presented in Equation 3.6 was

implemented in the bond graph model as a modified ‘R’ element. The drag force

model presented in Equation 3.7 and the upthrust were also implemented in the

effort source (Se) as a modification to the weight.

The bond graph consists of 22 of the repeating units depicted in Figure 3.4. The drill

string is fixed at both ends through stiff lateral displacement springs with damping

in parallel to remove high frequency transients. An expanded bond graph element is

illustrated in Figure 3.15 while Figure 3.16 illustrates the bond graph construction

at the interface of two elements. The function of each sub-model is described in

the figures, while the simulation files can be accessed through the author’s online
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Figure 3.13: Viscometer test results of the non-Newtonian fluid

repository [37]. The three different compliances (i.e. axial, bending, and shear) and

the points A, B, and C of a given BG element are illustrated in Figure 3.17. Further

information on the development of the bond graph is available in [9] and [6].

The bond graph has a mass imbalance created at the 11th element while an impulse

is given at the 10th element. The drill string is rotated with a modified effort source

with a PID controller to generate the top drive speed at the first element. Therefore,

this bond graph represents a rotating drill string connected to the top drive, which

interacts with the wellbore wall. This helps to identify the effect of the damping

constant on the bending movement fluctuation.

The interaction with the well bore is detected using a modified capacitive element

which resembles stiff springs come in to contact with the BG element when it reaches

the well bore. The schematic of a contact spring with a stiffness of kw is illustrated

in Figure 3.18. The stiff spring with discontinuous constitutive laws provide no effort

until the eccentricity e exceeds the radial clearance between the well bore and the

drill pipe. Further details and relevant equations are presented in [9].

The minimum distance dmin is a real-time measurement calculated using the lateral
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Figure 3.14: Damping ratio change in non-Newtonian fluid

displacement of the respective element. As illustrated in Figure 3.3, the damper

(‘R’ element) was connected at the center of the bond graph element. The lateral

displacement is determined by integrating the midpoint velocity. Here the damping

constant is the multiplication of the critical damping constant (Cc) and the damping

ratio determined by the model. The critical damping constant (Cc) = 2
√
km where

k is the bending stiffness and m is the element’s mass. A separate bond graph was

developed with constant damping and drag forces. A comparison of the bending

moment and axial drag force fluctuations of the models is provided in Figure 3.19

and Figure 3.20 respectively.
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Figure 3.15: 3D bond graph element

3.3.1 Buoyant force model

To complete the evaluation of forces due to drilling fluid, the upthrust or the buoyant

force is determined using the fundamental equation of Archimedes’ principle (i.e.

U=Vρg) where V is the immersed volume of the element, ρ is the density of the

drilling fluid, and g is the gravitational acceleration. If the drill string element is fully

immersed, V will be constant. It states that the buoyant force is equal to the weight

of the displaced fluid by a fully or partially immersed body. Therefore, the change
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in density of the drilling fluid is the only variable as the change in gravity g with the

depth is insignificant with reference to the other forces.

3.4 Discussion

Although there are numerous examples of drill string models in the literature, a study

regarding the effect of fluctuating fluid forces on drill strings is rare. Most of the avail-

able models do not consider all the contributing variables to the lateral damping and

axial drag effects. This study develops and implements a damping model and an axial

drag model, considering drilling fluid rheology and the location of the drill string in

the wellbore.

Lumped segment models in general consist of rigid bodies connected together with
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Figure 3.17: Bond graph element compliances

springs and dampers. The FSI simulation used in this study consists of an elastic

beam with fixed-fixed end conditions which is still a fair approximation for the follow-

ing reasons. The lumped segment model element is 10 m in length which resembles an

API 5D drill pipe connection beneath two half pipe segments. It is the repeating unit

of the lumped segment model shown in Figure 3.4. The wellbore radial clearance is

36 mm in the case study. Therefore, the rotation of the segment about a lateral axis

is approximately 1◦ and can be neglected. Also, the angle is less than 10◦ for most

of the well bore-drill pipe combinations. Furthermore, lateral damping occurs due to

the sweeping action of the drill pipe through the drilling fluid. Being a low amplitude

vibration, the amount of fluid with which the string interacts in both Figures 3.3.a

and 3.3.b are almost equal. In other words, the sum of distance travelled against the

fluid friction by each of the small elements in the respective segment in Figures 3.3.a

and 3.3.b are approximately equal which leads to a similar energy dissipation given

that ∆x1 is greater than ∆x2.

The drilling fluid is assumed to behave according to the Hershel-Bulkley model in
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the FSI simulations used. The viscometer test results indicate that the fluid used in

the physical experiment also follows the same model as shown in Figure 3.13. Nev-

ertheless, the presence of the rock cuttings is considered neither in the simulation

nor in the physical experiment, and the drilling fluid is considered a continuum. The

relationship between the cutting size distribution and the damping ratio is an open

research topic.

The numerical simulation has some limitations when a softer material is used in the

structural domain. When the structure material is softer than steel and the density is

comparatively low, the added mass effect on the structure’s vibration makes the solver

unstable, leading to the termination of the simulation. This is a known limitation of

the CFD code [38, 39] as of the time of this publication. Note that the link of the

citations [38, 39] can be accessed through ANSYS® help only. Therefore, the struc-

tural material was selected as steel, and its elastic modulus was manually decreased

gradually to find the critical stiffness of the material, which is case-specific, that can

run a stable simulation for the current model. It was found that the critical stiffness

is 7.5 GPa, nearly 7.5 times that of the physical model made out of Polyethylene

(PE). An approximate damping ratio can then be determined from the FSI simula-
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tion using logarithmic decrement. As the lateral damping is mainly governed by the

work done against the fluid friction, and given that the geometry of the stiffer pipe is

identical to that of the actual, the damping ratio was assumed to be approximately

equal for lower amplitude vibrations. To improve the confidence of this assumption,

the damping ratio of a steel drill pipe connection with a stiffness of 200 GPa was

compared against a steel drill pipe with a modified stiffness of 1500 GPa. The stiffer

pipe showed a 5-10 % reduction in damping ratio compared to the other. This can

be due to the shear-thinning nature of the drilling fluid and the excessive vibration

frequency of the stiffened structure.

As a solution for this technical limitation of FSI simulations with softer materials,

the use of the Quasi-Newton Stabilization Algorithm and Solution Stabilization op-

tion is recommended [38, 39]. Instead of using ANSYS® Workbench for the coupling

analysis, the command prompt was used to integrate Transient Structural, Fluent,

and System Coupling applications where the Quasi-Newton Stabilization Algorithm

is accessible. Alternatively, a manual tuning using the Solution Stabilization option

was done. Both attempts were not successful in ANSYS® 2021 R2, and ANSYS®

2022.

Although there is not much effect on the vibration amplitude decay, the elastic mod-

ulus increase causes mismatches in the damping ratio and natural frequencies. When

the vibration amplitude is in the 0 to 1 mm range, the effect of the boundary layer

adjacent to the pipe’s outer surface becomes considerable compared to higher ampli-

tude cases. It can cause differences between the experimental and simulation results.

On the other hand, the stiffer structure shows a higher natural frequency as expected.

Therefore, the natural frequency of the simulation results shows a higher value com-

pared to that of the experimental results. Further, as shown in Figure 3.21, the

natural frequency becomes stable after 0.075 ms−1. This transition occurs when the
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Figure 3.21: Natural frequency vs. fluid velocity

annular flow reaches the critical Reynold’s number that can be verified based on the

findings of [40]. According to [40], the critical Reynold’s number for the radius ratio

can be approximately estimated as 2350, referring to Figure 3.22. On the other hand,

Reynold’s number for the flow velocity of 0.075 ms−1, where the transition occurs,

can be calculated using Equation 3.8. It was found that both Reynold’s numbers

are almost equal. This verifies that the variation of natural frequency is due to the

transition from laminar to turbulent flow.

Re =
2Uρ(R1 −R2)

µ
(3.8)

Figure 3.23 depicts that the variation of fluid velocity inside the annular space with

reducing dmin or increasing eccentricity e. The maximum velocity in the annular re-

gion varies with eccentricity, creating changes in the viscous and inertial fluid forces
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[40]

acting on the drill pipe. This verifies the importance of incorporating dmin into the

damping and drag models. As shown in Figure 3.19, models with fixed damping con-

stants underestimate the bending moment fluctuation at lower speeds. This becomes

critical when the drill string is under stick-slip vibration because the speed goes to the

lower extreme periodically. On the other hand, at speeds around 50 rpm, the bond

graph model with a fixed damping constant showed greater well bore interaction than

the bond graph model with variable damping. This indicates that the implemented

damping model captures the effect of the lateral displacement and the drilling fluid

properties and brings it into the drill string vibration response. This shows the poten-

tial to improve the prediction accuracy of stress fluctuations and wellbore interaction

for a given drill pipe, if a continuously variable damping model is used. It will benefit

applications such as fatigue life prognosis of drill strings.
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Figure 3.23: Velocity distribution with the changing eccentricity
(Figures illustrate the change in maximum velocity with increasing eccentricity)
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Also, this model can estimate the apparent fluctuating weight of the drill string

due to the drilling fluid flow. This facilitates estimating fluctuating WOB of a vertical

drill string. For deviated well applications, a friction model can be implemented to

bring the contact forces’ contribution into the equation.

In Figure 3.19.a, it can be seen that the amplitude of vibration gradually decays

and approaches a fixed value. This is because the drill string is pin joined at the

ends, and a mass imbalance comes into action with the implementation of the angular

velocity. The mass imbalance pulls the drill string laterally, creating a consistent bend

on the entire drill string. Also, the periodic vibration is due to the external impulse

given at the 10th element. Although the same conditions are provided, the second

bond graph with the damping model shows a different bending moment fluctuation

with a lower decay.

3.5 Conclusions

A detailed methodology is presented to develop models to determine the instanta-

neous damping constant and the axial drag force for a given oilwell drill string. The

damping models were developed for a drill string with API 5D drill pipes using a se-

ries of FSI simulations followed by statistical analysis. The models were implemented

in a lumped segment multibody model to demonstrate the importance of treating

fluid damping effects with greater complexity than is typical in the literature. Both

bending moment fluctuation and the overall axial force is affected by the properties

and velocity of the drilling fluid and the instantaneous location of the drill string

in the well bore. It was observed that the bending moment fluctuation is underes-

timated at lower rotational speeds, and the well bore interaction is exaggerated at

higher rotational speeds. Therefore, fixed values for the damping constant and axial
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drag may underestimate important predictions such as remaining useful fatigue life

and WOB. Damping and axial drag models developed using the methods of this

paper are recommended in drill string lumped-segment simulation models, taking in

to account the drilling fluid rheology, instantaneous location of the drill string in the

wellbore, drill pipe geometry, and the drilling fluid velocity.

3.6 Further work

The numerical values in damping models presented in this study apply only to the

geometry of an API 5D drill pipe. Further studies can be made to develop a technique

to adopt the current models to other drill pipe geometries without requiring a total

re-derivation of the model. This can be achieved by performing a series of simulations

for different diameters. The outcome may be a chart that can determine a modifying

factor for the current models, eliminating or reducing the FSI simulations, which are

highly time-intensive.

The shape of the damping curve for increasing velocity indicates a characteristic

shape for both Newtonian and non-Newtonian fluids as shown in Figures 3.21 and

3.14 respectively, which can be further explored. Also, investigating the effect of rock

cuttings with different size distributions on the drill string damping will be a valuable

contribution. Further, the damping and the axial drag models can be implemented

in a directional well model to investigate the changes in vibration behaviours.
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Chapter 4

Fatigue Failure Prognosis of an Oil
Well Drill String Using a Lumped
Segment Bond Graph Model and
Finite Element Method

Abstract

A novel methodology for fatigue failure prognosis of oil well drill strings is introduced

which uses less computation power. A multibody dynamic BG model of a drill string

and a finite element model are employed to estimate the remaining cumulative fatigue

life of the drill string. The drill string with 2D lateral vibration and axial vibration is

modelled in the 20 sim� bond graph simulation environment with a body-fixed coor-

dinate system. Drill string collision with the wellbore caused by a rotating imbalance

is included in the BG model. Concurrently, a Computer-Aided Design model of the

drill string is developed using Ansys® Structural, and it is then used in finite element

Analysis to determine the bending, axial, and shear compliances of each BG segment.

The refined BG provides the bending moment history of the drill string back to the

finite element model to evaluate the remaining fatigue life.

keywords: Bond graph, cumulative fatigue, oil well drill strings, Finite Element

Method
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4.1 Introduction

4.1.1 The need for a fatigue failure prognosis technique

The urgent need for a fatigue failure prognosis technique has been present in the

oil and gas drilling industry for several decades. As mentioned in [1], 76 drill-string

failures from 1987 to 1990 on three continents have been investigated. As illustrated

in Figure 4.1, fatigue was estimated as the primary cause of 65 % of these failures and

had a significant impact on 12% of them. The other factors, such as excessive tension

and torque, and low toughness of the material, were secondary causes of failures in

comparison with fatigue. Supporting the above statistics, [2] has mentioned that more

than 50% of the drill string failures have occurred due to fatigue failure of the drill

pipes. According to [3], during the same period, drill-string failures have occurred in

14% of all drill-rig systems and cost approximately US$ 100k each time the system
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Figure 4.1: Drill string failures reported from 1987 to 1990 [1]

experienced a failure. Although the mechanisms of failures are well known and can be

explained, the failure of drill strings still occurs. The prediction of drill pipe failure

has become difficult because of the complex loading, severe vibrations, and the erosive

and corrosive behaviour of the drilling mud [4]. Therefore, the risk associated with

drill string failure remains high in terms of probability of occurrence and the cost

involved. This has motivated fatigue failure prognosis techniques of drill-strings.

4.1.2 The reasons for fatigue failure of drill strings

Drill-strings used in oil drilling are subjected to complicated stresses due to excess

vibration caused by bit bounce, stick-slip, and lateral forward or backward whirl with

wellbore contact [5]. These complex stresses make the drillstring vulnerable to failure

due to cumulative fatigue. As described by [4], there are seven identified reasons

for the initiation and propagation of fatigue cracks: surface irregularities; removal or

flaking of drill pipe internal coating; drill string vibrations; frictional heating; stress

corrosion cracking; sulfide stress cracking; and material defects during machining

and heat treatment. Threaded connections in drill pipes are highly prone to stress

concentration, which leads to fatigue crack initiation. This fact is highlighted in

several studies including [6], [7], and [8]. Therefore, it is a must to consider the
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behaviour of threaded connections in fatigue failure prognosis.

4.1.3 The requirement of a hybrid model for fatigue progno-

sis

Fatigue failure prognosis can be performed following a numerical approach, such as

FEA. Nevertheless, there can be constraints because of excessive simulation times [5].

On the other hand, a lower order BG model of a drill string may be able to predict

the vibration behaviour of a drill string, but the localized stress and strain need to

be calculated theoretically in post processing. The accurate theoretical calculation of

localized stress becomes almost impossible when the geometries become complicated

due to the presence of threaded connections and variable wall thicknesses. This can

be handled using an finite element model, by employing it in virtual experiments to

determine the relevant material behaviours. Therefore, a combined approach of finite

element model and BG model is proposed to achieve this goal.

4.1.3.1 Fatigue estimation techniques

Fatigue life estimation of engineering components is an area with a number of open

research topics. According to [9], there are three main methods in fatigue analysis

namely, strain-life, stress-life, and fracture mechanics.

The stress-life approach is ideal for high cycle fatigue damage estimation, which

involves more than 105 cycles. Therefore, it is suitable to estimate the fatigue damage

of drill pipes. This is performed based on empirical S-N curves and then modified by

a variety of factors. Although the crack initiation and propagation are not separately

identified, the method is suitable to determine the overall fatigue life of an engineering

component. Hence, the stress-life method is used in this study.
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Strain is directly measurable using strain gauges and has been identified as an ex-

cellent quantity for characterizing low cycle fatigue. This employs strain-life relation

equations instead of S-N curves. Crack initiation and the critical plane of facture

are important factors in this approach. Although the strain-life approach has several

other advantages over the stress-life approach, low cycle fatigue estimation of mate-

rials which undergo considerable amount of plastic deformation is the most suitable

application area of this technique [9].

In the fracture mechanics approach, it is assumed that a flaw of a specific maxi-

mum size can be present anywhere in the component. It can be inside the material

or on the surface. The propagation of the crack is determined based on the stress

fluctuations acting on the body. The strength of this method is that the user can

make decisions on the inspection intervals and scheduled maintenances. The maxi-

mum possible flaw size estimation is necessary which requires a non-destructive test

(NDT) procedure [9].

According to the classification given in [10] the three main categories of fatigue

problems are: completely reversing simple loads; fluctuating simple loads; and combi-

nations of loading modes. Completely reversed single stress situations can be handled

with the S-N diagrams, relating the alternating stress to life. Only one type of load-

ing is allowed here while the midrange stress must be zero. In the case of fluctuating

simple loads, general fluctuating loads can be incorporated using a criterion to relate

midrange (σm) and alternating stresses (σa). Criteria such as modified Goodman,

Gerber, ASME-elliptic, or Soderberg can be employed while only one type of loading

is allowed at a time. When there is a combination of loading modes such as com-

bined bending, torsion, and axial it is required to determine the equivalent von Mises

stresses for midrange stress (i.e. σ′
m) and alternating stress (i.e. σ′

a). Equations 4.1

and 4.2 can be incorporated to determine these parameters and a suitable fatigue
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criterion can be employed to complete the fatigue analysis.

σ′
m = {[KfB σmB +KfA σmA]

2 + 3[KfsT τmT ]
2}1/2 (4.1)

σ′
a = {[KfB σaB +KfA σaA/0.85]

2 + 3[KfsT τaT ]
2}1/2 (4.2)

where subscript A, B, and C stand for axial, bending and torsion while Kf and Kfs

stand for normal and shear modification factors respectively. The Rainflow counting

technique and S-N curve can be employed to estimate the number of cycles and

determine the fatigue damage respectively [11].

In summary, fatigue life prognosis involves two stages: 1.) determination of stress

history undergone by a given structure, and 2.) fatigue damage calculation. Stress

history can be efficiently and effectively determined using a bond graph simulation

of the vibrating structure. The stress history can then be analyzed to determine the

fatigue damage by employing a software code developed based on the first principles

or a finite element model.

4.2 Methodology

The overview of the entire study is illustrated in Figure 4.2. Initially, two simulation

models, bond graph (BG) and Finite Element, are employed. Detailed explanations

on the two models are presented in Sections 4.2.1 and 4.2.2. The finite element model,

which simulates a drill string repeating unit, is used to determine the axial, shear,

and bending compliances. This was performed based on virtual experiments. Those

compliance values are then used to refine the BG as the first step. The BG model

was validated using established theoretical calculations and using static deflection

and dynamic response analysis. The BG model generates a bending moment history
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Figure 4.2: Overview of the approach

of the entire drill string of 100 m. This bending moment history is then fed back

to the finite element model as history data to be used in Fatigue Tool of Ansys®

Structural for fatigue life prognosis. The estimated fatigue life through simulation

was verified using standard stress-life analytical calculations through the development

of a Matlab®.

4.2.1 The finite element model

The FEA was done for the repeating unit of the drill string shown in Figure 4.3.a.

The repeating unit is developed based on the schematic diagram of the drill string

illustrated in Figure 4.4. It is an API 5D standard drill pipe with an outer diameter

of 84 mm. The material is E75 Carbon Steel while the type of end finish is ‘internal

and external upset’. The middle part of the repeating unit consists of the threaded
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box and pin with two equal pipe segments connected to it. The element size was

decided after conducting a grid dependency test and the minimum size of the element

was determined as 5 × 10−3 m considering the processing speed and convergence of

the results.

The finite element model was used to fulfill two main requirements: firstly, to

determine the compliance values and secondly to determine the remaining fatigue life

based on the bending moment history as given by the BG model.

In determining the axial compliance, the element was cantilevered and subjected to

a 1 mm axial displacement (ea). The reaction force (Fa) at the fixed end was measured

using the probe tool. The stiffness (Ka) is the Fa per unit ea, and the axial compliance

(Ca) is the reciprocal of Ka. Following a similar approach, the shear compliance

(Cs) was determined for a pipe segment and the threaded section separately. Short

segments were taken to avoid bending effects while applying the shear force. The

overall shear compliance was determined considering that the assembly is equivalent to

springs in series. Determination of the bending compliance (Cb) is not straightforward

in comparison with the previous two. The cantilevered repeating unit was given a

known bending moment, and the rotation of the cross-sections close to the free end

was considered as illustrated in Figure 4.5.

The displacements of the points were drawn with high precision using AutoCAD®

software and the angles of plane rotations were measured.

If the rotation of two cross-sections are ϕ(x) and ϕ(x + ∆x), according to [13],

the relationship between the applied bending moment (M) and the difference of the

two rotations of the planes can be presented by Equation 4.3. This is illustrated in

Figure 4.6. Therefore, the bending compliance (∆x/EI) is the required M for a unit

change in ϕ(x+∆x)− ϕ(x). The rotations of the cross-sections were determined by

measuring the displacements of specific nodes, and the bending moment was probed
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Figure 4.3: Discretization of the repeating unit (not to scale)

Figure 4.4: Schematic diagram of the drill pipe [12]

at the fixed end. The results of each compliance are presented in Table 4.1.

M =
EI

∆x
[ϕ(x+∆x)− ϕ(x)] (4.3)

The compliance values and the remaining fatigue life determined through the finite

element model were compared with the theoretical calculations.

4.2.2 The bond graph model

The bond graph model is provided with pinned-pinned boundary condition by provid-

ing stiff springs (i.e.108 Nm−1) at both the ends along with high damping coefficients
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(i.e.104 Nm−1). A zero-flow source is provided to keep the velocity at both ends zero.

This is illustrated in Figure 4.7. Only the y velocity component is shown for clarity.

Figure 4.5: Bending stiffness determination experiment

Figure 4.6: Plane rotation [13]

As shown in Figure 4.3.b, the repeating unit of the drill string is discretized into

three elements to be used in the BG. The element at the middle (Q) represents the

threaded connection region with the varying wall thickness while the rest of the two
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(P and C) represent two similar pipe segments welded to the threaded connection.

Other parameters used to implement the BG are tabulated in Table 4.1. Figure 4.8

illustrates the repeating unit of the ‘Drill Pipe’ indicated in Figure 4.7. There are

thirty similar units inside the submodel ‘Drill Pipe’. Nevertheless, the compliance

values are not equal in all the elements as some represent the threaded connection

while the others represent the pipe segments. As shown in Figure 4.8, the repeating

unit consists of the interface submodel and 2D element submodel. The function of the

interface block is matching the lower endpoint (B) velocity values of the nth element

to the top end (A) velocity values of the (n + 1)th element. In other words, the

body-fixed velocity of the nth element is converted to the velocity in the body-fixed

coordinate system of the (n+1)th element. The BG model of the Interface (n) block

in Figure 4.8 is presented in Figure 4.9. A detailed illustration of the ‘Element (n)’

submodel is given in 4.10. As shown, there are five terminals to that 2D model where

two of them are for the top end translational velocities, another two for the bottom

end translational velocities, and finally one is for angular velocity about the z body

fixed axis. A detailed explanation of this 2D element model can be found in [14].

As shown in Figure 4.8, the angular velocities of each element are integrated and

the difference of two integrals is taken at the summing junction. This provides the

required input to the interface model. Further, in Figure 4.8, there are shear and axial

compliances introduced at all the one junctions connected to the elements. Those

two types are connected to the one junctions which represent x and y components of

velocities, respectively. The model does not include frictional effects generated from

the wellbore drill string interaction. Nevertheless, the impact with the wellbore is

simulated with the use of nonlinear contact springs on each lumped segment.

In, Figure 4.8, the ‘well bore compliance’ is employed for this purpose. It is coded

such that the drill string experiences a force of, kcontact.δ, transverse to the drill string,
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Figure 4.7: Boundary conditions of the BG

when the displacement in the y direction is greater than or equal to the radius of the

well bore. This condition creates a positive interference δ. The force is set to be zero

in other instances.

The vibration excitation was given to the bond graph using a modulated source

of effort (MSe) with a sinusoidal signal input with an amplitude of 25 N and angular

velocity (ω) of 10.4 rad/s. The effort was given laterally, in the y direction, by

connecting it with a power bond to a one junction which connects a drill pipe element

and an interface of the bond graph. This effort is equivalent to a 25 N centrifugal

force acting in the drill string, which may be caused due to a mass imbalance or

buckling of drill pipes.
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Figure 4.8: Repeating unit of the BG
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Figure 4.9: BG model of the interface

4.2.3 Fatigue life estimation

Initially, fatigue life prognosis was performed using Ansys® Fatigue Tool, after sim-

plifying the problem into a ‘variable amplitude proportional loading’ case. The sim-

plification was possible as the point of interest in the drill string was close to the

midpoint. This is because the ‘mass imbalance’ was located at the centre of the drill

string. This region of the drill string has near zero tensile stress as no external axial

thrust was included in the simulation.

In the Ansys® fatigue simulation, the scale factor was set to 1 as the finite element

model was simulated for unit bending moment so the historical data need not be

normalized. The BG was simulated for a known time period (10 sec) and the bending

moment fluctuation was saved in a ‘.dat’ file. Then the finite element model was

simulated with a unit bending moment (i.e. 1 Nm) using Ansys® Static Structural.

The simulated bending moment fluctuation from BG model shown in Figure 4.13 was

then imported into the Ansys® Fatigue Tool to estimate the fatigue life. Figure 4.11
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Figure 4.10: BG model of the 2D element

shows the sample bending moment fluctuation history exported from the BG model.

The fatigue life was also estimated using the stress-life approach presented in [10]

for a pure bending moment situation for verification. This was coded using Matlab®

and can be expanded to analyze a case where torsional and axial loadings are also

considerable. The code takes the bending moment variation history from the BG

model and performs rain flow counting to determine the mean and the range of the

stress fluctuation as shown in Figure 4.12. Then it follows the standard calculation

while considering the endurance limit modifying factors such as surface condition,

size, load, and temperature. The same set of parameters and material data were used

in Ansys® Fatigue Tool to estimate the fatigue damage.
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Table 4.1: Specifications of the drill string segment used for simulation

Drill string parameters Value Unit
Pipe outer radius (rp) 4.4× 10−2 m
Pipe segment length (L) 4.3× 100 m
Threaded segment length (Lt) 7.6× 10−1 m
Pipe axial compliance (CA) 9.2× 10−9 mN−1

Threaded segment axial compliance (CAt) 6.8× 10−10 mN−1

Pipe element bending comp (CB) 3.8× 10−8 rad/Nm
Threaded segment bending compliance (CBt) 8.3× 10−9 rad/Nm
Pipe shear compliance (CS) 5.1× 10−8 mN−1

Threaded segment shear compliance (CSt) 6.7× 10−9 mN−1

Well-bore contact stiffness Kcontact 1.0× 10−6 Nm−1

The Matlab® code, BG, and finite element models are available in the author’s on-

line repository which can be accessed through the this link:(https://github.com/mihir

anpathmika) and in Appendix A. The fatigue strength factor (KF ) was taken as 0.9

and stress-life approach was employed with Gerber mean stress theory in both ap-

proaches. The analytical and Ansys® simulation results are closely in agreement and

are presented under results and discussion.

4.3 Results and discussion

A drill string fatigue failure prognosis technique makes an important contribution

in risk reduction in oil drilling because there is a considerable probability of fatigue

failure and high scale consequences are involved. Although there are numerical ap-

proaches such as FEM which can be implemented to perform this task, it requires

a high computational power which makes the process slower. The proposed hybrid

technique provides a solution for this issue by sharing the tasks among the two tech-

niques, namely BG and finite element models. The task sharing was done based on

their respective strengths hence the overall process becomes efficient. The remaining
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fatigue life of the critical point (maximum stress concentrated point) shown in Fig-

ure 4.13 was evaluated using both finite element model and theoretical calculations.

The finite element model result was 26.3 hours while the theoretical result was 21.6

hours. Here, Figure 4.13a illustrates the stress distribution in the threaded connection

when the repeating unit finite element model is cantilevered and loaded with a 1 N

force at the free end. Figure 4.13b represents the remaining fatigue life distribution

over the threaded connection. The highest stress concentrated area has the lowest

remaining fatigue life as expected.

4.3.1 Main challenges

One of the main challenges in developing the bond graph was the unavailability of

published data and the experimental setups to validate the BG model. As mentioned

under methodology, as a way around, the model was subjected to two virtual tests

to improve confidence. Firstly, the natural frequency was determined through the

frequency domain toolbox in 20 sim�. There, under model linearization, the effort on

one axial compliance element was set as the input and the state of another element

close to the midpoint of the beam was tested. The first, second, and third natural

frequencies were compared with the theoretical values using Equation 4.4 [15]. As

shown in Table 4.2, theoretical and simulation results were in good agreement for the

first natural frequency. This improves the confidence in the dynamic behaviour of the

drill string model.

ωn =
nπc

l
; n = 1, 2, 3, ... (4.4)

Secondly, the beam bond graph model was subjected to a three-point bending test
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Figure 4.11: Bending moment fluctuation history determined through BG model

Figure 4.12: Rain flow counting result for a sample time of 10s
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Table 4.2: First three natural frequencies of the drill string

n ωn Theoretical (Hz) ωn Simulation (Hz) Percentage deviation
1 170 169 0.6 %
2 340 289 15.0 %
3 510 404 20.8 %

and the lateral deflection at the mid-span was compared with the theoretical value.

Equation 4.5 was used for the analytical calculations. In Equation 4.5, P is the

applied load at the midspan; L is the length of the beam; E is the elastic modulus of

the material; and I is the second moment of area of the cross-section. The simulation

results showed less than 1% deviation from the theoretical value helping to improve

the confidence on the static behaviour of the BG model.

δmax =
PL3

48EI
(4.5)

The experimental validation of the finite element model is quite challenging as

the area of interest is the threaded connection. Therefore, the use of strain gauges is

not practical. As mentioned in [10], in a threaded connection, the first three threads

take 75% of the total axial load. This was clearly evident by observing the fatigue

damage in the first three threads in a separate finite element model which is axially

loaded. This is a good indication of the accuracy of the model. Further, the mesh

was refined to give a steady set of solutions, improving confidence in the accuracy.

4.3.2 Limitations and potential applications of the BG model

The bond graph model is designed to capture the bending, axial and shear deforma-

tions only. It needs to be further developed to simulate the torsional deformations of

the drill string. According to [5], this is an essential feature for a drill string simula-

tion and will be addressed in future studies. Further, the frictional effects should be

96



(a)

(b)

Figure 4.13: Critical point of the threaded connection
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incorporated to get a deep insight of the behaviour of the drill string while in opera-

tion. A proper friction model can be incorporated to achieve this. In addition to that,

a suitable bit-rock interaction model is to be introduced to simulate the interaction

between the drill bit with the rock being drilled. This BG model can be adopted to

predict the dynamic behaviour due to lateral and axial vibrations. Nevertheless, it

is not recommended to use it when the torsional vibration induced vibrations, such

as stick-slip, are dominant. Further, the BG model can be adopted in different ap-

plications which can be approximated to 2D plane deformation of beams such as leaf

springs of vehicles.

4.3.3 Potential improvements in fatigue calculation technique

Fatigue calculation was initially done with Ansys® Fatigue Tool and then compared

with the theoretical calculation for a simplified variable amplitude proportional load-

ing case. There are a number of limitations involved with the methods used which

can be further improved. The drill string is subjected to a combination of bending,

axial, and torsion stresses. As the BG used in the current study is two dimensional,

the torsion is not considered because the main focus in this study is to develop the

overall methodology. Here, the point of interest is a threaded connection closer to the

center (i.e. the 15th BG element) of the drill string. It can be seen in the BG that

the drill string is in tension towards the top while the lower part is in compression as

expected. The element 15 is in tension of 100 N, which creates normal stress of 22 Pa.

Therefore, in comparison with the bending stress, this normal stress can be neglected.

With this simplification, the problem can be approximated to a proportional, variable

amplitude scenario, which can be handled with Ansys® Fatigue Tool. This allows

comparing the two results from the theoretical calculation using Matlab® code and
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the Ansys® Fatigue Tool.

As a further development, the theoretical calculation can be generalized as follows

to apply in combined loading applications. The bending moment, axial force and

torsional fluctuation matrices of a given element can be extracted from the 20 sim�

simulation. Then it can be normalized and multiplied by the maximum direct and

shear stresses determined by the finite element model static analysis. Here it is

assumed that the stress fluctuation is linearly related to the fluctuation of each load

when their individual effect is considered. Knowing the direct and shear stresses in

each direction, the bending induced ‘signed von Mises stress’ fluctuation matrix can

be calculated. Then the ‘rainflow’ function in the Matlab® signal processing toolbox

can be used to perform the rain flow counting to determine the equivalent range (σ′
a)

and equivalent mean (σ′
m). Finally, the Palgram-Miner rule can be implemented to

determine the damage percentage and the remaining lifetime (prognosis) of the drill

string.

4.4 Conclusion

A multibody dynamic bond graph model of a drill string and a finite element model

were employed to estimate the remaining cumulative fatigue life of a drill string. finite

element model was incorporated to refine the BG model compliance values in order to

increase the accuracy of the BG model. The updated BG model was used to extract

the dynamics of the drill string. The dynamic response of the drill string was then

converted to stress fluctuations and used in fatigue analysis using both analytical and

finite element models. The remaining useful life was prognosticated as 26.3 hours

by the FEM fatigue tool. In general, the proposed bond graph-finite element model

hybrid approach can be effectively used in fatigue failure prognosis of drill strings
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while FEA can be effectively used to parameterize the BG simulations to increase

precision.

4.5 Further work

The BG model developed in this study is a 2D model hence only two of the six main

bottom hole assembly (BHA) dynamic motions can be simulated. Simulation of the

rest of the types of motions including forward and backward whirl, and torsion can

be achieved by developing a 3D BG model. The procedure followed and proposed for

the combined loading in the current study can be used in determining the remaining

fatigue life. Further to that, the model is to be experimentally validated. As an

alternative, a finite element transient model of a complete drill string can be developed

and compared with the performance of the hybrid model proposed in the current

study. On the other hand, the fatigue analysis can be broadened to analyze the

fatigue damage due to a multiaxial, non-proportional, and variable amplitude loading

condition to make it more accurate in fatigue failure prognosis.
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Chapter 5

Fatigue Life Prognosis of an Oil
Well Drill String Using Cascaded
Dynamic Models

Abstract

Early estimation of the fatigue life of an oil well drill string reduces the risk associated

with drill string fatigue failures. In this study, a low-order computationally efficient

bond graph model of a vertical well drill string and a component-level higher-order

finite element model of a drill pipe threaded connection are employed to predict the

fatigue damage of a given drill pipe. The bond graph is a 3D lumped segment model

developed using the Newton-Euler formulation and body fixed coordinates. It is pa-

rameterized using finite element modelling simulations. The stress history from the

top-level model is applied to the component-level model that contains details such

as threaded geometry. Then, a multi-axial, non-proportional, and variable amplitude

(MNV) fatigue estimation is performed using an open-source finite element analysis

code. The fatigue prognosis approach is then demonstrated in a drill string design

case study that optimizes the placement of vibration stabilizers in the wellbore to

avoid severe vibrations while minimizing fatigue damage. Optimal placement of sta-

bilizers predicts a 200% increase in fatigue life of the most vulnerable component with

103



reference to the worst-case scenario.

Key Words: Bond graph, Cumulative fatigue, Stabilizers, Finite Element Method
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5.1 Introduction

Drill string failures can occur due to several reasons, such as excessive vibrations and

load fluctuations, overloading, and elevated temperatures [1]. Vibrations and cyclic

loading cause fatigue failure, while overloading causes failures such as buckling, twist-

offs, parting, collapse and burst [2]. Excessive heat can be generated due to the severe

abrasion of the drill pipe with the well bore. This happens when trying to release a

stuck pipe or at severe doglegs. The elevated temperature can go beyond the critical

temperature, and an applied load can destroy the pipe. Also, sudden cooling can

take place due to the circulation of the drilling fluid and hence the pipe can become

brittle and less resistant to shock loads [1].

As illustrated in Figure 5.1, this study mainly focuses on the failure of drill strings

due to fatigue which is the most prevalent type of drill string failure [3]. There are
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Excessive abrasion 
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bore due to sticking 
or severe doglegs

Focused Area

Figure 5.1: Scope of drillstring failures considered in this paper

three different forms of fatigue failure: pure fatigue failure, fatigue scars, and corrosion

fatigue damage [3]. Pure fatigue failure is the area of interest in the current study.

Drill string vibration can take the form of stick-slip, bit bounce, bit whirl, bottom

hole assembly whirl, lateral shocks, torsional resonance, parametric resonance, bit

chatter, and modal coupling. They can be broadly categorized as lateral vibrations,

axial vibrations, and torsional vibrations. These vibrations can damage not only drill

pipes and collars but also the drill bit and the bottom hole assembly [4]. Drill pipes fail

due to fatigue, mainly at the threaded connection, due to high stress concentrations

and their fluctuations [5–8]. Therefore, the main focus of the study is directed toward

fatigue failures that occur at the threaded connections of the drill pipes caused due

to the lateral, axial, and torsional vibrations and their combinations. However, the

proposed approach can be applied to any type of fatigue threat, as long as a detailed
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model in the vicinity of the at-risk component can be generated.

Even though the probability of failure can be maintained at a lower rate, the

consequences of a failure are immense, leading to substantial financial and other

risks. In the study presented in [9], the cost of a drill string failure due to a washout

scenario is estimated as $300, 000 for a typical land rig. The estimated cost is based

on spread rates and fishing equipment costs. In addition to that, nonproductive

time, fishing services, cement plugs, sidetracks, bottom hole assembly lost in hole,

and tool replacements cost the operator millions of dollars to recover [10]. Therefore,

a potential drill string failure by any means carries a very high financial risk to the

entire project.

The method in this paper also addresses efficiency issues in simulating top-level

drill string models. Techniques such as the finite element method (FEM) come with

higher computational burden in simulating long-duration drillstring vibrations with

external contacts. An efficient alternative is bond graph implementation of a lumped

segment representation of the drill string. The bond graph approach allows fast com-

putation of the global drillstring dynamic responses, even with complex non-linear

forcing functions over long time windows. The responses from such a “top-level”

model can then be used as inputs to a high-order finite element model of individual

components. The top-level model efficiency can be improved by using averaged cross-

sectional properties, neglecting features such as pipe threads, etc. The finite element

model can incorporate these complex features over a short sample of the drillstring,

to 1) generate the averaged properties used in the top-level model, and 2) perform

component fatigue life estimation that considers the complex geometric stress con-

centrations and component interactions in the threaded connections. The proposed

methodology can also be applied to systems such as stepped shafts supported by

multiple bearings or, indeed, any vibrating system where design decisions can affect
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the fatigue life of individual, geometrically complex components.

Section 5.2 reviews the literature on fatigue life prognosis frameworks, drillstring

vibration modelling and mitigation. Section 5.3 overviews the methodology followed

by Section 5.4 with more specific details on a case study. Section 5.5 provides results,

and discussion and conclusions are in Sections 5.6 and 5.7.

5.2 Background and literature review

5.2.1 Fatigue life prognosis frameworks for vibrating struc-

tures

Fatigue life prognosis provides crucial information to increase the drill string’s reli-

ability and dependability. This section highlights the available fatigue life prognosis

frameworks for vibrating structures and their applicability to the current investiga-

tion.

A framework for monitoring the structural integrity of airplanes by assessing

the dynamic behaviour of crucial components is presented by [11] to optimize the

scheduling of an aircraft maintenance program. The mission load spectrum and

structural response were evaluated concurrently using a combination of accelerom-

eters and strain gauges, allowing the derivation of specific transference functions for

each monitored key component. The components were continuously monitored, and

the fatigue damage was calculated to evaluate the operation limit. For analysis,

the structural health monitoring platform PRODDIATM� Aero was utilized, which

employs time and frequency-based fatigue models to estimate the structural health

of aircraft. Communication limitations between sensors and the analytical platform

inhibit the implementation of similar technology in drill string fatigue life prognosis.
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A multi-scale, non-deterministic Digital Twin framework was developed and val-

idated for forecasting fatigue crack propagation from initiation to failure by [12].

A complicated metallic test specimen was exposed to uniaxial fatigue, and the grain

boundary level fracture propagations were modelled using finite element analysis. Fa-

tigue life prediction showed an absolute error of 9.5% relative to the physical sample.

A finite element analysis and data-driven regression combined approach is presented

by [13] to predict the fatigue crack propagation due to in-phase biaxial loading. The

model consisted of online and offline components where the online component pre-

dicted the crack propagation under constant loading while the offline component used

experimental data to assist the online model. The study was limited to bi-axial load-

ing conditions.

A generic approach for integrating in-situ diagnostics and prognostics in a non-

deterministic Digital Twin architecture is presented in [14]. This work used high-

fidelity finite element modelling, Markov chain Monte Carlo sampling, and periodic

measurements from strain sensors placed at nine distinct locations on a sample surface

to simulate the formation of non-planar cracks. This approach showed successful

prognostic capabilities for a laboratory setup and has the potential to be further

developed toward realistic in-situ applications. However, this method will only be

effective if regular and accurate stress measurements are feasible, which is not true

for drill string-related applications.

In addition to the frameworks mentioned above, numerous fatigue life prognosis

approaches are reported in the literature. A two-stage model is proposed by [13] to

determine fatigue life of steel structures using a local strain-life approach and lin-

ear elastic fracture mechanics. Additionally, [15] makes use of cutting-edge stochas-

tic modelling in conjunction with structural health monitoring data produced from

strain measurements to forecast the fatigue life online in composite materials that are
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subjected to fluctuating loads. In windmill structural fatigue estimation, the study

presented in [16] employed spectral approaches for determining structural responses

to stochastic loading and demonstrated that accurate approximations of the rain-

flow stress-range spectra are attainable based on the power spectral densities of the

structural responses.

A vast majority of engineering structures are subjected to multi-axial loading, and

hence it is essential to have an insight into the material’s response to such loading

conditions. A multi-axial, non-proportional, and variable amplitude (MNV) fatigue

analysis is essential in designing safe and reliable structures and optimising their

weight and cost [17, 18]. Multi-axial fatigue estimation can also be used to evalu-

ate the performance of existing structures and components, identify potential failure

modes, and develop effective maintenance and repair strategies. Although there are

fatigue life estimation frameworks available in the literature, as presented in this

section, there is a requirement for a more generalized framework for MNV loading

conditions to address structural fatigue failure-related problems.

5.2.1.1 Available tools and techniques for fatigue life estimation

While there are numerous open research topics in the area of fatigue life assessment

of engineering components, as mentioned in [19] and [20], stress-life, strain-life, and

fracture mechanics are the three basic techniques used in fatigue analysis. According

to [21], if an environment is corrosive, infinite fatigue life is not possible at which

the material will no longer experience fatigue because corrosion will ultimately lead

to failure, regardless of cyclic stress level. The harm caused by the combination of

corrosion and cyclic stress is greater than the sum of the damage caused by each sepa-

rately. Even in settings that seem to have little or no corrosion, the fatigue threshold

or endurance limit will always be lower when exposed to a corrosive environment.
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Although excessive corrosion can be avoided through techniques such as the use of

corrosion inhibitors [22], reducing the water content by using emulsion-based drilling

fluid [23], and monitoring pH levels; corrosion cannot be nullified. Therefore, as ex-

plained in [21], corrosion lowers the fatigue endurance limit, and fatigue failure is

accelerated by washouts, surface damages, and induced thermal stresses.

As further explained in [19], high cycle fatigue, which encompasses more than

105 cycles, is best treated with a stress-life method based on empirical S-N curves,

which are then altered by several correction factors. The method is suitable for

determining the overall fatigue life of an engineering component, despite the fact that

the crack start and propagation are not individually detected. On the other hand,

the strain-life method uses the strain, which can be readily measured using strain

gauges, as a highly effective criterion for describing low-cycle fatigue. Instead of S-

N curves, strain-life relation equations are used that consider the critical plane of

facture and crack initiation. In the fracture mechanics approach, it is assumed that

flaws of a certain maximum size might reside inside or on the surface of the material.

The maximum flaw size can be determined using a non-destructive testing (NDT)

technique. At the same time, this flaw propagates based on the stress fluctuations

the material is subjected to. The fact that the user can decide when inspections should

be performed and when maintenance should be scheduled is one of the strengths of

the fracture mechanics approach.

Both commercial and open-source software are available, which employ the above

techniques to determine the fatigue life of structures [19, 20, 24]. ANSYS® Fatigue

Tool facilitates stress life and strain life approaches while nCode Design Life® and

SalomeMeca�can apply all three methods. SalomeMeca� is an open-source finite

element analysis code with a solver called CodeAster�, with a capability to handle

MNV loading conditions [25]. The software accepts multiaxial, non-proportional load
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fluctuations, which can simulate the most general scenarios of fatigue damage. On

the other hand, software packages such as Matlab® are also equipped with tools

to perform ‘rainflow counting’ of variable amplitude stress fluctuations, which is an

important step in fatigue life prognosis.

Drill string fatigue failure applications fall in the category of high-cycle fatigue.

Therefore, the stress-life approach is used in this paper, implemented using Sa-

lomeMeca�, an established freely available research tool with MNV fatigue estimation

capability.

5.2.2 Modelling of drill-string dynamics

5.2.2.1 Fluid conveying pipe vibration modelling and simulation

Dynamics of fluid-carrying pipes were first analytically modelled with linear equations

of motion in the 1950s by [26–28]. These models have been developed considering the

effect of the fluid flow, assuming a uniform flow profile in the pipe. Furthermore, [29–

34] have further analyzed the dynamic behaviour of fluid-conveying straight pipes

and require further development to make them applicable in analyzing pipes with

nonlinear trajectories. Moreover, the effects on pipe dynamics due to the momentum

and rheological changes of the flowing fluids are yet to be incorporated into these

analytical models.

Finite element method-based numerical models suffer from the requirement of an

excessive amount of computation power in order to simulate complex multi-physics

models of fluid conveying pipes [35]. Nevertheless, several models have been developed

using the finite element method, such as in [36–39].

A computationally less expensive approach using three-dimensional lumped seg-

ments, with Newton-Euler equations of motion implemented in the bond graph for-
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malism, was proposed by [35] to simulate long slender structures. This approach

is capable of realistically simulating 3D drill string vibrations and interactions with

the well bore. Also, the simulation can be easily coupled with actuators such as

PID-controlled induction motors, while the boundary conditions can be easily recon-

figured. Moreover, lumped segment models can also incorporate the damping effects

due to the rheological and dynamic behaviour of fluids flowing through the pipe and

the outer annular space. Based on the modelling approach developed by [35], a com-

plete deviated well drill string simulation has been presented by [40]. This model can

simulate the drill string vibrations due to the axial and torsional bit-rock interactions

and can be used to optimize the drilling performance.

The model introduced by [35] and further developed by [40] has been chosen for

the current study. It has comparatively less computational burden compared to finite

element analysis, and the flexibility to incorporate contact models and fluid effects.

Bond graphs facilitate the combination of submodels from different domains such as

fluid, multi-body dynamics, and electromechanical actuation.

5.2.2.2 The bond graph formalism

The bond graph simulation environment provides a common platform for the sim-

ulation of systems comprised of elements from multiple engineering domains. The

method does not use discipline-specific elements, but generalized elements for energy

storage (capacitive C and inertial I), dissipation R, transformers TF , gyrators GY ,

and power conserving junctions to enforce parallel and series connection laws. Energy

plays the role of ‘common currency’ [41] hence the mechanical, electrical, thermal,

and hydraulic systems can be unified by the fact that their components exchange

energy [42] through ‘Energy Ports’. The system interacts with its surroundings using

sources of effort Se and flow Sf ports. In other words, bond graph modelling lever-
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ages analogies among different domains to solve technological problems [43]. There

are two generalized power variables, effort(e) and flow(f) which are the time deriva-

tives of generalized momentum(p) and displacement(q). The product of effort(e)

and flow(f) is power.

Further, the power conserving 0 − junction and 1 − junction model Kirchoff’s

node and loop laws, respectively. Efforts at 0− junctions sum to zero while flows are

identical along all the bonds connected to the 1− junction and vice versa. The alge-

braically positive power flow direction is indicated with a half arrow while causality

is indicated with a short line perpendicular to the bond. The causal stroke location

indicates whether the effort or flow is the input or output from the constitutive law

of the connected element. Powerless signals such as control signals are denoted by a

full arrow. A systematic approach to learning bond graph concepts is presented in

[42].

5.2.3 Drill-string vibration mitigation

In order to have a higher rate of penetration while maintaining a suitable failure safety

factor in the drilling process, the operator must predict and suppress vibrations [44].

Therefore, it is essential to identify the main causes of drill string vibration and how

to mitigate them.

Lateral drill string vibration is known to lead to fatigue failures and measurement

while drilling (MWD) tool failures. While the bit can cause significant vibration, the

centrifugal forces produced when imbalanced drill string components are rotated are

also significant [45, 46]. As described in [47], bore misalignment, initial curvature, and

gradual wear throughout service are some of the factors that contribute to imbalance.

Furthermore, stabilizer blades, mud motors and the friction between the borehole and
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drill string are contributing factors [48].

Certain field-developed vibration mitigation procedures are available in drilling

manuals have been validated through modelling and studying the drill string dynam-

ics [49]. For example, stopping and restarting can be done upon detection of severe

vibration, and stability paths can be found and followed to avoid critical vibrations

when increasing the rotary speed of the drill string.

Drill string stabilizers are used to mechanically stabilize the bottom hole assembly.

Conventionally, changes in the bottom hole assembly are made by tripping the drill

string out of the wellbore. This is to add or remove stabilizers to or from the drill

string. As a solution, [50] proposes a stabilizer which can be remotely adjusted into

two distinct diameters, and each mode is controlled by switching on and off the drilling

mud pump.

Varying WOB and drilling speed are also approaches to mitigate the vibration.

Sometimes such actions can reduce one type of vibration while exacerbating another,

suggesting a need for a multi-variable multi-objective optimization approach to vi-

bration and component life prediction. This paper focuses on a single vibration

mitigation design variable, the placement of stabilizers, using ‘cascaded’ models to

efficiently predict stress history and fatigue life of components. The methodology is

described in Sections 5.3 and 5.4. The overall approach is not restricted to a single

variable optimization, and the competing objectives of multiple vibration mitigation

methods could be studied by expanding the optimization problem definition. The

primary contribution of this paper is to demonstrate the use of a top-level simplified

model feeding stress history into, and receiving parameter updating information from,

a higher-order component-level model, and then performing MNV fatigue analysis.
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5.3 Methodology

This section presents the methodology followed to develop the fatigue life prognosis

framework. A 3D drillstring bond graph simulation is employed and parameterized

to meet the specifications of API 5D drill pipes and collars. A fatigue life estimation

is presented based on the stress history extracted from the 3D drill string bond graph

simulation. Finally, the methodology is applied in a case study to demonstrate the

ability of the framework to be used as a fatigue life optimization tool.

5.3.1 Development of the drill-string dynamic model

The lumped segment 3D bond graph dynamic model consists of pipe, stabilizer, and

drill collar elements. The model was developed based on the contributions in [35]

and [51]. Pipe and collar elements are illustrated in Figure 5.2 and 5.4 respectively.

Only the axial compliances are shown in the figures for clarity. A and B are the

two ends of an element, while G is the centre of gravity. A detailed schematic of

an API 5D drill pipe is shown in Figure 5.3. A drill pipe element of a drill string

bond graph model was defined as two connected drill pipe halves, as illustrated in

Figure 5.2: The conceptual illustration of a bond graph pipe element (not to scale)

115



5
4

1
2
7

9
8

267

1

8

°

9

R

3

8

1
2
7

203

R

5

0

337 365

102

8800

Figure 5.3: Schematic diagram of the API 5D drill pipe (not to scale)

Figure 5.4: The conceptual illustration of a bond graph collar element (not to scale)

Figure 5.2. They are API 5D standard drill pipes made from E75 Carbon Steel with

an ‘internal and external upset’ end finish. In the original parameterization of the

bond graph model, the compliance values (reciprocal of stiffnesses) of each element

have been calculated without considering the varying cross-section and the effect of

threaded connections. Therefore, a finite element method-based approach is used to

determine the unknown compliance parameters of a given element more accurately. A

detailed description on the determination of compliance values; bending, axial, shear,

and torsional; is presented in Section 5.3.1.1.

The drill string vibrations get damped due to the presence of the drilling fluid.

This effect is often simplified and modelled as a static damping constant. In this

study, the damping model introduced in [52] is implemented to simulate the varying

damping constant based on various variables such as the eccentricity of the drill pipe
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in the wellbore, fluid rheology, and flow speed.

5.3.1.1 Determination of the compliance values of elements

The four primary compliance values: axial, shear, bending, and torsional; are difficult

to establish precisely through manual calculations due to the intricate curvatures

and varied cross-sections. Further, the effect of the threaded connections on the

stiffness values is difficult to estimate efficiently using manual calculations. Figure 5.5

conceptually illustrates the first three compliances, while the torsional spring can be

visualized as a similar spring to the axial but with a rotational instead of translational

degree of freedom.

This figure illuatrates the three types of 
compliances that a bond graph element 
consists of.
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Figure 5.5: Schematic of pipe lumped-parameter elements

In this section, the procedure followed to determine the compliance values of drill

pipe, stabilizer, and collar elements is presented.

The selected element was modelled in SolidWorks® and imported into ANSYS® Static

Structural. After performing a mesh dependence test, the minimum size of the ele-

ment was selected to be 1 × 10−2 m, taking into account the processing speed and

convergence of the results. The drill collar element was cantilevered and subjected to
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bending, axial, shear, and torsional deformations to examine the respective responses

as illustrated in Figure 5.6.
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Figure 5.6: Determination of compliance values

To determine the bending compliance, the cantilevered element was given a 1000Nm

bending moment (M) at the free end as shown in Figure 5.6 a. This results in a ro-

tation of the free end on the x − z plane. The displacements of points P and Q
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were precisely drafted in AutoCAD® and the angle of rotation was determined as

1.12675× 10−3 rad. According to [42], if the rotations of two cross-sections are ϕ(x)

and ϕ(x + ∆x), the relationship between the applied bending moment (M) and the

difference of the two plane rotations is given by Equation 5.1.

M =
EI

∆x
[ϕ(x+∆x)− ϕ(x)] (5.1)

where L, E, and I are length of the beam segment, elastic modulus, and second

moment of area of the cross-section respectively. The bending compliance (Cbend)

was calculated as shown in Equation 5.2.

Cbend =
L

EI
=

ϕ(x+∆x)− ϕ(x)

M
= 1.12455× 10−6 rad/Nm (5.2)

To determine the torsional compliance, a moment of 1000 Nm was applied on the

free end in the z direction, as illustrated in Figure 5.6 b. Then the displacements

of the points P and Q were determined using the finite element model and precision

mapping to determine the angle of twist of the beam due to the applied moment.

Equation 5.3 defines the torsional compliance (Ctorsional).

Ctorsional =
L

GJ
=

Θ

T
(5.3)

where L is the length of the beam, G is the shear modulus, J is the second polar

moment of area, Θ is the angle of twist, and T is the applied torque.

Equation 5.4 describes the axial compliance Caxial which originated from Hooke’s

Law of elasticity.

Caxial =
L

EA
=

δ

F
(5.4)
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where E is the elastic modulus, A is the cross-sectional area, δ is the extension and F

is the applied force. As illustrated in Figure 5.6 c, an axial load of 1000 N was applied

and the displacement response of point P was measured in the axial (z) direction and

Caxial was calculated using Equation 5.4.

To estimate the shear compliance (Cshear), as shown in Figure 5.6 d, the element

was cantilevered and a tangential distributed force of 1000 N was applied on the

free end surface. The motion of the loaded plane was restricted to rotate in order

to minimize the effect of bending due to the applied load. The calculation was done

using Equation 5.6 which was derived from Equation 5.5.

τ = Gγ (5.5)

Cshear =
h

GA
=

δx

F
(5.6)

where τ is the shear stress, G is the shear modulus, γ is the shear strain, h is the

distance between the shear load and the fixed end, A is the cross-sectional area, F is

the applied force and δx is the displacement of the loaded face in the direction of the

applied shear force. All the displacements are in the 10− 100 µm range. Therefore,

the small angle assumption was applied.

5.3.2 Fatigue life estimation approach

The load fluctuations on a real-world structure can be highly complex. Figure 5.7

illustrates six different loading conditions that a given point of a drill string can

undergo while in operation. In the figure, Fs, Fa, Mb, and Mt stand for shear forces,

axial force, bending moments, and torsional load respectively. The MNV fatigue

estimation was performed using SalomeMeca�, an environment that is open-source
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Figure 5.7: Complex loading acting on a structure

and therefore widely accessible.

The following section presents a detailed workflow for using SalomeMeca� for the

MNV fatigue analysis under consideration.

5.3.2.1 Accessing SalomeMeca�

There are several options available for accessing SalomeMeca�. A Linux-based operat-

ing system, CAE Linux� 2020, is equipped with SalomeMeca� along with many other

Computer Aided Engineering (CAE) applications. Another option is installing the

Ubuntu® operating system and manually installing the compatible SalomeMeca� ver-

sion. Moreover, the users can use the pre-processor, solver, and post-processor ap-

plications separately on these platforms. Alternatively, Windows versions are also

available, which are stable and reliable. An overview of the simulation process is

presented in Figure 5.8.

5.3.2.2 MNV fatigue analysis workflow

SalomeMeca� consists of the pre-processors (Geometry Module, Shaper), solver

(CodeAster�), and the post-processor (Paravis�) in a single package which provides

all the required tools for an MNV fatigue analysis. Alternatively, a geometry designed

in a different computer-aided design (CAD) package can be imported as a ‘STEP’ file
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DEFI_LIST_REEL
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STAT_NON_LINE

Output
IMPR_RESU

Deprecated
DEBUT

Post-processing

Paravis
ELGA Field to surface

filter

Figure 5.8: Fatigue life estimation workflow using SalomeMeca�

to start the pre-processing process (File, Import). Next, the groups of planes were

defined, which will be later used to define the mesh planes (New Entity, Group,

Create Group). These mesh planes were directly used in CodeAster� to assign

boundary conditions. For example, if a particular plane needs to be fixed while

another plane is used in loading, it is necessary to create two separate planes and

name them accordingly. Once this step is done, the Mesh Module was activated for

further pre-processing in meshing.

Mesh Module provides greater flexibility to generate the optimum mesh for a

given geometry. To create the mesh, start with Create mesh command and select

the geometry. It is necessary to view the relevant geometry in order to select it. De-

pending on the geometry, 3D, 2D, 1D, or 0D can be selected, and the algorithm and

hypothesis can be selected accordingly. For example, NETGEN 1D-2D-3D was selected

as the algorithm for 3D geometries, and the hypothesis was selected as NETGEN 3D

Parameters. By editing the hypothesis, the user can control the mesh parameters, in-
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cluding the maximum and minimum sizes of elements. Then the mesh was computed

using Compute command. Once the mesh is computed, the mesh groups were cre-

ated using Mesh, Create Groups from Geometry command. The geometry groups

created in the Geometry Module were used in this step to make it more convenient.

The current study consists of two separate 3D geometrical components, namely

the Box and Pin of the threaded connection of two adjacent drill pipes. Two different

approaches can be taken in developing the mesh for this kind of simulation. The

first approach is generating a compound mesh at the meshing stage, and the second

option is defining a nonlinear contact between the box and pin at the simulation

setup stage. In the first approach, the two components can be separately meshed

following the process mentioned above and generate a compound mesh using the

Mesh, Create Compound command. The mesh planes defined in each component can

also be made available in the compound mesh. The first approach will be described

under AsterStudy in the next paragraph. The meshed geometries are presented in

Figures 5.9a and 5.9b. Once the meshing step is completed, the AsterStudy module

was activated to proceed with the simulation setup.

(a) Box

(b) Pin

Figure 5.9: The meshed ‘box’ and ‘pin’ components
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AsterStudy provides the necessary tools to set up the simulation. The setup

process consists of several sections and can be done directly by coding or using the

graphical user interface (GUI). To start the process, a new stage was started under

CurrentCase using the Add stage command. First, a mesh needs to be read, and

it was done using LIRE MAILLAGE operator in the Mesh category. Next, the mesh

was modified using MODI MAILLAGE operator. As the model is fixed at one face and

loaded on the other face, ORIE PEAU 3D is the suitable keyword to use, available

under MODI MAILLAGE operator. In this step, the mesh faces defined for the loading

end and fixed end during meshing were selected to be available when setting boundary

conditions and defining loads. The French words in the operator keywords reflect the

country of origin of the software, the English-language documentation of which is

limited.

Under Model Definition category, the operator AFFE MODELE was used to assign

3D finite elements for a mechanical simulation. Then in the category of material, the

material was defined using the operator DEFI MATERIAU. For example, the material

was defined as Steel using ELAS keyword, which has the required options to define

a linear isotropic elastic material. Additionally, the work hardening effect and the

elastic limit were defined using the ECRO LINE keyword. The keyword FATIGUE is

important because that is where Wöhler’s Diagram (S-N Curve) is defined. It can

be either implemented as a function or by specifying the values of A BASQUIN and

BETA BASQUIN. Moreover, to define the tensile strength at the operating temperature,

SU operand was used, which comes under the RCCM keyword. To assign the defined

material, the operator AFFE MATERIAU is used.

The loads acting on the sample were introduced as time series functions to perform

an MNV fatigue analysis. For instance, the bending moment, torsion, lateral, and

axial load histories were extracted from the bond graph simulation as ‘CSV’ files
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and imported to the DEFI FUNCTION operator through VALE keyword. This operator

facilitates MNV fatigue analysis which is an advanced feature of SalomeMeca�. These

operators and keywords are available in the Functions and Lists category.

In the category of Boundary Conditions and Loads (i.e. BC and Load),

AFFE CHAR MECA operator was used to fix one end of the mesh while AFFE CHAR MECA F

was used to define the bending moments and forces. In order to fix one end, the

FACE IMPO keyword was used to limit the degrees of freedom in all directions. Also,

the face to be fixed was selected from the mesh entities created in the meshing step.

Bending moments were introduced as a moment created by a lateral load acting at

the free end, while torsion was applied as a moment of a couple.

A nonlinear contact between the two bodies at the threaded connection was

defined using the DEFI CONTACT operator in CodeAster�, which comes under the

category of BC and Load. To consider the geometrical nonlinearity, the keyword

FORMULATION=‘CONTINUE’ was used. Also, the ALGO CONT and COEF PENA CONT com-

bination was used to keep the global matrix asymmetry preserved while solving using

a penalty method. Ignoring this step would have led to solution convergence is-

sues. The solution of nonlinear contact was done using STAT NON LINE. This operator

handles the geometric nonlinearity and the nonlinearity in frictional contact. If the

compound mesh approach was taken rather than considering the nonlinear contact

approach, both the DEFI CONTACT and STAT NON LINE could have been replaced with

the MECA STATIQUE operator.

The operator CALC CHAMP was used to automatically calculate intermediate fields

to get the output of SIEQ ELGA, which are the principal stresses. Using this operator,

the need for awareness of the dependencies of the intermediate fields required to

calculate SIEQ ELGA was eliminated.

The field of fatigue damage was calculated using the CALC FATIGUE operator.
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This was accomplished by taking into account the past equivalent stresses that were

computed using SIEQ ELGA at each Gauss point. In this operation, the elementary

loading cycles are extracted using rainflow counting. The total damage experienced

by the structure is the sum of the damage associated with the elementary cycles. This

operator uses Wöhler’s Diagram defined in the DEFI MATERIAU operator to perform

the cumulative damage calculation. To extract the results, the IMPR RESU procedure

was used and the results were written into a ‘MED’ file which can be used for post-

processing in Paravis�. Alternatively, the POST FATIGUE operator can be used with

the IMPR RESU procedure to perform a multi-axial fatigue analysis that provides the

results in a tabulated form. The author’s online repository provides the complete

code, which can be accessed through this link (https://github.com/mihiranpathmika).

It is also presented in Appendix B.

5.3.2.3 Post processing

Post-processing was done in Paravis�, which is included in SalomeMeca�. Alterna-

tively, Paravis� can be used as a separate installation on the previously mentioned

Linux and Windows platforms. Paravis� works based on the concept of filters. There-

fore, after importing the ‘MED’ file into Paravis�, the filter ELGA Field to surface

was added in order to view the fatigue damage distribution. Alternatively, the post-

processing tool available in CodeAster� can also be used to determine the maximum

fatigue damage. The default result is in terms of remaining fatigue life. As men-

tioned in CodeAster� documentation, fatigue damage is defined as the reciprocal of

remaining fatigue life.
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5.4 Case study: Optimizing the fatigue life of drill

collars

In this section, a case study is presented, which demonstrates the use of the proposed

framework as a fatigue life optimization tool. The locations of two stabilizers are

considered independent variables (factors), while fatigue damage is the dependent

variable. The Design of Experiments (DoE) approach was used to develop the exper-

imental matrix, and the experiments were carried out using the fatigue life prognosis

framework of Section 5.3. The outcome is a statistical model of fatigue damage as a

function of stabilizer location, which can be utilized to decide the optimal stabilizer

locations for a given drilling scenario. Threaded connections are the areas most sus-

ceptible to fatigue failure because of the high stress concentration sites. Therefore,

the threaded connections were used in fatigue simulations as the site of maximum

predicted fatigue damage.

Drill collars are exceptionally robust industrial tubes that are located below the

drill pipe neutral point, and must therefore take higher compressive loads that could

cause buckling. Drill collars only make up a small fraction of the drillstring total

length. For instance, a 10,000 ft (3048 m) drill string could only include 500 ft

(152 m) of drill collars and 9,000 ft (2743 m) of drill pipe. Drill collars are usually

manufactured in lengths similar to drill pipes and are connected vertically on the

drilling rig. Drill collars are thick-walled, hefty, and have very little flexibility, in

contrast to drill pipe. Usually, drill collars are employed above the outer core barrel

assembly. They are mostly employed to provide weight to the drill bit. However, they

also serve as a shock absorber to lessen the vibrations and impact pressures brought

on by drilling [53].
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The bottom hole assembly of this case study consists of five drill collars, two

stabilizers, and one outer core barrel assembly. The schematic diagram and the

corresponding bond graph are illustrated in Figures 5.10a and 5.10b respectively. The

Outer Core Barrel 

Drill Collars

Stabilizers

Drill Pipes

Drill Bit

Assembly

1491 m

9.32 m

13.8 m

Note: Drawing is not to scale

1 m

(a) Schematic diagram of the bot-
tom hole assembly

(b) Bond graph of the drill string

Figure 5.10: The location of the two stabilizers (not to scale)

outer core barrel assembly and the drill bit are represented by LowerBHA submodel

in Figure 5.10b simulated with four bond graph elements. The submodel represents

components such as the drill bit, stabilized bit sub, outer core barrel, landing saver

sub, top sub, and head sub.

The locations of the stabilizers were simultaneously varied, and the maximum

fatigue damage at the threaded connection was estimated for each stabilizer config-
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uration. The experimental matrix consists of 13 runs. Different stabilizer location

combinations are tabulated along with the corresponding maximum fatigue damages

in Section 5.5.

The experimental matrix was developed following the RSM [54]. The DOE ap-

proach is used by the RSM to gather data and pinpoint important interactions and

factors that affect the process response. A statistical model to represent the causal

relationships between causes and responses is then presented.

5.4.1 Bond graph implementation

The 3D bond graph element model illustrated in Figure 5.11 was utilized along with

the interface model presented in 5.12 to develop the bond graph simulation. As shown

in Figure 5.10b, a set of drill pipes with a length of 1491m is located above the bottom

hole assembly which has a length of 64.4 m. The bond graph was parameterized using

the stiffness values determined through the proposed method presented in Table 5.1.

The compliance values are coded into the capacitive (C) elements of the interface

submodel shown in Figure 5.12. The topmost drill pipe and the drill bit at the

bottom are given pinned boundary conditions through the use of stiff lateral springs

with parallel damping. Also, the top drill pipe is provided with an effort source to

drive the entire drill string.

The interaction with the wellbore is modelled using a C element representing a

stiff spring oriented radially outward from the centre of the drill string as illustrated

in Figure 5.13. When the eccentricity (e) sufficiently increases such that the pipe

reaches the wellbore, the stiffness of the spring (Kw) becomes non-zero and generates

a reaction force on the drill string. The location of the pipe axis in the cross-section

considered (G) was defined using the angular displacement (ϕ) and the eccentric-
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ity (e). In modelling the drill collars, four adjacent lumped segments were taken as

equivalent to a drill collar, as shown in Figure 5.4 in terms of compliance and inertial

parameters. Therefore, there are four elements in a given Drill Collar sub-model in

Figure 5.10b. The stabilizer units were placed as per the experimental matrix pro-

vided in Table 5.2. As indicated in Figure 5.10b, D1 and D2 are measured from the
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Figure 5.11: The construction of the 3D bond graph element
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Figure 5.12: Interface submodel between two 3D bond graph elements

lowermost point of the drill bit. The simulation was run until the load fluctuations

became nearly consistent. The simulated load fluctuations were extracted from the

efforts of the shear, axial, bending, and torsional springs. They were exported into

‘CSV’ files for later use in the finite element model for MNV fatigue failure prognosis.

A sample load fluctuation history for Drill Collar 1 is presented in Figure 5.14 in

Section 5.5. Figures 5.14 a and b illustrate the bending moment fluctuation while

Figures 5.14 e and f illustrate the shear force fluctuation on two orthogonal planes.

Figure 5.14 c and d illustrate the axial and torsional load fluctuations respectively.

Figure 5.15 illustrates the fatigue damage distribution of a drill collar threaded con-
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Figure 5.13: Drill pipe-well bore interaction model schematic

nection for the load fluctuation in Figure 5.14 over 60 s. The analysis was done

using CodeAster� solver in SalomeMeca�, and the post-processing was done using

Paravis�.

5.5 Results

As the first step of the process, the dynamic model was developed using bond graphs.

Then compliance values for drill string stabilizers, collars, and pipes were determined

and the bond graph was refined accordingly. The compliance values are presented in

Table 5.1. The reason for different percentage errors between theoretical method and

numerical method results is explained in Section 5.6.

Table 5.1: Bond graph element compliance values

Compliance Stabilizer Collar (corner element) Pipe Element

A B % Error A B % Error A B % Error

Axial 1.20× 10−10 2.12× 10−10 76.7 1.54× 10−9 1.59× 10−9 3.2 1.90× 10−8 1.97× 10−8 3.7
Shear 5.61× 10−9 8.31× 10−10 85.2 5.79× 10−7 7.17× 10−9 98.8 2.37× 10−7 9.44× 10−8 60.2
Torsional 3.68× 10−7 1.05× 10−7 71.5 1.46× 10−6 1.49× 10−6 2.1 1.20× 10−5 3.19× 10−5 165.8
Bending 1.39× 10−9 8.05× 10−8 5691.4 1.12× 10−6 1.14× 10−6 1.8 1.45× 10−5 2.45× 10−5 69.0

A - Result of the proposed method, B - Theoretical calculation result.

The case study’s goal was to locate the stabilizers such that they minimize the

fatigue damage of the most vulnerable drill collar for a given stabilizer configuration.
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The experimental matrix and the maximum fatigue damage values of the respective

stabilizer location combinations are presented in Table 5.2.

Figure 5.16 illustrates the statistical model developed through the DoE approach.

According to the figure, the stabilizer location combinationD1 = 61.4 andD2 = 23.12

provides the minimum fatigue damage while D1 = 61.4 and D2 = 32.44 combination

gives the maximum damage. The percentage difference between the maximum and

minimum fatigue damages is 200% of the minimum damage in the scenario considered.
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Figure 5.14: Load fluctuations on Drill Collar 1
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Figure 5.15: A sample simulation post-processing using Paravis�
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Figure 5.16: Maximum fatigue damage for different stabilizer configurations
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Table 5.2: The experimental matrix

Experiment
Number

Factor 1 Factor 2 Response
Distance

Drill Bit to
Stabilizer 1
(D1) (m)

Distance
Drill Bit to
Stabilizer 2
(D2) (m)

Fatigue
Damage
(1/nos)

1 61.4 32.44 4.31× 10−8

2 52.08 23.32 3.20× 10−8

3 61.40 23.32 1.40× 10−8

4 42.76 32.44 2.67× 10−8

5 52.08 23.32 3.20× 10−8

6 42.76 23.32 2.24× 10−8

7 52.08 32.44 2.69× 10−8

8 52.08 23.32 3.20× 10−8

9 61.40 13.80 3.03× 10−8

10 52.08 23.32 3.20× 10−8

11 52.08 23.32 3.20× 10−8

12 52.08 13.80 2.96× 10−8

13 42.76 13.80 2.76× 10−8

5.6 Discussion

The current study presents a framework for estimating and optimizing the fatigue life

of drill pipes and collars of a vertical oil well drill string. The MNV fatigue estimation

is done using SalomeMeca�, and the required stress histories are generated using the

3D bond graph model. The developed framework was applied to optimize the fatigue

life of drill collars as a proof of concept.

The 3D bond graph where the Newton-Euler approach is implemented can drasti-

cally reduce the processing time to generate stress histories compared to finite element

models. Even though bond graph lumped segment models are lower-order models,

they serve with sufficient accuracy in low-frequency vibration simulations. The in-

troduction of contact simulations and friction models is comparatively convenient

and computationally inexpensive. In the bond graph model, the damping constant
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representing the structural damping and the drag effect due to the drilling fluid was

assumed to be static. Alternatively, lateral and axial drag models developed consider-

ing the drilling fluid flow through the pipe and annular space, drilling fluid rheology,

and other physical properties can be used to replace the static damping constant.

Further, a given drill collar is represented with four lumped segment bond graph

elements, giving a sufficient total number of segments to accurately capture the first

two vibration modes of the entire bottom hole assembly. The first two vibration modes

are considered to account for the majority of vibration energy. Therefore, they should

be sufficient to predict fatigue failure. Alternatively, a further increase in elements

will increase the accuracy with extended simulation times as a trade-off. Figure 5.17

illustrates the accuracy of the first four natural frequencies with the increasing num-

ber of elements for a 7 m long slender structure. As it indicates, eighteen to twenty

elements are sufficient to achieve accurate results for the first four natural frequencies.

There can be several types of external excitations acting on a drill string. Firstly, the

drill collars cannot be guaranteed to be straight after manufacturing, transportation,

and stacking at the well site. Therefore, their centres of mass can get offset from the

axis of rotation, which causes a mass imbalance. Due to the continuous interaction

with the wellbore, defects such as washouts1 also can contribute to it. Mass imbal-

ances cause lateral vibrations generating bending moments in the drill string. Bit

bounce can occur due to the nature of the formation being traversed, and the WOB

creating axial loads and stick-slip vibrations can generate torsional vibrations. These

excitations create stress fluctuations at the threaded connections, leading to fatigue

failure.

Some compliance values determined using the proposed method, presented in Ta-

1Washout is when a hole is worn in the pipe, and becomes increasingly larger due to circulating
drilling fluid. This can eventually sever or twist off the pipe entirely.
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Figure 5.17: Natural frequency

ble 5.1, are distinctly different compared to their respective theoretical values. For

example, the compliance values of the stabilizer element, shown in Figure 5.18a, are

highly overestimated due to assuming a hollow cylindrical body with only the outer

and inner diameters matched with the actual stabilizer. Figures 5.18a and 5.18b

illustrate a stabilizer and its approximation, respectively. The complexity of strain

distribution on the actual geometry versus the cylindrical body indicates how chal-

lenging it is to determine the deformations and hence their compliance values through

theoretical calculations. This also demonstrates the disadvantage of using approxi-

mations to calculate compliance values of the lumped segment model elements. More-

over, the inaccurate estimation of compliance and other properties causes erroneous

predictions of natural frequencies and other dynamic behaviours of a structure which

makes the entire simulation less useful. Therefore, the proposed procedure of compli-

ance value determination plays a major role in the accurate modelling and simulation
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of vibrating structures.

(a) Strain distribution of a stabilizer in
bending

(b) Strain distribution of a simplified sta-
bilizer in bending

Figure 5.18: Deformation comparison of a stabilizer vs its simplified element

5.7 Conclusions

This study provides a fatigue life prognosis framework for slender structures such as

drill strings. The proposed framework can capture the dynamics of the vibrating

structure, extract the loading history, and perform an MNV-type of fatigue analysis.

Using the proposed framework, the bottom hole assembly of a vertical-well drill string

was evaluated for maximum fatigue damage concerning the location of two stabilizers.

Considering all five drill pipes, it can be concluded that the optimum placement of

stabilizers will be D1 = 61.40 m and D2 = 23.32 m. Through this arrangement of

stabilizers, the maximum fatigue damage of the drill collars can be minimized. The

fatigue damage of the optimal configuration was three times lesser than that of the

worst-case scenario.

5.8 Further work

The current study solely focuses on optimizing the fatigue life by strategically placing

the stabilizers among the drill collars. Nevertheless, some more factors may govern
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the fatigue life, such as WOB and rotary speed of the drill string. A broader study can

be employed with those factors included, followed by a DOE procedure and required

fatigue life estimations. Further, it will be interesting to understand the effect of the

drill string’s varying total length and the rheological properties of the drilling fluid

on fatigue damage.

The fatigue estimation framework introduced can be further developed as a Digital

Twin of the drill string by integrating with a machine learning algorithm to identify

the bottom hole vibration conditions through surface measurements. The machine

learning (ML) algorithm can be trained to identify the vibration in terms of magni-

tude and type (i.e. whirling, bit bounce, stick-slip etc.). The training data can be

synthetically developed using the bond graph introduced in this study. Finally, the

digital twin can be developed by integrating bond graph, finite element method, and

ML components which can predict the remaining fatigue life dynamically. Also, there

is a potential to develop standalone software by integrating those three components,

which can be developed into a marketable product.
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Chapter 6

A Digital Twinning Methodology
for Vibration Prediction and
Fatigue Life Prognosis of Vertical
Oil Well Drillstrings

Abstract

A detailed methodology to develop a digital twin has many useful applications in the

era of technology 4.0. This study provides a framework to develop a digital twin for

vibration prediction and fatigue life prognosis of a vertical oil well drillstring. The

nature and the severity of the down-hole vibrations are identified and estimated based

on the vibrational and operational parameter measurements made at the surface level.

Because of the difficulty in accessing full-scale industrial drilling data, a reduced-

scale drillstring was constructed that could exhibit bit bounce, stick-slip and whirl.

A bond graph simulation model was tuned to match the apparatus, and then used

to generate synthetic training data. The trained machine learning algorithm can

classify the incoming surface monitoring data from the physical twin into different

types and severities of vibration states which are not otherwise observable. Moreover,

the classified vibration condition is used to re-configure the bond graph model with
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appropriate complexity to generate a loading history for fatigue life prognosis. The

fatigue life estimation uses a novel combination of a low-complexity model of the

entire drillstring and a high fidelity finite element model of components where stress

concentrations are most severe. The digital twin detected the vibration type and its

severity and estimated the remaining fatigue life of the physical system using only

measurements of the motor current, rig floor axial vibration, and rotary speed.

Keywords: Digital Twin, Bond graph, Hidden Markov model, Surface monitoring,

Drillstring
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6.1 Introduction

Downhole drillstring vibrations, especially high-frequency vibrations, are not observ-

able from the ground level due to wave attenuation and bandwidth limitation of the

currently-used measuring techniques [1]. As mentioned in [2], a number of telemetry

methods have been developed over the years to transfer measured data to the sur-

face, including mud-pulse (MP), electromagnetic (EM), wired-drill-pipe, and acoustic
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telemetry. While the wired-drill-pipe telemetry can transport data up to 57 kbps, the

MP and EM telemetry systems can only communicate data at rates of about up to

10 bps. In offshore applications, EM telemetry is ineffective, and wired drill pipe

telemetry is expensive and prone to malfunction when the wiring link between the

transmitter and receiver is lost. Acoustic telemetry has the capacity to communicate

at rates up to hundreds of bits per second. These transmission rates are insufficient

for near real-time surface monitoring of high-frequency downhole vibrations. There-

fore, both the detection and control of such vibrations are done at the bottom of the

well [1, 3].

Nevertheless, the availability of rich vibrational data is essential for applications

such as fatigue life prognosis of drill pipes. Timely detection of such conditions helps

to make effective rectifications of the operations and hence to reduce the risk and

to assure reliability. This allows the driller to take action to mitigate the vibra-

tion, for example, by reducing WOB and/or increasing rotational speed to address

stick-slip. The high cost for the downhole measurement of the drillstring vibrations

consequently encourages machine learning approaches to downhole vibration predic-

tion during drilling [4]. The limited availability of reliable training data for machine

learning algorithms is also a challenge. A digital twin of a drillstring has the potential

to generate synthetic data for different ‘what-if’ scenarios [5], which may be a solution

for this problem. Therefore, the current study is focused on developing a digital twin

which has the ability to generate its own data, by performing a series of simulations,

to train its machine learning algorithms in order to make useful predictions such as

downhole vibration state and fatigue life prognosis.

The overall outcome of the current study is a digital twin for a vibrating structure,

in this case an oil well drillstring. The process starts with a physical system that is

susceptible to vibration problems that a) can be classified (stick-slip, bit bounce,
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and whirl for drilling) and b) are not easily detected because direct measurement is

not practical. A dynamic simulation model of the physical system is then created

and parameterized, including virtual sensors to generate time series of practically

available measurements. The virtual measurements corresponding to the selected

types of vibration from the simulation model are used to train a machine learning

algorithm. Measurements of actual physical system vibration can be input to the

trained algorithm to identify vibration type and severity. Once vibration is detected

and classified, the simulation model is configured to replicate it, and generate stress

histories. The stress histories are exported to a finite element model for fatigue life

prognosis.

Section 6.2 reviews literature on digital twinning, vibration measurement in drilling,

drillstring modelling, and machine learning algorithms. Section 6.3 gives an overview

of the process and introduces the techniques used at each stage. Sections 6.4 to 6.7

give detailed development of the case study system, simulation model, machine learn-

ing algorithm and training, and fatigue life prediction. Section 6.8 provides results,

and discussion and conclusions are in Sections 6.9 and 6.10.

6.2 Background study

6.2.1 Digital twins

This section introduces the digital twin concept and presents some recent develop-

ments along with their strengths and weaknesses.

“Digital twin” is a term that has been used in the recent past to describe a digital

replica of a physical system. However, there is no consolidated view on what digital

twins are [6]. The concept of ‘digital twin’ was first introduced by Michael Grieves
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at the University of Michigan in 2003 through Grieves’ Executive Course on Product

Lifecycle Management [7]. According to [5], the term ‘digital twin’ carries various

definitions, and the term is often misinterpreted. As mentioned in their review, on

some occasions, just a 3D visualization of a physical system is referred to as a digital

twin. According to the broadest definition identified by [5], a digital twin is an

“integrated multi-physics, multi-scale, probabilistic simulation of an as-built system,

enabled by digital thread, that uses the best available models, sensor information,

and input data to mirror and predict activities or performance over the life of its

corresponding physical twin”[8].

Meanwhile, [9] defines three types of digital twins: Product, Process, and Per-

formance. Product digital twins are used for the efficient design of new products,

while Process digital twins are used in manufacturing and production planning. Per-

formance digital twins are used to capture, analyze, and act on operational data.

According to this classification [9], the outcome of the current study can be classified

as a Performance digital twin.

A digital twin conceptual framework for a dynamic structural damage prob-

lem is presented by [6], in which a physics-based model coupled with a Quadratic

Discriminant-based classifier algorithm was introduced. The proposed conceptual

framework could be adapted to implement a Product digital twin, which can prog-

nose the fatigue failure of a vibrating structure.

A digital twin concept was proposed in [10] to estimate the structural life of

aircraft components. It was envisioned that during the industry 4.0 technology level,

the manufacturer could automatically populate the high-fidelity Product digital twin

during manufacturing. While in operation, based on the sensor readings and other

inputs, the digital twin would be capable of estimating structural life. However, as

further mentioned in [10], the measured aircraft weight while in operation, which is
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a crucial input to the digital twin, still involves cumbersome ground equipment and

input with assumptions given by the flight crew, and is hence not accurate at the

moment.

In addition to damage or life predictions of systems, the digital twin approach

can be used in process optimization. A novel hybrid framework introduced by [11]

combines machine learning methods with API laboratory procedures, onsite mea-

surement data, and fluid rheology to adequately describe the drilling fluids. This

approach can leverage the drilling performance by optimizing cutting transport and

hence get an efficient rate of penetration (ROP). Further, as proposed by [12], digi-

tal twins can support planning, real-time analysis, real-time automated monitoring,

forecasting simulation, and forward-looking simulations of problematic situations.

The use of digital twins in the fatigue life prognosis of drillstrings is not reported in

the literature. Mathematical modelling, vibration simulations, fatigue analysis, and

classification of surface monitoring measurements using machine learning algorithms

are found as isolated studies in most cases and a holistic approach is not available

in the literature. The current study addresses this by presenting a digital twin de-

velopment procedure integrating dynamic modelling, vibration simulation, machine

learning, and fatigue analysis.

6.2.2 Surface monitoring techniques and their importance

Prior work has studied the feasibility of surface monitoring in estimating downhole

vibration conditions. In order to learn more about bit-rock interaction, vibrations

at the top of the drillstring were initially recorded and processed in the 1960’s [13].

The contact between the bit and the rock during rotary or motor drilling generates

forces and displacements in the drillstring. As further mentioned in [13], in the case
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of rotary drilling, additional stresses are produced between the drillstring and the

wellbore wall. Another type of excitation comes from the fluid pulses produced by

reciprocating mud pumps. Along the accessible mechanical and fluid routes, the

forces from all these connected phenomena interact and transmit toward the surface.

Measurements of stresses and accelerations made at the surface level can help to

understand the downhole vibration conditions.

A study to understand the correlation between tri-cone bit wear conditions based

on the different drilling signal measurements made at the surface level and drilling

vibration analysis is presented in [14]. Several rigs were instrumented with data acqui-

sition units including sensors to measure hoist motor current, rotary motor current,

head encoder position, bailing air pressure, hoist voltage, rotary voltage, lower-mast

vibration, and upper-mast vibration signals. The vibration was sensed using two

accelerometers installed at approximately 2/3 of the drill mast height and the mast

base. It was found that the rotary motor current signal statistical features are sensi-

tive to bit wear which is related to the rotational speed [14]. Also, in their study on

rock drilling operations, [15] concluded that vibration signals have significant poten-

tial for determining the degree of tool wear. Both the methods presented in [14] and

[15] require downhole measurements to train the algorithms for the classification of

vibration states.

A model using an artificial neural network (ANN) to anticipate the vibration of

the drillstring when drilling a horizontal segment was presented by [16]. The three

different forms of drillstring vibrations: axial, torsional, and lateral, were predicted

by the ANN model using the surface drilling parameters as model inputs. Flow rate,

mud pumping pressure, surface rotating speed, top drive torque, weight on bit, and

ROP were the surface monitoring drilling parameters used. An equation for real-time

estimation of the down-hole vibrations was proposed using the model developed. The

153



approach of [16] required actual data to train the machine learning algorithm, which

is not always a readily available factor in most situations.

Severe downhole stick-slip vibrations can be identified solely based on surface

monitoring drilling data in the method proposed by [4]. It categorizes multi-channel

drilling data acquired at the surface by employing a deep neural network model to

identify downhole vibration events. This method requires both surface monitoring

measurements and downhole measurements to train the deep neural network in order

to perform this task.

Severe downhole stick-slip vibrations can be identified solely based on surface mon-

itoring drilling data in the method proposed by [4], which categorized multi-channel

drilling data acquired at the surface by employing a deep neural network model to

identify downhole vibration events. This method required both surface monitoring

measurements and downhole measurements to train the deep neural network in order

to perform this task.

The patent presented in [17] also uses a surface monitoring technique to estimate

the downhole lateral vibrations. The algorithm used is fine-tuned using the data

taken from the downhole sensor. Once the algorithm is trained, it has the ability to

detect lateral vibration. As per the observations, it was deduced that an increase in

the moving average of drillstring torque or a decrease in the variation of drillstring

torque is a sign of lateral vibration, which ultimately leads to a reduction of ROP.

This method was limited to lateral vibration and whirling detection. Physical data

was used in training the algorithm.

The above contributions emphasize the viability of surface-level monitoring of

drill string vibrations. The training of a machine learning algorithm by employing a

sophisticated drill string multi-physics simulation to identify various vibration cate-

gories and their intensities has not yet been investigated.
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6.2.3 Algorithm training using synthetic data

Any artificially-generated information not originating from events or objects in the

real world can be given the designation ‘synthetic data’. Simulations have the poten-

tial to generate synthetic data which can mimic the actual scenario, and the generated

data can be used to train a machine learning algorithm for a variety of uses. Syn-

thetic data has a number of key advantages, including the ability to generate large

training data sets without the need for manual labelling of data and the reduction

of restrictions associated with the use of regulated or sensitive data. They can also

be customized to match circumstances that real-world data does not permit at a low

cost. Higher data quality, scalability, and ease of use are some advantages, to name

a few [18, 19].

Synthetic data is used in software data-driven testing due to its flexibility, scala-

bility, and realism [18]. In some cases, synthetic training data outperforms real-world

data and is essential for creating superior Artificial Intelligence (AI) models. This is

because rare incidents also can be simulated, and data can be generated, which fa-

cilitates better algorithm training covering the entire spectrum of events. Moreover,

it helps to eliminate some practical issues in using real-world data, such as biases in

data which lead to skewness and inaccuracy of the model. A variation on synthetic

data is partially synthetic data that keeps some of the original data set and performs

a gap-filling using the simulated data. Hybrid synthetic data combines the real-world

and generated data, which creates an opportunity to acquire the benefits of both fully

synthetic and partially synthetic data.

Further details on synthetic data usage in machine learning algorithm training and

its practical limitations relevant to the current study are presented in Section 6.9.
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6.2.3.1 An open-source hidden Markov model toolbox

An open-source HMM toolbox is presented in [20], which provides improved flexibil-

ity in developing fault detection tools [21]. The operating concept is explained in

Section 6.3.2, which explains the suitability of using HMM for surface monitoring

applications. When using this toolbox, the user does not need to evaluate the prior

probabilities or transition probabilities of states which is a requirement of most of the

commercial software tools. Instead, the algorithm can be trained using the training

data set to generate them. A detailed description of the HMM open-source toolbox

is available in [20, 21] for further information.

6.2.4 Drillstring simulation

According to [22], the modelling of lateral vibrations of drillstrings has been explored

since the mid-1960s. Analytical and finite element modelling approaches have been

the most widely used. Although initial attempts relied on closed-form analytical

solutions, the extreme complexity of vibrations and interactions with the well bore

set limits to this approach. Therefore, the latter approach has become more common

with the advancement of computer processing speeds but may be of limited use in

design exercises because of excessive simulation times [23].

Physical system modelling can be more effective when using an approach that

allows easy integration of components from different energy domains such as fluid,

electrical, thermal, and mechanical. A typical drillstring simulation involves, but is

not limited to, induction motors, fluid flows, structural vibrations, and heat transfer

submodels. Sometimes it can be cumbersome to simulate each mechanism or phe-

nomenon in their own domains and combine to get the overall output [24]. Although

it is feasible for certain scales and complexity levels, the computational cost may be
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massive when the system becomes larger and more complicated.

It is beneficial to bring all the domains into one common platform to simplify

the problem. Energy can be used to play the role of the ‘common currency’ in

this kind of situation. The bond graph method [23–25] uses a small set of generalized

elements to represent power storage, dissipation, boundary conditions, continuity, and

compatibility constraints. The element symbols and connection rules are the same

regardless of the energy domain, making multi-domain modelling straightforward.

Further details on bond graphs can be found in [23–25].

References [23, 26, 27] present drillstring bond graph simulations using the Newton-

Euler formulation and a body-fixed coordinate system. Rigid lumped segments were

connected to each other with axial, shear, bending, and torsional springs such that

the behaviour of the model approached that of a continuous system as the number of

elements increases. Figures 6.1a, 6.1b and 6.1c illustrate the first three types, while

the torsional spring can be considered as a similar spring to the one in Figure 6.1c

but with a rotational degree of freedom. These springs are analogues to the struc-

(a) Axial compliance (b) Shear compliance (c) Bending compliance

Figure 6.1: Bond graph element compliances

ture’s elasticity which are represented by capacitive (compliant) elements in the bond

graph.

A flexible nonlinear drillstring model developed based on Lagrangian dynamics is

also possible, as presented in [28]. The simulation included lateral bending, longitu-
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dinal motion, and torsional deformation dynamics. Because of the comparative ease

of extracting constraint and internal forces, a Newton-Euler formulation with lumped

segments is used in this paper.

The stress history at a specific location can be determined using the effort fluctua-

tions of the compliances in the bond graph that represent the springs in Figure 6.1a, as

was done in [28] and in the lumped segment bond graph models previously published

by the authors. That stress history can then be used in software such as SalomeMeca�

to perform fatigue estimation for multiaxial, non-proportional, and variable ampli-

tude MNV loading scenarios. SalomeMeca� is an open-source software that provides

considerable flexibility in performing FEA simulations. A detailed description of the

fatigue life estimation workflow is provided in [29].

In summary, this paper will leverage the bond graph approach, with lumped seg-

ments, to (1) represent a vertical drillstring physical apparatus, (2) generate training

data for a machine learning algorithm to predict vibration, (3) predict stress history

based on the physical system vibration that has been detected by the algorithm, and

(4) use the stress history in SalomeMeca� to give a fatigue prognosis.

6.3 Methodology

This section presents the methodology for developing the digital twin framework.

Figure 6.2 is a flow chart showing the integration of the dynamic model, machine

learning algorithm, physical system, and finite element post-processing into a digital

twin capable of vibration prediction and fatigue failure prognosis. The bond graph

simulations generated three types of vibrations: stick-slip, bit bounce, and whirling

at three different levels of severity: high (H), medium (M), and low (L). Nine different

parameter sets were used to generate the data sets. The synthetically generated data

158



Bond graph model
of the physical 

model

Stick-slip 
simulation

Bit-bounce 
simulation

Whirling 
simulation

MH L H M L H M L

Training 
data

Machine learning 
algorithm

Refined 
dynamic model

Load fluctuations

Fatigue life prognosis

Classified parameter set

Surface level 
measurements

FEM model
(SalomeMeca)

Physical system
(full-scale or 

laboratory scale)

Test data

Figure 6.2: Proposed digital twin framework

was used as the training data for the machine learning algorithm. Therefore, the

trained algorithm is capable of classifying the incoming surface monitoring measure-

ments originating from the physical model into one of the nine categories. Depending

on the classification, the bond graph is reconfigured with the relevant parameter set

and inputs to create that vibration scenario. The generated load fluctuation history
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from the bond graph is then used in the finite element model, which can prognose

the fatigue life of the drillstring. The following sub-sections provide a detailed step-

by-step description of the procedure.

6.3.1 The bond graph model and its function

The primary requirement of the bond graph is to simulate the potential drillstring

dynamics for a given set of boundary conditions and operating parameters. Also,

it should provide stress histories for fatigue life prognosis. Later damping, contact

spring and friction force, and axial drag forces must be computed within the model.

The number of elements can be decided based on the desired simulation speed and

the modes of vibration considered. Once the simulation is set up, the bit bounce,

stick-slip, and whirling scenarios can be created, and the corresponding surface-level

responses can be recorded. These data are used to train the machine learning algo-

rithms to classify unknown vibrations. These steps are described in detail in Sec-

tion 6.5. All the bond graph simulations and codes can be accessed through the

author’s online repository (https://github.com/mihiranpathmika).

6.3.2 The use of Hidden Markov Model (HMM) in surface

monitoring applications

HMM is a statistical Markov model in which the system being modelled is assumed

to be a Markov process [30] with ‘hidden’ states. Figure 6.3a illustrates the basic

concept of the function of the HMM. According to that, the unobservable states can

be indirectly studied by observing partially related incidents. P1 through P8 are

the respective probabilities of changing one state to another indicated by the arrows.

Knowing these prior probabilities, the user can deduce the likelihood of ‘hidden’
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states by looking at the observable incident. In the current study, the same concept
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Figure 6.3: Hidden Markov Model (HMM)

is proposed to be used to detect the hidden states of the drillstring. For example,

as illustrated in Figure 6.3b, the hidden states may be ‘Normal Operation’ and ‘Bit

Bounce’ while the observable incidents are two different vibration patterns that do

not carry a direct meaning. If the user can determine the probabilities P1 through

P8, the HMM can identify the most probable transition in states according to the

changes in vibration patterns observable from the ground level. This is done using

the Viterbi Algorithm. It is a dynamic programming algorithm for finding the most

likely sequence of hidden states (Viterbi Path) that results in a sequence of observed
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events, especially in the context of Markov information sources and HMMs [31]. The

concept illustrated in Figure 6.3 is used in the current study in classifying all three

vibration conditions (bit bounce, stick-slip, and whirling) and their respective severity

levels.

The user can train the HMM with different known vibration patterns for known

actual states downhole. This training part will be facilitated by the validated bond

graph model [21, 32, 33] as shown in Section 6.6.

6.3.3 Fatigue life estimation approach

SalomeMeca� [34] is used to estimate MNV loading fatigue damage. Geometry,

Mesh, CodeAster, and ParaVis are the software that serve 3D modelling, meshing,

solving, and post processing of finite element models. Geometry module facilitates

the development of 3D models and defining geometrical entities that support the

meshing process in the Mesh module. Mesh module provides enhanced flexibility

in meshing by providing better control of the meshing parameters. The solver used

is CodeAster� which facilitates the definition of materials, load assignments, spec-

ifying boundary conditions, fatigue life estimation, and numerical solving. Finally,

ParaVis� [35] was used to post-process the results generated by CodeAster�.

6.4 Physical system

This section applies the proposed methodology on a laboratory-scale apparatus as

proof of concept. The main intention here is to showcase that training data for a

machine learning algorithm, in this case for a slender vibrating structure, can be

generated using a dynamic simulation model. This approach is useful when it is not

feasible to generate reliable data from the physical structure in cases such as the
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down-hole vibration of a drillstring.

6.4.1 Apparatus design

As the initial step, the apparatus was designed as illustrated in Figures 6.4 and 6.5.

Further details of the design and CAD models can be accessed through the author’s

online repository. The drill bit consists of a flat bottom with a discontinuous cam

profile that meshes with a similar profile on the base (hole bottom) as shown in Figure

6.6. Clockwise rotation of the bit will cause axial impacts resembling bit bounce

vibration. When rotated in the opposite direction, this ‘chatter mechanism’ locks

and the flexible coupling undergoes high torsional deformation and axial shortening,

lifts the drill bit and suddenly releases it from the hole bottom. This motion resembles

the stick-slip type of vibration. Further, the flexible coupling provides damping in

the drillstring.

The platform, where the motor is mounted, can be moved vertically up or down

using threaded rods and lock nuts. This facilitates axial thrust control, mimicking

the WOB of a drillstring. Therefore, the apparatus can also be operated without the

chatter mechanism and the flexible coupling to get stick-slip. The flexible coupling

approach was used to get a more distinct stick-slip motion. With the addition of

the WOB, the flexible coupling tends to move away from the central axis, causing a

mass imbalance. This promotes the forward whirling action of the rotating string.

Further, rubber skins attached to the flexible coupling holder create an increased

friction force between the wall and the drillstring, which leads to backward whirling.

Figure 6.7a depicts the fabricated apparatus ready for data acquisition, and Figure

6.7b illustrates the bond graph simulation’s 3D visualization.
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6.4.2 Instrumentation and data acquisition

The physical apparatus was instrumented to gather measurements that are typically

available on the rig floor during drilling. The vibration of the platform, motor current
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fluctuation, and rotational speed fluctuation with lateral vibration of the rotating ta-

ble are assumed to have a correlation with the downhole vibration conditions. These

measurements must be acquired as a time series to feed the machine learning algo-

rithm as testing data.
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(a) “Chatter” mechanism (b) Flexible coupling

Figure 6.6: The construction of key components

The vibration of the platform was acquired using a Kistler� K-Shear general-

purpose accelerometer. The angular speed fluctuation of the Rotating Table was

captured using an AccuRange 200� Laser Measurement Sensor and an optical en-

coder. The accuracies and ranges of the sensors used are presented in Table 6.1.

The voltage across a resistor in series with the gear motor is directly proportional to

Table 6.1: Specifications of the sensors used

Sensor Type Make Specifications
Accelerometer Kistler� K-Shear 100 g (Max range)
Accelerometer Kistler� K-Shear 500 g (Max range)

Displacement Sensor AccuRange� 200
50. 8 mm (Range)
50.8 µm (Linearity)

the current demand fluctuation of the motor. Based on this assumption, the motor

current fluctuation was measured as the third variable. National Instruments� (NI)

USB-6008 data logger, and LabVIEW� software were used for data acquisition using

these three channels. The LabVIEW� program used is shown in Figure 6.8. The

data acquired is presented in Section 6.8.
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Figure 6.8: The LabVIEW� program for data acquisition

6.5 Development of the simulation model

6.5.1 Lumped segment submodels and connections

The bond graph rigid body submodel used to simulate the actual drillstring is shown

in Figure 6.9a. The corresponding points of A, B, and G indicated in Figure 6.9a are

depicted in Figure 6.9a with a total of nine elements used, successfully capturing the

first two natural frequencies of the various vibration types. In Figure 6.9a, One Junc-

tions (1) represent velocity nodes where efforts (i.e. forces and torques) sum to zero

and Zero Junctions (0) represent effort nodes that enforce velocity constraint equa-

tions. For example, the circled 0 junction, with the directed power bonds, enforces the

relative velocity equation va = vG + vA|G, in vector form, where the relative velocity

term is generated by a cross product of the relative position vector and angular veloc-

ity. The “R01” submodels are coordinate transforms. The developed bond graph can

be reconfigured and customized to simulate a given structure by conveniently modi-

fying the number of segments and (or) by including or suppressing certain degrees of

freedom. The stiffness values can be determined following the procedure presented in

[36].

The friction effects can be modelled by coding the friction model shown in Figure
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Figure 6.9: The construction of a bond graph element

6.9 with the constitutive law of the modeler’s choice. In this paper, a model presented

in [37] is used, which is illustrated in Figure 6.10. Sample models are available for

potential users and can be accessed through the online repository. The Stribeck

friction, denoted as FS, displays a negative slope when velocities are low. Meanwhile,
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Figure 6.10: The friction model used in the bond graph

the Coulomb friction, FC , produces a constant force at all velocities, and the viscous

friction, FV , resists motion with a force that is directly proportional to the relative

velocity. The sum of the Coulomb and Stribeck frictions in the vicinity of zero velocity

is commonly known as breakaway friction, Fbrk. The friction can be estimated using

the following equations:

F =
√
2e(Fbrk − FC) · exp(−

(
v

vSt

)2

) · v

vSt
+ FC · tanh

(
v

vCoul

)
+ fv (6.1)

vSt = vbrk
√
2 (6.2)

vCoul =
vbrk
10

(6.3)

v = vR − vC (6.4)
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where F is friction force, FC is Coulomb friction, Fbrk is breakaway friction, vbrk

is breakaway friction velocity, vSt is Stribeck velocity threshold, vCoul is Coulomb

velocity threshold, vR and vC are absolute velocities of the two bodies in contact, v

is relative velocity, and f is viscous friction coefficient.

6.5.2 Flexible coupling modelling

The flexible coupling plays a major role in transferring the torque to the drill bit

while allowing significant torsional deflection, creating a shortening effect that couples

torsional and axial motion, and working as a vibration attenuator. Its nonlinear

behaviour was characterized through a simple experiment. The shortening effect and

the torsion with the increasing angle of twist θ are presented in Figure 6.11 and their

models are presented in Equations 6.5 and 6.6 respectively. The axial shortening

c (m/rad) and reaction torque τ (Nm/rad) are given by

c = 0.0013 θ3 + 0.0038 θ2 + 0.0005 θ + 0.00005 (6.5)

τ = −0.1342 θ3 + 0.3088 θ2 + 0.0699 θ − 0.0049 (6.6)

where θ (rad) is the angle of twist. Equation 6.5 was time-differentiated and coded

into a Modulated Source of Flow (MSf), and Equation 6.6 was coded into a modulated

torsional bending stiffness C element as shown in Figure 6.12. Figure 6.12 depicts

an interface model that connects adjacent rigid body segments by computing relative

velocities of shear, axial, bending, and torsional springs. Interface elements other than

the one at the flexible coupling are the same, except they do not have a modulated

torsional stiffness or MSf with axial shortening effect. The interface models consist

of four modulated transformers (MTF). Transformer, or TF, elements model a power
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Figure 6.11: Characterization of the flexible coupling

conserving transformation wherein effort variables are related to each other by a

parameter, and flow variables are related to each other by the same parameter. For

example, meshing gears would be modelled as a TF, with input and output torque and

angular velocities related by the same gear ratio. An MTF has a varying parameter

that is provided by a modulating signal. The MTFs in the interface element multiply

velocity vectors in the frame of one body by a rotation matrix, to transform the

velocity to the inertial frame. The next MTF transforms the velocity from inertial

to the frame of the adjacent body. This allows a calculation of velocity of point B

on one body relative to point A on the adjacent body, by subtracting two vectors in

the same frame. The C elements (with parallel damping elements R) integrate the
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relative velocity to get relative displacement components (translational or angular,

as appropriate), which are multiplied by the spring stiffnesses to get internal efforts.

These efforts maintain the shape of the rod, while creating stresses used in later fatigue

analysis. The bond graph model can simulate bit bounce, stick-slip, and whirling

vibrations. The simulated data was stored as comma-separated values (CSV) files for

later use as training data for the machine learning algorithm.
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6.6 Vibration classification

6.6.1 The machine learning algorithm

The HMM introduced in Section 6.3.2 is applied in the vibration status classification

of the apparatus. As illustrated in Figure 6.2, the classification code developed based

on the HMM algorithm can identify the type of vibration and its severity level. A brief

description of the workflow of the code is presented in this section. The explanation

is in line with the code presented in the author’s online repository and in Appendix

C.

The HMM introduced in Section 6.3.2 is applied to the vibration status classifica-

tion of the apparatus. As illustrated in Figure 6.2, the classification code developed

based on the HMM algorithm will identify the type of vibration and its severity level.

A brief description of the workflow of the code is presented in this section. The

associated code is presented in the author’s online repository.

This code is solely based on the open-source HMM toolbox presented in [20]. The

entire code consists of ten sections. The first nine sections are to train the algorithm

for the nine different vibration conditions illustrated in Figure 6.2. The tenth section

of the code is responsible for classifying the incoming data strings to the relevant

‘basket’.

The simulations were configured to generate training data for the nine vibration

conditions. The experimental apparatus was then used to create the corresponding

physical conditions for actual measurement and application of the machine learning

algorithm. The testing data for bit bounce and stick-slip vibrations were taken for

one amplitude level (medium) and then scaled to get the upper and lower extremes of

vibration amplitudes. For whirling, the readings were taken for three different am-
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plitude levels because the number of well-bore interactions is the characteristic be-

haviour of this type of vibration, and is different at different amplitude levels. The

motor current or the angular speed does not show a considerable fluctuation for this

type of vibration. It should be highlighted that the angular speed at the surface

level was not giving a considerable fluctuation for different downhole vibrations of

the apparatus used. This is because of the softness of the flexible coupling. Therefore

only the axial vibration and the motor current fluctuation contributed significantly

to the classification process, which was sufficient to distinguish the nine vibration

conditions.

Both training and testing data were scaled prior to use in the algorithm. In

this way, all the training and testing data can be brought in to a common scale, so

pattern recognition is convenient to perform. The training process follows an iterative

approach which is not computationally extensive. In the algorithm, the user can

control the number of different layers in the 3D matrix. For example, it may represent

different data sets from similar drillstrings. Also, the user can specify the number of

Gaussian mixtures and the number of hidden states. The algorithm assumes prior

and transition probabilities and optimizes them using the Expectation Maximization

(EM) algorithm. When the calculated log-likelihood becomes consistent, the iteration

stops, and it is considered a trained algorithm for the given data set. Figure 6.13 is the

training curve for the algorithm, for the case of bit bounce vibration with a medium

amplitude level. Once the algorithm is trained using training data, it generates some

parameters unique to the data set that is used to train.

The classification is done based on the log-likelihood value estimated for an in-

coming test data string from the physical apparatus. This data string consists of the

three readings taken simultaneously from the accelerometer, displacement sensor, and

the motor current reading. The displacement sensor captures the response of angular
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Figure 6.13: HMM training curve

velocity change using the optical encoder. The classifier takes all the data strings

and computes the log-likelihood using the nine trained algorithms. In other words,

it evaluates the similarity of the incoming test data strings to the respective states.

The state which is corresponding to the maximum mean log-likelihood is presented as

the vibration state of the drillstring during that time period. Once this is identified,

the corresponding configuration of the bond graph can be selected to simulate and

generate the relevant stress history for the fatigue life prognosis. These bond graph

simulation stress histories can be made readily available as a database for a rapid

fatigue prognosis.

6.7 Fatigue life prognosis

This section presents the extraction of the loading history from the bond graph, re-

configured after classification of physical system vibration, and the subsequent fatigue

life prognosis procedure. The maximum stress concentration occurs at the joint be-

tween the drill bit and the drillstring due to the sharp transition of cross-section.

This focused area was selected for further analysis.

The load fluctuation can be captured using the bond graph. Bending and shear-

ing loads, each on two orthogonal planes, with axial and torsional loads, are the

six load fluctuations that can be fed into SalomeMeca� as time-series data. The
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load fluctuations were extracted from the bond graph capacitive elements that rep-

resent the bending, torsional, shear, and axial compliances at the joint considered.

The extracted load fluctuations for high amplitude whirling simulation are presented

in Figure 6.18. Meshing was done using the Mesh Tool in SalomeMeca� Netgen

1D-2D-3d, and the meshed geometry is shown in Figure 6.19a. For convenience in

defining the aforementioned loadings, the ‘loading horns’ shown in Figure 6.19 were

used. Figure 6.19 illustrates the fatigue prognosis result for high amplitude whirling

vibration performed throughout 20 seconds while the angular speed of the drillstring

is 100 rpm (10.4 rad/s). A complete MNV fatigue analysis workflow is available in

[29] for further information.

As expected, the stresses acting on the steel moving parts of the apparatus in the

laboratory are not severe, hence a substantial fatigue life remains. The fatigue life

estimation methodology using SalomeMeca� was verified by comparing it with the

results of a simulation performed using a commercial code.

6.8 Results

6.8.1 Training and testing data sets

Figure 6.14 illustrates the comparison of the measurements: motor current and axial

acceleration for stick-slip and bit bounce vibration conditions. Simulated data is

presented in the left column, while experimental data is presented in the right column.

Figures 6.14a, b, e, and f represent the responses for stick-slip (SS) vibration with

medium amplitude (M), while Figures 6.14c, d, g, and h represent the responses

for bit bounce (BB) vibration in the same amplitude level. Figure 6.15 depicts the

responses for the whirling motion at low (L), medium (M), and high (H) amplitudes.
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Different patterns of axial accelerations at different amplitude levels are evident. The

abbreviations TR and TST stand for ‘training’ and ‘testing’, respectively. In both

Figures 6.14 and 6.15, all the simulation results are scaled for comparison purposes

while preserving the characteristic features.

6.8.2 Classification

The code does the classification based on the average log-likelihood value computed

for a given sample testing data set. This scoring method selects the best candidate

Figure 6.14: Training and testing data for stick-slip and bit bounce vibrations
Note: The x axes represent the number of samples
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among the trained algorithms. Figure 6.16 represents a sample classification of low

amplitude whirling vibration. The algorithm has shortlisted SS-M, WH-H, WH-M

and WH-L. The average log-likelihood for the given test data set has been calculated

with the trained algorithm as shown in Table 6.2. The numerical values indicate that

the average log-likelihood values are close for the three types of whirling and medium

stick-slip vibration conditions, while the maximum among them is assigned to low

Figure 6.15: Training and testing data for whirling vibrations
Note: The x axes represent the number of samples. Motor current (I) and

Acceleration (a) are shown in blue and orange respectively.
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Figure 6.16: Log-likelihood estimation for each data string

whirling vibration.

As shown in the confusion matrices illustrated in Figures 6.17a and 6.17b, the

classification algorithm successfully detects almost all the vibration conditions and the

corresponding severity levels. Ten trials were performed for each of the nine vibration

conditions, and the detected vibration by the classifier and the corresponding actual

vibration conditions are compared. The numbers in the diagonal of the confusion

matrix represent the number of successful outcomes out of ten trials. As indicated,

the medium amplitude whirling sometimes gets misclassified as high or low whirling

when no noise is added. When noise was added as a random number matrix with

a maximum amplitude of 10% of the mean value of each reading, stick-slip and bit

bounce were still accurately classified, while medium whirling at some trials was
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Table 6.2: Average log-likelihood value calculation result

Vibration condition
Average

log-likelihood
value

High stick-slip -4.2595
Medium stick-slip 2.2963
Low stick-slip -55.4190
High bit bounce -7.3777
Medium bit bounce -10.0500
Low bit bounce -75.746
High whirling 2.6238
Medium whirling 2.6293
Low whirling 2.6593

classified as medium stick-slip. These performance evaluations were done for the

testing data illustrated in Figure 6.14.

6.8.3 Stress history extraction and fatigue life prognosis

Once the classification algorithm selects the most probable vibration condition, the

bond graph simulation with the respective parameter set was run to extract the

load fluctuations following the procedure mentioned in Section 6.7. The load history

extracted from the element interface adjacent to the drill bit element is presented

in Figure 6.18. The shear impulses give the highest fluctuation in response to the

frictional impulses due to the collision with the wellbore. SalomeMeca� can handle

this complex combined loading situation to determine the remaining fatigue life. The

uneven distribution of remaining fatigue life on the drillstring is evident in Figure 6.19,

which is an indication of random loading and the superposition of the six different

loading fluctuations. The remaining lifetime is near infinite due to the low stress

fluctuations on the drill string. Nonetheless, it is clear that the digital twin framework

is able to calculate the fatigue life incorporating complex geometric features and stress
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concentrations, using the simulation-based estimation of loads.
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Figure 6.17: Performance evaluation
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Figure 6.18: Load fluctuations at the drill bit-string connection

6.9 Discussion

The novel approach introduced in this study is capable of developing and customiz-

ing a digital twin. Successful implementation of the proposed framework has the

potential to reduce reliance on measurement while drilling MWD for vibration prob-

lem detection. When the process is implemented for a full-scale drillstring, the data

downloaded after tripping operations can be utilized to validate the overall digital

twin. Improved real-time fatigue prognosis can increase the reliability of the drill-

string, which will reduce the risk involved in the entire project. Drillstring failures

have a major impact on the overall project cost, and more careful monitoring and

proactive, corrective, and preventive actions will increase the drillstring’s useful life-

time. Moreover, as mentioned in [38], rig downtime due to MWD tool failure carries

enormous risks, especially in challenging environments. A digital twin can be imple-
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(a) Generated mesh

(b) Fatigue life estimation

Figure 6.19: Fatigue life prognosis at the drill bit using SalomeMeca�

mented as a secondary safety layer.

If a particular vibration is taking place in the lower part of the drillstring, the

observations made at the surface level will depend on numerous factors such as the

well depth, fluid flow speed, fluid rheology, speed of rotation, WOB, pipe geometry,

drillstring orientation, type of drill bit, and the nature of the formation being drilled,

to name a few. If these observations are only classified based on expert judgment

and intuition, an inherent risk will be introduced due to potential human error. This

motivates the implementation of a digital twin, using the framework of this paper,

which has the capability to learn both through experience as well as running ‘what-if’

scenarios.
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As with any measurement-based diagnostic approach, robustness of the machine

learning algorithm training and predictions can be improved with a greater number of

more accurate sensor inputs. A balance must be struck between accuracy of the pre-

diction, and cost associated with increased sensing capability. In the current study,

lateral acceleration of the rotary table could be added as an additional channel, in-

corporated into the real-time measurement data string. The use of a lower-powered

motor may increase the torque fluctuations during stick-slip, thereby reducing classi-

fication uncertainty.

As described in [26] and [39], the bond graph of the digital twin could be expanded

to include the effects of the drilling fluid. More experimentation could give a more

nonlinear contact model for ‘bit-rock’ interaction and wellbore collisions.

When the digital twin is implemented for a particular drillstring, the data logged

during tripping operations can be utilized to validate the overall digital twin as real-

world data can be acquired with less complexity compared with deep wells. Finer

adjustments to the digital twin can be made during this period which will be beneficial

in the long run. In this way, confidence in the bond graph simulation can be improved

as the machine learning algorithm solely depends on the data generated by the bond

graph at higher depths.

There may be some practical limitations to using purely synthetic data as the

data is generated in a near-perfect environment. Real-world data acquired through

instrumentation will carry numerous noise effects. This is somewhat indicated in the

results presented in Figure 6.14. As mentioned previously, some sensor noise can be

artificially introduced into the virtual measurements, without seriously compromising

the prediction ability. Therefore, more work is required to quantify the confidence of

the classification algorithm in the face of varying amounts of noise or sensor error.

Open questions remain about the potential for model updating when operating
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conditions or the state of the system change. If for example sensor data showed a

sudden change in amplitude or frequency content, this could be due to a previously-

learned vibration condition, or to non-problematic changes such as a new rock forma-

tion. It could also be an artefact of sensor failure. In future, training will be expanded

to include not only anticipated vibration patterns but also things like sensor faults

and changes in the environment with which the system interacts.

6.10 Conclusions

The current study proposes a bond graph, finite element modelling, and machine

learning-based digital twin development framework for oilwell drillstring fatigue life

prognosis where direct stress measurements are almost impractical. To detect vibra-

tion problems in a physical system, a dynamic simulation model with virtual sensors

was created and used to train a machine learning algorithm. The algorithm analyzed

vibration measurements from the physical system and identified the type and inten-

sity of vibration. The simulation model was then adjusted to reproduce the vibration

and generate stress histories for fatigue life analysis in a finite element model. The

concept was verified to be feasible in classifying the physical system’s downstream

vibrations based on the type and severity level through surface-level response moni-

toring. Finally, the study identifies and recommends potential improvements to make

the framework applicable in real-world applications.

6.11 Acknowledgement

This work was financially supported by the Natural Sciences and Engineering Re-

search Council (NSERC) of Canada and Memorial University of Newfoundland (MUN),

186



Canada. The authors thankfully acknowledge the continuous support provided by the

Drilling Technology Laboratory (DTL) research group, the Intelligent Systems Lab-

oratory, and the Mechanical Division of Technical Services at MUN, Canada.

References

[1] M. E. Cobern, “Downhole vibration monitoring & control system,” tech. rep.,

APS Technology, Inc.(US), 2005.

[2] H. Mostaghimi, J. R. Pagtalunan, B. Moon, S. Kim, and S. S. Park, “Dynamic

drill-string modeling for acoustic telemetry,” International Journal of Mechanical

Sciences, vol. 218, p. 107043, 2022.

[3] Z. Zhang, Y. Shen, W. Chen, J. Shi, W. Bonstaff, K. Tang, D. Smith, Y. Arevalo,

B. Jeffryes, et al., “Continuous high frequency measurement improves under-

standing of high frequency torsional oscillation in north america land drilling,”

in SPE Annual Technical Conference and Exhibition, pp. 01–15, Society of

Petroleum Engineers, 2017.

[4] Y. Zha and S. Pham, “Monitoring downhole drilling vibrations using surface

data through deep learning,” in SEG Technical Program Expanded Abstracts

2018, pp. 2101–2105, Society of Exploration Geophysicists, 2018.

[5] T. R. Wanasinghe, L. Wroblewski, B. K. Petersen, R. G. Gosine, L. A. James,

O. De Silva, G. K. I. Mann, and P. J. Warrian, “Digital twin for the oil and

gas industry: Overview, research trends, opportunities, and challenges,” IEEE

Access, vol. 8, pp. 104175–104197, 2020.

[6] T. Ritto and F. Rochinha, “Digital twin, physics-based model, and machine

187



learning applied to damage detection in structures,” Mechanical Systems and

Signal Processing, vol. 155, p. 107614, 2021.

[7] M. G. Mayani, M. Svendsen, S. Oedegaard, et al., “Drilling digital twin success

stories the last 10 years,” in SPE Norway One Day Seminar, pp. 01–13, Society

of Petroleum Engineers, 2018.

[8] DAU, “Defense acquisition glossary,” 04 2021.

https://www.dau.edu/glossary(Accessed on 02/15/2023).

[9] Siemens, “Digital twin,” 2022. https://www.plm.automation.siemens.com (Ac-

cessed on 02/15/2023).

[10] J. Domone, “Digital twin for life predictions in civil aerospace,” Atkins White

Paper. Digital twin can potentially integrate all the data between previous gener-

ation vehicles and current vehicle concept in its digital model, 2018.

[11] M. Samnejad, M. Gharib Shirangi, R. Ettehadi, et al., “A digital twin of drilling

fluids rheology for real-time rig operations,” in Offshore Technology Conference,

pp. 01–15, Offshore Technology Conference, 2020.

[12] M. Gholami Mayani, R. Rommetveit, S. I. Oedegaard, and M. Svendsen,

“Drilling automated realtime monitoring using digital twin,” vol. Day 2 Tue,

November 13, 2018 of Abu Dhabi International Petroleum Exhibition and Con-

ference, 11 2018. D021S030R004.

[13] V. Dubinsky, H. Henneuse, and M. Kirkman, “Surface monitoring of downhole vi-

brations: Russian, european, and american approaches,” in European Petroleum

Conference, Society of Petroleum Engineers, 1992.

188



[14] H. Rafezi and F. Hassani, “Drilling signals analysis for tricone bit condition

monitoring,” International Journal of Mining Science and Technology, vol. 31,

no. 2, pp. 187–195, 2021.

[15] M. Klaic, Z. Murat, T. Staroveski, and D. Brezak, “Tool wear monitoring in rock

drilling applications using vibration signals,” Wear, vol. 408, pp. 222–227, 2018.

[16] R. Saadeldin, H. Gamal, S. Elkatatny, and A. Abdulraheem, “Intelligent model

for predicting downhole vibrations using surface drilling data during horizontal

drilling,” Journal of Energy Resources Technology, vol. 144, no. 8, 2022.

[17] R. W. Spencer, “Detection of downhole vibrations using surface data from drilling

rigs,” Apr. 1 2014. US Patent 8,688,382.

[18] Datagen, “Synthetic data: The complete guide,” 2022. https://datagen.tech

(Accessed on 02/15/2023).

[19] S. Nikolenko, Synthetic data for deep learning, vol. 174. Springer, 2021.

[20] K. Murphy, “Hidden markov model (hmm) toolbox for matlab,” 2005.

https://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html (Accessed on

02/15/2023).

[21] M. Galagedarage Don and F. Khan, “Process fault prognosis using hidden

markov model–bayesian networks hybrid model,” Industrial & Engineering

Chemistry Research, vol. 58, no. 27, pp. 12041–12053, 2019.

[22] P. Spanos, A. Chevallier, and N. Politis, “Nonlinear stochastic drill-string vibra-

tions,” J. Vib. Acoust., vol. 124, no. 4, pp. 512–518, 2002.

189



[23] D. G. Rideout, A. Ghasemloonia, F. Arvani, and S. D. Butt, “An intuitive and

efficient approach to integrated modelling and control of three-dimensional vibra-

tion in long shafts,” International Journal of Simulation and Process Modelling,

vol. 10, no. 2, pp. 163–178, 2015.

[24] A. Mukherjee, R. Karmakar, and A. K. Samantaray, Bond graph in modeling,

simulation and fault identification. IK International New Delhi, 2006.

[25] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System dynamics: model-

ing, simulation, and control of mechatronic systems. John Wiley & Sons, 2012.

[26] M. Sarker et al., Modeling and simulation of vibration in deviated wells. PhD

thesis, Memorial University of Newfoundland, 2017.

[27] A. Ghasemloonia, G. Rideout, and S. Butt, “The effect of weight on bit on the

contact behavior of drillstring and wellbore,” in Proceedings of the 2010 Spring

Simulation Multiconference, pp. 1–7, 2010.

[28] E. P. Nj̊al Kjærnes Tengesdal, Christian Holden, “Component-based modeling

and simulation of nonlinear drill-string dynamics,” Journal of Offshore Mechan-

ics and Arctic Engineering, vol. 144, 4 2022.

[29] M. Galagedarage Don and G. Rideout, “Fatigue life prognosis of an oil well drill

string using 3d lumped segment bond graph and finite element models,” 2023.

[30] D. W. Stroock, An introduction to Markov processes, vol. 230. Springer Science

& Business Media, 2013.

[31] L. Rabiner and B. Juang, “An introduction to hidden markov models,” ieee assp

magazine, vol. 3, no. 1, pp. 4–16, 1986.

190



[32] M. G. Don and F. Khan, “Dynamic process fault detection and diagnosis based on

a combined approach of hidden markov and bayesian network model,” Chemical

Engineering Science, vol. 201, pp. 82–96, 2019.

[33] M. Galagedarage Don and F. Khan, “Auxiliary codes for fault prognosis of ten-

nessee eastman process using a hybrid model (cpl1. 0),” SoftwareX, vol. 10,

p. 100309, 2019.

[34] CodeAster, “Salome-meca - codeaster (accessed on 02/15/2023),” 2023.

https://code-aster.org.

[35] M. Siavelis, “Paraview med for windows to open codeaster results – codeaster

for windows,” 2023. https://code-aster-windows.com (Accessed on 02/15/2021).

[36] M. Galagedarage Don and G. Rideout, “Fatigue failure prognosis of an oil

well drill string using a lumped segment bond graph model and finite element

method,” in ICBGM’2021, (San Diego, California USA), pp. 1–14, Society for

Modeling & Simulation International (SCS), 2021.

[37] B. Armstrong and C. de Wit, “Canudas,” friction modeling and compensation”,

the control handbook,” 1995.

[38] MWD Failure Rates Due to Drilling Dynamics, vol. All Days of SPE/IADC

Drilling Conference and Exhibition, 02 2010. https://doi.org/10.2118/127413-

MS.

[39] M. Galagedarage Don and G. Rideout, “An experimentally-verified approach for

enhancing fluid drag force simulation in vertical oilwell drill strings,” Mathemat-

ical and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 197–228,

2022.

191



Chapter 7

Summary and Future Research

This section summarizes the outcomes of the overall project, which align with the

main objectives and contributions presented in Chapter 1. The generalized digital

twin development framework proposed through this study is illustrated in Figure 7.1.

The framework can be employed to develop a digital twin of a vertical well drill

string and any vibrating structure in general. The reader can follow the process in

Figure 7.1 starting from the block ‘physical system’. Sections from 7.1 to 7.3 explain

the important steps followed and the procedure to follow in developing a digital twin.

Potential research initiatives are highlighted towards the end of the chapter.

7.1 Digital twin parameterization

As mentioned in Subsection 1.2.1, Objective 1 is primarily on parameterizing the

backbone simulation of the digital twin framework.

Bond graph simulation of the drill string generates training data for the machine

learning algorithm. Therefore, two pieces of information are required when adapt-

ing the digital twin framework illustrated in Figure 7.1 to a given application. As
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Figure 7.1: The generalized digital twin development framework

mentioned in Objective 1, they are 1.) the compliance values of the corresponding

bond graph elements and 2.) the drilling fluid drag forces acting on the bond graph

elements.

API 5D drill pipe and related structural components were selected for this study.

Determining accurate stiffness values is not straightforward in both analytical and

experimental approaches. Therefore, an FEM simulations-based methodology was

introduced and applied to determine the compliance values for an API 5D drill pipe,

a collar, and a stabilizer. The core of the methodology involves virtual experiments

using finite element models and precision mapping of the results using drafting soft-
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ware. As a verification of the methodology, it was applied to a tubular beam and

compared with the analytical results for static and dynamic behaviour. The developed

methodology is an efficient and accurate alternative to theoretical calculations with

approximations and expensive experimental evaluation. These finding are presented

in Chapters 4 and 5.

The second part of Objective 1, presented in Chapter 3, was to develop a method-

ology to determine the lateral and axial drag forces and apply the methodology to

model the drag forces on an API 5D drill pipe BG element. The drill pipe geometry

and the rheology of the drilling mud were considered in developing these models.

An FSI simulations-based approach was taken with Design of Experiments, and the

simulation was validated using a laboratory-scale experimental setup designed and

fabricated in-house. The bond graph with drag force models implemented proved

that the fluid damping effect should no longer be neglected as done in the literature

and has a considerable effect on the drill string vibration and hence the failure due

to fatigue.

7.2 Enabling the digital twin to capture vibrations

in 3D space and equip with tools for fatigue

prognosis

The developments represented by the block ‘Bondgraph model of the physical twin’

of Figure 7.1 are presented in Chapter 5. They enable the digital twin framework to

capture vibrations in 3D space. Although the 2D bond graph introduced in Chapter 4

is efficient in simulating bending vibrations, it omits the torsional and whirling vibra-

tions, which are highly contributing factors to a fatigue failure of a drill string. This
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also enables the simulation of stick-slip, bit-bounce, and forward-whirling vibrations

with a comparatively low requirement of computation power.

Fatigue failure prognosis using the MNV approach is another major improvement

introduced to the digital twin framework presented in Chapter 5. SalomeMeca� was

used and a detailed description of the workflow is presented for the benefit of future

researchers.

7.3 Enabling the digital twin to detect and eval-

uate downhole vibrations using surface level

measurements

Recently, a number of initiatives have been made to monitor drill string vibration

behaviour from the surface. However, none of the research has employed a digital

twin method to separate out various vibration types and their intensities, followed

by an MNV fatigue study. The centre blocks of Figure 7.1 all the way to the block

‘Fatigue life prognosis’ represent this value addition to the digital twin framework.

A bond graph, FEM, and machine learning-based digital twin was proposed for

predicting the life of an oil well drill string. The proposed framework was imple-

mented on a lab-scale apparatus, and the viability of the idea was demonstrated.

The apparatus was designed and manufactured in-house. Surface level responses for

down hole vibrations were captured using an accelerometer, an optical sensor, and a

voltage measurement. They were used to measure the vertical acceleration, the angu-

lar speed, and the motor torque respectively. The identification of the characteristic

responses related to downhole vibrations and the appropriate selection of the sensors

to capture them were identified as key steps of the process. The machine learning
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algorithm was trained using bond graph simulation-generated training data which

is one of the unique features of this research. The testing data which are coming

from the measurements were used by the machine learning algorithm to predict the

downhole vibrations along with its severity.

7.4 Demonstrating the ability of the framework to

be used as an optimization tool

Using the developed methodology, a fatigue life optimization of drill collars of a

vertical drill string is presented in Chapter 5. The BHA of a vertical-well drill string

was examined for maximum fatigue damage considering the location of two stabilizers

by employing a 3D bond graph simulation and finite element MNV fatigue simulation

using SalomeMeca�. It was found that the maximum fatigue damage of drill collars

is principally controlled by the distance D1 from the drill bit to Stabilizer 1 in the

scenario considered. This methodology has the potential to be used in minimizing

the fatigue damage due to structural vibrations.

7.5 Further work

While this study achieved all the objectives listed in Chapter 1, it opens up several

opportunities to conduct further research.

Only API 5D drill pipes were used in developing the damping and axial drag

models that are described in Chapter 3. Further research can be done to estimate the

damping effect on drill pipes with different geometries without completely re-deriving

the models. In other words, the drill pipe diameter can be taken as one variable

in addition to the five variables considered. This will be highly beneficial to the
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community who are working with cascaded models to simulate fluid conveying pipe

vibrations in an annular space. Dimensional analysis (DA) coupled with DOE can be

utilized to reduce the number of experiments drastically while maintaining accuracy.

Further, in addition to the validation of the FSI simulation, a complete experimental

results-based model can be developed based on the similitude approach.

The experimental findings discussed in Chapter 3 offer some unique characteristics

of a fluid-carrying pipe vibration damping. As demonstrated in Figures 3.21 and

3.14, respectively, the form of the damping curve with increasing velocity suggests a

typical shape for both Newtonian and non-Newtonian fluids, which should be explored

further. A vital contribution will also come from exploring the effect of different-sized

rock cuttings on drill string damping. The effect of air bubbles is another important

aspect that has never been studied. After enriching the damping models with the

aforementioned improvements, the damping and axial drag models may be applied

to a directional well bond graph model to further study the nature of vibrations.

The present study exclusively concentrates on optimizing fatigue life through

strategic placement of stabilizers within drill collars. However, other factors may

influence fatigue life, such as WOB and rotary speed of the drill string. A more

comprehensive study incorporating these factors, followed by a DOE procedure and

necessary fatigue life estimations, can be undertaken. Additionally, it would be in-

triguing to investigate the impact of the varying total length of the drill string and the

rheological properties of the drilling fluid on fatigue damage by incorporating them

in the design of experiments.

The fatigue prognosis does not yet incorporate the physical and chemical compo-

sition of the downhole environment, nor the washouts resulting from contact with the

wellbore. However, SalomeMeca� software has all the necessary capabilities for such

advancements. This will create several opportunities for further research to improve
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and develop the existing work into a commercially viable product. The entire pro-

cess, including sensor configuration, classification, and fatigue failure prognosis, can

be further refined and integrated into a single standalone software package. The data

set produced by the bond graph for machine learning algorithm training and fatigue

failure forecasting can be made easily accessible for fast processing and use in future

research and industrial applications.

There is a lot of potential to increase the precision of the suggested digital twin

framework with a deeper understanding of the hoist and rotary motor behaviours of

a drilling rig. To mimic a more exact response of the motors to various downhole

vibrations, a rigorous motor simulation is necessary. A comprehensive motor simu-

lation can be used to refine the rotary effort source in the bond graph to get more

sophisticated responses of the motors for different types of vibrations that occur at the

downhole. This can be supported by employing software such as ANSYS Maxwell® .

The induction motors can be effectively simulated based on vendor details and/or by

doing physical measurements. Through the case study presented in Chapter 6, it was

understood that the motor current fluctuation can give characteristic surface level

responses even with the existing bond graph motor model. Further fine tuning of the

motor model will give rise to better performance of the machine learning algorithm

even in a more complex combined vibration situation.

***
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Appendix (A): Matlab® Code for
fatigue life prognosis

Matlab code for fatigue prognosis

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 Fatigue Life Prognosis Matlab Code

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %Preprocessing and normalizing of Axial and Bending force/

Moment variation

5 load('InitialData.mat');

6 A = Tim_1_Axi_2_Ben_3;% Time , Axial , and Bending in the

columns respectively

7 Norm_Ben = A(1:8940 ,3);%/abs(max(A(1:8940 ,3))); % The

Bending moment CAN BE made to be oscillating about 1

and -1.

8 %But the FEM analysis is for 1 N m

so need not to do here

9
10 %%%%%%%%%%%%%%%%%%%%% Enter the VM stress of the point of

interest here %%%%%%%%%%%%%%%%%%%%%%%%%%

11 prompt = 'Enter the maximum von Mises stress of the point

of interest here? You can enter 5.7353 E5 Pa as it is

already found from the FEM Model for 1 N load: ';

12 VM = input (prompt); % Ave Equivalent von -mises from FEM

model {Pa}

13 VM_Ben = Norm_Ben*VM; %Fluctuation of VM stress with

varying BM

14 %%

15 %Apply rainflow counting

16 C_Ben = rainflow(VM_Ben);

17 TT_Ben = array2table(C_Ben ,'VariableNames ',{'Count ','Range

','Mean','Start ','End'});

18 rainflow(VM_Ben)
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19
20 %%

21 %Definitions

22 SIG_a_Ben = 1/2* C_Ben (:,2); %sigma_a = range /2

23
24 SIG_m_Ben = 1/2* C_Ben (:,3); %sigma_m = mean/2

25 S_ut = 4.6E8; % material Property

26
27 %%

28 % determination of a and b

29 f= 0.9; %This is the Fatigue Strength
factor which is almost equal to 0.9

30 %(Shiegle 's book Figure 6-18. S_ut = 500 MPa = 72

kpsi)

31 S_e_raw = S_ut /2; % Approximately , the endurance limit is

half of the S_ut (Ref: Engineering Toolbox)

32 a1 = 1.58;%(Table 6.2 Shiegley 's)

33 b1 = -0.085;

34 d= 88.9;% diameter in mm

35 d_e = 0.37*d; %effective size of a round corresponding to

a nonrotating solid or hollow round. (Equation 6-24)

36 k_a = a1*S_ut^b1; %Equation 6-19

37 k_b = 1.51* d_e ^( -0.157); % Equation 6-20

38 k_c = 1;% because only bending

39 k_d = 1; % Because S_T/S_RT is almost 1 according to table

6-4

40 k_e = 1; % Reliability factor (This is an assumed value

from Table 6-5)

41 k_f = 1; % Miscelaneous

42
43 S_e = k_a*k_b*k_c*k_d*k_e*k_f*S_e_raw;

44
45 a = (f*S_ut)^2/ S_e;

46 b = (-1/3)*log10(f*S_ut/S_e);

47
48 %%

49 % determination of the equivalent fully reversed stress

for each mean and

50 % range

51
52 S_f = []; % equivalent fully reversed stress. Here the

Gerber Criteria is used.
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53 for i = 1:size(SIG_a_Ben ,1)

54 if SIG_m_Ben(i,1) > 0

55 S_f = [S_f; SIG_a_Ben(i,1)/(1-( SIG_m_Ben (i,1)/

S_ut)^2)];

56 else

57 S_f = [S_f; S_e];

58 end

59 end

60
61
62 %%

63 N =[];

64 for i = 1:size(S_f ,1)

65 N = [N; (S_f(i,1)/a)^(1/b)]; % Equation 6-16

66 end

67
68 format shortE

69
70 %%

71 % Damage calculation

72
73 Damage = [];

74 for i =1: size(N,1)

75 Damage = [Damage; C_Ben(i,1)./N(i,1)];

76 end

77
78 Damage_Percentage = sum(Damage)*100

79 Remaining_Time_hrs = (10/( Damage_Percentage /100))/3600

Matlab code for fatigue prognosis (Manual Calculation)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 Fatigue Life Prognosis Manual Calculation

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4
5 %Preprocessing and normalizing of Axial and Bending force/

Moment variation

6 sine1 = dsp.SineWave (0.175E3 ,9);

7 sine1.SamplesPerFrame = 9000;

8 A = sine1 ();

9
10 Norm_Ben = A; % Sinusoidal data set

11
12 %%%%%%%%%%%%%%%%%%%%% Enter the VM stress of the point of
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interest here %%%%%%%%%%%%%%%%%%%%%%%%%%

13 VM = 5.7353 E5; % Ave Equivalent von -Mises from FEM model {

Pa}

14 VM_Ben = Norm_Ben*VM; %Fluctuation of VM stress with

varying BM

15
16 plot (VM_Ben)

17 n = size(findpeaks(VM_Ben) ,1); % Number of cycles. Number

of peaks equals to the number of cycles

18 %Definitions

19 SIG_a_Ben = (max(VM_Ben)-min(VM_Ben))/2; %sigma_a = range

/2

20
21 SIG_m_Ben = 0; %sigma_m = mean/2

22
23 %%determination of the equivalent fully reversed stress

for each mean and range

24 S_ut = 4.6E8;

25
26 %%determination of a and b

27 f= 0.9; %This is the Fatigue Strength
factor which is almost equal to 0.9

28 %(Shiegle 's book Figure 6-18. S_ut = 500 MPa = 72

kpsi)

29 S_e_gross = S_ut /2; % Approximately , the endurance limit

is half of the S_ut (Ref: Engineering Toolbox)

30 a1 = 1.58;%(Table 6.2 Shiegley 's)

31 b1 = -0.085;

32 d= 88.9;% diameter in mm

33 d_e = 0.37*d; %effective size of a round corresponding to

a nonrotating solid or hollow round. (Equation 6-24)

34 k_a = a1*S_ut^b1; %Equation 6-19

35 k_b = 1.51* d_e ^( -0.157); % Equation 6-20

36 k_c = 1;% because only bending

37 k_d = 1; % Because S_T/S_RT is almost 1 according to table

6-4

38 k_e = 1; % Reliability factor (This is an assumed value

from Table 6-5)

39 k_f = 1; % Miscelaneous

40 S_e = k_a*k_b*k_c*k_d*k_e*k_f*S_e_gross;

41 a = (f*S_ut)^2/ S_e;

42 b = (-1/3)*log10(f*S_ut/S_e);
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43
44
45 N = (SIG_a_Ben/a)^(1/b);

46
47 format shortE

48
49 %%Damage calculation

50
51 Damage = n/N;

52
53 Damage_Percentage = Damage *100

54 %Remaining_Time_hrs = (10/( Damage_Percentage /100))/3600

55 Remaining_Time_hrs_1 = (N/n)*10/3600
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Appendix (B): MNV loading
fatigue prognosis code with
SalomeMeca�

Note: with non-linear frictional contacts

1 DEBUT(LANG='FR')

2 mesh3 = LIRE_MAILLAGE(identifier='0:1',

3 FORMAT='MED',

4 UNITE =20)

5 mesh4 = LIRE_MAILLAGE(identifier='1:1',

6 FORMAT='MED',

7 UNITE =2)

8 mesh0 = ASSE_MAILLAGE(identifier='2:1',

9 MAILLAGE_1=mesh3 ,

10 MAILLAGE_2=mesh4 ,

11 OPERATION='SUPERPOSE ')

12 mesh0 = MODI_MAILLAGE(identifier='3:1',

13 reuse=mesh0 ,

14 MAILLAGE=mesh0 ,

15 ORIE_PEAU =(_F(GROUP_MA_INTERNE =('pin', ),

16 GROUP_MA_PEAU =('Load', 'pt', 'pb')),

17 _F(GROUP_MA_INTERNE =('box', ),

18 GROUP_MA_PEAU =('Fix', 'bt', 'bp'))))

19 model = AFFE_MODELE(identifier='4:1',

20 AFFE=_F(MODELISATION='3D',

21 PHENOMENE='MECANIQUE ',

22 TOUT='OUI'),

23 MAILLAGE=mesh0)

24 Steel = DEFI_MATERIAU(identifier='5:1',

25 ECRO_LINE=_F(D_SIGM_EPSI =1100000000.0 ,

26 SIGM_LIM =900000000.0 ,

27 SY =700000000.0) ,

28 ELAS=_F(E=210000000000.0 ,
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29 NU=0.285 ,

30 RHO =7850.0) ,

31 FATIGUE=_F(A_BASQUIN =1457000000.0 ,

32 BETA_BASQUIN = -0.085),

33 RCCM=_F(SU =900000000.0))

34 fieldmat = AFFE_MATERIAU(identifier='6:1',

35 AFFE=_F(MATER=(Steel , ),

36 TOUT='OUI'),

37 MODELE=model)

38 loadf = DEFI_FONCTION(identifier='7:1',

39 NOM_PARA='INST',

40 PROL_DROITE='CONSTANT ',

41 PROL_GAUCHE='EXCLU ',

42 VALE =(0.0 , 5.0, 0.25, 10.0, 0.5, 1.0, 0.75, 0.0, 1.0,

10.0))

43 listr = DEFI_LIST_REEL(identifier='8:1',

44 DEBUT =0.0,

45 INTERVALLE=_F(JUSQU_A =1.0,

46 PAS =0.25))

47 ldf = AFFE_CHAR_MECA_F(identifier='9:1',

48 FORCE_FACE=_F(FX=loadf ,

49 GROUP_MA =('Load', )),

50 MODELE=model)

51 load = AFFE_CHAR_MECA(identifier='10:1',

52 FACE_IMPO =(_F(DX=0.0,

53 DY=0.0,

54 DZ=0.0,

55 GROUP_MA =('Fix', )),

56 _F(DY=0.0,

57 DZ=0.0,

58 GROUP_MA =('Load', ))),

59 MODELE=model)

60 contact = DEFI_CONTACT(identifier='11:1',

61 FORMULATION='CONTINUE ',

62 LISSAGE='OUI',

63 MODELE=model ,

64 REAC_GEOM='SANS',

65 ZONE=(_F(ALGO_CONT='PENALISATION ',

66 COEF_PENA_CONT =20000000000.0 ,

67 GROUP_MA_ESCL =('bp', ),

68 GROUP_MA_MAIT =('pb', )),

69 _F(ALGO_CONT='PENALISATION ',
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70 COEF_PENA_CONT =20000000000.0 ,

71 GROUP_MA_ESCL =('pt', ),

72 GROUP_MA_MAIT =('bt', ))))

73 resnonl = STAT_NON_LINE(identifier='12:1',

74 CHAM_MATER=fieldmat ,

75 COMPORTEMENT=_F(DEFORMATION='GROT_GDEP '),

76 CONTACT=contact ,

77 CONVERGENCE=_F(ITER_GLOB_MAXI =30,

78 RESI_GLOB_MAXI =0.0001 ,

79 RESI_GLOB_RELA =0.0001) ,

80 EXCIT=(_F(CHARGE=ldf),

81 _F(CHARGE=load)),

82 INCREMENT=_F(LIST_INST=listr),

83 MODELE=model ,

84 NEWTON=_F(MATRICE='TANGENTE ',

85 PREDICTION='TANGENTE '))

86 resnonl = CALC_CHAMP(identifier='13:1',

87 reuse=resnonl ,

88 CRITERES =('SIEQ_ELGA ', ),

89 RESULTAT=resnonl)

90 field = CALC_FATIGUE(identifier='14:1',

91 DOMMAGE='WOHLER ',

92 HISTOIRE=_F(EQUI_GD='VMIS_SG ',

93 RESULTAT=resnonl),

94 MATER=Steel ,

95 OPTION='DOMA_ELGA_SIGM ',

96 TYPE_CALCUL='CUMUL_DOMMAGE ')

97 table = POST_FATIGUE(identifier='15:1',

98 COEF_MULT=_F(KT =2.0),

99 COMPTAGE='NATUREL ',

100 CORR_SIGM_MOYE='GOODMAN ',

101 CUMUL='LINEAIRE ',

102 DOMMAGE='WOHLER ',

103 HISTOIRE=_F(SIGM=loadf),

104 MATER=Steel)

105 IMPR_RESU(identifier='16:1',

106 FORMAT='MED',

107 RESU=_F(CHAM_GD=field),

108 UNITE=3,

109 VERSION_MED='4.0.0 ')

110 IMPR_TABLE(identifier='17:1',

111 FORMAT='TABLEAU ',
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112 TABLE=table ,

113 UNITE =4)

114 IMPR_RESU(identifier='18:1',

115 RESU=_F(RESULTAT=resnonl),

116 UNITE =5)

117 FIN()

xxiii



Appendix (C): Matlab® code for
vibration classification

Note: Vibration type and severity classification

1 %%

2 %The Bond Graph Digital Twin generates training data (TD)

to train the ML

3 %algorithm. The data is for Stick Slip (SS), Bit Bounce
(BB), and Whirling (WH) and their

4 %3 levels high (H), medium (M) and low (L)

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Stick -Slip (SS)

%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 %% Training for High Stick -Slip (TR_SS_H)

7 addpath(genpath('C:\Users\HMMall ')) % b

8 data_1 = [TR_SS_H]';% Training Data High Stick -Slip

9 T_1 = size(data_1 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

10 O_1 = size(data_1 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

11 nex_1 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

12 M_1 = 2; %Number of mixtures of Gaussians

13 Q_1 = 4; % Number of hidden states.

14 left_right_1 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

15 prior0_1 = normalise(rand(Q_1 ,1));% Initial guess of state

probabilities

16 transmat0_1 = mk_stochastic(rand(Q_1 ,Q_1));% Initial guess

of transition probabilities

17 [mu0_1 , Sigma0_1] = mixgauss_init(Q_1*M_1 , reshape(data_1 ,

[O_1 T_1*nex_1]), 'full');

18 mu0_1 = reshape(mu0_1 , [O_1 Q_1 M_1]);
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19 Sigma0_1 = reshape(Sigma0_1 , [O_1 O_1 Q_1 M_1]);

20 mixmat0_1 = mk_stochastic(rand(Q_1 ,M_1));

21 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

22 [LL_1 , prior1_1 , transmat1_1 , mu1_1 , Sigma1_1 , mixmat1_1]

= b@x...
23 mhmm_em(data_1 , prior0_1 , transmat0_1 , mu0_1 , Sigma0_1 ,

mixmat0_1 , 'max_iter ', 40);

24 %

25 plot (LL_1) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

26 xlabel ('Number of data strings ')

27 ylabel ('Log -likelihood ')

28 %

29 disp('Log -likelihood becomes consistent. SS_H Trained!')

30 %

31 %% Training for Medium Stick -Slip (TR_SS_M)

32 addpath(genpath('C:\Users\HMMall '))

33 data_2 = [TR_SS_M]';% Training Data High Stick -Slip

34 T_2 = size(data_2 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

35 O_2 = size(data_2 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

36 nex_2 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

37 M_2 = 2; %Number of mixtures of Gaussians

38 Q_2 = 4; % Number of hidden states.

39 left_right_2 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

40 prior0_2 = normalise(rand(Q_2 ,1));% Initial guess of state

probabilities

41 transmat0_2 = mk_stochastic(rand(Q_2 ,Q_2));% Initial guess

of transition probabilities

42 [mu0_2 , Sigma0_2] = mixgauss_init(Q_2*M_2 , reshape(data_2 ,

[O_2 T_2*nex_2]), 'full');

43 mu0_2 = reshape(mu0_2 , [O_2 Q_2 M_2]);

44 Sigma0_2 = reshape(Sigma0_2 , [O_2 O_2 Q_2 M_2]);

45 mixmat0_2 = mk_stochastic(rand(Q_2 ,M_2));

46 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.
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47 [LL_2 , prior1_2 , transmat1_2 , mu1_2 , Sigma1_2 , mixmat1_2]

= mhmm_em(data_2 , prior0_2 , transmat0_2 , mu0_2 ,

Sigma0_2 , mixmat0_2 , 'max_iter ', 40);

48 %

49 plot (LL_2) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

50 xlabel ('Number of data strings ')

51 ylabel ('Log -likelihood ')

52
53 disp('Log -likelihood becomes consistent. SS_M Trained!')

54 %% Training for Low Stick -Slip (TR_SS_L)

55 addpath(genpath('C:\Users\HMMall '))

56 data_3 = [TR_SS_L]';% Training Data Low Stick -Slip

57 T_3 = size(data_3 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

58 O_3 = size(data_3 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

59 nex_3 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

60 M_3 = 2; %Number of mixtures of Gaussians

61 Q_3 = 4; % Number of hidden states.

62 left_right_3 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

63 prior0_3 = normalise(rand(Q_3 ,1));% Initial guess of state

probabilities

64 transmat0_3 = mk_stochastic(rand(Q_3 ,Q_3));% Initial guess

of transition probabilities

65 [mu0_3 , Sigma0_3] = mixgauss_init(Q_3*M_3 , reshape(data_3 ,

[O_3 T_3*nex_3]), 'full');

66 mu0_3 = reshape(mu0_3 , [O_3 Q_3 M_3]);

67 Sigma0_3 = reshape(Sigma0_3 , [O_3 O_3 Q_3 M_3]);

68 mixmat0_3 = mk_stochastic(rand(Q_3 ,M_3));

69 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

70 [LL_3 , prior1_3 , transmat1_3 , mu1_3 , Sigma1_3 , mixmat1_3]

= ...

71 mhmm_em(data_3 , prior0_3 , transmat0_3 , mu0_3 , Sigma0_3 ,

mixmat0_3 , 'max_iter ', 40);

72 %

73 plot (LL_3) % Plotting the improvement of the Log
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Likelihood after 5 iterations. the learning curve.

74 xlabel ('Number of data strings ')

75 ylabel ('Log -likelihood ')

76
77 disp('Log -likelihood becomes consistent. SS_L Trained!')

78
79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bit -Bounce (BB)

%%%%%%%%%%%%%%%%%%%%%%%%%%%

80
81 %% Training for High Bit Bounce (TR_BB_H)

82 addpath(genpath('C:\Users\HMMall '))

83 data_4 = [TR_BB_H]';% Training Data High Bit Bounce

84 T_4 = size(data_4 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

85 O_4 = size(data_4 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

86 nex_4 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

87 M_4 = 2; %Number of mixtures of Gaussians

88 Q_4 = 4; % Number of hidden states.

89 left_right_4 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

90 prior0_4 = normalise(rand(Q_4 ,1));% Initial guess of state

probabilities

91 transmat0_4 = mk_stochastic(rand(Q_4 ,Q_4));% Initial guess

of transition probabilities

92 [mu0_4 , Sigma0_4] = mixgauss_init(Q_4*M_4 , reshape(data_4 ,

[O_4 T_4*nex_4]), 'full');

93 mu0_4 = reshape(mu0_4 , [O_4 Q_4 M_4]);

94 Sigma0_4 = reshape(Sigma0_4 , [O_4 O_4 Q_4 M_4]);

95 mixmat0_4 = mk_stochastic(rand(Q_4 ,M_4));

96 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

97 [LL_4 , prior1_4 , transmat1_4 , mu1_4 , Sigma1_4 , mixmat1_4]

= ...

98 mhmm_em(data_4 , prior0_4 , transmat0_4 , mu0_4 , Sigma0_4 ,

mixmat0_4 , 'max_iter ', 40);

99
100 plot (LL_4) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.
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101 xlabel ('Number of data strings ')

102 ylabel ('Log -likelihood ')

103
104 disp('Log -likelihood becomes consistent. BB_H Trained!')

105
106 %% Training for High Bit Bounce (TR_BB_M)

107 addpath(genpath('C:\Users\HMMall '))

108 data_5 = [TR_BB_M]';% Training Data High Bit Bounce

109 T_5 = size(data_5 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

110 O_5 = size(data_5 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

111 nex_5 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

112 M_5 = 2; %Number of mixtures of Gaussians

113 Q_5 = 4; % Number of hidden states.

114 left_right_5 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

115 prior0_5 = normalise(rand(Q_5 ,1));% Initial guess of state

probabilities

116 transmat0_5 = mk_stochastic(rand(Q_5 ,Q_5));% Initial guess

of transition probabilities

117 [mu0_5 , Sigma0_5] = mixgauss_init(Q_5*M_5 , reshape(data_5 ,

[O_5 T_5*nex_5]), 'full');

118 mu0_5 = reshape(mu0_5 , [O_5 Q_5 M_5]);

119 Sigma0_5 = reshape(Sigma0_5 , [O_5 O_5 Q_5 M_5]);

120 mixmat0_5 = mk_stochastic(rand(Q_5 ,M_5));

121 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

122 [LL_5 , prior1_5 , transmat1_5 , mu1_5 , Sigma1_5 , mixmat1_5]

= ...

123 mhmm_em(data_5 , prior0_5 , transmat0_5 , mu0_5 , Sigma0_5 ,

mixmat0_5 , 'max_iter ', 40);

124
125 plot (LL_5) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

126 xlabel ('Number of data strings ')

127 ylabel ('Log -likelihood ')

128 %

129 disp('Log -likelihood becomes consistent. BB_M Trained!')
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130 %

131 %% Training for Low Bit -Bounce (TR_BB_L)

132 addpath(genpath('C:\Users\HMMall '))

133 data_6 = [TR_BB_L]';% Training Data Low Bit -Bounce

134 T_6 = size(data_6 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

135 O_6 = size(data_6 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

136 nex_6 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

137 M_6 = 2; %Number of mixtures of Gaussians

138 Q_6 = 4; % Number of hidden states.

139 left_right_6 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

140 prior0_6 = normalise(rand(Q_6 ,1));% Initial guess of state

probabilities

141 transmat0_6 = mk_stochastic(rand(Q_6 ,Q_6));% Initial guess

of transition probabilities

142 [mu0_6 , Sigma0_6] = mixgauss_init(Q_6*M_6 , reshape(data_6 ,

[O_6 T_6*nex_6]), 'full');

143 mu0_6 = reshape(mu0_6 , [O_6 Q_6 M_6]);

144 Sigma0_6 = reshape(Sigma0_6 , [O_6 O_6 Q_6 M_6]);

145 mixmat0_6 = mk_stochastic(rand(Q_6 ,M_6));

146 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

147 [LL_6 , prior1_6 , transmat1_6 , mu1_6 , Sigma1_6 , mixmat1_6]

= ...

148 mhmm_em(data_6 , prior0_6 , transmat0_6 , mu0_6 , Sigma0_6 ,

mixmat0_6 , 'max_iter ', 40);

149
150 plot (LL_6) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

151 xlabel ('Number of data strings ')

152 ylabel ('Log -likelihood ')

153
154 disp('Log -likelihood becomes consistent. BB_L Trained!')

155
156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Whirling (Forward) (

WH) %%%%%%%%%%%%%%%%%%%%%%%%%%%

157
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158 %% Training for High Whirling (TR_WH_H)

159 addpath(genpath('C:\Users\HMMall '))

160 data_7 = [TR_WH_H]';% Training Data High Bit Bounce

161 T_7 = size(data_7 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

162 O_7 = size(data_7 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

163 nex_7 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

164 M_7 = 2; %Number of mixtures of Gaussians

165 Q_7 = 4; % Number of hidden states.

166 left_right_7 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

167 prior0_7 = normalise(rand(Q_7 ,1));% Initial guess of state

probabilities

168 transmat0_7 = mk_stochastic(rand(Q_7 ,Q_7));% Initial guess

of transition probabilities

169 [mu0_7 , Sigma0_7] = mixgauss_init(Q_7*M_7 , reshape(data_7 ,

[O_7 T_7*nex_7]), 'full');

170 mu0_7 = reshape(mu0_7 , [O_7 Q_7 M_7]);

171 Sigma0_7 = reshape(Sigma0_7 , [O_7 O_7 Q_7 M_7]);

172 mixmat0_7 = mk_stochastic(rand(Q_7 ,M_7));

173 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

174 [LL_7 , prior1_7 , transmat1_7 , mu1_7 , Sigma1_7 , mixmat1_7]

= ...

175 mhmm_em(data_7 , prior0_7 , transmat0_7 , mu0_7 , Sigma0_7 ,

mixmat0_7 , 'max_iter ', 40);

176
177 plot (LL_7) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

178 xlabel ('Number of data strings ')

179 ylabel ('Log -likelihood ')

180
181 disp('Log -likelihood becomes consistent. WH_H Trained!')

182
183 %% Training for Medium Whirling (TR_WH_M)

184 addpath(genpath('C:\Users\HMMall '))

185 data_8 = [TR_WH_M]';% Training Data Medium Whrling

186 T_8 = size(data_8 ,2); % The number of observation
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sequences. In other words , How many data sample
strings? or the number of raws

187 O_8 = size(data_8 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns

188 nex_8 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

189 M_8 = 2; %Number of mixtures of Gaussians

190 Q_8 = 4; % Number of hidden states.

191 left_right_8 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

192 prior0_8 = normalise(rand(Q_8 ,1));% Initial guess of state

probabilities

193 transmat0_8 = mk_stochastic(rand(Q_8 ,Q_8));% Initial guess

of transition probabilities

194 [mu0_8 , Sigma0_8] = mixgauss_init(Q_8*M_8 , reshape(data_8 ,

[O_8 T_8*nex_8]), 'full');

195 mu0_8 = reshape(mu0_8 , [O_8 Q_8 M_8]);

196 Sigma0_8 = reshape(Sigma0_8 , [O_8 O_8 Q_8 M_8]);

197 mixmat0_8 = mk_stochastic(rand(Q_8 ,M_8));

198 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

199 [LL_8 , prior1_8 , transmat1_8 , mu1_8 , Sigma1_8 , mixmat1_8]

= ...

200 mhmm_em(data_8 , prior0_8 , transmat0_8 , mu0_8 , Sigma0_8 ,

mixmat0_8 , 'max_iter ', 40);

201
202 plot (LL_8) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

203 xlabel ('Number of data strings ')

204 ylabel ('Log -likelihood ')

205
206 disp('Log -likelihood becomes consistent. WH_M Trained!')

207
208 %% Training for Low Whirling (TR_WH_L)

209 addpath(genpath('C:\Users\HMMall '))

210 data_9 = [TR_WH_L]';% Training Data Low Whirling

211 T_9 = size(data_9 ,2); % The number of observation

sequences. In other words , How many data sample
strings? or the number of raws

212 O_9 = size(data_9 ,1); % The number of sensor data in a

given sequence i.e. Motor Current , Accelerometer , and

ang speed or teh number of columns
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213 nex_9 = 1; % the different layers of data in the 3D matrix

. (May be the data from another similar process line)

214 M_9 = 2; %Number of mixtures of Gaussians

215 Q_9 = 4; % Number of hidden states.

216 left_right_9 = 0; %Left -right architecture of the HMM

model , 'yes ' or 'no '

217 prior0_9 = normalise(rand(Q_9 ,1));% Initial guess of state

probabilities

218 transmat0_9 = mk_stochastic(rand(Q_9 ,Q_9));% Initial guess

of transition probabilities

219 [mu0_9 , Sigma0_9] = mixgauss_init(Q_9*M_9 , reshape(data_9 ,

[O_9 T_9*nex_9]), 'full');

220 mu0_9 = reshape(mu0_9 , [O_9 Q_9 M_9]);

221 Sigma0_9 = reshape(Sigma0_9 , [O_9 O_9 Q_9 M_9]);

222 mixmat0_9 = mk_stochastic(rand(Q_9 ,M_9));

223 %Finally , let us improve these parameter estimates using

Expectation Maximization Algorithm.

224 [LL_9 , prior1_9 , transmat1_9 , mu1_9 , Sigma1_9 , mixmat1_9]

= ...

225 mhmm_em(data_9 , prior0_9 , transmat0_9 , mu0_9 , Sigma0_9 ,

mixmat0_9 , 'max_iter ', 40);

226
227 plot (LL_9) % Plotting the improvement of the Log

Likelihood after 5 iterations. the learning curve.

228 xlabel ('Number of data strings ')

229 ylabel ('Log -likelihood ')

230
231 disp('Log -likelihood becomes consistent. WH_L Trained!')

232
233
234 %% Vibration type and severity classification

235 %%%%%%%%%%%% Input the testing data here

%%%%%%%%%%%%%%%%%%%%

236 testdata = [TST_SS_H (1:100 ,:)]';

237 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

238 %%

239 LLike_1 = [];

240 for i=1:1: size(testdata ,2)

241 loglik_1 = mhmm_logprob(testdata(:,i), prior1_1 ,

transmat1_1 , mu1_1 , Sigma1_1 , mixmat1_1);
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242 LLike_1 = [LLike_1; loglik_1 ];

243 end

244
245 MEAN_1 = mean (LLike_1);

246 %%

247
248 LLike_2 = [];

249 for i=1:1: size(testdata ,2)

250 loglik_2 = mhmm_logprob(testdata(:,i), prior1_2 ,

transmat1_2 , mu1_2 , Sigma1_2 , mixmat1_2);

251 LLike_2 = [LLike_2; loglik_2 ];

252 end

253
254 MEAN_2 = mean (LLike_2);

255 %%

256
257 LLike_3 = [];

258 for i=1:1: size(testdata ,2)

259 loglik_3 = mhmm_logprob(testdata(:,i), prior1_3 ,

transmat1_3 , mu1_3 , Sigma1_3 , mixmat1_3);

260 LLike_3 = [LLike_3; loglik_3 ];

261 end

262
263 MEAN_3 = mean (LLike_3);

264 %%

265 LLike_4 = [];

266 for i=1:1: size(testdata ,2)

267 loglik_4 = mhmm_logprob(testdata(:,i), prior1_4 ,

transmat1_4 , mu1_4 , Sigma1_4 , mixmat1_4);

268 LLike_4 = [LLike_4; loglik_4 ];

269 end

270
271 MEAN_4 = mean (LLike_4);

272 %%

273 LLike_5 = [];

274 for i=1:1: size(testdata ,2)

275 loglik_5 = mhmm_logprob(testdata(:,i), prior1_5 ,

transmat1_5 , mu1_5 , Sigma1_5 , mixmat1_5);

276 LLike_5 = [LLike_5; loglik_5 ];

277 end

278
279 MEAN_5 = mean (LLike_5);
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280 %%

281 LLike_6 = [];

282 for i=1:1: size(testdata ,2)

283 loglik_6 = mhmm_logprob(testdata(:,i), prior1_6 ,

transmat1_6 , mu1_6 , Sigma1_6 , mixmat1_6);

284 LLike_6 = [LLike_6; loglik_6 ];

285 end

286
287 MEAN_6 = mean (LLike_6);

288 %%

289
290 LLike_7 = [];

291 for i=1:1: size(testdata ,2)

292 loglik_7 = mhmm_logprob(testdata(:,i), prior1_7 ,

transmat1_7 , mu1_7 , Sigma1_7 , mixmat1_7);

293 LLike_7 = [LLike_7; loglik_7 ];

294 end

295
296 MEAN_7 = mean (LLike_7);

297 %%

298 LLike_8 = [];

299 for i=1:1: size(testdata ,2)

300 loglik_8 = mhmm_logprob(testdata(:,i), prior1_8 ,

transmat1_8 , mu1_8 , Sigma1_8 , mixmat1_8);

301 LLike_8 = [LLike_8; loglik_8 ];

302 end

303
304 MEAN_8 = mean (LLike_8);

305 %%

306 LLike_9 = [];

307 for i=1:1: size(testdata ,2)

308 loglik_9 = mhmm_logprob(testdata(:,i), prior1_9 ,

transmat1_9 , mu1_9 , Sigma1_9 , mixmat1_9);

309 LLike_9 = [LLike_9; loglik_9 ];

310 end

311
312 MEAN_9 = mean (LLike_9);

313 %%

314
315 MEANS = [MEAN_1 MEAN_2 MEAN_3 MEAN_4 MEAN_5 MEAN_6 MEAN_7

MEAN_8 MEAN_8 ];

316
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317 if max (MEANS) == MEAN_1

318 disp('Stick Slip - High')

319 end

320
321 if max (MEANS) == MEAN_2

322 disp('Stick Slip - Medium ')

323 end

324
325 if max (MEANS) == MEAN_3

326 disp('Stick Slip - Low')

327 end

328
329 if max (MEANS) == MEAN_4

330 disp('Bit Bounce - High')

331 end

332
333 if max (MEANS) == MEAN_5

334 disp('Bit Bounce - Medium ')

335 end

336
337 if max (MEANS) == MEAN_6

338 disp('Bit Bounce - Low')

339 end

340
341 if max (MEANS) == MEAN_7

342 disp('Whirling - High')

343 end

344
345 if max (MEANS) == MEAN_8

346 disp('Whirling - Medium ')

347 end

348
349 if max (MEANS) == MEAN_9

350 disp('Whirling - Low')

351 end

352
353 figure (1)

354
355 subplot (3,3,1)

356 plot(LLike_1)

357 xlabel ('Number of data strings ')

358 ylabel ('Log -likelihood ')
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359
360 subplot (3,3,2)

361 plot(LLike_2)

362 xlabel ('Number of data strings ')

363 ylabel ('Log -likelihood ')

364
365 subplot (3,3,3)

366 plot(LLike_3)

367 xlabel ('Number of data strings ')

368 ylabel ('Log -likelihood ')

369
370 subplot (3,3,4)

371 plot(LLike_4)

372 xlabel ('Number of data strings ')

373 ylabel ('Log -likelihood ')

374
375 subplot (3,3,5)

376 plot(LLike_5)

377 xlabel ('Number of data strings ')

378 ylabel ('Log -likelihood ')

379
380 subplot (3,3,6)

381 plot(LLike_6)

382 xlabel ('Number of data strings ')

383 ylabel ('Log -likelihood ')

384
385 subplot (3,3,7)

386 plot(LLike_7)

387 xlabel ('Number of data strings ')

388 ylabel ('Log -likelihood ')

389
390 subplot (3,3,8)

391 plot(LLike_8)

392 xlabel ('Number of data strings ')

393 ylabel ('Log -likelihood ')

394
395 subplot (3,3,9)

396 plot(LLike_9)

397 xlabel ('Number of data strings ')

398 ylabel ('Log -likelihood ')
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