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Abstract

The high concentration of macromolecules inside living cells leads to an effect called

macromolecular crowding. One very basic consequence of crowding is a decrease in the

volume physically available to the molecules in the solution. This consequence is called

the excluded volume effect. It has been observed experimentally that the excluded

volume effect impacts various processes in cells. In this thesis, we investigate the effect

of macromolecular crowding on two different large-scale conformational transitions

in proteins: folding, which is the process by which proteins become functional and

achieve their native state; and fold switching, a process in which a protein exhibits two

or more native states and reversibly interconverts between them. To address these

issues, we develop and apply coarse-grained models at various levels of resolution. In

particular, we use two different models. 1. A sequence-based model with 7 atoms

per amino acid in which folding is driven by effective hydrophobic interactions and

hydrogen bonding. 2. A model with one bead per amino acid, with a structure-based

(Gō-like) potential, which provides an energetic bias towards two or more native

states. Sampling of conformational space is performed using Monte Carlo techniques

and Langevin dynamics. A long standing assumption in the crowding field is that

the excluded volume effect always stabilizes the native states of proteins. However,

by using our sequence-based model, we find this crowding effect can be destabilizing

in some cases depending on the protein and crowding condition. To study crowding

effects on fold switching, which has not been done before, we focus on the GA/GB

fold switch system based on the 56 amino acid binding domain of protein G. This

system is a designed fold switch system in which amino acid mutations drive the
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switch between the two different folds adopted by GA and GB. We find that crowding

impacts the population balance between the two different folds. Specifically, we find

that crowding enhances the stability of GB relative to GA. Overall, this thesis provides

insight into how crowding effects on proteins depend on factors such as protein fold,

types of interactions between crowders and proteins, crowders concentration, and

conformational landscape of the protein, further advancing our understanding of the

intricate interplay between cellular environments and protein behavior.
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General Summary

Protein folding is an essential process in biology where proteins, made up of chains

of amino acids, acquire their unique three-dimensional shapes as their native state.

The correct folding of proteins is essential to carry out their specific functions in our

bodies. However, the crowded environment inside cells, filled with numerous other

biomolecules, can impact protein folding. Macromolecular crowding refers to the high

concentration of various macromolecules within cells. These molecules can take up

space and create a crowded and inhomogeneous environment around proteins. This

crowding effect can influence how proteins fold and adopt their native structures and

also how they interconvert between native states reversibly in the case of metamorphic

proteins. The presence of macromolecules in close proximity to folding proteins can

either facilitate or hinder the folding process depending on temperature, crowders’

volume fractions, and interactions. Studying the effects of macromolecular crowding

on protein folding is essential to gain a deeper understanding of how proteins behave

in their natural cellular environment. Scientists use experimental techniques such as

nuclear magnetic resonance (NMR) and computational simulations to investigate how

various factors, including macromolecular crowding, can affect proteins’ structures,

thermodynamics and kinetics. To gain a comprehensive understanding of the effects

of macromolecular crowding on protein behavior, it is crucial to have a thorough

knowledge of the techniques mentioned above. As technology continues to advance,

we can anticipate further insights into the fascinating nature of proteins in the cellular

environment. This progress will contribute to our overall comprehension of protein

structure and function, enhancing our understanding of the crucial role of proteins in
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living organisms.
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Chapter 1

Introduction

Proteins are fundamental components of living organisms and play essential roles in

cellular processes. They have many functions, including catalyzing chemical reac-

tions [1], providing structural support to cells and tissues [2], and signaling between

cells [3]. The amino acid sequence of a protein molecule determines its chemical

and physical properties [4]. A variety of methods have been used to elucidate the

structures and functions of these molecules, including nuclear magnetic resonance

spectroscopy and X-ray crystallography.

Proteins, as linear polymer chains, exhibit a wide range of lengths. The typical

length of a protein chain can vary from a few dozen amino acids to several thousand

amino acids [4]. For example, insulin is a protein with 51 amino acids [5], while the

protein titin, found in muscle cells, contains over 30,000 amino acids [6]. The amino

acid sequence of a protein chain is intimately linked to its structure and function, as
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different amino acid sequences fold into distinct three-dimensional shapes, enabling

proteins to carry out specific tasks within the cell [4].

Proteins also display a remarkable diversity of structures, which can be used to

classify them into different types. One such classification results in three main cate-

gories: globular, membrane, and fibrous proteins [7]. Globular proteins, as the name

suggests, fold into compact, roughly spherical shapes and are typically found in the

aqueous environment of cells, where they perform a wide range of functions, such as

transporting oxygen [8], regulating blood sugar levels [9], and enzymatic activity [10].

Membrane proteins are embedded within cell membranes. Some have transmem-

brane structures, allowing them to interact with other biomolecules on either side

of the membrane [11]. Lastly, fibrous proteins have the unique ability to sponta-

neously form large complex structures, such as amyloid fibrils, which are associated

with certain diseases, including Alzheimer’s and Parkinson’s [12, 13]. Understand-

ing the diverse types of proteins and their characteristic structures provides valuable

insights into their biological roles and opens avenues for therapeutic interventions.

Hemoglobin is an example of a globular proteins that has been extensively studied

and has played a historic role in the development of the field of protein science [14–16].

In recent decades, computer simulations have emerged as a powerful tool for

studying the structure and function of proteins and protein complexes. By using

computational methods, we can gain insight into the detailed dynamics of these com-

plex biomolecules in a way that is difficult to achieve experimentally. Computer

simulations of biomolecules can be carried out with either coarse-grained models or

detailed atomistic models. Coarse-grained models simplify the representation of the
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protein structure, such as reducing atomic groups into a single bead or interaction

site. Coarse-grained models have the advantage of being computationally more effi-

cient and can access longer timescales, making them ideal for studying large systems

or complex biological processes. On the other hand, detailed atomistic models pro-

vide more accurate representations of the interactions but are computationally more

intensive and limit simulations to shorter timescales.

Most experiments in protein research have traditionally been carried out in di-

lute solutions in vitro. Similarly, computer simulations typically involve only a single

protein or a small number of particles in the simulation box. However, the cellular

environment where proteins function and evolve is inhomogenous and crowded, af-

fecting components’ physical and chemical properties, particularly proteins. While

much has been learnt from studying isolated proteins, ultimately, proteins must be

understood within the context of the crowded and complex cellular environment.

Macromolecules such as proteins, carbohydrates, ribosomes, and nucleic acids are the

molecules responsible for making this crowded intracellular environment [17]. While

the concentration of individual macromolecules may be low, the total concentration

in cells is remarkably high, making a fully complex cellular environment [18]. For

example, the concentration of RNA and protein in the Escherichia coli cytosol is in

the range 300-400 g/L and can reach volume fractions of around 30-40% of the cell

interior volume [17]. This environment influences protein processes, such as protein

folding and proteins’ functions [19]. The presence of macromolecular crowders of dif-

ferent shapes and sizes increases the degree of complexity of these processes, which

are already complex.
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1.1 Macromolecular crowding effects

Figure 1.1: The excluded volume effect. Two proteins, A and B, are inserted into a volume

(square) that contains crowding particles (black circles). Protein A is smaller than the crowders,

while protein B is comparable in size to the crowders. The yellow area represents the volume not

accessible to the center of mass of the protein that is being inserted. Note that the volume that is

free (pink) depends on the size of the inserted protein. The figure is adapted from [20].

The effects of macromolecular crowding on the behavior of proteins can be divided

into different classes based on the type of interaction between proteins and crowders.

The most fundamental influence of crowders, which refer to all macromolecules ex-

cept the protein under study, is to remove some of the volume that would otherwise

be accessible to the protein. This excluded volume effect is the result of hard-core

repulsion and is unavoidable under crowded conditions because it results from the

impenetrability of atoms on the macromolecular crowding agents and the protein. It

is always present independently of the magnitude of additional types of interactions.

4



The excluded volume effect is expected to stabilize the native state of a protein.

Many experimental studies have sought to test the impact of the excluded volume

effect on protein stability by using artificial polymers as crowding agents. The addi-

tion of such crowders indeed stabilizes proteins’ native state [21, 22]. However, the

effect is often weak, and a few exceptions have been found [23, 24].

It can easily be understood why hard-core repulsive interactions between crowders

and the protein should be stabilizing [25]. The native state is typically more compact

than the extended unfolded state and occupies a smaller volume. Therefore, the native

state becomes entropically favored relative to the unfolded state when the protein is

immersed in a solution that contains crowding agents that occupy space [21]. As

illustrated in Figure 1.1, the folded state of a protein (A) is easier to immerse in a

crowded environment rather than an unfolded state (B) because the volume available

decreases with the size of the protein molecule.

Weak attractive interactions between proteins and other macromolecules can also

be important [23, 24]. In the case of nonspecific interactions, crowders can interact

with both the unfolded and the native states. It is expected that the unfolded state

has a larger accessible surface area than the native state. Hence, the effect of this

kind of interaction is destabilizing because it results in a net energetic stabilization

of the unfolded state. If crowders interact favorably only with the native state, the

effect will be stabilizing.

In this thesis, we have studied the effects of macromolecular crowding on two dif-

ferent conformational transformations in proteins: folding and fold switching. To this
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end, we develop coarse-grained models for proteins that we will discuss in Chapter 2.

Protein folding and fold switching will be discussed in the following.

1.2 Proteins: folding, fold switching, and struc-

tural disorder

Proteins are linear heteropolymer chains. The monomers that make them up are the

20 naturally occurring amino acids. All amino acids have the same basic chemical

structure: a central carbon atom called Cα, which is covalently bonded to a carboxyl

group (–COOH), a hydrogen atom, an amino group (–NH2), and a side chain group,

often denoted R, as illustrated in Figure 1.2. The covalent bonds that hold amino

Figure 1.2: Amino acid structure. The basic structure of an amino acid includes amino group,

carboxyl group, side chain, and central carbon.

acids together in a protein chain are called peptide bonds. For this reason, proteins

are referred to as polypeptide chains. When an amino acid is incorporated into a

polypeptide chain, it is often referred to as an amino acid residue.
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The side chain group is responsible for the distinct physio-chemical properties of

the amino acids. This group is the only difference in structure between the 20 or

so amino acids that except proline, in which the side chain is connected covalently

to both Cα and the nitrogen atom, forming a five-membered nitrogen-containing

ring [26]. This unique cyclic structure can affect protein stability, folding, and func-

tion [27]. In order for proteins to become functional and biologically active, they need

to adopt a unique three-dimensional structure called the native structure. The pro-

cess in which a protein chain acquires its native structure is known as folding. Even

under ideal conditions, small structural fluctuations always occur around the native

structure, and this ensemble of native structures is often called the native state. Ac-

cording to Anfinsen’s dogma [28], the native state is the global free energy minimum

of the system consisting of the protein and the surrounding solvent molecules. Hence,

at least for small globular proteins, the native structure is determined only by the

protein’s amino acid sequence [29]. This makes a ”sequence-structure” relationship

for proteins.

Proteins have structures at different levels. Primary structure refers to the se-

quence of amino acids that constitute the protein. Secondary structure refers to com-

monly occurring structural motifs, which include α-helices and β-sheets. α-helices are

local motifs, i.e., they involve amino acids close in sequence, while β-sheets can be

either local or involve non-local chain segments. For example, α-helices are stabilized

by hydrogen bonds between the CO group of amino acid i, and NH group of amino

acid i+4. For β-sheets, hydrogen bonds can occur between amino acids with larger

separation sequences. The tertiary structure designates the organization of the sec-
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ondary structure elements. The arrangement of multiple protein chains or subunits

into a yet higher-level structure is known as a protein’s quaternary structure. Each

subunit of a protein at this level contains its unique primary, secondary, and tertiary

structures. There is also a higher level of structures up to the quinary structure,

which refers to the organization of proteins in highly dense solutions, such as in the

cell interior [30].

In addition to proteins with only a single fold, there are metamorphic (fold-

switching) proteins. Metamorphic proteins are a class of proteins that have the unique

ability to adopt multiple stable and functionally distinct native conformations [31].

These conformational changes often occur reversibly in response to environmental

cues such as changes in temperature, pH, or the presence of ligands or other pro-

teins. This ability enables them to perform various biological functions [32, 33]. For

example, a protein fold switch operates in the circadian oscillator clock in cyanobac-

teria [34]. Other examples of metamorphic proteins are Lymphotactin, Mad2 spindle

checkpoint protein (Mad2) [35], Chloride intracellular channel 1 (CLIC1) protein [32],

protein RfaH [36], and Protein G [37].

In this thesis, we focus on protein G and study macromolecular effects on the

thermodynamics of their different folds. Protein G has two binding domains called GA

and GB. These two domains have similar lengths, around 56 amino acids, but entirely

different structures (folds). It was shown that by applying sequence mutations, an

abrupt switch between these two folds can be obtained [38]. We study the fold-

switching and thermodynamics of protein G in different temperatures in the presence

of crowders with various volume fractions.
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Furthermore, there are some biologically active and functional proteins without

any stable native structure, so-called intrinsically disordered proteins (IDPs) [39].

They can be totally or partly unstructured. Intrinsically disordered regions (IDRs)

in protein sometimes adopt a well-defined structure when they bind to other macro-

molecules [40]. Interestingly, metamorphic proteins often include IDRs[37].

1.3 Molecular driving forces

Proteins are only marginally stable, and it is estimated that the free energy differ-

ence between the native state of a protein and its unfolded state is usually in the

range of 5-15 kBT [41, 42]. Proteins achieve their stability by various forces and

effects. Below, we will discuss two important driving forces in protein folding pro-

cesses: backbone-backbone hydrogen bonds and hydrophobic interactions. Other

forces include electrostatic interactions between partial charges and van der Waals

interactions, which are weak interactions that arise due to fluctuations in electron

densities around atoms [43].

1.3.1 Hydrogen bonding

A hydrogen bond can be understood as an electrostatic interaction in which a hy-

drogen atom is shared by two electronegative atoms; the hydrogen bond donor and

the hydrogen bond acceptor. The hydrogen bond donor is an atom that is covalently

bonded to the hydrogen. There is partial positive charge on the hydrogen atom due
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to the electronegativity difference between the hydrogen and the donor atom. The

hydrogen bond acceptor likewise has a partially negative charge. Aligning two elec-

tronegative atoms and hydrogen along a line is electrostatically favorable, which is

the hydrogen bond. An important example for protein folding is the hydrogen bond

formed between the NH and CO groups of the protein backbone (see Fig 1.2), where

N is the donor, and O is the acceptor. The backbone-backbone hydrogen bonds are

responsible for stabilizing α-helices and β-sheets. The energy of a fully formed such

hydrogen bond is about 2-10 kcal/mol [44, 45]. The accepted (and most frequently

observed) geometry for a hydrogen bond is a distance of less than 2.5 Å between the

hydrogen and the acceptor and a donor-hydrogen-acceptor angle of between 90° and

180° [43, 46].

1.3.2 Hydrophobic effect

Another interaction that is important in protein folding is the hydrophobic effect. The

hydrophobic effect is the tendency for nonpolar molecules to minimize contact with

water. Nonpolar molecules cannot participate in the network of hydrogen bonds that

is always present in bulk water, and, as a result, they dissolve poorly. Hence, nonpolar

molecules tend to come together, and it leads to an effective attraction between them

in water. The hydrophobic interaction is entropy-driven because water molecules close

to nonpolar surfaces are more ordered than water molecules in bulk. As a result, when

two nonpolar molecules come together, the total surface area exposed to the water

molecules will be reduced, and the total entropy increases.
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Some amino acids’ side chains are hydrophobic, and these amino acids play an

essential role in protein folding. Because of their non-polar character, hydrophobic

side chains are typically found in the interior of a protein structure, where they form

a hydrophobic core. Once the protein structure has been formed, the nonpolar core of

the protein can be further stabilized through attractive van der Waals forces. Because

the hydrophobic effect is entropically driven, the strength of this interaction decreases

with the temperature [47], and this is probably the major cause of cold-denaturation in

proteins [48]. In addition to the temperature, the strength of hydrophobic interactions

depends on several other factors, such as the shape and size of the non-polar molecules

[43, 49].

1.4 Quantifying native state stability

Proteins have different thermodynamic properties, which can be impacted by macro-

molecular crowders. One of the most important of these properties is the stability of

the native state. Maintaining protein stability is important in vivo because proteins

need to cope with changes in environmental cellular conditions such as salt concentra-

tion, pH, and temperature [50]. An understanding of protein stability is also essential

for practical purposes, e.g. optimizing protein expression, storage, and structural

studies [51]. One way to quantify the native state stability is the difference in the

(Helmholtz) free energy of the folded state, Ff, and the free energy of the unfolded

state, Fu, ∆Ff = Ff − Fu. The quantity ∆Ff is called the folding free energy, which

indicates whether the protein is stable (∆Ff < 0) or unstable (∆Ff > 0). In compari-
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son with covalent bonds (50-150 kBT ), ∆Ff of globular proteins are relatively small (

5-15 kBT ) [52, 53]. The folding free energy can be divided into an energy component

(∆Ef) and an entropy component (∆Sf) via the equation:

∆Ff = ∆Ef − T∆Sf. (1.1)

Depending on whether the crowders are purely repulsive or include nonspecific at-

tractive interactions, the change in the stability can originate from the entropic or

energetic components, respectively. ∆Ff is the natural quantity in simulations with a

fixed volume. Experiments are typically carried out under fixed pressure conditions.

For that reason, experimental papers typically report Gibbs folding free energies,

∆Gf, in which the enthalpy (∆Hf) takes the role of ∆Ef. However, because volume

changes in protein solutions are often negligible, the difference between ∆Gf and ∆Ff

can be assumed to be small.

Another way to measure the stability of the native state is the melting (midpoint)

temperature Tm, which is defined as the temperature in which the native and unfolded

states are equally populated. It should be mentioned that increasing the melting point

indicates a higher amount of stability.

1.5 Artificial polymers

In general view, polymers are molecules composed of basic units called monomers,

which are covalently bonded together in a repeated fashion. In the realm of biology,

many biomolecules found in our cells are polymers. Proteins, polysaccharides, and
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nucleic acids are prominent examples of these natural polymers. Proteins, in par-

ticular, are naturally occurring polymers that are composed of long chains of amino

acids, with each amino acid serving as a monomer unit. Beyond the realm of biol-

ogy, artificial polymers have been created, including those used in the production of

plastics [52, 54]. Polymer-based materials are a major focus of soft-condensed matter

physics [52].

Polymers can be divided into different categories. Homopolymers are the simplest

form of polymers because they are made up of a single type of monomer. If polymers

are composed of more than one type of monomer, they heteropolymers. Furthermore,

based on the properties of the monomers and the way that they are synthesized,

polymers may be linear or branched. In the former, monomers are attached to each

other, forming a linear structure; in the latter, the structure can include branched

points. For example, proteins are linear heteropolymers.

In many experimental studies of macromolecular crowding, Ficoll has been used

to mimic an artificial crowding agent [55–57]. Ficoll is a neutral and highly branched

homopolymer that dissolves easily in aqueous solutions and is made up of repeating

units, sucrose. Ficoll is often assumed to be an inert, hard, and spherical crowder.

As such it would be an ideal molecule to study the excluded volume effect. However,

recent studies by Fissel et al. show that Ficoll is a soft and non-spherical particle

rather than a hard-sphere crowder [58, 59].

The size of a polymer can be quantified theoretically in different ways. One way to

characterize the size of a linear polymer chain is to consider the polymer as a random
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walk. A random walk polymer is a theoretical model that describes the conformation

of the chain as a series of randomly oriented links a⃗i that connects monomer i to

the following monomer i+1. Each link a⃗i can point in any direction. The end-to-

end vector R⃗e-e of the polymer chain is the displacement from the first to the last

monomer. Accordingly,

R⃗e-e =
N∑
i=1

a⃗i, (1.2)

where N is the number of links. When the directions of different links are uncorre-

lated, we obtain the average squared end-to-end distance:

⟨R2
e-e⟩ = Na2, (1.3)

where a is the length of the links a⃗i. It means the overall size of a random walk

polymer with N monomers is proportional to
√
N . For branched polymers, a unique

end-to-end distance cannot be defined. A quantity that can be used to characterize

the size of both branched and linear chains is the radius of gyration Rg, defined by:

R2
g =

1

N

N∑
i=1

(
R⃗i − R⃗cm

)2

, (1.4)

where R⃗i is the position of monomer i, mi is the mass of monomer i, and

R⃗cm =
ΣimiR⃗i

Mpolymer

(1.5)

is the polymer’s center of mass, where

MPolymer =
N∑
i=1

mi, (1.6)

is the total polymer’s mass. An interpretation of R2
g is the average squared distance

between the monomers and the center of mass [52].
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For polymer solutions, there are other relevant properties that can be quantified,

e.g., the volume fraction ϕ, which is the ratio of the volume VPolymer occupied by the

polymer in the solution and the total volume VSolution of the solution. Then, we have:

ϕ =
Vpolymer

Vsolution
= N

Vmonomer

Vsolution
, (1.7)

where Vmonomer is the volume of a monomer.

1.6 Previous studies on the effect of crowding on

protein folding and stability

Many experimental studies have investigated the effects of macromolecular crowd-

ing on protein folding. Minton was the first to point out that volume exclusion of

crowder molecules should have stabilizing effects on proteins [60]. By using artificial

crowders such as Ficoll, which are often assumed not to interact strongly with pro-

teins, Minton’s prediction was confirmed experimentally [61–63]. However, protein

molecules used as crowding agents are destabilizing [64]. This is explained by weak

nonspecific attractive interaction between crowders and protein, which counteracts

the stabilizing excluded volume effect [65–67]. In general, the net effect of macro-

molecular crowding on the stability of proteins will be determined by a competition

between the stabilizing effect of excluded volume and the destabilizing nonspecific

attractions.

Because attractive interactions have an energetic (or enthalpic) component, the

impact of crowders should be temperature-dependent. Indeed, this was observed by
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Zhou et al., who studied the stability of the protein CI2 in the presence of protein

crowders [22]. CI2 was found to be destabilized at low temperatures and stabilized

at high temperatures. This allowed the authors to define a so-called crossover tem-

perature at which there was no net effect on the stability of CI2 [68].

The effects of crowding on protein stability have also been studied by computer

simulations. Mittal et al. have shown that crowding increased the free energy of

the unfolded state relative to that of the folded state [63]. In one study, Cheung et

al. showed that purely repulsive macromolecular crowding enhances the native state

stability for the all-β WW domain in the presence of large spherical particles [61].

Computer simulations were also used to analyze the effect of crowding agents on

the folding cooperativity. Tsao et al. found that macromolecular crowding induces

polypeptide compaction and decreases folding cooperativity [69]. They found the

folding temperature increases with increasing volume fraction of crowders, but the

height of the heat capacity peak decreases. This height is a measure of folding coop-

erativity [70].

1.7 Outline

This thesis focuses on the effects of macromolecular crowding on protein processes,

mainly protein folding and protein fold switching. Chapter 1 and Chapter 2 are

introductions to the literature and the methods we are using. Chapter 1 includes

macromolecular crowding effects concepts and protein structures, and Chapter 2 in-

cludes statistical and computational physics concepts, which underlie Monte Carlo
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and molecular dynamics simulation techniques.

Chapter 3 describes a research project that investigates the thermodynamic fea-

tures of proteins in the presence of crowding agents. We investigate the effect of

crowding on the folding of three model proteins with different native structures. The

main question is how purely repulsive crowding agents can impact these proteins in

terms of thermodynamic properties such as native state stability, folding cooperativ-

ity, nonnative contacts, and size of proteins. The basic approach is a coarse-grained

simulation model for proteins [40] and crowders. Despite long-standing expectations

that excluded volume crowders stabilize the native state, we found that this effect

can be destabilizing, for some protein folds at high enough crowder concentrations.

Having studied the excluded volume effect in Chapter 3, we turned to the impact

of different types of weak (soft) attractive interactions between the protein and crow-

ders on protein folding and protein stability in Chapter 4. For this follow-up study,

we utilized the same model in Chapter 3 but modified to include hydrophobic and

nonspecific attractive crowding agents in the form of short polypeptide chains and

spherical crowders. We found both hydrophobic and nonspecific crowders can lead to

a net destabilization and counteract the stabilizing effect from hard-core repulsions.

Also, we find that, for the same interaction strength and crowder concentration, spher-

ical crowders with a hydrophobic character are more destabilizing than crowders with

only of nonspecific interactions.

In the research project of Chapter 5 of this thesis, we investigate how polymeric

crowders affect the protein’s native state stability and their kinetics behavior. For
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this goal, we apply a structure-based model and the Langevin equation to study

two proteins with Protein Data Bank (PDB) ID 1PRB and 1SHF, under crowded

conditions and examine their response based on their topologies. 1SHF is a SH3

domain from the human fyn protein[71], and 1PRB is an albumin binding domain on

protein G[72].

Chapter 6 focuses on the effects of macromolecular crowding on protein fold

switching. We test the effects of purely repulsive excluded volume crowders on the

protein G with two folds as GA and GB. The main question in this research project

is how crowding can change the populations of each fold at different temperatures

and crowder volume fractions. Specifically, we examine the role of intrinsically disor-

dered regions within the protein for the change in fold-switching behavior. The same

model as in Chapter 5 has been used for both projects to develop a potential energy

function to examine fold-switching thermodynamics.

Finally, the thesis ends in chapter 7 with a summary and outlook.
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Chapter 2

Theory and Methods

Computer simulations are an increasingly common method to study physical phenom-

ena in fields such as physics, chemistry, and biology. Simulation of molecular systems

is based on concepts in statistical mechanics and computational physics. In order to

overcome different kinds of limitations, such as accessing long time- and length-scales

with currently available computational resources, various techniques have been de-

veloped, such as enhanced conformational sampling techniques and coarse-graining

of models. In this chapter, we describe some of the sampling techniques and models

used in this thesis. We start from the point of view of statistical mechanics.
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2.1 Statistical mechanics

In a classical system with N particles in a volume V, any microstate at time t can be

defined by specifying the positions q⃗1,...,q⃗N and momenta p⃗1, ..., p⃗N of the particles.

Hence, to specify a microstate requires 3N position and 3N momentum coordinates.

We will denote these sets as q = {q⃗i}Ni=1 and p = {p⃗}Ni=1, respectively, such that each

point (q, p) represents a distinct microstate. The space of all (q, p) points available

to the system is called the phase space. In this thesis, the vectors q⃗i and p⃗i might

represent positions and momenta of the atoms in a protein chain and surrounding

solvent molecules. The set of positions (q) is often referred to the conformation of

the system. Then, the Hamiltonian of the system will be given by:

H(q, p) = E(q) +
N∑
i=1

p⃗i
2

2mi

, (2.1)

where mi is the mass of particle i, and E(q) is the potential energy of the system.

For a classical thermodynamic system at temperature T, the total partition func-

tion can be written Z = ZidealZconf [1]. The two factors Zideal and Zconf are obtained by

integrating over the momenta and position coordinates, respectively. The probability

of finding the system in a conformation q is given by the Boltzmann distribution,

PB(q) =
exp [−βE(q)]

Zconf

, (2.2)

where β = 1/kBT , and

Zconf =

∫
dq⃗1...

∫
dq⃗N exp [−βE(q)]. (2.3)

The average of an observable A(q) takes the form of an integral over the conforma-
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tional space of the system. Specifically, the thermodynamic average is given by

⟨A⟩ =
∫
dq⃗1...

∫
dq⃗NA(q) exp [−βE(q)]∫

dq⃗1...
∫
dq⃗Nexp [−βE(q)]

. (2.4)

For example, in a protein chain, the observable could be the end-to-end distance given

by equation 1.3.

Furthermore, in the canonical ensemble, we have lnZ = −βF , and F is the

Helmholtz free energy of the system. This relation makes a connection with thermo-

dynamics. For example, from F we can determine the internal energy of the system,

⟨E⟩ = ∂(βF )

∂β
. (2.5)

Some quantities reflect how the system responds to changes in intensive variables

such as T , and are called response functions. Two examples are the heat capacity

at constant volume Cv and the isothermal compressibility κv. The heat capacity is

defined as

Cv =
d⟨E⟩
dT

=
⟨E2⟩ − ⟨E⟩2

kBT 2
, (2.6)

where the second equality can be derived from equation 2.4. The isothermal com-

pressibility is given by

κv = − 1

V

(
∂V

∂p

)
T

, (2.7)

where p is pressure. These two quantities are accessible experimentally for biomolec-

ular systems. For example, heat capacity can be measured with isothermal titration

calorimetry, and κv can be found from scattering experiments.
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2.2 Molecular dynamics

The basic idea of molecular dynamics simulations is to numerically integrate the

equations of motion for the system under study. In biomolecular simulations, it is

often classical equations of motions that are integrated; for example, for particle i,

˙⃗qi =
∂H

∂p⃗i
, (2.8)

and,

˙⃗pi = −∂H
∂q⃗i

, (2.9)

where, H is the Hamiltonian of the system [2]. Generally, for long simulation times,

a molecular dynamic trajectory should generate microscopic states consistent with

the equilibrium distribution. For example, if the simulation is carried out at constant

temperature and volume, the Boltzmann distribution should be generated. Thermo-

dynamic averages (equation 2.4) can thus be determined for suitable observables and

compared with experimental measurements. In addition to equilibrium properties,

molecular dynamics simulations should also provide any dynamic properties: trans-

port coefficients, time-dependent responses to perturbations, and rheological proper-

ties. Molecular dynamics simulations have many applications in biophysics, chemical

physics, and material science. There are many variants of molecular dynamics sim-

ulations [3]. Molecular dynamics simulations are not always carried out using the

equations of motion in 2.8 and 2.9. An alternative is the Langevin equation, which

will be discussed in the next section.

Because macromolecular systems are complex and consist of a large number of par-

ticles, it can be hard in practice to determine the properties of such complex systems
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precisely from molecular dynamics simulations. Issues that can limit the precision

of molecular dynamics simulations include configurational sampling problems [4] and

errors resulting from the discretization of time in the numerical integration [5]. A

common choice in calculating trajectories of particles in molecular dynamics simula-

tions is the Verlet algorithm [6]. Because of fast vibrational motions, the time step of

numerical integration in detailed molecular dynamics simulations of protein systems

must be of the order of dt = 1− 2 fs [7]. This limits the size and time scales that can

be probed via this method.

2.3 Langevin dynamics

In a typical detailed protein simulation, a large part of the computational resources

is devoted to the surrounding solvent molecules. In Langevin dynamics [3], solvent

molecules are no longer explicitly represented in the simulation. Instead, they are

replaced with a friction term in the equations of motion. For example, Langevin

dynamics have been used to study protein folding kinetics [7, 8]. Langevin dynamics is

based on the Langevin equation, which is a stochastic differential equation describing

the time evolution of a system subject to both deterministic and random forces. For

a given particle i in the system, the Langevin equation can be written as:

mi
¨⃗qi = −ζ ˙⃗qi + F⃗ c

i + Γ⃗i = F⃗T
i , (2.10)

where mi is the mass of the particle, ζ is the friction coefficient, q⃗i is the position of

particle i. The total force of the particle i, F⃗T
i includes F⃗ c

i , the conformational force

equal to the negative gradient of the potential energy of the system (F⃗ c
i = −∂E

∂q⃗i
), and
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Γ⃗i, the random force representing the thermal motion of solvent particles.

The equation 2.10 can be numerically integrated by using the velocity form of the

Verlet algorithm [9], which works in the following way. The Verlet algorithm updates

the positions and velocities of particles in a simulation by approximating the equations

of motion. If the integration step is dt, the position of a particle at the time t+dt is

described to the second-order in dt as

q⃗i(t+ dt) = q⃗i(t) + dt ˙⃗qi(t) +
dt2

2mi

F⃗ T
i (t). (2.11)

The velocity at the time t + dt is similarly approximated to the second order in dt ,

i.e.,

˙⃗qi(t+ dt) = ˙⃗qi(t) +
dt

mi

F⃗ T
i (t) +

dt2

2mi

...
q⃗i . (2.12)

Equation 2.12 can be written

˙⃗qi(t+ dt) = (1− A)
((
1− A+ A2

))
˙⃗qi(t) +

dt

2mi

((
1− A+ A2

))
×(

F⃗ c
i (t) + Γ⃗i(t) + F⃗ c

i (t+ dt) + Γ⃗i(t+ dt)
)
+O(dt3), (2.13)

in which, A = 1− ζdt
2mi

; The random force is uncorrelated at different times, i.e.,

⟨Γiα(t)Γiα(t
′)⟩ = 0, (2.14)

where Γiα is the component of the random force on particle i in the α = x, y, z

direction, and t ̸= t′. The magnitude of the random force sets the temperature of the

system. Specifically,

⟨Γ2
iα(t)⟩ = 2ζkBT. (2.15)

Equations 2.14 and 2.15 can be combined into a single equation,

⟨Γiα(t)Γiα(t
′))⟩ = 2ζkBTδ(t− t′), (2.16)
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where δ(t) is the Dirac delta function. To solve the Langevin equation 2.10 numeri-

cally, time is discretized. Equation 2.16 then becomes

⟨Γiα(t)Γiα(t+ ndt))⟩ = 2ζikBT

dt
δ0,n, (2.17)

where δ0,n is the Kroncker delta and n= 0, 1, 2, ... [10].

2.4 Metropolis-Hastings Monte Carlo

Monte Carlo is a simulation approach that is entirely different from molecular dy-

namics, using random numbers to evolve the system rather than the equation of

motion. The Metropolis-Hastings Monte Carlo algorithm is a Markov chain Monte

Carlo (MCMC) method for sampling states from the Boltzmann distribution PB(s).

If we consider a sequence generated of states s1, s2, ..., si, ..., sM, the key characteristic

of a Markov chain is that the state si only depends on the previous state si−1. To see

why this is useful, note that because the states are biased according to the Boltzmann

distribution, the thermodynamic average of an observable A can be estimated by:

⟨A⟩ ≈ 1

M

M∑
i

A(si). (2.18)

The equation 2.18 is accurate in the limit of large M and when the si’s are not all

correlated.

Practically, the Metropolis-Hastings algorithm works in the following way [11, 12]:

1. Prepare the system in an initial state s.

2. Pick a new trial state s
′
with probability α(s→ s′).
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3. Accept the new state s′ with the probability,

Pacc(s→ s′) = min[1,
α(s′ → s)

α(s→ s′)
exp (−β∆E)], (2.19)

where ∆E = E(s′)− E(s) is the change in energy. If the trial move is not accepted,

restore the system to state s.

4. Return to step 2.

The Metropolis-Hastings algorithm can be understood from the so-called detailed

balance condition, which states that

PB(s)π(s→ s′) = PB(s
′)π(s′ → s), (2.20)

where π(s → s′) is the probability of transitioning to state s′ in one step, given that

the current state is s, and π(s′ → s) is the probability of transitioning to state s in

one step, given that the current state is s′.

According to the detailed balance condition, transitions between any two states, s

and s′, occur equally frequently in both directions. Many possible transition probabil-

ities π can satisfy the equation 2.20. Because generating a new state s′ is performed

in two steps, a trial step and an accept/reject step, the transition probability can be

written

π(s→ s′) = α(s→ s′)Pacc(s→ s′), (2.21)

where Pacc(s → s′) is the probability of accepting the transition s → s′. Then, the

equation 2.20 becomes

PB(s)α(s→ s′)Pacc(s→ s′) = PB(s
′)α(s′ → s)Pacc(s

′ → s), (2.22)
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and we obtain

Pacc(s→ s′)

Pacc(s′ → s)
=
α(s′ → s)PB(s

′)

α(s→ s′)PB(s)
=
α(s′ → s)

α(s→ s′)
exp [−β∆E]. (2.23)

In order to maximize the acceptance probability Pacc(s→ s′) we make the choice

Pacc(s→ s′) = min[1,
α(s′ → s)

α(s→ s′)
exp [−β∆E]], (2.24)

which is the acceptance probability of the Metropolis-Hastings algorithm.

It should be noticed that generally, α is not symmetric i.e. α(s→ s′) ̸= α(s′ → s).

However, in the original Metropolis algorithm [11], α is symmetric (α(s → s′) =

α(s′ → s)), and the equation 2.24 simplifies to

Pacc(s→ s′) = min[1, exp (−β∆E)]. (2.25)

where ∆E = E(s′) − E(s). This choice will satisfy the equation 2.20 for both cases

as E(s′) > E(s) or E(s) > E(s′) [3].

2.5 Simulated tempering

Many physical systems have local minima in their energy landscape that are separated

by high energy barriers. As a result, in a standard Monte Carlo or molecular dynamics

simulation, the system can become trapped in one of these local minima, which means

that we cannot explore all configurations. Such kinetic traps will occur, especially

at low temperatures, where the probability of moving to states with higher energies

becomes small.
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One class of algorithms that have been proposed to solve this problem is general-

ized ensemble (GE) methods. These methods aim to enable the system to overcome

high energy barriers and allow the system to sample rare states. Examples include

1/k sampling [13], multicanonical algorithm [14] and simulated tempering [15, 16].

In this thesis, we use simulated tempering.

Simulated tempering works by using Metropolis-Hastings Monte Carlo to sample

from the following non-canonical distribution [17]:

P (s, j) ∝ exp [−E(s)/kBTj + gj], (2.26)

where j = 1, ..., K is a new dynamic variable and T1..., TK is a set of pre-determined

temperature values. By introducing the control variable j, the simulation can ex-

plore both high and low temperatures. Visits to high temperatures will help escape

from local energy minima and enhance sampling at low T . g1, ..., gK is a set of sim-

ulation parameters which control the marginal distribution P (j). An appropriate

set of gj provides a flat P (j), thereby achieving good conformational sampling at all

temperatures.

In simulated tempering, there are thus two types of MC updates: a conventional

conformational update s → s′ and an update in the control variable j → j′. The

acceptance probability for s → s′ updates becomes the same as for the Metropo-

lis algorithm, such as equation 2.24. For the temperature update, the acceptance

probability becomes:

Pacc(j → j′) = min[1, exp [−E(s)∆β +∆g]], (2.27)

where ∆β = 1
kBTj′

− 1
kBTj

and ∆g = gj′ − gj. At a given value of the control parameter
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j, the probability distribution function sampled will be:

P (s|j) ∝ exp [−E(s)/kBTj]. (2.28)

Therefore, conformational states generated at a given j will be distributed according

to the Boltzmann distribution at the temperature Tj. Note, in particular, that the

distribution 2.28 is independent of the simulation parameter gj. Therefore, while the

gj parameters should be set so that all temperatures are reasonably well sampled,

they do not need to be fine-tuned.

2.6 Coarse-graining in molecular simulations

Molecular simulations can be carried out at different levels of resolution. All-atom

simulations have the potential to provide the most accurate results. However, they

are often limited to small systems or short simulation times. One way to tackle this

problem is by using coarse-grained (CG) models. The primary idea behind CG models

is to reduce the representation of the system such that it can be simulated over a longer

time while retaining the essential physics of the system. CG models are using a degree

of simplification that varies depending on the system under study. They also typically

result in faster dynamics, which further speed up conformational sampling [18]. A

challenge with CG models is to formulate an energy function for the reduced system.

Hence, it must be tested against more detailed models or experimental data [19, 20].

A type of coarse-graining that has been used in folding simulations of biomolecules

is so-called Go-type or structure-based models [21]. The interactions in a structure-
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based model are not based on physio-chemical principles. Rather, they are con-

structed so that interactions that are present in a reference structure, typically the

native structure, are made attractive. Other (non-native) interactions are left neutral

or are even made repulsive. Surprisingly, structure-based models have successfully

reproduced detailed experimental data on protein folding [22–28].

In contrast to structure-based models, a sequence-based model has a potential

energy function that depends only on the primary amino acid sequence and is in-

dependent of any particular reference structure. In the following, we describe two

coarse-grained models that are used in this thesis, one sequence-based (Cβ) model

and one structure-based (Cα) model.

2.6.1 Cβ model

Our Cβ model is a coarse-grained sequence-based model with 7 atoms per amino

acid. It has only three amino acid types, which are a simplification of the 20 types

found in nature. One polar amino acid, one hydrophobic amino acid, and glycine.

We denote them h,p, and t, respectively [29]. Different sequences lead to making

different structures. In this method, amino acid sequences can be constructed in the

3-letter code. It should be noticed that not all sequences behave protein-like, as is

the case also for real sequences.

Basic protein design principle can be used to construct sequences with stable

native conformations. For example, a sequence pattern with a hydrophobic (h) amino

acid at every 3 or 4 positions is consistent with amphipathic α-helix. By alternating
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p and h amino acids, it is possible to make amphipathic β-strands. Also, due to

the lack of Cβ atom, turn residues (t) are flexible and can be used to create pliable

turns in a sequence. The Cβ model thus provides a simplified model for the sequence-

structure relationship in proteins. Although the 3-letter sequences are not real, the

native folds that the model produces are protein-like. For example, in Chapter 3 we

study a sequence folding to a β-sheets structure that is similar to the so-called WW

domain [30].

As we mentioned earlier, we use the Cβ model as a framework to investigate the

impacts of crowding on protein thermodynamics. The potential energy function in

this model can be written as:

ECβ
= Eexvol + Elocal + Ehbond + Ehp (2.29)

These four terms represent excluded volume, local partial charge interaction, hydrogen

bonding, and hydrophobic interaction [29]. We will discuss the details of the model

in Chapter 3 and Chapter 4.
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2.6.2 Cα model

In the Cα model, each amino acid is represented by a single interaction site located

at the Cα atom. The structure-based energy function has the following form [22]:

ECα =
∑
bonds

Kb (bi − bni )
2 +

∑
angles

Kθ (θi − θni )
2

+
∑

dihedrals

[
K

(1)
ϕ [1− cos (ϕi − ϕn

i )] +K
(3)
ϕ [1− cos 3(ϕi − ϕn

i )]
]

+
native∑
i<j−3

ϵ

[
5

(
rnij
rij

)12

− 6

(
rnij
rij

)10
]
+

non-native∑
i<j−3

ϵ

(
rrep
rij

)12

. (2.30)

The parameter ϵ sets the energy scale of the model, and bi, θi, ϕi, and rij are virtual

bond lengths, bond angles, torsion angles, and Cα-Cα distance between residues i

and j, respectively. The interaction strengths Kb, Kθ, K
(1)
ϕ , K

(3)
ϕ are identical to

those in Ref. [22]. bni , θ
n
i , ϕ

n
i , and r

n
ij are their values at the native state for a specific

experimentally determined protein structure. Structures can e.g. be provided by

the Protein Data Bank (PDB). To obtain this model’s kinetic and thermodynamic

properties, we use Langevin dynamics, as described in section 2.3.

We use our Cα model in Chapter 5 to study the crowding effect on protein ther-

modynamics and kinetics. In chapter 6, we apply it to study fold-switching proteins.

However, in that case, the model needs to be modified to take into account the two

different native states of metamorphic proteins. We will discuss the details of this

modification in Chapter 6.
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2.7 Scaled particle theory

The scaled particle theory (SPT) is a theoretical framework for understanding the

thermodynamic properties of simple liquids based on the assumption that a hard

sphere potential can approximate the interparticle potential [31]. Lebowitz et al.

first developed the theory in 1960 [32], and it has since been extended by a number

of researchers [33, 34].

In the context of macromolecular crowding, SPT can be used to consider non-

ideality arising from the presence of cosolutes. This theory assumes that the interac-

tion energy between molecules is purely repulsive. The usefulness of SPT comes from

providing a point of comparison to experimental [35, 36] or computational data [37].

The SPT provides a way to calculate the thermodynamic properties in the context

of the hard-sphere model. One important application of SPT is to calculate the free

energy of inserting a hard sphere of radius R in a hard sphere fluid of particles with

radius Rc, as illustrated in Fig. 1.1. The free energy is given by [32]:

βF = (3y + 3y2 + y3)ψ + (
9y2

2
+ 3y3)ψ2 + 3y3ψ3 − ln(1− ϕc) , (2.31)

where y = R
Rc
, ψ = ϕc

1−ϕc
, and ϕc is fluid volume fraction. We discuss equation 2.31 in

Chapter 6 and show how to calculate changes to fold switching due to crowding by

SPT.

SPT has been applied to a range of problems in soft matter physics, including the

behavior of colloids [38], polymers [39–41], and liquid crystals [42]. While the theory

is based on a number of simplifying assumptions, it has proven to be a useful tool for
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understanding the behavior of simple liquids. It has provided insight into a number

of important phenomena, such as the nature of the phase transition [43].

43



Bibliography

[1] D. Chandler. Introduction to modern statistical mechanics. Oxford University

Press, USA, first edition, 1987.

[2] R. Swendsen. An introduction to statistical mechanics and thermodynamics. Ox-

ford University Press, USA, first edition, 2020.

[3] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms

to applications. Elsevier, 2001.
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Chapter 3

Crowding-induced protein

destabilization in the absence of

soft attractions
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Abstract

It is generally expected that volume exclusion by macromolecular crowders univer-

sally stabilizes the native states of proteins, and destabilization suggests soft attrac-

tions between crowders and proteins. This expectation is based on the assumption

that the unfolded state, U, is a conformational ensemble that is extended under all

conditions and thereby becomes entropically disfavored relative to the native state, N,

under crowded conditions. Here we show that proteins can be left neutral or even be

destabilized by crowders that are purely repulsive. With a coarse-grained sequence-

based model, we study the folding thermodynamics of three sequences with different

native folds, a helical hairpin, a 5-stranded β-barrel, and a 3-stranded β-sheet, in

a range of crowder volume fractions, ϕc. We find that, for all three sequences, N

remains structurally unchanged under all studied crowded conditions, while the size

of the unfolded state, U, decreases with ϕc. A simple entropy-centric view holds for

the helical hairpin protein, which is stabilized under all crowded conditions as quan-

tified by changes in either the folding midpoint temperature, Tm, or the free energy of

folding. Although the size of U is temperature dependent, it is always large enough

to be entropically disfavored relative to N, leading to a general stabilization of the

protein. We find, however, that the stability of the β-barrel protein is not affected

strongly under any conditions, and the 3-stranded β-sheet protein is destabilized by

crowders at low T s. This destabilization of the β-sheet protein can be understood

from a highly compact U at low T , which is even more compact than the rather open

native structure for this protein, such that U is entropically favored over N. At higher

T s, U is more expanded than N at ϕc = 0. Destabilization by repulsive crowders
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is nonetheless possible at these higher T s due to the crowding-induced compaction

of U, which increases the fraction of U conformations that occupy highly compact

non-native conformations.
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3.1 Introduction

Many valuable advances in protein biophysics have come from experiments on proteins

in dilute solutions. However, the native environment of proteins, i.e., the cell interior,

is spatially inhomogeneous and highly crowded [1]. A substantial fraction of this

space is occupied by macromolecules. They can occupy up to 40% of a cell’s volume

and reach concentrations of 100-400 g/L. [2]. Macromolecular crowding effects have

been shown to impact a range of protein processes, such as folding [3], aggregation [4],

and liquid-liquid phase separation [5].

An unavoidable consequence of macromolecular crowders is that they reduce the

volume available to other molecules in the solution [6]. Minton was first to quantify

the impact of this excluded volume effect on protein stability, predicting it to be

universally stabilizing [7]. Experiments using artificial polymer crowders, such as

Ficoll, dextran or polyethelene glycol, as excluded volume agents, indeed very often

stabilize proteins as indicated by, e.g., an increase in the free energy of unfolding

or the folding midpoint temperature [8–15]. Some exceptions have also been found

[11, 16–18]. For example, the protein apoazurin exhibits a decreased unfolding free

energy at low concentrations of Ficoll-70 [18]. Computational studies [19–26] have also

examined the effect of volume exclusion on protein stability, showing results that range

from negligible to robustly stabilizing depending on crowding conditions and protein

studied. Most of these computational studies, although not all [20], relied on so-

called structure-based or Gō-type [27] models for folding in which attractive nonnative

interactions are typically ignored. To the best of our knowledge, no computational
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crowding study has reported a decrease in protein stability from purely repulsive

crowders.

More recent experiments [28–32] and theory [32, 33] have shown that the stabiliz-

ing effect of hard-core steric repulsions can be opposed by nonspecific soft attractions

or “chemical” interactions between crowders and protein, by energetically favoring

the unfolded state. These soft attractions can even dominate over hard-core effects,

leading to a net destabilization [31], which appears to be common when the crowder

molecules are proteins [34–36]. As showed by Zhou [33], soft attractions may lead to

a cross-over temperature, Tcross, at which crowding effects switch from destabilizing

(T < Tcross) to stabilizing (T > Tcross). Examining the temperature dependence has

provided additional insights by allowing the enthalpic and entropic components of the

unfolding free energy to be determined. In the case of artificial polymer crowders,

stabilization was in some cases found to be driven by enthalpy rather than entropy,

contrary to the expectation of the excluded volume effect [10, 29, 32]. These results

have been interpreted in terms of a preferential hydration effect [29, 37], akin to

the protective mechanism of osmolytes [38], in which the crowders are preferentially

excluded from the protein-water interface.

Here, we revisit the issue of the excluded volume effect on protein folding and

stability, focusing on the role of nonnative interactions in folding. To this end, we

use a coarse-grained model [39] for folding with 3 amino acid types, and a potential

energy function based on hydrogen bonding and effective hydrophobic attractions.

In this model, sequences can be designed using basic design principles [40] to fold

into thermally stable states with protein-like native structures. As a focus of our
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study, we take two 35- and one 25-amino acid sequences [41, 42] (see Table 1) that

adopt a helical hairpin, a 5-stranded β-barrel, and a 3-stranded β-sheet structure, as

shown in Fig 3.1A-C. We study their folding in the presence of spherical crowders

with purely repulsive interactions. Under excluded volume crowders, α35 is always

stabilized, β35 is stabilized at high T s but neither stabilized nor destabilized at low

temperatures. Unexpectedly, we find that the 3-stranded β-sheet structure protein

is destabilized at low temperatures and high volume fraction of crowders, contrary

to the expectation of the excluded volume effect. Our results can, however, be fully

rationalized by a crowder-driven population shift towards more compact states, both

native and nonnative.

α35 p(phpphhp)2ptttp(phpphhp)2p

β35 p(hp)3tt(ph)2(hp)3tt(ph)2tt(hp)3

β25 (ph)3tt(hp)4tt(ph)3p

Table 3.1: Amino acid model sequences.

The three amino acid model sequences studied in this work. The three types of amino acids, p

(polar), h (hydrophobic) and t (turn), are described in Methods. Subscripts are used to indicate

repeats. For instance, (ph)2 means phph.
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3.2 Materials and Methods

3.2.1 Excluded volume crowders

We model crowder-protein and crowder-crowder interactions using the pair potential

suggested by Mittal and Best [24],

V (r) = kcr

(
σ

r − ρ+ σ

)12

, (3.1)

where r ≥ ρ − σ is the center-to-center distance either between two crowders or

between a crowder and a protein atom. For r < ρ− σ, V is taken to be infinite. The

two parameters ρ and σ control, respectively the range and softness of the interaction,

as illustrated in Fig. A1. For crowder-crowder pairs, we set ρ = 2Rc and σ = 2σcr,

where Rc is the crowder radius and σcr = 3 Å is a parameter setting the softness

of the crowders. The choice of ρ and σcr are the same as Mittal and Best[24]. For

crowder-atom pairs, we set ρ = Rc + σa and σ = σcr + σa, where σa is the atom

radius. The interaction strength is set to kcr = 1.0. As typical, we describe the

concentration of crowders with the fraction of the total simulation volume V occupied

by the crowders, ϕc = 4πR3
cNcr/3V . The number of crowding particles in our protein-

crowder simulations range from Ncr = 6 for ϕc = 0.10 and the largest crowder (Rc =

16 Å) to Ncr = 207 for ϕc = 0.44 and the smallest crowder (Rc = 8 Å).
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3.2.2 Coarse-grained model for protein folding in the pres-

ence of crowders

As a model for protein folding, we use the coarse-grained “Cβ-model” developed in

Ref. [39], which includes three types of amino acids: hydrophobic (h), polar (p), and

turn (t). While this three-letter alphabet is limited, it suffices to construct sequences

with amphipathic secondary structure character. For example, repeats of the α-

segment phpphhp can produce amphipathic α-helices and repeats of the β-segment

ph can produce amphipathic β-strands. Such segments can be further organized into

higher-order, tertiary structures through hydrogen bonding and effective hydrophobic

attraction. We study three sequences: α35, constructed from two identical 16-amino

acid α-segments linked by ttt; β35, five β-strand type segments, e.g., phphph, linked by

four tt-segments; and β25, constructed similarly to β35 but with only three β-segments,

linked by two tt-segments (see table 3.1). In our model, α35 folds spontaneously into

a stable helical hairpin [42], β35 fold into a stable 5-stranded β-barrel and β25 folds

into a 3-stranded β-sheet structure.

Geometrically, the Cβ-model includes seven atoms per amino acid. All backbone

atoms are explicitly included (N, Cα, C′, H, Hα1, and O) while the sidechain is

represented by a single large Cβ-atom. In contrast to p and h, type t lacks a Cβ atom,

which is replaced by an Hα2 atom. Hence, t strongly resembles a glycine residue. All

bond lengths and angles and some dihedral angles (e.g. the peptide plane angle

ω = 180◦) are held fixed at standard values. As a result of these constraints, the

internal conformation of a chain with N amino acids is completely specified by the
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2N Ramachandran angles {ϕi, ψi}Ni=1.

To incorporate crowders we extend here the Cβ-model energy function Epr [39] to

include also terms for crowder-crowder (Ecr) and crowder-protein (Ecr-pr) interactions.

The total energy function is thus E = Epr + Ecr + Ecr-pr. Crowder interactions

are assumed to be pairwise additive and modeled with the pair potential V (r), as

described in section 3.2.1. Hence, for a system with Ncr crowders and Na protein

atoms,

Ecr =
Ncr∑
i<j

V (rij) (3.2)

and

Ecr-pr =
Ncr∑
i

Na∑
j

V (rij) , (3.3)

where rij is the center-to-center distance between the crowder i and crowder j (Eq. 3.2)

or between crowder i and protein atom j (Eq. 3.3).

The Cβ-model energy function, Epr = Ehp +Ehbond +Eexvol +Eloc, is described in

the following (see also Ref. [39]). The first term,

Ehp = −khp
∑
ij

e−(rij−σhp)
2/2 , (3.4)

describes effective hydrophobic interactions. The sum goes over all pairs of hydropho-

bic Cβ atoms, excluding nearest and next-nearest amino acid neighbors along the

chain. The strength of hydrophobicity is khp = 0.805, and the energetically optimal

Cβ-Cβ distance is σhp = 5 Å. The second term represents hydrogen bonding between

NH and C′O groups and can be written

Ehbond = khbond
∑
ij

γij

[
5

(
σhb
rij

)12

− 6

(
σhb
rij

)10
]
× (cosαij cos βij)

1
2 , (3.5)
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where the sum is over all CO and NH pairs, but with the restriction that i and j are

separated by at least two CO groups or two NH groups, and the strength is controlled

by khbond = 3.1. The strength is modified by a sequence-dependent scale factor taken

to be γij = 1 for hh, hp, and pp pairs, and 0.75 for tt, th, and tp pairs. The reduced

hydrogen bonding capacity of t amino acids is meant to mimic the tendency for glycine

residues to break secondary structure through weaker hydrogen bonds [43]. For a

hydrogen bond the optimal HO distance is σhb = 2.0 Å. A directional dependence is

implemented via the factor (cosαij cos βij)
1
2 , where αij and βij are the NHO and HOC′

angles, respectively. Additionally, for any bond with either αij < 90◦ or βij < 90◦,

the bond contribution is set to zero. The third term is the excluded volume energy,

which can be expressed as

Eexvol = kexvol
∑
i<j

(
λijσij
rij

)12

, (3.6)

where the kexvol = 0.10. The sum is taken over all pairs of atoms ij connected by more

than 2 covalent bonds. The scale factor λij = 1.00 for atom pairs connected by three

covalent bonds. With two exceptions, all other global atom pairs have λij = 0.75.

The two exceptions are carboxyl OO pairs and amide HH pairs for which λij = 1.00

and 1.25, respectively. The reduction factor λij = 0.75 for most global pairs is meant

to accommodate the reduced flexibility of a chain with fixed bond lengths and angles.

The parameter σij = σi + σj is the sum of i and j atom radii, taken to be 1.75, 1.42,

1.55 and 1.00 Å for carbon, oxygen, nitrogen, and hydrogen atoms, respectively. An

exception is Cβ-Cβ pairs for which σij = 5.0 Å, thereby accounting for some of the

bulkiness of sidechains. The last term captures local interactions between partial
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charges in adjacent peptide planes,

Eloc = klocal
∑
I

∑
i,j

qiqj

rij/Å
, (3.7)

where the strength is klocal = 50 and the partial charges qi are −0.2, +0.2, +0.42,

−0.42 for N, H, C
′
, and O, respectively. The outer sum is over all amino acids I and

the inner sum over the NC
′
, NO, HC

′
, and HO atom pairs of amino acid I.

3.2.3 Simulated tempering Monte Carlo

To find the thermodynamic behavior of various protein-crowder systems, as deter-

mined by the amino acid sequence, number of crowders, and the energy function

E(r), we use simulated tempering Monte Carlo (MC) [44–46]. In addition to a ran-

dom walk in conformational space, as in basic Monte Carlo, simulated tempering also

carries out a random walk in temperature while keeping the simulation at equilib-

rium. This is achieved by defining a set of temperatures, {Tj}Mj=1, and simulating the

joint probability distribution

P (r, j) ∝ e−βjE(r)+gj , (3.8)

where βj = 1/kBTj, kB is Boltzmann’s constant, and j has been made a dynamic pa-

rameter. The gj’s are M simulation parameters that control the marginal distribution

P (j). Jumps between temperatures, j → j′, are accomplished as MC updates, with

acceptance probability

Pacc(r, j → j′) = min
[
1, e−E(r)(βj′−βj)+gj′−gj

]
. (3.9)
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A common choice for the gj parameters, which we follow here, is to select them such

that P (j) is roughly flat, ensuring that sampling of conformations takes place at each

temperature Tj.

3.2.4 Simulation and analysis details

Protein and crowders are placed in a V = 100×100×100 Å3 box with periodic bound-

ary conditions. Crowder positions are updated using single-particle translational MC

moves, with random direction and maximum distance 8.7 Å. Two different types of

MC moves are used for the protein chain: pivot moves and Biased Gaussian Steps

(BGS) [47]. In pivots, a single ψi or ϕi angle is chosen and assigned a new random

value. This rotates the chain around a NCα bond or a CαC
′ bond, respectively. In

BGS, eight consecutive ψi, ϕi angles are changed in a coordinated way to provide a

roughly local chain deformation. The frequency of different updates are chosen as

follows. Updates are divided equally between crowder particles and protein. The

relative frequency between pivots and BGS is chosen to be temperature dependent,

such that pivot dominates at high T and BGS dominates at low T . Temperature

updates at attempted every 100 MC steps.

Simulated tempering runs for protein-crowder systems are carried out using eight

and ten different temperatures in the range kBT = 0.48–0.68 for α35 and kBT = 0.40–

0.70 for β35 and β25. For each system with crowders, 8-10 independent runs are

carried. Each simulation has at least 5 × 108 elementary MC steps for α35 and

4 × 109 elementary MC steps for both β-proteins. Initial conformations are created
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by picking a random protein conformation and random crowder positions, followed by

a relaxation step in which hard core steric clashes involving the crowders are removed.

Statistical analysis is carried out using the multistate Bennett acceptance ratio

(MBAR) technique [48], which optimally combines statistics from different thermo-

dynamic conditions. Respectively, we apply MBAR to combine the statistics from

the 8 and 10 different Tj-values for α35 and both β proteins in our simulated temper-

ing runs, and use it to determine the thermodynamic averages of various observables

at narrowly spaced temperatures in the range kBT = 0.40–0.70 for all sequences.

Since for α35 the range of simulated values is kBT =0.48–0.68, the MBAR analysis

involves an extrapolation to the range kBT =0.40–0.70. Separate test simulations of

β25, covering a wider temperature range, confirm that the MBAR extrapolation is

valid. Statistical errors are estimated from the 8-10 independent runs.

3.2.5 Observables

The number of native contacts is defined by Qnat =
∑

i<j−3∆ijCij, where the sum

goes over pairs of residues ij, and ∆ij = 1 if ij has formed a contact and 0 otherwise.

A contact between amino acids i and j is considered formed if the distance between

their Cβ atoms is < 7 Å (positions with a t amino acid type, which lacks a Cβ atom,

do not contribute towards contact counts). The native contact set, C, is defined so

that Cij = 1 if ij is a native contact, and otherwise 0. We use the native contact sets

taken from our previous study [41]. We define the native state as Qnat ≥ Qcut, where

Qcut = 50, 68 and 33 for α35, β35, and β25 respectively. For β35 and β25, Qcut was
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selected based on the peak in the free energy barrier along the order parameter Qnat,

as shown in Ref. [41]. For α35, which does not exhibit a clear folding barrier, Qcut

is selected such that the folding midpoint temperature, T 0
m, roughly coincides with

the temperature TCv,max at the maximum in the heat capacity curve (see Fig. A2).

For Qcut = 50, we obtain T 0
m/TCv,max = 0.988). The number of nonnative contacts

is determined from Qnonnat = Q − Qnat, where Q =
∑

i<j−3∆ij is the total number

of contacts. The root-mean-square deviation, RMSD, is determined over all Cα-

atoms. As a reference (native) structures for α35 and β35, we pick the lowest energy

conformations found from simulations with no crowders. These reference structures

are similar to those shown in Fig 3.1.

3.3 Results

3.3.1 Native structures are not changed by crowders

Using the model for protein folding and the Monte Carlo sampling techniques de-

scribed in Methods, we determine the thermodynamic behavior of the three model

sequences, α35, β35, and β25 given in Table 1, in the presence of crowders with radii

Rc = 12 or 8 Å and volume fractions in the range 0 ≤ ϕc ≤ 0.44. The crowders

are comparable in size to the native structures of all three sequences, which have

radii of gyration ranging from ≈ 8-9 Å. The radii of gyration of the unfolded state

depends on T , as will be shown, but are for α35 and β35 in the range ≈14-15 Å and for

β25≈10-12 Å, at high temperatures. The excluded-volume effect is expected to affect
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proteins when the concentration of crowders is high and the crowder size is similar,

or smaller, that of the protein [49]. Because β25 is a shorter chain than α35 and β35,

our main analysis is carried out with crowders of size Rc = 12 Å for α35 and β35 and

Rc = 8 Å for β25.

As a first step in our analysis, we examine the temperature dependence of the

native state population, Pnat, in the absence of crowders (ϕc = 0), as shown in

Fig. 3.1(D-F). For all the model proteins, the equilibrium folding curve is well de-

scribed by a two-state equation, with only two free fit parameters (see Fig. A3). One

of the free parameters is the folding midpoint temperature, T 0
m. We find (in model

units) kBT
0
m = 0.535, 0.517, and 0.495 for α35, β35, and β25 respectively. In calculating

Pnat, we define the native state, N, as Q ≥ Qcut, where Q is the number of native

contacts, and Qcut is chosen as described in Methods.

For simulations at ϕc > 0, the protein chain must avoid overlapping with the hard

cores of the crowding particles. Conversely, of course, the crowders must similarly

avoid the protein chain. Because the volume available to the crowders is reduced

when the protein is expanded, compact conformations will be entropically favored

under crowded conditions. In our model, atoms on the protein chain can penetrate

the soft shell of the crowder particles at an energetic cost. The thickness of this

soft shell is controlled by a softness parameter, which we hold fixed at σcr = 3.0 Å

(see Methods). At this σcr, the total protein-crowder and crowder-crowder repulsive

energy, Ecr-pr+Ecr-cr, turns out to be small. For example, for Rc = 12 Å and ϕc = 0.20,

this repulsive energy per crowding particle is ≈ 0.1kBT .
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Figure 3.1: Folding curves and native structures. Representative low-energy conformations from

Monte Carlo simulations of (A) α35, (B) β35, and (C) β25 in the presence of excluded volume crowders

(blue spheres). The protein structures are shown in ribbon representation and rainbow color scheme

(from N-terminus in blue to C-terminus in red). The native state population, Pnat, as a function of

temperature, for (D) α35, (E) β35, and (F) β25 in the absence of crowders (open black squares) and

in the presence of crowders with radius Rc = 12 Å (α35 and β35) and radius Rc = 8 Å (β25) and

volume fraction ϕc ≈ 0.40 (solid green squares). Solid curves are obtained by using the multistate

Bennett acceptance ratio (MBAR) reweighting technique [48]. Statistical errors are smaller than

the plot symbols.
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We find that the folding curves for the ϕc = 0 and ϕc > 0 cases are generally

different, as illustrated in Fig. 3.1D-F (the folding curves for all ϕc values are given

in Fig. A4). For all studied ϕc, Pnat ≈ 1 at very low T . We conclude that for

ϕc ≤ 0.40 the α35, β35, and β25 native structures are not substantially perturbed by

the crowders.

3.3.2 Nonnative interactions are promoted under crowded

conditions

Figure 3.2 shows the number of nonnative contacts, Qnonnat, as a function of tem-

perature across different ϕc. It is clear that Qnonnat increases monotonically with ϕc

except at very low T . Interestingly, for all model proteins, the Qnonnat curve exhibits

a peak at intermediate T , which can be understood in the non-crowding case in the

following way. At high T , the chain is in an entropy dominated state with contacts

formed and unformed basically at random, leading to a mix of native and nonnative

contacts. The total number of contacts, Qnat + Qnonnat, is not maximal at this T ,

however, because the chain is expanded (see section 3.3.5). As T decreases, Qnonnat

initially increases because the chain becomes more compact but then abruptly de-

creases when T approaches T 0
m due to folding (and Qnat abruptly increases). The net

result is a peak in Qnonnat at T ≈ 1.05Tm for both α35 and β35, and T ≈ 1.08Tm for

β25. As it turns out, the Qnonnat peak remains under crowding conditions. Overall,

we find that the excluded volume crowders generally promote the formation of non-

native interactions, except at very low T where the native state is thermodynamically
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dominant. We note that the increase in Qnonnat with ϕc is more than linear, as shown

in Fig 3.2(insets).
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Figure 3.2: Formation of nonnative interactions under crowded and non-crowded conditions. Num-

ber of nonnative contacts, Qnonnat, as a function of temperature for (A) α35 and (B) β35, and β25 at

different crowder volume fractions ϕc. Insets: Qnonnat as a function of ϕc (solid circles) and fits to

Qnonnat ∝ ϕc
γ , giving γ = 1.8 for α35, γ = 1.9 for β35, and γ = 1.6 for β25, (dashed curves) taken at

kBT = 0.588 for α35, kBT = 0.569 for β35, and kBT = 0.545 for β25, in α35 and β35 corresponding

to a temperature T ≈ 1.10T 0
m and to a temperature T ≈ 1.13T 0

m for β25. Results are for Rc = 12 Å

in α35 and β35 and for Rc = 8 Å in β25.

3.3.3 Excluded volume crowders can both increase and de-

crease native state stability

We turn now to the effect of crowders on the stability of α35, β35, and β25. Because

crowding effects can be strongly dependent on solution conditions [11, 33], we examine

stability changes at two different temperatures, above (T+ = 1.05T 0
m) and below
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(T− = 0.95T 0
m) the folding midpoint temperature in the absence of crowders (T 0

m).

As a direct measure of stability, we use the free energy of folding,

∆F = FN − FU = −kBT ln
Pnat

1− Pnat

, (3.10)

where FN and FU are the free energies of the native and unfolded states, respectively,

and we have assumed that the unfolded state population is 1−Pnat. Figures 3.3A and

B show the crowding-induced change in the free energy, ∆∆F (ϕc) = ∆F (ϕc)−∆F 0,

where ∆F 0 = ∆F (ϕc = 0), as a function of ϕc. At T+, ∆∆F is negative for all

sequences in all ϕc, indicating stabilization, except for β25 at the highest packing

fraction ϕc = 0.44 (See Fig. 3.3B). At T−, the situation is more complex. The

stability of α35 increases with ϕc as indicated by a monotonically decreasing ∆∆F

(see Fig 3.3A). The β35 sequence is neither stabilized nor destabilized at T− since

∆∆F is almost zero except at ϕc = 0.30−0.40 for which there is a subtle stabilization.

The β25 sequence is destabilized at packing fractions ϕc ≥ 0.30 as shown by positive

∆∆F (see Fig 3.3A). In terms of the midpoint temperature Tm, over the entire range

of volume fractions ϕc = 0.0 − 0.40, α35 and β35 are stabilized as indicated by an

increase in Tm. The β25 protein, as assessed by Tm, exhibits a weak stabilization at

low ϕc but a sharp turn towards destabilization at ϕc ≈ 0.30, in line with the picture

obtained from considerations of ∆∆F at T−. In particular, we note that, at the

highest studied packing fraction, ϕc = 0.44, β25 is destabilized at both T− and T+

and in terms of both ∆∆F and Tm.
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Figure 3.3: Effect of crowding on native state stability and folding cooperativity. Change in the

free energy of folding, ∆∆F = ∆F −∆F 0, as a function of ϕc, at temperatures (A) T− = 0.95T 0
m

and (B) T+ = 1.05T 0
m. ∆∆F < 0 indicates stabilization. (C) Midpoint folding temperature, Tm,

and (D) maximum heat capacity, Cmax
v , as functions of ϕc, where the heat capacity is determined

from Cv =
(〈
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− ⟨E⟩2

)
/kBT

2. Results are shown for α35 (filled circles) and β35 (open squares).

∆F 0, T 0
m and Cmax,0

v are the ϕc = 0 values of ∆F , Tm and Cmax
v , respectively. The crowder radius

is Rc = 12 Å for α35 and β35 and Rc = 8 Å for β25. Dashed lines between points are drawn to guide

the eye.
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3.3.4 Crossover temperature

The temperature-dependent crowding effect for β25 (cf. Fig 3.3A-C) suggests there is

a temperature, Tcross, such that crowders enhance stability at T > Tcross but reduce

stability at T < Tcross. The β25 sequence does indeed exhibit such a crossover temper-

ature, as seen in Fig 3.4C. The crossover temperature kBTcross = 0.50 turns out to be

similar to Tm at ϕc = 0.40. The α35 sequence does not have a crossover temperature

because it is always stabilized, even though the magnitude of the stabilization is still

temperature dependent (see Fig 3.4A). Also, β35 appears to cross over into the desta-

bilizing regime ∆∆F > 0 at low T (see Fig. 3.4B), but it may not be statistically

significant. The situation for β25 can be compared to that of ubiquitin, which was

studied in the presence of synthetic (PVP or Ficoll) and protein (BSA or lysozyme)

crowders [11]. Crossover temperatures were later determined for these systems [33].

For example, Tcross for ubiquitin in the presence of Ficoll at concentration 100 g/L

was estimated to be 301 K, much lower than the folding midpoint temperature of

this protein (370 K). The existence of Tcross was proposed to originate from “soft”

attractive interactions between protein and crowders [33]. That such soft attractions

can occur in the case of protein crowders is by now well established [1, 20, 36]. It is

much less clear, however, if they occur for all synthetic crowders. Our results demon-

strate that destabilization at low T can occur even in the absence of protein-crowder

attractions.
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3.3.5 Compact β25 unfolded state allows for crowding induced

destabilization at low T

In order to understand the distinct responses of α35, β35, and β25 to crowded condi-

tions, we examine more closely the character of the folding transition (see Fig 3.5.).

All proteins undergo a chain collapse at low T , as seen Fig 3.5A, C and E (solid

curves). At the highest studied T , the (average) radius of gyration of α35 and β35 is

Rg ≈ 14–15 Å, which can be compared with the value ≈ 15.6 Å obtained from the

scaling law Rg = R0N
ν where R0 is a constant and ν = 0.588, which holds for fully

chemically denatured proteins [50]. For β25, Rg ≈ 12 Å at the highest T , compared

to 12.8 Å from the scaling law. Hence, all three sequences transition from a random

coil at high T to a much more compact folded state at low T .

It is instructive to consider also the size of the folded (RN
g ) and unfolded (RU

g )

state ensembles. In particular, the size (and shape) of the unfolded state is important

for how volume exclusion affects protein stability [51]. The unfolded state is very

sensitive to temperature changes (see Fig 3.5A, C, E). For all three sequences above

Tm, the unfolded state becomes increasingly compact as conditions become more

stabilizing. Below Tm, β35 and β25 unfolded states remain compact following the

chain collapse, while a re-expansion occurs for α35, i.e., the unfolded state becomes

more expanded with decreasing T . This explains why α35 exhibits robust stabilization

at both high and low T s (see Fig. 3.4A), and an increase in Tm (see Fig. 3.3C). It also

highlights the need for measuring crowding-induced stability changes over a range of

temperatures [11].
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Figure 3.5: Effect of crowders on the size of the native and unfolded states. The average radius of

gyration, Rg, of (A) α35, (C) β35, and (E) β25 as a function of temperature (solid curves). Shown

are also Rg determined over the unfolded (RU
g , dashed) and native (RN

g , dotted) ensembles. For β25,

RU
g < RN

g for temperatures below T = 0.503/kB. Estimates of RN
g become unreliable at kBT ≳ 0.6

due to the small native state population at these T s, especially for β25 and β35. The change in

unfolded state radius of gyration, ∆RU
g (ϕc) = RU

g (ϕc)−RU
g (ϕc = 0), as function of ϕc, for (B) α35,

(D) β35 and (F) β25, taken at the highest (kBT = 0.70, circles) and lowest (kBT = 0.40, triangles)

studied temperatures. 73



Visual inspection of structures reveals that unfolded α35 is characterized by a par-

tial or complete opening of the helical hairpin. As T decreases, the two α-helices

become increasingly stable on their own and thus stiffer. At very low T , these stiff

helices are unable to accommodate a hydrophobically collapsed unfolded state, but

must instead dissociate while remaining well formed, which causes RU
g to increase.

For β35 at low T , the unfolded state is almost as compact as the native state (see

Fig. 3.5C), as assessed by Rg, which is in line with the close-to-neutral effect on sta-

bility from the crowders. Low-T unfolded β35 structures are characterized by a partial

loss of the β-barrel organization, with one or two strands detached. These strands

remain close to the remaining part of the barrel through hydrophobic attractions,

which are strong at low T in our model, thereby leaving RU
g small.

The average Rg of the β25 unfolded state at the lowest studied temperature is ≈

8.8 Å (see Fig. 3.1E). Hence, at this temperature, the Rg for the β25 unfolded state is

slightly smaller than for the native state, as assessed using either the average value

taken over the native state ensemble (Rg = 9.4 Å; see Fig. 3.5E) or the value of the

native conformation (Rg = 9.5 Å; See Fig. 3.1C). For β25, this unusual situation,

in which the unfolded state is more compact than the native state, persists until the

temperature reaches approximately Tm (see Fig. 3.5E). It is made possible by the

combination of a relatively open native structure for this sequence (see Fig. 3.1C)

and a compact unfolded state. Visual inspection of low-T unfolded β25 structures

reveal a β-sheet rich state with two common features: (1) nonnative arrangements of

the three β-strands, e.g., β-sheet structures with the N-terminal strand (residues 1-6)

connected to the C-terminal strand (residues 19-25); and (2) the presence of β-hairpins
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with hydrogen bonds between strands that are out-of-register, i.e., with β-hairpins

with turns occurring at position different from that of the native structure. Overall,

in the presence of excluded volume crowders, an expanded state will typically become

more compact. The β25 unfolded state is already compact at low T s (see Fig. 3.5E),

and it will be basically unaffected by crowders (see Fig. 3.5F).

3.3.6 How is β25 destabilized by crowders at T+?

As mentioned above, we showed that the β25 unfolded state is slightly more compact

than its native state at low T s. Accordingly, the crowder-induced destabilization of

β25 at low T s is easily understood. However, β25 is also destabilized at T+, where

the radius of gyration of the unfolded state is larger than that of the native state.

Specifically, at this temperature, RU
g = 9.4 Å while RN

g = 9.1 Å. Then, how can β25

be destabilized under these conditions?

Crowding-induced protein destabilization must arise from a shift in the protein’s

conformational ensemble such that the population of the native state decreases rel-

ative to other states. For crowders with soft attractions, such a population shift

away from the native state can be driven by favorable crowder-protein interactions

that energetically stabilize the unfolded state. In order to grasp the reason why β25

is destabilized in high temperatures and ϕc = 0.44, (see Fig. 3.3B), it is necessary

to consider the compactness of the unfolded state and its population relative to the

native state.

As shown in Fig 3.6, at ϕc = 0, there is a small but nonnegligible population of
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unfolded conformations that are more compact than the native structure. The fact

that RU
g > RN

g at this temperature is due to a rather long tail in the unfolded state

distribution at high values of Rg. Naturally, such a high-Rg-tail is absent from the

native state, which requires conformations to be highly compact. Upon the addition

of crowders, there is a shift in the unfolded state ensemble towards more compact

conformations. In particular, this shift almost entirely removes the high-Rg tail of

the distribution (see Figure 3.6B). At ϕc = 0.44, RU
g is less than RN

g . At this volume

fraction the average radius of gyration for the unfolded state is RU
g = 7.9 Å compared

to RN
g = 8.6 Å for the native state, which explains the destabilization. The shift

towards more compact conformations can also be seen by considering the fraction of

unfolded (nonnative) conformations that are more compact than the native structure

(i.e., with Rg < RN
g , where R

N
g is determined at ϕc = 0), which is ≈ 40 % at ϕc = 0,

and increases by more than a factor of 2 to ≈ 90 % at ϕc = 0.44. Note that this

fraction slightly exaggerates the compactedness of nonnative conformation relative to

the native state, because RN
g decreases slightly with increasing ϕc.

Additional insight about the conformational ensembles can be found by consid-

ering the free energy surfaces F (RMSD, Rg), where the root-mean-square deviation

RMSD is taken with respect to the native structure, as shown in figure 3.7 (A-F) for

β25 and α35. α35, which is a sequence that is stabilized by the crowders at all T s,

exhibits large-RMSD (hence unfolded) conformations that are extended (high Rg).

By contrast, such conformations are absent for β25 at very low T s. At T ≈ Tm for

β25, extended large-Rg conformations do occur but these can be suppressed by the

crowders (see Figure 3.6), leading to destabilization at high enough ϕc.
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is taken with respect to the representative native structure of α35 and β25(see Fig. 1A and C).
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3.3.7 Apparent stabilization effect is observable dependent

Finally, we examine the folding progress in variables other than Pnat. Figure 3.8

shows the ϕc-dependence of the end-to-end distance, Ree, and the secondary structure

content. We note especially that the destabilization of β25 is not apparent in Ree,

which follows a trend closely related to that of Rg. Examining the secondary structure

for β25 shows the β-structure content is rather insensitive to an increase in the crowder

concentration for ϕc ≤ 0.40, but there is a detectable change at ϕc = 0.44 (see

Fig. 3.8 D). This change thus coincides with the decrease in Pnat at T
+, which occurs

at ϕc = 0.44 (see Fig. A4).

3.4 Discussion

It was first realized on theoretical grounds that the native state of proteins should be

stabilized by the presence of surrounding macromolecules if these macromolecules are

inert and simply occupy space [7]. The reason is that the unfolded state, on account of

its conformationally expanded character, will leave a smaller volume for the crowder

molecules to occupy than the volume left by the more compact native conformation.

As a result, the native state will be entropically favored relatively to the unfolded

state, which should stabilize the protein. Indeed, there is wide support for at least a

moderately stabilizing effect from experiments [8–16], and from theory [19–25, 34].

However, as noted by Minton [52], the above theoretical argument can be applied

not just to the native state but to any compact nonnative state, which will also be sta-
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Figure 3.8: Impact of crowding on secondary structure content and end-to-end distance. Averages

of (A, B) end-to-end distance, Ree, (C) number of helical amino acids, Nα, and (D) number of

β-sheet amino acids, Nβ , as functions of temperature, shown for α35 and/or β25 and different ϕc as

indicated. In determining Nα and Nβ , a residue position i is classified in the following way: a helical

state if −90◦ < ϕi < −30◦ and −77◦ < ψi < −17◦, and a β-sheet state if −160◦ < ϕi < −50◦ and

100◦ < ψi < 160◦, where the ϕi and ψi are the Ramachandran angles of residue i. Ree is the Cα-Cα

distance between the terminal amino acids.
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bilized relative to more expanded conformations. Indeed, compaction of the unfolded

state ensemble under crowding has been observed for several proteins [13, 53, 54],

although an exception was recently found [55]. Intrinsically disordered proteins also

tend to become more compact under crowded conditions [56]. Even for a strictly two-

state protein, the excluded volume effect is not expected to be strongly stabilizing

if nonnative, attractive interactions result in a collapsed unfolded state. Computer

simulations of structure-based models for protein folding, which do not permit en-

ergetically favorable nonnative interactions within the protein, consistently lead to

enhanced stability along with compaction of the unfolded state [23–25].

The perspective provided by our model is partly different in that it takes into

account attractive nonnative (intra-protein) interactions. We have found that such

nonnative interactions during folding become increasingly prevalent with increasing

crowder concentration, even when the native structure is left structurally unchanged.

Moreover, these nonnative interactions can turn the excluded volume effect from being

stabilizing to destabilizing under some conditions (see Fig 3.3). The destabilization

we observe for β25 occurs at low temperatures with volume fraction ϕc ≥ 0.30 and high

temperatures with volume fraction ϕc > 0.40, through two main factors. Firstly, this

protein has a relatively compact unfolded state at low temperatures. As a result, it is

weakly favored entropically by the crowders. At higher T , even though the unfolded

state is less compact than the native state, the protein can still be destabilized by the

excluded volume effect because of the crowder-induced compaction of the unfolded

state.

Sparsely populated nonnative states have been detected for several small globular
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proteins [30, 57–59], e.g., using nuclear magnetic resonance (NMR) spectroscopy [58],

hydrogen-deuterium exchange [30] and other methods [59], and may be more com-

mon than previously thought [60]. For example, using relaxation dispersion NMR,

Neudecker et al. [57] showed that a β-barrel native fold exhibits a compact near-native

intermediate state with an ≈2% population stabilized by both native and nonnative

interactions.

Although artificial polymer crowders, such as Ficoll or dextran, are typically sta-

bilizing to proteins (summarized in recent reviews [61, 62]), exceptions have been

seen [11, 16–18]. For example, weak destabilization of ubiquitin [11] and apoazurin [18]

were observed with Ficoll-70 as a crowder. Crowding induced destabilization is of-

ten interpreted as evidence for soft attractive (or chemical) interactions between the

unfolded protein and crowders. Because of the presence of an energetic component,

soft attractions will lead to a crossover temperature below which crowding becomes

destabilizing [33]. Here, we have shown that nonnative states during folding can lead

to a destabilization of the native state, as well as a crossover temperature, without

soft attractions. This idea could be tested through crowding experiments on proteins

for which sparsely populated compact nonnative (or intermediate) states have already

been characterized.

All of our model proteins exhibit a compaction of the unfolded state with de-

creasing temperature, i.e., as conditions increasingly promote folding, which is in line

with data from single-molecule FRET (smFRET) and small-angle X-ray scattering

(SAXS) experiments [63]. Interestingly, Radford et al., using smFRET, additionally

detected an expansion of the unfolded state of the α-helical protein Im9 at low very
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denaturant concentrations [64]. This behavior mirrors the re-expansion at low T we

observe for α35, which does not occur for β35 and β25 (see Fig 3.5). The stabilization

of α35 at both high and low T s results in a clear increase in Tm with ϕc. In contrast,

β25 is destabilized at T− and T+ as changes in Tm. Indeed, capturing small changes

in stability may require stability measurements across a range of temperatures, as

was pointed out previously [11, 65].

3.5 Conclusion

In summary, we have used a coarse-grained sequence-based model to study the folding

and stability of three different sequences in the presence of excluded volume crowders

over a range of sizes and concentrations. We find that during folding, nonnative

interactions are generally promoted by the crowders. Moreover, under low and high

T s, in sufficiently high-ϕc conditions for each temperature, the excluded volume effect

of crowders can lead to a destabilization of the protein even when its native structure

remains unchanged and the population of nonnative conformations is relatively small,

as observed in our model. Such destabilization may, however, not be apparent in

observables reporting on the total content of secondary structure or overall chain size.

The results suggested by our model may be tested experimentally, for example, using

an artificial crowder molecule, such as Ficoll, on proteins for which a low population

of compact nonnative conformations has been detected [57, 66, 67].
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[12] B. Köhn and M. Kovermann. Macromolecular crowding tunes protein stability

by manipulating solvent accessibility. Chem Bio Chem, 20:759–763, 2019.

[13] J. Hong and L. M. Gierasch. Macromolecular crowding remodels the energy

landscape of a protein by favoring a more compact unfolded state. J Am Chem

Soc, 132:10445–10452, 2010.

86



[14] S. Mittal and L. R. Singh. Denatured state structural property determines pro-

tein stabilization by macromolecular crowding: a thermodynamic and structural

approach. PLOS One, 8:e78936, 2013.

[15] A. Christiansen and P. Wittung-Stafshede. Synthetic crowding agent dextran

causes excluded volume interactions exclusively to tracer protein apoazurin.

FEBS Lett, 588:811–814, 2014.

[16] A. Malik, J. Kundu, S. K. Mukherjee, and P. K. Chowdhury. Myoglobin unfolding

in crowding and confinement. J Phys Chem B, 116:12895–12904, 2012.

[17] K. Nasreen, S. Ahamad, F. Ahmad, M. I. Hassan, and A. Islam. Macromolecular

crowding induces molten globule state in the native myoglobin at physiological

pH. Int J Biol Macromol, 106:130–139, 2018.

[18] A. Christiansen and P. Wittung-Stafshede. Quantification of excluded volume

effects on the folding landscape of Pseudomonas aeruginosa apoazurin in vitro.

Biophys J, 105:1689–1699, 2013.

[19] S. R. McGuffee and A. H. Elcock. Protein stability in a dynamic molecular model

of the bacterial cytoplasm. PLOS Comput Biol, 6:e1000694, 2010.
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Exploring soft interactions in

crowded systems: repulsive,

nonspecific, hydrophobic and

polypeptide crowders
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Abstract

The equilibrium stability of a protein is determined by its amino acid sequence

and the solution conditions, such as temperature, pH, and chemical denaturant. The

stability of a single protein in two identical solutions can nonetheless differ if other

macromolecules, termed cosolutes or crowders, are present in one of the solutions at

concentrations high enough to occupy a substantial fraction of the solution volume.

This effect, due solely to the presence of the crowders, decreases or increases the

stability depending on the interactions between the protein and crowders. Hard-core

repulsions, which are always present, typically increase the stability by entropically

favoring the compact native conformation over extended unfolded conformations. Soft

attractive interactions between protein and crowders can counteract the stabilizing

effect from hard-core repulsions, even leading to a net destabilization. Soft interac-

tions are typically assumed to be nonspecific. Here we use a coarse-grained model for

protein folding to assess the impact of different types of soft interactions, by consid-

ering crowders that are spherical particles or short polypeptide chains. In particular,

we study the stability of a 35-amino acid model sequence folding into a helical bun-

dle fold. We find that, for the same crowder concentration and interaction strength,

spherical crowders with a hydrophobic character are more destabilizing than crow-

ders capable only of nonspecific interactions. The hydrophobic crowders are more

destabilizing even though the magnitude of the crowder-protein interaction energy is

much smaller for this crowder type. Short polypeptide crowders, which are capable of

hydrogen bonding with the protein, have a destabilizing effect even at relatively low

crowder concentrations, especially if the sequence of the peptide crowders includes
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hydrophobic amino acids. Such destabilization is in part driven by misfolding of the

protein through the formation of inter-molecular β-sheets. These findings emphasize

the importance of understanding the interplay between energetic and entropic effects

in determining the structure and stability of proteins under crowded conditions.
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4.1 Introduction

Most biophysical experiments on biomolecules or biomolecular systems are performed

under dilute solution conditions in which the macromolecular concentration rarely ex-

ceeds 10 g/L [1]. However, the cellular environment is often anything but dilute [2].

For example, the concentration of macromolecules in Escherichia coli can reach up

to 300-400 g/L, corresponding to a volume occupancy of around 30-40% [3]. This

crowded milieu has been shown to impact a wide range of biophysical processes,

including protein folding [4–6], assembly [7] and aggregation [8–10], DNA replica-

tion [11], and liquid-liquid phase separation [12–14].

One of the major issues in macromolecular crowding, in fact since the inception

of the field [15], is the impact of macromolecular crowding on the equilibrium sta-

bility of proteins. In the simplest case, the protein populates mainly two states: the

structurally coherent native state (N) and the unfolded state (U). Different types

of interactions between crowder and protein are expected to differently impact the

stability. Hard-core repulsions, arising simply from the fact that two macromolecules

cannot simultaneously occupy the same region in space, is expected to be a stabilizing

factor for protein. The reason is that N is typically more compact than the extended

conformations that make up the U ensemble, which thus become entropically disfa-

vored relative to N under crowded conditions (see Fig. 4.1A). Experimental studies

employing artificial polymer macromolecules as crowders, typically [16–21], but not

always [22, 23], stabilize N as measured by, e.g., the midpoint temperature of the

folding transition or the free energy of folding. Recent computer simulations of small
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model proteins have shown that volume exclusion by purely repulsive crowders can

lead to destabilization under some conditions [24].

In addition to hard-core steric repulsions, so-called soft interactions (also “chemi-

cal” interactions) between the protein and surrounding crowder molecules also impact

protein stability. Soft interactions can be either attractive or repulsive [25], and they

are generally assumed to be nonspecific and originate from a range of different ef-

fects, including charge-charge, van der Waals, hydrogen bonding, and hydrophobic

interactions [26–28]. Repulsive soft interactions are expected to enhance the effect

of volume exclusion, i.e., make the protein even more stable. Soft interactions that

are attractive counteract the excluded volume effect and act to decrease the sta-

bility [25]. Recent studies have been performed to study the effects of attractive

crowder-protein interactions [28–32]. In general, the net effect of macromolecular

crowding on the stability of proteins will be determined by a competition between

stabilizing effect of excluded volume and destabilizing chemical attractions. Because

soft interactions have an energetic (or enthalpic) component, the impact of crowders

should be temperature-dependent. Indeed, this was observed by Zhou et al., who

studied the stability of the protein CI2 in the presence of protein crowders [33]. CI2

was found to be destabilized at low temperatures and stabilized at high temperatures.

This change allowed the authors to define a so-called crossover temperature at which

there was no net effect on the stability of CI2 [34].

Here we aim to delineate the effects of different types of soft attractive interactions.

In particular, we compare the effect from “nonspecific crowders”, which are capable

of energetically favorable interactions with any part of the protein, and hydrophobic
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crowders, for which these favorable interactions are limited to nonpolar (hydrophobic)

amino acids. Hydrophobic crowders are expected to be destabilizing because U but

not N will be favored by effective attractive interactions with the crowders, assuming

a native structure with a completely buried hydrophobic core. However, it is unclear

a priori if hydrophobic crowders should be more or less destabilizing than crowders

with nonspecific interactions, because the overall destabilization is determined by the

net effect of crowder interactions with U and N (see Fig. 4.1). For comparison, we also

consider the results from excluded volume crowders which are stabilizing. In addition

to spherical crowders, we also consider the crowding effect from short polypeptide

chains, which can favorably interact with the protein through hydrogen bonding via

backbone NH and CO groups.

To explore these issues, we use a coarse-grained model for folding which combines

an all-atom backbone geometry with a one-bead sidechain representation, an enlarged

Cβ atom. This model relies on a simplified amino acid alphabet with 3 types: polar

(p), hydrophobic (h), and turn (t). Folding is driven by backbone-backbone hydrogen

bonding and effective hydrophobic interactions (pairwise hh-attractions). Different

sequences can be designed using simple principles [35] leading the chain to adopt

various protein-like folds [36, 37]. We focus here on a 35-amino acid sequence that

folds into a stable α-helical hairpin fold at low temperatures [38], and is stabilized

in the presence of excluded volume crowders [24]. We implement nonspecific interac-

tions by making contacts between crowders and any Cβ atom on the protein (p and

h amino acids) and limit the interactions to h amino acids in the case of hydropho-

bic crowders. For a given strength of the attraction, we find that the hydrophobic
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crowders are more destabilizing than the crowders interacting nonspecifically with the

protein. Moreover, because the hydrophobic crowders have fewer interaction sites on

the protein compared to the nonspecific crowders, the overall crowder-protein associa-

tion is much weaker for the hydrophobic crowders despite their stronger destabilizing

effect. Crowders that drive protein destabilization through nonspecific interactions

rely on a difference in accessible interaction sites in U and N, and therefore lead to a

rather strong crowder-protein association at the point where they can overcome the

stabilizing effect of volume exclusion.

4.2 Methods

4.2.1 Coarse-grained model for protein folding

To model protein folding, we use the coarse-grained “Cβ-model” described in Ref. [36].

It is a model with three different types of amino acids: polar (p), hydrophobic (h),

and turn (t) amino acids. Geometrically, the protein chain is described using an

atomistic backbone (Cα, C
′, N, H, Hα1, and O) and simplified sidechains using an

enlarged Cβ atom. The t amino acids differ from p and h in that it does not contain

a Cβ atom, which is instead replaced by an Hα2 atom. Hence, t is strongly related

to glycine and more flexible than p and h. Chain conformations are completely

specified by the 2N Ramachandran angles {ϕi, ψi}Ni=1. Hence, bond lengths, bond

angles, and dihedral angles (e.g. the peptide plane angle ω = 180◦) are held fixed

at standard values. The potential energy function of the model, Ep, includes four
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Figure 4.1: Schematic of crowders molecule interaction with the protein. Crowder molecules

(orange and red spheres) interacting with a two-state protein (ribbon) through (A) hard-core steric

repulsions, (B) nonspecific attractive interactions, and (C) hydrophobic interactions. Crowders

(red) make energetically favorable contacts with unfolded and native protein conformations in the

case of nonspecific interactions, and with only unfolded conformations in the case of hydrophobic

interactions if the native conformation has a core of hydrophobic amino acids (green) inaccessible

to other molecules.
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terms Ep = Eloc + Eexvol + Ehbond + Ehp, described in detail in Ref. [36]. Briefly,

the first term, Eexvol, provides atom-atom repulsions with a range σa determined by

the sum of the atoms’ van der Waals radii, σa = σvdW
i + σvdW

j . The second term,

Eloc, represents electrostatic interactions between partial charges of adjacent peptide

planes. This term is included to ensure sampled ϕi, ψj angles agree with statistics

from real protein structures (Ramachandran plots).

The two last terms, Ehbond and Ehp, represent hydrogen bonding and effective

hydrophobic interactions, respectively. These terms are essential for stabilizing and

driving the formation of the native state. Hydrogen bonds are modeled using

Ehbond = khb
∑
ij

γij

[
5

(
σhb
rij

)12

− 6

(
σhb
rij

)10
]

×(cosαij cos βij)
1
2 ,

(4.1)

where the sum is over pairs of CO, NH groups, rij is the OH distance, σhb = 2.0 Å,

and khbond = 3.1. The interaction strength is modified by a sequence-dependent

scale factor γij taken to be 1 for hh, hp, and pp pairs, and 0.75 for tt, th, and tp

pairs. The reduced hydrogen bonding capacity of t amino acids mimics the secondary

structure breaking ability of glycine. The directional dependence is implemented

via the factor (cosαij cos βij)
1
2 , where αij and βij are the NHO and HOC′ angles,

respectively. Additionally, if either αij < 90◦ or βij < 90◦, the ij contribution is set to

zero. The hydrophobic effect is modeled using pairwise additive effective attractive

interactions between hydrophobic amino acids. Specifically,

Ehp = −khp
∑
ij

g(rij;σhp) , (4.2)

where the sum is over pairs of Cβ atoms of h amino acids, excluding nearest and
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next-nearest neighbors along the chain, and

g(r; r0) = exp

(
−(r − r0)2

2

)
(4.3)

is a function with a maximum at r = r0. We set σhp = 5 Å and the interaction

strength khp = 0.805. In this model, tuning the relative strength of hydrogen bond-

ing and hydrophobic forces is essential to obtain folding into stable and protein-like

structures [39, 40].

4.2.2 Crowders

Repulsive interactions are modeled using the pair potential [41]

V (r) =

(
σ

r − ρ+ σ

)12

, (4.4)

where r is a crowder-crowder or crowder-atom distance. Because V (ρ) = ϵ and

V → ∞ as r → ρ − σ (for r < ρ − σ, we set V = ∞) the two parameters ρ and σ

determine the range and “sharpness” of the repulsion, respectively. We set ρ = 2Rc

for crowder-crowder interactions and ρ = ρcp = Rc+σa for crowder-atom interactions,

where Rc and σa are the radii of the crowder and atom, respectively. We set σ = 6 Å

for crowder-crowder interactions and 3 Å + σa for crowder-atom interactions. A

crowder-atom attractive interaction is modeled with the potential V (r)−ϵattg(r; ρcp),

where the function g is given by Eq. 4.3. The form of this potential for different

attraction strengths ϵatt is shown in Fig. 4.2. For a system consisting of a protein

with Na atoms and Ncr crowder particles, the total potential energy then becomes
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Figure 4.2: Schematics of the pair potential for crowder-crowder and crowder-atom interactions.

Shown is V (r) + g(r) for different attraction strengths, ϵatt (see Eqs. 4.4 and 4.3). Note that the

ϵatt = 0 curve is the repulsive potential V (r) given by Eq. 4.4
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E = Ep + Ecc + Ecp, where

Ecc =
Ncr∑
i

Ncr∑
j=i+1

V (rij) (4.5)

and

Ecp =
Ncr∑
i

[
Na∑
j

V (rij)− ϵatt
∑
j

g(rij; ρcp)

]
(4.6)

are the crowder-crowder and crowder-protein energies, respectively. In Eq. 4.6, the

second sum within square brackets controls which atoms are subject to crowder at-

traction. For crowders with nonspecific attraction to the protein, the sum is over all

Cβ atoms (p and h amino acids). For hydrophobic crowder, the sum is over the Cβ

atoms of h amino acids. For excluded volume crowders, ϵatt = 0.

4.2.3 Simulations and analysis details

Equilibrium behaviors of crowder-peptide systems are determined using simulated

tempering Monte Carlo simulations [42]. Runs are carried out with either 8 temper-

atures in the range kBT = 0.48 − 0.68 or 10 temperatures in the range 0.40-0.70.

For each system, 10 independent runs with 5× 109 elementary MC updates are per-

formed. Initial configurations are obtained by picking random chain conformations

and random spherical crowder positions, followed by a relaxation step to remove any

hard-core steric clashes. Monte Carlo chain updates are divided equally between the

protein chain and the crowder particles. Two different types of chain moves are used:

Biased Gaussian Steps (BGS) [43], which produce approximately local chain defor-

mations, and pivot moves, which produce global changes. In the latter type, a single

ϕi or ψi angle is set to a new random value such that the chain rotates around the
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NCα or CαC
′ bond. The frequency of chain updates are set so that BGS is most

frequent at low T s and pivot is most frequent at high T s. Temperature updates are

attempted every 100 MC step. Spherical crowder simulations are carried out in a

cubic box of side length L = 100 Å while for simulations of polypeptide crowders

L = 65 Å. The number of spherical crowding agents are 14, 28, 42, and 56, cor-

responding to packing fractions ϕc = 0.10, 0.20, 0.30, and 0,40, respectively. The

crowder radius is Rc = 12 Å. For simulation carried out with 8 temperatures in the

range kBT = 0.48−0.68, the multistate Bennett acceptance ratio (MBAR) technique

was applied to determine thermodynamic averages in the range kBT = 0.40–0.70.

4.2.4 Observables

We quantify native state stability using two quantities, ∆F and Tm. The free energy

of folding is determined using

∆F = FN − FU = −kBT ln
Pnat

1− Pnat

, (4.7)

where FU and FN are the free energies of the unfolded and native states, respectively,

and Pnat is the population of the native state. The native state population Pnat is

determined as in Ref. [24]. Conformations are considered part of the native state if

Qnat ≥ Qcut where Qnat is the number of formed native contacts and Qcut = 50.

The folding midpoint temperature, Tm, is determined by fitting the temperature

dependence of Pnat to a two-state model with two fit parameters. The fit for α35 in

the absence of crowders is given in Supporting Information and gives kBT
0
m = 0.535.
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4.3 Results
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Figure 4.3: The free energy of folding for α35. Temperature dependence of the free energy of folding

of α35 in the absence and presence of (A) excluded volume crowders, (B) nonspecific crowders, and

(C) hydrophobic crowders, at different volume fractions, ϕc, and (B, C) for one strength of the

crowder-protein attractions, ϵatt = 1.5.

4.3.1 Spherical crowders

Using simulated tempering MC simulations, we determined the thermodynamics be-

havior of our model protein, α35, both as an isolated chain with no crowders and in

the presence of the three different types of spherical crowders in Fig 4.3. All crowders

have the same radius, Rc = 12 Å. We varied the crowder volume fraction, ϕc, and the

strength of the attractive interactions between crowders and protein, ϵatt. In general,
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we find that the equilibrium stability of the α35 native state, as quantified by the free

energy of folding, ∆F = −kBT ln[Pnat/(1−Pnat)], where Pnat is the population of the

native state, depends on both ϕc and ϵatt. As an illustration of our results, Fig 4.3

shows the temperature dependence of ∆F at ϵatt = 1.5, for different ϕc and crowder

types.

In the absence of crowders (solid black curve in Fig 4.3), the helical hairpin fold of

α35 is highly stable at low T . For example, at the lowest studied temperature T , which

corresponds to T ≈ 0.75T 0
m, where T

0
m is the midpoint temperature of the α35 folding

transition for ϕc = 0, ∆F ≈ −8kBT . This is within the range of typical stabilities of

real single-domain proteins [44]. The midpoint temperature T 0
m, i.e., the temperature

for which ∆F = 0, is also commonly used as a measure of protein stability. For α35,

kBT
0
m = 0.535, as obtained previously [24] by fitting the of α35 folding curve i.e., Pnat

as function of T , to a two-state model with two free parameters (see Fig B1). For

the values of ϵatt considered here, α35 remains stable in the low T region even when

the crowder packing fraction reaches ϕc = 0.40. However, clear variations in results

between crowders can be seen (see Fig 4.3).

At a temperature just below the folding midpoint, T− = 0.95T 0
m, we observe the

following trends. Upon the addition of excluded volume crowders, ∆F decreases

monotonically with ϕc, as shown in Fig 4.3A, meaning a strict stabilization of the

protein. The soft interactions of the nonspecific and hydrophobic crowders are ex-

pected to provide a destabilizing effect. However, because these two crowder types

occupy the same amount of space as the excluded volume crowders, they also provide

a stabilizing effect. The net crowding effect will be determined by a competition be-
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tween stabilizing volume exclusion and destabilizing soft interactions. Indeed, at low

attraction strength (ϵatt = 1.0), the addition of nonspecific or hydrophobic crowders

still provide an overall stabilization (see Fig 4.4A). At ϵatt = 1.5, the hydrophobic

crowders overcome the stabilizing excluded volume effect, leading to a net destabiliza-

tion, while the nonspecific crowders are net stabilizing. A similar view is obtained by

considering the changes in the midpoint temperature. As shown in Fig 4.4B, there is

a relative monotonic increase in Tm for both the excluded volume crowder and for the

hydrophobic and nonspecific crowder with ϵatt = 1.0. For ϵatt = 1.5, the nonspecific

and hydrophobic crowders exhibit monotonically increasing and decreasing midpoint

temperatures with increases ϕc, respectively. Overall, our results show that excluded

volume crowders provide a stabilizing effect on α35, which can be counteracted by the

presence of soft attractive interactions. The hydrophobic crowders provide a stronger

destabilizing effect than the nonspecific crowders.

4.3.2 How can the stronger destabilizing effect of weak hy-

drophobic attraction be explained?

To address the question of why hydrophobic attractive interactions are more desta-

bilizing than nonspecific interactions, we consider the interaction energy between

crowders and protein, Ecp (see Methods). Ecp is a mix of repulsive and attractive

energy contributions. We consider, in particular, EU
cp and EN

cp, i.e., the crowder-

protein energy determined separately for the U and N states. When the difference

∆Ecp = EU
cp − EN

cp < 0 there is a net energetic stabilization of U, which should have
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Figure 4.4: Effect of crowding on the native state stability. The change in free energy of folding,

∆∆F (ϕc) = ∆F (ϕc) − ∆F0, where ∆F0 is the folding free energy in the absence of crowders, as

a function of ϕc, for excluded volume (squares), nonspecific (triangles), and hydrophobic (circles)

crowders with attraction strengths (A) ϵatt = 1.0 and (B) 1.5, obtained at the temperature T− =

0.95Tm (kBT
− = 0.508). Relative change in midpoint folding temperature, Tm/T

0
m, where T

0
m is the

midpoint temperature at ϕc = 0, as a function of ϕc, for (C) ϵatt = 1.0 and (D) 1.5. Dashed lines

between points are drawn to guide the eye.
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a destabilizing effect on the protein.

Fig 4.5A,B shows the ϕc-dependence of EU
cp and EN

cp for two different values of

ϵatt. For hydrophobic crowders, EN
cp (open circles) exhibits a slight positive slope for

ϵatt = 1.0 and a slight negative slope for ϵatt = 1.5, but is overall rather flat. The

slight positive slope for ϵatt = 1.0 means that repulsive interactions dominate the

interaction when the protein populates the N state. The negative slope for ϵatt = 1.5,

indicates that, at this strength of attractive interactions, the native state becomes

slightly distorted to accommodate favorable contacts between hydrophobic sidechains

and crowder particles. However, the interactions are rather limited. At the highest

packing fractions, ϕc = 0.40, EN
cp ≈ −1.5, thus corresponding one fully formed inter-

action between an h amino acid and a crowder. For the nonspecific case, interactions

between crowders and protein are much more prevalent, for both U and N. EU
cp is

a sharply decreasing function of ϕc for both ϵatt = 1.0 and 1.5, which will help to

stabilize the U state at high ϕc. However, the decrease in EU
cp is nearly compensated

for by the decrease in EN
cp. Comparing the two types of crowders, we find that the

net energetic effect, ∆Ecp, is more negative for the hydrophobic crowder as compared

to the nonspecific crowders, as shown in Fig 4.5C and D.

An interesting difference between the two crowder types is that, while their net

effect on stability is similar, they differ substantially in the degree of association

with the protein. While hydrophobic crowders associate weakly with the protein,

even in U, the protein-crowder association in the case of nonspecific interactions is

greater by approximately an order of magnitude, as quantified by the magnitude of

the interaction energy Ecp (see Fig 4.5D).
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Figure 4.6: Effect of hydrophobic crowders on the native state stability. (A) Change in the folding
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4.3.3 Balancing destabilizing soft interactions and stabilizing

steric repulsions

The α35 protein is net stabilized by the presence of hydrophobic crowders at ϵatt = 1.0,

but net destabilized at ϵatt = 1.5. This suggests a critical attraction strength at which

there is no net change in stability. Indeed, for ϵatt = 1.25, the change in folding free

energy, ∆∆F , is roughly zero, as shown in Fig 4.6B. Interestingly, this balance be-

tween stabilizing and destabilizing effects is largely independent of ϕc. The midpoint

temperature Tm also remains roughly constant, except at the very high packing frac-

tions (ϕc = 0.40), where there is a slight increase. Crowding induced stabilization at

a given ϵatt is, however, dependent on temperature. Fig 4.6C shows the T -dependence

of ∆∆F . For excluded volume crowders, ∆∆F < 0, reflecting the strictly stabilizing

effect. There is a T dependence even for this crowder type, which originates from

the fact that the size of U is not constant [24]. For hydrophobic crowders, due to

the energetic stabilization of U relative to N, at low enough temperatures, the net

effect crosses over from stabilizing to destabilization, i.e., ∆∆F changes from negative

to positive. This crossover temperature, Tc, [45] increases with the contact strength

ϵatt. The findings for α35 are similar to previous studies on other proteins, such as

ubiquitin, which showed a crossover temperature in the presence of either synthetic

polymers or protein crowders [19, 45].
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Figure 4.7: Native state stability of α35 in the presence of different types of polypeptide crowders.

Folding free energy, ∆F , as function of temperature T for three peptide crowder types: (A) peptide 1

with sequence ppppp, (B) peptide 2 with sequence pphpp, and (C) a peptide geometrically identical

to peptides 1 and 2 but with inter-chain hydrophobic and hydrogen bond interactions turned off.

(D) ∆F as function of the number of peptides, Npep, at T ≈ T− ( kBT = 0.482).
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4.3.4 Polypeptide crowders

We turn now to the folding of α35 in the presence of short polypeptide chains. We use

the same model for the peptides as for α35 (see section 4.2.1), with the restriction that

energetically favorable interactions (i.e., effective hydrophobic and hydrogen bond in-

teractions) between crowding peptides are turned off. This avoids the formation of

oligomeric peptide structures, which would complicate the analysis. We consider two

different 5-amino acid sequences: ppppp (peptide 1) and pphpp (peptide 2). Both

peptides can thus interact with the α35 chain through backbone-backbone hydrogen

bonding and peptide 2, due to its central h amino acid, can additionally interact with

α35 through hydrophobic attractions. Fig 4.7(A) and (B) show the T -dependence of

the free energy of folding, ∆F , for different numbers Npep of peptide 1 or peptide

2 chains added to the system. For Npep ≤ 42, peptide 1 induces a weak stabiliza-

tion at high T and weak destabilization at low T . This behavior is consistent with

a competition between entropy-driven stabilization due to volume exclusion by the

peptides and energy-driven destabilization due to inter-chain hydrogen bonding. In-

terestingly, there is a rather broad temperature range around T 0
m (kBT ≈ 0.45−0.60)

with no detectable change in ∆F (see Fig 4.7(A) and (D)). The apparent lack of

crowding effects in this temperature range can arise either because (i) the crowding

effects are overall weak at the studied peptide concentrations or (ii) the two oppos-

ing crowding effects, peptide excluded volume and peptide-protein attractions, are

equal in magnitude and therefore cancel each other out. To determine which scenario

holds, we performed additional simulations with peptides that only allowed to inter-

act with other chains via repulsive interactions. These “excluded volume peptides”
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significantly stabilize α35 across all T s (see Fig. 4.7(C) and (D)), which means that

scenario (ii) above holds. Hence, in a relatively broad range around the midpoint

temperature of the protein, the excluded volume effect due to the peptides is almost

perfectly counteracted by soft interactions in the form of hydrogen bonds. Peptide 2
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Figure 4.8: Energetically favorable interactions between crowder peptides and the protein. Hy-

drophobic and hydrogen-bond peptide-protein interaction energies are measured for the native

(EN,hp
cp and EN,hbond

cp ) and unfolded (EU,hp
cp and EU,hbond

cp ) states. Shown are (A) ∆Ehbond
cp =

EU,hbond
cp − EN,hbond

cp and (B) ∆Ehp
cp = EU,hp

cp − EN,hp
cp as function of Npep. Negative ∆Ecp val-

ues means that the peptides interact more favorably with U relative to N. The temperature is the

same as in Fig 4.7(D).

provides a stronger destabilizing effect on α35 than peptide 1 at a given concentration,

as seen in Fig 4.7(B) and (D). For example, at T ≈ T−, ∆F monotonically increases

with the number of added peptide 2 chains in contrast to the flat ∆F exhibited by

peptide 1. At very low T and Npep = 28, peptide 2 even leads α35 to become net

unstable (∆F > 0), although the error bars are larger at lowest studied T s. A similar

behavior is seen for peptide 1 and Npep = 56. It is instructive to get a rough idea

118



of the volume fraction ϕc occupied by the peptides in our systems. Assuming each

atom in our Cβ-model occupies volume according to its van der Waals radius, we

obtain ϕc ≈ 0.07 for Npep = 28. Alternatively, if we assume amino acids are spheres

with radius 3.8 Å (typical Cα-Cα distances of peptide bonds) we obtain a slightly

higher value, ϕc ≈ 0.12. What makes peptide 2 more destabilizing than peptide

1? Because the two peptides are geometrically identical, any difference must derive

from soft interactions. Fig 4.8(A) and (B) show the peptide concentration depen-

dence of the quantity ∆Ecp = EU
cp −EN

cp (Fig 4.5), determined separately for peptide

(crowder)-protein hydrogen bond (∆Ehbond
cp ) and hydrophobic (∆Ehp

cp ) energies. For

peptide 1, ∆Ehp
cp = 0, since this peptide lacks a hydrophobic amino acid. For peptide

2, ∆Ehp
cp < 0 for all peptide-protein systems. This means that, vis-à-vis hydropho-

bic interactions, peptide 2 interacts more favorably with U than with N, causing α35

destabilization. The formation of hydrogen bonds between peptides and the protein

are also destabilizing because generally ∆Ehbond
cp < 0. Interestingly, ∆Ehbond

cp is more

negative for peptide 2 than for peptide 1, such that the presence of a hydrophobic

amino acid on peptide 2 also enhances the formation of hydrogen bonds with the

protein chain. In other words, there is a cooperative effect between hydrophobic and

hydrogen bond interactions in peptide 2, which further enhances the destabilizing

effect of this peptide relative to peptide 1 which has only polar amino acids.
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4.4 Discussions and Conclusions

We have used a sequence-based coarse-grained protein model to study crowding-

induced changes to the stability of a model protein with a sequence that folds to

α-helical hairpin at low temperatures. In particular, we investigated crowders making

different types of soft interactions with the protein, i.e., interactions different from

hard-core steric repulsions. We found that crowders with a hydrophobic character,

i.e., crowders interacting favorably with only nonpolar amino acids, provide a stronger

destabilizing effect compared to crowders that interact nonspecifically, i.e., favorably

with both polar and nonpolar amino acids, with the protein. Both types of soft

interactions are counteracting the generally stabilizing effect of excluded volume.

Therefore, for weak attraction strengths, these crowders still increase the stability of

the protein relative to the dilute limit where there are no crowding effects. At a critical

strength of the attraction, the stabilizing and destabilizing effects cancel leading to

a net zero change in protein stability over a wide range of crowder concentrations.

Similar results were obtained in a structure-based one-bead-per-amino acid model

studied by Mittal et al. [46].

The destabilization effect of either hydrophobic or nonspecific crowder interactions

arise because interactions with U is energetically more favorable than the interactions

with N. This is manifest by the net energetic effect of the crowder-protein interac-

tions, ∆Ecp, which is negative at high ϕc for both crowder types. However, perhaps

counterintuitively, the overall interactions of the hydrophobic crowders is much less

pronounced than for the nonspecific crowders at a given degree of destabilization.
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Quantitatively, we find that the magnitude of the interaction energy between crow-

ders and protein, Ecp, is larger for nonspecific crowders than for the hydrophobic

crowders by roughly an order of magnitude. The reason for this difference is the

way the two crowder types achieve destabilization. Nonspecific crowders rely on a

difference between two rather large favorable interaction energies for U and N. Hy-

drophobic crowders, for which favorable interactions with N are almost absent due

to hydrophobic amino acids being buried in the native structure, obtain destabiliza-

tion even for relatively weak favorable interactions with U. This difference between

hydrophobic and nonspecific soft interactions might be tested experimentally using

protein crowders, and varying the chemical nature of surface-exposed amino acids

through mutations.

Our results also confirm that the addition of crowders attracted to a protein can

lead to temperature-dependent crowding effects, as demonstrated experimentally [19].

Specifically, we found that the our model protein exhibits a crossover temperature,

Tcross, below which the crowders are destabilizing and above which the crowders are

stabilizing. The presence of such a crossover temperature is well established in the

literature and has been observed in the presence of both synthetic polymer crowders

and protein crowders [19, 34, 45]. The origin of this crossover temperature is believed

to be due to the fact that energetic effects are becoming more important at low

T , while at high T entropic effects dominate [34, 45]. It should be noted that the

hydrophobic effect is itself partly entropically driven [47], while in our model it is

treated as an effective energetically driven interaction. Destabilization driven entirely

by soft hydrophobic interactions are not guaranteed to increase with decreasing T .
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We have also investigated how the folding and stability of our model protein are

impacted by short polypeptide chains, which differ from our spherical crowder in

that they are able to interact with the protein through hydrogen bonding. Results

for this system indicate an interplay between hydrogen bonds and hydrophobic in-

teractions. Peptide chains with partial hydrophobic character exhibit much stronger

destabilizing effects than peptides with only polar amino acids. Part of this destabi-

lization is due to hydrophobic interactions directly stabilizing U, in the same way as

found for the hydrophobic spherical crowders. However, we found that the presence

of a hydrophobic amino acid in the sequence of our peptide crowder also tends to

promote the formation of additional hydrogen bonds with the protein (see Fig 4.8),

thus further strengthening the destabilization. It should be pointed out, however,

that our polypeptide crowders are relatively short. It would be interesting to test

the crowding effect of much longer popypeptide chains in our model, which could

mimic macromolecular crowders capable of both substantial excluded volume effects

and soft interactions in the form of hydrophobic interactions and hydrogen bonding.

In summary, our sequenced-based model provides insights into the effect of at-

tractive interactions between crowders and protein on the stability of the protein’s

native state. Our results highlight the importance of considering both the type and

strength of soft crowder-protein interactions when evaluating the impact of crowding

on protein stability.
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Chapter 5

Crowding effects on protein folding

thermodynamics and kinetics:

polymeric versus spherical

crowders
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Abstract

Computational studies of macromolecular crowding effects on protein folding and sta-

bility often represent crowding agents as spheres, while experiments often use artificial

polymers, such as polyethylene glycol and Ficoll. Here, we study and compare the

effects of two different types of crowding agents, spherical and polymeric crowders, on

a protein with an all-α structure (PDB id: 1PRB) and a protein with an all-β struc-

ture (PDB id: 1SHF), in a range of crowder volume fractions and temperatures. To

this end, we use a structure-based (Gō-like) model and Langevin dynamics sampling,

which allow us to study effects on both the folding thermodynamics and kinetics of

the two proteins. We show first that both proteins are stabilized by adding either type

of crowding agent, but the stabilization is slightly more pronounced for β-structure

protein than for α-structure protein. Additionally, we analyze the size dependency

of the crowding effects by varying the radius of the spheres and the length of the

polymers. For spherical crowders, we find that, for a fixed crowder volume fraction,

stabilization increases with decreasing size of the spheres. By contrast, for polymer

crowders, we find only a relatively weak effect on chain length. We also examined

the effect of crowding on the folding kinetics for both proteins and we find that the

folding rate is enhanced by adding either type of crowder.
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5.1 Introduction

The cellular environment is crowded, heterogeneous, and complex [1]. It has been

known for a long time that this environment plays essential roles in numerous cell

biological and biochemical processes, including protein folding [2], aggregation [3],

liquid-liquid phase separation [4], oligomerization [5], protein-protein interactions [6]

and enzymatic activity [7]. The high concentration of macromolecules, such as nu-

cleic acids, proteins, and other biomolecules, in the cellular environment creates a

crowded environment that impacts the behavior and properties of these molecules.

This impact is known as macromolecular crowding. For instance, the Escherichia coli

cytoplasm typically contains 300–400 g/L of macromolecules, which corresponds to

volume percentages of 30–40% [8]. Hence, understanding the effect of crowding is

essential for elucidating the biophysical and biochemical processes occurring in living

cells.

Crowding effects can be classified into two main categories based on the type of

interaction made between crowders and protein: hard core repulsion and weak non-

specific interaction. The hard core repulsion emerges because macromolecules occupy

space and impede the free movement of other macromolecules [9], so they become

spatially constrained. This leads to an entropic effect, which favors the compact

native state of proteins, thereby enhancing their stabilities [10]. Weak nonspecific

crowder-protein interactions other than steric repulsions are often called soft or chem-

ical interactions [11]. Soft interactions can be either repulsive or attractive, leading

to enhancement or reduction of the effects from hard core repulsions [12]. Hence,
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depending on the type of soft interaction in various conditions, they can lead to net

stabilization or destabilization for proteins [13].

Experimental studies have been carried out to investigate the effect of crowding

on the kinetics and thermodynamics of proteins by using synthetic polymers, such

as polyethylene glycol [14, 15], dextran [16], and Ficoll [17], as excluded volume

crowding agents. Typically, the result of adding these crowders to the solution is a

net stabilizing effect on the protein as quantified by an increase in the folding mid-

point temperature or unfolding free energy of proteins [18–25]. A net stabilization

of the excluded volume effect is generally consistent with theoretical prediction by

Minton [26]. In terms of kinetics, impacts on both folding and unfolding rates of

proteins from macromolecular crowding have been demonstrated [27–31]. These ef-

fects can be nontrivial. For example, Mukherjee et al. [29] found that the addition of

either Ficoll or dextran resulted in a decrease in the folding rate of a 16-amino acid

β-hairpin, but found no effect on two other small α-helical proteins. Dhar et al. [17]

observed a nonmonotonic dependence of the folding rate on the crowder concentration

for the protein phosphoglycerate kinase [32].

Computational studies have also shown that the excluded volume effect stabilizes

the native state of protein models [32–42]. However, we found, within a coarse-grained

protein model, that small proteins can be left neutral by the excluded volume effect, or

even be destabilized, for some protein folds and under conditions where the unfolded

state is highly compact [43]. In order to probe the effects of crowding, it is common

in computational studies to represent crowders as spherical particles. However, it is

clear that synthetic crowders are not hard-core spheres [44]. This is rather obvious
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for linear polymers, such as PEG. Ficoll, however, which is a cross-linked polymer of

sucrose monomers, have been described as both hard [45] and spherical [46]. However,

even Ficoll has been shown to be a soft [47] and highly hydrated macromolecule with

strong polymer character [44].

Here, we study the effects of crowding on native state stability and folding kinetics

by explicitly treating crowders as linear polymers of different lengths. For comparison,

we also include spherical crowders. We focus on two proteins 1PRB and 1SHF that

fold into α-helical bundle and β-barrel folds, respectively. In particular, we address

the issue of whether spherical or polymeric crowders are most effective at stabilizing

proteins, at a given concentration of crowders. We also study how protein stability and

kinetics are dependent on the size of crowders, i.e., the radius of spheres and the length

of the polymers. To address these issues, we use a structure-based (Gō-like) model to

simulate the folding and kinetics of our two proteins. Polymer crowders are treated

using a simple bead-spring model with some chain stiffness. Both spherical and

polymer crowders exert only repulsive interactions. We find that both crowder types

are generally stabilizing. While the magnitude of the stabilizing effect changes with

the size of the spherical crowders, the polymeric crowders exhibit a size dependence

that is very weak, or even absent. Comparing the two proteins, we find that the

stabilization effect is slightly more pronounced for the 1SHF protein relative to 1PRB.
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5.2 Material and Methods

5.2.1 Native structures and contact maps

The structures of 1PRB (PDB id: 1PRB) and SH3 domain of FYN (PDB id: 1SHF)

were downloaded from the Protein Data Bank (PDB). The former folds to 3α-helices

and the latter folds to 5-stranded β-barrel, including 53 and 59 amino acids, respec-

tively. The two generated contact maps contain 82 and 129 contacts, respectively.

Contact maps are calculated by defining a cutoff distance of 4.5Å between amino acid

pairs using the atomic coordinates extracted from the PDB files.

5.2.2 Coarse-grained model for protein folding

In our model [48], each amino acid is represented by a single interaction site located

at the Cα atom. The model is a so-called Gō-type or structure-based model. The con-

formation of an N-amino-acid chain can therefore be presented by the bead positions

ri, where i = 1, ...,N. The interactions in a structure-based model are not based on

physio-chemical principles. Rather, they are constructed so that interactions that are

present in a reference structure, typically the native structure, are made attractive.

Other (non-native) interactions are left neutral or even repulsive. In this particular
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model, the structure based energy function has the following form [48]:

V =
bonds∑

i

Kb(bi − bni )
2 +

angles∑
i

Kθ(θi − θni )
2

+
dihedrals∑

i

K
(1)
ϕ [1− cos(ϕi − ϕn

i )] +K
(3)
ϕ [1− cos 3(ϕi − ϕn

i )]

+
nonnative∑
i<j−3

ϵ

(
σ

rij

)12

+
native∑
i<j−3

ϵ

[
5

(
rnij
rij

)12

− 6

(
rnij
rij

)10
]

(5.1)

where bi, θi, ϕi, and rij are virtual bond lengths, bond angles, torsion angles, and

Cα − Cα distance between residues i and j, respectively. bni , θ
n
i , ϕ

n
i , and r

n
ij are their

values at the native state, which have found in experiment [49].

In the equation 5.1, ϵ sets the energy scale of the model and rij = |rj−ri|. The first

three terms represent bonded interactions with strengths set to Kb = 100ϵ, Kθ = 20ϵ,

K
(1)
ϕ = ϵ and K

(3)
ϕ = 0.5ϵ. The fourth term represents steric repulsions between bead

pairs that do not form contacts in the native structure. The repulsion range is set to

σ = 4 Å. The summation in the last term is over contacts that belong to the native

contact set of each protein (see 5.2.1.).

5.2.3 Excluded volume crowders

Spherical crowders

In the case of mimicking crowding agents as spheres, crowder-crowder and crowder-

bead interactions are expressed using the potential function suggested by Mittal and

Best[37],

V (r) = ϵ

(
σ

r − ρ+ σ

)12

, (5.2)
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for distances r > ρ−σ, and V (r) = ∞ otherwise. Hence, crowders have a soft repulsive

shell over of a hard-core steric repulsion. The parameters σ and ρ, respectively,

regulate the width of the soft repulsive shell and the range of the interaction. For

crowder-crowder interactions, we set ρ = 2Rc and σ = 2σcr, where σcr = 3Å regulates

the width of the crowders’ soft shells. We set ρ = Rc+σb and σ = σcr+σb for crowder-

bead interactions, where σb = 4Å is the bead radius. Spherical crowder concentration

is a fraction ϕc of the overall simulation volume V occupied by spherical crowders, i.e.

ϕc = 4πRc
3Ncr/3V . The number of crowding particles Ncr in our simulations ranges

from 3 for ϕc = 0.05 to 92 for ϕc = 0.20.

Polymeric crowders

Polymeric crowders can be described as chains of beads without any attractive native

contact energy terms, which is the last term in Eq. 5.1. Parameters for bond length,

bond angle and dihedral angles are set the same for all amino acids i. The bonding

length for polymer chains is set to bni = bl = 3.8 Å, and both dihedral and bond angle

parameters are set to 120◦, i.e., θni = ϕn
i = 120◦. The purely repulsive interactions

between these polymer and protein beads are the fourth term in Eq. 5.1, with the

sum taken over all bead pairs in the system. All interaction strength parameters are

the same as for the protein chain.

The polymer crowders are thus represented as chains of beads with diameter

σ = 4 Å meaning that consecutive bead spheres along the chain overlap slightly.

Therefore, we estimate the volume Vchain of a polymer chain with a tube of diameter
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dp = σ and length Lchbl, i.e.,

Vchain = Lchblπ(dp/2)
2 . (5.3)

The parameter Lch is the number of beads per chain as chain length. Accordingly,

the polymeric crowder concentration ϕp is defined as the fraction of the simulation

volume V occupied by the polymer chains, i.e.,

ϕp = Nch
Vchain
V

, (5.4)

where Nch is the number of polymer crowder chains in the system. In our simulations,

the polymer chain concentration ranges from ϕp = 0.0058 for 6 chains with 20 beads

to ϕp = 0.068 for 24 chains with 60 beads.

5.2.4 Langevin Dynamics

The conformational sampling technique uses Langevin dynamics, as described in

ref [48] (see section 2.3). The equation mv̇(t) = Fconf − mγv(t) + η(t) describes

the time evolution of the system, where m, v, v̇, γ, Fconf and η(t) are mass, velocity,

acceleration, friction coefficient, conformation force, and random force, respectively.

The random force η(t) is taken from a Gaussian distribution, the variance of which

determines the system’s temperature. The velocity form of the Verlet algorithm[50] is

used for numerical integration of the equation of motion, with an integration time step

of δt = 0.005τ . Simulations are carried out in the low-friction limit, where −mγv(t)

is small relative to the inertial term mv̇(t). A natural unit of time for the dynamics

is τ =
√
ml2/ϵ [51], where ϵ is the magnitude of typical interactions and l is a length
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scale, which we set to 4 Å, in this limit. The friction coefficient for beads is chosen

to be γb = 0.05τ−1, and all units are set so that the mass of a bead is mb = 1.0. For

crowders, the mass and friction coefficient are set to mc = 9.0 and γc = 0.017τ−1.

5.2.5 Simulations and analysis details

Spherical and polymeric crowders were simulated by placing them in a cubic box with

length 100Å, together with protein, plus applying the periodic boundary conditions.

The equilibrium behavior of systems including spherical crowders- and polymeric

crowders-proteins are characterized by crowder concentrations ϕc and ϕp, respec-

tively, was determined using Langevin dynamics in a range of different temperatures.

Simulations were performed at either a fixed temperature or with simulated temper-

ing, as described by [52], in which temperature alters dynamically between a set of

temperatures. Temperatures were updated every 100 time steps during the simulated

tempering runs. The temperature ranges for 1PRB and 1SHF are varied and are

kBT = 0.80−1.00 and 1.00−1.20, respectively. Those temperature ranges are chosen

to cover the entire transition from the native state to the unfolded state for both

proteins. 5 separate runs of 2 × 109 time steps were performed for each system and

utilized to estimate averages and statistical uncertainties. The simulations started

with a random protein structure (random torsional angles ϕi) and random crowder

positions, then a Monte Carlo-based relaxation step plus removing all hard-core steric

clashes.

For simulations with spherical crowders in the range ϕc = 0.0 − 0.20, the radii
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of spheres are determined as Rc = 8, 12, 16Å. Simulations for polymeric crowders

in the range ϕp = 0.0058 − 0.068 are performed in different chain lengths Lch =

5, 10, 20, 30, 40, 50, and 60 with assigned number of chains Nch. For simulations at

ϕc and ϕp > 0, the protein chains must avoid overlapping with the crowding agents.

Accordingly, the crowders must similarly avoid the protein chains.

5.2.6 Observable

The contact criterion used to determine the fractions of native contacts formed, Qnat,

is as follows: Two amino acids i and j are said to be in contact if their distances are

rij = 1.2r0ij, where rij is the distance between the Cα atoms and r0ij is the distance in

the native structure. In calculating Pnat, we define the native state, N, as Q ≥ Qcut,

where Q is the number of native contacts, and Qcut is 45 and 61 for 1PRB and 1SHF,

respectively.

5.3 Results

5.3.1 Polymeric crowders: size and volume exclusion

We start by characterizing the behavior of our polymeric crowders. For simplicity, we

use the same model for protein and polymers in this work, with the main difference

that the polymers are not subject to any attractive forces between beads (see Methods

for details). Figure 5.1 and Table 5.1 show the radius of gyration, Rg, of isolated
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polymer chains, as function of the number of beads, Lch. For Lch ≥ 20, the length

dependence of Rg fits well to a scaling law, Rg ∼ Lν
ch, where exponent ν = 0.61±0.01,

(see Figure 5.1 A), which is in line with the original Flory value of the exponent (3/5)

[53]. It should be pointed out, however, that the range of chain lengths considered

here might not permit a very accurate estimation of ν. We assume that our polymer

crowders behave roughly as self-avoiding random walks for chain lengths of 20 beads

or more.

In the case of many polymer chains in our system, we must distinguish between

two different concentration regimes, dilute and semidilute [54]. At low concentrations,

in the dilute regime, polymers are well separated and form objects roughly of size Rg.

As the concentration increases, the polymers will start to fill the entire system and

entangle, thereby entering the semidilute regime. The transition point between the

two regimes occurs at the overlap concentration ϕ∗
p, given by

ϕ∗
p =

Vchain
(4/3)πR3

g

, (5.5)

where Vchain is the volume occupied by the polymer chain. The crossover volume

fraction ϕ∗
p thus corresponds to the volume fraction occupied by the chain within

its pervaded volume, and is strongly dependent on Lch. Because Vchain ∼ Lch and

Rg ∼ L0.61
ch , we expect a scaling ϕ∗

p ∼ L−0.83
ch , which indeed fits well with calculated

values of ϕ∗
p for Lch ≥ 20, as shown in Figure 5.1B. Our crowded systems are mostly

in the dilute regime, except for the longest chains (Lch = 60) with 24 chains for which

the volume fraction ϕp = 0.068 which is very similar to the crossover volume fraction

ϕp
∗ = 0.064 at this length.
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Lch Rg (Å)

5 4.3

10 7.0

20 11.2

30 14.5

40 17.2

50 19.7

60 22.0

Table 5.1: Radius of gyration, Rg, for isolated polymer crowder chains for different numbers of

beads, Lch.

 4

 16

 4  16  64

A B
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 Å
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 4  16  64
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Figure 5.1: Scaling of polymer chain size and crossover volume fraction. Dependence of (A) the

radius of gyration, Rg, and (B) the crossover volume fraction, ϕ∗p, on the polymer length, Lch, as

given in table 5.1. For Lch ≥ 20, calculated values are well described by the relations Rg ∼ L0.61
ch

and ϕ∗p ∼ L−0.83
ch (see text), shown as black solid lines.
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5.3.2 Native structures are not perturbed by polymeric or

spherical crowders

Figure 5.2: Snapshots of 1SHF and 1PRB with polymeric crowders. Snapshots of folding simu-

lations of (A) 1SHF and (B) 1PRB (red), taken with the proteins in their respective native states,

in the presence of polymeric crowders with 40 beads per chain (blue). In both cases there are 24

polymeric crowder chains corresponding to an occupied volume fraction ϕp = 0.046.

Next, we study the folding of our two proteins, 1PRB and 1SHF, in the presence of

polymer crowders of different lengths, Lch, and in the presence of spherical crowders

of different radii, Rc. An illustration of these simulations is shown in Fig. 5.2. For

comparison, we also study folding in the absence of crowders. To vary the crowder

concentrations, we include different numbers of crowder chains or spheres in our

simulation box, which we keep fixed.
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As a progress variable for folding, we use the fraction of formed native contacts, Q.

We picked this variable because it has been shown thatQ is a good reaction coordinate

for folding in several different models [55, 56], i.e., folding rates are well captured by

the height of the folding barrier. Figure 5.3 C and D show representative free energy

profiles, F (Q), taken close to the midpoint temperature T 0
m of the respective proteins

in the absence of crowders. In general, we find that the overall two-state character

of the folding of our proteins remains even under crowded conditions. In particular,

this means that we can use a single definition of the native state, Q ≥ Qcut, where

the cutoff values Qcut are chosen based on the location of the free energy barrier at

ϕ = 0. For both dilute and crowded cases, the population of the native state, Pnat,

approaches unity at temperatures well below T 0
m, and Pnat as a function of T is well

described by a two-state equation, as shown in Fig 5.3A and B.

5.3.3 Both polymeric and spherical crowders enhance stabil-

ity

Next we turn to the change in equilibrium stability of 1PRB and 1SHF upon the

addition of crowders. As shown in Fig. 5.3C and D the destabilization of unfolded

state due to the presence of crowders is visible from an upward shift in the free energy

profile near the unfolded state basin. As done previously [43], we quantify the native

state stability using two different quantities: the midpoint folding temperatures, Tm,

and the free energy of folding ∆F = −kBT ln[Pnat/(1 − Pnat)]. Stabilization of the

native state is indicated by an increase in Tm and a decrease in ∆F .
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Figure 5.3: Folding curves and free energy profiles. The native state population, Pnat, as a function

of temperature T , for (A) 1PRB and (B) 1SHF in the absence of crowders (open squares or open

circles) and in the presence of spherical crowder with Rc = 12 Å and ϕc = 0.20 (solid blue squares

or solid blue circles) and in the presence of polymeric crowder with Lch = 5 and ϕp = 0.05 (solid red

squares or solid red circles) crowders. These curves are fitted to the equation Pnat = K/(1+K) (two-

state model), where K = exp[−∆E(1/kBT −1/kBTm)], and ∆E and Tm are free parameters (dashed

curves). Free energy profiles F (Q) = −kBT lnP (Q), where Q is the number of native contacts and

P (Q) is a probability distribution, for (C) 1PRB and (D) 1SHF, for each of the systems shown in

(A) and (B), respectively. The temperature in (C) and (D) is the respective midpoint temperatures

(T = T 0
m) of the two proteins in the absence of crowders.
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Our results for both polymer and spherical crowders across a range of crowder

sizes and concentrations, are summarized in Figures 5.4 (1PRB) and 5.5 (1SHF).

The general trends are the following. 1PRB and 1SHF are stabilized by the addition

of either polymeric or spherical crowders, and the stabilization increases with the

number of added crowders. Moreover, stabilization increases with both the polymer

length Lch and the radius of the spherical crowders, Rc, at a given number of crowders.

Hence, the stability of 1PRB and 1SHF is a monotonically increasing function of the

crowder concentration (ϕc or ϕp) for both types of crowder agents.

The two proteins thus follow similar trends in terms of stabilization, as quantified

either by folding midpoint temperature or folding free energy (see Fig 5.4 and Fig 5.5).

However, the stabilization is slightly stronger for 1SHF than 1PRB under the same

crowding conditions. For example, in the presence of polymeric crowders of length

Lch = 60 with Nch = 24 chains, the relative increase in the midpoint temperature is

larger for 1SHF than for 1PRB (see Figs 5.4 A and 5.5 A). A similar trend emerges

with spherical crowders, e.g., the increase in the midpoint temperature for Rc = 8 Å

with Ncr = 92 crowders, is larger for 1SHF than for 1PRB (see Figs 5.4 C and

5.5 C.).

5.3.4 Size dependence of stability for spherical and polymeric

crowders

The addition of small spherical crowders leads to a larger increase in protein stability

compared to the addition of large spherical crowders, at a given fixed volume fraction
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Figure 5.4: Midpoint temperature and folding free energy changes for 1PRB. Change in the folding

midpoint temperature, Tm, versus (A) the number of polymer chains Nch and (C) the number of

spherical crowders, Ncr. Change in the free energy of folding ∆∆F as a function of (B) number of

polymer chains Nch and (D) number of spherical crowders Ncr, taken at the temperature kBT = 0.83

in the model unit.
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Figure 5.5: Midpoint temperature and folding free energy changes for 1PRB. Change in the folding

midpoint temperature, Tm, versus (A) the number of polymer chains Nch and (C) the number of

spherical crowders, Ncr. Change in the free energy of folding ∆∆F as a function of (B) number of

polymer chains Nch and (D) number of spherical crowders Ncr, taken at the temperature kBT = 1.00

in the model unit.
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ϕc, as can be seen in Fig 5.5A and C. Such a size dependence for spherical crowders

have been found in previous computational studies [37, 38, 43] and is expected from

theory [10]. In contrast, we find that the effect of polymeric crowders on stability does

not show a very strong size dependence. Spanning chain lengths from 5–60 beads,

the increase in Tm is mostly determined by the volume fraction, ϕp, and not Lch, as

can be seen in Fig 5.6B and D. However, there is a weak length dependence for 1SHF

to be discussed below. The lack of a strong dependence on Lch may in part be due

to the fact that we are only able to explore relatively small volume fractions, ϕp, for

the polymer crowders.

In order to more closely examine the length dependence for the polymer crow-

ders, we consider ∆∆F as a function of Lch at three different temperatures: below,

above, and in the proximity of the folding midpoint temperature. Numerically, these

temperatures correspond to kBT = 0.83, 0.88 and 0.97, for 1PRB, and kBT = 1.00,

1.05, and 1.11, for 1SHF. In general, the stabilization is stronger (lower ∆∆F ) at

higher temperatures for both polymer and spherical crowders. This likely results

from the fact that, at higher T , the unfolded state is more expanded, which leads

a stronger entropic disfavoring of the unfolded state relative to the compact native

state. Regarding the length dependence, for 1PRB, no clear trend in chain length Lch

can be discerned, as mentioned above. For 1SHF, the weakest impact on stability, as

indicated by the least negative ∆∆F , occurs for Lch = 40 for all three temperatures.

Interestingly, in a recent study, Pielak et al. [57] studied the impact of stabilizing PEG

crowders on an SH3 domain, which has the same native state topology as our protein

1SHF, across different polymer lengths, and observed that the impact on stability was
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smallest for medium sized PEGs with molecular mass in the interval 400-1000 g/mol.

Using 44 g/mol for the molecular mass of the PEG monomer (ethylene glycol), these

medium sized PEG chains correspond to ≈ 9-23 monomer units.

5.3.5 Folding rate enhanced by crowding agents

In this study, we aim to investigate the folding rate kf of the protein using Langevin

dynamics simulations. The folding rate, a fundamental kinetic parameter character-

izing the folding process, quantifies the rate at which the protein transits from its

initial unfolded configuration to its stable native state. This parameter sheds light

on the energetics and mechanisms underlying the folding process. To determine kf,

we employ the following equation:

kf =
1

tf
, (5.6)

where tf is the average number of Langevin dynamics steps it takes to transition

from unfolded states U to the native state, N. The number of native contacts Q has

been used to determine the unfolded and native states. Accordingly, for 1PRB, we

classify a conformation to be in the unfolded state if Q < QU
cut = 33, and in the

native state if Q > QN
cut = 60. Similarly, an unfolded state defined as Q < QU

cut = 34,

and the native state as Q > QN
cut = 90, for 1SHF. The Qcut cutoff values for the

unfolded and native states were determined based on the free energy profile of 1PRB

and 1SHF (see Fig. 5.3 C and D). These cutoffs in Q implement more restrictive

definitions of U and N than those for the calculation of the equilibrium quantity Pnat,

previously (see 5.2.1). The more restrictive definitions are necessary here so that
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transient fluctuations within U, which reach the peak of the free energy barrier and

return to the U basin, are not counted as folding transitions.

We investigate the effect of excluded volume crowding on the kinetics of two

proteins, 1PRB and 1SHF. To examine this effect, we conducted fixed-T simulations

in the presence of polymeric or spherical crowding agents at different volume fractions

at T = T 0
m. For each protein-crowder system, 5 separate runs of 2 × 109 steps were

performed to estimate averages of the quantity tf. The parameter tf is calculated as

the average number of simulation time steps it takes during a trajectory to reach an

N state conformations, defined as Q > QN
cut, from the time the trajectory first entered

into the U state, defined as Q < QU
cut.

We study the relative increase in the folding rate kf/k
0
f upon adding any type

of crowders where k0f is the rate at ϕc = ϕp = 0. The values for the folding rate

in the absence of crowders are k0f = 1.7 × 10−5 and k0f = 1.6 × 10−6 for 1PRB

and 1SHF, respectively in the model time unit. We find that the folding rate kf

increases monotonically with the crowder volume fraction for both proteins and for

both crowder types over the studied range of crowder sizes and concentrations. The

excluded volume crowding effect on the 1SHF folding rate is more strongly enhanced

by both polymer crowders (see Fig 5.8A and C) and spherical crowders (see Fig 5.8B

and D) than 1PRB.

We also investigate the effect of crowding agent size on the folding rate of both

proteins at a constant volume fraction ϕp = 0.053 for polymeric crowders and at a

constant volume fraction ϕc = 0.20 for spherical crowders. Interestingly, for polymer
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0
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154



crowders, we find that the folding rate does not depend strongly on the chain length,

Lch, as shown in Fig. 5.9 A and C. This result holds for both proteins. The limited

impact of Lch on the folding rate might be attributed, at least in part, to the relatively

small polymer crowder volume fractions studied here. Spherical crowders show a

different trend. At a constant volume fraction, increasing the size of spherical crowders

Rc leads to a smaller effect on the folding rate kf.

Overall, our main finding is that the effect of excluded volume crowding is to

monotonically increase the rate of folding. However, the extent of the speedup of

folding depends on the protein and the crowder type. Furthermore, the sharp increase

in the folding rate observed for 1SHF at higher volume fractions (ϕc > 0.20) of

spherical crowders suggests that the effect of crowding on protein folding kinetic can

be non-linear and complex in our model.

5.4 Discussion and Conclusions

In this study, we investigated the effect of purely repulsive excluded volume crowding

on the stability and folding kinetics of two different proteins, 1PRB and 1SHF, using

both polymeric and spherical crowding agents by molecular dynamic simulations and a

coarse-grained model. Our results demonstrate that while both proteins are generally

stabilized by both types of crowders, the nature and degree of the stabilizing effect

depend on the crowder agent used and the protein being studied.

1SHF exhibits a greater crowder-induced stabilization than 1PRB in response to
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both spherical and polymeric crowding agents. This difference may be related to the

distinct topologies of the two proteins, because 1SHF is a β-sheet protein and 1PRB

is an α-helical protein. However, the difference between the two proteins in terms of

the stabilization observed is rather small.

For polymeric crowders, we find that the stabilization of 1PRB by polymer crow-

ders exhibit basically no dependence on the chain length, Lch, for a given crowder vol-

ume fraction. For 1SHF, the greatest stabilization is provided by the smallest chains

(Lch = 5 and 10) while the smallest stabilization is provided by Lch = 40. Although

the length dependence we observe is weak also for 1SHF, the results mirror those of

Stewart et al. [57] who studied native state stability of an SH3 domain in the presence

of ethylene glycol (EG) and polyethylene glycol (PEG) of various sizes. These authors

divided their crowders into small (< 400 g/ml), medium (400-1000 g/mol), and large

(> 1000 g/mol) sized PEGs. The greatest stabilization occurred for small PEGs, the

smallest stabilization occurred for the medium sized PEGs, and the large PEGs had

a stabilization in between the small and medium types. In this background, it would

be interesting to carry out additional simulations within our model and modify our

polymer crowders to mimic PEG chains specifically. In contrast, the difference in

impact of spherical crowders of different sizes is more pronounced. Smaller spheri-

cal crowders are observed to enhance the stability of the native state more for both

proteins at a fixed volume fraction compared to large spherical crowders. This is

illustrated in Fig. 5.7 (C and D).

Notably, we observed that the folding rate of both proteins increased upon adding

both spherical and polymeric crowding agents. Cheung et al. [32], using a model
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similar to ours and spherical crowders, found a non-monotonic dependence of the

folding rate kf on the crowder packing fraction. Specifically, they found an increase in

kf with crowder concentration until ϕc ≈ 0.10, followed by a sharp decrease at higher

ϕc. We did not observe such non-monotonicity in our model, either for spherical

or polymer crowders. A difference between our simulations and those of Cheung et

al. [32] is that these authors carried out their simulations using Brownian dynamics

while we have relied on Langevin dynamics. Specifically, our findings suggest that

the size and shape of crowding agents and the specific protein being studied must be

considered when designing experimental or computational studies to investigate the

effects of excluded volume crowding on protein behavior.

In conclusion, our simulations demonstrate that excluded volume crowders can

significantly impact the native state stabilities and folding rates of proteins. We found

that adding crowders generally stabilizes the native state of both 1PRB and 1SHF

proteins, as indicated, e.g., by a decrease in the folding free energy. The magnitude

of this effect varied depending on the type and size of the crowders. Moreover, we

observed that the effect of both spherical polymeric crowders on the folding rate is

more pronounced for 1SHF compared to 1PRB (see Fig. 5.8). It would be interesting

to explore, in future studies, if this difference between 1SHF and 1PRB is related to

the character of the respective unfolded states of the two proteins, and how this state

interacts with the different crowders.
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[34] A. Bille, S. Mohanty, and A. Irbäck. Peptide folding in the presence of interacting

protein crowders. J Chem Phys, 144:175105, 2016.

[35] I. Yu, T. Mori, T. Ando, R. Harada, J. Jung, Y. Sugita, and M. Feig. Biomolec-

ular interactions modulate macromolecular structure and dynamics in atomistic

model of a bacterial cytoplasm. Elife, 5, 2016.

[36] M. Candotti and M. Orozco. The Differential Response of Proteins to Macro-

molecular Crowding. PLOS Comput Biol, 12:e1005040, 2016.

163



[37] J. Mittal and R. B. Best. Dependence of protein folding stability and dynamics

on the density and composition of macromolecular crowders. Biophys J, 98:315–

320, 2010.

[38] D. Tsao and N. V. Dokholyan. Macromolecular crowding induces polypep-

tide compaction and decreases folding cooperativity. Phys Chem Chem Phys,

12:3491–3500, 2010.

[39] B. P. Thuy, H. T. T. Huong, and T. X. Hoang. Effects of macromolecular

crowding on protein folding. J Phys Conf Ser, 627:012027, 2015.

[40] B. Macdonald, S. McCarley, S. Noeen, and A. E. van Giessen. β-hairpin crowding

agents affect α-helix stability in crowded environments. J Phys Chem B, 120:650–

659, 2016.

[41] D. Gomez, K. Huber, and S. Klumpp. On protein folding in crowded conditions.

J Phys Chem Lett, 10:7650–7656, 2019.

[42] Y. C. Kim, A. Bhattacharya, and J. Mittal. Macromolecular crowding effects on

coupled folding and binding. J Phys Chem B, 118:12621–12629, 2014.

[43] S. Bazmi and S. Wallin. Crowding-induced protein destabilization in the absence

of soft attractions. Biophys J, 121:2503–2513, 2022.

[44] V. T. Ranganathan, S. Bazmi, S. Wallin, Y. Liu, and A. Yethiraj. Is ficoll a

colloid or polymer? a multitechnique study of a prototypical excluded-volume

macromolecular crowder. Macromolecules, 55:9103–9112, 2022.

164



[45] Loren Stagg, Shao-Qing Zhang, Margaret S Cheung, and Pernilla Wittung-

Stafshede. Molecular crowding enhances native structure and stability of α/β

protein flavodoxin. Proc Natl Acad Sci USA, 104:18976–18981, 2007.

[46] A. Christiansen, Q. Wang, A. Samiotakis, M. S. Cheung, and P. Wittung-

Stafshede. Factors defining effects of macromolecular crowding on protein sta-

bility: an in vitro/in silico case study using cytochrome c. Biochemistry,

49(31):6519–6530, 2010.

[47] William H Fissell, Christina L Hofmann, Ross Smith, and Michelle H Chen.

Size and conformation of ficoll as determined by size-exclusion chromatography

followed by multiangle light scattering. Am J Physiol - Ren Physiol, 298:F205–

F208, 2010.

[48] S. Wallin and H. S. Chan. Conformational entropic barriers in topology-

dependent protein folding: perspectives from a simple native-centric polymer

model. J Condens Matter Phys, 18:S307, 2006.

[49] P. K. Zuber, I. Artsimovitch, M. NandyMazumdar, Z. Liu, Y. Nedialkov,
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Chapter 6

Simulations of a protein fold switch

reveal crowding-induced

population shifts driven by

disordered regions
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Abstract

Macromolecular crowding effects on globular proteins, which usually adopt a single

stable fold, have been widely studied. However, little is known about crowding effects

on fold-switching proteins, which reversibly switch between distinct folds. Here, we

study the mutationally driven switch between the folds of GA and GB, the two 56-

amino acid binding domains of protein G, using a structure-based dual-basin model.

We show that, in the absence of crowders, the fold populations PA and PB can be

controlled by the strengths of contacts in the two folds, κA and κB. A population

balance, PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein is sub-

ject to crowded conditions with different packing fractions, ϕc. We find that crowding

increases the GB population and reduces the GA population, reaching PB/PA ≈ 4 at

ϕc = 0.44. We analyze the ϕc-dependence of the crowding-induced GA-to-GB fold

switch using scaled particle theory, which provides a qualitative, but not quantita-

tive, fit of our data, suggesting effects beyond a spherical description of the folds. We

show that the terminal regions of the protein chain, which are intrinsically disordered

only in GA, play a dominant role in determining the response of the fold switch to

crowding effects.

168



6.1 Introduction

Most globular proteins rely on a single fold to carry out their function. However,

recently, proteins have been discovered with an ability to switch between different

folds [1–4], a phenomenon called fold switching. By adopting an alternative structure,

these fold-switching proteins (also termed metamorphic [5] or transformer [6] proteins)

gain the ability to carry out an additional unrelated function. For example, a switch

from a helical hairpin to a β-barrel transforms the Escherichia coli protein RfaH from

a transcription factor to a translational activator [7]. Consistent with this view, fold

switching is often regulated [8]. A range of cellular signals has been associated with

fold switching, such as changes in salt concentration [9], redox conditions [10], and

oligomerization [11]. Fold switching also underpins evolutionary changes in protein

structure [12–14], in which case fold switching is driven by mutations.

In this work, we investigate the effects of macromolecular crowding on fold switch-

ing. To this end, we focus on the binding domains of Protein G, GA and GB, which

form one of the most well-characterized fold switch systems [15] (see Figure 6.1a). It

was demonstrated that a set of substitution mutations can be found which drastically

increases the sequence identity of GA and GB, while still retaining their respective na-

tive structures and binding partners [15]. For example, the variants GA95 and GB95

differ in only 3 amino acid positions. Hence, three additional substitutions (L20A,

I30F and L45Y) applied to GA95 cause an abrupt switch from the 3α fold of GA to

the 4β + α fold of GB. Later it was shown that there are multiple ways in which a

single substitution can tip the balance from one fold to the other, e.g., L20A applied
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to the variant GB98-T25I [16]. These experiments on GA and GB were, however,

carried out in dilute protein solutions and therefore in the absence of any crowding

effects.

We carry out our simulations with a coarse-grained structure-based model, which

we develop and test on the GA/GB fold switch in the absence of crowders (see Meth-

ods). The structure-based approach involves constructing a potential energy land-

scape with a single basin of attraction by making native contacts attractive and

non-native contacts repulsive. This type of modeling has provided important insights

into several aspects of protein folding [17–20]. The natural extension to fold switch-

ing is a potential with dual basins of attractions corresponding to the two alternative

folds [21–26]. Our dual-basin model for GA/GB fold switching permits us to mimic

the progression of mutations along a pathway from one fold to the other by tun-

ing the relative interaction strengths of residue-residue contacts in the GA and GB

folds (see Figure 6.1b). To understand the effect of crowding, we focus on the point

along the mutational pathway where the GA and GB folds exhibit roughly equal fold

propensities, which we reasoned should be especially susceptible to crowding effects.

6.2 Model and Methods

6.2.1 Native structures and contact maps

The experimentally determined structures of GA95 (PDB id 2KDL) and GB95 (2KDM) [15]

were downloaded from the Protein Data Bank (PDB). Both structures were submit-
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ted to the smog webserver (https://smog-server.org/) to obtain contact maps as pre-

scribed by the shadow map method [27]. The two contact maps contain 106 and 145

contacts, respectively.

6.2.2 Observables

The fractions of native contacts were determined using QA = NA/106 and QB =

NB/145, where NA (NB) is the number of GA (GB) contacts formed. A contact

between two amino acids i and j was considered formed if rij < 1.2r0ij, where rij is the

distance between the Cα atoms and r0ij is the distance in the native structure (2KDL or

2KDM). In determining the fold populations, PA and PB, we classified a conformation

to be in the GA fold if NA > N cut
A = 58 and in the GB fold if NB > N cut

B = 76, where

N cut
A and N cut

B were determined based on the free energy profiles F (NA) and F (NB)

for G*
AB (see Figure C.6). The root-mean-square deviation, RMSD, was calculated

over all Cα positions of the chain.

6.2.3 Coarse-grained model for protein fold switching

Simulations were carried out using a dual-basin structure-based model in which each

amino acid is represented by a single bead located on the Cα-atom position. The

starting point for developing this model was a modified version of the single-basin

structure-based model in Ref. [18] with a potential energy function with 5 terms,

E = Ebond + Ebend + Etorsion + Erep + Econt, representing bond stretching, bond flex-
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ing, torsional rotations, repulsions between bead pairs, and attractive native contact

interactions. We applied this model separately to the native structures of GA95 and

GB95 resulting in two structure-based energy functions, E(A) and E(B), with single

basins of attraction (either the GA fold or the GB folds). Using the exponentially-

weighted mixing approach of Best et al. [28], we then merged E(A) and E(B) into a

single (dual basin) energy function, E(db). The strength of GA and GB contacts, κA

and κB, were left as free parameters in E(db), allowing the relative depth of the GA

and GB basins of attraction to be controlled. Full details of the model are given in

Supporting Information.

6.2.4 Excluded volume crowders

Crowder-crowder and crowder-protein interactions are described using the potential

function [29]

V (r) = ϵ

(
σ

r − ρ+ σ

)12

(6.1)

for distances r > ρ − σ, and V (r) = ∞ otherwise. Hence, our crowders have a soft

repulsive shell over a hard core. The parameters ρ and σ control the range of the

interaction and the width of the soft repulsive shell, respectively. We determined

these parameters using σ = σi+σj and ρ = Ri+Rj, where i and j are two interacting

elements. When i, j are crowders we set σi = σj = 3 Å and Ri = Rj = 12 Å, and

when one of i, j is a crowder and the other is a chain bead we set for the bead

(assuming j) σj = Rj = σb, where σb = 4 Å is the bead radius. With this choice of

ρ and σ, an approximate value for the crowder radius Rc is ≈ 12 Å. A more precise
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value was obtained from the radial distribution function g(r) for a large crowder-only

system, which indicated 12.5 Å (see Figure C.7). We therefore use Rc = 12.5 Å for

the crowder radius throughout this work. The crowder concentration, as quantified

by the fraction of the total simulation volume V occupied by the crowders, is then

given by ϕc = 4πR3
cNcr/3V . In our simulations, the number of crowder particles Ncr

ranges from 9 for ϕc = 0.073 to 54 for ϕc = 0.442.

6.2.5 Langevin dynamics

Conformational sampling was carried out using Langevin dynamics following the ap-

proach of Ref. [18] (see 2.3.). The time evolution of the system is then governed by

the equation, mv̇(t) = Fconf − mγv(t) + η(t), where m, v, v̇, γ, Fconf and η(t) are

the mass, velocity, acceleration, friction coefficient, conformational force and random

force, respectively. The random force η(t) is drawn from a Gaussian distribution, the

variance of which sets the temperature of the system. For computational reasons,

simulations were carried out in the low-friction (underdamped) limit, where −mγv(t)

is small relative to the inertial term mv̇(t). In this limit, a natural unit of time for the

dynamics is τ =
√
ml2/ϵ [30], where ϵ is the magnitude of typical interactions and l

is a length scale, which we set to 4 Å. The friction coefficient for beads was taken to

be γb = 0.05τ−1. Units were set so that the mass of a bead is mb = 1.0. Numerical

integration of the equation of motion was carried out using the velocity form of the

Verlet algorithm [31] with an integration time step δt = 0.005τ . For crowders, the

mass and friction coefficient were set to mc = 9.0 and γc = 0.017τ−1.
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6.2.6 Simulation and analysis details

Simulations were carried out by placing the protein and crowders in a cubic box

with side 100 Å. Periodic boundary conditions were applied. Langevin dynamics

simulations were used to determine the equilibrium behavior of various systems char-

acterized by different GB contact strengths κB and crowder concentrations ϕc. Simu-

lations were performed at either fixed temperature or using simulated tempering [32],

in which temperature changes dynamically between a predetermined set of values. In

the simulated tempering runs, temperatures were updated every 100 time steps. For

each system, 5-10 independent runs of (4− 5)× 109 time steps each were carried out

and used to estimate averages and statistical uncertainties. All simulations were ini-

tiated from a random protein conformation (random torsional angles ϕi) and random

crowder positions, followed by a Monte Carlo-based relaxation step in which all hard

core steric clashes were removed.

6.2.7 Theory

Simulation results were analyzed using scaled particle theory (SPT) [33] and gener-

alized fundamental measure theory (GFMT) [34, 35]. According to SPT, the free

energy cost of inserting a hard sphere of radius R in a hard sphere fluid of particles

with radius Rc is [33]

βF = (3x+ 3x2 + x3)ψ + (
9x2

2
+ 3x3)ψ2 + 3x3ψ3 − ln(1− ϕc) , (6.2)
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where β = 1/kBT , T is the temperature, kB is the Boltzmann constant, x = R
Rc
,

ψ = ϕc

1−ϕc
, and ϕc is fluid volume fraction. Minton showed that SPT predicts a strong

stabilizing effect on the native states of single-fold proteins if the unfolded state size

is modeled as an ideal Gaussian chain [36]. Here SPT was used to model the GA/GB

folds as spheres of different radii.

GFMT accounts for geometric features of the protein structure using three quan-

tities, linear size lp, surface area sp, and volume νp. These quantities are obtained

by sampling the crowder-excluded surface, which is influenced by the crowder radius,

chain bead radius, and the protein conformation. The free energy cost of inserting a

protein conformation into a crowder fluid is then estimated as [34, 35]

βF = βΠcνp + βγcsp + βκclp − ln(1− ϕc) , (6.3)

where Πc, γc and κc are osmotic pressure, surface tension, and bending rigidity (cur-

vature), respectively, of the crowder fluid. To calculate the change in fold switch-

ing free energy at different ϕc using GFMT, we used a freely available code (http:

//pipe.rcc.fsu.edu/gfmt/) and set the radii of crowder and beads to 12.5 and

4.0 Å, respectively. GFMT calculations were performed on 200 random chain confor-

mations for each of the GA and GB folds, taken from our simulations of the model

protein G∗
AB at temperature T0.
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6.3 Results

6.3.1 Mimicking the mutational pathway between the GA

and GB folds

We first simulate the GA/GB system in the absence of crowders at a fixed temperature,

T0, sufficiently low for low-energy folded conformations to dominate over those in the

unfolded state (U). By varying the strength κB of GB contacts, keeping the strength

of GA contacts fixed (κA = 1), we can control the relative population of the two folds

in our model, as shown in Figure 6.1c. While GB is the dominant state at high κB

(≳ 0.97) GA dominates at low κB (≲ 0.85), where there is also a non-zero population

of U. At an intermediate value, κB = κ* = 0.92, the populations of GA (PA) and GB

(PB) are almost equal, PA ≈ PB ≈ 0.39− 0.42. The drastic population shifts between

states GA, GB, and U, can be seen from the free energy surfaces F (QA, QB), where

QA and QB are the fractions of formed GA and GB contacts, respectively, taken at

different κB values (see Figure 6.1d-f).

The sharp structural transition around κB ≈ κ* is reminiscent of experiments

showing that very few mutational steps (or even a single step) is sufficient to tip the

balance from GA to GB, or vice versa, for carefully selected mutational pathways [15].

Moreover, the minimum in the total folded population Ptot = PA+PB at κB ≈ κ* (see

Figure 6.1a) is in line with the partial loss of stability seen for GA and GB sequences

close to the transition point, e.g., GA98 and GB98, [15] as well as for other fold switch-

ing proteins [1, 37]. These results allow us to interpret κB as a continuous parameter
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Figure 6.1: (a) Representative experimental structures of the GA and GB folds shown in ribbon:

GA95 (PDB id 2KDL; blue) and GB95 (PDB id 2KDM; orange). In GA95, residue positions 1-7 and

53-56 are intrinsically disordered (purple). (b) Contact maps of the GA95 (above diagonal) and GB95

(below diagonal) structures. (c) Populations of the GA (triangles) and GB (circles) folds as functions

of the GB contacts strengths, κB. (d-e) Free energy surface F (QA, QB) = −kBT lnP (QA, QB), where

QA and QB are the fractions of GA and GB contacts, respectively, T is the temperature, kB is the

Boltzmann constant, and P (QA, QB) is a probability distribution, obtained at three different values

of κB. Results in panels (c)-(f) are taken at temperature T0 (in model units, kBT0 = 0.88, where kB

is the Boltzmann constant). Error bars in (c) and other figures unless otherwise stated, represent

1σ standard error of the mean estimated from independent simulations.
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mimicking the number of steps taken along a mutational pathway connecting the GA

and GB folds. The point κB = κ* thus represents a sequence located on the border

between GA and GB. Although a sequence with a perfect GA and GB population

balance was not reported, it has been found for other fold switching systems, e.g., the

E48S variant of RfaH [7] and the N11L mutant of the Switch Arc protein [38]. At

κB = κ∗, Ptot ≈ 0.82 meaning there is a minor population of U under these conditions.

It is possible to achieve a higher Ptot while maintaining the GA and GB population

balance by lowering the temperature below T0 and adjusting κ∗ (see Figure C.4). In

the following, we focus our analysis on T0 and refer to our κB = κ* model protein as

G*
AB.

6.3.2 Macromolecular crowding effects on the GA/GB fold

switch

Next we introduce spherical crowder particles with an effective radius Rc = 12.5 Å

(see Methods) into our simulation box, thereby probing the effect of volume exclusion

on the GA/GB switch from objects of roughly the size of the protein chain in either

folded state. Because of steric repulsions, the protein chain must at all times avoid

the space occupied by the crowders. Such loss of free volume typically stabilizes the

native state of single-fold proteins because any extended conformation in U becomes

entropically disfavored relative to compact, folded conformations [29]. The same

argument can be applied to each fold of a metamorphic protein. Hence, the overall

stability of all folded states should increase. Indeed, as shown in Figure 6.2a, the
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addition of crowders increases the total population Ptot = PA + PB across all values

of κB. Interestingly, poor stability is a common feature of fold-switching proteins [1].

For example, sequences on either side of the GA/GB switch point exhibit reduced

stabilities relative to wild-type GA or GB [15]. Crowding effects, if indeed providing

an overall stabilization, might therefore alleviate the partial loss of stability suffered

by bridge sequences in evolutionary fold-switch transitions [39].

To investigate how the relative population of the GA and GB folds is affected by

crowders we focus on G*
AB. Figure 6.2b shows that, as ϕc increases, the population

balance exhibited by G*
AB at ϕc = 0 swings towards GB at the expense of GA, i.e., PB

increases while PA decreases. The effect on G*
AB is not small. For example, PA/PB ≈ 4

at ϕc = 0.44 as compared to ≈ 1 at ϕc = 0. Hence, the effect of steric repulsions

between crowders and protein is to favor to GB over GA.

To quantitatively analyze this population shift we apply scaled particle theory

(SPT) [33]. In this theory, the free energy cost of inserting a hard sphere of radius R

into a fluid of hard spheres of radii Rc with packing fraction ϕc can be analytically

expressed (see Methods). SPT has been used to model crowding-induced changes to

the unfolding free energy ∆Funf = FU −FN, where FU and FN are the free energies of

U and N, respectively [29, 36, 40]. Here we adapt SPT to fold switching by treating

the GA and GB folds as spheres of radii RA and RB. With the parametrization

RA = R0 − δ and RB = R0 + δ, where R0 and δ are two parameters, the free energy

difference can be written

β∆FSPT = 6

[
(a+ 2ab+ ab2 +

a3

3
)ψ + (3ab+ 3ab2 + a3)ψ2 + (3ab2 + a3)ψ3

]
, (6.4)
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Figure 6.2: (a) The total native population Ptot = PA+PB as function of the contact strength κB

in the absence (open squares) and presence (filled squares) of crowders at packing fraction ϕc = 0.22

. (b) GA (PA; triangles) and GB (PB; circles) fold populations as functions of ϕc. (c) Free energy of

fold switching ∆Fswitch = −kBT lnPB/PA (squares) as function of ϕc, fitted to Eq. 6.2 with δ as a

single free parameter (solid curve). Green rhombuses are average ∆Fswitch values calculated using

GFMT (Eq. 6.3) for a representative set of GA and GB conformations taken from simulations, and

error bars indicate standard deviations over this set. The temperature is the same as in Figure 1.

Dashed lines between points are drawn to guide the eye.
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where a = δ/Rc, b = R0/Rc, ψ = ϕc/(1 − ϕc) and β = 1/kBT . We fit the measured

crowding induced changes in free energy of fold switching, ∆Fswitch = FB − FA =

−kBT ln[PB/PA] to Eq. 6.4 with δ as a single free parameter, fixing R0 = Rav
g + σb,

where Rav
g = 10.9 Å is the average radius of gyration of the GA95 and GB95 native

structures (see Figure 6.1a), and σb = 4.0 Å is the radius of the beads in our protein

chain. The fit is shown in Figure 6.2c and gives δ = −0.35 ± 0.03 Å. The size

difference 2δ is in rough agreement with that calculated for the radii of gyration

of the GA95 and GB95 native structures, RA
g = 11.4 Å and RB

g = 10.5 Å. The

quality of the fit (χ2/(n− 1) = 22, sample size n = 7) indicates, however, that SPT

poorly describes the observed crowding effects on ∆Fswitch. A better agreement can

be obtained by applying the generalized fundamental measure theory (GFMT) of Qin

and Zhou [34, 35], which takes into account both the shape of protein conformations

and their fluctuations (see Figure 2c). The generally good agreement obtained for

GFMT indicates, in particular, that accounting for fluctuations in chain size, which

are absent in SPT, is necessary to describe the observed ϕc-dependence of ∆Fswitch.

6.3.3 Disordered tails control the crowding effect on the fold

switch

The two terminal segments of the GA95 structure, residues 1-7 and 53-56, are in-

trinsically disordered (see Figure 6.1a). Hence, the GA-to-GB fold switch involves a

disorder-order transition of these tail regions. Given their flexible nature, it is likely

that the tails contribute substantially to the volume excluded by the protein when
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occupying the GA fold. Indeed, if the terminal segments are ignored, the radius of

gyration of GA95 is reduced by ≈ 22 %, RA,8-52
g = 8.9 Å. By contrast, the radius of

gyration of GB95 determined over the same segment is RB,8-52
g = 10.8 Å, which is a

slight increase compared to value for the full chain. Together with the poor fit with

SPT (see Figure 6.2c), these results suggest a potential role for the tail segments in

how the GA/GB fold switch is impacted by crowding.
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Figure 6.3: Results are shown for simulations with a modified potential energy function that

ignores hard-core steric repulsions between any crowder and beads in chain segments 1-7 and 53-56

(see text). (a) GA (triangles) and GB (circles) fold populations as function of ϕc. (b) Fit of ∆Fswitch

(squares) to scaled particle theory (solid curve). Green rhombuses are ∆Fswitch values calculated as

in Figure 6.2 but with GFMT applied only to the chain segment 8-52. The temperature is the same

as in Figure 1.

To show that this is indeed the case, we carry out crowding simulations with a

modified potential energy function, E
(db)
mod, in which all crowder-protein interactions
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have been turned off for residues in the 1-7 and 53-56 regions. Hence, in these simu-

lations, the N- and C-terminal segments become invisible to the crowders, which thus

freely overlap with the residues. Although unphysical, this computational experiment

logically tests the role of the tail regions in our model under crowded conditions. Note

that crowders can overlap with the tails regardless of which state is populated by the

protein. Moreover, at ϕc = 0, the model remains the same because intra-chain in-

teractions are unaffected. The results are shown in Figure 6.3. Strikingly, with the

modified potential E
(db)
mod, the impact of crowding reverses such that the GA fold be-

comes increasingly favored over GB with increasing ϕc. Moreover, the fit to the SPT

(see Fig 6.3b), obtained using R0 = 13.9Å and giving δ = 0.42± 0.01Å, is now much

better (χ2/(n − 1) ≈ 1.5). We also carried out simulations with the modifications

in E
(db)
mod applied separately to the 1-7 and 53-56 regions. As it turns out, the effects

on ∆Fswitch is roughly additive (see Figure C.5), suggesting that the two tail regions

independently reduce the volume available to the crowders. Taken together, our com-

putational experiment shows that the volume excluded by the disordered tails in the

GA fold is the dominant factor affecting the balance between the folds in the presence

of crowders.

6.3.4 Comparing with crowding effects on single-fold pro-

teins

Above we have shown that the crowders induce a population shift in G*
AB, which is

due to the presence of disordered tails. For single-fold (monomorphic) proteins, purely
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repulsive crowders typically enhance the stability of the native state [41]. Naively,

one may therefore expect that the native state of monomorphic GB (κB > κ*) would

be more strongly stabilized by the crowders than monomorphic GA (κB < κ*). To

test this idea, we determine the folding midpoint temperature, Tm, for the model

proteins with κB = 0.85, which adopts the single fold GA, and κB = 1.00, which

adopts the single fold GB (see Figure 6.1), over a range of ϕc. As seen in Figure 6.4a-

c, both proteins exhibit a monotonic increase in Tm with increasing ϕc, indicating

stabilization. The relative increase in Tm for monomorphic GB is indeed somewhat

larger than for monomorphic GA. The difference is relatively small, however. We

also perform similar simulations using the single-basin energy functions E(A) and

E(B), (see Methods) which lack entirely a bias towards the alternative fold. For these

models, the crowding-induced increases in Tm are almost identical (see Figure 6.4d).

Taken together, these results suggest that determining the crowding response of a fold

switcher with two “co-existing” folds may not be easily obtained from experiments

on single-fold proteins representative of the two different folds.

6.3.5 The unfolded state changes character across the fold

switch

The results in Figure 6.4 are at first surprising because ∆Fswitch for a fold switching

protein can be obtained from the relation

∆Fswitch = ∆FA
unf −∆FB

unf , (6.5)

184



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.85  0.9  0.95  1  1.05

a b

c d

P
A

kBT

φc=0.00

0.07

0.15

0.22

0.29

0.37

0.44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9  0.95  1  1.05

P
B

kBT

φc=0.00

0.07

0.15

0.22

0.29

0.37

0.44

 1

 1.025

 1.05

 0  0.1  0.2  0.3  0.4

 T
m

 /
 T

 0 m

φc

GA

GB

 1

 1.025

 1.05

 0  0.1  0.2  0.3  0.4

 T
m

 /
 T

 0 m

φc

 GA

 GB

Figure 6.4: (a) GA fold population obtained with our dual-basin structure-based model with weak

GB contacts (κB = 0.85), as function of temperature. (b) GB fold population obtained with the

same model but with strong GB contacts (κB = 1.00). (c) Midpoint temperature, Tm, as function

of ϕc. Tm is obtained by fitting the folding curves in (a) and (b) to a two-state model. (d) Tm as

function of ϕc, obtained with single-basin structure-based models for GA and GB. In both (c) and

(d), T 0
m is the value of Tm at ϕc = 0.

185



where ∆FA
unf = FU − FA and ∆FB

unf = FU − FB are defined in direct analogy with the

unfolding free energy of a single fold protein. Equation 6.5 expresses that a decrease

in ∆Fswitch results when the crowding-induced stabilization of fold GB relative to U

is stronger than the stabilization of fold GA. However, Eq. 6.5 is only guaranteed to

hold when ∆Fswitch, ∆F
A
unf and ∆FB

unf are determined for the same protein for which

U provides a common reference. We therefore examine if the drastic structural shift

for low energy (folded) conformations in the GA/GB fold switch is accompanied by

changes in U.

We first characterize U across the fold switch in the absence of crowders, i.e., upon

changing the contact strength κB, as shown in Figure 6.5a and b. With increasing

κB, and therefore increasing GB population, the unfolded state radius of gyration

RU
g decreases. Additionally, U becomes more “GB-like” as shown by the increase in

Q
(U)
B , i.e., the fraction of formed GB contacts in U. These results are in line with

simulations of single-fold proteins showing that native contacts in β-proteins tend

to promote chain collapse during folding more efficiently than α-proteins [42]. In

the crowding-induced GA-to-GB fold switch we similarly find a compaction of U (see

Figure 6.5c and d). For ϕc > 0.20, RU
g becomes smaller than for any value of κB in the

case of no crowders. Moreover, Q
(U)
A and Q

(U)
B both increase with ϕc. In summary, fold

switching driven either by mutation or crowding substantially impacts the structural

characteristics of U. Both chain compaction and the formation of residual structure

due to crowding have been observed for various single-fold proteins [43, 44].
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6.4 Discussion

Fold switching in proteins involves major structural changes, including in shape and

amino acid composition of surface regions. As a result, fold switching should be

inherently susceptible to crowding effects. Here we tested this idea by applying a dual-

basin structure-based protein model and purely repulsive crowders to the GA/GB fold

switch. We found that the addition of crowders indeed alters the free energy balance

between the two folds. The effect increases monotonically with ϕc. At ϕc = 0.44, the

change in ∆Fswitch is ≈2 kBT in magnitude. While no experiment probing crowding

effects on the GA/GB fold switch is available for comparison, a key role for molecular

shape in crowding has been demonstrated in a study that exploited alternative dimer

forms of two almost identical sequences [45]. Very recently, it was shown using nuclear

magnetic resonance spectroscopy that the addition of 90 g/L Ficoll400, polyethylene

glycol (PEG10) or BSA to the solution impacted the relative fold population of the

two metamorphic proteins KaiB and XCL1 [46].

Our results show that crowding effects on the GA/GB system may be determined

by chain segments at the N- and C-terminal ends, which are intrinsically disordered

only in the GA fold. The volume excluded by these disordered segments leads to

an entropic stabilization of GB relative to GA. Interestingly, order-disorder transi-

tions occur frequently in protein fold switching [1]. One example besides GA/GB is

human chemokine XCL1, which switches folds upon dimerization. In its monomeric

(chemokine) fold, XCL1 adopts an α-helix in its C-terminal region, which becomes

disordered when the protein transforms to its dimeric fold-switched state [12]. It
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should be pointed out that crowder interactions other than hard-core steric repul-

sions can modify the crowding effects. For single-fold proteins, non-specific attractive

(soft) interactions between protein and crowders generally counteract the stabilizing

effect of volume exclusion [47], and can even lead to a net destabilization [48].

Most studies on fold switching have quite naturally focused on the structure and

dynamics of the different folded states, and their interconversions. However, our

simulations of the GA/GB switch reveal that fold switching may be accompanied by

substantial changes in U (see Figure 6.5). Under conditions favoring GA, we find that

U is rather expanded and dominated by local contacts while becoming more compact

and forming more non-local contacts as the conditions shift to favor GB. In previous

simulations of the metamorphic RfaH [25], we showed that the isolated C-terminal

domain (CTD), which adopts a stable β-barrel in isolation, exhibits a propensity for

α-helical structure in U. This helical propensity was demonstrated experimentally by

Zuber et al. [37], who suggested further that the presence of residual helical structure

may help initiate the reverse fold switching of RfaH, i.e., the transformation from the

β-barrel to its alternative all-α fold. Taken together, the above considerations suggest

that an improved understanding of U may give further insights into fold switching

mechanisms, as well as effects from crowding.

In addition to changes to the relative population of the two folds, we have found

that the presence of crowders increases the total population of the GA and GB folds

relative to U. An overall stabilization of ordered states might be especially beneficial to

fold-switching proteins, which often exhibit reduced stabilities [1]. Poor stabilities of

bridge sequences at the border between folds may hamper evolutionary transitions [16,
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49, 50]. A recent study suggests fold switching within the context of multidomain

proteins, in which non-switching domains can act as stabilizing scaffolds, may help

stabilize such bridge sequences and facilitate fold transitions [13]. Our results suggest

that additional stabilization may be provided by crowding effects.

Our study opens up for additional experimental and theoretical investigations into

the effects of crowding on fold switching. Recent advances in the fold switching field

are improving our understanding of this phenomenon within functional [37, 51] and

evolutionary [3, 12, 13] contexts. These efforts should also include a characterization

of the impact of macromolecular crowding on equilibrium and kinetic properties of

fold switching proteins.
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Chapter 7

Summary and Outlook

In this thesis, our goal has been to investigate through theory and computational

simulations of coarse-grained models, the impact of macromolecular crowding effects

on protein folding, stability, and fold switching. Perhaps surprisingly, the central issue

in the crowding field of how the stability of proteins is impacted by various types of

crowder interactions, is not yet fully understood. Our focus has mainly been to

study the balance between the excluded volume effect and weak chemical attractions

on equilibrium and kinetic properties of proteins, such as native state stability and

folding rates. To study macromolecular crowding effects on fold-switching proteins,

we focused on the GA/GB system, which is one of the best characterized systems in

fold switching.

To study crowding effects on protein native state stability, we developed a sequence-

based model for proteins in which folding is driven by effective hydrophobic and hy-
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drogen bond interactions. Crowders were mimicked as spheres. One of the most

widespread conceptions in the crowding field is that excluded volume crowders gener-

ally enhance the native state stability of proteins. However, depending on the volume

fraction of crowders and temperature, we found that volume exclusion can have a

neutral effect on the native state stability, or even lead to a net destabilization.

Specifically, we found this behavior for two model proteins with only β-structure,

which both exhibit highly compact nonnative conformations, especially at low T .

We also used the same model to study the impact of different kinds of soft in-

teractions, especially hydrophobic interactions and hydrogen bonding, for a helical

protein that is stabilized by the excluded volume effect. As expected, both types

of soft interactions counteract the stabilizing excluded volume effect. We also found

that crowders with hydrophobic character provide a stronger destabilization relative

to crowders that interact nonspecifically with the protein. Additionally, we have

shown that hydrophobic peptide chains with partial hydrophobic character demon-

strate much stronger destabilizing effects than peptides with only polar amino acids.

Using a structure-based Cα model, we showed that polymeric crowders stabilize

the native state of proteins. Unlike the Cβ model, there are no attractive nonnative

interactions to stabilize compact nonnative conformations in the Cα model. Hence,

proteins are likely universally stabilized by excluded volume effects in these types of

structure-based models, as observed by us and others. Two proteins 1PRB and 1SHF

were investigated under both polymeric and spherical crowding conditions across

different temperatures and crowder concentrations. We have shown that polymeric

crowders with varying chain lengths, but with the total volume fraction of crowders
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kept constant, have approximately the same impact on stability and folding kinetics.

However, the enhancement of both the stability and the folding rate found upon the

addition of spherical crowders, decreased with increasing size of spherical crowders

for a given fixed total crowder volume fraction.

Using a dual-basin structure-based potential applied to the GA/GB fold switch

system, we study macromolecular crowding effects on protein G. We found that in-

creasing the volume fraction of crowders enhances the total stability of the native

states and also shifts the folded population towards the GB native state. Our analy-

sis showed that it is the presence of intrinsically disordered tails, which only appear

in the GA state, that drives the population shift. It would be extremely interesting

to compare our results with an experimental study of GA/GB sequences close to the

fold switch point in the presence of various types of artificial and protein crowders.

The effect of macromolecular crowding on protein stability has been studied by

many groups [1–3]. Generally, it was expected under excluded volume effects of

crowders, the native state of protein is entropically favored relative to the unfolded

state [4–6]. However, as we have shown here, it might not always be the case. This

idea might be tested by crowding experiments on proteins with populated compact

nonnative conformations [7–9]. One challenge with such experiments is that at low T s,

which is where we observe destabilization, the population of the unfolded state is very

small. The unfolded state signal may therefore be hard to distinguish from the native

state signal in bulk experiments. However, single-molecule experiments, in which

populations in individual states in a single protein can be observed, might be able to

address this issue. Single molecule experiments with the artificial crowder PEG were
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recently carried out by Schuler et al. on intrinsically disordered proteins [10].

To further our research in protein fold-switching, we continue to explore the effects

of macromolecular crowding by applying our model to the fold-switching protein

RfaH. We also plan to investigate the fold-switching kinetics and effect of attractive

interactions between protein and crowders. A remaining question to explore is how

the presence of attractive interactions between the disordered tails of the GA fold,

and the crowder, will impact the fold switch. For these investigations, we will be able

to utilize our coarse-grained structure-based Cα model.

Particularly, our Cα simulation method is general in the sense that it can be

applied to other proteins, including other fold-switching proteins, as long as structures

of the alternative folds are available. Furthermore, we can conduct fold-switching

tests in a more realistic crowded environment using different crowder particles, such

as crowders of other proteins, which would be particularly interesting.
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Figure A.1: The potential used in this work, V (r), plotted as function of inter-particle distance

r, (black curve) is controlled by three parameters: ρ (range), σ (softness) and kcr (strength). For

r ≤ ρ− σ, V (r) is infinite (a gray area).
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the absence and presence of excluded volume crowders with radius Rc = 12 Å for α35 and β35 and

Rc = 8 Åfor β25 at different packing fractions, ϕc.
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Figure A.3: Population of the native state, Pnat, as a function of temperature for (A) α35 and

(B) β35 (solid black curves). These curves are fitted to the equation Pnat = K/(1 + K), where

K = exp[−∆E(1/kBT − 1/kBT
0
m)], and ∆E and T 0

m are free parameters (dashed curves). Optimal

fits give ∆E = −19.0 and kBT
0
m = 0.535 for α35, ∆E = −26.8 and kBT

0
m = 0.517 for β35, and

∆E = −15.4 and kBT
0
m = 0.495 for β25. The errors on all 6 fit parameters are small, < 0.5%.
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(B) as a function of temperature for α35 (solid black curves), where native state is defined as in

the main manuscript or using the root-mean square deviation, RMSD. The native state is defined

as RMSD ≤ RMSDcut, where RMSDcut = 6.0Å for α35. These curves are fitted to the equation

Pnat = K/(1 +K), where K = exp[−∆E(1/kBT − 1/kBT
0
m)], and ∆E and T 0

m are free parameters

(dashed curves). Optimal fits give ∆E = −19.1 and kBT
0
m = 0.535 The errors on all 2 fit parameters
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Chapter 6

C.1 Development of computational model for the

GA/GB fold switch

C.1.1 Single-basin structure-based model for protein folding

As a starting point for the development our dual-basin structure-based model, which

we apply in this work to the GA/GB switch, we take the single-basin model for protein

folding developed in Ref. [1]. We start by describing this single-basin model along

with a modification introduced here to enhance the conformational specificity of na-

tive contact interactions. We find that the enhanced contact specificity is necessary to
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make the two folds structurally well defined in the dual-basin model. Geometrically,

the protein is represented by beads located at the Cα atom positions. The confor-

mation of an N -amino-acid chain can therefore be described by the bead positions

ri, where i = 1, ..., N . Alternatively, a conformation can be described by the bond

lengths, bi, bond angles, θi, and dihedral angles, ϕi, defined by the N − 1 (pseudo)

Cα-Cα bonds of the chain. We denote by b0i , θ
0
i , and ϕ0

i the values of bi, θi and ϕi

in the native conformation. The potential energy E can be written as a sum of five

terms:

E =
bonds∑

i

Kb(bi − b0i )
2 +

angles∑
i

Kθ(θi − θ0i )
2

+
dihedrals∑

i

K
(1)
ϕ [1− cos(ϕi − ϕ0

i )] +K
(3)
ϕ [1− cos 3(ϕi − ϕ0

i )])

+
nonnative∑
i<j−3

ϵ

(
σ

rij

)12

+
native∑
i<j−3

ϵ(hij − fij) , (C.1)

where ϵ sets the energy scale of the model and rij = |rj − ri|. The first three terms

represent bonded interactions with strengths set to Kb = 100ϵ, Kθ = 20ϵ, K
(1)
ϕ = ϵ

and K
(3)
ϕ = 0.5ϵ. The fourth term represents steric repulsions between bead pairs that

do not form a contact in the native structure. The repulsion range is set to σ = 4 Å.

These first four terms in Eq. C.1 are identical to Ref. [1].

The final term in Eq. C.1 represents native contact interactions, which in the pre-

vious model [1] were described by the Lennard-Jones potential fLJ(rij) = (r0ij/rij)
12 −

2(r0ij/rij)
6. Here we separate the interaction into a repulsive part (hij) and an attrac-

tive part (fij), such that they can be independently controlled. The repulsive part is
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Figure C.1: A contact between two non-terminal positions, i and j, (thick dashed line) has four

different nearest neighbor-nearest neighbor distances (thin dashed lines): (A) ri−1,j−1 and ri+1,j+1

and (B) ri−1,j+1 and ri+1,j−1. In evaluating the factor gξ2(r
′
ij)gξ2(r

′′
ij) in Equation C.1, r′ij and r

′′
ij are

the distances shown in (A), if ΣA < ΣB, or in (B), if ΣB < ΣA, where ΣA = r0i−1,j−1 + r0i+1,j+1 and

ΣB = r0i−1,j+1 + r0i−1,j+1.

described by a Weeks-Chandler-Anderson type function,

hij =


(

r0ij
rij

)12

− 2
(

r0ij
rij

)6

+ 1, if rij < r0ij ,

0, if rij ≥ r0ij ,

(C.2)

where r0ij is the distance between beads i and j in the native structure. The attractive

part takes the form

fij = gξ1(rij)gξ2(r
′
ij)gξ2(r

′′
ij) , (C.3)

where gξ(r) = exp[−(r − r0)2/2ξ2]. With the construct in Eq. C.3, the distance

rij as well as the two nearest neighbor distances, r′ij and r′′ij, (see Figure C1) must

assume their respective native values r0ij, r
′0
ij and r′′0ij for ij to become a fully formed

native contact, which then contributes −ϵ towards the total potential energy E. The

parameter ξ1 sets the width of the attractive well −ϵgξ1(rij). The combination of this

attractive well and the repulsive part of the interaction results in a function, hij−gξ1 ,
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with gross features similar to a Lennard-Jones potential (see Figure C2).
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Figure C.2: The potentials hij − gξ1 and fLJ (see text) as functions of rij using r
0
ij = 6 Å.

The factor gξ2(r
′
ij)gξ2(r

′′
ij) is included in fij in order to increase the conformational

specificity of the native interactions. For a contact between residues i and j, this factor

promotes the local chain segments (i− 1, i, i+ 1) and (j− 1, j, j+ 1) to adopt relative

orientations close to that found in the native structure. The strength of this effect is

controlled by the parameter ξ2. It is weak when ξ2 ≫ ξ1 and becomes strong when

ξ2 ≈ ξ1. Test simulations on a few small single domain proteins show that decreasing

ξ2 leads to increased co-operativity in the folding transition (data not shown). We

picked ξ1 = 1.0 Å and ξ2 = 5.0 Å. We note also that there are terms in Eq. C.3 for

which r′ij or r
′′
ij is undefined because i or j is a terminal bead. In those cases, we set

the corresponding factor g equal to unity.

The effect from the factor gξ2(r
′
ij)gξ2(r

′′
ij) in Eq. C.3 is similar to so-called local-

nonlocal coupling [2], which also leads to increased folding co-operativity. Our effect

is not exactly the same, however, because it does not provide a direct constraint on
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the local internal conformation around beads i and j. Such a constraint does exist in

local-nonlocal coupling.

C.1.2 Dual-basin structure-based model for fold switching

Next we extend the model of the previous section to a dual-basin (db) model, which

provides bias towards two different reference structures “(a)” and “(b)”. Such a bias

can be achieved by first obtaining the two single-basin energy potentials E(a) and

E(b) using Eq. C.1, and thereafter merging them into a single energy surface, E(db).

Naively, one may attempt to put E(db) = E(a) + E(b). However, this strategy is

problematic for some types of interactions, as pointed out by Ramirez-Sarmiento et

al. [3]. For example, the sum of two quadratic bond terms Kb[(bi− b(a)i )2+(bi− b(b)i )2]

is another quadratic function with minimum at (b
(a)
i + b

(b)
i )/2. Hence, this would

abolish both minima. We combine the two single-basin potentials E(a) and E(b) using

the procedure described below, which avoids these problems. This procedure is then

applied to the GA and GB folds to produce the dual-basin potential used in this work.

Bonded terms. The bonded interactions are represented by the first three terms

in Eq. C.1. Consider two individual energy terms, e(a)(x) and e(b)(x), with global

minimum at x = xa and x = xb, respectively. The functions e(a)(x) and e(b)(x) could

be, e.g., the bond angle terms corresponding to a particular bond, in which case

x = θi. To “mix” e(a)(x) and e(b)(x) into a single function e(x), we use [4]

e(x) = β−1
mix ln

[
e−βmixe

(a)(x) + e−βmixe
(b)(x)

]
, (C.4)
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where βmix is a parameter controlling the smoothness of the mixing. We pick βmix = 10

for the bond term, and βmix = 5 for the angle and torsion terms. Examples of three

different terms for the GA and GB folds are given in Figure C3.

Non-bonded terms. For the native contact term, we include all contact interactions

present in either E(a) or E(b). Although this is straightforward in principle, care must

be taken to avoid double counting interactions for common contacts, i.e., contacts

that occur in both (a) and (b). Moreover, we want to insert parameters κA and κB

such that strengths of the attractive wells −ϵf (a)
ij and −ϵf (a)

ij can be controlled. Hence,

our dual-basin contact term becomes

(a)∑
ij

ϵ(h
(a)
ij − κAf

(a)
ij ) +

(b)∑
ij

ϵ(h
(b)
ij − κBf

(b)
ij ) +

common∑
ij

ϵ
{
h̃ij −max

[
κAf

(a)
ij , κBf

(b)
ij

]}
,

where the first two sums are taken over native contacts in (a) and native contacts in

(b), respectively, excluding all common contacts, and the final sum is taken over these

common contacts. Note that, for each common contact, only the energetically most

favorable attraction is retained. The repulsive part, h̃ij, is evaluated as hij using the

smallest of the two reference distances, i.e., r0ij = min
[
r
(a)
ij , r

(b)
ij

]
. Picking r0ij this way

is necessary to guarantee that both conformations (a) and (b) can be formed without

suffering a strong steric repulsion in one of the conformations, which would otherwise

happen when r
(a)
ij and r

(b)
ij are very different. Note also that r0ij for common contacts

can be calculated before a simulation and that h̃ij does not change form during the

simulation. The nonnative repulsive energy term, i.e., the fourth term in Eq. C.1, is

evaluated over all pairs ij that are not contacts in either (a) or (b).
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solid/dashed curves) into a single potential (thick solid green curves) using the “mixing” equation C.4
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mod,1-7 (crowder-bead interactions turned off for the segment
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dashed line).

220



Bibliography

[1] S. Wallin and H. S. Chan. Conformational entropic barriers in topology-dependent

protein folding: perspectives from a simple native-centric polymer model. J Con-

dens Matter Phys, 18:S307, 2006.

[2] H. S. Chan, Z. Zhang, S. Wallin, and Z. Liu. Cooperativity, local-nonlocal cou-

pling, and nonnative interactions: principles of protein folding from coarse-grained

models. Annu Rev Phys Chem, 62:301–326, 2011.

[3] C. A. Ramirez-Sarmiento, J. K. Noel, S. L. Valenzuela, and I. Artsimovitch. In-

terdomain contacts control native state switching of RfaH on a dual-funneled

landscape. PLOS Comp Biol, 11:e1004379, 2015.

[4] R. B. Best, Y. G. Chen, and G. Hummer. Slow protein conformational dynamics

from multiple experimental structures: the helix/sheet transition of arc repressor.

Structure, 13:1755–1763, 2005.

[5] M. R. Shirts and J. D. Chodera. Statistically optimal analysis of samples from

multiple equilibrium states. J Chem Phys, 129:124105, 2008.

221


	Abstract
	General Summary
	Co-authorship Statement
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Macromolecular crowding effects
	Proteins: folding, fold switching, and structural disorder
	Molecular driving forces
	Hydrogen bonding
	Hydrophobic effect

	Quantifying native state stability
	Artificial polymers
	Previous studies on the effect of crowding on protein folding and stability
	Outline

	Theory and Methods
	Statistical mechanics
	Molecular dynamics
	Langevin dynamics
	Metropolis-Hastings Monte Carlo
	Simulated tempering
	Coarse-graining in molecular simulations
	C model
	C model

	Scaled particle theory

	Crowding-induced protein destabilization in the absence of soft attractions
	Introduction
	Materials and Methods
	Excluded volume crowders
	Coarse-grained model for protein folding in the presence of crowders
	Simulated tempering Monte Carlo
	Simulation and analysis details
	Observables

	Results
	Native structures are not changed by crowders
	Nonnative interactions are promoted under crowded conditions
	Excluded volume crowders can both increase and decrease native state stability
	Crossover temperature
	Compact 25 unfolded state allows for crowding induced destabilization at low T 
	How is 25 destabilized by crowders at T+?
	Apparent stabilization effect is observable dependent

	Discussion
	Conclusion
	Acknowledgements

	Exploring soft interactions in crowded systems: repulsive, nonspecific, hydrophobic and polypeptide crowders
	Introduction
	Methods
	Coarse-grained model for protein folding
	Crowders
	Simulations and analysis details
	Observables

	Results
	Spherical crowders
	How can the stronger destabilizing effect of weak hydrophobic attraction be explained?
	Balancing destabilizing soft interactions and stabilizing steric repulsions
	Polypeptide crowders

	Discussions and Conclusions

	Crowding effects on protein folding thermodynamics and kinetics: polymeric versus spherical crowders
	Introduction
	Material and Methods
	Native structures and contact maps
	Coarse-grained model for protein folding
	Excluded volume crowders
	Spherical crowders
	Polymeric crowders

	Langevin Dynamics
	Simulations and analysis details
	Observable

	Results
	Polymeric crowders: size and volume exclusion
	Native structures are not perturbed by polymeric or spherical crowders
	Both polymeric and spherical crowders enhance stability
	Size dependence of stability for spherical and polymeric crowders
	Folding rate enhanced by crowding agents

	Discussion and Conclusions

	Simulations of a protein fold switch reveal crowding-induced population shifts driven by disordered regions
	Introduction
	Model and Methods
	Native structures and contact maps
	Observables
	Coarse-grained model for protein fold switching
	Excluded volume crowders
	Langevin dynamics
	Simulation and analysis details
	Theory

	Results
	Mimicking the mutational pathway between the GA and GB folds
	Macromolecular crowding effects on the GA/GB fold switch
	Disordered tails control the crowding effect on the fold switch
	Comparing with crowding effects on single-fold proteins
	The unfolded state changes character across the fold switch

	Discussion
	Acknowledgments
	Authorship contributions
	Code availability

	Summary and Outlook
	Supporting Information for Chapter 3
	Supporting Information for Chapter 4
	Supporting Information for Chapter 6
	Development of computational model for the GA/GB fold switch
	Single-basin structure-based model for protein folding
	Dual-basin structure-based model for fold switching

	Supplementary figures


