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Abstract

In this dissertation we consider Hopf algebras that satisfy a polynomial iden-
tity as algebras or coalgebras. The notion of a polynomial identity for an
algebra is classical. The dual notion of an identity for a coalgebra is new.

In Chapter 0 we give basic definitions and facts that are used throughout
the rest of this work.

Chapter 1 is devoted to coalgebras with a polynomial identity. First we
introduce the notion of identity of a coalgebra and discuss its general prop-
erties. Then we study what classes of coalgebras are varieties, i.e. can be
defined by a set of identities. In the case of algebras, varieties are character-
ized by the classical Theorem of Birkhoff. Somewhat unexpectedly, the dual
statement for coalgebras does not hold. Further, we give two realizations of
a relatively (co)free coalgebra of a variety: one via the so called finite dual of
a relatively free algebra and the other a direct construction using some kind
of symmetric functions.

In Chapter 2 we give necessary and sufficient conditions for a cocommuta-
tive Hopf algebra (with additional restrictions in the case of prime character-
istic) to satisfy a polynomial identity as an algebra. These results generalize

the well-known Passman's Theorem on group algebras with a polynomial
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identity and Bahturin-LatySev’s Theorem on universal enveloping algebras
with a polynomial identity. The proofs for the case of prime characteristic
are given in Chapter 4.

In Chapter 3 we dualize the results of Chapter 2 to obtain some criteria
for a commutative Hopf algebra (assumed reduced in the case of prime char-
acteristic) to satisfy an identity as a coalgebra. We also extend our result
in charecteristic zero to a certain class of nearly commutative Hopf algebras
(pseudoinvolutive Hopf algebras of Etingof-Gelaki).

Finally, in Chapter 4 we use the interpretation of cocommutative Hopf
algebras as formal groups to prove the results of Chapter 2. Our method
also demonstrates that Bahturin-LatySev’s Theorem in characteristic zero is
in fact a corollary of Passman’s Theorem.

For the most part, this dissertation is based on my papers [19], [20], and
[21].
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Definitions and Basic Facts

Throughout k will denote the ground field. All vector spaces, algebras, tensor
products, ete. will be considered over k unless stated otherwise. k will denote
the algebraic closure of k.

All algebras will be assumed associative and unital, and algebra maps
Ay = A, will be required to send the unit element of A; to the unit element
of A,. In particular, a subalgebra of A must contain the unit element of A.

Z will denote the set of integers and N the set of positive integers.

0.1 Coalgebras and Comodules

In this and the following section we refer to the excellent monograph of

S.Montgomery [25] for the basic properties of coalgebras and Hopf algebras.

See the bibliography of [25] for the reft to original papers.
The notion of a coalgebra is the dual of the notion of an algebra. We first
express the associativity and unit axioms via commutative diagrams so that

we can dualize them.

Definition 0.1.1. A k-algebra is a k-vector space A together with two k-

linear maps, multiplication m : A® A — A and unit u : k = A, such that
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the following diagrams are commutative:

associativity unit
AodeAMOH 4q 4 A®A
id®@m m u®id id®u

A®k

A

AQA———A k@A

Definition 0.1.2. A k-coalgebra is a k-vector space C' together with two
k-linear maps, comultiplication A : € — C'® C and counit ¢ : C — k, such

that the following diagrams are commutative:

coassociativity counit
c—2 _cec  kec—12 8l .cak

A A®id e®id A d@e

cecC [eX-Yex:To) cec

d®A
We say C is cocommutative if Ac is a symmetric tensor for any ¢ € C. A

subspace D C C'is a subcoalgebra if AD C D® D.

Definition 0.1.3. Let C and D be coalgebras, with comultiplications A¢
i Ay, aidcoGiteE, aid e, fapectivaly: A liisar fiap £+ C = Dise
homomorphism of coalgebras if Apo f = (f® f)oAc and ec =epo f. A
subspace I C C is a coideal if AT C T®C + C® I and e(I) =0.

It is easy to check that if I is a coideal, then the space C/T is a coalgebra

with comultiplication induced from A, and conversely.
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We will now see that there is a very close relationship between algebras
and coalgebras, by looking at their dual spaces. If V' is a vector space, we
will often use the symmetric notation (f,v) instead of f(v), for v € V and
feve.

If C is a coalgebra, then C* is an algebra, with multiplication m = A*

and unit u =¢*. If C'is ive, then C* is

However, if we begin with an algebra A, then difficulties arise. For, if A
is not finite-dimensional, the image of m* : A* — (A® A)* does not have to
be a subspace of A* @ A". The largest subspace of A* whose image lies in

A*® A*, is the so called finite dual:
A° = {f € A*| f(I) = 0 for some ideal I 9 A, dim A/I < co}.

A® is a coalgebra with comultiplication A = /m* and counit ¢ = u* (restricted

to 4°). If A is ive, then A° is ive.

Moreover, the functor ( )° is the right adjoint of ( )*, i.e. for any algebra
A and coalgebra C, the sets of homomorphisms Alg(A, C*) and Coalg(C, A°)
are in a one-to-one correspondence (see Lemma 1.3.12).

Unfortunately, A° may happen to be too small (even zero). The following
condition on A is precisely what we need to guarantee that A° is big enough
to separate the elements of A (in other words, A° is dense in A* in the sense

of Definition 0.4.1).

Definition 0.1.4. An algebra A is called residually finite-dimensional if its
ideals of finite codimension (i.e. I a4 with dim A/I < co) intersect to 0 or,
equivalently, for any 0 # a € A, there exists a finite-dimensional representa-

tion g of A such that (a) # 0.
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The relationship between subcoalgebras, coideals, ideals, and subalgebras
is the following.
Lemma 0.1.5. 1) Let C be a coalgebra.
(a) A subspace D C C is a subcoalgebra iff
D = {f € C*|(f,D) =0} is an ideal of C*.
(b) A subspace I C C is a coideal iff
I+ ={f € C*|{f,I) = 0} is a subalgebra of C"*.
2) Let A be an algebra.
(a) If B C A is a subalgebra,
then B+ = {f € A°|(f, B) = 0} is a coideal of A°
(b) IfI C A is an ideal,
then I+ = {f € A°|(f,I) = 0} is a subcoalgebra of A°. [
Now we introduce the so called sigma notation as follows. Let C be any
coalgebra with comultiplication A : C'— C' ® C. For any ¢ € C, we write:
Ac= Zcm ® cz)-
The subscripts (1) and (2) are symbolic, and do not indicate particular ele-
ments of C.
In sigma notation, the coassociativity means that
2 et @ ey ® oy = 3 vy © ey ® i
s0 we simply write Y7 ¢ ® ca) ® ¢(s) = Asc. Iterating this procedure gives,
for any n > 2,
Ape= ZCU) ®...®cm),



DEFINITIONS AND BASIC FACTS

o

where Az = A. We will sometimes use the convention that A = idg and
Ap=¢.

Now we dualize the notion of a (unital) module by first writing its defi-
nition in terms of commutative diagrams.
Definition 0.1.6. For a k-algebra A, a (left) A-module is a k-space M with

a k-linear map vy : A® M — M such that the following diagrams commute:

AcaoM ML 4o keM'®P g M
ey 7 scalar mult) ¥
AGM ——— M M
Definition 0.1.7. For a k-coalgebra C, a (right) C-comodule is a k-space
M with a kelinear map p: M — M ® C such that the following diagrams
commute:
M—L mec M—L-MaC
0 ideA el idoe
M8O——r MaC 0 Mok

A linear map f : M — N is a homomorphism of (right) comodules if it
preserves p:
p(f(m)) = (f ®id)pp(m),  Vme M.
A subspace N C M is a subcomodule if p(N) C N ® C.

There is also sigma notation for right comodules: we write

p(m) =Y " mg @ma € M@C.
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Anal ly, one has left viaamap g : M — C® M, and we

use the notation
Am) =3 m y@meeCaM,

s0 that for both right and left comodules we have mo € M and mg; € C for
A0,
The following Finiteness Theorem [25, Theorem 5.1.1] points out the

main feature that lgebras and dules from algebras and

modules.
Theorem 0.1.8. Let C be a coalgebra.

1) Any C-comodule M is locally finite in the sense that any finite subset

of M is ined in a finite 1 sub I

2) Any finite subset of C' is d in a fi d i beoalgeb
L ]

A nonzero coalgebra is called simple if it does not have proper nonzero
subcoalgebras. The theorem above implies that all simple coalgebras are
finite-dimensional. Tt also implies that any nonzero coalgebra has a simple

subcoalgebra.
Definition 0.1.9. Let C be a coalgebra.
1) The coradical coradC of C is the sum of all simple subcoalgebras of C'.

2) Cis cosemisimple if coradC = C.
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3) C s irreducible if coradC is simple or, equivalently, if C contains only
one simple subcoalgebra. Any maximal irreducible subcoalgebra of C

is called an #rreducible component.

4) C is pointed if every simple subcoalgebra is one-dimensional.

5) Cis d if coradC is one-di ional

If D is a simple cocommutative coalgebra, then D* is a simple (finite-
dimensional) commutative algebra. It follows that any cocommutative coal-
gebra C over an algebraically closed field is pointed. A one-dimensional
subcoalgebra D C C is necessarily of the form kg, where g € C' is group-
like: g # 0 and Ag = g® g. Distinct group-like elements of C are linearly
independent, the set of all group-like elements is denoted G(C).

Let us now quote for future reference the basic properties of irreducible

components (25, Lemma 5.6.2 and Theorem 5.6.3].
Lemma 0.1.10. Let C be a coalgebra.
1) Any irreducible subcoalgebra of C is contained in a unique irreducible
component.
2) A sum of distinct irreducible components is direct.
3) If C is cocommutative, then C is the direct sum of its irreducible com-
ponents. n

In fact, the coradical coradC is the bottom piece of the so called coradical
Sfiltration of C. We set Cy = coradC' and for each integer n > 0 define
inductively:

Cr=ACR®Cy1+Co®C).
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Then it turns out (see [25, Theorem 5.2.2]) that {Cy} is a coalgebra fil-
tration in the following sense:
AC, C Y Ch®Comss

k=0

Cu C Cpan, and C = | Ca.

3o
The conditions above guarantee that the space C¥ = @), Cn/Cu-1

(with C_,=0) has a natural coalgebra structure.

Example 0.1.11. Tf C is a connected coalgebra, then Cy is one-dimensional.
It is spanned by a group-like element that we will denote by 1 (although there
is no multiplication yet). Let P(C) be the set of all primitive elements of
C: ¢ € Csuchthat Az = £® 1+ 1®x. Then P(C) is a subspace and
€y =Kkl @® P(C) [25, Lemma 5.3.2]

The following lemma [25, Lemma 5.3.4] shows that coradC is the smallest

piece a coalgebra filtration can start with.

Lemma 0.1.12. Lel C be any colagebra and {Bq}aso a coalgebra filtration
of C. Then By > coradC. =

Corollary 0.1.13. If f : C — D is a surjective coalgebra map, then
f(coradC) > coradD. ]
We conclude this section with another fundamental property of the corad-

ical filtration [25, Theorem 5.3.1).

Theorem 0.1.14. Let C and D be coalgebras and f : C — D a coalgebra

map. If flo, is injective, then f is injective. [ ]
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Corollary 0.1.15. If C' is connected and f : C — D is a coalgebra map such

that flp(c) is injective, then | is injective. ]

0.2 Bialgebras and Hopf Algebras
‘We now combine the notions of algebra and coalgebra.

Definition 0.2.1. A k-space B is a bialgebra if (B,m,u) is an algebra,
(B,A,€) is a coalgebra, and either of the following equivalent conditions

holds: A and  are algebra morphisms or 1 and u are coalgebra morphisms.

, a bialgebra homomorphism is a map which is both an algebra
and a coalgebra homomorphism, and a subspace D C B is a subbialgebra if
it is both a subalgebra and a subcoalgebra. Similarly, a subspace I C B is a
biideal if it is both an ideal and a coideal. The quotient B/I is a bialgebra
precisely when I is a biideal of B.

The last ingredient we need to define Hopf algebras is the convolution
product. Namely, if C is a coalgebra and A is an algebra, then Homy(C, A)

becomes an (associative) algebra under the convolution:
(f+9)(e) = (mao (f®g) 0 Ac)e =D flew)gle),
for all f, ¢ € Homy(C, ), c € C. The unit element of Homy(C, 4) is usocc.

Remark 0.2.2. Note that the multiplication on C* defined earlier is the

same as the convolution product on Homy(C, k) = C*.

Definition 0.2.3. Let (H,m,u,A,¢) be a bialgebra. Then H is a Hopf

algebra if there exists an element S € Hom(H, H) which is an inverse to idy
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under convolution, i.e.

> Sthay)ha = e(h)la =D hwS(ha),  Vhe H.
Obviously, if such S exists, it is unique. S is called the antipode of H.

Naturally, a linear map f : H — K of Hopf algebras is a Hopf homo-
morphism if it is a bialgebra homomorphism and f(Syh) = Sy f(h), for all

and

h € H. A subspace D C H is a sub. ifitis a
SD c D. From the uniqueness of S it follows that if D C H is a subbial-
gebra that has its own antipode Sp, then D is in fact a subHopfalgebra and
Sp = S|p. A subspace I C H is a Hopf ideal if it is a biideal and SI C I,
in this situation H/I is a Hopf algebra with the structure induced from H.

The largest Hopf ideal is the augmentation ideal H = Kere.

Let us note that the antipode is ily an Igebra

s =1,
S(gh) = S(h)S(g),  Vg,he€H,
and anti-coalgebra morphism, i.c.
e(Sh) = e(h),
S (Shw®(Sh)e = Y S(he) @ S(ha),  YheH.
If H is commutative or cocommutative, then S? = id. In general, S does not

even have to be injective or surjective.

The basic examples of Hopf algebras are the following.
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1) The group algebra kG of any group G, with Ag = g® g, £(g) = 1,
Sg=g ‘forallgeG.

2) The universal enveloping algebra U(L) of any Lie algebra L, with Az =
z®1+1®z,¢(z) =0, Sz=—z, forallz € L.

3) The algebra of regular functions O(G) on any affine algebraic group
G, with A : O(G) —» O(G x G) = O(G) ® O(G) corresponding to the
group multiplication G x G — G: (Af)(z,y) = f(ay), e(f) = f(e),
(S)(z) = f(z7"), for all f € O(G), z,y € G.

The former two Hopf algebras are cocommutative, the latter is commu-
tative. For any Hopf algebra H, the set G(H) of all group-like elements is
in fact a group (under the multiplication of H), so H contains the group
algebra kG(H) (of course, G(H) may consist only of the unit element). The
set P(H) of all primitive elements of H forms a Lie algebra under the com-
mutator [z,y] = zy — yz.

The axioms of a bialgebra (or Hopf algebra) are self-dual. So it is not
surprising that if (H,m,u,A,) is a bialgebra, then (H°, A*,*,m*,u") is
also a bialgebra, and if H is a Hopf algebra with antipode S, then H* is
a Hopf algebra with antipode S* [25, Theorem 9.1.3]. We have to use the
finite dual H° here rather than the whole H*, because comultiplication is not
defined on H*.

Given a bialgebra H and a vector space V, we can turn V' into a “trivial”
(left) H-module by setting for allh € H, v € V,

hov=c(h. (0.2.1)
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We can also turn V' into a “trivial” (right) H-comodule by setting for all
vev,
pv) =v®1. (0.2.2)

Now if V is any left H-module, the elements v € V' that satisfy (0.2.1),
for all h € H, are called invariants. Of course, a similar definition can be
given for right modules. The set of all invariants is denoted by #V for a left
module V' and V# for a right module.

If V is a right H-comodule, the elements v € V that satisfy (0.2.2) are
called coinvariants. The set of all coinvariants is denoted by V¥ for right
comodules and “HV for left comodules.

For any Hopf algebra H, the following actions and coactions of H on itself

are defined:
1) The left adjoint action: (adih)(k) = 3= hayk(She), for all b,k € H,
2) The right adjoint action: (ad,h)(k) = S(Shqy)khqa), for all b,k € H,
3) The left adjoint coaction: pr: H — H ® H : h = ¥ hayShis) ® hey,
4) The right adjoint coaction: g, : H = H®H : h = ¥~ hyy ® (Shqy)hea)-

Definition 0.2.4. A subHopfalgebra K C H is called normal if

(adiH)K € K and (ad, H)K C K.
A Hopf ideal I C H is called normal if
o(l)c H® T and p,(I) C I® H.

Obviously, all subHopfalgebras are normal for a commutative H, and all Hopf

ideals are normal for a cocommutative H.
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There is a natural correspondence between normal subHopfalgebras and
normal Hopf ideals of H as follows. If K C H is a normal subHopfalgebra,
then HK* = K*H is a normal Hopf ideal. Conversely, if I ¢ H is a Hopf

ideal, then we can consider H as a right H/I-comodule via
H—H®H/I:h— Y hyy® (hay+1),

and similarly on the left. Thus we can define the spaces of right and left

H/I-coinvariants in H: H#/I and «H/1H If I is a normal Hopf ideal, then

@H/TH = H%H/ is a normal subHopfalgebra. It is known that these two

mappings are inverse bijections in the case when H is finite-dimensional or

or with ive coradical (see [25, Section 3.4]).
Definition 0.2.5. Let A be an algebra and H a Hopf algebra.
1) Ais a (left) H-module algebra if it is a (left) H-module such that
h-1 = &(h)1 and
he(ab) = Y (hay-a)(hey-b), YheH, abeA
2) A is a (right) H-comodule algebra if it is a (right) H-comodule via
p: A— A® H such that
p(l) = 1®@1  and
plab) = 3 awbo ®ambay,  VYa,be A
It is straightforward to verify that the adjoint action and coaction of H
on itself satisfy the above conditions.

We will need one more concept from general Hopf algebra theory, namely

that of a crossed product.
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Definition 0.2.6. Let H be a Hopf algebra and A an algebra. Assume that
H measures A, ie. there is a linear map H® A - A : h®a — h-a such
that h-1=e(h)l and h- (ab) = X3(hq) - a)(h(z) - ), for all h € H, a,b € A.
Assume also that o : H @ H — A is a convolution-invertible map. The

crossed product A#.H is A® H as a vector space, with multiplication
(asth) (b#k) = ¥ alhq) - D)o (hiay, k)b ke,
forall b,k € H, a,b € A, and we have written a#h for the tensor a ® h.

It is straightforward to derive the conditions on - and o so that A#,H

will be an associative algebra with the unit 1%1 (25, Section 7.1]:
1) Ais a twisted H-module, ie. 1-a=a and
R (k-a) = Y alhay, ka)l(heyke) - alo(he), ke),
forallh ke H ac A,

2) o is a (left) 2-cocycle, ie. o(h,1) = o(1,h

=¢e(h)1 and

>l olkay, maylo (b, koyma) = S athay, koo (hake,m),
(02.3)
for all h,k,m e H.

Note that if H is cocommutative and A commutative (or o has values in
the centre of A), then A is simply an H-module algebra. Another special
case arises if we assume o trivial: o(h, k) = (h)e(k)1, for all b,k € H. Then
again A is an H-module algebra, and the crossed product A#,H with such

a o is called the smash product and denoted simply A#H.
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The following d ition theorem for ive pointed Hopf

algebras is due to Kostant, Cartier, Gabricl, et al. and can be found in [25,

Section 5.6].

Theorem 0.2.7. Let H be a pointed cocommutative Hopf algebra over k. Let
G = G(H) be the group of group-like clements of H and H, the irreducible
of the simple kL. Then G acts on H, by conjugation

(which is the left adjoint action in this case) and H is isomorphic to the smash
product Hi#kG via h#g — hg. Moreover, if chark = 0, then H, 2 U(L),
where L = P(H) is the Lic algebra of primitive elements. [ ]

Thus any pointed cocommutative Hopf algebra can be represented as a
smash product of a connected Hopf algebra and a group algebra, the former
being just the universal envelope of a Lie algebra in the case of characteristic

0.

Remark 0.2.8. The proof of the first statement of Theorem 0.2.7 given in
[25, Section 5.6] does not require that H be cocommutative, It is sufficient
to assume that H is the sum of its irreducible components (this condition is

satisfied by any cocommutative Hopf algebra by Lemma 0.1.10).

‘We conclude this section by demonstrating the structure of H-comodules
in the case H = kG for some group G. 1t is easy to see that, for any (right)
kG-comodule V', we have

V=PV, where V, = {v € V| p(v) =v® g},
=g
so V is a G-graded space. Conversely, any G-graded vector space can be

turned into a kG-comodule by setting p(v) = v ® g for any homogeneous
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v of degree g. Moreover, kG-comodule algebras are equivalent to G-graded

algebras in this way.

0.3 Polynomial Identities

Definition 0.3.1. Let A be an algebra over a field k (although most of the
definitions and results of this section are still valid if k is a commutative ring
with 1). Let F(Xy,..., X,) be a polynomial in n noncommuting variables
with coefficients in k. We say that A satisfies the identity F = 0 (or just F)
if
Flay,...,an) =0,  Vay,...,a, € A.

An algebra A is called PI if it satisfies the identity F' = 0 for some nonzero
polynomial F.

Because of the following theorem, (ie.

in each variable), and especially multilinear (ie. linear in each variable),
identities play a prominent role in the theory of polynomial identities. The
proof of 1) is an easy exercise with Vandermonde’s determinant, for 2) see

e.g. [18, Section 1.3].

Theorem 0.3.2. Let A be an algebra over a field k and F a polynomial in
noncommuting variables that is an identity for A.
1) If k is infinite, then every multihomogeneous component of F is an

identity for A.

2) The algebra A satisfies a multilinear identity of degree < degF. More-

over, if K is a field of characteristic 0, then F'is equivalent to a (finite)
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system {I}} of multilinear identities, i.c. any algebra that satisfies F

must also satisfy all F; and vice versa. u

Corollary 0.3.3. If an algebra A with 1 over an infinite field satisfies an
identity that does not follow from the commutativity X, X, — XXy, then
A=0. | ]
The standard polynomial of degree n is defined by
s Ko Xa) = D (1 Ky Koty
7€S

where S, is the group of permutations and (—1)" is the sign of 7. In partic-
ular, 53 = X1 X5 — XoX1.

Since s, is multilinear and alternating (i.e. vanishes upon any substitu-
tion X; = X for i # j), any finite-dimensional algebra A will satisfy the
standard identity s, = 0, for any n > dim A. For example, the algebra
My (k) of n x n matrices satisfies s,2;. This can be improved, as stated by

the following classical Theorem of Amitsur-Kaplansky-Levitzki.

Theorem 0.3.4. The matriz algebra My, (k) satisfies the standard identity

San = 0. It does not satisfy any nontrivial identity of degree < 2n. ]

Finally, it is obvious that if an algebra A satisfies a multihomogeneous
identity F, and B is any commutative algebra, then A @ B satisfies F. In
particular, M, (B) satisfies s, for any commutative algebra B. It also fol-
lows that if A is PI and B is commutative, then A® B is PI. The classical
Theorem of A.Regev generalizes this simple observation: if A and B are PI,

then A® B is PI (see e.g. [1]).



DEFINITIONS AND BASIC FACTS 18
0.4 Some Topological Notions

Since we want to work over an arbitrary field k, we take k with the discrete
topology, i.e. all subsets of k are open. By a topological vector space we will
mean a k-vector space endowed with a Hausdorff topology, with a funda-

mental system of hoods of 0 isting of sub; such that the

addition of vectors is continuous. This is not the most general kind of a topo-

logical vector space, but it will be sufficient for our purposes. In particular,

our definition forces any finite-di

1 vector space to have the discrete
topology. By a topological algebra we will mean a topological vector space
that is also a k-algebra such that the multiplication is continuous.

Recall that a partially ordered set I is called directed if for any i,j € I
there exists k € I such that i < k and j < k. A family {2} of elements
of a topological space Z is called a net if T is a directed set. A net {z}ier
converges to the point z if for any neighbourhood U of z there exists k € [
such that z € U for all i > k. A net {v;};c; in a topological vector space
V is called a Cauchy net if for any neighbourhood U of 0 there exists k € [
such that v; —v; € U as soon as 4,j > k. A topological vector space V is
complete if any Cauchy net converges to an element of V.

Recall also the definitions of the direct and inverse limits. If 7 is a directed
set and {Z;}ies is a family of sets endowed with a system of maps v;; : Z; —
Zj, for any i < j, such that ¢ = idz, and ;i o y; = i, then the direct
limit is defined by

limZ =12/ ~,

i€l

the quotient set of the disjoint union of Z; by the following equivalence re-
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lation: = ~ yifz € Z, y € Z;, and Yi(z) = july) for some 4,5 < k.
The inclusions Z; C ][, Z: induce the canonical maps ¢; : Z; — ]L“,‘ Z;.
Clearly, we have 4i; o y; = ¢, and lim Z,, ogether with the maps v, is
universal with respect to this property. If the sets Z; have the structure of
vector spaces, algebras, coalgebras, etc. that is preserved by the maps 9y,
then this structure is inherited by li_x.n Z;.

Dually, if 7 is a directed set and {Zi}i¢; is a family of sets endowed with
a system of maps ¢;; : Z; — Z;, for any i < j, such that ¢;; = idz and
9450 Pk = @ik, then the inverse limit

lim Z; € 1} z

consists of all families {z}ser € [Te; Z: such that y(z) = z for all § < j.
The projections [T,¢; Zi — Z; define the canonical maps ¢; : lim Z; — Z;.
We have ;;00; = i, and lim Z;, with the maps @, is universal with respect
to this property. If the sets Z; have the structure of vector spaces, algebras,
otc. that is preserved by ; , then lim Z; inherits this structure, Note that in
general, the coalgebra structure is not inherited because comultiplication is
not defined for an infinite direct product of coalgebras. If Z; are topological
spaces, then l*ilanx has a natural topology as a subset of [],c; Zi.

Let V' be a topological vector space and suppose the subspaces U;, i € I,
it 1 system of neighbourhoods of 0. We write i < j iff

form a fi

U; D U;. Then I is a directed set and the inverse limit lim V/U; of the
—

discrete spaces V/U; contains V' as a topological subspace. Moreover, V is

dense in 1;1Ln V/U; and lim V/U; is complete, so V = lim V/Uj is the completion

of V.
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Definition 0.4.1. Let V be a vector space (without topology), then the

dual vector space V* can be given the “s-weak” topology o(V*, V), i.e. the

hoods of 0 of the form

topology with a f 1 system of

Uppooom = {f EV I {fioe) =0, VE=1,...,m},
where vy, ..., vm €V, m€N.

We immediately observe that all the sets U, __,,, are subspaces of finite
codimension, and V* is complete, thus V'* is a pro-finite vector space, i.e.
an inverse limit of finite-dimensional vector spaces. Conversely, every pro-
finite topological vector space W has the form V*, where V is the space of
continuous linear functions on W. Moreover, if ¢ : V' — W is a linear map,
then ¢* : W* — V* is a continuous linear map, and every continuous linear
map W* — V* has the form ¢* for some @ : V — W (see e.g. [14, Section
1.2)).

If V and W are complete topological vector spaces, then V @ W can be
endowed with a tensor product topology defined by a fundamental system of
neighbourhoods of 0 of the form Uy @ W +V @Us,, where Uy C V and U, C W

are open subspaces. Hence we can define the completed tensor product
VEW =lim ((V/Us) ® (W/Uy),

where {U;} and {U;} are fundamental systems of neighbourhoods of 0 in V'
and W, respectively.
If:V — V'and v : W — W' are continuous linear maps, we will denote

by ¢@¢ : VOW — V'@W' the extension of p @9 : VW — V' @ W'.
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Now if V and W are vector spaces (without topology), and V* and W* are
endowed with -weak topology, then V* @ W'* is a dense topological subspace
of the complete space (V' ® W)*. Therefore, (V & W)* = V*@W*.

To conclude this section, let us introduce our main example of a topologi-
cal algebra - the algebra of formal power series (in any number of variables).

But first we need to define the multiindex notation.
Definition 0.4.2. Let I be a set. A multiindez on I is a map o : I —
{0,1,...} such that
suppa = {i € I'|a(i) # 0}
is finite, in other words, o € 2", the direct sum of |7| copies of Z.. For any

such a we set

lo]= 3" a().

iesuppa
For a, B € Z9, we write a < f if a(i) < B(3) for all i € I.
For two multiindices «, 3, we define the combination number:
<u) _ (a(i))
B8 B(i)

if B < @ and 0 otherwise. We also denote by &; the multiindex whose only

icsuppa

nonzero component is (i) = 1.

Definition 0.4.3. The algebra of formal power series k[[t;]i € I]] is the
topological vector space [, ., k (direct product of copies of k, with direct
f

product topology), whose elements will be written as formal sums

3 date,
)
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with multiplication defined by the Cauchy rule:
(Z /\ac") (Z mu") = Z( > Aam,> 7.
a B b 4 a+f=y
Note that the definition above makes sense because the sum over a-+4 =
is finite for any fixed v € Z$. Moreover, if we set #; = £, then, for any

a€ Z(f),

= 1I 19®,

i
so K[[ti € I]] contains the algebra of polynomials k[t:|i € I as a dense
subalgebra.

Finally, k[[#:}i € T]] is a pro-finite topological algebra with a fandamental

system of neighbourhoods of 0 consisting of the ideals
Us =ideal(®™' [ic D), aez{.

In general, any pro-finite topological algebra has a fundamental system of

neighbourhoods of 0 consisting of ideals [14, Section 1.2.7].

0.5 One Fact from Descent Theory

We will need the following standard descent theory lemma (see e.g [36, Chap-
ter 17]). Recall that if L/k is a (possibly infinite) Galois field extension, then
we can define the Krull topology on the Galois group ¥ = Gal(L/k) by

taking as a fi I system of neighbourhoods of 1 all the )it

subgroups of finite subextensions. Then ¥ becomes a compact Hausdorff
topological group and we recover in the general case the classical bijection

between subgroups and subfields (that holds for finite L/k) if we restrict
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our attention only to closed subgroups (see e.g. [22]). Moreover, any open

subgroup of ¥ is of finite index, so ¥ is a pro-finite group.

Lemma 0.5.1. Let L/k be a Galois field extension, ¥ = Gal(L/k). Let V

be a vector space over L endowed with a continuous semilinear L-action, i.e.
s(v+w) = s(v) + s(w), s(hw) =s(N)s(v), VseZ,vweV,Ael,
and the centralizer of any vector in'V is an open subgroup of T. Then
V=vieL,

where V= C V is the set of S-invariants. Moreover, V= inherits any algebraic

structure defined on V' by S-invariant L-multilinear maps. =



Chapter 1

Identities of Coalgebras

1.1 Coalgebras with a Polynomial Identity

It seems natural to define a polynomial identity for coalgebras using their
duality with algebras, for which this notion is quite well-known (see Section

0.3). The following definition was introduced by the author in [19].

Definition 1.1.1. Let C be a coalgebra over a field k, F(X,...,X,) a

polynomial in n ing variables with fents in k. We say that
F =0 (or just F) is an identity for the coalgebra C, if it is an identity for
the dual algebra C*.

Using duality, we immediately observe that if a coalgebra C satisfies some

identity, then any and any fa lgebra of C satisfies this

identity. If a family of coalgebras satisfies some identity, then their direct

sum satisfies this identity.
Since any coalgebra C is the sum of its finite-dimensional subcoalgebras

(see Theorem 0.1.8), in order to prove that F' = 0 holds for C, it is sufficient

24
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to verify this identity on finite-dimensional subcoalgebras of C. We will use
this observation later.

Now we want to give an intrinsic definition when a coalgebra satisfies an
identity, i.e. a definition that would not use the dual algebra. Unfortunately,
it works well only for multilinear identities (which is sufficient in the case of
chark = 0 because of Theorem 0.3.2).

A multilinear polynomial of degree n has the form:

F(Xiyees Xa) = 3 MaXaq)- - Xuoys
mESn

where S, is the group of permutations and A; € k. It will be convenient to
identify F with the clement 3, s A7 of the group algebra kS,..
For any vector space V/, there are natural right and left actions of S, on
Vo
(V®...®U) T = Us(t)® ... ® Vi),
T (0 ®...0U) = V1) ®... @ Up-1n)-
Then the fact that an algebra A satisfies a multilinear identity F = 0 can
be written as follows:
ma(A%" - F) =0,
where m,, : A®" — A is the multiplication of A. The following dual definition
for coalgebras is due to Yu.Bahturin.
Definition 1.1.2. Let C be a coalgebra, F' = 3,6 M Xty Xo(n) &
multilinear polynomial. We say that C satisfies the identity F' = 0 if
F-(A0)=0

where A, : C — C®" is the comultiplication of C.
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So a multilinear identity of degree n can be viewed as a sort of symmetry

condition on the tensors A,c, for all c € C.

Proposition 1.1.3. Definitions 1.1.1 and 1.1.2 are equivalent for multilinear

identities.

Proof. Using the sigma notation Aye = Yy ® ... ® ), ¢ € C, we

have:

Fo(Bn0) =Y A 3 Gt ® - ® Crmiays

WESn
hence, for all ¢y, .., i € C*,

(@1®...®pnF-(And)) = 3 A D (01, 0rap) - -+ (s Clom1uy)

€5
= Y A D e ) - (P )
TESn
= 3 Alerw - Pren )
wESn

= (F(¢1,...,0n),0)-

Therefore, F' - (A,C) = 0 iff the identity F(ps,...,pa) = 0 holds for all

@1 on €CF L |

Using the sigma notation as in the proof, the fact that a coalgebra C'

satisfies a multilinear identity can be written as follows:

oA D) @ - @ Tt

wESn

Yz eC.

For example, cocommutativity can be expressed like this:

e @3t — Y30 ® 70 = 0.
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By Definition 1.1.1, any finite-dimensional coalgebra C satisfies the stan-
dard identity

DD ey @ - B Tt

7ESn

for any n > dim C.
The following proposition provides a way of constructing infinite-dimen-

sional PI-coalgebras (i.e. coalgebras with a nontrivial identity).

Proposition 1.1.4. If an algebra A satisfies the identity F = 0, then so does

the coalgebra A°. The converse holds if A is residually finite-dimensional.

Proof. For the first assertion, it suffices to prove that F = 0 is an identity
for any finite-dimensional subcoalgebra D C A°. Set I = D*. This is an
ideal of finite codimension in A. Since D is finite-dimensional, I* = D, and
so we have D = (A/I)° = (A/I)", hence D* = A/I satisfies F = 0.

Conversely, if A is residually finite-d ional, i.e. the i ection of

the ideals of finite codimension in A is 0, then A C A°*. But the algebra A°*

satisfies F' = 0 since so does the coalgebra A°. u

1.2 Free Coalgebras

A polynomial identity F(X,...,X,) of an (associative) algebra may be con-

sidered as an element of the free (; iative) algebra with n e

the tensor algebra T(V), where V = (X,..., X,) (recall that we assume

that algebras have the unit element).
In order to make a link between identities of coalgebras and free coalge-

bras, we first need to define the latter. Free coalgebras (which more precisely
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should be called “cofree coalgebras”) were introduced by M.Sweedler in [32].
They are defined by the following universal property, which is dual to the

universal property of tensor algebras.

Definition 1.2.1. Let V be a vector space, C a coalgebra, 6 : C = V a linear
map. The pair (C,0) is called a free coalgebra of V if, for any coalgebra D
and a linear map  : D — V/, there exists a unique coalgebra map @ : D — C

completing the commutative diagram:

By a standard argument, if a free coalgebra of V exists, it is unique up to a
uniquely defined isomorphism. We will denote it by ¢T'(V'). It is shown in [32]
that ¢T'(V) exists for any V, but we will follow a more explicit construction

of R.Block and P.Leroux [10]. First we introduce the generalized finite dual.

Definition 1.2.2. Let A = @50 4 be a graded algebra, V" a vector space.
Let Hom(4, T(V)) denote the space of all graded linear functions of degree
0 from A to the tensor algebra T(V) = @,.,,T"(V), i.e. all linear functions
Fr A= (V) such ek ifae A, then{a) is a tensor of degree v, Wewll
call f € Hom(A, T(V)) representative if there exists a finite family {gs,hs}
of clements of Hom(4, T(V)) such that

f(ab) =Y g(@hi(b),  Va,be A, (1.2.1)

where the multiplication on the right-hand side is the tensor product in T(V).
Since we will later consider elements of (V) ® T(V'), we reserve the symbol

@ for the “outer” tensor product and simply write v, ... v, for the element
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v ®...® v, € (V). The set of all representative functions A — T(V) will
be denoted by Aj.

Tt follows that if f € Aj, then the tensor 3, g;®h, is uniquely determined
by (1.2.1). We define Af = ¥, g: ® hs, and it turns out that Af € Ay @ A}
and (A3, A) is a coalgebra with counit e(f) = f(1) [10, Lemma 1 and The-
orem 1]. If V = k, we recover the usual finite dual coalgebra A° of the
(underlying ungraded) algebra A.

If we now specify A = T(W) (graded by degree), for some vector space

W, then there is a natural linear map 0 : T(W)3, — Hom(W, V) which sends
f € T(W)y to its restriction to W = TH(W).
Theorem 1.2.3 (Theorem 2' in [10]). Let V and W be vector spaces.
Then (T(W)5,,0) defined above is (a realization of) the free coalgebra of the
space Hom(W, V). Moreover, if D is a coalgebra and  : D — Hom(W,V)
is a linear map, then the lifting of ¢ to a coalgebra map ® : D — T(W)3 is
given by

o1 = e
S(dw = edw, YweW =T'(W), and
ed: = (Ledn)s...e o))z VEET'W), ifn>1.
| |
In particular, if we set V = k, we see that T'(W)° is the free coalgebra
of W*. This is a result of M.Sweedler originally used to prove the existence

of free coalgebras. It also sheds light on the nature of identities of a coal-

gebra. Let F(Xy,...,X,) be an associative polynomial in n variables, set
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V= (Xy...,X,), 50 F € T(W). Then the free coalgebra cT(W*) = T(W)°
is a subspace of T(W)" containing T(W*) (sec Remark 1.2.4 below). More-

over, T(W)* has a natural topology of a dual space (see Definition 0.4.1),
and T(W) can be recovered as the space of all continuous linear functions on
T(W)*. Since T(W*) is dense in T'(W)*, so is ¢cI'(W*) and hence the spaces
of continuous linear functions on T(W)* and on ¢T'(W*) (with topology in-
herited from T(W)*) are in one-to-one correspondence. Thus we conclude
that T(W) is the space of continuous linear functions on ¢T'(W*) and so poly-
nomial identities in X, ..., X, can be viewed as continuous linear functions
on the free coalgebra of the space (Xi,..., X,)".

On the other hand, if we set W = k in Theorem 1.2.3, we obtain that
K[ty is the free coalgebra of V. This gives a rather explicit construction of
T(V) as follows. Denote T(V) the completion of the tensor algebra T(V),

i.e. the algebra of all infinite formal sums z = zo+2; +..., where z € T'(V).

The topology on T(V') is defined by a fund, 1 system of neighbourhood:

of 0 consisting of the sets
FrT(V)={zeT(V)|z=0Vi<n}

Then an element f € Hom(k[t], T(V)) can be identified with the formal sum
fot+ fi+ ..., where f; = f(t) € T'(V), and so ¢T'(V) becomes a subspace
of T(V). Upon this identification, the canonical map 0 : ¢I(V) — V just
sends the sum fg + fi + ... to its degree 1 component f; € T*(V) =V, and

the formulas of Theorem 1.2.3 for the lifting of a linear map ¢ : D — V to
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a coalgebra map @ : D — ¢T'(V) become:

(d)o = e(d),
®(d): = ¢(d), and
O(d) = Y @) ®...® p(dw) ifn > 1.

Moreover, an explicit formula for the comultiplication of ¢T'(V) can be
obtained as follows (see [9, Sections 1 and 2]). Let D denote the continu-
ous linear function from 7(V) to T(V)®T (V) defined by its action on the

monomials:

)= Zm U ®Uigr Uy VOt €V, n=01,...
= (1.22)
Then an element f € T(V) belongs to ¢T'(V) iff Df lies in the subspace
T(V)®T(V) c T(V)®T(V), in which case Af = Df, i.e. the comultiplica-
tion of ¢T(V) is just the restriction of D on ¢'(V). We also see from here
that (V) € ¢T'(V). In particular, this implies that the canonical map 6 is
surjective. The counit of ¢c7(V) just sends the sum fo+ fi +. .. to its degree

0 component fy € T%(V) =

Remark 1.2.4. Assuming the space V finite-dimensional, set W =
Then the above construction of ¢T'(V) C T(V) agrees with the construction
of M.Sweedler which realizes cT(W*) as the subspace T(W)® of T(W)* =
T(V). In particular, T(W)° contains T(W").

Remark 1.2.5. R.Block also proves in [9] a number of interesting properties
of ¢T'(V) which we will not use here. But one thing should be mentioned,

since it illustrates the duality with algebras. Namely, there is a natural
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multiplication  : ¢T(V) ® ¢T'(V') — ¢I(V) which is the lifting of the linear
map A®e+e®0: cT(V)®cT(V) = V, so ¢T(V) has a structure of a
commutative Hopf algebra, with the antipode induced by -8 : (V) = V
— dually to the fact the free algebra T(V) has a natural structure of a
cocommutative Hopf algebra defined by V — T(V)@T(V) : v — v@1+18v,
with antipode induced by V — T(V) : v — —uv (this is the same Hopf
algebra structure as the one coming from the fact that 7'() is the universal
envelope of the free Lie algebra generated by the space V). We will return
to the multiplication % in Section 1.5, where we will see that it is in fact the

50 called “shuffle product”.

To conclude this section, let us introduce the notion of a cogenerating
map for coalgebras, which is the dual of a generating set (or, more precisely,
space) for algebras. Let A be an algebra, V a vector space. Suppose we have
a linear map ¢ : V — A, then the image ¢(V') generates A as an algebra iff

(o g™ Vo4,
w0
where m,, : A®" - A is the multiplication of A (with my = id, and mg = u,

the unit map). The formal dual of this statement is the following:

Definition 1.2.6. Let C be a coalgebra, V' a vector space. We will call a
linear map ¢ : C' — V' cogenerating if
() Ker (¢°" 0 A,) =0,
n20
A generating set in an algebra A allows us to represent A as a factor of a

free algebra. Dually, cogenerating maps for a coalgebra C correspond to the

of C into free




CHAPTER 1. IDENTITIES OF COALGEBRAS 33

Proposition 1.2.7. Let C' be a coalgebra, V a vector space, ¢ : C = V a
linear map. Then the induced coalgebra map ® : C = ¢T(V) is injective iff

( is cogenerating.

Proof. Recall from the explicit construction of ¢Z'(V) that ®(d), =
S oldy) @ ... ® @(dw), d € C (with the convention that the right-hand
side means (d) for n = 1 and &(d) for n = 0). In other words, ®(d), =
(#®" 0 Ay)d, hence d € Ker @ iff (92" 0 A,)d = 0, for all n. ]

In particular, any can be imbedded into a free coalgebra (take

V = C, then id : C' — V is obviously a cogenerating map).

1.3 Varieties of Coalgebras and
Theorem of Birkhoff

In this section we assume the field k infinite.

First we briefly recall the situation that we have for algebras. Let F
denote the free algebra in countably many generators, i.e. 7 = T(V), where
V = (X1, Xa,.

variables, can be viewed as an element of F.

. Then any polynomial identity, no matter in how many

Let A be an algebra, then the set Z(A) of all identities satisfied by A is

an ideal of F, invariant under any endomorphism of F.

Definition 1.3.1. An ideal J of F is called a T-ideal if a(J) C J, for any
endomorphism a of F, or, equivalently, if 8(J) = 0, for any algebra map

B: F = F/J (the equivalence follows from the universal property of ).
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Definition 1.3.2. Let § be a subset of F. The variety of algebras defined
by S is the class Var(S) of all algebras that satisfy each identity from the set
S.

Then varieties of algebras are in one-to-one correspondence with T-ideals
as follows. If % is a variety defined by some S C 7, then the set Z(2) of all
identities satisfied by each algebra from 2 is the T-ideal generated by S (i.c.
the smallest T-ideal containing S). Tn other words, the T-ideal generated by
S consists of all possible consequences of the identities from S. Therefore, if
J C F is already a T-ideal, then for the variety of algebras 2 = Var(.J) we
have Z(2) = J. Conversely, if 2 is a variety, then clearly 2% = Var(Z(2)).

Varieties of algebras can be characterized by the following theorem [8].

Theorem 1.3.3 (Birkhoff). Let 2 be a nonempty class of algebras. Then 2
is a variety (i.c. is defined by identitics) iff % is closed under isomorphisms,

subalgebras, factoralgebras, and direct products. L}

Now we turn our attention to coalgebras. By analogy with algebras, it is

natural to give the following definition.

Definition 1.3.4. Let S be a subset of F. The variety of coalgebras defined
by § is the class cVar(S) of all coalgebras that satisfy each identity from S.

Here we also have a one-to-one correspondence between varieties and
T-ideals. Since by definition the set Z(C) of identities of a coalgebra C
is the same as the set of identities of the algebra C*, Z(C) is a T-ideal.
Consequently, if € = cVar(S), then the set Z(€) of all identities satisfied by

€ is a T-ideal containing S. It is not immediately obvious why Z(€) should
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be the smallest such T-ideal, but we will prove this in a moment (and we will
need the assumption that k is infinite). With this fact at hand, the maps
and cVar establish the desired one-to-one correspondence as in the case of
algebras.

Proposition 1.3.5. Let € be the variety of coalgebras defined by a set of
identities S. Then the T-ideal T(€) of identities of € is generated by S as a
T-ideal. In other words, the consequences of the system of identities S are

the same for coulgebras as they are for algebras.

Proof. First of all, since the base field k is infinite, any T-ideal J is
graded (see Theorem 0.3.2). It follows that the algebra F/J is residually
finite-dimensional. Indeed, for any F(X),...,X,) ¢ J, we need to find an
ideal of finite codimension J' D J such that F ¢ J'. Since J is graded,
we can set J' equal to the ideal generated by J,Xpi1, Xpsa,... and by all
monomials in X, ..., X;, of degree d+ 1, where d is the maximum degree of
monomials occuring in F.

Now let J be an arbitrary T-ideal containing our set S. By Proposition
1.1.4, the coalgebra D = (F/J)° satisfies the same identities as the algebra
F/J, 50 (D) = J. Since S C J, D is in the variety €, hence J = Z(D) >
Z(€). Therefore, Z(€) is the smallest T-ideal containing . ]

Surprisingly enough, the analog of Theorem 1.3.3 does not hold for coal-
gebras. Obviously, any variety of coalgebras is closed under isomorphisms,
subcoalgebras, factorcoalgebras, and direct sums. However, not every such

class is a variety.

Example 1.3.6. The class Grp of all coalgebras spanned by group-like le-

ments is closed under the four operations just listed, but it is not a variety.
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Proof. First, if a coalgebra C is represented as a direct sum of coalgebras:
C = @,C;, then any subcoalgebra D C C has the form D = ), D;, where
D, = DN C;. This is the fact dual to the following statement for algebras:
if A =[], A;, then any ideal J C A has the form J =[], J;, where J; is the
projection of J to A;. It follows that if C is spanned by group-like elements

(which are necessarily linearly independ

), then any subcoalgebra of C' is
just a span of a subset of these group-like elements. Second, if C' is spanned
by group-like elements, then any homomorphic image of C is spanned by the
images of these elements, which are either group-like or zero. Obviously, the
class Grp is also closed under isomorphisms and direct sums.

Grp is not a variety, because it is properly contained in the variety
Cocomm of all cocommutative algebras, which does not have any proper
subvarieties other than {0}. The latter is the case since any T-ideal contain-
ing the identity X; X, — X,X; is either generated by it or is the whole by
Corollary 0.3.3. ]

Example 1.3.7. The class Pnt of all pointed coalgebras is closed under the

four operations listed above, but it is not a variety.

Proof. Recall that a coalgebra is called pointed if all its simple subcoalge-
bras are one-dimensional or, equivalently, its coradical is spanned by group-
like elements. Thus Pnt is obviously closed under isomorphisms and sub-
coalgebras. Further, by Corollary 0.1.13, a homomorphic image of a pointed
coalgebra is pointed. Finally, [25, Lemma 5.6.2(1)] says that if C = ¥, Ci,
where C; C C are subcoalgebras, then any simple subcoalgebra of C lies in
one of the C;, hence a sum of pointed coalgebras is pointed.

Example 1.5.1 in Section 1.5 (discussing Taft’s algebras) implies that Pnt
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does not satisfy any nontrivial identity. Hence Pnt is a proper subclass of
the variety Coalg of all coalgebras, which is not contained in any proper
subvariety. u

Definition 1.3.8. We will use the term pseudo-variety for any nonempty

class of coalgebras closed under i

bras, and direct sums.

Thus Grp and Pnt are pseudo-varieties which are not varieties. We have
shown that varieties of coalgebras are in one-to-one correspondence with T-
ideals in the free algebra F in countably many generators X;, Xs,... To
characterize pseudo-varieties in a similar manner, we will need the objects
dual to T-ideals. Let cF = cT(V), where V = (X1, X5,...). Loosely speak-

ing, c is the free coalgebra “in many

Definition 1.3.9. A subcoalgebra L C c¢F is called a T-subcoalgebra if
a(L) C L, for any endomorphism a of ¢, or, equivalently, if (L) C L,
for any coalgebra map 8 : L — ¢F (the equivalence follows from the univer-

sal property of ¢cF).

Then pseudo-varieties of coalgebras are in a one-to-one correspondence
with T-subcoalgebras as follows. We associate with a pseudo-variety € the
largest subcoalgebra L C cF belonging to € (the sum of all such subcoalge-
bras, which belongs to € because € is closed under direct sums and factors).
Since € is closed under homomorphic images, L will be a T-subcoalgebra.

Conversely, we associate with a T-subcoalgebra L C ¢ the class € con-
sisting of all coalgebras D such that, for any coalgebra map v : D — ¢F,

(D) € L. Obviously, € is closed under isomorphisms, factors and direct



CHAPTER 1. IDENTITIES OF COALGEBRAS 38

sums. Tt is also closed under subcoalgebras, because coalgebra maps to cF
can always be extended from subcoalgebras by the universal property of ¢F.
Two more checks are necessary.

Firstly, let L be a T-subcoalgebra, € the pseud iety iated with

L, and L' the T-subcoalgebra associated with €. Since L' belongs to €,
then considering the inclusion map L' < F, we see that L' C L by the
construction of €. Conversely, using the definition of a T-coalgebra, we
conclude that L also belongs to €, but then L C L' since L' is the largest
subcoalgebra with this property. So L = L'.

Secondly, let € be a pseud; iety, L the T-subcoalget iated with

€, and € the pseudo-variety associated with L. If a coalgebra D belongs to
€, then for any coalgebra map 7y : D — ¢F, (D) C L since € is closed under
homomorphic images and L is the largest subcoalgebra of ¢ belonging to €.
Therefore, D is in €' and we proved that € C €. Conversely, if a coalgebra D
belongs to €, we want to prove that D must be in € and so € C €. To this
end, observe that it suffices to prove that any finite-dimensional subcoalgebra
of D lies in €, because D is a sum of such subcoalgebras and € is closed under
sums. So we may assume D finite-dimensional. Then there is an injective
linear map ¢ : D — V' = (X}, X, ...), which can be lifted to a coalgebra map
@ : D — ¢F, necessarily also injective. Since ®(D) C L by the definition of
the class €', we conclude that D is isomorphic to a subcoalgebra of L, hence
Dis in €. This completes the proof of the desired one-to-one correspondence.

To conclude this section, we will give a characterization of varieties of
coalgebras among pseudo-varieties. The following replacement of Birkhoff’s

theorem says that a pseudo-variety is a variety iff it is closed under some sort
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of “completion”.

Theorem 1.3.10. A nonempty class of coalgebras € is a variety iff it is
closed under isomorphisms, subcoalgebras, factorcoalgebras, and direct sums,
and in addition, for any coalgebra C' from € and any subalgebra A C C*, A°
belongs to €.

Remark 1.3.11. In the theorem above, it suffices to consider only subal-
gebras A C C* that are dense in the topology of the dual space. In this
case, C' imbeds into A°, so the latter can be regarded, loosely speaking, as

“completions” of C' (ot in the topological sense: C' has no topology).

Before we can prove Theorem 1.3.10, we will need the following useful
characterization of the T-ideal Z(C) of identities of a coalgebra C. This
lemma is a dualization of the statement: the T-ideal Z(A) of identities of
an algebra A is equal to the intersection of the kernels of all algebra maps
F — A. Recall the notation of Lemma 0.1.5.

Lemma 1.3.12. Let C be a coalgebra. Denote by L the sum of the images
of all coalgebra maps C — F°. Then I(C) = L*.
Proof. Recall from Section 0.1 that the functor ( )° is the right adjoint

of (), ie. for any algebra A and C, the sets of he

Alg(A,C*) and Coalg(C, A°) are in a one-to-one correspondence. Namely,

the following are the inverse bijections constructed by M.Sweedler [32]:
@ : Alg(4, C*) — Coalg(C, A°) sending § to the composite C — C** % 4°,
and

W : Coalg(C, A°) — Alg(A, C*) sending o to the composite A — A% & C*.
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We apply this result to A = F and our C. Let a : C — F° be a coalgebra
map, then a = ®(F) for the algebra map 3 = ¥(a) : F — C*, so we have:

(Ima)* = {Fe&F|VeeC (Fa(c) =0}
= {FeF|VeeC (FA(c) =0}
= {FeF|VeeC (B(F),c) =0}
= {FeF|B(F)=0}=Kerp.

Since by definition the identities of C' are the same as the identitiies of C*,

we can compute:

(\L::Ima> y =L

I(C) = Z(C*) = [ | Kexf = [|(Ima)
I &

[ ]

Proof of Theorem 1.3.10. The necessity of the last condition follows from
Proposition 1.1.4. Let us prove the sufficiency.

Suppose a class € satisfies the conditions of the theorem. Set J = Z(€),
the T-ideal of identities satisfied by each coalgebra of €. We claim that €
coincides with the variety of coalgebras cVar(J) defined by J. Obviously, €
is contained in cVar(J).

Conversely, let D be a coalgebra satisfying all identities from J. We

want to prove that D is in €. Without loss of generality, we assume D

beddi

finite-dimensional. Choose some i of vector spaces D < V*, where
V = (X1,X5,...). By the universal property of F° = ¢I'(V'*), we obtain an
imbedding of coalgebras D < F°. Since D satisfies all identities from J,

Lemma 1.3.12 implies that D+ > J.
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Let L be the largest subcoalgebra of F° belonging to €. Applying Lemma
1.3.12 again, we conclude that L* = J. Therefore, F/J can be identified
with a subalgebra of L*. By the last condition on the class €, this implies
that the coalgebra (F/J)° is in €. But (F/J)° 2 J*, so J* is in € Hence
J* C L by the definition of L (obviously, L C L** = J*, so in fact L = J+).
We have proved that D* > J, therefore, D C D** € J* C L, hence D is in
e [ ]

1.4 Relatively Free Coalgebras

In this section we assume the field k infinite.

We start by briefly recalling the notion of a relatively free algebra. Fix
some system of polynomial identities S. Let X = {Xi|i € I} be a set
of varables indexed by a st I of any cardinality. Then the relatively free
algebra Fx(X) of the variety 2 = Var(S) generated by X is defined by the
same universal property as the (absolutely) free algebra, but we restrict our
attention only to the algebras from 2. Namely, Fy(X) must belong to 2,
and for any algebra A € % and any family {a;}ic; of elements of A, there

must exist a unique algebra map ® : Fy(X) — A such that ®(X;) =

for all 7 € I. The idea here is that we impose on the generators Xj, i € I,
only the relations that follow from the system of identities S (hence the term
“relatively free”).

To make a transition to coalgebras, we first need to replace the set X by
the linear space V = (X). Then the relatively free algebra Fy(X), which

will be denoted Ty(V) in this context, has the same universal property as
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the tensor algebra T(V) = F(X), but restricted to algebras from 2 only:
Tu(V) must itself belong to 2, and for any algebra A € 2 and any linear
map ¢ : V — A, there must exist a unique algebra map & : Ty(V) — A

extending ¢, i.c. making the following diagram commute:

where 7 is the inclusion map. Dualizing this universal property gives the

following relative version of Definition 1.2.1.

Definition 1.4.1. Let € be a pseudo-variety of coalgebras. Let V' be a vector
space, C a coalgebra, 6 : C — V a linear map. The pair (C,0) is called a
€-free coalgebra of V' if C belongs to € and, for any coalgebra D € € and
a linear map @ : D — V, there exists a unique coalgebra map @ : D — C

completing the commutative diagram:

Such a C-free coalgebra is automatically unique, and we will denote it

by cTe(V). The existence is also i the largest subcoalgebra of
the (absolutely) free coalgebra ¢T(V) that belongs to € obviously satisfies
the universal property of ¢T¢(V). Any coalgebra of the pseudo-variety €
can be imbedded in a suitable €-free coalgebra (just take any imbedding
into an absolutely free coalgebra, the image will automatically lie in the
corresponding €-free coalgebra).

From now on, we assume that € is in fact a variety. We will give two

lizations of C-free coalgeb the first is an ion of M.Sweedler’s
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result that T(V*) = T(V)*, and the second is a more explicit construction

inspired by the ideas of R.Block and P.Leroux.

Theorem 1.4.2. Let € be a variety of coalgebras and 2 a variety of algebras
defined by the same set of identities S. Then for any vector space V, the €
free coalgebra cTe(V*) of V* is naturally isomorphic to Tu(V)?, where Ta(V)
is the relatively free algebra of the variety 2 generated by a basis of V.

Proof. As we observed, cTe(V*) can be identified with the largest sub-
coalgebra L C ¢I'(V*) = T(V)° belonging to the class €. The calculation
similar to the one in Lemma 1.3.12 shows that L+ C T(V) coincides with
the intersection J of the kernels of all algebra maps a : T(V) — L*. Since
L* belongs to the variety 2, the ideal J contains the intersection .J' of the
kernels of all algebra maps o : T(V) — A, for all A € 2.

Clearly, T(V')/.J' is nothing else but (a realization of) the 2-free algebra
Ta(V). Now by Proposition 1.1.4, the coalgebra (T'((V))/.J')° belongs to €,
but it is naturally isomorphic to the subcoalgebra (J')* C T(V)°, hence
(J'): C L (since L is the largest). Therefore, J = L* C (J')**. But since
T(V)/.J" is residually finite-dimensional (by the same argument as in the
proof of Proposition 1.3.5) and (T(V)/.J")° = (J)*, we see that (J')-+ = J'.
Hence J C J', and we have already shown that J D J', so J = J'.

Finally, since J = L+, L ¢ Lt = J4, but J* = (J)* C L, so we
conclude that L = J* and thus L is naturally isomorphic to (T'(V)/J)° =
(T(V)/J° = (Ta(V))°. Tt remains to recall that L is (a realization of)
Tu(V?). ]
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For the second construction, recall that, for any graded algebra
A=PA.
0

and a vector space V, we defined the generalized finite dual coalgebra Ay
(Definition 1.2.2). We will need the following criterion (10, Corollary 4] for
a subspace of A3 to be a subcoalgebra. First we introduce some notation.

Fix b € Ay, then, for any graded linear map f : A — T(V) of degree
0, we can define the right translate Ryf : A — T(V) by (Rsf)a = f(ab),
for all a € A. Similarly, the left translate Lyf : A — T(V) is defined by
(Lyf)a = f(ba), for all a € A. Obviously, Ryf and Lyf are graded linear
maps of degree n.

Now, fix a multilinear map ¢ : V % ... x V — k in n variables. We
can also view it as a linear map ¢ : T*(V) — k, i.e. an element of T"(V)".
Using ¢, we can “truncate” tensors from T(V) in the following way. Define

Rtrunc, : T(V) = T(V) by

ifm <n,
Rtruncy(vy ... v) =
V1 Vmen@(Unenit o, Um) M 2n
Similarly,
0 ifm <n,
Ltrunc,(v; ...
OVt Un)Vnst U B>

Clearly, Rtrunc, and Lirunc, are graded linear maps of degree —n.

Definition 1.4.3. Fix b € A, and ¢ € T*(V))*. Then, for any graded linear
map f : A = T(V) of degree 0, the composite maps Rirunc, o R,f and
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Ltrunc, o Ly f are again graded of degree 0. We will call them the right and
left truncated translates of f, respectively, and denote R(b, 0) f and L(b, ¢)f.

Recall from Definition 1.2.2 that the coalgebra A3, consists of all graded

linear functions A — T'(V) of degree 0 that are representative.

Lemma 1.4.4. Suppose D C A} is a subspace. Then D is a subcoalgebra iff
R(b,¢)D C D and L(b,p)D C D, for all b € Ay, o € T*(V)*, and n > 0.8

We are now ready for our construction. Recall F = T'(X;, X,,...). We
will denote by P, the space of all multilinear polynomials in the first n
variables, i.e.

Po= (Xaqty - - Xy | 7 € Sp).
As before, we can view F € P, as an element of kS, so F' = 37 .5 A, acts
on the tensors from T"(V) by the formula:
Fo(orotp)= Y Atipmigy - Upeinys
7ESn

Definition 1.4.5. Let J C F be a T-ideal generated by multilinear identi-
ties. Let A be a graded algebra and V a vector space. We will denote by

5/ (J) the space of all representative functions f : A — T(V) that satisfy,
for alln > 0 and a € Ay,

F-f(a)=0, VYFeJnP. (1.4.1)

Specifying J = 0, we recover the whole A5,. If J is generated by the iden-
tity X1 X — XpX, then a representative function f : A — T(V) belongs to
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A3(J) iff f(a) is a symmetric tensor, for all a € A, n. > 0 (such “symmetric-
valued” representative functions were used in {10] to construct free cocom-
mutative coalgebras). Note also that by Theorem 0.3.2, if chark = 0, then

any T-ideal J is generated by multilinear identities.

Theorem 1.4.6. Let J be a T-ideal generated by multilinear identities and
V' a vector space. Then A%(J) is a subcoalgebra of A3, Morcover, if A is
commutative (in the ordinary, non-graded sense), then A3(J) satisfies all the

identities from J.

Proof. By Lemma 1.4.4, we have to prove that if f € Aj(J), b € A,
¢ € T™(V)" (m > 0), then R(b,¢)f, L(b,¢)f € Ay(J). For the right
truncated translate, we have to show that, for any n > 0 and a € A,,
(R(b, ) f)a satisfies (1.4.1), i.e. F - Rtrunc,(f(ab)) =0, for all F € J 1 P,.
Fix F =Y e5, M7 € JN Pa.

Set 2 = f(ab), it is a tensor of degree n -+ m, so we can write:

z= Zu,,....,‘w..”n 0 Vingms
@

where {v;} is a basis of V. Thus we can compute:

RUruncy(2) = 3 pi,iuni -+ Vin@(inian -2 Vi )s
(@)
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hence

F - Rirunc,(z)

S 3 S R
TESH (i)

= Rtruncy | 373 Mebisvsinsm¥ipmi gy - Vi Vins ++ - Yinim
TESn (i)

= Rtrunc,(F - z),

where F =3¢ A7 and 7 is the permutation of 1,...n +m that acts as
monl,...,nand leaves n+1,...,m intact.

Clearly, the identity 3, cq. ArXa(t) - - Xnm Xt Xngm = 0, corre-
sponding to ', is & corollary of the identity 3,5, ArXn(t) - Xu() = 0,
corresponding to F. Therefore, F' € J. But since f € A3(J), z = f(ab)
must satisfy G- f(ab) = 0, for all G € JN Pyym, hence F-z = 0, and we have
proved that R(b, ) f is in A% (J). The proof for the left truncated translate
is similar. Therefore, 4%, (J) is a subcoalgebra.

Now assume that A is commutative. We want to prove that Ay, (J) sat-
isfies all the identities from J. Since J is generated by multilinear identi-
ties, it suffices to show that A% (J) satisfies all ' € J N P, for all n. Fix
F=3 s, T €JNPF,

Recalling Definition 1.1.2, we have to prove that, for all f € A (J),

F-3 f))®...8 fmy =0. (142)

Since fy,- -+, fn) are linear functions from A to T(V), the left-hand side

of (1.4.2) can be viewed as a linear function from A®" to T(V))®". Therefore,
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(1.4.2) is equivalent to the following:
(P Y f8 - ®fuym@...0a) =0, Vai..,a€eA (L43)

Clearly, it suffices to verify (1.4.3) only for homogeneous a;, ..., a,, say, of

degrees my, ..., my, tespectively. Then the left-hand side of (1.4.3) is an
element of the space T™ (V) @ ... ® T™(V), which is naturally imbedded
in T7(V), where m = my + ...+ m,. Hence we can write, omitting, by our

convention, the symbol ® in the monomials from T(V):

LHS = Y <Zf(7r”(l))®~<'®f(%"(n))’u‘®"'®a">
TES

= 3 A D (Famrany @) e fiwtiyy an) (1.4.4)
TESn
Now, for any permutation 7 of 1,...,n, we define a permutation 7 of

,m in the following way:

(1) = Myya+l, ..., #@m-mp+1) = M+,
H2) = Maa+2 ..., Am-mh+2) = Mya+2
w(my) = Magoitmi, .. w(m) = Mymr+my,

where m} = mq(;) and M; = my+...+m, fori =1,...,m. Loosely speaking,
7 permutes the blocks of sizes my, ..., m, according to the action of 7 on
1,...,n. Then we can continue with (1.4.4) as follows:
LHS =3 A 37 ({fy, 0x ) - - (Foms r))) - (1.45)
TESn

By the iterated (1.2.1), we have:

(£,bu- - bny = D (Fays ) - ey i),
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hence (1.4.5) gives, with b; = ax(:
LHS =3 Mt (fyny - Gn) = D M- (fra1..00)  (146)
TESy TESH
by commutativity of A. Thus we have rewritten the left-hand side of (1.4.2)
as F- far...a,), where F =3 . A7 € kSp
It remains to observe that the identity 35, .o ArXzq)...Xz(m) = O

corresponding to F, follows from the identity Y, cs ArXr(r)- - Xatn) =
0, corresponding to F, by substitution of X, ... X, for X;, and so on,
Xipempt1 - -- X for X, (here we substitute 1 for X; in the case m; = 0).
Hence F € J and F f(a;...a,) = 0 since f € A3 (J). ]
Corollary 1.4.7. Let J be a T-ideal generated by multilinear identities and
V a vector space. Then K[t]}/(J) is the cVar(J)-free coalgebra of V..

Proof. By Theorem 1.4.6, k[t]},(J) is a subcoalgebra of k[t]}, which
belongs to cVar(J). It is the largest such subcoalgebra since if f € klt];
satisfies

F-Y fy®...® fmy =0, 147
for some F € P,, then we have:
Fof@)=F (L fw®). fw®) =0,
whence if f satisfies (1.4.7), for all n > 0 and F € J N Py, then f is in
K(t]3/(J). It remains to recall that klt]; is the (absolutely) free coalgebra of
V. ]
Using the natural imbedding of the at ly free coal (V) =

K[t]3, into T(V), we obtain a realization of the cVar(J)-free coalgebra

Tevacn) (V) = K[t (1) € To(V),
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where T;5(V) consists of all formal sums fo + f, + ... such that f, € T"(V)
satisfies the “symmetry conditions™ F - f, =0, forall F € JN P,.

1.5 Some Examples

When we study a bialgebra (in particular, a Hopf algebra), it will be conve-
nient to use the term coidentities for the identities of the underlying coalge-

bra, and simply identities for the identities of the underlying algebra.

Example 1.5.1. Consider the family of Hopf algebras H(n, £) constructed
by Taft [35]. Let n be a natural number and £ € k a primitive n-th root of
unity (hence chark fn). As an algebra,

H(n,€) = alg(z,g | 2" = 0,¢" = 1,9z = Exg).
The coalgebra structure is defined by
Ag=g®g, Ar=2Q9+1Q®z,

ie., g is group-like, « is (g, 1)-primitive. Then the T-ideal of identities of
H(n, €) coincides with the T-ideal of coidentities and is generated by the
identity

(X1 Xz — X2X3) ... (Xzn-1Xon — XonXan1) = 0. (1.5.1)
In particular, H(n,£) does not satisfy any identities or coidentities of degree

<2n.

Proof. Tt can be shown that the comultiplication of H(n, £) is well-defined,
and H(n,£) is in fact a Hopf algebra with counit £(z) = 0, s(g) = 1 and
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antipode S(z) = —zg~", S(g) = g~ (see eg. [31]). Furthermore,
{z'¢’|0<i,j <n}

is a basis of H(n,&) over k, and so dim H(n,&) = n”. The Taft’s algebras
H(n, &) are pointed and also self-dual, i.e. H(n,§)* = H(n,&) (see [31]).
Thus we have to prove only that (1.5.1) is a basis of identities for H(n,§) as
an algebra, i.e. all identities follow from (1.5.1).

Since any commutator of elements of H(n, &) is cither 0 or has a factor
2, and 2 = 0, the algebra H(n,£) satisfies the identity (1.5.1). Tt is a well-
known fact that (1.5.1) is a basis of identities for the algebra UT (n) of upper
triangular n x n matrices (see e.g. [24]). We will prove that the algebra
UT(n) can be imbedded into H (n, &), which gives the desired result.
3 (€79)* are the

Set By = 297¢;, 0 < i < j < n, where ¢; = L3
orthogonal idempotents of the group algebra of the cyclic group (g),. From
the form of the basis of H(n,&) mentioned above, it follows that Ej are
linearly independent.

Since €;7' = z'¢j11 (mod m), 0 < j,1 < n, we can compute:
=g, 9P — LIte-i-p, = gty —
Byl =2’ e;z""eq = 2 tp (modm€q = ipt’ e = GipLig,

where 0 < i < j <n,0<p<g<n,and §j, is the Kronecker symbol.
Therefore, the span of Ey;, 0 < i < j < n, is a subalgebra of H(n,§)
isomorphic to UT (n). ]
Now we will look at a few simple examples of relatively free coalgebras
that can be explicitly computed. Recall from Remark 1.2.5 that the (abso-
lutely) free coalgebra ¢T'(V) has a natural structure of a commutative Hopf

algebra. Tn our realization of ¢T(V) as a subspace of (), the multiplication
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of ¢I'(V) is the restriction of the shuffle product on T'(V), which we denote
by * to avoid confusion with the tensor product (that does not respect co-
multiplication in the sense of Definition 0.2.1). The shuffle product on 7'(V)
is defined by extending the following formula for monomials by linearity and
continuity:

Ve Bk Uit Ba= D Te(vr.p) (1.5.2)

~ESh(mn—m)
Yo, ..., 0 €V, n20,0<m<n,

where Sh(m,n —m) is the set of all (m, n — m)-shuffles, i.e. permutations of
1,...,n preserving the order of 1,...m and m+1,...,n: 7(1) < ... < 7(m)

and m(m +1) < ... < m(n). The antipode is defined by
S(r...vn) = (10w, Vor,...u €V, n>0.

Example 1.5.2. Recall the pseudo-variety Grp of Example 1.3.6. The rela-
tively free coalgebra cTg,, (V') is spanned by the set G(cT'(V)) of all group-like
elements of ¢T'(V), which is in one-to-one correspondence with V' by virtue

of the map
eV eT(V)iv—e) =1+v+v+0o°+...,
where v? is the monomial v ® v, etc.

Proof. Using (1.2.2), we immediately see that e(v) is indeed group-like,
for any v € V. Conversely, if g € G(cT(V)), then by the iterated (1.2.1),
the degree n component g, = g(t") = ¥ g1y (1) . .. gm) () = (9()" = (91)",
hence g = ¢(v) for v = gy. ]
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Moreover, the map € : V — G(cT(V)) above is an isomorphism of the
underlying additive group of V and the group (under %) of group-like elements
of ¢T(V) (see 9, Section 2]). It is also proved in [9] that the irreducible
component of 1= 1+0+0++... in ¢T(V) is equal to T(V). It is obviously
a subHopfalgebra of ¢T'(V).

Recall from Example 1.3.7 that the class Pnt of all pointed coalgebras
is a pseudo-variety, and so there exists the largest pointed subcoalgebra of
¢T'(V), which is (a realization of) the relatively free coalgebra cTpnu (V).
Since the explicit computation of Ty (V) seems to be difficult, we will look
at the following pseudo-variety which is contained in Pnt. The class Conn
of all connected coalgebras is closed under isomorphisms, subcoalgebras and
factors (the proof as in Example 1.3.7 for pointed coalgebras). Clearly, it
is not closed under direct sums, so we introduce the class ¥Conn of all

coalgebras that are sums of their connected subcoalgebras.

Example 1.5.3. The class ©Conn introduced above is a pseudo-variety,
whose relatively free coalgebra cTscom (V) is a subHopfalgebra of ¢T'(V)

isomorphic to T(V) ® k(V, +) via z @ v = zx e(v).

Proof. By Lemma 0.1.10, if a coalgebra C is a sum of connected subcoal-
gebras, it is a direct sum of maximal connected subcoalgebras: C' = @, C;,
hence any subcoalgebra D C C is the direct sum of connected coalgebras
DN (cf. proof of Example 1.3.6). All other properties necessary to make
YConn a pseudo-variety are obvious.

By Remark 0.2.8, we obtain that the sum of all connected subcoalgebras
of T'(V) is a subHopfalgebra isomorphic to <7 (V) #kG(cT(V)) via z#g —

2% g, where ¢T(V), is the irreducible component of 1. It remains to recall



CHAPTER 1. IDENTITIES OF COALGEBRAS 54

the structure of G(cT'(V)) and ¢T'(V), and the fact that  is commutative.
| |

Finally, let us describe the free cocommutative coalgebra cTeocomm(V),
which we will denote by ¢Zyym(V), because it consists of all elements of cT'(V)
f = fo+ fi+...such that all f, are symmetric tensors. We denote the space
of symmetric tensors of dogree n by T%,,(V). The following description is
given in [0, Section 4] (where it is partly attributed to M.Sweedler).

Since the irreducible component of 1 in ¢T'(V) is T(V), the irreducible
component of 1 in Tyym(V) is Ty (V) NT(V) = Tyym(V), where

Tom(V) = D Ty (V).
>0

Choose a basis {z; |i € I} of the space V/, indexed by a set I and fix some
linear order on /. Consider multiindices & € Z{ as defined in Section 0.4,
then T(V) has a basis of monomials x* = [, z°1) (meaning tensor product
performed according to the order of I). To construct a basis for Tyym(V),
consider the orbit Orbs,,, (x*) of x* under the usual action of Sjg on 7'°l(V)
and set

Z(a) = 2.
s€0rbg, (x*)
Clearly, {2 |a € Z{} is a basis for Tyym(V).
Now the formula (1.2.2) for comultiplication of ¢T'(V) implies that
A= 3 M@, vaezl (1.5.3)
Br=a
The counit of Tym(V) is given by £(2(¥) = 0 if a # 0 and () = 1.
As to multiplication, (1.5.2) gives

z(“uz(ﬂ):(“;ﬁ)z(“*/’), Ve, fezd. . (154)
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The unit of Ty, (V) is 2@, and the antipode is given by
520 = (1)o@, vaez.

Definition 1.5.4. Let I be a set. The Hopf algebra D(I) with a basis
{2} indexed by a € 2 and comultiplication and multiplication defined
by (1.5.3) and (1.5.4), respectively, is called the divided power algebra with

index set 7.

Hence we obtained that the irreducible component ¢Tyym (V)1 = Tyym (V)
is isomorphic to the divided power algebra D(I), where V = (z;]i € I).
Now we put all facts together and apply Theorem 0.2.7:

Example 1.5.5. Let V' be a vector space with a basis indexed by a set
I (ie. dimV = |I]). The relatively free coalgebra cTe(V) of the pseudo-

variety € = Cocomm N Pnt is a subHopfalgebra of ¢T'(V) i hic to

D(I) @ k(V, +) via 2 @ v — z % e(v).

In particular, if k is algebraically closed, then € = C'ocomm and we obtain
an explicit description of the free cocommutative coalgebra cTyym(V). We

will return to divided power algebras in Chapters 2 and 4.



Chapter 2

Cocommutative Hopf Algebras
with a Polynomial Identity

2.1 Overview of Known Results

In this section we summarize known results giving necessary and sufficient
conditions for certain kinds of algebras, which are in fact examples of co-
commutative Hopf algebras, to be PI, i.e. to satisfy a nontrivial polynomial
identity. The following sections will be devoted to the question of determin-
ing when a general cocommutative Hopf algebra is PI (as an algebra). We
will give the complete answer in the case of zero characteristic and some
partial results in prime characteristic.

The simplest example of a cocommutative Hopf algebra is the group al-
gebra kG of a group G (see Section 0.2). The problem of determining when
kG is PI was attempted by a number of authors (see references in [26]). In

1972, D.Passman published the following final result [26]. In the statement

56
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of this theorem a group A is called p-Abelian if the commutator subgroup A'

is a finite p-group (where p is a prime).

Theorem 2.1.1. Let G be a group, k a field. Then the group algebra kG is
PI iff there exists a subgroup A C G of finite index such that A is Abelian in
the case chark = 0 and p-Abelian in the case chark = p. Moreover, the sub-
group A can be chosen characteristic (i.e. invariant under all automorphisms

of G). ]

Remark 2.1.2. As V.Petrogradsky pointed out to me, in the theorem above
we can also assume A’ Abelian (just replace A by the centralizer C4(A")).
This observation makes Theorem 2.1.4 below look completely analogous to

Theorem 2.1.1.

The next example of a cocommutative Hopf algebra that we gave in Sec-
tion 0.2 was the universal envelope U(L) of a Lie algebra L. For finite-
dimensional L and characteristic 0, the answer to when U(L) is PI was
given by V.LatySev [23] in 1963, and then Yu.Bahturin [2] in 1974 extended
that result to arbitrary L and also gave the answer in prime characteristic.

Here we will only need universal lopes in the case of ch istic 0,

since in the context of Hopf algebras, it is more natural to consider restricted

envelopes in prime characteristic (see Remark 2.1.8 below).

Theorem 2.1.3. Let L be a Lie algebra over a field k, chark = 0. Then the
universal enveloping algebra U(L) is PI iff L is Abelian. [ ]

Recall that a Lie algebra L over a field k of characteristic p with an

additional operation [p] : L — L : = — 2! is called a p-Lie algebra if
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1) (Ax)Pl =2l A ek, ze L;
2) adaP! = (adz)?, z € L;

3) (z+y)P = all 4 yll 4+ Y07} s, (2,9), 2,y € L, where ksy(z,y) is the
coefficient of =" in the polynomial (ad(tz +y))*~\(z) € L{t].

If L is a p-Lie algebra, then the restricted enveloping algebra u(L) is
defined in the same way as U(L), but the following additional relations are
imposed: 27 = &, for all z € L. There is a version of Poincaré-Birkhoff-
Witt Theorem for restricted envelopes (see e.g. [1]). Given a linearly ordered
basis {z; i € I} of L, the ordered monomials with powers < p (hence the

name “restricted”):

T, i < ik 0K My, <p, k=010,

i

form a basis of u(L). From now on, we will simply write z? for 2, z € L,
since they define the same element of u(L). The restricted envelope u(L) can
be endowed with a Hopf algebra structure in the same way as U(L), i.e. by
defining Az =2@1+ 1@z forallz € L.

The following criterion was proved independently by V.Petrogradsky [29]
and D.Passman [27).

Theorem 2.1.4. Let L be a p-Lie algebra over a field k, chark = p. Then
the restricted enveloping algebra u(L) is PI iff there evist p-ideals @ C B C L
such that

1) dimL/B < o0, dimQ < oo,

2) B/Q is Abelian,
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9) Q is Abelian with nilpotent operation [p).
[ ]

Remark 2.1.5. As shown in [6], the ideals Q@ and B can also be chosen

invariant under all automorphisms of L.

Now recall the Decomposition Theorem 0.2.7 for pointed cocommutative
Hopf algebras. Since the condition of pointedness is automatically satisfied
if k is algebraically closed, this theorem represents any cocommutative Hopf
algebra H over such a field as the smash product of a connected cocommuta-
tive Hopf algebra H; and the group algebra kG, where the group G = G(H)
acts on Hy by Hopf algebra automorphisms.

Definition 2.1.6. For brevity, and following P.Cartier [12], we will use the

term hyperalgebra for any

bialgebra. The existence
of the antipode for such bialgebras is automatic (see e.g. [14, 2.2.8)), o they

are in fact Hopf algebras.

Tn characteristic 0, we know that any hyperalgebra is just a universal en-
veloping algebra. Namely, H, is isomorphic to the universal envelope U(L)
of the Lie algebra I = P(H)(= P(H,)) of primitive elements (Theorem 0.2.7

again). Thus over an algebraically closed field of characteristic 0, our ques-

tion of determining when a cocommutative Hopf algebra is PI reduces to
the same question for the smash product U(L)#kG of a universal enveloping
algebra U(L) and a group algebra kG, where G acts on L by automorphisms.
This smash product is nothing else but the skew group ring of G with coeffi-

cients in U(L). Since U(L) is a prime ring (even an integral domain), many
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results on skew group rings can be applied to derive the following criterion
when U(L)#kG is PI. For the most general results of this nature see e.g.
28, Section 5.23], where the ring of coefficients is just G-semiprime and the

multiplication of elements of G may be “twisted” by a cocycle.

Theorem 2.1.7. Let L be a Lie algebra over k, chark = 0. Let G be a group
acting on L by automorphisms. Then the smash product U(L)#kG is PI iff

1) L is Abelian, and

2) there eists a normal Abelian subgroup A C G of finite index such that

A acts trivially on L.
=

We will prove this criterion in Section 2.2, using an elegant result from
[16]. An elementary proof was given by the author in [19]. In Section 2.2,
we will also show how we can get rid of the hypothesis that k is algebraically
closed.

Now we pass to the case of prime characteristic p. Here the space of
primitive elements P(H) of a Hopf algebra H is closed not only under the
commutator, but also under the p-th power, so L = P(H) is a p-Lie algebra.
By the universal property of u(L), we can extend the inclusion L < H to
an algebra map ¢ : u(L) = H, which will be in fact a Hopf algebra map
since Ap(z) =28 14181z = (v ® ¢)Az and Sy(z) = —z = p(Sz), for all
z € L, and L generates u(L) as an algebra. Moreover, by [25, Proposition
5.5.3], u(L) is connected and P(u(L)) = L. Thus by Corollary 0.1.15, ¢ is

injective since so is its restriction to L.
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Remark 2.1.8. For H = U(L), we have P(H) = L only if chark = 0. If
chark = p > 0, P(H) is the p-hull

(L)p= (" |5 € Ln>0)

of L (sce [25, Proposition 5.5.3] again). This explains why it is more conve-
nient to work with restricted envelopes rather than with universal envelopes
when we study Hopf algebras. Universal envelopes are also included this way,
because U(L) = u((L),).

We have just shown that u(L) < H. Since u(L) is connected, it is in fact

in the d Hy. Unlike the case of characteristic 0,

where for any cocommutative Hopf algebra H, we have H; = U(L), here the
hyperalgebra H; does not have to be equal to u(L). Since u(L) is generated
by L, H, equals u(L) iff it is primitively generated, i.e. generated, as an
algebra, by primitive elements. Divided power algebras D(I) introduced in

Chapter 1 (see Definition 1.5.4) provide examples of hyperalgebras which are

not primitively d. Taking for simplicity a )l t set I, we get

= (z( |n > 0), with comultiplication

.
D SCERC
k=0

8,0 (k : ’) ey

Hence P(D) is the one-dimensional subspace spanned by 21, but ()7 = 0,

and multiplication

so P(D) generates only the subHopfalgebra

(1=29,50, .. 20-V).
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The answer in the case of primitively generated Hy (i.e. Hy of coheight 0,
according to Definition 2.3.2) was given by Yu.Bahturin and V.Petrogradsky
6, Theorem 3.1].

Theorem 2.1.9. Suppose that a group G acts by automorphisms on a p-Lie
algebra L. Then u(L)#KG is PT iff
1) there ezist G-invariant p-subalgebras Q C B C L with
(a) dimL/B < 00, dim@Q < oo,
() [B,B]CQ,
(c) Q is Abelian with nilpotent operation [p];
2) there exists a subgroup A C G with
(a) (G:4) < oo,
(b) A’ is a finite Abelian p-group;
3) A acts trivially on B/Q.
| |
Remark 2.1.10. Note that the ring of coefficients u(L) of the skew group

ring u(L)#kG need not be semiprime, so the results of (28] on P/ skew group

rings cannot be applied.

In the present work, we will look at the case, which is, in a sense, op-
posite to the primitively generated case, namely, when H is coreduced (see
Definition 2.3.3) and thus has infinite coheight. It turns out that such hy-

peralgebras are similar to universal enveloping algebras of characteristic 0.
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We will obtain, in passing, a new proof of Theorem 2.1.3 that presents it as
a corollary of Theorem 2.1.1.

To conclude this introductory section, we obtain a somewhat unexpected

corollary of Theorems 2.1.3 and 2.1.4 (cf. the examples at the end of Chapter
1).
Proposition 2.1.11. Let F be the free algebra (associative with 1) in count-
ably many variables Xy, Xy, ... over an infinite fieldk. Then F has a natural
structure of a cocommutative Hopf algebra defined by AX; = X, ®1+1® X;,
for alli (as in Remark 1.2.5). Suppose J is a T-ideal of F. Then J is a Hopf
ideal iff J =0 or J = F or ] is generated by X1 X — X3X; as a T-ideal.

Proof. The nontrivial part is to prove that if a T-ideal J # 0 is a Hopf
ideal, then J contains [Xy, X,], because then either J is generated by [X;, Xs]
as a T-ideal or J = F by Corollary 0.3.3.

First assume that chark = 0. We represent F = U(L), where £ is the frec
Lie algebra generated by Xy, Xy,... Let m : F — F/.J be the factorization
map. Then the connected Hopf algebra 7/J is generated as an algebra by
the Lie subalgebra (L) of P(F/J). Since F/J = U(P(F/J)), we see that
w(£) must be equal to P(F/J), and so F/J = U(x(L)). Since J # 0, the
algebra F/.J is PI, hence by Theorem 2.1.3, 7(L) is Abelian, which implies
that J contains [X;, Xa)].

1f chark = p > 0, we represent F = u(L), where £ is now the free p-
Lie algebra generated by X1, X, ... By a similar argument, we obtain that
F[J=u(L/I), where I = JN L is a p-Lie ideal of £. By Theorem 2.1.4, we
can find p-Lie ideals Q C B C £ containing J such that dim £/B < oo, B/Q

is Abelian, and Q/I is finite-dimensional Abelian with nilpotent operation [p].
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Moreover, we may assume B and @ invariant under all automorphisms of £
that preserve /. In particular, B and @ are invariant under a linear change of
variables, because any such change preserves I: I = .JNL and J is a T-ideal.
Since dim £/B < co, B must contain a nontrivial linear combination of the
variables X, Xy, ... Performing an appropriate linear change, we conclude
that B contains X; and similarly, all other variables. Since B/Q is Abelian,
we obtain that [X;, X;] € @, for all i,j. But recall that dimQ/I < oo,
hence I must contain a nontrivial linear combination of [X;, X;]. Therefore,
the T-ideal J contains a nontrivial polynomial identity of degree 2, hence
by Theorem 0.3.2, a nontrivial multilinear identity of degree 2. Any such

identity, written in the variables X; and X, has the form AX, X, + pXoXy,

for some A, 1 € k not si y 0. Upon substitution X; = Xp =1, it
follows that either J = F or A + = 0 and thus J contains [X;, X]. u

2.2 The Case of Zero Characteristic

The goal of this section is to generalize Passman’s criterion for group algebras
(Theorem 2.1.1) to cocommutative Hopf algebras in the case of characteristic
0 (see the equivalence of 1) and 2) in Theorem 2.2.9). First we obtain Theo-
rem 2.1.7 that immediately gives the desired result if a cocommutative Hopf
algebra H is decomposed to a smash product as in Theorem 0.2.7, e.g. over
an algebraically closed field. Then we extend our criterion to arbitrary fields
of characteristic 0 and also give it a form that does not explicitly involve the

decomposition to a smash product.

Definition 2.2.1. Let R be a prime ring. Then the ring Q, = Q,(R) is
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called the symmetric Martindale ring of quotients if
1) Qs(R) D R with the same 1,

2) if g € Qs, then there exist 0 # I, J 4 R with Iq,qJ C R,

3) if g € Q, and 0# I 4 R, then either of Ig = 0 or I = 0 implies ¢

4) let f: oI — gR and g : Jg — Rp be given with 0 # I,J < R and
suppose that for all a € I and b € J, we have (af)b = a(gh) (where we
write left module maps on the right and vice versa), then there exists
g € Q,(R) with af = aq and gb=gb, foralla € I, be J.

The ring Q,(R) exists and is uniquely defined by the properties listed
above (see c.g. [28, Chapter 3]). If R is a PI ring, then the Theorem of Pos-
ner, Rowen et al. (see e.g. [18, Section 1.11]) implies that Q, coincides with
the ring of central quotients of R(=the left classical ring of quotients=the

right classical ring of quotients)

Definition 2.2.2. Let o be an automorphism of a prime ring R. Then o is
said to be X-inner if there exists an invertible element ¢ € Q,(R) such that

o is the restriction to R of the inner automorphism = — gzg™ of Q,(R).

We can now state the following result due to D.Handelman, J.Lawrence
and W.Schelter [16, Theorem 2.3] (these authors use the term “inner” for

the automorphisms of a prime P/ ring that we now call “X-inner”).

Theorem 2.2.3. Let R be a prime PI ring. Suppose a group G acts on R
by automorphisms. Then the skew group ring RG is PI iff there evists a
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subgroup A C G of finite index such that A acts on R by X -inner automor-
phisms and A is Abelian in the case char R = 0 and p-Abelian in the case

charR =p>0. L]

Proof of Theorem 2.1.7. Apply the theorem above with R = U(L), which
is always a domain, and recall that U(L) is PI iff L is Abelian (Theorem
2.1.3), in which case Q,(U(L)) is just a field of rational functions that has
no nontrivial inner automorphisms. L

‘We will need a version of Theorem 0.2.7 that does not require pointedness
(which is not automatic over a non algebraically closed field). But first we

prove two lemmas.

Lemma 2.2.4. Let L/k be a separable field estension, C a coalgebra over k.
Then corad(C ® L) = (coradC) ® L.

Proof. The inclusion corad(C ® L) C (coradC) ® L holds for any field
extension and can be deduced e.g. from Lemma 0.1.12. Assuming L/k sepa-
rable, since coradC' is a sum of simple subcoalgebras, then so is (coradC)® L,
because any simple coalgebra is finite-dimensional (due to Theorem 0.1.8)
and hence dual to a finite-dimensional simple algebra, that remains simple

upon tensoring with L. But this implies (coradC) ® L C corad(C ® L). W

Lemma 2.2.5. Let C be a coalgebra over k, D C C a simple subcoalgebra.

Denote Trr D the irreducible component of D. Let L/k be a Galois field
estension and assume D ® L simple. Then Trr (D@ L) = (Irr D) ® L.

Proof. By definition, corad(Irr D) = D, then by Lemma 2.2.4 we get

corad((Ir D) ® L) = D® L.
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Since D ® L is simple, (Irr D) ® L is irreducible and thus
(rD)®LC I (D@ L) (221)

by maximality. Let & = Gal(L/k), then we have a natural continuous action
of £ on C ® L by semilinear coalgebra automorphisms. Since D ® L is

S-invariant, so is Irr (D @ L). Then by Lemma 0.5.1,
(D®L)=D'®L (222)

where D' = Irr (D ® L)®. By (22.1), irD € D'. If Ir D # DV, then by
maximality D' is not irreducible, but then D' ® L cannot be irreducible,

which contradicts (2.2.2). Therefore, D' = Irr D and we are done. ]

Theorem 2.2.6. Let H be a cocommutative Hopf algebra over a perfect field
k. Let Hy = coradH be the coradical and H, the irreducible component of
the simple subcoalgebra k1. Then Hy is an Hy-module algebra under the
(left) adjoint action and H is isomorphic to the smash product Hy#H, via
aF#b — ab.

Proof. Set il = H @k, then by Theorem 0.2.7 we have H =~ H #kG,
where H, is the irreducible component of kK1, G = G(H), and the smash
product is taken over k. Since corad = kG, we have precisely the statement
of our theorem for H, so we only need to descend to H. By Lemma 2.2.4,
coradl = (coradH) ® k, and by Lemma 2.2.5, I, = H, ® k. Since H, is
a corad H-module algebra under the adjoint action, then H, is a coradH-
module algebra. Hence H = H,#(coradH) as desired.

If chark = 0, as we assume from now on, then we again have H; =

U(P(H)), a universal enveloping algebra. In fact, the cosemisimple factor



CHAPTER 2. PI COCOMMUTATIVE HOPF ALGEBRAS 68

Hy is not too far from a group algebra. Namely, it is what is sometimes
called a “twisted form” of a group algebra in the following sense. We have a
natural action of ¥ = Gal(k/k) on Hy ® k = kG, where G = G(H, ® k) and
so ¥ acts by automorphisms of G in such a way that the stabilizer of any
element of G is an open subgroup of T. This situation is described by saying
that G is a “Galois module”. Conversely, given any Galois module G, we can
extend the ¥ action to kG and define Hy = kG*. Then by Lemmas 0.5.1
and 2.2.4, Hy is a cosemisimple Hopf algebra with Hy @ k = kG. Obviously,
if the action of £ on G is trivial, we simply get Hy = kG, an ordinary group

algebra.

Definition 2.2.7. Let H be a “twisted form” of a group algebra, K ¢ H
a normal subHopfalgebra. Following the group terminology, we will call
dim H/HK™ the indez of K in H.

Remark 2.2.8. If H is a “twisted form” of a group algebra, K’ C H a normal
subHopfalgebra of finite index, then H is finitely generated as a left or right
K-module. Indeed, passing to k we get H @ k = kG, K ® k = kN, for some

group G and its normal subgroup N of finite index, thus H @ k is generated

as a K ®k-module by coset ives and then H is d as a K-
module by H-components of these representatives. This remark would have
been trivial if H were always a free module over a normal subHopfalgebra K
(then we could choose dim H/HK* free generators), but freeness may fail
even if H is a “twisted form” of the group algebra of the infinite cyclic group
(see [25, Example 3.5.2]). However, any commutative or cocommutative Hopf
algebra H is faithfully flat over any subHopfalgebra (25, Section 3.4]. A ring
extension R C S is called left faithfully flat if for any right R-module map
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f:M = N, fis injective < f ®id: M ®z S — N ®g S is injective. If
S is a free (left) R-module, then R C S is (left) faithfully flat. For many
applications, faithful flatness is as good as freeness: e.g. if R C S is left

faithfully flat, then for any right ideal J C B we have RN JS = J.

We are now ready to prove the main result of this section (given by the

author in [21]).

Theorem 2.2.9. Let H be a cocommutative Hopf algebra over a field k of

characteristic 0. Then the following conditions are equivalent:
1) H is PI as an algebra,

2) There egists a normal commutative subHopfalgebra A C H such that
HJHA* is finite-dimensional,

8) There exists a normal commutative subHopfalgebra B C H such that
H is a finitely generated left B-module,

4) The Lie algebra L = P(H) of primitive elements is Abelian and there
ezists a normal subHopfalgebra C' C coradH of finite index such that

C is commutative and the adjoint action of C' on L is trivial.

Proof. 4) = 3) : According to Theorem 2.2.6, we have H = H#H,.
Moreover, since the characteristic is 0, Hy = U(L) and therefore C' C Hg
acts trivially on H; and thus Hi#C = H, ® C is a normal commutative
subHopfalgebra of H. By Remark 2.2.8, Hy is a finitely generated left C-
module, hence H = Hi#Hj is a finitely generated left Hy#C-module. Set
B=H#C.
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3) = 2) : Given a normal subHopfalgebra B C H such that H is
generated by hy,...,h as a left B-module, then H/B*H is spanned by
hy+B*H,...,ly+ B"H as a k-space, thus we can set A = B (note that
HA* = A*H by normality).

2) =» 1) : Without loss of generality, we can assume the field k alge-
braically closed. Indeed, if H satisfies 2), then so does A = H @k (and with
the same dimension of the factor). Suppose we know that this impies that &
satisfies an identity over k. Then expressing the coefficients of this identity
through some basis of k over k, we obtain an identity for H over k (of the
same or lower degree).

So let k be algebraically closed. Then i = H/HA*, being a finite-di-
mensional cocommutative Hopf algebra over an algebraically closed field of
characteristic 0, is necessarily a group algebra: H = kG, for some finite group

G. This follows, for example, from Theorem 0.2.7, since in characteristic 0

the connected part is either trivial or infinite-dimensional. According to
the one-to-one correspondence between normal subHopfalgebras and Hopf
ideals in the cocommutative case, A = H' coll , the subalgebra of coinvariants
of the (right) H-comodule algebra H. Since H & kG, we can interpret
this fact by saying that A is the identity component of H under the G-
grading corresponding to the H-comodule structure. We can now apply the
theorem of Bergen and Cohen [7], saying that if the identity component By
of an algebra B graded by a finite group is PI, then the whole algebra B
is PI (moreover, by [4] — see also [5] for generalizations — the degree of a
polynomial identity in B depends only on the degree of the identity in B,

and the order of the group). Hence H is a PI algebra.
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1) = 4) : Let £ = Gal(k/k). Set # = H ®k, then ¥ acts on H by
semilinear Hopf algebra automorphisms. Now we can decompose over k:
H=U(L)#kG,
where L = P(H) = P(H)®k = L@k and G = G(H).
Since H is PI, we see that L is Abelian, and there exists a characteristic
Abelian subgroup Gy C G of finite index, and the kernel Gy C G of the
action of G on L also has a finite index by Theorem 2.1.7. Clearly, L and G

are Y-invariant. It follows that G is also E-invariant. Moreover, since the

action of G on L is given by
g-l=glg7',g€G,lel,

the kernel Gy of the action is L-invariant as well. Therefore, according to
Lemma 0.5.1 we conclude that
k(GoNG) =C ok,

where C is the set of all elements of k(GoG;) fixed by 5. Since k(GyNG1)
is a subk ) of H, C is a subF bra of H. Moreover, by Lemma
2.2.4, (coradH) ® k = corad(H @ k) = kG, so in fact C is in Hy = coradH.

Finally, C is commutative and acts trivially on L by construction, and
dim Ho/ HyC'* = dim(H, ® K)/(Hy @ K)(C ® k)" = (G : Gon Gy)
is finite. m

Remark 2.2.10. It follows from the estimate of (G : G;) found in [26] and
the estimate of (G; : Go N Gy) found in [19] that (coradH : C) in 4) and
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therefore, dim H/HAY in 2) (by taking A = H#C) can be bounded by
a function that depends only on the degree of the identity satisfied by H.
Unfortunately, we do not have an estimate of the mumber of generators in 3)
unless k/k is finite.

Conversely, the estimate for the theorem of Bergen and Cohen found in
[4] implies that H satisfies an identity of degree bounded by a function of
dim H/HA* in 2). Moreover, since in 3) H is a finitely generated left B-
module and B is commutative, H in fact satisfies the standard identity of
degree 21, where [ is the number of generators, because H can then be realized
as a factor of a subalgebra of [ x | matrices over B. By similar argument, H

satisfies the standard identity of degree 2(coradH : C) in 4).

Remark 2.2.11. If H happens to be pointed (e.g. if k = k), we can do
better in part 3): H is isomorphic to the crossed product B#,D, with the

tensor product coalgebra structure, where B is a commutative Hopf algebra

and D is a finite-di ional one. Indeed, ding to Theorem 0.2.7, we
have H = U(L)#kG, with the tensor product coalgebra structure. By part
4), we have a normal Abelian subgroup N C G of finite index that acts
trivially on U(L) and thus U(L)#kN is commutative and the action of G on
U(L) gives rise to an action of G/N. Set B = U(L)#kN, D = k(G/N). By
a classical argument, kG can be represented as the crossed product kN#, D,
with the tensor product coalgebra structure, for some twisted action of D on

kN and a 2-cocycle 7: D@ D — kN. So we finally obtain:

H = U(L)#kG = U(L)#(kN#,D) = (U(L)#kN)#,D, (223)
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where D acts on U(L)#kN by the rule:
d-(s#y) =Y (doy - 2)}#(dey-y),  VdeED, z €U(L), y €kN,
and the cocycle o : D ® D — U(L)#kN is given by
ole,d) = 1#7(c,d), Ve, de D.

The last isomorphism in (2.2.3) is simply a#(y#d) — (v#y)#d.

2.3 The Case of Prime Characteristic:
Coreduced Hyperalgebras

The case of prime characteristic appears to be much more complicated, in
particular because of the structure of the irreducible component H; of ki,
which need not be an enveloping algebra. We restrict our attention mainly to
the case when H| is coreduced (see the definition below). We extend Theorem
2.1.3 to coreduced hyperalgebras and also give some partial results for the
smash products Hy#kG with H; coreduced. The proofs will be postponed
until Chapter 4.

Until the end of this section, we assume the field k perfect of characteristic
p > 0, unless stated otherwise.

First we quote some definitions and results from [14, Sections 2.2.6, 2.2.7,
2.2.9].
Definition 2.3.1. Let V and W be vector spaces, 7 an integer. A map
@:V — W is called p™linear if it is additive and

() =Np(v), WeeV, ek
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Let H be ahy then H* isa ive algebra and so we can
define a p-linear algebra map F : H* — H* : f — f?, called the Frobenius
homomorphism. Then there exists a unique 1/p-linear Hopf algebra map

V : H — H, called Verschiebung, such that F is the transpose of V:

V()= /(F(F),h), VheH, feH". (2.3.1)

Definition 2.3.2. We will say that H is of coheight r, r € Zy = {0,1,...},
if VPHI(H*) = 0 and V7(H*) # 0. If no such r exists, H is said to be of
infinite coheight.

Let L = P(H) and L, = LN V"(H), then we have L = Ly D Ly D ...
and each L, is in fact a p-Lie subalgebra.

Definition 2.3.3. If the chain L = Ly D Ly D ... stabilizes, i.e. we have
Ly, = Lygi1 = ... for some 7o, then H is called stable. If Lo = Ly = ...,
ie. 7 = 0, then H is called coreduced (in particular, it means that H is of

infinite coheight).

Remark 2.3.4. All hyperalgebras that are of finite type (dim P(H) < o),
of finite coheight, or coreduced satisfy the stability condition. Stability is

necessary for the PBW-type structure theorem below.

Remark 2.8.5. Tt can be seen from [14] that H is coreduced it V : H — H
is surjective iff F : H* — H* is injective, which is equivalent to saying that
H* has no nilpotent clements, i.e. H* is reduced in the sense of commutative

algebra (Definition 3.1.1). This observation justifies the term “coreduced”.

The following structure theorem is due to Cartier, Demazure, Gabriel et

al. Recall the multi-index notation from Section 0.4.
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Theorem 2.3.6. Let H be a hyperalgebra over a perfect field k of char-

acteristic p. Let L = P(H) and L, = LOVT(H), r = 0,1,..., where

V is the Verschicbung operator. Assume H is stable, ie. L = Ly D
Li D ... D Ly = Lys1 = ..., for some 1o Choose a chain of sets
I=I,D L2 ...0 Ly =l = ... and a family {woli € I} of elements
of L such that zio, i € I, form a basis of Ly, for any r. Then there eists a
basis {2} of H, indezed by o € Z8) with a(i) < p™* fori € I, \ 41, such
that

1) 2%) =y, foralli€ I, and 2 =1,
2) A =%, 2@, foralla.

We will refer to any basis satisfying 2) above as a basis of “divided powers”

(cf. Definition 1.5.4). For any such basis of H, we have

2,0 = ('1 + ﬁ) 249 (mod span{z)| 2| < Ja] + |B]})-

]
Remark 2.3.7. Note that the components a(i) with i € Iy = Lrp41 = ...
are not restricted. It can be verified that
Hyea = V™(H) = span{z®|suppa C L,}
is the largest duced subbialgebra (hence a subH by connect-

edness) of H.

Remark 2.3.8. It immediately follows from (2.3.1) that V(2(®) = z(/) if

each component of a is divisible by p, and 0 otherwise.
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Remark 2.3.9. In characteristic 0, we have H = U(L). So if we choose any

ordered basis {zi|i € I} of L and set

1
(@) — ali)
2= T —=a?,

g a(i)
iesuppa

then {2(®)|a € Z{"} will be a basis for H satisfying the conditions of Theorem
2.3.6 (whence the term “divided powers”). Because of this observation, our
proof of Theorem 2.3.11 will also apply to the case of zero characteristic,

thereby giving a new proof of Theorem 2.1.3.
As a consequence, one can also obtain a PBW-type basis for H.

Corollary 2.8.10. Using the notation of the theorem above, set iy = 27",
where the pairs (i, k) are such that 0 < k <r if i € I\ I41, and fiz a linear
order on the set of such pairs. Then the ordered monomials of the form
T @5 0 < ni < p with only a finite number of ny # 0, constitute a
basis of H. ]

Now we state our main result on PI coreduced hyperalgebras (given by

the author in [20]).

Theorem 2.3.11. Let H be a hyperalgebra (i.c. d
Hopf algebra) over a perfect field k. In the case chark = p > 0, assume also
that H is coreduced. Then H is a PI algebra iff H is commutative.!

Proof. See Section 4.2. "
We will also prove the dual analog of this theorem for commutative Hopf
algebras in the next section — see Corollary 3.2.7.

1This result was obtained in collaboration with Yu.Bahturin
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Corollary 2.3.12. Let H be a hyperalgebra of finite type (i.e. dim P(H) <
00) over a perfect fieldk. Then H is a PI algebra iff the mazimal coreduced

subbialgebra of H is commutative.

Proof. As we observed, H contains a (unique) maximal coreduced sub-
bialgebra H,.q (see Remark 2.3.7). Moreover, using Corollary 2.3.10, we see
that H is a free finitely generated left module over H,.s. This proves the
sufficiency of our condition, because H is realized (by virtue of right mul-
tiplication) as a subalgebra of a matrix ring over the commutative algebra

H,.q. The necessity follows from Theorem 2.3.11. u

Corollary 2.3.13. Let 2 be a variety of algebras (associative with 1). Let
Fa be the relatively free algebra of 2 in countably many variables Xy, Xy, ...
over an infinite perfect field k. Then Fy admits a structure of a coreduced
hyperalgebra iff A is {0} or the variety Alg of all algebras or the variety

Comm of all commutative algebras (cf. Proposition 2.1.11).

Proof. By Theorem 2.3.11, if Fy admits a structure of a coreduced hy-

lgebra and satisfies a polynomial identity, then Fy is commutative. This

proves the necessity. The sufficiency follows from the examples below. | ]

Example 2.3.14. Let F be the free algebra (associative with 1) in Xy, X, ...
Set Xo = 1. Then
AXy =3 Xi®Xpt, n=0,1,... (2.3.2)
k=0
defines a structure of a reduced hyperalgebra on  [17, Sections 36.3.8 and

38.1.10].
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Example 2.3.15. Let Foomm = k[X1, Xs,.. ], the free commutative algebra
(with 1) in X1, X5, ... Then (2.3.2) defines a structure of a reduced hyperal-
gebra on Feomm [17, Section 36.3.8].

Remark 2.3.16. It should be pointed out that the comultiplication on F
defined above is not the same as the comultiplication that we had before (e.g.

in Proposition 2.1.11).

As we have seen, Theorem 2.1.3 can be extended from universal envelopes
of characteristic 0 to coreduced hyperalgebras of characteristic p. It is natural

to expect that the same can be done with Theorem 2.1.7.

Conjecture 2.3.17. Let H be a hyperalgebra over a perfect field k. In the

case chark > 0, assume also that H is coreduced. Let G be a group acting on

H by bialgebra isms(=Hopf algebra hisms). Then the
smash product H#kG is PI iff

1) H is commutative,

2) there exists a subgroups A C G of finite index such that A is Abelian
in the case chark = 0 and p-Abelian in the case chark = p > 0, and

3) A acts trivially on H.

It is easy to see that these conditions are sufficient. The necessity of
the first two conditions follows from Theorems 2.1.1 and 2.3.11. Presently, I
cannot prove the necessity of the third condition, but Theorems 2.3.18 and
2.3.19 below (given by the author in [20]) present some positive evidence that

it should be true. This conjecture is also the formal dual of Theorem 3.2.5.
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Recall from Section 0.1 that any Hopf algebra H has a fundamental corad-
ical filtration H = UX_oH,,. Tt is always a coalgebra filtration, and it is a
Hopf algebra filtration iff Hy = coradH is a subalgebra of H, invariant under
antipode [25, Lemma 5.2.8]. This is the case, for instance, if H is pointed, so
we can define the associated graded Hopf algebra H®" for any pointed Hopf
algebra H. Note also that any bialgebra automorphism of H preserves the

coradical filtration and therefore induces an automorphism of H®".

Theorem 2.3.18. Let a group G act by bialgebra automorphisms on a core-
duced hyperalgebra H. If H#KG is PI, then there exists a subgroup of finite

index in G that acts trivially on H®.
Proof. Let us fix a basis of “divided powers” {z(®|a € Z{} in H. Then
Hy = span{z?| [a] < m}.

Denote grz(® = z(® + Hio_y € HF, then {grz@|a € Z{} is a basis of H&
and Theorem 2.3.6 implies that

e . g = (a + 1’) -
o

In other words, H¥" is isomorphic to the divided power algebra D(I) intro-
duced in Chapter 1 (Definition 1.5.4).

Note that since all H,, are G-invariant, we can extend the filtration
to H#KG by setting (H#KG), = H,#kG. Then we obtain HE#kG =
(H#kG)#¥, and the latter is PI since so is H#kG. The theorem now follows
from Theorem 2.3.19 below applied to HE#kG. "
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Theorem 2.3.19. Let I be a set and H = D(I), the divided power algebra,

i.e. H has a basis {z*|a € Z\"}, with multiplication

L@ 0 — (" * ﬂ)
o

A0 = 3 0 g0,

Bir=a

(a+8) (2.3.3)

and comultiplication

Suppose a group G acts on H by bialgebra automorphisms. Then the smash
product H#kG is PI iff there exists a subgroup A C G of finite index such
that A is Abelian in the case chark = 0 and p-Abelian in the case chark =

p>0, and A acts trivially on H.

Proof. See Section 4.3. [ ]



Chapter 3

Commutative Hopf Algebras
with a Coidentity

3.1 Preliminaries

In this chapter, we will prove necessary and sufficient conditions for a reduced
commutative Hopf algebra over a perfect field to be c¢PI, i.e. to satisfy a
nontrivial polynomial identity as a coalgebra — see Theorems 3.2.2 and 3.2.5
(given by the author in [21]) in the next section. The equivalence of 1) and
2) in Theorem 3.2.2 is the formal dual of the generalized Passman theorem
obtained in Chapter 2 for the case of zero characteristic (Theorem 2.2.9).
Theorem 3.2.5 is dual to Conjecture 2.3.17 in prime characteristic (assuming

the field algebraically closed).

Definition 3.1.1. Let A be a commutative algebra, then the set of all nilpo-
tent elements is an ideal in A, called the nilradical of A. We will denote it

radA. The algebra A is called reduced if radA = 0. An ideal J < A is said to

81
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be radical if A/J is reduced.
The following is an old result of P.Cartier (see e.g. [25, Corollary 9.2.11]).

Theorem 3.1.2. Let H be a commutative Hopf algebra over a field k of
characteristic 0. Then H is reduced. [ ]

In the case of prime characteristic, a commutative Hopf algebra H does
not have to be reduced. However, if k is perfect, as we will assume from now
on (unless stated otherwise), radH is a Hopf ideal [36, Chapter 6, Exercise
3] and thus H/radH is a reduced Hopf algebra (cf. Remark 2.3.7).

We will extensively use the geometric interpretation of commutative Hopf
algebras — affine group schemes. But since we will concentrate on the reduced
case, we can restrict ourselves to (affine) algebraic groups in the “naive”
sense, i.e. an algebraic group G defined over k will be a subset of a finite-

dimensional affine space over k d ined by polynomial ions with

coefficients in k and endowed with a group structure by polynomial func-

tions with coefficients in k. As is well-known, such algebraic groups are

in one-t con dence with ive Hopf algebras H that are

finitely generated (as algebras) and such that H @ k is reduced. In the geo-
metric literature, algebraic groups of this kind as well as their Hopf algebras
are called “smooth”; over a perfect field this is the same as reduced. The
correspondence is set up as follows. Given an algebraic group G, we can
construct its Hopf algebra H = O(G) of regular (=polynomial) functions
with coefficients in k, from which the group G can be recovered as the group
Alg(H, k) of all algebra maps H — k (under the convolution product). The
comultiplication of H is induced by the multiplication in G and vice versa

(see Section 0.2).
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Recall that the Zarissky topology of the d-dimensional affine space k¢ is
defined by taking the sets of zeros of families of polynomials in d variables
with coefficients in k for the system of closed sets. If H is a commutative
Hopf algebra generated by d elements, then the group G = Alg(H, k) can be
identified with a closed subset of k and thus inherits the Zarissky topology.
Moreover, closed subgroups of G' are in one-to-one correspondence with the
Hopf ideals of H = H®k that are radical. Namely, if @ is a closed subgroup,
the corresponding ideal J is the set of all elements from H that vanish on Q.
By Lemma 0.5.1, Q is defined over k, i.e. .J comes from an ideal in H, iff J
is invariant under £ = Gal(k/k). The latter happens iff @ is invariant under
3, which acts on G = Alg(H, k) by virtue of its action on k.

If @ C G is a closed normal subgroup, then the factorgroup G/Q can
again be viewed as an algebraic group (see e.g. [36, Chapter 16]). If G and
Q are defined over k, then so is G/Q. The Hopf algebra O(G/Q) of regular
functions on G/Q is the subHopfalgebra of H = O(G) obtained from the ideal
J of @ by the d between subH and normal Hopf

ideals discussed in Section 0.2. Let us now show that this correspondence

agrees with taking the dual (we will use this fact later).

Lemma 3.1.3. Let H be a Hopf algebra, K C H a normal subHopfalgebra.
Consider J = K* = {f € H°|(f,K) = 0}. Then J is a normal Hopf ideal
of H° and (H®)=#°1) = (HK*)*.

Proof. By Lemma 0.1.5, J is a biideal. Since K is invariant under the

antipode S of H, J = K* will be invariant under S*. But S* is the antipode

of H°, hence .J is a Hopf ideal.
Now consider the right adjoint coaction p, : H° — H°® H®. For f € H®
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and k,h € H, we compute:
(o k@R = (3 fiy® (Sfy)fay k@ h)
= D {fa KNS fy) Far b
= > (. kNS Fay, byl Fay, o))
>~y Sha)ifay ) fs he)
= DU (Shaykha) = (f, (adsh) ().

Since K is ad, H-invariant, it follows that p, f will annihilate K @ H as long

L]

as f annihilates K. In other words, p,J C (K ® H)* = J ® H°. Similarly,
we also have prJ C H°® J and thus J is normal.
Finally,
(Ho) ) = (feH|Af-f®le H®J}
= {fe€H|(Af- f®1,H®K) =0} (since J = K*)
= {f € H°|Vh e H,Vk € K (f,hk) - {f,h)(1,k) = 0}
= {feH°|Vhe H, Vke K (f,h(k —e(k)1)) = 0}
= (HK*)*
]
Now we want to assign a group to a commutative Hopf algebra that is

not necessarily finitely d. The local fini of coalgebras (Theorem

0.1.8) implies that any Hopf algebra H is the union of its subHopfalgebras
that are finitely generated (as algebras). We will denote these subHopfalge-
bras by H;, i € I, where I is an indexing set and we write 1 < j iff H; C H;.

Then I is a directed set and we obtain:

H=limH;iecl
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Therefore, we can assign to H a “pro-algebraic group” (i.e. an inverse limit
of algebraic groups)
G = Alg(HK) = lim G,

where G; = Alg(H;, k). If we assume H commutative and smooth(=reduced
if k is perfect), then, thanks to Lemma 3.1.4 below, H can be recovered from
G as O(G). The latter is defined as the set of functions G' — k that can be
written as a composition of the canonical map G — G; and a function from
O(G;), for some i € I.

Lemma 3.1.4. Let H be a commutative Hopf algebra over an algebraically
closed field k of any characteristic. If K C H is a subHopfalgebra, then
the restriction map Alg(H,k) — Alg(K,k) is surjective. Consequently, the

intersection of all kernels of algebra maps H — k is the nilradical of H.

Proof. The proof follows from the faithful flatness over subHopfalgebras
and the Hilbert Nullstellensatz (sce [36, Chapter 15, Exercise 3]). ]

3.2 The Dual Passman Theorem

A group G is called Abelian-by-finite if it contains an Abelian subgroup A of
finite index (without loss of generality, A can be assumed normal and even
characteristic). Then the result of D.Passman (Theorem 2.1.1) says that the
Hopf algebra kG over a field of characteristic 0 is PI iff G is Abelian-by-finite.
In Section 2.2, we have generalized this result to arbitrary cocommutative
Hopf algebras. Now we obtain a dualization of this theorem. First we need

a version of “Abelian-by-finiteness” suitable for pro-algebraic groups.
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Definition 3.2.1. Let G be a pro-algebraic group: G = lmGy, i € I, I
a directed set, G; algebraic groups defined over k. We will call G Abelian-
by-finite if there exists a compatible family of normal Abelian algebraic sub-
groups A; C Gy, i € I, defined over k, such that (G; : A;) are bounded.
By “compatibility” we mean that ¢i;(4;) C Aj, for any i < j in I, where

i+ Gj — G; are the structure maps of the inverse limit system.

Theorem 3.2.2. Let H be a commutative Hopf algebra over a field k of

characteristic 0. Then the following conditions are equivalent:
1) H is PI as a coalgebra,

2) There exists a finite-dimensional subHopfalgebra K C H such that

H/HK* is cocommutative,

$) H = O(G), where G is an Abelian-by-finite pro-algebraic group (in the

sense of the above definition),

4) The (abstract) group G = Alg(H,K) is Abelian-by-finite, i.c. there
eists an Abelian subgroup A C G of finite index.

Proof. 1) =>4) : Set H = H ®k and
G = Alg(H, k) = Alg(H, k) = G(°).

Since the elements of G are linearly independent over k, we have kG c A°.
Now H¢ is a PI algebra by Proposition 1.1.4, hence by Theorem 2.1.1, there
exists an Abelian subgroup A C G of finite index.

4) = 3) : As we know, H = @TH,, i € I, I a directed set, where H;
are finitely generated subHopfalgebras. Set G; = Alg(H;,k), the algebraic
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group corresponding to H;. Then G = EiE!G‘. Moreover, by Lemma 3.1.4,
the canonical maps @; : G — G; are surjective (being the restriction maps
induced by the inclusions H; C H).

Without loss of generality, we can assume A C G characteristic. Set
A= ﬂ, the Zarissky closure of ;(A), then A; C Gy, i € I, is a compat-
ible family of closed normal Abelian subgroups, which are invariant under
all continuous automorphisms of G; liftable to automorphisms of G. In par-
ticular, A; are invariant under Gal(k/k) that acts on G = Alg(H, k) and
G; = Alg(H;,k) in a natural way. Thus all 4; are defined over k. Clearly,
(Gi: A) < (G:4).

3)=2): Let H; = O(G,), then H = lim H, where the maps

¥yt Hy = Hj, i< j,
of the direct limit system are induced by the morphisms
@i+ G — Gy
Set K; = O(G;/A;), then K; is a subHopfalgebra of H; and
O(A) = Hi/HiK}.

Moreover, since ;;(4;) C A;, we have v;(K;) C K;, for all i < j, so we can

set K = lim K;. Then K is a subHopfalgebra of H and
H/HK" = lim Hi/H:K}.

Since dim K; = (G : A;) are bounded, K is finite-dimensional. Finally, since

H;/H;K;f = O(A;) are cocommutative, so is H/HK*.
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2) = 1) : By the argument similar to the 2) = 1) part of the proof of
Theorem 2.2.9, we can assume k algebraically closed. From Lemma 3.1.4
it follows that H° O Alg(H, k) separates the elements of H (H has zero
nilradical since chark = 0 by Theorem 3.1.2). Hence H imbeds into H* in
a natural way. So it suffices to prove that the cocommutative Hopf algebra

H° is PI as an algebra. To show this, consider
J=K'={feH|(f,K)=0}.

Since K is a subHopfalgebra, J is a Hopf ideal of H® and H°/J naturally

imbeds into K°, so it is finite-di ional. According to the t cor-

respondence between normal subHopfalgebras and Hopf ideals, I = H°A*,
where A = (H°)(H°/9) is a normal subHopfalgebra of H°. By Lemma 3.1.3,
A= (HK*)* = (H/HK*)*. Since H/HK™ is cocommutative, A is com-

mutative and Theorem 2.2.9 applies to H°. ]

Remark 3.2.3. Similarly to the dual situation, it follows from [26] that the
index of A in Alg(H,k) in 4) and, therefore, (G, : A;) in the inverse limit
in 3) (see Definition 3.2.1) and dim K in 2) can be bounded by a function
that depends only on the degree of the coidentity satisfied by H. Conversely,
Remark 2.2.10 implies that H satisfies an identity of degree bounded by a
function of dim K in 2) or the bound of (G; : 4,) in the inverse limit in 3) or
(G: A) in 4). Moreover, H in fact satisfies a standard identity as a coalgebra

since so does H° as an algebra.

Now we pass to the case of prime characteristic p. In this case, Theorem
2.1.1 says that kG is PI iff G is p-Abelian-by-finite, i.e. there exists a p-

Abelian subgroup A C G of finite index. We need a version of this notion
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for pro-algebraic groups.

Definition 3.2.4. Let G be a pro-algebraic group: G = lmGy, i € I,
a directed set, G; algebraic groups defined over k, chark = p. We will say
that G is p-Abelian-by-finite if there exists a compatible family of normal
algebraic subgroups A, C Gy, i € I, defined over k, such that (G; : A;) are
bounded and (4} : 1) are bounded powers of p.

Theorem 3.2.5. Let H be a reduced commutative Hopf algebra over a perfect

field k of characteristic p. Then the following conditions are equivalent:
1) H is PI as a coalgebra,

2) There exist subHopfalgebras K C L C H such that K is finile-dimen-
sional i1 L/LK* is ive, and H/HL* is finite-

i 1 semisimple with di equal to a power of p,

3) H = O(G), where G is a p-Abelian-by-finite pro-algebraic group (in the
sense of the above definition),

4) The (abstract) group G = Alg(H, k) is p-Abelian-by-finite, i.c. there
exists a subgroup A such that (G : A) is finite and (A’ : 1) is @ power
of p.

Proof. The demonstration of 1) = 4) = 3) proceeds in a way quite

similar to the proof of Theorem 3.2.2, replacing “Abelian” by “p-Abelian”.
3) = 2): Let H; = O(G;), then H = li_n*xH‘Y where the maps

Yy oo Hy i<,
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of the direct limit system are induced by the morphisms
@i : G =G,

Set Ki = O(Gi/Ai), Li = O(G:/A%), then K C L; are subHopfalgebras of

H; and we have
O(Ay/A) = L/LiK; and O(4)) = H/ L}

Hence L;/L;K;" are cocommutative, K; and H;/H;L{ are semisimple of
bounded dimension, the latter having dimension equal to a power of p.
Moreover, since pi;(4;) C A;, we have ¢;;(4]) C A; and so 9;(K;) C K,
(L) C Ly, for all 4 < j. Thus we can set K = hl’nK,, L= Iix_l;n L;, which
clearly satisfy all the desired conditions.

2) => 1) : Without loss of generality, k is algebraically closed. From
Lemma 3.1.4 it follows that H® > Alg(H, k) separates the elements of H (H
has zero nilradical by assumption). Hence H imbeds into H°® and it suffices
to prove that the cocommutative Hopf algebra H® is PI as an algebra. To
show this, consider the Hopf ideal J = K* C H°. Since H°/J naturally
imbeds into K°, it is finite-dimensional cosemisimple, hence a group algebra
of a finite group.

According to the one-to-one correspondence between normal subHopfal-
gebras and Hopf ideals, J = H°AT, where A = (H°)®#°/9) is a normal
subHopfalgebra of H°. As in the proof of Theorem 2.2.9, A is the identity

oot af Heubdd ke grading corresponding to-the H~/Tconcti
Hence it suffices to prove that A4 is PI.

By Lemma 3.13, A = (HK*)* = (H/HK*)". Set # = H/HK*. Then
L =L/(LNHK*") is a subHopfalgebra of A. By faithful flatness (see Remark
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2.2.8),
LnHK* =LK,
so L =L/LK* and thus L is cocommutative.

Now consider the Hopf ideal N = L+ of H°. Again by the one-to-one
correspondence, N = H°B* for some normal subHopfalgebra B ¢ H°. By
Lemma 3.1.3, B = (H/HL*)* = (H/HL*)*, so B is cosemisimple with
dimension equal to a power of p, i.e. a group algebra of a finite p-group.
Hence B is nilpotent and so is N = H°B* = B*H°. Finally, H°/N imbeds
into L° and thus is commutative. It follows that 4 = H° is PJ. u

Remark 3.2.6. It follows from [26] that (G : A)(A’: 1) in condition 4) and
therefore, (G; : A;)(A% : 1) in the inverse limit in 3) (see Definition 3.2.4)
and dim(K) dim(H/HL*) in condition 2) can be bounded by a function that
depends only on the degree of the coidentity satisfied by H. Conversely, it
can be deduced from the proof 2) = 1) above that H satisfies an identity of
degree bounded by a function of dim K and dim H/HL* in 2), etc.

These results can be sharpened in a remarkable way if we assume that H

is an integral domain.

Corollary 3.2.7. Let H be a commutative Hopf algebra over any field k.
Assume further that H is an integral domain. Then H is PI as a coalgebra

iff H is cocommutative.

Proof. The nontrivial part is to show that if H is cPI, then H is co-
commutative. Since H is a domain, so is # /radfl, where # = H ® k. This
follows from the fact that the condition “H/radH is a domain” is invariant

under any field extension [36, Section 6.6] (this condition is equivalent to the
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connectedness of the affine group scheme associated with H). But then H
imbeds into the domain H /radH, which is a Hopf algebra over k and satisfies
the same coidentity as H. Thus we have reduced the proof to the case of
algebraically closed k.

Since H is cPI, then by part 3) of Theorems 3.2.2 and 3.2.5, the group
G = Alg(H, k) is an inverse limit of algebraic groups Gy, each of which has
a closed (p-)Abelian subgroup A; of finite index. In terms of H we have:

H = lim O(G;), and without loss of generality, the canonical maps
e
i O(G;) - H

are injective (otherwise we can replace O(G;) by O(G;)/Kerd; and G by
Img;, where @; : G — G, are the canonical maps). But then all O(G;) are
integral domains, so G are connected and therefore, A; must be equal to G;
and further 4] must be trivial. Thus all G; are Abelian and so H = lim O(Gy)

is cocommutative. [}

3.3 Pseudoinvolutive Hopf Algebras

‘We can now extend our scope to include Hopf algebras that are not commu-
tative, but can be twisted in a certain way to become commutative. These

are the “pseudoinvolutive” Hopf algebras introduced in [15].

Definition 3.3.1. Let H be a Hopf algebra, §: H ® H — k a linear map.
The pair (H, 5) is called a cotriangular Hopf algebra if 8 is a skew-symmetric



CHAPTER 3. CPI COMMUTATIVE HOPF ALGEBRAS 93

bicharacter, i.e. for all h,k,1 € H we have

S By K)Blhey 1), = Blh k) (3.3.1)
S B Bk, ly), = Blhk,1) (332)
" Blhay, k) Blkey, hay) = (hk), (3.3.3)

and H is almost commatative by virtue of §, ie. for all h, k € H,
> Blhay ke = Y haykwBlhe, ke)-

Note that (3.3.3) above says that B(k, h) is the inverse of 8(h, k) under the
convolution product ¥ (hence the term “skew-symmetric”). Clearly, (3.3.1)
and (3.3.2) follow from each other in the presence of (3.3.3).

If (H, B) is a cotriangular Hopf algebra, then the square of the antipode
5% is known to have the form (see e.g. [25, Proposition 10.2.12]):

S2(h) = ulhay)heyu (h),
where u: H — k is the Drinfeld element (u € G(H°)) given by
u(h) =3 Blhe), Shq)-

Therefore, S preserves any subcoalgebra C C H.

From now on, k is algebraically closed of characteristic 0.

Definition 3.3.2. A cotriangular Hopf algebra (H, ) is called pseudotnvo-

lutive if tr(5%c) = dim C, for any finite-dimensional subcoalgebra €' C H.

Suppose we have a Hopf algebra H and a left 2-cocycle o : H® H — k,

where k is viewed as a trivial H-module so (0.2.3) becomes:

> alkay,mw)o(h, kayme) = Y olhay, ko (haka, m),
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forall h, k,m € H. Then we can define a new Hopf algebra H® in the following
way: H = H as a vector space, with the multiplication given by

heo k=" olha) ko) koo (ke ke),  Vh k€ H,
the comultiplication the same as in H and the antipode

87(h) = Y olh, Shiy)Shwo ™ (Shu, hs),  Vh € H.
Remark 3.3.3. If ¢ is a left 2-cocycle on H, then its convolution inverse
o~V is a right 2-cocycle on H and a left 2-cocycle on H (see [3]). Clealy,
(H")"™" = H, so our “cocycle twist” of a Hopf algebra is an invertible oper-
ation.

P Etingof and S.Gelaki [15] proved the following result describing pseu-

doinvolutive cotriangular Hopf algebras.
Theorem 3.3.4. Let (H, ) be a cotriangular Hopf algebra. Then (H, B) is

pseudoinvolutive iff H = O(G)°, for some pro-algebraic group G and a left
2-cocycle o : O(G) ® O(G) — k, and

B=(gor)*Bero,

where 7 is the “flip” h@k — k®@h and f. = j(e@c+eRc+c®e—c®0),

for some central element ¢ € G of order < 2. | ]

Combining this theorem with our Theorem 3.2.2 and using the fact that

H and H” have the same Itipli and the same subk L

we get the following

Corollary 3.3.5. Let H be a pseudoinvolutive cotriangular Hopf algebra.

Then the following conditions are equivalent:
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1) H is PI as a coalgebra,

2) There exists a finite-dimensional subHopfalgebra K C H and a left 2-
cocycle o’ : H® H — k such that H” is commutative and H/H - K+

is cocommutative,

$) H = O(G)", where G is an Abelian-by-finite pro-algebraic group and
7:0(G) ® O(G) — k is a left 2-cocycle.



Chapter 4

Divided Power Algebras

and Power Series

4.1 Hyperalgebras and Formal Groups

In this section we will show, following J.Dieudonné [14, Section 1.2}, how
the dual topological algebra H* for a Hopf algebra H can be constructed.
If H is a coreduced hyperalgebra in the sense of Chapter 2, then H* turns
out to be an algebra of power series, with some additional structure which
is equivalent to a “formal group law” (see below). Then in Section 4.2 we
will use this formal group law to construct a certain group, and then apply
Passman’s criterion together with some topological ideas (suggested by the
proof of Corollary 3.2.7) in order to prove Theorem 2.3.11. Section 4.3 is
devoted to the proof of Theorem 2.3.19 and also uses the dual topological
algebra.

Recall that in Section 0.4 we have established a duality between the cate-

96
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gory of vector spaces (without topology) and the category of pro-finite topo-
logical vector spaces. If C'is a coalgebra, then A : C — C®C induces a map
A*: (C®C)* = C* that we used in Section 0.1 to define the multiplication
on the dual space C*. Now we consider C* not just as a vector space, but
as a topological vector space (with the +-weak topology). Thus C* becomes

a pro-finits logical algebra. Conversely, suppose 4 is a pro-finite topo-

logical algebra with multiplication 7 : A® A — A. We know that 4 = C*
as a topological vector space, where C' is the space of continuous linear func-
tions on A. Furthermore, we can extend m by continuity to the completed
tensor product A®A, which is naturally isomorphic to (C'® C)*, hence we
obtain a continuous linear map 1 : (C' ® C)* —+ C*. But then there exists
A C — C®C such that 1 = A*, so C becomes a coalgebra. Thus we have
established a duality between the category of coalgebras and the category of
pro-finite topological algebras.

Now if H is a Hopf algebra, then H* is a (pro-finite) topological algebra,
and the multiplication and unit of H induce the continuous algebra maps
D:H*— H'®H* and € : H* — k such that the following two diagrams are

commutative:

H H*®H*
D Did
HeH HOHGH (4.11)

id®D
s0 we can denote the diagonal map above by Dy : H* — (H*)®3 and define

by induction D, : H* — (H*)®", and
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o -2 u 2 e

I
ung\ id e@id
|

H (412)
The antipode of H, in its turn, induces a continuous anti-algebra map

&+ B35 B such Shat he following diagram commtes:
HoH -2 g -2 geome
. (id@% : % o (S&id)
,}, (4.13)

where m : H*@H* — H* is the (extended) multiplication map.

We can summarize the above diagrams by saying that H* is a “topological
Hopf algebra” (but of course it is not a Hopf algebra in the usual sense).
Conversely, any such pro-finite “topological Hopf algebra” has the form H*

for some (ordinary) Hopf algebra H. This is a version of Cartier duality [13].

Remark 4.1.1. An affine group scheme over k (that generalizes the “naive”
notion of algebraic group used in Chapter 3) is defined as a representable
functor G from the category of commutative k-algebras to the category of
groups, i.c. to any commutative algebra A we assign a group G/(A) and there
exists a commutative algebra H such that G(A) = Alg(H, A) as sets, for
any A. It turns out that defining the group multiplication on all the sets
G(A) in a natural way is equivalent to defining a Hopf algebra structure
on H (see [36]). Similarly, a formal group scheme over k can be defined

as a representable functor G from the category of pro-finite commutative
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topological k-algebras to the category of groups: G(A) = Alg.(Z, A), the set
of continuous algebra maps Z — A, where Z is a pro-finite commutative
topological algebra. Then Z turns out to be a “topological Hopf algebra”
as defined above, so Z = H* for some (usual) cocommutative Hopf algebra
H. In this context, the cocommutative Hopf algebra H is referred to as the
covariant algebra of the formal group scheme G, whereas the commutative
“topological Hopf algebra” H* is referred to as the contravariant algebra of
G (see [14]).

From now on, the field k is perfect. Let H be a coreduced hyperalgebra
if chark = p (recall that Definition 2.3.3 of a coreduced hyperalgebra was
given only over a perfect field), or any hyperalgebra if chark = 0. Then by
Theorem 2.3.6 (with ro = 0) and Remark 2.3.9, we can choose a basis of
“divided powers” {z@|a € Z{)} in H. Defining t; € H* by (t;,2®) = 1
if & = £; and 0 otherwise, and setting t* = [Tcpyppa fr, We see that the

formula for the iterated comultiplication

A= 3 e
Bit.ABn=p
implies:
1, ifa=4,
(t2,20)) = A (4.1.4)
0, ifa#g.

It now follows that the algebra H*, with the +-weak topology, is isomor-
phic to the topological algebra of formal power series k[[t:|i € 1]}, which we
will often abbreviate as k[[t]]. In terms of k[[¢]], the map & : H* — k sends
each power series to its constant term. Further, H*®H* is clearly isomorphic

to the topological algebra K[[u;, ui]i € I]] of power series in the double set of
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variables (similarly (H*)8%, etc.). Then (4.1.1), (4.1.2), and (4.1.3) take the

form of the following diagrams:

K[[t] —2——K[fu, v]
D 5
K[, V)] ———— Kl[u, v, w] (4.15)

where D, sends the series Y A, 5u°v’ to Y D Aagu® | WP, etc.,
5 o
af B

K[, vj] -2 chu Lo, v

Ev id €u
|
K([t] (15)
where &, sends ) Ao, su®v? to > Mogt?, ete., and
af 8

K[, v]) B ku‘rn Lok, v
Sy e Su
]k[[lt]] (@17

where S, sends Y Aaguv? to > S (> Awt“) 9, ete.
P 5 o
Conversely, any pro-finite commutative “topological Hopf algebra” that
is isomorphic to K[[t] as a topological algebra, gives rise to a hyperalgebra
which is coreduced if chark = p.

Definition 4.1.2. A formal group law with (possibly infinite) index set I
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over ks a family £ = {f;}ier of elements of k{fu, v]] = k[[us, wli € I]]:
filw,v) =3 dagiyuev? (4.1.8)
Y]

such that the following conditions are satisfied:
1) fi(u,v) = u; 4+ v; (mod degree 2), for all i € I;

2) for any fixed o, 8 € Z!") there are only finitely many i € I such that
Aaypli) # 0

3) £(f(u,v),w) = £(u,f(v,w)) — this condition makes sense, because

2) above that ing the coefficients of the

power series involves only finite sums (see [17, 9.6]).

Tt is well-known that for any formal group law £ = {fi(u, v)} there exists

a unique “inverse”, i.e. a family of power series g = {g:(t)} such that
(t,g(t) = fi(g(t),t) =0, Viel. (4.1.9)

Now any continuous algebra map D : k[[t]] — k([u, v]] is uniquely deter-
mined by the images of the variables ¢. Moreover, the family f; = D(t;),
i € I, will satisfy the condition 2) of Definition 4.1.2. Indeed, let o, § be
fixed, then the set U of all power series ZAQI pu®v? with Mgy = 0 is a

selabiourhood ol i usvi Bence there st bea neighbourhood U of 0
in [[t]] such that D(U") C U, but all #; except a finite number will lie in U,
hence the condition 2) for f; = D(t;). Conversely, for any family {;} satisfy-
ing 2) we can construct a continuous algebra map D : k[[t]] — k([u, v]] such
that D(t) = fi, for all i € I, by setting D(h(t)) = h(£(u,v)), all h & K[[t]].
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Further, the axioms (4.1.5) and (4.1.6) are equivalent to the conditions 3)

and 1) of Definition 4.1.2, respectively, and (4.1.7) is equivalent to (4.1.9) for
gi = 8(t;). Therefore, coreduced hyperalgebras in prime characteristic are
precisely those hyperalgebras that arise from formal group laws (and in zero
characteristic, all hyperalgebras arise from formal group laws). Recall here
that the existence of antipode is antomatic for hyperalgebras — this proves
the existence of the “inverse” {g;} above.

Tracing back our two steps, we can even obtain the explicit structure
of the hyperalgebra H correponding to the formal group law f£(u,v) given
by (4.1.8). H has a basis of “divided powers” 2(*), o € Z{”, that satisfies
(4.1.4). Let us express the product 2¢8)2(7) through the basis {z(}:

D500 = 3 ),
Then applying t* € H* to both sides, we compute:
457 = (%, 29200) = (D(t%), 28 © ),

and recalling that D(t%) = (f(u,v))?, we see that 47 is equal to the coeffi-

cient of u’v7 in the power series

a(i)
II (Zxa.ﬁ,a)u/’ *’) .
8"

icsuppa

Remark 4.1.3. If chark = 0, then the hyperalgebra that corresponds to the
formal group law f is the universal envelope U(L), where L is the Lie algebra
of £ (see [30]). In this sense, the hyperalgebra of a formal group law in prime

characteristic is a replacement of U(L) in zero characteristic.
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Example 4.1.4. The simplest example of a formal group law with index set
I is the “additive law”:

filwv)=w+v, Viel

The hyperalgebra corresponding to this formal group law is nothing else but
the divided power algebra D(I) introduced in Chapter 1 (Definition 1.5.4).
If chark = 0, then D(I) = k[zi|i € I}, which is also the universal envelope

of the Abelian Lie algebra of dimension |1|.

In what follows, it will be necessary to extend the ring of scalars. Let A
be a commutative complete topological algebra (in a moment we will assume
that the topology of A is induced by a discrete valuation — see below). Ob-
viously, H* = k[[t;]i € I]], with the topology of the direct product of copies
of k, is a subspace of A[[t;]i € I]], with the topology of the direct product
of copies of A (hence The A-submodul d by K[[t] is
dense in A[t]] and isomorphic to A @ K[[t]], so in fact A[[t] = ARH", the

completion of A ® k[[t]]. Thus we can uniquely extend D, ¢, and S to con-
tinuous A-algebra maps A[[t]] — Affu, v]], A[[t]] - A, and A[[t] — A[lt]},
respectively, and (4.1.5), (4.1.6), and (4.1.7) continue to hold for the extended

maps, which we will denote from now on by the same letters D, €, and S.

Lemma 4.1.5. Let 9,0 : A[[t] — A be continuous A-module maps. Then
there is a unique continuous A-module map (,) : Allu, v]] = A that sends

uavA to (t)0(t%). Moreover, if ¢, are algebra maps, then so is (,v).

Proof. The composition of the map

> beguev? 5 3y (Z bu,,;tﬂ) t°
af a B
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with  is clearly a conti A-module map satisfying the desired property
of (¢,7). The uniqueness follows from the fact that the monomials u®v®
generate a dense A-submodule in Af[u, v]]. As to the last assertion, it suffices
to check it only for the monomials and this is obvious. ]

Now the maps D, =, and S allow us to define a group structure on the
set of all continuous A-algebra maps Alg.(A[[t]], A).

First we make the set Hom(A[[t]], A) of all continuous A-module maps
an A-algebra by virtue of (a topological version of) the convolution product:

for any ¢, € Home(A[[t]], A), we define

@x1h=(p.0) 0D, (41.10)
where (i2,19) : Alfu, v]] — A is as in Lemma 4.1.5 above.

Lemma 4.1.6. The product on Homc(A[[t]}, A) thus defined is A-bilinear,

associative and has a unit &.

Proof. Obviously, * is A-bilinear, associativity and the unit axiom follow
directly from (4.1.5) and (4.1.6). [ ]

If ¢, 1) are algebra maps, then ¢ ¢ is also an algebra map (as a compo-
sition of such). Moreover, from (4.1.7) it follows that the algebra map wo S
i the inverse of . Therefore, the subset Alg,(A[[t]], A)) C Hom,(A[[t]], 4)
becomes a group under *.

From now to the end of this section, we will assume the indexing set [

finite or countable, and A will be a fixed commutative k-algebra with the
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discrete valuation v : A — Z,, U {co} satislying

v(a) =0 iffa=0,
v(A) =0 for any 0 £ A € k,
v(ab) = v(a) +v(b) for any a,b € 4,

v(a+b) > min(v(a), v(8)) for any a,b € A.

Note in particular that k C A is discrete and A has no zero divisors. We
will further assume that v is nontrivial (i.e. there exists a € A with v(a)
other than 0 and oo, which in particular implies that A is infinite), and A is

complete with respect to ». The latter is equivalent to saying that

=
“aseties Y _ a, converges in A iff lim v(ay) = 00" (4.1.11)
P w35

Remark 4.1.7. If [ is finite or countable, then the topology of k[[t;(i & I]]
can be induced by a discrete valuation as follows. Let us fix some total order
on I so that I can be identified with N or with its subset {1,..., N}. For
any o € z&”, define

lafl = 37 ia().

iesuppa
Then for a power series f, we set v(f) to be the lowest [a|| such that t*
occurs in f. It can be immediately verified that the topology induced by v
coincides with the topology of k([t;|i € I]] defined earlier, in particular, v is

complete.

Lemma 4.1.8. Suppose I is finite or countable. Then the set of all contin-

uous A-algebra maps Alg.(A[[tili € 1]}, A) is in one-to-one correspondence



CHAPTER 4. DIVIDED POWERS AND POWER SERIES 106

with the set of all families {a;}ier of elements of A that satisfy v(a;) > 0, for

any i €1, and, if T is infinite, lim v(a;) = oo.
i—roo

Proof. We will use the notation introduced in the remark above.

If € Alg.(A[[t:]i € 1]], A), set a; = ¢(t;). Clearly, ¢ is uniquely deter-
mined by the family {a;}:c/, and we must have v(a;) > 0, since "Er)n&t," =0
in A[[t]], and _lim v(a;) = oo (in the case [ is infinite), since lim ;=0 in
Ale]).

On the other hand, let {a;}:cs be a family satisfying the conditions of the

lemma. If I = {1,..., N}, we set for convenience a; = 0, for all i > N, so

we can assume I = N,
Fix a power series f = Y, byt® € A[[t]]. For any n > 0, let us define
o= Y8 [I &%
llafon  i€suppa
Note that the sum above is finite and v(c,) > d(n), where
d(n) = min > v(@)a().

fd= i€suppa

We will show that ﬂl'ﬂ}nb‘1 d(n) = co. Indeed, let m € N be fixed. Since
Jim v(a;) = oo, there is M € N such that v(a;) > m as soon as i > M/m.
Suppose n > M and ||af| = n. Then either there is j € suppa such that
j > n/m, whence

> @) 2 v(g) zm

iesuppa
by the choice of M, or else n = [la|| < 2 3,0 (i), Whence

> vadali)z Y ali)=m.

icsuppa icsuppa
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In either case we obtained Y, v(a)ali) > m, so d(n) > m, which

icsuppa
proves our assertion.

Now by (4.1.11), we see that the serics 322 ¢, is convergent in A and
we define (f) to be the sum of this series.

It is a standard computation with (absolutely) convergent series to show
that ¢ thus defined is an algebra map. Finally, the set U of all the series
=3, bat® € A[[t] such that v(b,) > d(n), for all a with |ja|| < n , is an
open set in A[[t]], and we have v(¢(f)) > d(n), for any f € U, which proves

that ¢ is continuous. | |
Lemma 4.1.9. Alg,(A[[t], A) separates the elements of A[[t]].

Proof. Let 0# f = 3, bat® € Al[t]. Then we can write
e Zj,., where f, = Z hat®
n=0 lall=n
is the n-th homogencous component with respect to deg(t?) = [|a]|. Notice
that all f, are in fact polynomials.

Let ny be the minimal n with f, # 0. Since v is nontrivial, we can find
0+# e € Awith v(e) > 0. Since A is infinite and has no zero divisors, we
conclude that there is a family (¢;)ic; in A such that f,,(c) # 0. Let us set
a; = €™¢;, i € I, where m will be chosen later.

According to Lemma 4.1.8, we can construct ¢ € Alg.(A[[t]], A) with
@(t:) = a, i € I. Then we have

o) = @) + 30 fala)

n=ng+l

By definition of f,, we have f,(a) = e™ f,(c). Therefore,

V(fno (@) = v(fns (<)) + mnov(e)



CHAPTER 4. DIVIDED POWERS AND POWER SERIES 108

and
v(fa(@)) > mav(e) > mu(e) + mnov(e),
for n > ng. If we choose m such that mu(e) > v(faq(c)) (which is possible

since v(e) > 0 and v(fr, (€)) < o0), we will get p(f) # 0. n

4.2 PI Coreduced Hyperalgerbas
Are Commutative

Our main goal in this section will be the proof of Theorem 2.3.11 which says
that if a coreduced hyperalgebra over a perfect field of prime characteristic,
or any hyperalgebra over a field of zero characterstic, is PI, then it is com-
mutative. For brevity, we will simply say “coreduced hyperalgebra” when we
mean a hyperalgebra of either of these two kinds.

So let H be a coreduced hyperalgebra. As we have just seen in Section 4.1,
the dual algebra H* is isomorphic to the algebra k[[t]i € I]] of formal power
series, for some set /. Moreover, if A is a commutative complete topological
k-algebra, the multiplication, unit, and antipode of H induce continuous
algebra maps D : A[[t]] = Al[u,v]], e : A[[t] = A, and S : A[[t]] — A[[t]].
Using D, &, and S, we have defined a group structure on the set Alg.(A[[t]], A)
of continuous A-algebra maps. The idea of the proof will be to show that if H
is PI, then so is the group algebra kAlg.(A[[t]], A), and therefore Theorem
2.1.1 claims that the group Alg.(A[[t]], A) has a very specific form, which
will further imply, by use of a Zarisski-type topology, that the group must
in fact be Abelian. Then by suitably specifying A, we will show that D is

symmetric, which means that H is commutative.
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To carry out this program, we will need some rather standard results for
our Zarissky-type topology, which we shall prove nonetheless, for the sake of
completeness and because our topology is not the classical Zarissky topology,
as in Chapter 2: we use power series, possibly in infinitely many variables,
instead of polynomials.

In what follows until the beginning of the proof of the main theorem, we
will assume the indexing set I finite or countable, and the topology of A will
be induced by a discrete valuation » : A — Z, U {00}, 50 our lemmas from
Section 4.1 apply.

First we define a topology on X = Alg(A[[t]], A). The closed sets will

be all sets of the form
F(T) = {p € X|p(T) =0},

where T C A[[t]] is any subset.
Since F({0}) = X, F({1}) = 0, NF(T;) = F(UT,), and

F(T) U F(Ty) = F(T,T)

(the latter uses that A has no zero divizors), we see that we have indeed a

topology on X.
Lemma 4.2.1. Bvery point of X forms a closed subset.

Proof. Let ¢ € X, define a; = @(t;), i € I, as in Lemma 4.1.8. Then
{¢} = F({a; — tJ/i € I}) and therefore {} is closed. n

Lemma 4.2.2. X is connected.
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Proof. We will prove a stronger property, namely that X is an irreducible
topological space, i.e. for any closed subsets Iy, F; C X, X = F; UF} implies
X=FoX=F

Assume that X is reducible, i.e. there exist proper closed subsets
F,F, C X with RUF, = X.

Since Fy, Fy are closed, we can write y = F(T}), F; = F(T3), for some
T\, T, C A[[t]]. Since F, F; are proper, we can find 0 # f; € Ty and
0 # f, € Tp. Then clearly fifs # 0 and it is annihilated by [, U F = X,
which contradicts Lemma 4.1.9. | |
Now let X = Alge(R, 4), X' = Alg.(R, A), where R = A[[t;]i € IJ),
R' = Al[v;|j € I']] ( and I' are finite or countable). Then any continuous
A-algebra map ®: R — R induces & : X' = X : o = ¢po ®.
Lemma 4.2.3. For any continuous A-algebra map @ : R — R', the corre-

sponding map & : X' — X is continuous.
Proof. For any closed subset F(T') € X we have &=\ (F(T)) = F(&(T)),
which is closed in X", ]
According to Lemma 4.1.8, we can identify the set
Alg (Allti, v;li € 1, j € '], A)
with the direct product X x X'. We will always assume that X x X' is
endowed with the Zarissky-type topology coming from this identification (and

not the topology of direct product).
Lemma 4.2.4. For any fived ¢ € X and ¢' € X', the imbeddings

X XxX 19— @,¢) and X' = X x X' : ¢ = (0,9')
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are continuous. The “diagonal” imbedding 5 : X — X x X : ) = (4,9) is

also continuous.

Proof. By Lemma 4.2.3, it suffices to notice that each of the imbeddings
is induced by a suitable continuous A-algebra map.

The imbedding X — X x X' : 1) — (1,¢') clearly corresponds to @ :
Allt, v]] = A[[t]], where

is a continuous A-algebra map (since so is ¢').

The imbedding X' — X x X': 9’ — (p,v') is similar.

Astod: X — X x X : ¢ = (,4), it is induced by the map A[ft,v]] —
A[[t]) given by

mZﬁ:r:‘,,ﬂc’*v" ED) ( > balﬁ) 7,

7 \ati=y
which is a continuous A-algebra map, since the inner sum on the right hand

side is finite, for any 7. [ ]

Now we recall that D, ¢ and S turn Alg.(A[[t]], A) into a group, which
we will denote by G. Let us now check that the group structure on G is
compatible with the topology.

Lemma 4.2.5. The maps

p: GXxG=G:(p¥) 2o+,
i Go5Gipoe, and

[l: GxG=G:(p9) = gy 'yt

are continuous.
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Proof. Using the notation of Lemma 4.2.3, 4 = D, ¢ = 8, so they are

continuous. As to [,], we can write:
[]=po(ux p)o(idxidxtx)o(idxr xid)o (8 x ),

where 7 is the flip, and all these maps are continuous by Lemmas 4.2.3 and

4.2.4. =

Remark 4.2.6. Since we use for G x G a topology different from the topol-
ogy of direct product, G will not be a topological group in the usual sense. It
should be mentioned that the classical algebraic groups with Zarissky topol-

ogy are not topological groups because of the same reason.
We can now put all our topological facts together and prove the following

Proposition 4.2.7. Let H be a coreduced hyperalgebra over k such that
dim P(H) is finite or countable. Let A be a commutative k-algebra with a
nontrivial discrete valuation v such that A is complete with respect to v. If
the K-subalgebra spanned by the group Alg(A®H", A) in Hom(ARH", A)
satisfies a nontrivial polynomial identity, then the group Alg.(AGH", A) is
Abelian.

Proof. Denote G = Algo(A®H*, A). According to a classical lemma due
to Artin (see [22), Section 8.4), distinct clements of G will be Q-linearly
independent, where Q is the field of quotients of A (recall that A has no zero
divisors). Since k C @, it follows that the k-subalgebra spanned by G is
isomorphic to the group algebra kG, hence the latter is P1, so by Theorem

2.1.1, there exist normal subgroups Gy C G in G such that Go and G/G,
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are finite and Gy /Gy is Abelian (where in fact Go is a p-group if chark = p
and Gy is trivial if chark = 0).

Now from Lemmas 4.2.5 and 4.2.4 it follows that the maps

G =G :p— [p,%0] and ¥ — [0, 9] (42.1)

are continuous, for any fixed o,%0 € G. Since [G1,G1] C Gy and Gy is
closed (according to Lemma 4.2.1), we conclude that [G1,G1] C Gy, where
G, is the closure of G,.

Notice that G; is a subgroup, because of the fact G, * G, € Gy C Gy
and the continuity of the maps ¢ — ¢ * iy and ) — o * 1, for any fixed
©0,%0 € G (Lemmas 4.2.5 and 4.2.4 again). Clearly, G; D G, is of finite
index in G, so G is a disjoint union of a finite number of G;-cosets, which
are all closed. Now Lemma 4.2.2 implies that G; = G.

Thus we have proved that [G,G] C Go. From the continuity of the maps
(4.2.1) and Lemmas 4.2.2 and 4.2.1 it follows that [G, G] is trivial. ]

Now we are ready to prove the main result.

Proof of Theorem 2.3.11.

‘We need to show that if H is PI, then H is commutative.

We start by choosing a basis of “divided powers” in H as in Theorem

2.3.6 (with o = 0):

I
H =span{z}y e Z{},

s0 we can identify H* with the algebra of formal power series k[[tli € I]].

Suppose H satisfies a nontrivial multilincar identity of degree n over k:
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> A X Xy =0, (42.2)
TESn

for all Xi,..., X, € H.
Let A be a commutative complete topological k-algebra. On AGH* &
A[[t]], we have defined a map D : A[[t]] — A[[u,v]]. Taking into account

(4.1.5), we can iterate D to obtain a well-defined map
D+ A[lt]] = Allta, -, -

We are going to show that AGH* satisfies a “coidentity” of the form (cf.

Definition 1.1.2, but H* is not a coalgebra in the usual sense):

> AetDaf =0, for any f € A[lt], (4.2.3)
TESn
where a permutation 7 € S, acts on Alltr,..., ta]] by sending tx to tag,

k=1,...n
Since H* spans a dense A-submodule in A®H* and the left-hand side
of (4.2.3) is a continuous A-module map, it suffices to check (4.2.3) only for
f € H* = K][[t]]. But then D,f € (H*)®" = (H®")* = K[[t,, ..., ta]]. Let us
denote
Dif= N a6,

Lyt
In order to prove that the left-hand side of (4.2.3) is 0, we must show that it

vanishes on every by ®...® h, € H®". Indeed,
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(3" M Dafia ®... @ By}

7€Sy

=Y ALY Bttt @ @ h)

TESn  Gleoan

=20 Y Bttt ) o (60 )

€Sy Qunan

= Z p Z Hayan by -t Ba() @ - ® firmy)

TESn LI
= (Dafy D Aehaq - hai)) = 0,
TESn

since H satisfies (4.2.2).

Recall that the set Hom.(A®H*, A) of all continuous A-module maps is
an algebra under convolution product. Let us show that (4.2.3) implies that
Hom(A@H*, A) satisfies the identity (4.2.2).

To this end, let ¢1,...,p, € Hom(A®H*, A) and f € AGH* = A[[t]],
then

Daf= Y Gapantit oo t2 € Allts, oo tall,

[

and we can compute according to (4.1.10):
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(Z Acpry %ok ww) f

TESn

&5 Z Gay,anPr()(E%) - (o) (67°)

TESn  Olyen

=3 M Z oy, an @1 (EI0) L (£7 1)

TESn  Oln

=3 Aler, o 00)(#Dnf)

TESn
= (@12 Pn) (Z mvﬂf) =0,
TESn

where (1, .., ¢n) denotes the element of Home(A[[ty, .. ., t,]], A) as defined
(for n = 2) in Lemma 4.1.5.

Now we will reduce the proof that H is commutative to the case when
dim P(H) is finite or countable so that we can apply Proposition 4.2.7.

Recall H = span{z|y € Z{"}. Tt suffices to show that

2@8) = 8) (o),
for any a, 8 € Z. Let us fix o, 8 and define Iy = suppa U supp B. Then

Iy is finite, so Hy = span{z("|suppy C Io} is a subcoalgebra of countable

dimension. Now, for any g, f such that supp ag,supp fy C Iy, we have

o080 = 37 yoobozn, (4.2.4)

where the sum is finite.
In general, for z(" occuring in the sum above, supp~y does not have to lie

in Io. Let us define I; = Usupp-y, where the union is over all multiindices y
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occuring in (4.2.4) for various ag, o with supp o, supp 8y C Jo. Then Iy is
dlearly finite or countable.

‘We can continue by induction and define the chain of subsets
(et el 5 R
such that H,H, C Hy,.,, where
H, = span{z"|suppy C I}

is a subcoalgebra, for any integer n.

Now setting I, = U, I, and
H, = U, H, = span{z"|suppy C L.},

we see that H, is a subbialgebra. Moreover, the 2(7) above form a basis of
“divided powers” for H,, therefore H, is coreduced. Finally, P(H,) has the
cardinality of I,, which is finite or countable.

Since H,, satisfies the same identity as H, then H, is commutative,
assuming we established our result for the finite or countable case. But
2(@) 2 € H,, so they commute. Since a, 3 were arbitrary multiindices, we
conclude that H is commutative.

So without loss of generality we may assume dim P(H) finite or countable.
Then from Proposition 4.2.7 it follows that the group G = Alg (A®H*, A) is
Abelian, for any k-algebra A with a nontrivial discrete valuation v, complete
with respect to v. Let us set A = k[[u, v]], with v being as in Remark 4.1.7.

Finally, let us choose “a pair of independent generic points” ¢, ¢ € G,

defined by ¢(t;) = u; and ¢(t;) = v;, for all i € I. We know that ¢ and ¢
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must commute. Then for any element f € H*, with Df = 3, 5 asu®v?,

we obtain:

@+ () = 3 Aappt)(t)) = Y Ao guVh,
aB B
@) = 3 Aagdlt)o(t)) = 3 Apauvi.
a,f af
So we have proved that Df is symmetric, for any f € H*, which in its turn
implies that H is commutative, since D = m*, where m is the multiplication

of H. L]

4.3 Smash Products with
Divided Power Algebra

The goal of this section is to prove Theorem 2.3.19. The case of zero char-
acteristic is covered by Theorem 2.1.7, so from now on, chark =p > 0.
Let H = D(I), the divided power algebra with index set I. Recall from
Section 4.1 that
H* = K[[t;}i e I])
as a topological algebra. Morcover, Example 4.1.4 (with w; = @1 and
v; = 1&t;) gives that the map D : H* — H*®H* is defined by

Dt; = ;81 + 18t;. (4.3.1)

Using the dual algebra H*, we now want to describe the bialgebra(=Hopf

algebra) endomorphisms of H.
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. Let H = D(I) and set Q = span{t’"|i € I,k € Z,} C H",

Lemma 4.

where 5pan means the closed subspace generated by a given set. Then the set
EndH of bialgebra endomorphisms of H is in t co, with

the families of power series {g;}:cr in Q such that any given monomial occurs

only in a finite number of g;. Moreover, ®*(Q) C Q, for any ® € EndH.

Proof. Let ® € EndH, then ®° is a continuous endomorphism of H*
commuting with D. Set g = @*(t;), i € I. Then & (and therefore ®) is
uniquely defined by the family {g;}ic;. Moreover, this family has the property
that any fixed monomial occurs only in a finite number of g; (this follows from
the continuity of ®* — see the discussion after Definition 4.1.2). Moreover,
(4.3.1) implies

Dy = ¢:®1 + 18¢:. (4.3.2)

Let us determine which power series f € H* satisfy the above equation,
ie. Df = f®1+1&f. If f = ¥, stat®, then we can compute:

Df =Y pa(t®1 +18)° = fE1 +18f = Y pa(t*®1 +16t°).

e -
Therefore, if f1q # 0, then the binomial coefficients (3) must be 0, for all
B # 0 or a, which is only possible if & = p*e;, for some k € Z, and i € I, as
one can see from the following well-known lemma (sometimes called Lucas’

Theorem — see e.g. [11]).

Lemma 4.3.2. Let 0 < k < n be integers, p a prime. Ifn=ng+pni+...+
Py and k= ko + pky + ...+ pVky with 0 < ky,ny <p, 1 =0,..., N, then

=)~ () won

where by convention, (%) =0 if ki > ny. u
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Thus we proved that any f € H* with Df = f®1 + 1&f must have the

form:
F= matt',
i€l keZy
ie. f € Q. Hence g; = ®*(t;) € Q, for all i € I. It immediately follows that
Q) CQ-

Conversely, given a family of power series {g; }ic satisfying the conditions
of the lemma, we can construct a continuous endomorphism W of the algebra
H* such that ¥(t;) = gz, € I (see the discussion after Definition 4.1.2 again).
Moreover, since g; satisfy (4.3.2), ¥ will commute with D. Finally, using the
continuity of ¥, we can find an endomorphism @ of H with ® = ¥, which
will preserve the bialgebra structure of H since ¥ preserves the structure of
H u

Let us look more closely at the algebra structure of H. Set z; = z0*%),

i€l k€Z,, then
H=ali € 1k € 2.]/(af, = 0),

the truncated polynomial algebra. To establish this isomorphism, we notice
firstly, that indeed f, = 0 and secondly, that every multiindex « can be
uniquely written in the form @ = ag + pay + ... + p¥ay with ax(i) < p, for
alliel, k=0,...,N, and then

K1
G

2@ = )0,

a
i€suppa k=0

In other words, H = u(L), the restricted enveloping algebra of

L =span{zisli € Ik € Z,}
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with zero bracket and zero operation [p].

We want to use certain results of Yu.Bahturin and V.Petrogradsky [6]
on smash products of the form u(L)#kG, where a group G acts on u(L) by
automorphisms of L. However, if G acts on H by bialgebra automorphisms,
it does not have to preserve L, so the results of [6] may not be applicable to a
given action - of G on H. We are going to modify the action - in the following
way. Using the fact that H is isomorphic to a truncated polynomial algebra,
H = K[zi4]/(a}), = 0), we can define a grading on H. Let pr,, denote the

on the m-th I Then, forg € G, 1 € L, we

set
gxl=pry(g-L).
Obviously, g+ L C L, for any g € G.

Lemma 4.3.3. L is a G-module under .

Proof. We want to prove that g = (' + I) = (gg') * I, for any { € L,
9,9 € G. Let Q C H" be as in Lemma 4.3.1 and [, : H — H denote the
bialgebra automorphism sending h to g - h. By Lemma 4.3.1, 15(Q) € Q,
hence [,(Q*) C Q% ie. g-Q' C Q. Notice that Q* is the set of all
h € H with pr,(h) = 0, so we have pr,(g-h) = 0 if pr,(h) = 0. Hence
pry(g-h) =pri(g-pr,(h)), for any h € H, so we can compute:

g (g« =pry(g-pri(g'- D) =prilg- (¢ D) =pri((99) - 1) = (99) x L.

| |
As usual, we can extend * to the action of G on H = u(L) by algebra

automorphisms. Now we are going to show that  satisfies some kind of
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identity. The following general observation is due to Yu.Bahturin (a special

case is proved in [6, Lemma 4.2]).

Proposition 4.3.4. Let H be a Hopf algebra over k, A a left H-module
algebra via H® A — A: h®a — h-a. If the smash product R = A#H is
PI, then the action - satisfies a nontrivial “weak identity” of the form:

> Aalby - Xay) - (b Xay) =0,

€S

forall by,...,h, € H, X,..., X, € A

Proof. Since R is PI, it satisfies a nontrivial identity of the form [6,
Lemma 4.1]:
S AN XaYi . Yo X ¥a =0, (433)

TESn
for some n € N and A, € k.

Now let us fix Xi,...X, € A and hy,...h, € H. Consider the coproduct
Ahy € H. We can write: Ahy =4 @ v1 + ... + Um @ Up, for some m € N
and w;,v; € H, i =1,...,m. For each i, we substitute in (4.3.3) Yo = u;,
Yy = Su;Y/, where ¥/ is an auxiliary variable, thus obtaining:

3 Al Xn) S0)Y XY - Y1 Xy Yo = 0. (4.3.4)
7ESn

Then summation over i = 1,...mn gives:

3 Aela - Xe)Yi X Ya. .. Yocr Xagry Yo = 0, (4.3.5)
7ESn
where we took into account that 3, u; Xz()Sv; = hy - Xyq1) by definition of

the smash product.
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Then we can write: Ahy = 1wy’ ®v] + ...+ ul,, ® vl and proceed in the
same way by substituting ¥/ = u! and ¥, = Sv!Y}, etc. At the end we will
obtain the desired equality. | ]

‘We are now ready to prove the main result.

Proof of Theorem 2.3.19.

Suppose a group G acts on D(T) by bialgebra automorphisms and consider
the smash product R = D(I)#kG. If there exists a subgroup A C G that is
(p-)Abelian and acts trivially on D(I), then the subalgebra

Ry=D(I)#kACR

is isomorphic to D(I) ® k4, hence PI. Moreover, R is a finitely generated
free Rg-module, so R imbeds into a matrix algebra over Ro. But a matrix
algebra over a P1 algebra is PI (e.g. by Regev Theorem — see Section 0.3),
therefore R is PI.

Let us now prove the converse, So suppose that D(I)#KG is P1. Apply-
ing Proposition 4.3.4 to the smash product D(I)#kG, we obtain a nontrivial
“weak identity” for the given action - of G on H = D(I):

3 Mlgr - Xew) - (90 Xae) =0, (4.3.6)

TESn
for all gy,. .., 00 € G, X1,..., X, € H.

Without loss of generality, (4.3.6) is proper, i.e. it trivializes upon sub-
stitution of 1 for one of the variables X7,..., X, (if this is not the case, we
obtain a nontrivial identity of lower degree). We claim that the modified
action * satisfies the same “weak identity” as -, i.e.

3 Al Xew) - (g0 + Xei) =, (437)

TESn
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forall g;,...,00 €G, X;,..., X, € H.

Since the identity is multilinear in X,..., X, and proper, it suffices to
prove (4.3.7) only when X, ..., X, are monomials in 2. If g € G and

X =uy...u,, where each of uj, ..., u, is one of the z;4, then

gxX = (gxw)...(g*us) =pri(g-wm)...pri(g-u,)
= pry((9-w)...(g-u.)) =pr,(9- X),
where we used the fact that g- H* C H* and 50 g+ uy, ..., g - u, have zero

constant terms.

Now we can rewrite each term on the left-hand side of (4.3.7) as follows:
(91 % Xa(n) -+ (9n * X))
=pr,, (90 Xawy) - Pr,_ (90 Xaw)
=P (91 Xe) -+ (90 - X)),

where s, =degX),...,s, =degX,, m=s,+ ...+ s,.
Finally,

3 A9+ Xeq) - (90 * Xe)
®ESn

=pry (Z Aelgr - Xeqw) - (9n - qu-))) =0.
*ESn
Let us now quote a slightly extended version of Theorem 6.1 in [6] (the
proof does not need to be changed).

=u(L),

the restricted envelope of some p-Lie algebra L. Assume that L is G-invariant

Theorem 4.3.5. Suppose a group G acts by automorphisms on H
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and the action + of G on H satisfies a “weak identity” (4.3.7) of degree n.
Then there exists a subgroup Gy C G such that (G : Go) < n and

dim(g —1) * L < n’4",
for any g € Gy. |
Applying this result to our case, we can find a subgroup Gy C G of finite
index such that dim(g — 1) x L < oo, for any g € Go. Now we want to
go back to our original action - of G on H = u(L). Fix g € Gy and set
W = (g—1) = L, so W is a finite-dimensional subspace of L. Denote by

ly : H — H the bialgebra automorphism sending h to g - h, then W =

(pryoly—id)L = (pr, o l, — id)pr  H, 50
W = Im(pr, ol,0pr, — pr,).

Therefore,
W+ =Ker(priolyopri—pri). (4.3.8)
Since pr, is the projection of I on L with kernel Q*, where @ is as in Lemma

4.3.1, then pr1 is the projection of H* on Q, hence (4.3.8) implies that
(priol —id)(@NW*) =0. (4.3.9)

Now recall that W is a finite dimensional subspace of H, so W+ C H*
is defined by a finite number of linear equations each of which involves only
a finite number of coefficients of the series. Hence there exists N € N such

that, for any k > N and i € I, we have #* € W, so by (4.3.9),

i) =&
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Fixi €, k> N. By Lemma 4.3.1, [:t/" € Q, thus the above equation
gives ;1" = ¢/". Finally, if
N :
b= X St
ST iz
then
oo -
&= =3 3
Jel lety
Therefore, all j1;; = 0 except ;0 = 1, which means that [;#; = t;. Since i € T
was arbitrary, we see that I3 = id, hence I, = id, i.e. g acts trivially on 1.
Since g was an arbitrary element of Gy, Go acts trivially on H. By Passman’s
criterion, there exists a p-Abelian subgroup G; C G of finite index. Setting

A =Gy NGy completes the proof of Theorem 2.3.19. L]
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