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Abstract — The dynamic modelling of a solar energy system 

with vehicle to home (V2H) and vehicle to grid (V2G) options 

for Newfoundland conditions is discussed in this paper. A site 

(13 Polina Road) was chosen in St. John's, Newfoundland, 

Canada. An optimized system was built for the chosen site using 

BEopt, Homer, and MATLAB software’s to meet the house's 

energy demand. Furthermore, smart current sensors installed in 

the house are used to incorporate the V2H and V2G concepts. 

The Nissan Leaf's battery is used to supply household loads in 

V2H operation mode when the power supplied by the PV panel 

and the storage energy in the inhouse battery is less than the 

load's energy demand. In V2G mode, the vehicle is only linked 

to grid. Along with the simulation results, detailed system 

dynamic modelling is also presented. There are nine different 

system control modes that are proposed and simulated. 

 
Index Terms — PV, V2H, V2G, Renewable energy, Hybrid 

power systems.  

 

I. INTRODUCTION 

Electric vehicles (EVs) are the next wave in the global 

transportation industry. EV’s have various advantages, more 

powerful, emit no pollution and act as mobile power 

reservoirs. EV’s need to be charged, renewable sources of 

energy, such as solar energy systems, help satisfy the energy 

demand and also to reduce the carbon footprint [1] Since 

renewables are inherently variable, backup battery is 

required. Since EVs act as reservoirs, the concept of Vehicle 

to Home (V2H) and Vehicle to Grid (V2G) can be 

implemented [2], [3]. The proposed system implements V2H 

and V2G concept. The in-house battery acts as backup 

battery, to supply uninterrupted power the home load’s when 

the power produced by PV is not sufficient to meet the load’s 

energy demand. The Nissan Leaf (40kW variant) is being 

considered as EV, for use in the V2H concept. Furthermore, 

the implemented system has level 1 and level 2 chargers for 

charging the Nissan Leaf's battery during charging mode, as 

well as a converter for charging the inhouse battery and 

powering the load at the same time. Until the produced power 

is less than the load's energy requirement, the designed 

system uses PV as the primary source of power. However, if 

the power produced by PV was less compared to load’s 

energy demand, the inhouse battery is used to power the loads 

in this situation. When the system reaches 30% SOC, it 

switches to V2H, which means the Nissan Leaf's battery will 

be discharged to satisfy the load's energy demand [4]. In V2G 
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mode, the car disconnects from the house and feeds power to 

the grid [5], [6] 

In this paper, we present a solution that addresses this 

problem by combining the Vehicle to Home (V2H) and 

Vehicle to Grid (V2G) principles, as well as a hybrid PV 

system [7]. For system sizing and dynamic modelling, BEopt, 

HOMER, and MATLAB were used. 

 

II. SITE DETAILS 

A. Selected Site and Solar Insolation 

The research location was selected as 13 Polina Road in St. 

John's, Newfoundland, Canada. It has a total area of 185.89 

m2. In St. John's, Newfoundland, Canada, Fig. 1 depicts a 

monthly solar radiation and clearness index profile for the 

chosen region. The clearness index varies from 0.20 to 0.30. 

The average solar insolation is 3.15 kWh/m2/day, with a 

range of 1.28 kW/m2/day to 5.14 kWh/m2/day.  

 

 
Fig. 1. Solar insolation and clearness index of selected site. 

B. Sites Power Requirement from BEopt 

The annual power demand for the chosen site was 

calculated using BE opt tools. The annual power consumption 

of the house is approximately 21111 kWh. This covers all 

loads in the building, such as heaters, boilers, lighting, 

ventilation, and other factors including plugin loads.  

C. Sites Load and Photovoltaic Panel Area Calculation 

The daily load requirement for the site is 11.90 kW. The 

hourly electricity demand rises at 6 a.m. and falls by 9 p.m., 

with an all-time high between 6 and 7 PM. Fig. 2 shows the 

seasonal load profile from HOMER, which shows that the 

months of November to April have higher per hour energy 

demand than the months of May to October. 
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Fig. 2. Annual load chart from HOMER. 

III. SYSTEM SIMULATION 

The software Hybrid Optimization of Multiple Energy 

Resources (HOMER) was used to size the system. A 

schematic of the proposed system is shown in Fig. 4. The 

solar panel used was a Canadian Solar CS6U-340M, the 

battery was a Trojan SAGM 12 105, the inverter was 20 kW, 

the home load profile was 57.8 kWh/d with a peak of 

11.90 kW and a backup, a 10 kW genset is installed, which 

has no effect on the system's dynamics. 

 

 
Fig. 4. Schematic of proposed system in HOMER. 

A. Photovoltaic Panel 

The Canadian Solar CS6U 340M module, with a 340 W 

output and a 1.8 m2 surface area, was used in this design. 

In St. John's, the average daily sunlight is 1633 hours for 

272 days. 

 

Output from BEopt = 21111 kWh/year 
Per day = 57.8 kWh/day 

𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑝𝑒𝑟 𝑑𝑎𝑦 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑠𝑢𝑛 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
  

𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 = 12.930 𝑘𝑊 
For PV sizing considering derating factor as 0.8 

  = 
𝑃𝑜𝑤𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑒𝑟𝑎𝑡𝑖𝑛𝑔
 

  = 16.1633 kW 

𝑃𝑉 𝑠𝑖𝑧𝑒 𝑎𝑟𝑟𝑎𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑃𝑉

340𝑊
 

For calculated power output  
  = 38 Modules  
For derating factor  
  = 48 Modules 
Area calculation  
Area of one Canadian solar CS6U 340 M module is 1.88m2 
For desired power output 
  = 38 x 1.88 
  = 71.44m2 
For derating factor  

  = 48 x 1.88 

  = 90.24m2 

Available area = 185.89 m2 

Bus voltage = 48 V 

For desired power output, number of strings = 20 Strings 

Number of panels in each string = 2 

Including derating factor the number of strings = 24 Strings 

B. Battery 

For this application, the Trojan SAGM 12 105 battery was 

selected. The following is the battery calculation, including 

three days of backup. The calculations show that 360 batteries 

are needed without backup. Since the design included a 10kW 

backup generator, the number of batteries needed was 

reduced to 80. 

 
𝑊ℎ

𝑑𝑎𝑦
=  57804

𝑊ℎ

𝑑𝑎𝑦
  

3 𝑑𝑎𝑦𝑠 =  57804 ×  3 =  173413 𝑊ℎ  

40% 𝐷𝑂𝐷 =
173413

0.4
 =  433532.5 𝑊ℎ 

𝑇𝑒𝑚𝑝 𝐶𝑜𝑛𝑠 (>  80𝐹)  =  433532.5 ×  1 =  433532.5 𝑊ℎ 

𝐴ℎ 𝑐𝑎𝑝 𝑜𝑓 𝐵𝑡 𝑏𝑎𝑛𝑘 =
433532.5

48
 =  9031.92 𝐴ℎ  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 =  (
9031.92

100
) × 4 = 360 𝑁𝑜𝑠 

C. Nissan Leaf – 40 kW variant 

Nissan Leaf with a 40 kWh lithium-ion battery pack and a 

6.6 kW onboard charger is considered in this concept. A built-

in bidirectional converter for charging and discharging is 

another benefit of the Nissan Leaf (reeling power to home). 

Charging and discharging are the two modes of operation for 

the Nissan Leaf. Nissan Leaf is reeling out power or 

discharging its battery, when the PV panels and battery are 

unlikely to fulfill the energy demand of the home load, this 

mode is used [8], [9]. When the Nissan Leaf is in charging 

mode, the following is assumed. The electric vehicle is 

charged with the excess energy generated or stored after the 

home loads are met [10]. 

D. Inverter 

The peak load value is about 19.90 kW and deferrable 

loads peak value is 6.60kW, an inverter with a 20 kW output 

capacity is considered for the design. In this case, the inverter 

has two outputs: 120 V and 240 V.  

 

IV. DYNAMIC MODELLING 

Simulink was used to simulate the proposed architecture. 

PV array, MPPT controller, in-house battery, boost 

converters, inverter, level 1 and level 2 chargers, Nissan Leaf 

battery and V2G inverter are all included in the simulation. 

The overall block diagram of the proposed system is shown 

in Fig. 5. PV power is used to charge the in-house battery via 

a charger, and an inverter with two outputs at 120 V and 

240 V is used to convert the stored power in the battery to AC 

to power the house load. Furthermore, a Nissan leaf charger 

with level 1 and level 2 charging capabilities [8] is designed, 

as well as a converter to step down 360 V to 48 V, which is 

used to charge the in-house battery and simultaneously 

powering the house loads [9] and a 10 kW genset is 

incorporated which is used only as a backup and has no 

impact on dynamics of the system. Overview of simulated 

system is illustrated in Fig. 6. The system is simulated for 
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charging and discharging the in-house battery, powering 

loads with the in-house battery, a dual outlet inverter that 

outputs 120 V and 240 V, a Nissan leaf charger with level 1 

and level 2 charging.  

Discharge Nissan Leaf to charge inhouse battery, discharge 

inhouse battery at night to charge Nissan Leaf, discharge 

Nissan Leaf to implement V2G mode and a dump load to 

remove excess power. Automatic state of charge overrides is 

included in the system, with 30 percent SOC charge ON 

(inhouse battery) and 40 percent SOC charge ON (Nissan 

Leaf battery) for the inhouse battery and Nissan Leaf, 

respectively. Fig. 6 shows the full Simulink simulation block 

diagram.  

 
Fig. 5. Overall block diagram. 

 
Fig. 6. Overview of simulated system in Simulink. 

 

A. MPPT Algorithm 

Maximum power point tracking (MPPT) is a concept that 

entails adjusting PV impedance in response to changing 

irradiance in order to get the most power out of a PV panel. 

In this simulation, the MPPT controller employs the 

Perturbation and Observation (P&O) algorithm. In the P&O 

algorithm, the voltage is continuously perturbed, and the 

inverter duty cycle is updated based on the output 

observation. This algorithm is the best at monitoring the 

maximum point even though there is a large drop or spike in 

irradiance. 

Furthermore, the simulation was carried out incorporating 

eight modes representing different modes [10] of operation. 

Fig. 7 illustrates the implemented switching control logic. 

 

 
Fig. 7. Switching control logic system. 

 

TABLE I: SWITCH CONTROL SCHEME FOR THE PROPOSED SYSTEM 

Modes S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Mode 1 ON ON ON OFF OFF OFF OFF ON ON OFF OFF OFF 

Mode 2 OFF OFF ON OFF OFF OFF OFF ON OFF ON OFF OFF 
Mode 3 

(Level 1) 
ON ON ON ON ON OFF OFF ON ON OFF OFF OFF 

Mode 3 
(Level 2) 

ON ON ON ON OFF ON OFF ON ON OFF OFF OFF 

Mode 4 OFF OFF OFF OFF OFF OFF ON ON OFF ON OFF OFF 

Mode 5 - ON ON - - - - - - - - OFF 

Mode 6 OFF ON OFF OFF OFF OFF OFF OFF - - OFF OFF 

Mode 7 ON OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF 

Mode 8 
(Level 1) 

OFF OFF ON ON ON OFF OFF ON ON OFF OFF OFF 

Mode 8 

(Level 2) 
OFF OFF ON ON OFF ON OFF ON ON OFF OFF OFF 

Mode 9 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON 
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B. Model 1 – Inhouse Battery Charge Mode 

The PV output is used to charge the in-house battery and 

power the loads in this mode. The energy consumption of the 

loads is minimal in this situation. The extra energy is put to 

good use by charging the battery. The control logic for 

charging inhouse battery is depicted in Fig. 9. Switches S1, 

S2, S3, S8, S9 are switched ON to implement mode 1 as seen 

in Fig. 8 and Table I. The current and voltage graphs for the 

low load are seen in Fig. 9 and 10. The voltage and current of 

the load are 120V and 12A, respectively.  

 

 
Fig. 8. Control logic for in-house battery charging. 

 

 
Fig. 9. Low load voltage output graph. 

 

 
Fig. 10. Low load current output graph. 

 

C. Mode 2 – Inhouse Battery Discharge Mode 

PV output is low in this mode relative to the load's energy 

requirement. The load is powered by the in-house battery in 

this situation. The control logic for in-house battery in 

discharge mode is seen in Fig. 11. A two-output inverter is 

also used, with output voltages of 120 V and 240 V. Switches 

S3, S8, S10 are turned ON to implement mode 2 as seen in 

Fig. 10 and Table I. The current and voltage graphs for high 

loads are seen in Fig. 12 and 13. In this case, the load is 240 V 

and 27 A. 

 

 
Fig. 11. Control logic for Inhouse battery discharge. 

 
Fig. 12. High load voltage output graph. 

 

 
Fig. 13. High load current output graph. 

 

D. Mode 3 – Nissan Leaf Charge Mode 

When the PV output exceeds the load's energy demand and 

the in-house batteries' SOC exceeds 60%, the device will 

charge the Nissan Leaf battery [11]. Level 1 (120 V, 14 A) 

and level 2 (240 V, 20 A) charging are both used in the 

charger. The control logic for Nissan Leaf at level 1 and level 

2 charging modes are depicted in Fig. 14 and 15, respectively. 

The power for the level 1 and level 2 chargers is supplied by 

an inverter. Furthermore, boost converters have been 

integrated into the chargers to increase the voltage to 360 V, 

which is the charging voltage of the Nissan Leaf battery. 

Switches S1, S2, S3, S4, S5, S8, S9 are turned ON to 

implement mode 3 (level 1 charging) as seen in Fig. 14 and 

Table I. For mode 3 (level 2 charging) switches S1, S2, S3, 

S4, S6, S8, S9 are turned ON and switches S5, S10, S11 are 

turned OFF as seen in Fig. 15 and Table I. The charging 

current graphs for level 1 and level 2 charging are seen in Fig. 

17 and 18. Fig. 19 depicts the state of charge (SOC) of a 

Nissan Leaf battery. The developed system includes both 

level 1 and level 2 charging, with the output from level 2 

charging is visible between 5 and 10 seconds and the output 

from level 1 charging is visible between 10 and 15 seconds 

[12], [13]. 

 

 
Fig. 14. Control logic for Nissan Leaf at level 1 charging mode. 
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Fig. 15. Control logic for Nissan Leaf at level 2 charging mode. 

 

 
Fig. 16. Level 1 charging current output graph. 

 

 
Fig. 17. Level 2 charging current output graph. 

 

 
Fig. 18. Nissan Leaf’s SOC graph. 

 

E. Mode 4 – Nissan Leaf Discharge Mode 

When the PV output is less than the load energy demand 

and the inhouse batterie SOC is less than 30%, Nissan Leaf 

reels out the stored energy to the house to satisfy the load 

energy demand [14], [15]. The control logic for Nissan Leaf 

in discharge mode is depicted in Fig. 18. To charge the battery 

and power the load at the same time, a buck converter is used 

to reduce the high voltage (360 V) from the Nissan Leaf's 

battery to 48 V [16]. Switches S7, S8, S10 are turned ON to 

implement mode 4 as seen in Fig. 18 and Table I. The SOC 

graph for the Nissan Leaf as shown in Fig. 19. Because of 

Nissan Leaf's discharge mode execution, the inhouse battery 

was on a discharge loop between the time intervals of 5 

seconds and 15 seconds in Fig. 19, and then it began to 

charge. 

 

 
Fig. 19. Control logic for Nissan Leaf in discharge mode. 

 

 
Fig. 20. Inhouse batterie’s SOC graph. 

F. Mode 5 – Inhouse Battery Protection Mode 

This mode is included to assist in the saving of the in-house 

battery by tracking the battery's SOC. When the SOC of in-

house batteries drop below 30%, the 30% SOC breaker and 

the 30% SOC charge on breaker will all go HIGH to charge 

the battery. Switches S2, S3 are switched ON to implement 

mode 5 as seen in Table I. 

G. Mode 6 – System Isolation Mode 

The total cutoff breaker is switched on in this mode 

because the PV output is less than the loads energy demand, 

the inhouse batteries SOC is less than 30%, and the Nissan 

leaf SOC is less than 40%. This is designed to separate the 

system from the load and prevent it from failing. Switch S2 

is switched ON to implement mode 6 as seen in Table I. 

H. Mode 7 – Excess Power Management Mode 

When the power produced by PV exceeds the energy 

demand of the load, the in-house battery and Nissan Leaf's 

battery are charged, and a dump load is used to dissipate the 

excess power. The control logic for excess power mode is 

illustrated in Fig. 20. Switches S1 and S11 are switched ON 

to implement mode 7 as seen in Fig. 20 and Table I. 
 

 
Fig. 21. Control logic for excess power mode. 
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I. Mode 8 – Nighttime Charging Mode 

The power stored in the inhouse battery is used to charge 

the Nissan Leaf's battery at night while the loads energy 

demand is much lower and the inhouse battery's SOC is 

greater than 60% [17]. The control logic for nighttime level 1 

and level 2 charging mode is depicted in Fig. 21 and Fig. 22. 

Switches S3, S4, S5, S8, S9 are switched ON to implement 

mode 8 at level 1 charging as seen in Fig. 21 and Table 1. In 

mode 8 level 2 charging switches S3, S4, S6, S8, S9 are 

switched ON as seen in Fig. 22 and Table I. 

 

 
Fig. 22. Control logic for nighttime level 1 charging mode. 

 

 
Fig. 23. Control logic for nighttime level 2 charging mode. 

 

J. Mode 9 – V2G Mode 

In this mode the vehicle isolates itself from home and reels 

power to the grid [18], [19]. Fig. 23 illustrates the control 

logic for vehicle to grid (V2G) mode and Fig. 24 illustrates 

the vehicle to grid mode design in MATLAB. Switch S12 is 

switched ON to implement mode 9 as seen in Fig. 23 and 

Table I. The implemented design comprises of PLL block, 

Current controller (PI) and PWM generator [20]. Fig. 25 

illustrates the implemented PI and PLL controller design. 

PLL is used to generate a reference signal and the signal is in 

phase with the actual voltage. The reference signal is used for 

implementation of current controller in a grid connected 

inverter. Further the Vgrid voltage is fed to a lowpass filter as 

shown in equation 1 and Fig. 25. Substituting equation 2 in 

equation 1 gives the transfer function in equation 3. The 

magnitude and phase of lowpass filter can be in equation 4. 

Assuming equation 5, ωc is replaced by ω in equation 6. 

Further simplification results in equation 7. Adding a second 

low pass filter as seen in equation 8, the magnitude becomes 

1/2 and the angle would be -90 as seen in equation 9. Finally, 

multiply the output from second low pass filter with 2 to get 

an output signal (alpha) that is same as input with 90-degree 

phase shift as seen in Fig. 25.  

 

𝑇𝐹 =  
𝜔𝑐

𝑠+ 𝜔𝑐
      (1) 

 

where, ω_c=corner frequency. 

 

𝑠 = 𝑗𝜔 (2)  

 

𝑇𝐹 =  
𝜔𝑐

𝑗𝜔+ 𝜔𝑐
      (3) 

 

𝑇𝐹 =
𝜔𝑐

√𝜔2+𝜔𝑐
2

< 𝑡𝑎𝑛−1 (
𝜔

𝜔𝑐
)   (4) 

 

𝜔 =  𝜔𝑐      (5) 

 

𝑇𝐹 =
𝜔

√𝜔2+𝜔2
< 𝑡𝑎𝑛−1 (

𝜔

ω
)   (6) 

 

𝑇𝐹 =
1

√2
< −45     (7) 

 

𝑇𝐹 =
1

√2
×  

1

√2
< −45 − 45    (8) 

 

𝑇𝐹 =
1

2
< −90     (9) 

 

Further to implement PLL, Vgrid and alpha signals are 

converter into DQ signals. A control system is set for Q 

output, the error between Q and Q ref is set as zero and is fed 

to a PI controller. The output from PI controller gives the 

angle information which is integrated to get ωt. Output from 

the Integrator is fed to alpha beta to DQ transformation block. 

In this case the output from PI controller is aligned with input 

signal. Hence this value can be used to generate active and 

reactive current reference signal as seen in Fig. 25 [21], [22]. 

The generated reference signal is added with grid voltage 

which generates the reference signal for generation of PWM. 

A unipolar generation scheme is implemented in the designed 

system. The reference voltage is compared with the triangular 

carrier wave and positive and negative references are 

compared. Output from each comparator is inverted and 

connected to the gate terminal of each IGBT as seen in Fig. 

25. Fig. 26, 27, 28 illustrates the grid’s voltage graph, grid’s 

current graph and inverter current graph, respectively. 

 

 
Fig. 24. Control logic for vehicle to grid (V2G) mode. 
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Fig. 25. Vehicle to Grid (V2G) mode design in MATLAB. 

 

 
Fig. 26. V2G controller – PLL, PI controller. 

 

 
Fig. 27. Grid voltage graph – V2G mode. 

 

 
Fig. 28. Grid current graph – V2G mode. 

 

 
Fig. 29. Inverter current graph – V2G mode. 

 

V. CONCLUSION 

For Newfoundland conditions, dynamic modelling of a 

solar energy system with vehicle to home and vehicle to grid 

options was successfully designed and simulated. The solar 

insolation for Newfoundland is 3.15 kWh/m2/day, as seen in 

Fig. 1. The PV panels used are 340W modules that generate 

16.3984 kW and are configured in 24 strings, each with two 

panels. Nissan Leaf is configured as a deferrable load of 

9.90 kWh/d and 6.60 kW peak, a 12.5 kW commercially 

available inverter, 80 Trojan SAGM 12 105 batteries, each 

rated at 12 V and 100 Ah, a backup genset of 10 kW, and a 

vehicle to grid (V2G) inverter as seen in Fig. 7. In the 

simulation that has been implemented, there are nine main 

operating modes: i) inhouse battery charging mode – PV 

power is used to charge the inhouse battery while 

simultaneously powering the loads; ii) inhouse battery 

discharge mode – The stored power in the inhouse house 

battery is used to meet the loads energy demand; iii) Nissan 

Leaf charging mode – The available power is used to charge 

the Nissan Leaf after satisfying the load's energy demand and 

charging the in-house battery; iv) Nissan Leaf discharge 

mode: the loads have a high energy demand, but the PV and 

in-house battery SOC is low [23]. Nissan Leaf draws on its 

accumulated energy to meet the load's energy demand [24]; 

v) in-house battery protection mode – avoids degenerative 

discharge of the in-house battery; vi) system isolation mode 

– prevents system failure; vii) excess power management 

mode – manages excess power generated; viii) nighttime 

charging mode – charges Nissan Leaf overnight in 

preparation for use the next day; ix) V2G mode – power is 

reeled to the grid. The system is scalable: it can be extended 
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to include parking lots [25], several houses can be joined to 

form a microgrid [26], and it can control or assist the grid 

(V2G) [27]. The V2X model, in which vehicles are used to 

schedule loads [28], power multiple homes, businesses, or an 

entire city, and transfer power from one vehicle to another 

[29], will be studied further. [30]-[33]. 
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