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Abstract

In the studies of Brownian motion, one-dimensional (1D) models play a special role in

view of their relative simplicity and also because diffusion in a higher-dimensional space

can often be decomposed into independent random motions in the orthogonal directions.

In this thesis, we investigate the diffusion behavior of a Brownian particle (BP) within

three 1D models: (i) diffusion along a stochastic harmonic oscillator chain (SHOC), (ii)

diffusion of a damped BP in a tilted periodic potential, and (iii) free diffusion described

by the Langevin equation with velocity-dependent damping. To address the first problem,

we invent moving stochastic boundary condition approach, which allows us to simulate a

small subset of oscillators in close proximity to the BP, effectively capturing the relevant

dynamics. Our investigations have revealed a power law relation between the diffusion

coefficient D and temperature T and the existence of dispersionless undamped phases in

the BP motion at high temperatures. In the context of the second model, we explore the

phenomenon of dispersionless transport of a BP in a tilted periodic potential, which is

described in the literature as a broad time interval during which the particle’s dispersion

appears to be constant. Our findings demonstrate that the dispersion fluctuations within

the dispersion plateau hinder accurate determination of D, but these challenges can be

remedied by employing an alternative measurement procedure. Moreover, it is evident that

the conventional Langevin equation with velocity-independent damping coefficient as used

in model (ii) cannot reproduce the nearly undamped ballistic flights observed in various

physical systems. Lastly, we focus on establishing an analytical relation between D and

T for a BP subject to velocity-dependent damping γ(v) and apply it to the case of a

monotonically decreasing function γ(v) > 0. We show that at low temperatures, the D vs.

T relation is linear; however, at high temperatures, a non-Einsteinian behavior emerges,

similar to the one found within the SHOC diffusion model.
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General Summary

The random Brownian movement of particles immersed in a medium with a huge num-

ber of atoms is a ubiquitous phenomenon observed in a wide range of physical, chemical,

and biological systems, from ultracold atoms in optical traps to proteins in living cells to

weather balloons in the atmosphere. Although it has been discussed in physics literature

for over a hundred years, it continues to surprise researchers even today by manifesting its

counterintuitive facets, such as sub- and superdiffusion and the existence of Lévy flights.

To investigate Brownian motion, Molecular Dynamics (MD) simulations are routinely

performed, in which the trajectories of the BP and of many surrounding atoms are computed

numerically. Unfortunately, MD is limited by the computational resources required to simu-

late large-scale systems or long-duration processes. To overcome these limitations, stochas-

tic modeling based on the Langevin equation (LE) offer distinct advantages. However, the

LE method also has its limitations, as it neglects microscopic details and interactions which

may be crucial in some systems.

In this thesis, our primary objective is to examine the dynamics of a Brownian particle

(BP) within three one-dimensional models. Our research in the first model is motivated

by the need for new methodologies that can overcome the limitations associated with the

aforementioned approaches. To achieve this, we employ the moving stochastic boundary

condition to explore Brownian motion on a stochastic harmonic oscillator chain (SHOC).

As a result, we are able to probe the BP dynamics on a very long time scales.

We find that, intriguingly, at high temperatures, the BP motion proceeds via long flights,

in which the particle travels large distances with an almost constant velocity; during these

flights, the particle motion is dispersionless.

The term “dispersionless transport” has been used in the literature in the context of

LE simulations of Brownian motion in a tilted periodic potential. This is revisited in the
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second model of this thesis. It is shown that the term “dispersionless” in this model is

actually a misnomer: the BP in fact undergoes regular diffusion without long flights.

A modification of the standard LE is proposed in the third model, which allows re-

producing those flights. An analytical expression for the diffusion coefficient of the BP is

obtained and some features of its dynamics resembling those found in the SHOC diffusion

model are observed.
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Chapter 1

Introduction

In the introductory chapter we provide an overview of the key topics to be discussed in this

thesis. The chapter begins with a historical review of Brownian motion, shedding light on

its early observations and subsequent investigations. We then delve into the main modeling

approaches, Molecular Dynamics (MD) simulations and stochastic simulations based on

the Lagnevin equation. Furthermore, we touch upon the concept of anomalous diffusion.

We also explore the intriguing phenomenon of dispersionless transport. Finally, we briefly

discuss non-Einsteinian diffusion, offering a glimpse into deviations from the conventional

Einstein relation. This chapter sets the foundation for a systematic exploration of these

aspects in the subsequent chapters, enabling a deeper understanding of Brownian motion

and its complex dynamics.

1.1 Brownian motion: historical overview

The observation of powdered charcoal dispersed on the surface of alcohol under a micro-

scope reveals an intriguing phenomenon of random motion, known as Brownian motion. It

is attributed to the collisions between alcohol molecules and the larger charcoal particles.
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The initial investigation of this phenomenon dates back to 1785 when Jan Ingenhausz, a

renowned Dutch physician credited with the discovery of photosynthesis, observed it for the

first time [1]. Subsequently, the systematic study of Brownian motion was carried out by

Robert Brown, leading to the nomenclature of this phenomenon as “Brownian motion” in

1828. In the early days of its discovery, the spontaneous movement of particles appeared

enigmatic, as the existence of atoms had not been established at that time. The under-

standing of why Brownian particles (BP) exhibited apparently self-driven motion remained

elusive.

It was not until 1905 when Albert Einstein published a seminal paper [2], in which the

motion of pollen grains in a liquid was explained as driven by the molecular motion of the

surrounding molecules. Einstein’s explanation indirectly provided evidence for the existence

of atoms and molecules. He mathematically determined the mean square displacement

(MSD) of a BP and established its connection to Avogadro’s number. This hypothesis was

subsequently validated in 1908 by Jean Perrin, who earned the 1926 Nobel Prize in physics

for his experimental work on the discontinuous structure of matter and determination of

Avogadro’s number [1, 3].

Since its first theoretical description in 1905, Brownian motion has served as a fun-

damental example of a random process [4]. Notable contributions were made by William

Sutherland [5], Marian Smoluchowski [6], and Paul Langevin [7], who dedicated their re-

search efforts to elucidating the mathematical properties of Brownian motion. Through

distinct approaches, they derived an equation governing the probability distribution P (x, t),

which describes the position x of a BP at time t given its initial position at the origin. In

one dimension, this equation is

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (1.1)

The diffusion equation, Eq. (1.1), was initially formulated by Fourier as a description of

2



heat conduction, implying that the diffusion of probability follows a similar mechanism.

If the particle started at origin, x(t = 0) = 0, the initial condition of its probability

density is expressed with the help of Dirac delta function: P (x, 0) = δ(x). With this initial

condition, the particle probability density at any time t > 0 is given by a Gaussian function

P (x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
, (1.2)

as can be verified by substitution of this solution into (1.1). The Gaussian nature of the

probability distribution P (x, t) was verified through an exchange of ideas and discussions

between Pearson and Lord Rayleigh [8, 9].

By multiplying (1.2) with x2 and integrating over x from −∞ to ∞, we find that the

MSD of the BP position increases linearly in time,

〈
x2(t)

〉
= 2Dt . (1.3)

The parameter D in (1.1)-(1.3) is known as the diffusion coefficient. Its numerical and

analytical determination is the central theme of this thesis.

Although the linear relation (1.3) between the MSD and time was derived from the

specific diffusion equation (1.1), it can be obtained from even more general considerations.

Namely, the observation time t is divided into a not necessarily large integer number of

time intervals ∆t with the displacement ∆xn on the n’th interval. The total displacement

at time t is given by the sum of individual displacements

x(t) =
∑
n

∆xn . (1.4)

The time intervals are chosen to be so large that the displacements are statistically inde-

pendent:

⟨∆xn ∆xn′⟩ = ⟨∆x2⟩ δnn′ , (1.5)
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where δnn′ is Kronecker delta and ⟨∆x2⟩ is the MSD on an arbitrarily chosen interval. Then,

the total MSD becomes

⟨x2(t)⟩ =
∑
nn′

⟨∆x2⟩ δnn′ =
∑
n

⟨∆x2⟩ = ⟨∆x2⟩ t

∆t
. (1.6)

We see that the ratio ⟨x2(t)⟩/t = ⟨∆x2⟩/∆t is the same for the total observation time t and

for each individual time interval ∆t. Hence, it must be a constant, as stated by (1.3).

The early investigations of Brownian motion, focused on unraveling the nature of dif-

fusion phenomenon and understanding its underlying mechanisms, laid the foundation for

our current understanding of many-body systems. These pioneering studies sparked a pro-

found interest in the dynamics of systems with a few degrees of freedom interacting with a

complex environment. Building upon these historical roots, modern research continues to

explore and unravel the intricacies of Brownian motion in a wide range of nanoscale entities,

such as atoms and molecules [10–12], nanoclusters [13, 14], the scanning probe tip [15–18],

proteins in living cells [19], and bacteria [20], to name but a few.

1.2 Langevin and Fokker-Planck equations

Consider Brownian motion of a heavy particle of mass M , momentum P⃗ and position R⃗ in

a medium consisting of many much lighter atoms of mass m, momenta {p⃗i} and positions

{r⃗i}. The total Hamiltonian is

H =
P⃗ 2

2M
+
∑
i

p⃗ 2
i

2m
+ V (R⃗, {r⃗i}) , (1.7)

where the first term is the kinetic energy of the heavy atom, the second term is the kinetic

energy of the medium, and the third term is the interaction energy of all atoms. Molecular

dynamics (MD) simulations [21,22] require solving the equations of motion

˙⃗
P = −∂V

∂R⃗
, ˙⃗pi = −∂V

∂r⃗i
,

˙⃗
R = P⃗ /M , ˙⃗ri = p⃗i/m (1.8)
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numerically. This technique is severely limited in terms of the number of the atoms that

can be handled and the time scale that can be probed. Fortunately, alternative methods

can often be developed that do not have these limitations.

Stochastic modeling is an example of such an alternative. It is possible to replace

the full dynamics (1.8) with a reduced version, in which the heat-bath degrees of freedom

are integrated out. The generalized Langevin equation (GLE) can be obtained rigorously

using the projection operator technique [23], within the harmonic-oscillator heat-bath model

[24–29], or with the help of the linear response theory [30]:

˙⃗
P = F⃗ (R⃗) −

∫ t

−∞
ds

↔
η
(
R⃗(t), R⃗(s), t− s

) ˙⃗
R(s) + ξ⃗

(
R⃗(t), t

)
. (1.9)

The renormalized force and the noise correspond to the first and last terms of Eq. (1.9),

respectively. The second term involves the dissipation kernel denoted by
↔
η , is equal to

↔
η
(
R⃗(t), R⃗(s), t− s

)
=

1

T
⟨ξ⃗
(
R⃗(t), t

)
ξ⃗T
(
R⃗(s), s

)
⟩ . (1.10)

This equation is known as fluctuation-dissipation theorem of the second kind [30,31].

The time-local version of the GLE, known as the standard LE, is introduced by Paul

Langevin who was studying Brownian motion [7, 32]. It can be derived from (1.9) if the

heat bath dynamics is much faster than the system’s. Then, the right-hand side of (1.10)

can be approximated by a delta function:

⟨ξ⃗
(
R⃗(t), t

)
ξ⃗T
(
R⃗(s), s

)
⟩ ≈ 2T

↔
η
(
R⃗(t)

)
δ(t− s) . (1.11)

The above expression gives the standard LE for the BP

˙⃗
P = F⃗ (R⃗)−

↔
η
(
R⃗
) ˙⃗
R + ξ⃗

(
R⃗, t
)
. (1.12)
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1.2.1 Additive and multiplicative noise

In Eq. (1.12), the noise term is additive, meaning it is directly added to the deterministic

force term. In this case, the noise correlation function is expressed as

⟨ξ(t)ξ(0)⟩ ≈ σ2δ(t) , (1.13)

where noise strength σ2 is some constant implying that the noise term in the equation does

not depend on the state of the system.

In certain scenarios, noise can exhibit a non-additive impact on system dynamics. In

such cases, noise is not just random but also depends on the current state of the system

itself, i.e. depends on the particle’s velocity, giving rise to what is termed multiplicative

noise. It means that the intensity or effect of the noise changes with the particle’s velocity.

As a result, the LE becomes more complicated and harder to handle [33].

Enter the Stratonovich interpretation, a solution for handling multiplicative noise ef-

fectively. This approach incorporates the noise’s current and future values (anticipation),

thus accounting for the changing intensity of noise’s influence on the particle’s state. By

doing so, the Stratonovich interpretation smoothens out noise’s impact. In contrast, the

Ito interpretation, deals with noise differently. It considers solely the noise’s current value,

omitting future times. While this suits certain situations, it falls short in comprehensively

addressing the evolving intensity of noise in systems with multiplicative noise and nonlin-

earity. Consequently, this can lead to distinct predictions and interpretations of particle

motion [33].

1.2.2 Gaussian white noise

By the Wiener-Khintchine theorem, noise spectral density is frequency-independent:

S(ω) =

∫ ∞

−∞
dte−iωt⟨ξ(t)ξ(0)⟩ = σ2 . (1.14)
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Due to this property, a delta-correlated noise is called white [34].

In the simulation of a white noise ξ(t) with autocorrelation ⟨ξ(t) ξ(t′)⟩ = σ2 δ(t − t′),

we discretize time, t → tn = n∆t, and produce uncorrelated random numbers, ξn = ξ(tn),

at every time step such that ⟨ξn⟩ = 0 and ⟨ξnξn′⟩ = σ2

∆tδnn′ . In the limit ∆t → 0, the

autocorrelation function of the noise obtained through numerical methods exhibits a delta-

function, δnn′/∆t → δ(t − t′), as needed. Generally, the first two moments of a random

variable do not provide sufficient information to fully describe its distribution, except when

the distribution is Gaussian [35]. It is therefore common practice to estimate the probability

density W (ξ1, ξ2, . . .) as

W ({ξk}) =
∏
n

W (ξn) , W (ξn) =
1√
2πσ

e−ξ2n/(2σ
2) . (1.15)

The property of noise being Gaussian can be attributed to the central limit theorem, which

holds true when the system interacts with multiple heat-bath atoms simultaneously. Each

of these atoms contributes a random force, resulting in a collective random force that is

Gaussian in nature [36].

1.2.3 Fokker-Planck equation (FPE)

First, we formulate LE in the most general form. Let the state of the system be characterized

by parameters z = (z1, z2, ...) and let the system be coupled to a heat bath, whose dynamics

proceeds much faster than the system’s dynamics. Then, the heat-bath effects can be model

by the white Gaussian noise processes in the system’s equations of motion. Without loss

of generality, we can assume them to be mutually independent and have unit strength and

zero mean:

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(s) = δijδ(t− s) . (1.16)
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However, each noise ξj(t) is present in the equation of motion of each state variable zi(t):

żi(t) = hi(z) + gij(z)ξj(t) (1.17)

with summation over the repeated index j in the last term implied. The regular force, hi(z),

and the heat-bath coupling matrix, gij(z), are some known functions of the system’s state.

At the initial time t = 0, the system was in a definite state z0. We are interested in the

system probability density P (z, t|z0, 0) at a a later time t > 0, with the initial condition

P (z, 0|z0, 0) = δ(z − z0). The temporal evolution of this transition probability is governed

by the Fokker-Planck equations, which is given by

∂P (z, t)

∂t
=

∂

∂zi

[
1

2

∂P

∂zk
gijgkj −

(
hi −

1

2
gij

∂gkj
∂zk

)
P

]
. (1.18)

Note that the FPE has the form of a continuity equation ∂P
∂t = −∇⃗.J⃗ , where the probability

current density J consists of three contributions:

1. Diffusive current, Ji|diff = −1
2gijgkj

∂P
∂zk

, which flows from the region with the higher

probability to the region with lower probability;

2. Deterministic drift, Ji|det = hiP , caused by the deterministic force hi;

3. The so called Stratonovich drift, Ji|Strat = −1
2gij

∂gkj
∂zk

P , which is zero if the coupling

strength to the heat bath gij(z), is uniform in the state space of the system. However,

if gij(z) depends on z, then the system is coupled to noise in some regions of its state

space stronger than in others. Correspondingly, noise will tend to drive the system

out of the noisier regions into the less noisy regions, i.e there will be an additional

statistical drift [33].
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1.3 Stochastic boundary conditions

The most common way to use MD simulations of finite systems is to apply periodic boundary

conditions (PBC) in the lateral directions [21,22,37], in which the primary simulation region

is surrounded by images of itself. If a particle exits the simulation region at one end, an

identical particle reenters the region from the opposite end, i.e. the opposite ends of the

simulation box become correlated. These artificial correlations become even worse if the

energy released within the simulation region is high compared with the region’s average

energy. In other words, the MD approach can only be used if the dissipated energy due to

some nonequilibrium process under study is relatively small, and thus temperature increase

of the simulated region due to this process can be neglected [25].

Attempts to solve these formidable artificial PBC correlations can be classified into

four categories. The first category is based on the concept of a heat bath [38, 39]. The

second category includes grand canonical molecular dynamics simulations [40, 41]. The

third category involves multiscale simulations in which the system is simulated using a

combination of MD and a continuum method [42, 43]. The fourth category, which is the

focus of Chapter 2, introduces a stochastic boundary region surrounding the simulation

volume [24–26].

Stochastic boundary conditions (SBC) are particularly suitable in the simulations of

solids. In this method, the object is divided into three regions, namely the simulation

region, the boundary region, and the outer region, see Fig. 1.1. The simulation region

consists of a central particle and atoms within a certain range from this central particle.

Outside the simulation region, the boundary region forms a surrounding shell.

The outermost region is the irrelevant region. In SBC, atoms in the outer region are not

simulated explicitly, i.e. the outer region is taken into account in the form of the dissipative

and random forces that act on the boundary atoms. The dissipative and random forces

9



Figure 1.1 – Interaction of a nanosized object, schematically shown as gray bigger circle, with the

surface of a solid. The atoms of the solid are divided into the central region (gray circles), the boundary

region (black circles), and the outer region (empty circles) that plays the role of a heat bath.

correspond to the interaction between atoms in the central and outer regions. The latter

force becomes stochastic due to unknown initial positions and velocities of atoms in the

outer region. The balance of these forces helps to maintain the temperature in the central

region. The dissipative forces would remove extra energy from the central region, while the

random forces perform work on the atoms in the central region whereby bringing energy

in. The boundary atoms’ equations of motion assume the form of the GLE with colored

noise and the damping forces that are not local in time [27, 28]. The damping forces are

expressed as time integrals of the boundary atoms’ coordinates (or velocities) multiplied by

a certain time-dependent dissipation kernel. The noise correlation function is related to the

dissipation kernel by the fluctuation dissipation theorem of the second kind [24].

An efficient way to simulate the resulting GLE numerically is to replace the damping

and noise terms by a reasonably small number of the fictitious auxiliary degrees of freedom

that are coupled to the boundary atoms [29,44,45]. The dynamics of the auxiliary degrees of

freedom, in turn, is governed by the regular Langevin equations (LE) with Gaussian white

noise and the damping forces proportional to the instantaneous velocities. The parameters

of the auxiliary LE are chosen in such a way that the correlation function of the auxiliary
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degrees of freedom matches the dissipation kernel in the GLE for the boundary atoms

[29,44,45].

In such calculations, the highly non-trivial first step is to determine the dissipation

kernel in the boundary GLE. This step must involve a few approximations. The first

one is treating the solid as harmonic [24–29]. While the harmonic oscillator model allows

one to perform an exact derivation of the GLE, the non-linear effects may be significant at

elevated temperatures or even at room temperature. The second approximation is that even

within the harmonic-solid model, analytic determination of noise and dissipation properties

may be too tedious, so that further simplifications, e.g. Debye [28, 29] or Einstein [30]

approximation, have to be made. Third, the dissipation and noise terms in the GLE for the

boundary atoms are produced not by the bulk, but by the surface atoms of the outer region

in contact with the boundary region. What makes things worse, the interface between the

boundary and the outer regions is not necessarily planar, see Fig. 1.1 for an example.

Hence, the GLE for the boundary atoms is approximate in practice.

Fortunately, the imprecise character of the boundary GLE may not significantly affect

the computational accuracy, provided that the boundary region is sufficiently large. In-

creasing its size makes the surface effects on the boundary region less important. On the

other hand, the boundary region should not be too large in order for the simulations to be

not too time-consuming. Thus, in every particular problem, a compromise has to be found

between computational speed and accuracy.

In chapter 2, an alternative way to impose the SBC is proposed. In this method,

the boundary atoms are acted upon by the time-local damping forces and Gaussian white

noise that mimics the effect of the environment. That is, no auxiliary degrees of freedom

are used. Instead, as originally suggested in [44], the properties of the boundary atoms

are renormalized so that their displacement correlation function, as well as displacement
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correlation function of atoms in the central region become as similar as possible to that of

the atoms of the original solid. Note that the approach introduced here relies not on the

full time-dependent correlation function, but on its initial value and its time integral, which

can be found either analytically or from numerical simulations of an “infinite” solid with

the PBC in all three directions.

Another point of dealing with the MD simulations, a challenging one, is overcoming the

limitations with respect to the number of atoms and the time scale that can be handled

numerically. In these simulations with the PBC a huge number of the surface degrees of

freedom should be simulated explicitly. On the other hand, only a small number of the

surface atoms are in immediate contact with the object of interest. Hence, it is intuitively

clear that a great deal of computational effort can be saved by simulating only the central

region in immediate vicinity of the object, as illustrated in Fig. 1.1. As this object moves

on the surface, the central region must move together with it. The method described in

Chapter 2 makes such simulations possible.

1.4 Anomalous diffusion

In Section 1.1 we discussed how the diffusion law (1.3) can be obtained by dividing the total

observation time into intervals ∆tn large enough for the displacements ∆xn in each to be

mutually uncorrelated. This means that the time t in (1.3) must be large.

On the other hand, derivation of the same result from the diffusion equation (1.1) does

not rely on this assumption, as the time t in its solution (1.2) can be arbitrarily small.

From this, we can conclude that the diffusion equation (1.1) alone does not provide any

information about the particle trajectory at small time scales. Indeed, if we observe small

displacements, ∆x, over a short time interval, ∆t, we can determine D by averaging the

ratio ∆x2/∆t as both ∆x and ∆t approach zero. Since D is finite, ∆x/∆t must be infinite,
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which implies that the velocity of a BP, represented as the derivative along a Brownian

trajectory curve, is infinite at every point. Consequently, a Brownian trajectory is infinitely

jagged, and it is essential to exercise caution when mathematically analyzing Brownian

trajectories.

One way to avoid the mathematical complexities of Brownian trajectories is to assume

that a random walk motion occurs on a periodic lattice, where jumps take place at regu-

lar intervals. In this scenario, the trajectory comprises a connected path of straight line

segments. In the long time limit when the number of jumps increases, the random walk

solution on a lattice eventually approaches the behavior described by Eqs. (1.1)–(1.3) [1].

There are also situations where Eqs. (1.1)–(1.3) are no longer applicable for the random

walks. Fractal time random walks, where the walker waits for long time between jumps,

and Lévy flights, where the jumps cover very long distances, are examples. In the case

of fractal time random walks, the MSD are slower than in Brownian motion. Conversely,

Lévy flights exhibit the characteristic of potentially infinite particle velocities, resulting in

extremely long flight lengths. Consequently, the probability distributions associated with

particles undergoing Lévy flights may exhibit infinite moments as well. In this case, the

emphasis typically lies on the scaling properties of Lévy flights rather than the occurrence

of infinite moments. To address the divergence of moments, a velocity is introduced, which

is associated with the distance covered during each flight segment. Consequently, instead

of considering the MSD of a completed flight, which would be infinite, the focus shifts to

the distance traveled by the particle from its starting point up to time t. As a result, Lévy

flights exhibit a time-dependent MSD that grows at a faster rate compared to Brownian

motion [1, 46,47].
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1.5 Dispersionless transport

The phenomenon of dispersionless transport was originally reported in by Katja Linden-

berg et al [48], who simulated the dynamics of a BP in a tilted periodic potential. This

phenomenon has gained significant attention in recent years. It is believed that the iden-

tification and characterization of dispersionless transport can lead to the development of

novel theoretical and computational tools for the analysis and prediction of transport pro-

cesses in various applications, including material science, chemical engineering, and bio-

physics [49–53].

The term “dispersionless” suggests that the dispersion, or the MSD, of the BP coordinate

should be zero in the dispersionless motion. This means that the trajectory of a BP is

deterministic, rather than random, in spite of the thermal noise.

This definition is not the one which is adopted in the literature. Rather, dispersionless

transport is either defined by a plateau in the particle’s coordinate MSD vs. time plot

extending over a very broad time interval or by the impossibility to measure the diffusion

coefficient within this plateau region. In other words, it is not MSD, but its time derivative

which is zero in the dispersionless regime.

In this thesis, we find that both kinds of the dispersionless transport can be observed

depending on the model at hand. Namely, in Chapter 2 we find that at the temperature

greater than critical temperature, the transport of a BP becomes quasideterministic. After

a few acts of interaction with the environment, the BP starts to move at a constant velocity

with negligibly small energy dissipation.

In Chapter 3, we examine the dispersionless transport, as defined in [48], more closely for

a damped BP in a tilted periodic potential. In contrast to the model studied in Chapter 2,

the BP in Chapter 3 and [48] is acted upon by a dissipative force which is proportional to

the velocity. We show that the plateau in the particle’s position dispersion is, in fact, a
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numerical artefact that has to do with the choice of the logarithmic scale on the time axis

in the MSD plot. In addition, we show that the impossibility to determine the diffusion

coefficient is due to the wild fluctuations of the dispersion which is related to a finite number

of stochastic trajectories sampled in a realistic simulation and has nothing to do with the

intrinsic properties of the particle dynamics.

Since the MSD is a property of an ensemble of BPs, and its apparently constant value

does not necessarily imply that the motion of a single BP from this ensemble is not random.

Hence, it is possible to measure the diffusion coefficient also within the dispersionless regime

by a modification of the measurement procedure.

1.6 Einstein’s relation

The diffusion coefficient D is connected to thermal energy kBT through the Einstein-

Smoluchowski-Sutherland relation

D =
kBT

6πrη
, (1.19)

where r is the radius of the BP, η is the viscosity of the ambient fluid, and kB is the

Boltzmann constant. By introducing the mobility as µ = 1/(6πrη), Eq. (1.19) which is

commonly referred to as the Einstein relation can be written as D = µkBT . The theoretical

foundation of diffusion, especially the relationship between the diffusion coefficient D and

thermal energy kBT initiated a lengthy sequence of experiments focused on enhancing

our understanding of diffusive motion. Systematic observations of microscopic diffusing

particles introduced protocols for tracking single particle [54]. Time-resolved recordings

using a moving film plate avoided the need for ensemble averaging [55] and examining

torsional diffusion of a small mirror suspended on a thin quartz thread mapped out of the

Gaussian Boltzmann distribution of the equilibrium distribution of angles [56,57].

It is noteworthy to mention that the Einstein relation is based on the assumption of a
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linear relationship between the mean velocity of the BP and the applied force [58]. However,

in certain conditions, such as in non-Newtonian fluids or in the presence of strong flow fields

or interactions with obstacles, the relationship between the mean velocity and applied force

may no longer be linear, leading to a breakdown of the Einstein relation. It has been shown

that in supercooled liquids or near phase transitions the temperature dependence of the

diffusion coefficient may deviate from the linear relationship [59].

The breakdown of the Einstein relation has been a topic of significant interest in the

field of statistical physics. We believe the investigation of the breakdown of the Einstein

relation in simple systems can provide valuable insights into the fundamental mechanisms

that govern the dynamics of BPs, and can lead to the development of new theoretical models

that can better describe the behavior of these particles in complex systems. Therefore, we

set our primary objective to investigate the breakdown of the Einstein’s relation in simple

systems and explore the factors that lead to deviations from this fundamental relationship.

In this context, we discuss 1D diffusion of the BP on two different simple models leading to

non-Einsteinian relation.

1.7 Organization of the thesis

We reproduce our first paper – diffusion of the BP on the stochastic harmonic oscillator

chain (SHOC) model – in Chapter 2. By focusing specifically on the SHOC model, we aim

to gain deeper insights into its unique dynamics and explore various physical phenomena

within this simplified yet analytically tractable framework. The SHOC model can serve as an

ideal testing ground to explore and evaluate alternative approximation schemes intended to

replace computationally demanding MD simulations. In order to accomplish this objective,

we introduce the concept of the MSBC as an alternative approach in which the SBC is

applied to a moving BP. Moreover, we delve into the active research topic of examining
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the scaling relation between diffusion and temperature, a crucial aspect that has garnered

considerable attention in recent years.

During the investigation of the SHOC model, particularly at high temperatures, two sig-

nificant phenomena were observed: the “dispersionless” phase and the occurrence of “Lévy

flights”. The challenge of the dispersionless phase arises when attempting to determine the

scaling behavior of the diffusion coefficient with temperature, specifically when the system

operates at temperatures surpassing the critical temperature. In this phase, the particle

exhibits a constant velocity and minimal energy deposition into the chain. Consequently,

the extended interaction time required for the BP to engage with the SHOC surpasses

computational limitations, rendering the reliable determination of the diffusion coefficient

unattainable. On the other hand, the occurrence of Lévy flights is characterized by the

BP demonstrating extensive flight lengths. This phenomenon, commonly referred to as

the non-Einsteinian relation, manifests as a non-linear dependence of the diffusion process

on temperature. Notably, it was observed that the dissipative force acting on the particle

inversely scales with its velocity in this high-temperature regime, which contrasts with the

conventional understanding of Brownian motion, where the dissipative force is proportional

to velocity in the presence of Gaussian white noise. These intriguing observations moti-

vated us to investigate these two phenomena separately, leading to the development of two

distinct models for further exploration.

In pursuit of comprehending the diffusion behavior in the dispersionless phase, Chap-

ter 3 delves into a novel investigation. This chapter presents a reproduction of our second

paper, which focuses on the diffusion of BP within a tilted periodic potential. Our findings

reveals that this phase is not only characterized by the imposibility to measure the diffu-

sion coefficient but also exhibits a plateau in the particle’s coordinate dispersion, persisting

over an extended time interval. This plateau phenomenon poses a significant challenge in
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accurately measuring the diffusion coefficient within this specific region. In light of these

intriguing findings, we embark on an in-depth investigation of dispersionless transport in

this chapter, aiming to unravel its underlying principles and shed light on its implications

for the behavior of complex systems.

Motivated by the intriguing observation of Lévy flight and its potential implications for

diffusion behavior, we embark on an in-depth exploration in Chapter 4. In this chapter,

we present a reproduction of our third paper, which focuses on the diffusion of a free BP

with velocity-dependent damping. The main objective of this chapter is to investigate the

interplay between the inversely proportional dissipative force and velocity at high tempera-

tures, and examine its potential connection to the non-Einsteinian diffusion behavior. Here,

through an analytical investigations of the diffusion coefficient, we aim to illuminate fun-

damental aspects of simple models, diffusion phenomena, and the underlying mechanisms

governing the non-Einsteinian relation. By shedding light on these intricacies, our research

contributes to advancing our understanding of transport phenomena in complex systems.

In Chapter 5, the thesis presents a comprehensive summary of the findings and contri-

butions of this research. Furthermore, this chapter provides insights into potential future

directions and areas of further explorations.
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Chapter 2

Scaling and universality in the

Brownian motion on a stochastic

harmonic oscillator chain

In this chapter, we reproduce our first work, authored by Amir Kaffashnia and Mykhaylo

Evstigneev, as referenced in [1], with kind permission of the publishers of Physical Review

E. The article can be accessed via the DOI: 10.1103/PhysRevE.105.064134.

2.1 Abstract

Diffusion of a Brownian particle along a stochastic harmonic oscillator chain is investigated.

In contrast to the usually discussed Brownian motion driven by Gaussian white noise, the

particle at high temperatures performs long Lévy flights. At high temperatures T the

diffusion coefficient scales as D ∼ T 2+α, where the parameter α determine the average

damping force ∝ 1/(TαP ) on the particle at large momentum P and at high temperature.

The exponent α depends on the particle-chain interaction and chain properties. It is shown
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that the mean time t̄f necessary to perform a flight of l lattice constant scales with l

as t̄f ∝ l2/3 at high temperatures and flight lengths. Last but not least, the flight length

probability distribution is found to decay as 1/lβ with the exponent β = 4/3 being universal,

i.e. independent of the model parameters.

2.2 Introduction

Universality is a recurrent theme in physics [2, 3]. Simply put, universality means that the

scaling exponent α in a relation between two experimental parameters, y ∝ xα, turns out to

be independent of the microscopic details of the system’s Hamiltonian. Rather, it is related

to a small number of the overall system’s properties, such as dimensionality, symmetry, and

the interaction range.

Einstein’s relation D/µ = T between the temperature, T , the mobility µ, and the dif-

fusion coefficient, D, of a Brownian particle (BP) is an example of universality with the

scaling exponent 1. It typically holds at relatively high temperatures and can be theoreti-

cally explained based on an idealized model of a medium consisting of light particles that

find themselves in a close-to-equilibrium state weakly perturbed by the BP. This idealized

picture does not always apply to real systems, and therefore the breakdown of Einstein’s

relation became an active research topic recently [4–13].

The simplest model where the breakdown of the Einsteinian diffusion scaling can be

expected is a one-dimensional harmonic oscillator chain. Due to its rationality and in-

tegrability, this model has inspired theoretical interest since the original treatment by

Schrödinger [14]. Its usefulness in the field of statistical physics lies in the fact that it

can serve as a heat bath model [15, 16]. In recent years, this model has been extended

and widely applied to a variety of phenomena, such as particle [17, 18] and energy diffu-

sion [19,20], atom/solid scattering [21], heat conduction [22], and stochastic resonance [23].
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It has also been considered in the context of polaron physics [24, 25] and nanoscale fric-

tion [26,27]. Last but not least, diffusion of a BP along a harmonic oscillator chain may serve

as a minimal description of transport of atoms and molecules through a one-dimensional

channel, such as a carbon nanotube [28,29].

About 15 years ago, Silvius, Parris, and De Bièvre studied the diffusion of a BP along

a chain of independent harmonic oscillators with piecewise-constant interaction potential

between a representative oscillator and the BP. The authors reported a non-Einsteinian

asymptotic behavior of the diffusion coefficient with temperature, namely, D ∝ T 5/2 at

high temperatures [24].

This observation brings up some intriguing questions. First, can the same 5/2 scaling

be observed in other models of one-dimensional diffusion, which are more general than the

one from [24]? Are other values of the diffusion scaling exponent possible? Are those values

universal, i.e. do they apply to a broad range of system’s properties and depend only on

the system’s features, such as dimensionality and interaction range? Can universal scaling

relations be expected between other parameters that characterize the one-dimensional dif-

fusion process? Are the exponents appearing in different scaling relations related to each

other?

In this paper, we study the diffusion of a Brownian particle along a stochastic harmonic

oscillator chain (SHOC), introduced originally in the paper [18]. The system studied here

and in [18] differs from the model of Silvius et al [24] in several respects. First, in contrast

to [24], the oscillators in our SHOC are not independent. Second, in the present work, the

particle-oscillator potential is a smooth function of distance between these objects. Third,

the SHOC oscillators find themselves in contact with a Langevin heat bath, whereas the

oscillators in the model [24] perform noise-free harmonic motion with the random initial

coordinates and velocities chosen from the Maxwell-Boltzmann distribution. As a result
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of these differences, we find a different scaling of the diffusion coefficient with temperature

than D ∝ T 5/2 in [24].

The main qualitative difference between the BP/SHOC diffusion discussed here and in

[18,24] from the standard Brownian motion is that the BP in our case moves predominantly

via long flights at high T . This kind of motion has been reported earlier in the molecular

dynamics studies of adatom diffusion on solid surfaces [30–32]. The physical reason for long

flights is that the chain oscillators (or the atoms of the substrate in [30–32]) do not absorb

the energy from the rapidly moving BP as from a slow BP. In contrast, in the standard

Brownian motion with D ∝ T , the BP always experiences a damping force, which linearly

increases with its velocity.

As stated earlier, our BP/SHOC model was introduced in [18]. The main goal of that

paper was to work out a simplified Langevin description of the BP dynamics and to in-

vestigate the limitations of this description. Here, we focus on the scaling relations that

characterize the BP/SHOC system, especially the relation between the diffusion coefficient

and temperature and the scaling of the BP flight length distribution. To achieve this task,

we develop a numerical procedure to simulate the BP trajectory more efficiently than the

method employed in [18]. As a result of extensive simulations we establish that the diffusion

coefficient in this model scales with temperature as D ∝ T 2+α with the parameter α ≥ 0

that depends on the system properties. The scaling is shown to stem from the dependence

of the mean friction force on the particle momentum and temperature. While the exponent

2 + α is not universal, two universal scaling relations are found in the BP/SHOC system.

Namely, the mean flight time, t̄f , scales with the flight length, l, as t̄f ∝ l2/3, independent

of the system parameters. Second, the flight length probability distribution is found to

decrease as wl ∝ 1/l4/3 in a broad interval of flight lengths l. Eventually it exponentially

drops to zero at large l, so that the moments of this distribution remain finite.
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Figure 2.1 – The BP/SHOC model discussed in this paper, with the BP schematically shown as a

circle on top of the chain oscillators.

This paper is organized as follows. In the next section, the SHOC model [18] is briefly

described. Then, the results of the diffusion coefficient measurements are presented in Sec-

tion 2.4. In order to explain those results, a simple theory is worked out in Section 2.5

and its predictions are tested in Section 2.6. The flight length probability distribution is

presented and discussed in Section 2.7, after which the main findings of this paper are sum-

marized. The simulation details are explained in Appendix 2.A and the methodology used

to extract the diffusion coefficient from the numerical data is described in Appendix 2.B.

2.3 The model

We consider the one-dimensional motion of a BP of mass M and position X along an infinite

periodic chain of stochastic harmonic oscillators of mass m and positions xj , as described

in [18], see Fig. 2.1. The equation of motion of the BP reads

MẌ = −
∑
j

W ′(X − xj) , (2.1)

where W (X − xj) is the interaction potential between the BP and the jth oscillator of the

chain. For definiteness, a Gaussian potential

W (x) = −ε e−x2/(2σ2) (2.2)
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of depth ε > 0 and width σ is assumed, as in the earlier work [18]. This potential is short-

ranged, attractive, smooth, and goes to zero at large distances, making the BP diffusion

along the chain possible.

The mechanical equilibrium positions of the chain oscillators are regularly spaced with

periodicity a. Hence, the coordinate of a jth oscillator can be decomposed into

xj = ja + uj , (2.3)

where uj is the displacement from mechanical equilibrium. The chain oscillators are assumed

to be pinned to the lattice sites at ja by springs of stiffness κ0 and connected to the nearest

neighbors by springs of stiffness κ1 and rest length a. It is furthermore assumed that each

oscillator is coupled to its own heat bath, modeled by the dissipative and random forces.

The chain equations of motion read:

müj = −κ0uj − κ1(2uj − uj−1 − uj+1)

+W ′(X − ja− uj) − γu̇j +
√

2γTξj(t) . (2.4)

Here, T is the thermal energy, γ is the damping coefficient, and Gaussian white noises ξj(t)

are such that

⟨ξj(t)⟩ = 0, ⟨ξj(t)ξj′(t′)⟩ = δjj′δ(t− t′) . (2.5)

In the simulations reported below, four sets of parameter values were tested with

κ0 = 1 , γ = 0.1 , a = 1 , m = 1 , M = 10 , σ = 0.2 . (2.6)

The four parameter sets differed in the values of κ1, which was either 1 or 0 (interacting

vs. non-interacting oscillators), and ε, which was either 0.1 or 1 (weak vs. strong particle-

chain coupling). In addition, we performed simulations for other parameter values, namely,

increasing and decreasing the BP mass M and the interaction energy ε by an order of

magnitude relative to the respective values from (2.6). The scaling exponents that are

termed ‘universal’ in this paper had the same values for all parameters tested.
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Figure 2.2 – Temperature dependence of the diffusion coefficient for the 4 parameter sets tested, as

obtained from the simulations (symbols), and the fit of the simulation data at five largest temperatures

with the power law formula (2.9) (solid lines). The scaling exponent α for each data set is indicated in

the legend. For reference, the curve D ∝ T 2.5 is shown as the dashed line.

2.4 Diffusion coefficient scaling

2.4.1 Temperature dependence of the diffusion coefficient

The random motion of the BP is characterized by the time-dependent diffusion coefficient,

defined as

Dt =

〈
∆X2(t)

〉
2t

, ∆X(t) = X(t) −X(0) . (2.7)

As a function of time, Dt initially increases in the ballistic regime, and eventually enters

the diffusive regime, where it saturates at the long-time value

D = lim
t→∞

Dt , (2.8)

which is of our main interest.
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A straightforward way to find D is to simulate the stochastic trajectory X(t) over a

long observation time tobs and then to average over many such trajectories. This approach

is rather time-consuming, because the transition from the ballistic to the diffusive regime

may be quite long [18]. Therefore, we used a different method, which is faster and more

efficient. The general idea of this procedure is to take advantage of the fact that the BP

trajectory consists of flights over at least one lattice constant separated by the rest phases,

during which the BP remains bound to one of the SHOC oscillators. Then, a reasonably

small flight phases are grouped into segments, such that the displacement Sk in the kth

segment is statistically independent of the displacement Sk−1 in the previous segment. The

diffusion coefficient is then calculated as D =
∑

k⟨S2
k⟩/(2tobs), where tobs is the time over

which the particle trajectory is observed. The details of the numerical algorithm to evaluate

D from the simulation data are given in the Appendix 2.B.

Figure 2.2 shows the diffusion coefficient vs. temperature plots for the four parameter

sets from Eq. (2.6) and below. At the temperatures below T = 5, the diffusion coefficient

does not seem to depend on the chain interaction stiffness κ1, as the two weak-coupling

curves (open and closed squares above the dashed line) and the two strong-coupling ones

(open and closed triangles below the dashed line) seem to converge. At high temperatures,

on the other hand, all four curves can be fitted by a power law

D(T ) = KT 2+α (2.9)

with different values of the exponent α indicated in the legend of Fig. 2.2. The solid straight

lines in Fig. 2.2 are the fits of the diffusion coefficient at the five highest temperatures probed

(weak-coupling case: T = 2, 5, 10, 20, and 50; strong-coupling case: T = 10, 20, 50, 100,

and 200). The scaling exponent α obtained from the fitting are close, but not quite identical

to the value 0.5 reported in [24] with the largest deviation observed for the parameter sets

with κ1 = 0, for which α ≈ 0.9. This discrepancy in α stems from the difference in the
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models studied in [24] and here, see Section 2.2.

At this point, we can make a preliminary conjecture that the exponent α in Eq. (2.9)

is not universal. It depends on the SHOC properties and on the particle-chain interaction

potential. But the following reservations need to be borne in mind.

First, the choice of the five largest temperatures for the linear fit may seem arbitrary, as

all data points do not deviate much from the straight line on the double logarithmic scale

in Fig. 2.2; this means that the α-values obtained are not necessarily accurate.

On the other hand, it is not obvious that those five highest temperatures are high enough

to establish the truly asymptotic value of the exponent α. It is possible that at T > Tmax

(with Tmax = 50 for the weak-coupling and Tmax = 200 for the strong-coupling case) the

curves would be described by a different exponent α, which may (or may not) turn out to

be the same for all four parameter sets.

Unfortunately, going to higher temperatures turns out to be difficult, because increas-

ing the temperature above Tmax results in an increase of the typical flight length, whose

distribution will be discussed in the last section of this paper. As a matter of fact, at

T = 2Tmax, flights can become so long that the BP does not come to rest after several

hours of simulations.

2.5 Flight length and flight time scaling

2.5.1 Time of flight and flight length

To better understand the origin of the scaling (2.9) and to find out, which temperature is

high enough to be deemed asymptotically large, answer this question, we need to find an

alternative way to measure the exponent α. For this purpose, we adopt and generalize the

argument from [24] (especially Section II of this work) to establish various scaling laws that
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will be used later to discuss the simulation data in greater detail.

The force −
∑

j W
′(X − xj) acting on the BP in (2.1) is a random function of time

due to the thermal motion of the SHOC oscillators. After averaging with respect to the

SHOC fluctuations, it should become a periodic function of X with the lattice periodicity a.

Furthermore, after averaging with respect to a lattice period, it should become a function

of the BP velocity only, because the response of the SHOC coordinates xj to the BP motion

depends on how fast the BP moves.

Since we are interested in the diffusion coefficient at high temperatures, we consider the

case of a high initial velocity right in the beginning of a flight phase. A fast BP generates

the potential W (Xt−x) that changes in time so quickly that the oscillators cannot follow its

temporal variations due to their own finite reaction time. Hence, the faster the BP moves,

the slower the rate at which it deposits energy into the chain.

Consider the coarse-grained momentum of the BP

P (t) := M
X(t + τ/2) −X(t− τ/2)

τ
. (2.10)

The coarse-graining time τ must be much larger than the time necessary to cover one

lattice period, but much shorter than the overall time of flight. Due to this averaging, the

stochastic and periodic aspects of the force in the equation for P can be neglected. The

average force is purely dissipative. We expect that at large P it is inversely proportional to

some power of the coarse-grained momentum:

dP

dt
= −Aµ

Pµ
(2.11)

with some constant Aµ > 0 and µ > 0. This equation, with the exponent µ = 2, was

originally derived in [24] (see Eq. (2.17) of that work). We will treat the exponent µ

and the coefficient Aµ as parameters to be found from a numerical experiment. The time

differential dt ∼ τ in (2.11) should be understood in the coarse-grained sense, as explained
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above.

In order for the friction force to be opposite to the BP direction of motion, Eq. (2.11)

would have to be formulated more generally as dP/dt = −AµP/|P |µ+1. But to keep the

notation slightly simpler, we assume that P > 0. For brevity, we will omit the words

“coarse-grained” and refer to P simply as momentum in the rest of the paper.

A flight phase consists of two stages. Initially, the particle moves so fast that it deposits

very little energy into the chain and, in turn, the random motion of the chain oscillators has

very little effect on the BP. It is in this first stage, described by (2.11), that the BP covers

most of the distance. Eventually, the second stage begins, in which equation (2.11) is no

longer accurate. The interaction between the BP and the chain becomes stronger, leading

to a fast energy transfer from the BP to the chain and in a more pronounced randomization

of the BP trajectory by the stochastic oscillators. In this second stage, the BP quickly slows

down and eventually gets trapped by one of the chain oscillators.

In the first stage, the momentum decrease per unit length is

dP

dX
=

dP

dt

dt

dX
= −MAµ

Pµ+1
. (2.12)

Integrating this from the initial momentum P to zero gives the flight length as a function

of the initial momentum:

L(P ) = −
∫ 0

P
dP ′ P

′µ+1

MAµ
=

Pµ+2

(µ + 2)MAµ
. (2.13)

Likewise, integrating equation (2.11) gives the time of flight as a function of the initial

momentum:

tf (P ) =
Pµ+1

(µ + 1)Aµ
. (2.14)

Eqs. (2.13) and (2.14) in the special case µ = 2 are also obtained in [24]. The actual

length and duration of each flight may differ from the expressions (2.13) and (2.14) due to

the randomizing effect of the chain in the second stage of the flight, which is neglected in
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(2.11). Those random deviations from (2.13) and (2.14) need to be small in order for the

assumptions behind Eq. (2.11) to be valid.

2.5.2 Temperature dependence of the diffusion coefficient

In view of the definition (2.10) there is no a priori reason to assume that the probability

distribution ρ(P ) of the initial momentum P is Maxwellian, as done in [24]. In addition to

temperature, it may depend on the properties of the SHOC, as well as on the oscillator-

particle interaction potential. But we can expect that at high temperatures those additional

parameters should become relatively unimportant as compared to the thermal energy. Be-

cause dimensional consistency requires that the argument of any non-linear function be

non-dimensional, the initial momentum probability distribution at high temperatures is

expected to be of the form

ρ(P ) = f(P/
√
MT )/

√
MT , (2.15)

where the function f(x) is even and normalized to one: f(−x) = f(x),
∫∞
−∞ dx f(x) = 1.

The factor
√
MT in (2.15) is necessary for the correct normalization of ρ(P ).

Based on this information, we can use Eqs. (2.13) and (2.14) to find the scaling of the

mean flight length squared,
〈
L2
〉

=
∫
dP L2(P ) ρ(P ), and the mean flight time, ⟨tf ⟩ =∫

dP tf (|P |) ρ(P ), with temperature:

〈
L2
〉

=
MµTµ+2

[(µ + 2)Aµ]2
F2(µ+2) ,

⟨tf ⟩ =
(MT )(µ+1)/2

(µ + 1)Aµ
Fµ+1 ,

Fn :=

∫
dx |x|n f(x) . (2.16)

As for the mean rest time, it decreases with temperature and is much smaller than the

flight time, ⟨tr⟩ ≪ ⟨tf ⟩ (see Eq. (2.49)), as was confirmed by the simulations. Therefore,
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the diffusion coefficient at high temperatures is given by

D =

〈
L2
〉

2 ⟨tf ⟩
=

F2(µ+2)

Fµ+1

µ + 1

2(µ + 2)2
M (µ−1)/2T

(µ+3)/2

Aµ
. (2.17)

This expression is approximate, as it neglects the correlations between the consecutive flight

lengths. However, as we verified numerically, their contribution does not exceed 5 %, see

inset in Fig. 2.7(b), where (2.17) corresponds to the D-value with νmin = 1.

Now we can make a reasonable guess about the origin of the exponent α. There is

no a priori reason to assume that the parameter Aµ should be a temperature-independent

constant, even though this turned out to be the case in [24]. The higher the temperature,

the less sensitive should the chain dynamics be to the fast BP motion, and so the less energy

should the chain absorb from the BP. Hence, we can expect that Aµ should decrease with

T . Assuming a power-law relation

Aµ(T ) =
Bµ

Tα
(2.18)

with Bµ = const, the diffusion coefficient should scale with temperature as D ∝ Tα+(µ+3)/2.

For µ = 1, Eqs. (2.17) and (2.18) give D ∝ T 2+α, Eq. (2.9).

2.5.3 Determination of the scaling exponents α and µ

The simplified model (2.11) contains two parameters: the scaling exponent µ and the co-

efficient Aµ. Both can be estimated based on the expressions (2.13) and (2.14). Indeed,

the initial momentum P can be expressed in terms of the flight length L using (2.13), and

substitution of the result into (2.14) gives the duration of a flight expressed in terms of its

length:

tf (L) =
[(µ + 2)M ](µ+1)/(µ+2)

(µ + 1)A
1/(µ+2)
µ

L(µ+1)/(µ+2) . (2.19)
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It then follows that a log-log plot

ln(tf (L)) = ln(t0) +
µ + 1

µ + 2
ln(L/a) ,

t0 =
[(µ + 2)aM ](µ+1)/(µ+2)

(µ + 1)A
1/(µ+2)
µ

(2.20)

should be a straight line, whose slope, µ+1
µ+2 , can be used to find the exponent µ; after µ is

found, one should be able to determine the constant Aµ from the intercept of this line with

the y-axis, i.e. from the parameter t0. A deviation of the ln tf vs. lnL plot from a straight

line would immediately signal the inadequacy of Eq. (2.11) to describe the long flights of

the BP.

2.6 Results and discussion

2.6.1 Flight time, flight length, and diffusion coefficient

Figure 2.3(a) shows the natural logarithm of flight time vs. flight length for each flight

observed in the simulations at κ1 = 1, ε = 0.1 and T = 1 (gray circles). The solid black line

in this figure is the mean flight duration t̄f averaged over all flights that have the same length

|l|, where l is defined by Eq. (2.46). It is clear that at the flight length exceeding several

lattice constants, both data sets can be fitted with a straight line, as predicted by (2.20).

All other parameter sets tested yielded very similar plots of ln tf vs. lnL at T > 0.1. At

lower temperatures, long flights were absent, and the particle motion proceeded via hopping

by just one lattice constant.

Shown in Fig. 2.3(b) is the average time of flight vs. flight length obtained from the

simulations (gray curves) and the straight-line fits to the simulation data (black lines). On

the double logarithmic scale, the simulation curves obtained at T ≥ 0.5 have practically

the same slope of 0.67, with variations not exceeding 5 % of this value. As for the lowest

temperature T = 0.1, the ln t̄f vs. ln |l| curve likewise can be fitted with a straight line with
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Figure 2.3 – (a) Symbols: the raw simulation data showing the time of flight tf vs. flight length

expressed as an integer multiple of the lattice constant, see Eq. (2.46). Solid line: the average time

of flight t̄f vs. flight length |l|. (b) Average time of flight vs. flight length (gray curves) obtained for

several temperatures from T = 0.1 to 50 together with linear fit with (2.20) (black lines). To avoid

overlapping, the curves are shifted vertically with respect to the one at T = 0.1. The values of the

temperature, the parameter t0 from (2.20), and the offset are shown at each curve.

the slope of 0.67 reasonably well, see the lowest curve in Fig. 2.3(b). However, the best

straight-line fit has the slope value of 0.78. At a slightly higher temperature T = 0.2 (not
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shown in Fig. 2.3(b)), the best-fit slope turned out to be 0.74.
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Figure 2.4 – (a) The slope of the straight-line fits to the ln t̄f vs. ln |l| curves as a function of

temperature for all four parameter sets tested, as indicated in the legend. (b) The parameter A1,

obtained from the intercept of the ln t̄f vs. ln |l| straight-line fits with the y-axis. In the fitting

procedure, the slope of all straight lines was assumed to be 2/3 regardless of temperature. The fit was

performed for |l| ≥ 10, i.e. only flights of length exceeding 10 lattice constants were regarded as long.

The legend shows the values of the fit parameters α and B1 from (2.18), as obtained from this fit for

each parameter set.
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The slope of the ln t̄f vs. ln |l| curves as a function of temperature for all four parameter

sets tested is shown in Fig. 2.4(a). It is seen that it increases on cooling. But at high

temperatures T > 5, it converges for all parameter sets to the value of 2/3, shown in

Fig. 2.4(a) as a dashed horizontal line. Small deviations from this value do not exceed 5 %

and can be attributed to statistical uncertainty. This implies that the exponent in (2.20)

equals

µ = 1 , (2.21)

as conjectured in the end of Section 2.5.2. This value is perhaps unsurprising in view of the

fact that the mean friction force at large momenta should be an analytic function of 1/P ,

whose leading-order term is written in the right-hand side of (2.11). Because the typical BP

momentum increases with T as
√
MT , the higher powers of 1/P should be more important

at low than at high temperatures, which explains the deviation of the slope from the value

0.67 observed on cooling.

The temperature variations of the intercept in (2.20), ln(t0), can be attributed to the

temperature dependence of the parameter A1 in (2.11). The coefficient A1 can be extracted

from the second equation (2.20) (with µ = 1) as

A1 =
9

8

(aM)2

t30
. (2.22)

The variations of A1 with T for all four parameter sets are shown in Fig. 2.4(b). To

produce this plot, the parameter t0 is obtained by fitting ln t̄f vs. ln |l| with a straight line

with the slope set to the value 2/3 regardless of the temperature, i.e. only ln t0 was a fit

parameter. It is to be borne in mind that this procedure is not quite correct at low tem-

peratures, i.e. the so obtained A1-values at low temperatures are unreliable. Fortunately,

Fig. 2.4(a) gives us the temperature range at which the slope is close to the value 2/3, and

thus the numerical values of A1 so obtained are trustworthy.
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It is seen that for each data set, the last five data points can be accurately fitted with

a straight line on the double logarithmic scale according to equation (2.18). The slope of

those fits is just the exponent α, whose values are shown in the legend of Fig. 2.4(b).

It is remarkable that they agree with the values obtained from the measurements of

the diffusion coefficient to within 10 %, cf. Fig. 2.2. This agreement signals the essential

correctness of the simplified treatment of Section 2.5. It also suggests that the exponent

α depends on the particle-chain interaction parameters and therefore is not universal, as

suggested earlier.
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2.7 Flight length probability distribution

Finally, it is instructive to consider the distribution wl of flight length measured in units of

the lattice constant. In view of the definition (2.46), it is given by

wl =

∫ Pl+1

Pl

dP ρ(P ) , (2.23)

where Pl = (3aMA1l)
1/3 is the initial momentum that results in a flight length of l lattice

constants, as follows from (2.13) with L = la and µ = 1. For large l ≫ 1, the difference

between the initial and the final momenta is small,

Pl+1 − Pl ≈
(aMA1)

1/3

(3l)2/3
, (2.24)

as can be obtained by expanding Pl+1 in 1/l to the first order. Hence, the probability wl

can be approximated as

wl = ρ(Pl)(Pl+1 − Pl) ∝
f(Pl/

√
MT )

l2/3
=

f((l/λ)1/3)

l2/3
, (2.25)

where we combined Eqs. (2.15) and (2.24) and introduced the characteristic length

λ =

√
MT 3/2

3aA1
=

√
M

3aB1
Tα+ 3

2 . (2.26)

As stated earlier, since P is the coarse-grained rather than kinematic momentum, the

distribution of P is not necessarily Maxwellian. Nevertheless, it can be reasonably expected

that at large momenta, the effect of the SHOC fluctuations on the BP state of motion

diminishes, and so the difference between the coarse-grained and kinematic momentum

should also decrease with P . Hence, at high momenta, its probability distribution should

behave as

ρ(P ) ∝ e−P 2/(2MT ) , (2.27)

i.e. f(x) = (2π)−1/2 e−x2/2, see Eq. (2.15). This implies that at large l, we should have

wl ∝
e−(l/λ)2/3/2

l2/3
. (2.28)
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Shown in Fig. 2.5 are the probability wl vs. l curves for ε = 0.1 and κ1 = 1, as obtained

for the temperatures T = 1, 5, 20, and 50 from the simulations (gray lines) and from

the asymptotic formula (2.28) (dashed lines). As can be seen in Fig. 2.5, the agreement

between the simulation and the expected curve (2.28) is only qualitative. Both sets of data

are described by an initial linear decrease of lnwl vs. ln l followed by an exponential drop

of wl to zero. But this is as far as their similarity goes.

The most striking feature of the simulation curves is that initially, they all exhibit the

same power-law decay according to

wl ∝ l−β (2.29)

with the exponent β conspicuously close to the value 4/3, as opposed to 2/3 predicted by

(2.28). In fact, we observed the same 1/l4/3 decay of wl for all 4 parameter sets tested

at temperatures T > 1. Therefore, we believe that the value β = 4/3 is indeed universal.

Unfortunately, we cannot offer its satisfactory explanation.

2.8 Conclusions

We have considered the diffusion of a Brownian particle (BP) along a stochastic harmonic

oscillator chain (SHOC). An efficient algorithm to simulate this process numerically is de-

veloped. Its main idea is to simulate explicitly only a reasonably small section of the chain

and to account the rest of the chain by renormalizing the properties of the first and the last

oscillators of this segment. As the particle moves, the chain segment moves together with

it so that the particle always finds itself in its middle. Although this method proved to be

successful in the one-dimensional simulations performed in this paper, we expect that it can

be applied, with suitable modifications, to study the two-dimensional diffusion of atoms on

solid surfaces.

A method to find the particle’s diffusion coefficient from the simulations data is de-
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veloped. It makes optimal use of the flight lengths and times, as well as the rest times

generated in the simulations. Application of this method to the BP/SHOC diffusion re-

vealed that the diffusion coefficient scales with temperature as D ∝ T 2+α at asymptotically

high temperatures with the non-universal exponent α that depends on the particle-chain

interaction parameters and on the chain properties.

A way to identify this asymptotically high temperature regime is proposed. It is based

on measuring the average flight time t̄f necessary for the BP to perform a flight of a given

length l. In the temperature range where the D ∝ T 2+α scaling is valid, the expected

relation between these two quantities is t̄f ∝ l2/3 independent of the system parameters, as

confirmed in the simulations. This method also offers an alternative way to measure the

diffusion scaling exponent α, which turned out to be in good agreement with the results of

the D vs. T measurements.

Finally, the flight length probability distribution wl is shown to decay as wl ∝ 1/lβ with

a universal exponent β independent of the system parameters. The value β = 4/3 found in

the simulations awaits its theoretical interpretation.

The obvious discrepancy between the simulation results and the expected probability

distribution (2.28) indicates that although the theory adopted here does explain some as-

pects of the BP/SHOC dynamics, it is incomplete. We conjecture that it can be improved

in two principal directions.

First, the distribution of the initial momentum probably differs from the Maxwellian

formula (2.27), at least at small P . In fact, replacing the (2.27) with ρ(P ) ∝ e−P 2/(2MT )/P 2

translates nicely into wl ∝ 1/l4/3. However, a physical motivation for such a replacement

(other than fitting the wl curve) is unclear. Finding the correct form of the initial momentum

distribution should be performed in the future.

The second improvement is to include the possibility of momentum fluctuations during
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the long flight, i.e. to replace the coarse-grained equation of motion (2.11) with some

sort of a Langevin-like description for the actual kinematic momentum. A replacement of

the full dynamics (2.1)-(2.4) with a Langevin equation for the BP only has its limitations

[18]. In particular, it fails to yield the superlinear scaling of the diffusion coefficient with

temperature [18]. Clearly, an alternative scheme must be sought, that would be applicable

in the high-temperature regime.
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2.A Simulation details

2.A.1 The general idea

In the previous paper [18], an infinite chain was modeled as a collection of a large (∼ 1000)

number of oscillators with periodic boundary conditions. Such a direct simulation requires a

relatively long computation time due to a large number of the degrees of freedom involved.

Besides, application of periodic boundary conditions may potentially lead to an error in

the determination of the diffusion coefficient [33]. In our system, this may happen for the

following reason. At high temperatures, the Brownian motion proceeds predominantly via

long flights, which cover many (from 10 to 107) lattice constant (see Section 2.7). Hence,

since the periodic boundary conditions are applied, the BP may perform several rotations

around the chain in a single flight and even return to its original position. This means that

the local environment of the BP at the end of a flight may be unphysically correlated to
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the BP environment in its beginning.

To get a more realistic simulation of a linear, as opposed to a circular, motion, as well

as to reduce the overall computational effort, we devised a different type of the boundary

conditions, namely, the moving stochastic boundary conditions.

As in other calculations of this type [34–36], we group the chain oscillators into three

main regions: the relevant central region in immediate contact with the BP, and two outer

regions, which are half-infinite chains to the left and to the right of the central region. All

atoms of the central region are simulated explicitly. As for the two outer regions, only their

boundary atoms that contact the central region are simulated.

We introduce two modifications into this approach. The crucial modification adopted

in our treatment is that the properties of those two boundary atoms are renormalized so

as to make their displacement correlation function resemble that of atoms of a half-infinite

chain in the absence of a BP. The second step is to work out a way to make the truncated

chain of the central region move together with the BP so as to correctly mimic its motion

on an infinite chain.
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2.A.2 Chain truncation

2.A.2.1 Renormalization of the boundary oscillators.

First, let us consider the oscillator chain (2.4) without the BP. In [18], the correlation

function of the chain was derived,

cj(t) :=
⟨u0(0)uj(t)⟩0

T

=
e−t/τ

2π

∫ π

−π
dθ

cos(jθ)

K̃(θ)

(
cos
(
Ω(θ)t

)
+

sin
(
Ω(θ)t

)
Ω(θ)τ

)
,

τ =
2m

γ
, K̃(θ) = κ0 + 2κ1(1 − cos θ) ,

Ω(θ) =

√
K̃(θ)

m
− 1

τ2
, (2.30)

where ⟨. . .⟩0 means thermal average at ε = 0. The so defined correlation functions cj(t) are

temperature-independent.

We would like to replace the infinite chain (2.4) with a finite one consisting of a reason-

ably small number n of oscillators. The correlation function of the oscillators in the middle of

the truncated chain must remain as close as possible to the infinite-chain expression (2.30).

For this, the equations of motion of the oscillators bearing the labels j = 2, . . . , n − 1 are

kept the same as in (2.4), while the properties of the leftmost (j = 1) and rightmost (j = n)

oscillators are renormalized so as to approximately account for the effect of the two semi-

infinite chains (with j = . . . ,−1, 0 and j = n + 1, n + 2, . . .) that are removed from the

picture:

mü1 = −κ′0u1 − κ1(u1 − u2) − γ′u̇1 +
√

2γ′Tξ1(t) ,

müj = −κ0uj − κ1(2uj − uj−1 − uj+1)

− γu̇j +
√

2γTξj(t) , j = 2, . . . n− 1 ,

mün = −κ′0un − κ1(un − un−1) − γ′u̇n +
√

2γ′Tξn(t) . (2.31)
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The oscillators 1 and n are the boundary oscillators.

To choose their renormalized pinning stiffness κ′0 and the damping coefficient γ′ oscil-

lators, consider the simplest limiting case n = 1, i.e. just one oscillator with damping

coefficient and pinning stiffness denoted as γ̃ and κ̃0:

mü = −κ̃u− γ̃u̇ +
√

2γ̃T ξ(t) . (2.32)

We try to choose the renormalized parameters γ̃ and κ̃ so as to faithfully reproduce those

aspects of the autocorrelation function (2.30) (with j = 0) that are most relevant to the

oscillator’s response to a weak external perturbation. Hence, we demand that the dynamics

(2.32) had the same value of the equal-time correlation function and the integral of the

correlation function as a representative oscillator in an infinite chain:

⟨u2⟩
T

!
= C0 := c0(0) ,∫ ∞

0
dt
⟨u(0)u(t)⟩0

T

!
= B0 :=

∫ ∞

0
dt c0(t) . (2.33)

It is the parameters C0 and B0 that determine the renormalized potential and the damping

coefficient in the Langevin description [18,37].

Multiplication of (2.32) with u(0) and averaging over noise and over the initial position

gives us the equation of motion for the autocorrelation function of the stochastic oscillator’s

coordinate:

m
d2⟨u(t)u(0)⟩

dt2
= −κ̃⟨u(t)u(0)⟩ − γ̃

d⟨u(t)u(0)⟩
dt

, (2.34)

with the initial conditions

⟨u2⟩ =
T

κ̃
,

d⟨u(t)u(0)⟩
dt

∣∣∣∣∣
t=0

= 0 . (2.35)

The first initial condition immediately gives the renormalized pinning stiffness:

κ̃
!

=
1

C0
. (2.36)
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After integrating (2.34) over time from 0 to ∞, we find the renormalized damping coefficient:

γ̃ = B0κ̃
2 =

B0

C2
0

. (2.37)

The parameters B0 and C0 can be found from (2.30), see [18]:

C0 =
1√

κ20 + 4κ0κ1
, B0 = γ

κ0 + 2κ1

(κ20 + 4κ0κ1)3/2
. (2.38)

The dynamics of an isolated stochastic oscillator (2.32) resembles that of a “representative”

oscillator of the full chain if its parameters are chosen according to (2.36)-(2.37).

The renormalized damping coefficient γ̃ and pinning stiffness κ̃ differ from the “bare”

counterparts γ, and κ0 due to the effect of the two semi-infinite chains that are connected to

our representative oscillator from the left and from the right. Each of those two half-chains

has its own damping and elasticity, which add up to the “bare” values κ0 and γ of the

representative oscillator.

Focusing now on the end oscillators in (2.31) (see Fig. 2.1), where the first and the last

oscillators are coupled to just one semi-infinite chain, we conclude that the renormalized

parameters should be chosen as

κ′0 = κ0 +
∆κ0

2
, ∆κ0 = κ̃− κ0 ,

γ′ = γ +
∆γ

2
, ∆γ = γ̃ − γ . (2.39)

2.A.2.2 Numerical validation.

Before we proceed, we would like to show that the scheme described above serves its purpose.

In Figs. 2.6(a) and Fig. 2.6(b), the exact autocorrelation function c0(t) from (2.30) is com-

pared to the autocorrelation function in a truncated chain consisting of n = 20 oscillators,

obtained by numerical simulation of (2.31) supplemented by (2.36)-(2.37).
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Figure 2.6 – Autocorrelation function c0(t) = ⟨uj(0)uj(t)⟩0 /T for the parameter values κ0 = κ1 = 1,

m = 1, γ = 0.1, as obtained according to (2.30) (circles) and by numerical simulations of a truncated

chain consisting of [(a) and (b)] 20 and (c) 40 oscillators. The numerical autocorrelation function of the

renormalized first and last oscillators is shown as dashed line in panels (a) and (b), and the curve for

the two oscillators in the middle of the truncated chain (j = 10, 11) is shown as a solid line. The solid

curve in panel (c) shows the autocorrelation function of the two central oscillators in a longer truncated

chain of 40 oscillators.

For the renormalized first and last oscillators, the initial agreement of ⟨uj(0)uj(t)⟩/T

with the exact curve c0(t) persists only until t ≈ 1.5 time units, after which the agreement

is only qualitative, see Fig. 2.6(a).

On the other hand, for the oscillators j = 10 and 11 in the middle of the chain, the

agreement persists up to the time t = 25, i.e. the first four oscillation periods of c0(t), see

Fig. 2.6 (b). Doubling the number of oscillators in the truncated chain to n = 40 makes the

agreement at large times almost perfect (see Fig. 2.6 (c)). But at large times, the value of

the autocorrelation function drops to only a few per cent of the initial value c0(0); hence, the

discrepancy between the exact and numerical curves at large times should have a negligibly

small effect on the dynamics of the BP.
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2.A.3 Moving stochastic boundary

We now place the BP in the middle of a truncated chain containing a reasonably small

number n of oscillators. If the BP were confined to a small region near the middle of the

truncated chain (2.31) by a static external potential, then its dynamics would be statistically

indistinguishable from the dynamics of a BP in contact with an infinite chain. But we are

interested in the free diffusion of the BP; hence, the truncated chain must somehow move

together with it.

To achieve this, we adopt the following algorithm. Let xc be the position of the chain

center in mechanical equilibrium. It is expressed as an integer multiple of the lattice constant

a if the truncated chain consists of an odd number n of oscillators and as a half-integer

multiple of a if n is even. Then, the position of the jth oscillator can be measured relative

to xc as

xj = xc + a

(
j − n + 1

2

)
+ uj , j = 1, . . . , n . (2.40)

Let us place the BP within an interval of width a centered at xc:

xc − a/2 < X < xc + a/2 . (2.41)

As the particle moves, it will eventually cross one of the boundaries of this interval. If the

BP crosses the right boundary at xc + a/2, the following steps are carried out:

(i) The position of the center is increased by one lattice constant, xc → xc + a.

(ii) A cyclic permutation of the oscillator labels is performed, j → (j−1)(1−δj1)+nδj1,

i.e. all oscillator labels are decreased by one and the formerly first oscillator becomes the

nth one.

(iii) The velocity of the new last oscillator u̇n is reset to a Gaussian random variable

with zero mean and the variance
√

T/m.
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(iv) The coordinate of the new n’th oscillator is reset to

un → zun−1 + r
√

1 − z2 , (2.42)

where r is an independent Gaussian random variable with zero mean and the same variance

as that of a representative oscillator of a SHOC without the BP:

⟨r2⟩ = TC0 =
T

κ̃
=

T√
κ20 + 4κ0κ1

. (2.43)

This ensures that also ⟨u2n⟩ = z2⟨u2n−1⟩ + (1 − z2)⟨r2⟩ = ⟨r2⟩ = T/κ̃. The constant z is

chosen so as to make sure that the equal-time correlation between the newly formed nth

oscillator with the previous (n− 1)’th one has the correct value from (2.30):

⟨unun−1⟩ = z⟨u2n−1⟩ = zTC0
!

= Tc1(0) . (2.44)

The value of c1(0) has been determined in the appendix of [18]. Hence

z =
α−

√
α2 − 4

2
, α = 2 +

κ0
κ1

. (2.45)

If the BP crosses the left boundary of the interval (2.41), then the steps are similar:

(i) The position of the truncated chain center is decreased by one lattice constant,

xc → xc − a.

(ii) A cyclic permutation of the oscillator labels j → (j + 1)(1− δjn) + δjn is performed.

(iii) The velocity of the new first oscillator is randomly chosen from the Maxwellian

probability distribution ∝ e−mu̇2
1/(2T ).

(iv) The displacement of the new first oscillator is reset to u1 → zu2 + r
√

1 − z2, where

r is a zero-mean Gaussian random variable with the variance from (2.43) and z is given by

(2.45).

The simulations were performed for the parameters from Eq. (2.6). The truncated chain

consisted of n = 21 oscillators if the SHOC oscillators were interacting (κ1 = 1), and of
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n = 5 oscillators if they were independent (κ1 = 0). In the case κ1 = 1, out of the

21 truncated chain oscillators, 19 formed the central region and 2 outer oscillators were

renormalized. For κ1 = 0, no renormalization of the outer oscillators is necessary, because

in this case κ′0 = κ0 and γ′ = γ, as follows from Eqs. (2.36)-(2.39). The number n was

chosen to be odd in order for the BP to stay in contact with the central oscillator during its

rest phases; otherwise, the steps (i)-(iv) described above would have to be performed much

more frequently. The results reported in this paper did not change if the truncated chain

length n was increased by a factor of 2, i.e. to n = 41 for κ1 = 1 and to n = 11 for κ1 = 0.

2.B Numerical evaluation of the diffusion coefficient

We employ the specifics of the BP trajectory, which consists of the alternating rest and

flight phases, see Fig. 2.7(a). Numerically, the two phases can be easily distinguished by

observing the distance traveled by the BP between two successive turning points marked by

a sign change of the velocity. If this distance is smaller than the lattice constant, the particle

is resting; otherwise, it is flying. It is convenient to measure the duration of the rest phases

as the number of times νr the BP changes its direction of motion while remaining bound to

one of the chain oscillators. The smallest value of νr = 1 corresponds to a reflection event

of the BP by an oscillator, see Fig. 2.7(a).

Recording the full trajectory with a reasonably small time step, e.g. every 0.1 time units,

made the output file size prohibitively large, not to mention the fact that data processing

would then be more complicated numerically. Therefore, only the most pertinent data was

recorded into a file in the course of each simulation, namely, the duration of the rest phases

that separate successive flights, the number of oscillation half-periods in each rest phase,

the duration of flights, and the flight length measured in integer multiples of the lattice
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Figure 2.7 – (a) A representative BP trajectory showing the first few rest and flight phases, as well as

the first two segments S1 = 4a and S2 = −8a that appear in equation (2.49). The segment S1 consists

of a single flight, whereas S2 consists of three flights of length L equal to 4a, −14a, and 2a. The flights

are separated by the rest phases whose duration νr is measured as the number of times the BP changes

the sign of its velocity. (b) The numerical diffusion coefficient obtained according to (2.49) for the chain

parameters indicated in the legend as a function of the duration νr of the rest phases that separate two

consecutive segments. The inset shows the initial part of the same graph.

constant:

l = ⌊L/a⌋ , (2.46)
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where L is the actual flight length, i.e. the distance (greater than a) traveled by the BP

between two successive turning points marked by the velocity sign change. Each of the

resulting files, consisting of 4 columns with these parameters, had the size of ca. 570 kB.

For each temperature probed, 25 stochastic trajectories were simulated in parallel with

different initial seeds of the random number generator. Each simulation was run until the

BP performed a large number of 2 · 104 flights, giving 5 · 105 flights in total.

The total displacement of the BP after a long observation time tobs may be split into

segments,

∆X(t) =
∑
k

Sk . (2.47)

The duration of each segment does not have to be the same, and each segment does not

necessarily represent the BP displacement in a single flight, see Fig. 2.7(a). What is im-

portant that the displacements in any two consecutive segments are uncorrelated with each

other. More precisely, we demand that

|⟨SkSk+1⟩| ≪
〈
S2
k

〉
. (2.48)

Then, the correlations ⟨SkSk′⟩ with k ̸= k′ can be neglected, and the diffusion coefficient is

expressed as

D =

〈
S2
〉

2(⟨tr⟩ + ⟨tf ⟩)
=

∑
k

〈
S2
k

〉
2tobs

. (2.49)

where tr and tf are the durations of rest and fly phases, respectively, and averaging is

performed with respect to many rest-and-fly phases observed in the simulations.

It remains to decide on how to choose the segments Sk so as to fulfill the condition

(2.48). Clearly, if two such segments are separated by a very brief rest phase, then they

might still be correlated with each other. Therefore, we identify the segments Sk with

the distance traveled by the BP in one or more successive flights that are separated from

each other by the rest phases of duration smaller than some preset minimal interval νmin.
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Correspondingly, the duration of the rest phases that separate two successive segments

should exceed νmin. For example, in Fig. 2.7(a), νmin is an integer between 2 and 8. Hence,

the first segment S1 consists of just one flight from 0 to 4a; the segment S2 is formed by 3

flights with the net displacement from 4a to −4a, as they are separated from each other by

turning points with νr = 1.

Figure 2.7(b) shows the so obtained diffusion coefficient vs. νmin for a BP/SHOC

parameter set κ1 = 1, ε = 0.1 at the temperature T = 1. It is seen that the diffusion

coefficient initially shows very small variations with νmin, see inset in Fig. 2.7(b). Especially

for νmin ≤ 10, the diffusion coefficient (2.49) exhibits decaying oscillations around the value

of about 111. The size of those oscillations is only about 1 % of this value. We believe that

these oscillations are due to the ⟨SkSk′⟩ terms with k ̸= k′ neglected in (2.49).

Increasing the waiting time νmin makes the curve in Fig. 2.7(b) quite irregular due to

statistical reasons, as increasing the minimal waiting time results in a significant decrease of

the total number of segments Sk in the trajectory. The overall trend is that the calculated

diffusion coefficient decreases with νmin down to D = 0 at νmin > 64. This value is

immediately understood from Eq. (2.49): if νmin is too high, then only one segment is

present in the trajectory with a not necessarily big overall displacement. However, the

simulation time tobs is long, resulting in a very small ratio (2.49).

We conclude that the value of νmin does not have to be very big; typically, it suffices

to set νmin to be of the order of a few oscillation periods of the BP in a rest phase. The

results presented below are obtained for νmin = 10.
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Chapter 3

Origin of the dispersionless

transport in spite of thermal noise

In this chapter, we present our subsequent work [1] by Amir Kaffashnia and Mykhaylo

Evstigneev, with kind permission of the publishers of Physical Review E. The paper can be

accessed through the DOI link: 10.1103/PhysRevE.104.054113.

3.1 Abstract

The “dispersionless transport” of a weakly damped Brownian particle in a tilted periodic

potential is defined by (i) a plateau of the particle’s coordinate dispersion extending over

a very broad time interval and (ii) by the impossibility to measure the diffusion coefficient

within this plateau region. While the first part of this definition has been explained in the

literature, the second part has been thought to follow from (i). Here, the impossibility to

measure the diffusion coefficient is shown to be actually due to the wild fluctuations of the

dispersion itself in the plateau region. An expression for the time scale over which a reliable

determination of the diffusion coefficient is possible is derived. A procedure that allows

accurate determination of the diffusion coefficient by observing the particle trajectory only
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within a small part of the plateau region is suggested and shown to be feasible by numerical

simulations of a weakly damped Brownian particle in a tilted washboard potential.

3.2 Introduction

When combined with non-linearity, noise may produce a number of surprising effects in

dynamical systems out of thermal equilibrium. Examples include stochastic resonance [2],

ratchet effect [3], absolute negative mobility [4–7], and transport against temperature gra-

dient [8] to name but a few.

To such effects belongs the “dispersionless transport”, first reported by Lindenberg et

al. [9]. They considered a weakly damped Brownian particle in a periodic potential tilted

by a constant force. It is textbook knowledge that after an initial transient process, the

dispersion of the particle’s coordinate should increase linearly in time, and the rate of its

increase is the diffusion coefficient multiplied by twice the dimensionality of the system. But

instead, it was observed in [9] that the dispersion reached a plateau and stayed constant

for a very long time. For some parameter values, the duration of this plateau was much

longer than a reasonable computation time, making it impossible to determine the diffusion

coefficient from the simulations [9].

Later, the effect of “dispersionless transport” has been reported in a ratchet system

[10,11], for the time-periodic force of zero mean value [12] and for a combination of dc and

ac forces [13], as well as for Brownian motion in a random potential [14].

Although the explanation of this effect proposed in [9] is intuitively appealing, some

aspects of the “dispersionless transport” remain unclear. In particular, it is well understood

why the plateau value of the dispersion is much larger than the linearly increasing term due

to diffusion [9]. But however big, the dispersion plateau value is just a constant, i.e. the

dispersion should still increase linearly in time, and the diffusion coefficient should still be
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obtainable from the dispersion vs. time plot by linear fitting in the plateau regime. Yet,

this is not the case in practice.

Here, we expand the interpretation from [9] and explain this by a combination of two

factors: the large value of the initial dispersion in the plateau region [9] and by the fact

that in simulations, averaging is necessarily performed over a large, but finite number of

stochastic trajectories. The latter aspect has been overlooked in the literature, but is

crucial in understanding of the impossibility to measure the diffusion coefficient in the

plateau regime. Finally, we introduce a simple modification of the measurement procedure

that allows measuring the diffusion coefficient by observing the system’s dynamics in the

plateau region over a relatively short time scale.

3.3 “Dispersionless transport” in a tilted periodic potential

3.3.1 Dispersion plateau

Consider a weakly damped Brownian particle in a tilted one-dimensional periodic potential

U(x) under the action of a constant force F . The particle dynamics is governed by the

Langevin equation

mẍt = −U ′(xt) + F − γẋt +
√

2γTξ(t) ,

U(x) = −U0

2
cos

2πx

a
, (3.1)

where xt is the coordinate of the particle at time t, and the prime and the overdot denote spa-

cial and time derivatives, respectively. The potential U(x) has corrugation depth U0 and pe-

riodicity a; m and γ are the mass and damping coefficient, respectively, T is the temperature,

and ξ(t) is unbiased Gaussian white noise of unit strength: ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t−t′).

We are interested in the evolution of the particle dispersion, defined as

σ2
x(t) := ⟨x2t ⟩ − ⟨xt⟩2 . (3.2)
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In the long-time limit, it should increase linearly in time
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Figure 3.1 – Dispersion (3.2) (solid line) and average velocity vt = ⟨ẋt⟩ (dashed line) of a Brownian

particle in a tilted washboard potential (3.1) with the parameters used in [9]: m = 1, U0 = 1, a = 1,

γ = 0.04, T = 0.2, and F = 0.5. The curves are obtained by simultaneously simulating equation (3.1)

for N = 1000 independent Brownian particles with the initial conditions x0 = ẋ0 = 0 and averaging

over 1000 trajectories. The inset shows the dispersion vs. time curve in the plateau region on the linear

scale.

σ2
x(t) = 2Dt , (3.3)

where D is the diffusion coefficient. We performed simulations of equation (3.1) for the

parameters specified in the caption to Fig. 3.1 with the initial conditions

x0 = ẋ0 = 0 , (3.4)

It is clear that the dispersion has a plateau, where it practically does not change in time,

see Fig. 3.1. One may suspect that its constancy might be due to the use of the logarithmic
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scale on the time axis, but using the linear scale does not reveal a linear increase according

to (3.3), see inset in Fig. 3.1. Hence, this plateau is often termed “dispersionless transport”

in the literature [9–14].

3.3.2 Interpretation of the dispersion plateau

The interpretation of this effect offered in [9] is as follows. Suppose that initially the particle

found itself near some minimum of the total potential U(x) - Fx with |F | < maxx|U ′(x)|.

Its escape from that potential well is described by Kramers’ theory. The mean escape time

τ0 from the potential well depends on the shape of the potential near the minimum, the

force, the damping, the temperature, and, most importantly, on the barrier height ∆U that

separates the current potential minimum from the next one [15]. After escape, the particle

moves with a constant velocity F/γ. The distribution of the escape times τ is exponential

and is proportional to e−τ/τ0 . Hence, the initial width of the spacial probability distribution

to find the particle can be estimated as σ2
plateau ∼ (Fτ0/γ)2. As the particle moves after

the escape, its spacial dispersion is

σ2
x ≈ σ2

plateau + 2Dt . (3.5)

From this, it is concluded [9] that the duration of the “dispersionless” phase is

tplateau = σ2
plateau/2D . (3.6)

Because the mean escape time is proportional to the Kramers-Arrhenius factor [15], τ0 ∝

e∆U/T and can be very large for T ≪ ∆U , the initial dispersion σ2
plateau ∝ e2∆U/T may also

be very large, implying very long duration of the “dispersionless” phase.

Based on this interpretation, the authors of [9] identified thermal fluctuations, weak

damping, periodicity of the potential U0(x), and the presence of a non-zero bias such that

|F | < maxx|U ′(x)| as necessary conditions for the onset of the non-dispersive regime.
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3.4 Dispersion fluctuations and diffusion coefficient measure-

ment in the plateau region

3.4.1 Dispersion plateau of a free Brownian particle

In fact, the above general argument from [9] can be used to predict a dispersion plateau in

any system where the diffusion proceeds in two stages: a fast initial stage that results in a

broad initial dispersion of the coordinate to a large value σ2
plateau, and slow normal diffusion

that follows the initial spread. For example, a plateau can be observed even if the dynamics

(3.1) is simplified to

mẍt = −γẋt +
√

2γTξ(t) , (3.7)

provided the initial conditions are chosen in a special way. Namely, we place initially all

particles at x0 = 0, but we assume that the initial temperature of our particles was very

high relative to the temperature of the environment: T0 ≫ T . Then, the initial distribution

of the particle velocity v0 = ẋ0 is

P (v0) ∝ e−mv20/2T0 . (3.8)

Initially, the particles cool down to the environment temperature T . In this transient

process, the particle’s velocity vt = ẋt can be decomposed into an exponentially decaying

part (the homogeneous solution of Eq. (3.7)) and the noisy part (the particular solution

of this equation): vt = e−γt/mv0 + ∆vt where ∆vt describes the diffusive process with the

diffusion coefficient D = T/γ. As the particle cools down, the coordinate dispersion rapidly

increases until it reaches the rather high value

σ2
plateau =

∫
dv0P (v0)

(∫ ∞

0
dtv0e

−γt/m

)2

=
T0m

γ2
, (3.9)

as can be obtained from the identities
∫∞
0 dte−γt/m = m/γ and

∫
dv0P (v0)v

2
0 = T0/m.
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After the transient cool-down process is over, normal diffusion with dσ2
x(t)/dt = 2D,

D = T/γ begins. This expectation is confirmed by the numerical simulations of equation

(3.7) with m = γ = T = D = 1, see Fig. 3.2 showing the dispersion vs. time for two initial

temperatures: T0 = 104 (lower curve, left inset) and T0 = 108 (upper curve, right inset).

For the smaller initial temperature, σ2
plateau = 104 and tplateau = 5.103, in full agreement

with Eq. (3.6). For the higher initial temperature, the duration of the plateau predicted

by Eq. (3.6), tplateau = 5.107, is too long to reach the increasing part of the curve within a

reasonable computation time.

10-1 100 101 102 103 104 105
10-3
10-2
10-1
100
101
102
103
104
105
106
107
108
109

T0 = 108T0 = 104

0.0 0.5 1.0

1090

1100
 

 

 x2  / 
10

5

t / 105
0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

 

 

 x2  / 
10

5

t / 105

T0 = 108

T0 = 104

 

 

 x2 (t)

t

Figure 3.2 – Dispersion vs. time, as obtained from the simulations of equation (3.7) with m = γ =

T = 1 and the initial temperatures T0 = 104 (lower curve, left inset) and T0 = 108 (upper curve, right

inset). The inset shows the same plot on the linear scale.

The interpretation offered in [9] and re-iterated above only explains the existence of

the plateau region, where the 2Dt term in Eq. (3.5) is much smaller than the first term

σ2
plateau. This plateau can only be observed if logarithmic scale is chosen on the time axis,
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but a linear increase of σ2
x(t) should be observed on the linear scale, see Eq. (3.5) and the

dispersion curves for T0 = 104 in the main part and in the left inset of Fig. 3.2. What

remains surprising and unexplained is that the diffusion coefficient cannot be measured by

linear fitting of σ2
x(t) with Eq. (3.5) within the plateau region at large values of σ2

plateau

when linear scale is used, see inset in Fig. 3.1 and right inset in 3.2. In the latter case, the

dispersion even shows an overall decrease over a broad time scale t ∼ 105, contrary to the

expected linear increase with a known rate 2D = 2T/γ.

Of course, such a decrease must be a spurious effect related to the wild fluctuations of

the dispersion in the plateau regime. The diffusion coefficient cannot be established not

because there is a dispersion plateau on the σ2
x vs. log(t) plot, but because, within the

plateau region, the diffusive term 2Dt in Eq. (3.5) is submerged in these fluctuations.

3.4.2 Dispersion fluctuations

Next, we try and understand the origin of the dispersion fluctuations. Returning to the

main part of Fig. 3.1, we observe that the plateau of σ2
x(t) begins right after the average

velocity of the particle,

vt = ⟨ẋt⟩ , (3.10)

saturates at the value v∞ ≈ 12.5.

Hence, we choose the origin of the time axis to be at the beginning of the dispersion

plateau, assume the initial velocity of the particle to be ẋ0 = v∞, and decompose the

particle’s coordinate into three parts:

xt = x0 + v∞t + yt , ⟨x0⟩ = y0 = ⟨ẏt⟩ = ⟨yt⟩ = 0 , (3.11)

where x0 is now a random variable. Without loss of generality, we set its average value to

zero by suitably shifting the origin of the x-axis. Its dispersion is σ2
x0

= σ2
x(0) = σ2

plateau.
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The deviation yt is the diffusive part of the coordinate. Its average velocity and its average

value are both zero, because the average coordinate of the particle is ⟨xt⟩ = v∞t for t > 0.

Its dispersion should behave as

σ2
y(t) := ⟨y2t ⟩ − ⟨yt⟩2 = 2Dt (3.12)

for sufficiently large t. This follows immediately from the relation between σ2
x(t), given by

Eq. (3.2), and σ2
y(t), namely

σ2
x(t) = ⟨(x0 + v∞t + yt)

2⟩ − (v∞t)2 = σ2
x(0) + σ2

y(t) + 2ct , (3.13)

where we have defined the correlation function

ct := ⟨x0yt⟩ . (3.14)

In view of the initial condition y0 = 0, the initial value c0 = 0. If the potential U(x) is

flat, i.e. U0 = 0, then also at later times we should have ct = 0; this is so, because in the

frame of reference moving with the average velocity v∞ of the particle, positive and negative

displacements yt are equally likely. If the potential U(x) is corrugated, i.e. U0 > 0, the

correlation function ct may deviate from zero at t > 0. But even in this case, the correlation

between x0 and yt (if any) should very quickly decay to zero on the time scale much shorter

than the duration of the plateau from Eq. (3.6). Keeping this time scale in mind, we can

write

ct → ⟨x0⟩⟨yt⟩ = 0 . (3.15)

This means that ct should play no role in the measurements of the diffusion coefficient.

However, this kind of reasoning only applies to an idealized numerical experiment, in

which an infinite number of stochastic trajectories are simulated. But in the real-life nu-

merical simulations, averaging is performed over a large, but finite number N of stochastic
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processes x
(i)
t , y

(i)
t , i = 1, ..., N . Correspondingly, the numerical correlation function, de-

noted with a tilde,

c̃t =
1

N

N∑
i=1

x
(i)
0 y

(i)
t , (3.16)

is a random variable which goes to zero only in the limit N → ∞, namely

c̃t
N→∞−−−−→ ct → 0 . (3.17)

But at a finite number N of trajectories, the fluctuating part of the dispersion does not go

to zero at any time t > 0. In fact, the size of the dispersion fluctuations increases in time.

To see this, we calculate the variance of c̃t based on the definition (3.16). We consider

an infinite number of independent replicas of the numerical experiment, in each of which N

stochastic trajectories are simulated, and perform averaging over those replicas, denoted as

⟨...⟩ in the derivation below:

σ2
c̃ (t) := ⟨c̃2t ⟩ =

1

N2

N∑
i,j=1

⟨x(i)0 y
(i)
t x

(j)
0 y

(j)
t ⟩

=
1

N2

N∑
i=1

⟨x(i)20 y
(i)2
t ⟩ =

⟨x(1)20 y
(1)2
t ⟩

N

→ ⟨x20⟩⟨y2t ⟩
N

= 2Dt
σ2
x(0)

N
, (3.18)

In the second line, we used independence of the replicas, which implies that only the terms

with j = i survive in the double sum. For i ̸= j, the summands split into ⟨x(i)0 y
(i)
t ⟩⟨x(j)0 y

(j)
t ⟩ =

c2t → 0. Because all trajectories are statistically the same, the sum in the second line

contains N identical terms, each of which equals the first one. In the third line, we removed

the superfluous superscript (1) and focused on the time-scale sufficient for the correlation

between x0 and yt to be lost, allowing us to replace ⟨x20y2t ⟩ with ⟨x20⟩⟨y2t ⟩. In the last step,

we used the identities ⟨x20⟩ = σ2
x(0) and ⟨y2t ⟩ = 2Dt.

Thus, in the realistic numerical simulations, the dispersion (3.13) contains a linearly

increasing part σ2
y(t) = 2Dt and a fluctuating part 2c̃t. The standard deviation of the
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dispersion can be estimated as 2σc̃(t) = 2
√

2Dt/Nσx(0), as follows from Eq. (3.18). Note

that σ2
y(t) ∼ t increases with time faster than 2σc̃(t) ∼

√
t.

In order to measure the diffusion coefficient with a reasonable accuracy, the former must

be bigger than the latter by a large number A inversely proportional to the desired accuracy

of D; e.g. A = 10 corresponds to the accuracy of 10%. This means that the waiting time,

tD, necessary to reliably measure D can be estimated as

σ2
y(tD) = 2DtD = 2Aσc̃(tD) , tD = 2A2σ

2
x(0)

ND
, (3.19)

With the parameters used to build the graphs in Fig. 3.1 (σ2
plateau = 3.2 . 107, D = 5, N =

1000) the inequality t > tD implies that the diffusion coefficient becomes measurable for the

waiting times exceeding t > 106, in agreement with the simulation results. Alternatively,

one would need to simulate N ∼ 10, 000 trajectories over the time scale of tD ∼ 105 to

measure D with a 10% accuracy, corresponding to A = 10.

On the other hand, for the parameters used to produce the plot in Fig. 3.2 (σ2
plateau =

108, D = 1, N = 1000) we must wait over 2.107 time units to reliably measure D. The

time scale of 105 time units, see the right inset in Fig. 3.2, is way too short to reveal an

increase of σ2
x(t). Over this time scale, the time evolution of σ2

x(t) may even exhibit an

overall decrease, which is entirely due to the small sampling size.

Finally, for the initial temperature T0 = 104 we have tD = 2.103, much shorter than

the time of measurement in Fig. 3.2. It is for this reason that the coordinate dispersion

increases linearly with time on the linear scale (Fig. 3.2, left inset) in spite of the plateau

observed on the logarithmic scale.

3.4.3 Determination of the diffusion coefficient in the plateau region

Fortunately, to accurately determine the diffusion coefficient from the simulations, it is not

necessary to wait for such a long time or to simulate a huge number of trajectories. Instead,
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one may adopt the following numerical procedure.
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Figure 3.3 – Diffusion coefficient D vs. applied bias F for the same parameters as in Fig. 3.1. All

data points were obtained from the slope of the dispersion σ2
z(t) line in the plateau region, see inset

showing this line for F = 0.5. For convenience, the time is measured from the moment t0 = 104 inside

the plateau of σ2
x(t).

First, the system is simulated to the point t0 when the initial transient process has

decayed and the dispersion plateau has started. The time t0 does not have to be very

large; for instance, for the parameters from Fig. 3.1, it may be t0 = 104. At the time

t0, the coordinate of the particle xt0 is a random variable characterized by a very broad

distribution. Hence, one needs to measure the dispersion of an auxiliary variable

zt = xt − xt0 = yt − yt0 + v∞(t− t0) ,

σ2
z(t) = ⟨z2t ⟩ − ⟨zt⟩2 = 2D(t− t0) , (3.20)

see the discussion above. Again, neither the simulation time nor the number of trajectories

N have to be very large: as Fig. 3.3 exemplifies, a very small portion of the total duration
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of the plateau phase is sufficient to get a linear increase of σ2
z(t) with very little fluctuations

for N = 1000.

In this way, we were able to obtain the force-dependent diffusion coefficient of the

system (3.1) with the parameters (other than force) specified in the captions to Fig. 3.1,

also covering the range of forces 0.1 < F < 1 which was unaccessible for the procedure

adopted in [9]. At these forces, the diffusion coefficient is practically constant and has the

value T/γ = 5, see Fig. 3.3. This value corresponds to the so-colled running state of the

Brownian particle. At low forces, F < 0.1 in Fig. 3.3, the diffusion proceeds via thermally

activated hopping over one or more barriers that separate the adjacent minima of the total

potential U(x)−Fx; since those barriers decrease with force, D(F ) increases until it reaches

a maximum. This maximum is due to the high frequency of switching between the running

and the locked states, which leads to the fastest temporal growth of the particle coordinate

dispersion in the frame of reference which moves with the average velocity of the particle.

3.5 Conclusions

The “dispersionless transport” phenomenon is actually more ubiquitous than suggested in

the original paper [9]. It can be expected in any noisy system, in which there is an initial

transient process leading to a broad spreading of the coordinate. After the decay of this

process, a plateau in the coordinate dispersion can be expected for some time.

Even though the numerical examples discussed in this paper involve a Brownian particle

with finite mass and relatively low damping, one can easily think of other possible scenarios

that result in a dispersion plateau even in the overdamped limit, see Eq. (3.1) with m

formally set to 0. For instance, consider the free diffusion of an overdamped Brownian

particle: ẋt =
√

2T/γξ(t). One may start with a high temperature T = TH , and then

abruptly change the temperature to a much lower value T = TL ≪ TH at some time t0 > 0.
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Then, for t ≫ t0, the dispersion will increase according to Eq. (3.5) with D = TL/γ and

σ2
plateau = 2t0TH/γ. On the logarithmic scale, the dispersion will have a plateau of duration

tplateau = t0TH/TL ≫ t0, which can be made arbitrarily long by adjusting the ratio TH/TL.

Another question is, why the diffusion coefficient cannot be extracted from the dispersion

vs. time plot in the plateau region. This has to do with both the large initial value of the

dispersion and with the fact that averaging is performed over a finite number of stochastic

trajectories. In practice, the existence of the dispersion plateau does not pose a problem in a

numerical determination of the diffusion coefficient. The only modification that is required

to perform this measurement is to account for the distribution of the initial position in the

beginning of the plateau phase. The deviation of the coordinate from the initial position does

exhibit the standard linear increase characteristic of the regular diffusive process. Because

the linear increase of the dispersion within the plateau region is measurable, we believe that

the term “dispersionless transport” is actually a misnomer and used it in quotation marks

throughout this paper.
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Chapter 4

Diffusion coefficient scaling of a

free Brownian particle with

velocity-dependent damping

In this chapter, we reproduce our third collaborative work by Mykhaylo Evstigneev and

Amir Kaffashnia, as referenced in [1] with kind permission of the publishers of Physical

Review E. The paper can be accessed through the DOI link: 10.1103/PhysRevE.107.064129.

4.1 Abstract

An analytical expression for the diffusion coefficient D of a free Brownian particle with

velocity-dependent damping γ(v) is derived from the Green-Kubo formula. A special case

of damping that monotonically decreases with velocity is considered. At high temperature

T , the diffusion coefficient is found to exhibit two scaling types: (i) for a power-law decrease

of damping with the particle’s kinetic energy, γ(v) ∝ 1/v2α, it scales as D ∝ Tα+1; (ii) for

a Gaussian function γ(v) it diverges at temperatures above a critical value Tc and behaves
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as D ∝ 1/
√
Tc − T at T < Tc. In case (ii) at T > Tc the particle trajectory contains long

flight events, which are not observed at T < Tc and in case (i) at all temperatures.

4.2 Introduction

Sutherland-Einstein-Smoluchowski formula expresses the diffusion coefficient of a free par-

ticle as a ratio of thermal energy T to the damping coefficient γ [2, 3]:

D = T/γ . (4.1)

Its breakdown in various systems has been drawing attention recently [4–10].

A standard way of deriving Eq. (4.1) relies on the Langevin equation of motion, mv̇ =

fdiss+fnoise, in which the dissipative force on the Brownian particle of mass m, fdiss = −γv,

is proportional to its velocity v [2]. Hence, the simplest model in which Eq. (4.1) does not

hold, is that of a free Brownian particle with velocity-dependent damping. Such model

is more realistic than the standard Langevin equation with constant γ, because in real

liquids and gases, the simple proportionality between dissipative force and velocity is an

approximation valid in the limit of small Reynolds numbers and not too high velocities.

The Langevin equation with velocity-dependent damping, γ = γ(v), can be derived

from first principles, as done by Mori using projection operator technique [11]. In Ref.

[12], this derivation was based on master equation, from which damping was expressed in

terms of the transition probability between two momentum states of the particle. At a

phenomenological level, the function γ(v) is chosen based on the physical properties of the

system under consideration. Various functional forms for the velocity-dependent damping

γ(v) appear in the literature. Marchesoni [13] chose it based on Sutherland’s formula [3]

for the temperature-dependent viscosity of a liquid. Braun et al [14–16] studied diffusion

of adatoms on a solid surface and related γ(v)) to the density of surface phonon states.
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Somewhat outside of the scope of this paper, a Reyleigh-Helmholtz and other expressions

allowing for γ(v) to become negative are used in the models of active Brownian motion

[17–19].

The other force on a free Brownian particle in the Langevin equation is thermal noise

fnoise due to thermal motion of the environment atoms. If this chaotic motion proceeds much

faster than the dynamics of the Brownian particle, the thermal noise can be approximated as

Gaussian and white. For velocity-independent γ, noise intensity is given by the fluctuation-

dissipation theorem of the second kind [2] as 2γT . If γ(v) is velocity-dependent, noise

intensity also becomes a function of velocity, as derived by Braun [14,15] and by Trigger et

al. [20]; see also the next section.

The relation (4.1) has been generalized in several ways. Lifson and Jackson derived an

analytical expression for the diffusion coefficient of an overdamped particle in a periodic

potential [21]; this expression was further developed by Reimann et al. [22] to include a

constant tilting force. With respect to diffusion with velocity-dependent damping, Trigger

et al. found an analytic expression for the diffusion coefficient [20] by considering relaxation

of the particle probability distribution from a small spatial inhomogeneity to equilibrium.

Here, we derive the diffusion coefficient based on a different approach than in Ref.

[20], namely, by applying the Green-Kubo formula to the Langevin equation. We consider

a broad class of functions γ(v) that monotonically decrease with v2. We show that if

damping decreases at high velocities as γ(v) ∝ 1/v2α, the diffusion coefficient indeed scales

as D(T ) ∝ Tα+1, as conjectured earlier in [23, 24]. Furthermore, we find that if damping

decreases faster than any power of the velocity, the diffusion coefficient diverges above a

certain critical temperature Tc. Specifically, for a Gaussian Ansatz for γ(v), the diffusion

coefficient turns out to scale as D(T ) ∝ 1/
√
Tc − T . We confirm these results by numerical

simulations.
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4.3 Langevin and Fokker-Planck equation

In view of isotropy and homogeneity of space, we can limit ourselves to just one spacial

coordinate x. Langevin equation of a free particle with velocity-dependent damping reads

[11,13–15]

mv̇ = −γ(v)v + g(v)ξ(t) , ẋ = v ,

⟨ξ(t)⟩ = 0 , ⟨ξ(t)ξ(t′)⟩ = δ(t− t′) . (4.2)

The noise ξ(t) is unbiased, Gaussian, and white. Due to space inversion symmetry, both

γ(v) and g(v) are even functions of velocity v.

To relate the noise-coupling function g(v) to the damping coefficient γ(v), and also to

introduce the formulae to be used later on, we briefly outline the derivation from [15] and

write down the Fokker-Planck equation for the time-dependent velocity probability density

W (v, t) [2],

∂W (v, t)

∂t
= L̂(v)W =

1

m

∂

∂v

[
g2(v)

2m

∂W

∂v
+

(
γ(v)v +

1

2m
g(v)

dg(v)

dv

)
W

]
, (4.3)

in which the multiplicative noise is interpreted in the Stratonovich sense. In equilibrium,

the velocity probability distribution is Maxwellian,

Weq =
√
m/(2πT )e−mv2/(2T ) , (4.4)

and the probability current in the velocity space, proportional to the expression in the square

brackets of Eq. (4.3), vanishes. This results in a differential equation for g2(v) [14,15,20] ,

γ(v)v +
1

4m

dg2(v)

dv
=

g2(v)v

2T
, (4.5)

whose solution is

g2(v) = 2memv2/T

∫ ∞

v2
dyγ(

√
y)e−my/T . (4.6)
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4.4 Diffusion coefficient

4.4.1 Derivation from the Green-Kubo formula

The diffusion coefficient is given by the equivalent expressions

D = lim
t→∞

〈
x2(t)

〉
2t

=

∫ ∞

0
dt ⟨v(t)v(0)⟩ = ⟨X(v)v⟩ , (4.7)

where X(v) =
∫∞
0 dt ⟨v(t)⟩v(0)=v is the mean displacement of the particle for a fixed initial

velocity v(0) = v. In the last formulation, averaging is performed over the equilibrium

distribution (4.4) of initial velocities. The expression of D as an integral over the velocity

autocorrelation function is known as Green-Kubo formula.

Let us denote the transition probability density in the velocity space by P (v′, t|v).

It obeys the Fokker-Planck equation (4.3), ∂P/∂t = L̂(v′)P , with the initial condition

P (v′, 0|v) = δ(v′ − v); the formal solution of this equation is P (v′, t|v) = eL̂(v
′)tδ(v′ − v).

Given the sharp initial velocity value v, the average velocity at time t is

⟨v(t)⟩ =

∫ ∞

−∞
dv′v′P (v′, t|v) . (4.8)

Hence,

X(v) =
∫∞
0 dt

∫∞
−∞ dv′v′eL̂(v

′)tδ(v′ − v)

=
∫∞
0 dt

∫∞
−∞ dv′δ(v′ − v)eL̂

†(v′)tv′

=
∫∞
0 dteL̂

†(v)tv = −[L̂†(v)]−1v . (4.9)

In the second line we used the adjoint Fokker-Planck operator L̂†, and in the third line

we first integrated over v′ and then over t.

Incorporating the relation (4.5) in the definition (4.3), we write the Fokker-Planck op-

erator in a more compact form:

L̂(v) =
1

2mT

d

dv

[
g2(v)

(
T

m

d

dv
+ v

)]
. (4.10)
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After taking its conjugate, we obtain the differential equation for the average displacement

by acting with L̂† on both sides of Eq. (4.9):

L̂†(v)X(v) ≡ 1

2mT

(
T

m

d

dv
− v

)
g2(v)

dX(v)

dv
= −v . (4.11)

It must be supplemented by two boundary conditions. The first one is obvious: since the

displacement is an odd function of the initial velocity, X(−v) = −X(v), its value at zero

initial velocity is X(0) = 0.

The second boundary condition is formulated by considering the limiting case of a large

positive initial velocity v ≫
√
T/m. If it is further increased by a small amount dv, the

average distance should increase by

dX = vdT (v) , (4.12)

where T (v) is the mean time after which the particle’s velocity first reaches the value 0,

and dT (v) is the mean time for velocity to decrease from v + dv to v. The relation (4.12) is

valid only in the high-velocity limit, in which the “sliding down” in the velocity space from

v+dv to v is quasideterministic, implying that the dispersion of the respective deceleration

time around dT is negligible.

The mean first passage time T (v) is found by solving the equation L̂†(v)T (v) = −1 with

an absorbing boundary condition at v = 0 and a reflecting boundary condition at v = ∞,

see [25]. Its velocity derivative is

dT (v)

dv
= 2m2 emv2/(2T )

g2(v)

∫ ∞

v
dv1e

mv21/(2T ) , (4.13)

and T (v) is obtained by integrating this expression from 0 to v. At high velocities the inte-

gral in Eq. (4.13) behaves asymptotically as T
mve

−mv2/(2T ), and thus dT /dv → 2mT/(vg2(v));

it then follows from Eq. (4.12) that at high velocities we should have dX/dv → 2mT/g2(v).
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The solution of Eq. (4.11) consistent with the boundary conditions is

X(v) = 2mT

∫ v

0

dv′

g2(v′)
. (4.14)

Substitution of Eq. (4.14) into Eq. (4.7) gives the diffusion coefficient

D = 2mT

∫ ∞

−∞
dv vWeq(v)

∫ v

0

dv′

g2(v′)
(4.15)

with g2(v) given by Eq. (4.6).

4.4.2 Damping coefficient ansatz

We will apply Eq. (4.15) to study the scaling of the diffusion coefficient in the interesting

case when damping γ(v) is a decreasing function of the particle’s kinetic energy. This is

common in the situations in which the environment does not efficiently absorb the particle’s

energy at high velocities due to the finite reaction time of the environment atoms [14, 15,

23,24] . We parameterize the velocity-dependent damping coefficient by its value γ0 = γ(0)

in the low-velocity limit, the characteristic velocity u, at which damping decreases by a

specified amount, and an exponent α > 0 which controls the manner in which γ(v) decreases

from the value γ0 to zero at v → ∞:

γ(v) =
γ0

(1 + v2

αu2 )α
. (4.16)

The noise coupling function (4.6) is

g2(v) = 2αγ0mu2
Fα(m(v2 + αu2)/T )

[1 + v2/(αu2)]α−1
, (4.17)

where

Fα(x) =

∫ ∞

0
dt

e−xt

(t + 1)α
(4.18)

is closely related to the incomplete gamma function Γ(s, x) =
∫∞
x dt ts−1e−t by Fα(x) =

eαxα−1Γ(1 − α, x).

85



The average displacement (4.14) and the diffusion coefficient (4.15) expressions are ob-

tained by a straightforward change of integration variables:

X(v) = T 3/2

αγ0
√
mu2 I(v

√
m/T ) ,

D =
√

2
π

T 2

αγ0mu2

∫∞
0 dye−yI(

√
2y) ,

I(y) =
∫ y
0 dz [1+z2T/(αmu2)]α−1

Fα(z2+αmu2/T )
. (4.19)

An interesting special case is the Gaussian limit α → ∞, in which

γ(v) = γ0e
−v2/u2

, g2(v) =
2γ(v)T

1 + T
mu2

. (4.20)

The average displacement (4.14) is then given by

X(v) = uτ

√
π

2
erfi(v/u) , τ =

m

γ0

(
1 +

T

mu2

)
(4.21)

where erfi(y) = 2√
π

∫∞
0 dzez

2
is imaginary error function. The diffusion coefficient is

D = uτ

√
T

2m

∫ ∞

0
dye−yerfi

(
u−1

√
2Ty

m

)
. (4.22)

4.5 Temperature scaling of the diffusion coefficient

4.5.1 Simulation details

The tricky part in simulating Eq. (4.2) has to do with the multiplicative noise, which

results in the Itô-Stratonovich ambiguity of the time discretization procedure. Although

this ambiguity can be resolved [26,27], we chose to avoid it completely and to work with an

auxiliary variable

ϕ(v) :=

∫ v

0
dv′

g(0)

g(v′)
, ϕt ≡ ϕ(vt) , (4.23)

whose dynamics is governed by a Langevin equation with additive noise

mϕ̇t = − g(0)

g(v(ϕt))
γ(v(ϕt))v(ϕt) + g(0)ξ(t) , (4.24)
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as can be obtained by multiplying both sides of Eq. (4.2) with g(0) = g(v). The function

v(ϕ) is obtained by inverting Eq. (4.23).

To save computational effort, the functions ϕ(v) and g(v) were tabulated with the

velocity v assuming discrete values from -10
√

T/m to 10
√
T/m in steps of 0.01

√
T/m.

These tabulated values were used by the code to quickly find the velocity v and the

“force” F (ϕ) = −g(0)γ(v(ϕ))v(ϕ)/g(v(ϕ)) corresponding to a given ϕ by performing cu-

bic interpolation based on the four support points closest to the current value of ϕ. The

stochastic differential equation (4.24) was discretized according to the Euler scheme, i.e.

m(ϕn+1 − ϕn)/∆t = F (ϕn) + g(0)ξn/
√

∆t, where ξn are unbiased Gaussian random num-

bers with unit variance, ⟨ξnξn′⟩ = δnn′ , and ϕn is the value of ϕ on the nth time step.

In the simulations, we set without loss of generality the parametersm, u, and γ0 to 1;

this uniquely fixes the units of mass, time, and length to m, m/γ0, and mu/γ0, respectively.

The diffusion coefficient D was found as a long-time limit of the time-dependent coun-

terpart

D(t) =

〈
[x(t) − x(0)]2

〉
2t

. (4.25)

After each measurement of the displacement x(t) − x(0), the particle velocity was reset to

a random value according to the Maxwellian distribution (4.4); this ensured that successive

displacement measurements were independent of each other.

4.5.2 Particle trajectories

Before we go on to the discussion of the diffusion coefficient, it is instructive to consider

several representative trajectories at two extreme values of the parameter α and at different

temperatures T . In Fig. 4.1 we compare the representative trajectories of the particle

obtained for the Lorentzian model, Eqs. (4.16), (4.17) with α = 1, and Gaussian model, Eq.

(4.20). In the Lorentzian case the trajectories do not differ qualitatively at all temperatures.
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Figure 4.1 – Sample trajectories (4.2) obtained numerically within (a)-(c) Lorentzian damping model,

Eq. (4.16) with α = 1, and (d)-(f) Gaussian model (4.20). The long flight events in graphs (e) and (f)

are indicated with arrows.

They represent erratic motion, whose scale grows with temperature T = 0.1, 1, and 10 in

panels (a), (b), and (c), respectively. We observed qualitatively similar trajectories for all

other finite values of the exponent α between 1 and 10 that we tested.

Turning to the Gaussian model, Fig. 4.1(d), (e), and (f), we see that at the smallest

temperature T = 0.1, the trajectory looks similar to the one in the Lorentzian model, cf.
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Fig. 4.1(a) and (d). But increasing the temperature leads to the appearance of a new

feature in the particle’s dynamics, namely, its regular diffusion becomes interrupted by long

flight events, which are marked with arrows in Fig. 4.1(e) and (f).

Long jumps over more than one lattice spacing have been observed both experimen-

tally and in molecular dynamics simulations of surface diffusion of individual atoms [28–32],

molecules [33,34], and nanoclusters [35–37]. Stochastic simulations of adatom diffusion rely-

ing on the Langevin equation with velocity-independent damping [38] yield a much weaker

temperature dependence of the frequency of long jump events than observed xperimen-

tally [28, 29]. Consequently, Braun, Peyrard, and Ferrando [14–16] extended the Langevin

model by including velocity dependence of the damping coefficient.

While long jumps in the surface diffusion literature [28–37] are defined as transitions

by more than one lattice constant, the diffusion of a free Brownian particle does not have

this built-in length scale. Hence, we define long flight events in a different manner by two

properties:

(i) The velocity does not change sign during the event duration ∆t;

(ii) The distance ∆x travelled by the particle during the event exceeds the distance over

which the particle would typically diffuse given the same amount of time,

∆x2 > 2D(∆t)∆t , (4.26)

where the time-dependent diffusion coefficient is defined by Eq. (4.25).

If surface diffusion proceeds predominantly via single jumps, then transitions over more

than one lattice constant are covered by this definition of long flights.
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Figure 4.2 – Diffusion coefficient vs. temperature for the model (4.2) with the damping coefficient

given by Eq. (4.16) at α = 1, 2, 5, and for the Gaussian model (4.20) corresponding to the limit α → ∞.

Symbols: simulation results; lines: analytical formula (4.19) (for finite α) and (4.22) (for α → ∞).

4.5.3 Diffusion coefficient vs. temperature

Fig. 4.2 shows the theoretical curves (4.19) and (4.22) (lines) and simulation results (sym-

bols) for the temperature-dependent diffusion coefficient. At low temperatures, both models

predict the same linear increase D = T/γ0 according to the standard relation (4.1). For

finite values of α, the high-temperature asymptotic behavior of the diffusion coefficient is

obtained from Eq. (4.19):

D ∝ Tα+1 for α < ∞ , (4.27)

because the dominant contribution to I(y) is proportional to Tα−1. Such scaling of the

diffusion coefficient with temperature was reported by Silvius et al for a special case γ(v) ∝

1/v3, i.e. α = 3/2, resulting in the temperature scaling D(T ) ∝ T 5/2 [23]. A straightforward

generalization of their argument indeed gives the relation (4.27) for arbitrary α, see [24].

Even though the particle considered in Refs. [23,24] performed thermal motion in a periodic
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structure, this scaling was obtained in the high-temperature asymptotic limit, in which the

effect of the periodic structure should be negligible, i.e. the particle could be treated as

approximately free.

Granted, the scaling behaviour (4.27) is not very surprising and can be understood

within Einstein’s relation (4.1) by approximating D ≈ T/γ(vth), where vth =
√
T/m is

thermal velocity. But this sort of argument does not apply in the Gaussian limit (4.22). At

large values of its argument y ≫ 1, the imaginary error function behaves as erfi(y) ∝ ey
2

y
√
π

.

Then, as can be seen from Eq. (4.21), the mean displacement depends on the initial velocity

as X(v) ∝ v−1ev
2/u2

at |v| ≫ u. With respect to the diffusion coefficient, the integral

diverges when the temperature exceeds the critical value:

D → ∞ at T ≥ Tc =
mu2

2
. (4.28)

To derive the asymptotic behavior of the function D(T ) slightly below the critical tem-

perature, we split the integral (4.22) into two parts: one from 0 to a large but finite number

a, and the other from a to ∞. The former contribution remains finite, while the latter

diverges as T → Tc. With the help of the above asymptotic expression for the imaginary

error function, we obtain the divergent part of the diffusion coefficient:

D ∝ τu2

2
√
π

∫ ∞

a
dy

e−y(1−T/Tc)

√
y

∝ τu2

2
√

1 − T
Tc

. (4.29)

In the second step, we changed the integration variable to y′ = y(1 − T/Tc) and evaluated

the integral in the limit T/Tc → 1− using the formula
∫∞
0 dy′e−y′/

√
y′ =

√
π.

At T > Tc, the diffusion coefficient (4.22) is infinite, which is manifested in unlimited

increase of the time-dependent diffusion coefficient (4.25) observed in the simulations. In

this regime, the particle undergoes superdiffusion, see, e.g. [39] and references therein. The

time-dependent diffusion coefficient at T > Tc increases as D(t) ∝ tλ with 0 < λ < 1. As

our simulations revealed, the exponent λ is temperature-dependent; it grows from the value
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close to 0 at T = Tc and saturates at T above several Tc at λ = 1, which corresponds to

ballistic Brownian motion.

4.6 Conclusion

In view of its simplicity, Langevin equation with velocity-dependent damping γ(v) is a useful

tool in describing diffusion of small objects, from atoms to nanoparticles. Their velocity-

dependent damping γ(v) and diffusion coefficient D can be measured independently of each

other. Hence, the relation (4.15) between them is amenable to direct verification both in

an experiment and in a molecular dynamics simulation.

In this paper we derived this relation from the Green-Kubo formula and applied it to

study the temperature dependence of the diffusion coefficient for the velocity-dependent

damping (4.16) that monotonically decreases with the particle’s velocity. At low temper-

atures, diffusion coefficient grows linearly with temperature, D = T/γ(0), for all values of

the parameter α that controls the manner in which the function γ(v) goes to zero with v.

The high-temperature scaling behaviour of D(T ) is drastically different for a power-law and

exponential decrease of damping with the particle’s kinetic energy. Namely, in the former

case, the diffusion coefficient likewise exhibits a power-law temperature dependence, while

in the latter case it diverges at some critical temperature.

The presence of long flights, as defined in the end of Section 4.5.2, is correlated with this

difference, as long flight events are observed only for the Gaussian damping model above

the critical temperature. The Brownian particle in this regime undergoes superdiffusive

dynamics. A more detailed study of this interesting regime will be performed in the future.
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Chapter 5

Summary and Future Work

5.1 Summary

This thesis focuses on the study of Brownian motion in three 1D models: (i) a BP diffusing

on a stochastic harmonic oscillator chain (SHOC), (ii) Brownian motion in a tilted periodic

potential, which we call it the “standard model” henceforth, and (iii) free Brownian motion

with velocity-dependent damping. The simplicity of the 1D models allows for a detailed

understanding of the complex behavior of the BP and the underlying physics governing var-

ious physical systems, including polymer physics, condensed matter physics, and statistical

mechanics. This study involves theoretical analysis, computer simulations, and numerical

calculations to investigate the statistical and dynamical properties of Brownian motion in

each of these models. The results obtained from this study are expected to contribute to

the existing knowledge of Brownian motion and its applications in different areas of physics.

The three models of 1D Brownian motion studied in this thesis exhibit several distin-

guishing features. Firstly, the BP/SHOC model features noise and dissipation that result

from the interaction between the BP and the same objects that generate the periodic poten-

tial. In contrast, the “standard model” has a periodic potential originating from a different
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source than the dissipative and random forces. The model with velocity-dependent damp-

ing, on the other hand, does not experience any external potential. Secondly, the damping

coefficient of the dissipative force in the BP/SHOC and standard models is independent

of velocity, whereas in the velocity-dependent damping model, as the name suggests, it is

velocity-dependent. Thirdly, the dissipative force in the standard model is proportional to

the particle velocity, while in the BP/SHOC and velocity-dependent damping models, the

dissipative force at high temperatures is inversely proportional to the particle velocity.

The examined models in this thesis capture distinct physical systems due to the dis-

similarities highlighted. Specifically, the BP/SHOC model appears more appropriate for

the representation of the transport of individual atoms through a narrow channel, such as

a carbon nanotube. Conversely, the standard diffusion model can depict, for example, the

movement of a colloidal particle in a liquid through a 1D periodic potential, e.g., created by

a laser. Moreover, the velocity-dependent damping model, which features a more realistic

damping coefficient compared to the constant damping coefficient, is better suited for the

analysis of real gases and liquids with high velocities.

Originally, the 1D Brownian motion of a particle along a SHOC has been used to in-

vestigate the limitations of the Langevin-type description, and it has been turned out that

the Langevin equation (LE) can give quantitatively and even qualitatively wrong results

at high temperatures, strong coupling between the chain oscillators, or in the presence of

an external force on the BP [1]. At the same time, the BP/SHOC model may serve as

an ideal testing ground for other approximation schemes aimed at replacing the full-scale

MD simulations of a system with a stochastic description. In our first work, our initial

motivation was twofold: first, to develop a method that would address the limitations of

the LE. Second, we sought to explore the breakdown of the Einsteinian diffusion scaling

in this simple model. To this end, we introduced moving stochastic boundary conditions
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(MSBC) on a 1D harmonic oscillator chain. We described in this work the basic framework

of the MSBC for the truncated finite chain of oscillators which replaces the full infinite chain

with the dissipative and random forces acting on its first and last oscillators characterized

by renormalized properties. Those forces mimic the effect of the rest of the chain on the

boundary oscillators. In this method, a great deal of computational effort is saved by simu-

lating only a small part of the oscillators which are in the immediate vicinity of the BP. In

addition, we introduced an optimal way to calculate the long-time diffusion coefficient D.

Alongside the new methodology, our investigations revealed the emergence of Lévy flights

as long flight events at high temperatures, characterized by a power law relationship between

the diffusion coefficient (D) and temperature (T ) as D ∝ T 2+α (Fig. 2.2). This is different

from the Einstein’s relation with linear relationship between D and T . Two universal scaling

laws are observed in the relationship between the average time of flight t̄f and the flight

length l, and for the flight length probability distribution wl, within our study. Specifically,

our results demonstrate a power-law relationship, t̄f ∝ l2/3, as presented in Fig. 2.3 (b).

Additionally, we observe that the probability distribution of flight lengths exhibits a decay

proportional to 1/lβ, with an exponent of β = 4/3, as depicted in Fig. 2.5. A simple theory

is also proposed that explains most of these power laws. For the T > Tmax (with Tmax = 50

for the weak-coupling and Tmax = 200 for the strong-coupling case), determination of the

diffusion coefficient scaling with temperature is practically difficult, because eventually the

particle enters a “dispersionless” or non-dispersive phase, in which it moves at a constant

velocity and practically does not deposit its energy into the chain. Since the time necessary

for the BP to interact with the SHOC is much longer than a reasonable computation time,

reliable determination of the average time of flight, flight length and the diffusion coefficient

become impossible.

In our second work, we investigated the phenomenon of “dispersionless transport” of a
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BP in a tilted periodic potential which is originally reported by Lindenberg et al [2]. In this

phenomenon the dispersion of the BP enters a plateau regime and appears to stay constant

over a very broad time interval. Hence, the measurement of the diffusion coefficient requires

prohibitively long time. We showed that the main trait of the “dispersionless transport”

is actually not the plateau of the dispersion, but its wild fluctuations within the plateau

region (inset in Fig. 3.1 and right inset in Fig. 3.2). It is the dispersion fluctuations that

prevent one from determining the diffusion coefficient numerically. They have to do with the

finite sampling size used in any simulations. We also showed that it is possible to measure

the diffusion coefficient within the plateau regime (Fig. 3.3) by a small modification of

the measurement procedure described in Chapter 3 and shown to work for the parameters

which were problematic in the original paper by Lindenberg et al [2].

The emergence of the long-flight phenomenon (Lévy flight) at high temperatures in the

SHOC model, leading to the breakdown of the Einstein relation, is attributed to the dissi-

pative force being a decreasing function of the particle velocity. To explore the breakdown

of the Einstein relation, we performed our third investigation of the model of a free BP

with velocity-dependent damping. This model is simple enough to allow for an analytical

determination of the diffusion coefficient D. It is revealed that at high temperatures, the

emergence of long flights and the non-linear correlation between D and T critically depend

on the velocity dependence of the damping function. In the case where the damping func-

tion γ(v) decreases as a finite power of the particle’s kinetic energy, i.e., γ(v) ∝ 1/v2α, a

non-linear relation, D ∝ Tα+1, is observed; however, the long flight events are absent (Fig.

4.1 (b), (c)). In contrast, if damping is given by a Gaussian function, γ(v) ∝ e−v2 , for

the temperatures below a critical value Tc, the diffusion coefficient follows a scaling rela-

tionship of D ∝ 1/
√
Tc − T . However, for temperatures exceeding Tc, the particle exhibits

superdiffusive motion characterized by long flight events in its trajectory (Fig. 4.1 (e), (f)).
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Remarkably, in this regime, the diffusion coefficient diverges, showcasing a non-Einsteinian

relation between D and T with an infinite diffusion coefficient. Our analytical formula is

confirmed by numerical simulations.

5.2 Future work

Although this thesis has provided significant insights into the behavior of 1D Brownian

motion in the three models mentioned above, there are still some aspects that remain

unexplored and can be investigated in future work. Here are a few potential directions for

future research:

1. Multi-dimensional extension: While this thesis has focused on 1D Brownian motion,

a natural extension is to explore the behavior of BPs in higher dimensions [3–5]. We

believe our MSBC algorithm can be modified to study two and three dimensional

generalizations of the SHOC model.

2. More than one BP interacting with heat bath: it is interesting to consider the be-

haviour of two or more BPs on a SHOC or other models in one or more dimensions.

It is expected that even in the absence of the direct particle-particle interaction, the

heat bath will serve as a mediator through which the particles will “feel” each other.

3. Experimental validation: While the models studied in this thesis have been validated

through theoretical analysis and simulations, experimental validation of the theoretical

predictions would be a significant contribution. For example, experimental studies

of Brownian motion in carbon nanotubes could provide valuable insights into the

behavior of BP/SHOC model [6, 7].

4. Other damping functions: The thesis has investigated the behavior of BPs with a

specific form of velocity-dependent damping function. However, there are many other
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forms of damping functions that could be explored in future research. Investigating

the behavior of BPs under different damping functions could reveal new insights into

the fundamental physics of Brownian motion.

5. Deterministic systems: Investigation of Brownian motion on deterministic non-linear

systems, in which stochastisity arises due to the onset of chaotic dynamics [8–12], such

as the Fermi-Pasta-Ulam chain.

6. Real-life systems: Another interesting future research possibility can be modeling

adatom diffusion on solid surfaces, which would contribute to a better understanding

of the dynamics and behavior of adatoms in real-life systems [13,14].

Overall, the examined models in this thesis provide a basis for future research on trans-

port phenomena in a wide range of physical systems. The power laws and scaling rela-

tionships observed in our studies can be tested and applied to a variety of other systems.

Therefore, future research in this field will provide valuable insights into transport phenom-

ena in diverse physical systems.
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