


Abstract

The mixture of regression models is one of the most common model-based tech-

niques to incorporate the information of covariates into learning population het-

erogeneity. The multicollinearity problem is one of the most common problems in

regression and a mixture of regression models where the covariates are highly cor-

related. This problem results in unreliable maximum likelihood estimates for the

regression coefficients. In the first part of this thesis, we developed two shrinkage

methods through an unsupervised learning approach to estimate the model coeffi-

cients in the presence of multicollinearity issues. These shrinkage methods include

Ridge and Liu-type estimators. The estimation and prediction performance of the

methods are evaluated via EM algorithms.

In the second part of the thesis, we focus on extending the mixture analysis to the

binary response in the presence of multicollinearity. The logistic regression model

is one of the most powerful statistical methods for analysis of binary data. The

logistic regression allows to use a set of covariates to explain the binary responses.

The mixture of logistic regression models is used to fit heterogeneous populations

through an unsupervised learning approach. This research developed Ridge and Liu-

type shrinkage methods to deal with the multicollinearity in a mixture of logistic

regression models.

Through extensive numerical studies, we show that the developed methods pro-

vide more reliable results in estimating the coefficients of the mixture models. We

applied the shrinkage methods to analyze the bone disorder status of women aged

50 and older.
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Chapter 1

Introduction

This thesis focuses on the finite mixture of linear regression models and finite mix-

ture of logistic regression models. The maximum likelihood (ML) estimate is one

of the most common methods for fitting linear and logistic regression models. Al-

though ML estimates are common, the ML estimates are significantly unstable in

the presence of multicollinearity, where the regression covariates linearly depend on

each other.

Similar to the linear regression and logistic regression models, multicollinearity

significantly impacts the ML estimates of the mixture of logistic and mixture of lin-

ear regression models. We develop the Liu-type (LT) shrinkage estimation method

for the mixture of linear regression models and the mixture of logistic regression

models. We show that the LT estimators outperform their Ridge and ML counter-

parts in estimating the parameters of mixture of linear regressions and mixture of

logistic regressions through various simulations and real data studies.

This chapter is organized as follows. Section 1.1 gives an introduction to finite

mixture models. Section 1.2 discusses the literature review about the multicollinear-
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ity problem. Section 1.3 discusses penalized maximum likelihood estimation. Fi-

nally, Section 1.4 presents a literature review of the mixture regression models and

mixture of logistic regression models.

1.1 Finite mixture models

Finite mixture models (FMMs) are powerful and practical tools for mathematically

modeling populations with multiple subpopulations. Recently, finite mixture models

have become more popular for analyzing complex data. Because of their flexibility,

mixture models can describe various random events. As a result, they represent

complicated processes and systems in many domains of study, including clustering,

density estimation, and classification.

Suppose X is a continuous random variable that represents the study population

and follows a finite mixture model withM subpopulations. The probability density

function (pdf) of the random variable X is given by

f(x,Ψ) =
M∑

j=1

πjfj(x, βj), (1.1)

where π = (π1, . . . , πM) represents the vector of the mixing proportions with πj > 0

and
∑M

j=1 πj = 1 and fj, j = 1, . . . ,M represents the pdf of the jth component of

the model. We use Ψ = (π, β) where β⊤ = (β⊤

1 , β
⊤

2 , . . . , β
⊤

M) represents the vector

of all unknown component parameters.

Finite mixture models have been employed in astronomy, biology, genetics,

medicine, psychiatry, economics, engineering, marketing, and many other biological,

2



physical, and social sciences. For example, sodium and lithium counter-transport

(SLC) activity in red blood cells is important in quantitative genetics. Furthermore,

SLC activity is easier to investigate than blood pressure. Assume that the action

of a specific gene specifies the SLC with alleles A and a. The presence of a relevant

gene was evaluated utilizing FMMs for analysis of the SLC groups by Chen et al.

(2012). The FMMs have also been used in genetics (Schork et al., 1996; Roeder,

1994 and Chen and Chen, 2003), medical studies (Schlattmann, 2009) and various

engineering fields, including speech recognition and medical imaging (El Zaart et al.,

2002).

Pearson (1894) and Cohen (1967) utilized the method of moments to estimate

the parameters in the finite mixture models. Harding (1949) and Cassie (1954)

used graphical methods to estimate the finite mixture models. Maximum likelihood

(ML) estimation is the most frequent method for estimating the parameters of the

mixture models among all methods (Furman and Lindsay, 1994). Here we use EM-

algorithm (Dempster et al., 1977) to obtain ML estimates of the parameters of the

FMMs.

1.2 Multicollinearity

Regression model is one of the most important methods to explain the relationship

between variables. These variables are called explanatory and response variables.

The regression model is one common application that comes to mind when predict-

ing response based on a set of explanatory variables (Navidi, 2011). Selecting an

appropriate model type based on the characteristics of the result variable, choosing
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the explanatory (independent) variables to include in a model, and planning and

carrying out model diagnostics are all parts of designing regression models (Shmueli,

2010).

The logistic regression model is one of the most important statistical methods

to predict the outcome for a binary response Y based on a set of p covariates

(x1, · · · ,xp). According to Kain and Verma (2018), Logit is one of the most com-

mon link functions used in a logistic regression model. The Logit is a function that

maps probability values from (0, 1) into real numbers in (−∞,+∞). Some distribu-

tion functions have been suggested for analyzing a dichotomous (binary) outcome

variable (Cox and Snell, 1989). Logistic regression has many applications in various

medical research and natural sciences fields. For example, Boyd et al. (1987) used

logistic regression to predict mortality in injured patients.

Multicollinearity is a statistical phenomenon that happens when there are high

linear dependencies among the independent variables. This problem frequently hap-

pens when the model contains many covariates. The primary point is that obtaining

accurate estimates of regression coefficients of two or more variables’ impact on a

particular dependent variable is challenging when they strongly correlate.

According to Lafi and Kaneene (1992), multicollinearity has some primary symp-

toms: the coefficients’ estimate has a high variance, the sign of a coefficient’s variable

can be different from the theory, and a high correlation between independent vari-

ables and outcome. Multicollinearity is a significant issue if the simple correlation

coefficient between two regressors is more than 0.8 or 0.9 (Mason and Perreault Jr,

1991). Multicollinearity impacts estimating the coefficients of specific predictors;

it has no impact on the predictive accuracy or reliability of the model as a whole
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(Mayers, 1990). In statistical modeling, multicollinearity has historically been seen

as a huge monster. One of the most challenging tasks in studying statistical mod-

eling has been taming this monster. In regression modeling, the multicollinearity

problem is the leading cause for concern among researchers. As a result, multi-

collinearity causes the variances of parameter estimates to increase. It can also

lead to inaccurate estimations of the signs of the regression coefficients, which leads

to incorrect inferences about the relationships between explanatory and response

variables (Kutner et al., 2004). High multicollinearity causes the confidence inter-

vals of the coefficients to become very wide. When multicollinearity is present, it

is thus challenging to reject the null hypothesis of any study (Allison, 1999). To

solve this problem, Hoerl and Kennard (1970) proposed ridge regression estimate

β̂R =
(
X⊤X + kIpp

)
−1X

⊤
y, where X is a known n×p design matrix of covariate

values, where n > p, y is a n × 1 response vector, k is a tunning parameter and

Ipp is an identity matrix of size p × p. This method has become one of the most

popular methods to overcome the weakness of least squares estimators. Ridge esti-

mators attempt to solve the collinearity problem by adding a small constant k to

the diagonal of X⊤X.

1.3 Penalized Maximum Likelihood Estimation

Penalized maximum likelihood estimation (PMLE) has been proposed to avoid es-

timation problems, mainly when the likelihood is flat, making a determination of

the maximum likelihood (ML) estimate is difficult using standard approaches. It

has been successfully applied to stabilize parameter estimates in various models,
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such as logistic regression (Firth, 1993; Heinze and Schemper, 2002), latent class

models (DeCarlo, 2012). Many improvements have already been made using pe-

nalized variable selection methods. Donoho and Johnstone (1994) and Tibshirani

(1996) presented the L1 penalty pk(|β|) = k |β| , which produces the soft thresh-

old rule. Segerstedt (1992) expanded on Hoerl and Kennard (1970) discussion of

the L2 penalty pk(|β|) = k |β|2 results in a Ridge regression, where pk(|· |) is the

penalty function for the coefficients. Antoniadis (1997) studied the hard threshold-

ing penalty function that leads to the hard thresholding rule.

Maximizing the log-likelihood in regular regression modeling provides the best fit

for the data set. However, maximizing the log-likelihood frequently leads to fitting

noise and unstable parameter estimations when the data set is small; this is due to

maximum likelihood estimation placing too much trust in the frequently restricted

data trends. The PMLE is developed for regression models and is a generalization

of the Ridge regression method used to obtain more stable parameters for linear

regression models (Draper and Smith, 1998). The PMLE maximizes the penalized

log-likelihood rather than the log-likelihood, where a penalty factor k adjusts the

maximum log-likelihood of the model:

logL− 0.5k
∑

P (β) ,

where L is the maximum likelihood of the fitted model, k is a penalty factor, β is a

vector of the regression coefficients (Harrell Jr et al., 1998; Van Houwelingen, 2001).

Ridge regression is an ordinary least squares (OLS) estimation with restric-

tions on the sum of the squared coefficients. Ridge regression may overcome the

multicollinearity problem when the linear dependencies between the independent
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variables is not severe. Nevertheless, it is often used to decrease the variance of pa-

rameter estimates. There are two ways to choose the parameter k: cross-validation

or minimizing prediction error. Hoerl and Kennard (1970) proposed the Ridge re-

gression, and explanations of it may be found in several other texts as well (Hastie

et al., 2001; Izenman, 2008). The standard Ridge regression comes in several forms.

The Ridge penalized log-likelihood function can be written as the penalized least

square constrained on the Ridge penalty as

β̂R = argmin
β̂

(y −X)⊤(y −X) + kβ⊤β/2, (1.2)

According to Hoerl and Kennard (1970), one can easily show that equation (1.2)

leads to

β̂R =
(
XT X+ kI

)−1
XTY .

The choice of k is the biggest challenge for the Ridge regression parameter since

it is crucial for controlling the bias of the regression toward the dependent variable’s

mean (Fayose and Ayinde, 2019). A new estimator was presented by Liu (2003)

combining the strengths of the Stein estimator (Stein, 1956) with the standard Ridge

regression estimator of Hoerl and Kennard (1970). The Liu-type (LT) penalized log-

likelihood function can be written as the penalized least square constrained on the

LT penalty as

β̂LT = argmin
β

(y −Xβ)⊤(y −Xβ) +

[
(− d

k1/2
)β̂ − k1/2β

]⊤ [
(− d

k1/2
)β̂ − k1/2β

]
,

where k > 0, −∞ < d < ∞ and β̂ can be any estimator of β. According to Liu
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(2003), it is easy to show that the LT estimator is given by

β̂LT =
(
X⊤X + kI

)−1
(
X⊤y − d β̂

)
.

1.4 Mixture of Regression Models

In the regression analysis, when there are many heterogeneous groups in the pop-

ulation, the mixture of regression models is one of the most common techniques

to incorporate the information of covariates into learning about population hetero-

geneity. De Veaux (1989) developed the technology of models relying on mixtures

of linear regression models and, especially, to draw out the relevance of the EM

algorithm to the associated maximum likelihood equations. Faria and Soromenho

(2010) proposed comparing the EM algorithm, the classification EM algorithm,

and the stochastic EM algorithm to estimate the coefficients of a mixture of linear

regression models by maximum likelihood estimation.

Mixture of regression models is an approach to seek the heterogeneity in the

response of the regression. The approach first appeared as switching regression

models in economics literature (Quandt and Ramsey, 1978). It was later developed

and applied in statistics and marketing to comprehend market segmentation and

other facets of consumer behavior (Bai et al., 2012; Bartolucci and Scaccia, 2005).

Because of the model’s simplicity and efficiency in capturing non-linearity models,

it has found a lot of applications, such as trajectory clustering (Gaffney and Smyth,

1999), phase retrieval (Balakrishnan et al., 2017), predictors of vehicle crashes (Zou

et al., 2013), anti-psychotic induced weight gain (Nowrouzi et al., 2013) and the age
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of onset of bipolar disorder (Manchia et al., 2010). According to recent research

(Yi et al., 2014; Klusowski et al., 2017), there has been an interest in developing

various efficient methods for estimating the parameters in the mixture of regression

models under natural assumptions on the sampling distribution.

Similar to regression models, the multicollinearity problem is one of the most

common problems in a mixture of regression models where the covariates are highly

correlated. This problem results in unreliable maximum likelihood estimates for all

coefficients of the mixture model (Inan and Erdogan, 2013; Liu, 2003).

In this thesis, we develop shrinkage methods to deal with the multicollinearity

in both mixture of regression models and mixture of logistic regression models.

These shrinkage methods include Ridge and LT estimators. Through extensive

numerical studies, we show that the developed methods provide more reliable results

in estimating the coefficients of the mixture models. We study the performance

of these estimators only under multicollinearity because the Liu-type and Ridge

techniques are shrinkage methods. These shrinkage methods are recommended when

there is multicollinearity. In the absence of the multicollinearity problem, these

methods are not recommended as they result in biased estimates.

This thesis has resulted in two papers. In the first paper, we developed shrink-

age methods to estimate the parameters of the mixture of logistic regression models

when there is multicollinearity. This research project has been submitted for pub-

lication (Ghanem et al., 2022a).

In the second paper, we developed Liu-type and Ridge shrinkage methods to

estimate the parameters of the mixture of regression models. The performance

of the shrinkage methods is evaluated via classification and stochastic versions of

9



EM algorithms. This research project has been submitted for publication (Ghanem

et al., 2022b).

The remainder of the thesis is organized as follows. In Chapter 2, we present the

estimation of the parameters of the linear regression model and logistic regression

model using the ML, Ridge, and LT methods. Chapter 3 develops the shrinkage

estimators for the mixture of linear regression models. Chapter 4 investigates the

shrinkage estimation for the mixture of logistic regression models. We investigate

the performance of the developed estimation methods through an extensive simu-

lation and real data studies in Chapter 5. Chapter 6 presents the summary and

future works.

10



Chapter 2

Regression Models

Regression model is one of the most popular methods that allow researchers in many

fields to explain the relationship between variables. The variables’ relationships

can be linear or non-linear, positive or negative (Bluman, 2014). The variables in

regression are divided into explanatory and response variables. The explanatory

variables (or independent variables) are used to explain the changes in the response

variable (or dependent variable).

Regression models are used in various applications to assist researchers in pre-

dicting responses based on a set of explanatory variables (Navidi, 2011). There are

many variations of the regression models, such as simple linear regression, multi-

ple linear regression, generalized linear regression, and non-parametric regression

models. Regression modeling is essential in analyzing many medical studies, mainly

observational studies. Regression model building especially includes aspects such as

selecting an appropriate model type based on the nature of the outcome variable,

selection of explanatory (independent) variables to include in a model, planning

and carrying out model diagnostics, model validation, and model revision. Shmueli
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(2010) discussed the difference between three conceptual modeling approaches: de-

scriptive, predictive, and explanatory modeling. According to (Paldam, 2021), re-

gression is also used in economics and management.

The logistic regression model is one of the most powerful statistical methods

to predict the outcome for a binary response Y based on a set of p covariates

(x1, · · · ,xp). The logistic regression has found applications in various fields, in-

cluding medical research and natural sciences. Note that the objective of logistic

regression analysis is similar to any other regression model. The goal is to find

the best-fitting model explaining the relationship between a set of covariates and a

binary response variable. Logistic regression is categorized in a model class called a

generalized linear model. The most popular method for estimating a logistic regres-

sion’s parameters is a maximum-likelihood estimation (MLE). Unlike linear least

squares, logistic regression does not have a closed-form expression to estimate the

logistic regression’s parameters. The logistic distribution is preferred for two main

reasons. It is a highly flexible and easily used function from a mathematical per-

spective and also provides a clinically helpful interpretation. Cox and Snell (1989)

discuss a few of the many distribution functions that have been suggested for use

in the analysis of a dichotomous (binary) outcome variable.

Logistic regression has found many applications in medical research. Boyd et al.

(1987) used logistic regression in order to predict mortality in injured patients.

Logistic regression may be used to predict the risk of developing a given disease

(e.g. diabetes; coronary heart disease), based on observed characteristics of the

patient such as age, body mass index, sex (Truett et al., 1967; Freedman, 2009).

According to Palei and Das (2009), the logistic regression is also used in engineering

12



for predicting the probability of failure of a given process, system or product.

Maximum likelihood (ML) estimation is one of the most popular methods to

estimate the coefficients of linear and logistic regression models. In the presence

of multicollinearity, the ML estimates will be unreliable; ML estimators in linear

regressions and logistic regressions will be inflated and may result in misleading

outcomes.

This chapter will focus on linear regression and logistic regression models. We

study the estimation of the model parametrers using maximum likelihood method

and two shrinkage methods to deal with multicollinearity problems. These two

shrinkage methods include Ridge and Liu-type (LT) estimators. This chapter is or-

ganized as follows. Section 2.1 describes the linear regression model and estimating

the parameters of the model. Section 2.2 describes the logistic regression model.

We also discuss the maximum likelihood estimator and how we can estimate the

parameters by iterative re-weighted least square method. Sections 2.4 and 2.5 de-

velop the Ridge and Liu-type methods in estimating the coefficients of the logistic

regression.

2.1 Linear Regression

Linear regression analysis is a statistical technique that describes the relationship

between a response (dependent) variable and one or more explanatory (indepen-

dent) variables. Simple and multiple linear regression analyses are differentiated

based on whether there are one or many explanatory variables. A simple linear

regression examines how one independent variable affects one dependent variable.
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In the second scenario, multiple linear regression examines the impact of various

independent variables on one dependent variable.

Consider the linear regression model:

y = Xβ + ϵ, (2.1)

where X is a known design matrix n × p of covariate values with rank(X) =

p, , y is a n × 1 response vector, ϵ = (ϵ1, · · · , ϵn) where ϵi are independent and

identically normal random errors that is ϵi
iid∼ N(0, σ2). The least-squares estimator

β̂LS =
(
X⊤X

)
−1X

⊤
y and a maximum likelihood estimation are among the most

popular methods used to estimate β. The likelihood function of β is given by

L(β) =
n∏

i=1

ϕ
(
x⊤

i β, σ
2
)
, (2.2)

where ϕ
(
x⊤

i β, σ
2
)
represents the pdf of normal distribution with mean µ⊤

i = x⊤

i β

and variance σ2. Accordingly, the log-likelihood can be obtained by

ℓ(β) =
−n
2

log (2π)− n

2
log
(
σ2
)
− 1

2σ2
(y −Xβ)⊤ (y −Xβ) . (2.3)

By taking the first derivative from (2.3) with respect to β, one obtains

∂ℓ

∂β
=

∂

∂β
(y −Xβ)⊤ (y −Xβ) .

Under the normality assumption of the error terms, the maximum likelihood esti-

mation of the regression coefficient will be the same as β̂LS.
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Multicollinearity happens when linear dependencies exist between the indepen-

dent variables, and in this case, β̂LS performs very poorly. If the main concern is the

estimation of the regression coefficients, collinearity can severely affect least squares

estimators. The variances of the least squares coefficient estimators are substan-

tial; they may be far from the actual values, although the least squares coefficient

estimators are still unbiased.

Hoerl and Kennard (1970) proposed Ridge estimator of linear regression β̂R =

(
X⊤X + kIpp

)
−1X

⊤
y to solve the problem of collinearity and it became the most

common method to cope with the weakness of least square estimator. When X⊤X

is ill-conditioned, it signifies that two or more regressors are almost linearly depen-

dent on one other. In this situation the results of this element
(
X⊤X

)−1
become

large and the variances of the estimates will increase; for this reason, β̂LS becomes

unstable. The condition number is used to measure the collinearity, and it is defined

by

κ =

(
λmax

λmin

)1/2

, (2.4)

where λmax and λmin denotes the maximum and the minimum eigenvalues of X⊤X.

A high condition number implies that X⊤X is ill-conditioned. By adding a

small constant to the diagonal of X⊤X, the Ridge estimator tries to deal with the

problem of multicollinearity in order to improve its condition number. It is easy

to see that the condition number of X⊤X + kIpp is a decreasing function of k.

In application, the shrinkage parameter k in Ridge regression is typically relatively

small. Moreover, a shrinkage parameter k should be high if we want to limit the
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condition number of X⊤X + kIpp to a small level. As a result, when X⊤X is

very ill-conditioned, a small k may not be able to deal with the multicollinearity

problem.

In general, the multicollinearity is not severe when the condition number, κ, is

less than 10. When κ becomes greater than 100, it refers to severe multicollinearity,

and the condition number between κ ∈ (30,100) refers to moderate to strong multi-

collinearity (Belsley et al., 1980). In the case of severe multicollinearity, we have to

choose large k to decrease multicollinearity. However, large values of k provide more

bias to the Ridge estimator; thus, the Ridge estimator cannot completely solve the

ill-conditioned design matrix.

As indicated above, Ridge estimation method uses a small values of k to deal

with the multicollinearity problem. When multicollinearity is severe the small value

of k will not be enough to handle the problem. On the other side, large k will

dramatically add biases to the estimates. It’s worth noting that Ridge regression can

be obtained by adding equation 0 = k1/2β+ϵ⊤ to the original equation y = Xβ+ϵ

and then using the least-squares estimator. The distance between k1/2β and 0

increases as k grows. As a result, adding 0 = k1/2β + ϵ⊤ to the original equation

causes the Ridge regression to be more biased, and consequently choosing a small

k is preferable.

To solve this problem, (Liu, 2003) proposed substituting
(
−d/k1/2

)
β̂ for the

left side of the equation 0 = k1/2β + ϵ⊤, where β̂ might be any estimator of β.

In the new equation
(
−d/k1/2

)
β̂ = k1/2β + ϵ⊤, we can use a big k since another

value, d can be adjusted to make the equation fit. We get the new estimator
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β̂LT = (X⊤X+kI)−1(X⊤y−d β̂) by augmenting the new equation to y = Xβ+ϵ

and then applying the least-squares approach. This estimator is called Liu-type (LT)

estimator and it is given by

β̂LT =
(
X⊤X + kIpp

)−1 (
X⊤X − dIpp

)
β̂, (2.5)

where k > 0, −∞ < d <∞ and β̂ can be the ML estimator or Ridge estimator.

The tuning parameter k can be used exclusively to regulate the condition num-

ber of X⊤X + kI in the estimator of β̂LT . After reducing the condition number

of X⊤X + kI to the required amount, some bias is inevitable; thus, the second

parameter d is used to improve the fit and statistical property.

When we use β̂LS in the LT penalty (2.5), the LT estimator is given by

β̂LT =
(
X⊤X + kIpp

)−1 (
X⊤X − dIpp

)
β̂LS, (2.6)

where k > 0, −∞ < d < ∞ and β̂LS is the maximum likelihood estimator.

There is no clear rule for choosing the tuning parameters (k,d), but according to

Liu (2003), the first parameter k can be calculated in a different way, such as

pσ̂2
ML/β̂

⊤

MLβ̂ML orλ1 − 100λp/99, where p is the number of covariates in the re-

gression, σ̂2
LS is a mean square error of maximum likelihood estimator and λ1, λp

denotes the maximum and the minimum eigenvalues of X⊤X. The second tuning

parameter d is given by

d̂ =

∑p
i=1

((
σ̂2
ML − k̂α̂2

ML,i

)
/
(
λi + k̂

)2)

∑p
i=1

((
λiα̂2

ML,i − σ̂2
ML

)
/λi

(
λi + k̂

)2) , (2.7)
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where α̂ML = Λ−1Z⊤y, such that Z = XQ and Q is the orthogonal matrix whose

columns constitute the eigenvectors ofX⊤X and Λ = Z⊤Z = diag (λ1, · · · , λp) ,where

λ1 ≥ · · · ≥ λp > 0 are the ordered eigenvalues of X⊤X.

When we use β̂R in the LT penalty (2.5), the LT estimator is given by

β̂LT =
(
X⊤X + kIpp

)−1 (
X⊤X − dIpp

)
β̂R, (2.8)

where k > 0, −∞ < d <∞ and β̂R is the Ridge estimator. Readers are referred to

Liu (2003) for more details about the LT estimator of the coefficients of the linear

regression model.

2.2 Logistic Regression

The logistic regression model is a popular method utilized in various fields, includ-

ing medical research and natural sciences. The logistic regression model uses the

information from a collection of explanatory independent variables to explain the

binary response variable which has only two possible outcomes, for instance, success

or failure of an experiment, presence or absence of disease.

Let y = (y1, . . . , yn) be the vector of binary responses from a random sample of

size n. LetX represent non-random (n×p) design matrix of p explanatory variables

(x1, ...,xp) with rank(X) = p < n. The logistic regression model is then given by

P(yi = 1|X) = p(xi;β) = 1/
(
1 + exp(−x⊤

i β)
)
, (2.9)

where β represents the vector of the unknown coefficients of the logistic regression.
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Instead of utilizing y as the dependent variable in the logistic regression func-

tion, there is an alternative function called logit, which is defined as the natural

logarithmic of the odds and it is given by ln
(

p(xi;β)
1−p(xi;β)

)
= x⊤

i β. The probability

determines the value of the logit function. Note that the logistic regression function

takes a value between [0, 1] , while logit function can be any real number between

[−∞,∞].

Generalized linear models (GLMs) are a natural generalization of classical linear

models that allow a population’s mean to depend on a linear predictor through a

(possibly nonlinear) link function. This allows the response probability distribution

to be any member of the exponential family of distributions. Logistic regression is

one special case of generalized linear models. The random component of the model

is given by Yi
iid∼ B (1, p(xi;β)) . Likelihood method is a popular method to estimate

the parameter of the logit model. The parameters βj, j = 1, · · · , p are interpreted

as the log odds ratio of (yi = 1) when xj changes by one unit.

2.3 Maximum Likelihhood Estimator

Maximum likelihood (ML) estimation is one of the most popular methods for es-

timating the parameters of linear and logistic regression models. The ML method

does not impose any restrictions on the independent variables. Let Yi be the bi-

nary response variable associated to the i-th subject, where Yi
iid∼ B (1, p(xi;β));

i = 1, · · · , n, where p(xi;β) is given by (2.9). The likelihood function of β is then

19



given by

L (β|D) =
n∏

i=1

{(
1

1 + e−x⊤

i β

)yi (
1− 1

1 + e−x⊤

i β

)1−yi
}
.

Accordingly, the log-likelihood can be obtained by

ℓ(β) =
n∑

i=1

{
x⊤

i βyi − log
(
1 + exp(−x⊤

i β)
)}
. (2.10)

It is known that there is no closed-form solution to the maximum likelihood esti-

mate of β in the logistic regression model. Thus, Newton-Raphson (NR) technique

is typically used to estimate the coefficients of the logistic regression (2.9). The NR

algorithm iteratively estimate β as follows:

β(t+1) = β(t) −H−1(ℓ)
(
β(t)
)
.∇βℓ

(
β(t)
)
, (2.11)

where β(t) is the estimate updated from iteration t. Also∇βℓ
(
β(t)
)
andH−1(ℓ)

(
β(t)
)

represent respectively the gradient and hessian matrix evaluated at β(t). By taking

the first derivative from (2.10) with respect to βl, the gradient is obtained by

∂ℓ (β)

∂βl
=

n∑

i=1

{
−
(

ex
⊤

i β

1 + ex
⊤

i β

)
xil + (yixil)

}

=
n∑

i=1

(yi − pi) xil, (2.12)

where

pi =
ex

⊤

i β

1 + ex
⊤

i β
. (2.13)
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We can write the gradient (2.12) in a matrix form as

∇βℓ (β) = X⊤ (y − p) . (2.14)

Once the gradient is obtained in (2.14), we need to focus on the second derivative

of (2.10) with respect to β and calculate the Hessian matrix. Accordingly, the (k, l)

entry of the Hessian matrix is calculated by

∂2ℓ (β)

∂βk∂βl
=

n∑

i=1

{
−xikxil

(
1

1 + e−x⊤

i β

)2

e−x⊤

i β

}

= −
n∑

i=1

xilxikpi (1− pi) (2.15)

where pi is obtain from (2.13). The Hessian matrix can be written as the inner-

product of the weighted matrix by

H (ℓ) = −X⊤DX, (2.16)

where D is a diagonal matrix with Dii = pi (1− pi) ; i = 1, · · · , n. Now from the

gradient function (2.14) and the hessian matrix (2.16), one can use the NR method

and obtain the ML estimate of the coefficients of the logistic regression by

H(ℓ)
(
β(t)
)(

β(t+1) − β(t)
)
= −∇βℓ

(
β(t)
)
.

2.3.1 Iterative Re-weighted Least Squares Method

The NR can be reformulated as an iterative re-weighted least squares method. we

can re-write the gradient (2.14) and hessian (2.16) in matrix form as follows
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∂ℓ

∂β
= X⊤

(
y − g−1 (x;β)

)
,

∂2ℓ

∂β∂β⊤
= −X⊤WX,

where g−1 (x;β) = [g−1 (x1;β) , ..., g
−1 (xn;β)]

⊤
, and g−1(xi;β) is given by

g−1(xi;β) = 1/
(
1 + exp(−x⊤

i β)
)
,

and W diagonal matrix with W ii =
e−x⊤

i
β̂

(
1 + e−x⊤

i
β̂

)2 , i = 1, ..., n. Hence the equation

(2.11) can be updated as follows

β̂
new

= β̂
old

+
(
X⊤WX

)−1
X⊤

[
y − g−1

(
x, β̂

old
)]

=
(
X⊤WX

)−1
X⊤W

{
Xβ̂

old
+W−1

[
y − g−1

(
x, β̂

old
)]}

=
(
X⊤WX

)−1
X⊤WZ, (2.17)

where Z =
{
Xβ̂

old
+W−1

[
y − g−1

(
x; β̂

old
)]}

. The Newton-Raphson Algo-

rithm update is thus the solution to the following weighted least squares problem.

β̂
new

= argmin
β

(Z − Xβ)⊤ W (Z − Xβ) . (2.18)

Effectively, at each iteration, the adjusted response Z is regressed on the covariates

including X. Comparing equations (2.17) and (2.18), we can view (2.17) as the β̂

estimator of weighted regression Z = Xβ.
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Based on regularity conditions of (Ngunyi et al., 2014; Beer, 2001; Rashid and

Shifa, 2009), as n → ∞, the MLE estimator will be asymptotic consistent es-

timator for β and β̂jn is consistent for βj and
√
n
(
β̂n − β

)
is asymptotically

normal with mean 0 and covariance matrix [I(β)−1] such that
√
n
(
β̂jn − β

)
→

N
(
0, [I(β)−1]jj

)
, where β̂jn represents the j−th element of β̂n, I(β) is Fisher’s

information matrix and [I(β)−1]jj is the j−th element of the inverse of Fisher’s

information matrix. For more details, see (Ngunyi et al., 2014).

2.4 Ridge Estimator of Logistic Regression Pa-

rameters

Hoerl and Kennard (1970) proposed the method of Ridge regression, as the result

of derived from a restricted maximum likelihood method (REML).

In this section, we derive the Ridge estimation of logistic regression coefficients.

Ridge estimator of the logistic regression is found by the maximization of the Ridge

penalized likelihood (Duffy and Santner, 1989). The Ridge penalized log likelihood

is given by

ℓR (β) = ℓ (β)− k ∥β∥22 , (2.19)

where ℓ (β) is the unrestricted log-likelihood function of logistic regression and

∥β∥ =
(∑

j β
2
j

)1/2
. From equation (2.19), the Ridge penalized log-likelihood can
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be written by

ℓR (β) =
n∑

i=1

(
x⊤

i βyi − log
(
1 + ex

⊤

i βj

))
− 1

2
kββ⊤.

By taking the first and second derivatives from the log-likelihood function (2.19),

the gradient and Hessian matrix are given by

∂ℓR (β)

∂β
=
∂ℓ (β)

∂β
− kβ

= X⊤
(
y − g−1 (x;β)

)
− kβ, (2.20)

∂2ℓR (β)

∂β∂β⊤
=
∂2ℓ (β)

∂β∂βT
− kI

= −
(
X⊤WX + kI

)
= −V . (2.21)

Let V = X⊤WX + kIpp. From eqns (2.20) and (2.21), the estimation of β

based on the penalized likelihood can be obtained by the following NR iteration:

β̂
new

= β̂
old

+ V −1
{
X⊤

(
y − g−1

(
x; β̂

old
))

− kβ̂
old
}

= V −1V β̂
old − kV −1β̂

old
+ V −1X⊤WW−1

{(
y − g−1

(
x; β̂

old
))}

= V −1X⊤W
{
X β̂

old
+W−1

[
y − g−1

(
x; β̂

old
)]}

=
(
X⊤WX + kIpp

)−1
X⊤WZ, (2.22)
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where

Wii =
e−x⊤

i
β̂

(
1 + e−x⊤

i
β̂

)2

Z =
{
X β̂

old
+W−1

[
y − g−1

(
x; β̂

old
)]}

,

and Ipp is the identity matrix with size (p×p). When there is multicollinearity, the

mean square error of the Ridge logistic estimator is smaller than the ML estimator

(Schaefer et al., 1984). From equation (2.22), the Ridge logistic estimator can be

written by

β̂R =
(
X⊤WX + kIpp

)
−1X

⊤

WX β̂ML, (2.23)

where β̂ML =
(
X⊤WX

)−1
X⊤WZ is the ML estimate of β.

Like the Ridge regression estimator, a high condition number implies thatX⊤WX

is ill-conditioned. When the condition number of X⊤WX is high, the effect of

collinearity on the least squares estimator is most serious. The Ridge estima-

tor could deal with this problem by adding a small constant to the diagonal of

X⊤WX to improve its condition number. The condition number is given in equa-

tion (2.4), where λmax and λmin denotes the maximum and the minimum eigenvalues

of X⊤WX.

2.5 Liu-type Estimator for Logistic Regression

Parameters

The Liu-type (LT) logistic estimator was presented to address the problem of ex-

treme multicollinearity, with the expectation of a smaller MSE than the Ridge
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logistic regression. The LT estimator of coefficients of logistic is defined as

β̂LT =
(
X⊤WX + kIpp

)−1 (
X⊤WX − dIpp

)
β̂, (2.24)

where k > 0, −∞ < d <∞ and β̂ can be the maximum likelihood (ML) estimator

or Ridge estimator. The LT estimation method requires two tuning parameters.

The first parameter is k, which is designed to control the value of condition number

of X⊤WX + kIpp. The inevitable bias caused by k can be adjusted with a second

parameter d, the so-called bias correction parameter after the condition number of

X⊤WX+kIpp has been decreased to the desired amount. These tuning parameters

will enable the LT estimator to deal with the problem of severe multicollinearity.

Hence, the LT estimator will yield a smaller MSE than the Ridge method in esti-

mating the parameters of the logistic regression. When we use β̂R in the LT penalty

(2.24), the LT logistic estimator is obtained by

β̂LT =
(
X⊤WX + kIpp

)−1 (
X⊤WX − dIpp

)
β̂R, (2.25)

where k > 0, −∞ < d <∞ and β̂R is the Ridge logistic estimator given by (2.23).

There is no clear rule for choosing k, but for logistic regression models, there are

many choices of Ridge parameter such as 1/β̂
⊤

MLβ̂ML, p/β̂
⊤

MLβ̂ML, (p+1)/β̂
⊤

MLβ̂ML

(Schaefer et al., 1984; Smith et al., 1991), where p is the number of covariates in

the regression. From (2.25), the MSE of the LT logistic estimator is obtained by
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MSE
(
β̂LT

)
= tr

[(
XTWX + kIp

)−1 (
XTWX − dIp

) (
XTWX

)−1

(
XTWX − dIp

) (
XTWX + kIp

)−1
]

+
∥∥∥
(
X⊤WX + kIp

)−1 (
X⊤WX − dIp

) (
X⊤WX

)−1

X⊤W p (xi;β)− β
∥∥2
2
.

(2.26)

For a fixed k, the MSE( β̂LT ) is a quadratic function of d according to Inan and

Erdogan (2013). Therefore, it is straightforward to find the optimum d value that

minimizes the MSE given by (2.26). If the optimum d value is utilized as a proposed

estimator, the MSE( β̂LT ) is always less than or equal to the Ridge estimator’s MSE.

From (2.26), we can see MSE( β̂LT ) depends on two unknown parameters and thus

we can not calculate the MSE in this case. Inan and Erdogan (2013) proposed a

solution in order to calculate the MSE( β̂LT ) for any practical study. This solution

depends on replacing the unknown parameter β with its estimate β̂ML and p (xi;β)

with p(xi; β̂) in (2.26).
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Chapter 3

Shrinkage Estimators for Mixture

of Linear Regressions

In this chapter, we focus on a finite mixture of regression models. Multicollinearity

significantly impacts the Maximum likelihood (ML) estimate of the mixture of re-

gression models, just as it does on the regression model. We develop two shrinkage

approaches through an unsupervised learning approach to estimate the model coef-

ficients even in multicollinearity issues (Ghanem et al., 2022b). These approaches

include the Liu-type (LT) and Ridge shrinkage estimation methods. The perfor-

mance of the developed methods is evaluated via classification and stochastic ver-

sions of EM algorithms. We show that the LT estimators outperform their Ridge

and ML counterparts in estimating the coefficients of the mixture of regression

models through various numerical studies in Chapter 5.

This chapter is organized as follows. Section 3.1 presents an introduction to the

mixture of regression models. Section 3.2 describes the statistical part of mixture

of the regression models. Sections 3.3, 3.4 and 3.5 describe the ML, Ridge and LT

methods in estimating the parameters of the mixture of regression models.
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3.1 Introduction

The finite mixture models have been used to study various random occurrences. A

mixture model is a probabilistic model that identifies the sub-populations within a

larger population. A mixture model formally proposes a mixture of distributions to

model the heterogeneity of observations in the population. Finite mixture models

have found applications in various disciplines, including genetics, economics, and

medicine (Lindsay, 1995; Böhning, 1999).

The mixture of linear regressions is one of the popular methods in mixture

modeling. The mixture of regressions is vital when no information matches the

observations to the component regressions. Quandt and Ramsey (1978) have pro-

posed a general form for a mixture of the linear regression models, namely switching

regression. In order to estimate the parameters, the method relied on the definition

of the moment-generation function.

The expectation-maximization (EM) method was developed to fit the two re-

gression problems by De Veaux (1989). Jones and McLachlan (1992) used the EM

method in order to fit these two regression models and applied mixture of regressions

in data analysis. The two-component mixture of single variable linear regression has

been fitted using the EM algorithm (Turner, 2000). Hawkins et al. (2001) consid-

ered the determining the number of components in the mixture of linear regression

models utilizing the likelihood equation. Also, the asymptotic theory for maximum

likelihood estimator has been investigated for mixture regression models by Zhu

and Zhang (2004).

In this chapter, we investigate the approaches to fit a mixture of linear regressions
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by the concept of the maximum likelihood method. We discuss three approaches

for maximization to achieve the maximum likelihood estimators. These approaches

include the expectation-maximization algorithm (EM) (Dempster et al., 1977), the

classification EM algorithm (CEM) (Celeux and Govaert, 1992) and the stochastic

EM algorithm (SEM) (Celeux, 1985). Ganesalingam (1989) proposed numerical

studies to compare the EM and CEM techniques using the Gaussian mixture in

practical cases. Celeux and Govaert (1993) extended this analysis to clarify the

impact of sample sizes and the algorithms’ dependence on their starting values.

Celeux and Govaert (1993) proposed an extension of the comparisons to Bernoulli

models in the case of binary data. There are also some comparisons of EM and

SEM approaches in various distributions. Celeux et al. (1996) used Monte Carlo

numerical simulations and real data to compare these techniques. Dias and Wedel

(2004) examined EM and SEM techniques for estimating Gaussian mixture model

parameters.

3.2 Statistical Method

Regression model yi = x⊤

i β + ϵi is one of the most popular statistical methods to

study the relationship between response variable and the independent variables in

the design matrix. Let x⊤

i = (xi,1, . . . , xi,p) be the vector of p independent variables

for the i-th subject in a random sample of size n. Let y = (y1, . . . , yn) denote the

vector of responses from a sample of size n. Let X denote (n× p) design matrix of

p independent variables of rank(X) = p < n.

The mixture of regression models is a generalization of the regression model
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when the observed data come from M components.While the number of components

M is assumed to be known throughout this thesis, the problem is treated as an

unsupervised learning approach when the component membership of observations

are unknown and should be estimated. The mixture of regression models is given

by

yi =





x⊤

i β1 + ϵi1 with probability π1,
x⊤

i β2 + ϵi2 with probability π2,
...

...
x⊤

i βM + ϵiM with probability πM,

(3.1)

where ϵij be a random variables with ϵij
iid∼ N

(
0, σ2

j

)
, i = 1, ..., n and βj =

(βj,1, · · · , βj,p) represent the coefficients of p predictors in the j-th component re-

gression for j = 1, · · · ,M and π = (π1, . . . , πM) denote the vector of the mixing

proportions with πj > 0 and
∑M

j=1 πj = 1. Let θj =
(
βj, σ

2
j

)
represent the parame-

ters of the j-th component. Thus, we donate the vector of all unknown parameters

of mixture (3.1) with Ψ = (π,θ1, · · · ,θM).

From regression model (3.1), the log-likelihood function of Ψ can be written as

ℓ (Ψ ) =
n∑

i=1

log

(
M∑

j=1

πjϕj

(
x⊤

i βj, σ
2
j

)
)
, (3.2)

where ϕj

(
x⊤

i βj, σ
2
j

)
represents the univariate normal distribution with mean µj =

x⊤

i βj and variance σ2
j . To get the ML estimate of Ψ , we must maximize the log-

likelihood function (3.2). The gradient of (3.2) is not tractable with respect to

component parameters θj, j = 1, · · · ,M . We consider {(xi, yi), i = 1, . . . , n} to be

incomplete data and use the expectation-maximization (EM) approach from (3.2) to

31



determine Ψ̂ML. Suppose {(xi, yi,Zi), i = 1, . . . , n} denote the complete data where

Zi = (Zi1, . . . , ZiM) is the latent variable repressing the component membership of

the i-th subject with

Zij =

{
1 if the i-th subject comes from the j-th component,
0 o.w.,

where Zi
iid∼ Multi(1, π1, . . . , πM). The conditional distribution of Zi|yi is calculated

using the marginal distribution of the latent variables and it is given by

f (zi|yi) =
M∏

j=1

{
πjϕj

(
x⊤

i βj, σ
2
j

)
∑M

j=1 πjϕj

(
x⊤

i βj, σ
2
j

)
}zji

. (3.3)

From above, it is easy to show Zi|yi iid∼ Multi(1, τi1(Ψ), . . . , τiM(Ψ)) where

τij (Ψ ) =
πjϕj

(
x⊤

i βj, σ
2
j

)
∑M

j=1 πjϕj

(
x⊤

i βj, σ
2
j

) . (3.4)

Thus, the complete log-likelihood of Ψ is given by

ℓc (Ψ ) =
n∑

i=1

M∑

j=1

zijlog (πj) +
n∑

i=1

M∑

j=1

zij log ϕj

(
x⊤

i βj, σ
2
j

)
. (3.5)

3.3 ML Estimation Method

The expectation maximization (EM) algorithm is a well-known technique to find

the maximum likelihood estimate of mixture model parameters. The EM algorithm

decomposes the estimation process into iterative expectation (E) and maximization

(M) steps using latent variables on top of the observed data. As an iterative method,
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EM algorithm starts with an initial values. Let Ψ(0) = (π(0),θ
(0)
1 , · · · ,θ(0)

M ) and

Ψ (r) represent the initial values and the estimate in the r-th iteration of the EM

algorithm, respectively. We have to compute the conditional expectation of the

entire log-likelihood function (3.5) in the E-step on the (r + 1)− th iteration. The

conditional log-likelihood function Q(Ψ ,Ψ (r)) replaces the latent variables by the

conditional expectation of the latent variables as

Q(Ψ,Ψ(r)) = Q1(π,Ψ
(r)) +Q2(θ,Ψ

(r)),

where

Q1(π,Ψ
(r)) =

n∑

i=1

M∑

j=1

τij(Ψ
(r))log (πj) , (3.6)

and

Q2(θ,Ψ
(r)) =

n∑

i=1

M∑

j=1

τij

(
Ψ (r)

)
log ϕj

(
x⊤

i βj, σ
2
j

)
, (3.7)

where τij(Ψ
(r)) is achived by (3.4). In the M-step, we must maximize Q(Ψ ,Ψ (r))

with respect to π and θ in order to update Ψ (r+1). One can update π(r+1) by

maximizing Q1(π,Ψ
(r)) subject to

∑M
j=1 πj = 1 as follows

π̂
(r+1)
j =

n∑

i=1

τij(Ψ
(r))/n; j = 1, . . . ,M − 1. (3.8)

The maximization of Q2(θ,Ψ
(r)) can be reformulated as the weighted least square

method as follows

β̂
(r+1)

j = argmin
βj

(y −Xβ)⊤Wj(y −Xβ)/n, (3.9)
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where Wj is n×n diagonal matrix with diagonal elements (τij(Ψ
(r)), . . . , τnj(Ψ

(r)))

for all j = 1, . . . ,M . One can easily update β̂
(r+1)

j as the solution to (3.9) by

β̂
(r+1)

j =
(
X⊤WjX

)−1
X⊤Wjy, j = 1, . . . ,M. (3.10)

From the weighted least square (3.9) and following (Faria and Soromenho, 2010),

we then update σ̂
2(r+1)
j as follows

σ̂
2(r+1)
j =

(y −Xβ̂
(r+1)

)⊤W
(r)
j (y −Xβ̂

(r+1)
)∑n

i=1 τij(Ψ
(r))

, j = 1, . . . ,M. (3.11)

To find Ψ̂ML, we iteratively alternate the E- and M- steps of the EM algorithm

until the stopping criterion |ℓ(Ψ(r+1))− ℓ(Ψ(r))| becomes negligible.

3.3.1 Classification EM Algorithm

In the EM algorithm mentioned above, we estimate the component parameters of

the mixture of regressions using information from all observations (as membership

probabilities) in each iteration. Following Celeux and Govaert (1992), we will es-

timate Ψ iteratively using the classification version of the EM algorithm (CEM).

The CEM technique includes a classification (C) step between the E- and M-steps,

which updates the mixture’s component parameters using the classified complete

data log-likelihood function in the M-step.

The E-step here is the same as E-step of the EM algorithm. In C-step, the

observations are then assigned to M mutually exclusive partitions corresponding

to the M components of mixture model (3.1). Let P(r+1) = (P
(r+1)
1 , . . . , P

(r+1)
M )
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represent the partition in the (r + 1)-th iteration. Each subject (xi, yi) is assigned

to partition P
(r+1)
h when

τih(Ψ
(r)) = argmin

j
τij(Ψ

(r)).

Note that if the maximum weight isn’t unique, the tie will be broken at random.

When a partition becomes empty or contains only one observation, the CEM algo-

rithm is also terminated and Ψ (r) is returned.

In the M-step, we maximize conditional expectation of complete log-likelihood

using the partition P (r+1). From (3.6) the mixing proportion is updated by

π̂
(r+1)
j = nj/n, j = 1, . . . , J, (3.12)

where nj is the number observations allocated to partition P
(r+1)
j . Applying the

weighted least square (3.9) to each partition P
(r+1)
j , we can update the parameters

of the j-th component j = 1, . . . ,M by

β̂
(r+1)

j =
(
X⊤

j WjXj

)−1
X⊤

j Wjyj, (3.13)

σ̂
2(r+1)
j =

(yj −Xjβ̂
(r+1)

)⊤W
(r)
j (yj −Xjβ̂

(r+1)
)∑n

i=1 τij(Ψ
(r))

, (3.14)

where Xj and yj represent, respectively, (nj × p) design matrix and vector of re-

sponses corresponding to observations allocated to P
(r+1)
j . Also W

(r)
j is the diagonal

weight matrix of size nj with diagonal entries (τij(Ψ
(r)), . . . , τnj ,j(Ψ

(r))). Finally,

we alternate repeatedly the E-, C- and M- steps until |ℓ(Ψ(r+1))− ℓ(Ψ(r))| becomes

negligible.
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3.3.2 Stochastic EM Algorithm

To fit a mixture of regression models, the stochastic version of the EM method

(Celeux, 1985) might be used. In each iteration, the stochastic EM (SEM) method

implements a stochastic version of the S-step between E- and M-steps. Despite

the fact that the E- and M-steps in the SEM algorithm are the same to those in

the CEM algorithm, the SEM simulates a realization of the unobserved indicator

zi; i = 1, ..., n by drawing them at random from their current conditional distribution

as

Z∗

i = (Z∗

i1, · · · ,Z∗

iM)
iid∼Multi(1, τi1(Ψ

(r)), . . . , τiM(Ψ(r)).

Then observations (xi, yi) is classified to partition P
(r+1)
j if Z∗

ij = 1, i = 1, · · · , n, j =

1, · · · ,M . Using the stochastic partitions developed in S-step, we update the mix-

ture parameters from (3.12), (3.13) and (3.14) in M-step.

From Celeux (1985) and Faria and Soromenho (2010), point-wise convergence

in SEM is not guaranteed. The estimation technique resembles a Markov chain in

which the maximum likelihood estimate moves around a stationary state. To do

this, we alternate the E-, S-, and M-steps until the criterion |ℓ(Ψ(r+1)) − ℓ(Ψ(r))|

becomes negligible (similar to the same algorithms) or the chain exceeds a pre-

specified maximum number of iterations, which is fixed for all EM, CEM, and SEM

algorithms for fair comparison.

3.4 Ridge Estimation Method

The ML method is a specific tool to estimate the parameters of the mixture of

regression models; however, when the covariates are linearly correlated, the ML
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estimates are typically affected by multicollinearity. The Ridge estimation method

is one of the most common ways of dealing with the issues of least square regression

(Hoerl and Kennard, 1970). The Ridge estimate for the parameters of mixture (3.1)

can be obtained as a solution to the penalized log-likelihood function given by

ℓR(Ψ) = ℓ(Ψ)− kβ⊤β/2 (3.15)

where ℓ(Ψ) is the incomplete log-likelihood from (3.2) and k > 0 is the Ridge

parameter. In the same manner as Subsection 3.3, for each observation (xi, yi), i =

1, . . . , n, we first introduce M dimensional latent vector Zi = (Zi1, . . . , ZiM). The

Ridge estimate of Ψ is then obtained using an EM technique that maximises the

full Ridge log-likelihood function.

The E-step of the Ridge EM algorithm is the same as the E-step of Subsection

3.3. In the M-step, the mixing proportion are updated from (3.8). To update

the coefficients of the component regressions, we require to maximize Q2(θ,Ψ
(r))

subject to the Ridge penalty within each component of the mixture as

QR
2 (θ,Ψ

(r)) = Q2(θ,Ψ
(r))− kjβ

⊤

j βj/2,

whereQ2(θ,Ψ
(r)) is from (3.7) and kj is the Ridge parameter in the j-th component.

Like ML method, one can write the maximization of QR
2 (θ,Ψ

(r)) on the (r + 1)-th

iteration to a weighted least square subject to Ridge penalty as

β̂
(r+1)

R,j = argmin
βj

(y −X)⊤Wj(y −X) + kjβ
⊤

j βj/2, (3.16)

where Wj is n×n diagonal matrix with diagonal elements (τij(Ψ
(r)), . . . , τnj(Ψ

(r)))

obtained from (3.4). Applying (3.16), β̂
(r+1)

j ; j = 1, . . . ,M is updated by

β̂
(r+1)

R,j =
(
X⊤WjX+ kjI

)−1
X⊤Wjy. (3.17)
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Lemma 3.1. Under the assumptions of mixture of regression models (3.1), sup-

pose λ1j, . . . , λpj and u1j, . . . , upj be eigenvalues and orthonormal eigenvectors of

X⊤WjX where Wj is n× n diagonal matrix with entries (τij(Ψ
(r)), . . . , τnj(Ψ

(r)))

under Ridge EM algorithm. Let Λj = diag(λ1j, . . . , λpj) and Uj = [u1j, . . . , upj].

Then the canonical weighted Ridge estimator in each component regression is given

by

α̂R,j = (Λj + kjI)
−1

Λ
1/2
j V⊤

1 W
1/2
j y.

and

β̂R,j = Ujα̂R,j

withV1 = [v1j, . . . , vpj] where v1j, . . . , vpj are the orthonormal eigenvectors of W
1/2
j XX⊤W

1/2
j .

Proof: The positive eigenvalues of X⊤WjX and W
1/2
j XX⊤W

1/2
j must be the

same. Hence, the eigenvalues of W
1/2
j XX⊤W

1/2
j are given by λ1j, . . . , λpj and the

other (n − p) values must be zero. From singular value decomposition, it is easy

to see V1 = W
1/2
j XUjΛ

−1/2
j and Λ

1/2
j = V⊤

1 W
1/2
j XUj. From the definition of V1

and Λ
1/2
j , we can show

W
1/2
j X = V1V

⊤

1 W
1/2
j XUjU

⊤

j = V1Λ
1/2
j U⊤

j . (3.18)

From (3.18), we can write the canonical form of the regression by

W
1/2
j y = W

1/2
j Xβj +W

1/2
j ϵ = V1Λ

1/2
j U⊤

j βj +W
1/2
j ϵ = V1Λ

1/2
j αj +W

1/2
j ϵ.

(3.19)

From (3.19), we can derive the canonical form of the weighted Ridge estimator in
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each component by

α̂R,j =
(
(V1Λ

1/2
j )⊤(V1Λ

1/2
j ) + kjI

)−1

(V1Λ
1/2
j )⊤W

1/2
j y

=
(
Λ

1/2
j V⊤

1 V1Λ
1/2
j + kjI

)−1

Λ
1/2
j V⊤

1 W
1/2
j y

= (Λj + kjI)
−1

Λ
1/2
j V⊤

1 W
1/2
j y.

Ujα̂R,j =Uj (Λj + kjI)
−1

U⊤

j UjΛ
1/2
j V⊤

1 W
1/2
j y

=
(
UjΛ

1/2
j Λ

1/2
j U⊤

j + kjI
)−1

(V1Λ
1/2
j U⊤

j )
⊤W

1/2
j y

=
(
(V1Λ

1/2
j U⊤

j )
⊤(V1Λ

1/2
j U⊤

j ) + kjI
)−1

(V1Λ
1/2
j U⊤

j )
⊤W

1/2
j y

=
(
(W

1/2
j X)⊤(W

1/2
j X) + kjI

)−1

(W
1/2
j X)⊤W

1/2
j y

=
(
X⊤WjX+ kjI

)−1
X⊤Wjy

□

From Ridge weighted least square (3.16), the variance term can be updated by

σ̂
2(r+1)
R,j =

(y −Xβ̂
(r+1)

R )⊤W
(r)
j (y −Xβ̂

(r+1)

R )∑n
i=1 τij(Ψ

(r))
, (3.20)

where β̂
(r+1)

R = (β̂
(r+1)

R,1 , . . . , β̂
(r+1)

R,M ). There are various methods available in the

literature for estimation of kj. Following Hoerl and Kennard (1970) and Liu (2003),

we estimate the parameter by k̂j = pσ̂2
ML,j/β̂

⊤

ML,jβ̂ML,j where σ̂
2
ML,j and β̂ML,j are

calculated from (3.11) and (3.10), respectively. The E- and M-steps are repeatedly

computed until |ℓR(Ψ(r+1))− ℓR(Ψ(r))| < ϵ, where ϵ is a user defined tolerance.
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3.4.1 Ridge CEM Algorithm

In a mixture of regressions, the CEM technique can also be used to obtain the Ridge

estimates of the parameters. We must accommodate a C-step between E- and M-

steps in the Ridge EM algorithm, similar to the CEM algorithm given in subsection

3.3. Here the E-step remains the same as before. Like the C-step of ML method,

we classify the observations to partitions P(r+1) = (P
(r+1)
1 , . . . , P

(r+1)
M ) based on the

maximum probability of memberships; that is

P
(r+1)
j = {(xi, yi); τij(Ψ

(r)) = argmax
h

τih(Ψ
(r))}, ∀j = 1, . . . ,M.

Based on P(r+1), we use (3.12) to update the mixing proportions of the mixture. The

Ridge parameters are calculated using a method similar to the Ridge EM technique.

We apply the Ridge weighted least square (3.16) to each partition P
(r+1)
j and update

the coefficients and variance term of each component regression by

β̂
(r+1)

R,j =
(
X⊤

j WjXj + kjI
)−1

X⊤

j Wjyj, (3.21)

σ̂
2(r+1)
R,j =

(yj −Xjβ̂
(r+1)

R )⊤W
(r)
j (yj −Xjβ̂

(r+1)

R )∑n
i=1 τij(Ψ

(r))
, (3.22)

where Xj is (nj × p) design matrix and yj is vector of responses from observations

classified to P
(r+1)
j . W

(r)
j is the diagonal weight matrix with entries

(
τij(Ψ

(r)), . . . , τnj ,j(Ψ
(r))
)

from (3.4). Finally, the E-, C- and M- steps under Ridge estimation procedure are

alternated until convergence criterion is statified.
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3.4.2 Ridge SEM Algorithm

The stochastic EM algorithm can be used to implement the Ridge estimation

method. The S-step, like the SEM of the ML technique, determines the com-

ponent membership of observations under the Ridge approach stochastically by

Z∗

i = (Z∗

i1, . . . , Z
∗

M)
iid∼ Multi(1, τi1(Ψ

(r)), . . . , τiM(Ψ(r))); i = 1, . . . , n and updates

P(r+1) = (P
(r+1)
1 , . . . , P

(r+1)
M ) such that P

(r+1)
j = {(xi, yi);Z

∗

ij = 1}; ∀j = 1, . . . ,M .

Based on this stochastic partition of S-step, we update the mixture parameters by

(3.12), (3.21) and (3.22).

Lemma 3.2. Under the assumptions of mixture of regression models (3.1), with

component regression models yj = Xjβj+ϵ based on nj observations with rank(Xj) =

p. Suppose λ1j, . . . , λpj and u1j, . . . , upj be eigenvalues and orthonormal eigenvectors

ofX⊤

j WjXj where Wj is nj×nj diagonal matrix with entries (τij(Ψ
(r)), . . . , τnj(Ψ

(r)))

under Ridge CEM or Ridge SEM algorithm. Let Λj = diag(λ1j, . . . , λpj) and

Uj = [u1j, . . . , upj]. Then The canonical weighted Ridge estimator in each com-

ponent regression is given by

α̂R,j = (Λj + kjI)
−1

Λ
1/2
j V⊤

1 W
1/2
j yj.

and

β̂R,j = Ujα̂R,j,

withV1 = [v1j, . . . , vpj] where v1j, . . . , vpj are the orthonormal eigenvectors of W
1/2
j XjX

⊤

j W
1/2
j .

Proof: The lemma can be proved in a similar vein to Lemma 3.1. □
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Finally, the E-, S- and M-steps are iterated until either stopping rule is satisfied

or algorithm reaches a pre-specified number iterations.

3.5 Liu-type Estimation Method

When the design matrix is severely ill-conditioned, using the Ridge estimator to

add small values to the diagonal members may not be enough to solve the multi-

collinearity problem. On the other hand, increasing the Ridge parameter may result

in a more extensive bias in the Ridge estimation approach. Liu (2003) proposed the

Liu-type (LT) shrinkage approach for estimating regression parameters when there

is severe multicollinearity. Like the Ridge method, the LT approach optimizes the

estimating equation while applying the LT penalty to control the multicollinearity

problem. The LT penalty is given by

(− d

k1/2
)β̂ = k1/2β + ϵ′, (3.23)

where β̂ can be any estimator of coefficients and d ∈ R and k > 0 are two tuning

parameters of the LT estimation method. In this section, we create the LT shrinkage

approach for estimating the unknown parameters of the mixture of regression models

(3.1). By maximizing the log-likelihood function (3.2) subject to the LT penalty,

we find the LT estimate of Ψ.

The penalized log-likelihood function based on the observed data is not tractable

concerning the component parameters. We apply an unsupervised technique to

design the LT estimation procedure and use the EM algorithm to estimate the

unknown parameters of the mixture model iteratively. First we have to introduce

latent vectors Zi = (Zi1, . . . , ZiM) in order to represent the component membership
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of the i-th observation (xi, yi); i = 1, . . . , n. Let (X,y,Z) represent the complete

data. Then EM algorithm under the LT method proceeds as follows.

On (r+1)-th iteration, the E-step stays similar to the E-step under ML approach.

The mixing proportion of the model under LT estimation is updated by (3.8). From

(3.7) we have to maximize Q2(θ,Ψ
(r)) under the LT penalty within each component

to estimate the regression parameters. The LT penalized log-likelihood function can

be written as a weighted least square constrained on LT penalty as

β̂
(r+1)

LT,j = argmin
βj

(y −Xβ)⊤Wj(y −Xβ) +

[
(− dj

k
1/2
j

)β̂j − k
1/2
j βj

]⊤ [
(− dj

k
1/2
j

)β̂j − k
1/2
j βj

]
,

(3.24)

where β̂j can be any coefficient estimate and Wj is a weight diagonal matrix with

diagonal elements (τ1j(Ψ
(r)), . . . , τnj(Ψ

(r)); j = 1, . . . ,M . From (3.24), the coeffi-

cients and variance term in each component regression are updated by

β̂
(r+1)

LT,j =
(
X⊤WjX+ kjI

)−1
(X⊤Wjy − djβ̂j), (3.25)

σ̂
2(r+1)
LT,j =

(y −Xβ̂
(r+1)

LT )⊤W
(r)
j (y −Xβ̂

(r+1)

LT )∑n
i=1 τij(Ψ

(r))
, (3.26)

where β̂
(r+1)

LT = (β̂
(r+1)

LT,1 , . . . , β̂
(r+1)

LT,J ). In order to estimates (3.25) and (3.26), first we

have to estimate the LT parameters (kj, dj) for each component regression. From Liu

(2003), we can estimate kj in the j-th component by k̂LT,j = (λ1,j − 100λp,j) /99

where λ1,j and λp,j are maximum and minimum eigenvalues of X⊤WjX on the

(r + 1)-the iteration of the EM algorithm.
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Lemma 3.3. Under the assumptions of Lemma (3.1), the canonical LT estimate

in the j-th component regression j = 1, . . . ,M under EM algorithm is given by

α̂LT,j = (Λj + kjI)
−1 (Λ

1/2
j V⊤

1 W
1/2
j y − djβ̂j),

and

β̂LT,j = Ujα̂LT,j,

where α̂j is the canonical estimate of βj and V1 = [v1j, . . . , vpj] with v1j, . . . , vpj

are the orthonormal eigenvectors of W
1/2
j XX⊤W

1/2
j .

Proof: From Lemma 3.1, (3.18) and (3.19), we can write the canonical form of

the weighted LT estimator in each component regression as

α̂LT,j =
(
(V1Λ

1/2
j )⊤(V1Λ

1/2
j ) + kjI

)−1 (
(V1Λ

1/2
j )⊤W

1/2
j y − djα̂j

)

=
(
Λ

1/2
j V⊤

1 V1Λ
1/2
j + kjI

)−1 (
Λ

1/2
j V⊤

1 W
1/2
j y − djα̂j

)

= (Λj + kjI)
−1
(
Λ

1/2
j V⊤

1 W
1/2
j y − djα̂j

)
.

Ujα̂R,j =Uj (Λj + kjI)
−1
(
Λ

1/2
j V⊤

1 W
1/2
j y − djα̂j

)

=
(
UjΛ

1/2
j Λ

1/2
j U⊤

j + kjI
)−1 (

(V1Λ
1/2
j U⊤

j )
⊤W

1/2
j y − djUjα̂j

)

=
(
(V1Λ

1/2
j U⊤

j )
⊤(V1Λ

1/2
j U⊤

j ) + kjI
)−1 (

(V1Λ
1/2
j U⊤

j )
⊤W

1/2
j y − djβ̂j

)

=
(
(W

1/2
j X)⊤(W

1/2
j X) + kjI

)−1 (
(W

1/2
j X)⊤W

1/2
j y − djβ̂j

)

=
(
X⊤WjX+ kjI

)−1
(
X⊤Wjy − djβ̂j

)
.
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□

Following Liu (2003) and Lemma 3.3, the optimal dj can be obtained by the

next lemma within each component of the mixture of regression models.

Lemma 3.4. Under the assumptions of Lemma 3.1 for kj > 0 and α̂j = α̂ML,j,

dj =

p∑

m=1

(
λmj(σ

2
j − kjα

2
mj)/(λmj + kj)

3
)
/

p∑

m=1

((
λmj(λmjα

2
mj + σ2

j )
)
/(λmj + kj)

4
)

minimizes the MSE(α̂LT,j) within each component of the mixture (3.1) in the EM

algorithm under LT method.

Proof: Since α̂ML,j = Λ
−1/2
j V⊤

1 W
1/2
j y, it is easy to show that

α̂LT,j = (Λj + kjI)
−1 (Λj − djI)α̂ML,j. (3.27)

From (3.27), the bias and covariance of α̂LT,j are computed by

Bias(α̂LT,j) = E(α̂LT,j)−αj

= (Λj + kjI)
−1 (Λj − djI)αj −αj

= − (Λj + kjI)
−1 (kj + dj)αj.

cov(α̂LT,j) = σ2
j (Λj + kjI)

−1(Λj − djI)Λ
−1
j (Λj − djI)(Λj + kjI)

−1.

Following Liu (2003), we can find the MSE(α̂LT,j) using the bias and covariance as

follows

MSE(α̂LT,j) = ||Bias(α̂LT,j)||2 + tr(cov(α̂LT,j))

=

p∑

m=1

(dj + kj)
2α2

m/(λm + kj)
2 + σ2

j

p∑

m=1

(dj − λm)
2/λm(λm + kj)

2.
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Differentiating MSE(α̂LT,j) with resect to dj, it is easy to obtain

dopt,j

p∑

m=1

(
(λmα

2
m + σ2

j )/λm(λm + kj)
2
)
=

p∑

m=1

(
(σ2

j − kjα
2
m)/(λm + kj)

2
)
.

□

Despite the fact that Lemma 3.4 leads the way to estimating the best LT param-

eter dj within each component regression of the EM method, the optimal value is

still dependent on unknown quantities such as σj, kj, αj, and λm,j for m = 1, . . . , p

and j = 1, . . . ,M . From Lemma 3.4, we propose a practical approach where

dj, j = 1, . . . ,M can be updated in the (r+1)-the iteration of the EM algorithm by

d̂j =

p∑

m=1

(
λmj(σ̂

2
R,j − k̂jα̂

2
R,mj)/(λmj + k̂j)

3
)
/

p∑

m=1

((
λmj(λmjα̂

2
R,mj + σ̂2

j )
)
/(λmj + k̂j)

4
)
,

(3.28)

where k̂j = k̂LT,j, α̂R,j = (α̂R,1j, . . . , α̂R,pj) is given by Lemma 3.1 and (λ1j, . . . , λpj)

are eigenvalues of X⊤

j WjXj with σ̂
2
R,j from (3.20). Until the stopping requirement

is met, the E- and M-steps are alternated. The proposed LT estimation method is

now known as iterative LT because the parameters kj and dj are changed in each

iteration of the EM algorithm.

Unlike iterative LT method, in order to estimate the LT parameters based on

Ridge estimates σ̂R,j and β̂R,j, we can follow Hoerl et al. (1975). In other words, the

EM algorithm iteratively updates the mixture parameter Ψ, while the kj parameter

is only estimated once during the EM algorithm, using the final Ridge estimates from

Subsection 3.4. Here, we estimate the parameters by k̂LT,j = pσ̂R,j/β̂
⊤

R,jβ̂R,j and d̂j
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from (3.28) where β̂R,j and σ̂R,j are obtained from (3.17) and (3.20), respectively.

This LT estimation method is henceforth is called HKP Liu-type.

3.5.1 Liu-type CEM Algorithm

The CEM algorithm partitions the observations in C-step, as in previous subsec-

tions, and then updates the unknown parameters within each partition. The E-step

stays the same on the (r + 1)-th iteration of the CEM algorithm. The C-step clas-

sifies the observations into partition P(r+1) = (P
(r+1)
1 , . . . , P

(r+1)
M ) where P

(r+1)
j =

{(xi, yi); τij(Ψ
(r)) = argmax

h
τih(Ψ

(r))} with (τi1(Ψ
(r), . . . , τiM(Ψ(r)) are obtained

from (3.4). Using P(r+1), we update the mixing proportions from (3.12). The LT

tuning parameters (kj, dj) must then be estimated in each iteration of the CEM algo-

rithm, similar to the Liu-type EM algorithm. we propose k̂LT,j = (λ1,j − 100λp,j) /99

where λ1,j and λp,j are maximum and minimum eigenvalues of X⊤

j WjXj.

Lemma 3.5. Under the assumptions of Lemma (3.1), the canonical LT estimate

in the j-th component regression j = 1, . . . ,M under CEM algorithm is given by

α̂LT,j = (Λj + kj)
−1 (Λ

1/2
j V⊤

1 W
1/2
j y − djα̂j),

and

β̂LT,j = Ujα̂LT,j,

where α̂j is the canonical estimate of βj and V1 = [v1j, . . . , vpj] with v1j, . . . , vpj

are the orthonormal eigenvectors of W
1/2
j XjX

⊤

j W
1/2
j .
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Proof: The lemma can be proved in a similar vein to Lemma 3.3. □

From Lemma 3.5 and Lemma 3.4, one can estimate parameter dj based on

partition P
(r+1)
j from (3.28) where (λ1j, . . . , λpj) are eigenvalues of X⊤

j WjXj and

σ̂2
R,j from (3.22). To estimate the regression parameters, we implement a weighted

least square based on LT penalty as

β̂
(r+1)

LT,j = argmin
βj

(yj −Xjβj)
⊤Wj(yj −Xjβj)

+

[
(− dj

k
1/2
LT,j

)β̂j − k
1/2
LT,jβj

]⊤ [
(− dj

k
1/2
LT,j

)β̂j − k
1/2
LT,jβj

]
,

(3.29)

where yj and Xj are response vector and design matrix under P
(r+1)
j and β̂j can be

any estimate for βj. Also, Wj is a weight diagonal matrix with diagonal elements

(τ1j(Ψ
(r)), . . . , τnj ,j(Ψ

(r)); j = 1, . . . ,M . One can easily find the solution to (3.24)

and update the regression parameters by

β̂
(r+1)

LT,j =
(
X⊤

j WjXj + kLT,jI
)−1

(X⊤

j Wjyj − djβ̂j), (3.30)

σ̂
2(r+1)
LT,j =

(yj −Xjβ̂
(r+1)

LT )⊤W
(r)
j (yj −Xjβ̂

(r+1)

LT )∑n
i=1 τij(Ψ

(r))
, (3.31)

with β̂
(r+1)

LT = (β̂
(r+1)

LT,1 , . . . , β̂
(r+1)

LT,J ). The E-, C- and M-steps are repeatedly computed

until the convergence criterion is satisfied.

Unlike the iterative Liu-type CEM algorithm, the HKP Liu-type CEM method

can estimate the parameters of the mixture model since the LT tuning parameter
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kj, j = 1, . . . ,M is only updated once during the process. From Hoerl et al. (1975)

and Liu (2003) , we propose to estimate k̂LT,j = pσ̂R,j/β̂
⊤

R,jβ̂R,j and d̂j from (3.28)

where β̂R,j and σ̂R,j come from (3.21) and (3.22), respectively.

3.5.2 Liu-type SEM Algorithm

Similar to the SEM algorithms that described earlier, the S-step parition the obser-

vations stochastically using Multi(1, τi1(Ψ
(r)), . . . , τiM(Ψ(r))) for i = 1, . . . , n. Once

the partition is established, the rest of the Liu-type SEM estimation method is com-

puted in a similar vein to the Liu-type CEM algorithm. The LT tuning parameters

(kj, dj) must then be estimated in each iteration of the SEM algorithm, similar to

the Liu-type EM and CEM algorithms.
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Chapter 4

Shrinkage Estimators for Mixture

of Logistic Regressions

This chapter focuses on the finite mixture of logistic regression models. This model

is merely a generalization of logistic regression when the observed data come from

various M components. Multicollinearity significantly impacts the maximum likeli-

hood (ML) estimates of a mixture of logistic regressions, just as it does on logistic

regression. We developed the Liu-type (LT) shrinkage estimator for the mixture of

logistic regression models (Ghanem et al., 2022a).

This chapter is organized as follows. Section 4.2.1 describes the ML estimation

method. Sections 4.3 and 4.4 describe the Ridge and LT methods in estimating the

parameters of the mixture of logistic regression models.

4.1 Introduction

One of the most vital families of the mixture model is the mixture of logistic regres-

sion models. A finite mixture of the logistic regression model was applied to analyze
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the heterogeneity within the merging population. This model can automatically

show important hidden information regarding the population’s characteristics. The

EM algorithm and Newton-Raphson algorithm were used to estimate the parame-

ters. Dempster et al. (1977) used the expectation-maximization (EM) approach to

get the ML estimates of FMMs and a mixture of logistic regression models. Murray

(1999a,b) and Wang and Puterman (1998) applied the ML approach to estimate the

parameters of a finite mixture of logistic regression models. Mixture models have

many applications in the core of statistical sciences, such as data classification and

modeling from various sampling structures, stratified sampling (Wedel et al., 1998)

and ranked set sampling (Hatefi et al., 2015, 2020).

4.2 Statistical Methods

The mixture of logistic regression is a generalization of logistic regression, when the

observed data come from different components. Let M represents the number of

the components of the mixture of logistic regression models. While the number of

components M is assumed to be known, the problem is addressed as an unsupervised

learning approach when the component membership of observations is unknown and

should be estimated. From Subsection 2.10, the log-likelihood of the mixture of

logistic regression models follows

ℓ(Ψ) =
n∑

i=1

log

{
M∑

j=1

πj[pj(xi;βj)]
yi [1− pj(xi;βj)]

(1−yi)

}
, (4.1)

where

pj(xj;βj) = g−1(xi;βj), (4.2)
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and π = (π1, . . . , πM) represent the vector of the mixing proportions with πj > 0

and
∑M

j=1 πj = 1. Also, we use Ψ = (π,β) with β = (β1, . . . ,βM) to represent the

vector of all unknown parameters of the mixture of logistic regression models.

4.2.1 ML Estimation Method

In estimating the parameters of the mixture model, there is no closed form for the

maximizer of the log-likelihood function (4.1). As a result, we consider {(xi, yi), i =

1, . . . , n} to be incomplete data and propose an expectation-maximization (EM)

approach to derive an ML estimate of Ψ. Suppose {(xi, yi,Zi), i = 1, . . . , n} denote

the complete data where Zi = (Zi1, . . . , ZiM) is the latent variable repressing the

component membership of the i-th subject with

Zij =

{
1 if the i-th subject comes from the j-th component,
0 o.w.,

Given that Zi
iid∼ Multi(1, π1, . . . , πM), the joint distribution of (yi,Zi) can be written

as

f(yi, zi) =
M∏

j=1

{
πj[pj(xi;βj)]

yi [1− pj(xi;βj)]
(1−yi)

}zij
. (4.3)

From above, it is easy to show Zi|yi iid∼ Multi(1, τi1(Ψ), . . . , τiM(Ψ)) where

τij(Ψ) =
πj[pj(xi;βj)]

yi [1− pj(xi;βj)]
(1−yi)

∑M
j=1 πj[pj(xi;βj)]

yi [1− pj(xi;βj)]
(1−yi)

. (4.4)

By using the latent variables Zi, the complete log-likelihood function of Ψ is
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given by

ℓc(β) =
n∑

i=1

M∑

j=1

zij log(πj) +
n∑

i=1

M∑

j=1

zij log
{
[pj(xi;βj)]

yi [1− pj(xi;βj)]
(1−yi)

}
.

(4.5)

The EM algorithm breaks down the estimating process into two iterative steps:

expectation (E-step) and maximization (M-step). Unlike Chapter 3 in the analysis

of a mixture of linear regressions, we only propose stochastic EM (SEM) of (Celeux,

1985) algorithm to estimate the mixing proportions and coefficients of the mixture

of logistic regression in Chapter 4. The SEM algorithm is a redesigned version of

the EM method that includes a stochastic classification step (S-step) between the

E- and M-steps.

Like an iterative approach, the SEM algorithm requires initial values to begin the

estimating process. Let Ψ(0) = (π(0),β(0)) denote the starting points of algorithm.

We discuss how the E, S, and M steps are implemented in the (l + 1)-th iteration,

where Ψ(l) represents the update from the l-th iteration, to better comprehend the

SEM algorithm.

E-Step: First the conditional expectational of latent variables must be com-

puted given incomplete data. Hence,

EΨ(l)(Zij|yi) = τij(Ψ)|Ψ=Ψ(l) = τij(Ψ
(l)),

where τij(Ψ
(l)) is calculated from (4.4). The conditional expectation of the log-

likelihood function (4.5) can be re-written by

Q(Ψ,Ψ(l)) = EΨ(l)(ℓc(β)|y,Ψ(l)) = Q1(π,Ψ
(l)) +Q2(β,Ψ

(l)),
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where

Q1(π,Ψ
(l)) =

n∑

i=1

M∑

j=1

τij(Ψ
(l)) log(πj), (4.6)

and

Q2(ξ,Ψ
(l)) =

n∑

i=1

M∑

j=1

τij(Ψ
(l)) log

{
[pj(xi;βj)]

yi [1− pj(xi;βj)]
(1−yi)

}
. (4.7)

S-Step: We partition the subjects into P(l+1) = (P
(l+1)
1 , . . . , P

(l+1)
M ) based on a

stochastic assignment (Z∗

i1, . . . , Z
∗

iM), given their posterior probability memberships

(τi1(Ψ
(l)), . . . , τiM(Ψ(l))). In other words, we generate Z∗

i
iid∼ Multi(1, τi1(Ψ

(l)), . . . , τiM(Ψ(l))

and the i-th subject is then classified to P
(l+1)
h when Z∗

ih = 1 for i = 1, . . . , n. Be-

cause we assume that the number of components of the mixture model is known

and fixed therefore in the numerical study, we designed the numerical study such

that if one of the partitions becomes empty or ends up with only one subject, the

SEM algorithm is stopped, and Ψ(l) is returned.

M-Step: The P(l+1) of the S-step is used to update the parameters of the

mixture of logistic regression models in this step. First, we maximize Q1(π,Ψ
(l))

from (4.6) subject to constraint
∑M

j=1 πj = 1. Using the Lagrangian multiplier, it

is easy to see

π̂
(l+1)
j =

n∑

i=1

z∗ij/n = nj/n; j = 1, . . . ,M − 1, (4.8)

where nj denotes the number of subjects classified to Pj
(l+1). To estimate the

coefficients of the j-th logistic regression, we can re-write (4.7) based on partition
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P(l+1) as follows

Q2(βj,Ψ
(l)) =

nj∑

i=1

τij(Ψ
(l))
(
yix

⊤

i βj − log
(
1 + exp(x⊤

i βj)
))
, (4.9)

where nj denotes the number of subjects classified to Pj
(l+1). From the first deriva-

tive of (4.9) with respect to βj, the gradient is given by

∇βj
Q2(βj,Ψ

(l)) = X⊤

j

(
yj − g−1(Xj;β

(l)
j )
)
, (4.10)

where Xj and yj are respectively the design matrix and vector of responses corre-

sponding to subjects from Pj
(l+1). Also, g−1(Xj;β

(l)
j ) =

(
g−1(x1;β

(l)
j ), . . . , g−1(xnj

;β
(l)
j )
)⊤

where g−1(., .) is given by (2.9). The Hessian matrix of (4.9) is given by

Hβj

(
Q2(βj,Ψ

(l))
)
= −X⊤

j WjXj, (4.11)

where Wj is a diagonal matrix with entries

(w)ii = exp(x⊤

i β
(l)
j )
[
1 + exp(x⊤

i β
(l)
j )
]−2

. (4.12)

From (4.10) and (4.11), one can use Newton-Raphson (NR) method and update

βj, j = 1, . . . ,M as follows

β
(l+1)
j = β

(l)
j −H−1

βj

(
Q2(βj,Ψ

(l))
)
∇βj

Q2(βj,Ψ
(l)). (4.13)

Lemma 4.1. Let ∇βj
Q2(βj,Ψ

(l)) and Hβj

(
Q2(βj,Ψ

(l))
)
represent the gradient

and Hessian matrix of (4.9). Then the iteratively re-weighted least square (IRWLS)

estimate of βj can be obtained by

β̂j =
(
X⊤

j WjXj

)−1
X⊤

j WjVj,
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where Wj is diagonal weight matrix from (4.12) and

Vj =
{
Xjβ̂

(l)

j +W−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]}

.

Proof: From (4.10) and (4.11), one can obtain β̂
(l+1)

j based on partition P
(l)
j

by:

β̂
(l+1)

j = β̂
(l)

j −H−1
βj

(
Q2(βj, Ψ̂

(l))
)
∇βj

Q2(βj, Ψ̂
(l))

= β̂
(l)

j −
(
X⊤

j WjXj

)−1
X⊤

j

[
yj − g−1(Xj; β̂

(l)

j )
]

=
(
X⊤

j WjXj

)−1
X⊤

j Wj

{
Xjβ̂

(l)

j −W−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]}

=
(
X⊤

j WjXj

)−1
X⊤

j WjVj.

□

Finally, the IRWLS (hence referred to LS) estimate of Ψ is obtained by alter-

nating the E-, S-, and M-steps until |ℓ(Ψ(l+1))− ℓ(Ψ(l))| becomes negligible.

4.3 Ridge Estimation Method

Although the LS estimation method is the most frequent method for estimating

the parameters of a mixture of logistic regression models, when the covariates are

linearly dependent, the LS method is seriously affected by multicollinearity. The

Ridge estimation approach was proposed by (Schaefer et al., 1984) as a solution to

the multicollinearity problem. We can get the Ridge estimate Ψ̂R by maximizing the
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Ridge penalized log-likelihood function of a mixture of logistic regression models.

The Ridge penalized log-likelihood function is given by

ℓR(β) = ℓ(β)− 1

2
kβ⊤β, (4.14)

where ℓ(β) is the incomplete log-likelihood function (2.10) and k is the Ridge pa-

rameter. There is no closed form for Ψ̂R using (4.14) similar to Subsection 4.2.1.

Accordingly, we introduce the latent variables Z = (Z1, . . . ,ZM) and run a SEM

algorithm on the entire data (X,y,Z) to get Ψ̂R. To do so, we use Subsection 4.2.1

to implement the E- and S- steps of the Ridge estimation approach.

In the M-step, the mixing proportion π̂j, j = 1, . . . ,M can be obtained from

(4.8). To obtain the estimate of logistic coefficients, we maximize the conditional

expectation log-likelihood subject to the ridge penalty as follows

QR
2 (βj,Ψ

(l)) = Q2(βj,Ψ
(l))− kjβ

⊤

j βj/2, (4.15)

where Q2(βj,Ψ
(l)) comes from (4.9) and λj is the Ridge parameter in j-th compo-

nent of the mixture.

Lemma 4.2. Under the assumptions of Lemma 4.1. The Ridge estimator β̂
(l+1)

R =

(β̂
(l+1)

R,1 , . . . , β̂
(l+1)

R,M ) using the IRWLS method is updated by

β̂R,j =
(
X⊤

j WjXj + kjI
)−1

X⊤

j WjX
⊤

j β̂LS,j,

where β̂LS,j is given by Lemma 4.1.
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Proof: Taking the first and second derivative from (4.15) wrt βj, the Ridge

gradient and Ridge Hessian matrix are given by

∇βj
QR

2 (βj,Ψ
(l)) = X⊤

j

(
yj − g−1(Xj;β

(l)
j )
)
− kjβj, (4.16)

Hβj

(
QR

2 (βj,Ψ
(l))
)
= −X⊤

j WjXj − kjI. (4.17)

Let Uj = X⊤

j WjXj + kjI. From (4.16) and (4.17), the Ridge estimate β̂
(l+1)

R,j can

be updated by an iteratively re-weighted least squares as follows

β̂
(l+1)

j = β̂
(l)

j −H−1
j

(
QR

2 (j, Ψ̂
(l))
)
∇βj

QR
2 (j, Ψ̂

(l))

= β̂
(l)

j +U−1
j

{
X⊤

j

[
yj − g−1(Xj; β̂

(l)

j )
]
− kjβ̂

(l)

j

}

= U−1
j Ujβ̂

(l)

j − kjU
−1
j β̂

(l)

j +U−1
j X⊤

j WjW
−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]

= U−1
j X⊤

j Wj

{
Xjβ̂

(l)

j +W−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]}

=
(
X⊤

j WjXj + kjI
)−1

X⊤

j WjVj.

□

We estimate the Ridge parameter kj by k̂j = (p+1)/β̂
⊤

LS,jβ̂LS,j using (Inan and

Erdogan, 2013) where p represents the number of explanatory variables and β̂LS,j

is the LS estimate of βj. Finally, the estimate of Ψ̂R is obtained by alternating the

E-, S-, and M-steps until |ℓ(Ψ(l+1)
R )− ℓ(Ψ

(l)
R )| becomes negligible.
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4.4 Liu-type Estimation Method

The Ridge approach may not adequately handle the severe ill-conditioned design

matrix when multicollinearity is present. The Liu-type (LT) approach was proposed

by Liu (Liu, 2003) and Inan et al (Inan and Erdogan, 2013) as a solution to the

problem in regression and logistic regression, respectively. In the presence of multi-

collinearity, we offer the LT technique for estimating the parameters of a mixture of

logistic regression models. To do that, we replace the Ridge penalty 0 = k1/2β + ϵ′

by the LT penalty

(− d

k1/2
)β̂ = k1/2β + ϵ′, (4.18)

where β̂ can be any estimator of coefficients and d ∈ R and k > 0 are two pa-

rameters of the LT estimation method. Throughout this chapter, we use β̂ = β̂R

in LT penalty (4.18). We see (X,y) as incomplete data and convert them into

complete data (X,y,Z), where Z includes the missing component memberships,

similar to the LS approach (explained in Subsection 4.2.1). The LT estimate of the

parameters of the mixture of logistic regression models is then determined using the

SEM technique. Here, the E- and S-steps are treated similarly to the LS and Ridge

estimation methods.

In the M-step, we start with the classified data from the S-step and use (4.8)

to estimate the mixing proportions. Later, we maximize Q2(βj,Ψ
(l)) subject to

LT penalty (4.18) to estimate the coefficients within each partition Pj
(l+1) for j =

1, . . . ,M .
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Lemma 4.3. Under the assumptions of Lemma 4.1. The LT estimator β̂
(l+1)

LT =

(β̂
(l+1)

LT,1 , . . . , β̂
(l+1)

LT,M) using the IRWLS method is updated by

β̂LT,j =
(
X⊤

j WjXj + kjI
)−1
(
X⊤

j WjVj − djβ̂R,j

)
,

where Wj and Vj are given by Lemma 4.1 and β̂R,j is calculated from Lemma 4.2.

Proof: It is easy to show that the gradient and Ridge Hessian matrix under the

LT estimation method are given by

∇βj
QLT

2 (βj,Ψ
(l)) = X⊤

j

(
yj − g−1(Xj;β

(l)
j )
)
− djβ̂R,j − kjβj, (4.19)

Hβj

(
QLT

2 (βj,Ψ
(l))
)
= −X⊤

j WjXj − kjI. (4.20)

Let Uj = X⊤

j WjXj + kjI. From (4.19) and (4.20), the LT estimate β̂
(l+1)

LT,j can be

updated by an iteratively re-weighted least squares as follows

β̂
(l+1)

j = β̂
(l)

j −H−1
βj

(
QLT

2 (βj, Ψ̂
(l))
)
∇βj

QLT
2 (βj, Ψ̂

(l))

= β̂
(l)

j +U−1
j

{
X⊤

j

[
yj − g−1(Xj; β̂

(l)

j )
]
− kjβ̂

(l)

j − djβ̂R,j

}

= U−1
j Ujβ̂

(l)

j − kjU
−1
j β̂

(l)

j +U−1
j X⊤

j WjW
−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]
− djU

−1
j β̂R,j

= U−1
j X⊤

j Wj

{
Xjβ̂

(l)

j +W−1
j

[
yj − g−1(Xj; β̂

(l)

j )
]}

− djU
−1
j β̂R,j

=
(
X⊤

j WjXj + kjI
)−1
{
X⊤

j WjVj − djβ̂R,j

}
.

□
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There are several techniques to estimate kj, according to Schaefer et al. (1984)

and Inan and Erdogan (2013). Here, we use k̂j = (p + 1)/β̂
⊤

R,jβ̂R,j to estimate the

parameters, where p is the number of explanatory variables and β̂R,j is the Ridge

estimate of βj. We employ the operational technique of Inan and Erdogan (2013)

to estimate the bias correction parameters dj by maximizing the mean square errors

(MSE) of β̂LT,j inside each partition P
(l+1)
j once kj has been estimated. It is easy

to show that.

MSE(β̂LT,j) = tr
[
Var(β̂LT,j)

]
+ ||E(β̂LT,j)− βj||22,

where

tr
[
Var(β̂LT,j)

]
= tr

[(
X⊤

j WjXj + kjI
)−1 (

X⊤

j WjVj − djI
) (

X⊤

j WjXj + kjI
)−1

(
X⊤

j WjXj

) (
X⊤

j WjXj + kjI
)−1

(
X⊤

j WjVj − djI
) (

X⊤

j WjXj + kjI
)−1
]
,

and

||E(β̂LT,j)− βj||22 = ||
(
X⊤

j WjXj + kjI
)−1 (

X⊤

j WjVj − djI
) (

X⊤

j WjXj + kjI
)−1

X⊤

j Wjg
−1(Xj;βj)− βj||22.

As you can see, the true value of the parameters βj affects MSE(β̂LT,j). As

a result, while calculating the bias correction parameters of the LT method d =

(d1, d2, . . . , dM), the true βj are replaced with β̂R,j and according to Inan and

Erdogan (2013), we choose the optimum tuning parameter d value which minimizes
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the MSE(β̂LT,j). Finally, the E-, S- and M-steps of SEM algorithm under LT method

is alternated until |ℓ(Ψ(l+1)
LT )− ℓ(Ψ

(l)
LT )| becomes negligible.
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Chapter 5

Numerical Studies

This chapter presents two different numerical studies to compare the performance

of the ML, Ridge, and LT methods in estimating the parameters in both a mixture

of logistic regression models and a mixture of regression models in multicollinearity.

Finally, we applied our proposed methods to analyze the bone disorder status of

women aged 50 and older.

This chapter is organized as follows. Sections 5.1.1 and 5.1.2 assess the perfor-

mance of the estimation methods via two different simulation studies for mixture

of logistic regression. Sections 5.2.1 and 5.2.2 assess the performance of the estima-

tion methods via two different simulation studies for mixture of regression models.

Section 5.3 describes the real data example for mixture of logistic regression and

the mixture of regression models

5.1 Simulation Studies for Logistic Regression

This section compares the performance of the ML, Ridge, and LT approaches in

estimating the parameters of a mixture of logistic regression models in the presence
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of multicollinearity using two simulation studies. We look at how the sample size,

multicollinearity level, and several components in the mixture of logistic regressions

affect the proposed estimate approaches. We start by assuming that the underlying

population is made up of two logistic regression models. The approaches’ perfor-

mance is then investigated in the second simulation, where the population consists

of three logistic regression components.

5.1.1 Simulation Study 1

In the first simulation study, we employed two parameters ϕ and ρ, to induce multi-

collinearity in the mixture of logistic regressions, as described by Inan and Erdogan

(2013). We also took into account the component logistic regressions, which include

four covariates (x1, . . . ,x4), where ϕ and ρ denote the levels of correlation between

the first and last two predictors in the mixture model. We first generated random

numbers {wij, i = 1, . . . , n; j = 1, . . . , 5} from the standard normal distribution and

then simulated the covariates as follows

xi,j1 = (1− ϕ2)wi,j1 + ϕwi,5, j1 = 1, 2,

xi,j2 = (1− ρ2)wi,j2 + ρwi,5, j2 = 3, 4,

where we used ϕ = {0.85, 0.95, 0.98} and ρ = {0.9, 0.95, 0.99} to simulate the mul-

ticollinearity in the mixture of logistic regressions. We then generated the binary

responses from logistic regression p1(xi;β01) with probability π0 = 0.7 and from

logistic regression p2(xi;β02) with probability 0.3 where pj(·; ·) is given by (4.2)

and ψ0 = (π0,β0) with π0 = (0.7, 0.3), β0 = (β01,β02) where, β01 = (1, 3, 4, 5, 6)

and β02 = (−1,−1,−2,−3,−5). These shrinkage methods required two starting
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values. Note that we must assign a value for the initial starting point for each of

the ML, Ridge, or Liu-type methods. However, since our main goal is to compare

the performance of these algorithms, we choose the same initial values, close to the

true parameters, for all the estimation methods, including ML, Ridge, and Liu-type

methods in all the simulation studies. The initial values that we used in this simula-

tion are β01(initial) = β0+2, β02(initial) = β0−2, π01 = (0.5, 0.5) and π02 = (0.3, 0.7).

The initial values are considered fixed for all methods (ML, Ridge and Liu) for fair

comparison.

To investigate the estimation performance of (π̂, β̂), we used the sum of squared

errors (SSE) of the estimates and measured

√
SSE(β̂) =

[
(β̂ − β0)

⊤(β̂ − β0)
]1/2

and
√

SSE(π̂) = [(π̂ − π̂0)
2]

1/2
where β̂ = (β̂1, β̂2)

⊤ and β0 = (β01,β02)
⊤. We

first estimated the mixture model parameters using a training sample of size n to

examine the classification performance of the approaches. From the underlying mix-

ture of two logistic regression models, we constructed a validation set of size 100

(independent of the training data). The trained model was then used to predict

the binary response of the validation set. We computed the prediction measures of

Error = (FP+FN)/(TP+TN+FP+FN), Sensitivity = (TP)/(TP+FN) and Speci-

ficity = (TN)/(TN+FP) where FP, FN, TP and TN stand for false positive, false

negative, true positive and true negative entries in the confusion matrix, respec-

tively. In order to study the effect of sample size, we investigate the estimation

and prediction performance with different sample sizes, including n = {25, 40, 100}.

Note that when the sample size is small, say n = 25, even the convergence rate

of LS is reduced. Furthermore, it is well-known that the convergence rate of SEM
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is not guaranteed regardless of the size of n (Faria and Soromenho, 2010). In the

presence of multicollinearity, the estimation methods may result in skewed and out-

lier estimation and classification results. The results also change dramatically from

one replication to another. For these reasons, to simulate the performance of the

proposed methods, we first generated data from the underlying mixture models.

We then estimated the population parameters and computed the
√
SSEs of the

estimates and the classification measures.

We note that our objective is to compare the performance of the ML, Ridge, and

LT over a fixed sample size. However, we did not intend to compare the performance

of a method when the sample changes; in this case, it would be preferred to use

√
MSE instead of

√
SSE.

To better compare the asymmetry in the proposed estimations and classification

methods, we replicated the entire data generation, estimation, and classification pro-

cedures 2000 times using the ML, Ridge and LT methods. Then, we computed the

2.5%, 50% and 97.5% percentiles of the
√
SSEs and evaluated the Error, Sensitivity

and Specificity for the classification. We presented the lower (L) and upper (U)

bounds of the estimation and classification intervals by 2.5 and 97.5 percentiles of

the corresponding criterion, respectively. From Tables 5.1 and 5.7, almost similar

results are observed. When the sample size is large, we see the performance of LT

and Ridge is similar to LT shrinkage, however, as the sample size decrease, the LT

shrinkage method appears more reliable than LS and Ridge.
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Table 5.1: The median (M), lower (L) and upper (U) bounds of 95% intervals for
√
SSE, Error,

Sensitivity (SN) and Specificity (SP) of the methods in estimation and prediction of the mixture
of two logistic regressions when n = 25 and ρ = 0.9.

√
SSE Error SN SP

ϕ SEM Ψ M L U M L U M L U M L U
0.85 ML β 223 46 1× 106 .46 .28 .68 .55 .20 .83 .55 .19 .83

π .14 .02 .58
Ridge β 32 19 203 .44 .28 .66 .55 .19 .84 .57 .23 .86

π .22 .02 .70
LT β 30 21 36 .46 .30 .60 .56 .29 .81 .55 .26 .78

π .3 .02 .70
0.95 ML β 529 66 1× 106 .46 .28 .68 .55 .21 .83 .56 .21 .84

π .14 .02 .58
Ridge β 32 18 196 .44 .28 .66 .55 .19 .83 .56 .22 .85

π .22 .02 .70
LT β 30 21 36 .46 .30 .60 .55 .30 .81 .54 .27 .79

π .22 .02 .70
0.98 ML β 920 96 2× 106 .44 .28 .68 .54 .22 .82 .56 .19 .86

π .14 .02 .58
Ridge β 31 19 207 .44 .26 .68 .56 .19 .83 .56 .23 .85

π .26 .02 .70
LT β 30 21 35 .46 .30 .62 .56 .28 .81 .54 .28 .80

π .24 .02 .70

Tables 5.1-5.9 show the results of the simulation study. The ML approach per-

forms somewhat better than the Ridge and LT methods in estimating mixing pro-

portions. This is based on the fact that the Ridge and LT approaches are biassed

shrinkage methods. These shrinkage methods are aimed to overcome multicollinear-

ity and improve the analysis of the model’s coefficients by integrating a bias into

the estimation. While the multicollinearity had a major impact on the ML esti-

mates, the Ridge and LT estimates looked to be far more reliable in determining

the mixture model coefficients. We also observe that β̂LT significantly outperforms

β̂R where the intervals for the
√
SSE of β̂R account for 5-10 times wider than those

of β̂LT . Similar to the findings of (Inan and Erdogan, 2013), the classification per-

formances of Error, Specificity (SP), and Sensitivity (SN) under the three methods

are almost the same. We see that the SP and SN are a little low when we apply them
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to the three methods; because of that, the simulation study structure is based on

high multicollinearity, which is why all the methods suffer from high multicollinear-

ity. Inan and Erdogan (2013) reported only the mean of classification measures

for one logistic in the presence of high multicollinearity. Because the results of the

estimation and classification are highly skewed, unlike Inan and Erdogan (2013), we

reported the median and 95% intervals for
√
SSE, Error, Sensitivity and Specificity

to better investigate the performance of the estimators. Interestingly, if the sample

size is small (n = 25), the LT shrinkage method appears more reliable relative to

LS and Ridge in estimating the coefficients of all the logistic components. However,

if the sample size is large enough (n = 100), LS and Ridge could perform as well as

LT shrinkage.

Table 5.2: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 25 and ρ = 0.95.

√
SSE Error SN SP

ϕ SEM Ψ M L U M L U M L U M L U
0.85 ML β 470 62 1× 106 .44 .28 .68 .54 .21 .83 .56 .20 .84

π .14 .02 .58
Ridge β 32 20 233 .44 .28 .68 .56 .19 .84 .57 .23 .86

π .22 .02 .70
LT β 30 21 36 .46 .30 .60 .55 .28 .81 .55 .27 .78

π .3 .02 .70
0.95 ML β 705 102 1× 106 .46 .28 .68 .55 .22 .83 .55 .20 .85

π .14 .02 .54
Ridge β 31 19 228 .44 .28 .68 .55 .17 .83 .57 .23 .86

π .22 .02 .70
LT β 30 21 36 .46 .30 .60 .56 .29 .81 .55 .27 .79

π .3 .02 .70
0.98 ML β 1143 120 2× 106 .46 .28 .68 .55 .21 .83 .55 .19 .83

π .14 .02 .58
Ridge β 31 18 168 .44 .26 .68 .56 .19 .83 .56 .18 .86

π .22 .02 .70
LT β 30 21 37 .46 .30 .62 .56 .29 .81 .54 .26 .78

π .3 .02 .70
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Table 5.3: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 25 and ρ = 0.99.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 1383 118 1× 106 .46 .28 .68 .54 .21 .83 .56 .20 .85
π .14 .02 .58

Ridge β 32 19 181 .44 .28 .68 .56 .19 .84 .56 .23 .86
π .22 .02 .70

LT β 30 21 35 .46 .30 .60 .56 .29 .80 .55 .27 .79
π .3 .02 .70

0.95 ML β 1651 146 1× 106 .46 .28 .68 .55 .21 .83 .55 .20 .86
π .14 .02 .54

Ridge β 31 19 171 .44 .28 .68 .56 .21 .84 .56 .21 .86
π .22 .02 .70

LT β 30 21 37 .46 .30 .62 .55 .29 .80 .55 .29 .79
π .3 .02 .70

0.98 ML β 2387 248 3× 106 .44 .28 .68 .55 .21 .83 .55 .17 .86
π .14 .02 .58

Ridge β 31 18 326 .44 .26 .68 .56 .19 .83 .57 .22 .85
π .22 .02 .70

LT β 30 21 37 .46 .30 .60 .56 .29 .80 .54 .29 .79
π .3 .02 .70

Table 5.4: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 40 and ρ = 0.9.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 270 47 2× 105 .46 .28 .68 .52 .20 .82 .56 .19 .85
π .15 .00 .60

Ridge β 32 22 230 .44 .28 .66 .56 .20 .83 .56 .25 .82
π .25 .025 .70

LT β 30 22 37 .44 .30 .60 .56 .31 .79 .55 .29 .79
π .3 .025 .70

0.95 ML β 434 73 3× 105 .46 .28 .68 .54 .19 .82 .55 .20 .85
π .15 .00 .60

Ridge β 32 22 239 .44 .28 .68 .55 .21 .81 .56 .23 .83
π .25 .025 .70

LT β 30 22 36 .44 .30 .60 .57 .31 .79 .55 .30 .78
π .25 .025 .70

0.98 ML β 740 112 4× 105 .46 .28 .70 .53 .20 .83 .54 .19 .85
π .15 .00 .60

Ridge β 32 21 222 .44 .28 .68 .57 .21 .82 .55 .24 .83
π .25 .025 .70

LT β 30 22 37 .44 .30 .60 .56 .31 .81 .55 .30 .79
π .25 .025 .70
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Table 5.5: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 40 and ρ = 0.95.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 380 60 2× 105 .46 .28 .70 .52 .20 .80 .54 .19 .85
π .125 .00 .57

Ridge β 32 23 263 .44 .28 .68 .56 .24 .82 .55 .22 .84
π .25 .025 .70

LT β 30 22 36 .44 .30 .60 .56 .31 .80 .56 .32 .79
π .25 .05 .70

0.95 ML β 628 99 4× 105 .48 .28 .68 .52 .20 .83 .54 .18 .83
π .15 .00 .60

Ridge β 32 22 172 .44 .28 .68 .56 .21 .82 .55 .22 .85
π .25 .025 .70

LT β 30 21 37 .44 .30 .62 .57 .30 .79 .55 .30 .79
π .25 .025 .70

0.98 ML β 942 126 5× 105 .46 .28 .70 .52 .21 .83 .55 .17 .85
π .125 .00 .60

Ridge β 31 21 292 .44 .28 .68 .55 .21 .82 .56 .22 .84
π .25 .025 .70

LT β 30 22 40 .44 .30 .60 .56 .30 .79 .55 .30 .78
π .275 .025 .70

Table 5.6: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 40 and ρ = 0.99.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 1132 142 4× 105 .48 .28 .70 .52 .19 .82 .55 .18 .85
π .15 .00 .6

Ridge β 32 22 280 .44 .28 .68 .56 .17 .83 .56 .23 .84
π .25 .025 .70

LT β 30 22 39 .44 .30 .60 .55 .30 .79 .56 .30 .78
π .25 .05 .70

0.95 ML β 1333 195 6× 105 .48 .28 .70 .52 .18 .81 .54 .18 .84
π .15 .00 .57

Ridge β 32 21 282 .44 .28 .68 .56 .19 .83 .56 .23 .85
π .25 .025 .70

LT β 30 22 38 .44 .30 .60 .56 .31 .79 .56 .30 .77
π .25 .025 .70

0.98 ML β 1900 267 5× 105 .46 .28 .68 .52 .20 .80 .54 .19 .86
π .15 .00 .57

Ridge β 31 20 265 .44 .28 .70 .56 .22 .82 .56 .22 .83
π .25 .025 .70

LT β 30 22 42 .44 .30 .60 .56 .31 .79 .55 .30 .78
π .275 .025 .70
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Table 5.7: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 100 and ρ = 0.9.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 186 43 1× 104 .46 .28 .70 .54 .19 .81 .55 .21 .83
π .12 .01 .65

Ridge β 30 20 52 .44 .30 .60 .57 .33 .80 .56 .30 .78
π .18 .01 .67

LT β 30 22 36 .44 .30 .58 .56 .35 .77 .55 .32 .76
π .26 .01 .70

0.95 ML β 291 66 2× 104 .46 .28 .68 .54 .19 .81 .56 .21 .85
π .13 .00 .66

Ridge β 30 20 54 .44 .30 .62 .56 .30 .78 .56 .30 .78
π .21 .01 .68

LT β 29 22 35 .44 .30 .60 .57 .33 .78 .56 .33 .76
π .25 .01 .70

0.98 ML β 511 101 3× 105 .46 .28 .68 .54 .17 .82 .56 .21 .85
π .12 .00 .65

Ridge β 30 19 52 .44 .28 .61 .57 .32 .79 .56 .30 .79
π .18 .01 .68

LT β 29 22 36 .44 .30 .58 .57 .35 .77 .56 .33 .78
π .24 .01 .70

Table 5.8: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 100 and ρ = 0.95.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 263 57 2× 104 .46 .28 .68 .54 .19 .82 .55 .21 .83
π .12 .00 .64

Ridge β 30 20 53 .44 .30 .62 .57 .32 .77 .56 .30 .79
π .20 .01 .67

LT β 30 22 36 .44 .30 .58 .57 .34 .79 .56 .33 .77
π .26 .01 .70

0.95 ML β 393 76 2× 104 .46 .28 .70 .53 .18 .81 .54 .19 .85
π .12 .01 .64

Ridge β 30 19 50 .44 .30 .62 .57 .32 .80 .57 .30 .79
π .22 .01 .70

LT β 29 22 35 .44 .30 .58 .57 .33 .77 .55 .33 .76
π .25 .01 .68

0.98 ML β 623 121 4× 104 .46 .28 .68 .54 .22 .81 .54 .19 .83
π .12 .00 .64

Ridge β 30 18 48 .44 .30 .62 .57 .30 .78 .56 .30 .78
π .22 .01 .70

LT β 29 21 36 .44 .30 .58 .57 .35 .77 .56 .33 .77
π .24 .01 .70
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Table 5.9: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and Speci-

ficity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of two
logistic regressions when n = 100 and ρ = 0.99.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 800 118 5× 104 .46 .28 .68 .54 .20 .81 .55 .20 .85
π .12 .00 .64

Ridge β 30 19 59 .44 .28 .62 .56 .30 .78 .56 .30 .80
π .19 .01 .67

LT β 29 22 37 .44 .30 .58 .57 .33 .77 .56 .32 .77
π .25 .01 .68

0.95 ML β 951 176 6× 104 .46 .28 .70 .54 .19 .81 .56 .19 .85
π .12 .00 .64

Ridge β 30 18 50 .44 .28 .62 .57 .31 .80 .56 .29 .78
π .23 .01 .68

LT β 29 21 36 .44 .30 .58 .57 .35 .78 .56 .33 .76
π .24 .01 .68

0.98 ML β 1331 268 8× 104 .46 .28 .70 .54 .21 .81 .56 .20 .84
π .12 .00 .61

Ridge β 30 17 80 .44 .30 .64 .57 .27 .79 .56 .29 .79
π .20 .01 .68

LT β 29 20 37 .44 .30 .58 .57 .33 .77 .56 .33 .77
π .24 .01 .68

5.1.2 Simulation Study 2

The second simulation looks at how well the estimation approaches perform when

the population is made up of three logistic regression models with two covari-

ates. Assuming the correlation level ϕ = {0.85, 0.95, 0.99}, we generated the co-

variates and binary responses as described above from the mixture population

when π0 = (0.3, 0.4, 0.3) and β0 = (β01,β02,β03) with β01 = (2.85,−10,−5.11),

β02 = (10, 9.90, 5.11) and β03 = (−3.84, 9.90, 5.11). The initial values that we used

in this simulation are β01(initial) = β0 + 2, β02(initial) = β0 + 1, π01 = (0.3, 0.4, 0.3)

and π02 = (0.2, 0.4, 0.4) and all are fixed for all methods (ML, Ridge and Liu).

Similar to the setting of the first study, we computed the medians and 95% in-
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tervals for the estimation and classification measures using different sample sizes,

n = {50, 100}. The results of this study is presented in Tables 5.10 and 5.11.

While the three methods’ prediction performance is nearly identical, the Ridge and

LT methods produced more reliable estimates for the mixture of logistic regression

model’s coefficients. As you can see ML estimates become extremely unreliable in

estimating the parameters, for example from Table 5.10 the 95% interval of
√
SSE

when ϕ = 0.85 is between [32, 6 × 105]. Unlike, the Ridge and LT performs more

reliably in estimating parameters, for example the 95% interval of
√
SSE is between

[44,69] while LT is between [46,65].

In addition, when estimating the coefficients of the mixture model, the LT es-

timates almost consistently outperform their Ridge counterparts. As a result, we

developed a method such that we got a good prediction performance, and we have

a proposal that we solved the estimation problem too.
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Table 5.10: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and

Specificity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of
three logistic regressions when n = 50.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 139 32 6× 105 .45 .32 .65 .60 .18 .84 .48 .20 .77
π .34 .06 .70

Ridge β 59 44 69 .43 .31 .56 .68 .37 .90 .43 .12 .70
π .44 .14 .80

LT β 60 46 65 .42 .30 .55 .69 .38 .93 .42 .12 .72
π .42 .16 .74

0.95 ML β 169 32 7× 105 .45 .32 .64 .60 .18 .84 .49 .20 .80
π .32 .06 .70

Ridge β 58 43 68 .43 .31 .55 .67 .38 .91 .44 .15 .72
π .44 .13 .80

LT β 60 45 65 .42 .30 .55 .70 .37 .95 .43 .11 .72
π .42 .16 .72

0.99 ML β 255 38 2× 105 .45 .32 .64 .61 .20 .84 .49 .22 .79
π .34 .06 .70

Ridge β 58 43 69 .42 .30 .56 .68 .36 .92 .43 .14 .72
π .42 .14 .67

LT β 60 45 65 .42 .29 .55 .70 .34 .95 .43 .09 .76
π .42 .16 .74

Table 5.11: The median (M) and 95% intervals for the
√
SSE, Error, Sensitivity (SN) and

Specificity (SP) of the ML, Ridge and LT methods in estimation and prediction of the mixture of
three logistic regressions when n = 100.√

SSE Error SN SP
ϕ SEM Ψ M L U M L U M L U M L U

0.85 ML β 115 34 1× 104 .44 .32 .63 .63 .20 .87 .47 .19 .77
π .38 .07 .82

Ridge β 58 44 68 .42 .31 .54 .68 .42 .91 .43 .15 .70
π .47 .16 .84

LT β 60 42 66 .41 .30 .55 .70 .40 .93 .43 .13 .72
π .45 .18 .79

0.95 ML β 131 37 1× 105 .44 .31 .63 .64 .20 .87 .47 .18 .76
π .39 .07 .8

Ridge β 58 43 69 .41 .30 .53 .68 .44 .92 .44 .17 .68
π .48 .16 .84

LT β 60 43 66 .41 .29 .53 .71 .42 .94 .43 .13 .71
π .46 .18 .79

0.99 ML β 201 47 2× 104 .43 .31 .62 .64 .22 .88 .47 .18 .78
π .38 .08 .81

Ridge β 58 43 68 .41 .30 .54 .68 .43 .92 .45 .16 .69
π .47 .17 .85

LT β 60 45 65 .41 .29 .53 .71 .40 .95 .44 .13 .74
π .47 .18 .79
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5.2 Simulation Studies for Linear of Regression

Models

This section examines the performance of the ML, Ridge, and LT techniques in

estimating the parameters of a mixture of regression models in the presence of mul-

ticollinearity by using two simulated studies. We investigate how the sample size,

multicollinearity level, and multiple components in the mixture of regressions affect

the proposed estimate methods. To begin, we assume the underlying population

consists of two regression models. The performance of the techniques is then exam-

ined in a second simulation, in which the population is made up of three regression

components.

5.2.1 Simulation Study 1

In the first simulation research, we employed one parameter ρ, to induce multi-

collinearity in the mixture of regressions, as described by Inan and Erdogan (2013).

The component regressions include four covariates (x1, . . . ,x4), where ρ denote the

level of correlation between the four predictors in the mixture model. We first gen-

erated random numbers {wij, i = 1, . . . , n; j = 1, . . . , 4} from the standard normal

distribution and then simulated the covariates as follows

xi,j = (1− ρ2)wi,j + ρwi,5, j = 1, 2, 3, 4,

where we used ρ = {0.88, 0.9, 0.95, 0.97, 0.99} to simulate the multicollinearity in

the mixture of regressions. We then generated the responses form regression (3.1)

with probability π0 = (0.7, 0.3) and Ψ0 = (π0,β0,σ
2
0) where, β0 = (β01,β02) such
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that, β01 = (1, 3, 4, 5, 6), β02 = (−1,−1,−2,−3,−5), σ2
0 = (1, 1). These shrinkage

methods required two starting values. The initial values that we used in this simu-

lation are β01(initial) = β0 + 2, β02(initial) = β0 − 2, π01 = (0.5, 0.5), π02 = (0.3, 0.7),

σ2
01 = (1, 2) and σ2

02 = (3, 5) and all these values are fixed for all methods (ML,

Ridge and Liu).

In order to investigate the performance of three methods, we used the sum of

squared errors (SSE) of the paramater estimates over the 2000 replications, which

is given by

SSE(Ψ̂
(m)

) =
[
(Ψ̂

(m) −Ψ0)
⊤(Ψ̂

(m) −Ψ0)
]

(5.1)

where Ψ̂
(m)

= {β̂(m)
, π̂(m), σ̂2

(m)} for m = 1, · · · , 2000. To compute the prediction

performance, we use the root mean square error of prediction as follows

MRSEP =
1

2000

2000∑

m=1

RMSEP(m), (5.2)

where RMSEP(m) is the root mean-squared error of prediction of the m-th replica-

tion based on K− fold cross validation, which is given by

RMSEP(m) =

√√√√ 1

n

n∑

i=1

(
yi − ŷ

(m)
i

)2
, (5.3)

where ŷi is the predicted response of i−th observation in the m-th replication.

We computed the estimation and prediction measures for the ML, Ridge and

LT methods as follows. Because we shall use the cross-validation in the analysis of

the mixture of linear regression, we generated sample sizes n = {60, 100} (larger

76



than the sample sizes used in the first simulation study of Subsection 5.1.1) from

the underlying mixture of regression models as described in equation (3.1). We

then used the EM, CEM and SEM algorithms to estimate the parameters of the

mixture population via ML, Ridge and LT methods. We applied the idea of K = 5

cross-validation to assess the prediction performance of the methods. To this end,

we divide the data into K folds of equal sizes. We used K− 1 folds for training and

the remaining fold for prediction. We repeated the procedure for all k = 1, · · · , K

to compute the corresponding value for RMSEP(m). Eventually, we replicated the

entire procedure m = 2000 times and computed the median and 95% intervals

of the SSE and RMSEP measures. The lower and upper bounds of the intervals

correspond to 2.5 and 97.5 percentiles of 2000 replications, respectively.
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Table 5.12: The median (M) and the length of 95% intervals for the RMSEP of the ML, Ridge
and LT methods in prediction of the mixture of two regressions when n = 60

ρ = 0.88 ρ = 0.90 ρ = 0.95 ρ = 0.97 ρ = 0.99
Estimator Method M L M L M L M L M L

Ls EM 16.3 10.8 16.7 11.1 17.7 12.5 18.1 12.1 18.3 12.3
CEM 16.5 10.7 16.7 11.1 17.7 12.0 18.0 12.0 18.2 12.3
SEM 16.3 11.3 16.7 11.4 17.6 11.9 17.9 11.9 18.2 12.4

Ridge EM 16.5 11.0 16.7 11.2 17.9 12.1 18.1 12.0 18.3 12.0
CEM 16.4 10.8 16.7 11.1 17.8 11.6 17.9 11.9 18.3 12.7
SEM 16.4 11.0 16.7 11.5 17.7 11.6 18.0 11.8 18.3 12.3

LT(HKP) EM 16.4 10.6 16.6 11.1 17.7 11.7 18.1 12.5 18.3 12.0
CEM 16.4 11.3 16.6 11.2 17.6 11.9 18.1 11.6 18.3 12.2
SEM 16.4 10.9 16.6 11.2 17.8 12.0 18.0 12.1 18.3 12.1

LT(ITE) EM 16.4 10.8 16.8 10.9 17.3 11.4 17.7 11.8 18.1 12.0
CEM 16.5 10.9 16.7 10.9 17.2 11.7 17.7 11.8 18.1 11.9
ESM 16.4 11.1 16.7 11.0 17.2 11.7 17.7 12.3 18.1 11.9

Table 5.13: The median (M) and the length of 95% intervals for the RMSEP of the ML, Ridge
and LT methods in prediction of the mixture of two regressions when n = 100

ρ = 0.88 ρ = 0.90 ρ = 0.95 ρ = 0.97 ρ = 0.99
Estimator Method M L M L M L M L M L

Ls EM 16.6 8.2 16.9 8.8 17.7 9.0 18.1 8.9 18.5 9.3
CEM 16.5 8.6 16.8 8.7 17.6 9.4 18.1 9.0 18.5 9.9
SEM 16.6 8.5 16.9 8.9 17.7 9.0 18.0 9.4 18.5 9.8

Ridge EM 16.6 8.8 16.8 8.6 17.7 9.1 18.1 9.2 18.6 9.4
CEM 16.5 8.6 16.8 8.6 17.6 9.4 18.0 9.4 18.4 9.3
SEM 16.5 8.7 16.7 8.5 17.8 9.0 18.0 9.3 18.5 9.4

LT(HKP) EM 16.5 8.6 16.8 8.7 17.6 9.0 18.1 8.9 18.5 9.9
CEM 16.4 8.8 16.8 8.5 17.6 8.9 18.1 9.4 18.4 9.6
SEM 16.5 8.6 16.9 8.8 17.7 8.9 18.0 9.2 18.4 9.6

LT(ITE) EM 16.6 8.5 16.9 8.4 17.5 9.3 17.9 9.3 18.2 9.0
CEM 16.5 8.6 16.8 8.8 17.3 9.0 17.8 9.2 18.2 9.3
ESM 16.6 8.4 16.8 8.5 17.4 8.8 17.8 9.7 18.2 9.5
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Figures 5.1-5.6 show the results of the simulation study with sample sizes 60

and 100. In each graph, we represent the performance of the three estimators (LS,

Ridge, and Liu). For each estimator, we represent the performance in three lines,

including the median of SSE, 2.5% lower-bound of SSE, and 97.5% upper-bound of

SSE. We represented these nine lines in three legends in each figure.

The ML methods estimate slightly better the mixing proportion than the Ridge

and LT methods. This is based on the fact that the Ridge and LT estimators are

biased shrinkage methods where a slight bias is incorporated into the estimation

to encounter the multicollinearity problem. We observe that the multicollinear-

ity significantly affects the ML estimates of the coefficients and results in extremely

unreliable estimates for all EM, CEM, and SEM algorithms. In contrast to ML esti-

mates, the performance of the shrinkage approaches in estimating the coefficients of

the component regressions shows a significant improvement. In the multicollinear-

ity, the LT approaches seem to be more reliable than their Ridge equivalents. From

a comparison between LT(ITR) and LT(HKP), we see that LT(HKP) provides more

reliable estimates for σ2. Among the LT(HKP) estimators, the CEM algorithm al-

most always outperforms its EM ad SEM counterparts. Tables 5.12 and 5.13 show

the median and 95% intervals of the RMSEP for all the developed methods. The

tables clearly show that all methods and EM algorithms have nearly identical pre-

diction performances. This finding is consistent with Inan and Erdogan (2013) and

Ghanem et al. (2022a) that multicollinearity seriously affects the estimation of the

methods while prediction levels stay almost the same.
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5.2.2 Simulation Study 2

The second simulation examines how well the estimation methods perform when

the population consists of three regression models with two covariates. Assuming

the correlation level ϕ = {0.9, 0.92, 0.95, 0.97, 0.99}, we generated the covariates

and responses as described above 5.2.1 from the mixture population when π0 =

(0.3, 0.4, 0.3), σ2
0 = (0.25, 1, 0.09) and β0 = (β01,β02,β03) with β01 = (1, 3, 4),

β02 = (−1,−1,−2) and β03 = (−3, 1,−4). These shrinkage methods required two

starting values. The initial values that we used in this simulation are β01(initial) =

β0−1, β02(initial) = β0+1, π01 = (0.3, 0.4, 0.3), π02 = (0.3, 0.4, 0.4), σ2
01 = σ2

0+0.02

and σ2
02 = σ2

0 + 0.02. All of these values a little bit close from true parameters and

all are fixed for all methods (ML, Ridge and Liu).

Similar to the settings of the first simulation study, we replicated 2000 times all

the estimation and prediction procedures under the EM, CEM, and SEM algorithms

and computed the median and 95% interval for the SSEs and RMSEP for size sizes

n = {60, 100}. Figures 5.7 - 5.12 and Tables 5.14 - 5.15 report the median (M),

95% intervals for SSE and RMSEP. Here, we also observe that the ML method

slightly better estimates the mixing proportions; however, the ML method results

in extremely unreliable estimates for the coefficients of component regressions. It

is easy to see that shrinkage estimators do better in estimating the component

regression parameters. Moreover, the LT(HKP) almost always outperforms other

methods and provides a more reliable estimate of the mixture of regression models.

Therefore, the LT(HKP) method based on the CEM algorithm is recommended to

fit the mixture of linear regression models in multicollinearity.
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Table 5.14: The median (M) and the length of 95% intervals for the RMSEP of the ML, Ridge
and LT methods in prediction of the mixture of three regressions when n = 60

ρ = 0.90 ρ = 0.92 ρ = 0.95 ρ = 0.97 ρ = 0.99
Estimator Method M L M L M L M L M L

Ls EM 6.0 4.0 6.1 3.9 6.2 4.1 6.4 4.1 6.4 4.3
CEM 6.1 3.9 6.2 4.0 6.4 4.3 6.5 4.3 6.6 4.4
SEM 6.1 3.9 6.2 4.1 6.3 4.2 6.4 4.2 6.5 4.3

Ridge EM 6.0 4.0 6.1 3.9 6.2 4.1 6.3 4.2 6.4 4.5
CEM 6.1 4.0 6.2 4.1 6.3 4.2 6.5 4.2 6.6 4.3
SEM 6.0 4.0 6.2 4.2 6.4 4.1 6.5 4.2 6.5 4.3

LT(HKP) EM 5.9 3.9 6.0 3.9 6.2 4.2 6.3 4.2 6.4 4.1
CEM 6.0 4.1 6.1 4.0 6.3 4.3 6.5 4.3 6.5 4.4
SEM 6.0 4.0 6.1 4.0 6.3 4.3 6.5 4.2 6.6 4.4

LT(ITE) EM 6.5 6.9 6.1 3.9 6.1 4.1 6.3 4.0 6.3 4.1
CEM 6.3 4.4 6.3 4.0 6.4 4.2 6.5 4.2 6.6 4.3
SEM 6.2 4.5 6.2 4.0 6.3 4.1 6.4 4.2 6.5 4.3

Table 5.15: The median (M) and the length of 95% intervals for the RMSEP of the ML, Ridge
and LT methods in prediction of the mixture of three regressions when n = 100

ρ = 0.90 ρ = 0.92 ρ = 0.95 ρ = 0.97 ρ = 0.99
Estimator Method M L M L M L M L M L

Ls EM 5.9 3.0 6.1 3.2 6.3 3.1 6.4 3.4 6.5 3.4
CEM 6.1 3.0 6.3 3.1 6.4 3.3 6.5 3.3 6.6 3.4
SEM 6.1 3.0 6.1 3.2 6.4 3.3 6.5 3.1 6.5 3.4

Ridge EM 6.0 3.1 6.1 3.1 6.3 3.3 6.4 3.2 6.5 3.3
CEM 6.1 3.0 6.2 3.0 6.4 3.2 6.5 3.4 6.6 3.4
SEM 6.0 3.0 6.2 3.1 6.4 3.2 6.5 3.3 6.6 3.5

LT(HKP) EM 5.9 3.1 6.0 3.0 6.2 3.2 6.4 3.2 6.5 3.3
CEM 6.0 3.2 6.2 3.2 6.3 3.2 6.5 3.4 6.6 3.4
SEM 6.0 3.1 6.1 3.1 6.9 3.1 6.5 3.2 6.5 3.4

LT(ITE) EM 6.4 6.2 6.1 3.0 6.2 3.1 6.3 3.0 6.3 3.5
CEM 6.3 3.3 6.3 3.2 6.4 3.3 6.5 3.4 6.6 3.6
ESM 6.2 4.2 6.2 3.0 6.3 3.1 6.3 3.2 6.4 3.4
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5.3 Bone Data Analysis

Osteoporosis is a bone disorder that arises when the body’s bone architecture dra-

matically reduces. This deterioration causes a slew of serious health problems.

Patients with osteoporosis, for example, are more susceptible to skeletal fragility

and fractures in areas such as the vertebral, hip, and femur (Cummings et al., 1993;

Melton III et al., 1998). Osteoporosis has a significant impact on the health and

survival of a patient. More than half of patients with osteoporotic hip fractures

are unable to live independently, and one-third of these patients will die within one

year as a result of the disease’s medical complications (Bliuc et al., 2009; Neuburger

et al., 2015). The financial load of osteoporosis is also undeniable on community

health. For example, according to (Lim et al., 2016), the annual cost of osteoporosis

and its linked health problems in South Korea is twice that of diabetes.

Bone mineral density (BMD) is the most influential factor in diagnosing osteo-

porosis, according to a WHO expert panel (WHO, 1994). When the BMD score is

fewer than 2.5 SDs from the BMD norm, it is diagnosed as osteoporosis (i.e., the

mean of BMD scores of healthy individuals between 20-29). The density of bone

tissues grows until the age range of 20-30, after which it declines as the person ages.

Aside from age, other research studies in the literature looked at the relationship

between osteoporosis and patient characteristics like sex, weight, and BMI (Felson

et al., 1993; Kim et al., 2012).
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5.3.1 Bone Data Analysis For Mixture of Logistic Regres-

sion

Even though measuring BMD scores is costly, practitioners have access to a variety

of easily accessible patient information, such as physical and demographic charac-

teristics and BMD results from previous surveys. Logistic regression is a useful

statistical approach for using these factors to explain patient statistics on osteo-

porosis. Within each osteoporosis class, the impact of these factors can differ. As a

result, in an unsupervised learning technique, a mixture of logistic regressions can

be used to estimate the effects of various characteristics. The data on bone mineral

density from the National Health and Nutritional Examination Survey was used in

this numerical investigation (NHANES III). Between 1988 and 1994, the Centers

for Disease Control and Prevention (CDC) conducted a study of 33999 American

adults. A total of 182 women aged 50 and up took part in two bone examinations,

where there are 36 bone characteristics available for each individual. We treated

these 182 women as our underlying population because of the severe impact of

osteoporosis on the elderly female population. We took the total BMD from the

second bone examination and converted it to a binary osteoporosis status as our re-

sponse variable. To covert our response variable (BMD) to a binary status, we first

calculated the mean
(
BMDR

)
and standard deviation sd(BMDR) for the BMD

values for the reference group (i.e, women aged between 20 to 30 ) and computed

the BMD norm m0 =
(
BMDR

)
− sd (BMDR). We then compared the BMD value

of individuals with the BMD norm; if it is greater than m0, the BMD status of the

individual is assigned as 1; otherwise 0. We also used two easy-to-measure physical

features as covariates in the logistic regressions: arm and bottom circumferences.

89



The high association between the covariates ρ = 0.81 indicates the multicollinear-

ity problem in the mixture of logistic regressions. We applied R package mixtools

to all the 182 observations and found the estimates of the coefficients and mixing

proportions. We then treated these estimates as a true parameter of the bone pop-

ulation in this real data study. We replicated 2000 times the ML, Ridge, and LT

methods in estimating the parameters of the bone mineral population with training

sample size n = {20, 40, 80, 100} and test sample size (taken independently from

the training step) of size 50. We then computed the estimation and predication

measures

√
SSE(β̂),

√
SSE(π̂), Error, Sensitivity, Specificity as described in Sec-

tion 5.1.1 where β0 and π0 are obtained by ML estimates of the parameters using

the complete information of the population.

Table 5.16 shows the median (M) and 95% intervals of the above estimation and

prediction measures. The lower (L) and upper (U) bounds of the intervals were

determined by 2.5 and 97.5 percentiles of the estimates. While the ML method

slightly estimates the mixing proportions better, the ML method becomes extremely

unreliable in estimating the coefficients of component logistic regressions. Unlike

the ML, the Ridge and shrinkage methods could handle the multicollinearity issue

in the estimation problem. Comparing the shrinkages methods, β̂LT significantly

outperforms β̂R in estimating the coefficients of the mixture. Therefore, the LT

shrinkage method is recommended to estimate a mixture of logistic regressions when

there is multicollinearity in bone mineral data.
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Table 5.16: The median (M), lower (L) and upper (U) bounds of 95% intervals for
√
SSE, Error,

Sensitivity (SN) and Specificity (SP) of the methods in the analysis of bone mineral data with
sample size n = {20, 40, 80, 100}.

√
SSE Error SN SP

n SEM Ψ M L U M L U M L U M L U
20 ML β 7.8 .70 6× 1051 .36 .20 .64 .00 .00 .81 1 .19 1

π .1 .00 .5
Ridge β 1.9 .4 30.2 .44 .26 .66 .35 .00 .84 .66 .18 1

π .2 .00 .7
LT β 1.9 .58 3.2 .46 .28 .62 .33 .00 .78 .64 .28 .97

π .3 .00 .7
40 ML β 8.2 1.3 4× 1064 .34 .20 .56 .00 .00 .61 1 .41 1

π .07 .00 .45
Ridge β 1.8 1.2 26.4 .44 .28 .62 .33 .00 .75 .67 .33 .97

π .22 .025 .7
LT β 1.9 0.6 2.1 .46 .30 .60 .35 .07 .69 .64 .38 .89

π .3 .05 .7
80 ML β 9.6 2.0 5× 1070 .34 .20 .58 .00 .00 .63 1 .42 1

π .05 .00 .42
Ridge β 1.8 1.2 8.9 .44 .30 .60 .33 .00 .67 .68 .45 1

π .25 .025 .67
LT β 1.9 1.05 2.0 .46 .30 .60 .33 .07 .63 .66 .44 .87

π .27 .025 .7
100 ML β 8.9 2.0 2× 1073 .34 .20 .56 .00 .00 .64 1 .41 1

π .04 .00 .4
Ridge β 1.8 .96 8.5 .44 .28 .60 .32 .00 .64 .67 .44 .97

π .26 .02 .67
LT β 1.9 1.1 2.0 .46 .30 .60 .33 .08 .64 .65 .45 .85

π .27 .03 .7
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5.3.2 Bone Data Analysis For Mixture of Linear Regression

Models

In the regressions, we additionally utilized two easy-to-measure physical traits as

covariates: circumferences of the arms and the bottom. The high association be-

tween the covariates ρ = 0.81 indicates the multicollinearity problem in the mixture

of regressions. We replicated 2000 Monte Carlo simulations for the ML, Ridge,

and LT methods in estimating the parameters of the bone mineral population with

sample size n = {60, 100}. We used 5-fold cross-validation where, in each iteration,

we used 4-fold for training and one remaining fold for testing. Then we changed

this testing fold iteratively to cover all sample sizes, to investigate the estimation

and prediction performance for all methods. We then computed the estimation and

prediction measures

√
SSE(β̂),

√
SSE(π̂),

√
SSE(σ̂2) and MRSEP as described in

Section 5.2 where β0, π0 and σ2
0 are obtained by ML estimates of the parameters

using the complete information of the population. Similar to Subsection 5.3.1, we

applied R package mixtools to all the 182 observations and found the estimates of

the coefficients and mixing proportions. We then used these estimates as a true

parameter of the bone population in this real data study
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Table 5.17: The median (M), lower (L) and upper (U) bounds of 95% intervals for
√
SSE of the

methods in the analysis of bone mineral data with sample size n = 60.

CEM SEM EM
Methods Ψ M L U M L U M L U

LS β .010 .002 .165 .019 .003 .213 .018 .003 .134
π .333 .100 .366 .333 .183 .366 .218 .015 .365
σ2 .003 .000 .014 .006 ..000 .014 .004 .000 .014

Ridge β .009 .002 .165 .013 .002 .166 .012 .002 .118
π .333 .100 .366 .333 .166 .366 .214 .019 .366
σ2 .003 .000 .014 .006 .000 .014 .004 .000 .014

LT(HKP) β .009 .002 .165 .010 .003 .183 .010 .003 .067
π .333 .100 .366 .333 .150 .366 .205 .013 .372
σ2 .003 .000 .014 .006 .000 .014 .004 .000 .016

LT(ITE) β .009 .002 .010 .009 .006 .011 .009 .007 .010
π .300 .100 .366 .350 .116 .566 .575 .032 .599
σ2 .002 .000 .014 .005 .000 .014 .003 .000 .009

Table 5.18: The median (M), lower (L) and upper (U) bounds of 95% intervals for
√
SSE of the

methods in the analysis of bone mineral data with sample size n = 100.

CEM SEM EM
Methods Ψ M L U M L U M L U

LS β .010 .002 .126 .014 .003 .202 .014 .002 .112
π .350 .100 .380 .360 .210 .380 .222 .016 .370
σ2 .005 .000 .014 .006 ..000 .014 .003 .000 .014

Ridge β .009 .002 .123 .011 .003 .165 .009 .002 .086
π .350 .100 .380 .360 .210 .380 .220 .019 .370
σ2 .005 .000 .014 .006 .000 .014 .003 .000 .014

LT(HKP) β .009 .002 .123 .010 .003 .133 .010 .002 .047
π .350 .100 .380 .360 .190 .380 .207 .019 .370
σ2 .004 .000 .014 .005 .000 .014 .003 .000 .014

LT(ITE) β .009 .002 .010 .009 .007 .010 .009 .007 .009
π .310 .100 .380 .360 .150 .580 .584 .040 .600
σ2 .004 .000 .014 .005 .000 .014 .002 .000 .007
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Table 5.19: The median (M), the lower and the upper of 95% intervals for the RMSEP of the
ML, ridge and LT methods in prediction of the Bone real data

n = 60 n = 100
Estimator Method M L U M L U

LS EM .139 .105 .195 .135 .110 .173
CEM .149 .114 .220 .141 .113 .190
SEM .140 .104 .234 .137 .109 .205

Ridge EM .137 .104 .186 .133 .109 .172
CEM .148 .115 .207 .139 .113 .189
SEM .140 .103 .223 .136 .109 .194

LT(HKP) EM .135 .104 .182 .132 .109 .168
CEM .148 .115 .208 .139 .113 .188
SEM .139 .104 .221 .137 .109 .194

LT(ITE) EM .125 .101 .155 .124 .104 .145
CEM .153 .119 .193 .146 .117 .181
SEM .143 .110 .186 .140 .113 .171

Tables 5.17-5.19 show the median, the lower and the upper of 95% intervals

for the
√
SSE and RMSEP of the ML, ridge and LT methods in the estimation

and prediction of the Bone real data. The lower (L) and upper (U) bounds of the

CIs were determined by 2.5 and 97.5 percentiles of the estimates. Although all

ML, Ridge and LT methods almost perform identically in estimating the mixing

proportion and component variances, β̂ML become considerably unreliable. Unlike

ML methods, the LT and Ridge shrinkage methods could appropriately handle the

multicollinearity in estimating the coefficients of component regressions. Comparing

the shrinkage methods, we observe that the LT estimators appear more reliable

than their Ridge counterparts in estimating the parameters of the bone mineral

population.
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Chapter 6

Summary and Concluding

Remarks

6.1 Summary

Many medical applications, such as osteoporosis research, require a costly and time-

consuming method to diagnose the disease status; however, practitioners have access

to various easy-to-measure patient variables, such as physical and demographic

information. Logistic regression is a robust statistical tool for utilizing these features

to explain an illness’s status. In an unsupervised learning technique, a mixture

of logistic regressions can be used to study the effect of covariates on the binary

response, and a mixture of regressions can be utilized in an unsupervised learning

technique to explore the effect of covariates on the response when the population

contains different subpopulations.

This thesis investigated the estimation of the parameters on the mixture of

logistic and mixture of linear regression models in the presence of multicollinearity.

We developed Liu-type (LT) shrinkage estimator for finite mixture models (FMMs)
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to deal with the multicollinearity problem.

Although the maximum likelihood (ML) method is the usual method for estimat-

ing the parameter of a mixture of logistic regressions and mixture of linear regression

models, multicollinearity significantly impacts ML estimates. The properties of the

Ridge and LT shrinkage methods in estimating the mixture of logistic regressions

and the mixture of regression models were examined in this study. Our proposed

methods are biased, and we only recommend them when there is multicollinearity.

According to mixture of linear regressions and mixture of logistic regression

models, we discovered that the ML technique estimates the mixing proportions of

the mixture models slightly better than shrinkage methods based on extensive nu-

merical simulations. Because shrinkage estimators are biased methods, they are

meant to overcome the ill-conditioned design matrix at the cost of bias in the esti-

mation. With multicollinearity, the ML approach for predicting mixture coefficients

becomes significantly unreliable. Unlike the ML method, the proposed shrinkage

approaches give more reliable estimations. When comparing shrinkage techniques,

β̂LT outperforms considerably β̂R in the presence of multicollinearity in the mixture

of regression models and a mixture of logistic regressions.

Although the proposed shrinkage method performed well in dealing with multi-

collinearity problems, the performance of the methods was only assessed based on

the SEM algorithm in the mixture of Logistic regression. Note that the convergence

rate of the shrinkage methods under CEM and EM approaches reduces significantly.

For this reason, we only reported the results based on the SEM approach in this

thesis. We believe that this computational issue arises because one of the logistic

regression components becomes empty in the early iterations of the CEM and EM
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algorithm.

Finally, we applied the proposed methods to bone mineral data to analyze the

bone disorder status of women aged 50 and older. When the correlation between

covariates is small, and hence the collinearity is not severe, these shrinkage methods

are not recommended as they result in biased estimates.

6.2 Future Work

In the future, we plan to work on count data, a statistical data type that describes

countable quantities using only count values. Poisson distribution is one of the most

important distributions that deal with counting data. We will focus on mixture of

Poisson regression model, so we shall study the shrinkage estimators to deal with

multicollinearity problem in the problem of mixture of Poisson regression models.
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