
Hypergraph Burning

by

c© Caleb Jones

A thesis submitted to the School of Graduate Studies in partial

fulfillment of the requirements for the degree of Master of Science.

Department of Mathematics and Statistics

Memorial University

November 2023

St. John’s, Newfoundland and Labrador, Canada

Abstract

Graph burning is a combinatorial game or process that models the spread of influence

throughout a network. We introduce a generalization of graph burning which applies to

hypergraphs. One of our key results is that arbitrary hypergraphs do not satisfy a bound

analogous to the one in the Burning Number Conjecture. We also introduce a variant called

“lazy” hypergraph burning, along with a new parameter, the lazy burning number. Inter-

estingly, lazily burning a graph is trivial, while lazily burning a hypergraph can be quite

complicated. Moreover, the lazy burning model is a useful tool for analyzing the round-

based model. We obtain bounds on the burning number and lazy burning number of a

hypergraph in terms of its parameters, as well as stronger bounds that apply to Steiner

triple systems. We also discuss the complexity of both the round-based and lazy models.

Finally, we introduce two further variants of (lazy) hypergraph burning.

ii

Lay summary

A graph is a collection of points (called vertices) and lines (called edges) where each line

connects two specific points. Graphs are useful for describing many different concepts. A

helpful analogy is as follows: the vertices can represent people, and if two people are friends

then their corresponding vertices are connected by an edge (these vertices are adjacent).

Graph burning is a well-studied game or process that is played on graphs in which vertices

are set on fire, and the fire spreads throughout the graph via edges. If we let the graph

represent a social network as in our analogy, then the fire can represent a “social contagion”

spreading throughout the network. The game takes place over a sequence of rounds, and

there is a player called the arsonist. In each round, the arsonist manually burns a vertex

while the fire spreads or propagates from burned vertices to adjacent unburned vertices. The

burning number of a graph is the earliest round at which it could be completely burned, and

the existing research is mostly concerned with finding this number. In this thesis, we extend

the rules of graph burning so that it can be played on a hypergraph. A hypergraph is like a

graph, except the edges can now connect any number of vertices (notice that every graph is

a hypergraph). A hypergraph can also represent a social network, where edges of size two

represent friendships and larger edges represent social media friend groups – collections of

people who are not necessarily all acquainted, but who nonetheless spread information to

one another. Since hypergraphs can model social networks in greater detail than graphs,

they should be able to model the spread of a “social contagion” in more detail as well.

We therefore introduce a model called hypergraph burning, as well as a related model with

an alternate set of rules called lazy hypergraph burning. For each version of the game, we

prove several results related to optimal play in a general hypergraph as well as some specific

classes of hypergraphs. We implement code that computes the (lazy) burning number of a

hypergraph, and apply it to several classes of hypergraphs. Since the main innovation in

hypergraph burning is the way the fire propagates within an edge of size three or greater,

we also introduce two alternative propagation rules that could be used to make hypergraph

burning a more accurate model of different scenarios.

iii

Acknowledgements

I would like to acknowledge the help of both of my supervisors, whose expertise was invalu-

able. They directed the research and contributed to the proofs of multiple results. They

also suggested inclusions that would enhance the thesis, and provided editorial comments

on the manuscript, such as how best to adhere to mathematical conventions. The idea for

the proof of Theorem 3.2.7 arose from a discussion with Trent Marbach and Peter Danziger

(Toronto Metropolitan University), and the remainder of Chapter 3 is inspired by this idea.

This thesis was funded by an NSERC CGS M scholarship, an AARMS graduate scholarship,

and baseline funding from the MUN School of Graduate Studies.

iv

Statement of contribution

My supervisors (Dr. Andrea Burgess and Dr. David Pike) directed the research, offered

expertise on which avenues would be best to explore, and conceived some key results. I

(Caleb Jones) wrote the manuscript and code (found in sections A.2 and A.1), and conceived

and proved several results either independently or with the help of my supervisors. The idea

for Theorem 3.2.7 (as well as the algorithm and lemma used in its proof) arose from a

discussion with Trent Marbach and Peter Danziger at the summer 2022 CMS conference.

v

Table of contents

Title page i

Abstract ii

Lay summary iii

Acknowledgements iv

Statement of contribution v

Table of contents vi

List of tables viii

List of figures ix

1 Introduction 1

1.1 Graph Theory . 2

1.2 Hypergraph Theory . 4

1.3 Graph Burning . 7

1.4 The Burning Game on Hypergraphs . 14

1.5 The Lazy Burning Game . 16

1.5.1 Connections with Bootstrap Processes 18

2 General Results and Bounds 21

vi

2.1 Arbitrary Hypergraphs . 21

2.2 Disconnected Hypergraphs . 32

2.3 Subhypergraphs . 36

2.4 Complexity . 44

3 Steiner Triple Systems 49

3.1 Definitions and Motivation . 49

3.2 General Results on Steiner Triple Systems 50

3.3 Results on Doubling Steiner Triple Systems 59

3.4 Computational Results . 69

4 Alternative Propagation Rules 72

4.1 A Propagation Rule that Uses Proportions 72

4.2 A Propagation Rule that Uses Thresholds 79

5 Summary and Future Work 84

Bibliography 90

A Source Code 93

A.1 Main Routine . 93

A.2 Subroutines . 98

vii

List of tables

3.1 The first few values for the functions h and g defined in the proof of Theorem

3.2.2. 54

3.2 Burning numbers and lazy burning numbers for some small Steiner Triple

Systems. 70

3.3 Lazy burning numbers for the first few doubles of some small STSs. 70

3.4 Burning numbers and lazy burning numbers for some small projective planes. 71

viii

List of figures

1.1 A hypergraph with edges {a, b, c, d, e}, {b, c, f, i}, {f, g, h}, and {i, j}. 5

1.2 A hypergraph H, its 2-section G, the weak subhypergraph H1 of H induced

by V1 = {b, e, f, g, j}, and the strong subhypergraph H2 of H induced by

V2 = {a, b, c, d, e, f, i}. 6

1.3 An optimal burning sequence in a graph. 9

1.4 An optimal burning sequence S1 = (b, c, a, f). 16

1.5 An optimal burning sequence S2 = (b, a, c, d). 16

1.6 {c, e, f} is a minimal lazy burning set that is not optimal. 17

2.1 An example where all the bounds in Corollary 2.1.2, Lemma 2.1.3, and Corol-

lary 2.1.5 are tight simultaneously. 22

2.2 An example where all the bounds in Theorem 2.1.13 are tight simultaneously. 25

2.3 A tight 3-uniform path G and a tight 4-uniform path H. 26

2.4 The sequence S(r) from Lemma 2.1.15. 28

2.5 A hypergraph H for which the lower bounds in Theorem 2.1.18 and Corollary

2.1.19 are both tight. 31

2.6 A family of uniform, linear hypergraphs H for which no upper bounds exist

on b(H) or bL(H) that are sublinear in terms of |V (H)|. 32

2.7 A hypergraph whose burning number is strictly less than the sum of the

burning numbers of its connected components. 33

2.8 An example where the bound in Theorem 2.2.3 is tight. 35

2.9 An example where the inequality in Theorem 2.2.3 is strict. 36

ix

2.10 An example showing that equality can hold in Theorem 2.3.2. 37

2.11 An example showing that the inequality in Theorem 2.3.2 can be strict. . . . 38

2.12 A hypergraph H that contains a weak non-induced subhypergraph with larger

burning number and lazy burning number. 40

2.13 H, G1, and G2 from Lemma 2.3.5. 41

2.14 A hypergraph H that contains an induced strong subhypergraph with larger

burning number and lazy burning number. 42

2.15 A hypergraph H that contains a non-induced strong subhypergraph with

larger burning number and lazy burning number. 43

2.16 A hypergraph H that contains both an induced and a non-induced strong

subhypergraph with smaller burning number and lazy burning number. . . . 44

3.1 The first four edges that burn when burning an STS(v). 51

3.2 A visual proof of the bound |V (T)| ≥ 2|V (A)|+ 1. 55

4.1 An example that shows the bound in Theorem 4.1.8 is tight when p = 1
2
. . . 76

4.2 An example that shows the bound in Theorem 4.1.10 is tight when p = 1
2
. . . 76

4.3 A hypergraph in which every interval in the lazy burning distribution is

nonempty. 79

4.4 A visual proof of the bound |V (T)| ≥ (k − 1)|V (A)|+ 1. 82

x

Chapter 1

Introduction

A graph is a mathematical object which consists of a set of vertices and a set of edges, where

each edge connects a pair of vertices. Graphs can be used to model anything with a network-

like structure, for example, a social network. The vertices can represent people, and if two

people are friends then their corresponding vertices can be connected by an edge. Graph

burning is a combinatorial game or process that models the spread of influence throughout

a network. We use the concept of a fire as a stand-in for the influence that is being spread.

Throughout the game, vertices of the graph catch on fire and the fire spreads via edges. If

we view the graph as a model for a social network, and the fire as a piece of misinformation,

then the game can serve as a model for the spread of misinformation throughout a network

of people.

A hypergraph is a mathematical object that is much like a graph, except edges can now

connect any number of vertices, not just two. In general, hypergraphs are a better model

for a network than graphs, because every graph is also a hypergraph. Indeed, a hypergraph

can model a social network in greater detail, as edges of size two can represent one-on-one

friendships, and larger edges can represent social media friend groups. In this thesis, we

extend the rules of graph burning so that it can be played on a hypergraph, thus creating

a better model for the spread of influence throughout a network. For example, this new

game is a better model for the spread of misinformation in a social network, as it accounts

for the spread of misinformation via social media friend groups. We will call this new game

hypergraph burning.

2

1.1 Graph Theory

The topic of this thesis is an extension of a graph-theoretic process known as graph burning.

We therefore provide a brief review of the basic definitions and concepts in graph theory.

See [39] for further reference.

A graph G is an ordered pair (V,E) where V and E are disjoint finite sets with V 6= ∅,
together with an incidence function that maps each element of E to an unordered pair of

(not necessarily distinct) elements in V . The elements of V = V (G) are called vertices and

the elements of E = E(G) are called edges. The two vertices associated with an edge e via

the incidence function are called the endpoints of e. The order of the graph is |V (G)| and

the size is |E(G)|.

A loop in a graph is an edge whose endpoints are equal. Multiple edges are edges having

the same pair of endpoints. The multiplicity of an edge e is the number of edges with the

same endpoints as e, including e itself. A graph is simple if it has no loops or multiple edges.

In a simple graph we treat each edge as an unordered pair of vertices and write e = uv (or

e = vu) for an edge e with endpoints u and v.

When u and v are the endpoints of an edge, they are adjacent to one another and are

called neighbours. If vertex v is an endpoint of edge e, then v and e are incident. The degree

of vertex v is the number of non-loop edges incident to v, plus twice the number of loops

on v. The open neighbourhood of v, denoted N(v), is the set of neighbours of v. The closed

neighbourhood of v is N(v) ∪ {v}, denoted N [v]. By convention, if we simply refer to the

“neighbourhood of v,” then we mean the open neighbourhood. If S ⊆ V (G), then the closed

neighbourhood of S is the set of all vertices that are either in S or adjacent to a vertex in

S; it is denoted N [S]. The maximum degree of all vertices in G is denoted ∆(G), and the

minimum degree is denoted δ(G). If every vertex in G has degree k, then G is k-regular.

A clique in a graph is a set of pairwise adjacent vertices. A complete graph is a simple

graph whose vertices form a clique. The complete graph on n vertices is denoted Kn. An

independent set in a graph is a set of pairwise nonadjacent vertices.

A graph G is bipartite if V (G) can be partitioned into two partite sets A and B such

that no two vertices in the same partite set are adjacent. Notice that A and B are both

independent sets of vertices. A complete bipartite graph is a simple bipartite graph such that

two vertices are adjacent if and only if they are in different partite sets. When the sets have

sizes r and s, the complete bipartite graph is denoted Kr,s.

A path is a simple graph whose vertices can be listed in order and without repetition so

3

that two vertices are adjacent if and only if they are consecutive in the list. The path on n

vertices is denoted by Pn. A (u, v)-path is a path whose vertices of degree 1 (its endpoints)

are u and v. The non-endpoint vertices in a path are called internal vertices. A cycle is a

graph with an equal number of vertices and edges whose vertices can be placed around a

circle so that two vertices are adjacent if and only if they appear consecutively along the

circle. The cycle on n vertices is denoted Cn, and is often called an n-cycle.

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges (not necessarily distinct) such

that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. A trail is a walk with no repeated

edge. A (u, v)-walk or (u, v)-trail has first vertex u and last vertex v; these are its endpoints.

The length of a walk, trail, path, or cycle is its number of edges. A walk or trail is closed if

its endpoints are the same. A closed trail is called a circuit.

If u, v ∈ V (G) then the distance between u and v, denoted d(u, v), is the length of a

shortest path between u and v. For a nonnegative integer k and a vertex v, the kth closed

neighbourhood of v is the set Nk[v] = {u ∈ V (G) | d(u, v) ≤ k}. Of course, N0[v] = {v} and

N1[v] = N [v].

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G), E(H) ⊆ E(G), and the

assignment of endpoints to edges in H is the same as in G. We then write H ⊆ G and say

that G contains H. A subgraph H of G is induced by a set of vertices T ⊆ V (G) if H was

obtained by deleting all vertices not in T from G (as well as deleting all edges with one or

more endpoints not in T from G). We then write H = G[T]. We write G − e or G −M
for the subgraph of G obtained by deleting an edge e or set of edges M . We write G− v or

G − S for the subgraph obtained by deleting a vertex v or set of vertices S (along with all

the edges incident to a vertex in S). A subgraph H of G is said to be a spanning subgraph

of G if V (G) = V (H), so H was obtained from G by deleting only edges.

A graph G is connected if there exists a (u, v)-walk for any two vertices u, v ∈ V (G);

otherwise, G is disconnected. The connected components of a graph G are its maximal

connected subgraphs. An isolated vertex is a vertex of degree 0.

The girth of a graph with a cycle is the length of its shortest cycle. A graph with no

cycle has infinite girth, and if it is connected it is called a tree. A vertex of degree 1 in a

tree is called a leaf. A spanning subtree T of a graph G is a subgraph of G that is a tree and

satisfies V (T) = V (G). A spider is a tree with exactly one vertex of degree strictly greater

than two. A caterpillar is a tree that contains a path P such that every edge in the tree is

either contained in P , or incident to a vertex of P .

A rooted tree is a tree in which one vertex has been designated as the root. The depth of

4

a vertex v in a rooted tree is the distance between v and the root. The height of a rooted

tree is the maximum depth among vertices in the tree. A rooted tree partition of a graph

G is a collection of rooted trees which are subgraphs of G, and whose vertex sets partition

V (G).

An isomorphism from a simple graph G to a simple graph H is a bijection f : V (G) →
V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say G is isomorphic to H

and write G ∼= H. A graph G is H-free if G has no induced subgraph isomorphic to H. An

automorphism of G is an isomorphism from G to itself. A graph G is vertex-transitive if for

every pair u, v ∈ V (G) there is an automorphism of G that maps u to v.

1.2 Hypergraph Theory

We give a brief overview of the foundational definitions in hypergraph theory, mostly using

[4], [16], and [21] for reference.

A hypergraph H is an ordered pair (V,E) where V and E are disjoint finite sets with

V 6= ∅, together with an incidence function ϕ : E → P(V)\{∅}. The elements of V = V (H)

are called vertices or points, and the elements of E = E(H) are called edges or hyperedges.

The order of H is |V (H)| and the size of H is |E(H)|. A hypergraph with a single vertex is

called trivial, and a hypergraph with no edges is called empty.

Informally, a hypergraph is like a graph, except edges can contain any number of vertices,

not just two. In the definitions that follow, let H = (V,E) be a hypergraph, and write

V (H) = {v1, ..., vn} and E(H) = {e1, ..., em}. When referring to two arbitrary vertices in H,

we will call them u and v for the sake of simplicity.

Two edges e1 and e2 are parallel if ϕ(e1) = ϕ(e2). The number of edges parallel to some

edge e, including e itself, is the multiplicity of e. A hypergraph is called simple if no edge has

multiplicity greater than 1 (i.e. ϕ is injective), and no edge contains one or fewer vertices.

An edge containing one vertex is called a loop. A hypergraph is linear if any two distinct

edges intersect in at most one vertex.

Note that we mostly consider simple hypergraphs, as parallel edges and singleton/empty

edges have no effect on the burning game on hypergraphs (whose rules will be defined shortly

in Section 1.4). Thus, E may be viewed as a subset of P(V) \ {∅} (containing no singletons)

by identifying each edge e ∈ E with its image under ϕ. Since the incidence function is rather

cumbersome, even when dealing with non-simple hypergraphs we will consider each edge to

be a subset of V , in which case E is a multiset that can contain singletons.

5

If there is some e ∈ E such that u, v ∈ e, then u and v are adjacent in H and are called

neighbours. Similarly, if d, e ∈ E are distinct and there is some v ∈ V such that v ∈ d ∩ e,
then d and e are adjacent in H. The degree of a vertex v ∈ V is the number of edges e such

that v ∈ e; it is denoted degH(v), or deg(v) when H is clear from context. For example, in

Figure 1.1, the vertices b, c, f , and i all have degree two, and the rest have degree one. A

vertex of degree zero is called isolated. A hypergraph is called r-regular if each of its vertices

has degree r, and k-uniform if each of its edges contains exactly k vertices.

a

b

c

d

e

f

g

h

i

j

Figure 1.1: A hypergraph with edges {a, b, c, d, e}, {b, c, f, i}, {f, g, h}, and {i, j}.

The incidence matrix of H is the n×m matrix where the entry in row i, column j is 1 if

vi ∈ ej, and 0 otherwise. The incidence matrix of a hypergraph is unique up to permutation

of rows and columns.

A hypergraph H ′ = (V ′, E ′) is called a weak subhypergraph (or just subhypergraph) of

H if V ′ ⊆ V and either E ′ = ∅, or, after a suitable permutation of its rows and columns,

the incidence matrix for H ′ is a submatrix of the incidence matrix of H. Thus, each edge

e′ ∈ E ′ has e′ = e ∩ V ′ for some e ∈ E (so H ′ may not be simple). If, in addition,

E ′ = {e∩ V ′ | e ∈ E, e∩ V ′ 6= ∅}, then H ′ is said to be induced by V ′ (that is, all nonempty

edges e ∩ V ′, singletons included, are present in E ′).

A hypergraph H ′′ = (V ′′, E ′′) is called a strong subhypergraph (or hypersubgraph) of H if

V ′′ ⊆ V and E ′′ ⊆ E. If all edges induced by V ′′ (i.e. all e ⊆ V ′′) are present in E ′′ then H ′′

is said to be induced by V ′′, and we write H ′′ = H[V ′′]. If V ′′ = ∪e∈E′′e then H ′′ is said to

be induced by E ′′, and we write H ′′ = H[E ′′]. Note that every strong subhypergraph of H

is also a weak subhypergraph of H, but the converse is not necessarily true.

A (u, v)-walk of length k in H is an alternating sequence v1e1v2e2 . . . vk−1ek−1vk of vertices

and edges such that vi ∈ V (H) and ei ∈ E(H) for each i, v1 = u, vk = v, and for all

i = 1, 2, . . . , k − 1, the vertices vi and vi+1 are adjacent in H via the edge ei. The end

6

vertices of W are u = v1 and v = vk, and the internal vertices of W are v2, . . . , vk−1. If

v1, . . . , vk are pairwise distinct and e1, e2, . . . , ek−1 are pairwise distinct (parallel edges among

the ei are allowed) then W is called a path (or sometimes a Berge path).

If V (H) = {v1, . . . , vn} and E(H) =
{
{v1, . . . , vk}, {v2, . . . , vk+1}, . . . , {vn−k+1, . . . , vn}

}
then H is called a k-uniform tight path. If V (H) = {v1, . . . , vn} and E(H) =

{
{v1, . . . , vk},

{vk, . . . , v2k−1}, . . . , {vn−k+1, . . . , vn}
}

, then H is called a k-uniform loose path.

Vertices u, v ∈ V (H) are connected if there exists a (u, v)-walk in H; otherwise u and

v are separated from one another. The hypergraph H is connected if every pair of distinct

vertices are connected in H; otherwise H is disconnected. For example, in Figure 1.2, H is

connected and H1 is disconnected. A connected component of H is a maximal connected

weak subhypergraph of H. Denote the number of connected components of H by c(H).

By the maximality condition, connected components of a hypergraph H are also strong

subhypergraphs of H.

H

a

b

c

d

e

f

g

h

i

j

G

a

b

c

d

e

f

g

h

i

j

H1

b

e

f

g

j

H2

a

b

c

d

e

f

i

Figure 1.2: A hypergraph H, its 2-section G, the weak subhypergraph H1 of H induced by
V1 = {b, e, f, g, j}, and the strong subhypergraph H2 of H induced by V2 = {a, b, c, d, e, f, i}.

7

The 2-section of a hypergraph H is the graph G on the same vertex set whose edges are

precisely those of the form {u, v} such that {u, v} ⊆ e for some e ∈ E(H). Thus, every edge

e = {vi1 , ..., vik} in H induces a clique among the vertices vi1 , ..., vik in G. If H is connected

(respectively, disconnected), then its 2-section is connected (respectively, disconnected) as a

graph.

A set of vertices {x1, x2, . . . , xk} ⊆ V (H) is called independent if there is no edge e in H

such that e ⊆ {x1, x2, . . . , xk}. The size of a largest independent set in H is the independence

number of H, denoted α(H). Note that there are multiple definitions of independence for

hypergraphs, but we will use only this definition throughout.

An isomorphism from a simple hypergraph G to a simple hypergraph H is a bijection

f : V (G)→ V (H) such that e ∈ E(G) if and only if f(e) ∈ E(H), where f(e) = {f(v) | v ∈
e}. We say G is isomorphic to H and write G ∼= H. An automorphism of a hypergraph H

is an isomorphism from H to itself. One may view an automorphism of H as a permutation

of the vertices of H. A hypergraph H is cyclic if there exists an automorphism of H that is

a permutation consisting of a single cycle of length |V (H)|.

1.3 Graph Burning

Graph burning is a single-player game played on finite, simple, undirected graphs over a

discrete sequence of rounds. The player, whom we call the arsonist, attempts to set fire to

every vertex of the graph in as short a time as possible. The arsonist manually sets fire to

vertices, and the fire also spreads or propagates from burned vertices to adjacent unburned

vertices in each round. Once a vertex is set on fire, it remains on fire until the end of the

game. Of course, the game ends when every vertex in the graph is on fire.

A problem equivalent to a special case of graph burning was posed in 1992 by Bran-

denburg and Scott as an internal problem at Intel [3]. Their model only applied to the

n-cube, whose vertices were called processors. Instead of the arsonist, the player was called

the sender, and the sender’s goal was to transmit a message to every processor as fast as

possible. In each round, the sender “sends the message” to a specified vertex, and simulta-

neously each processor that “knows the message” sends it to each of its neighbours. Hence,

this process was equivalent to burning the n-cube.

In 2014 and independently from [3], A. Bonato, J. Janssen, and E. Roshanbin [13] intro-

duced graph burning as a combinatorial process which could be applied to any graph. They

introduced the term “graph burning” for the first time, and developed much of the theory.

8

We now describe the rules for graph burning in detail. Rounds are indexed by N starting

at one. Denote the set of vertices that are on fire at the end of round r by Fr and write

fr = |Fr|. Thus, Fr ⊆ Fr+1 ⊆ V (G) and fr ≤ fr+1 ≤ |V (G)| for each r ∈ N. By convention,

write F0 = ∅. During each round r ≥ 1, the following two things happen simultaneously.

• For each v ∈ V (G) \Fr−1, if there is u ∈ Fr−1 such that vu ∈ E(G) then v catches fire.

• The arsonist chooses a vertex ur ∈ V (G)\Fr−1 and sets it on fire (ur is called a source).

Thus Fr = N [Fr−1] ∪ {ur}. Note that the arsonist may choose as a source a vertex that

also catches fire due to propagation that round, although it is never advantageous to do so.

We will call such a source redundant. A redundant source that is burned in round r is in

V (G) \ Fr−1, and would catch fire in round r due to propagation if it were not burned as a

source. In round 1, no vertices catch fire due to propagation, and the arsonist chooses the

first source, so F1 = {u1} and f1 = 1. If the arsonist chooses a non-redundant source in

round 2 then f2 = |N [u1]| + 1. In the last round the arsonist may have no choice but to

choose a redundant source. This occurs when all of the remaining unburned vertices will

catch fire in the final round due to propagation; the arsonist must still choose a source, and

the only options are all redundant.

Of course, the arsonist is of our own creation, and given a graph, we are the ones trying

to find an optimal sequence of sources. Two problems can arise if we decide on the sequence

of sources we want to burn ahead of time. First, it is possible that the nth source in our

pre-determined sequence catches fire in round n − 1 or earlier. Thus, once we get to the

nth round, we cannot follow through on our pre-determined sequence of sources, because it

requires us to burn as a source a vertex that has been on fire for one or more rounds (such

invalid sources are not to be confused with redundant sources). The other problem that can

arise is that the sequence may end up being “too long.” That is, after following the sequence

for n rounds, the graph is fully on fire, but the sequence continues on with an (n + 1)th

source, and possibly more. Again, this would mean our pre-determined sequence prompts us

to burn as a source a vertex that has been on fire since the previous round or earlier, which

is not allowed. We therefore say that a source is legal if it is manually burned in round r,

and it is not in Fr−1. Otherwise, a source is non-legal. Note that every redundant source is

also legal. If every source in a sequence is legal, we will call the sequence valid. Note that

it is completely fine for a sequence of sources to unsuccessfully burn the graph. That is, if

the graph is not completely burned after burning the final source, the sequence can still be

valid, although unsuccessful.

9

A valid sequence of sources (u1, u2, . . . , uk) that leaves the graph completely burned

when the arsonist burns ui in round i is called a burning sequence. When we wish to

emphasize G and/or the burning sequence S we may sometimes write Fr as F (G,S, r) and

fr as f(G,S, r). Also define ψ(G, r) = min{f(G,S, r) | S is a valid burning sequence in G}
and Ψ(G, r) = max{f(G,S, r) | S is a valid burning sequence in G}. Write these as ψr and

Ψr respectively when G and/or S are obvious. Note that none of Fr, fr, ψ(G, r), Ψ(G, r), or

the term redundant can be found elsewhere in the literature, as they were introduced for use

in this thesis. Also, when referring to non-source vertices catching fire through propagation,

we will often omit the words “through propagation” for the sake of brevity.

A burning sequence of minimum possible length is called optimal. A graph may have

many different optimal burning sequences. Given a graph G, the burning number of G,

denoted b(G), is a measure of how fast the fire can possibly spread to all vertices of G.

Definition 1.3.1. The burning number of G, denoted b(G), is the length of an optimal

burning sequence.

Note that b(G) is also equal to the earliest round at which G could become completely

burned, since the number of rounds coincides with the number of sources that are chosen.

See Figure 1.3 for an example of the burning game being played on a graph G. The burning

sequence S = (a, b, c) (where c is a redundant source) is indeed optimal, since there are no

burning sequences of length two. To see this, suppose (x, y) is a burning sequence for G

for some vertices x, y ∈ V (G). At the end of the game, the vertices that are on fire are

exactly those in F2 = N [x] ∪ {y}. But there are no two vertices x, y ∈ V (G) such that

N [x] ∪ {y} = V (G), so in fact (x, y) is not a burning sequence for G. Thus, b(G) = 3.

Round 1

a

Round 2

a
b

Round 3

a

c

b

Figure 1.3: An optimal burning sequence in a graph.

As stated above, a burning sequence must satisfy two criteria: each source must be

legal, and the sequence must leave the entire graph burned by the end. The following result

captures these two criteria using precise mathematical language. Note that it is not presented

as a lemma in [14], but it is rather a part of the discussion.

10

Lemma 1.3.2. ([14]) Let G be a graph and k ∈ {1, 2, . . . , |V (G)|}. Then (x1, x2, . . . , xk) is

a burning sequence for G if and only if both of the following hold:

(a) For each pair i, j ∈ {1, 2, . . . , k} with i < j, d(xi, xj) ≥ j − i.

(b) Nk−1[x1] ∪Nk−2[x2] ∪ · · · ∪N1[xk−1] ∪N0[xk] = V (G).

Proof. Let (x1, x2, . . . , xk) be a burning sequence for G. After a source xi is burned in the

ith round, the fire will propagate k − i more times since there are k − i rounds remaining.

Therefore, a source xi will cause every vertex within distance k − i from itself (i.e. all

vertices in Nk−i[xi]) to burn by the end of the kth round. Indeed, every vertex v ∈ V (G) is

either a source in the burning sequence, or else it caught fire due to propagation from one

of the sources by the end of round k. If either is true for some source xi then v ∈ Nk−i[xi].

Hence V (G) ⊆ Nk−1[x1] ∪ Nk−2[x2] ∪ · · · ∪ N1[xk−1] ∪ N0[xk], which proves (b) since the

reverse inclusion is obvious. Now, suppose for some i and j with 1 ≤ i < j ≤ k, that

d(xi, xj) = ` < j − i. Then, ` rounds after xi is burned in round i, xj catches fire due to

propagation from xi. But `+ i < j, so xj is on fire at the end of a strictly earlier round than

round j. Hence, xj is not a legal source, so (x1, x2, . . . , xk) is not a burning sequence for G,

which is a contradiction. Therefore, d(xi, xj) ≥ j − i must be true, which proves (a).

Now, for the reverse implication, assume x1, x2, . . . , xk ∈ V (G), and that both (a) and

(b) hold. Due to (a), if we burn the xi one-by-one then we will never be prompted to burn

a non-legal source. Of course, (b) implies that the sequence leaves G completely burned, so

(x1, x2, . . . , xk) is a burning sequence for G.

The following theorem is presented as a corollary in [14].

Theorem 1.3.3. ([14]) If x1, x2, . . . , xk ∈ V (G) and Nk−1[x1] ∪Nk−2[x2] ∪ · · · ∪N1[xk−1] ∪
N0[xk] = V (G), then b(G) ≤ k.

Proof. The arsonist can burn G in no more than k rounds by burning xi in round i if it is

legal, and burning any redundant source in round i otherwise. Then xi is on fire by the end of

round i for each i ∈ {1, 2, . . . , k}. Hence, Nk−1[x1]∪Nk−2[x2]∪· · ·∪N1[xk−1]∪N0[xk] = V (G)

will be on fire at the end of round k (or possibly earlier). Since we have constructed a burning

sequence of length k (or shorter), we have b(G) ≤ k.

The following result is not presented as a corollary in [14], but is rather a part of the

discussion.

11

Corollary 1.3.4. ([14]) If H is a spanning subgraph of G then b(G) ≤ b(H).

Proof. Let (x1, x2, . . . , xk) be an optimal burning sequence for H. Then, by Lemma 1.3.2,

Nk−1[x1] ∪Nk−2[x2] ∪ · · · ∪N1[xk−1] ∪N0[xk] = V (H) = V (G). Thus, by Theorem 1.3.3, we

have b(G) ≤ k = b(H).

Of course, for each source xi in a burning sequence there is a tree rooted at xi with height

k − i that is a subgraph of Nk−i[xi]. This fact motivates the following theorem.

Theorem 1.3.5. ([14]) Burning a graph G in k steps is equivalent to finding a rooted tree

partition of G into k trees T1, T2, . . . , Tk such that both of the following hold:

(a) The height of tree Ti is at most k − i.

(b) For each pair i, j ∈ {1, 2, . . . , k}, the distance between the roots of Ti and Tj is at least

|i− j|.

Proof. For the forward implication, assume (x1, x2, . . . , xk) is a burning sequence for G. After

a source xi is burned in round i, in each round t > i, every unburned vertex in Nt−i[xi] will

catch fire through propagation. Also, vertex v “receives” fire from a shortest path of burned

vertices between v and a source xi (the path has length zero if v = xi). Define a function

f : V (G) → {x1, x2, . . . , xk} such that f(v) = xi if v receives fire from xi, where i is the

lowest possible index. Clearly f is surjective, since every source causes at least one vertex

to receive fire (even if it is itself). Now, {f−1(x1), f−1(x2), . . . , f−1(xk)} forms a partition of

V (G), and for each i, G[f−1(xi)] is a connected subgraph of G. Every vertex v in G[f−1(xi)]

receives fire from xi via a shortest (xi, v)-path, so we can delete the extraneous edges from

G[f−1(xi)] in order to form a tree (rooted at xi). The height of a tree rooted at xi is k − i,
since the fire continues to spread from xi for k − i more rounds after the source is burned.

By the same logic that was used in the proof of Lemma 1.3.2, if the distance between some

xi and xj is strictly less than |i−j|, then the source of higher index is not a legal source, as it

must have caught fire at a strictly earlier round than its index. Thus, the distance between

the roots of Ti and Tj is at least |i− j|.

To prove the reverse implication, assume T1, T2, . . . , Tk is a rooted tree partition of G

with roots x1, x2, . . . , xk that satisfies both (a) and (b). We will show that (x1, x2, . . . , xk)

is a burning sequence for G. By (a), every vertex in G will catch fire through propagation,

since the distance from xi to any vertex in Ti is at most k− i, and there are k− i rounds in

which the fire propagates after burning xi. By (b), every source in the sequence is “legal.”

If a source xj is already on fire at the start of round j, then it received fire from some source

12

xi in some round i < ` < j. Then, the distance between xi and xj is |i− `| < |i− j|, which

is a contradiction. Thus, (x1, x2, . . . , xk) is a burning sequence for G.

The following corollary is one of the most significant results in the field of graph burning,

as it allows us to only consider trees when we try to prove statements about the burning

number of a general graph.

Corollary 1.3.6. (Tree Reduction Theorem, [13]) For a graph G, b(G) = min{b(T) | T is

a spanning subtree of G}.

Proof. Let (x1, x2, . . . , xk) be an optimal burning sequence for G. By Theorem 1.3.5, this

sequence induces a rooted tree partition T1, T2, . . . , Tk of G where each Ti is rooted at xi.

Let T be a spanning subtree of G that is created by adding edges between the Ti’s in such a

way that a cycle is not created. We will show that b(G) = b(T). First, T can be burned in k

steps via the sequence (x1, x2, . . . , xk), so b(T) ≤ k = b(G). Also, T is a spanning subgraph

of G, so b(G) ≤ b(T) by Corollary 1.3.4.

Thus, b(G) is equal to the burning number of one of its spanning subtrees T . Indeed, by

Corollary 1.3.4, none of the spanning subtrees of G can have a strictly lower burning number

than b(G) (= b(T)), so T must have the minimum burning number among all spanning

subtrees of G.

Theorem 1.3.7 states the burning number of a path, and motivates Conjecture 1.3.8.

Theorem 1.3.7. ([13]) For a path Pn on n vertices, b(Pn) = d
√
n e.

Proof. Let (x1, x2, . . . , xk) be an optimal burning sequence for Pn. By Lemma 1.3.2 we have

|Nk−1[x1] ∪ Nk−2[x2] ∪ · · · ∪ N1[xk−1] ∪ N0[xk]| = |V (Pn)| = n. Now, observe that for any

v ∈ V (Pn), Ni[v] ≤ 2i+ 1. We therefore have

n ≤ |Nk−1[x1]|+ |Nk−2[x2]|+ · · ·+ |N1[xk−1]|+ |N0[xk]|

≤
(
2(k − 1) + 1

)
+
(
2(k − 2) + 1

)
+ · · ·+

(
2(1) + 1

)
+
(
2(0) + 1

)
= 2
(
(k − 1) + (k − 2) + · · ·+ 1 + 0

)
+ k

= 2

(
(k − 1)(k)

2

)
+ k

= k2

Thus, k ≥
√
n. Since k is an integer, we conclude b(Pn) = k ≥ d

√
n e.

13

We must now show that we can burn Pn in d
√
n e steps. Label the vertices of Pn as

v1, v2, . . . , vn from left to right (with v1 and vn as the end vertices). First, assume that n

is a square number, and write k =
√
n. In this case, the sequence (x1, x2, . . . , xk) leaves

Pn completely burned, where xk−i = vn−i2−i for i = 0, 1, . . . , k − 1. Now, assume n is not

a square number, and let n∗ be the smallest square number that is larger than n. Write

k = d
√
n e =

√
n∗. By our previous argument, we can burn Pn∗ in k steps by letting xk−i =

vn∗−i2−i for i = 0, 1, . . . , k− 1. But Pn is strictly shorter than Pn∗ . Hence, we can burn Pn in

no more than k steps by letting xk−i = vn∗−i2−i for i = 0, 1, . . . , k− 1, unless n∗− i2− i > n,

in which case we simply burn a redundant source. Thus, b(Pn) ≤ k = d
√
n e.

Intuitively, it seems like paths are the “hardest” graphs to burn. Indeed, since the fire

spreads via edges, it makes sense that a graph with very few edges would be hard to burn

quickly. Of course, paths (and trees in general) are the sparsest connected graphs, having

exactly |V |−1 edges. Vertices of high degree should make a graph easier to burn, since such

a vertex can spread the fire to a large proportion of the graph. Again, this is a reason why

paths are hard to burn, since they have the lowest maximum degree (two) among all trees.

Therefore, [13] poses the following conjecture on b(G), which is perhaps the deepest open

problem in the field of graph burning.

Conjecture 1.3.8. (Burning Number Conjecture, [13]) For a connected graph G of order

n, b(G) ≤ d
√
n e.

Corollary 1.3.6 is a useful tool for making progress towards the Burning Number Conjec-

ture – if we are trying to find an upper bound on b(G) in terms of |V (G)| for an arbitrary

graph G, we may assume G is a tree.

The Burning Number Conjecture has been proven for several families of graphs, including

spiders [15, 20], caterpillars [31], and sufficiently large graphs with minimum degree four or

greater [8]. It is also known that the burning number of a graph with minimum degree three

can be bounded above by d
√
n e plus some small constant [8].

Recent progress towards the Burning Number Conjecture has yielded the following two

results, whose proofs make extensive use of the Tree Reduction Theorem.

Theorem 1.3.9. ([8]) For a connected graph G of order n, b(G) ≤ 1 +
⌈√

4n
3

⌉
.

Theorem 1.3.10 shows that the Burning Number Conjecture holds asymptotically. Its

proof involves probabilistic methods, as well as the concept of metric trees, which are trees

whose edges have been replaced with real intervals.

14

Theorem 1.3.10. ([35]) For a connected graph G of order n, b(G) ≤ (1 + o(1))
√
n.

In Section 1.4 we introduce a model much like graph burning which applies to hyper-

graphs. It is unlikely that Theorems 1.3.9 and 1.3.10 could be adapted to apply to this new

model, since the proof techniques for both theorems rely heavily on properties of trees in

graphs. Indeed, we will see in Section 2.1 that there is no analogy to the Burning Number

Conjecture in the context of hypergraphs. That is, there is no sublinear upper bound on the

burning number of a hypergraph in terms of its order.

1.4 The Burning Game on Hypergraphs

The topic of this thesis is an alternate version of the burning game that is played on hy-

pergraphs. The altered game should look much the same - each round, the arsonist burns

a vertex, and the fire spreads to other “nearby” vertices based on some propagation rule.

This rule should ensure that the game on hypergraphs reduces to the original game when

each edge of the hypergraph contains exactly two vertices (i.e., when we play it on a graph).

What is the best choice for how the fire propagates?

Consider the following potential rule: if v is on fire at the end of round r and {v, u1, . . . , uk}
is an edge, then each unburned vertex in {u1, . . . , uk} catches fire in round r+ 1. This prop-

agation rule is rather uninteresting, since burning H according to this rule is identical to

playing the original burning game on the 2-section of H.

We therefore formulate the following rule for how the fire propagates. Fire spreads to a

vertex v in round r if and only if there is an edge {v, u1, . . . , uk} such that each of u1, u2, . . . , uk

was on fire at the end of round r − 1. Clearly this reduces to the original game when the

hypergraph has only edges of size 2. Rounds are indexed by N starting at one, and they

have the same structure as discussed in Section 1.3. That is, each round the fire spreads via

the propagation rule, and simultaneously the arsonist manually burns a vertex. Of course,

the definitions of a source, redundant source, burning sequence, and burning number are all

analogous to those in Section 1.3, but we present them here for the sake of precision.

Let H be a hypergraph. A source is a vertex in V (H) that is manually burned by the

arsonist. If a vertex catches fire via propagation in some round i and it is also chosen as

the ith source, then it is called a redundant source. A source is called legal if it is the ith

source in a sequence, and it is not on fire at the end of round i− 1; otherwise it is non-legal.

Note that every redundant source is also legal. A sequence of legal sources is called valid. A

valid sequence of sources that leaves H completely burned is called a burning sequence. A

15

burning sequence of minimum possible length is called optimal, and its length is the burning

number of H, denoted b(H). We denote the round-based burning game that takes place on

a hypergraph H when S is chosen as the burning sequence by BG(H,S).

For a hypergraphH, define F (H,S, r), f(H,S, r), ψ(H, r), and Ψ(H, r) analogously to the

definitions in Section 1.3. Again, we reiterate these definitions in the context of hypergraph

burning for the sake of precision.

Let H be a hypergraph, and S be a burning sequence for H. Define F (H,S, r) as the

set of vertices that are on fire in H at the end of round r when burning according to S, and

write f(H,S, r) = |F (H,S, r)|. Also define ψ(H, r) = min{f(G,S, r) | S is a valid burning

sequence for G} and Ψ(H, r) = max{f(G,S, r) | S is a valid burning sequence for G}. We

denote these by Fr, fr, ψr, and Ψr respectively when H and S are obvious.

Indeed, by expanding our model to hypergraphs we need some new definitions. Define

f ′(H,S, r) as the number of edges that are fully burned at the end of round r when burning

H according to the burning sequence S, ψ′(H, r) = min{f ′(H,S, r) | S is a valid burning

sequence in H}, and Ψ′(H, r) = max{f ′(H,S, r) | S is a valid burning sequence in H}. We

denote these by f ′r, ψ
′
r, and Ψ′r respectively when H and S are obvious.

Consider the hypergraph H in Figure 1.1 on page 5. If the arsonist burns a, d, e, g, and

j as the first five sources, then at the end of round five no propagation has occured. Thus,

ψ(H, 5) = 5 and ψ′(H, 5) = 0. Conversely, by inspection we can see that starting with the

sources g, f , i, b, and d (for example) yields the highest number of burned vertices and fully

burned edges at the end of round five. In particular, we have Ψ(H, 5) = 8 and Ψ′(H, 5) = 3.

Note that it is possible to have two optimal burning sequences S1 and S2 in a hypergraph

H such that for some round r < b(H) we have f(H,S1, r) 6= f(H,S2, r). For example, in the

hypergraph H in Figures 1.4 and 1.5, S1 = (b, c, a, f) and S2 = (b, a, c, d) are both optimal

burning sequences. However, f(H,S1, 3) = 5 and f(H,S2, 3) = 4. This is also possible in

graph burning. Let G be a path on five vertices, which are labelled u1 to u5, with edges u1u2,

u2u3, u3u4, and u4u5. Then, both (u3, u1, u5) and (u2, u1, u5) are optimal burning sequences.

When burning according to the former sequence, four vertices are on fire at the end of round

two, and when burning according to the latter, three vertices are on fire at the end of round

two.

16

Round 1

b

a

f

c

e

d

Round 2

b

a

f

c

e

d

Round 3

b

a

f

c

e

d

Round 4

b

a

f

c

e

d

Figure 1.4: An optimal burning sequence S1 = (b, c, a, f).

Round 1

b

a

f

c

e

d

Round 2

b

a

f

c

e

d

Round 3

b

a

f

c

e

d

Round 4

b

a

f

c

e

d

Figure 1.5: An optimal burning sequence S2 = (b, a, c, d).

1.5 The Lazy Burning Game

We also introduce an alternate set of rules for how the arsonist burns a hypergraph. Suppose

the arsonist is very lazy, and does not wish to be present while the hypergraph burns. In

particular, they wish to set fire to a select few vertices simultaneously in such a way that

the hypergraph is eventually completely burned through subsequent propagation. Of course,

the arsonist wishes to set fire to as few vertices as possible while still ensuring that the

hypergraph becomes completely burned through propagation. We call the set of vertices

the arsonist initially sets fire to a lazy burning set. The size of a smallest or optimal lazy

burning set for a hypergraph H is called the lazy burning number of H, denoted bL(H). Of

course, we no longer care about the number of time steps required for the hypergraph to

become fully burned, just the size of the lazy burning set. The lazy burning game that takes

place on a hypergraph H when T ⊆ V (H) is chosen as the lazy burning set is denoted by

LBG(H,T).

The lazy burning game on graphs is trivial. The arsonist must simply set fire to exactly

one vertex in each connected component of the graph to achieve a minimum lazy burning

set. However, lazily burning a hypergraph is much more interesting. Furthermore, the lazy

burning model is a useful tool for analyzing the round-based model of hypergraph burning.

17

Note that a minimal lazy burning set is not necessarily optimal. For example, in Fig-

ure 1.6, {c, e, f} is a minimal lazy burning set, since any strict subset of {c, e, f} will not

successfully burn H. However, it is not an optimal lazy burning set since bL(H) = 2 (for

example, {a, b} successfully burns H).

H

d

b

e

a

c

f

Figure 1.6: {c, e, f} is a minimal lazy burning set that is not optimal.

input : a hypergraph H = (V,E)

output: a lazy burning set for H

1 initialize L to an empty array

2 repeat

3 burn any unburned vertex u and add it to L

4 repeat

5 propagate the fire

6 until no vertex catches fire through propagation;

7 until H is fully burned ;

8 return L (a lazy burning set)

Algorithm 1: Näıvely construct a lazy burning set

Algorithm 1 constructs a lazy burning set for a hypergraph H that is not necessarily

optimal, but at least avoids adding extraneous vertices to the lazy burning set (i.e. vertices

that would catch fire via propagation if they were not burned manually). Informally, the

algorithm works as follows: choose any unburned vertex and manually set it on fire, allow

the fire to propagate until it stops naturally, and repeat until the hypergraph is fully burned.

Then the manually burned vertices form a lazy burning set. We use this algorithm in Chapter

3 to obtain an upper bound on the lazy burning number of a Steiner triple system.

18

1.5.1 Connections with Bootstrap Processes

Lazy hypergraph burning already exists in the literature, and was introduced in [5] under

the name H-bootstrap percolation (or the H-bootstrap process). While it is common in the

literature to denote a hypergraph using a calligraphic uppercase letter, to remain consistent

we will continue to use non-calligraphic notation. Therefore, we will henceforth refer to

H-bootstrap percolation and the H-bootstrap process as H-bootstrap percolation and the

H-bootstrap process respectively. In [5], unburned vertices are called healthy, burned vertices

are called infected, and an initial set of infected vertices is said to percolate or H-percolate if

it is a successful lazy burning set in a hypergraph H. Furthermore, the size of a smallest H-

percolating set is denoted m(H) (so m(H) is equal in value to bL(H)). The existing results on

H-bootstrap percolation are mostly probabilistic or extremal in nature, or apply to specific

families of hypergraphs such as hypercubes. Our results on lazy hypergraph burning take

a different approach than those in the literature, focusing on the connection between the

lazy and round-based versions of the game. They are deterministic in nature, and apply to

general hypergraphs and Steiner triple systems.

The H-bootstrap process is motivated by a model called weak saturation or the graph

bootstrap process introduced in [11]. Given graphs G and F , the F -bootstrap process on G is

defined as follows. Initially, a subset of E(G) is infected, and at each time step, the infection

spreads to more edges of G. In particular, a healthy edge e becomes infected if there exists

a copy of F in G such that e is the only healthy edge in the copy.

Before we present the results from [5], we must review some notation, and define two

families of hypergraphs. If A is a set and d ∈ N, recall that Ad denotes the cartesian product

of d copies of A. For example, A × A × A = A3, and elements of A3 are ordered triples

of elements in A. Also recall that if G is a graph and S ⊆ V (G), then G[S] denotes the

subgraph of G induced by the vertices in S. That is, we keep the vertices in S and all

edges with both endpoints in S, and delete the rest. Let Kd
n denote the graph with vertex

set {1, 2, . . . , n}d in which two vertices are adjacent if they differ in exactly one coordinate.

Note that Kr
2 is the r-dimensional hypercube. Define K(n, d, t, r) as the hypergraph with

vertex set V = {1, 2, . . . , n}d and edge set E = {S ⊂ V | Kd
n[S] ∼= Kr

t }. Equivalently, the

edges of K(n, d, t, r) are all sets S of the form S = I1 × I2 × · · · × Id where r of the sets

Ij ⊆ {1, 2, . . . , n} have size t, and the rest are singletons. Finally, define P(n, d, t, r) as the

hypergraph with vertex set V = {1, 2, . . . , n}d, and whose edges are all sets S of the form

S = I1 × I2 × · · · × Id where r of the sets Ij ⊆ {1, 2, . . . , n} are intervals of size t, and the

rest are singletons.

19

Observe that P(n, d, t, r) is a subhypergraph of K(n, d, t, r). This is because, if a set

S = I1 × · · · × Id satisfies the criteria for being an edge in P(n, d, t, r), then it also satisfies

the criteria for being an edge in K(n, d, t, r) (of course, every interval of size t is also a set

of size t). The first two major results in [5] focus on the lazy burning number of these two

classes of hypergraphs.

Theorem 1.5.1. ([5]) For every n ≥ t ≥ 2 and d ≥ r ≥ 1,

m(K(n, d, t, r)) = m(P(n, d, t, r)) =
r−1∑
s=0

(
d

s

)
(t− 1)d−s(n+ 1− t)s.

The following theorem presents a much simpler expression for the lazy burning number

of these two classes of hypergraphs in the special case where the parameters d and r are

equivalent. In this case, for an edge S = I1 × · · · × Id in K(n, d, t, d), all of the intervals Ij

in S have size t. Similarly, for an edge S = I1 × · · · × Id in P(n, d, t, d), all of the intervals

Ij in S are intervals of size t.

Theorem 1.5.2. ([5]) For every n ≥ t ≥ 2 and d ≥ 1,

m(K(n, d, t, d)) = m(P(n, d, t, d)) = nd − (n+ 1− t)d.

The last major result from [5] deals with a more abstract class of hypergraphs. The

vertices of such a hypergraph H index the spanning vectors of a vector space, and for each

edge e ∈ E(H), the vectors corresponding to the vertices in e are linearly independent.

Theorem 1.5.3. ([5]) Let H be an arbitrary hypergraph, and suppose there exists a vector

space W whose spanning vectors are indexed by the vertices of H. For each v ∈ V (H),

denote its corresponding vector by fv. Also suppose that for every e ∈ E(H), there exist |e|
non-zero integers {λe,v | v ∈ e} such that

∑
v∈e λe,vfv = 0. Then, m(H) is bounded below by

the dimension of W.

Several papers in the literature focus on the critical probability of H-bootstrap percola-

tion; see [26, 33] for example. Again, we require some notation and definitions. Let X be a

finite set, p ∈ [0, 1], and let Xp denote a random subset of X which is obtained by including

each element ofX with probability p independently of one another. Then, given a hypergraph

H, the critical probability of the H-bootstrap process is pc(H) = inf{p ∈ (0, 1) | P(V (H)p

percolates) ≥ 1
2
}. One may think of it as the “infimal density” at which a random subset

of V (H) is likely to percolate in H. Existing results in this area of study mostly focus on

20

calculating the critical probability of a class of hypegraphs with “high probability” as one

or more of its parameters tends to infinity.

There are also several alternate rule sets for bootstrap percolation in a hypergraph. First,

consider bootstrap percolation with an infection threshold r ∈ N; see [28,29,34] for example.

In this version of the game, a vertex becomes infected when it has at least r infected neigh-

bours. Another alternate rule set is degree-proportional bootstrap percolation; see [25] for

example. In this version of the game, we are given a number p ∈ (0, 1), and a vertex becomes

infected when at least a p-proportion of its neighbours are infected. One may consider both

of these to be processes on a graph, since the given hypergraph can be replaced with its 2-

section. Indeed, both of these variants are distinct processes from H-bootstrap percolation,

as well as from the alternative propagation rules for (lazy) hypergraph burning which will

be discussed in Chapter 4. In bootstrap percolation with an infection threshold, vertices

become infected individually based on their number of infected neighbours. Conversely, the

“threshold-based” propagation rule discussed in Chapter 4 focuses on the number of burned

vertices in an edge, and causes entire edges to catch fire at once. In degree-proportional

bootstrap percolation, vertices become infected individually based on the proportion of their

neighbours that are infected. In contrast, the “proportion-based” propagation rule discussed

in Chapter 4 focuses on the proportion of burned vertices in an edge, and again, causes entire

edges to catch fire at once.

Before moving on, we reiterate that none of the existing results in H-bootstrap perco-

lation are replicated in this thesis. Indeed, we have taken a new direction by focusing on

finite hypergraphs in general, Steiner triple systems, and the connections with round-based

hypergraph burning.

Chapter 2

General Results and Bounds

In this chapter we obtain bounds that apply to the burning number and lazy burning number

of arbitrary hypergraphs. We then investigate how to express the (lazy) burning number of a

disconnected hypergraph in terms of the (lazy) burning numbers of its connected components.

We also consider what happens to the (lazy) burning number of a hypergraph when we take

different types of subhypergraphs. We finish this chapter by discussing the complexity of

the hypergraph burning and lazy hypergraph burning decision problems.

2.1 Arbitrary Hypergraphs

The burning and lazy burning numbers of a hypergraph can indeed be bounded above and

below by simple graph parameters. The following results establish these bounds individually,

and they are combined in Theorem 2.1.13 on page 25.

In the following theorem, note that if an edge has multiplicity greater than one, then we

choose one of them to be the “original,” and the rest are “duplicates.” Thus, an edge with

multiplicity greater than one contributes 1 to the sum E. Of course, if H is simple then

E = |E(H)|.

Theorem 2.1.1. Let H be a hypergraph, and let E be the number of edges in H that are not

singleton, empty, or duplicate edges. Then |V (H)| − E ≤ bL(H).

Proof. Let S be a lazy burning set for H. Denote by zS the number of vertices that become

burned throughout the game through propagation, so zS + |S| = |V (H)|. Observe that

each edge (that is not a singleton, empty, or duplicate edge) may “cause” fire to spread

22

to at most one vertex throughout the lazy burning game. Thus, zS ≤ E. But then |S| =

|V (H)| − zS ≥ |V (H)| − E. In particular, if S is a minimum lazy burning set we get

bL(H) = |S| ≥ |V (H)| − E.

Corollary 2.1.2. For any simple hypergraph H, |V (H)| − |E(H)| ≤ bL(H).

Lemma 2.1.3. bL(H) ≤ b(H) for all hypergraphs H.

Proof. Every burning sequence (u1, u2, ..., uk) for H is also a lazy burning set for H. This is

because burning the ui simultaneously as a lazy burning set results in the same vertices of

V (H)\{u1, u2, ..., uk} being burned through propagation as when we burn the ui one-by-one.

Since (u1, u2, ..., uk) is a burning sequence for H, all of V (H) \ {u1, u2, ..., uk} burns through

propagation when we take {u1, u2, ..., uk} as a lazy burning set.

In particular, a shortest burning sequence S of length b(H) is also a lazy burning set.

But bL(H) ≤ |X| for any lazy burning set X. Thus, bL(H) ≤ |S| = b(H).

Corollary 2.1.4. Let H be a hypergraph, and let E be the number of edges in H that are

not singleton, empty, or duplicate edges. Then |V (H)| − E ≤ b(H).

Corollary 2.1.5. For any simple hypergraph H, |V (H)| − |E(H)| ≤ b(H).

The bounds in Corollary 2.1.2, Lemma 2.1.3, and Corollary 2.1.5 are tight. Consider the

simple hypergraph H in Figure 2.1. A minimum lazy burning set is {x, y, z}, an optimal

burning sequence is (x, z, y), and |V (H)| − |E(H)| = 3. Hence, |V (H)| − |E(H)| = bL(H) =

b(H), so the aforementioned bounds are all tight simultaneously. Of course, this example

generalizes to an infinite family of hypergraphs that show tightness. One may construct

such a hypergraph H with V (H) = {v1, . . . , vn} and E(H) =
{
{v1, . . . , vn−1}

}
, where n ≥ 3.

Then a minimum lazy burning set is {v2, . . . , vn}, an optimal burning sequence is (v2, . . . , vn),

and |V (H)| − |E(H)| = n− 1.

x

y

z

w

Figure 2.1: An example where all the bounds in Corollary 2.1.2, Lemma 2.1.3, and Corollary
2.1.5 are tight simultaneously.

The bound in Lemma 2.1.3 can be improved to a strict inequality if H satisfies certain

conditions; see Theorem 2.1.6 and its corollaries.

23

Theorem 2.1.6. If there is an optimal burning sequence (u1, u2, . . . , ub(H)) in a hypergraph

H such that the last source ub(H) is not an isolated vertex, then bL(H) < b(H).

Proof. From the proof of Lemma 2.1.3 we know that {u1, u2, . . . , ub(H)−1, ub(H)} is a lazy

burning set for H. We claim that {u1, u2, . . . , ub(H)−1} is also a lazy burning set for H. Since

ub(H) is the final source, burning u1, u2, . . . , ub(H)−1 one-by-one (as in the original game) or

simultaneously (as a lazy burning set) will eventually result in all of V (H) \ {ub(H)} being

burned. So, let us burn each vertex in {u1, u2, . . . , ub(H)−1} simultaneously. All we need to

show is that ub(H) will eventually burn through propagation. If ub(H) is a redundant source

then clearly fire will propagate to ub(H). Otherwise, ub(H) is not a redundant source. But

eventually all of V (H)\{ub(H)} will burn through propagation, and ub(H) belongs to an edge

since it is not isolated. All other vertices in the edge containing ub(H) are on fire, and thus

ub(H) will catch on fire.

Since {u1, u2, . . . , ub(H)−1} is a lazy burning set for H we have bL(H) ≤ b(H) − 1, or

equivalently, bL(H) < b(H).

Corollary 2.1.7. If H has no isolated vertices then bL(H) < b(H).

Corollary 2.1.8. If H is connected then bL(H) < b(H).

A hypergraph H for which bL(H) = b(H)− 1 can be seen in Figure 2.2 (on page 25), so

the above bounds are tight. There is indeed an infinite family of hypergraphs that exhibit

the tightness of these bounds – the family of loose paths with minimum edge size three.

Informally, a loose path is any hypergraph that can be created from a k-uniform loose path

by deleting vertices of degree one while ensuring no edge becomes a singleton. Label the

edges in such a hypergraph “from left to right” as e1 up to em. One may construct an

optimal burning sequence in such a hypergraph (with minimum edge size three) by burning

all the degree-one vertices in e1 as sources, followed by all the degree-one vertices in e2, and

so on. Indeed, by following this process, every degree-one vertex will be a source in the

burning sequence, and the last source will be redundant. Furthermore, one may construct

a minimum lazy burning set by taking the vertices in an optimal burning sequence as a set

and deleting any one vertex. Hence, each loose path H with minimum edge size three has

bL(H) = b(H)− 1.

We now consider upper bounds on bL(H) and b(H) which make use of the independence

number, α(H).

Lemma 2.1.9. Any optimal lazy burning set in a hypergraph H is an independent set.

24

Proof. Let H be an arbitrary hypergraph. Suppose S is an optimal lazy burning set in H

that is not independent. Then there is some edge e = {x1, x2, . . . , xk} ⊆ S in H. But then

S \ {xk} is a smaller lazy burning set in H, which contradicts S being optimal.

Lemma 2.1.10. For a hypergraph H, any independent set of vertices of size α(H) is a lazy

burning set for H.

Proof. Let S ⊆ V (H) be an independent set with |S| = α(H). Consider any vertex v ∈
V (H) \ S. Clearly {v} ∪ S is not an independent set by the maximality of S. Thus, there is

an edge {v, x1, x2, . . . , xk} ⊆ {v}∪S in H. But then if we set S on fire, each of x1, x2, . . . , xk

will be set on fire, and thus the fire will spread to v through propagation. The vertex v was

arbitrarily chosen, so each vertex in V (H) \ S will burn through propagation. Therefore S

is a lazy burning set for H.

Note that both Lemma 2.1.9 and Lemma 2.1.10 imply Corollary 2.1.11.

Corollary 2.1.11. bL(H) ≤ α(H) for all hypergraphs H.

The bound in Corollary 2.1.11 is tight; see Figure 2.1 on page 22 for an example. The

hypergraph pictured has independence number and lazy burning number three, as {x, y, z}
is both a maximum independent set and a minimum lazy burning set. Indeed, there is

an infinite family of hypergraphs that exhibit the tightness of Corollary 2.1.11. One may

construct such a hypergraph H with V (H) = {v1, . . . , vn} and E(H) =
{
{v1, . . . , vn−1}

}
,

where n ≥ 3. Then {v2, . . . , vn} is both a maximum independent set and an minimum lazy

burning set for H, so bL(H) = α(H).

Lemma 2.1.12. b(H) ≤ α(H) + 1 for all hypergraphs H.

Proof. Let S = {u1, u2, . . . , uα(H)} be a maximum independent set in H. Let the arsonist

burn the ui in order as a burning sequence. If at some round the arsonist expects to burn

some uj as a source, but it is already on fire, then the arsonist skips uj (which only shortens

the burning sequence). Thus, at the end of some round r ≤ α(H), each vertex in S is on

fire (and possibly some others). Note that it is possible that H is fully burned at the end

of round r. In this case, we are done, as we have constructed a burning sequence no longer

than α(H) + 1. We therefore assume that at the end of round r, H is not fully burned. We

claim that in the following round r+ 1 the rest of H will burn through propagation (and the

arsonist chooses a redundant source).

Consider any vertex v ∈ V (H) that was not on fire at the end of round r. Suppose v does

not catch fire in round r + 1. Then, at the end of round r, there was no edge e containing

25

v such that all of e \ {v} was on fire. In particular, since S is completely burned at the end

of round r, there is no edge e containing v such that e \ {v} ⊆ S. But then S ∪ {v} is an

independent set in H that is strictly larger than S, which is a contradiction. Therefore, each

vertex of H is on fire at the end of round r+1 ≤ α(H)+1. So b(H) ≤ r+1 ≤ α(H)+1.

The bound in Lemma 2.1.12 is also tight; see Figure 2.2 for an example. Again, there is an

infinite family of hypergraphs that exhibit the tightness of this bound. Consider the family of

hypergraphs that consist only of disjoint non-singleton edges. In such a hypergraph, one may

construct an optimal burning sequence by burning the vertices of a maximum independent set

in any order, with an additional redundant source in the final round. Hence, each hypergraph

H in this family has b(H) = α(H) + 1.

For a hypergraph H with no isolated vertices, if bL(H) = α(H) then b(H) = α(H) + 1

(due to Corollary 2.1.7 and Lemma 2.1.12). Is the reverse implication true? Are there other

sufficient conditions for bL(H) = α(H)? We leave these as open questions.

Finally, by combining the bounds in Corollary 2.1.2, Corollary 2.1.7, and Lemma 2.1.12,

we get the series of inequalities in the following result.

Theorem 2.1.13. Let H be a simple hypergraph with no isolated vertices. Then

|V (H)| − |E(H)| ≤ bL(H) < b(H) ≤ α(H) + 1.

Figure 2.2: An example where all the bounds in Theorem 2.1.13 are tight simultaneously.

Each inequality in Theorem 2.1.13 is tight, and Figure 2.2 shows an example of a hyper-

graph H where all of them are tight simultaneously. It has 7 = |V (H)| − |E(H)| = bL(H)

and 8 = b(H) = α(H) + 1. Of course, this example can be expanded to an infinite family

of hypergraphs that exhibit tightness for each inequality in Theorem 2.1.13 simultaneously.

Simply consider the family of hypergraphs that consist of a single edge containing all of their

vertices (excluding the hypergraph which is a single vertex in an edge).

We now briefly investigate k-uniform tight paths. This family of hypergraphs is used

to prove Theorem 2.1.17, which states that the difference between bL(H) and b(H) can be

arbitrarily large.

26

Definition 2.1.14. Given a k-uniform tight path H on n vertices, define a seed as a set of

k − 1 vertices all belonging to a common edge. Define a burned seed as a seed whose k − 1

vertices were chosen as sources in the arsonist’s burning sequence.

Observe Figure 2.3. An example of a seed in G is {a, b}, and an example of a seed in H

is {c, d, e}.

G

a

b

H

c

d

e

Figure 2.3: A tight 3-uniform path G and a tight 4-uniform path H.

Lemma 2.1.15. For any tight 3-uniform path H on n vertices, b(H) =
⌈√

2n− 1
⌉
.

Proof. Write V (H) = {u1, . . . , un}. Clearly, no fire will propagate in H without the existence

of a burned seed. Also, once a burned seed {ui, ui+1} is created in round r, it will cause fire

to spread to ui−1 and ui+2 in round r+ 1 (if these vertices are not already on fire). In round

r + 2, it will cause fire to spread to ui−2 and ui+3, etc. The arsonist’s best strategy is to

create a burned seed every second round, spaced such that no vertex uj will catch fire due

to propagation from two burned seeds until possibly the final round when H is completely

burned. By following this strategy, in round r, the maximum number of vertices that can

catch fire through propagation is twice the number of burned seeds that existed at the end

of round r − 1. Define n(r) as the number of vertices that become burned in round r when

following this strategy (including sources). Clearly n(1) = n(2) = 1 since no propagation

can occur in the first two rounds. There is one burned seed at the start of rounds three and

27

four, so n(3) = n(4) = 2(1) + 1 = 3. Similarly, there are two burned seeds at the start of

rounds five and six, so n(5) = n(6) = 2(2) + 1 = 5. The sequence of n(r)-values is therefore

1, 1, 3, 3, 5, 5, 7, 7, Also write S(r) = Ψ(H, r). Of course, S(r) =
∑r

i=1 n(i), so the

sequence of S(r)-values is 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, The formula for this sequence is

known to be S(r) =
⌊
r2+1
2

⌋
; see sequence A000982 in [36].

It is clear that for any hypergraph G, the least r ∈ N such that Ψ(G, r) ≥ |V (G)| is a lower

bound on b(G). This is because, by the end of round r−1, no more than Ψ(G, r−1) < |V (G)|
vertices could possibly be on fire. In the case of our hypergraph H, b(H) is exactly equal to

the least r ∈ N such that S(r) ≥ n. We now show that this is rn =
⌈√

2n− 1
⌉
.

If r is an integer strictly less than
√

2n− 1, then we have

S(r) =

⌊
r2 + 1

2

⌋
≤ r2 + 1

2
<

(
√

2n− 1)2 + 1

2
= n.

We therefore have the restriction r ≥
√

2n− 1, and the least integer that fulfills this re-

striction is rn =
⌈√

2n− 1
⌉
. Indeed, since

⌈√
2n− 1

⌉
≥
√

2n− 1 and
⌊
r2+1
2

⌋
is monotonic

increasing function, we have

S(rn) =

⌊
r2n + 1

2

⌋
=

⌊⌈√
2n− 1

⌉2
+ 1

2

⌋
≥
⌊

(
√

2n− 1)2 + 1

2

⌋
= bnc = n.

Figure 2.4 is a visual representation of the sequence S(r) from Lemma 2.1.15. In round

6, The arsonist will burn a source in the same edge as x5, and fire will spread to four new

vertices due to the burned seeds (x1, x2) and (x3, x4). Thus, S(6) = S(5) + 5 = 18.

Lemma 2.1.16 generalizes Lemma 2.1.15, although only Lemma 2.1.15 is used in the proof

of Theorem 2.1.17.

Lemma 2.1.16. For H, a tight k-uniform path on n vertices, define S(k) =
∑∞

i=1 ai where

ai = 1 if i ∈ {1, 2, . . . , k − 1}, ai = 3 if i ∈ {k, k + 1, . . . , 2(k − 1)}, ai = 5 if i ∈
{2k − 1, 2k, . . . , 3(k − 1)}, etc. Let br be the rth partial sum of S(k). Then b(H) is equal to

the least r ∈ N such that br ≥ n.

Proof. Write V (H) = {u1, . . . , un}. Clearly, no fire will propagate in H without the existence

of a burned seed. Also, once a burned seed {ui, . . . , ui+k−2} is created in round r, it will

cause fire to spread to ui−1 and ui+k−1 in round r + 1 (if these vertices were not already on

fire). In round r + 2, it will cause fire to spread to ui−2 and ui+k, etc. The arsonist’s best

strategy is to create a burned seed every k − 1 rounds, spaced such that no vertex uj will

28

x1
S(1) = 1

x1

x2

S(2) = 2

x1

x2

· · · x3
S(3) = 5

x1

x2

· · ·
x3

x4

S(4) = 8

x1

x2

· · ·
x3

x4

· · · x5
S(5) = 13

...
Figure 2.4: The sequence S(r) from Lemma 2.1.15.

catch fire due to propagation from two burned seeds until possibly the final round when H is

completely burned. By following this strategy, in round r, the maximum number of vertices

that can catch fire through propagation is twice the number of burned seeds that existed at

the end of round r − 1.

That is, in the first k − 1 rounds, at most one vertex catches fire each round. Then,

from round k to 2k − 2, at most three vertices catch fire each round (two from the burned

seed, plus one from the source vertex). From round 2k − 1 to round 3k − 3, at most five

vertices catch fire each round (two from each of the two burned seeds, plus one from the

source vertex), etc.

29

Clearly, Ψr is the rth partial sum of the series

S(k) = 1(1) + · · ·+ 1(k−1) + 3(1) + · · ·+ 3(k−1) + 5(1) + · · ·+ 5(k−1) + 7(1) + · · · .

Now, the least r ∈ N such that Ψ(H, r) ≥ |V (H)| is a lower bound on b(H), call it r0. But

by following the strategy above, the arsonist can indeed successfully burn each vertex of H

by the rth0 round. Hence, b(H) = r0, where the rth0 partial sum of S(k) is the least partial

sum that exceeds |V (H)|.

When r is a multiple of k − 1, the rth partial sum of S(k) can be computed as follows.

Write r = `(k − 1) for some ` ∈ N. Then, the rth partial sum is

1(1) + · · ·+ 1(k−1) + 3(1) + · · ·+ 3(k−1) + · · ·+ (2`− 1)(1) + · · ·+ (2`− 1)(k−1)

=
(
1 + 3 + · · ·+ (2`− 1)

)
(k − 1)

= `2(k − 1)

=
`2(k − 1)2

k − 1

=
r2

k − 1
.

If instead `(k − 1) < r < (` + 1)(k − 1), then choose t = r − `(k − 1). Then, r − t and

r− t+ k− 1 are both multiples of k− 1. Hence, the rth partial sum of S(k) is bounded below

by (r−t)2
k−1 and above by (r−t+k−1)2

k−1 , which are both approximately r2

k−1 . Therefore, the the rth

partial sum of S(k) is approximately r2

k−1 in general.

Theorem 2.1.17. Given any k ∈ N, there exist hypergraphs G and H such that b(G) −
bL(G) > k and b(H)

bL(H)
> k.

Proof. Denote by Hn the 3-regular tight path on n vertices. For all n ≥ 3, bL(Hn) = 2. But

b(Hn) =
⌈√

2n− 1
⌉
. Thus, b(Hn)− bL(Hn) =

⌈√
2n− 1

⌉
− 2 and b(Hn)

bL(Hn)
=
d√2n−1 e

2
, which

are both unbounded.

We now consider an alternative method for finding lower bounds on bL(H) and b(H) which

involves counting degree-one vertices. For each edge e ∈ E(H), let n(e) be the number of

degree-one vertices in e, and define

m(e) =

{
0 if n(e) = 0

n(e)− 1 otherwise.

30

Theorem 2.1.18. Let H be a connected hypergraph. Then∑
e∈E(H)

m(e) ≤ bL(H).

Furthermore, if H contains edges that intersect, then

1 +
∑

e∈E(H)

m(e) ≤ bL(H).

Proof. If H is an isolated vertex, then E(H) = ∅. Similarly, if H consists of a single vertex

contained in an edge e, then m(e) = 0. In either case,
∑

e∈E(H)m(e) = 0 ≤ 1 = bL(H).

Otherwise, if H contains no intersecting edges, then H consists of a single edge e contain-

ing |V (H)| > 1 vertices. In this case, bL(H) = |V (H)|−1 = n(e)−1 = m(e) =
∑

e∈E(H)m(e).

Otherwise, H contains intersecting edges. If any edge e ∈ E(H) contains multiple degree-

one vertices that are not part of the lazy burning set, none of them will ever catch fire through

propagation. Thus, for each edge e ∈ E(H), at least m(e) of its degree-one vertices must be

in the lazy burning set, and hence bL(H) ≥
∑

e∈E(H)m(e). We will show that this is in fact

a strict inequality.

Suppose the lazy burning set consists only of these
∑

e∈E(H)m(e) degree-one vertices.

Recall that, since every edge intersects some other edge, every edge contains at least one

vertex of degree greater than one. None of these vertices are in the lazy burning set, and if

the edge in question contains degree-one vertices, one of them is not in the lazy burning set

either. Thus, each edge contains at least two vertices not in the lazy burning set, so no fire

will propagate. We therefore have bL(H) >
∑

e∈E(H)m(e), so bL(H) ≥ 1+
∑

e∈E(H)m(e).

Corollary 2.1.19. Let H be a connected hypergraph. Then∑
e∈E(H)

m(e) < b(H).

Furthermore, if H contains edges that intersect, then

1 +
∑

e∈E(H)

m(e) < b(H).

The lower bounds in Theorem 2.1.18 and Corollary 2.1.19 are tight; see Figure 2.5. Edge

e1 contains four degree-one vertices, so m(e1) = 3, edge e2 contains three degree-one vertices,

so m(e2) = 2, and e1 and e2 intersect. Indeed, the hypergraph H pictured has bL(H) = 6

31

and b(H) = 7, so the bounds in Theorem 2.1.18 and Corollary 2.1.19 are both tight. This

example can be expanded to an infinite family of hypergraphs that exhibit the tightness

of the bounds in Theorem 2.1.18 and Corollary 2.1.19 simultaneously. Simply consider the

family of connected hypergraphs H containing two non-singleton edges e1 and e2 which

intersect in exactly one vertex. A minimum lazy burning set for such a hypergraph consists

of any m(e1)+1 vertices in e1, as well as any m(e2) degree-one vertices in e2, so the bound in

Theorem 2.1.18 is tight. One may construct an optimal burning sequence for H by burning

the vertices of a minimum lazy burning set in any order, followed by a redundant source for

a total of bL(H) + 1 sources. Thus, the bound in Corollary 2.1.19 is tight.

u1

u2
u3

u4
u5 u6

u7

u8

e1 e2

H

Figure 2.5: A hypergraph H for which the lower bounds in Theorem 2.1.18 and Corollary
2.1.19 are both tight.

Most often, Theorem 2.1.18 will simply tell us that bL(H) ≥ 1 +
∑

e∈E(H)m(e), since we

usually consider connected nontrivial hypergraphs with intersecting edges when playing the

lazy burning game. Theorem 2.1.18 may be combined with Lemma 2.2.1 from Section 2.2

to obtain the following: bL(H) ≥ x + y +
∑

e∈E(H)m(e), where x is the number of isolated

vertices plus the number of components that are one vertex in an edge, and y is the number

of connected components of H featuring edges that intersect.

We leave the following as an open question: do Theorem 2.1.18 and Corollary 2.1.19 ever

provide better lower bounds than Theorem 2.1.13? Even if the answer is no, the proof at

least provides the insight that for each edge e, at least m(e) degree-one vertices in e must

be part of the lazy burning set or chosen as sources in the burning sequence.

We finish this section by considering the following question: what might an analogous

conjecture to the Burning Number Conjecture look like for hypergraphs? That is, for arbi-

trary hypergraphs H, is there a sublinear upper bound on b(H) in terms of |V (H)|? What

about bL(H)? It turns out that the answer to both is no even when we insist H is k-uniform

and linear. Consider the family of k-uniform loose paths (which are all linear; see Figure 2.6).

Indeed, bL(H), b(H) ∈ O(|V (H)|) are the best possible upper bounds for this family of hy-

pergraphs. To see this, recall that |V (H)| − |E(H)| ≤ bL(H) < b(H) ≤ |V (H)|, and observe

that we can choose the size of the edges large enough so that |V (H)| − |E(H)| ∈ Θ(|V (H)|)

32

(informally meaning |V (H)| − |E(H)| ≈ |V (H)|).

Furthermore, for any fixed k, this family of hypergraphs has no sublinear upper bound

on its (lazy) burning number in terms of its order. Indeed, any k-uniform loose path H has

|E(H)| = |V (H)|−1
k−1 . Thus, a lower bound on bL(H) and b(H) is

|V (H)| − |E(H)| = |V (H)| −
(
|V (H)| − 1

k − 1

)
=

(
k − 2

k − 1

)
|V (H)|+ 1

k − 1
,

which is linear in |V (H)|.

· · ·

Figure 2.6: A family of uniform, linear hypergraphs H for which no upper bounds exist on
b(H) or bL(H) that are sublinear in terms of |V (H)|.

2.2 Disconnected Hypergraphs

In this section we consider how to write the (lazy) burning number of a disconnected hyper-

graph in terms of the (lazy) burning numbers of its connected components. The solution is

trivial in the lazy case (see Lemma 2.2.1), but the round-based case is more complicated.

Lemma 2.2.1. If H is disconnected with connected components G1, G2, . . . , Gk, then

bL(H) = bL(G1) + bL(G2) + · · ·+ bL(Gk).

Proof. Clearly if Si is a minimum lazy burning set for Gi for each i ∈ {1, 2, . . . , k}, then a

minimum lazy burning set for H is S1 ∪ S2 ∪ · · · ∪ Sk. Thus, bL(H) = |S1 ∪ S2 ∪ · · · ∪ Sk| =
bL(G1) + bL(G2) + · · ·+ bL(Gk).

We cannot say in general that the same equality as in Lemma 2.2.1 holds for b(H). It

is indeed possible that b(H) < b(G1) + b(G2) + · · · + b(Gk). The arsonist may “save time”

by initially burning enough vertices to start propagation in one component, then moving

on to subsequent components. For example, consider the disconnected hypergraph H in

Figure 2.7. By Lemma 2.1.15, the “left” component of H has burning number 4, and the

33

“right” component of H has burning number 3. However, (3, 4, 9, 10, 7) is an optimal burning

sequence for H. Indeed, there are no burning sequences of length four or less. To see this,

observe that any burning sequence in a 3-uniform tight path must create a burned seed with

two of its sources (otherwise no propagation occurs). If the arsonist creates a burned seed

in the “left” component first, then they only have two more rounds to burn the “right”

component, which is impossible. A similar problem arises if the arsonist creates a burned

seed in the “right” component first. Thus, H has burning number five, which is less than

the sum of the burning numbers of its connected components.

3

2

1

4

5

6

9

8

7

10

11

Figure 2.7: A hypergraph whose burning number is strictly less than the sum of the burning
numbers of its connected components.

For the purposes of the following proof, denote the sequence created by concatenating

the sequences S1, S2, . . . , Sn (in that order) by S1S2 · · ·Sn. Clearly the length of S1S2 · · ·Sn
is |S1|+ |S2|+ · · ·+ |Sn|.

Lemma 2.2.2. If H is disconnected with connected components G1, G2, . . . , Gk, then

max{b(G1), b(G2), . . . , b(Gk)} ≤ b(H) ≤ b(G1) + b(G2) + · · ·+ b(Gk).

Proof. If Si is an optimal burning sequence for each Gi, then clearly S1S2 · · ·Sk is a burning

sequence for H. Thus b(H) ≤ |S1|+ |S2|+ · · ·+ |Sk| = b(G1) + b(G2) + · · ·+ b(Gk).

Now, suppose b(H) < max{b(G1), b(G2), . . . , b(Gk)}. Let Gi be a connected component

of H with b(Gi) = max{b(G1), b(G2), . . . , b(Gk)}, so b(H) < b(Gi). Let S = (u1, . . . , ub(H))

be an optimal burning sequence for H. Clearly, S ∩ V (Gi) 6= ∅, so let uj be the lowest-

indexed vertex in S ∩ V (Gi). We construct a burning sequence S ′ for Gi from S as follows.

Let the first source in S ′ be uj. Then, for all rounds r > j in BG(H,S):

• If Gi became completely burned at the end of the previous round in BG(Gi, S
′), we

may stop adding to S ′ (thus, S ′ is a burning sequence for Gi no longer than b(H)).

• Otherwise, if ur /∈ V (Gi), choose any unburned vertex in Gi as the (r− j + 1)th source

in S ′.

34

• Otherwise, if ur ∈ V (Gi), but ur is already on fire in BG(Gi, S
′) at the end of round

r − j, choose any unburned vertex in Gi as the (r − j + 1)th source in S ′.

• Otherwise, if ur ∈ V (Gi) and ur is not on fire in BG(Gi, S
′) at the end of round r− j,

choose ur as the (r − j + 1)th source in S ′.

Then, F (H,S, r)∩ V (Gi) ⊆ F (Gi, S
′, r− j + 1) for each round r ≥ j. Roughly, Gi burns

in BG(Gi, S
′) at least as fast as in BG(H,S). Since Gi is completely burned in BG(H,S) in

at most b(H) rounds, Gi is completely burned in BG(Gi, S
′) in at most b(H)− j+ 1 rounds.

Thus, S ′ is a burning sequence for Gi of length at most b(H) − j + 1 for some

j ∈ {1, 2, . . . , b(H)}. We therefore have b(Gi) ≤ |S ′| ≤ b(H) < b(Gi), which is a con-

tradiction. So max{b(G1), b(G2), . . . , b(Gk)} ≤ b(H).

We can improve the upper bound from Lemma 2.2.2 if we assume none of the connected

components of H are isolated vertices.

Theorem 2.2.3. If H is disconnected with connected components G1, G2, . . . , Gk, none of

which are isolated vertices, then b(H) ≤ b(G1) + b(G2) + · · ·+ b(Gk)− k + 1.

Proof. For each Gi let Si = (u
(i)
1 , . . . , u

(i)
b(Gi)

) be an optimal burning sequence. We claim

S = (u
(1)
1 , . . . , u

(1)
b(G1)−1, u

(2)
1 , . . . , u

(2)
b(G2)−1, . . . , u

(k)
1 , . . . , u

(k)
b(Gk)−1, u

(k)
b(Gk)

)

is a burning sequence for H.

For each i ∈ {1, 2, . . . , k − 1} burning Si \ {u(i)b(Gi)
} one-by-one and in order will leave

the entirety of Gi burned (to see this, consider the two possible cases: u
(i)
b(Gi)

is a redundant

source or a non-redundant source). We must show that for each i < k, u
(i)
b(Gi)

will catch fire

through propagation before the game ends. For each i ∈ {1, 2, . . . , k}, at the same time as

the arsonist burns u
(i)
1 as a source, one of the following will happen: either all of Gi−1 will

catch fire through propagation (if u
(i−1)
b(Gi−1)

was a redundant source), or all of Gi−1 \{u(i−1)b(Gi−1)
}

will catch fire through propagation (if u
(i−1)
b(Gi−1)

was not a redundant source). In the latter

case, u
(i−1)
b(Gi−1)

will catch fire through propagation in one more round since the rest of Gi−1

is on fire. If i = k then since |V (Gk)| ≥ 2, we have that b(Gk) ≥ 2, so even if u
(k−1)
b(Gk−1)

is a

non-redundant source, it will burn through propagation before the game ends.

Since S is a valid burning sequence for H we have

b(H) ≤ |S| = (b(G1)− 1) + · · ·+ (b(Gk−1)− 1) + b(Gk) = b(G1) + · · ·+ b(Gk)− k + 1.

35

Thus, if H is disconnected with connected components G1, G2, . . . , Gk, none of which are

isolated vertices, then we have the following inequality:

bL(H) =
k∑
i=1

bL(Gi) < b(H) ≤ 1− k +
k∑
i=1

b(Gi) (2.1)

The upper bound from Theorem 2.2.3 is tight, as illustrated by the hypergraph in Figure

2.8. The subhypergraph induced by one of the seven edges has burning number 3, and

since (1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21) is an optimal burning sequence for the

entire hypergraph, it has burning number 15 = (3)(7) − 7 + 1. Indeed, this example can

be expanded to an infinite family of hypergraphs which exhibit the tightness of the bound

in Theorem 2.2.3. Such a hypergraph H consists of multiple disjoint non-singleton edges

e1, . . . , ek, with no other edges and no isolated vertices. For each i ∈ {1, . . . , k}, let Gi be the

subhypergraph of H induced by ei. Then, one may construct an optimal burning sequence

for H by burning |ei| − 1 = b(Gi) − 1 sources in ei for each i ∈ {1, . . . , k − 1}, followed by

|ek| = b(Gk) sources in ek (where the last source is redundant). This shows the tightness of

the bound in Theorem 2.2.3, since the total number of sources is

(
b(G1)− 1

)
+ · · ·+

(
b(Gk−1)− 1

)
+ b(Gk) = b(G1) + · · ·+ b(Gk)− k + 1.

1

2

3 4

5

6

7

8

9 10

11

12 13

14

15

16

17

18 19

20

21

Figure 2.8: An example where the bound in Theorem 2.2.3 is tight.

There are also examples where the upper bound from Theorem 2.2.3 is a strict inequality.

36

Consider the hypergraph in Figure 2.9. The burning numbers of the left, middle, and right

connected components are 5, 3, and 2 respectively. But (u1, u2, u3, u4, u5, u6) is an optimal

burning sequence for the entire hypergraph, so it has burning number 6 < (5+3+2)−3+1.

Is there an infinite family of hypegraphs for which the bound in Theorem 2.2.3 is strict? We

leave this as an open question.

u1

u2 u3

u4

u5

u6

Figure 2.9: An example where the inequality in Theorem 2.2.3 is strict.

2.3 Subhypergraphs

In this section we compare b(H) and bL(H) to the burning and lazy burning numbers of

various types of subhypergraphs of H. We allow the existence of singleton edges, as these

often arise when taking a weak induced subhypergraph.

Lemma 2.3.1. Let G1 and G2 be two hypergraphs with the same vertex set such that E(G1) ⊆
E(G2). Then bL(G2) ≤ bL(G1) and b(G2) ≤ b(G1).

Proof. Let L be an optimal lazy burning set for G1. Let us burn L as a lazy burning set in

G2. Since E(G1) ⊆ E(G2), the same propagation that occurs in LBG(G1, L) will occur in

LBG(G2, L), and it may even happen in fewer time steps due to the presence of the extra

edges in G2. Hence, L is a successful lazy burning set for G2, so bL(G2) ≤ |L| = bL(G1).

Now, let S be an optimal burning sequence for G1. Let us burn G2 in the following way:

in each round i, we burn the ith source in S, unless it is already on fire, in which case we

burn a redundant source that round. Again, since E(G1) ⊆ E(G2), the same propagation

that occurs in BG(G1, S) will occur in BG(G2, S), and it may even happen in fewer rounds

due to the presence of the extra edges in G2. Thus, following this strategy will leave G2 fully

burned after no more than |S| rounds, so b(G2) ≤ |S| = b(G1).

Our next result compares the (lazy) burning numbers of a weak and a strong subhyper-

graph induced by the same set of vertices.

37

Theorem 2.3.2. Let H be a hypergraph with V (H) = {v1, . . . , vn} and let I ⊆ {1, . . . , n}. If

G1 is a strong subhypergraph induced by {vi | i ∈ I} and G2 is a weak subhypergraph induced

by {vi | i ∈ I} then b(G2) ≤ b(G1) and bL(G2) ≤ bL(G1).

Proof. Both inequalities follow from Lemma 2.3.1 and the fact that V (G1) = V (G2) and

E(G1) ⊆ E(G2).

The bounds in Theorem 2.3.2 are both tight. Consider the hypergraph H in Figure 2.10.

The subset of vertices {u2, u3, u4, u5} induces the strong subhypergraph G1 and the weak

subhypergraph G2. Indeed, {u2, u3} is a minimum lazy burning set in both G1 and G2.

The subgraphs also have the same burning number, as (u2, u3, u5) is an optimal burning

sequence in G1, and (u2, u3, u4) is an optimal burning sequence G2. Indeed, we may expand

this to an infinite family of examples by adding any number of degree-one vertices to the

edge containing u1 in H (without renaming u1 through u5). Then, the strong and weak

subhypergraphs induced by {u2, u3, u4, u5} will be G1 and G2 (from Figure 2.10) respectively.

H u1

u2

u3u4

u5

G1

u2

u3u4

u5

G2

u2

u3u4

u5

Figure 2.10: An example showing that equality can hold in Theorem 2.3.2.

The inequalities in Theorem 2.3.2 can also be strict. Consider the hypergraph H in Figure

2.11. The subset of vertices {u1, u2, u3} induces the strong subhypergraph G1 and the weak

subhypergraph G2. Indeed, bL(G2) = 1 < 2 = bL(G1), and b(G2) = 2 < 3 = b(G1). Again,

we can expand this example to an infinite family of hypergraphs H in which the inequality

in Theorem 2.3.2 is strict. Construct such a hypergraph H by letting V (H) = {u1, . . . , uk+1}
and E(H) =

{
{u1, . . . , uk}, {u2, . . . , uk+1}

}
for some k ≥ 3. Let G1 and G2 be the strong

and weak subhypergraphs respectively that are induced by {u1, . . . , uk}. Then, b(G1) = k

and bL(G1) = k − 1 since G1 consists only of k vertices in an edge. However, b(G2) = k − 1

and bL(G2) = k − 2. To see this, observe that E(G2) =
{
{u1, . . . , uk}, {u2, . . . , uk}

}
, so an

optimal burning sequence in G2 is (u2, u3, . . . , uk−1, u1) and a minimum lazy burning set is

{u2, . . . , uk−1}. Hence, we have an infinite family of hypergraphs for which the inequality in

Theorem 2.3.2 is strict.

38

H

u2

u4

u3

u1

G1

u2

u3

u1

G2

u2

u3

u1

Figure 2.11: An example showing that the inequality in Theorem 2.3.2 can be strict.

We now give sufficient conditions for when a weak induced subhypergraph has (lazy)

burning number no larger than that of its parent hypergraph. In fact, these conditions are

the same for the lazy and round-based cases.

Theorem 2.3.3. If G is a weak induced subhypergraph of H such that every edge in H

contains a vertex of G and E(G) contains no singleton edges, then bL(G) ≤ bL(H).

Proof. Let S be a minimum lazy burning set for H. Since every edge in H contains at least

two vertices that also belong to G, no fire can propagate in H unless a vertex of G is in the

lazy burning set. Hence, S ∩ V (G) 6= ∅. Let S ′ = S ∩ V (G). We claim S ′ is a lazy burning

set for G.

Consider the set V (G) \ S ′ of vertices in G that were not part of the lazy burning set.

Label these vertices in chronological order with respect to the time step in which they catch

fire in LBG(H,S). That is, label V (G) \ S ′ as u1, . . . , uk such that if i < j then ui catches

fire in the same time step or in an earlier time step than uj in LBG(H,S). Note that vertices

of V (G) \ S ′ that catch fire in the same time step in LBG(H,S) may be listed in any order

relative to one another.

Suppose that S ′ is not a lazy burning set for G. Then, in LBG(G,S ′), some vertex in

V (G) \ S ′ does not catch fire through propagation by the end of the process. Let uq be

the lowest-indexed vertex in V (G) \ S ′ that never catches fire. Then, all the vertices in

V (G) \ S ′ that catch fire at a strictly earlier time step than uq in LBG(H,S) will catch fire

in LBG(G,S ′). Without loss of generality, these vertices are u1, . . . , uq−1.

Now, consider how uq catches fire in LBG(H,S). Eventually, uq is part of some edge e

such that all other vertices in e are on fire. But e contains other vertices in G apart from

uq, all of which are on fire (they were either in the lazy burning set or caught fire strictly

earlier than uq). Hence, in the corresponding edge e∩V (G) in G, the vertices apart from uq

are either in S ′ or of the form up with p < q.

39

Therefore, in LBG(G,S ′), eventually all vertices in (e ∩ V (G)) \ {uq} will be on fire.

Thus, uq catches fire through propagation due to the edge e∩V (G). This is a contradiction,

so our latest supposition must be false. That is, S ′ is a lazy burning set for G. Thus,

bL(G) ≤ |S ′| ≤ |S| = bL(H).

Theorem 2.3.4. If G is a weak induced subhypergraph of H such that every edge in H

contains a vertex of G and E(G) contains no singleton edges, then b(G) ≤ b(H).

Proof. Let S = (u1, u2, . . . , ub(H)) be an optimal burning sequence for H. We construct a

burning sequence S ′ for G in which the rth source is either ur or an arbitrary vertex in V (G).

In particular, at each round r ∈ {1, 2, . . . , b(H)}, choose the rth source in S ′ as follows:

(1) If G became fully burned at the end of the previous round, then stop.

(2) Otherwise, if ur /∈ V (G), then choose any unburned vertex in V (G) as the rth source

in S ′.

(3) Otherwise, if ur ∈ V (G) but ur was on fire at the end of round r− 1, then choose any

unburned vertex in V (G) as the rth source in S ′.

(4) Otherwise, if ur ∈ V (G) and ur was not on fire at the end of round r− 1, then choose

ur as the rth source in S ′.

Clearly, by the above construction, |S ′| ≤ |S|. Moreover, |S ′| < |S| is only true if (1) occurs,

in which case S ′ is indeed a burning sequence for G. We therefore assume that (1) does

not occur, and hence |S ′| = |S|. We must show that S ′ leaves G fully burned after the

final round, b(H). In particular, we show F (H,S, r) ∩ V (G) ⊆ F (G,S ′, r) for each round

r ∈ {1, 2, . . . , b(H)} by induction.

Base case. Consider the earliest round r0 at which F (H,S, r0)∩V (G) 6= ∅, since the inclusion

clearly holds for all earlier rounds. Recall that every edge in H containing a vertex of G

must in fact contain two or more vertices of G. Hence, for any fire to spread to a vertex of G

in BG(H,S), a vertex of G must first be chosen as a source in S at a strictly earlier round.

Hence, F (H,S, r0) ∩ V (G) = {ur0} (i.e. the first vertex of G to be on fire in BG(H,S) is a

source). But by the above construction, in BG(G,S ′), either ur0 is chosen as the rth0 source, or

it was on fire in a strictly earlier round. Therefore, F (H,S, r0)∩V (G) = {ur0} ⊆ F (G,S ′, r0).

Inductive hypothesis. Suppose F (H,S, r) ∩ V (G) ⊆ F (G,S ′, r) for some round r ≥ r0.

Inductive step. By the construction of S ′, if ur+1 ∈ V (G) then ur+1 is on fire at the end of

round r+1. Consider any non-source vertex v ∈ V (G) that catches fire through propagation

40

H

e1
e2

e3
e4

u6u5u4u3
u1

u2

Figure 2.12: A hypergraph H that contains a weak non-induced subhypergraph with larger
burning number and lazy burning number.

in BG(H,S) in round r + 1. If v was on fire in BG(G,S ′) at an earlier round then there

is nothing to show, so assume the contrary. We must show that v catches fire through

propagation in BG(G,S ′) in round r + 1.

Consider an edge e ∈ E(H) that caused fire to spread to v in BG(H,S). At the end

of round r, each vertex in e \ {v} was on fire. Recall that e ∩ V (G) is a non-singleton

edge in G. By the inductive hypothesis, F (H,S, r) ∩ V (G) ⊆ F (G,S ′, r), and in particular,

(e∩V (G))\{v} ⊆ F (H,S, r)∩V (G) ⊆ F (G,S ′, r). Therefore, each vertex of (e∩V (G))\{v}
was on fire in BG(G,S ′) at the end of round r. But then the edge e ∩ V (G) causes fire to

spread to v in BG(G,S ′) in round r + 1.

Hence, F (H,S, r+1)∩V (G) ⊆ F (G,S ′, r+1). We therefore have V (G) = F (H,S, b(H))∩
V (G) ⊆ F (G,S ′, b(H)), so F (G,S ′, b(H)) = V (G). That is, S ′ is a burning sequence for G,

so b(G) ≤ |S ′| = |S| = b(H).

If we assume the weak subhypergraphs are not induced, then the analogous results to

Theorems 2.3.3 and 2.3.4 do not hold in general. See Figure 2.12, and consider the non-

induced weak subhypergraph G of H with V (G) = {u2, u3, u4, u5, u6} and E(G) = {e1 ∩
V (G)} =

{
{u2, u3, u4, u5, u6}

}
. Note that G is not induced by its vertex set since E(G) 6=

{e ∩ V (G) | e ∈ E(H), e ∩ V (G) 6= ∅} (for example, e2 is not an edge in G). But G

has bL(G) = 4 > 2 = bL(H) and b(G) = 5 > 4 = b(H). To see this, first observe that

{u3, u4, u5, u6} is a minimum lazy burning set in G, whereas {u1, u6} is a minimum lazy

burning set in H. Also, (u2, u3, u4, u5, u6) is an optimal burning sequence in G, whereas

(u6, u4, u1, u2) is an optimal burning sequence in H.

The following result shows that weak induced subhypergraphs that do not meet the other

conditions in Theorems 2.3.3 and 2.3.4 may have larger (lazy) burning numbers than their

41

H

u1

u2

u3

u4
...

un

G1

u3

u4

...

un

G2

u3

u4
...

un−1

Figure 2.13: H, G1, and G2 from Lemma 2.3.5.

parent hypergraphs. Indeed, in Figure 2.13, the weak induced subhypergraph G2 of H con-

tains singleton edges, has one fewer edge than H, and has burning and lazy burning numbers

strictly larger than those of H. The result also shows that strong induced subhypergraphs

may have larger (lazy) burning numbers than their parent hypergraphs.

Lemma 2.3.5. There exist hypergraphs H with strong induced subhypergraphs G1 and weak

induced subhypergraphs G2 such that 0 < b(G1)−b(H), 0 < b(G2)−b(H), 0 < bL(G1)−bL(H),

and 0 < bL(G2)− bL(H), and these differences can be arbitrarily large.

Proof. As an example, consider H = (V,E) where V (H) = {u1, . . . , un} and E(H) ={
{u1, u2, u3}, {u1, u2, u4}, {u1, u2, u5}, . . . , {u1, u2, un}, {u3, u4, . . . , un}

}
. Then (u1, u2, u3) is

an optimal burning sequence for H, and {u1, u2} is a lazy burning set for H. Hence b(H) = 3

and bL(H) = 2.

Now, let G1 = (V1, E1) where V1 = {u3, u4, . . . , un} and E1 =
{
{u3, u4, . . . , un}

}
, so G1

is strongly induced by u3, u4, . . . , un. Clearly, b(G1) = n− 2 and bL(G1) = n− 3.

Finally, letG2 = (V2, E2) where V2 = {u3, u4, . . . , un−1} and E2 =
{
{u3}, {u4}, . . . , {un−1},

{u3, u4, . . . , un−1}
}

, so G2 is weakly induced by u3, u4, . . . , un−1. Clearly, b(G2) = n− 3 and

bL(G2) = n− 4.

Notice that the weak induced subhypergraph G2 of H in Lemma 2.3.5 need not contain

fewer edges than H. That is, if instead G2 was induced by u3, . . . , un, it would still have a

larger (lazy) burning number than H. It does however contain singleton edges. Does this

have to be the case? That is, does there exist a class of hypergraphs H with weak induced

subhypergraphs G2 such that b(G2) − b(H) and bL(G2) − bL(H) are both unbounded and

G2 contains no singleton edges? Of course, in light of Theorems 2.3.3 and 2.3.4, such a

hypergraph G2 would need to have fewer edges than H. We leave these as open questions.

42

H
e1

e2

e3

e4
u1

u2 u3 u4

Figure 2.14: A hypergraph H that contains an induced strong subhypergraph with larger
burning number and lazy burning number.

When one takes a strong subhypergraph, whether it was induced by a set of vertices or

not, it is possible that the burning and lazy burning numbers both increase, and it is also

possible that they both decrease. We will show this using four examples.

For an example of an induced strong subhypergraph G with larger burning number and

lazy burning number than its parent hypergraph H, see Figure 2.14. Let V (G) = {u2, u3, u4}
and E(G) = {e ∈ E(H) | e ⊆ V (G)} = {e1}, so G is a strong subhypergraph of H that is

induced by its vertex set. Then, bL(G) = 2 > 1 = bL(H) and b(G) = 3 > 2 = b(H). To

see this, observe that G is simply an edge containing three vertices. But {u1} is a minimum

lazy burning set for H and (u1, u2) is an optimal burning sequence for H, so bL(H) = 1 and

b(H) = 2.

Also observe that this example can be extended to provide an infinite family of hyper-

graphs H with the same property. One may construct H by taking K1,n and adding an edge

e containing all n of the vertices of degree one. Then, bL(H) = 1 and b(H) = 2. Indeed, by

taking the strong subhypergraph of H induced by the vertices in e, we obtain a hypergraph

that consists of n vertices in an edge, which has lazy burning number n − 1 and burning

number n. Thus, the differences in (lazy) burning numbers can be arbitrarily large when

taking an induced strong subhypergraph.

For an example of a non-induced strong subhypergraph G with larger burning number

and lazy burning number than its parent hypergraph H, see Figure 2.15. Let V (G) =

{u1, u2, u3, u4} and E(G) = {e3}, so G is a strong subhypergraph of H that is not induced by

its vertex set (since e1, e2 /∈ E(G)). Then bL(G) = 3 > 1 = bL(H) and b(G) = 4 > 3 = b(H).

To see this, observe that G is simply an edge containing four vertices, so bL(G) = 3 and

b(G) = 4. But {u1} is a minimum lazy burning set for H and (u1, u3, u5) is an optimal

burning sequence for H, so bL(H) = 1 and b(H) = 3.

43

Again, the concept illustrated in this example can be extended to an infinite class of

hypergraphs. Let the vertex set of such a hypergraph H be {u1, u2, . . . , un}, and let the

edge set contain {u1, u2}, {u1, u2, u3}, . . . , and {u1, . . . , un}. Then, the hypergraph G with

vertex set {u1, . . . , un−1} with a single edge containing all of its vertices is a non-induced

strong subhypergraph of H. Of course, bL(G) = n− 2 and bL(H) = 1, so the differences in

lazy burning numbers can be arbitrarily large. Now, observe that b(H) =
⌈
n+1
2

⌉
, since an

optimal burning sequence for H is (u1, u3, . . . , un) when n is odd, and (u1, u3, . . . , un−1, un)

when n is even. Since b(G) = n− 1, the differences in the burning numbers of G and H can

also be arbitrarily large.

u1 u2 u3 u4 u5
e1

e2
e3 e4

H

Figure 2.15: A hypergraph H that contains a non-induced strong subhypergraph with larger
burning number and lazy burning number.

For an example of an induced strong subhypergraph G with smaller burning number and

lazy burning number than its parent hypergraph H, see Figure 2.16. Let V (G) = {u6, u7, u8}
and E(G) = {e ∈ E(H) | e ⊆ V (G)} = {e2, e3}, so G is a strong subhypergraph of H that

is induced by its vertex set. Then, bL(G) = 1 < 5 = bL(H) and b(G) = 2 < 6 = b(H). To

see this, observe that {u6} is a minimum lazy burning set in G and (u6, u8) is an optimal

burning sequence in G, so bL(G) = 1 and b(G) = 2. But {u1, u2, u3, u4, u5} is a minimum

lazy burning set for H and (u6, u1, u2, u3, u4, u5) is an optimal burning sequence for H, so

bL(H) = 5 and b(H) = 6.

Finally, for an example of a non-induced strong subhypergraph G with smaller burning

number and lazy burning number than its parent hypergraph H, see Figure 2.16 again.

This time, let V (G) = {u6, u7, u8} and E(G) = {e2}, so G is a strong subhypergraph of H

that is not induced by its vertex set (since e3 /∈ E(G)). Then, since G is simply an edge

containing three vertices, and both bL(H) and b(H) were found previously, it is clear that

bL(G) = 2 < 5 = bL(H) and b(G) = 3 < 6 = b(H).

Both of the previous two examples (an induced/non-induced strong subhypergraph with

smaller burning number) can be extended to an infinite family of hypergraphs. Indeed, one

may construct H with vertex set {u1, . . . , un}, and containing edges {u1, . . . , u`}, {u`, u`+1},

44

H e1

e2

e3
u6

u5u4

u3

u2 u1

u7 u8

Figure 2.16: A hypergraph H that contains both an induced and a non-induced strong
subhypergraph with smaller burning number and lazy burning number.

{u`, u`+1, u`+2}, . . . , {u`, . . . , un} for some `. Then, the induced strong subhypergraph may

be obtained by simply deleting the edge {u1, . . . , u`}, and the non-induced strong subhyper-

graph can be obtained by deleting all edges but {u`, . . . , un}. Of course, we also delete any

isolated vertices that result from this. In both cases, we can ensure the resulting subhyper-

graph has smaller (lazy) burning number than H by making ` large enough. Informally, we

can increase the (lazy) burning number of H as much as we want by making sure the edge

{u1, . . . , u`} is very large, without affecting the (lazy) burning numbers of the two subhyper-

graphs in question. Of course, this means that the differences in the (lazy) burning numbers

between H and the two subhypergraphs can be arbitrarily large.

2.4 Complexity

In this section we introduce two brute-force algorithms. Given a hypergraph H, the first

algorithm checks to see if a given sequence of vertices in H is a valid burning sequence, and

the second checks to see if a given subset of V (H) is a lazy burning set. We show that both

algorithms run in polynomial time with respect to the size their inputs, and hence that both

round-based and lazy hypergraph burning are in NP. We prove that the round-based model

is NP-complete; however, the analogous result for lazy burning is left open.

Lemma 2.4.1. Algorithm 2 runs in time at most O(n3m) where |V (H)| = n and |E(H)| =
m.

Proof. Let F and T be initialized to arrays of length n in which vi is in F (resp. T) if and

only if the ith entry in F (resp. T) is a 1. If vi is not in F (resp. T) then the corresponding

entry is 0. Hence, we may assume it takes constant time to check if a vertex v is in F or T ,

and similarly it takes constant time to add a vertex to F or T .

The outermost for loop (lines 2-16) executes at most ` times, and ` ≤ n. The next nested

45

for loop (lines 6-13) executes at most n times. The innermost for loop (lines 7-12) executes

at most m times. In line 8 we must check if e \ {v} ⊆ F . That is, for every element of

e \ {v}, we must check if that element is also in F . This accounts for at most |e \ {v}| ≤ n

operations.

The operation in line 14 takes at most time n since |T ∪ {ui}| ≤ n, and it occurs at the

end of the outermost loop. Thus, the total run time of the algorithm is O
(
n
(
(n·m·n)+n

))
=

O(n3m).

input : hypergraph H = (V,E), sequence S = (u1, . . . , u`) of vertices in H

output: YES if S is a valid burning sequence for H, NO otherwise

1 initialize F = ∅ and T = ∅
2 for i = 1 ; i ≤ ` ; i+ + do

3 if ui ∈ F then

4 return NO

5 end

6 foreach v ∈ V (H) \ F do

7 foreach e ∈ E(H) such that v ∈ e do

8 if e \ {v} ⊆ F then

9 T ← T ∪ {v}
10 Break

11 end

12 end

13 end

14 F ← F ∪ T ∪ {ui}
15 T ← ∅
16 end

17 if F = V (H) then

18 return YES

19 end

20 else

21 return NO

22 end

Algorithm 2: Check potential burning sequence

Notice that Algorithm 2 takes the incidence matrix of the hypergraph as input. Hence,

if the hypergraph has n vertices and m edges, then the size of the input is n ·m (plus the

46

size of the potential burning sequence, which is negligible in comparison). In light of Lemma

2.4.1, Algorithm 2 therefore runs in polynomial time with respect to the size of its inputs.

We now formally state the decision problem for round-based hypergraph burning.

Problem: Hypergraph Burning

Instance: A Hypergraph H and a natural number k

Question: Is b(H) ≤ k?

Theorem 2.4.2. The hypergraph burning problem is NP-complete.

Proof. Since every graph is also a hypergraph, the graph burning problem is contained

within the hypergraph burning problem. Hence, the hypergraph burning problem is, in

general, at least as difficult as the graph burning problem, which is NP-complete [9]. Since

a potential solution to the hypergraph burning problem (i.e. a potential burning sequence)

can be checked in polynomial time via Algorithm 2, the problem must be NP-complete.

Lemma 2.4.3. Algorithm 3 runs in time at most O(n3m) where |V (H)| = n and |E(H)| =
m.

Proof. Let F and T be initialized in the same way as Lemma 2.4.1, so look-ups and adding

vertices take constant time. The outermost loop (lines 2-16) executes at most n times, since

it stop once F is unchanged, and the worst case scenario is that exactly one vertex gets

added to F with each iteration. Now, by the same logic as in the proof of Lemma 2.4.1,

the next two nested for loops take time n and m respectively, and the operation in line 5

takes at most time n. The operation in line 11 also takes at most time n since |T | ≤ n, and

it occurs at the end of the outermost loop. We may assume the operation in line 13 takes

constant time since all that is required is to check if F contains any zeros. Thus, the total

run time of the algorithm is O
(
n
(
(n ·m · n) + n

))
= O(n3m).

47

input : hypergraph H = (V,E), set L ⊆ V (H)

output: YES if L is a successful lazy burning set for H, NO otherwise

1 initialize F = L and T = ∅
2 repeat

3 foreach v ∈ V (H) \ F do

4 foreach e ∈ E(H) such that v ∈ e do

5 if e \ {v} ⊆ F then

6 T ← T ∪ {v}
7 Break

8 end

9 end

10 end

11 F ← F ∪ T
12 T ← ∅
13 if F = V (H) then

14 return YES

15 end

16 until F is unchanged ;

17 return NO

Algorithm 3: Check potential lazy burning set

We now formally state the decision problem for lazy hypergraph burning.

Problem: Lazy Hypergraph Burning

Instance: A Hypergraph H and a natural number k

Question: Is bL(H) ≤ k?

By the same logic that was used previously, Algorithm 3 runs in polynomial time with

respect to the size of its inputs. Since this algorithm checks a potential solution for the lazy

hypergraph burning problem, this problem is in NP. Intuitively, lazy burning does not seem

to be a significantly easier problem than round-based burning. Hence, we pose the following

conjecture (which we could not find in the literature on H-bootstrap percolation).

Conjecture 2.4.4. The lazy hypergraph burning problem is NP-complete.

To prove Conjecture 2.4.4, it would suffice to show that a solution to Lazy Hypergraph

Burning yields a solution to some other decision problem which is NP-complete. One obvious

48

candidate is round-based hypergraph burning, although it is unclear how a solution to lazy

burning could yield a solution to its round-based counterpart. The round-based version

focuses on the number of rounds in the game, and since sources must be chosen with the

goal of spreading the fire as fast as possible, it feels like there is “more strategy” involved in

the selection of sources versus the selection of a lazy burning set.

Another potential candidate is a process called zero-forcing, which is known to be NP-

complete [1,17,24,40]. We will use the terminology of burning when discussing zero-forcing

for the sake of simplicity. In zero-forcing, a subset of vertices in a graph is initially set on

fire. Then, in each round, for each burned vertex with exactly one unburned neighbour,

that unburned neighbour catches fire. Indeed, zero-forcing and lazy hypergraph burning are

quite similar, since they both involve an initial set of burned vertices, and a propagation rule

which allows for the “automated” spread of the fire. See [2,6,7,27] for more on zero-forcing.

Chapter 3

Steiner Triple Systems

In this chapter we investigate the burning game on Steiner triple systems, which are a well-

studied family of combinatorial designs. We obtain a lower bound on the burning number

and an upper bound on the lazy burning number of an arbitrary Steiner triple system.

We also use a “doubling construction” to show that there exist Steiner triple systems with

arbitrary lazy burning number.

3.1 Definitions and Motivation

We briefly discuss the basic definitions from design theory, and explain how a design induces

a hypergraph on which the burning game can be played. Although it is not the origin of the

definitions presented in this section, we use [38] as a reference for the theory of designs.

Definition 3.1.1. ([38]) A design is a pair (X,A) such that X is a set of elements called

points and A is a multiset consisting of nonempty subsets of X, called blocks.

Definition 3.1.2. ([38]) Let v, k, λ ∈ N such that v > k ≥ 2. A (v, k, λ)-balanced incomplete

block design, abbreviated (v, k, λ)-BIBD or BIBD(v, k, λ), is a design (X,A) that satisfies

the following:

• |X| = v,

• each block contains exactly k points, and

• every pair of distinct points is contained in exactly λ blocks.

50

It is common to use a slight abuse of notation when writing the blocks of a BIBD for

the sake of readability. A block which contains the points a, b, and c is technically the set

{a, b, c}, but when writing multiple blocks in a row it is easier to write such a block as simply

abc.

Definition 3.1.3. ([38]) A Steiner triple system of order v, or STS(v), is a (v, 3, 1)-BIBD.

An STS(v) exists if and only if v ≡ 1, 3 (mod 6) [30]. Hence, if v ≡ 1, 3 (mod 6) we

will call v admissible, and otherwise we will call v inadmissible. For example, consider the

STS(7) and STS(9) (which are unique up to isomorphism). Their block sets may be written as

{124, 235, 346, 457, 561, 672, 713} and {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}
respectively.

A design (X,A) induces a hypergraph H on which the burning game can be played,

since we can take V (H) = X and E(H) = A. Hence, we may view an STS as a 3-uniform

hypergraph in the context of burning.

Many alternative propagation rules will coincide with the original propagation rule when

burning a 3-uniform hypergraph (see Chapter 4). In particular, many of them are equivalent

to the following propagation rule: if two vertices are on fire in an edge, then the third vertex

catches fire in the next time step. This is one reason we are interested in burning 3-uniform

hypergraphs – the results that we obtain with the original propagation rule in this chapter

will also apply for many variants of hypergraph burning. Of course, we devote our attention

to Steiner triple systems because they have the most well-studied structure among 3-uniform

hypergraphs.

3.2 General Results on Steiner Triple Systems

Denote the set of vertices of the STS(7) by V = {1, 2, ..., 7}, and the set of edges by

E =
{
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}

}
. Then, without loss

of generality, the arsonist may choose vertices 1 and 2 as the first and second source respec-

tively. In round 3, the fire spreads to 4 and the arsonist chooses as a source any vertex other

than 1, 2, or 4. In round 4, the fire spreads to the remaining vertices and the arsonist must

choose a redundant source. Thus, when burning the STS(7), if the arsonist plays optimally

by picking no redundant sources until the final round, we have f1 = 1, f2 = 2, f3 = 4, f4 = 7,

f ′1 = f ′2 = 0, f ′3 = 1, and f ′4 = 7. So, the STS(7) has burning number 4.

51

Lemma 3.2.1. For any valid burning sequence on an STS(v) with v > 7, if the arsonist

never chooses a redundant source in the first four rounds, we have f1 = 1, f2 = 2, f3 = 4,

and f4 = 8. Also, f ′1 = f ′2 = 0, f ′3 = 1, and 4 ≤ f ′4 ≤ 7.

Proof. Observe Figure 3.1, in which the first four sources in a burning sequence for an

arbitrary STS are u1, u2, u3, and u4. Clearly only the first source u1 is burning in round 1,

so f1 = 1 and f ′1 = 0. In round 2, there is no propagation and the arsonist picks a second

source u2. Since u1 and u2 are the only vertices that are on fire in round 2 we have f2 = 2

and f ′2 = 0. Since we are burning a Steiner triple system, there is a unique edge {u1, u2, a}.
Thus, in round 3, a catches on fire and the arsonist picks a non-redundant source u3 6= a.

In round 3, u1, u2, u3, and a are on fire, and the edge {u1, u2, a} is completely burned so

f3 = 4 and f ′3 = 1. Now, since we are burning an STS, our most recent source u3 appears in

an edge with each of u1, u2, and a. Let these edges be {u3, u1, b}, {u3, u2, c}, and {u3, a, d}.
Note that b, c, and d are all distinct. For example, if b = c then u3 appears with the vertex

b = c in more than one edge. Similarly, {b, c, d} ∩ {u1, u2, a} = ∅. For example, if b = u2

then u3 would appear with b = u2 in more than one edge. The arsonist also chooses some

vertex u4 different from u1, u2, u3, a, b, c, and d as a source in this round, so f4 = 8. For

the lower bound on f ′4, observe that it is possible that {u1, u2, a}, {u3, u1, b}, {u3, u2, c}, and

{u3, a, d} are the only fully burned edges at round 4, so 4 ≤ f ′4. However, it is also possible

that each of {u1, c, d}, {u2, b, d}, and {a, b, c} are edges in the STS, in which case f ′4 = 7, so

4 ≤ f ′4 ≤ 7.

u1

u2

u3

u4

a

cd

b

Figure 3.1: The first four edges that burn when burning an STS(v).

Our next major result is a lower bound on the burning number of an arbitrary STS.

Recall that for a, b ∈ N with a < b,
(
a
b

)
= 0 by convention.

Theorem 3.2.2. For any STS(v) and any round r ≥ 1, Ψr ≤ h(r) where h(r) =
(
h(r−1)

2

)
−

2h(r − 1) + 3r − 2 and h(1) = 1.

52

Proof. Consider the maximum number of vertices that could possibly be on fire in an STS

at the end of round r, and call this value h(r). Thus, by definition, Ψr ≤ h(r) for all rounds

r ≥ 1 for any STS. When the fire spreads this way in an STS (i.e. so that fr = h(r)), denote

the number of edges that are on fire at the end of round r by g(r). Note that g(r) is not

necessarily the maximum number of edges that could be completely on fire at the end of

round r.

For h(r) vertices to be on fire at the end of round r, two things must happen. First,

h(r− 1) vertices must be on fire at the end of round r− 1, and second, the fire must spread

to as many distinct vertices as possible in round r. Assume h(r − 1) vertices and g(r − 1)

edges are on fire at the end of round r− 1. One of the h(r− 1) vertices is the source chosen

by the arsonist in round r− 1, call it z. To maximize the number of vertices that are on fire

by the end of round r, assume the arsonist was able to pick a non-redundant z such that

there is no edge {x, y, z} where x and y are both on fire at the end of round r− 1. We must

now determine the maximum number of distinct vertices the fire could spread to in round r.

The best case scenario is that every unordered pair of burned vertices spreads fire to

a distinct new vertex. Since h(r − 1) vertices are on fire at the end of round r − 1, this

would account for
(
h(r−1)

2

)
newly burned vertices. However, this is an overestimate, as we

know some unordered pairs of vertices do not cause any fire to spread in round r. In

particular, since each unordered pair of vertices appears together in exactly one edge, a pair

of vertices {a, b} does not cause any fire to spread in round r if and only if a and b belong

to an edge that was fully burned at the end of round r − 1. The number of such edges is

g(r − 1), and for each such edge there are
(
3
2

)
= 3 unordered pairs of vertices that we know

do not spread any fire in round r. Of course, the arsonist picks a non-redundant source

in round r as well. Thus, the maximum number of newly burned vertices in round r is(
h(r−1)

2

)
− 3g(r− 1) + 1. Since h(r− 1) vertices were already on fire in round r− 1, no more

than h(r− 1) +
(
h(r−1)

2

)
− 3g(r− 1) + 1 vertices could possibly be on fire by the end of round

r, so Ψr ≤ h(r − 1) +
(
h(r−1)

2

)
− 3g(r − 1) + 1 = h(r).

Now, when fire spreads to a new vertex, it means that some edge of the STS has become

completely burned. In the process above, we showed that at most
(
h(r−1)

2

)
− 3g(r − 1)

(assumedly distinct) vertices could be set on fire in round r due to propagation, and thus at

least
(
h(r−1)

2

)
−3g(r−1) edges become completely burned in round r when the fire spreads as

fast as possible (recall that a non-redundant source chosen by the arsonist never “completes

an edge”). But g(r−1) edges were on fire at the end of round r−1 so the number of edges that

are on fire at the end of round r is at least g(r−1)+
(
h(r−1)

2

)
−3g(r−1) =

(
h(r−1)

2

)
−2g(r−1).

But since we want the fire to spread as fast as possible at each round, we assume that all

53

newly burned vertices in round r are distinct and no set of 3 of the newly burned vertices

form an edge in the STS. That is, if vertices a, b, and c became burned in round r, then

{a, b, c} is not an edge in the STS, since, if it were, then the pairs (a, b), (a, c), and (b, c)

would not spread fire to any new vertices in the next round. Thus, g(r) =
(
h(r−1)

2

)
−2g(r−1).

Now, observe that h(r)− g(r) = r. Specifically, we have

h(r)− g(r) =

[
h(r − 1) +

(
h(r − 1)

2

)
− 3g(r − 1) + 1

]
−
[(
h(r − 1)

2

)
− 2g(r − 1)

]
= h(r − 1)− g(r − 1) + 1 (3.1)

But the maximum number of vertices that can be on fire at the end of round 1 is h(1) = 1,

and the number of edges that are on fire in this case is g(1) = 0. Thus, h(1)− g(1) = 1. As

an inductive hypothesis, assume h(r)−g(r) = r for some r ∈ N. Then, using this hypothesis

and equation (3.1), we have h(r + 1) − g(r + 1) = h(r) − g(r) + 1 = r + 1. Therefore, by

induction, h(r)− g(r) = r for all r ∈ N.

Finally, we have

h(r) = h(r − 1) +

(
h(r − 1)

2

)
− 3g(r − 1) + 1

= h(r − 1) +

(
h(r − 1)

2

)
− 3[h(r − 1)− r + 1] + 1

= h(r − 1) +

(
h(r − 1)

2

)
− 3h(r − 1) + 3r − 3 + 1

=

(
h(r − 1)

2

)
− 2h(r − 1) + 3r − 2

Corollary 3.2.3. Let H be a Steiner triple system on v vertices and let h be the function

defined in the proof of Theorem 3.2.2. If r is the smallest natural number satisfying v ≤ h(r),

then r ≤ b(H).

Proof. Recall that in any STS(v), no more than h(r) vertices can possibly be on fire at the

end of round r. Since h(r− 1) < v, a burning sequence of length r− 1 cannot possibly burn

all v vertices of the STS. Thus, a sequence of length r or greater is required, so r ≤ b(H).

Our next objective is to obtain an upper bound on the lazy burning number of an arbitrary

STS. This bound can be seen in Theorem 3.2.7, which combines Algorithm 1, Lemma 3.2.5,

and Theorem 3.2.6. Contrary to normal conventions, we allow STSs of orders 1 and 3 in

54

r h(r) g(r)
1 1 0
2 2 0
3 4 1
4 8 4
5 25 20
6 266 260
7 34732 34725
8 603069104 603069096

Table 3.1: The first few values for the functions h and g defined in the proof of Theorem
3.2.2.

the following results. The STS(1) is a pair (V,E) with |V | = 1 and E = ∅, and the STS(3)

consists of three vertices in an edge. The STS(1) and the STS(3) are called trivial Steiner

triple systems, and all other STSs are called nontrivial.

Definition 3.2.4. Let H = (X,A) be a BIBD(v, k, λ) and G = (Y,B) be a BIBD(u, k, λ)

with u < v. If Y $ X and B $ A then G is a sub-design of H and we write G $ H (a

slight abuse of notation). If, in addition, both H and G are Steiner triple systems, we say

G is a sub-STS of H.

Lemma 3.2.5. When applying Algorithm 1 to an STS(v), each time the inner loop finishes,

the edges that are completely on fire induce a sub-STS.

Proof. Observe that once the inner loop of Algorithm 1 has finished (within any iteration of

the outer loop), there are only fully burned edges, edges containing a single burned vertex,

and edges containing no burned vertices.

Denote the STS(v) by H. Denote the design induced by the fully burned edges of H

after the inner loop of Algorithm 1 has finished by G. Since H is an STS, no two vertices of

G appear together in more than one edge of G. We must show that every pair of vertices in

G appear together in some edge of G.

Let u,w ∈ V (G) and suppose there is no edge in E(G) containing both u and w. Since

H is an STS, there is some edge B ∈ E(H) such that u,w ∈ B. Write B = {u,w, z} for

some z ∈ V (H) \ V (G) (z /∈ V (G) since, otherwise, B would be an edge in E(G)). Since

z /∈ V (G), z is not on fire. But then the inner loop of Algorithm 1 has not yet ended, since

fire must propagate to z due to B = {u,w, z}. This is a contradiction, so every pair of

vertices in G appears together in exactly one edge of G. Hence, G is an STS.

55

We present the proof of the following well-known theorem for completeness, along with

Figure 3.2 for additional clarity.

Theorem 3.2.6. If T is an STS and A is a sub-STS of T then |V (T)| ≥ 2|V (A)|+ 1.

Proof. Consider any v ∈ V (T) \ V (A). Each ui ∈ V (A) must appear in an edge of T with

v. Suppose the third vertex in such an edge also belongs to V (A) (i.e. there is an edge

{u1, u2, v} with u1, u2 ∈ V (A)). Then {u1, u2, v} ∈ E(A) and hence v ∈ V (A), which is a

contradiction. Therefore, for each ui ∈ V (A), there is an edge {ui, v, zi} ∈ E(T) such that

zi ∈ V (T) \ V (A).

Now, suppose for some distinct ui, uj ∈ V (A) that zi = zj. Then v and zi appear together

in two edges of T , {ui, v, zi} and {uj, v, zi}, which is a contradiction.

Thus, for each ui ∈ V (A) there is a unique vertex zi ∈ V (T)\V (A) that is different from

v. Since u1, . . . , u|V (A)|, v, z1, . . . , z|V (A)| are (2|V (A)| + 1) unique vertices in T , the result

follows.

A Tv

u1

u2

u|V (A)|

...

z|V (A)|

z2

z1

...

Figure 3.2: A visual proof of the bound |V (T)| ≥ 2|V (A)|+ 1.

Theorem 3.2.7. For any Steiner triple system H on v vertices, bL(H) ≤ blog2(v + 1)c.

Proof. Consider the worst-case scenario when applying Algorithm 1 to H. By Lemma 3.2.5,

each time the inner loop of the algorithm finishes, a sub-STS of H is induced by the fully

burned edges. Hence, the worst-case scenario is that H contains the maximum possible

number of nested sub-STSs, and the algorithm chooses vertices as “poorly” as possible such

that each nested sub-STS contributes a vertex to the lazy burning set. That is, each time the

inner loop finishes, the sub-STS that is induced by the burned edges is as small as possible.

56

The smallest two nested sub-STSs contained in any STS are the STS(1) and the STS(3),

which have orders 1 and 3 respectively. Write ar as the order of the rth smallest nested

sub-STS, so clearly a1 = 1 and a2 = 3. By Theorem 3.2.6, we know that ar = 2ar−1 + 1. We

claim that ar = 2r − 1 is the closed formula for this sequence. Indeed, a1 = 21− 1, and if we

assume that ar−1 = 2r−1 − 1 for some r > 1 (as an inductive hypothesis), we can calculate

2r − 1 = 2r − 2 + 1 = 2 (2r−1 − 1) + 1 = 2ar−1 + 1 = ar. The first few terms in this sequence

are 1, 3, 7, 15, 31,

Now, the worst case scenario is that H has nested sub-STSs of order a1, a2, a3, . . . , a`, v,

where ` is the largest natural number such that v ≥ 2a` + 1. Thus, including H itself, H has

at most `+ 1 nested sub-STSs. We solve for `:

v ≥ 2a` + 1

v ≥ 2(2` − 1) + 1

v ≥ 2`+1 − 1

log2(v + 1) ≥ `+ 1

log2(v + 1)− 1 ≥ `

blog2(v + 1)− 1c = `

Therefore, the largest lazy burning set the algorithm could produce for H is of size

`+ 1 = blog2(v + 1)− 1c+ 1 = blog2(v + 1)c. Hence, bL(H) ≤ blog2(v + 1)c.

Definition 3.2.8. Let H be an STS(v) and H1 $ H2 $ · · · $ H` = H be a chain of nested

sub-STSs for H (where H1 is an STS(1) and H2 is an STS(3)). We call this chain a tight

sub-STS chain of length ` if for every sub-STS G of H, Hi $ G $ Hi+1 is false for each

i ∈ {1, 2, . . . , `− 1}.

Informally, a sub-STS chain for H is tight if there is no sub-STS G of H that is “in

between” two consecutive members of the chain (with respect to inclusion). The proof of

Theorem 3.2.7 implicitly uses the concept of sub-STS chains, and we can use the concept of

tight sub-STS chains to obtain further results on lazily burning STSs.

Lemma 3.2.9. Let H be a Steiner triple system. There exists a tight sub-STS chain for H.

Proof. Let H1 be an STS(1) and H2 be an STS(3) with V (H1) ⊆ V (H2) ⊆ V (H). Then

H1 $ H2 $ H is a chain of nested sub-STSs for H. If there is no STS G with H2 $ G $ H

then the chain H1 $ H2 $ H is tight, so assume such a G exists. Then, we can “add” G

57

to our chain, to obtain the chain H1 $ H2 $ G $ H. If this chain is not tight, then there

exists an STS J such that either H2 $ J $ G or G $ J $ H. In either case, we can “add”

J to our chain. Clearly, this process can be repeated until no more sub-STSs can be added

to the chain. The resulting chain must therefore be tight.

Theorem 3.2.10. Let H be an STS(v) and choose any tight sub-STS chain for H. Denote

the length of this chain by `. Then bL(H) ≤ `.

Proof. Let H1 $ H2 $ · · · $ H` = H be a tight sub-STS chain of length ` for H. We claim

that, while applying Algorithm 1 to H, we can choose the vertices to add to L in such a

way that Hi is on fire after the ith iteration of the inner loop for each i ∈ {1, 2, . . . , `}. As

an inductive basis, clearly we can ensure H1 is on fire after the first iteration of the inner

loop, since V (H1) is a single vertex. Now suppose for some i that Hi is on fire after the ith

iteration of the inner loop. We must show that we can choose the next vertex to add to L

in such a way that Hi+1 is on fire after the next iteration. In particular, we claim that we

can choose any vertex u ∈ V (Hi+1) \ V (Hi).

Denote by Hi + u the sub-STS of H that is on fire after we burn u and let the fire

propagate until it stops. We must show Hi + u = Hi+1.

First, clearly Hi + u $ Hi+1 is false. This is because Hi $ Hi + u, and we assumed there

is no sub-STS G of H with Hi $ G $ Hi+1.

Now, suppose V (Hi + u) \ V (Hi+1) 6= ∅. Recall that V (Hi) ∪ {u} ⊆ V (Hi+1), and let

v be a vertex in V (Hi + u) \ V (Hi+1) that catches fire the earliest during the inner loop

of Algorithm 1 (i.e. during propagation). Then, there is an edge {x, y, v} such that x and

y caused fire to spread to v during the inner loop. But x, y ∈ V (Hi+1) since they were on

fire before v. Thus, {x, y, v} ∈ E(Hi+1), and hence v ∈ V (Hi+1), which is a contradiction.

Therefore V (Hi + u) \ V (Hi+1) = ∅.

Since Hi + u $ Hi+1 is false, V (Hi + u) \ V (Hi+1) = ∅, and Hi $ Hi + u $ H, we

must have Hi + u = Hi+1. Thus, for each i ∈ {1, 2, . . . , `}, we can ensure that Hi is on fire

after the ith iteration of the inner loop. This yields a lazy burning set for H of size `, so

bL(H) ≤ `.

Corollary 3.2.11. Let H be an STS(v), and let ` be the length of a shortest tight sub-STS

chain for H. Then bL(H) ≤ `.

We have been unable to prove that the length of a shortest sub-STS chain for an STS

H is a lower bound on bL(H). The obvious direction for a proof is to “plug in” a minimum

58

lazy burning set to Algorithm 1, and show that the resulting sub-STS chain is tight, and of

the shortest possible length. It is unclear if either of these properties are guaranteed, so we

present the following conjecture.

Conjecture 3.2.12. Let H be an STS(v), and let ` be the length of a shortest tight sub-STS

chain for H. Then bL(H) = `.

Next, we combine the following corollary with a result from [23] to show that there are

infinitely many STSs with lazy burning number three; see Corollary 3.2.15.

Corollary 3.2.13. If H is a Steiner triple system on v > 3 vertices that has no nontrivial

subsystems, then bL(H) = 3.

Proof. Any lazy burning set of size 2 would cause fire to spread to a third vertex and no

others, so bL(H) ≥ 3. Also, STS(1) $ STS(3) $ H is a tight sub-STS chain for H. Thus,

by Thereom 3.2.10, bL(H) ≤ 3.

Theorem 3.2.14. ([23]) For every admissible v ∈ N there is an STS(v) with no nontrivial

subsystems.

Corollary 3.2.15. For every admissible v ∈ N with v ≥ 7 there is an STS(v) with lazy

burning number equal to 3.

Corollary 3.2.3 (on page 53) provides a lower bound on the burning number of an STS(v)

that increases monotonically with v. Hence, in light of Corollary 3.2.15, the burning number

and lazy burning number of an STS can differ by an arbitrarily large amount. In the following

result, we also see that the lazy burning number of an STS can differ from the upper bound

in Theorem 3.2.7 by an arbitrarily large amount.

Corollary 3.2.16. For any fixed k ∈ N there are infinitely many Steiner triple systems H

such that bL(H) and the upper bound in Theorem 3.2.7 differ by at least k.

Proof. Let H1, H2, H3, . . . be an infinite list of Steiner triple systems with no nontrivial

subsystems such that ni = |V (Hi)| and ni < ni+1 for all i. Such a list must exist by

Theorem 3.2.14 [23]. Note that bL(Hi) = 3 for all i. Now, since lim
n→∞
blog2(n + 1)c = ∞,

there is i large enough such that blog2(ni + 1)c− 3 > k. Furthermore, blog2(nj + 1)c− 3 > k

for all j > i. Thus, Hi, Hi+1, Hi+2, . . . is an infinite list of STSs whose lazy burning numbers

(all equal to 3) differ from the upper bound in Theorem 3.2.7 by at least k.

59

Is it true that for any k ∈ N \ {1, 2}, there are infinitely many Steiner triple systems

with a shortest tight sub-STS chain of length k? If the answer is “yes,” and if Conjecture

3.2.12 is true, then the following Conjecture 3.2.17 would also be true. We leave these as

open questions.

Conjecture 3.2.17. For any fixed k ∈ N \ {1, 2}, there are infinitely many Steiner triple

systems H with bL(H) = k.

3.3 Results on Doubling Steiner Triple Systems

Given a Steiner triple system H on v vertices, there are several constructions for an STS

G on 2v + 1 vertices which contains H as a sub-STS. We use Construction 2.15 from [18]

(pp. 59) that produces such an STS, which we will refer to as the “double and add one”

method. If H is the given STS, then denote the STS produced by this method by H∗. If

V (H) = {1, 2, . . . , v} then V (H∗) = {1, 2, . . . , v, 1′, 2′, . . . , v′,∞}, and E(H∗) is constructed

as follows:

• E(H) ⊆ E(H∗)

• {x,∞, x′} ∈ E(H∗) for each x ∈ V (H)

• For each edge {x, y, z} in E(H), the edges {x′, y′, z}, {x′, y, z′}, and {x, y′, z′} are in

E(H∗).

We may often wish to apply this method repeatedly, obtaining H∗, then (H∗)∗, and so

on. We will refer to the hypergraph produced from H by repeatedly applying the double

and add one method n times by Hn∗. Note that H $ H∗ $ H2∗ $ · · · $ H(n−1)∗ $ Hn∗ is a

chain of nested sub-STSs for Hn∗ such that, for every sub-STS G of Hn∗, H i∗ $ G $ H(i+1)∗

is false for each i ∈ {0, 1, . . . , n} (this is by Theorem 3.2.6 on page 55). Hence, H $ H∗ $
H2∗ $ · · · $ H(n−1)∗ $ Hn∗ is a tight sub-STS chain for Hn∗ of maximum length.

Lemma 3.3.1. If H is an STS(v) and G is an STS(2v+ 1) such that H $ G then bL(G) ≤
bL(H) + 1.

Proof. Let T be an optimal lazy burning set for H. Let v ∈ V (G)\V (H). We claim T ∪{v}
is a lazy burning set for G. Consider what happens when we apply Algorithm 1 to G using

T ∪{v}. After burning the last vertex of T , the fire will propagate until V (H) is on fire. We

claim that after burning v, the fire will propagate until all of V (G) is on fire.

60

Suppose that a strict subset of V (G) is on fire after we burn v and allow the fire propagate

(via the inner loop of Algorithm 1). Then by Lemma 3.2.5, the burned edges form an STS,

call it J , with H $ J $ G. But then |V (J)| < |V (G)| = 2|V (H)| + 1, which contradicts

Theorem 3.2.6.

Since applying Algorithm 1 to G using T ∪{v} results in V (G) being completely burned,

T ∪ {v} must be a lazy burning set for G. Thus, bL(G) ≤ |T ∪ {v}| = bL(H) + 1.

Theorem 3.3.2. Let H be a Steiner triple system. Then bL(H) ≤ bL(H∗) ≤ bL(H) + 1.

Proof. The upper bound is by Lemma 3.3.1. Alternatively, it is easy to show that if T is an

optimal lazy burning set for H, then T ∪ {∞} is a lazy burning set for H∗.

We now prove the lower bound. Let S ′ be an optimal lazy burning set for H∗. Let S be

the subset of V (H) created from S ′ in the following way: if S ′ = {x1, . . . , xk, y′1, . . . , y′`,∞}
or S ′ = {x1, . . . , xk, y′1, . . . , y′`}, then S = {x1, . . . , xk} ∪ {y1, . . . , y`} (i.e. we remove infinity

if necessary and “un-prime” the “primed” vertices). We claim S is a lazy burning set for H.

In particular, we prove the following statement for all admissible i ∈ N ∪ {0} by strong

induction: If x or x′ is on fire in LBG(H∗, S ′) after the ith propagation step, then x is on

fire in LBG(H,S) after the ith propagation step.

First, consider the base case i = 0 (i.e. just after the lazy burning sets are set on fire and

before any propagation). If x (or x′) is on fire at this vertex in time in LBG(H∗, S ′), then

it is because x ∈ S ′ (or x′ ∈ S ′). In either case, by the definition of S, x ∈ S, so x is on fire

in LBG(H,S) after i = 0 propagation steps.

For the inductive hypothesis, we may assume the following for all k ∈ {0, 1, . . . , i}: If x

or x′ is on fire in LBG(H∗, S ′) after the kth propagation step, then x is on fire in LBG(H,S)

after the kth propagation step.

Finally, for the inductive step, we must show that if x or x′ is on fire in LBG(H∗, S ′) after

the (i+ 1)th propagation step then x is on fire in LBG(H,S) after the (i+ 1)th propagation

step.

Suppose x′ is on fire in LBG(H∗, S ′) after the (i + 1)th propagation step. If x′ was also

on fire after an earlier propagation step then we simply apply the inductive hypothesis, so

assume that x′ catches fire in the (i+1)th propagation step. There are two cases to consider.

First, suppose x′ catches fire due to an edge of the form {x,∞, x′}. Then x and ∞ were on

fire in LBG(H∗, S ′) after the ith propagation step. By the inductive hypothesis, this means

x was on fire in LBG(H,S) after the ith propagation step. Second, suppose x′ catches fire

due to an edge of the form {x′, y′, z}. Then y′ and z were on fire in LBG(H∗, S ′) after the

61

ith propagation step. By the inductive hypothesis, y and z must be on fire in LBG(H,S)

after the ith propagation step. Hence, if x was not already on fire in LBG(H,S), then the

edge {x, y, z} causes fire to spread to x in the (i+ 1)th propagation step of LBG(H,S).

Now, suppose x is on fire in LBG(H∗, S ′) after the (i + 1)th propagation step. If x was

also on fire after an earlier propagation step then we simply apply the inductive hypothesis,

so assume that x catches fire in the (i + 1)th propagation step of LBG(H∗, S ′). There are

three cases to consider. First, suppose x catches fire in LBG(H∗, S ′) due to an edge of

the form {x,∞, x′}. Then ∞ and x′ were on fire in LBG(H∗, S ′) after the ith propagation

step, and hence x was on fire in LBG(H,S) after the ith propagation step by the inductive

hypothesis. Second, suppose x catches fire in LBG(H∗, S ′) due to an edge of the form

{x, y, z}. Then y and z were on fire in LBG(H∗, S ′) after the ith propagation step. By the

inductive hypothesis, y and z were also on fire in LBG(H,S) after the ith propagation step.

Hence, if x was not yet on fire in LBG(H,S), the edge {x, y, z} causes fire to spread to x in

LBG(H,S) in the (i+ 1)th propagation step. Third, suppose x catches fire in LBG(H∗, S ′)

due to an edge of the form {x, y′, z′}. Then y′ and z′ were on fire in LBG(H∗, S ′) after the

ith propagation step. By the inductive hypothesis, y and z were on fire in LBG(H,S) after

the ith propagation step. Hence, if x was not yet on fire in LBG(H,S), the edge {x, y, z}
causes fire to spread to x in LBG(H,S) in the (i+ 1)th propagation step.

Now, since S ′ is a lazy burning set for H∗, and by the statement we just proved by

induction, S must be a lazy burning set for H. If ∞ ∈ S ′ then we have bL(H) ≤ |S| <
|S ′| = bL(H∗), and otherwise we have bL(H) ≤ |S| ≤ |S ′| = bL(H∗). In either case we may

conclude bL(H) ≤ bL(H∗).

For the rest of this section we write the edge in an STS containing the vertices x, y,

and z as xyz. This slight abuse of notation serves the purpose of making an edge easily

distinguishable from a lazy burning set of size three.

Both the upper and lower bounds in Theorem 3.3.2 are tight. Indeed, we will show

the necessary and sufficient conditions for when each bound is tight in Theorem 3.3.7 and

Corollary 3.3.8 (on page 66).

First, we give an example of a triple system H such that bL(H) = bL(H∗). Let H = (V,E)

be the STS(9), so V = {1, . . . , 9}, and a unique way of writing the edges up to isomorphism

is E = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}. Write the vertex set of H∗

as V (H∗) = {1, . . . , 9, 1′, . . . , 9′,∞}. Also write E∞ = {11′∞, 22′∞, . . . , 99′∞} and E ′ =

{a′b′c, a′bc′, ab′c′ | abc ∈ E}. Then E(H∗) = E∪E∞∪E ′. Clearly bL(H) > 2 and bL(H∗) > 2

since burning two vertices as an attempted lazy burning set would result in just one vertex

62

catching fire through propagation. Since {1, 2, 4} is a lazy burning set for H, bL(H) = 3.

Now, it is easy to check that {1, 2, 4′} is a lazy burning set for H∗. If we burn this set, during

the first propagation the vertices 3, 7′, and 9′ will catch fire. During the next propagation,

the vertices 8, 5′, 6′, and 8′ will catch fire. Finally, during the last propagation, the vertices

4, 5, 6, 7, 9, 1′, 2′, 3′, and ∞ will catch fire, leaving the entire hypergraph burned. Hence,

bL(H∗) = 3. We are currently unaware of any infinite families of STSs H for which this

bound is tight (i.e. for which bL(H) = bL(H∗)), so we leave this as an open problem.

Now, we give an example where the upper bound in Theorem 3.3.2 is tight. Let H =

(V,E) be the STS(7), so V = {1, . . . , 7} and a unique way of writing the edges up to iso-

morphism is E = {124, 235, 346, 457, 561, 672, 713}. Write V (H∗) = {1, . . . , 7, 1′, . . . , 7′,∞},
E∞ = {11′∞, 22′∞, . . . , 77′∞}, and E ′ = {a′b′c, a′bc′, ab′c′ | abc ∈ E}. Then E(H∗) =

E ∪ E∞ ∪ E ′. Clearly bL(H) = 3 since there is no lazy burning set of size two and {1, 2, 3}
is a lazy burning set for H. It is easy to check that {1, 2, 3, 1′} is a lazy burning set for

H∗, so bL(H∗) ≤ 4. We show bL(H∗) = 4 in Theorem 3.3.4, which uses Lemma 3.3.3 in its

proof. Indeed, one infinite family of STSs H for which this bound is tight (i.e. for which

bL(H∗) = bL(H) + 1) are the cyclic STSs; see Theorem 3.3.9 on page 66.

Lemma 3.3.3. Suppose three vertices a, b, and c are burned in the STS(7) as a lazy burning

set, where abc is not an edge. Then, during the first propagation, three new distinct vertices

d, e, and f will catch fire such that def is an edge in the STS(7).

Proof. Let H = (V,E) be the STS(7) with V and E written the same as above. Clearly,

each unordered pair of vertices among a, b, and c will cause fire to spread to a distinct new

vertex. Without loss of generality, denote the vertex that catches fire due to a and b by d,

denote the vertex that catches fire due to a and c by e, and denote the vertex that catches

fire due to b and c by f . So, abd, ace, bcf ∈ E. Clearly d, e, f /∈ {a, b, c} and d, e, and f

are all distinct. Now, suppose def /∈ E. Then each unordered pair of vertices among d, e,

and f will cause fire to spread to a distinct new vertex during the next propagation. Say d

and e spread fire to g, d and f spread to h, and e and f spread to i. So deg, dfh, efi ∈ E.

Remark that g, h, i /∈ {a, . . . , f}. For example, if g = a then both abd and dea are edges in

E, which is a contradiction since then a and d appear together in two different edges. We

therefore have that a, . . . , i are nine distinct vertices in the STS(7), which is a contradiction.

Our latest supposition must be false, so def ∈ E.

Theorem 3.3.4. If H is the STS(7), then bL(H∗) = 4.

Proof. Let H = (V,E) be the STS(7) with V and E written the same as above. Similarly, let

H∗ have its vertex set and edge set written the same as above. We will show that if any three

63

vertices (not all together in an edge of H∗) are burned as an attempted lazy burning set in

H∗, then the fire will spread to a sub-STS(7) of H∗ and then stop (and hence bL(H∗) > 3).

Throughout the proof, if a, b, and c are arbitrary vertices in V such that abc /∈ E, define d,

e, and f as the unique vertices in V such that abd, ace, bcf ∈ E. By the same logic that was

used in the proof of Lemma 3.3.3, d, e, and f are distinct, different from a, b, and c, and

def ∈ E. We proceed by considering the possible cases with respect to the attempted lazy

burning set.

Case 1. The attempted lazy burning set has the form {a, b, c} such that a, b, c ∈ V and

{a, b, c} /∈ E. Then clearly the fire will propagate in H∗ until all the vertices of V are on fire

and then stop (clearly no “primed” vertices or ∞ will catch fire).

Case 2. The attempted lazy burning set has the form {a′, b′, c′} such that abc ∈ E. Then,

due to the edges a′b′c, a′bc′, and ab′c′ in E ′, the vertices a, b, and c will catch fire during

the first propagation. Then, due to the edges aa′∞, bb′∞, and cc′∞ in E∞, the vertex ∞
catches fire during the second propagation. There is no further propagation since currently

abc, a′b′c, a′bc′, ab′c′, aa′∞, bb′∞, and cc′∞ are on fire, which forms a sub-STS(7) on the

vertices {a, b, c, a′, b′, c′,∞}.

Case 3. The attempted lazy burning set has the form {a′, b′, c′} such that abc /∈ E. Then by

Lemma 3.3.3, abd, ace, bcf, def ∈ E for distinct vertices d, e, f ∈ V \ {a, b, c}. So, during the

first propagation, d, e, and f catch fire due to the edges a′b′d, a′c′e, and b′c′f respectively.

Currently the edges a′b′d, a′c′e, b′c′f , and def are on fire in H∗. The second propagation

will be due to the pairs of vertices d and c′, e and b′, and f and a′. Define g as the unique

vertex in V such that cdg ∈ E. First, it is easy to show that g /∈ {a, b, c, d, e, f}. If g = a

then cda, ace ∈ E, and hence d = e which contradicts Lemma 3.3.3. Similar contradictions

can be reached by assuming g is equal to any of the vertices b, c, d, e, or f . Now, clearly

during the second propagation, the vertices d and c′ cause fire to spread to g′ via the edge

c′dg′ ∈ E ′. We claim that both of the other two the pairs (e and b′, and f and a′) cause fire

to spread to g′. First, consider the pair e and b′. Clearly they will cause a vertex of the form

x′ to catch fire via the edge eb′x′ ∈ E ′. We will show that x′ = g′. First, suppose x′ = a′.

Then eb′a′ ∈ E ′, so eba ∈ E. But ace ∈ E, so b = c, which is a contradiction. If x′ = c′ then

eb′c′ ∈ E ′, so ebc ∈ E. But bcf ∈ E so e = f which is a contradiction. Similar contradictions

can be reached when we assume either x′ = d′ or x′ = f ′, and both x′ = b′ and x′ = e′ are

obviously false. Hence, x′ = g′. A similar argument can be used to show that f and a′ cause

fire to spread to g′ during the second propagation. Hence, after the second propagation the

edges a′b′d, a′c′e, b′c′f , def , g′dc′, g′eb′, and g′fa′ are on fire. No more fire will spread, since

this forms a sub-STS(7) on the vertices {a′, b′, c′, d, e, f, g′}.

64

Case 4. The attempted lazy burning set has the form {a′, b′, c}. Of course, we also assume

that {a′, b′, c} is not an edge in H∗. If abc ∈ E then a′b′c ∈ E ′, which is a contradiction since

we assume a′, b′, and c do not belong together in an edge of H∗. Thus, abc /∈ E. Now, in the

first propagation, d, e′, and f ′ will catch on fire due to the edges a′b′d, a′ce′, and b′cf ′. Then,

since def ∈ E (by Lemma 3.3.3), we know de′f ′ ∈ E ′. From here, the same argument as in

case 3 shows that the fire will propagate to a sub-STS(7) on the vertices {a′, b′, c, d, e′, f ′, g}
and then stop.

Case 5. The attempted lazy burning set has the form {a′, b, c} such that abc ∈ E. In

the first propagation, the vertices c′, b′, and a will catch fire due to the edges a′bc′, a′b′c,

and abc respectively. Note that since abc ∈ E, we know ab′c′ ∈ E ′. From here, the same

argument as in case 2 shows that the fire will propagate to a sub-STS(7) on the vertices

{a, b, c, a′, b′, c′,∞} and then stop.

Case 6. The attempted lazy burning set has the form {a′, b, c} such that abc /∈ E. In the

first propagation, the vertices d′, e′, and f will catch fire due to the edges a′bd′, a′ce′, and

bcf respectively. Note that since def ∈ E (by Lemma 3.3.3), we know d′e′f ∈ E ′. From

here, the same argument as in case 3 shows that the fire will propagate to a sub-STS(7) on

the vertices {a′, b, c, d′, e′, f, g′} and then stop.

Case 7. The attempted lazy burning set has the form {a′, b′,∞}. Define d as the unique

vertex such that abd ∈ E. Then, a similar argument to case 2 shows that the fire will

propagate to a sub-STS(7) on the vertices {a, b, d, a′, b′, d′,∞} and then stop.

Case 8. The attempted lazy burning set has the form {a′, b,∞}. Define d as the unique

vertex such that abd ∈ E. In the first propagation the vertices a, b′, and d′ will catch fire

due to the edges aa′∞, bb′∞, and a′bd′ respectively. Note that since abd ∈ E, we know

ab′d′ ∈ E ′. From here, a similar argument to case 2 shows that the fire will propagate to a

sub-STS(7) on the vertices {a, b, d, a′, b′, d′,∞} and then stop.

Case 9. The attempted lazy burning set has the form {a, b,∞}. Define d as the unique

vertex such that abd ∈ E. In the first propagation the vertices a′, b′, and d will catch fire

due to the edges aa′∞, bb′∞, and abd respectively. Note that since abd ∈ E, we know

a′b′d ∈ E ′. From here, a similar argument to case 2 shows that the fire will propagate to a

sub-STS(7) on the vertices {a, b, d, a′, b′, d′,∞} and then stop.

We therefore have that bL(H∗) > 3 = bL(H) where H is the STS(7). Using Theorem

3.3.2, we can conclude that bL(H∗) = 4.

A much quicker proof of the result in Theorem 3.3.4 can be found in Corollary 3.3.10 on

65

page 66. Next, we obtain necessary and sufficient conditions for when bL(H∗) = bL(H) + 1

for an arbitrary STS H. This result can be seen in Theorem 3.3.7.

Lemma 3.3.5. Let H be a Steiner triple system and let T, S ⊆ V (H∗). If ∞, x, x′ ∈ T for

some x ∈ V (H) then T is not an optimal lazy burning set for H∗. If x, x′, y, y′ ∈ S for some

x, y ∈ V (H) then S is not an optimal lazy burning set for H∗.

Proof. Suppose T is an optimal lazy burning set for H∗ with∞, x, x′ ∈ T for some x ∈ V (H).

Since {x,∞, x′} is an edge in H∗, T \ {x} is a smaller lazy burning set for H∗, which is a

contradiction.

Suppose S is an optimal lazy burning set for H∗ with x, x′, y, y′ ∈ S for some x, y ∈
V (H). We claim S \ {y′} is a lazy burning set for H∗, which would give us the desired

contradiction. We only need to prove that y′ catches fire through propagation in LBG(H∗, S\
{y′}). Consider the unique vertex z ∈ V (H) such that {x, y, z} is an edge in H. Clearly

z′ /∈ S since otherwise S \{z′} would be a smaller lazy burning set for H∗ (the edge {x′, y, z′}
would cause z′ to catch fire). Hence, the edge {x′, y, z′} causes fire to spread to z′ in

LBG(H∗, S \ {y′}). Then, the edge {x, y′, z′} causes fire to spread to y′ in LBG(H∗, S \
{y′}).

Lemma 3.3.6. Let H be a Steiner triple system. There is an optimal lazy burning set T for

H∗ with ∞ ∈ T if and only if there is an optimal lazy burning set S for H∗ with x, x′ ∈ S
for some x ∈ V (H).

Proof. Let T be an optimal lazy burning set for H∗ with ∞ ∈ T . Then by Lemma 3.3.5

there is no vertex x ∈ V (H) such that x, x′ ∈ T . There are three cases. First, suppose

there is a vertex y ∈ V (H) such that y ∈ T . Then y′ /∈ T and (T \ {∞}) ∪ {y′} is an

optimal lazy burning set for H∗. Clearly this set is the same size at T , and it contains both

y and y′. It is indeed a lazy burning set since the edge {y,∞, y′} causes ∞ to catch fire in

LBG(H∗, (T \ {∞}) ∪ {y′}). Second, suppose there is a vertex z ∈ V (H) such that z′ ∈ T .

Then z /∈ T , and by a similar argument (T \ {∞}) ∪ {z} is an optimal lazy burning set

for H∗. Third, suppose neither of the previous two cases hold. Then T = {∞}, which is a

contradiction, so at least one of the previous two cases holds.

Let S be an optimal lazy burning set for H∗ with x, x′ ∈ S for some x ∈ V (H). By Lemma

3.3.5,∞ /∈ S. Then, (S\{x})∪{∞} is an optimal lazy burning set for H∗, since this set is the

same size as S, and the edge {x,∞, x′} causes x to catch fire in LBG(H∗, (S\{x})∪{∞}).

Theorem 3.3.7. Let H be a Steiner triple system. Then, bL(H∗) = bL(H) + 1 if and only

if there is an optimal lazy burning set S ′ for H∗ such that ∞ ∈ S ′.

66

Proof. For the reverse implication, construct S from S ′ in the same way as in the proof of

Theorem 3.3.2. Then, S is a lazy burning set for H with |S| < |S ′|, so bL(H) ≤ |S| < |S ′| =
bL(H∗). By Theorem 3.3.2, since bL(H) < bL(H∗) we must have bL(H∗) = bL(H) + 1.

For the forward implication, assume bL(H∗) = bL(H) + 1. Let T be an optimal lazy

burning set for H. We claim T ∪{∞} is an optimal lazy burning set for H∗. It is the correct

size since |T ∪ {∞}| = |T | + 1 = bL(H) + 1 = bL(H∗). It is also a lazy burning set, since

each vertex x ∈ V (H) will burn due to T in LBG(H∗, T ∪ {∞}) (recall E(H) ⊆ E(H∗)),

and each vertex x′ will burn due to the edge {x,∞, x′} in LBG(H∗, T ∪ {∞}).

Corollary 3.3.8. Let H be a Steiner triple system. Then, bL(H) = bL(H∗) if and only if

there is no optimal lazy burning set S ′ for H∗ such that ∞ ∈ S ′.

The conditions in Theorem 3.3.7 and Corollary 3.3.8 are not in terms of any design-

theoretic properties of H or H∗. Instead, they require that we know something about

the existence of an optimal lazy burning set in H∗ in order to determine whether or not

bL(H∗) = bL(H) + 1. We therefore pose the following open question: are there necessary

and sufficient conditions for determining whether bL(H∗) = bL(H) + 1 that are only in terms

of design-theoretic properties of H and/or H∗? Indeed, we have found one such sufficient

condition.

Theorem 3.3.9. If H∗ is cyclic then bL(H∗) = bL(H) + 1.

Proof. Write |V (H∗)| = v and let α be an automorphism of H∗ that is a permutation

consisting of a single cycle of length v. Write bL(H∗) = b and let {u1, u2, . . . , ub} be a

minimum lazy burning set for H∗. Recall that each vertex of H∗ belongs to one of the

following sets: {x | x ∈ V (H)}, {x′ | x ∈ V (H)}, or {∞}. If one of the ui is ∞ then

we get the desired result by Theorem 3.3.7, so assume ui /∈ {∞} for all i. Now, since

H∗ is isomorphic to αk(H∗) for any k ∈ N, we have that {αk(u1), αk(u2), . . . , αk(ub)} is a

minimum lazy burning set in both αk(H∗) and H∗ for any k ∈ N. Now, choose k ∈ N such

that αk(u1) = ∞. Then {αk(u1), αk(u2), . . . , αk(ub)} is a minimum lazy burning set for H∗

containing ∞, so the result follows by Theorem 3.3.7.

Next, we use Theorem 3.3.9 to prove the result from Theorem 3.3.4 much more easily.

Corollary 3.3.10. If H is the STS(7), then bL(H∗) = 4.

Proof. Observe that for each edge {x, y, z} in an STS H, there is a sub-STS(7) on the vertices

{x, y, z, x′, y′, z′,∞} in H∗.

67

Let H be the STS(7). Then H∗ is an STS(15) that has at least eight sub-STS(7)s; H

itself, and one for each of the seven edges in H. As seen in [32], the only STS(15) with eight or

more nontrivial subsystems is the one labelled #1, so this STS(15) must be H∗. The STS(15)

#1 is cyclic [32], so by Theorem 3.3.9 we must have bL(H∗) = bL(H) + 1 = 3 + 1 = 4.

We now turn our attention to doubling the STS(7) specifically. For the purposes of the

following definition, first define the operation ⊕ on Zn2 such that, if x = (x1, . . . , xn) and

y = (y1, . . . , yn), then x⊕ y = (x1 + y1, . . . , xn + yn) where each xi + yi is reduced modulo 2.

Clearly ⊕ is commutative and associative.

Definition 3.3.11. ([19]) A projective triple system of order n is a 3-uniform hypergraph

H on 2n − 1 vertices with the following properties.

• Each vertex in V (H) can be labelled with an element of Zn2 \ {0} (i.e. an n-tuple of

zeros and ones that is not all zeros).

• For all x, y, z ∈ V (H), xyz is an edge in H if and only if x⊕ y ⊕ z is the zero vector

in Zn2 .

Theorem 3.3.12. ([19]) For each n ∈ N \ {1, 2} there exists exactly one projective triple

system of order n, and it is an STS(2n − 1).

It is well-known that applying the doubling construction discussed in this section to a

projective triple system of order n yields the projective triple system of order n + 1. We

present a proof of this fact for completeness.

Lemma 3.3.13. If H is the projective triple system of order n then H∗ is the projective

triple system of order n+ 1.

Proof. Write V (H) = {x1, . . . , x2n−1} = Zn2 \ {0}. We first need to determine how vertices

of the form xi, x
′
i, and ∞ are defined in H∗ as elements of Zn+1

2 \ {0}. For each xi =

(x
(1)
i , . . . , x

(n)
i) ∈ V (H), define the vertices xi and x′i in V (H∗) as xi = (x

(1)
i , . . . , x

(n)
i , 0) and

x′i = (x
(1)
i , . . . , x

(n)
i , 1). Also define∞ = (0(1), . . . , 0(n), 1). Then clearly xi, x

′
i,∞ ∈ Zn+1

2 \{0}
(where this xi is the one in H∗). Then let V (H∗) = {xi, x′i | xi ∈ V (H)} ∪ {∞}. Notice

that if i 6= j then xi, xj, x
′
i, x

′
j, and ∞ are all distinct vertices in H∗. Hence, |V (H∗)| =

2|V (H)|+1 = 2(2n−1)+1 = 2n+1−1 = |Zn+1
2 \{0}|, so V (H∗) = Zn+1

2 \{0} as desired. Now

we must show that the rules for how the edges of H∗ are constructed according to Definition

3.3.11 coincide with those from Construction 2.15 from [18].

68

We will show E(H) ⊆ E(H∗). If xixjxk ∈ E(H) then xi ⊕ xj ⊕ xk = 0 in Zn2 . Since

the (n + 1)th coordinate of these vertices is zero (as elements of V (H∗)), we have that

xi ⊕ xj ⊕ xk = 0 in Zn+1
2 , so xixjxk ∈ E(H∗).

Now we show that for each edge xixjxk ∈ E(H), the triple x′ix
′
jxk is an edge in H∗ (the

proofs for x′ixjx
′
k and xix

′
jx
′
k are similar). Calculating in Zn+1

2 , we have

x′i ⊕ x′j ⊕ xk = (x
(1)
i + x

(1)
j + x

(1)
k , . . . , x

(n)
i + x

(n)
j + x

(n)
k , 1 + 1 + 0) = (0, . . . , 0, 0) = 0,

so x′ix
′
jxk ∈ E(H∗). Also notice that x′ix

′
jx
′
k, x

′
ixjxk /∈ E(H∗) since

x′i ⊕ x′j ⊕ x′k = (x
(1)
i + x

(1)
j + x

(1)
k , . . . , x

(n)
i + x

(n)
j + x

(n)
k , 1 + 1 + 1) = (0, . . . , 0, 1) 6= 0, and

x′i ⊕ xj ⊕ xk = (x
(1)
i + x

(1)
j + x

(1)
k , . . . , x

(n)
i + x

(n)
j + x

(n)
k , 1 + 0 + 0) = (0, . . . , 0, 1) 6= 0.

Similarly, xix
′
jxk, xixjx

′
k /∈ E(H∗).

For each xi ∈ V (H) we have xix
′
i∞ ∈ E(H∗). Calculating in Zn+1

2 , we have

xi⊕x′i⊕∞ = (x
(1)
i +x

(1)
i +0, . . . , x

(n)
i +x

(n)
i +0, 0+1+1) = (2x

(1)
i , . . . , 2x

(n)
i , 2) = (0, . . . , 0, 0).

Notice that ∞ does not appear in any edges of H∗ except those of the form xix
′
i∞. If i 6= j

then xi ⊕ xj 6= 0 since xi and xj differ in at least one of the first n coordinates (i.e. one of

them has a 1 and the other has a 0 in a common coordinate). Since ∞ = (0(1), . . . , 0(n), 1),

there will be a 1 somewhere in the first n coordinates of xi ⊕ xj ⊕∞, so xixj∞ /∈ E(H∗)

whenever i 6= j. A similar argument shows that none of x′ixj∞, xix
′
j∞, or x′ix

′
j∞ are edges

in H∗ when i 6= j.

Corollary 3.3.14. The projective triple systems are exactly those hypergraphs of the form

Hn∗, n ∈ N ∪ {0} where H is the STS(7).

The following theorem is stated as a passing remark in [19] (Section 7.2.1, pp. 102-103),

and can also be found in [37] (see the theorem on page 379).

Theorem 3.3.15. All projective triple systems are cyclic.

By combining Theorem 3.3.9 (on page 66), Corollary 3.3.14, and Theorem 3.3.15 we get

the following result. It essentially says that, if we repeatedly double the STS(7), the lazy

burning number increases by one each time. Hence, there exist Steiner triple systems with

arbitrary lazy burning number; see Corollary 3.3.18.

69

Theorem 3.3.16. Let H be the STS(7). Then bL(Hn∗)+1 = bL(H(n+1)∗) for all n ∈ N∪{0}.

Corollary 3.3.17. If H is the projective triple system of order n then bL(H) = n.

Corollary 3.3.18. For all n ∈ N\{1, 2} there exists a Steiner triple system with lazy burning

number n.

Is it true that if an STS H is cyclic then H∗ is also cyclic? If yes, then this would

yield infinitely many hypergraphs H with the same property as in Theorem 3.3.16. That is,

by repeatedly doubling H, the lazy burning number increases by one each time since each

double is cyclic. It would also be nice to determine if there is a hypergraph G with the

“opposite” property to the one in Theorem 3.3.16. That is, does there exist a hypergraph

G with bL(Gn∗) = bL(G(n+1)∗) for all n ∈ N ∪ {0}? Are there in fact infinitely many such

hypergraphs G? We leave these as open questions.

3.4 Computational Results

To accompany our theoretic results on Steiner triple systems, a C program was written that

computes the burning and lazy burning numbers of a hypergraph; see Appendices A.1 and

A.2. It uses the standard propagation rule featured throughout the vast majority of this

thesis, and considers only those burning sequences in which the arsonist avoids redundant

sources until possibly the final round. It was tested on several STSs of interest, and we

summarize the results in this section.

First, the (lazy) burning numbers for the four smallest nontrivial STSs were found; see

Table 3.2. Since these STSs are quite small, it was also possible to obtain the number

of optimal burning sequences and minimum lazy burning sets. Note that optimal burning

sequences that differ only in the final redundant source are counted separately. Another

notable result is that there are no valid burning sequences of length strictly greater than 4

for the STS(7), and no valid burning sequences of length greater than 5 for the other three

STSs.

All 80 STS(15)s were tested as well, and the results are summarized here in paragraph

format for the sake of brevity. Each of them has burning number 5 and exactly 141120

optimal burning sequences. There are no valid burning sequences of length greater than 5

for any STS(15).

The STS(15) labelled number 1 in [32] (and commonly elsewhere in the literature) is the

only STS(15) with lazy burning number 4, and it has 840 minimum lazy burning sets. All

70

H b(H)
of optimal

burning sequences
bL(H)

of minimum
lazy burning sets

STS(7) 4 504 3 28
STS(9) 5 864 3 72

cyclic STS(13) 5 46800 3 260
non-cyclic STS(13) 5 46800 3 260

Table 3.2: Burning numbers and lazy burning numbers for some small Steiner Triple Systems.

the other STS(15)s have lazy burning number 3, and 224, 336, 392, or 420 minimum lazy

burning sets. Only number 2 has 224 minimum lazy burning sets. Numbers 3 to 7 have 336

minimum lazy burning sets. Numbers 8 to 22 and 61 have 392 minimum lazy burning sets.

The rest have 420 minimum lazy burning sets.

The unique characteristics of STS(15) number 1 may provide insight into what influences

the lazy burning number of a hypergraph. Most notably, STS(15) number 1 has a much

higher automorphism group order (20160), and has many more subsystems (15), parallel

classes (56), and resolutions (240) than the other STS(15)s [32].

The lazy burning numbers of the first few doubles of the four smallest nontrivial STSs

were also found; see Table 3.3. Of course, the lazy burning number of any double of the

STS(7) is known (see Theorem 3.3.16), but the first row of the table was still obtained

computationally. The lazy burning number of the fourth double of the STS(7) is absent

from the table since the program ran for too long. This may seem odd considering the

STS(7) is the smallest nontrivial STS. However, its fourth double has lazy burning number

seven (which we know from Theorem 3.3.16), and in general the program takes longer to

test hypergraphs with larger lazy burning numbers.

H bL(H∗) bL(H2∗) bL(H3∗) bL(H4∗)
STS(7) 4 5 6
STS(9) 3 3 3 4

cyclic STS(13) 3 3 3 4
non-cyclic STS(13) 3 3 3 4

Table 3.3: Lazy burning numbers for the first few doubles of some small STSs.

The lazy burning numbers of the first two doubles of each STS(15) were also found

computationally. STS(15) number 1 had bL(H∗) = 5 and bL(H2∗) = 6, which coincides

with Theorem 3.3.16. STS(15) number 2 had bL(H∗) = 4 and bL(H2∗) = 5. The STS(15)s

numbered 3 to 7 all had bL(H∗) = 3 and bL(H2∗) = 4. Finally, the STS(15)s numbered 8 to

80 all had bL(H∗) = bL(H2∗) = 3.

71

A projective plane of order n is a BIBD(n2 +n+1, n+1, 1). Indeed, for each n ∈ N\{1},
there exists a unique projective plane of order n [38], which we will denote by PG(2, n).

Table 3.4 shows the (lazy) burning numbers of some projective planes of small order.

H bL(H) b(H)
PG(2, 2) 3 4
PG(2, 3) 6 8
PG(2, 4) 11 12
PG(2, 5) 16 18

Table 3.4: Burning numbers and lazy burning numbers for some small projective planes.

Chapter 4

Alternative Propagation Rules

The original analogy for graph burning was the spread of a social contagion through social

media [13]. Each vertex of the graph represents a person, two people who are friends are

connected by an edge, and the fire represents some idea, opinion, or piece of knowledge.

Hypergraph burning has the potential to be an even more comprehensive model for the spread

of information, as information does not only spread between close friends. Hyperedges may

represent any large group of people who may not all have direct communication with one

another, but nonetheless spread information to other members of the group. In particular,

hyperedges can represent friend groups on social media.

In order to make the added complication of hyperedges worthwhile, the rule for how the

fire spreads within a hyperedge should represent the spread of information among members

of a large group as “realistically” as possible. The original propagation rule may not always

be the most realistic in this sense. Hence, we introduce two new propagation rules that are

more conducive to the way information spreads within groups in the real world.

4.1 A Propagation Rule that Uses Proportions

Consider the following propagation rule: For some fixed proportion p ∈ (0, 1), if dp|e|e or

more vertices are on fire in an edge e, then in the next round all unburned vertices in e

catch fire. Instead of writing b(H) and bL(H), when using this propagation rule we will

write bp(H) and bL,p(H) respectively. For the entirety of Section 4.1 we will assume that

we are using this propagation rule, unless it is otherwise stated. Recall that this is indeed

a different process from the degree-proportional bootstrap percolation process discussed in

Section 1.5.1.

73

Notice that under this propagation rule, if the proportion p is high enough, there may

be edges in the hypergraph that cannot possibly cause fire to spread. These edges are the

subject of our first few results on this propagation rule.

Remark 4.1.1. Let p ∈ (0, 1), H be a hypergraph, and e ∈ E(H). If dp|e|e = |e| then e

cannot cause fire to propagate among its vertices.

Definition 4.1.2. Let p ∈ (0, 1), H be a hypergraph, and e ∈ E(H). If dp|e|e = |e| then e

is non-flammable. Otherwise, e is flammable.

Lemma 4.1.3. An edge e is non-flammable if and only if |e| < 1
1−p .

Proof. Observe that dp|e|e = |e| if and only if |e| − p|e| < 1. Keeping in mind that 1 − p is

positive, we can simplify to obtain |e| < 1
1−p .

Lemma 4.1.4. Let p ∈ (0, 1), H be a hypergraph, and e1, e2, . . . , ek be all of the non-

flammable edges in H (for this value of p). Let H ′ be the hypergraph with vertex set V (H)

and edge set E(H) \ {e1, e2, . . . , ek}. Then bp(H) = bp(H
′) and bL,p(H) = bL,p(H

′).

Proof. Non-flammable edges have no effect on the burning game. Thus, in the context of

the burning game, H and H ′ behave identically.

Remark 4.1.5. Let p ∈ (0, 1). If every edge in H is non-flammable (for this value of p),

then bL,p(H) = bp(H) = |V (H)|.

Of course, in a finite hypergraph we can always choose p close enough to 1 such that

every edge is non-flammable.

Lemma 4.1.6. Let p ∈ (0, 1
2
] and H be a hypergraph. Then the only non-flammable edges

in H are singleton edges.

Proof. Since p ≤ 1
2

we can calculate 1
1−p ≤ 2. Now, for this value of p, an edge e is non-

flammable if and only if |e| < 1
1−p ≤ 2, that is, if |e| < 2. Hence, all non-flammable edges e

must have |e| = 1.

Lemma 4.1.7. Let H be a connected hypergraph. Then there exists p ∈ (0, 1) such that

bL,p(H) = 1.

Proof. Choose p small enough such that p|e| < 1 for all e ∈ E(H). Then for any edge e,

dp|e|e = 1, so one vertex on fire in any edge will cause the rest of the edge to catch fire.

Since H is connected, a single vertex on fire in H will cause the whole hypergraph to burn

through subsequent propagation. So bL,p(H) = 1.

74

Theorem 4.1.8. Let H be a connected hypergraph and p ∈ (0, 1). Then

min {dp|e|e | e ∈ E(H)} ≤ bL,p(H).

Proof. Suppose a lazy burning set for H contains strictly less than min {dp|e|e | e ∈ E(H)}
vertices. Then, for every edge e in H, strictly less than dp|e|e vertices in e are on fire once

the lazy burning set is burned. Hence, no fire will propagate, so in fact this is not a lazy

burning set for H. Therefore, any lazy burning set (including a minimum lazy burning set)

must contain at least min {dp|e|e | e ∈ E(H)} vertices.

The bound in Theorem 4.1.8 is tight for all p ∈ (0, 1) – simply consider a hypergraph

consisting of a single edge that contains all of its vertices. A less trivial example that exhibits

tightness when p = 1
2

can be seen in Figure 4.1 on page 76.

Our next major result is a tight upper bound on the lazy burning number of a hypergraph

when using a proportion of the form p = 1
n
, see Theorem 4.1.10. The following result is used

in its proof.

Lemma 4.1.9. If a and b are real numbers, then dae+ bbc ≤ da+ be.

Proof. Fix a ∈ R, and first consider the case where b is an integer. Then dae + bbc =

dae+ b = da+ be. Now, assume b is not an integer, and write b′ = bbc. Since b′ ≤ b, we have

da+ b′e ≤ da+ be. Now, dae+ bbc = dae+ b′ = da+ b′e ≤ da+ be.

Theorem 4.1.10. Let H be a connected hypergraph and n ∈ N. Then bL,1/n(H) ≤
⌈
|V (H)|
n

⌉
.

Proof. We use induction on |E(H)|, assuming singleton edges are not allowed. The bound

in this theorem will still be valid for hypergraphs containing singleton edges, as they have

no effect on the burning game.

Base Case. If |E(H)| = 1 then H consists of a single edge e containing all of V (H). Thus,

bL,1/n(H) =
⌈
|e|
n

⌉
=
⌈
|V (H)|
n

⌉
.

Inductive Hypothesis. Suppose that for some k ∈ N, every connected hypergraph H with

|E(H)| = k satisfies the bound bL,1/n(H) ≤
⌈
|V (H)|
n

⌉
.

Inductive Step. Let G be a connected hypergraph with k+ 1 edges. Observe that, since G is

connected, there must exist some edge e ∈ E(G) such that (V (G), E(G) \ {e}) is connected,

except for possibly some isolated vertices (degree-one vertices in e would become isolated

vertices in (V (G), E(G) \ {e})). Choose any such e ∈ E(G), and write e = {u1, . . . , ux} ∪
{v1, . . . , vy} where each ui is a vertex of degree greater than one in e, and each vj is a

75

degree-one vertex in e. Since G is connected, e must contain at least one vertex of degree

greater than one, so x ≥ 1. Also, clearly y ≥ 0. Now, define H as the hypergraph with

V (H) = V (G) \ {v1, . . . , vy} and E(H) = E(G) \ {e}. Then H is a connected hypergraph

with k edges, so bL,1/n(H) ≤
⌈
|V (H)|
n

⌉
=
⌈
|V (G)|−y

n

⌉
. Let S be a minimum lazy burning set in

H, so |S| ≤
⌈
|V (G)|−y

n

⌉
.

Now, we claim S ′ = S ∪ {v1, . . . , vby/nc} is a lazy burning set for G. All of V (G) \
{v1, . . . , vy} will catch fire because S ⊆ S ′. In particular, u1, . . . , ux, v1, . . . , and vby/nc will

all eventually be on fire either due to propagation or because they were included in S ′. We

now show that the rest of e will catch fire. In particular, we must show that x+
⌊
y
n

⌋
≥
⌈
|e|
n

⌉
,

since x+
⌊
y
n

⌋
vertices are sure to be on fire in e. In our calculations, we will use the well-known

identities
⌊
a
b

⌋
=
⌈
a+1
b

⌉
− 1 and dce+ a = dc+ ae for any a, b ∈ N and c ∈ R.

First, observe 1 ≤ x =⇒ (n−1) ≤ x(n−1) =⇒ 0 ≤ x(n−1)+1−n =⇒ 0 ≤ (n−1)x+1−n
n

,

which will be used in the final line of the calculations below. Now,

x+
⌊y
n

⌋
= x+

⌈
y + 1

n

⌉
− 1

=

⌈
x+

y + 1

n
− 1

⌉
=

⌈
nx+ y + 1− n

n

⌉
=

⌈
x+ y

n
+

(n− 1)x+ 1− n
n

⌉
=

⌈
|e|
n

+
(n− 1)x+ 1− n

n

⌉
≥
⌈
|e|
n

⌉
.

Therefore e will cause fire to spread to each of the vertices vby/nc+1, . . . , vy. This will

leave G completely burned, so S ′ is a lazy burning set for G. Now, using Lemma 4.1.9, we

calculate bL,1/n(G) ≤ |S ′| = |S|+
⌊
y
n

⌋
≤
⌈
|V (G)|−y

n

⌉
+
⌊
y
n

⌋
≤
⌈
|V (G)|
n

⌉
.

The bounds in Theorems 4.1.8 and 4.1.10 can both be tight simultaneously when p = 1
n

for any n ∈ N – consider a connected hypergraph consisting of one edge that contains all

of its vertices. For additional examples with p = 1
2
, see Figures 4.1 and 4.2. Are there any

nontrivial examples where the bounds in Theorem 4.1.8 (with p = 1
n
) and Theorem 4.1.10

are tight for n > 2? We leave this as an open question.

76

The hypergraph H1 in Figure 4.1 has bL,1/2(H1) = 3 = min
{⌈
|e|
2

⌉
| e ∈ E(H1)

}
. A

minimum lazy burning set is {x, y, z}. Hence, the bound in Theorem 4.1.8 is tight when

p = 1
2
. Indeed, this example can be extended to an infinite family of hypergraphs which

exhibit the tightness of this bound when p = 1
2
. Fix t ∈ N, let e1 contain t+ 1 vertices, and

let the remaining edges e2, e3, . . . , em all contain 2t vertices each. Let one vertex in e1 have

degree one, and let the other t vertices also belong to e2. Let the t vertices in e2 \ e1 also

belong to e3. Let the t vertices in e3 \ e2 also belong to e4, and so on. Finally, em ∩ em−1
will contain t vertices, and em will contain t vertices of degree one. In such a hypergraph, a

minimum lazy burning set consists of any
⌈
|e1|
2

⌉
vertices in e1. This shows the tightness of

the bound in Theorem 4.1.8 (when p = 1
2
), since e1 is the smallest edge in the hypergraph.

zy

x

e1

e2

e3

H1

Figure 4.1: An example that shows the bound in Theorem 4.1.8 is tight when p = 1
2
.

The hypergraph H2 in Figure 4.2 has bL,1/2(H2) = 5 =
⌈
|V (H2)|

2

⌉
, and a minimum lazy

burning set is {p, q, r, s, t}. Hence, the bound in Theorem 4.1.10 is tight. Again, this example

can be extended to an infinite family of hypergraphs which exhibit tightness when p = 1
2
. To

construct such a hypergraph H, fix an odd number t > 1, and let |V (H)| = 2t. Let E(H)

contain disjoint edges e1 and e3 each of size t, and add an edge e2 which intersects e1 and e3 in

exactly one vertex each. Then, a minimum lazy burning set for H consists of any
⌈
t
2

⌉
vertices

in e1, and any
⌊
t
2

⌋
degree-one vertices in e3, for a total of

⌈
t
2

⌉
+
⌊
t
2

⌋
= t = |V (H)|

2
=
⌈
|V (H)|

2

⌉
vertices. This shows the tightness of the bound in Theorem 4.1.10 when p = 1

2
.

qp

r

s t

e1

e2

e3

H2

Figure 4.2: An example that shows the bound in Theorem 4.1.10 is tight when p = 1
2
.

Of course, it is desirable to extend the result in Theorem 4.1.10 to proportions not just

of the form 1
n
. Hence, we have the following two conjectures.

77

Conjecture 4.1.11. Let H be a connected hypergraph and p ∈ (0, 1)∩Q such that H contains

no non-flammable edges. Then bL,p(H) ≤ dp|V (H)|e.

Conjecture 4.1.12. Let H be a connected hypergraph and p ∈ (0, 1) such that H contains

no non-flammable edges. Then bL,p(H) ≤ dp|V (H)|e.

Note that Conjecture 4.1.11 would imply Conjecture 4.1.12. If we are given p ∈ (0, 1)\Q,

then we can simply choose p′ ∈ (0, 1) ∩ Q close enough to p such that bL,p(H) = bL,p′(H)

and dp|V (H)|e = dp′|V (H)|e, and then apply the bound from Conjecture 4.1.11. Clearly

Conjecture 4.1.12 implies Conjecture 4.1.11, so the statements in the two conjectures are

logically equivalent.

Theorem 4.1.13. Let p, q ∈ (0, 1) and p < q. Then for any hypergraph H, bL,p(H) ≤
bL,q(H) and bp(H) ≤ bq(H).

Proof. Observe that for any edge e, dp|e|e ≤ dq|e|e. Hence, if at least dq|e|e vertices are on

fire in e, then it is also true that at least dp|e|e vertices are on fire in e. Thus, if fire would

propagate within e when using proportion q, it would also propagate within e when using

proportion p. This means that any lazy burning set that is successful when using proportion

q is also successful when using proportion p (if anything the propagation will be faster using

proportion p). Therefore, bL,p(H) ≤ bL,q(H).

Now, let S be an optimal burning sequence for a hypergraph H when using proportion

q. Suppose the arsonist burns H using proportion p by following S. Recall that, when using

proportion p, the propagation may happen faster than when using proportion q. Thus, when

the arsonist tries to burn H using proportion p by following S, it is possible that they will

be prompted to burn a vertex that was already on fire for at least one round, which is not

allowed. When this occurs, the arsonist can simply deviate from S for one round and choose

an arbitrary source instead. Clearly, at the end of any round r, the set of vertices that are

on fire when using proportion q and following S is a subset of the vertices that are on fire

when following this strategy using proportion p. Therefore, the arsonist can burn H using

proportion p in no more than |S| rounds, so bp(H) ≤ |S| = bq(H).

Since hypergraphs are discrete structures, being able to choose any real proportion

p ∈ (0, 1) seems like a redundant amount of accuracy. Given a hypergraph H, there are

uncountably many p that all yield the same value for bp(H), since for any p ∈ (0, 1),

bp(H) ∈ {1, 2, . . . , |V (H)|} (and similarly for bL,p(H)). Moreover, in light of Theorem 4.1.13,

there must surely be “cut-off points” for p. That is, there must be proportions qk ∈ (0, 1)

78

such that if p < qk then bp(H) < k, and if p > qk then bp(H) ≥ k (and similarly for the lazy

version). We therefore introduce the following definition, which gives insight into the range

of possible values for bp(H) and bL,p(H) given a hypergraph H (where p ranges over (0, 1)),

as well as what the aforementioned “cut-off points” are for p when burning H.

Definition 4.1.14. Let H be a hypergraph with |V (H)| = n. The burning distribution of H

is a partition P of (0, 1) into n (possibly empty) intervals P1, P2, . . . , Pn such that bp(H) = k

if and only if p ∈ Pk. The lazy burning distribution is defined analogously, and denoted PL.

As a convention, we will denote the intervals in PL by Q1, Q2, . . . , Qn.

As an easy first example of the (lazy) burning distribution of a family of hypergraphs;

see Theorem 4.1.16, which describes the (lazy) burning distribution of an arbitrary Steiner

triple system. In order to prove Theorem 4.1.16, we need the following result.

Lemma 4.1.15. Let H be a BIBD(v, k, λ) and let p ∈ (0, 1
k
]. Then bL,p(H) = 1 and

bp(H) = 2.

Proof. First we calculate for any edge e, dp|e|e = dpke ≤
⌈
1
k
k
⌉

= 1. Since p > 0, we must

therefore have dp|e|e = 1. Thus, one or more vertices on fire in an edge will cause the entire

edge to catch fire. Moreover, since every pair of vertices appears together in at least one

edge, if one vertex is on fire in H, then in the next time step the entire hypergraph will catch

fire. Hence, any one vertex constitutes a lazy burning set, and in the round-based game only

two rounds are required.

Theorem 4.1.16. Let H be an STS(v). The burning distribution for H contains P2 =
(
0, 1

3

]
,

Pb(H) =
(
1
3
, 2
3

]
, and Pv =

(
2
3
, 1
)
, where all other Pi are empty. The lazy burning distribution

contains Q1 =
(
0, 1

3

]
, QbL(H) =

(
1
3
, 2
3

]
, and Qv =

(
2
3
, 1
)
, where all other Qj are empty.

Proof. If p ∈
(
0, 1

3

]
then bL,p(H) = 1 and bp(H) = 2 by Lemma 4.1.15, so

(
0, 1

3

]
⊆ Q1

and
(
0, 1

3

]
⊆ P2. If p ∈

(
1
3
, 2
3

]
then fire propagates within an edge in a manner identical to

the original propagation rule (i.e. 2 vertices on fire in an edge cause the fire to propagate).

Hence, bL,p(H) = bL(H) and bp(H) = b(H), so
(
1
3
, 2
3

]
⊆ QbL(H) and

(
1
3
, 2
3

]
⊆ Pb(H). Finally,

if p ∈
(
2
3
, 1
)

then every edge is non-flammable, so bL,p(H) = bp(H) = v and therefore(
2
3
, 1
)
⊆ Qv and

(
2
3
, 1
)
⊆ Pv. Since the intervals in the (lazy) burning distribution partition

the interval (0, 1), the above inclusions are in fact equalities, so the result follows.

Lemma 4.1.17. For any n ∈ N, there is a hypergraph H with |V (H)| = n such that every

interval in the lazy burning distribution is nonempty.

79

· · · · · ·u1 u2 u3 u4 un

Figure 4.3: A hypergraph in which every interval in the lazy burning distribution is
nonempty.

Proof. Consider the hypergraph H seen in Figure 4.3, which has V (H) = {u1, . . . , un}
and E(H) =

{
{u1, u2}, {u1, u2, u3}, {u1, u2, u3, u4}, . . . , {u1, u2, . . . , un}

}
. There exists a lazy

burning set of size one if and only if p ∈ (0, 1
2
], so Q1 = (0, 1

2
] (one example of such a lazy

burning set is {u1}). There exists a minimum lazy burning set of size two if and only if

p ∈ (1
2
, 2
3
], so Q2 = (1

2
, 2
3
] (one example of such a lazy burning set is {u1, u2}). In general, for

any k < n, {u1, u2, . . . , uk} is a minimum lazy burning set if and only if p ∈ (k−1
k
, k
k+1

], so

Qk = (k−1
k
, k
k+1

]. Finally, a minimum lazy burning set of size n exists if and only if p > n−1
n

,

since then every edge is non-flammable. Thus, Qn = (n−1
n
, 1).

4.2 A Propagation Rule that Uses Thresholds

Consider the following propagation rule: For some fixed threshold t ∈ N, if t or more vertices

are on fire in an edge e, then in the next round all unburned vertices in e catch fire. Instead

of writing b(H) and bL(H), when using this propagation rule we will write b(t)(H) and b
(t)
L (H)

respectively. For the entirety of Section 4.2 we will assume that we are using this propagation

rule, unless it is otherwise stated. Recall that this is indeed a different process from bootstrap

percolation with an infection threshold, which was discussed in Section 1.5.1.

Burning a hypergraph with such a propagation rule does not reduce to the original game

when played on a 2-uniform hypergraph with t > 1 . However, this propagation rule is

still interesting, since a certain number of distinct vertices define an edge in many types of

designs. For example, this rule with t = 2 is interesting when applied to a BIBD(v, k, 1).

Theorem 4.2.1. If H is a hypergraph with no isolated vertices and t ∈ N then t ≤ b
(t)
L (H) ≤

t|E(H)|.

80

Proof. For the lower bound, clearly if fewer than t vertices are initially set on fire as part of

the lazy burning set, then no fire will spread. Hence, any lazy burning set must be of size

at least t, including a minimum lazy burning set, so t ≤ b
(t)
L (H).

For the upper bound, we can set t vertices on fire in each edge as our lazy burning set.

Notice that because edges overlap, many edges may have more than t vertices on fire (but

this is okay). Since every edge has at least t vertices on fire, it will only take one time step

for H to be fully burned. Since this is an example of a lazy burning set of size t|E(H)|, we

must have b
(t)
L (H) ≤ t|E(H)|.

Both bounds in Theorem 4.2.1 are tight — consider a connected hypergraph consisting

of one edge that contains all of its vertices. Moreover, it seems as though the upper bound

can be improved in the case that H is connected.

Conjecture 4.2.2. If H is a connected hypergraph and t ∈ N then b
(t)
L (H) ≤ |E(H)|(t−1)+1.

One potential argument for a proof of Conjecture 4.2.2 is as follows. Set t− 1 vertices on

fire in each edge as part of the lazy burning set, then choose any edge e. Set an additional

vertex on fire in e (so our lazy burning set contains |E(H)|(t − 1) + 1 vertices). Then all

of e will catch fire in the first time step. In the second time step, if the vertices of the lazy

burning set were chosen carefully, each edge adjacent to e should now contain at least t

burned vertices. Hence, these edges will become completely burned in the second time step.

We then consider each edge adjacent to a completely burned edge and repeat. Since H is

connected, we can continue like this until H is completely burned. Can a rigorous proof of

Conjecture 4.2.2 be established using this argument? We leave this as an open question.

We now turn our attention to burning BIBD(v, k, 1)s using the threshold t = 2. In

particular, we find an upper bound on b
(2)
L (H) where H is a BIBD(v, k, 1) using an argument

very similar to the one used to prove Theorem 3.2.7 (on page 55).

Lemma 4.2.3. When applying Algorithm 1 to a BIBD(v, k, 1), each time the inner loop

finishes, the edges that are completely on fire induce a sub-BIBD(v′, k, 1) with v′ ≤ v (using

the propagation rule where t = 2 vertices on fire in an edge cause the entire edge to catch

fire in the next time step).

Proof. Observe that once the inner loop of Algorithm 1 has finished (within any iteration of

the outer loop), there are only fully burned edges, edges containing a single burned vertex,

and edges containing no burned vertices.

81

Denote the BIBD(v, k, 1) by H. Denote the hypergraph induced by the fully burned

edges of H after the inner loop of Algorithm 1 has finished by G. Since H is a BIBD(v, k, 1),

no two vertices of G appear together in more than one edge of G. We must show that every

pair of vertices in G appear together in some edge of G.

Let u,w ∈ V (G) and suppose there is no edge in E(G) containing both u and w. Since

H is a BIBD(v, k, 1), there is some edge B ∈ E(H) such that u,w ∈ B. Since B contains

at least two burned vertices, B must in fact be completely burned (recall that every edge

is completely burned, completely unburned, or contains exactly one burned vertex). Hence,

B ∈ E(G), which is a contradiction. Therefore, every pair of vertices in G appears together

in some edge of G. So G is a BIBD.

The following result is known; see [22] for example. We present its proof here for com-

pleteness (also see Figure 4.4 for a visual proof). It is a natural extension of Theorem 3.2.6.

Theorem 4.2.4. If T is a BIBD(v, k, 1) and A is a sub-BIBD(v′, k, 1) of T (with v′ ≤ v)

then |V (T)| ≥ (k − 1)|V (A)|+ 1.

Proof. Consider any z ∈ V (T) \V (A). Each xi ∈ V (A) must appear in an edge of T with z.

In particular, such an edge has the form Bi = {xi, z, yi,1, yi,2, . . . , yi,k−2} where each yi,j is a

vertex in V (T) \V (A). This is because if some yi,j was a vertex in A, then xi and yi,j would

appear together in two different edges of T , one of them being Bi and the other being some

edge in E(A).

Furthermore, any two edges Bi and B` intersect only at z, since if yi,p = y`,q for some

p, q ∈ {1, 2, . . . , k − 2}, then z and yi,p appear together in two edges of T . Hence,

x1, x2, . . . , x|V (A)|, z, y1,1, y1,2, . . . , y1,k−2, y2,1, y2,2, . . . , y2,k−2, . . . , y|V (A)|,1, y|V (A)|,2, . . . , y|V (A)|,k−2

are (k − 1)|V (A)|+ 1 distinct vertices in V (T).

Theorem 4.2.5. If H is a BIBD(v, k, 1) then b
(2)
L (H) ≤

⌊
logk−1(v(k − 2) + 1)

⌋
.

Proof. Consider the worst-case scenario when applying Algorithm 1 to H. By Lemma 4.2.3,

each time the inner loop of the algorithm finishes, a sub-BIBD of H is induced by the fully

burned edges. Hence, the worst-case scenario is that H contains the maximum possible

number of nested sub-BIBDs, and the algorithm chooses vertices as “poorly” as possible

such that each nested sub-BIBD contributes a vertex to the lazy burning set. That is, each

82

A

T

z

x1

x2

x|V (A)|

...

y|V (A)|,k−2

y2,k−2

y1,k−2

...

y1,1

y1,2

y2,1 y2,2

y|V (A)|,1

y|V (A)|,2

|V (A)|

k − 2

···

···

···

Figure 4.4: A visual proof of the bound |V (T)| ≥ (k − 1)|V (A)|+ 1.

time the inner loop finishes, the sub-BIBD that is induced by the burned edges is as small

as possible.

The smallest two nested sub-BIBDs contained in any BIBD(v, k, 1) are the BIBD(1, k, 1)

(a single vertex) and the BIBD(k, k, 1) (a single edge and each vertex within). Write a1 = 1

and a2 = k. By Theorem 4.2.4, the next smallest nested sub-BIBDs are of order a3, a4, a5, . . .

where a` = (k − 1)a`−1 + 1. We must solve for a`.

First, write m = k − 1. Then a` = ma`−1 + 1, and it is easy to see that a2 = m + 1,

a3 = m2 +m+ 1, and in general,

a` = 1 +m+m2 + · · ·+m`−1 =
m` − 1

m− 1
=

(k − 1)` − 1

k − 2
.

Now, the worst-case scenario is that H has nested sub-BIBDs of order 1, k, a3, a4, . . . , a`, v,

where ` is the largest natural number such that v ≥ (k − 1)a` + 1. Thus, including H itself,

H has at most `+ 1 nested sub-BIBDs. Observe that

v ≥ (k − 1)a` + 1 = (k − 1)
(k − 1)` − 1

k − 2
+ 1 =

(k − 1)`+1 − k + 1

k − 2
+ 1.

83

Using this inequality, we solve for `:

(v − 1)(k − 2) + k − 1 ≥ (k − 1)`+1

=⇒ v(k − 2)− k + 2 + k − 1 ≥ (k − 1)`+1

=⇒ v(k − 2) + 1 ≥ (k − 1)`+1

=⇒ logk−1(v(k − 2) + 1) ≥ `+ 1

=⇒
⌊
logk−1(v(k − 2) + 1)− 1

⌋
= `

Therefore, the largest lazy burning set the algorithm could produce for H is of size

`+ 1 =
⌊
logk−1(v(k − 2) + 1)

⌋
. Hence, b

(2)
L (H) ≤

⌊
logk−1(v(k − 2) + 1)

⌋
.

Observe that Theorem 4.2.5 implies Theorem 3.2.7.

Chapter 5

Summary and Future Work

In Section 1.4 we introduced the round-based model for hypergraph burning and the ba-

sic propagation rule for the fire within a hyperedge. We also showed that the “obvious”

propagation rule in which one vertex on fire in a hyperedge causes the whole hyperedge to

catch fire is not interesting, as it is essentially a special case of graph burning. In Section

1.5 we introduced the rules for lazy hypergraph burning, and showed that it is trivial on

graphs but not on hypergraphs. Lazy hypergraph burning is equivalent to a process known

as H-bootstrap percolation, however our results are entirely different from those in the lit-

erature. We also introduced Algorithm 1, which näıvely constructs a lazy burning set for a

hypergraph, and is therefore useful for finding upper bounds on the lazy burning number.

By combining our first few results in Section 2.1, we obtained our first major result

on hypergraph burning, which can be found in Theorem 2.1.13 on page 25. This result

essentially states that, if H is simple and has no isolated vertices (or if a less strict condition

is met; see Theorem 2.1.6), then |V (H)|−|E(H)| ≤ bL(H) < b(H) ≤ α(H)+1. Moreover, all

of these bounds are tight. Another interesting result was Theorem 2.1.17, which essentially

says that bL(H) and b(H) can differ by an arbitrarily large amount. We also showed that

no analogous bound to the Burning Number Conjecture exists in (lazy) hypergraph burning

(i.e. a universal bound on bL(H) or b(H) that is sublinear in terms of |V (H)|), even if we

only consider hypergraphs that are both uniform and linear. We therefore want to know:

what restrictions must we impose on H for such a bound to exist? And what would this

bound be? One possibility is that such a bound exists when we insist that |E(H)| is at least

|V (H)| − 1 (which is always the case in a connected graph).

We now state several miscellaneous open questions which arose from Section 2.1.

• Given an optimal burning sequence S = (x1, x2, . . . , xb(H)), does there always exist a

85

subset of {x1, x2, . . . , xb(H)} that is a minimum lazy burning set? This is certainly true

when H is a graph.

• The complement of H, denoted H, is the hypergraph with V (H) = V (H) such that,

for each subset e of V (H), e is an edge in H if and only if e is not an edge in H. Can

the (lazy) burning number of H be bounded in terms of the (lazy) burning number

of H? One might first investigate the case where H is k-uniform, and we only allow

edges of size k in H.

• Does the “density” of edges in H affect b(H) or bL(H)? What is the best way to

define density for this purpose? (one option is to define density as |E(H)|
|V (H)|). Intuitively,

it makes sense that a hypergraph with a higher density of edges would have a lower

burning number and lazy burning number.

• Does there exist a hypergraph (that is not a path) such that rearranging the order of

an optimal burning sequence results in a non-valid burning sequence? What are the

necessary and sufficient conditions for a hypergraph to have this property?

• A hypergraph is uniquely burnable if it has a unique optimal burning sequence up to

isomorphism. What are the necessary and sufficient conditions for a hypergraph to be

uniquely burnable? We may also ask the analogous question for lazy burning.

• Given n ∈ N, what is the set of all possible burning numbers for hypergraphs of order

n? Is this set an interval? Can we at least determine this for certain families of

hypergraphs?

• Is there an analogous result in hypergraph burning to the Tree Reduction Theorem

from graph burning? And would such a result involve hypertrees (a family of tree-like

hypergraphs)?

• Can we find stronger bounds or even exact values of b(H) and bL(H) for specific

classes of hypergraphs such as projective planes, Kneser hypergraphs, pairwise balanced

designs, and BIBDs with block size greater than three?

We began Section 2.2 by considering a disconnected hypergraph H with connected com-

ponents G1, . . . , Gk, and proved two unsurprising results. The first says that bL(H) is equal

to the sum of all the bL(Gi) (Lemma 2.2.1 on page 32), and the second says that b(H) is

bounded below by the maximum of the b(Gi), and above by the sum of the b(Gi) (Lemma

2.2.2). We still do not know if either bound in Lemma 2.2.2 is tight. In Theorem 2.2.3, we

improved the upper bound from Lemma 2.2.2, assuming that none of the Gi are isolated

86

vertices, and this bound is indeed tight. It seems like the bound from Theorem 2.2.3 also

applies to disconnected hypergraphs with up to one isolated vertex, although a proof for this

eludes us.

In Section 2.3 we investigated taking a strong/weak induced subhypergraph and the

effect this has on the burning and lazy burning numbers. We first proved that taking either a

strong or weak induced subhypergraph can potentially increase the burning and lazy burning

numbers by an arbitrarily large amount (see Lemma 2.3.5 on page 41). However, in the only

example we could find in which taking the weak induced subhypergraph increases the burning

and lazy burning number, the resulting hypergraph contains singleton edges; see Figure 2.13.

Are there examples where this does not happen? That is, can we find a hypergraph H with

weak induced subhypergraph G such that G contains no singleton edges, b(G) > b(H), and

bL(G) > bL(H)? Can these differences be arbitrarily large? We next proved, unsurprisingly,

that if G1 is a strong subhypergraph of H, G2 is a weak subhypergraph of H, and G1

and G2 are induced by the same set of vertices, then G1 is “harder” to burn than G2 i.e.

bL(G2) ≤ bL(G1) and b(G2) ≤ b(G1). We also found sufficient conditions for which taking the

weak induced subhypergraph will not increase the lazy burning number (Theorem 2.3.3) or

the burning number (Theorem 2.3.4). Finally, we showed by examples that when one takes

a strong subhypergraph, whether it was induced by a set of vertices or not, it is possible that

the burning and lazy burning numbers both increase, and it is also possible that they both

decrease (for a total of four different scenarios); see Figures 2.14, 2.15, and 2.16. We would

also like to determine the necessary and sufficient conditions a hypergraph and its strong

subhypergraph must satisfy in order to behave in these four ways.

In Section 2.4 we introduced Algorithms 2 and 3, which check potential burning se-

quences and potential lazy burning sets respectively. We showed that both algorithms run

in polynomial time with respect to the size of their inputs, and hence that both the round-

based and lazy hypergraph burning problems have complexity in NP. Since graph burning

is NP-complete and is a sub-problem of hypergraph burning, we were able to show that

the round-based model is NP-complete. It is still unknown whether or not lazy hypergraph

burning is NP-complete. One approach could be to prove NP-completeness for a specific

family of hypergraphs (although using 2-uniform hypergraphs for this purpose does not work,

unlike in the round-based case). Since the restriction is a sub-problem of lazy hypergraph

burning, this would prove NP-completeness for the general problem as well. Another ap-

proach could be to prove that a “solution” to lazy hypergraph burning somehow yields a

“solution” to zero-forcing, as zero-forcing is NP-complete [1, 17, 24, 40] (recall that the two

processes share similarities).

87

Our first major result on Steiner triple systems is Lemma 3.2.1 (see page 50), which

essentially describes how the first four rounds of the game proceed assuming the arsonist

never chooses a redundant source. Next, we defined a function h that maps the round

number r to the maximum number of vertices that could possibly be on fire in an arbitrary

STS at the end of round r. Corollary 3.2.3 uses this function to get a lower bound on the

burning number of an STS. Observe Table 3.1, and notice that h grows extremely fast. As

an example, the lemma and table combined tell us that an STS on approximately 30, 000

vertices has burning number at least seven. This either means that very large STSs can have

comparatively small burning numbers, or that the bound from Corollary 3.2.3 is very weak.

Our next significant result combined Algorithm 1 and the concept of nested sub-STSs to

get an upper bound on the lazy burning number of an STS. Of course, it would be nice to

also obtain a lower bound on the lazy burning number of an STS and an upper bound on

the burning number of an STS. For the latter, one approach could be to replicate Theorem

3.2.2 with a function that maps the round number r to the minimum number of vertices

that could possibly be on fire in an STS at the end of round r. We finished Section 3.2 by

showing that for every admissible v ∈ N, there is an STS(v) with lazy burning number three.

In fact, any three vertices not all belonging to an edge form a lazy burning set in these STSs.

Is an analogous statement true for any natural numbers apart from three?

In Section 3.3 we showed that by applying a well-known doubling construction to an STS,

the lazy burning number either stays the same or increases by one; see Theorem 3.3.2 on

page 60. We also determined exactly when doubling an STS will increase the lazy burning

number, although the sufficient conditions in this result do not depend on the parameters

of the hypergraph; see Theorem 3.3.7. Can we find sufficient conditions in terms of the

parameters of the STS that yield the same conclusion as in Theorem 3.3.7? We also showed

that by repeatedly doubling the STS(7), the lazy burning number increases each time, and

hence there exist Steiner triple systems with arbitrary lazy burning number. Is there a

Steiner triple system for which no amount of doubling will change the lazy burning number?

We now state several miscellaneous open questions which arose from Chapter 3.

• Two STSs on the same number of vertices can have different lazy burning numbers.

Is the same true for the burning number? And what is the smallest order where this

happens?

• Certain properties can greatly affect the lazy burning number of an STS. For example,

the lazy burning numbers of all projective triple systems are known; see Corollary

3.3.17. What other properties are relevant to the lazy burning number of an STS?

88

Does being cyclic or resolvable matter? Do these properties also affect the burning

number?

• Our computational results on STSs seem to suggest that all valid burning sequences in

an STS are also optimal. Is there an STS with a valid burning sequence strictly larger

than its burning number?

• The existence of sub-systems in an STS clearly has an impact on its lazy burning

number. Is the same true for the burning number?

The first substantial result in Section 4.1 is a tight lower bound on bL,p(H) for any

proportion p ∈ (0, 1); see Theorem 4.1.8 on page 74. We also found a tight upper bound

on bL,1/n(H); see Theorem 4.1.10. The analogous result is still open for proportions not of

the form 1
n
. Indeed, both the upper and lower bounds can be achieved simultaneously if we

consider the hypergraph consisting of a single edge containing all of its vertices. We also

found examples where only the upper/lower bound is achieved when p = 1
2
. We introduced

the concepts of the burning distribution and lazy burning distribution of a hypergraph, which

describe all the possible values for bp and bL,p as p ranges over (0, 1). It would be interesting

to investigate the burning distribution of BIBDs and other k-uniform hypergraphs. Of

course, our results in this section are mostly about lazy proportion-based burning. Are there

analogous results for the round-based version of the game with this propagation rule?

In Section 4.2 we considered a propagation rule that uses thresholds, and we first found

tight upper and lower bounds on b
(t)
L (H) when H has no isolated vertices; see Theorem 4.2.1

on page 79. However, the only example we could find where these bounds are tight is the

hypergraph consisting of a single edge containing all of its vertices. Again, in this case both

the upper and lower bounds are achieved simultaneously. Are there other examples where

equality in these bounds is achieved, and not at the same time? We also conjecture that the

upper bound can be improved in the case that H is connected; see Conjecture 4.2.2. Using

similar techniques to those used in Chapter 3, we found an upper bound on the lazy burning

number of a BIBD(v, k, 1) using a threshold of 2. Again, most of the results in this section

focus on the lazy version of the game. Are there similar results for the round-based version

of the game?

Perhaps the most promising direction for future research is the study of more alternative

propagation rules. One promising example is a non-deterministic propagation rule. Consider

any edge e and suppose it contains m burned vertices at the end of round r. Then, in round

r + 1, each unburned vertex in e catches fire with probability m
|e| . Of course, when burning

according to this propagation rule in the lazy model, one needs only to burn a single vertex

89

in each connected component. Therefore, the objective of this version of the game would

be to determine the expected number of rounds the lazy burning game will take given a

lazy burning set with one vertex in each connected component, and which of these lazy

burning sets has the lowest expectation. In the round-based version of the game with this

propagation rule, one may not use a pre-determined burning sequence since there is no way

in general to tell if it will be valid due to the element of chance. Again, the objective would

be to determine the expected number of rounds the game will take when playing optimally.

Bibliography

[1] A. Aazami. Hardness Results and Approximation Algorithms for some Problems on
Graphs. PhD Thesis, University of Waterloo, 2008.

[2] AIM Minimum Rank-Special Graphs Work Group. Zero Forcing Sets and the Minimum
Rank of Graphs. Linear Algebra Appl. Vol. 428(7) (2008) pp. 1628–1648.

[3] N. Alon. Transmitting in the n-Dimensional Cube. Discrete Applied Mathematics Vol.
37–38 (1992) pp. 9–11.

[4] M. Bahmanian, M. Šajna. Connection and Separation in Hypergraphs. Theory and
Applications of Graphs Vol. 2 Iss. 2 Art. 5 (2015).

[5] J. Balogh, B. Bollobás, R. Morris, O. Riordan. Linear Algebra and Bootstrap Percola-
tion. Journal of Combinatorial Theory Series A Vol. 119 (2012) pp. 1328–1335.

[6] F. Barioli, W. Barrett, S. Fallat, H. Hall, L. Hogben, B. Shader, P. van den Driessche, H.
van der Holst. Zero Forcing Parameters and Minimum Rank Problems. Linear Algebra
Appl. Vol. 433(2) (2010) pp. 401–411.

[7] F. Barioli, W. Barrett, S. Fallat, H. Hall, L. Hogben, B. Shader, P. van den Driessche, H.
van der Holst. Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity
of a Graph. J. Graph Theory Vol. 72(2) (2013) pp. 146–177.

[8] P. Bastide, M. Bonamy, A. Bonato, P. Charbit, S. Kamali, T. Pierron, M. Rabie.
Improved Pyrotechnics: Closer to the Burning Number Conjecture. arXiv:2110.10530v2
(2022).

[9] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, E. Roshanbin. Burning a Graph is
Hard. Discrete Applied Mathematics Vol. 232 (2017) pp. 73–87.

[10] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, E. Roshanbin. Bounds on the Burning
Number. Discrete Applied Mathematics Vol. 235 (2018) pp. 16–22.

[11] B. Bollobás. Weakly k-Saturated Graphs. Beiträge zur Graphentheorie (Kolloquium,
Manebach, 1967) Vol. 25 (1968) pp. 25-31.

[12] A. Bonato. A Survey of Graph Burning. Contributions to Discrete Mathematics Vol. 16
No. 1 (2021) pp. 185–197.

91

[13] A. Bonato, J. Janssen, E. Roshanbin. Burning a Graph as a Model of Social Contagion.
Proceedings of WAW (2014) pp. 13–22.

[14] A. Bonato, J. Janssen, E. Roshanbin. How to Burn a Graph. Internet Mathematics 1–2
(2016) pp. 85–100.

[15] A. Bonato and T. Lidbetter. Bounds on the Burning Numbers of Spiders and Path-
Forests. Theoretical Computer Science Vol. 794 (2019) pp. 12-19.

[16] A. Bretto. Hypergraph Theory: An Introduction. Springer (2013).

[17] B. Brimkov, I. Hicks. Complexity and Computation of Connected Zero Forcing. Discrete
Applied Mathematics Vol. 229 (2017) pp. 31–45.

[18] C. Colbourn and J. Dinitz. Handbook of Combinatorial Designs 2nd ed. Chapman &
Hall/CRC (2007).

[19] C. Colbourn and A. Rosa. Triple Systems. Clarendon, Oxford University Press (1999).

[20] S. Das, S. Dev, A. Sudhukhan, U. Sahoo, S. Sen. Burning Spiders. Algorithms and
Discrete Applied Mathematics Vol. 10743 (2018) pp. 155-163.

[21] M. Dewar, D. Pike, J. Proos. Connectivity in Hypergraphs. Canadian Mathematical
Bulletin Vol. 61 (2) (2018) pp. 252–271.

[22] J. Dinitz and D. Stinson. Contemporary Design Theory: A Collection of Surveys. Wiley
(1992).

[23] J. Doyen. Sur la structure de certaines systèmes triples de Steiner. Mathematische
Zeitschrift Vol. 111 (1969) pp. 289–300.

[24] S. Fallat, K. Meagher, B. Yang. On the Complexity of the Positive Semidefinite Zero
Forcing Number. Linear Algebra and its Applications Vol. 491 (2016) pp. 101–122.

[25] F. Garbe, R. Mycroft, A. McDowell. Contagious Sets in a Degree-Proportional Boot-
strap Percolation Process. Random Structures and Algorithms Vol. 53 Iss. 4 (2018) pp.
638-651.

[26] I. Hartarsky. U-Bootstrap Percolation: Critical Probability, Exponential Decay and
Applications. Annales de l’Institut Henri Poincairé Probabilités et Statistiques Vol. 57
(2021) No. 3 pp. 1255–1280.

[27] L. Huang, G. Chang, H. Yeh. On Minimum Rank and Zero Forcing Sets of a Graph.
Linear Algebra Appl. Vol. 432(11) (2010) pp. 2961-2973.

[28] S. Janson, T. Luczak, T. Turova, T. Vallier. Bootstrap Percolation on the Random
Graph Gn,p. The Annals of Applied Probability Vol. 22 No. 5 (2012) pp. 1989–2047.

[29] M. Kang, C. Koch, T. Makai. Bootstrap Percolation in Random k-Uniform Hyper-
graphs. Electronic Notes in Discrete Mathematics, Elsevier (2015).

92

[30] T. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematical Jour-
nal Vol. 2 (1847) pp. 191-204.

[31] H. Liu, X. Hu, X. Hu. Burning Number of Caterpillars. Discrete Applied Mathematics
Vol. 284 (2020) pp. 332-340.

[32] R. Mathon, K. Phelps, A. Rosa. Small Steiner Triple Systems and their Properties. Ars
Combinatoria Vol. 15 (1983) pp. 3–110 (and errata: Vol. 16 (1983) pp. 286).

[33] N. Morrison, J. Noel. A Sharp Threshold for Bootstrap Percolation in a Random Hy-
pergraph. Electronic Journal of Probability Vol. 26 Art. 97 (2021) pp. 1–85.

[34] N. Morrison, J. Noel. Extremal Bounds for Bootstrap Percolation in the Hypercube.
Journal of Combinatorial Theory Series A Vol. 156 (2018) pp. 61–84.

[35] S. Norin and J. Turcotte. The Burning Number Conjecture Holds Asymptotically.
arXiv:2207.04035v1 (2022).

[36] The On-Line Encyclopedia of Integer Sequences. https://oeis.org

[37] J. Singer. A Theorem in Finite Projective Geometry and Some Applications to Number
Theory. Transactions of the American Mathematical Society Vol. 43 No. 3 (1938) pp.
377–385.

[38] D. Stinson. Combinatorial Designs: Constructions and Analysis. Springer (2004).

[39] D. West. Introduction to Graph Theory 2nd ed. Pearson (2001).

[40] B. Yang. Fast-Mixed Searching and Related Problems on Graphs. Theoretical Computer
Science Vol. 507 (2013) pp. 100–113.

Appendix A

Source Code

A.1 Main Routine

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include <limits.h>

#include "thesis_header.h"

int main(){

time_t start_time;

start_time = time(NULL);

//the non-cyclic STS(13)

int v=13;

int B=26;

int size=3*B;

int *Blocks;

if((Blocks = (int*) malloc(3*B*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int array[]={1,2,7,1,3,6,1,4,8,1,5,9,1,10,12,1,11,13,2,3,8,2,

4,5,2,6,10,2,9,11,2,12,13,3,4,7,3,5,13,3,9,10,3,

94

11,12,4,6,13,4,9,12,4,10,11,5,6,11,5,7,10,5,8,12,

6,7,12,6,8,9,7,8,11,7,9,13,8,10,13};

int x;

printf("Blocks of the non-cyclic STS(13) are:\n\n");

fflush(stdout);

for(x=0;x<size;x++){

Blocks[x]=array[x];

printf("%d ",Blocks[x]);

fflush(stdout);

if(x%3==2){

printf("\n");

fflush(stdout);

}

}

printf("\n");

fflush(stdout);

/*

//a cyclic STS(21)

int v=21;

int B=84;

int *Blocks;

if((Blocks = (int*) malloc(3*B*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int x;

int first=1; //first base block is {1,2,6}

int second=2;

int third=6;

for(x=0;x<21;x++){

95

Blocks[3*x]=first;

Blocks[3*x+1]=second;

Blocks[3*x+2]=third;

printf("Block %d: {%d,%d,%d}\n",x+1,first,second,third);

first++;

if(first>v)

first-=v; //we dont use % here because we are writing our

//points as 1,2,...,v, NOT as 0,1,...,v-1.

second++;

if(second>v)

second-=v;

third++;

if(third>v)

third-=v;

}

first=1; //second base block is {1,3,11}

second=3;

third=11;

for(x=21;x<42;x++){

Blocks[3*x]=first;

Blocks[3*x+1]=second;

Blocks[3*x+2]=third;

printf("Block %d: {%d,%d,%d}\n",x+1,first,second,third);

first++;

if(first>v)

first-=v; //we dont use % here because we are writing our

//points as 1,2,...,v, NOT as 0,1,...,v-1.

second++;

if(second>v)

96

second-=v;

third++;

if(third>v)

third-=v;

}

first=1; //third base block is {1,4,16}

second=4;

third=16;

for(x=42;x<63;x++){

Blocks[3*x]=first;

Blocks[3*x+1]=second;

Blocks[3*x+2]=third;

printf("Block %d: {%d,%d,%d}\n",x+1,first,second,third);

first++;

if(first>v)

first-=v; //we dont use % here because we are writing our

//points as 1,2,...,v, NOT as 0,1,...,v-1.

second++;

if(second>v)

second-=v;

third++;

if(third>v)

third-=v;

}

first=1; //fourth base block is {1,8,15}

second=8;

third=15;

for(x=63;x<84;x++){

Blocks[3*x]=first;

97

Blocks[3*x+1]=second;

Blocks[3*x+2]=third;

printf("Block %d: {%d,%d,%d}\n",x+1,first,second,third);

first++;

if(first>v)

first-=v; //we dont use % here because we are writing our

//points as 1,2,...,v, NOT as 0,1,...,v-1.

second++;

if(second>v)

second-=v;

third++;

if(third>v)

third-=v;

}

printf("\n");

fflush(stdout);

*/

char *general_adj_matrix; //only used in "general" and

//"fast" version of functions

if((general_adj_matrix = (char*) malloc(v*B*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0;x<v*B;x++)

general_adj_matrix[x]=0;

convert_STS_to_general_adj_matrix(v, B, Blocks, general_adj_matrix);

//

//STS_burning_number(v, Blocks, B);

//general_burning_number(v, B, general_adj_matrix);

98

fast_burning_number(v, B, general_adj_matrix);

//

//STS_lazy_burning_number(v, Blocks, B);

general_lazy_burning_number(v, B, general_adj_matrix);

//fast_lazy_burning_number(v, B, general_adj_matrix);

time_t elapsed_time;

elapsed_time = time(NULL) - start_time;

printf("\nelapsed time: %ld \n", elapsed_time);

return 0;

}

A.2 Subroutines

void STS_make_adj_matrix(int v, int *Blocks, int B, int *adj_matrix);

int STS_adj_matrix_what_is(int *A, int v, int i, int j);

void STS_adj_matrix_set_bit(int *A, int v, int i, int j, int value);

void STS_burning_number(int v, int *Blocks, int B); //finds the burning # of an STS

void STS_arsonist_move(int v, int *STS_adj_matrix, int round_count, int *burning_seq, int fire_size,

char *on_fire, int *burning_num_tally);

void STS_spread_fire(int v, int *STS_adj_matrix, int round_count, int *burning_seq, int fire_size,

char *on_fire, int *burning_num_tally);

void STS_lazy_burning_number(int v, int *Blocks, int B); //finds the lazy burning # of an STS

void STS_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v,

int *STS_adj_matrix, int *t_count, int *s_count);

int STS_lazily_burn(int *LBS, int size_of_LBS, int v, int *STS_adj_matrix, char *on_fire);

void convert_STS_to_general_adj_matrix(int v, int B, int *blocks, char *general_adj_matrix);

char general_adj_matrix_what_is(int v, int B, char *adj_martrix, int i, int j);

void general_adj_matrix_set_bit(int v, int B, char *adj_matrix, int i, int j, char x);

void general_burning_number(int v, int B, char *adj_matrix);//finds burning # of an arbitrary hypergraph

void general_arsonist_move(int v, int B, char *adj_matrix, int round_count, int *burn_seq,

int fire_size, char *on_fire, int *burn_num_tally);

void general_spread_fire(int v, int B, char *adj_matrix, int round_count, int *burning_seq,

int fire_size, char *on_fire, int *burning_num_tally);

void general_lazy_burning_number(int v, int B, char *adj_matrix);//finds lazy burning # of an arbitrary hypergraph

void general_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v, int B,

char *adj_matrix, int *t_count, int *s_count);

int general_lazily_burn(int *LBS, int size_of_LBS, int v, int B, char *adj_matrix, char *on_fire);

void convert_blocks_to_adj_matrix(int v, int B, int zero_or_one, int total_size_of_blocks,

int *blocks, char *general_adj_matrix);

void print_adj_matrix(int v, int B, char *adj_matrix);

99

void double_STS(int v, int *Blocks, int B, int *new_blocks, int new_v, int new_B);

void fast_lazy_burning_number(int v, int B, char *adj_matrix); //always faster than general_lazy_burning_number()

int fast_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v, int B,

char *adj_matrix);

void fast_burning_number(int v, int B, char *adj_matrix); //NOT always faster than general_burning_number()

int fast_build_burning_seq(int *SEQ, int current_size, int desired_size, int v, int B,

char *adj_matrix);

int fast_test_burn_seq(int *SEQ, int seq_length, int v, int B, char *adj_matrix);

void STS_make_adj_matrix(int v, int *Blocks, int B, int *adj_matrix){

//assumes inputs v, Blocks, and B are all valid

//input: an STS(v) and a matrix of size ((v*v)-v)/2 initialized to all 0’s (adj_matrix)

//output: fills adj_matrix with info. If {x,y,z} is a block then the entry at row x

//column y of adj_matrix is z, row x col z is y, etc.

int x,y,z;

int first, second, third; //hold the values of the corresponding entries in a block

for(x=0; x<3*B; x+=3){ //x is the index of the first entry of each block

first = Blocks[x];

second = Blocks[x+1];

third = Blocks[x+2];

STS_adj_matrix_set_bit(adj_matrix, v, first, second, third);

STS_adj_matrix_set_bit(adj_matrix, v, first, third, second);

STS_adj_matrix_set_bit(adj_matrix, v, second, third, first);

}

/* printf("\nadjacency matrix of the STS(%d) is:\n", v);

fflush(stdout);

for(x=1;x<=v;x++){ //printing adj matrix will work nicely for any v<=9999

printf("\n");

fflush(stdout);

for(y=1;y<=v;y++){

if(x==y){

printf("%d ", 0);

fflush(stdout);

}

else{

z=STS_adj_matrix_what_is(adj_matrix, v, x, y);

if(z<10){

printf("%d ", z);

100

fflush(stdout);

}

else if(z<100){

printf("%d ", z);

fflush(stdout);

}

else{

printf("%d ", z);

fflush(stdout);

}

}//end else

}

}

printf("\n\n");

fflush(stdout);

*/

}

int STS_adj_matrix_what_is(int *A, int v, int i, int j){

//returns entry at row i column j of the adjacency matrix representing our STS(v)

if(i<1 || i>v || j<1 || j>v || i==j){

printf("error, see line %d", __LINE__);

exit(1);

}

if(i > j)

return STS_adj_matrix_what_is(A, v, j, i);

else

return A[(i-1)*v - (i*(i-1))/2 + (j-i) - 1];

}

void STS_adj_matrix_set_bit(int *A, int v, int i, int j, int value){

//sets row i column j of adjacency matrix representing our STS(v) to value

if(i<1 || i>v || j<1 || j>v || i==j|| value<1 || value>v){ //entries in the blocks of our

printf("error, see line %d", __LINE__); //STS(v) are in {1,2,...,v}

exit(1);

}

if(i > j)

STS_adj_matrix_set_bit(A, v, j, i, value);

101

else

A[(i-1)*v - (i*(i-1))/2 + (j-i) - 1] = value;

}

void STS_burning_number(int v, int *Blocks, int B){

//input: an STS(v). B=# of blocks. Blocks is an array of 3B integers, each ranging from 1 to v.

//output: a list of all possible burning times as well as the longest and shortest times

// i.e. the burning #

int x,y,z;

int p=v%6;

//int q=sizeof(Blocks)/sizeof(Blocks[0]); //q is length of array Blocks

//printf("%d",q); //for some reason this didnt work

//add || q!=3*B to the below if

if(v<1 || p==0 || p==2 || p==4 || p==5){

printf("\n invalid input, see line %d\n", __LINE__);

exit(1);

}

int *adj_matrix;

int size_adj_matrix=((v*v)-v)/2; //doesnt need to be of size v*v since it is symmetrical

//and the diagonal is all 0’s

if((adj_matrix = (int*) malloc(size_adj_matrix*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<size_adj_matrix; x++)

adj_matrix[x]=0;

STS_make_adj_matrix(v, Blocks, B, adj_matrix);

char *on_fire; //keeps track of which vertices are currently burned...

//burned_vertices[x-1]=1 iff vertex x is burned, =0 otherwise

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int *burn_seq;//lists the vertices of the hypergraph in the order that the player wishes to burn them

if((burn_seq = (int*) malloc(v*sizeof(int)))==NULL){//a burning sequence can be no longer than v

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int *burn_num_tally;

if((burn_num_tally = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

102

exit(1);

}

for(x=0;x<v;x++){

on_fire[x]=0;

burn_seq[x]=0;

burn_num_tally[x]=0;

}

int round_count=0;

int fire_size=0;

STS_arsonist_move(v, adj_matrix, round_count, burn_seq, fire_size, on_fire, burn_num_tally);

printf("\n");

fflush(stdout);

printf("\nNote: we only consider those burning sequences in which");

printf("\nredundant sources are avoided until possibly the last round.\n");

printf("Also, sequences that differ only in the final redundant");

printf("\nsource are counted seperately.\n\n");

fflush(stdout);

for(x=0;x<v;x++){

printf("there were %d burning sequences of length %d\n", burn_num_tally[x], x+1);

fflush(stdout);

}

}

void STS_arsonist_move(int v, int *STS_adj_matrix, int round_count, int *burning_seq, int fire_size,

char *on_fire, int *burning_num_tally){

//v is the number of points in the STS. STS_adj_matrix holds info about the blocks of the STS

//and allows for faster look-ups than just using the blocks themselves. round_count is the

//number of moves the arsonist has made so far i.e. the current length of the burning sequence.

//burning_seq is an array of length v that holds the burning sequence, x_1,x_2,... where each

//x_i is a vertex of the hypergraph i.e. an element of {1,2,..., v}. if currently the burning

//sequence is of length k, then x_{k+1}=0. fire_size is the number of vertices that are currently

//burning. on_fire is an array of length v where the jth entry is a 1 if point j is currently

//on fire, 0 otherwise. burning_num_tally records the # of valid burning sequences of length k

//in position k-1 of the array.

int x;

int arsonist_point=0; //delclared in each iteration of this function

while(arsonist_point<v){ //arsonist can choose points 1,2,..., or v

arsonist_point++;

if(on_fire[arsonist_point-1]==0){ //arsonist cannot choose a vertex that is already on fire

103

on_fire[arsonist_point-1]=1; //arsonist sets this point on fire as their move this round

round_count++;

//potentially add in something here that skips over testing any

//seqs that are longer than the current shortest known seq

burning_seq[round_count-1]=arsonist_point; //this point gets added to the burning sequence

fire_size++; //asonist burned 1 unburned vertex so the fire size increased by 1

if(fire_size<v) //if the hypergraph is not yet fully burned

STS_spread_fire(v, STS_adj_matrix, round_count, burning_seq, fire_size, on_fire,

burning_num_tally);

else{ //the hypergraph is fully burned... and the vertex just chosen was the last unburned

//vertex! So the arsonist did NOT choose a redundant source as the last source

burning_num_tally[round_count-1]++;

if(burning_num_tally[round_count-1]==1){ //if this is the first burning sequence

//discovered of this length

printf("first discovered burning sequence of length %d is:\n", round_count);

fflush(stdout);

for(x=0;x<round_count;x++){

printf("%d ", burning_seq[x]);

fflush(stdout);

}

printf("\n");

fflush(stdout);

}

}//end else

on_fire[arsonist_point-1]=0; //this function is semi-recursive... it calls STS_spread_fire,

burning_seq[round_count-1]=0; //which calls STS_arsonist_move, etc. in order to go through

fire_size--; //all valid burning sequences. once this iteration of

round_count--; //STS_arsonist_move gets to this point, all of the sequences

//that start with the first (current) round_count entries

} //end if //of the (current) burning_seq will have been tested... so

//change the (current) most recent entry in burning_seq,

}//end while //and test all the ways to finish the sequence.

}

void STS_spread_fire(int v, int *STS_adj_matrix, int round_count, int *burning_seq, int fire_size,

char *on_fire, int *burning_num_tally){

int x,y,z;

char *current_fire_snapshot;

if((current_fire_snapshot = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

104

exit(1);

}

char *newly_burned_vertices;

if((newly_burned_vertices = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++){

current_fire_snapshot[x]=on_fire[x];

newly_burned_vertices[x]=0;

}

for(x=0;x<v-1;x++){

for(y=x+1;y<v;y++){

if(on_fire[x]==1 && on_fire[y]==1){ //must spread fire to vertex z where {x,y,z} is a block

z=STS_adj_matrix_what_is(STS_adj_matrix, v, x+1, y+1);//x & y are in {0,...,v-1} so input x+1 & y+1

//note that a different x,y pair might give us the same z!

if(on_fire[z-1]==0) //z is in {1,2,...,v}, so here input z-1 to on_fire[], NOT z

newly_burned_vertices[z-1]=1; //CANNOT set on_fire[z-1] to 1 here bc then this new

//fire would propogate to other vertices during this loop

}

}

}

for(x=0; x<v; x++){

if(newly_burned_vertices[x]==1){ //dont need && on_fire[x]==0

on_fire[x]=1;//be VERY CAREFUL about when/how we incriment fire_size!!! if one vertex is lit

fire_size++; //on fire dure to its presence in multiple blocksthen we only want to incriment

} //fire_size by 1. for example, {x,y,z} and {u,v,z} where x,y,u,v are all on

//fire... then z gets set on fire due to 2 different blocks, but fire_size

} //only increased by 1

if(fire_size<v) //only continue with arsonists move if the graph is not yet fully burned

STS_arsonist_move(v, STS_adj_matrix, round_count, burning_seq, fire_size, on_fire, burning_num_tally);

else{ //the hypergraph is fully burned after the most recent spread-fire step... remember in

//this case the arsonist should pick a redundant source! but there is no need to call

//arsonist_move() again

if(burning_num_tally[round_count]==0){ //if this is the first burning sequence discovered of length

//round_count+1 (including redundant source at the end)

printf("first discovered burning sequence of length %d is:\n", round_count+1);

fflush(stdout); //NOT round_count (like it used to be in earlier version of code)

for(x=0;x<v;x++){ //could replace v with round_count if we wanted

printf("%d ", burning_seq[x]); //to not print the 0’s at the end of burning_seq.

fflush(stdout); //burning_seq should have round_count many nonzero

} //entries at the start, followed by v-round_count 0’s

printf(" plus any one of the following redundant sources at the end: ");

105

fflush(stdout);

for(x=0;x<v;x++){

if(newly_burned_vertices[x]==1){

printf("%d ", x+1);

fflush(stdout);

}

}

}//end if

for(x=0;x<v;x++){ //we incriment burning_num_tally[round_count] once for each possible redundant

//source at the end, since each of them corresponds to a distinct burning sequence

if(newly_burned_vertices[x]==1)

burning_num_tally[round_count]++;//NOT burning_num_tally[round_count-1] (like

// it used to be in earlier version of code)

} //we incriment burning_num_tally[round_count] by the size of newly_burned_vertices[]

}//end else

free(newly_burned_vertices);

//un-spread the fire. note that we do not have to change

for(x=0; x<v; x++) //fire_size back to the value it started at, since fire_size

on_fire[x]=current_fire_snapshot[x]; //was passed by value into this function i.e. the STS_arsonist_move

//that called this function did not have its version of fire_size

free(current_fire_snapshot); //changed. We DO need to revert the array on_fire[] back to the

//original since it was a pointer to an array i.e. this function

} //altered the same on_fire array that is used in the

//STS_arsonist_move function that called this function.

void STS_lazy_burning_number(int v, int *Blocks, int B){

int t,x; //t_count will hold the # of t-subsets that have been tested. Once we have tested

int *t_count; //them all, we will print t_count[0]... if it isnt v choose t then we know there

int *s_count; //is a mistake in the code! s_count is the # of successful tests i.e. the # of

//lazy burning sets for the STS(v)

if((t_count = (int*) malloc(1*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

t_count[0]=0;

if((s_count = (int*) malloc(1*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

s_count[0]=0;

int *adj_matrix;

int size_adj_matrix=((v*v)-v)/2; //doesnt need to be of size v*v since it is

106

//symmetrical and the diagonal is all 0’s

if((adj_matrix = (int*) malloc(size_adj_matrix*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<size_adj_matrix; x++)

adj_matrix[x]=0;

STS_make_adj_matrix(v, Blocks, B, adj_matrix);

int *LBS; //the lazy burning set. It is of size v. unused entries will be set to 0. ex. if we

//are testing all 4-subsets of v=10 points then the last 6 entries of LBS will be 0.

if((LBS = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++)

LBS[x]=0;

for(t=1; t<=v; t++){ //find all lazy burning sets of size t

STS_build_lazy_burning_sets(LBS, 0, t, v, adj_matrix, t_count, s_count);

printf("\n(%d choose %d) = %d. There are %d lazy burning sets of size %d\n", v, t,

t_count[0], s_count[0], t);

fflush(stdout);

if(s_count[0]!=0){ //we just found the lazy burning number

printf("\nlazy burning number is %d\n", t);

fflush(stdout);

break;

}

t_count[0]=0;

//s_count[0]=0; //only need this if we want to keep testing

//after finding the lazy burning number

for(x=0; x<v; x++)

LBS[x]=0;

}//end for

}

void STS_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v,

int *STS_adj_matrix, int *t_count, int *s_count){

// recursively builds all unordered subsets of {1,2,...,v} of size desired_size

// and calls lazily_burn() for each to see if they are indeed lazy burning sets.

107

//current_size is the # of cells of LBS that have been assigned a nonzero value so far

//remember that entries in the blocks f the sts must range from 1 to v

//t_count is the # of t-subsets of {1,2,...,v}... should be v choose t (where t=desired_size)

//s_count is the # of lazy burning sets of size desired_size for the STS(v)

int x,y,z;

if(current_size==desired_size){//potential lazy burning set is done being built...

//just have to test it with STS_lazily_burn

t_count[0]++;

//int fire_size=desired_size; //dont need to declare fire_size... just plug desired_size

//into STS_lazily_burn

char *on_fire; //on_fire keeps track of which vertices are currently burned...

//on_fire[x-1]=1 iff vertex x is burned, =0 otherwise

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0;x<v;x++)

on_fire[x]=0;

for(x=0;x<desired_size;x++){

y=LBS[x]; //y is in {1,2,...,v}. it is a point that is initially set on fire as part

//of the lazy burning set

on_fire[y-1]=1; //all points in the LBS are on fire initially

}

z=STS_lazily_burn(LBS, desired_size, v, STS_adj_matrix, on_fire);

//note that second last input is fire_size=desired_size

if(z){

s_count[0]++;

if(s_count[0]==1){

printf("\n***** {");

fflush(stdout);

for(x=0;x<desired_size;x++){

if(x==desired_size-1){

printf("%d",LBS[x]);

fflush(stdout);

}

else{

printf("%d,",LBS[x]);

fflush(stdout);

}

108

}//end for

printf("} is the first discovered lazy burning set for the STS(%d) *****\n",v);

fflush(stdout);

}//end if

}//end if

/* else{

printf("{");

fflush(stdout);

for(x=0;x<desired_size;x++){

if(x==desired_size-1){

printf("%d",LBS[x]);

fflush(stdout);

}

else{

printf("%d,",LBS[x]);

fflush(stdout);

}

}//end for

printf("} is NOT a lazy burning set for the STS(%d)\n",v);

fflush(stdout);

}//end else

*/

free(on_fire);

}//end if

else if(current_size==0){

for(x=1; x<=v-(desired_size-current_size)+1; x++){ //dont need to loop all the way up to

//v since t-subsets have elements

LBS[0]=x; //current size is now 1 //listed in increasing order.

STS_build_lazy_burning_sets(LBS, 1, desired_size, v, STS_adj_matrix, t_count, s_count);

}

}

else{ //x starts at LBS[current_size-1]+1 since lazy burning sets must have points

//listed in increasing order

for(x=LBS[current_size-1]+1; x<=v-(desired_size-current_size)+1; x++){

LBS[current_size]=x; //current size has increased by 1

STS_build_lazy_burning_sets(LBS, current_size+1, desired_size, v, STS_adj_matrix,

t_count, s_count);

109

}

}

}

int STS_lazily_burn(int *LBS, int size_of_LBS, int v, int *STS_adj_matrix, char *on_fire){

//returns 1 if LBS was indeed a valid lazy burning set, 0 otherwise.

//only use of LBS and desired_size=size_of_LBS as inputs is to print

//them out when LBS is descovered to indeed be a lazy burning set.

//entry in position i-1 of on_fire is 1 iff point i is on fore, 0 otherwise.

int x,y,z;

int fire_size=size_of_LBS;

char *newly_burned_vertices;

if((newly_burned_vertices = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int was_there_change=1;

while(was_there_change){

was_there_change=0;

for(x=0; x<v; x++)

newly_burned_vertices[x]=0;

for(x=0;x<v-1;x++){

for(y=x+1;y<v;y++){

if(on_fire[x]==1 && on_fire[y]==1){//must spread fire to vertex z where {x,y,z} is a block

z=STS_adj_matrix_what_is(STS_adj_matrix, v, x+1, y+1);//x & y are in {0,1,...,v-1} so input

//x+1 & y+1. note that a different x,y pair might give us the same z!

if(on_fire[z-1]==0){//z is in {1,2,...,v}, so here input z-1 to on_fire[], NOT z

newly_burned_vertices[z-1]=1; //CANNOT set on_fire[z-1] to 1 here bc then this new

was_there_change=1; //fire would propogate to other vertices during this loop

}//end if

}//end if

}//end inner for

}//end outer for

for(x=0; x<v; x++){

if(newly_burned_vertices[x]==1){ //dont need && on_fire[x]==0

on_fire[x]=1;

fire_size++;//be VERY CAREFUL about when/how we incriment fire_size!!! if one vertex

110

} //due to its presence in multiple blocks is lit on fire then we only want

//to incriment fire_size by 1. for example, {x,y,z} and {u,v,z} where

} //x,y,u,v are all on fire... then z gets set on fire due to 2 different

//blocks, but fire_size only increased by 1

if(fire_size==v)

break;

}//end while

free(newly_burned_vertices);

if(fire_size==v)

return 1;

else return 0;

}

void convert_STS_to_general_adj_matrix(int v, int B, int *blocks, char *general_adj_matrix){

//given the blocks of an STS, creates the ‘‘general adjacency matrix’’ used in

//general_burn_hypergraph and stores it in general_adj_matrix. general_adj_matrix

//must already be a B row x v column matrix of all 0’s adj_matrix is a (B row) x (v column)

//matrix where entry at row i, column j is a 1 iff point j is in block i, 0 otherwise

//i.e. rows are blocks, columns are points

int x,y,z;

for(x=0; x<B; x++){ //traverse the blocks

general_adj_matrix_set_bit(v, B, general_adj_matrix, x+1, blocks[3*x], 1);

general_adj_matrix_set_bit(v, B, general_adj_matrix, x+1, blocks[3*x +1], 1);

general_adj_matrix_set_bit(v, B, general_adj_matrix, x+1, blocks[3*x +2], 1);

}

printf("general adjacency matrix of the STS(%d) is:\n\n", v);

fflush(stdout);

for(x=1;x<=B;x++){

for(y=1;y<=v;y++){

printf("%d", general_adj_matrix_what_is(v,B,general_adj_matrix,x,y));

fflush(stdout);

}

printf("\n");

fflush(stdout);

}

printf("\n\n");

fflush(stdout);

111

}

char general_adj_matrix_what_is(int v, int B, char *adj_matrix, int i, int j){

//adj_matrix is a (B row) x (v column) matrix where entry at

//row i, column j is a 1 iff point j is in block i, 0 otherwise

//i.e. rows are blocks, columns are points

if(i<1 || i>B || j<1 || j>v || v<1 || B<1){ //i is the block #, j is the index of the point

printf("error, see line %d", __LINE__);

exit(1);

}

return adj_matrix[(i-1)*v + j - 1];

}

void general_adj_matrix_set_bit(int v, int B, char *adj_matrix, int i, int j, char x){

//adj_matrix is a (B row) x (v column) matrix where entry at

//row i, column j is a 1 iff point j is in block i, 0 otherwise

//i.e. rows are blocks, columns are points

if(i<1 || i>B || j<1 || j>v || v<1 || B<1){ //i is the block #, j is the index of the point

printf("error, see line %d", __LINE__);

exit(1);

}

if(x!=0 && x!=1){

printf("error, see line %d", __LINE__);

exit(1);

}

adj_matrix[(i-1)*v + j - 1]=x;

}

void general_burning_number(int v, int B, char *adj_matrix){

//adj_matrix is a (B row) x (v column) matrix where entry at

//row i, column j is a 1 iff point j is in block i, 0 otherwise

//i.e. rows are blocks, columns are points

int x;

char *on_fire; //keeps track of which vertices are currently burned...

//burned_vertices[x-1]=1 iff vertex x is burned, =0 otherwise

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

112

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int *burn_seq; //lists the vertices of the hypergraph in the

//order that the player wishes to burn them

if((burn_seq = (int*) malloc(v*sizeof(int)))==NULL){//a burning seq. can’t be longer than v

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int *burn_num_tally;

if((burn_num_tally = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0;x<v;x++){

on_fire[x]=0;

burn_seq[x]=0;

burn_num_tally[x]=0;

}

int round_count=0;

int fire_size=0;

general_arsonist_move(v, B, adj_matrix, round_count, burn_seq,

fire_size, on_fire, burn_num_tally);

printf("\n");

fflush(stdout);

//

for(x=0;x<v;x++){

if(burn_num_tally[x]!=0){

printf("b(H) = %d\n", x+1);

fflush(stdout);

break;

}

}

//

//un-comment this for more output!

for(x=0;x<v;x++){

printf("there were %d burning sequences of length %d\n", burn_num_tally[x], x+1);

fflush(stdout);

}

113

}

void general_arsonist_move(int v, int B, char *adj_matrix, int round_count, int *burning_seq,

int fire_size, char *on_fire, int *burning_num_tally){

//v is the number of points in the hypergraph. adj_matrix holds info about the blocks of the

//hypergraph and allows for faster look-ups than just using the blocks themselves. round_count

//is the number of moves the arsonist has made so far i.e. the current length of the burning

//sequence. burning_seq is an array of length v that holds the burning sequence, x_1,x_2,...

//where each x_i is a vetex of the hypergraph. if currently the burning sequence is of length k,

//then x_{k+1}=0. fire_size is the number of vertices that are currently burning. on_fire is an

//array of length v where the jth entry is a 1 if point j is currently on fire, 0 otherwise.

//burning_num_tally records the # of valid burning sequences of length k in position k-1 of

//the array.

int x;

int arsonist_point=0; //delclared in each iteration of this function

while(arsonist_point<v){ //arsonist can choose points 1,2,..., or v

arsonist_point++;

if(on_fire[arsonist_point-1]==0){ //arsonist cannot choose a vertex that is already on fire

on_fire[arsonist_point-1]=1; //arsonist sets this point on fire as their move this round

round_count++;

//potentially add in something here that skips over testing any

//seqs that are longer than the current shortest known seq

burning_seq[round_count-1]=arsonist_point; //this point gets added to the burning sequence

fire_size++; //asonist burned 1 unburned vertex so the fire size increased by 1

if(fire_size<v) //if the hypergraph is not yet fully burned

general_spread_fire(v, B, adj_matrix, round_count, burning_seq, fire_size,

on_fire, burning_num_tally);

else{ //the hypergraph is fully burned... and the vertex

//just chosen was the last unburned vertex!

burning_num_tally[round_count-1]++;

if(burning_num_tally[round_count-1]==1){ //if this is the first burning

//sequence discovered of this length

printf("first discovered burning sequence of length %d is:\n", round_count);

fflush(stdout);

for(x=0;x<round_count;x++){

printf("%d ", burning_seq[x]);

fflush(stdout);

}

114

printf("\nThere were no redundant sources\n");

fflush(stdout);

}

}//end else

on_fire[arsonist_point-1]=0; //this function is semi-recursive... it calls

burning_seq[round_count-1]=0;//general_spread_fire, which calls STS_arsonist_move,

fire_size--; //etc. in order to go through all valid burning

round_count--; //sequences. once this iteration of STS_arsonist_move

//gets to this point, all of the sequences that start

} //end if //with the first (current) round_count entries of the

//(current) burning_seq will have been tested... so

}//end while //change the (current) most recent entry in burning_seq,

//and test all the ways to finish the sequence

}

void general_spread_fire(int v, int B, char *adj_matrix, int round_count, int *burning_seq,

int fire_size, char *on_fire, int *burning_num_tally){

int x,y,z;

int spread_to_x;

char *current_fire_snapshot;

if((current_fire_snapshot = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

char *newly_burned_vertices;

if((newly_burned_vertices = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++){

current_fire_snapshot[x]=on_fire[x];

newly_burned_vertices[x]=0;

}

for(x=1;x<=v;x++){ //check each point x

if(on_fire[x-1]==0){//if x is not yet burned, check if the fire should spread to x this round

for(y=1;y<=B;y++){ //check each block y

//if point x is in block y, then check

if(general_adj_matrix_what_is(v, B, adj_matrix, y, x)){//if fire spreads to point x due to

115

//other burning points in block y.

spread_to_x=1; //this variable determines if fire spreads to point x due to block y

for(z=1;z<=v;z++){ //look at other points z in block y...

//check if x is the only non-burned point in block y

if(z!=x && general_adj_matrix_what_is(v, B, adj_matrix, y, z) && on_fire[z-1]==0){

//if z is a point other than x in block y that is not on fire

spread_to_x=0; //found another un-burned point z different from x in

break; //block y. thus, fire does not spread to x due to block

//y... still need to check other blocks containing x though!

}//end if //note that blocks of size 1 are prohibited.

}//end for

if(spread_to_x){

newly_burned_vertices[x-1]=1;

break; //breaks out of for loop that checks if point x is in block y, because we

//dont need to check if these blocks would cause fire to spread to x... it

}//end if //already has! (due to the current block)

}//end if

}//end for

}//end if

}//end for

for(x=0; x<v; x++){

if(newly_burned_vertices[x]==1){ //dont need && on_fire[x]==0

on_fire[x]=1;

fire_size++;//be VERY CAREFUL about when/how we incriment fire_size!!! if one vertex is

} //lit on fire dure to its presence in multiple blocks then we only want to

//incriment fire_size by 1. for example, {x,y,z} and {u,v,z} where x,y,u,v

} //are all on fire... then z gets set on fire due to 2 different blocks,

//but fire_size only increased by 1

if(fire_size<v)//only continue with arsonists move if the hypergraph is not yet fully burned

general_arsonist_move(v, B, adj_matrix, round_count, burning_seq, fire_size,

on_fire, burning_num_tally);

else{ //the hypergraph is fully burned after the most recent spread-fire step...

//remember in this case the arsonist should pick a redundant source!

//but there is no need to call arsonist_move() again

if(burning_num_tally[round_count]==0){//if this is the first burning sequence discovered of

//length round_count+1 (including redundant source at the end)

printf("first discovered burning sequence of length %d is:\n", round_count+1);

fflush(stdout); //NOT round_count (like it used to be in earlier version of code)

for(x=0;x<v;x++){ //could replace v with round_count if we wanted

printf("%d ", burning_seq[x]); //to not print the 0’s at the end of burning_seq.

fflush(stdout); //burning_seq should have round_count many nonzero

} //entries at the start, followed by v-round_count 0’s

printf(" plus any one of the following redundant sources at the end: ");

fflush(stdout);

for(x=0;x<v;x++){

116

if(newly_burned_vertices[x]==1){

printf("%d ", x+1);

fflush(stdout);

}

}

}//end if

for(x=0;x<v;x++){//we incriment burning_num_tally[round_count] once for each possible redundant

//source at the end, since each of them corresponds to a distinct burning seq

if(newly_burned_vertices[x]==1)

burning_num_tally[round_count]++;//NOT burning_num_tally[round_count-1]

//(like it used to be in earlier version of code)

} //we incriment burning_num_tally[round_count] by the size of newly_burned_vertices[]

}//end else

//un-spread the fire. note that we dont have to change

free(newly_burned_vertices); //fire_size back to the value it started at since

//fire_sizewas passed by value into this function i.e.

for(x=0; x<v; x++) //the STS_arsonist_move that called this function did not

on_fire[x]=current_fire_snapshot[x]; //have its version of fire_size changed. We DO need to

//revert the array on_fire[] back to the original since

free(current_fire_snapshot); //it was a pointer to an array i.e. this function

//altered the same on_fire array that is used in the

} //STS_arsonist_move function that called this function.

void general_lazy_burning_number(int v, int B, char *adj_matrix){

//adj_matrix is a (B row) x (v column) matrix where entry at row i, column j is a 1

//iff point j is in block i, 0 otherwise i.e. rows are blocks, columns are points

int t,x; //t_count will hold the # of t-subsets that have been tested... once we have

//tested them all, we will print t_count[0]... if it isnt v choose t then we

int *t_count; //know there is a mistake in the code! s_count is the # of successful tests

int *s_count; //i.e. the # of lazy burning sets for the STS(v)

if((t_count = (int*) malloc(1*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

t_count[0]=0;

if((s_count = (int*) malloc(1*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

s_count[0]=0;

int *LBS;//the lazy burning set. It is of size v. unused entries will be set to 0. ex. if we

117

//are testing all 4-subsets of v=10 points then the last 6 entries of LBS will be 0.

if((LBS = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++)

LBS[x]=0;

for(t=1; t<=v; t++){ //find all lazy burning sets of size t

general_build_lazy_burning_sets(LBS, 0, t, v, B, adj_matrix, t_count, s_count);

printf("\n(%d choose %d) = %d. There are %d lazy burning sets of size %d\n", v, t,

t_count[0], s_count[0], t);

fflush(stdout);

if(s_count[0]!=0){

printf("b_L(H) = %d", t);

fflush(stdout);

break;

}

t_count[0]=0;

s_count[0]=0;

for(x=0; x<v; x++)

LBS[x]=0;

}//end for

}

void general_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v, int B,

char *adj_matrix, int *t_count, int *s_count){

// recursively builds all unordered subsets of {1,2,...,v} of size desired_size

// and calls lazily_burn() for each to see if they are indeed lazy burning sets.

//current_size is the # of cells of LBS that have been assigned a nonzero value so far

//remember that entries in the blocks f the hypergraph must range from 1 to v

//t_count is the # of t-subsets of {1,2,...,v}... should be v choose t (where t=desired_size)

//s_count is the # of lazy burning sets of size desired_size for the hypergraph

int x,y,z;

if(current_size==desired_size){ //potential lazy burning set is done being built

t_count[0]++;

char *on_fire; //keeps track of which vertices are currently burned...

118

//on_fire[x-1]=1 iff vertex x is burned, =0 otherwise

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0;x<v;x++)

on_fire[x]=0;

for(x=0;x<desired_size;x++){

y=LBS[x]; //y is in {1,2,...,v}. this point is initially set on fire as part of the LBS

on_fire[y-1]=1; //all points in the LBS are on fire initially

}

z=general_lazily_burn(LBS, desired_size, v, B, adj_matrix, on_fire);

//note that second last input is fire_size=desired_size

if(z){

s_count[0]++;

if(s_count[0]==1){

printf("\n***** {");

fflush(stdout);

for(x=0;x<desired_size;x++){

if(x==desired_size-1){

printf("%d",LBS[x]);

fflush(stdout);

}

else{

printf("%d,",LBS[x]);

fflush(stdout);

}

}//end for

printf("} is the first discovered lazy burning set for the hypergraph *****\n");

fflush(stdout);

}//end if

}//end if

/* else{

printf("{");

fflush(stdout);

for(x=0;x<desired_size;x++){

119

if(x==desired_size-1){

printf("%d",LBS[x]);

fflush(stdout);

}

else{

printf("%d,",LBS[x]);

fflush(stdout);

}

}//end for

printf("} is NOT a lazy burning set for the hypergraph\n");

fflush(stdout);

}//end else

*/

free(on_fire);

}//end if

else if(current_size==0){

for(x=1; x<=v-(desired_size-current_size)+1; x++){//dont need to loop all the way up

//to v since t-subsets have elements

LBS[0]=x; //current size is now 1 //listed in increasing order.

general_build_lazy_burning_sets(LBS, 1, desired_size, v, B, adj_matrix,

t_count, s_count);

}

}

else{ //x starts at LBS[current_size-1]+1 since lazy burning sets must have points

//listed in increasing order

for(x=LBS[current_size-1]+1; x<=v-(desired_size-current_size)+1; x++){

LBS[current_size]=x; //current size has increased by 1

general_build_lazy_burning_sets(LBS, current_size+1, desired_size, v, B,

adj_matrix, t_count, s_count);

}

}

}

int general_lazily_burn(int *LBS, int size_of_LBS, int v, int B, char *adj_matrix, char *on_fire){

//returns 1 if LBS was indeed a valid lazy burning set, 0 otherwise.

//only use of LBS and desired_size=size_of_LBS as inputs is to print

//them out when LBS is descovered to indeed be a lazy burning set.

//entry in position i-1 of on_fire is 1 iff point i is on fire, 0 otherwise.

int x,y,z;

int spread_to_x;

120

int fire_size=size_of_LBS;

char *newly_burned_vertices;

if((newly_burned_vertices = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

int was_there_change=1;

while(was_there_change){

was_there_change=0;

for(x=0; x<v; x++)

newly_burned_vertices[x]=0;

for(x=1;x<=v;x++){ //check each point x

if(on_fire[x-1]==0){ //if x is not yet burned, check if the

//fire should spread to x this round

for(y=1;y<=B;y++){//check each block y

if(general_adj_matrix_what_is(v, B, adj_matrix, y, x)){

//if point x is in block y, then check if fire spreads

//to point x due to other burning points in block y

spread_to_x=1;//this variable determines if fire spreads to point x due to block y

for(z=1;z<=v;z++){ //look at other points z in block y...

//check if x is the only non-burned point in block y

if(z!=x && general_adj_matrix_what_is(v, B, adj_matrix, y, z) && on_fire[z-1]==0){

//if z is a point other than x in block y that is not on fire

spread_to_x=0;//found another un-burned point z different from x in

break; //block y. thus, fire does not spread to x due to block

//y... still need to check other blocks containing x though!

}//end if //note that blocks of size 1 are prohibited.

}//end for

if(spread_to_x){

was_there_change=1;

newly_burned_vertices[x-1]=1;

break; //breaks out of for loop that checks if point x is in block y, because

//we dont need to check if these blocks would cause fire to spread to

}//end if //x... it already has! (due to the current block)

}//end if

}//end for

}//end if

}//end for

for(x=0; x<v; x++){

if(newly_burned_vertices[x]==1){ //dont need && on_fire[x]==0

121

on_fire[x]=1;

fire_size++; //be VERY CAREFUL about when/how we incriment fire_size!!! if one vertex

} //is lit on fire due to its presence in multiple blocks then we only want

//to inriment fire_size by 1. for example, {x,y,z} and {u,v,z} where

} //x,y,u,v are all on fire... then z gets set on fire due to 2 different

//blocks, but fire_size only increased by 1

if(fire_size==v)

break;

}//end while

free(newly_burned_vertices);

if(fire_size==v)

return 1;

else return 0;

}

void convert_blocks_to_adj_matrix(int v, int B, int zero_or_one, int total_size_of_blocks,

int *blocks, char *general_adj_matrix){

//v is the number of points/vertices, B is the number of blocks/hyperedges. zero_or_one is passed

//into this function as zero if the points are denoted {0,1,...,v-1}. If the points are denoted

//{1,2,...,v}, then pass zero_or_one in as 1. blocks[] represents the blocks/hyperedges of the

//design/hypergraph. the elemets of a hyperedge are listed next to each other, and different

//hyperedges are separated by a -1 in blocks[]. For example, for the STS(7),

//blocks[]={1,2,4,-1,2,3,5,-1,3,4,6,-1,4,5,7,-1,5,6,1,-1,6,7,2,-1,7,1,3}. there is no -1 at the

//very end. total_size_of_blocks is the number of entries in blocks[] that are not -1. Also,

//general_adj_matrix must be initialized to a B row x v column array of all zeros before being

//passed into this function.

//This function will fill general_adj_matrix with some 1’s such that row i, column j is a 1 iff

//point j is in block i. That is, rows are blocks and columns are points. general_adj_matrix can

//then be input into the function general_burn_hypergraph.

if(zero_or_one!=0 && zero_or_one!=1){

printf("error, see line %d", __LINE__);

exit(1);

}

if(B<v || v<=0 || B<=0){

printf("error, see line %d", __LINE__);

exit(1);

}

int block_counter=1;//blocks are listed left to right in blocks[]

int x,y,z;

if(zero_or_one==1){

for(x=1; x<=total_size_of_blocks+B-1; x++){ //size_of_blocks+B-1 is the # of entries

122

//in blocks[] including -1’s

if(blocks[x-1]<0) //if blockks[x-1] is -1 then we have moved on to the next block

block_counter++;

else

general_adj_matrix_set_bit(v, B, general_adj_matrix, block_counter, blocks[x-1], 1);

//blocks[x-1] is 1,2,..., or v

}

}

else{ //zero_or_one==0

for(x=1; x<=total_size_of_blocks+B-1; x++){ //total_size_of_blocks+B-1 is the # of

//entries in blocks[] including -1’s

if(blocks[x-1]<0) //if blockks[x-1] is -1 then we have moved on to the next block

block_counter++;

else

general_adj_matrix_set_bit(v, B, general_adj_matrix, block_counter, blocks[x-1]+1, 1);

//blocks[x-1] is 0,1,..., or v-1 but columns of general_adj_matrix are from 1 to v, hence the +1

}

}

if(block_counter!=B){

printf("error, see line %d", __LINE__);

exit(1);

}

}

void print_adj_matrix(int v, int B, char *adj_matrix){

int x,y;

printf("\n\n");

fflush(stdout);

for(x=1;x<=B;x++){ //traverse rows/blocks

for(y=1;y<=v;y++){ //traverse columns/points

printf("%d ",general_adj_matrix_what_is(v, B, adj_matrix, x, y));

fflush(stdout);

if(y==v){

printf("\n");

fflush(stdout);

}

}

}

printf("\n\n");

123

fflush(stdout);

}

void double_STS(int v, int *Blocks, int B, int *new_blocks, int new_v, int new_B){

//takes as input the STS(v) whose blocks are stored in array Blocks[] (first block is the first three

//consecutive entries, second block is the next three, etc). creates a new STS using the ‘‘double & add

//one’’ method & stores it in the same way in array new_blocks. new_v and new_B are inputs for the sole

//for the sole purpose of redundancy and returning an error if the input makes no sense. We assume the

//points in an STS(v) are labelled from 1 to v (NOT from 0 to v-1). Blocks contains 3*B entries.

if(new_v != 2*v+1 || new_B != (new_v*(new_v-1))/6 || B != (v*(v-1))/6){

printf("\n invalid input, see line %d\n", __LINE__);

exit(1);

}

int i,x,y,z;

int hold=3*B;

for(i=0; i<3*B; i++)

new_blocks[i]=Blocks[i]; //remember, input STS is a subsystem of the new STS

for(i=1; i<=v; i++){ //for each point k in the original STS, there is a block {k,k’,infinity}

//in the new STS. we write k’:=k+v and infinity:=2*v+1.

new_blocks[hold]=i;

new_blocks[hold+1]=i+v;

new_blocks[hold+2]=new_v;

hold+=3;

}//once this for loop ends, hold is the index of the next empty spot in new_blocks[]

for(i=1; i<=B; i++){ //for each block {x,y,z} in original STS, must add

//blocks {x’,y’,z}, {x’,y,z’}, and {x,y’,z’} to new STS

x=Blocks[3*(i-1)]; //first entry in i’th block of original STS

y=Blocks[3*(i-1)+1]; //second entry in i’th block of original STS

z=Blocks[3*(i-1)+2]; //third entry in i’th block of original STS

new_blocks[hold]=x+v; //add block {x’,y’,z}

new_blocks[hold+1]=y+v;

new_blocks[hold+2]=z;

new_blocks[hold+3]=x+v; //add block {x’,y,z’}

new_blocks[hold+4]=y;

new_blocks[hold+5]=z+v;

new_blocks[hold+6]=x; //add block {x,y’,z’}

new_blocks[hold+7]=y+v;

new_blocks[hold+8]=z+v;

hold+=9;

124

}//last "hold+8" should be last index in new_blocks[]

if(hold!=3*new_B){ //if everything went right, this hold should end up at 3*new_B

printf("\n error, see line %d\n", __LINE__);

exit(1);

}

}

void fast_lazy_burning_number(int v, int B, char *adj_matrix){

//adj_matrix is a (B row) x (v column) matrix where entry

int t,x; //at row i, column j is a 1 iff point j is in block i, 0

//otherwisei.e. rows are blocks, columns are points

int *LBS; //the lazy burning set. It is of size v. unused entries will be set to 0. ex. if we

//are testing all 4-subsets of v=10 points then the last 6 entries of LBS will be 0.

if((LBS = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++)

LBS[x]=0;

for(t=1; t<=v; t++){ //find all lazy burning sets of size t

if(fast_build_lazy_burning_sets(LBS, 0, t, v, B, adj_matrix)){

printf("b_L(H) = %d", t);

fflush(stdout);

break;

}

else{

printf("no lazy burning sets of size %d\n", t);

fflush(stdout);

}

for(x=0; x<v; x++)

LBS[x]=0;

}//end for

}

int fast_build_lazy_burning_sets(int *LBS, int current_size, int desired_size, int v,

int B, char *adj_matrix){

// recursively builds all unordered subsets of {1,2,...,v} of size desired_size

// and calls lazily_burn() for each to see if they are indeed lazy burning sets.

125

//current_size is the # of cells of LBS that have been assigned a nonzero value so far

//remember that entries in the blocks of the hypergraph must range from 1 to v

//returns 1 if a lazy burning set was found... many of these funcions are nested inside

//one another and they will all return 1. it is just a way to stop building potential

//lazy burning sets once one has been found to save time

int x,y,z;

if(current_size==desired_size){ //potential lazy burning set is done being built

char *on_fire; //keeps track of which vertices are currently burned... on_fire[x-1]=1

//iff vertex x is burned, =0 otherwise

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0;x<v;x++)

on_fire[x]=0;

for(x=0;x<desired_size;x++){

y=LBS[x];//y is in {1,2,...,v}. this point is initially set on fire as part of the LBS

on_fire[y-1]=1; //all points in the LBS are on fire initially

}

if(general_lazily_burn(LBS, desired_size, v, B, adj_matrix, on_fire)){

//note that second last input is fire_size=desired_size

printf("\n***** {");

fflush(stdout);

for(x=0;x<desired_size;x++){

if(x==desired_size-1){

printf("%d",LBS[x]);

fflush(stdout);

}

else{

printf("%d,",LBS[x]);

fflush(stdout);

}

}//end for

printf("} is the first discovered lazy burning set for the hypergraph *****\n");

fflush(stdout);

return 1;

}//end if

126

free(on_fire);

}//end if

else if(current_size==0){

//dont need to loop all the way up to

for(x=1; x<=v-(desired_size-current_size)+1; x++){//v since t-subsets have elements

//listed in increasing order.

LBS[0]=x;//current size is now 1

if(fast_build_lazy_burning_sets(LBS, 1, desired_size, v, B, adj_matrix))

return 1;

}

}

else{ //x starts at LBS[current_size-1]+1 since lazy burning

//sets must have points listed in increasing order

for(x=LBS[current_size-1]+1; x<=v-(desired_size-current_size)+1; x++){

LBS[current_size]=x; //current size has increased by 1

if(fast_build_lazy_burning_sets(LBS, current_size+1, desired_size, v, B, adj_matrix))

return 1;

}

}

return 0;

}

void fast_burning_number(int v, int B, char *adj_matrix){

//not always faster than general_burning_number()

int t,x;

int *SEQ; //the lazy burning set. It is of size v. unused entries will be set to 0. ex. if we

//are testing all 4-subsets of v=10 points then the last 6 entries of LBS will be 0.

if((SEQ = (int*) malloc(v*sizeof(int)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++)

SEQ[x]=0;

for(t=1; t<=v; t++){ //find all potential burning sequences of length t

if(fast_build_burning_seq(SEQ, 0, t, v, B, adj_matrix)){

printf("b(H) = %d", t);

fflush(stdout);

break;

}

127

else{

printf("no burning sequences of length %d\n", t);

fflush(stdout);

}

for(x=0; x<v; x++)

SEQ[x]=0;

}//end for

}

int fast_build_burning_seq(int *SEQ, int current_size, int desired_size, int v,

int B, char *adj_matrix){

// recursively builds all ORDERED subsets of {1,2,...,v} of size desired_size

// and calls fast_burn() for each to see if they are indeed burning sequences.

//current_size is the # of cells of SEQ that have been assigned a nonzero value so far

//remember that entries in the blocks of the hypergraph must range from 1 to v

//returns 1 if a burning sequence was found... many of these funcions are nested inside

//one another and they will all return 1. it is just a way to stop building potential

//burning sequences once one has been found to save time

int x,y,already_used;

if(current_size==desired_size){ //potential burning sequence is done being built

if(fast_test_burn_seq(SEQ, desired_size, v, B, adj_matrix)){

printf("\n***** (");

fflush(stdout);

for(x=0;x<desired_size;x++){

if(x==desired_size-1){

printf("%d",SEQ[x]);

fflush(stdout);

}

else{

printf("%d,",SEQ[x]);

fflush(stdout);

}

}//end for

printf(") is the first discovered burning sequence for the hypergraph *****\n");

fflush(stdout);

128

return 1;

}//end if

}//end if

else if(current_size==0){

for(x=1; x<=v; x++){ //unlike the lazy version of this function, we have to loop all

//the way up to v since a burning sequence could start with v

SEQ[0]=x; //current size is now 1

if(fast_build_burning_seq(SEQ, 1, desired_size, v, B, adj_matrix))

return 1;

}

}

else{

for(x=1; x<=v; x++){//again, unlike lazy version of this function we must loop from 1 to v

already_used=0;

for(y=0;y<current_size;y++){

if(x==SEQ[y]){

already_used=1;

break;

}

}//end for

if(already_used==0){//prevents SEQ from having multiple of the same number

SEQ[current_size]=x; //current size has increased by 1

if(fast_build_burning_seq(SEQ, current_size+1, desired_size, v, B, adj_matrix))

return 1;

}//end if

}//end for

}

return 0;

}

int fast_test_burn_seq(int *SEQ, int seq_length, int v, int B, char *adj_matrix){

int x,y,z,w,X; //X is just for if we want to print the progress of the fire spreading

int spread_to_x;

129

char *on_fire;

if((on_fire = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

char *newly_burned_vertices;

if((newly_burned_vertices = (char*) malloc(v*sizeof(char)))==NULL){

printf("\n\nAllocation of memory failed...line %d\n", __LINE__);

exit(1);

}

for(x=0; x<v; x++){

on_fire[x]=0;

newly_burned_vertices[x]=0;

}

on_fire[SEQ[0]-1]=1;//burn the first source

for(w=2; w<=seq_length; w++){//"skip" the first round to save time since we know

//all that happens is the first source catches fire

if(on_fire[SEQ[w-1]-1]==1){ //if wth entry in the sequence in already on fire

free(on_fire); //then SEQ is not a valid burning sequence,

free(newly_burned_vertices); //because we are supposed to burn wth entry as a

return 0; //source but it is already on fire

}

//below: spread the fire once, then burn the source

for(x=0; x<v; x++)

newly_burned_vertices[x]=0;

for(x=1;x<=v;x++){ //check each point x

if(on_fire[x-1]==0){ //if x is not yet burned, check if the

//fire should spread to x this round

for(y=1;y<=B;y++){ //check each block y

//if point x is in block y, then

if(general_adj_matrix_what_is(v, B, adj_matrix, y, x)){//check if fire spreads to point

//x due to other burning points in block y

spread_to_x=1; //this variable determines if fire spreads to point x due to block y

for(z=1;z<=v;z++){ //look at other points z in block y... check if

//x is the only non-burned point in block y

if(z!=x && general_adj_matrix_what_is(v, B, adj_matrix, y, z) && on_fire[z-1]==0){

//if z is a point other than x in block y that is not on fire

spread_to_x=0; //found another un-burned point z different from x in

break; //block y. thus, fire does not spread to x due to block

//y... still need to check other blocks containing x though!

}//end if //note that blocks of size 1 are prohibited.

}//end for

130

if(spread_to_x){

newly_burned_vertices[x-1]=1;

break; //breaks out of for loop that checks if point x is in block y, because

//we dont need to check if these blocks would cause fire to spread to

}//end if //x... it already has! (due to the current block)

}//end if

}//end for

}//end if

}//end for

for(x=0; x<v; x++){

if(newly_burned_vertices[x]==1) //dont need && on_fire[x]==0

on_fire[x]=1;

}

on_fire[SEQ[w-1]-1]=1; //burn wth source... its ok if it is redundant! i.e. if

//it caught fire in the most recent propagation step

/* printf("\n on_fire after round %d:", w);

fflush(stdout);

for(X=0;X<v;X++){

printf("%d ", on_fire[X]);

fflush(stdout);

} */

}//end for

for(x=1;x<=v;x++){ //if H is not fully burned after the final round

//then SEQ wasnt a valid burning sequence

if(on_fire[x-1]==0){

free(on_fire);

free(newly_burned_vertices);

return 0;

}

}

free(on_fire); //if we get to this point then on_fire must be all 1’s

free(newly_burned_vertices); //that is, H is fully burned after the final round.

return 1;

}

	Title page
	Abstract
	Lay summary
	Acknowledgements
	Statement of contribution
	Table of contents
	List of tables
	List of figures
	Introduction
	Graph Theory
	Hypergraph Theory
	Graph Burning
	The Burning Game on Hypergraphs
	The Lazy Burning Game
	Connections with Bootstrap Processes

	General Results and Bounds
	Arbitrary Hypergraphs
	Disconnected Hypergraphs
	Subhypergraphs
	Complexity

	Steiner Triple Systems
	Definitions and Motivation
	General Results on Steiner Triple Systems
	Results on Doubling Steiner Triple Systems
	Computational Results

	Alternative Propagation Rules
	A Propagation Rule that Uses Proportions
	A Propagation Rule that Uses Thresholds

	Summary and Future Work
	Bibliography
	Source Code
	Main Routine
	Subroutines

