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Abstract 
Chemical process industries are accident-prone due to handling hazardous materials and the 

complex interaction of process operations. Industries, including chemical processing 

industries, are transitioning to digitalization with higher productivity potential by better 

managing process operations. A continuous encouragement to adopt digitalization in process 

industries while ensuring operational safety has led to new opportunities and challenges. The 

former relates to underpinning digital changes that will open new data generation and 

collection avenues, whereas the latter deals with translating the data into meaningful 

information.  

Two data types will play a key role in dealing with this evolving challenge of translating data 

into meaningful information. First, structured data (numerical data) determine the behavior of 

process systems.  Second, unstructured data from accident investigation reports for learning 

lessons is utilized. Conventional risk analysis techniques are incapable of dealing with the 

evolving challenge. Risk evaluation for process operations during this transition requires 

advanced technologies. This thesis proposes new approaches for safety 4.0, which is the 

introduction of industry 4.0 technologies such as artificial intelligence and automation to 

monitor risk. The approaches integrate artificial intelligence with data-driven models. These 

advanced techniques address the widely recognized knowledge gap in the literature and serve 

as an important tool for safety 4.0. 

The thesis looks at developing approaches to gain insights from operational (contemporary) 

and textual (historical) data. First, a framework is developed to introduce a learning-based 

likelihood model. Structured data are used to model the topology of the Bayesian network (BN) 

and learn parameters from the data. Learning from data makes the model unique and allows 

capturing changes in operational data that are reflected in model output. A novel methodology 

is introduced to utilize field data of microbiologically influenced corrosion (MIC) in the 
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likelihood model. Second, unstructured data in textual form is transformed into objective risk 

assessment by employing natural language processing (NLP). A novel methodology is 

developed to gain insights from corrosion investigation reports assessing the risk of MIC in 

pipelines. The methodology attempts to give a new dimension to risk assessment by developing 

a cause-effect scenario from the textual data. A named entity recognition (NER) model is 

trained to gain insights and, based on the findings, transformed into a risk estimation BN model 

and evaluated using a risk matrix. Third, unstructured data are used to develop a generalized 

causation model. A systematic approach comprised of NER, interpretive structural modeling 

(ISM), and BN is proposed to gain insights from unstructured data. The output is a generalized 

causation model for oil and refining accidents that lead to fire and explosion. A hierarchical 

BN model is developed for fire and explosion from the CSB database to identify commonalities 

among different incidents. Finally, this thesis looks into the integration of structured and 

unstructured data. The methodology of integrating both data types is proposed to provide a 

comprehensive picture. Insights from multiple sources are key for robust risk analysis. The 

methodology proposed gains insights from unstructured data using a co-occurrence network. 

These insights integrate with contemporary data and establish each factor dependence using 

ISM. The resulting digraph from the ISM is mapped into a generalized hybrid BN model. 

Industrial and simulated datasets are used to test and verify the effectiveness of the developed 

model in predicting adverse events. This thesis develops important tools for enhanced data-

driven prediction of adverse events. 
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1 Introduction 

1.1 Background and Motivation 

The chemical processing industries (CPI) frequently witness accidents worldwide. In the last 

two years, 162 accidents have been reported in the U.S.A. alone (U.S. Chemical Safety and 

Hazard Investigation Board, 2022). These accidents include chemical manufacturing, 

distribution, combustible dust explosion, vapor cloud explosion, oil & refining, loss of 

containment (LOC), and fire & explosion (F&E). Accidents in the CPI are due to the hazardous 

nature of the materials involved. A near mishap in CPI can escalate into catastrophe, as seen in 

the past century (Khan & Abbasi, 1999), and continue to occur (Amyotte et al., 2016). Thus, 

accidents show the need for safety technologies to continually evolve with advancement in 

process operations. Chemical accidents are not only limited to chemical process industries but 

are also seen in other industries with hazardous chemicals. For example, a chemical explosion 

in an electronics facility took place in Hapur, India. The incident caused 10 fatalities and 22 

severe injuries. According to the initial report, regulatory oversights and open disregard for 

safety norms were the reasons behind the incident (Reuters, 2022). 

The occurrence of process accidents clearly shows that lessons are not learned from past 

accidents. The most important question remains: why do adverse accidents keep happening? 

The accidents happen due to a lack of database knowledge implementation, insufficient 

procedure and training, and process digitalization adoption in process operations (Amyotte et 

al., 2016). As Trevor Kletz observed, “Accidents are not due to lack of knowledge, but failure 

to use the knowledge we have”(IChemE Safety and Loss Prevention, 2022).  

In the 21st century, industries are taking notable technological advancements, incorporating 

devices with Internet of Things capabilities, cloud computing, artificial intelligence (AI) and 

big data analytics. This smart technological advancement leads to the current era of Industry 
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4.0, characterized by automation and digitalization (Reis & Kenett, 2018). Industry 4.0 refers 

to the industrial revolution concerned with integrating o technological advancement, 

automation, and data exchange in various sectors. However, introducing Industry 4.0 brings 

new challenges that pertain to a leadership style that can deal with the challenges of Industry 

4.0. Leadership is termed leadership 4.0. The advantage of Industry 4.0 requires leaders to 

understand and navigate the rapidly changing environment. Leadership 4.0 also requires 

leaders to strive for innovation and growth of an organization by adopting changes to meet 

with Industry 4.0 (Behie et al., 2023). Safety 4.0 requires integrating AI with data-driven 

approaches to proactively identify precursors before accidents happen. In the era of safety 4.0, 

safety science is going through a paradigm change in the age of big data (large and complex 

datasets that cannot be processed or managed using conventional tools), AI, and industry 4.0 

called computational safety science (Wang, 2021). Safety 4.0 brings evolution to process safety 

due to AI and data-driven approaches (Qian et al., 2023). New approaches are needed to cope 

with the changes by re-engineering safety and handling evolving technological risks (Pasman 

& Fabiano, 2021). 

Industry stakeholders acknowledge the important role of data. Virginia Rometty (CEO of IBM) 

said, “What steam was to the 18th century, electricity to the 19th and hydrocarbons to the 20th, 

data will be to the 21st century. That's why I call data a new natural resource.” (Reis & Kenett, 

2018). The data are available in numerical and textual forms but lacks models that can leverage 

the available resources. Novel data-driven approaches with the implementation of AI are 

needed to learn from data in different forms. Data can be available in numerical or textual 

forms. The former is encountered by process data from sensors for monitoring purposes. The 

latter is commonly found in accident investigation reports where operators can make 

observations in free text as naturally spoken text. Process data and knowledge should drive risk 

assessment approaches in the era of safety 4.0 to analyze technological risks. The fundamental 
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challenge is to develop methods that can learn from data in various forms for robust risk 

assessment models. Figure 1-1 illustrates data transformation into meaningful information that 

serves as knowledge over time. This knowledge governs decision-making in the era of safety 

4.0. There is a need for models capable of learning from process and textual data to leverage 

data in different forms and assess risks. 

 

Figure 1-1 Transformation of data into actions 

Continuous monitoring and preventive actions are key to avoiding abnormal situations (Khan 

et al., 2016). Implementing AI with data-driven approaches provides information for 

continuous monitoring and assisting in taking preventive actions based on precursors. 

Structured and unstructured data should govern predictive analysis for safety 4.0. The data-

driven approaches to assess risk based on different data types are as follows: 

Corrosion is a ubiquitous concern for CPI, especially microbiologically influenced corrosion 

(MIC) due to the complex behavior of microorganisms. Corrosion results in the loss of 

containment of hazardous materials that can easily develop into a catastrophe. Learning from 

MIC data are key to monitoring MIC threats and developing mitigation strategies. The 

advantage of learning is to capture causal factors interactions among each other that are missed 

in high-level heuristic observations (Kannan et al., 2020). Therefore, there is a need for a 

learning-based MIC model that can directly use operational and laboratory data to drive 

meaningful information for MIC (Skovhus et al., 2017).  
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Unstructured data in the form of textual data are another important resource for learning. The 

accident databases are available resources to gain insights into what went wrong. The database 

must be used to extract specific information for learning lessons (Mannan & Waldram, 2014). 

Based on database insights, a new dimension of risk analysis can be developed to assess risk 

based on past events.  

The popularity of natural language processing (NLP) tools shows technological advancement. 

Therefore, real-time risk monitoring must be considered to develop a knowledge 

base/intelligent system (Khan et al., 2016). Hence, the motivation of this research is to bridge 

technological gaps between existing methods and requirements of safety 4.0.  

The focus is assessing MIC likelihood and developing models for LOC and F&E to prevent 

accidents. The work presented here aims to contribute to risk assessment using field data and 

accident investigation reports. The research activities aim to introduce risk modeling 

approaches to predict adverse events based on past experiences. These approaches are applied 

on databases like Pipeline and Hazardous Material Safety Administration (PHMSA), and 

Chemical Safety and Hazard Investigation Board (CSB). 

1.2 Objectives 

The thesis aims to introduce data-driven tools to assess a current situation based on available 

knowledge to predict adverse events in process industries. The knowledge is obtained from 

contemporary or historical data. Therefore, a tool must be able to process textual and numerical 

data. The scope is restricted to risk estimation and evaluation for decision-making purposes. It 

does not incorporate the procedure of reducing risk through risk management strategies. With 

the overall objective and scope in mind, the thesis aims to answer the following questions. 

i. How can field and laboratory data be used for Bayesian learning to assess risk? 

ii. How can textual data be used to assess objective risk? 

iii. How can database knowledge be used systematically to assess risk? 
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iv. How can heterogeneous data (i.e., numerical and textual data) be fused to assess 

accident likelihood? 

The research activities performed aim to answer these research questions. The objectives of the 

thesis, as shown in Figure 1-2, are to:  

1. Develop a data-driven methodology for assessing MIC risk from field data. Relying on 

field data can encounter incomplete datasets. Hence, the methodology should be 

capable of handling complete and incomplete datasets. 

2. Transform textual data using NLP to evaluate objective risk 

3. Develop a generalized causation model to predict adverse events based on past 

experiences. 

4. Integrate textual and numerical data for robust accident likelihood analysis. 

 

Figure 1-2: Overview of research 

1.3 Outline 

The thesis presented here is organized into seven chapters and is a manuscript-type thesis. The 

first introductory chapter briefly overviews the research activities, objectives, motivations and 

contributions. The second chapter briefly overviews the available literature and identifies 
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knowledge gaps. The last chapter states the conclusion derived from the thesis. Chapters three 

to five are based on peer-reviewed journal papers published and chapter six is a paper submitted 

to Computers & Chemical Engineering for peer-review publication. A short description of the 

technical chapters is presented in Table 1-1. 

Table 1-1 An overview of technical chapters 

Chapters Research Objective Tool(s) used Title Case Study 

3 Data-Driven MIC 

Likelihood 

Bayesian score-

based method 

EM algorithm 

Bayesian network 

(BN) 

Data-Driven 

Operational 

Failure 

Likelihood Model 

for 

Microbiologically 

Influenced 

Corrosion 

Industrial 

partner data: 

FPSO 

facility 

located in 

North 

America   

4 Objective Risk 

Assessment from 

Textual Data 

Named entity 

recognition 

Fuzzy logic 

BN 

Risk matrix 

Textual Data 

Transformations 

using Natural 

Language 

Processing for 

Risk Assessment 

MIC related 

incidents 

from 

PHMSA 

database 

5 Knowledge-Based 

Accident Causation 

Model 

Named entity 

recognition 

Interpretive 

structural model 

A methodical 

approach for 

knowledge-based 

fire and explosion 

CSB 

database (oil 

and refining 
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BN 
 

accident 

likelihood 

analysis 

- 

downstream) 

6 Data Fusion of 

Textual and 

Numerical Data 

Co-occurrence 

network 

Interpretive 

structural model 

BN 
 

Multi-source 

heterogeneous 

data fusion for 

likelihood 

analysis 

CSB 

database 

(loss of 

containment) 
 

Chapter three proposes a framework of data-driven Bayesian learning that can model structure 

and parameters from data. The K2 algorithm is used to learn a topology of BN, whereas the 

EM algorithm is used for parameter estimation to assess MIC risk. The chapter has been 

published in Process Safety and Environmental Protection. 

Chapter four proposes a novel framework to assess objective risk assessment from textual data. 

The PHMSA database is used to develop a risk model by utilizing NLP. Named entity 

recognition (NER) method is used for feature extraction that serves as a basis for the risk model. 

The chapter has been published in Risk Analysis. 

Chapter five proposes a unique approach to developing a generalized causation model from 

past experiences. Domain expertise with lessons learned from accidents is used to assess 

similarities among different accidents. The chapter has been published in Process Safety and 

Environmental Protection. 

Chapter six introduces a framework for multi-source heterogeneous data fusion. Historical and 

contemporary data are used to develop an accident likelihood model. Hierarchical BN is 

developed to model complex interactions among textual and numerical data. The chapter has 

been submitted to Computers and Chemical Engineering. 
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Figure 1-3: Summary of the work presented in the thesis 

Chapter seven draws a summary of the work and states the conclusion drawn from the research 

studies. Future work recommendations are given at the end of this thesis. 

Figure 1-3 shows an overview of the work presented in this thesis and their respective status. 

Further detail on each chapter is presented in designated chapters. 

1.4 Co-authorship Statement 

I am the sole author of this manuscript-type thesis and the primary author of technical chapters 

that are either published or submitted for peer-review publication. With the help of co-authors, 

Drs. Faisal Khan, Paul Amyotte and Salim Ahmed, I developed the first draft of the 

manuscripts presented in the chapters. I carried out the analysis, model development, testing, 

and verification. Dr. Khan helped me with conceptualization, model development and 

reviewing the work. He also assisted in the revision of the manuscripts. Drs. Amyotte and 

Ahmed helped review, revise and improve the manuscript's readability. They also assisted me 

in incorporating peer-reviewed feedback and checking the models testing and verification 
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2 Literature Review 

The chapter presents a literature review on specific aspects to identify the knowledge gaps that 

can be addressed in the thesis. The detailed literature reviews are included in the subsequent 

chapters of the thesis. The literature review in the present chapter covers risk assessment 

methods, focusing on 

i) MIC risk-based models 

ii) NLP risk-based models 

2.1 What is Microbiologically influenced corrosion (MIC)? 

Corrosion is a challenging and major concern for industries such as CPI and oil and gas. Due 

to corrosion, industries have suffered significant losses, posing an economic challenge. There 

are many forms of corrosion in which MIC is considered a complex phenomenon that includes 

microorganisms responsible for creating a corrosive environment due to their presence or 

activity at the metal surface (Little & Lee, 2014). Microorganisms tend to alter electrochemical 

conditions at the metal surface (Salgar-Chaparro et al., 2020; Videla & Herrera, 2005). This 

type of corrosion involving microorganisms is found in pipelines and storage vessels. Loss of 

containment (LOC) due to MIC releases hydrocarbons, leading to fatalities, property damage, 

business interruption, reputation loss and environmental damage (Kannan et al., 2020). MIC 

poses a risk to process operations that leads to catastrophic failures. There have been many 

process accidents attributed to MIC, such as propane tank failure leading to an explosion in 

Umm Said NGL Plant in Qatar (Salgar-Chaparro et al., 2020), a crude oil spill on Alaska’s 

North Slope, gas leakage and an explosion in New Mexico(A. Abdullah et al., 2014; Salgar-

Chaparro et al., 2020; Sooknah et al., 2008) and the Abkatun standing platform fire in the Gulf 

of Mexico which killed four workers and injured 16 others (Kannan et al., 2018). Additional 

MIC-attributed cases were reported by Skovhus et al. (Skovhus et al., 2017), such as failure in 

high-pressure production at the Gas Oil separation plant due to the growth of microorganisms, 
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corrosion of the tube in a heat exchanger caused by acid-producing bacteria resulting in 

leakage, failure of fire hydrants due to the presence of sulfate-reducing bacteria and archaea 

and failure of a diesel pipeline due to the presence of pitting because of a corrosive deposit. 

MIC is a complex and diverse process; it includes various species, such as sulfate reducers, 

acid-producing bacteria and iron reducers, that develop biofilm attached to the metal surface 

(Geissler et al., 2014; Kannan et al., 2020). The biofilm serves multiple purposes and is 

attributed to MIC; it acts as a diffusion barrier, preventing oxygen and anion diffusion to 

cathodic and anodic sites. Detachment of biofilm results in removing a protective film, and the 

non-uniform nature of biofilm results in differential aeration cells that causes the potential 

difference, resulting in corrosion current. It also alters conditions of oxidation/reduction at the 

interface between metal and hydrocarbon (Videla & Herrera, 2005). 

2.2 MIC risk-based models 

The modeling of MIC is a challenging problem due to the complex behavior of microorganisms 

responsible for accelerating the corrosion process. Also, the interaction of microorganisms with 

biotic and abiotic factors is complex. The interaction either leads to an intensification or 

diminution of MIC over a period of time. The first attempt to model MIC is traced back to 

2002, except biological parameters, parameters including operation parameters, water presence 

and wetting, are considered (Pots et al., 2002). Although the biological parameters were 

incorporated later to monitor and mitigate MIC threat in pipelines (Maxwell; Campbell et al., 

2006). The risk associated with bio-fouling was also evaluated on a section of the pipeline 

using surface conditions, biological phenomena and hydraulics using the neural network 

method (Urquidi-Macdonald et al., 2014). The risk matrix method is also used to assess MIC 

risk (Kaduková et al., 2014) before moving to a semi-quantitative approach using prediction 

and monitoring factors (Wang & Jain, 2016).  
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Numerous attempts were made to model the MIC process using BN (Dawuda et al., 2021; 

Taleb-Berrouane et al., 2019; Taleb-Berrouane et al., 2018; Taleb-Berrrouane et al., 2019). BN 

is particularly suitable for risk analysis and capturing accident scenarios from cause to 

consequence (Deyab et al., 2018; Kabir et al., 2019; Taleb-Berrouane et al., 2017; Yang et al., 

2020). In contrast, other modeling techniques exist for accident scenarios, such as Petri nets 

(Kamil et al., 2019; Taleb-Berrouane et al., 2019; Taleb-Berrouane & Khan, 2019) or Markov 

chains (Taleb-Berrouane et al., 2016). However, adding a new factor can lead to a different 

structure in the latter, whereas it will remain the same in the former.  

In addition, BN offers the flexibility of incorporating evidence into the network with the help 

of the Bayes theorem (Taleb-Berrouane et al., 2020; Taleb-berrouane, Imtiaz, et al., 2018). 

(Ayello et al., 2014) proposed a model for internal and external corrosion and incorporated a 

limited MIC mechanism. Koch et al. developed a BN-based model to assess MIC based on 

sulfate-reducing microorganisms where other factors responsible for MIC were not considered 

(Koch et al., 2015). Another BN-based model considers the MIC mechanism a sub-mechanism 

in internal corrosion modeling (Shabarchin & Tesfamariam, 2016). MIC was quantified by 

identifying and quantifying internal corrosion causal factors dependencies using BN (Liu et al., 

2018). Another BN-based model is developed by considering operational parameters, 

operating history and indication factors to assess MIC threat (Taleb-Berrouane et al., 2018). 

However, this comprehensive study is a static model and lacks dynamic behavior. The 

subsequent research considers the latter (Kannan et al., 2020). Kannan et al., 2020 developed 

the BN model by considering failure history data, operational data and other parameters in a 

60-node structure. The model considers a limited number of dynamic nodes and does not 

leverage MIC data due to unavailability in the public domain. BN model structure was based 

on expert opinion, thus introducing uncertainty into the assessment. Another model was 
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developed to capture changes in the database and adapts those changes in the Bowtie model 

(Taleb-Berrouane et al., 2021). 

The literature reviews show that limited research has been carried out on the failure aspect of 

the MIC phenomenon compared to MIC monitoring, inhibition and development of biofilm 

(Hashemi et al., 2018; Taleb-Berrouane et al., 2020). Based on the approaches discussed in 

section 2.2 to model MIC, the primary concern is using expert opinion due to the lack of field 

data in determining MIC risk model structure and parameters. The causation factors interaction 

in modeling MIC is important but is often neglected due to the unavailability of modeling 

approach. MIC failure risk model is needed that can capture causal factor interaction and learn 

from data to develop MIC risk model (Skovhus et al., 2017). 

2.3 NLP risk-based models 

NLP is a field of computer science, artificial intelligence (AI) and linguistics concerned with 

the interaction between humans and computers (Khatri, 2021). NLP comes from the processing 

of natural languages used to convey messages and thoughts to another person. For computers 

to understand the message embedded in natural language, the message needs to process by 

converting it into a numerical form that machines. In other words, NLP is a domain of 

extracting information from spoken language or written textual data (Clark et al., 2010).  

NLP enables computers to process, interpret and extract meaningful information from a natural 

language with the help of algorithms, statistical models and computational linguistics. NLP has 

a wide category of applications, to name a few: text classification, sentimental analysis, 

machine translation and the most popular chatbots (ChatGPT and LaMDA). Although the 

application of NLP is wide and evolving, there has been limited research on leveraging NLP 

for developing risk models.  

NLP applications have been widely found in ontology-based studies for risk assessment 

models. A scenario object model is developed using domain ontology for information 
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extraction from HAZOP analysis (Wu et al., 2013). An investigation was carried out to assess 

the performance of domain-based ontology with non-domain-based ontology and concluded 

that the former provides robust results to automate the extraction of safety regulatory 

information (Kwon et al., 2013). Developing an ontology is time-consuming and labor-

intensive work. However, incorporating machine learning to develop ontology assists in 

developing ontology with less time.  

A semi-quantitative ontology development was proposed that employed machine learning in 

developing ontology (Guo & Huang, 2016). Developing ontology requires domain expertise 

for defining the keywords. A pre-defined keywords list based on domain expertise was used to 

automate feature extraction to gain insights. An application was shown on construction safety 

reports to automate accident precursors and outcomes to gain insights (Tixier et al., 2016b). A 

hazard ontology was developed to transform preliminary hazards from natural language into 

hazard modeling language to specify hazards (Zhou et al., 2017).  

NLP is used to text-mine data to analyze a bag of words from adjacent sentences to extract 

information from textual data for aviation incidents (Nakata, 2017). However, the order of the 

bag of words was not considered, which assists in developing causation. An ontology-based 

approach was used to analyze language components such as subject, predicate and object to 

improve communication in airport operations (Abdullah et al., 2019). An ontology-based 

framework was developed to automate knowledge extraction from abstracts using bidirectional 

encoder representations from transformers. The proposed method was advantageous due to 

gaining more insights than bibliometric analysis, which is restricted to finding relations 

between co-authors, publications and institutions.  

The approaches show the application of an ontology-based approach for gaining insights from 

textual data. The ontology-based approaches can also be used to assess risk. A pathway is 

proposed to construct BN comprised of multi-entity to assess risk (Aziz et al., 2019). Later, an 
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ontology-based approach integrating active learning was developed to extract dependencies 

(Deshpande et al., 2020). Knowledge acquisition based on ontology was developed and applied 

to the chemical accident database (Single et al., 2020). Besides ontology-based approaches, 

another broad area of NLP application comprises machine learning-based methods. However, 

machine learning demands data in large quantities for better accuracy (Robinson et al., 2015). 

The random forest method extracts information about injuries reported due to construction 

(Tixier et al., 2016a). Support vector machine (SVM) transforms natural language features 

from the textual form into numerical data for classification purposes (Tanguy et al., 2016). 

Natural gas pipeline incident data was used for developing an integrated spatio-temporal 

approach to extracting correlations between causation factors and the severity of incidents (Li 

et al., 2021). Based on the outcome, causal factors related to human shows the highest severity 

in natural gas pipeline incidents. K-means clustering, and co-occurrence matrix are used to 

text-mine reports from the PHMSA database (Liu et al., 2021). The advantage is extracting 

contributory factors and potential causality from the accident reports. 

Another text-mining approach was developed based on a semi-supervised method to label 

unstructured data and (Ahadh et al., 2021). The advantage is labeling data with less manual 

intervention to analyze reports. The application was shown on pipeline accidents to identify 

causes and aviation reports to determine the flight stage at the time of the accident (Ahadh et 

al., 2021). Recent work demonstrated how to employ NLP to analyze subject and action words 

from their co-occurrences for accident consequence prediction (Wang et al., 2023). 

The literature review discussed in section 2.3 revealed that there needs to be a solution for 

using unstructured data as a data source to evaluate objective risk assessment. NER is a proven 

method to identify entities that can be used to identify underlying cause-effect scenarios from 

textual data. Furthermore, based on the literature, no systematic process is available for 

developing qualitative and quantitative reasoning for learning lessons from past experiences. 
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There is a need for a method to visualize the hierarchy among different factors in a complex 

system that assists in making decisions. Quantitative reasoning defines factors' 

interrelationships and estimates each accident's likelihood with potential pathways based on 

the given conditions. Developing a systematic approach offers an opportunity to establish a 

generalized causation model. The generalized causation model can be further developed into a 

hybrid model comprised of structured and unstructured data sources and serve as a tool for 

Safety 4.0. Safety 4.0 demands a data-driven approach integrating artificial intelligence 

techniques (i.e., NLP) to gain insights for better safety management. Collecting data from the 

database and real-time data from sensors provides a comprehensive view of accident patterns 

and potential hazards that would otherwise be difficult to detect. 

2.4 Identified Knowledge Gaps 

The knowledge gaps identified from the literature review are conducted in sections 2.1, 2.2 and 

2.3 and are summarized as follows: 

1. Modeling of MIC requires an approach to extract the information from available 

structured data to evaluate MIC risk. 

2. Developing a BN-based model for MIC requires a data-driven approach to learning the 

topology and parameters from structured data. 

3. Extracting causation factors interaction from the structured data must be derived from 

operational and laboratory data. 

4. Developing an objective risk assessment methodology is important for analyzing 

existing database resources and evaluating risk. 

5. Automating underlying cause-effect storylines from the domain-specific corpus is 

needed. 

6. Developing a knowledge-based causation model from unstructured data requires a 

methodical approach. 
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7. Integrating multi-source heterogeneous data are needed from structured and 

unstructured data to develop robust likelihood analysis.  
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3 Data-Driven Operational Failure Likelihood Model for 

Microbiologically Influenced Corrosion 
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Abstract 

Corrosion is a threat to asset integrity, with engineering challenges and economic burdens. 

Since the last decade, microbiologically influenced corrosion (MIC) began to be recognized 

among corrosion professionals as a severe corrosion form. It is challenging to detect and predict 

MIC due to the complex behaviour of microorganisms. The current MIC risk assessment 

models define the dependencies of parameters with their synergic interactions. A data-driven 

approach is needed to utilize available operational and microbiological data and learn as the 

data changes. The model proposed in this study is used to strengthen the variables' correlation 
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and their features to assess MIC likelihood. It can integrate available field and laboratory data 

into a Learning-based Bayesian network (LBN) model. The model minimizes current research 

gap and has the advantage of adapting to changes in process operation. It is based on an 

advanced Bayesian learning algorithm, which develops topology of the Bayesian network (BN) 

from the input data and its parameters. 

This chapter focuses on the development of the LBN model that utilizes available MIC data 

for likelihood estimation. The model is tested and validated using data reported in the public 

domain. The application of the model is demonstrated on the processing facility on a Floating, 

Production, Storage and Offloading (FPSO). The topology and parameter estimation will 

update as data changes/improve to capture the system behaviour to assess MIC likelihood, 

which helps in decision-making to control and mitigate MIC threats. 

Keywords: Corrosion, Microbiologically Influenced Corrosion (MIC), Learning-based 

Bayesian network (LBN), Bayesian learning, Floating, Production, Storage and Offloading 

(FPSO) 

3.1 Introduction 

Corrosion is a severe threat to asset integrity, especially in oil and gas industry. It has been 

estimated to cost US$2.5 trillion in 2013 globally (Gerhardus et al., 2016). However, corrosion 

failures resulting from MIC account for 20% of the global cost (Liengen et al., 2014; Sorensen 

et al., 2012). Additionally, in the oil and gas industry, 30% of equipment damage is attributed 

to MIC (Revie, 2015), which can be further divided into internal and external corrosion modes. 

The former account for 40% of failures in underground pipelines, whereas the latter varies from 

20-30% (Kaduková et al., 2014; Revie, 2015).  

NACE Standard TM0212 defines MIC as a microorganism activity on a biofilm attached to a 

corroded metal surface (Tm et al., 2012). A biofilm is a consortium of microorganisms and 

bacteria attached to a metal surface (Liengen et al., 2014; Sorensen et al., 2012). The activities 
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of microorganisms in the biofilm change the electrochemical conditions at metal-solution 

interface, which results in enhancing the corrosion process (Sooknah, et al., 2007; Taleb-

Berrouane, et al., 2019). MIC is a process that consists of initiation and propagation. The 

former occurs when a pipeline fluid is exposed to a pipeline surface containing free-floating 

microorganisms (planktonic); a portion of these microorganisms gets attached to the metal 

surface and form a biofilm. The latter occurs when a consortium of microorganisms attracts 

more microorganisms and forms exopolysaccharides to adhere to the surface. Once the 

biofilms become mature, they act as a channel for releasing metabolites and nutrient 

requirements of microorganisms (Skovhus et al., 2017). The corrosive microorganism is not 

limited to bacteria; it also includes methanogens and fungi. The corrosion process depends on 

oxidation of anode or reduction of cathode. The microorganisms only require an exchange of 

electrons from either oxidation or reduction, accelerating the rate of oxidation or reduction 

(Revie, 2015). They can be further divided based on the source of energy, oxygen requirement 

and favourability of the environment (B. Little et al., 2000). Common examples are sulphate-

reducing bacteria (SRB), manganese-reducing and iron-reducing bacteria. Among them, SRB 

is considered to be highly responsible for MIC. They reduce sulphate underneath the biofilm, 

which is highly corrosive (Hashemi et al., 2018). Literature has revealed the presence of the 

following microorganisms in MIC; sulfate-reducing microorganisms (SRM) (Cord-Ruwisch et 

al., 1987), thiosulfate-reducing bacteria (TRB) (Liang et al., 2014), nitrate-reducing 

microorganisms (NRM) (Lahme et al., 2019), acid-producing bacteria (APB) (Gu, 2014), iron-

oxidizing and iron-reducing bacteria (IOB, IRB) (Ray et al., 2010; Valencia-Cantero & Peña-

Cabriales, 2014) and biofilm-forming microorganisms (Vigneron et al., 2016). The taxonomy 

of microorganisms helps to identify their presence in FPSO data. The identified type of 

microorganisms in this study’s sample were SRM, methanogens and IRM. SRM is responsible 

for both chemical MIC (CMIC) and electrical MIC (EMIC) (Nicoletti, 2020). The former is a 
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mechanism in which microbiological metabolism is indirectly causing corrosion in pipelines, 

which rely on crude oil for carbon and energy sources (sulfide). The reduction of electron 

acceptor's metabolism produces highly corrosive products (Enning et al., 2012; Enning & 

Garrelfs, 2014). However, unlike CMIC, EMIC directly involves microbes with corrosion; they 

scavenge the electron from iron alloy surface and do not require external electron donors. The 

corrosion rate of EMIC in comparison to CMIC is significantly higher and thus more 

technically relevant (Enning et al., 2012). Methanogens produce methane in the presence of 

carbon dioxide and hydrogen, which also causes EMIC (Kip et al., 2017). 

IRB, Deferribacteraceae (5% relative presence), can use iron or nitrate as electron acceptors 

(Vigneron et al., 2016). The biofilm presence is detected with respect 

to Thermoanaerobacter and Caminicella; both are known to be capable of biofilm and spore-

formation in the presence of thio-sulfate reducing members (Peng et al., 2016; Verbeke et al., 

2014). 

 A review of the available literature shows that there is limited research on risk assessment of 

MIC failures, compared to monitoring, mechanisms, inhibition or prevention and biofilm 

formation (Hashemi et al., 2018; Taleb Berrouane, 2020). Hence, the challenge is not the 

availability of data, but to convert it to a robust model for risk assessment (Ben Seghier et al., 

2021; Dawuda et al., 2021; Sorensen et al., 2012). The investigation of MIC risk 

assessment/modelling maturity trend is carried out using two databases: Web of Science and 

Scopus. Keywords such as MIC risk assessment or MIC modelling were selected to perform 

an advanced search in the scientific literature. Results obtained from the databases are 

combined using MS Excel. Figure 3-1 illustrates the investigation of MIC risk assessment. It 

can be observed that MIC risk assessment studies have significantly increased in the past 

decade. This shift reflects MIC knowledge evolution and, therefore, models/techniques’ 

development to detect and predict its threat. 
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Figure 3-1 The evolution of MIC risk assessment/modelling 

Prediction of MIC is a complex task, as the activities of microorganisms change along with 

their interaction with biotic and abiotic factors, which results in either enhancement or 

diminution of MIC activity over time. The first attempt to quantify MIC risk, made in 2002, 

depended on several factors such as water presence, water wetting, pH, salinity and 

temperature; however, it did not incorporate biological parameters (Pots et al., 2002). Later on, 

the model was improved by considering the biological parameter to enhance the prediction of 

MIC and the effect of biocide (Maxwell; Campbell et al., 2006). Another attempt was made, 

focusing on microbiological growth, to assess MIC occurrence, considering operating pipeline 

parameters and water chemistry (Sooknah, Papavinasa, et al., 2007). Fuzzy logic and a neural 

network were combined to evaluate the risk of bio-fouling assisted corrosion at a particular 

section of a pipeline by considering hydraulic, biological and surface conditions (Urquidi-

Macdonald et al., 2014). Other attempts include a risk matrix to assess MIC risk with limited 

factors (Kaduková et al., 2014). A semi-quantitative analysis was performed that incorporated 

two factors; prediction factors and monitoring factors, to assess MIC risk (Y. Wang & Jain, 

2016). In 2018, MIC causal factors’ dependencies were considered using the BN to predict 
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MIC (G. Liu et al., 2018). Additionally, another study was carried out using BN, which is not 

limited to dependencies, but also considered synergic interactions to predict MIC (Taleb-

Berrouane et al., 2018). The early risk assessment approaches did not consider consequences 

of failure but only focused on material degradation due to MIC (Andersen et al., 2017; 

Wolodko et al., 2018).  

Molecular modelling techniques were also used to capture the presence and activities of 

microorganisms. Molecular Microbiological Methods (MMM) monitor microorganisms' 

distribution and help analyze MIC risk factors and pitting corrosion rates. These calculations 

estimate the number of MIC microorganisms with reaction stoichiometric and electron flow 

(Sorensen et al., 2012). Another study estimates MIC causing microorganisms based on DNA 

enumeration to assess MIC potential (Skovhus et al., 2012). An early work using molecular 

techniques shows that cultivation independence is reliable for bacteria identification and 

quantification, in contrast with a Most Probable Number (MPN) method. Other studies 

conducted by the same research group investigated the similarities and differences of bacterial 

populations from scale and produced water (Larsen et al., 2008). Also, microbiological 

activities were measured to design an early warning strategy to detect MIC in pipelines (Larsen 

et al., 2013). A molecular modelling technique was also applied to study growth of pits 

underneath biofilm and favorable conditions for this; it also investigated the role of hydrogen 

sulfide (HS-) for microbiologically influenced pitting (Ezenwa et al., 2019).  

Quantitative Risk Assessment (QRA) has been applied for MIC susceptibility to identify asset 

integrity threats. However, there is a need to develop a dynamic QRA, which can help minimize 

the loss by providing a data-based decision-making process. The data obtained from physical, 

chemical and biological parameters are important to capture synergic interactions, 

dependencies and causalities (Taleb-berrrouane & Khan, 2018; Wolodko et al., 2018). BN is 

considered to be a popular tool to model MIC (Dawuda et al., 2021; Taleb Berrouane, 2020; 
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Taleb-Berrouane et al., 2018; Taleb-Berrouane, et al., 2019; Taleb-berrrouane & Khan, 2018). 

This modelling tool (i.e., the BN) is particularly suitable for risk analysis (Deyab et al., 2018; 

Kabir et al., 2019; Kamil, Khan, et al., 2019; Emergency Response Plan Assessment Using 

Bayesian Belief Networks, 2017; Taleb-Berrouane & Khan, 2019; Yang et al., 2020) and 

reliability analysis (Bougofa et al., 2021), as it offers flexibility when adding new parameters 

to the network. Unlike Petri nets (Kamil, Taleb-Berrouane, et al., 2019; Talebberrouane et al., 

2016; Taleb-berrouane et al., 2018; Taleb-Berrouane et al., 2020; Taleb-Berrouane, 2019) or 

Markov chains (Ayello et al., 2014), this addition can be done without disturbing the overall 

structure of the model or other dependencies (i.e., directed arcs). Besides, the BN can easily 

incorporate new evidence and generate posterior probabilities useful for the analysis (Kamil, 

Khan, et al., 2019). Ayello et al. (Koch et al., 2015) used a BN-based model for internal and 

external corrosion and incorporated a MIC mechanism in the model. However, the 

development of MIC mechanism is limited in this study. Another study conducted by Koch et 

al. utilized the BN approach to model MIC, which is limited to considering sulfate-reducing 

microorganisms as the only causal factor and ignores other known factors in the model (Koch 

et al., 2015). Another BN-based approach enhances MIC mechanism modelling as a subsystem 

in internal corrosion assessment by considering the operational conditions, water conditions 

and bacteria presence (Shabarchin & Tesfamariam, 2016). Recently, a static BN-based 

approach has been used to quantify MIC susceptibility based on operating parameters, fluid 

chemistry, settlement parameters, material parameters, operating history, mitigation 

parameters and symptoms of MIC presence (Taleb-Berrouane et al., 2018). The study 

incorporated various factors; the disadvantage is an absence of data-driven BN parameters and 

lack of dynamicity in the model. The latter is significantly addressed in a more recent study 

(Kannan et al., 2020). The study utilizes a static BN approach to consider failure analysis 

history, maintenance history, material properties and operational data, which account for the 
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60 nodes (causal factors) BN model. The advantage of the model is incorporation of dynamic 

behaviour in the model by considering five nodes as time-dependent, namely, field PCR, iron 

carbonate, water cut, hydrogen sulfide concentration and wall thickness. The study does not 

utilize MIC data due to their unavailability in open literature and thus, relies on subjective 

judgement. The scenario-based results of the study are used in the benchmarking of the 

proposed model results. A more recent work by Taleb-Berrouane et al. (Taleb-Berrouane et al., 

2021) proposed the “Adaptive Bow-Tie (ABT)” approach to adapt (i.e., capture) the changes 

in a database to the bow-tie structure and applied it to MIC risk assessment. The new study 

provides a dynamically changing structure in a very simple and innovative approach; however, 

it cannot capture complex dependencies. 

Existing Bayesian approaches demonstrate that heuristic observations and expert judgment are 

the primary data sources for MIC modelling. The interaction of causal factors observed at a 

laboratory scale is often missing in high-level heuristic observations (Kannan et al., 2020). 

There is a need for a learning model that extracts the information from available data to 

evaluate MIC threat as the next step towards MIC risk modelling (Skovhus et al., 2017). 

Machine learning methods are gaining attention in engineering risk assessment due to their 

ability to extract features from data. Data can be available in textual or numerical form. 

However, the latter case is most common in risk assessment. Machine learning methods often 

used in engineering include but not limited to artificial neural network (ANN), support vector 

machine (SVM) and Naive Bayes classifier (Hegde & Rokseth, 2020).  A comparison of 

popular machine learning methods used in process safety engineering (PSE) is shown in 

Table 3-1.  

• ANN algorithms are similar to neurons in human brains. The neurons (contains 

functions) in ANN are connected by links. Link weightage is adjusted based on 

training data to improve ANN performance.  
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• SVM algorithm is based on developing hyperplanes depending upon training data 

sets. Hyperplanes serve as a basis for data classification.  

• Naïve Bayes algorithm uses the Bayes rule with a strong conditional independence 

assumption, i.e. Conditional independence of feature variables given the class 

variable (Goh et al., 2018). 

Table 3-1 Summary of common machine learning models used in risk assessment 

Machine 

learning 

models 

Features Limitations References 

Artificial 

Neural 

Network 

(ANN) 

Require less training data 

Able to determine non-

linear relationship 

between input and output 

variable 

Input and output 

variables relationships 

are generalized, i.e., 

overfitting 

Computational demand 

is high 

(Hegde & 

Rokseth, 2020; 

Tu, 1996) 

Support 

Vector 

Machine 

(SVM) 

Computational demand is 

less 

Superior predictions 

Performance depends on 

training data set (support 

vectors) 

(Ma et al., 2009) 

Naïve Bayes  Performance is good on 

small and large data sets 

Conditional 

independence of feature 

variables given class 

variable  

(Adedigba et al., 

2017; Jensen & 

Nielsen, 2007) 
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A data-driven model is proposed called the learning-based Bayesian network (LBN) model, 

which will help minimize the above-mentioned research gap. The topology of a Bayesian 

network considers expert judgement to identify the interaction between causal factors; 

however, this is time-consuming and error-prone (Larrañaga et al., 2013). The LBN model is 

based on the Bayesian learning algorithm, which develops topology from the obtained data and 

the parameters required in BN. There is a need to leverage operational and microbiological 

data in determining MIC likelihood. The key advantage would be capturing system behaviour 

in the process. The parameters will be adapted as the new data becomes available. The BN 

model will help to assess MIC likelihood and operational decision-making for mitigating and 

controlling measures. It will also help to identify critical equipment with high risk.  

Section 3.2 discusses details about Bayesian learning and selected algorithm. Section 3.3 of 

the study is devoted to LBN model, followed by its applicability in section 3.4 which includes, 

application of LBN model with complete and incomplete data sets followed model testing and 

its requirement in terms of FPSO data. Section 3.5 shows LBN model validation and 

benchmarking on MIC-induced failures. The conclusion obtained from the study is presented 

in section 3.6. Figure 3-2 depicts a visual representation of an overview of the study. 
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Figure 3-2 Overview of the study conducted 

3.2 The Concept of Bayesian Learning 

BN is considered to be a prime probabilistic graphical model for reasoning under uncertainty. 

Its inherent capability, representation of accident scenario and inference makes it unique to 

apply in multiple domains. Its use in MIC domain is well established in literature but lacks in 

learning aspect of BN model. This section will discuss ways to learn BN model from structural 

data with its pros and cons. 
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3.2.1 Bayesian Network and its Structural Learning 

BN is a widely used probabilistic method in safety and risk analysis due to its flexibility in 

incorporating complex causal dependencies and graphical representation of cause-effect. For 

more details about BN features and applicability in Process safety, interested readers are 

referred to (Kamil, Khan, et al., 2019; Khakzad et al., 2013; Taleb-Berrouane et al., 2020). 

There are two ways to define the BN structure: expert judgement (knowledge-driven) or 

utilizing the data to obtain variable correlations (data-driven) (Adedigba et al., 2018). The 

former method is prone to error due to a lack of expert knowledge about variable correlations 

and an inability to reach a consensus about its structure. It is also time-consuming and 

challenging if there are numerous variables (Adedigba et al., 2017; Neapolitan, 2004). 

However, the data-driven method overcomes the challenges and can learn the BN structure, 

given that the data set consists of all the variables of interest. The main challenge is an 

exponential increase in possible structures of BN as the number of nodes (m) increases, as 

shown in Equation (1) (Jensen & Nielsen, 2007). For example, for m=10, the possible BN 

structure is approximately 4.2*1018. A method is needed to maximize BN structure, given the 

data set. 

𝑓(𝑚) = ∑(−1)𝑖+1 𝑚!
(𝑚 − 𝑖)! 𝑚!

2𝑖(𝑚−𝑖)𝑓(𝑚 − 1)
𝑚

𝑖=1

 (1) 

There are two methods for learning the Bayesian network structure: the constraint-based 

method and Bayesian score-based method (Adedigba et al., 2017; Dash & Druzdzel, 1999; 

Jensen & Nielsen, 2007). Table 3-2 illustrates the difference between both methods. The LBN 

model uses the Bayesian search-based method based to obtain BN's topology.

Table 3-2 Major differences in Bayesian learning methods 

Parameter Constraint-based method Bayesian score-based method 
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Conditional 

independence 

Conditional independence test is 

required 

Bayesian score-based method 

can be applied if conditional 

independence test fails BN 

Significance 

level 

Arbitrary significance level to 

determine independencies when 

independence test does not hold 

Score and search to find optimal 

Topology of the 

network 

Error in initial stage of search 

process leads to different structure 

The structure with highest score 

is taken as optimal structure 

Features Quick and can deal with latent 

variables 

Relatively slow and can deal with 

incomplete data set 

The objective is to obtain an optimal BN structure from the data set. The score-based method 

has two main components, namely, a score function and a search procedure. The score function 

should have the ability to balance structure's accuracy, given its number of correlations from 

the input data set and computational tractability. The present study is based on structure 

learning introduced by (Cooper & Herskovits, 1992) and refined by (Heckerman et al., 1995). 

Let us assume that D is a data set of cases and V is a set of variables present in data set D. ZS 

is a belief structure consisting of variables V from the data set D. To rank the structure, 

posterior probability can be calculated by Equation (2). 

𝑃(𝑍𝑠|𝐷) =
𝑃(𝑍𝑠, 𝐷)

𝑃(𝐷) = 𝑃(𝑍𝑆)𝑃(𝐷|𝑍𝑆)  (2) 

The P(D) is a constant and does not depend on Zs; therefore, it is not necessary to evaluate it 

for comparing two structures. Equation (2) suggests two terms need to be evaluated, the prior 

probability P(ZS) and the marginal probability P(D|ZS). The main computational challenge is 

to calculate the marginal probability, given the data set D, and deal with the parameters of the 

model ZP, assuming that the data set consists of discrete variables. 
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𝑃(𝐷|𝑍𝑆) = ∫ 𝑃(𝐷|𝑍𝑆, 𝑍𝑃)𝑓(𝑍𝑝|𝑍𝑆)𝑑𝑍𝑃
𝑍𝑃

 (3) 

Equation (3) integral is over all the parameters and has a BN structure with same ZS but 

different conditional probabilities (f(ZP|ZS)). According to (Cooper & Herskovits, 1992; Jensen 

& Nielsen, 2007), the integral can be reduced to a counting problem based upon the following 

assumptions: 

• The data set consists of discrete variables 

• The cases in data set are independent of BN structure 

• The cases in data set are complete (assumption can be relaxed to accommodate missing 

data, interested reader is referred to (Cooper & Herskovits, 1992)) 

• The prior distribution of the parameters in BN is uniform 

Therefore, for a BN structure, ZS, given the data set, D, the score function is shown in Equation 

(4). 

𝑃(𝑍𝑆, 𝐷) = 𝑃(𝑍𝑆) ∏ ∏
(𝑟𝑖 − 1)!

(𝑆𝑖𝑗 + 𝑟𝑖 − 1)!

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 ∏ 𝑆𝑖𝑗𝑘!
𝑟𝑖

𝑘=1

   (4) 

where, 

ri is the state number of Vi 

Sijk denotes the number of samples in a data set D with Vi in its kth configuration and pa(Vi) 

in the jth configuration, Sij is estimated using Equation (5). 

𝑆𝑖𝑗 = ∑ 𝑆𝑖𝑗𝑘

𝑟𝑖

𝑘=1
   (5) 

The goal is to obtain an optimal BN structure from all possible configurations of BN. The 

scoring function helps to convert the Bayesian structural learning task to a parameter 

optimization problem. Searching the BN in all potential spaces is exponential as nodes 

increases. A method is needed to maximize Equation (4). A heuristic method such as the K2 

algorithm is available in the literature to overcome the challenge. The K2 algorithm first 
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assumes a prior structure (usually an empty or a randomly chosen structure) and calculates the 

gain by adding a parent node. The directed arc from parent to child node must result in an 

acyclic graph. Once the parent node's addition no longer increases the resulting structure 

probability, no other parent nodes are needed. The scoring functions in Equation (4) calculate 

the score of candidate BN structures with the K2 algorithm to search for the optimal BN with 

the highest score (Cooper & Herskovits, 1992; Jensen & Nielsen, 2007).  

To show an illustration of score function, a simple example is shown in Figure 3-3 to compare 

two BN structures and decide based on score function which is more likely to occur. Equation 

(4) given by (Cooper & Herskovits, 1992) is used to check each structure’s score. A 

hypothetical data are taken in Table 3-3 to calculate each structure score in Figure 3-3. 

 

Figure 3-3 Two possible structures of three node BN denoted as (a) and (b) 

Table 3-3 A data set to test the likelihood of BN structure's 

Number of 

cases 
A B C 

1 0 1 1 

2 0 0 0 

3 0 1 1 

4 1 0 1 
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5 0 1 1 

6 0 1 1 

7 1 1 1 

8 1 0 0 

9 1 1 1 

10 1 0 0 

 

The first BN structure results in 𝑃(𝑎, 𝐷) = 2.78 ∗ 10−10, whereas the other BN structure score, 

given the data set is 𝑃(𝑏, 𝐷) = 5.57 ∗ 10−11. This shows structure (a) is more likely to occur, 

compared to structure (b). 

3.2.2 Bayesian Parameter Learning 

The most common parameter learning method used is maximum likelihood estimation (MLE). 

When input data are complete, MLE estimates the conditional probability 𝜃 of a parameter of 

interest in terms of log-likelihood. For a BN structure, Z, given the data set, D, the MLE is 

expressed in Equation (6) as (Jensen & Nielsen, 2007): 

𝐿𝐿(𝑍|𝐷) = ∑ 𝑙𝑜𝑔2𝑃(𝑑|𝑍)
𝑑𝜖𝐷

 (6) 

The MLE (�̂�) of 𝜃 is shown in Equation (7) as 

  �̂� = arg max 
𝜃

 𝐿𝐿(𝑍|𝐷)   (7) 

The MLE is a well-suited method when input data are complete. However, in practice and due 

to sensor malfunction, technical or human error, some variables may not be observed 

(latent/hidden variables); data often consist of missing values. Details on missing values will 

be discussed in section 3.4.5. To deal with parameter estimating with missing values, an 

Expectation-Maximization (EM) algorithm introduced by (Dempster et al., 1977) is considered 
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for parameter learning.  It alters between two steps: the expectation step and the maximization 

step. The prior guessed a distribution for the parameter of interest (missing value), then the 

latter estimated the parameter by maximizing lower bound of the likelihood function. The 

algorithm repeated until it converged (the probability no longer changed) or met the 

termination criteria. Assume Z is a complete data set with density P(Z|θ). If the data set is 

complete, then the objective would be to maximize the following function in Equation (8): 

𝐿(𝜃|𝑍) ∝ 𝑝(𝑍|𝜃) (8) 

When the data set consists of some observed values and missing values, this means Z is 

partially observed. Therefore, Z can be written to include both observed and unobserved data 

as,  𝑍 = (𝑍𝑜𝑏𝑠𝑍𝑢𝑛𝑜𝑏𝑠) in Equation (9).  

𝐿𝑜𝑏𝑠(𝜃|𝑍𝑜𝑏𝑠) ∝ ∫ 𝑝(𝑍𝑜𝑏𝑠𝑍𝑢𝑛𝑜𝑏𝑠|𝜃) 𝑑𝑍𝑢𝑛𝑜𝑏𝑠 (9) 

The EM steps are as follows: 

1. Expectation step: find the expected value of log-likelihood function given the observed 

and present estimate of parameters (Imtiaz & Shah, 2008): 

𝐸(𝜃|𝜃(𝑡))  =  ∫ 𝐿𝑜𝑏𝑠(𝜃|𝑍𝑜𝑏𝑠, 𝑍𝑢𝑛𝑜𝑏𝑠)𝑝(𝑍𝑢𝑛𝑜𝑏𝑠|𝑍𝑜𝑏𝑠|𝜃𝑡) 𝑑𝑍𝑢𝑛𝑜𝑏𝑠  (10) 

 

2. Maximizing step: find the value of 𝜃(𝑡+1) that maximizes the expectation step: 

θt+1 = arg max 
𝜃

 𝐸 (𝜃|𝜃(𝑡)) (11) 

3.3 The LBN Model 

The proposed model aims to utilize process operating and microbiological parameters to avoid 

equipment failure (leakage) due to MIC. Figure 3-4 illustrates each step involved in the model 

development to assess MIC likelihood. To utilize process operating and microbiological data, 

steps 3.3.1-3.3.4 describe the data-driven MIC model.  
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3.3.1 System Identification 

The first step is to identify a system to apply the proposed model. It can be identified by 

analyzing its history, type of process fluid, corrosion signs, and exposure to corrosive 

conditions. 

3.3.2 System based Operational and Microbiological Data Collection 

The identified system’s operational and microbiological data collection is a crucial step. After 

reviewing the literature, the range for each parameter has been determined based on reported 

incidents of MIC. Then, the data collected for each parameter is analyzed to find whether it 

falls within the specified range. The other critical parameter is microbiological data, which will 

depict the presence of microorganisms and their types. The data can be obtained from 16 rRNA 

gene sequencing. 
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Figure 3-4 The proposed data-driven MIC model 
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3.3.3 Data Preparation 

The collection of operational and microbiological data was an important step. However, there 

is a challenge with collecting the desired amount of data for the data-driven approach. The data 

usually unavailable or insufficient for the data-driven approach. The present study has the latter 

problem. A lower and upper bound of data are taken from each parameter's available data to 

overcome data scarcity, which allows using n number of randomly generated data sets between 

the lower and upper bounds.  

The parametric data are converted to non-parametric data, which helps to uniform each 

parameter for Bayesian learning. Therefore, each variable's parametric data are converted into 

binary state 0 or 1, denoting the variable's absence or presence. If parametric data lies between 

the lower and upper bounds as discussed before, it will be indicated as 1 or 0.  

3.3.4 Bayesian Learning 

Bayesian network requires eliciting the BN topology and its parameter estimation. Bayesian 

learning will help to eliminate the subjective decision in deciding structure and parameters 

necessary to reduce uncertainty. The same dataset can be used to learn both structure and 

parameters. Firstly, structured learning can be initiated to obtain an optimal BN structure 

followed by estimating its parameters. 

3.3.4.1 Structural Learning 

Once data are prepared for Bayesian learning, the factors such as operational and 

microbiological parameters can be provided as a text file to GeNIE Modeler (GeNie Software, 

2023). The presence of microorganisms can be classified based on the taxonomy classes. In 

addition, expert opinion can be incorporated in terms of background information prior to 
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learning the structure, such as forced/forbid arcs from parent to child node. The K2 algorithm 

searches BN with the highest score and is referred to as the optimal BN for the data set. 

3.3.4.2 Parameter Learning 

Parameter learning is performed using the EM algorithm which is a general method of 

obtaining MLE with missing values of parameters (Imtiaz & Shah, 2008). When the input data 

set is complete and does not contain any missing values, the EM algorithm works as MLE. 

However, in the case of missing data, EM algorithm has two steps, namely, expectation and 

maximization. It maximizes the Zobs by maximizing the expected value of log-likelihood of the 

complete data set. The algorithm iterates between two steps, as shown in Equations (10) & 

(11), with the parameter’s initial value θt until convergence. The convergence is based on the 

missing data in the data set. When more data are missing, the convergence will be lower (Imtiaz 

& Shah, 2008).  

3.4 Application of LBN Model 

Data utilized in the study is available from the produced water samples obtained from the FPSO 

platform located in North America for polymerase chain reaction (PCR) to identify relative 

abundance of microorganisms (Nicoletti, 2020). Figure 3-5 illustrates the schematic of water 

and crude oil through the topside processing machinery of FPSO platform adapted from 

Nicoletti (Nicoletti, 2020). The green lines indicate water flow and sampling point, while black 

lines denote crude oil flow. The produced water samples are collected from the locations shown 

in Figure 3-5, namely, SC 1013, SC 1032, SC 1035 and SC 1037.  

LBN model comprises of four steps: (1) System identification, (2) System based operational 

and microbial data collection, (3) Data preparation and (4) Bayesian learning-structure and 

parameter. 
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Figure 3-5 A flow diagram of FPSO platform topside view adapted from Nicoletti (Nicoletti, 

2020)  

3.4.1  System Identification 

The first step is to identify a system to apply the proposed model. The offshore FPSO platform's 

process equipment from where produced water samples were collected are selected due to their 

exposure to a corrosive environment. 

3.4.2  System based Operational Data and Microbiological Data Collection 

The three operational parameters considered are temperature, pH and flow velocity of the 

process fluid. Flow velocity data are not available and assumed to be low as a favourable 

condition for biofilm growth (validated by the presence of biofilm-
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forming- Thermoanaerobacter and Caminicella in the sample). The operational data are not 

shown due to proprietary issues. 

The other critical parameter is microbiological data, which will depict the presence of 

microorganisms and their types. The present study utilizes the available data from a produced 

water sample of subsystems from the FPSO facility located in North America, for 16 rRNA 

gene sequencing. Biofilm film is detected with respect to Thermoanaerobacter and 

Caminicella. Both are known to be capable of biofilm and spore formation in the presence of 

thio-sulfate reducing members (Peng et al., 2016; Verbeke et al., 2014). For more details on 

the microorganisms group and their relative abundance, the reader can refer to the work of 

Nicoletti (Nicoletti, 2020). The taxonomy is classified as iron-reducing, methanogenic, sulfate-

reducing, and biofilm-forming microorganisms. 

3.4.3  Data Preparation 

The data set consists of mostly one or two data points, based on the experiment conducted to 

identify the types of microorganisms groups at different time intervals. To obtain an extensive 

data set for the model, the available data are considered to be the lower and upper bound of a 

data set. The random numbers generated in the described range will help address scarcity and 

facilitate learning the BN topology and parameters. Another critical task is determining if the 

data are in the range of a favourable limit and converting it into a non-parametric form. The 

range of each parameter is defined based on the lower and upper bound data, as discussed. For 

example, a favourable temperature for MIC is 10-95 0C; the identified process equipment 

operated in this range. If the temperature falls in the favourable range, the non-parametric data 

are denoted as 1 (yes), if not, 0 (no). A total of 360 data points were used for the model 

implementation. 
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3.4.4  Bayesian Learning 

Bayesian learning is divided into two aspects: structural learning and parameter learning. The 

data set prepared in the previous step is used to learn both structure and parameters of the BN. 

The converted operational non-parametric data are grouped into favourable conditions, which 

include temperature, pH and flow velocity of a fluid, whereas microbiological groups present 

are grouped as microbiological activity. The score-based method (K2 algorithm) introduced by 

(Cooper & Herskovits, 1992; Heckerman et al., 1995) is used to obtain an optimal BN, which 

corresponds to the highest score among different candidate networks. The EM algorithm is 

used for parameter learning, which works as a Maximum Likelihood estimation with a 

complete data set. Figure 3-6 and Figure 3-7 show the BN structure learned from the data set 

for each location of the FPSO platform. It is worth noting that the data set from the locations 

SC 1013, 1032 and 1037 consist of same microorganisms group (i.e. Iron-reducing, Sulfate-

reducing and Methanogens), thus have the same BN structure. However, in the case of SC 

1035, Iron-reducing group is absent. The operational and microbiological data considered in 

the study vary slightly due to differences in the upper and lower bound of the variables. The 

learning is performed using default parameters of the algorithms. 

 

Figure 3-6 BN network learned from data set for SC 1013,1032 and 1037 locations 
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The MIC likelihood from the LBN model is shown in Table 3-4. The MIC likelihood from all 

four locations is not different from one and another. The input data plays a sole role in the 

estimation of parameters. The MIC likelihood from all the identified locations in Figure 3-5 

has the same order of magnitude. In contrast, if we consider the study of corrosion coupon 

testing performed at a laboratory scale (Nicoletti, 2020), also suggests corrosion rate does not 

significantly varies from one location to another. Therefore, it can be established that the LBN 

model is capable of extracting BN from data set for MIC likelihood. 

 

Figure 3-7 BN network learned for SC 1035 location 

Table 3-4 MIC likelihood of FPSO platform equipment 

 

 

 

It is vital to use the MIC likelihood and convert it in respect to the maximum pitting rate. MIC 

is prone to cause pitting corrosion on metal surface that results in leakage of stored material. 

Therefore, expert opinion is used to develop a relationship of MIC likelihood to maximum 

pitting rate as shown in Figure 3-8. The two crucial factors in pitting corrosion are pit depth 

Locations of FPSO platform SC 1013 SC 1032 SC 1035 SC 1037 

MIC likelihood 4.30E-02 4.70E-02 4.50E-02 5.20E-02 
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and pit count on metal surface. The pit depth is categorized as significant or minor, based on 

the ratio of pit depth over the initial metal thickness. If pit depth reaches to 60% of metal 

thickness, it is considered as significant, otherwise, it is minor. The pit counts are discretized 

as P1, P2, P3 and P4. P1 denotes the likelihood of pit counts between 0-10 while P2 indicates 10-

20, P3 signifies 20-30 and P4 represents 30 or more. The expected risk of pitting is calculated 

based on NACE standard (NACE RP0775, 2005) as the multiplication of likelihood of pitting 

rate by the weighted pitting rate. The result for prior risk obtained from the BN model is shown 

in Table 3-5. The risk is in the same order of magnitude due to less variability of data as 

discussed earlier. Note that in the maximum pitting rate node, there is one more state which 

exists due to the directed arc from MIC potential node to pitting rate node. It is called the "No" 

state, which accounts for the non-occurrence of MIC potential node. 

 

Figure 3-8 BN model for likelihood of pitting rate 

Table 3-6 consists of three different risk values: RA denotes the prior risk from the BN, as 

shown in Table 3-5. RB represents the expected risk of pitting when microorganisms activity 
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and favourable operating conditions are detected in the system. RC denotes the condition when 

a corrective measure is applied, such as using a biocide to control MIC. This provides a 

comparison of three states of the system: RA (actual state), RB (worst-case) and RC (ideal case). 

It also represents the variability of the model. The risk of each pitting rate is increased by one 

order of magnitude. Note that the system's actual state (RA) has already shown the risk of MIC 

at a laboratory scale (corrosion coupon testing) (Nicoletti, 2020). The RC state is developed to 

illustrate LBN model behaviour when the operator takes control measures to lower MIC risk. 

The risk is reduced by two orders of magnitude in most pitting rates, as compared to RA. It also 

represents a safe condition for the process to continue. The results also show that the SC 1037 

location is slightly more likely to show pitting than others. This can be explained based on the 

more relative abundance of sulfate-reducing microorganisms than other mentioned locations.

Table 3-5 Expected risk of pitting in FPSO platform 

 

 

 

Maximum 

pitting rate 

Weighted 

pitting rate 

(mm/yr) 

Weighted 

factor 

Expected risk 

SC 1013 SC 1032 SC 1035 SC 1037 

Low <0.13 0.13 1.02E-

04 

1.12E-

04 

1.06E-

04 

1.24E-04 

Moderate 0.13-.20 0.2 2.08E-

05 

2.28E-

05 

2.16E-

05 

2.53E-05 

High 0.21-0.38 0.38 1.08E-

05 

1.18E-

05 

1.12E-

05 

1.31E-05 

Severe >0.38 0.55 3.03E-

07 

3.33E-

07 

3.15E-

07 

3.69E-07 
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Table 3-6 Expected risk of pitting in FPSO platform, RA (prior probability), RB (microorganisms activity detected) and RC (corrective measure 

applied)  

Maximum 

pitting rate 

SC-1013 SC-1032 SC-1035 SC-1037 

RA RB RC RA RB RC RA RB RC RA RB RC 

Low 1.02E-04 2.29E-03 5.15E-06 1.12E-04 2.28E-03 4.80E-06 1.06E-04 2.29E-03 5.11E-06 1.24E-04 2.31E-03 5.22E-06 

Medium 2.08E-05 4.68E-04 1.05E-06 2.28E-05 4.66E-04 9.80E-07 2.16E-05 4.67E-04 1.04E-06 2.53E-05 4.71E-04 1.07E-06 

High 1.08E-05 2.43E-04 5.47E-07 1.18E-05 2.42E-04 5.09E-07 1.12E-05 2.43E-04 5.42E-07 1.31E-05 2.45E-04 5.54E-07 

Severe 3.03E-07 6.83E-06 1.54E-08 3.33E-07 6.81E-06 1.43E-08 3.15E-07 6.82E-06 1.52E-08 3.69E-07 6.88E-06 1.56E-08 
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3.4.5 Application of the LBN Model with Missing Values 

In the past decade, the oil and gas processing industry has generated enormous data, 

introducing challenges for process engineers to analyze and convert this information into 

valuable knowledge. We have demonstrated the application of LBN model on the complete 

data set. However, the structure and parameter learning are also capable of learning the BN in 

case of missing values. In process industries, missing values refer to a data entry in a data set 

with no relationship to process, such as (no data). The incomplete data (i.e., missing values of 

parameters) may not guarantee a satisfactory model performance, especially if the missing 

values are large and affect the variables correlation (Xu et al., 2015). In the present study, we 

will investigate how much model performance will be affected with respect to missing values 

for a 10 node BN structure (shown in Figure 3-6).  

The first step in data cleaning is to analyze the pattern of incomplete data and possible reasons 

for incomplete data. Imtiaz et al. (Imtiaz & Shah, 2008)  discussed commonly missing patterns 

and their possible causes, as shown in Figure 3-9.  
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Figure 3-9 Missing data pattern adapted from Imtiaz et al. (Imtiaz & Shah, 2008) 

• In case A, only one variable (Y3) contains missing values, this may be due to sensor 

breakdown. 

• In case B, data entries of variables (Y2-Y5) are missing for the same data entry, 

reflecting a process shutdown due to a fault condition, and time stamps are the only 

available information. 

• Case C depicts an irregular pattern; possible causes are outlier removal and sensor 

malfunction. 

• Case D reflects the condition of multi-rate sampling by a regular missing pattern of one 

variable. 

The present study considers two parameters: pH and biofilm with missing values shown in case 

A. The most straightforward procedure to deal with incomplete data are deletion of missing 

data. There are two deletion methods available in literature, namely, list-wise deletion and 

pairwise deletion. The former eliminates the time stamp containing missing values, whereas 

the latter only removes the observations for particular variables having missing values. The 

list-wise deletion will sacrifice a large amount of data and introduce more uncertainty in 

Bayesian learning. Therefore, pairwise deletion is selected for the investigation. The LBN 

model steps are followed with incomplete parametric data. Note that, due to similarity and less 

variability in the input data of SC 1013, 1032, 1035 and 1037, only SC 1037 data set is 

considered. The present study deals with 5%, 10%, 20% 30% and 40% missing values in 

parametric data of pH and biofilm. The same BN network shown in Figure 3-6 is obtained with 

respect to missing values which implies that the correlations of variables are not affected until 

there are 40% missing values in the data set. The detailed result of analysis is shown in Table 
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3-7. The percentage change is calculated to show how the expected risk varies compared to the 

data set consisting of missing values in pH and biofilm parameters. The negative sign indicates 

a decrease in expected risk when compared to prior risk with the complete data set. Figure 3-10 

depicts the expected risk of pitting, corresponding to the percentage of missing values in the 

data set. Xu et al.(Xu et al., 2015) pointed out that the model performance is affected when 

large amount of data are missing, which is seen when missing values increases to 40%. The 

data set does not have a sufficient correlation of variables i.e., percentage change shows -100% 

in the last column of Table 3-7. However, the LBN model can learn BN when the missing 

values reach 30% or unless the correlations are affected. This exercise is conducted to show 

the capability of the model (degraded performance) to work with missing values in the data 

set, as long as they are not large enough to affect the correlation (i.e., 40% in the present case). 

It does not aim to answer how to handle missing values in data set.  

 

Figure 3-10 Bayesian learning with respect to missing values in data set 
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Table 3-7 Expected risk of pitting with respect to missing values in data set 

Maximum 

pitting rate 

Complete 

data set 

5% Percentage 

change 

10% Percentage 

change 

20% Percentage 

change 

30% Percentage 

change 

40% Percentag

e change 

Low 1.24E-04 1.20E-04 -3.1 1.13E-04 -8.5 1.01E-04 -18.3 9.16E-05 -25.9 0 -100.00 

Moderate 2.53E-05 2.45E-05 -3.1 2.31E-05 -8.5 2.06E-05 -18.3 1.87E-05 -25.9 0 -100.00 

High 1.31E-05 1.27E-05 -3.1 1.20E-05 -8.5 1.07E-05 -18.3 9.72E-06 -25.9 0 -100.00 

Severe 3.69E-07 3.57E-07 -3.1 3.38E-07 -8.5 3.02E-07 -18.3 2.73E-07 -25.9 0 -100.00 
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3.4.6 LBN Model Stability 

To investigate data requirement for LBN model implementation shown in Figure 3-6 consists 

of 10 nodes. Each step mentioned in section 3.2 is carried out to develop and determine when 

the BN structure stability will be achieved. The initial data points considered were 50, which 

did not show any directed arcs from one variable to another, due to insufficient correlations. 

The data points increased with a step size of 25, which resulted in same conclusion. However, 

when the data points increased to 100, favourable conditions for an intermediate node 

developed with the directed arcs from all the operational parameters. This showed that the data 

had sufficient correlations to create directed arcs. Another step size of 25 resulted in the 

development of directed arcs in the microbiological activity node. At this stage, the directed 

arcs from intermediate nodes to the target node were unstable and kept changing when different 

iterations were performed. Another step size increase was the critical point in BN's stability 

(150 data points). At this stage, BN was stable and same BN is obtained when different 

iterations were performed. Note that the 10 node BN structure requires at least 150 data points 

to implement the LBN model. Figure 3-11 illustrates the model’s progress in terms of the 

percentage of BN structure learned with respect to the number of data points.  
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Figure 3-11 LBN progress with respect to data points 

3.4.7 Testing of Model on Data Set – Clean and Corrupt Data 

The learned BN testing has been performed on 20% of the data set, i.e., 90 data points. Firstly, 

the actual data were given as a clean testing data set, consisting of 85 cases representing no 

MIC likelihood in labelled data set. The other 5 represent the likelihood of MIC.  It can be 

observed that the results are shown in Table 3-8 in the form of a 4 by 4 confusion matrix 

representing the actual (testing dataset) and predicted values from the LBN model. This result 

is also expected, since the training and testing data set comes from the same dataset. However, 

data obtained from the process often consists of error, which could be due to faulty sensors or 

logic-solver errors. Therefore, the testing data set has been modified to test the model’s 

efficacy. A 20% error has been introduced in the clean testing data set and referred to as corrupt 

data. A total of 18 data points have been modified in labelled data set: 5 (yes) points are 

replaced with no and 13 (no) with yes. The result is shown in Table 3-9 the model predicted 

all 85 cases of no MIC likelihood (actual 72 and 13 false negative) and 5 instances of MIC 

likelihood (false positive), correctly.  
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Table 3-8 Confusion matrix with clean testing data 

Actual (MIC 

likelihood based on 

input data) 

 Predicted (MIC likelihood from BN model) 

No Yes 

No 85 0 

Yes 0 5 

 

Table 3-9 Confusion matrix with 80% clean and 20% corrupt data 

Actual (MIC 

likelihood based on 

input data) 

 Predicted (MIC likelihood based on input data) 

No Yes 

No 72 5 

Yes 13 0 

3.5 Validation of the LBN Model 

The aim is to conduct validation based on MIC-induced failures reported in (Skovhus et al., 

2017). A total of 6 scenarios were generated; scenarios 1-4 were based on the failures, whereas 

scenarios 5 and 6 correspond to lower and upper bound of the LBN model by considering the 

presence and absence of all parent nodes to show model variability. The LBN model developed 

for the FPSO platform is used for validation and comparison to benchmark model performance 

with the results reported in Kannan et al.(Kannan et al., 2020). Evidence of each scenario is 

reported in   

Table 3-10 as per understanding and relevance of MIC process that are useful for LBN model.  

Table 3-10 Scenarios 1-6 evidence 

Scenario Identified parameter 
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1 
Biofilm, Flow rate, Sulfate-reducing microorganism, Methanogens and Iron-

reducing microorganism 

2 
Temperature, Flow rate, pH, Sulfate-reducing microorganism and Iron-reducing 

microorganism 

3 pH, Temperature, Flow rate, Sulfate-reducing microorganism and Biofilm 

4 pH, Temperature, Flow rate, Iron-reducing microorganism and Biofilm 

5 All parent nodes are present 

6 All parent nodes are absent 

The results of each scenario were summarized in Table 3-11. Scenario 1 was based upon the 

failure reported due to MIC in an outlet of a high-pressure production trap at the gas-oil 

separation plant. The failure occurred due to under-deposit localized pitting where the pit 

morphology and shape were similar to those caused by MIC. The LBN model resulted in an 

80% likelihood compared to 58% reported in Kannan et al.(Kannan et al., 2020). Scenario 2 

was based on failure and leaks of heat exchangers in different process units due to localized 

pitting on the tube side, due to MIC. The failure occurred in a cooling system within a crude 

oil refinery. The model resulted in a 55% likelihood of MIC, based upon the observables 

obtained, compared to 47% from Table 3-11. Scenario 3 describes fire hydrants premature 

failure due to Stress Corrosion Cracking (SCC) and leaching, which was accelerated due to 

microbes. The LBN model estimated a 70% likelihood of MIC, which denotes the 

microbiological activity that accelerated SCC compared to 50% reported in Kannan et 

al.(Kannan et al., 2020). Scenario 4 consists of a pinhole leak observed on a diesel shipping 

line due to localized pitting, which probably resulted from MIC. The model resulted in a 79% 

likelihood of MIC compared to 54% reported by Kannan et al. Scenario 5 was simulated based 
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on the parent nodes presence. The model estimated a 98% likelihood of MIC. However, in 

scenario 6, all the parent nodes were absent, and the model estimated a 0.22% likelihood of 

MIC. Scenarios 5 and 6 show the variability of LBN model (upper bound and lower bound 

values).  

Table 3-11 Comparison of MIC scenario-based likelihood results (rounded percentage) 

compared to Kannan et al.(Kannan et al., 2020) 

Scenarios LBN model results (%) Kannan et al. results (%) 

1 80 57.59 

2 55 46.93 

3 70 50.24 

4 79 53.92 

5 98 100 

6 0.22 0.05 

The comparison shows that the LBN model can predict all the failures in scenarios 1-4. The 

purpose of comparison is to establish benchmarking which helps validate LBN model 

performance with the recent study conducted in MIC domain. This exercise also shows the 

LBN model capability and potential use in MIC domain.  

The results show higher variability in predicting scenarios 1-4. However, Kannan et al. results 

have less variability in the scenarios likelihood estimation possibly due to mean estimation of 

child node. Their model also considers arc weightage from a parent node to a child node to 

estimate the mean value of child node. As reported in (Kannan et al., 2020), weighting the arc 

was conducted based on heuristic estimates. However, the present study gives higher arc 

weightage to microorganisms activity than favourable operating conditions since 

microorganisms activity resulted in MIC-induced failures. 
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3.6 Conclusions 

Progressing towards process digitalization demands a data-driven dynamic approach to ensure 

safety of process systems. This chapter presents an integrated data-driven model that has the 

advantage of directly using the available field and laboratory data to assess MIC likelihood. 

LBN model is advantageous compared to other BN-based models in MIC domain due to its 

learning ability, missing values handling and acceptable performance demonstrated on model 

testing on the corrupt dataset. LBN model is also benchmarked and validated with the Kannan 

et al. study conducted in MIC domain to establish its effectiveness in predicting MIC 

likelihood. The data driven LBN model provides a unique platform for strengthening the 

variables' correlation and their features to assess MIC likelihood.  

The data-driven quantitative analysis of MIC provides insight into determining vulnerable 

process equipment. As a result, the model can manage and control the MIC risk in industries 

and enhance the overall safety of the process operation. Future work can consider an 

incremental Bayesian learning model to improve its practicability on the existing system. 

Moreover, features from unstructured data can be used in combination with structured data to 

offer holistic process safety solutions.  

3.7 Acknowledgements  

The first author would like to thank Dr. Guozheng Song for helping with the GeNie software 

in the initial stage of the work. The authors acknowledge the financial support provided by 

Genome Canada and their supporting partners through the Large Scale Applied Research 

Project and the Canada Research Chair (CRC) Tier I Program in Offshore Safety and Risk 

Engineering.  

3.8 References 

1. K. Gerhardus, V. Jeff, N. Thopson, O. Moghissi, M. Gould, and J. Payer, 

“International Measures of Prevention , Application , and Economics of Corrosion 



 66 

Technologies Study,” NACE Int., 2016. 

2. K. B. Sorensen, U. S. Thomsen, S. Juhler, and J. Larsen, “Cost efficient MIC 

management system based on molecular microbiological methods,” in NACE - 

International Corrosion Conference Series, 2012. 

3. T. Liengen, D. Féron, R. Basséguy, and I. Beech, Understanding Biocorrosion: 

Fundamentals and Applications, vol. number 66. Elsevier Inc., 2014. 

4. R. W. Revie, Oil and Gas Pipelines: Integrity and Safety Handbook. wiley, 2015. 

5. J. Kaduková, E. Škvareková, V. Mikloš, and R. Marcinčáková, “Assessment of 

microbially influenced corrosion risk in slovak pipeline transmission network,” J. 

Fail. Anal. Prev., vol. 14, no. 2, pp. 191–196, 2014. 

6. N. S. Tm, I. No, T. N. International, T. Nace, and C. Notice, “Standard Test 

Method TM0212 Detection , Testing , and Evaluation of Microbiologically 

Influenced Corrosion on Internal Surfaces of Pipelines,” NACE Int. Corros. Soc., 

2012. 

7. R. Sooknah, S. Papavinasam, and R. W. Revie, “Monitoring microbiologically 

influenced corrosion: A review of techniques,” in NACE - International Corrosion 

Conference Series, 2007. 

8. M. Taleb-Berrouane, F. Khan, R. B. Eckert, and T. L. Skovhus, “Predicting Sessile 

Microorganism Populations in Oil and Gas Gathering and Transmission Facilities-

Preliminary Results,” in 7th International Symposium on Applied Microbiology 

and Molecular Biology in Oil Systems (ISMOS 7), 2019. 

9. T. L. Skovhus, D. Enning, and J. S. Lee, Microbiologically influenced corrosion 

in the upstream oil and gas industry, vol. 1. 2017. 

10. B. Little, R. Ray, and R. Pope, “Relationship between corrosion and the biological 

sulfur cycle: A review,” Corrosion, vol. 56, no. 4, p. 433, 2000. 



 67 

11. S. Hashemi, N. Bak, F. Khan, K. Hawboldt, L. Lefsrud, and J. Wolodko, 

“Bibliometric Analysis of Microbiologically Influenced Corrosion (MIC) of Oil 

and Gas Engineering Systems,” Corrosion, vol. 74, no. 4, pp. 468–486, 2018. 

12. R. Cord-Ruwisch, W. Kleinitz, and F. Widdel, “SULFATE-REDUCING 

BACTERIA AND THEIR ACTIVITIES IN OIL PRODUCTION.,” JPT, J. Pet. 

Technol., 1987. 

13. R. Liang, R. S. Grizzle, K. E. Duncan, M. J. McInerney, and J. M. Suflita, “Roles 

of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the 

biocorrosion of oil pipelines,” Front. Microbiol., 2014. 

14. S. Lahme et al., “Metabolites of an oil field sulfideoxidizing, nitrate-reducing 

Sulfurimonas sp. cause severe corrosion,” Appl. Environ. Microbiol., 2019. 

15. T. Gu, “Theoretical Modeling of the Possibility of Acid Producing Bacteria 

Causing Fast Pitting Biocorrosion,” J. Microb. Biochem. Technol., 2014. 

16. R. I. Ray, J. S. Lee, and B. J. Little, “Iron-oxidizing bacteria: A review of corrosion 

mechanisms in fresh water and marine environments,” in NACE - International 

Corrosion Conference Series, 2010. 

17. E. Valencia-Cantero and J. J. Peña-Cabriales, “Effects of iron-reducing bacteria 

on carbon steel corrosion induced by thermophilic sulfate-reducing consortia,” J. 

Microbiol. Biotechnol., 2014. 

18. A. Vigneron, E. B. Alsop, B. Chambers, B. P. Lomans, I. M. Head, and N. 

Tsesmetzis, “Complementary Microorganisms in Highly Corrosive Biofilms from 

an Offshore Oil Production Facility,” Appl. Environ. Microbiol., vol. 82, no. 8, pp. 

2545 LP – 2554, Apr. 2016. 

19. D. S. Nicoletti, “Microbial Nitrogen and Sulfur Metabolism and its Relation to 

Corrosion Risk on Offshore Oil Production Platforms,” PRISM, 2020. 



 68 

20. D. Enning et al., “Marine sulfate-reducing bacteria cause serious corrosion of iron 

under electroconductive biogenic mineral crust,” Environ. Microbiol., 2012. 

21. D. Enning and J. Garrelfs, “Corrosion of iron by sulfate-reducing bacteria: New 

views of an old problem,” Applied and Environmental Microbiology. 2014. 

22. N. Kip et al., “Methanogens predominate in natural corrosion protective layers on 

metal sheet piles,” Sci. Rep., vol. 7, no. 1, p. 11899, 2017. 

23. T. J. Verbeke et al., “Thermoanaerobacter thermohydrosulfuricus WC1 shows 

protein complement stability during fermentation of key lignocellulose-derived 

substrates,” Appl. Environ. Microbiol., 2014. 

24. T. Peng, S. Pan, L. P. Christopher, R. Sparling, and D. B. Levin, “Growth and 

metabolic profiling of the novel thermophilic bacterium Thermoanaerobacter sp. 

strain YS13,” Can. J. Microbiol., vol. 62, no. 9, pp. 762–771, May 2016. 

25. M. Taleb Berrouane, “Dynamic corrosion risk assessment in the oil and gas 

production and processing facility.” Memorial University of Newfoundland, 2020. 

26. A.-W. Dawuda, M. Taleb-berrouane, and F. Khan, “A probabilistic model to 

estimate microbiologically influenced corrosion rate,” Process Saf. Environ. Prot., 

2021. 

27. M. E. A. Ben Seghier, B. Keshtegar, M. Taleb-Berrouane, R. Abbassi, and N. T. 

Trung, “Advanced intelligence frameworks for predicting maximum pitting 

corrosion depth in oil and gas pipelines,” Process Saf. Environ. Prot., vol. 147, 

no. January, pp. 818–833, 2021. 

28. B. F. Pots et al., “Improvements on de waard-milliams corrosion prediction and 

applications to corrosion management,” in NACE - International Corrosion 

Conference Series, 2002, no. 02235, p. 19. 

29. Maxwell; Campbell, S. Maxwell, and S. Campbell, “Monitoring the mitigation of 



 69 

MIC risk in pipelines,” in NACE - International Corrosion Conference Series, 

2006, no. 244, pp. 1–10. 

30. R. Sooknah et al., “Modelling the occurrence of microbiologically influenced 

corrosion,” in NACE - International Corrosion Conference Series, 2007, no. 

07515, pp. 1–12. 

31. M. Urquidi-Macdonald, A. Tewari, and L. F. Ayala H, “A neuro-fuzzy 

knowledge-based model for the risk assessment of microbiologically influenced 

corrosion in crude oil pipelines,” Corrosion, 2014. 

32. Y. Wang and L. Jain, “MIC assessment model for upstream production and 

transport facilities,” in NACE - International Corrosion Conference Series, 2016. 

33. G. Liu, J. Zhang, F. Ayello, and P. Stephens, “The application of Bayesian 

network threat model for corrosion assessment of pipeline in design stage,” in 

Proceedings of the Biennial International Pipeline Conference, IPC, 2018. 

34. M. Taleb-Berrouane, F. Khan, K. Hawboldt, R. Eckert, and T. L. Skovhus, “Model 

for microbiologically influenced corrosion potential assessment for the oil and gas 

industry,” Corros. Eng. Sci. Technol., vol. 53, no. 5, pp. 378–392, 2018. 

35. E. S. Andersen, T. L. Skovhus, and E. Hillier, “Review of current models for MIC 

management,” in Microbiologically Influenced Corrosion in the Upstream Oil and 

Gas Industry, 2017. 

36. J. Wolodko et al., “Modeling of Microbiologically Influenced Corrosion (MIC) in 

the oil and gas industry - Past, present and future,” NACE - Int. Corros. Conf. Ser., 

vol. 2018-April, 2018. 

37. T. L. Skovhus, L. Holmkvist, K. Andersen, H. Pedersen, and J. Larsen, “MIC risk 

assessment of the halfdan oil export spool,” in Society of Petroleum Engineers - 

SPE International Conference and Exhibition on Oilfield Corrosion 2012, 2012. 



 70 

38. J. Larsen, T. L. Skovhus, A. M. Saunders, B. Højris, and M. Agerbák, “Molecular 

identification of MIC bacteria from scale and produced water: Similarities and 

differences,” in NACE - International Corrosion Conference Series, 2008. 

39. J. Larsen, S. Juhler, K. B. Sørensen, and D. S. Pedersen, “The application of 

molecular microbiological methods for early warning of MIC in pipelines,” in 

NACE - International Corrosion Conference Series, 2013. 

40. N. Ezenwa, F. Khan, K. Hawboldt, R. Eckert, and T. L. Skovhus, “A preliminary 

molecular simulation study on the use of HS- as a parameter to assess the effect 

of surface deposits on the SRB-initiated pitting on metal surfaces,” in 

CORROSION 2019, 2019. 

41. M. Taleb-berrrouane and F. Khan, “Development of MIC Risk Index for Oil and 

Gas Operations,” in C-RISE & geno-MIC Workshop & Symposium, 2018. 

42. R. Yang, F. Khan, M. Taleb-Berrouane, and D. Kong, “A time-dependent 

probabilistic model for fire accident analysis,” Fire Saf. J., vol. 111, no. December 

2018, p. 102891, 2020. 

43. S. Kabir, M. Taleb-Berrouane, and Y. Papadopoulos, “Dynamic reliability 

assessment of flare systems by combining fault tree analysis and Bayesian 

networks,” Energy Sources, Part A Recover. Util. Environ. Eff., 2019. 

44. S. M. Deyab, M. Taleb-berrouane, F. Khan, and M. Yang, “Failure analysis of the 

offshore process component considering causation dependence,” Process Saf. 

Environ. Prot., 2018. 

45. M. Taleb-Berrouane, A. Sterrahmane, D. Mehdaoui, Z. Lounis., and Z. Lounis, 

Emergency Response Plan Assessment Using Bayesian Belief Networks. St John’s 

NL, 2017, pp. 1–6. 

46. M. Z. Kamil, F. Khan, G. Song, and S. Ahmed, “Dynamic Risk Analysis Using 



 71 

Imprecise and Incomplete Information,” ASCE-ASME J. Risk Uncertain. Eng. 

Syst. Part B Mech. Eng., vol. 5, no. 4, 2019. 

47. M. Taleb-Berrouane and F. Khan, “Dynamic resilience modelling of process 

systems,” Chem. Eng. Trans., vol. 77, no. 1, pp. 313–318, 2019. 

48. M. Bougofa, M. Taleb-Berrouane, A. Bouafia, A. Baziz, R. Kharzi, and A. 

Bellaouar, “Dynamic Availability Analysis Using Dynamic Bayesian and 

Evidential Networks,” Process Saf. Environ. Prot., 2021. 

49. M. Z. Kamil, M. Taleb-Berrouane, F. Khan, and S. Ahmed, “Dynamic domino 

effect risk assessment using Petri-nets,” Process Saf. Environ. Prot., vol. 124, 

2019. 

50. M. Taleb-Berrouane, F. Khan, and M. Z. M. Z. Kamil, “Dynamic RAMS analysis 

using advanced probabilistic approach,” Chem. Eng. Trans., vol. 77, pp. 241–246, 

2019. 

51. M. Talebberrouane, F. Khan, and Z. Lounis, “Availability analysis of safety 

critical systems using advanced fault tree and stochastic Petri net formalisms,” J. 

Loss Prev. Process Ind., vol. 44, pp. 193–203, 2016. 

52. M. Taleb-Berrouane, F. Khan, and P. Amyotte, “Bayesian Stochastic Petri Nets 

(BSPN) - A new modelling tool for dynamic safety and reliability analysis,” 

Reliab. Eng. Syst. Saf., vol. 193, 2020. 

53. M. Taleb-berrouane, S. Imtiaz, and F. Khan, “Internal Corrosion Monitoring in 

the Crude Oil Pipelines,” in 20th Annual Aldrich Conference, 2018, no. March. 

54. F. Ayello, S. Jain, N. Sridhar, and G. H. Koch, “Quantitive assessment of corrosion 

probability - A Bayesian network approach,” Corrosion, 2014. 

55. G. Koch, F. Ayello, V. Khare, N. Sridhar, and A. Moosavi, “Corrosion threat 

assessment of crude oil flow lines using bayesian network model,” Corros. Eng. 



 72 

Sci. Technol., 2015. 

56. O. Shabarchin and S. Tesfamariam, “Internal corrosion hazard assessment of oil 

& gas pipelines using Bayesian belief network model,” J. Loss Prev. Process Ind., 

2016. 

57. P. Kannan, S. P. Kotu, H. Pasman, S. Vaddiraju, A. Jayaraman, and M. S. Mannan, 

“A systems-based approach for modeling of microbiologically influenced 

corrosion implemented using static and dynamic Bayesian networks,” J. Loss 

Prev. Process Ind., 2020. 

58. M. Taleb-Berrouane, F. Khan, and K. Hawboldt, “Corrosion risk assessment using 

adaptive bow-tie (ABT) analysis,” Reliab. Eng. Syst. Saf., vol. 214, no. May, p. 

107731, 2021. 

59. J. Hegde and B. Rokseth, “Applications of machine learning methods for 

engineering risk assessment – A review,” Safety Science. 2020. 

60. Y. M. Goh, C. U. Ubeynarayana, K. L. X. Wong, and B. H. W. Guo, “Factors 

influencing unsafe behaviors: A supervised learning approach,” Accid. Anal. 

Prev., 2018. 

61. J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus 

logistic regression for predicting medical outcomes,” J. Clin. Epidemiol., 1996. 

62. Y. Ma, M. Chowdhury, A. Sadek, and M. Jeihani, “Real-time highway traffic 

condition assessment framework using vehicleInfrastructure integration (VII) with 

artificial intelligence (AI),” IEEE Trans. Intell. Transp. Syst., 2009. 

63. S. A. Adedigba, F. Khan, and M. Yang, “Dynamic failure analysis of process 

systems using principal component analysis and Bayesian network,” Ind. Eng. 

Chem. Res., 2017. 

64. F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs 



 73 

(Information Science and Statistics). 2007. 

65. P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana, “A review on evolutionary 

algorithms in Bayesian network learning and inference tasks,” Inf. Sci. (Ny)., 2013. 

66. N. Khakzad, F. Khan, and P. Amyotte, “Dynamic safety analysis of process 

systems by mapping bow-tie into Bayesian network,” Process Saf. Environ. Prot., 

vol. 91, no. 1–2, pp. 46–53, 2013. 

67. S. A. Adedigba, O. Oloruntobi, F. Khan, and S. Butt, “Data-driven dynamic risk 

analysis of offshore drilling operations,” J. Pet. Sci. Eng., 2018. 

68. R. E. Neapolitan, Learning Bayesian networks. Upper Saddle River, N.J.: Pearson 

Prentice Hall, 2004. 

69. D. Dash and M. J. Druzdzel, “A Hybrid Anytime Algorithm for the Construction 

of Causal Models From Sparse Data,” Artif. Intell., 1999. 

70. G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of 

Probabilistic Networks from Data,” Mach. Learn., 1992. 

71. D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian Networks: 

The Combination of Knowledge and Statistical Data,” Mach. Learn., 1995. 

72. A. P. Dempster, N. M. Laird, and D. B. Rubin, “ Maximum Likelihood from 

Incomplete Data Via the EM Algorithm ,” J. R. Stat. Soc. Ser. B, 1977. 

73. S. A. Imtiaz and S. L. Shah, “Treatment of missing values in process data 

analysis,” Can. J. Chem. Eng., 2008. 

74.  “GeNie software accessed from https://www.bayesfusion.com.” 2020. Accessed 

on January 2020. 

75. NACE RP0775, “Recommended Practice Preparation , Installation , Analysis , and 

Interpretation of Corrosion Coupons in Oilfield Operations,” Nace Int. Houston, 

TX. USA, no. 21017, 2005. 



 74 

76. S. Xu et al., “Data cleaning in the process industries,” Rev. Chem. Eng., 2015. 

 

  



 75 

4 Textual Data Transformations Using Natural Language Processing 

for Risk Assessment 
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analysis. 

Abstract 

Underlying information about failure, including observations made in free text, can be a good 

source for understanding, analyzing, and extracting meaningful information for determining 

causation. The unstructured nature of natural language expression demands advanced 

methodology to identify its underlying features. There is no available solution to utilize 

unstructured data for risk assessment purposes. Due to the scarcity of relevant data, textual data 

can be a vital learning source for developing a risk assessment methodology. This work 

addresses the knowledge gap in extracting relevant features from textual data to develop cause-

effect scenarios with minimal manual interpretation. This study applies natural language 
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processing (NLP) and text-mining techniques to extract features from past accident reports. 

The extracted features are transformed into parametric form with the help of fuzzy set theory 

and utilized in Bayesian networks (BN) as prior probabilities for risk assessment. An 

application of the proposed methodology is shown in microbiologically influenced corrosion 

(MIC)-related incident reports available from the Pipeline and Hazardous Material Safety 

Administration (PHMSA) database. In addition, the trained named entity recognition model 

(NER) is verified on eight incidents, showing a promising preliminary result for identifying all 

relevant features from textual data and demonstrating the robustness and applicability of NER 

method. The proposed methodology can be used in domain-specific risk assessment to analyze, 

predict and prevent future mishaps, ameliorating overall process safety. 

KEYWORDS: Natural language processing (NLP), text mining, unstructured, data, Bayesian 

network (BN), microbiologically influenced corrosion (MIC), named entity recognition 

(NER), risk assessment, process safety 

4.1 Introduction  

Natural language processing (NLP) is concerned with human-computer interaction, including 

computational methods for automated analysis (Cambria & White, 2014). In order words, NLP 

is a field of interpreting and understanding human text and speech (Clark et al., 2010). It has a 

wide range of applications such as sentiment analysis, information extraction, text 

classification, question answering, speech recognition, machine translation, keyword searching 

and advertisement matching. Applications of NLP have been widely reported across domains 

based on two broad classifications: (i) hand-written rules or ontology-based studies and (ii) 

machine learning algorithms. (Wu et al., 2013) proposed a scenario object model based on 

domain ontology to capture and effectively utilize information from HAZOP studies. NLP 

combined with ontology was used to automate the procedure of information extraction. An 

ontology was developed and compared with and without domain-specific ontology and 
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concluded that domain-specific ontology exhibits robust results (Kwon et al., 2013). (Guo & 

Huang, 2016) proposed a semi-automated ontology that utilizes web mining, machine learning 

and NLP to assist the user in building a domain-specific ontology without much effort. A pre-

defined list of keywords by experts was used for automated content analysis for construction 

safety (Tixier et al., 2016b). A hazard modelling language was proposed to provide a structured 

pathway for formalizing natural language hazard descriptions in a safety-critical system, i.e., 

Passenger train (Zhou et al., 2017). Another study proposed by Nakata uses a text mining 

approach to extract information using bag-of-words from two adjacent sentences. However, 

this study ignored order within bag-of-words, which will be helpful in constructing the 

causality of aviation incidents (Nakata, 2017).  

A domain-specific ontology was developed, which employed NLP to extract subject, predicate, 

and object from unstructured textual data to improve human communication in aviation 

(Abdullah et al., 2019). (Hughes et al., 2019) developed an ontology-based approach capable 

of using multiple languages (German, French or Italian) to identify safety incidents on 

railways, such as falling of passengers and being stuck by doors. A framework consisting of 

ontology and NLP was proposed to automate literature knowledge from abstract instead of 

bibliometric analysis, which is only limited to critical phrases such as authors, publications, 

journals, and citations. Bidirectional Encoder Representations from Transformers (BERT) 

were used to facilitate NLP tasks in the study (Chen & Luo, 2019b). (Aziz et al., 2019) 

proposed a pathway for conducting causality analysis from an undesired event using an 

ontology-based approach to construct a multi-entity Bayesian network. This study's advantage 

is to perform risk estimation by evaluating potential hazards based on operational and 

environmental conditions. A new method is proposed to extract dependencies using NLP 

techniques with an ontology-based approach (Deshpande et al., 2020). It shows that the use of 

NLP in dependency extraction is also feasible. Another approach was shown to extract 



 78 

information from a chemical accident database using NLP techniques. The authors also suggest 

that the standard named entity recognition (NER) method cannot extract information from 

chemical accidents (Single et al., 2020). 

Apart from hand-written or ontology-based approaches, machine learning-based approaches 

are exploited for employing NLP for automated text analysis. (Tixier et al., 2016a) proposed 

using random forest and stochastic gradient tree-boosting machine learning techniques to 

predict construction injuries from construction safety reports. (Tanguy et al., 2016) uses a 

supervised learning method by employing a linear support vector machine (SVM). This study 

transforms textual data into numerical features and uses SVM for classification purposes of 

aviation reports. A recent study (Li et al., 2021) analyzed chemical accidents of natural gas 

pipeline incidents to extract spatial and temporal correlations between natural gas pipeline 

accident severity and contributory factors. The study’s outcome suggests that human-related 

contributory factors have high incident severity. In addition to supervised learning (Ben et al., 

2021), unsupervised machine learning is also used to categorize primary causal factors using a 

latent semantic analysis approach to aviation narratives. However, this study demands an 

extensive data set for increased accuracy (Robinson et al., 2015). (Chokor et al., 2016) 

investigated the k-means clustering approach in rearranging OSHA construction accident 

reports based on accident types. (Liu et al., 2021) uses two methods for feature extraction from 

textual data, such as k-means clustering and co-occurrence matrix. The latter approach is 

advantageous and identifies contributory factors and causality. However, this approach has the 

demerit of omitting important features from incident data. In addition to supervised and 

unsupervised machine learning techniques for NLP, a semi-supervised approach was recently 

introduced by (Ahadh et al., 2021) that can label unstructured data and require less intervention 

to apply in other domains. The approach is validated on aviation and pipeline incident data. 
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Structured data from operational parameters and laboratory testing have been used to 

understand, analyze and convert into the MIC likelihood model (Kamil et al., 2021). However, 

unstructured data are available in free text, consisting of underlying causes and contributory 

factors not considered for risk assessment models. A database of incidents is needed to assess 

the unstructured nature of human language and will act as a data source for risk assessment. 

Corrosion-related incidents from the database of (Pipeline and Hazardous Materials Safety 

Administration, 2022) are selected to identify underlying causal factors for pipeline incidents. 

Corrosion is a challenging and ubiquitous issue that has significantly affected oil and gas 

industries and poses an economic challenge. One of the severe forms of corrosion is 

Microbiologically Influenced Corrosion (MIC) which is a phenomenon that involves 

microorganisms’ presence/activity resulting in a corrosive environment that affects the metal’s 

surface (B. J. Little & Lee, 2014). Microbes play a vital role in initiating or accelerating the 

corrosion process by altering electrochemical conditions at metal’s surface (Salgar-Chaparro 

et al., 2020; Videla & Herrera, 2005). MIC occurrence in pipeline and storage tanks poses a 

risk of leakage of hydrocarbons, resulting in harm to people, property and the environment 

(Kannan et al., 2020). There has been a significant increase in the transport of natural gas and 

crude oil through pipelines in the United States (Allison et al., 2020). Based on data from a 

hazardous liquid database maintained by the database of Pipeline and Hazardous Material 

Safety Administration (PHMSA), (Halim et al., 2020) reported that since 2010 there has been 

a consistent number of pipeline incidents each year; from the reported incidents, corrosion is 

the second-highest causal factor after equipment failure. Based on public data available at 

PHMSA (Stover, 2013) reported that since 1986 there was a total spill of 76,000 barrels of 

crude oil/petroleum products due to pipeline incidents. It shows a dire need to improve safer 

oil and gas operations through pipelines. Therefore, it is essential to understand causal factors 

behind incidents in pipeline operations and enable timely actions to prevent such incidents 
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(Halim et al., 2018). In several studies (Bersani et al., 2010; Bubbico, 2018; Halim et al., 2020), 

the PHMSA database was used to identify direct causes and contributions based on pre-defined 

categories of equipment failure, corrosion, natural force damage and others. However, except 

(Liu et al., 2021), none has identified underlying causal factors beyond pre-defined labels. 

Natural language processing (NLP) and text mining technique were recently used to identify 

underlying causes and extract valuable information from unstructured data  (Liu et al., 2021; 

Zhang et al., 2020). Therefore, it will be worthwhile to explore employing NLP methods for 

risk assessment using textual data. 

The approaches discussed leverage NLP to extract relevant information from textual data. 

Earlier methods were mainly focused on the classification of incident data based on extracted 

features. A recent study (Ahadh et al., 2021) proposes a semi-supervised keyword extraction 

method that eliminates the need for a labelled data corpus for training. Nonetheless, it does not 

provide any potential pathway for utilizing extracted features to improve the safety of a process 

operation by transforming qualitative features into quantitative reasoning. This chapter 

introduces a unique approach to using unstructured data (i.e., textual data) as a source to 

perform an objective risk assessment. NER uses a machine learning method coupled with a 

domain-specific corpus for automated feature extraction to identify underlying cause-effect 

scenarios from textual data. The training corpus contains entities with labels for automatic 

feature extracting and defining causation with minimal manual interpretation. NER method has 

the advantages of easy implementation, incremental annotation and improving the existing 

model to capture more entities under each label. In order words, it helps to correct an incorrect 

entity or add more data when necessary. Furthermore, a methodology is developed to provide 

a unique risk assessment pathway using textual data by transforming qualitative features into 

numerical reasoning by employing fuzzy set theory coupled with Bayesian network (BN) to 

predict objective risk. 
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The novelty of the proposed method is to leverage the domain corpus into an objective risk 

assessment approach. Unlike previous studies that employed NLP techniques (Aziz et al., 

2019; Liu et al., 2021; Feng et al., 2021), this work utilizes a simple and unique approach. It 

consists of a custom NER method of identifying causal-effect storyline using five labels, 

namely, “causal factor”, “scenario”, “consequences”, “emergency response”, and “caution”. 

The label “caution” helps determine if the entities could be misleading from the fact and 

determines the abnormality's existence. In cases where abnormalities exist, are determined by 

the label “causal factor”. Therefore, it depicts NER's ability to determine the cause-effect 

relationship, which can be further improvised as the need arises. The second point is the 

application of fuzzy logic in translating features from NER model into a fuzzy probability. The 

final step is processing numerical data into risk assessment with the help of BN model. The 

proposed methodology is novel in extracting and transforming unstructured data into structured 

data that can feed into a probabilistic model such as BN for risk analysis. The method is simple 

to adopt and can be applied to other domains for risk assessment. Verification of NER model 

is performed to evaluate and benchmark its performance with the co-occurrence method (Liu 

et al., 2021). In addition, the proposed methodology is verified by evaluating its outcome with 

the actual conditions. 

Section 4.2 is dedicated to this study's proposed methodology and details NER model. Section 

4.3 of the study is devoted to applying the proposed methodology to five cases selected from 

the database of PHMSA, followed by NER model verification in section 4.4 based on a recent 

study identifying underlying causal factors. Thus, establishing its use in extracting causal-

effect scenarios. Conclusions drawn from this study are mentioned in section 4.5. 

4.2  Proposed methodology 

The proposed methodology analyzes system states based on textual data found in past incident 

reports. The methodology illustrated in Figure 4-1 consists of four broad steps. Steps 4.2.1-
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4.2.2 apply natural language processing and text mining techniques to extract underlying cause-

effect storylines from a domain-specific corpus. Step 4.2.3 acts as a bridge to transform 

qualitative information into numerical reasoning. The last step helps to improve the subjective 

quantification of risk to objective risk assessment. 
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Figure 4-1 The proposed methodology for risk assessment from textual data 
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4.2.1 Preprocessing of Corpus 

Preprocessing a corpus is essential for training and evaluation purposes to interpret the data by 

machine. In other words, data features can be easily parsed by machines. Preprocessing steps 

include tokenization of text followed by lemmatization, as described below: 

4.2.1.1 Tokenization 

The first step is to split a sentence into meaningful segments known as tokens (Honnibal & 

Montani, 2021c). The individual tokens will make up a string of text. For example, the 

following sentence is tokenized in 21 tokens as follows: 

['John', 'identified', 'on', 'Monday', 'evening', 'at', '8:00', 'p.m.', 'temperature', 'was', 'very', 'cold', 

'in', 'St.', 'Johns', 'and', 'decided', 'to', 'halt', 'the', 'operation'] 

4.2.1.2 Lemmatization 

In linguistics, the word "lemma" refers to the representative form of the word, whereas 

stemming refers to removing common prefixes and suffixes from each word. Morphological 

analysis of the word differentiates the former from the latter. The present study considers 

lemmatization over stemming for converting each token (word) to its representative form due 

to attention to context (Liu et al., 2021) and linguistic accuracy (Toman et al., 2006) 

differentiates the former from the latter.  For instance, in the following example, the word 

'caring' is to 'car' by cutting off ‘ing' if stemming is performed (Ullah & Al Islam, 2019). 

‘Caring’ > Lemmatization > care 

‘Caring’ > Stemming > car 

Preprocessing can be performed using spaCy library (Honnibal & Montani, 2021c). SpaCy an 

open-source library for advanced NLP tasks, including Part-of-speech tagging and NER. 

SpaCy uses neural network-based models for NLP tasks (Partalidou et al., 2019). 
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4.2.2 Text Processing using Machine Learning 

Machine learning demands a labelled/annotated corpus for training NER model to predict the 

desired entities. In this study, the tagged corpus is a domain-specific corpus with pre-defined 

labels. The steps of machine learning of NER model are as follows: 

4.2.2.1 Annotation 

Extracting valuable information from unstructured data (human language) is a critical task that 

needs a large corpus for NLP. Annotation is the task of "tagging" or "labelling" a text corpus 

with a set of labels to the whole corpus or a part of it. This task can be performed manually or 

automatically based on how much data you want to annotate. This work performed the former 

method to tag text with labels representing interest semantics. In contrast, the latter case uses 

defined rules without human interference to annotate a corpus (Grosman et al., 2020). The 

prodigy tool can use active learning to annotate automatically. The curator, who manages the 

annotation process (known as curation), plays an essential role, in resolving inconsistencies 

among different annotators or the same annotator at different periods and annotating based on 

defined labels to ensure consistency and quality of an annotated corpus (Grosman et al., 2020; 

Ide & Pustejovsky, 2017). Annotation demands efforts to organize a sizeable domain-specific 

corpus that needs to be annotated and define categories of entities based on what you would 

like to extract from the corpus (Grosman et al., 2020). For instance, this work aims to extract 

a cause-effect storyline from textual data to assess the risk of failure scenario. The prodigy tool 

(Honnibal & Montani, 2021b) annotates machine learning model data. The ner.manual 

command (Honnibal & Montani, 2021b) highlights spans from textual data for different labels. 

Annotation of text is essential to label categories of entities desired to be extracted from textual 

data.  
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4.2.2.2 Training for Custom-Named Entity Recognition  

Annotations performed in the previous step are exported in the spaCy library to train NER 

model from scratch to extract predefined entities from textual data. SpaCy uses a deep learning 

four-step method, “embed, encode, attend and predict.” Each token of a domain corpus or class 

of an NLP task, such as an entity class, is first converted into a unique integer (ID). Features 

like prefix, suffix, shape and form of work are used to extract hashed values reflecting word 

similarity. The model consists of hash values and their vectors at the embedding stage. The 

next step is to encode context; values pass through a convolutional neural network and encode 

with their context, resulting in a matrix-vector. Hence, each row represents the information of 

each token. The attending step matrix passes through the attention layer of a neural network to 

summarize the input with a query vector. The available class of entity is predicted at the 

prediction stage (Partalidou et al., 2019).  

4.2.2.3 Feature Extraction 

The trained NER model from the previous step extracts features from textual data. SpaCy 

library helps to evaluate the trained NER model and extract underlying features to illustrate 

causation using less manual interpretation. The entities have labels associated with them that 

do not demand extensive understanding. 

4.2.3 Transform Qualitative Features into Numerical Reasoning 

This step aims to use a method to quantify underlying information of causal-effect scenarios 

identified through the trained NER model. 
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4.2.3.1 Quantification of Identified Features Using Fuzzy Logic 

Qualification of cause-effect storylines extracted from textual data needs to provide a bridge 

to transform the storyline into numerical reasoning. The challenge arises due to uncertainty and 

subjectivity in natural language. (Zadeh, 1965) introduced the concept of fuzzy set theory in 

his pioneering work; the argument was that probability theory alone is insufficient to represent 

all types of uncertainty. Fuzzy set theory is a well-suited and accepted method in safety and 

risk assessment to handle subjectivity and vagueness in linguistic variables (Ferdous, Khan, 

Sadiq, Amyotte, & Veitch, 2013). The fuzzy set theory consists of five tuples to define a 

linguistic variable for approximate reasoning (Zadeh, 1975). Therefore, this work utilizes the 

concept of fuzzy set theory to map linguistic grades used in natural language. A detailed 

example in the application section will help explain how fuzzy set theory will play an essential 

role in this study. 

4.2.3.2 Bayesian Network 

Bayesian network (BN) is an effective tool for reasoning under uncertainty (Deyab et al., 

2018); (Taleb-Berrouane et al., 2017) (Taleb-Berrouane et al., 2018). The nodes in BN 

represent each variable; a directed arc from a parent node to a child node depicts conditional 

dependence, which is defined using a conditional probability table (CPT). 

BN can capture conditional dependency to represent cause-effect relations of an incident 

(Bougofa et al., 2021; Yang et al.,, 2020) which is a significant advantage. The joint probability 

distribution P(B) of variables B= {B1, …., Bn} can be incorporated into BN as follows (Kamil 

et al., 2019; Khakzad et al.,, 2013): 

P(B) = ∏ P (Bi|Py(Bi )
) ,n

i=1                                                   (1) 

where Py(Bi) is the parent of variable Bi  
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The identified causal factors, failure scenario and consequences can be modelled using BN 

model. Each entity can be represented as a node (i.e., variable) in BN model with a prior 

probability obtained from the previous step of using fuzzy set theory. Hence, it will provide a 

unique opportunity to model identified entities from textual data. The result from BN model 

will give a likelihood of a failure scenario and its consequences. In combination, likelihood 

and consequence parameters will evaluate risk associated with the scenario. 

4.2.4 Risk Evaluation 

It is necessary to evaluate the estimated risk from step 4.2.3 due to the subjective nature of 

natural language. This step aims to improve the subjective quantification of risk to its objective 

assessment. Risk evaluation consists of the following steps (Khan & Haddara, 2003): 

4.2.4.1 Defining Risk Acceptance Criteria 

This step requires defining the acceptance criteria to be used in a study. The acceptance criteria 

depend on the nature and type of system. Some of the commonly used criteria in the literature 

are ALARP (as low as reasonably practicable), Dutch acceptance criteria and US EPA 

(Environmental protection agency) acceptance criteria (Khan & Haddara, 2003). 

Characterization of the likelihood of an abnormal event and the severity of consequences 

depends on the type and nature of process activity. 

4.2.4.2 Comparison of Estimated Risk Against Defined Criteria 

This step applies acceptance risk criteria to the estimated risk to evaluate a system state. If a 

low-risk value does not exceed the acceptance criteria, the system is safe to operate; otherwise, 

it requires maintenance strategies to reduce risk. 
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4.3 Application of Methodology 

A unique approach to leveraging unstructured textual data are needed to perform a risk 

assessment. This approach will provide an avenue to utilize observations recorded in human 

language, which is often neglected in risk assessment due to the unavailability of a technique 

to leverage them. This work introduces a way to use unstructured data as a source of data for 

risk assessment and enriches the identification of causation from past incidents by employing 

NER model. 

4.3.1 Data Preparation for Custom NER Model 

Data preparation includes preprocessing and labelling of a text corpus. A training corpus 

consists of reported information to the (Pipeline and Hazardous Materials Safety 

Administration, 2022), which shows the cause of the incident and provides a narrative 

description that will be used as a corpus for this study. For verification purposes, incident data 

consist of corrosion-related incidents and incidents shared in recent work (Liu et al., 2021). 

These incidents’ descriptions are a good source of past recorded observations.  

4.3.1.1 Preprocessing 

Preprocessing of the corpus is conducted using the spaCy pre-trained model available 

(Honnibal & Montani, 2021c). Tokenization and lemmatization are performed to prepare the 

data for the annotation task. The textual data will be separated by each word, converted into its 

base form, and saved in a text file used to annotate the corpus. 

4.3.1.2 Annotation and Training 

This work proposed using a custom NER model to highlight features in terms of cause-effect 

storyline. Pre-trained models available from the spaCy library consist of a real-world object 
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such as a person, location, monetary value, time expression and quantity (Partalidou et al., 

2019). However, this work demands a different set of entities; one possible way is to train a 

spaCy neural network for custom entities used in this study. 

The ner.manual recipe is used to invoke the prodigy server to start annotation for different 

labels (Honnibal & Montani, 2021a). There are five labels assigned to the training corpus to 

extract the cause-effect storyline:  

• Causal factors- Events (where abnormality exists) responsible for causing incidents 

• Scenario - An incident that occurred due to an anomaly arising in a process operation 

results in a failure 

• Consequences - possible outcomes associated with success/failure of safety barriers 

• Emergency response (ER) - sudden action due to an unexpected incident to mitigate its 

impact 

• Caution - phrases or words that are not causal factors but give more information about 

the abnormality  

Once the corpus is annotated, it can train a convolutional neural network (CNN) for a custom 

NER model. The annotated corpus can be exported from the prodigy tool (Honnibal & 

Montani, 2021b) to spaCy library (Honnibal & Montani, 2021c). Training can be initiated using 

a command prompt on Windows or Terminal on Mac OS. After completion of training, spaCy 

saves the best and last model trained. The training steps can be found in (Honnibal & Montani, 

2021c). 

4.3.2 Automated Feature Extraction and Causation Construction 

A short description of cases shown in Table 4-1 are taken from failure investigation reports 

(Pipeline and Hazardous Materials Safety Administration, 2022) to show the application of the 

proposed methodology. The identified entities from the incident description will form an 



 91 

underlying cause-effect with less manual interpretation. NER model will extract causal factors 

that lead to failure scenarios and associated consequences. 

Table 4-1 Selected description of cases narratives taken from the PHMSA database available 

in the public domain (Pipeline and Hazardous Materials Safety Administration, 2022) with 

NER model output 

Case 1: Internal corrosion, possibly MIC 

Incident narrative NER model output 

At approximately 10:04 p.m. central standard time (CST) on April 

8, 2012, operations personnel for Enterprise Crude Pipeline, LLC 

(Enterprise) discovered a leak on their 24-inch C75 line located in 

their Cushing West Terminal Facility located in Cushing, 

Oklahoma …Enterprise shut the line in… Though the pit wall 

contained some viable anaerobic bacteria… The internal pipe 

surface around the hole revealed it was the result of an internal 

corrosion pit that had grown through the pipe wall. The pit wall 

was covered with smaller pits. This indicated the pit grew under an 

occlusion such as a deposit or a biofilm. As corrosion-related 

bacteria were detected, there is a possibility that these bacteria 

entered the pipe after the pit formed. The presence of MIC 

bacteria, itself, is inconclusive as to the cause. The bacteria found 

in the test could have entered the pipe when the line was 

unpressurized or when the failed section was cut out in the ditch. 

Therefore, the test results for MIC could not adequately determine 

if MIC was a causal factor…Enterprise also indicated that vacuum 

leak scenario 

viable/ relate/detect c

aution 

anaerobic bacteria/bi

ofilm/internal corrosi

on/ MIC/pit causal fa

ctors 

affected soil consequ

ence 

excavate ER 
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trucks were en route to pick up free product and affected soil 

would be excavated. 

Case 2: Internal corrosion 

The well line was loaded at the time of failure but was not flowing 

gas. The valve at the tie into the field line was closed; the well gate 

was open. The failure apparently occurred 4 hours after the line 

was pressurized from ambient to 1720 psig. A local resident near 

the incident location reported the failure to Columbia Gas 

Transmission… The pipe ruptured due to internal corrosion pitting 

complicated by low impact toughness of the pipe material. The 

corrosion pitting was the result of sulfur and chloride containing 

compounds, and third party investigator speculated that the low 

point in the pipeline under creek retained free liquids. Future plans 

are to replace the entire well line in 2012. A means for liquid 

removal will be considered in the replacement project… There 

were no fatalities, injuries, or supply issues as a result of the 

incident. 

failure scenario 

Sulfur/chloride/ inter

nal corrosion pitting/ 

toughness causal fact

ors 

Injury Consequence 

Case 3: Internal corrosion, possibly MIC 

The East Bernard Compressor Station 17 has 3 pipelines (24”, 26”, 

and 30”) entering via a suction header and 3 pipelines (24”, 30”, 

and 30”) exiting via a discharge header. All systems operate as a 

single system for gas flow. The systems were flowing gas normally 

when the rupture occurred with no warning or abnormal situation 

occurring. The rupture occurred at approximately 4:25 pm on 

December 8, 2010. TGP’s Control Center took immediate actions 

Rupture scenario 

Abnormal caution 

moisture/internal corr

osion/microbiologica

l causal factors 

Shut down conseque

nce 
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to ESD Station 17 and isolate the piping associated with the 

rupture. The local station crew was still on site and secured the 

area. The discovery and isolation was prompt and operator’s 

actions appear to be appropriate. The failure initiated from a 

section of dead leg piping established in 2000 when a 24” lateral 

was disconnected from the stations downstream header. There 

were obvious indications of residual moisture gathering in the dead 

leg, contributing to internal corrosion and a thinning of the pipe 

wall. The internal corrosion was caused by microbiological 

organisms present due to free moisture in the pipe. Evaluation of 

all other dead leg segments of pipe in the Station yard found no 

additional areas affected. TGP’s Station Emergency Shut Down 

Device (ESD) activated immediately upon line failure and TGP’s 

control Center isolated and shut in the 100 System from Wharton 

to Cleveland. 

Initiate/isolate ER 

 

Case 4: External corrosion 

The Fairfax West KCI pipeline operates intermittently to supply jet 

fuel to MCI. On the day of the failure, the pipeline had been shut 

down since 8:48 a.m. at a pressure of 227 psig. Throughout the day 

the pressure increased gradually as the temperature rose, eventually 

reaching approximately 235 psig. The Magellan control center was 

notified at 1:02 p.m. by contract workers from MVS Services, who 

were performing maintenance on a natural gas transmission 

pipeline operated by Southern Star, of an active leak on what 

appeared to be a 6-inch pipeline on the 7th Street Bridge… 

failure scenario 

pressure causal factor 

increase caution 

temperature rise caus

al factor 

shutdown consequen

ce 

Initiate ER 
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Operations Control initiated the shutdown of all incoming and 

outgoing pipeline operations at the Magellan Kansas City facility. 

Case 5: External corrosion 

Visual examination of the leak showed corrosion pitting on the 

outside surface. Some of the pits had a fibrous appearance 

indicating preferential attack following the pipe axis. The fibrous 

appearance was characteristic of microbiologically influenced 

corrosion (MIC). Metallographic analysis of the corrosion pits 

showed undercutting and pits within pits, which are also unique 

characteristics of MIC... The leak was caused by MIC, which 

occurred after the coal tar coating had been degraded exposing the 

bare pipe. The presence of sulfur and moisture in the soil around 

the leak created an ideal environment for MIC to occur…Transco 

responded to the potential leak by shutting-in and isolating the 

pipeline valve segment. 

Leak scenario 

coating caution 

sulfur/moisture/MIC 

causal factors 

shut/affected consequ

ence 

isolate ER 

valve causal factor 

The features extracted from cases are shown in Table 4-1. Hence, these features can be 

interpreted to extract a cause-effect storyline. Case 1 result shows causal factors, “anaerobic”, 

“bacteria” and “biofilm” are responsible for “internal corrosion” or possibly due to “MIC”. The 

possibility that “corrosion” “related” "bacteria" entered after the "pit" already formed due to 

unknown reasons resulted in "pit" outgrow, which resulted in the “leak” of crude oil. It results 

in crude oil supply “shut", "down” and “affect" nearby "soil” which refers to consequences 

associated with it. The “affected”, “soil” is “excavated” by emergency personnel. There are 

mainly four causal factors identified from incident description. The manual interpretation is 

needed to define how these factors depend on each other. For instance, biofilm provides an 

avenue for microorganisms to grow and deliver nutrition, causing MIC. An illustration of the 
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cause-effect entities relationship is presented in Figure 4-2. As shown in Figure 4-2, it requires 

less effort to interpret causation from textual data. Entities with their labels are self-explained; 

their role in depicting their relationship and manual interpretation is necessary to define 

dependency among the extracted features. 

 

Figure 4-2 A cause-effect relationship from identified entities of case 1 

Case 2 causation: a pipeline "rupture" occurred in a well line due to "internal corrosion pitting". 

It occurred due to "sulfur" and "chloride" containing compounds. Domain expert and 

practitioner knowledge will help better understand the context of the low "impact" "toughness" 

of pipeline material in the narration. The effect of internal corrosion pitting on the toughness 

of pipeline material shows dependency among entities. There was no “injury” reported due to 

this incident. As illustration depicted in Figure 4-3 shows induced causation from identified 

features. 
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Figure 4-3 A cause-effect relationship from identified entities of case 2 

Case 3 incident NER output suggests no "abnormal" situation occurred before "rupture" 

occurred. It has been found that "rupture" occurred due to residual "moisture" promoting the 

growth of "microbiological organisms" leading to "internal corrosion". Consequences and 

emergency response due to this incident include "initiation" of an emergency "shut down" 

system and isolation of the control center. The induced causation is shown in Figure 4-4, where 

moisture influences microbiological organism growth. 

 

Figure 4-4 A cause-effect relationship from identified entities of case 3 
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Case 4 incident extracted features of an unfolded causation responsible for a "leak" that 

occurred due to an "increase" in "pressure" and "rise" in "temperature"; both operational 

parameters were responsible for causing failure. Emergency personnel were "notified" about 

the situation; they immediately "initiated" "shut down" of operations to minimize loss. This 

induced causation is depicted in Figure 4-5. 

 

Figure 4-5 A cause-effect relationship from identified entities of case 4 

Case 5 extracted entities that unfolded a "leak" scenario attributed to "MIC" and "coating" 

degradation from the pipe, exposing the metal surface. "MIC" is a result of "moisture" and 

"sulfur;" sulfate-reducing bacteria are proven to be responsible for MIC. Emergency response 

includes "shutting" and "isolating" affect pipeline "valve" segment. To better understand this 

causation, an illustration is shown in Figure 4-6. 
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Figure 4-6 A cause-effect relationship from identified entities of case 5 

There are five incident narratives selected from PHMHSA incident reporting (“Pipeline and 

Hazardous Materials Safety Administration,” 2021) to show the robustness and applicability 

of NER model. It can extract all the relevant information and successfully unfold induced 

causations from textual data. Less manual interpretation is needed in most of the cases shown 

in Table 4-1 due to the labelling of entities. Labelling/annotating helps differentiate causal 

factors from failure scenarios, consequences, and emergency responses and eliminates the need 

to interpret labels manually. This is shown in the construction of the cause-effect relationship 

of identified features demonstrated in Figure 4-2 to Figure 4-6. Thus, NER model can automate 

feature extraction and narrow it down to cause-effect scenarios with less manual interpretation. 

4.3.3 Transforming Qualitative Features to Quantitative Reasoning 

4.3.3.1 Quantification of Identified Features Using Fuzzy Logic 

The extracted causal factors from NER model will be used to transform features into 

quantitative information. The potential use of fuzzy logic can be seen from extracted features 

in Table 4-1. Human language conceptualization often consists of vagueness, as seen in 

extracted features. The identified entities such as viable bacteria, biofilm and the possibility of 
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pit presence before bacteria entered the pipeline are examples of entities from Figure 4-2 that 

can utilize the mathematics of fuzzy set theory introduced in the pioneering work by (Zadeh, 

1975) to transform them into quantitative information. Fuzzy set theory is used for the 

following reasons: 

1. Handling of vagueness in textual data  

2. Quantification of subjective qualifications 

To exploit the numerical relationship between an indefinite quantity (e.g., viable bacteria - 

basic event), the fuzzy set theory uses fuzzy numbers and membership functions ranging from 

0 to 1. The selection of membership functions depends on available data and expert opinion. 

Triangular or trapezoidal fuzzy numbers (TFZ) are used in the present study due to their easy 

ability to model subjectivity and vagueness in identified entities. The identified entities from 

textual data are uncertain quantities, such as the likelihood of causal factors. The identified 

causal factors can be transformed into quantitative information. Figure 4-2 causal factor 

biofilm can be defined in terms of biofilm thickness. Since biofilm thickness is considered a 

vital engineering parameter related to biofilm growth rate ingress or egress of biofilm mass 

depends upon diffusion distance and biofouling in pipelines (Bakke & Olsson, 1986; 

Cunningham et al., 2012). 

A linguistic variable is used to determine values in words or sentences. According to (Zadeh, 

1975), a linguistic variable is a quintuple. Linguistic grades and fuzzy numbers are used to 

describe a likelihood of an event. In the present study, we have used 9 linguistic grades with a 

scale of 7, as shown in (Chen et al., 1992; Zarei et al., 2019). Firstly, expert elicitation is 

performed using three different experts. In the aggregation of expert opinion, their weightage 

is considered based on (Zarei et al., 2019). Secondly, opinion aggregation is transformed into 

a fuzzy possibility (FPs) followed by fuzzy probability (FPr). The center-of-area method is 
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used for the defuzzification step (Sugeno & Kang, 1986). The defuzzification of the trapezoidal 

function is calculated using the following equation. 

Y =
1
3 ×

(a4 + a3)2 − a4a3 − (a1 + a2)2 + a1a2

(a4 + a3 − a1 − a2)  

Lastly, fuzzy possibility from the aggregation is transformed into a fuzzy probability that can 

be directly used in BN using the function developed by (Onisawa, 1988). 

FPr = {
1

10K  if FPs ≠ 0

0 if FPs = 0
 

K = [(
1 − FPs

FPs )
(1

3)

] × 2.301 

 

Figure 4-7 Conversion of a linguistic variable into the likelihood of an event 

Figure 4-7 shows the conversion scale of linguistic grades into estimating the likelihood of an 

event. Fuzzy theory acts as a bridge between qualitative knowledge and numerical reasoning. 

For brevity, the conversion of causal factor entities shown from Figure 4-2 till Figure 4-6 into 

fuzzy probability is shown in Table 4-2. However, for detailed calculations, interested readers 
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are suggested to see (Zarei et al., 2019) as in the present work same method has been used. The 

resulting quantitative fuzzy probability is given as failure probability. 

4.3.3.2 Mapping from NER to BN 

This work demands a risk assessment technique that has the following advantages, as identified 

from analyzing five cases: 

1. To model entities’ dependence on each other 

2. To incorporate a fuzzy probability of each causal factor  

3. To model common cause failure 

Bayesian network (BN) can process numerical data into a risk assessment (Kamil et al., 2021). 

It has the advantage over Bow-tie analysis (Khakzad et al., 2013;Dawuda et al., 2021) in 

modeling the statistical dependence of variables and handling discrete multi-states of a 

variable. These advantages make it advantageous to consider for risk assessment as opposed to 

other modelling tools such as Fault tree (Berrouane & Lounis, 2016; Taleb-Berrouane et al., 

2021), Petri-nets (Kamil et al., 2019; Taleb-Berrouane et al., 2020; Taleb-Berrouane et al., 

2019; Talebberrouane et al., 2016) and copula functions (Ramadhani et al., 2021). 

The features extracted from NER model can develop BN model. BN serves the purpose due to 

its advantages mentioned above to model the relationship of entities to construct a likely failure 

scenario based on the identified features. Entities corresponding to their label are self-explained 

to depict causation. Figure 4-2 till Figure 4-6 illustrates how each entity with less manual 

interpretation can be presented in a diagram to understand its relationships better. BN model 

consists of two sub-models, causal analysis, and consequence analysis. The former can be 

modelled using fault tree analysis, while the latter uses event tree analysis when both former 

and latter are combined, called Bow-tie analysis. The literature shows a mapping of bow-tie 

analysis into BN (Khakzad et al., 2013). 
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The entities from NER model can also be mapped using a similar approach to BN model, using 

a simplified mapping algorithm based on entity labels illustrated in Figure 4-8. Based on 

manual interpretation, underlying causal factors extracted and selected can be used as BN's 

root cause and intermediate nodes. For instance, Figure 4-2 illustrates three basic causal 

factors: the root cause nodes in BN model and the MIC causal factor as an intermediate node. 

The scenario entity is a failure scenario node in BN (commonly referred to as the top event in 

fault tree analysis), which shows the failure scenario of the incident. Features identified as 

consequences and emergency response determine loss associated with the incident and the 

response taken to minimize it. The consequence entity will be represented in consequence node 

in the constructed BN model. One element of BN is missing in this mapping algorithm, i.e., 

safety barriers. In all the pipeline incidents narratives considered in this study, safety barriers 

are assumed, based on the nature of incident. A consistent number of safety barriers are used 

in the present study due to similar pipeline incidents. In BN, a dependency of one entity on 

another can be established by drawing an arc from a parent entity to a child entity. Once BN is 

constructed, an arc from the failure scenario node to the consequences node adds another state 

in the state set called the "NO" state, which accounts for the non-occurrence of the failure 

scenario node. 



 103 

 

Figure 4-8 Mapping algorithm from NER to BN 

BN demands prior probabilities of root nodes and conditional probability to define the 

relationships among each node (or entity). The former value can be given to the root node by 

directly providing the fuzzy probability of each causal factor from the fuzzy set theory. In 

contrast, the latter is based on expert opinion in defining the logical relationship of nodes. Each 

fuzzy probability of the root node can be given as a discrete state. For example, biofilm 

thickness and other entities' probabilities can be provided in each discrete state to predict the 

likelihood of a failure scenario. Table 4-2 shows all the entities' fuzzy probability used in the 

present study.  

Table 4-2 Basic event probability for root nodes 

Name of root node Expert Opinion K Fuzzy 

possibility 

Fuzzy 

probability A B C 

Bacteria H M VH 1.61 0.74 0.0245 
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Biofilm H H FH 1.60 0.75 0.0254 

Pit FL H FH 2.01 0.60 0.0098 

Sulfur M H FH 1.87 0.65 0.0134 

Chloride H FH FH 1.74 0.70 0.0184 

Moisture VH H-VH FH 1.37 0.82 0.0423 

Pressure increase L FL FH 2.63 0.40 0.0023 

Rise in temperature FL M L 2.83 0.35 0.0015 

Coating M FH M 2.15 0.55 0.0070 

 

Table 4-3 Events along with their symbols 

Events Symbols  

Safe evacuation with manual shut down and less property damage C1 

Safe evacuation with emergency shut down and moderate property damage  C2 

Fire, low fatalities, moderate loss of property and injury  C3 

Fire, fatalities, high loss of property and environmental damage C4 

Let us consider causation depicted in Figure 4-2 for equivalent BN construction. Three basic 

causal factors are shown as basic events in the cause-effect relationship. These are denoted as 

root cause nodes in the equivalent BN model based on the mapping algorithm. The same holds 

for the intermediate event represented as an intermediate node. Once causal analysis is 

constructed in BN model, the next step is the development of consequence analysis Safety 

barriers such as ignition, alarm, manual, and emergency shutdown are used to define 

consequences’ states. Consequence events, along with their symbols, are shown in Table 4-3. 

These states consist of consequences extracted from NER model and what may go wrong when 

each safety barrier fails. BN model developed for causation shown in Figure 4-2 is depicted in 
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Figure 4-9. As can be seen, causal analysis can be illustrated similarly, as shown in Figure 4-2. 

BN model’s flexibility in modelling incident scenarios makes it unique in risk assessment 

approaches. An arc from the leak node is drawn to the alarm safety barrier to establishing 

conditional dependence of the latter to the former. In contrast, Bow-tie analysis cannot model 

this dependence due to considering a leak as an initiating event that cannot influence safety 

barrier success or failure (Khakzad et al., 2013). 

 

Figure 4-9 BN structure for case 1 

Similarly, case 2 causation, shown Figure 4-3, is mapped to construct BN model. The 

developed BN is demonstrated in Figure 4-10; causal analysis is constructed based on causal 

factors and failure scenarios identified with less manual interpretation needed, as illustrated in 

Figure 4-3. In consequence analysis, safety barriers are assumed to model the consequences’ 

states defined in Table 4-3 Events along with their symbols, as in the previous case. Case 3 

causation from Figure 4-4 is mapped into BN model to perform the risk assessment. Figure 

4-11 shows BN, highlighting another advantage of considering common causes or redundant 

failures. Moisture promotes microorganisms’ growth and contributes to corrosion. Therefore, 
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to reduce model uncertainty, BN allows drawing an arc from the parent node (i.e., moisture) to 

the child nodes that will be affected due to the parent node's presence. Therefore, it also justifies 

the use of BN technique in this study. 

 

Figure 4-10 BN structure for case 2 

 

Figure 4-11 BN structure for case 3 
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In case 4, causation is shown in Figure 4-5; NER model obtains two causal factors and 

consequences. The failure scenario shown in Figure 4-5 does not need manual interpretation 

since the extracted entities already narrow it down to a cause-effect scenario. Similarly, BN is 

constructed in Figure 4-12 based on NER model mapping. Case 5 causation in Figure 4-6 

suggests that due to moisture and sulfur availability, sulfate-reducing microorganisms 

contribute to external MIC. In addition, coating degradation also occurs, due to which a leak 

occurs rapidly. This incident does not cause a significant loss of property and human life. 

Figure 4-13 shows the developed BN model for this causation. 

 

Figure 4-12 BN structure for case 4 

BN models developed (from Figure 4-9 till Figure 4-13) for each case, shown in Table 4-1, 

depict the model's structure. BN model also demands probabilities for root cause nodes and 

conditional probability tables for intermediate nodes and failure scenario nodes (or pivot 

nodes). Root cause nodes' probabilities are estimated using fuzzy set theory; an example has 

been shown in Table 4-2, whereas conditional probability tables are given based on domain 

expertise. 
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Figure 4-13 BN structure for case 5 

4.4 Results and Discussion 

In a risk assessment approach, three questions must be answered: what can go wrong? (failure 

scenario); its likelihood? And associated consequences? (Paté-Cornell, 1996). The present 

study answers all three questions using textual data as a source to extract relevant information 

for constructing BN structure with less manual interpretation and root cause probabilities, using 

fuzzy set theory to handle vagueness in human language. Table 4-4 shows the likelihood of 

failure and consequences obtained from BN model. 

Table 4-4 Likelihood of failure and consequences for cases shown in Table 1 

Event Cases 

1 2 3 4 5 

Failure 

likelihood 
0.021674 0.002158 0.042300 0.0029631 0.005804 
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C1 0.014891 0.001483 0.029062 0.002036 0.003988 

C2 0.004616 0.000460 0.009008 0.000631 0.001236 

C3 0.002135 0.000213 0.004166 0.000292 0.000572 

C4 0.000033 0.000003 0.000064 0.000004 0.000009 

It is necessary first to define the term 'risk'. According to the CCOHS (Canadian Centre for 

Occupational Health and Safety), the risk is the probability of harm from exposure to any 

potential event (hazard) which can cause loss of human life, property damage and adverse 

effects on the environment (CCOHS, 2021). Risk is estimated based on the results shown in 

Table 4-4. Earlier risk assessment questions are answered by analyzing five cases using NER 

model. Causations developed using NER model are mapped into BN model, which provides a 

way of quantitative risk assessment. It is essential to determine how failure likelihood and 

consequence values will convey a message to practitioners. Therefore, risk is evaluated by 

transforming subjective risk assessment into objective risk assessment. 

This work advocates a 4 × 4 matrix consisting of four categories for the likelihood of an event 

and severity of consequences, as shown in Table 4-5. The range's description can be based on 

expert opinion. It can vary based on the nature and scope of the study. For example, 

consequence analysis can be performed based on system performance, financial loss, human 

health and environmental and ecological loss (Khan & Haddara, 2003). 

Table 4-5 Categorization of likelihood and severity of consequences 

 Category Range 

Likelihood (L) 

Probable 10−2 < L ≤ 1 

Possible 10−4 < L ≤ 10−2 

Unlikely 10−6 < L ≤ 10−4 

Rare L ≤ 10−6 
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Severity of consequences 

(C) 

Critical 10−2 < C < 1 

Major 10−4 < C ≤ 10−2 

Moderate 10−7 < C ≤ 10−4 

Minor C ≤ 10−7 

Categorizing the likelihood and severity of consequences provides a risk tolerance zone that 

constitutes a risk matrix. It is equally important to describe and categorize the scaling of output 

risk value. Therefore, Table 4-6 shows a risk assessment matrix used for risk evaluation 

purposes in this work and will identify risk levels based on the likelihood and consequence. 

Table 4-6 Proposed risk assessment matrix 

        

Consequence 

Likelihood 

Minor Moderate Major Critical 

Rare Acceptable Acceptable Acceptable Tolerable-

acceptable 

Unlikely Acceptable Tolerable-

acceptable 

Tolerable-

acceptable 

Tolerable-

unacceptable 

Possible Tolerable-

acceptable 

Tolerable-

unacceptable 

Unacceptable Unacceptable 

Probable Tolerable-

unacceptable 

Tolerable-

unacceptable 

Unacceptable Unacceptable 

The study conducted (Markowski & Mannan, 2008; Ruge, 2004) acts as a guide for 

categorizing risk level and action required. According to (Markowski & Mannan, 2008), there 

are four levels for risk values: acceptable, tolerable-acceptable, tolerable-unacceptable and 

unacceptable. An acceptable risk level suggests that no risk-reducing strategies are needed to 
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continue operating. A tolerable-acceptable level requires regular monitoring based on the 

principle of ALARP (as low as reasonably practicable). In contrast, a tolerable-unacceptable 

level demands monitoring risk considering risk-reducing measures on short notice. An 

unacceptable risk level indicates that implementing risk-reducing strategies is necessary, and 

process must be halted until risk is brought to a tolerable-acceptable level. 

Table 4-4 presents BN model’s likelihood of failure and consequences. In case 1, a leak 

affected nearby soil and shut down the process (represented by C2 consequence state). If an 

economic loss is considered, the leak also affected the operator’s facility and cost more than 

$1 million USD. Therefore, the risk is estimated as a product of failure likelihood and the C2 

consequence state. All risk levels for each case are summarized in Table 4-7. As can be seen, 

the likelihood of a leak is probable, and the severity of the consequence C2 state is major. Risk 

categorization suggests that the risk level is unacceptable. Accordingly, risk-reducing 

strategies are necessary. Risk-reducing methods can include biocide to remove MIC bacteria 

present in the pipeline. The implementation will result in a lower risk value. To estimate the 

revised risk value, the observation in textual data will be first identified and then quantified for 

numerical reasoning. Risk cannot be eliminated from the operation but can be reduced to an 

acceptable limit to continue operating. The objective risk value helps in deciding the necessary 

action by the operator. The proposed methodology can predict the actual condition of the 

incident by evaluating the risk value from BN. 

Table 4-7 Risk level of PHMSA incidents cases 

Case  Characterization Risk level 

Likelihood (L) Severity of 

consequence (C) 

1 Probable Major Unacceptable 



 112 

2 Possible Major 

3 Probable Major 

4 Possible Major 

5 Possible Major 

The case 2 incident caused a pipeline rupture with no injuries and less than $30,000 in losses. 

The incident happened in a rural area, which also significantly reduces the severity of the 

effects. Consequence state C1, shown in Table 4-3, best represents this case. Therefore, the 

risk is estimated from a product of rupture likelihood and the C1 state. Table 4-7 suggests an 

unacceptable risk level due to possible rupture likelihood and major severity of consequence. 

The risk reduction strategies must include removal of the sulfur and chloride compounds to 

reduce risk to a tolerable limit. Case 3 incident occurred due to the presence of moisture and 

microbiological organisms. Rupture of the pipeline occurred due to MIC with an economic loss 

of more than $700,000 USD. The incident caused no fire or injuries. The emergency shutdown 

was initiated. The estimated risk is a product of failure likelihood and consequence state C2. 

The failure scenario is probable, with a major severity of consequence. The risk reduction 

strategy is the same as in case 1, i.e., the removal of microorganisms from the pipeline. In case 

4, two operational parameters, pressure and temperature, failed. This incident occurred in an 

urban area, but no injury was reported; there was a shutdown and an economic loss of more 

than $60,000 USD. The risk was evaluated in terms of failure likelihood and consequence state 

C1. The unacceptable risk was obtained due to defined risk criteria, which demanded risk-

reducing measures.  Case 5 was caused by the presence of sulfur and moisture. Sulfate-reducing 

bacteria caused an external MIC on the pipeline’s surface. The coating on the pipeline 

degraded, thus exposing the bare surface of the pipe. The failure caused damage to property, 

resulting in an economic burden of more than $50,000 USD. The result also shows an 

unacceptable risk value and suggested reducing risk to continue the operations. 
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This step translates subjective risk obtained from BN model to objective risk assessment. It 

helps determine the state of a system based on the scaling of estimated risk. The predictions 

from the proposed approach and the actual condition of cases shown in Table 4-1 determine 

the same outcome. All the cases show an unacceptable risk level. The failure likelihood of 

cases 1 and 3 is probable. Additionally, the economic losses are highest in these cases. This 

demonstrates the robustness and applicability of the approach in determining objective risk 

levels. 

NER model plays a vital role in extracting relevant features from textual data and constructing 

causation with less manual interpretation due to the associated labels with each extracted entity. 

The use of caution labels helps to understand if the causal factor effect is positive or negative. 

In other words, No abnormal pressure and abnormal pressure have the opposite meaning and 

can deviate narrative from reality. Furthermore, affected soil cannot be mislabelled as a causal 

factor, as it has the label of consequence. Therefore, labelling /annotating data helps recognize 

entities and their respective labels and does not need much interpretation to construct causation. 

Another advantage of using a NER model is the incremental learning process. When more or 

different sets of entities are required, NER model can easily incorporate those requirements. 

The use of NER model in the safety and risk domain shows a possible way of extracting and 

constructing causation from textual data. Two widely used and accepted methods in safety and 

risk are fuzzy set theory and BN. Five cases are used to demonstrate the application of the 

proposed approach. It predicts the correct risk level of all the failures that occurred. This 

indicates that methodology can be of potential use by operators/practitioners to predict 

objective risk levels based on their observations. 
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4.5 Verification of NER Model 

4.5.1 Purpose of Verification 

The aim of verifying NER model is to demonstrate the capability to identify features for 

causality and consequence analysis in the safety and risk domain. Textual data needed for 

verification are taken from a recent study published by (Liu et al., 2021), which focuses on 

automated feature extraction from textual data by employing a co-occurrence network. 

Therefore, a comparison is established with the co-occurrence matrix method to verify the 

proposed NER model performance and its potential to extract relevant features from textual 

data. 

4.5.2 Verification Results and Discussion 

Table 4-8 The incidents narrative reported in (G. Liu et al., 2021) with NER model result 

1. Cause: Corrosion 

Incident narrative Liu et al. co-occurrence 

networks output 

NER model output 

Internal corrosion … this 

segment of the pipe was 

removed entirely. [details 

available at (G. Liu et al., 2021)] 

Internal corrosion 

Release 

Crude oil 

Impact soil 

Excavated 

Internal corrosion causal fa

ctor 

Release/spill scenario 

Impact soil consequence 

Excavate ER 

2. Cause: Corrosion 

Lion oil called Sunoco control… 

Re-submitted on 3/19/2013 to 

include part e5f per phmsa 

Pressure 

Internal corrosion 

High pressure/internal corr

osion causal factors 

Failure scenario 
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request. [details available at (G. 

Liu et al., 2021)] 

Initiate/notify ER 

3. Cause: Material failure 

A report of ammonia smell was 

phoned … This report was 

mailed 2/12/10 as the online 

reporting was not active. [details 

available at (G. Liu et al., 2021)] 

No narrow-down co-occurr

ence network shown, assu

ming all relevant features e

xtracted 

 

Ammonia smell causal fact

or 

Release scenario 

shut down consequence 

notify/evacuation/repair/m

etallurgical/notification ER 

4. Cause: Material failure 

On April 17, 2010 at 

approximately 11:30 am local 

time … The amount of 

contaminated soil removed from 

the leak site was 30 cubic yards. 

[details available at (G. Liu et 

al., 2021)] 

Assuming all relevant featu

res identified  

Brushfire/leak scenario 

Defect/external/hook crack

/fatigue causal factors 

evidence caution 

mechanical/corrosion flaw 

causal factors 

Shut down/impact/contami

nate soil consequences 

Dispatch/excavate/notificat

ion/ metallurgical/restorati

on/repair ER 

5. Cause: Equipment Failure 

The spill was a result of a crack 

in the flange … [details available 

at (G. Liu et al., 2021)] 

Assuming all relevant featu

res identified 

Spill scenario 

Crack flange/valve causal f

actors 
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Replace ER 

valve causal factor 

6. Cause: Equipment Failure 

The location of …The threaded 

nipple on the pulsation 

dampener was replaced. [details 

available at (G. Liu et al., 2021)] 

Assuming all relevant featu

res identified 

Release scenario 

Loose fitting/ thread nipple 

causal factor 

Properly caution 

thread nipple causal factor 

shut down/spray conseque

nce 

manually/recovery/initiate/

mobilize/notification/inspe

ct/replace ER 

7. Cause: Natural Force damage 

A lightning strike caused a 

power outage…Impacted soils 

were place in drums and will be 

hauled off site to an approved 

facility. [details available at (G. 

Liu et al., 2021)] 

Lightning strike 

Valve 

Sump 

Release 

impact soil 

Lightning strike/power out

age/valve opening/gasoline 

causal factor 

Overfill/release scenario 

Impact soil consequence 

8. Cause: Natural Force damage 

Tank 824 water drain was 

leaking crude. …l due to 

changes in phmsa reporting 

Crude oil 

Leak 

Roof 

Water 

extreme temperature/ice ex

pansion causal factor 

leak scenario 
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form. [details available at (G. 

Liu et al., 2021)] 

Drain 

remove 

A constructed storyline by (Liu et al., 2021) for incident no.1 shown in Table 4-8 is as follows:  

“The abnormal pressure leads to internal corrosion of pipeline valves, the crude oil is then 

leaked to the ground and soil is contaminated, and the emergency response team is notified to 

excavate the soil for remediation, and the corroded valve is replaced.” (Liu et al., 2021).  

In the expression mentioned above, bold text denotes each word highlighted to define induced 

causation verified by incident no.1 of Table 4-8 (Liu et al., 2021).  

 

Figure 4-14 Highlighted entities from constructed induced causation by (G. Liu et al., 2021) 

NER model result is shown in Figure 4-14 with labels- caution, causal factor, scenario, 

consequence and emergency response. Causal factor "pressure" along with caution "abnormal" 

led to “internal corrosion” of “valve,” which resulted in the “leak” of crude oil. The 

consequences that resulted were “soil contamination”. The emergency personnel were 

“notified” about the incident and “corroded” “valve” is “replaced” and soil is “excavated” for 

“remediation”. Underlying entities reflecting the accident scenario can be easily extracted from 

induced causation. Moreover, NER model also extracts more information from textual data 

than highlighted by (Liu et al., 2021). This approach also demands minimal manual 

interpretation due to the use of labels to reflect each entity’s belongingness with the respective 

labels. For instance, the word "abnormal" has the label caution, which defines the existence of 

abnormality and where it exists is defined by the causal factor label. 
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For brevity, the outcome of NER model for each incident is shown in column 3 of Table 4-8. 

In incident 1, the identified entities clearly show underlying features from the expression. The 

causal factor “internal corrosion” is responsible for crude oil "release". It resulted in 

"impacting" nearby "soil" which was "excavated" by emergency personnel. The extracted 

features show all the essential information that can be extracted for further analysis. As reported 

in (Liu et al., 2021), co-occurrence networks (PHMSA incident network and narrow-down 

corrosion network) were unable to identify "spill" from the narration. In incident 2, "failure" 

occurred due to abnormality present in "pressure," and it happened where "internal corrosion" 

had already appeared in the past. Emergency personnel were "notified" about the situation. 

NER model shows all the relevant information from the incident narrative. (Liu et al., 2021) 

result shows pressure and internal corrosion as the extracted features from co-occurrence 

networks. In incident 3 "release" scenario occurred is detected due to "ammonia smell". 

Emergency personnel are "notified" and respond in "evacuation" of people near the "release" 

location. (Liu et al., 2021) highlight that a key feature in this narration, i.e., "ammonia smell," 

was not extracted using the co-occurrence network. For incidents 3-6, (Liu et al., 2021) result 

is not reported since the study does not show a narrow-down co-occurrence network for causes 

under material and equipment failure labels. Therefore, it is assumed that all relevant features 

were extracted otherwise, as stated in incident 3. Incident 4 is a "brushfire" scenario that 

occurred due to the causal factor "crack" extended due to "fatigue". The "contaminate soil" was 

"excavated" from the site. The use of label caution can be helpful to know if identified entities 

could mislead from the fact. For example, for the present case, no "evidence” suggests 

"mechanical" or "corrosion" responsible for the "flaw". Caution labels consist of defects, 

abnormal or evidence when combined with the word "No" can result in opposite meanings. 

Hence, when a caution entity is detected from textual data, it needs more interpretation. In 

incident 5, a "spill" occurred due to a "crack" in a "flange" of a "valve". The "valve" is 
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"replaced" as an emergency response to the incident. Hence, a cause-effect scenario can be 

established from the features. Incident 6 entities suggest that due to "loose-fitting" of "threaded 

nipple" "release" occurred in a pump station. The consequence of this incident resulted in a 

"spray" of oil in the nearby area; the pump was "manually shut down" to prevent further "leak". 

When emergency personnel were "notified," "threaded nipple" was not "properly" installed, 

and they "replaced" it. Here, another caution entity "properly" is identified. This narrative 

meaning can be opposite to properly installed. Therefore, it is necessary to give more attention 

when dealing with a “caution” entity. The identified entities narrow down the incident to their 

defined labels of cause-effect. 

Due to the narrow-down co-occurrence network (Liu et al., 2021), incidents under Natural 

force damage cause can be easily compared. Incident 7 extracted features suggest causal 

factors, "lightning strike" cause "power outage" which leads to "valve opening". This series of 

events leads to the "release" of "gasoline" which "impacted" nearby "soil". Causation can be 

constructed from extracted features, unlike (Liu et al., 2021) study in which "power outage" 

and "overfill" features were missing. Last incident 8 suggests that "extreme temperature," 

which leads to "ice expansion," are the reason for the "leak" of crude oil. Interestingly, these 

two features were missing in (G. Liu et al., 2021) study. However, other features of less 

importance in illustrating causation were present. In co-occurrence network developed by (Liu 

et al., 2021) omits essential features such as identifying "ammonia smell" and "evacuation" 

from incident 3 and "power outage" from incident 7, unlike NER model. Hence, it can be 

established that NER model can effectively extract relevant features from textual data. 

This work demonstrates the application of a novel methodology that can utilize textual data by 

employing NLP and text mining techniques. This study investigates a new way of performing 

risk assessment from unstructured data. Structural data are not often available to predict the 

risk of process operations. The scarcity of relevant data motivates the investigation of 
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unstructured data available and seldom used to perform risk assessment. For instance, an 

observation made by the operator at a given time will convey ground reality about the process 

operation. Therefore, this study demonstrates a potential pathway for translating ground 

information into an objective risk assessment. It has been shown using five cases taken from 

the PHMSA database, and the outcome obtained from this approach predicts the risk levels 

were unacceptable for all the cases. Combined with operator expertise, the proposed 

methodology is a tool to predict objective risk in chemical process industries to determine 

system state and take necessary action if the risk is above defined criteria. 

4.6 Conclusion 

Automated feature extraction offers insights to analyze what resulted in the incident and its 

consequences. The fundamental challenge is to develop an approach that facilitates automated 

feature extraction based on trained data to understand and extract meaningful features from 

textual data and predict objective risk. This study demonstrates a unique method of combining 

NER with BN, using the defined mapping algorithm and employing fuzzy set theory as a bridge 

to transform features into their fuzzy probability for quantitative analysis. The following are 

the unique aspects of this methodology:  

a) It is an easy-to-implement approach to predicting objective risk. 

b) Features are identified, and their respective labels are self-explained to illustrate causation 

with minimal intervention needed. 

c) Incremental annotations are based on information evolution or domain expertise by 

correcting NER model predictions. 

d) It is applicable to other domain-specific areas like the aviation industry, in which human 

communication plays a vital role. 
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Five PHMSA incident results indicate risk levels were unacceptable and coherent with actual 

conditions. This demonstrates the methodology's ability to effectively identify features from 

textual data and transform them into objective risk assessment, unlike previous studies that are 

only limited to feature extraction and do not provide any pathway for predicting risk from 

textual data.  

The verification exercise shows NER model's ability of relevant feature extraction, making it 

a potential enrichment of the co-occurrence network technique in which relevant features are 

omitted. A comprehensive verification is pending due to the unavailability of ground 

information that practitioners can perform to evaluate model performance. The advantages of 

using BN have been seen in accommodating multiple states of each causal factor, common-

cause failure, conditional dependence of the parent node to the child node and quantitative 

analysis. All these advantages were exploited in the applicability aspect of the methodology. 

Further enrichment of this work can be done by incorporating an automated relation extraction 

of entities, illustrating a cause-effect scenario using named and relations' entity recognition 

together and eliminating manual interpretations. The expected result will provide automated 

causation extraction from textual data. 
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5 A methodical approach for knowledge-based fire and explosion 

accident likelihood analysis 
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methodical approach for knowledge-based fire and explosion accident likelihood 

analysis. Process Safety and Environmental Protection, 170, 339-355. 

Abstract 

An accident database is an excellent data source if appropriately leveraged along with domain 

expertise. However, a proper framework and tools are required to extract data from a database. 

The current work aims to develop such a framework by systematically introducing a unique 

approach to integrate three techniques. First, Natural Language Processing (NLP) is used to 

extract causal and contributing factors from an accident database. Second, an Interpretive 

Structural Model (ISM) establishes the interrelationship and hierarchy of the extracted factors. 

Third, a probabilistic method for quantitative reasoning and accident analysis is employed. 
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This integrated approach is applied to the US Chemical Safety and Hazard Investigation Board 

(CSB) oil and refining (downstream) incident database to develop a generalized accident 

causation model. The model provides insight into the factors responsible for accidents (i.e., 

commonalities among casualties), interactions, and accident pathways. It can also be used to 

develop strategies for preventing accidents. The model is tested on ten scenarios from the CSB 

and verified on six incidents from the IChemE database. The results are promising in 

establishing the model's efficacy in predicting adverse events. Sensitivity analysis shows that 

management of change and lack of procedure and training have the highest sensitivity towards 

fire and explosion, and therefore need proper attention. This approach will be an essential tool 

for Safety 4.0, enabling process safety in the digitalization process. 

Keywords: Lessons learnt, process safety excellence, natural language processing, interpretive 

structural modelling, Bayesian network, Safety 4.0 

5.1 Introduction 

A chemical plant consists of many highly complex process systems. Due to their own 

complexity and that arising from process digitalization, it is challenging to model and predict 

process accidents. The complex interaction among equipment, operators, hardware, software, 

procedures, and operating conditions leads to potential hazards (Rathnayaka et al., 2011). In 

2022 alone, thirty-five process incidents occurred in the US. From 2020 till today, one hundred 

and fifty-three incidents have been reported to the CSB (U.S. Chemical Safety and Hazard 

Investigation Board, 2022). Recently, a chemical explosion occurred in an electronic industry, 

resulting in ten fatalities and 22 injuries due to an unknown chemical (under investigation) at 

Hapur, India 37 miles from New Delhi. Disregarding process safety and regulatory oversight 

are believed to be the main reasons behind process accidents in India (Reuters, 2022a). More 

than six thousand people were evacuated due to a fire at a fertilizer plant in North Carolina; it 

was reported that roughly 600 ton of ammonium nitrate was present, which could have led to 
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a major catastrophe (The Guardian, 2022). Last month, a catastrophic incident in Bangladesh 

resulted in forty-one fatalities, including nine firefighters and $100 million in losses. A series 

of fires and explosions occurred due to hydrogen peroxide drums and garments for export 

purposes. This was caused due to haphazard safety norms (“The New York Times,” 2022). An 

explosion in a chemical plant in Slovenia, producing chemicals for paints, rubber and other 

industries, caused six deaths; the plant manager blamed human error as the root cause (Reuters, 

2022b). In Louisiana, a chemical plant explosion occurred in a storage tank. It was an empty 

ethylene dichloride tank and led to six people being injured; and the fire was controlled shortly 

after the explosion (“U.S. News,” 2022a). This incident invoked the federal regulator (the U.S. 

Department of Labor’s Occupational Safety and Health Administration) to give citations to 

four companies (two Texas-based and two Louisiana-based) and impose a total of $139,000 in 

penalties (“U.S. News,” 2022b). 

These are a few examples of accidents that occured this year. If analyzed properly, there seem 

to be commonalities between these accidents. Many of the accidents happened due to flouting 

safety norms due to management oversights or lax regulators' inspections.  

Accident causation is performed to answer two fundamental questions. First, what went wrong? 

Second, how did it happen? In the past century, efforts have been made to answer these 

questions. Accident causation models are divided into linear accident models such as System 

hazard identification, prediction and prevention (SHIPP) proposed by (Rathnayaka et al., 2011) 

and non-linear accident models. The latter are further divided into the following categories. 

(Fu et al., 2020): 

• Human-based accident model. 

• Statistics-based accident model. 

• Energy-based accident model. 

• System-based accident model. 
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Interested readers are referred to (Fu et al., 2020) to learn about the evolution of linear and non-

linear accident causation models. In addition to the aforementioned accident causation models, 

there are similar terms for the prevention of accidents, such as accident investigation models 

(Pasman et al., 2018), accident analysis (Haghighattalab et al., 2019) and accident prediction 

(la Torre et al., 2019). These models aim to discover what caused an accident and its potential 

pathway. Past studies mainly focused on understanding a single accident's causation and ways 

to prevent identified causal or contributing factors. However, this approach needs to evolve 

with the complexities in process systems. An accident happens due to multiple flaws when the 

contributing factors form a hazard pathway. As cited by John Mogdorf in the speech after the 

Texas City refinery incident, "This was a preventable incident, as I will explain. It should be 

seen as a process failure, a cultural failure and a management failure" (Knegtering & Pasman, 

2009). Modelling of the BP Texas refinery incident highlighted key factors. These factors 

include overpressurization of the raffinate splitter, hydrocarbon venting, insufficient 

procedures, lack of supervision, trailer presence and lack of information/notification (Khan & 

Amyotte, 2007). As can be seen, it is a combination of a process failure, lack of safety culture 

and management oversight. Repetition of process incidents highlights that the lessons learned 

from past incidents are not implemented to improve process safety. Accident databases are 

great learning sources for acquiring new information. However, these databases must be used 

appropriately to extract industry-specific information. Interested readers may refer to (Mannan 

& Waldram, 2014). As Dr. Mannan said, “The old saying is that you can take a horse to water 

but you cannot make it drink. The same will be true of the database that we advocate” (Mannan 

& Waldram, 2014). To investigate incidents through a database, this study focuses on the CSB 

database and related studies that use the database for lessons learned for industry 

implementation. The investigation of incidents has been done to analyze the hierarchy of 



 137 

controls and the concept of inherent safety. The prominent studies conducted to leverage the 

CSB database are discussed as follows: 

The concept of inherent safety in a plant should follow through with a systematic hierarchy of 

controls at the design and operation levels. The broad steps include the identification of a 

hazard, and its avoidance, followed by reducing its likelihood and severity (via inherent safety 

principles), segregation, use of passive and active safety barriers (add-on safety), procedural 

safeguards and residual risk reduction measures (Amyotte et al., 2009). A total of eighty-eight 

incidents over the period of 1998-2016 from the CSB database were reviewed based on the 

hierarchy of controls. The analysis is conducted in two rounds; round 1 consists of sixty-three 

reports (Amyotte et al., 2011), and the second-round accounts for twenty-five incidents (P. 

Amyotte et al., 2018). The findings were that 36% of examples were related to inherently safer 

design, 10% were passive safety measures, 16% were active safety measures, and 48% were 

procedural safeguards (Amyotte et al., 2018). This shows the attention to loss prevention via a 

hierarchy of controls. The role of inherently safer design at different stages is significant in 

avoiding the hazard; interested readers can refer to it (Amyotte & Khan, 2021). Another study 

is conducted on the CSB database to analyze twenty-one reports over ten years for oversights 

in process hazard analysis (PHA). The outcome indicated that in 19% of the cases PHA team 

did not evaluate proper prevention and control measures, and future recommendations were 

remotely operated valves, worker involvement and freeze protection (Kaszniak, 2010). A study 

is performed on sixty reports from the CSB to analyze incidents and commonalities among 

them. Non-routine operations and stationary sitting sources were the highest incidents 

(Baybutt, 2016). 

The investigation of databases, as discussed earlier, gives insight into what went wrong. The 

implementation is shown in the hierarchy of controls and inherent safety measures (Amyotte 

& Khan, 2021). However, learnings from investigations are still lacking short of 
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implementation. Therefore, the key question remains: why do accidents still happen? It is due 

to lacking implementation of knowledge to avoid accidents, insufficient procedure and training 

and the introduction of process digitalization (Amyotte et al., 2016). Therefore, new methods 

are needed for capturing accident causations that are a combination of factors such as 

organizational failure, lack of competency and equipment failure (Knegtering & Pasman, 

2009). A simple and universal accident investigation method does not exist (Pasman et al., 

2018). Future accident causation approaches need to give more attention to safety culture's role 

(as a subset of organizational culture). Safety culture and its relationship with process safety 

are well-studied (Olive et al., 2006). As Trevor Kletz observed, "Organizations have no 

memory. Only people have memory and they move on”. Another observation: “Accidents are 

not due to lack of knowledge, but failure to use the knowledge we have” (IChemE Safety and 

Loss Prevention, 2022). A simple and universal approach is needed to implement database 

information and domain expertise knowledge to develop a generalized causation model. Based 

on the developed generalized mode, accidents can be predicted. This study also served the 

purpose of people's memory retention, as mentioned by Dr. Kletz. Information from a database 

and knowledge from domain expertise is required in the proposed approach. 

The following research questions are answered through this study: 

• How to automate information extraction from Chemical Safety and Hazard 

Investigation Board (CSB) reports using NLP? 

• How to combine information from previous accidents with domain expertise 

knowledge to develop a generalized causation model systematically for accident 

prediction? 

• Is there a way to analyze commonalities between incidents and their interrelationship 

to assist in learning from incidents? 
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This study introduces a unique approach. This approach utilizes the NLP technique called 

Named entity recognition (NER) to extract relevant features. A custom NER using spaCy has 

a good performance of custom NER compared to other available methods, such as Bluemix 

and Stanford NLP (Shelar et al., 2020). This is followed by a systematic process of developing 

qualitative (ISM method) and quantitative reasoning (BN model) for learning lessons from past 

experiences. The ISM method is developed to visualize a hierarchy among different factors in 

a complex system that assists in making decisions. It can establish interrelationships among 

studied factors (Warfield, 1974).  BN is a well-established safety and risk technique used to 

model accident scenarios from cause to consequence (Kamil et al., 2019). Previous studies that 

leverage the ISM method in the safety and risk domain rely on a literature review to list the 

factors for the study (Huang et al., 2020; Li et al., 2019; Sajid et al., 2017; Wu et al., 2015; 

Yuan et al., 2019). However, this process can be automated with the increasing availability of 

NLP and text mining tools, like NER (Shelar et al., 2020) and the co-occurrence matrix (G. 

Liu et al., 2021). Moreover, it can be easily implemented in various fields, from aviation safety 

databases to process accidents, making it universal but domain dependent. 

The key to learning lessons from previous incidents is first to analyze underlying causal and 

contributing factors leading to an incident. It is immensely important to learn lessons in order 

to prevent accidents (U.K. HSE, Investigating Accidents and Incidents, 2004). Furthermore, it 

is equally vital to identify complex interactions among accident causations and their 

commonalities and interrelationships among the same incident type. Quantitative reasoning 

defines factors' interrelationships and estimates each accident likelihood with potential 

pathways based on the given conditions. Section 5.2 of this chapter shows a proposed 

methodology based on the approach shown in Figure 5-1. Its application is performed on the 

CSB database of oil and refining (downstream) incidents in section 5.3. Section 5.4 deals with 

results and discussion of the generalized causation model, model testing and verification, 
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followed by sensitivity analysis. Conclusions drawn from the study are presented in section 

5.5. 

5.2 Methodology to Develop Knowledge-based Accident Causation Model 

  

Figure 5-1 A three-step systematically integrated approach to develop a generalized 

causation likelihood model 

A methodical approach involving three steps is shown in Figure 5-1. Step 1 is leveraging 

NLP capabilities in text mining from the CSB database and categorizing them using a 

custom-named entity recognition model. This serves as an input to the ISM process, which 

in previous works relied on manual literature review for the input factors. The ISM process 

provides two important aspects of this study: establishing interrelationships among factors 

and developing a hierarchical structure in a complex system. These two steps serve as 

qualitative analyses in this study. Qualitative analysis is further transformed into quantitative 

Natural Language 
Processing (NLP)
•Extraction of relevant 
features 

•Categorization of causes

Interpretive Structural 
Modelling (ISM)
•Visual hierarchical 
structure of complex 
systems

•Establish 
interrelationship 
among the variables

Bayesian Network (BN)
•Model complex 
interrelationships among 
variables

•Estimate accident 
likelihood

•Perform model testing
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reasoning through the developed mapping algorithm. The advantage of quantitative analysis 

is to model interrelationships and estimates the likelihood of an accident. 

Figure 5-2 presents the proposed methodology to systematically analyze past incidents to 

develop a generalized causation model that can determine the influence of identified factors on 

one another and the accident pathways in a hierarchical structure. This qualitative analysis is 

further developed into quantitative reasoning to understand factors' interrelationships better. 

Step 5.2.1 applies NLP and text mining technique - NER to extract relevant features from the 

CSB database of oil and refining (downstream) incidents. Step 5.2.2 develops a hierarchical 

qualitative structure through the ISM process, followed by quantitative reasoning via the BN 

model in step 5.2.3. The details of these steps are as follows: 

5.2.1 Application of Natural Language Processing (NLP) 

5.2.1.1 Report section selection and data pre-processing 

Incident databases are a source of learning that can avoid future incidents in an engineering 

discipline. Every database has its way of storing data. Pipeline failure investigation reports by 

PHMSA are organized on four separate databases based on material transported, such as 

hazardous liquid, natural gas transmission, natural gas distribution and liquified natural gas 

(Pipeline and Hazardous Materials Safety Administration, 2022). However, CSB databases are 

categorized by incident types such as chemical distribution - fire and explosion, flammable 

vapor, combustible dust explosion and fire etc. (Chemical Safety and Hazard Investigation 

Board , 2022). Each database has different rules for incident reporting that also change with 

time. When selecting a database, it is essential to see what section of a report contains relevant 

information for the causation of an incident. For instance, a recent study analyzing the PHMSA 

database considered the "comment " section as a data source for their research (G. Liu et al., 

2021).  
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Figure 5-2 The proposed methodology for learning lessons from past experiences and 

predicting adverse events 

The next task is to pre-process a selected section of reports to make it more compatible with 

NLP tasks. The sequence of steps is not necessarily the same, due to widely available NLP 

tasks. This work advocates the use of tokenization and lemmatization steps as pre-processing 

sequences. The former will tokenize each word from a sentence; thus, each token represents 

each word. The latter converts each token into its base form, such as caring to care. Moreover, 

it considers the context of terms, whether they are used as nouns or verbs; for 

instance, am, are and is all represented as be (G. Liu et al., 2021). This also differentiates 
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lemmatization from stemming, which does not consider the context in a sentence, leading to 

the wide acceptance of the former. 

5.2.1.2 Annotation 

To train the NER model to extract features from textual data are to annotate or label textual 

information after pre-processing it. The pre-trained NER model consists of real-world objects 

such as a person, geopolitical entity, location, quantity, date and time (Partalidou et al., 2019).  

Annotation is a task to tag a dataset with a set of labels for entities based on the aim of the 

study. For instance, this study requires relevant information about an incident's causation. 

Therefore, three labels were selected: caution, causal/contributing factor (CF) and failure 

scenario. Caution labels help to understand CF's positive/negative impact and the presence of 

abnormality based on textual data. CF denotes where abnormality exists that resulted in an 

incident. This can be performed manually or automated. The present study performed the 

former method of tagging the dataset using the prodigy tool, a web-based annotation tool 

(Honnibal & Montani, 2021b). However, if readers wish to automate the process, it is possible 

to use the same tool and rely on the previous set of annotated data for annotation suggestions. 

The ner.manual command invokes the annotation process via the Mac terminal (Honnibal & 

Montani, 2021a). For more details on the annotation process, readers can refer to (Grosman et 

al., 2020; Honnibal & Montani, 2021b). 

5.2.1.3 Named entity recognition model for feature extraction  

Annotations performed in the previous step are exported to the spaCy library to train the NER 

model with defined entity labels. SpaCy has four deep learning stages: embed, encode, attend 

and predict. Firstly, tokens are converted into integer ID in which extraction of hash values 

based on shape, prefix, suffix and form, matching a similar word with their vectors, are 
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embedded, followed by encoding with context through a convolutional neural network, 

resulting in a matrix vector. At the attending stage, the developed matrix passes through a 

convolutional neural network, generating a query vector for predicting a class of entity at the 

final stage (Partalidou et al., 2019). Training can be initiated through a Mac terminal or 

Windows command prompt, and spaCy will save the best and last trained model to the system's 

library for feature extraction. 

5.2.2 Interpretative Structural Model (ISM) 

5.2.2.1 Relationship between each pair of Zij 

This study's factors for the ISM process are identified from the NER model, unlike previous 

studies that employed the ISM method and relied on a literature review to elicit input factors 

(Huang et al., 2020; Li et al., 2019; Sajid et al., 2017; Wu et al., 2015; Yuan et al., 2019). A 

pairwise relation is used to develop a relationship among factors. These relationships can be 

expressed in terms of yes or no. For example, if A influences B, it is represented as yes, whereas 

if B does not influence A, then it is described as no. Expert opinion based on previous incidents 

and process safety knowledge serves as inputs to develop the relationship among factors. 

5.2.2.2 Structural self-interaction matrix (SSIM) 

Based on the contextual relationship developed in the previous step, an SSIM can be developed 

to depict a directed relationship between each pair of Zij. Predefined variables (V, A, X, O) 

express directed relationships. V denotes i is influencing j, but the opposite is not valid, whereas 

A denotes j’s influence on i, but the reverse is invalid. When i and j influence each other, this 

can be characterized by X. A case where there is no relationship between them is represented 

by O. These predefined variables are used for a binary matrix. Similarly, a tertiary matrix can 

be developed using a similar approach (Sajid et al., 2017). 
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5.2.2.3 Reachability matrix 

A reachability matrix (RM) consists of relationships developed in the SSIM step in the binary 

form. The relationship is described and limited to 0 or 1 from the SSIM step. The matrix entry 

can be formulated as follows: 

1. If SSIM is V then the (i,j) entry is 1 and (j,i) entry is 0 

2. If SSIM is A then (j,i) entry is 1 and (i,j) becomes 0 

3. If SSIM is X then (i,j) and (j,i) both entries becomes 1 

4. If SSIM is O then (i,j) and (j,i) both entries becomes 0 

5.2.2.4 Final reachability matrix (FRM) 

An assumption in the ISM method is the introduction of transitivity. Once an initial reachability 

matrix is developed in the previous step, transitivity is checked. Consider three factors, 

management oversight, organizational culture and lack of procedure and training. When 

management oversight influences organizational culture and organizational culture influences 

lack of procedure and training, these are incorporated in the initial reachability matrix as 1. In 

contrast, an indirect relationship of management oversight influencing lack of procedure and 

training through organizational culture is represented as 1*, called transitivity. All these 

indirect relationships are addressed and denoted by 1* in the reachability matrix, resulting in a 

final reachability matrix (FRM). 

5.2.2.5 Partitioning of FRM 

Partitioning FRM is essential due to the assignment of levels to each factor. The reachability 

set, R(Mi), and antecedent set, A(Mi), are developed from FRM. The former consists of the 

factor itself and other factors i that are influenced (factors i in the row of FRM), whereas the 

latter consists of the factor itself and other factors that influenced it (factors i in the column of 
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FRM). The intersection of a reachability set, R(Mi), and the antecedent set, A(Mi), i.e., 

R(Mi)∩A(Mi), is also derived for all the factors. The factor for which the intersection of R(Mi) 

and R(Mi)∩A(Mi) is the same occupies the first level (top level). The first level factor would 

not influence other factors. Partitioning FRM is an interactive process; once a factor is 

identified, it is removed from the pool of factors in the subsequent interaction. The same steps 

are repeated until all factors are allocated to their levels. These levels determine the hierarchy 

in the ISM process. 

5.2.2.6 Converting partitioned FRM to conical matrix 

A conical matrix is developed by rearranging factors from FRM according to their associated 

levels. Therefore, all factors associated with each level are pooled together and result in a 

conical matrix in ascending order of level, with the upper half from the diagonal consisting of 

factors with the most zeroes while the other half is unitary (1). 

5.2.2.7 Digraph and removing transitivity 

In this step, a digraph is developed based on the conical matrix. The structure will consist of 

each factor in the conical matrix and the factors that influenced it. If factor A affects another 

factor, B, represented as 1 in the conical matrix, it can be identified, and a directed arc is 

developed from the former to the latter. Similarly, all the factors influencing B are represented 

through a directed arc, and the process continues until all factors' relations are considered in 

the digraph. Also, the transitivity introduced in FRM is removed in this step. The resulting 

structure depicts a visual structure of complex interrelationships among all factors. 
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5.2.3 Quantitative reasoning using Bayesian Network (BN) 

5.2.3.1 Mapping digraph into BN 

A BN is a probabilistic technique representing an accident scenario from causal factors to 

consequences. It has the flexibility to represent complex model interrelationships using a 

conditional probability table. A BN with a very complex nodal structure is simplified to a sub-

network hierarchy called Object-Oriented Bayesian Network (OOBN) so that it is easy to 

follow. A recent study (Saeed et al., 2022) used OOBN to estimate an idea as compound as cell 

death in polar cod. The ISM technique provides a digraph for generalized caution from factors 

extracted using the NER model. However, it is important to quantify the resulting structure to 

understand each factor's influence and accident pathways of scenarios. Various studies 

employing the ISM method leveraged BN as a possible way to model complex 

interrelationships and estimate failure likelihood (Huang et al., 2020; Li et al., 2019; Sajid et 

al., 2017; Wu et al., 2015; Yuan et al., 2019). A quantitative relationship among nodes (factors) 

is represented using a conditional probability table (CPT). A joint probability distribution P(D) 

of a random variable D= {D1, …., Dn} is given as 

P(D) = ∏ P (Di|Px(Di )
) ,n

i=1                                                   (1) 

where Dx(Ai) is the parent of the random variable Di (Pearl, 1988b). 
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Figure 5-3 Mapping algorithm from ISM into BN 

BNs are popular techniques for causal analysis in safety and risk engineering due to their ability 

to model cause-effect relationships or dependencies among factors. A node in BN represents a 

random variable, and a direct arc is drawn from a parent node to a child node to model the 

influence of the former on the latter. Moreover, a BN benefits due to Bayes' theorem, which 

gives it an advantage for a forward and backward propagation. The former propagation is used 

for predictive analysis based on the marginal probabilities of intermediate nodes and leaf nodes, 

according to the CPT. When evidence is provided to the BN model, it updates prior 

probabilities and reflects more accurate results (Li et al., 2019). In backward propagation, the 

state of a pivotal node is instantiated to calculate posterior probabilities of root nodes (Khakzad 

et al., 2013). Based on the similarities in an ISM digraph and BN, this relationship makes BN 

an obvious choice for quantitative reasoning from the ISM model, which is evident from the 

previous studies (Huang et al., 2020; Li et al., 2019; Sajid et al., 2017; Wu et al., 2015; Yuan 

et al., 2019). However, one of the core differences based on the structure is that BN can only 

model a directed acyclic graph representing a problem's joint probability, whereas a digraph 

resulting from the ISM method can be cyclic or acyclic. Therefore, two rules need to be 

considered while mapping ISM to BN.  

• Elimination of single-parent arcs from ISM digraph 

• Check for cyclic relationships in ISM digraph 

Nodes represent factors in the digraph, which is also the same in BN. Therefore, nodes and 

directed arcs can be directly mapped into BN from the digraph obtained from the ISM method. 

A mapping algorithm is illustrated in Figure 5-3. After developing an equivalent BN model, 

there needs to be a check for a cyclic relationship among nodes. If a cyclic relationship is found 

in the structure, a modification in the mapped BN is needed for quantitative reasoning. 
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Developing a duplicate dummy node can handle the cyclic relationships in a BN. This 

technique has been employed in previous studies, such as (Amin et al., 2018; Yu & Rashid, 

2013). The next step is eliminating single direct arcs on a child node from a parent node. Once 

both rules are implemented for mapping, the next step is quantifying BN. 

5.2.3.2 Generalized causation likelihood model 

BN developed from the ISM method requires two parameters, prior probabilities and CPTs. 

The former determines each factor's failure probability, whereas the latter determines the 

relationship of a parent node to a child node. It defines the interrelationship of factors causing 

incident scenarios. Expert judgement can input these parameters in BN (Huang et al., 2020; Li 

et al., 2019; Wu et al., 2015; Yuan et al., 2019). The resulting model will be a generalized 

causal likelihood model that can establish complex interrelationships among factors, different 

accident paths and the influence of each factor to mimic the actual incident condition. 

5.3 Application to CSB database (oil and refining - downstream) 

This section applies the systematically integrated approach to incidents included in the CSB 

database. There are thirty-six accidents related to fire and explosion. Of them, eight are 

connected to chemical distribution, sixteen are attributed to chemical manufacturing, two are 

drillings, and ten are oil and refining (downstream), that are used to develop a generalized 

causation likelihood model in the present study. This application aims to understand what we 

can learn from CSB investigation reports. How much of this learning can assist in foreseen 

future adverse events? The step-by-step methodology depicted in Figure 5-2 is applied to ten 

CSB incidents (downstream) to answer these questions.  
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5.3.1 Development of NER model 

In step 5.2.1 of the approach, three reports sections are considered: Executive 

summary/Abstract, Key findings/root causes and incident/causal analysis. Incident reporting 

in the CSB databases is not consistent in terms of contents. Every report does not have the same 

sections. Therefore, a combination of sections is considered to overcome this challenge and 

extract relevant information that can be used for causation modelling. After their selection, 

these sections are processed in tokenization and lemmatization. Textual data are separated by 

words in tokenization and converted into their base form considering the context in a sentence. 

The next step, annotation, is essential in highlighting key entities with their labels. Words such 

as inoperable, remove, open, close, lack, deviation etc., are used in the "caution" label. Other 

relevant keywords, such as pressure, temperature, process hazard analysis, corrosion, pressure 

relief devices etc., are used as "CF" (causal/contributing factor). The former entity shows the 

presence of an abnormality using phrases or words that are not causal or contributing factors 

but provide more information about them. The latter describes an abnormality responsible for 

an incident. A combination of these two entities, caution and CF, helps to analyze previous 

incidents. The failure scenario is fire & explosion resulting from oil and refining incidents. The 

annotation process can be time-consuming and depends upon the size of the corpus. Annotation 

is followed by training convolutional neural network (CNN) for a custom NER model. The 

spaCy library in Python trains the NER model using entities and labels assigned in the 

annotation process (Honnibal & Montani, 2021c). 
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Figure 5-4 Highlighted entities from NER model 

An example of NER model output in report 1, the incident of ExxonMobil Refinery Chemical 

Release and Fire, is shown in Figure 5-4. The identified features can be coupled together and 

form phrases. For instance, identified entities in the first line, consisting of CF and caution, are 

coupled together to form a deficiency of the safety management system. Similarly, other 

features, include reliability issues with gearbox valve, inoperable gearbox, lack of human 

factor, no written procedure to remove gearbox valve to manually open and close valve, 

organizational culture- operator remove malfunction valve gearbox, and lack of procedure and 

training for safe removal, from the shown paragraph. Practitioner domain expertise is helpful 

in annotation and making sense of extracted features using the NER model.  

 

Table 5-1 shows extracted features from each incident which will serve as a base for the ISM 

method. An individual causation model can also be developed based on each incident's 

features; however, this work advocates a generalized causation model to investigate the 

similarities and influence of each CF in causing fire & explosion.  
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Table 5-1 Relevant features from each incident using NER model 

Rep

ort 

Name of 

incident 
Causes/contributing factors extracted from NER model 

Failure 

scenario 

1 

ExxonM

obil 

Refinery 

Chemica

l Release 

and Fire 

Deficiency of safety management system 

Fire 

Reliability issue with gearbox valve 

Inoperable gearbox 

Human factor 

No written procedure to remove gearbox valve to manually 

open and close valve 

Organizational culture- operator remove malfunction valve 

gearbox 

lack of procedure and training for safe removal 

vapor cloud ignition 

2 

Delawar

e City 

Refining 

Compan

y 

Nonroutine equipment maintenance preparation activity 

Fire 

Lack of procedure for non-routine work 

Leak from valve 

vapor ignition 

Human factor- open the valve, operator failed to recognise 

drop in pressure level 

3 

ExxonM

obil 

Refinery 

Process safety management system allows without pre safe 

operating limits 
Explosion 

Isolating equipment for maintenance which caused 

pressure deviation 
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Explosio

n 

pressure deviation caused due to maintenance activity 

Safety critical safeguard effectiveness 

Hazard analysis for procedure 

Lack of safety instrumentation 

Detect management permit issue 

Spark - ignition source 

4 

Chevron 

Refinery 

Fire 

High temperature 

Fire 

Corrosion 

Corrosion prevention safeguard effectiveness 

Not implement recommendations to prevent corrosion 

failure - organizational culture 

Lack of safety culture 

substandard equipment maintenance 

Vapor cloud ignition 

5 

Tesoro 

Refinery 

Fatal 

Explosio

n and 

Fire 

Rupture due to High temperature hydrogen attack (HTHA) 

Fire & 

explosion 

Leak due to nonroutine hazardous startup activity 

Lack of mechanical integrity program 

Weak and ineffective safeguard 

Lack of process hazard analysis for startup activity 

Ineffective control and prevent equipment due to HTHA 

Ineffective leak prevention from flange and gasket 

Process safety culture deficiency 

HTHA operating condition safety effectiveness 

Human factor - operator during startup 
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6 

Valero 

Refinery 

Propane 

Fire 

No formal written procedures for freeze protect dead-legs 

Fire 

No Emergency isolation of valve procedure 

No sufficient distance for fireproof in handling high 

pressure 

Ineffective PHA 

No freeze protection program for freeze hazard for dead 

leg 

Lack of remote isolation of valve - prevent operator to 

close valve or pump control to control high pressure 

Management of change (MoC) 

Chlorine release from crack 

High pressure 

ignition 

7 

BP 

America 

Refinery 

Explosio

n 

Regulatory oversight 

Fire & 

explosion 

Ineffective safety culture (No effective reporting and 

learning culture) 

No effective accident prevention plan 

Impaired process safety performance 

No flare 

Lack of automate control to prevent unsafe level 

Lack of supervisory oversight and technically train for 

startup and hazardous operations 

Hazardous startup 

Inadequate instrumentation for overfilling 
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Lack of effective mechanical integrity program 

No vehicle traffic policy 

operator training program inadequate 

No pre startup safety review 

Ineffective procedure for operational problem during 

startup 

No relief valve system safety 

vapor cloud ignition 

8 

Giant 

Industrie

s 

Refinery 

Explosio

ns and 

Fire 

Corrosion lead to fouling or scoring of pump seal 

Fire & 

explosion 

Ineffective mechanical integrity program to prevent 

corrosion 

Valve was open or close by gear but removed and replaced 

with valve wrench 

Operator decide valve wrench 

Release 

Ignition 

9 

Tosco 

Avon 

Refinery 

Petroleu

m 

Naphtha 

Fire 

Nonroutine work 

Fire 

removal of closed valve leak 

Work permit - not identify ignition hazard 

level control valve leaked 

Evaluation of work as low maintenance 

Supervisor not involved in permit and lack of supervisory 

oversight during safety critical activity 

Corrosion in valve 
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Work permit - not identify ignition and hazardous material 

Management oversight does not detect deficiency in 

maintenance and process change 

No MOC review of operational change which led to 

corrosion 

Corrosion control program is inadequate 

Leak 

Ignition 

10 

Sonat 

Explorati

on Co. 

Catastro

phic 

Vessel 

Over 

pressuriz

ation 

High pressure 

Fire 

Pressure relief device and over pressurization lead to 

failure 

Ineffective engineering design review and PHA 

No written operating procedure for startup 

Lack of adequate pressure relief system 

Ignition 

Lack of valve 

5.3.2 Establishing hierarchy and interrelationships among factors 

Step 5.2.1 of the approach is based on the role of the ISM method in establishing hierarchical 

structure and interrelationships in identified features. The ISM method requires factors to 

establish the interrelationships among them. These factors from ten incidents are used from 

step 5.2.1 output. Many factors are common in ten incidents; all the factors are summarized in  

Table 5-2. The output from NER serves as the input for the ISM method. These factors are the 

basis for the ISM method. 
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Table 5-2 List of factors from NER output and their probabilities 

Serial 

number 

Factors from NER model Prior 

probability 

1 Human factor  OR gate 

2 Organizational culture  OR gate 

3 Reliability issue with valve 1.50E-02 

4 substandard equipment maintenance  OR gate 

5 vapor cloud  OR gate 

6 Leak due to nonroutine maintenance activity 5.00E-02 

7 Leak from valve  OR gate 

8 Safety critical safeguard ineffectiveness  OR gate 

9 Lack of safety instrumentation 1.00E-02 

10 Ignition source- spark or vehicle  OR gate 

11 Abnormal operating conditions (temperature/pressure)  OR gate 

12 Corrosion 8.00E-03 

13 Lack of safety culture   OR gate 

14 Rupture due to High temperature hydrogen attack (HTHA)  AND gate 

15 Ineffective control and prevention of equipment  OR gate 

16 Ineffective leak prevention from flange and gasket 5.00E-02 

17 Lack of adequate pressure relief system 1.20E-02 

18 No sufficient distance for fireproof in handling high pressure 4.00E-02 

19 No freeze protection program for freeze hazard for dead leg 5.00E-02 

20 Lack of remote isolation of valve 5.50E-02 
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21 Regulatory oversight 1.5E-02 

22 No effective accident prevention plan 5.00E-02 

23 No vehicle traffic policy  2.50E-02 

24 Deficiency of PSM  OR gate 

25 Lack of procedure and training 9.00E-02 

26 No pre startup safety review 1.80E-02 

27 Management permit issue 5.00E-03 

28 Leak due to nonroutine hazardous startup activity 3.00E-03 

29 Lack of mechanical integrity program 7.00E-03 

30 Management of change (MoC) 9.00E-02 

31 Management oversight 2.00E-02 

32 Ineffective engineering design review and PHA 8.00E-03 

33 Fire & explosion OR gate 

Firstly, a pair-wise comparison is performed to analyze the influence of each factor on the 

other. The contextual relationship is developed for each factor in the form of yes or no and is 

transformed into SSIM, as shown in Appendix Table 5-6. For example, organizational culture 

affects human factors, substandard equipment maintenance, lack of safety culture, no vehicle 

traffic policy and lack of procedure and training. Similarly, other factors’ influences can be 

established and seen in the developed SSIM (Appendix Table 5-6). To establish a contextual 

relationship among factors, expert opinion is taken into consideration due to the data 

unavailability. The SSIM is converted into an RM using the rules in step 5.2.2.3. In RM the 

relationship of the factors is converted into binary 0 or 1 instead of V, A, X and O in the SSIM 

matrix. For the sake of brevity, instead of RM, FRM is shown in Appendix Table 5-7. It consists 

of the same elements as in RM; transitivity links (indirect) are introduced in FRM and 

represented as 1* to differentiate them from RM elements. Further, FRM consists of two more 
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elements, driving power and dependence power. The former is the total number of interactions 

of each factor in a row. The latter is the total number of interactions of each factor in a column. 

In other words, the former is the number of factors it affects, whereas the latter is the number 

of factors which get affected. 

FRM facilitates the development of CF levels by partitioning FRM into levels. The output from 

FRM helps to derive the reachability, R(Mi), and antecedent, A(Mi), sets shown in Appendix 

Table 5-8. This is an iterative process of levels allocated to each factor. A total of nine iterations 

were performed to develop the partitioning of FRM into levels. R(Mi) consists of the factor 

itself and other factors i that are influenced (factor i in the row of FRM). A(Mi) consists of the 

factor itself and other factors that influenced it (factors i in the column of FRM). The 

intersection of a reachability set, R(Mi), and antecedent set, A(Mi), i.e., R(Mi)∩A(Mi), is 

derived for all the factors. The factor for which the intersection of R(Mi) and R(Mi)∩A(Mi) is 

the same occupies the first level (top-level). In this case, factor 33 is assigned to the top level 

in the hierarchy and has no factor above it. A conical matrix is developed to better illustrate 

each factor and its respective level. Table 5-9 clearly shows each factor and its hierarchy to 

visualize its structure. All null elements are in the upper diagonal of the matrix, whereas the 

other half consists of unitary elements. All these steps are performed to develop a final digraph. 

The conical matrix is used to create a digraph based on the direct relationship of each factor to 

another. Factor 33 (fire & explosion) occupies the top level in the hierarchy in the digraph, 

followed by five factors at level II, as shwn in Figure 5-5. In Table 5-9, the 2nd row shows the 

influence of factor 4 on 33. Therefore, a directed arc is drawn from the former to the latter to 

represent this relationship. Similarly, factors 5, 8, 10 and 22 also have the same relationship. 

Fire & explosion has the highest dependence power, i.e., 33, which means every factor in a 

digraph is, directly and indirectly, leading to fire & explosion. If transitivity is removed, then 
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only five factors, 4, 5, 8, 10 and 22, directly influence fire & explosion, and other factors 

indirectly lead to fire & explosion. Factors 21 (regulatory oversight) and 31 (management 

oversight) have the highest driving power, meaning these have the highest contribution towards 

affecting other factors, followed by organizational culture, resulting in fire & explosion. 

 

Figure 5-5 Digraph developed from the ISM method 
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5.3.3 Generalized causation likelihood model 

The ISM method provides a generalized causation digraph that creates structures using a 

systematic approach. However, a qualitative approach can only establish interrelationships 

among factors. BN is a better fit when quantitative reasoning needs to be performed. Based on 

the mapping algorithm in Figure 5-3, an equivalent BN is constructed from the ISM digraph. 

Step 5.2.3.1 of the approach states that single-parent arcs from factors 6, 20, 22, and 25 are 

eliminated in the resulting BN model. In addition, there are no cyclic relations in the digraph 

(Figure 5-5); it is compatible with mapping into BN. The resulting BN is shown in Figure 5-6. 

Two components of BN required to calculate fire & explosion likelihood are prior probabilities 

and CPTs.  

Table 5-2 states prior probabilities of factors and logical gates to model and defines factor’s 

interrelationships. 
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Figure 5-6 BN mapped from the ISM digraph 

5.4 Results and Discussion 

The integrated approach provides a means to extract causal factors of fire and explosion 

relevant to oil and refining (downstream) incidents. The extracted factors from all ten incidents 

are used for developing a hierarchical structure to establish the interrelationship of factors by 

the ISM process. BN transforms the qualitative hierarchical structure into a quantitative 

generalized causation model. The developed BN model shown in Figure 5-6 provides a 

likelihood of 4.72E-01. It shows that when combined through a systematically integrated 

approach (Figure 5-1), all factors are most likely to cause fire & explosion. Note that factors 

considered in the present study are from past incidents (oil and refining - downstream) that 

CSB investigates, coupled with expert opinion, called past experiences. The methodology 
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depicted in Figure 5-2 provides a good result for the adverse event. It is a likelihood of an event 

that has already occurred, valid through estimated value. The next step is to test the developed 

model on seen data and verify unseen data to analyze their prediction of adverse events. 

5.4.1 Model testing and verification 

The generalized causation model has the advantage of modeling different accident scenarios 

and understanding potential pathways. Model testing and verification aim to demonstrate its 

capability and efficacy in predicting adverse events. Table 5-1 is used as a scenario-based 

testing dataset to see if the approach proposed in this work can model individual accidents. In 

each scenario, only a few factors will be considered that will cause an adverse event. Therefore, 

accidents used to develop a generalized model are suitable for testing model performance. In 

scenario 1, the factors identified using the NER model in Table 5-1 are identified parameters. 

This work used an existing BN that uses bidirectional propagation introduced by (Pearl, 

1988a). When these parameters are given to the BN model in Figure 5-6, the state of mentioned 

events is 1, reflecting that they have already occurred to estimate fire and explosion likelihood. 

The model gives a likelihood of 100% (likelihood =1.0), which means that these are sure to 

occur based on the presented evidence. 

Similarly, scenarios 2-10 from Table 5-1 are considered via the developed model to estimate 

the likelihood of the pivotal node, i.e., 33 (fire and explosion). The result is summarized in 

Table 5-3, which shows that all the scenarios from the seen dataset are sure to occur based on 

model prediction. It shows that the methodology used in this study in eliciting data from past 

experiences (incident reports and expert opinion) can predict individual scenarios used in the 

development of the generalized causation model. In other words, the methodology is applicable 

in establishing a generalized causation model. 

Table 5-3 Model testing results in estimating fire and explosion likelihood  
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Scenarios Model results (%) 

1 

100% 

2 

3 

4 

5 

6 

7 

8 

9 

10 

It is vital to verify the model by analyzing those incident scenarios that are not considered in 

the development. The model verification is based on incidents from the lessons learned 

database from IChemE. A book of fifty-two incidents has been published this year, including 

incidents related to energy, power generation, chemicals, water, food and drink sectors 

(“Learning Lessons from Major Incidents,” 2022). However, our interest is those related to oil 

and gas (downstream) incidents, since the developed model is based on these kinds of incidents. 

The book contains fourteen oil and gas-related incidents, selected to find root causes. However, 

except for six incidents, the rest are considered for the model development from the CSB 

database. We are considering incidents which do not take part in the development of the 

generalized causation model. 

Table 5-4 Accidents related to oil and gas (downstream) from (“Learning Lessons from 

Major Incidents,” 2022) 



 165 

Date Incident 

name 

Country Type Root causes 

Jan 04 

1966 

Feyzin France BLEVE Process design, equipment/piping design, 

protective systems (pressure), hazard 

awareness, procedures, training, emergency 

preparedness and design standards 

Mar 22 

1987 

Grangem

outh 

UK Explosion Abnormal operations, escalation potential, 

hazard identification, equipment/piping 

design, instrumentation, safety instrumented 

systems, protective systems, hazard 

awareness, control of work, procedures, 

training, production over safety, MoC, 

failure to learn, PSM 

Jul 24 

1994 

Milford 

Haven 

UK Explosion Abnormal operations, escalation potential, 

equipment/piping design, instrumentation, 

process monitoring, alarm management, 

operational risk assessment, preventative 

maintenance, inspection, material 

degradation, control of work, human factor, 

communication, training, MoC, emergency 

preparedness, PSM 

Aug 17 

1999 

Izmit Turkey Fire Escalation potential, process design, 

equipment/piping design, materials of 

construction, protective systems, plant 

layout, operational risk assessment, material 
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degradation, human factors, 

communication, training, emergency 

preparedness, PSM, regulatory compliance 

audits  

Apr 16 

2001 

Humber UK Explosion Escalation potential, hazard identification, 

equipment/piping design, preventative 

maintenance, inspection, material 

degradation, communication, MoC, PSM 

Mar 11 

2011 

Chiba Japan BLEVE Equipment/piping design, protective design, 

plant layout, creeping change, operational 

risk assessment, inspection, work planning, 

training, emergency preparedness, PSM and 

land use planning 

Table 5-4 shows all six incidents considered for model verification purposes. The fifth column 

of Figure 5-4 states all the root causes that IChemE has identified from respective incidents. 

These root causes served as evidence shown in Table 5-5 to estimate the model prediction for 

each scenario. Let us consider the Feyzin incident from Table 5-4. Factors like process design, 

equipment/piping design and hazard awareness are taken into consideration - Ineffective 

engineering design review and PHA (32), protective systems (pressure) - lack of adequate 

pressure relief system (17), procedures, training - lack of procedure and training (25), 

emergency preparedness - organizational culture (2), design standards - regulatory oversight 

(21). Hence, Table 5-5, row 2 shows all the factors (32,17,25,2,21) reflecting the Feyzin 

incident. When the same condition based on the IChemE book is given to the model, this results 

in a 100% likelihood of fire & explosion based on the provided evidence (factors probability 

=1). Similarly, evidence related to other incidents in Table 5-4 is input into the model, as shown 
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in the 2nd column of Table 5-5, to reflect each incident scenario. In all cases, model 

predictability remains at 100%. This result shows that an incident will happen in real life when 

a condition is certain to occur. Therefore, this exercise is called verification; the model is 

verified based on the IChemE database’s observed evidence of six incidents used here. These 

preliminary model testing and verification results show the promising efficacy of using the 

three-step approach to learn from past experiences. 

Table 5-5 Model verification through unseen incident evidence 

Scenarios Evidence Model results (%) 

1 32,17, 25,2,21 

100 

2 11,32,9,4,15,25,30,24,2 

3 11, 32,9,15,4,1,25,30,24 7,17,30 

4 32,15,1,25,24,21 

5 32,4,30,24 

6 32,15,25,24,21 
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5.4.2 Sensitivity Analysis 

 

Figure 5-7 Tornado chart developed for sensitivity analysis of each factor 

Sensitivity analysis is performed to investigate the sensitivity of factors towards fire & 

explosion. A percentage change ±50 of each root node is done one by one, and a shift in fire & 

likelihood is recorded. Based on the observation, a tornado is developed, as shown in Figure 

5-7, to illustrate its effect on the pivotal node. Management of Change (MoC) and lack of 

procedure and training have the highest sensitivity towards the adverse event, followed by 

organizational culture. If we consider IChemE incidents related to oil and gas (downstream) 

(“Learning Lessons from Major Incidents,” 2022), out of fourteen incidents, seven were due to 
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MoC as one of the root causes, whereas lack of procedure and training was involved in eleven 

incidents. Hence, it shows that the most sensitive factors based on sensitivity analysis are valid 

through the IChemE incidents root cause map. 

This study introduces a unique, systematically integrated approach to modelling incidents from 

the CSB database. This study is not free from assumptions. Each step consists of a method: 

using NER to extract and characterize factors such as caution and CF to develop phrases. The 

annotation step in NER requires domain expertise to tag or label a corpus. Secondly, using the 

ISM method to combine all incident factors into a generalized digraph, the contextual 

relationship among factors requires domain expertise. Lastly, BN for quantitative reasoning 

requires domain expertise for probabilities of root nodes and modeling of interrelationships. 

Past experiences refer to past incidents’ information and domain expertise knowledge to learn 

lessons and predict or foresee adverse events. This way, information from a database and 

people's memory in terms of domain expertise can be used to develop a generalized causation 

model. It will serve as a way for memory retention in an organization. This study describes 

how lessons learned can develop a generalized causation model. It helps to understand that 

factors like management oversight and regulatory oversight have the highest driving power 

among considered incidents. This means they are influencing factors that result in fire or 

explosion. It provides insight to determine the most influential factor by modelling the same 

type of accidents. Often in the investigation of incidents, the human factor is identified as a 

root cause. However, further action is required. Humans will make mistakes; the system should 

be designed to handle those errors (Halim & Mannan, 2018). There are factors influencing 

human factors that are often not considered. As Kletz said, "For a long time, people were saying 

that most accidents were due to human error, and this is true in a sense, but it's not very helpful. 

It's a bit like saying that falls are due to gravity" (U.S. Chemical Safety and Hazards 
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Investigation Board, 2013). Also observed by Sydney Dekker, "Underneath every simple, 

obvious study about 'human error,' there is a deep and more complex story" (Dekker, 2017). 

This study unfolds a way to analyze human error influenced by organizational culture and lack 

of procedure and training (Figure 5-6). Organizational culture plays a vital role in human 

performance and behaviour in a workplace. Poor safety culture (a subset of organizational 

culture) led to many incidents (U.K. Health and Safety Executive, 2022).  This study found 

two factors influencing organizational culture: management oversight and regulatory 

oversight. These include their interrelationships with factors like organizational culture, 

process safety management, human factor, and their hierarchy in a structure. More emphasis 

must be given to MoC and inadequate procedure and training in an organization based on 

sensitivity analysis findings and the root cause map from IChemE (“Learning Lessons from 

Major Incidents,” 2022). 

Combining three methods provides a unique avenue for analyzing similar types of oil and 

refining accidents together. When accidents are analyzed, many similarities are found that 

were not considered in the past. Many factors, such as human error, safety culture, ineffective 

prevention and control, and ineffective process hazard analysis, are common and need proper 

attention.  

The model performance has been demonstrated using the IChemE incidents related to oil and 

refining. The results (see Table 5-5) suggest that the model can predict similar incidents, 

which proves the need for considering causation factors from historical accident databases 

while developing an efficient accident causation algorithm. 

The sensitivity analysis provides two important factors, management of change and lack of 

procedure and training, which are found as CF in many accidents. The root cause map of 

IChemE (“Learning Lessons from Major Incidents,” 2022) also highlighted these two as 
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common causes of accidents related to oil and refining; special attention must be given to 

these two factors in the process industries. 

5.5 Conclusions 

This chapter introduces a methodology for learning from past experiences to predict adverse 

events. Repetition of incidents and causal/contributing similarities depicts our failure to learn 

from them and implement those learnings (Halim & Mannan, 2018). Failure to learn from 

incidents is due to the unavailability of an efficient methodology that can systematically 

analyze incident reports in the CSB and other databases. The current work addresses this issue 

by using NER, ISM and BN to develop a generalized causation model. This model assists in 

unfolding critical common factors that influence similar incidents and their potential pathways. 

It also highlights the importance of previously developed resources that can be better used to 

manage the risk posed by hazards in chemical processing industries. The unique aspects of the 

study are as follows: 

1. Provision of an easy-to-implement three-step approach to elicit information from the CSB 

database and memory from domain expertise to predict adverse events. 

2. Insight into the complex interrelationships of extracted factors and accident pathways in a 

hierarchical structure. 

3. Identification of MoC and lack of procedure and training as having the highest sensitivity 

towards fire and explosion causation. 

4. Identification of management and regulatory oversights as having the highest driving power 

to influence other factors. 

5. Strategies to manage and reduce the likelihood of accidents, which are developed by resource 

allocation based on the hierarchy of factors. 

6. A requirement for minimal intervention in terms of domain expertise to adopt the approach 

in other incident types or domain-specific work. 
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The study attempts to develop a generalized causation model for incidents related to oil and 

gas refining (downstream) operations. The model is tested on ten incidents, verified on six 

incidents, and able to predict all incidents with 100% likelihood, i.e., coherent with actual 

conditions. It provides insights into developing strategies and policymaking to avoid future 

incidents. Furthermore, it highlights that existing resources in terms of the database are an 

excellent source of learning if appropriately utilized with domain expertise to develop a 

causation model to foresee future incidents. There are many similarities in causal/contributing 

factors which cause similar types of incidents, as seen in the CSB case studies. The 

methodology can be applied to different types of incidents available in the CSB database to 

develop generalized causation for each incident type and to compare each model with another 

to comprehend similarities between them. The model also has limitations in terms of 

uncertainty handling. Uncertainties arise from a lack of data, with expert opinions being a 

primary source of data uncertainty. Additionally, using OR/AND logic gates also introduces 

model uncertainty. Therefore, handling uncertainties in a generalized causation model and 

fusion of historical numerical data with an accident database can be a direction for future work. 
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Appendix  

Table 5-6 Structural self-interaction matrix (SSIM) developed by performing pair-wise comparison 
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Table 5-7 Final reachability matrix (FRM) 
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0 0 1 0 0 1 0 0 1

* 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

* 

6 

18 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

* 

8 

19 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

* 

8 
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20 0 0 0 0 0 0 0 1

* 

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

* 

4 

21 1

* 

1 0 1

* 

1

* 

1

* 

1

* 

1

* 

0 1

* 

1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 1 1

* 

1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1

* 

18 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 

23 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

* 

3 

24 0 0 0 0 1

* 

1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

* 

7 

25 1 0 0 1

* 

1

* 

1

* 

1

* 

1

* 

0 1

* 

1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 1

* 

0 1 1 0 0 0 0 0 0 0 1

* 

15 

26 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1

* 

8 

27 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

* 

8 
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28 0 0 0 0 1 1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

* 

8 

29 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1

* 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

* 

8 

30 0 0 0 0 1

* 

1

* 

1

* 

0 0 1

* 

1 0 0 1

* 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

* 

9 

31 1

* 

1 0 1

* 

1

* 

1

* 

1

* 

1

* 

0 1

* 

1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 1

* 

1

* 

1

* 

1

* 

0 0 0 0 0 1 0 1

* 

18 

32 0 0 0 0 1

* 

1

* 

1

* 

1

* 

0 1

* 

0 0 0 1

* 

1

* 

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1

* 

11 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Depend

ence 

Power 

5 3 1 6 2

5 

1

7 

2

0 

1

2 

1 1

8 

8 1 7 1

9 

8 1 1 1 1 2 1 8 4 1

6 

4 1 1 1 1 1 1 1 3

3 

  

 

Table 5-8 Partitioning of FRM 



 188 

Elements(Mi) Reachability Set 

R(Mi) 

Antecedent Set A(Mi) Intersection Set 

R(Mi)∩A(Mi) 

Level 

1 1,  1, 2, 21, 25, 31,  1,  6 

2 2,  2, 21, 31,  2,  8 

3 3,  3,  3,  4 

4 4,  1, 2, 4, 21, 25, 31,  4,  2 

5 5,  1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 26, 27, 28, 

29, 30, 31, 32,  

5,  2 

6 6,  1, 2, 6, 9, 13, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32,  6,  3 

7 7,  1, 2, 3, 7, 9, 12, 13, 16, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32,  7,  3 

8 8,  1, 2, 8, 9, 15, 16, 17, 20, 21, 25, 31, 32,  8,  2 

9 9,  9,  9,  6 

10 10,  1, 2, 9, 10, 13, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  10,  2 

11 11,  1, 2, 11, 17, 21, 25, 30, 31,  11,  4 

12 12,  12,  12,  4 

13 13,  1, 2, 9, 13, 21, 25, 31,  13,  5 
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14 14,  1, 2, 9, 11, 13, 14, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32,  14,  3 

15 15,  1, 2, 15, 20, 21, 25, 31, 32,  15,  3 

16 16,  16,  16,  4 

17 17,  17,  17,  5 

18 18,  18,  18,  5 

19 19,  19,  19,  5 

20 20,  20, 32,  20,  4 

21 21,  21,  21,  9 

22 22,  1, 2, 9, 13, 21, 22, 25, 31,  22,  2 

23 23,  2, 21, 23, 31,  23,  3 

24 24,  1, 2, 9, 13, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32,  24,  4 

25 25,  2, 21, 25, 31,  25,  7 

26 26,  26,  26,  5 

27 27,  27,  27,  5 

28 28,  28,  28,  5 

29 29,  29,  29,  5 
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30 30,  30,  30,  5 

31 31,  31,  31,  9 

32 32,  32,  32,  5 

33 33,  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,  

33,  1 

 

Table 5-9 Conical matrix  

Factors 3

3 

4 5 8 1

0 

2

2 

6 7 1

4 

1

5 

2

3 

3 1

1 

1

2 

1

6 

2

0 

2

4 

1

3 

1

7 

1

8 

1

9 

2

6 

2

7 

2

8 

2

9 

3

0 

3

2 

1 9 2

5 

2 2

1 

3

1 

Driv

ing 

Pow

er 

Le

vel 

33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

8 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 
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10 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

22 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

6 1

* 

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

7 1

* 

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

14 1

* 

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

15 1

* 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

23 1

* 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

3 1

* 

0 1

* 

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

11 1

* 

0 1

* 

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 
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12 1

* 

0 1

* 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

16 1

* 

0 1

* 

1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 

20 1

* 

0 0 1

* 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

24 1

* 

0 1

* 

0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 4 

13 1

* 

0 1

* 

0 1

* 

1 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 5 

17 1

* 

0 1

* 

1 0 0 0 0 1

* 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 

18 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 

19 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 8 5 
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26 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8 5 

27 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 5 

28 1

* 

0 1 0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 5 

29 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8 5 

30 1

* 

0 1

* 

0 1

* 

0 1

* 

1

* 

1

* 

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 5 

32 1

* 

0 1

* 

1

* 

1

* 

0 1

* 

1

* 

1

* 

1

* 

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 11 5 

1 1

* 

1 1

* 

1

* 

1

* 

1

* 

1

* 

1 1

* 

1 0 0 1 0 0 0 1

* 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 14 6 

9 1

* 

0 1

* 

1 1

* 

1

* 

1

* 

1

* 

1

* 

0 0 0 0 0 0 0 1

* 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 6 
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25 1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

0 0 1

* 

0 0 0 1 1

* 

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 15 7 

2 1

* 

1 1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1 0 1

* 

0 0 0 1

* 

1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 17 8 

21 1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

0 1

* 

0 0 0 1

* 

1

* 

0 0 0 0 0 0 0 0 0 1

* 

0 1

* 

1 1 0 18 9 

31 1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

1

* 

0 1

* 

0 0 0 1

* 

1

* 

0 0 0 0 0 0 0 0 0 1

* 

0 1

* 

1 0 1 18 9 

Depen

dence 

Power 

3

3 

6 2

5 

1

2 

1

8 

8 1

7 

2

0 

1

9 

8 4 1 8 1 1 2 1

6 

7 1 1 1 1 1 1 1 1 1 5 1 4 3 1 1     

Level 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 7 8 9 9   
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6 Multi-source heterogeneous data integration for incident likelihood 

analysis in the processing systems 

Preface 

This chapter has been submitted to the Computers and Chemical Engineering Journal. I am 

the primary author of this manuscript, along with co-authors Drs. Faisal Khan, Paul Amyotte 

and Salim Ahmed. I developed the multi-source heterogeneous data framework for accident 

likelihood analysis and its application in developing the model. I prepared the first draft of the 

manuscript and revised it based on the co-authors’ and peer review feedback. The co-author 

Dr. Faisal Khan proposed the conceptual framework and helped develop the framework, testing 

and revising the model. The co-authors, Drs. Paul Amyotte and Salim Ahmed provided 

constructive feedback to improve the readability, review and revision based on peer review 

feedback and finalizing the manuscript. 

Reference: Kamil, M. Z., Khan, F., Amyotte, P., & Ahmed, S. (2023). Multi-source 

heterogeneous data integration for incident likelihood analysis in the processing 

systems. Computers and Chemical Engineering - submitted. 

Abstract 

Structured data, such as sensor data, can provide valuable insights to safety practitioners for 

developing prevention and mitigation strategies. However, relying on a single data source can 

introduce biases. In this era of safety 4.0, a methodology that can leverage insights from 

multiple sources (incident databases and physical observations) is required. This study 

proposes an approach based on natural language processing (NLP) to learn lessons from past 

incidents and combine them with contemporary data to predict adverse events. The model is 

based on feature extraction using a co-occurrence network on the loss of containment 

(LOC)/release of hazardous substance accidents from 2002 to 2021, sourced from the Chemical 
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Safety and Hazard Investigation Board (CSB) database. Coupled with the operational 

parameters, it provides a robust likelihood model. Scenario-based model verification is 

performed by simulated scenarios based on past incidents of LOC to assess model efficacy in 

predicting similar incidents. Sensitivity analysis shows inadequate written procedures resulting 

from management and organizational failure have the highest sensitivity towards LOC 

incidents. This work assists practitioners in monitoring sensor data and lessons learned from 

past incidents by utilizing multi-source heterogeneous data sources. Thus, the current research 

work serves as an important tool to enhance data-driven prediction as part of safety 4.0. 

Keywords: Safety 4.0, Natural language processing (NLP) Chemical Safety and Hazard 

Investigation Board (CSB), Data and insight-driven approach 

6.1 Introduction 

Over many decades, the world has encountered major process incidents due to several factors, 

including disregarding safety norms due to lax regulatory and management inspections. These 

incidents resulted in loss of human life, economic losses, and environmental degradation. 

When a catastrophic incident happens, the universal phrase we all know is "lessons will be 

learned” (Mannan & Waldram, 2014). Although, if lessons were learned, similar incidents 

would not have occurred. The critical challenge is continuous learning from process incidents 

that keep happening. Indeed, the late Dr. Sam Mannan reminded us of the importance of a 

paradigm shift to learn from past incidents and develop a multi-national and multilingual 

database (Mannan & Waldram, 2014). Earlier this year, an Ohio train derailment posed serious 

health risks to the community of East Palestine, Ohio (NRDC, 2023). From March 2020 until 

December 2022, the U.S. Chemical Safety and Hazard Investigation Board (CSB) has received 

reports of 224 process incidents, of which 31 resulted in fatalities, 126 caused severe injury, 

and 101 led to substantial damage in the U.S.A. alone (U.S. Chemical Safety and Hazard 

Investigation Board, 2022). The latest reporting period from October 1, 2022, to December 26, 
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2022, accounts for 36 incidents. Out of those, eight were during the past holiday season. In 

contrast, October-December of 2021 data shows 16 events, whereas in 2020, 14 events. These 

numbers depict a significant increase in incidents that coincide with cold temperatures across 

the USA (CSB News Release, 2022). Another chemical incident occurred in an electronics 

factory in Hapur, India in which a chemical explosion resulted in ten fatalities and 22 injuries 

(Reuters, 2022). Citing another example from India, an accident occurred in a meat export plant 

in Aligarh, India, where ammonia was released, resulting in 59 workers falling ill. The 

preliminary investigation shows that the leakage was due to two main factors, inadequate 

supervision and maintenance of gas infrastructure (The Times of India, 2022). Another 

ammonia leak happened in Massachusetts that resulted in a fatality. The reason was unknown, 

but according to a US Environmental Protection Agency representative, the system should be 

resilient enough to prevent loss of containment or minimize the impact of chemical release 

(NBC Boston, 2022). A fire happened in the BP Husky Toledo refinery’s most significant crude 

unit resulting from the release of flammable chemicals causing two fatalities as well as 

substantial property damage (Bloomberg, 2022). Many factors are responsible for process 

incidents, for instance, avoiding proper procedures because of lack of training, no written 

procedures, negligence, and/or oversight. Poor safety culture, inadequate emergency 

preparedness, and compromised mechanical integrity are other contributory factors responsible 

for process incidents (Bhusari et al., 2021). 

It is essential to learn from failures by asking two critical questions. What circumstances led to 

the failure? And why? These questions can be answered by developing an accident causation 

model (Kamil et al., 2023a). An accident causation model consists of linear and non-linear 

models. Detailed list of accident models and their advancement is discussed in the literature to 

highlight their pros and cons (Fu et al., 2020). These models aim to answer the above two 

questions. However, due to increased process complexity, the approach to developing an 
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accident causation model needs to be evolved. A model can be generalized for the same 

incident type while capturing input data from multiple heterogeneous sources. In other words, 

a generalized hybrid model can be developed that captures insights from multiple data sources. 

One of the best ways to learn from an incident is to leverage data available in databases. In the 

past, databases have been utilized for different learning purposes. One important study 

analyzed 88 CSB investigation reports determining whether the inherent safety concept was 

followed during the design and operation levels. Initially, 63 reports were analyzed (Amyotte 

et al., 2011), whereas 25 incidents were considered in the second round (Amyotte et al., 2018). 

According to their findings, safety measures were not followed at each level in the hierarchy 

of control. The breakdown of hierachy of controls safety measures by specific levels is as 

follows: 26% inherent safer design, 10% passive, 16% active, and 48% procedural (Amyotte 

et al., 2018). This study highlights the importance of the hierarchy of controls in process 

facilities to prevent adverse events. Another study examined 60 reports to determine the factors 

responsible for most cases by finding the commonalities (Baybutt, 2016). Manually analyzing 

accident investigation reports is a time-consuming and labor-intensive task. An enriching 

solution was provided by introducing NLP applications to CSB reports and introducing a 

systematic approach to analyzing commonalities (Kamil et al., 2023a). According to the 

findings, attention must be given to procedures, training, and management of change (MoC) 

due to their high sensitivity toward oil and refining process incidents (Kamil et al., 2023a). The 

CSB database was also used to analyze 21 cases to evaluate omissions and oversights in process 

hazard analysis (PHA). The study (Kaszniak, 2010) concluded that the PHA teams failed to 

evaluate the control measures and/or safeguards in 19% of cases. There was insufficient layers 

of protection which enhanced the severity of the hazard (Kaszniak, 2010). An objective risk 

assessment was performed on microbiologically influenced corrosion (MIC) case sources from 

Pipeline and Hazardous Materials Safety Administration (PHMSA) database using NLP to 
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develop risk models (Kamil, et al., 2023b). This study provides a new method of assessing risk 

using textual data and demonstrates the application of the named entity recognition model in 

evaluating objective risk (Kamil, et al., 2023b). A semi-supervised method (Ahadh et al., 2021) 

and a co-occurrence network (Liu et al., 2021) were developed using the PHMSA database. 

Recently, NLP was used to analyze subject and action words from their co-occurrences for 

accident consequence prediction (Wang et al., 2023). 

Past studies show the importance of database resources. They provide the necessary data for 

analyzing trends and identifying underlying causes of accidents. This data can then be used to 

develop best practices and implement safety protocols that can reduce the likelihood of future 

accidents. Moreover, common risk factors can be identified by organizations with the help of 

a database, leading them to prioritize safety measures and initiatives more effectively. 

However, relying on a single source for information introduces biases and does not capture all 

the factors, such as unsafe acts, conditions, and management and organizational failures that 

result in an accident. Learning from past experiences requires feature extraction from textual 

data. Equally important is to know the operating conditions via sensor data and its usage in 

monitoring an adverse event. Feature extraction from textual data (textual information) and 

integration with sensor-based operating conditions (numerical data) demand a robust model 

that can accommodate data from both sources. Conventional multi-source data integration 

approaches aim to fuse structured data such as sensor data. Data integration from multi-source 

homogeneous data sources is well studied (Goodman et al., 2013), but multi-source 

heterogeneous data remains a topic of interest, and comparatively less studied.  

The present study attempts to fill the knowledge gap well documented in the literature 

regarding fusing data from multiple sources (Liu & El-Gohary, 2020). The scope of this study 

is confined to two types of heterogeneous data; (a) Textual data sources such as accident 

databases and (b) Structured data sources, such as operational parameters from sensors for real-
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time monitoring. The former was leveraged by employing NLP and text-mining techniques to 

extract features and evaluate accident likelihood (Kamil et al., 2023a; 2023b). On the other 

hand, the latter was used to develop a learning-based BN model to drive meaningful 

information for decision-making (Kamil et al., 2021). The objective is to develop an approach 

to fuse past events' textual data with real-time monitoring numerical data to assess accident 

likelihood. The objective aims to answer the following research questions: 

1. How can a robust accident likelihood model be developed for multi-source 

heterogeneous data?  

2. How to establish and model interrelationships among textual and numerical data? 

3. How to assess accident likelihood by learning from past experiences and present 

conditions? 

The present study aims to develop a novel hybrid generalized causation model for loss of 

containment accidents to serve as a tool for Safety 4.0. Safety 4.0 demands a data-driven 

approach integrating artificial intelligence techniques (i.e., NLP) to gain insights for better 

safety management. Collecting data from the database and real-time data from sensors provides 

a comprehensive view of accident patterns and potential hazards that would otherwise be 

difficult to detect. The data-driven approach of Safety 4.0 also helps to assess the performance 

of safety measures for reducing risk. Therefore, a data-driven approach is introduced for Safety 

4.0 to assess accident likelihood from multi-source heterogeneous data integration. Firstly, a 

co-occurrence network is constructed to extract features from a database. The network provides 

insights into what went wrong and depicts causation. Secondly, real-time monitoring data are 

captured based on operational parameters. Interpretive structural modeling (ISM) combines 

these two data sources. ISM establishes interrelationships among past event factors and 

monitored parameters. The outcome is a hierarchical structure consisting of multi-source 

heterogeneous data. ISM digraph is mapped into a Bayesian network (BN) consisting of fuzzy 
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and monitored nodes. Fuzzy logic is used to define linguistic variables from a co-occurrence 

network. On the other hand, real-time data governs the probability of monitored nodes. 

Therefore, the novel approach develops a hybrid BN that can accommodate heterogeneous data 

sources (i.e., textual and numerical) that improve prediction. 

Section 6.2 consists of details and steps of the novel approach to assess accident likelihood 

based on heterogeneous data sources. Section 6.3 contains an application section that develops 

a generalized hybrid causation model for LOC accidents. Section 6.4 deals with the result and 

discussion of the study comprising scenario-based model verification exercise and sensitivity 

analysis to find out the most sensitive parameters. Conclusion of this work is discussed in 

section 6.5, along with the limitations. 

6.2 Research Methodology 

A novel methodology of integrating textual data and numerical data are introduced in this 

study. There are four steps involved in the methodology. Steps 6.11 and 6.22 are related to 

organizing, analyzing, and interpreting data. Step 6.33 focuses on developing the 

interrelationship of factors from extracted data into a hierarchical structure. Step 6.4 relies on 

handling uncertainties with textual data using fuzzy logic and developing a hybrid BN model 

from a fusion of fuzzy and monitored nodes. Figure 6-1 illustrates the step-by-step approach 

to data integration of textual and numerical data. The details of each step are as follows: 

6.2.1 Employing Natural Language Processing (NLP) 

NLP has recently been prominent due to its ability to analyze and determine underlying causes 

from accident databases. This work utilizes a co-occurrence network diagram to text-mine 

textual data from the database. Co-occurrence network consists of nodes and edges. Nodes 

represent words, whereas edges depict co-occurrence between words in the corpus (Zhang et 

al., 2018). The application of co-occurrence networks in NLP has been widely seen, such as 
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determining causal relation (Liu et al., 2021), key object extraction (Mihalcea & Tarau, 2004), 

word sense discrimination (Ferret, 2004) and accident consequence prediction (Wang et al., 

2023). This work uses an open-source KH Coder software (Higuchi, 2016) to develop the co-

occurrence network. The present study employs the co-occurrence network method to text-

mine a database and develop a generalized hybrid causation model qualitatively and 

quantitatively in section 6.3. 

6.2.1.1 Report section selection 

Accidents in process industries are seen as a failure; this failure could be in the form of property 

damage, business interruption, loss of material, environmental degradation, loss of human life, 

and reputational damage. There is an opportunity to learn from the accidents and avoid future 

mishaps. It demands an approach that can assist in understanding what went wrong in the past 

and the underlying causes. An incident database is a key to learning from mistakes that resulted 

in catastrophic incidents. Every database has its way of storing and categorizing data. It is 

important to consider the important sections of an incident report, such as the comment section, 

root cause, contributing cause, or key findings. 
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Figure 6-1 The methodology of creating a hybrid causation model from multi-source 

heterogeneous data 

6.2.1.2 Preprocessing 

After selecting the desired report section, the next step is to initiate pre-processing of natural 

language to make it more compatible with NLP tasks. This study advocates four steps: 

tokenization, stopwords removal, lemmatization, and filtration. Each word is assigned as a 

token in a sentence in the tokenization step. For instance, failure in a level controller leads to 
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a release of hydrocarbon. This sentence consists of 11 tokens. After tokenization, the next step 

is stopwords removal. This step requires the removal of those tokens that are less relevant and 

occur multiple times. These include punctuations, numbers, dates, and stopwords (an, the) that 

do not provide value in the NLP task. The next step in pre-processing is lemmatization, which 

converts each word into its base form. Unlike stemming, lemmatization considers the word's 

context in a sentence before its base form. Due to this reason, this study advocates 

lemmatization uses as opposed to stemming. The last step in pre-processing is filtration. It 

filters out those words not included in the stopwords list but does not provide value in the NLP 

task. These words are domain-specific and can be decided based on domain expertise. 

6.2.2 Numerical data 

Sensor data are abundant in organizations and processed to convert into meaningful 

information. The present work aims to integrate textual and sensor data features into a 

likelihood model. The former provides past information regarding what went wrong, whereas 

the latter depicts contemporary data useful for monitoring process operations. These two 

sources together assist in developing a robust likelihood model of combining multi-source 

heterogeneous data and improving prediction. 

6.2.2.1 Data Availability and Factor Identification 

Data availability of plants where accident investigations occurred can be obtained using 

investigation reports. The factors leading to an abnormal situation can be identified from each 

accident for which methodology is applied. The data are sometimes unavailable or insufficient 

for analysis. Data availability remains challenging, and more details are provided in section 

6.3.  
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6.2.3 Interpretive Structure Modelling (ISM) 

Warfield proposed the ISM method to establish a visual hierarchical structure from 

unstructured data (Attri et al., 2013; Warfield, 1974). The intent was to use it for decision-

making purposes for complex issues. Data from steps 6.2.1 and 6.2.2 serve as input into the 

ISM method. Unlike previous studies, the literature review serves as an input for the ISM 

method (Huang et al., 2020; Li et al., 2019; Sajid et al., 2017; Wu et al., 2015; Yuan et al., 

2019). However, the present study advocates a different route of coupling textual and 

numerical data integration via ISM. The outcome is a well-defined informative digraph that 

can be used for further analysis. The steps of the ISM process are illustrated in Figure 6-2. 

 

Figure 6-2 Steps of ISM process 
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6.2.3.1 Establishing interrelationships among heterogeneous factors 

The factors identified for the study are derived from the accident database and simulated sensor 

data. Both serve as inputs and establish interrelationships among identified factors. A pair-wise 

relation is considered to develop a contextual relationship between both factors or factors 

within each source. When there is a relation between two factors 𝑋𝑖𝑗, if factor i influence factor 

j but vice versa is not true, this contextual relationship is termed as “yes” from i to j whereas, 

for j to i is no. Similarly, the relation between each pair is determined to establish the contextual 

relationship. Domain expertise plays a vital role in deciding the influence of one factor over 

another. 

6.2.3.2 Developing Structural Self-interaction matrix (SSIM) 

After establishing the interrelationship among factors, the next step is to develop an SSIM. The 

SSIM depicts the directed influence of one factor on another through the pair-wise comparison 

in the previous step. In the ISM process, variables to represent interrelationships are predefined 

as V, A, X, and O. These relationships are as follows (Kamil et al., 2023a; Sajid et al., 2017): 

V- denotes when i influences j, but vice versa is not true 

A - denotes when j influences i, but vice versa is not true 

X- denotes both i and j influence each other 

O- denotes when there is no relation between i and j 

6.2.3.3 Converting SSIM into Final Reachability matrix (FRM) 

The next step consists of converting SSIM into FRM. First, SSIM is transformed into a 

reachability matrix (RM) and FRM. Predefined variables V, A, X, and O are used to convert 

them into binary, 0 or 1. The RM entry can be formulated as follows: 

When SSIM entry is V- denotes i to j entry becomes 1 and j to 1 entry becomes 0 
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When SSIM entry is A- denotes i to j entry becomes 0 and j to 1 entry becomes 1 

When SSIM entry is X- denotes i to j entry becomes 1 and j to 1 entry becomes 1 

When SSIM entry is O- denotes i to j entry becomes 0 and j to 1 entry becomes 0 

According to the predefined variables V, A, X and O initial reachability matrix can be 

developed. In the ISM method, one assumption is the incorporation of transitivity. Transitivity 

means that if there are three factors, 1, 2, and 3., Factor 1 influences factor 2, and if 2 influences 

3, then 1 is indirectly related to 3 through 2. This relationship in RM is called transitivity and 

incorporated by 1*. Introducing transitivity to RM resulted in FRM (Attri et al., 2013). 

6.2.3.4 Partitioning of FRM and converting into a conical matrix 

Partitioning of FRM is essential in establishing a hierarchical level of factors. Two sets are 

derived from FRM; reachability set R(Xi), and antecedent set A(Xi). The former consists of 

factor i itself and other factors that i influence, whereas the latter consists of all the factors that 

influence factor i and factor i itself (Attri et al., 2013). Further, an intersection of the former 

and the latter R(Xi)A(Xi) is also derived. The factor in which R(Xi) and R(Xi)A(Xi) 

intersection are the same obtained the top or highest level in the hierarchy as level I. The top-

level or highest-level factor does not influence any other factor; in other words, it has 0 driving 

power. The exact process is repeated by omitting the factor for which the level is assigned until 

all factor’s levels are determined. It is noted that more than one factor can be assigned at the 

same level. These levels determine their visual hierarchical structure. The following process is 

converting partitioned FRM into a conical matrix. A rearrangement of all the factors takes place 

in which all factors assigned to the same level are pooled together in such a way that most zero 

(0) factors are in the upper half of the matrix while the lower half is unitary (1) (Kamil et al., 

2023a). 
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6.2.3.5 Developing hybrid digraph 

The final step of the ISM process is developing a directed graph or digraph from the conical 

matrix data. A digraph is drawn from the conical matrix relations. If a factor Y affects another 

factor Z and is represented by unity in the matrix, a directed arc must be drawn from the former 

to the latter. Likewise, other factors affecting Z are shown by drawing a directed arc from those 

factors to Z. If the conical matrix entry is 0, factor Y does not affect Z; therefore, no directed 

arc is drawn. This process continues until all the factors arcs are drawn and their 

interrelationship is established. In addition, the transitivity links shown in step 6.2.3.3 are 

removed. The resulting graph is called an ISM digraph, a complex hierarchical structure 

comprising complex interrelationships among factors and their levels in the hierarchy (Kamil 

et al., 2023a). In case of any conceptual concern, readers are referred to both sources' data 

preprocessing steps. 

6.2.4 Quantitative reasoning 

The digraph developed using the ISM method is qualitative. The last step of the methodology 

is to model interrelationships quantitatively and estimate causation likelihood. The following 

substeps provide details on mapping the ISM digraph into quantitative analysis and handling 

uncertainty in the assessment. 

6.2.4.1 Mapping hybrid digraph into an acyclic digraph 

This study methodology introduces a probabilistic technique incorporating natural language 

textual and sensor data. The textual data are dealt with using fuzzy logic as a bridge to quantify 

and manage qualitative data, whereas the latter can be converted to probabilities based on the 

three-sigma rule. One popular probabilistic technique that can model fuzzy and monitored 

nodes is the BN. BN represents a failure scenario from causation to consequences, making 
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modeling of failure scenarios easy to follow. The influence of causes among each other can be 

modeled through conditional probability. Based on the quantitative relationship, BN estimates 

the posterior probability of the pivotal node (Saeed et al., 2022). Many studies in the past 

(Huang et al., 2020; Kamil et al., 2023a; Li et al., 2019; Sajid et al., 2017; Wu et al., 2015; 

Yuan et al., 2019) chose BN as a prominent option for quantitative analysis combined with the 

ISM method. However, one core difference between both approaches is that BN is acyclic, 

whereas ISM can be cyclic or acyclic. As proposed by (Kamil et al., 2023a), two main rules 

must be considered while mapping the ISM digraph into BN. Firstly, eliminate any single-

parent arc to a child node. Secondly, check for cyclic structure. The mapping of the ISM 

digraph can be made by following the mapping algorithm illustrated by (Kamil et al., 2023a). 

If the mapped BN consists of a cyclic structure, then modification can be made by introducing 

a dummy node. The concept of the dummy node has been introduced and leveraged in the past 

(Amin et al., 2018; Yu & Rashid, 2013). 

6.2.4.2 Estimation of fuzzy probabilities 

Fuzzy logic is leveraged to handle vagueness in natural language and quantify subjective 

qualifications. It provides a bridge between qualitative data and quantitative data. Factors used 

in the ISM process are derived from the co-occurrence network and require exploiting the 

numerical relationship between vague quantities.  

Table 6-1 Linguistic variables and associated fuzzy numbers to describe fuzzy event, adopted 

from (Chen Shu-Jen and Hwang, 1992; Zarei et al., 2019) 

Linguistic variable Definition Fuzzy set 

Very High Occurrence is monthly (0.8,1,1,1) 

High-very High Occurrence in 1-3 months (0.7,0.9,1,1) 
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High Occurrence in 3-6 months (0.6,0.8,0.8,1) 

Fairly High Occurrence in 6-12 months (0.5,0.65,0.65,0.8) 

Medium Occurrence in 1-5 years (0.3,0.5,0.5,0.7) 

Fairly Low Occurrence in 5-10 years (0.2,0.35,0.35,0.5) 

Low Occurrence in 10-15 years (0,0.2,0.2,0.4) 

Low-Very Low Occurrence in 15-20 years (0,0,0.1,0.3) 

Very Low No occurrence during life 

cycle 

(0,0,0,0.2) 

Assigning a probability of failure to a vague event, i.e., naturally spoken/written events, is 

challenging. Expert elicitation is a consensus scientific way of estimating the probability of 

such events. The linguistic variable is a potential and effective way of dealing with naturally 

spoken/written events (Zadeh, 1965).  A variable that is defined by words or sentences in a 

natural or artificial language is called a linguistic variable (Chen Shu-Jen and Hwang, 1992). 

This work advocates for selecting a scale of 7 fuzzy numbers that consists of 9 linguistic terms, 

as shown in, Table 6-1 for estimating the likelihood of an event and trapezoidal fuzzy numbers 

(Zarei et al., 2019). Figure 6-3 depicts a conversion scale of a linguistic variable that can be 

used to estimate the likelihood of an event. Expert opinions can be aggregated using arithmetic 

averaging, voting, and fuzzy preference relations (Nurmi, 1981). An appealing technique is a 

linear opinion pooling as shown in equation (1) (Clemen & Winkler, 1999; Zarei et al., 2019): 

𝑃𝑖 = ∑ 𝐸𝑖𝐿𝑖𝑗

𝑝

𝑖=1

  ,   𝑗 = 1,2 … , 𝑛.                                    (1) 

Where Pi is the fuzzy likelihood of an event, Ej is the weighting score of expert j, and Lij is the 

linguistic variable value from expert j about the event i. The weighting factor and trapezoidal 

function defuzzification are estimated according to recent studies (Ramzali et al., 2015; Zarei 
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et al., 2019). The center-of-area technique is considered for defuzzification (Sugeno & Kang, 

1986).  

 

Figure 6-3 Estimation scale of a linguistic variable into fuzzy likelihood 

The final step is to estimate fuzzy probability from the fuzzy possibility. Fuzzy probability can 

be obtained using a defined function, as shown in equations (2) and (3), developed by 

(Onisawa, 1988): 

𝐹𝑃𝑟 = {
1

10𝐾  𝑖𝑓 𝐹𝑃𝑠 ≠ 0

0 𝑖𝑓 𝐹𝑃𝑠 = 0
                                                         (2) 

𝐾 = [(
1 − 𝐹𝑃𝑠

𝐹𝑃𝑠 )
(1

3)

] × 2.301.                                                 (3) 

Where FPr is a fuzzy probability, FPs is a fuzzy possibility, and K is a constant value for each 

event. 

6.2.4.3 Estimation of monitored nodes 

The next aspect of modeling interrelationships and estimating failure likelihood is the 

estimation of probabilities from normal and faulty data of monitored variables. The previous 
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step employed fuzzy nodes for handling uncertainty from natural language in the accident 

database. In contrast, this step focuses on estimating probabilities from sensor data.  

Pr(𝑓𝑎𝑢𝑙𝑡) = 𝜑 (
𝑌 ± 𝜇

𝜎 ) … … … … … … … … … … (4) 

Where Y is an arbitrary value, 𝜇 is the mean and 𝜎 is the standard deviation of Gaussian 

cumulative distribution. 

Using the three-sigma rule, a limiting zone is defined to estimate the probability of fault from 

sensor data. This limit consideration is recommended due to noise in process data. In a 

Gaussian distribution, mostly all (99.7%) values lie between the upper and lower thresholds 

within 3 standard deviations of the mean, i.e., 𝜇 + 3𝜎 (upper control limit) and 𝜇 − 3𝜎 (lower 

control limit), respectively. At the mean, the probability of fault is 0, whereas at the lower and 

upper thresholds is 0.5 (Amin et al., 2021; Bao et al., 2011). 

𝑦𝑖𝑗 > 𝜇𝑗, 

Pr(𝐹𝑎𝑢𝑙𝑡) =  𝜑 (
𝑦𝑖𝑗 − (𝜇𝑗 + 3𝜎𝑗)

𝜎𝑗
) 

= ∫
1

𝜎𝑗√2𝜋
𝑒

𝑦𝑖𝑗

−∞

−
{𝑦𝑖𝑗−(𝜇𝑗+3𝜎𝑗)}

2

2𝜎𝑗
2

𝑑𝑥 … … … … (5) 

𝑦𝑖𝑗 < 𝜇𝑗, 

Pr(𝐹𝑎𝑢𝑙𝑡) =  1 − 𝜑 (𝑦𝑖𝑗−(𝜇𝑗−3𝜎𝑗)
𝜎𝑗

)  

= 1 − ∫
1

𝜎𝑗√2𝜋
𝑒

𝑦𝑖𝑗

−∞

−
{𝑦𝑖𝑗−(𝜇𝑗−3𝜎𝑗)}

2

2𝜎𝑗
2

𝑑𝑥 … … . . (6) 

Where i=1,2,..n and j=1,2,..m 

The prior probability of monitored variables is estimated by averaging the probability obtained 

from normal data using equations (5) and (6) for each corresponding variable (Amin et al., 

2021). 
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6.2.5 Generalized Hybrid Causation Model 

The textual and numerical data interrelationships can be modeled by estimating fuzzy and 

monitored nodes. Another parameter is the conditional probability table (CPT) that can be 

defined based on OR/AND gate. The resulting causation model consists of two nodes: fuzzy 

nodes from the textual data and monitored nodes from the numerical data when these nodes 

are combined in BN results in a generalized hybrid causation model. 

6.2.6 Updated Hybrid Causation Model 

Online process data plays an important role in risk monitoring. The steps included in the 

methodology for online process data are adapted from a recent study (Amin et al., 2019). 

Firstly, the fault probability is estimated using equations (5) and (6); if the probability is more 

than 0.5 for two consecutive samples, there is a fault. Therefore, the corresponding monitored 

variable node is updated by providing soft evidence (i.e., likelihood evidence). 

6.3 Application to CSB Database 

The approach developed in the previous section aims to use our knowledge by utilizing 

historical data from an accident database. The lessons learned from historical data give insights 

that would be assisted with contemporary data to monitor risk and assess the process operating 

condition. This section applies the methodology to the CSB database of loss of 

containment/release incidents between 2002 to 2021, accounting for 18 such incidents. LOC 

occurs due to the escape of hazardous substances such as gas, fuel, or chemicals from a storage 

vessel (U.K. HSE discovering safety, 2021). 

6.3.1 Heterogeneous Data Sources 

Textual data use is challenging, as well as driving interest among risk analysts to leverage for 

risk estimation. A co-occurrence matrix of dimension C*C consists of entities in rows and 
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columns based on a unique word in the database, where C is the sum of unique words in input 

data. Therefore, results in a word-to-word matrix to identify their linkage. Each word is 

vectorized as a co-occurrence frequency with other words, leading to a co-occurrence network 

(Liu et al., 2021). The network is a qualitative analysis of words and their interaction, 

representing their occurrences in a dataset (Zhang et al., 2018). The co-occurrence network is 

a popular NLP technique widely used for graphical representation. 

Structured data from a sensor provides information about process operation. Real-time 

monitoring data are a useful resource that can be utilized in integration with unstructured data 

from accident investigation reports. The structured and unstructured data are used to develop a 

robust likelihood model. 

6.3.1.1 Selecting textual data and Preprocessing  

This step comprises selecting a section from the accident investigation and processing the data. 

The accident report provides sufficient information about the incident. The sections explored 

in CSB reports are executive summary, key findings, and root/contributory causes. The corpus 

consists of data from the sections about each incident of LOC. After, developing corpus, 

preprocessing is applied to remove noise, convert texts into base form and filtering of words 

that adds less value. In this case, company names where the accident occurred are repeated in 

the accident descriptions. Therefore, such names are omitted in the filtration step.  

6.3.1.2 Developing co-occurrence network 

An open-source KH coder (Higuchi, 2016) is used to establish a co-occurrence network. The 

nodes in the network denote the target words with their sizes representing their occurrences in 

the dataset. The strength of the edges shows the value of a Jaccard coefficient. The Jaccard 

coefficient measures similarities between different data sets by estimating shared and distinct 
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elements to evaluate all possible relations between two words (Liu et al., 2021; Romesburg, 

2004). A threshold value of 0.2 is set to consider strong co-occurrences among words in the 

graph. 

 

Figure 6-4 Co-occurrence network of release incidents from the CSB database of LOC 

incidents 

The co-occurrence network developed from CSB database incidents related to the release 

scenario is illustrated in Figure 6-4. There are 11 color-coded subgraphs. The network 

represents that certain words are closely associated, forming a subgraph in the network, and 

each subgraph can demonstrate an incident's causation. Based on the initial network, the 

filtering step can omit words that do not add value in causation. The filtering step is a hit-and-

trial method that requires domain expertise while maintaining clarity and information in the 

graph. Causations from subgraphs related to each other through dash edges (co-occurrences 

exist in different communities). Subgraphs 01, 03, 04, 07, and 10 have dash edges and discuss 
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them. Subgraph 03 denotes, it is "determined" that due to "lack" of "alarm" "detector" 

contributes to the severity of an incident. Dash edges from "lack" lead to "companies", 

"implementation" of "process safety management" elements is due to weak safety culture by 

the "corporate" as shown in subgraph 10. One of the "company" policies does not even identify 

hot work in activities that can be a source of ignition. 

Subgraph 04 indicates that toxic H2S gas is accumulated in a facility's "pump" room and is 

unable to be vented due to the "lack" of a "detection" device or "detector" fail to trigger "alarm." 

Subgraph 01 suggests that a chemical "reaction" "produces" "Hydrogen" "gas." The reaction 

occurred due to the "operator" "mixing" incompatible chemicals. It is linked to subgraph 10, 

i.e., "lack" of "process safety management." The "air" mover is designed to bring fresh air into 

a "building" close to a "batch" operation carried out that "produces" "hydrogen" "gas" by the 

"operator." When "hydrogen" "mixed" with "air," “that” resulted in "process," "safety," 

"incident," shown in subgraph 07. In addition, the building was "lacking" a gas "detection" 

system. This could be due to a lack of sensors or sensor failure in detecting the gas. 

Subgraph 02 suggests that during a maintenance procedure in "upflow," "tower," "flammable," 

"resin" came into contact with the ignition "source" (heat gun), leading to high "resin" 

temperature resulting in fire. Maintenance workers failed to "recognize" heat guns as hot work 

that could ignite flammable material. Subgraph 05 suggests two words, "pressure" and 

"control." It may reflect that an inadequate "pressure" "control" system leads to an incident. 

Subgraph 06 shows inadequate "written," "operating," "procedure" cause behind improper 

action of an operator that could be catastrophic, as seen in subgraph 01, due to the operator's 

inadequate experience leading to producing hydrogen gas that released and ignited.  

Subgraph 08 shows causation due to "phosgene," "transfer," "hose" that led to the release of 

"phosgene". The highly toxic "phosgene" is released due to "hose" failure. Subgraph 09 shows 

an exceeding operating temperature related to the "feed" "tank" due to the lack of operating 
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procedure and hazard analysis. The last subgraph 11 illustrates an accident scenario of "HF" 

(Hydrogen Floride) release from an "alkylation" "unit" resulting in "fire." The "water" 

"mitigation" system unable to performs its intended job. 

Step 6.2.1 of the methodology investigates an automated identification of underlying causal 

factors of incidents using textual data. There are limited available solutions for text-mining 

incident reports. Recent works introduce a method of extracting causation from incident textual 

data (Kamil et al., 2023a; 2023b), but it requires corpus training, unlike a co-occurrence 

network method. Therefore, avoiding training datasets will be less time-consuming and require 

minimal labor. 

6.3.1.3 Simulating real-time sensor data 

Another important aspect of this step is obtaining numerical data from sensors. Collecting 

desired data are not easy; it is challenging due to the unavailability of data or insufficient data 

points for analysis (Kamil et al., 2021). The former is the concern in this work, leading to 

simulation of monitoring data for quantitative reasoning. Three monitored variables are 

important, particularly for LOC accidents based on CSB cases considered. These monitored 

variables are valve opening malfunction, pressure, and temperature. These factors vary from 

one process operation to another. However, to show the proposed methodology's efficacy, three 

factors from CSB cases are considered in the present work. Getting real monitoring data 

remains a challenge to the present work. 

6.3.2 Establishing Interrelationship among Textual and Numerical Data 

The next step of the developed approach is to establish interrelationships among factors from 

both data sources, textual and numerical. The ISM method is proven to be capable of modeling 

complex interrelationships among factors (Attri et al., 2013). This step establishes 
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interrelationships among factors from textual data and monitored variables identified from the 

CSB cases of LOC incidents. If any study only relies on numerical data, then the Kullback-

Leibler divergence method can define the relationship between monitored variables (Amin et 

al., 2021). In the present case, an interrelationship is established among both data types. The 

outcome from the ISM digraph can be mapped to BN using the available mapping algorithm. 

The challenges arising from the former and latter method incompatibility are discussed in a 

recent study (Kamil et al., 2023a). Table 6-2 lists all the factors identified from both data 

sources. 

Table 6-2 Identified factors for ISM process 

Serial number Factors 

I Loss of containment 

II Operator/Human factor 

III Ignition source 

IV Inadequate written operating procedure 

V Lack of PSM 

VI Fire 

VII Weak safety culture by corporate 

VIII Lack of alarm 

IX Lack of detection devices (gas detectors) 

X Inadequate pressure control 

XI Hose failure 

XII Feed tank 

XIII Failure of water mitigation system 

XIV Flammable resin due to hot work permit 
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XV Temperature 

XVI Pressure 

XVII Level 

XVIII Valve opening malfunction 

XIX Sensor malfunction 

XX Lack of sensor 

6.3.2.1 Developing SSIM, RM and FRM from heterogeneous data 

Firstly, a pair-wise contextual relationship is established by analyzing each factor's influence 

on other factors. This relationship is developed in the form of yes or no. The pair-wise 

relationship is established among all the factors using the understanding of the accident 

causation and then converted into SSIM. The developed SSIM is shown in Appendix Table 

6-5, consisting of V, A, X, and O to demonstrate the pair-wise relationship among factors. 

Based on SSIM, RM is developed comprised of 0 or 1. In addition, the indirect relation of 

identified factors is also incorporated in the RM, resulting in FRM, as Appendix Table 6-6 

shows. Furthermore, FRM also includes two important aspects: driving power and dependence 

power. As the name suggests, the former denotes the total number of interactions by each factor 

in a row (i.e., factors it affects). In contrast, the latter is the total number of interactions for 

columns (Kamil et al., 2023). 

6.3.2.2 Establishing hierarchy among identified factors  

The next step of ISM process is very important because this will dictate the hierarchy of factors 

and decide the causal factors in the resulting ISM digraph. FRM of appendix Table 6-6 is 

partitioned into different levels. FRM data facilitate this partition by developing two sets: 

reachability set, R(Xi), and antecedent set, A(Xi). Appendix Table 6-7 shows level partitioning, 
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which is an iterative process. At each iteration, a level is assigned to the factors. In the present 

case, there are seven iterations to develop the level partitioning shown in Table 6-7. R(Xi) 

consists of factor i and other factors influenced by factor i, whereas A(Xi) comprises factor i 

itself and factors that influence factor i. Consequently, the intersection of R(Xi) and A(Xi) is 

derived for all the cases. The factor that is common between R(Xi) and R(Xi)∩A(Xi) column 

occupies the top level in the hierarchy (Kamil et al., 2023; Sajid et al., 2017). In the current 

work, Fire & explosion (F&E) due to LOC occupy level I, and no factor exists above the level 

I. Similarly, other iterations are performed after removing the factor already assigned a level 

until all factors have been assigned. All factors have been assigned a level in the hierarchical 

structure in seven iterations. Table 6-7 shows all the factors and their assigned levels. 

6.3.2.3 Developing hybrid ISM digraph  

The last step in the ISM process is developing a conical matrix from level partitioning that 

develops ISM digraph. A conical matrix is developed to visualize each factor hierarchy to 

create a digraph, as developed in appendix Table 6-8. The upper half of the conical matrix 

consists of null elements. In contrast, the other half consists of unitary elements to reflect 

dependence and driving power with their respective levels. For instance, F&E occupies level 

1, according to the conical matrix, followed by two factors, LOC and ignition source, at level 

2. In Table 6-8, rows 2 and 3 depict LOC and ignition source influence F&E. Therefore, a 

directed arc is drawn from both factors of level 2 to the F&E (level 1) to show the influence. 

In row 4th, the factor level directly influences LOC and indirectly influences (denoted by 

transitivity) F&E. Both relations are used at this stage to draw two arcs. 

Similarly, each relationship of factors is depicted in a complex structure while maintaining 

their hierarchy in the overall process. Once all the relationships are depicted in the ISM process, 

the resulting diagram is known as a digraph. All the transitivity links are removed from the 
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final digraph, as shown in Figure 6-5. The digraph suggests that F&E has the highest 

dependence power of 20, meaning that all 20 factors in the ISM digraph directly or indirectly 

lead to F&E. Two factors have the highest driving power, i.e., sensor malfunction and lack of 

sensor, meaning that these factors contribute most towards the LOC and subsequently to F&E. 

 

Figure 6-5 Developed digraph from heterogeneous data sources 

6.3.3 Developing Hybrid Causation Model 

The digraph is constructed from a complex relationship among factors from both data sources. 

ISM is a qualitative analysis that can be beneficial to understand the hierarchy of factors and 

factors with the highest driving and dependence power. In order to estimate the likelihood of 

LOC and, subsequently, F&E. ISM digraph needs to be evolved into a quantitative approach. 

BN has proven to be a useful technique for cases that can model causation from root causes to 
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consequences in one pictorial representation. A mapping algorithm is used to map the digraph 

into BN (Kamil et al., 2023a). The mapped BN consists of two monitored nodes, O & P has a 

single parent node. These single-parent arcs are removed from BN model resulting in mapped 

BN shown in Figure 6-7. No cyclic relations are encountered throughout the process. 
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Table 6-3 Fuzzy probability estimation 

Fuzzy variable Expert 1 Expert 2 Expert 3 
Fuzzy 

possibility 
K 

Fuzzy 

Probability 

Ignition source 
0.8

0 

1.0

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 
0.93 0.96 1.11E-01 

Inadequate written 

operating procedure 

0.7

0 

0.9

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 
0.92 1.02 9.63E-02 

Weak safety culture 

by corporate 

0.2

0 

0.3

5 

0.3

5 

0.5

0 

0.3

0 

0.5

0 

0.5

0 

0.7

0 

0.2

0 

0.3

5 

0.3

5 

0.5

0 
0.40 2.63 2.32E-03 

 

Inadequate pressure 

control 

0.6

0 

0.8

0 

0.8

0 

1.0

0 

0.5

0 

0.6

5 

0.6

5 

0.8

0 

0.5

0 

0.6

5 

0.6

5 

0.8

0 
0.70 1.74 1.84E-02 

 

Hose failure 
0.3

0 

0.5

0 

0.5

0 

0.7

0 

0.5

0 

0.6

5 

0.6

5 

0.8

0 

0.3

0 

0.5

0 

0.5

0 

0.7

0 
0.55 2.15 7.04E-03 

 

sensor failure 
0.8

0 

1.0

0 

1.0

0 

1.0

0 

0.7

0 

0.9

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 
0.92 1.02 9.63E-02 
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Failure of water 

mitigation system 

0.6

0 

0.8

0 

0.8

0 

1.0

0 

0.5

0 

0.6

5 

0.6

5 

0.8

0 

0.6

0 

0.8

0 

0.8

0 

1.0

0 
0.75 1.60 2.54E-02 

 

Flammable resin 

due to hot work 

permit 

0.5

0 

0.6

5 

0.6

5 

0.8

0 

0.6

0 

0.8

0 

0.8

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 
0.79 1.47 3.41E-02 

 

Lack sensor 
0.7

0 

0.9

0 

1.0

0 

1.0

0 

0.8

0 

1.0

0 

1.0

0 

1.0

0 

0.7

0 

0.9

0 

1.0

0 

1.0

0 
0.91 1.08 8.33E-02 
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Figure 6-6 Simulated sensor data for temperature 

Two parameters must be defined: prior probability of root nodes (fuzzy/monitored nodes) and 

conditional probability. The former is estimated using fuzzy logic for fuzzy nodes (shown in 

Table 6-3). For monitored nodes, the prior probability is estimated from normal data by 

averaging it using equations 5 & 6 using simulated sensor data. Three monitored parameters 

are temperature, pressure, and valve opening malfunction. For each parameter, 1500 data points 

are simulated in which fault is introduced at the 900th sample point. An example of temperature 

sensor data are shown in Figure 6-6 to visualize the simulated data. Similarly, the other two 

parameters are simulated, and their prior probabilities are estimated based on the three-sigma 

rule. Another important aspect of BN is CPT. The CPTs are defined using OR/AND gates to 

model the interrelationship among factors. 

LOC accidents are mainly due to three causation factors: unsafe acts, unsafe conditions and 

organizational and management failures. These factors are illustrated and color-coded in Figure 

6-7, along with monitored nodes. The methodology shown in Figure 6-1 is applied to develop 

a hybrid causation model consisting of monitored factors with causation factors from historical 
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data. The next step is to update the monitored nodes with a probability of fault. When 

Pr (fault) > 0.5 for two consecutive samples, it is considered to be a fault. Equations (5) & 

(6) are used to estimate fault probability for the hybrid causation model (Figure 6-7). 

 

Figure 6-7 Mapped BN from ISM digraph 

6.4 Results and discussion 

The present study comprises of multi-source heterogeneous data in developing a qualitative 

model in the form of an ISM digraph to analyze the hierarchy of factors and establish their 

interrelationships. The ISM digraph is mapped into BN to quantify interrelationships and 

analyze the likelihood of LOC accidents of nearly two decades from the CSB database. The 

hybrid model mapped from the ISM digraph is shown in Figure 6-7. The result gives LOC 

likelihood of 3.70E-01. This prior likelihood is updated with soft evidence of each monitored 

node (Amin et al., 2019). The hybrid causation model is updated with Pr (fault) for all three 

nodes and provides a posterior likelihood of 5.88E-01 for LOC, which leads to the F&E 
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likelihood of 6.51E-02. The results show that integrating fault probabilities of monitored nodes 

with fuzzy nodes from the accident database led to high LOC likelihood. This way, causation 

factors are comprised of fuzzy and monitored nodes in the hybrid causation model. The result 

is coherent with the actual condition because the LOC accidents from which the hybrid BN 

model is developed are based on real accidents. Therefore, the hybrid BN model accommodates 

structured and unstructured data to analyze accident causation. Scenario-based verification is 

carried out to assess the efficacy of the model. 

6.4.1 Scenario-based verification  

The LOC model developed through a systematic approach depicted in Figure 6-1 consists of 

different accident scenarios. Each accident scenario has a unique accident pathway comprised 

of causation factors. The aim is to conduct scenario-based verification by simulating different 

accident scenarios to assess model prediction. This exercise dictates the efficacy of the model 

in predicting LOC accidents. The model consists of hard evidence for fuzzy nodes and soft 

evidence for monitored nodes. The advantage of developing a generalized model is 

understanding similarities among accidents of similar types and being able to model single 

accident causation. The accident causation modeling approach is evolved to consider a 

generalized model for a particular accident type (Kamil et al., 2023). 

Scenarios 1-5 are generated from LOC incidents from the CSB database used to develop the 

BN model in Figure 6-7. Scenario 1 identified factors: lack of sensor (gas detection), weak 

safety culture, abnormal temperature, and an unknown ignition source. These factors are 

mentioned in Table 6-4 and are given as hard evidence to fuzzy nodes and soft evidence to 

monitored nodes. The model gives the likelihood of 100% for both LOC and F&E when met 

with an unknown ignition source. The result shows that the model can predict the failure 

scenario correctly and coherently with the actual condition. Similarly, scenario 2 factors in 
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Table 6-4 are simulated in the BN model. Similar to scenario 1, LOC and F&E likelihood is 

100%. The ignition source, in this case, is the heat gun. It ignites flammable resin when came 

into contact. The model results depict the same outcome when scenario 2 factors are given to 

the BN model. Based on these two cases, it is evident that the generalized model can be used 

to assess individual accident pathways. In scenario 3, sensor failure hinders operator action as 

operator action is based on alarm. Another factor is the lack of PSM; these are the reasons for 

LOC. The model result shows 100% LOC likelihood, with 11% related to F&E. No F&E was 

reported in this incident. However, there is a high chance that the hazardous substance (i.e., 

hydrogen sulfide) is highly flammable and may ignite when met with an ignition source. 

According to the model, there is 11% chance of F&E, given the release of hydrogen sulfide. 

Similarly, scenarios 4 & 5 are based on their identified factors listed in Table 6-4. The result 

shows that LOC is sure to occur with 100% likelihood and 11% F&E. In both cases no F&E 

occurred, which is also verified by the model results. 

Table 6-4 Scenario-based hard and soft evidence for verification 

Scenari

o 
Hard and soft evidence 

Incident 

name 

Model result 

Loss of 

containment 
F&E 

1 

Lack of sensor (gas detection), 

safety culture, temperature, 

unknown ignition source 

AB Specialty 

Silicons 
100% 100% 

2 
Hot resin, heat gun as ignition 

source 

Evergreen 

Packaging 

Paper Mill - 

100% 100% 
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Fire During 

Hot Work 

3 
Sensor failure, operator, lack of 

PSM 

Aghorn 

Operating 

Waterflood 

Station 

Hydrogen 

Sulfide 

Release 

100% 11% 

4 

Weak safety culture, PSM, 

detection device, high pressure, 

valve opening 

DuPont La 

Porte Facility 

Toxic 

Chemical 

Release 

100% 11% 

5 
Valve opening/closing 

malfunctioning, hose failure 

Emergency 

Shutdown 

Systems for 

Chlorine 

Transfer 

100% 11% 

6 

Inappropriate design, inadequate 

safeguards such as gas detectors, 

Inadequate management of change 

(MoC) , inadequate operator 

training, inadeqaute emergency 

Multiple 

storage tank 

ruptures, San 

Juan 

100% 100% 
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response, ground flare (ignition 

source) 

Ixhuatepec, 

Mexico 

7 

Sensor failure, inadequate 

operating procedure, inadequate 

monitoring, inadequate MoC, 

inadequate maintenance, human 

factor, ignition source 

Gasoline 

storage tank 

overfilled, 

Buncefied, 

UK 

100% 100% 

8 

Absence of alarms, valve 

inconsistency, human factor, 

inadequate level sensor, inadequate 

procedure, ignition source 

Gasoline 

storage tank 

overfilled, 

Bayamon, 

Puerto Rico 

100% 100% 

Scenarios 6-8 are LOC accidents resulting from oil product storage shown on the lessons 

learned database comprising 52 major process accidents (IChemE Safety and Loss Prevention, 

2022). Scenario 6 is a multiple LPG storage tank rupture in 1984 Mexico. The LOC occurred 

due to a rupture in the liquified petroleum gas (LPG) transfer line. This rupture resulted in 

leakage of LPG, when met with a ground flare propagated into a series of boiling liquid 

expanding vapor expansion (BLEVE). This catastrophe led to the evacuation of 200,000 

people. The identified factors leading to this incident are listed in Table 6-4. Based on the 

evidence, BN model gives the likelihood of 100% for both LOC and F&E. Scenario 7 depicts 

the Buncefield, U.K. incident of gasoline overfill in which multiple F&E occurred. The 

unconfined vapor cloud ignition took place from overfilled gasoline, followed by fire that 

lasted for five days. This incident comprises basic factors such as failure of the automatic tank 

gauging system and high-level switch for the automatic high-level shutdown system. The root 



 231 

factors are shown in Table 6-4, comprised of factors related to an unsafe act, unsafe conditions, 

management, and organizational failures. These causation factors led to the Buncefield LOC 

incidents. Based on the provided evidence, the model gives a 100% likelihood of LOC and 

F&E. The last scenario is again based on a gasoline storage tank overfilled that occurred in 

Bayamon, Puerto Rico, in 2009. In this incident, a gasoline storage tank was overfilled during 

an unloading operation. The incident resulted in a vapor cloud explosion followed by fire that 

lasted 66 hours. The causes of this incident are listed in Table 6-4. The model results show 

100% likelihood for LOC and F&E. This scenario-based verification aims to show the model's 

efficacy in predicting LOC accidents. The model is verified on LOC accidents from the CSB 

database from scenarios 1-5, which were also part of model development. Scenarios 6-8 are 

unseen to the model and do not participate in model development. All scenarios 1-8 are tested 

and verified on the hybrid BN model. The result shows that based on each incident scenario, 

the model result is coherent with the actual incident. In scenarios 1, 2, 6 & 8, F&E occurred 

due to the release of contained material met with the ignition source. The model also suggests 

100% F&E likelihood in those scenarios. Scenarios 3-5 show 11% likelihood due to the 

possibility of ignition in released flammable substance. The model provides promising results 

in each scenario. Therefore, the model is useful in predicting LOC incidents. 

6.4.2 Sensitivity Analysis 

Sensitivity analysis is performed to determine each factor’s sensitivity towards LOC. The 

analysis can be performed directly from GeNie software (GeNie Software, 2023) by setting the 

target node of LOC and performing the sensitivity of each root node. The present study uses 

MS Excel to perform sensitivity analysis. Each root node, whether fuzzy or monitored, is given 

a percentage. This percentage can vary from ±10, 20, 30, and so on. In the present case, ±50 

of each node is considered to capture its effect on the LOC pivotal node. This process is 
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repeated until all fuzzy and monitored percentage change is done. Based on the outcome, a 

tornado chart is developed to visualize the effect of each fuzzy and monitored node on LOC, 

as shown in Figure 6-8. Two factors have the highest sensitivity towards LOC. The first factor 

is an inadequate written and operating procedure that comes under management and 

organizational failure. The second is a sensor failure which is considered an unsafe condition. 

The results suggest that management, organizational oversight, and unsafe conditions are 

primary causation factors for LOC and, subsequently, F&E. Recently IChemE (IChemE Safety 

and Loss Prevention, 2022) analyzed major process safety incidents and stated their root 

causes. There were 52 incidents; out of them, 40 had the common root cause of inadequate 

procedure. Therefore, the sensitivity analysis result can be validated through the IChemE root 

cause map. The sensitivity analysis highlighted an important factor that needs proper attention 

in process industries. Moreover, this result also shows the importance of methodology in 

developing the hybrid BN model. 

 

Figure 6-8 Tornado chart to analyze the sensitivity of fuzzy and monitored nodes 
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6.5 Conclusions 

Safety 4.0 demands integrating NLP with a data-driven approach. This study introduces a 

hybrid BN modeling approach that analyzes, interprets, and organizes multi-source data into 

meaningful information. The research demonstrates a robust approach to predicting LOC 

incidents based on past experiences from the CSB database and contemporary data from real-

time monitored parameters. Reliance on historical and contemporary data provides a 

comprehensive picture of accident causation. The knowledge gap of leveraging multi-source 

heterogeneous data integration for accident causation analysis has been addressed in this study. 

The analysis unfolds the potential LOC incidents pathways that lead to catastrophe. These 

pathways can be a precursor to avoiding potential adverse events. The ISM digraph highlights 

the complex interrelationships of factors associated with LOC incidents. The unique features 

of this study are as follows: 

• Providing a provision to integrate textual data and numerical data into accident 

likelihood. 

• Developing a generalized hybrid BN model for LOC incidents from the past and real-

time data. 

• Identifying inadequately written procedures and sensor failure as having the highest 

sensitivity toward LOC incidents. 

• Gaining insights from multiple data sources into what went wrong. 

• Developing strategies to minimize LOC incidents based on the hierarchy of factors in 

the digraph. 

• Automating causation extraction from the accident database using the co-occurrence 

network. 

The key goal is to develop a safety 4.0 tool that can automate insights from the accident 

database and leverage real-time data to enhance informed safety-related decisions. Textual and 
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numerical are two data sources comprised in the hybrid BN model to drive meaningful 

information. The advantage of this model is the use of NLP to develop causation from 

unstructured data. NLP helps assess hazards and potential causation pathways. Employing NLP 

with real-time data introduces a novel way of real-time risk monitoring of LOC incidents. In 

this way, features from unstructured data (textual data) and combination with structured data 

(sensor data) capture more system information that is otherwise not possible from either of the 

data sources. The model consists of factors responsible for LOC involved in real-world 

industrial accidents and control room sensor data to develop a way to identify precursors for 

accident causation. The model is verified on 8 major LOC incidents to determine its efficacy 

in predicting adverse events. Comprehensive validation is challenging due to the unavailability 

of real-time sensor data. 

The uncertainties in the model arise due to the actual sensor data paucity and expert opinion 

usage in the ISM and BN methods. Moreover, the subjectivity introduced in the filtering step 

of the co-occurrence network can be reduced by introducing domain expertise in determining 

words that do not add value to causation. Addressing these concerns can be a direction for 

future studies. 
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Appendix  

Table 6-5 Structural self-interaction matrix (SSIM) Created using pair-wise comparison of each factor 

Factors I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX 

I X A O O O V O O O O O O 0 O 0 O A O O O 

II   X O A O O A A O O O V O O V O O O O O 

III     X O O V O O O O O O O O O O O O O O 

IV       X O O O O O O O O O O O O O O O O 

V         X O A O A A A V A A O O O O O O 

VI           X O O O O O O O O O O O O O O 

VII             X O O O O A O O O A O O O O 

VIII               X O O O O O O O O O O A A 

IX                 X O O O V O O O O O A A 

X                   X O O O O O V O O O O 

XI                     X O O O O O O O O O 

XII                       X O O O O V O O O 
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Table 6-6 

Final 

reachability matrix (FRM) 

Factors I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX Driving 

Power 

I 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

II 1 1 0 0 0 1* 0 0 0 0 0 1 0 0 1 0 1* 0 0 0 6 

III 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

IV 1* 1 0 1 0 1* 0 0 0 0 0 1* 0 0 1* 0 1* 0 0 0 7 

XIII                         X O O O O O O O 

XIV                           X O O O O O O 

XV                             X O V O O A 

XVI                               X V O O O 

XVII                                 X A O O 

XVIII                                   X O O 

XIX                                     X O 

XX                                       X 
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V 1* 0 0 0 1 1* 0 0 0 0 0 1 0 0 0 0 1* 0 0 0 5 

VI 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

VII 1* 1 0 0 1 1* 1 0 0 0 0 1* 0 0 1* 0 1* 0 0 0 8 

VIII 1* 1 0 0 0 1* 0 1 0 0 0 1* 0 0 1* 0 1* 0 0 0 7 

IX 1* 0 0 0 1 1* 0 0 1 0 0 1* 0 0 0 0 1* 0 0 0 6 

X 1* 0 0 0 1 1* 0 0 0 1 0 1* 0 0 0 1 1* 0 0 0 7 

XI 1* 0 0 0 1 1* 0 0 0 0 1 1* 0 0 0 0 1* 0 0 0 6 

XII 1* 0 0 0 0 1* 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4 

XIII 1* 0 0 0 1 1* 0 0 0 0 0 1* 1 0 0 0 1* 0 0 0 6 

XIV 1* 0 0 0 1 1* 0 0 0 0 0 1* 0 1 0 0 1* 0 0 0 6 

XV 1* 0 0 0 0 1* 0 0 0 0 0 0 0 0 1 0 1 0 0 0 4 

XVI 1* 0 0 0 0 1* 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 

XVII 1 0 0 0 0 1* 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 

XVIII 1* 0 0 0 0 1* 0 0 0 0 0 0 0 0 0 0 1 1 0 0 4 

XIX 1* 1* 0 0 1* 1* 0 1 1 0 0 1* 0 0 1* 0 1* 0 1 0 10 

XX 1* 1* 0 0 1* 1* 0 1 1 0 0 1* 0 0 1* 0 1* 0 0 1 10 
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Dependence 

Power 

18 6 1 1 9 20 1 3 3 1 1 13 1 1 7 2 17 1 1 1   

 

Table 6-7 Level Partitioning 

Elements (Xi) Reachability Set R(Xi) Antecedent Set A(Xi) Intersection Set R(Xi)∩A(Xi) Level 

I 1,  1.2,4,5,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20  1,  2 

II 2,  2,4, 7, 8, 19, 20, 2,  5 

III 3,  3,  3,  2 

IV 4,  4, 4,  6 

V 5,  5,7,9, 10, 11, 13, 14, 19, 20, 5,  5 

VI 6,  1,2.3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20, 6,  1 

VII 7,  7, 7,  6 

VIII 8,  8, 19, 20, 8,  6 

IX 9,  9, 19,20, 9,  6 

X 10,  10, 10,  6 
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XI 11,  11,  11,  6 

XII 12,  2,4,5,7,8,9, 10, 11, 12, 13, 14, 19, 20, 12,  4 

XIII 13,  13, 13,  6 

XIV 14,  14, 14,  6 

XV 15,  2,4,7,8, 15, 19, 20, 15,  4 

XVI 16,  10,16,  16,  4 

XVII 17,  2,4,5,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 17,  3 

XVIII 18,  18,  18,  4 

XIX 19,  19,  19,  7 

XX 20,  20, 20,  7 

 

Table 6-8 Conical matrix 

Factors V

I 

I II

I 

XVI

I 

XI

I 

X

V 

XV

I 

XVII

I 

II V I

V 

VI

I 

VII

I 

I

X 

X X

I 

XII

I 

XI

V 

XI

X 

X

X 

Drivin

g 

Power 

Leve

l 
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VI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

I 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

III 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

XVII 1* 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

XII 1* 1

* 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

XV 1* 1

* 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

XVI 1* 1

* 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

XVIII 1* 1

* 

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

II 1* 1 0 1* 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 5 

V 1* 1

* 

0 1* 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 5 
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IV 1* 1

* 

0 1* 1* 1* 0 0 1 0 1 0 0 0 0 0 0 0 0 0 7 6 

VII 1* 1

* 

0 1* 1* 1* 0 0 1 1 0 1 0 0 0 0 0 0 0 0 8 6 

VIII 1* 1

* 

0 1* 1* 1* 0 0 1 0 0 0 1 0 0 0 0 0 0 0 7 6 

IX 1* 1

* 

0 1* 1* 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 6 6 

X 1* 1

* 

0 1* 1* 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 7 6 

XI 1* 1

* 

0 1* 1* 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 6 6 

XIII 1* 1

* 

0 1* 1* 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 6 6 

XIV 1* 1

* 

0 1* 1* 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 6 6 
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XIX 1* 1

* 

0 1* 1* 1* 0 0 1

* 

1

* 

0 0 1 1 0 0 0 0 1 0 10 7 

XX 1* 1

* 

0 1* 1* 1* 0 0 1

* 

1

* 

0 0 1 1 0 0 0 0 0 1 10 7 

Dependenc

e Power 

20 1

8 

1 17 13 7 2 1 6 9 1 1 3 3 1 1 1 1 1 1 
  

Level 1 2 2 3 4 2 4 4 5 5 6 6 6 6 6 6 6 6 7 7 
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7 Summary, Conclusions and Recommendations 

7.1 Summary 

The advancement in process operations requires advanced data-driven approaches for safety. 

This study presents advanced probabilistic methods for developing an accident causation 

model that supports safety 4.0 in process operations. The main contribution of this work is to 

extend the modeling power of Bayesian networks (BN) by introducing novel algorithms that 

use structured and unstructured data.   

The thesis comprises various complex failure scenarios from an application perspective. 

Failures from offshore platforms due to MIC in process industries oil and refining, LOC, and 

fire & explosion are covered in the thesis. The modeling perspective introduces several 

innovations in developing the learning-based model, which offers a new dimension to risk 

analysis. These innovations incorporate NLP to develop objective risk models and generalized 

hierarchical causation models. 

The thesis offers a direct solution to learning from structured data instead of relying on process 

knowledge. The integration of operational and microbiological data are shown to predict the 

occurrence of MIC. The salient features are the ability to learn from data and the handling of 

missing values. The introduction of LBN is beneficial to determine vulnerable process 

equipment. 

Unstructured data are never used to analyze what went wrong. With the advancement of NLP, 

it is possible to text-mine data and automate the feature extraction process. The NER model is 

trained and tested to gain insights into MIC accidents. A novel algorithm for mapping NER to 

BN is introduced to develop the risk model from an accident database.  

Employing NLP creates opportunities to develop new models, such as the generalized 

causation model, by introducing a systematic approach of combining three techniques NLP, 
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ISM and BN. A novel algorithm for ISM mapping into BN is also introduced. The advantage 

is to analyze various accident pathways and understand commonalities among accidents.  

The generalized causation model approach is further extended to incorporate structured data to 

gain more insight and monitor risk. The co-occurrence network method is used to automate 

insights from the accident database, ISM, and BN to transform into an accident likelihood 

model. The thesis provides a paradigm shift into developing a causation model from multi-

source data. The structured and unstructured datasets used in the thesis are obtained from 

industry and accident investigation reports of PHMSA and CSB. 

7.2 Conclusions 

The specific conclusions are listed below.  

7.2.1 Development of a learning-based likelihood model 

Advancing towards process digitalization demands an approach that relies on data and is 

adaptable to ensure the safety of a process operation. An integrated model is introduced that 

can use field and laboratory data to assess MIC threats. The proposed model, called the LBN 

model, possesses several advantages over existing MIC models. It exhibits the ability to learn 

BN structure and parameters from data even though the dataset comprises missing values. The 

LBN model has undergone testing and validating using the training and testing data set, 

demonstrating acceptable performance and establishing the model's efficacy in predicting the 

MIC likelihood. By employing a data-driven approach, valuable insights can be gained to 

identify the vulnerable process equipment susceptible to MIC. Consequently, the model can be 

utilized to assess MIC risk in CPI and improve overall operational safety. 
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7.2.2 Risk estimation and evaluation from textual data 

A new dimension to risk assessment is introduced by gaining insights from textual data. 

Automated feature extraction from a database enables the analysis of the causes and 

consequences of incidents. A unique approach is introduced that combines NER with BN, 

using a defined mapping algorithm. The approach has unique aspects, including its ease of 

implementation, self-explanatory feature labeling, incremental annotations, and applicability 

to various domains. The methodology demonstrated a new way of analyzing accident 

scenarios. Five PHMSA database incidents are taken to evaluate objective risk from the textual 

data and verify the introduced methodology's applicability. The risk levels are deemed 

unacceptable and consistent with actual conditions. A total of 8 causation models are developed 

from the trained NER model to establish NER efficacy. Unlike previous studies limited to 

feature extraction, this methodology provides a pathway for predicting risk from textual data. 

The development of BN from textual data demonstrated that unstructured textual data are a 

valuable source and can be used to assess objective risk. 

7.2.3 Generalized causation likelihood analysis 

A novel approach is introduced to developing a generalized causation model for oil and refining 

incidents. A systematic approach is introduced to gain insights from the accident database and 

transform it into a generalized model. The approach comprises NER, ISM and BN. The output 

from NER serves as an input to ISM, and the output from ISM is mapped to BN using a novel 

mapping algorithm. The developed BN model unfolds critical factors and commonalities 

among accidents. The model is tested on 10 incidents and verified on 6 incidents resulting in 

100% likelihood which is coherent with actual conditions. Sensitivity analysis shows that MoC 

and lack of procedure and training are the highest sensitive parameters towards F&E. 

Management and regulatory oversights drive F&E accidents. The introduction of generalized 
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causation modeling is an important step toward accident causation analysis. It helps to analyze 

each incident pathway, assess commonalities and develop strategies based on the hierarchy of 

factors.  

7.2.4 Multi-source data integration for generalized causation analysis 

A robust approach is introduced to integrating textual data and numerical data into a likelihood 

model. Historical and contemporary data combined provide a comprehensive causation model. 

A hybrid BN model is developed for LOC incidents. Historical data, i.e., unstructured in nature 

due to textual data, from accident investigation reports are used to develop insights and 

integrate with real-time monitoring data from sensors. This way, features from accident 

investigation reports and real-time monitoring capture more information about what went 

wrong, which is otherwise not possible using a single source. The co-occurrence network is 

used combined with ISM and BN techniques to develop an approach that can integrate multi-

source data. The hybrid BN provides meaningful information from two data sources. The 

model provides a new way of monitoring LOC accident risk based on real-time data and past 

accident causation factors. The model is useful for predicting precursors to LOC adverse 

events. Inadequately written procedures and sensor failure are the highest sensitive parameters 

to LOC. The model is tested and verified on 8 LOC accidents to predict LOC likelihood and 

F&E likelihood. In all cases, the model predicted 100% LOC and 11% when no F&E was 

reported and 100% F&E when an ignition source was present. Hence, the model is capable of 

predicting LOC adverse events. 

7.3 Recommendations 

This doctorate thesis introduces new concepts and addresses the shortcomings of existing 

techniques and limitations in process safety and risk analysis of oil and gas facilities and CPI. 

Nevertheless, this study can be further extended to incorporate the following recommendations. 



 254 

7.3.1 Data requirements 

The approaches developed in the thesis demand high quality and quantity of data which is often 

difficult to obtain. One of the benefits of the LBN model is the ability to learn BN's topology 

and parameters even when missing values are in the input dataset. According to the result, 150 

data points are required for the LBN model stability comprised of 10 nodes. In the LBN study, 

the industry partner provides data but not exhaustive data points. Therefore, data are simulated 

between the lower and upper bound of the provided values. The model's performance is 

evaluated to check how many missing values can be handled by the model. The study does not 

aim to address handling missing values in process data. Further research is required to 

investigate how to deal with missing values. Moreover, the LBN can be improved to 

incorporate incremental learning. The incremental learning process, again, is data intensive. 

Likewise, pair-wise comparison in the ISM requires comprehensive data to establish 

interrelationships among factors. The influence can only be established if the individual factor's 

relationship is known. When the ISM digraph is mapped into BN, CPTs must be defined, which 

requires considerable data. Thus, this makes expert opinion inevitable. Therefore, a database 

of structured data needs to be developed to leverage for assessing the relationship between 

factors, process monitoring, and developing risk assessment models. The unstructured textual 

databases like U.S. CSB and PHMSA for accidents are a valuable resource extensively utilized 

in the thesis. Similarly, a database of numerical data can be of great importance to learning 

from past experiences and fulfilling the data requirements of the data-driven approaches 

mentioned earlier. 
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7.3.2 Automated causation extraction 

NER provides cause-effect features from an accident database. Custom NER is beneficial for 

extracting custom entities from the database, and the labels attached to them require less 

manual interpretation to develop a causation model. However, the manual interpretation step 

can be automated using custom NER with relation extraction. This can be achieved by 

incorporating automated relation extraction of entities, illustrating cause-effect scenarios using 

named entities and their relationships, thus eliminating manual interpretations. The expected 

outcome will be automated extraction of causation from textual data. 

The spaCy library used to train custom NER also allows for relation extraction. Custom NER 

and relation extraction can be jointly performed during the annotation process. Thus, an 

automated causation analysis can be beneficial for learning lessons from past events. 

7.3.3 Uncertainty handling 

The thesis aimed to introduce methodologies to make informed safety-related decision-making 

rather than numbers accuracy. Both aleatory and epistemic uncertainties play an important role 

due to the stochastic nature of adverse events and incomplete information in modeling incidents 

in the study. Therefore, both uncertainties need to be overcome in future work. The epistemic 

uncertainty can be addressed using Dempster Shafer's theory and developing an evidential 

network instead of BN. Like BN, an evidential network is a directed acyclic graph for 

propagating epistemic uncertainty within a system's elements based on conditional belief mass. 

The evidential network is important in system safety when dealing with scarcity of accurate 

data, thus introducing epistemic uncertainty on the child node's belief mass from the parent 

nodes' belief mass. 
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In the case of aleatory uncertainty, Monte Carlo simulation technique can propagate aleatory 

uncertainty through the Bayesian network. Generate random samples from the assigned 

probability distributions and simulate the network repeatedly, incorporating the uncertainty in 

each iteration. This approach allows for estimating probabilistic outcomes, considering the 

aleatory uncertainty in the model. 


	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Objectives
	1.3 Outline
	1.4 Co-authorship Statement
	1.5 References

	2 Literature Review
	2.1 What is Microbiologically influenced corrosion (MIC)?
	2.2 MIC risk-based models
	2.3 NLP risk-based models
	2.4 Identified Knowledge Gaps
	2.5 References

	3 Data-Driven Operational Failure Likelihood Model for Microbiologically Influenced Corrosion
	Preface
	Abstract
	3.1 Introduction
	3.2 The Concept of Bayesian Learning
	3.2.1 Bayesian Network and its Structural Learning
	3.2.2 Bayesian Parameter Learning

	3.3 The LBN Model
	3.3.1 System Identification
	3.3.2 System based Operational and Microbiological Data Collection
	3.3.3 Data Preparation
	3.3.4 Bayesian Learning
	3.3.4.1 Structural Learning
	3.3.4.2 Parameter Learning


	3.4 Application of LBN Model
	3.4.1  System Identification
	3.4.2  System based Operational Data and Microbiological Data Collection
	3.4.3  Data Preparation
	3.4.4  Bayesian Learning
	3.4.5 Application of the LBN Model with Missing Values
	3.4.6 LBN Model Stability
	3.4.7 Testing of Model on Data Set – Clean and Corrupt Data

	3.5 Validation of the LBN Model
	3.6 Conclusions
	3.7 Acknowledgements
	3.8 References

	4 Textual Data Transformations Using Natural Language Processing for Risk Assessment
	Preface
	Abstract
	4.1 Introduction
	4.2  Proposed methodology
	4.2.1 Preprocessing of Corpus
	4.2.1.1 Tokenization
	4.2.1.2 Lemmatization

	4.2.2 Text Processing using Machine Learning
	4.2.2.1 Annotation
	4.2.2.2 Training for Custom-Named Entity Recognition
	4.2.2.3 Feature Extraction

	4.2.3 Transform Qualitative Features into Numerical Reasoning
	4.2.3.1 Quantification of Identified Features Using Fuzzy Logic
	4.2.3.2 Bayesian Network

	4.2.4 Risk Evaluation
	4.2.4.1 Defining Risk Acceptance Criteria
	4.2.4.2 Comparison of Estimated Risk Against Defined Criteria


	4.3 Application of Methodology
	4.3.1 Data Preparation for Custom NER Model
	4.3.1.1 Preprocessing
	4.3.1.2 Annotation and Training

	4.3.2 Automated Feature Extraction and Causation Construction
	4.3.3 Transforming Qualitative Features to Quantitative Reasoning
	4.3.3.1 Quantification of Identified Features Using Fuzzy Logic
	4.3.3.2 Mapping from NER to BN


	4.4 Results and Discussion
	4.5 Verification of NER Model
	4.5.1 Purpose of Verification
	4.5.2 Verification Results and Discussion

	4.6 Conclusion
	4.7 Acknowledgements
	4.8 References

	5 A methodical approach for knowledge-based fire and explosion accident likelihood analysis
	Preface
	Abstract
	5.1 Introduction
	5.2 Methodology to Develop Knowledge-based Accident Causation Model
	5.2.1 Application of Natural Language Processing (NLP)
	5.2.1.1 Report section selection and data pre-processing
	5.2.1.2 Annotation
	5.2.1.3 Named entity recognition model for feature extraction

	5.2.2 Interpretative Structural Model (ISM)
	5.2.2.1 Relationship between each pair of Zij
	5.2.2.2 Structural self-interaction matrix (SSIM)
	5.2.2.3 Reachability matrix
	5.2.2.4 Final reachability matrix (FRM)
	5.2.2.5 Partitioning of FRM
	5.2.2.6 Converting partitioned FRM to conical matrix
	5.2.2.7 Digraph and removing transitivity

	5.2.3 Quantitative reasoning using Bayesian Network (BN)
	5.2.3.1 Mapping digraph into BN
	5.2.3.2 Generalized causation likelihood model


	5.3 Application to CSB database (oil and refining - downstream)
	5.3.1 Development of NER model
	5.3.2 Establishing hierarchy and interrelationships among factors
	5.3.3 Generalized causation likelihood model

	5.4 Results and Discussion
	5.4.1 Model testing and verification
	5.4.2 Sensitivity Analysis

	5.5 Conclusions
	5.6 Acknowledgements
	5.7 References

	6 Multi-source heterogeneous data integration for incident likelihood analysis in the processing systems
	Preface
	Abstract
	6.1 Introduction
	6.2 Research Methodology
	6.2.1 Employing Natural Language Processing (NLP)
	6.2.1.1 Report section selection
	6.2.1.2 Preprocessing

	6.2.2 Numerical data
	6.2.2.1 Data Availability and Factor Identification

	6.2.3 Interpretive Structure Modelling (ISM)
	6.2.3.1 Establishing interrelationships among heterogeneous factors
	6.2.3.2 Developing Structural Self-interaction matrix (SSIM)
	6.2.3.3 Converting SSIM into Final Reachability matrix (FRM)
	6.2.3.4 Partitioning of FRM and converting into a conical matrix
	6.2.3.5 Developing hybrid digraph

	6.2.4 Quantitative reasoning
	6.2.4.1 Mapping hybrid digraph into an acyclic digraph
	6.2.4.2 Estimation of fuzzy probabilities
	6.2.4.3 Estimation of monitored nodes

	6.2.5 Generalized Hybrid Causation Model
	6.2.6 Updated Hybrid Causation Model

	6.3 Application to CSB Database
	6.3.1 Heterogeneous Data Sources
	6.3.1.1 Selecting textual data and Preprocessing
	6.3.1.2 Developing co-occurrence network
	6.3.1.3 Simulating real-time sensor data

	6.3.2 Establishing Interrelationship among Textual and Numerical Data
	6.3.2.1 Developing SSIM, RM and FRM from heterogeneous data
	6.3.2.2 Establishing hierarchy among identified factors
	6.3.2.3 Developing hybrid ISM digraph

	6.3.3 Developing Hybrid Causation Model

	6.4 Results and discussion
	6.4.1 Scenario-based verification
	6.4.2 Sensitivity Analysis

	6.5 Conclusions
	6.6 Acknowledgments
	6.7 References

	7 Summary, Conclusions and Recommendations
	7.1 Summary
	7.2 Conclusions
	7.2.1 Development of a learning-based likelihood model
	7.2.2 Risk estimation and evaluation from textual data
	7.2.3 Generalized causation likelihood analysis
	7.2.4 Multi-source data integration for generalized causation analysis

	7.3 Recommendations
	7.3.1 Data requirements
	7.3.2 Automated causation extraction
	7.3.3 Uncertainty handling



