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Abstract  

   Hyperparameter optimization is a crucial aspect for improving the performance of learning 

models through tuning their hyperparameters. This thesis introduces three effective techniques 

for tuning hyperparameters in various models: PointNet CNN, regularized and non-regularized 

standard feedforward neural networks, SVM, and PCA. The techniques employed are random 

search-based tuning, hybrid random and grid search-based tuning, and hybrid random and 

manual search-based tuning. The random search is performed through coarse and fine-tuning 

stages, while hybrid approaches combined the random search’s benefits with grid or manual 

search. These techniques achieve competitive results while optimizing computation costs 

regarding time and storage usage, making them valuable for state-of-the-art work. Random 

search and hybrid random and grid search enhance PointNet to achieve high classification 

accuracy that surpasses related research with an average F1-score of 93.6%, while the hybrid 

random and manual search reduces computational time but results in a lower accuracy of 

90.97%. The random search-based tuning and hybrid random and grid search achieve an 

accuracy of 96.67% for the make_moons dataset. Similarly, the hyperparameter tuning 

techniques lead to a binary classification accuracy of 97% for the SVM model, and they identify 

the minimum number of PCA components and retain 99.0042% of the original dataset’s variance 

for a set of human face images. 

Keywords: deep learning; random search; hybrid random and grid search; hybrid random and 

manual search 
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Chapter 1 
 

Introduction 

1.1. General Background 

  Machine learning [1, 2, 3] is a branch of artificial intelligence (AI) that focuses on creating 

algorithms and models capable of learning from data and making predictions or decisions 

without explicit programming. It involves applying statistical and mathematical techniques to 

enable machines to enhance their performance on specific tasks through experience. The 

fundamental idea behind machine learning is to develop models that can autonomously learn 

patterns and correlations from vast amounts of data. These models are trained using labeled 

datasets, where input data is associated with desired output values. By analyzing and processing 

this data, machine learning algorithms can identify patterns, extract relevant features, and make 

accurate predictions or classifications on new, unseen data. Machine learning encompasses 

various algorithm types, including supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning. Supervised learning [4] involves training models using 

labeled data to predict or classify future instances. Unsupervised learning [5] focuses on 

discovering hidden patterns or structures within unlabeled data. Semi-supervised learning [6] 

combines labeled and unlabeled data for training, while reinforcement learning [7] involves 

learning through interactions with an environment and receiving feedback in the form of 

rewards or penalties. Machine learning has diverse applications across fields, such as image and 

speech recognition, natural language processing, recommendation systems, fraud detection, 

autonomous vehicles, and medical diagnostics, among others. It has revolutionized industries 
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and facilitated advancements in predictive analytics, data mining, and pattern recognition. 

Building machine learning models entails employing techniques and algorithms such as linear 

regression, decision trees, support vector machines [8], neural networks, and deep learning. 

These models require preprocessing of data, feature engineering, and evaluation methods to 

ensure reliable and precise outcomes. With the continuous expansion of data availability and 

computational resources, machine learning is rapidly evolving and becoming a vital tool for 

addressing complex problems and enabling data-driven decision-making across various 

domains.  

   Deep learning [9, 10] is a branch of machine learning that focuses on training artificial neural 

networks to learn and make intelligent decisions, drawing inspiration from the structure and 

function of the human brain. The distinguishing feature of deep learning is the use of deep 

neural networks, which consist of multiple interconnected layers of nodes or neurons. These 

networks excel at learning hierarchical representations of data, enabling them to capture intricate 

patterns and relationships. Deep learning has achieved remarkable success in various domains, 

including computer vision [11], natural language processing, and speech recognition. It has 

revolutionized tasks like image classification, object detection, and image generation, surpassing 

human-level performance. Training deep learning models involves feeding them large labeled 

datasets and iteratively adjusting internal parameters through backpropagation. This fine-tuning 

process minimizes the discrepancy between predicted outputs and true labels. Deep learning 

models typically require significant computational resources and extensive datasets. However, 

advances in hardware and the availability of vast amounts of data have propelled the progress of 

deep learning algorithms. Convolutional neural networks (CNNs) [12, 13] are popular for image 

analysis, recurrent neural networks (RNNs) for sequential data processing, and generative 
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adversarial networks (GANs) for generating new data samples. Deep learning has transformed 

various industries, including healthcare, finance, autonomous vehicles, and natural language 

understanding. Its ability to automatically learn complex patterns from raw data has led to 

substantial advancements in comprehension, analysis, and generation of intricate information. 

Ongoing research in deep learning aims to address its limitations, such as the need for extensive 

labeled data and the interpretability of complex models. Overall, deep learning represents a 

powerful solution for solving intricate problems and has the potential to drive transformative 

progress across diverse domains. 

   Hyperparameter optimization [14, 15, 16] is a fundamental aspect of the machine learning and 

deep learning workflow based on tuning the learning model’s hyperparameters to optimize the 

cross-validation cost function or accuracy. Hyperparameters, such as learning rate, 

regularization parameters, batch size, and network architecture, shape the behavior and 

performance of models. The objective of hyperparameter optimization is to discover the most 

effective combination of hyperparameter values that maximizes the model's performance for a 

given task. This process involves exploring a potentially vast and complex space of 

hyperparameters to identify the optimal configuration. Various optimization techniques [17] are 

employed for hyperparameter tuning. Grid search [18] systematically evaluates hyperparameter 

values across a predefined grid. The hyperparameter values in random search [19], on the other 

hand, are randomly sampled from the hyperparameter space, offering a more efficient alternative 

to grid search. Advanced techniques like Bayesian optimization [20] leverage probabilistic 

models to guide the search process based on previous evaluations. Genetic algorithms [21], 

inspired by evolutionary principles, evolve hyperparameter configurations over multiple 

generations. The choice of optimization technique depends on factors such as problem 
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characteristics, available computational resources, and the balance between exploration and 

exploitation of the hyperparameter space. Hyperparameter optimization significantly influences 

model performance, as it determines the ideal hyperparameter values that can enhance accuracy, 

expedite convergence, and improve generalization. It is a critical step in developing robust and 

high-performing machine learning and deep learning models.      

1.2. Motivation 

   The significant impact of deep-learning and machine-learning models’ tuning hyperparameters  

[15, 22] on their accuracy has motivated researchers and developers to develop competent 

hyperparameter optimization techniques. Therefore, many competitive hyperparameter 

optimizers are available in the state-of-the-art literature in deep learning and machine learning. 

Hyperparameter tuning is not required only at the development phase but at application time as 

well whenever data is changed, as in the case of market clustering and website recommendations. 

Hyperparameters are manually selected configuration settings that significantly influence a 

model's accuracy, efficiency, and ability to generalize to new data. The purpose of 

hyperparameter tuning is to find the best combination of these settings that maximizes the 

model's performance on a given task. This involves exploring different values or ranges of 

hyperparameters and evaluating their impact on the model's performance metrics. The ultimate 

goal is to enhance accuracy, mitigate overfitting, expedite convergence, and improve the model's 

ability to generalize well to unseen data. Hyperparameter tuning enables the model to adapt its 

behavior and tailor it to the specific characteristics of the dataset and the task at hand. 

Hyperparameter tuning is vital because different datasets, problem domains, and models require 

specific configurations for optimal performance. It enables fine-tuning of the model's behavior, 

resulting in improved results and more reliable predictions. In essence, hyperparameter tuning 
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strikes a balance between exploration (trying out different settings) and exploitation (leveraging 

promising settings) of the hyperparameter space, leading to models that achieve optimal 

performance and robust generalization. 

1.3. Objective 

   This thesis implements three effective techniques for tuning hyperparameters in five diverse 

machine learning and deep learning models. The three techniques used are: 

• Random search-based tuning. 

• Hybrid random and grid search-based tuning. 

• Hybrid random and manual search-based tuning.  

These techniques are applied to models such as PointNet CNN, regularized and non-regularized 

standard feedforward neural networks (FNNs), support vector machine (SVM), and principal 

component analysis (PCA). The random search-based tuning involves performing coarse and 

fine-tuning stages to optimize the hyperparameters. The hybrid random and grid search combines 

the benefits of random search and grid search to find optimal hyperparameter values efficiently. 

The hybrid random and manual search utilizes the insights gained from random search as prior 

knowledge to guide the manual search process. 

    These techniques aim to enhance the visual classification accuracy of convolutional deep 

neural networks, specifically PointNet. The hyperparameters targeted for tuning are the mini-

batch size of stochastic gradient descent (SGD), momentum, and learning rate. The objective is 

to prevent overfitting, improve generalization, and achieve low variance in the model's 

performance. The evaluation of the tuned models was conducted using pool and test datasets, 

ensuring the models' ability to accurately classify unseen data from different distributions. 
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Overall, these hyperparameter tuning techniques aimed to optimize the performance and 

generalization capabilities of the machine learning and deep learning models, specifically in the 

context of visual classification tasks. Furthermore, the three tuning techniques successfully 

identified a model for a standard feedforward neural network (FNN) that achieved a high binary 

classification accuracy by tuning the regularization parameter (λ), learning rate (α), and 

momentum (β). Additionally, the three hyperparameter tuning techniques were effective in 

enabling the SVM model to achieve a high binary classification by the regularization parameter 

(C) and Gaussian radial basis function (RBF) kernel’s decay coefficient (σ). Moreover, these 

techniques successfully determined the minimum number of PCA components that reduced the 

dimensionality of the human faces dataset in a computer vision application, keeping possession 

of most of its original variance before reduction. Overall, the hyperparameter tuning techniques 

showcased their ability to enhance the performance and accuracy of various models across 

different datasets and tasks. 

1.4. Contribution 

   The work described in this thesis strives to improve the learning model’s ability to 

generalize to an unseen dataset, either the cross-validation or test dataset, besides the training 

dataset. Random search, hybrid random and grid search, and hybrid random and manual 

search tuning techniques were utilized to optimize the cost function and generalization of 

some machine and deep learning models such as PointNet CNN, regularized and non-

regularized standard feedforward neural networks (FNNs), support vector machine (SVM), 

and principal component analysis (PCA).  
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   To the best knowledge of the thesis author that merging random search with grid search or 

with manual search has not been reported for tuning the hyperparameters of PointNet CNN, 

FNN, SVM, and PCA in the literature of machine and deep learning. 

     The main contributions of the thesis can be summarized in the following points: 

• Using the hybrid random and grid search to optimize the grid search by taking 

advantage of random search to determine the efficient hyperparameter space. This 

optimized grid search avoids wasted time in tuning the hyperparameters with 

inefficient values that would never optimize the learning model’s accuracy. 

• Using the hybrid random and manual search to optimize the manual search by 

taking advantage of random search at having prior knowledge about the 

productive hyperparameter space. This optimized manual search avoids wasted 

time at tuning the hyperparameters with inefficient values that would never 

optimize the learning model’s accuracy. 

• Tuning the hyperparameters of PointNet CNN through three stages is 

unprecedented. Particularly, coarse and fine random search or hybrid random and 

grid search, or hybrid random and manual search are conducted using a cross-

validation dataset. In addition, a test dataset-based evaluation was performed to 

ensure PointNet’s capability to generalize to cross-validation and testing datasets. 

Accordingly, the learning model has a high potential to generalize to other unseen 

datasets, such as the application dataset. 

• Proposing model-independent tuning techniques that can be applied to all deep 

CNN networks and machine learning models. 
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• Obtaining high classification accuracy by applying the three tuning techniques on 

standard FNN and SVM, outperforming the state-of-the-art work that uses the 

same dataset (make_moons of Sklearn library). 

• Applying the three tuning techniques on a supervised learning model (PCA) for 

the sake of dimensionality reduction of image datasets. 

• Obtaining high classification accuracy without the high memory usage and long 

computation time required by the other iterative hyperparameter tuning 

techniques like Bayesian, gradient descent, and population-based training 

techniques. The iterative method is effective when the CNN model has a high-

dimensional hyperparameter space. This thesis work tunes only at most three 

hyperparameters. 

   The rest of the thesis is structured as follows: 

Chapter 2 provides an overview of the most common hyperparameter tuning techniques and 

some machine and deep learning models. The methodology for implementing the proposed 

hyperparameter tuning techniques is described in detail in Chapter 3. Chapter 4 shows and 

discusses the results in detail. Eventually, Chapter 5 demonstrates this thesis’ main conclusions 

and suggests recommendations that should be followed in the future to present a more efficient 

contribution. 
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Chapter 2 
 

Literature Search 
 

   This chapter shows various hyperparameter tuning techniques, including used and unused 

techniques in this thesis, that can be applied to different machine and deep learning models. 

Furthermore, it presents a collection of the most common learning models used in this industry 

of deep and machine learning development; some are machine learning models, and others are 

deep learning ones. The thesis applies hyperparameter tuning techniques on five various learning 

models out of all learning models shown in this chapter. Moreover, it demonstrates the exploited 

datasets and their organization.    

2.1. Hyperparameter Tuning Techniques  

   All iterative hyperparameter tuning techniques [23, 24], such as gradient-based, Bayesian, and 

population-based training (PBT), require a considerable memory size and high computation cost. 

They are worthwhile and superior over other tuning techniques only when the learning model has 

a high-dimensional hyperparameter space. While at most three hyperparameters are tuned in the 

different experiments of this thesis, iterative tuning techniques are not a good choice. 

Furthermore, the pure manual and grid search for three hyperparameters needs much 

computation time. Therefore, the random search-based coarse-to-fine, hybrid random and grid 

search, and hybrid random and manual search are the most suited hyperparameter tuning 

techniques for this thesis' work as they can give comparable or even better results within much 

less computation time and memory usage as discussed in Chapter 3 in detail. Here are the most 

common hyperparameter tuning techniques: 
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2.1.1. Manual Search (Babysitting One Model or Pandas Raising Approach) 

   Manual search  [15], sometimes called Babysitting one model, needs deep experience and solid 

prior knowledge about the learning model to estimate the optimum hyperparameters’ values that 

would maximize the model’s accuracy in a limited time. Usually, this approach [14, 25] is 

employed when there is a scarcity of computing resources, such as limited CPUs and GPUs, 

despite having a large dataset. As a result, only one model or a small number of models can be 

trained at a time. In this scenario, the model needs to be closely monitored and guided 

throughout the training process. Initially, the model's parameters are set randomly on the first 

day, and the training begins. The progress is observed gradually, perhaps by tracing the learning 

curve, the cost function J, the cross-validation error on the dataset, or any other relevant metric, 

as shown in Figure 1. By the end of the first day, if it appears that the model is learning well, one 

might decide to increase the learning rate slightly and assess its performance. If the model 

improves, the progress continues on the second day. This iterative process of monitoring and 

adjusting continues, with regular check-ins on subsequent days. Sometimes, it may be necessary 

to decrease the learning rate if it was set too high the previous day. This pattern repeats day after 

day as the model is trained over a span of multiple days or weeks. This strategy involves closely 

attending to one model, observing its progress, and making subtle adjustments to the learning 

rate. It is a common practice when there is insufficient computational capacity to train multiple 

models simultaneously. In other words, the concept of the "Raising Pandas" approach is 

analogous to adult pandas taking care of and nurturing a single baby panda at a time. Similarly, 

in this context, it refers to focusing on training one model at a time. For instance, if one belongs 

to a smaller company or is at the initial stages of their AI journey, they might have limited 

infrastructure and computational resources to train, evaluate, and fine-tune only one model at a 
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time. This approach is particularly beneficial when a software company has a single data 

scientist, when there are few use cases for deep learning within the software organization, or 

when the model can be adequately trained with a moderate amount of data (less than 100 TB). 

 

Figure 1. Manual Search (Babysitting One Model) 

    It is impractical to use this approach when the model has many hyperparameters or in the case 

of lacking the prior knowledge about the learning model. Thus, a novel technique, offered in 

Chapter 3, merges a random search with a manual search. 

2.1.2. Grid Search (GS) 

   Grid search [26] is a brute-force or exhaustive search that covers all the possible combinations 

through predefined sets of hyperparameters’ values, as shown in Figure 2. Each hyperparameter 

has a manual discretized set formed from its continuous range. To guide the grid search, a 

performance metric, usually determined through cross-validation on the training set or evaluation 

on a separate validation set, is employed. The grid search procedures can be summarized in three 

points as follows: 

a) Initially, start with a large search space and step size. 
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b) Based on the previous results of successful hyperparameter configurations, narrow down 

the search space and step size. 

c) Repeat step 2 multiple times until an optimum configuration is reached. 

 

          Figure 2. Grid Search. Reproduced From [27] 

 

   Hsu et al. in [28] use a grid search-based coarse-to-fine tuning technique to tune two 

hyperparameters in an SVM classifier and cross-validation accuracy as an evaluation metric. It 

enhances the model’s classification accuracy but requires much computation time. A random 

search-based coarse-to-fine-tuning technique can obtain the same accuracy or even better. Grid 

search is a suitable choice when the model has low-dimensional hyperparameter space: at most, 

three hyperparameters. Chicco gives ten tips for machine learning in biomedical applications. 

The 6th tip shows the impact of tuning the number of clusters (k) as the single hyperparameter on 

the classification accuracy of an unsupervised learning clustering model. It is demonstrated that 

grid search is the best tuning technique for that application. In [21], Liashchynskyi et al. utilize 

grid search to tune two hyperparameters in their designed CNN image classifier fed by CIFAR-

10  [29]  dataset split as follows: 50,000 images for training and 10,000 for testing. They 

obtained a classification accuracy of around 83% using a grid search and 85.8% using a random 
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search within a shorter time. In [18], Belete et al. exploit the grid search to tune three 

hyperparameters in an SVM classifier fed by a health statistical dataset, achieving a classification 

accuracy of 87.4% in a very long time due to the relatively high dimensionality of 

hyperparameters space (> 3 hyperparameters). Using the grid search technique, Nugraha et al. in 

[30] tune the hyperparameters of seven different machine-learning classification algorithms to 

select the best-fit model based on cross-validation classification accuracy.  

   Grid is relatively straightforward to implement and can be parallelized. Nevertheless, its main 

drawback lies in its inefficiency when dealing with high-dimensional hyperparameter 

configuration spaces. As the number of hyperparameters increases, the number of evaluations 

grows exponentially, leading to what is known as the "curse of dimensionality." For GS, if there 

are k parameters, each with n distinct values, the computational complexity increases 

exponentially at a rate of O(𝑛𝑘). Therefore, GS is only effective as a hyperparameter 

optimization method when the configuration space is small. Thus, a novel technique, offered in 

Chapter 3,  merges random search with grid search to speed up the tuning and improve its 

efficacy. 

2.1.3. Random Search (RS) 

   Random search hyperparameter tuning [31] is similar to grid search, but it randomly selects 

some combinations through the predefined continuous scales of hyperparameters without 

discretizing them. Random Search is a technique that replaces the exhaustive and systematic 

enumeration of all possible combinations with a random selection process, as shown in Figure 3. 

This approach [15] can be easily applied to discrete scenarios mentioned earlier, but it also 

extends to continuous and mixed spaces. It can be carried out in one stage or two stages; a two-

stage random search is called random search-based coarse-to-fine hyperparameter tuning to 
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focus on the hyperparameters’ values that enhance the accuracy of learning algorithms and 

discard others. Two-stage random search outperforms grid search with much less computation 

time when the learning model has more than two hyperparameters, so it is used in the work 

proposed in this thesis that tunes at most three hyperparameters in all experiments. It is superior 

over grid search due to the fact that only some hyperparameters have a significant impact on the 

learning model accuracy. This situation indicates that the optimization problem has a low 

intrinsic dimensionality. Furthermore, it allows incorporating prior knowledge by specifying the 

distribution from which to sample the hyperparameters. Despite its simplicity, Random Search 

remains an important benchmark for evaluating the performance of new hyperparameter 

optimization methods. Furthermore, the computational complexity remains the same with 

increasing the number of tuned hyperparameters at a rate of O(n). RS still involves a significant 

number of unnecessary evaluations as it does not leverage information from previously well-

performing areas. Therefore, iterative tuning techniques, discussed in the following subsections, 

are preferred over random search to make full use of the previously efficient regions. 

 

Figure 3. Random Search. Reproduced from [27] 
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   Rojas et al. in [32] show that the one-stage random search gives results better than the grid 

search in tuning the number of hidden layers, the number of neurons per layer, and the learning 

rate of a feed-forward neural network fed by online real-time electricity energy readings to 

forecast the power consumption. In [33], Andonie et al. tune the number of convolution layers, 

the number of fully-connected layers, the number of output filters for each convolution layer, and 

the number of neurons for each fully connected layer of a CNN classifier fed by a CIFAR-10 

dataset using a random search for 300 combinations of hyperparameters’ values. Navon et al. in 

[19] present an analytical optimization in random search technique by putting a lower bound to 

the error of CNN’s classification; once this error threshold is met, tuning should be stopped early 

as there is no possible further improvement in CNN’s accuracy. It is demonstrated empirically 

and theoretically in [34] that random hyperparameters search outperforms grid search and 

manual search within a shorter computation time. As a matter of fact, grid search picks out a 

tremendous number of values representing all possible combinations between the values of 

manually predefined discretized scales for tuned hyperparameters. In contrast, random search 

selects random values within a manually predetermined continuous scale for each 

hyperparameter.  Hence, the superiority of random search over grid search is more evident when 

the model uses more than two hyperparameters. This superiority of random search over grid 

search refers to the fact that hyperparameters do not have the same importance in optimizing the 

performance of deep NN, but only a few hyperparameters dominate. The difference between the 

two techniques is visualized in Figure 4. Mantovani et al. in [35] compare random search with 

genetic algorithm (GA)  [36] and grid search at tuning the hyperparameters of an SVM classifier. 

The results clearly show the superiority of random search with a lower computation cost.  
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Figure 4. Grid Search vs. Random Search. Reproduced from [36] 

 

   This technique is utilized in all the experiments of the thesis due to simplicity and efficiency 

with low computation cost and in a limited time, as shown in Chapter 3. 

2.1.4. Population-Based Training (PBT) 

   Population-based training (PBT) [37, 38] hyperparameter tuning is an iterative tuning 

technique and a prominent category of metaheuristic algorithms, inspired by genetic algorithms 

(GA), as each agent in the population can exploit the information of the rest of the agents.  Each 

agent is a model with unique values of weights and hyperparameters; therefore, multiple models 

are trained asynchronously in parallel. Thus, both the learning model’s parameters and 

hyperparameters are iteratively optimized jointly. The hyperparameters of each agent are 

randomly initialized from the predefined distributions of hyperparameters, similar to the random 

search method mentioned above. During training iterations, optimization of the learning model’s 

weights and hyperparameters is carried out through exploitation and exploration processes. 

Therefore, PBT and its variations are considered adaptive methods since they dynamically 

update hyperparameters during model training. In contrast, non-adaptive methods employ a 
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suboptimal strategy of using fixed hyperparameter settings throughout the entire training process. 

The exploitation process is performed at every single training iteration by the truncation 

selection method. In the truncation selection method, each agent is ranked based on performance 

while iterating on the population's agents. If the agent of the current exploitation iteration is 

among the bottom 20% in ranking, it should then take a copy of the weights and hyperparameters 

of a randomly selected agent from the top 20%. Moreover, the exploration process is conducted 

periodically after a fixed number of training epochs. Perturbing and resampling are two separate 

ways to achieve the exploration process. For the perturbing way, each hyperparameter’s value is 

randomly altered by one of two factors; one factor is greater than one, and the other is less than 

one. On the other hand, the resampling way is based on changing hyperparameters’ values by 

randomly selecting numbers from the predefined distributions of hyperparameters. Figure 5 

shows the mechanism of exploitation and exploration processes in PBT. 

 

Figure 5. Population-Based Training (PBT). Reproduced From [39] 

 

   Jaderberg et al. in [38] apply PBT to a reinforcement learning algorithm and two supervised 

deep learning networks to show its effectiveness in tuning the hyperparameters of each model. 



  

18 
 

Notably, PBT requires a high computation cost because the deep supervised networks in that 

article were trained in 0.5 to 1 million iterations. In [40], Liang et al. propose an evolutionary 

population-based training (EPBT) method to tune the learning rate and momentum of a deep 

neural network (DNN) fed once by the CIFAR-10 dataset to obtain better results than the regular 

PBT. Dalibard et al. in [41] present an optimization for PBT by developing fast improvement 

PBT (FIRE PBT) that resolves the bias of PBT towards the population’s models that have a 

short-term improvement in performance, which may lead to poor long-term accuracy. In [42], Li 

et al. apply a network’s architecture-independent PBT on a state-of-the-art WaveNet generative 

model for human voice synthesis. In [43], Hassan et al. use a genetic algorithm (GA) to tune the 

hyperparameters, including the kernel size, of a CNN fed by chest X-ray images for detecting 

Covid-19 infection, achieving a classification accuracy of 98.48%. 

2.1.5. Gradient-Based Hyperparameter Tuning Technique 

   Basically, the principle of the gradient-based hyperparameter tuning technique [44] is 

computing the partial derivatives of the objective optimization function, like cross-validation 

accuracy, with respect to each hyperparameter in the learning models. After that, the 

hyperparameters’ values are iteratively optimized using gradient descent, as shown in Figure 6. 

Despite their faster convergence speed compared to other methods, gradient-based algorithms 

have limitations. According to [15], they can only optimize continuous hyperparameters since 

other types, such as categorical hyperparameters, lack gradient directions. Additionally, these 

algorithms are efficient primarily for convex functions, as non-convex functions may lead to 

reaching local optima instead of the global optimum. The time complexity of gradient-based 

algorithms for optimizing k hyperparameters, each has n distinct values, is O (𝑛𝑘).   
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Figure 6. Gradient-Based Hyperparameter Optimization. Reproduced From [45] 

 

   Maclaurin et al. in [45] use the backpropagation concept to calculate the gradients of cross-

validation accuracy with respect to each hyperparameter in the deep neural network. Bakhteev et 

al. in [46] compare gradient-based hyperparameter tuning with the random research technique 

concluding that it outperforms the random search only when the learning model has a high-

dimensional hyperparameter space. In [47], Franceschi et al. tune the hyperparameters of a 

recurrent neural network (RNN) fed by a CIFAR-10 dataset using the forward and reverse modes 

of the gradient-based hyperparameter tuning. In [48], Micaelli et al. offer a novel algorithm to 

overcome memory scaling caused by the large-horizon (many gradient steps) gradient descent 

while searching the hyperparameters of a deep neural network fed by a CIFAR-10 dataset. 
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2.1.6. Bayesian Hyperparameter Optimization (BO) 

   Bayesian hyperparameter tuning [49] is an iterative technique that constructs a probabilistic 

hypothesis that maps the hyperparameters’ values to the learning model’s cross-validation 

accuracy. The hyperparameters with a high probability of obtaining optimum performance are 

exploited during training. Furthermore, the hyperparameters with an uncertain likelihood of 

getting optimum performance are explored periodically after every specific number of training 

epochs. Unlike grid search (GS) and random search (RS), BO utilizes past results to determine 

future evaluation points. It consists of two key components: a surrogate model and an acquisition 

function. The surrogate model aims to fit all the observed points to the objective function. Using 

the predictive distribution of this probabilistic surrogate model, the acquisition function balances 

exploration and exploitation. Common surrogate models used in BO include the Gaussian 

process (GP) [50], random forest (RF) [51], and the tree Parzen estimator (TPE) [52]. 

Exploration involves sampling instances from unexplored regions, while exploitation focuses on 

sampling from currently promising regions likely to contain the global optimum based on the 

posterior distribution. BO algorithms compromise between exploration and exploitation to 

identify the most likely optimal regions while avoiding neglecting better configurations in 

unexplored areas, as shown in Figure 7. However, BO belongs to sequential methods that are 

challenging to parallelize since they rely on previous evaluations. 
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Figure 7. Bayesian-Based Hyperparameter Optimization. Reproduced From [27] 

   Snoek et al. in [53] tune nine hyperparameters of a CNN fed by a CIFAR dataset using 

Bayesian hyperparameter tuning. In [20],  Masum et al. utilize Bayesian tuning to tune the 

hyperparameters of a deep neural network fed by an NSL-KDD dataset [54] for an intrusion 

detection application. 

2.2. Hybrid Hyperparameter Tuning Techniques 

   Here are some hybrid hyperparameter tuning approaches: 

1. Grid Search with Random Search: 

• Combine a coarse grid search with random search for a more efficient and 

effective hyperparameter search. Start with a broad grid search to identify 

promising regions, then apply random search within those regions. 

2. Bayesian Optimization with Grid Search: 

• Use Bayesian optimization to explore the search space efficiently while 

incorporating domain knowledge. Initially, perform a grid search to identify a 
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rough region of interest and then apply Bayesian optimization for fine-tuning 

within that region. 

3. Genetic Algorithms with Random Search: 

• Combine genetic algorithms with random search to evolve hyperparameter 

configurations. Genetic algorithms can create and mutate configurations, while 

random search can add diversity and exploration. 

4. AutoML and Manual Tuning: 

• Employ automated machine learning (AutoML) tools to quickly generate and 

evaluate hyperparameter configurations. Then, fine-tune the best-performing 

configurations manually based on domain knowledge. 

5. Hyperband with Bayesian Optimization: 

• Use the Hyperband algorithm to efficiently allocate resources among different 

configurations and combine it with Bayesian optimization for exploration within 

each allocation. 

6. Successive Halving with TPE: 

• Apply Successive Halving to progressively allocate resources to a subset of 

configurations, and use Tree-structured Parzen Estimators (TPE) to select 

promising configurations within each round. 

7. Ensembling Multiple Optimizers: 
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• Combine multiple hyperparameter optimization algorithms, such as grid search, 

random search, Bayesian optimization, and genetic algorithms, and use an 

ensemble to choose the final hyperparameter configuration. 

8. Adaptive Strategies: 

• Develop hybrid strategies that adapt the optimization approach based on the 

performance of the model during training. For example, start with grid search, and 

if no improvement is observed, switch to Bayesian optimization. 

9. Reinforcement Learning: 

• Utilize reinforcement learning techniques to optimize hyperparameters. 

Reinforcement learning agents can learn from past experiments to guide the 

search process efficiently. 

2.3. Getting the Most out of the Parallel Programming for Hyperparameter Optimization   

   Ng presents in [25, 55] the Caviar approach as a hyperparameter tuning approach. The 

principle of this approach is training many models in parallel and selecting the best-fit one that 

has the best results based on the selected evaluation metric, either a cross-validation dataset or a 

test dataset. Hence, it is named after Caviar, which lays on so many eggs. This approach is 

applied to all hyperparameter tuning techniques except for manual hyperparameter search, called 

the "Babysitting One Model" or "Pandas Raising" approach. ASHA (Asynchronous Successive 

Halving Algorithm) [56] is utilized to apply the Caviar approach efficiently, getting the most out 

of the computation resources based on parallel programming. It is a widely used hyperparameter 

tuning algorithm that combines the principles of successive halving and asynchronous execution. 
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It is specifically designed to optimize resource allocation in distributed environments, where 

multiple trials can be conducted simultaneously. 

The ASHA algorithm can be summarized as follows: 

• Initial Configurations: ASHA begins by defining an initial set of hyperparameter 

configurations, also known as "arms." Each configuration is evaluated using a small 

fraction of the available resources, such as training epochs, to obtain an initial estimate of 

its performance. 

• Successive Halving: In the successive halving phase, the algorithm iteratively divides the 

available resources among the surviving configurations. Only the top-performing 

configurations are retained at each stage, while the rest are discarded. The resource 

allocation is increased for the retained configurations, allowing them to receive more 

resources for further evaluation. 

• Asynchronous Execution: ASHA introduces the concept of asynchronous execution, 

enabling concurrent evaluation of multiple configurations. This allows for parallel 

assessment of different configurations, significantly accelerating the optimization 

process. 

• Early Stopping: ASHA incorporates early stopping criteria to terminate poorly 

performing configurations early on. If a configuration's performance lags significantly 

behind the best-performing configuration at the same resource allocation, it is terminated, 

freeing up resources for more promising alternatives. 

• Iterative Process: ASHA continues the successive halving and asynchronous execution 

steps until only one configuration remains. The final configuration is considered the best 

solution found by the algorithm. ASHA excels in situations where training a machine 
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learning model with various hyperparameter configurations demands substantial time or 

computational resources. By dynamically allocating resources to the most promising 

configurations and leveraging parallel execution, ASHA efficiently explores the 

hyperparameter space to identify high-performing configurations. 

Libraries and frameworks like Ray Tune and Optuna provide implementations of ASHA for 

hyperparameter tuning. These integrations seamlessly incorporate ASHA into their optimization 

frameworks, allowing users to harness its benefits without the need to implement the algorithm 

from scratch.    

2.4. The State-of-the-Art Hyperparameter Optimization Frameworks 

   This section presents the most common hyperparameter optimization frameworks [15, 57] used 

in the industry, which were developed particularly to optimize the performance of iterative 

hyperparameter optimization techniques such as the Bayesian technique and population-based 

training (PBT). Therefore, this thesis does not employ these frameworks because all experiments 

deal with at most three hyperparameters, and there is no need for exploiting iterative tuning 

techniques and their associated frameworks. As a matter of fact, when the learning model has 

vast hyperparameter space, the iterative techniques are efficient, and their heavy computation 

load is worthwhile. Here are the most popular hyperparameter optimization frameworks utilized 

in the industry are: 

• Optuna. 

• Hyperopt. 

• SMAC (Sequential Model-based Algorithm Configuration). 

• Ax. 
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• Nevergrad. 

Optuna [58] is a well-regarded framework for hyperparameter optimization developed by 

Preferred Networks, Inc. It offers a versatile and efficient solution for searching for the best 

hyperparameters for machine learning models. By employing sequential model-based 

optimization (SMBO), Optuna effectively explores the hyperparameter space to identify the 

optimal set of values. Here's a concise explanation of how Optuna operates for hyperparameter 

optimization [59]: 

• Define the Objective Function: Begin by defining the objective function, which 

represents the function to be optimized. This function takes hyperparameters as input and 

produces a score or loss value that you aim to minimize or maximize. The objective 

function can be any Python function that assesses the model's performance using a 

specific set of hyperparameters. 

• Define the Search Space: Specify the search space for the hyperparameters you wish to 

optimize. Optuna supports various types of hyperparameters, including continuous, 

discrete, and categorical variables. You can define the range of values that each 

hyperparameter can take within the search space. 

• Create an Optuna Study: A study in Optuna represents a single optimization run. It keeps 

track of the hyperparameter configurations and their respective scores throughout the 

optimization process. You can create a study object using optuna.create_study() and 

specify the optimization direction (minimize or maximize) based on your objective 

function. 
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• Implement the Objective Function: Within the objective function, sample the 

hyperparameters using Optuna's suggested APIs. Optuna provides different methods to 

sample hyperparameters, such as suggest_uniform() for continuous variables, 

suggest_categorical() for categorical variables, and suggest_int() for integer variables. 

These sampled hyperparameters can be accessed within the objective function to train 

and evaluate the machine-learning model. 

• Optimize the Objective Function: Initiate the optimization process by calling the 

study.optimize() method. Optuna will iteratively explore the hyperparameter space, 

suggesting new configurations based on past results and their scores. Advanced 

algorithms like Tree-structured Parzen Estimator (TPE) or Gaussian Process model the 

relationship between hyperparameters and scores. 

• Access the Best Hyperparameters: Once the optimization process concludes, you can 

access the best set of hyperparameters and their corresponding score using the 

study.best_params and study.best_value attributes, respectively. These represent the 

optimal hyperparameters discovered during the optimization process. 

   Optuna also offers additional features like early stopping based on pruning, parallel execution 

of trials, and integration with popular machine learning frameworks like TensorFlow, PyTorch, 

and scikit-learn. Indeed, it is a highly effective framework for hyperparameter optimization, 

significantly enhancing the efficiency and efficacy of finding the optimal hyperparameters for 

machine-learning models. 

   Hyperopt [60] is a Python library developed by James Bergstra and collaborators. It utilizes the 

Tree-structured Parzen Estimator (TPE) algorithm to optimize hyperparameters through 
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Bayesian optimization. Hyperopt is flexible and allows the use of custom search spaces and 

optimization algorithms. 

   SMAC [61] is an optimization framework that incorporates surrogate models and evolutionary 

algorithms. It was developed by researchers at the University of Freiburg and is known for its 

efficient performance on complex and expensive-to-evaluate objective functions. 

   Ax [62] is a hyperparameter optimization library developed by Facebook AI, it uses Bayesian 

optimization to efficiently search for optimal hyperparameters. It is designed to be easy to use 

and provides built-in support for parallel evaluations. 

   Nevergrad [63] is also developed by Facebook AI; it is an optimization platform that includes a 

wide range of optimization algorithms, including Bayesian optimization and genetic algorithms. 

It is designed to be modular and versatile, making it suitable for a variety of optimization 

problems, including hyperparameter tuning. 

 2.5. Learning Models 

   In this chapter, a set of hyperparameter tuning techniques is presented, encompassing both 

utilized and unused methods in this thesis. These techniques are applicable to diverse machine 

and deep learning models. Additionally, the chapter showcases a comprehensive selection of 

commonly used models in the deep and machine learning field. Some of these models belong to 

traditional machine learning, while others are part of the realm of deep learning. Within the 

thesis, hyperparameter tuning techniques are specifically applied to five distinct learning models 

covering almost the most common types of learning models to perform 3D image semantic 

segmentation, binary classification, and dataset visualization. They are chosen from the broader 
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set of models introduced in this chapter, including supervised and unsupervised machine learning 

and deep convolutional and feedforward neural network.  

2.5.1. PointNet Convolutional Neural Network (Deep Learning Model). 

   This subsection presents an overview of PointNet architecture and its hyperparameters and 

regularization approaches. 

2.5.1.1. PointNet Structure 

   A PointNet deep neural network in [64] is selected among the five learning models tuned in the 

thesis. It performs 3D semantic segmentation and classification for pipes and valves introduced 

to CNN as a point cloud dataset. The source code of PointNet is available to the research 

community as an open source [65]. This CNN is a modified version of the original PointNet-

based visual classifier in [66], whose architecture is shown in Figure 8. Based on this diagram, 

the PointNet CNN performs two main tasks: multi-class classification and 3D semantic 

segmentation. Notably, CNN classifies the objects in the input point clouds and uses their global 

features to perform pixel-wise classification, commonly called semantic segmentation. This 

CNN is mainly based upon convolutional deep neural networks [10] consisting of convolutional 

and maximum pooling layers. Convolutional layers are the basis of multi-layer perceptron (mlp) 

shown in Figure 8. CNNs act as feature extractors like VGG, ResNet, PointNet, and Inception. 

These extractors in VGGNet [13] produce features with a much smaller width and height than 

the input image based on padding and stride sizes but have a much bigger depth based upon the 

number of convolutional filters in the single convolutional layers. Nevertheless, PointNet CNN 

deals with input point clouds, so the convolutional layers (mlps) only increase the depth of points 

data representation. The maximum pooling layers generate global features invariant with small 
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translations in pixels of input points. Thus, this property of max pooling filters makes PointNet 

robust at object recognition and classification. 

   A Softmax layer is used as an output layer to apply cross-entropy loss function during training 

and cross-validation for multi-class classification purposes. This classifier has three classes: 

pipes, valves, and background. The Softmax layer has a set of activation units as many as the 

number of classified classes. These activation units give scores to the classes; the class with the 

highest score takes the value One, and the rest take zeros. These scores are updated during 

training until the cross-entropy loss function converges to a minimal value. [67] exhibits detailed 

information about the analytical analysis and applications of the cross-entropy loss function.  

 

Figure 8. PointNet Architecture. Reproduced from [66]             

2.5.1.2. Hyperparameters and Regularization Techniques of PointNet 

   The PointNet model has the following hyperparameters: number of convolutional and max 

pooling layers, block-to-stride ratio, number of points for each training example, mini-batch size, 

momentum (𝛽1), RMSProb (𝛽2), learning rate decay and learning rate (𝛼). 
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   The learning model is trained using stochastic gradient descent (SGD) [68], so the dataset 

samples are divided into several mini-batches depending on the mini-batch size selected by the 

developer. SGD is faster than the regular gradient descent, in which the whole dataset is trained 

in one big batch; nonetheless, SGD makes the model’s weights converge to less optimal minima. 

Consequently, mini-batch size is a critical hyperparameter that significantly affects the deviation 

of classification accuracy between training and validation; in other words, it has a remarkable 

impact on variance. The smaller the mini-batch size is, the less variance and generalization gap 

the model has. Hence, [69] gives a practical recommendation to researchers and developers to 

select a mini-batch with a size of 16 or 32 dataset samples. This size would ensure that model 

can generalize to diverse cross-validation and test datasets and not overfit the training dataset.  

   Compared to batch gradient descent, SGD slows down convergence to optimal minima because 

the value of cross-entropy loss oscillates upwards and downwards, as shown in Figure 9. 

Accordingly, the hyperparameter, momentum (𝛽1), is exploited to damp this oscillation of SGD’s 

cross-entropy loss to accelerate its convergence, as shown in Figure 9. Besides, it is proven 

empirically in [70] that the momentum supports the model’s generalization, which is significant 

in getting the remarkable results obtained in this thesis work. The momentum’s recommended 

value by Ng in [14] is from 0.9 to 0.999 for various deep neural networks. 

  

Figure 9.  SGD vs. SGD +Momentum. Reproduced from [69] 
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   Indeed, PointNet does not use a stand-alone momentum to optimize the SGD, but an Adaptive 

Moment Estimation (Adam) optimizer [71] is utilized to speed up learning by damping the 

fluctuation in the values of the cross-entropy loss function during training due to the noisy 

behavior of mini-batch gradient descent in this classifier. In this way, the loss function can 

converge to a minimal value in a much shorter time. It [72] is a dynamic optimization algorithm 

that incorporates both momentum and scaling. It combines the advantages of RMSProp [73] and 

SGD with Momentum [74]. This optimizer is specifically designed to be effective for non-

stationary objectives and challenges involving gradients that are extremely noisy or sparse. The 

mathematical formula for updating the learning model’s weights based on the Adam optimizer is 

as follows: 

 𝑤𝑡 = 𝑤𝑡−1 – α 
�̂�𝑡

𝜖+√�̂�𝑡
 , 

with: 

�̂�𝑡 = 
𝑚𝑡

1−𝛽1
 , 

𝑣𝑡 = 
𝑣𝑡

1−𝛽2
 , 

𝑚𝑡 = 𝛽1 𝑚𝑡−1 + (1 - 𝛽1) 𝑑𝑤𝑡 , 

𝑣𝑡 = 𝛽2 𝑣𝑡−1 + (1 - 𝛽2) 𝑑𝑤𝑡
2 , 

where: α is the learning rate, 𝛽1 is the momentum parameter, 𝛽2 is the RMSProb parameter, and 

𝜖 is a small number around 10−8 to avoid dividing by zero that would cause a fatal error during 
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training. Figure 10 shows the impact of the Adam optimizer to speed up the convergence of SGD 

of PointNet CNN. 

 

Figure 10. Adam Optimizer Impact on Convergence Speed of Gradient Descent. Reproduced From [72] 

 

   The learning rate is a crucial hyperparameter determining SGD’s convergence accuracy and 

speed. For instance, if the learning rate is very high, SGD overshoots the optimal minima and 

converges to an inaccurate value. On the contrary, if the learning rate is very low, SGD 

converges so slowly. Then, the learning rate should be tuned carefully to avoid overshooting the 

optimum model’s weights and the slow speed of the model learning. Ng advises researchers in 

[14] to tune the learning rate within the scale from 0.0001 to 1 for all types of deep neural 

networks.  
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   Furthermore, A learning rate decay [75] is used as an optimizer to decrease the learning rate 

gradually from 0.5 to 0.99 over the training epochs to ensure the convergence of the loss function 

to local optimal minima. Thus, the mini-batch gradient descent slows down in the last epochs to 

precisely pick up the optimal minima. The learning rate decay has two techniques: fixed interval 

scheduling and continuous decay. Fixed interval scheduling has predefined discrete steps; the 

mini-batch gradient descent uses these steps consecutively. Each step is used as a learning rate 

decay during a fixed interval of training epochs, as shown in Figure 11. On the other hand, the 

continuous decay technique is based on a continuous mathematical function like exponential 

decay to make the learning rate decay over training epochs continuously. 

 

Figure 11. Fixed Interval Scheduling-Based Learning Rate Decay. Reproduced From [76] 

    A couple of regularization techniques, Dropout [77] and Early Stopping were exploited to 

prevent the model from overfitting the training dataset and make it generalize to the unseen 

dataset in the case of cross-validation and test datasets. Dropout was applied on the last fully-
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connected layer direct before the Softmax output layer with a keep-prob ratio of 0.7, which 

means that seventy percent of the units in this layer are most likely to be dropped out during 

training to simplify NN architecture, thereby decreasing the generalization gap between training 

and validation. In other words, all incoming and outgoing links connected to the dropped units 

are removed. Dropout was turned off during testing to remove any source of randomness in the 

results due to the stochastic behavior of the dropout technique at removing the activation units in 

the CNN. Figure 12 shows applying the dropout technique on two consecutive hidden layers 

with a keep-prob ratio of 0.4.  

 

Figure 12. Dropout Regularization in Neural Networks. Reproduced From [77] 

   An early stopping strategy was operated to optimize cross-entropy loss and overcome 

overfitting simultaneously in a non-orthogonal manner. proposes a mathematical formula to 

guarantee selecting the minimum cross-validation loss while achieving convergence in training 
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cross-entropy loss function, as shown in Figure 13; otherwise, early stopping is canceled, and 

training continues till the last epoch, the 100th epoch in this model. Other hyperparameters like 

learning rate, momentum, and mini-batch size selection will be discussed in detail later in the 

following subsections. 

 

Figure 13. Early Stopping Strategy: Regularization Technique. Reproduced From [78] 

 

   TensorFlow framework [79] presents open-source APIs to ease the development of mini-batch 

gradient descent along with involving the associated optimizers and hyperparameters 

aforementioned. 

2.5.2. Non-Regularized Standard Feedforward Neural Network (Deep Learning Model) 

2.5.2.1. Feedforward Neural Network Structure 

   Deep feedforward networks [10], also known as feedforward neural networks (FNN) or 

multilayer perceptrons (MLPs), are fundamental models in the field of deep learning. Their 

purpose is to approximate a given function f*(x). For instance, in classification tasks, y = f*(x) 

maps an input x to a category y. A feedforward network defines a mapping y = f (x; θ) and learns 

the optimal parameter values θ that yield the best function approximation. These models are 
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referred to as "feedforward" because the information flows through the function being evaluated 

from the input x, through intermediate computations that define f, and finally to the output y. 

Unlike recurrent neural networks [80], feedforward networks lack feedback connections where 

the model's outputs are fed back into itself. Machine learning developers heavily rely on 

feedforward networks, as they serve as the foundation for various important applications. For 

example, convolutional networks used in image object recognition are a specialized type of 

feedforward network. Feedforward networks are essential in understanding and developing 

recurrent networks, which are widely used in natural language applications. The term "networks" 

in feedforward neural networks stems from the fact that they are typically constructed by 

combining multiple functions. The model is represented by a directed acyclic graph that 

illustrates how these functions are composed together. A common structure in neural networks is 

a chain-like composition of functions, where three functions 𝑓(1), 𝑓(2), and 𝑓(3) are connected in 

a sequence to form f(x) = 𝑓(3)(𝑓(2)(𝑓(1)(x))). Each function in this chain is referred to as a layer 

of the network, with 𝑓(1) being the first layer, 𝑓(2) being the second layer, and so on, as shown in 

Figure 14. 
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Figure 14. Three-Layer Feedforward Neural Network. Reproduced From [81] 

 

   The terminology "deep learning" comes from the fact that the depth of a model is determined 

by the overall length of the chain in a feedforward network. The last layer of the network is 

referred to as the output layer. During the training of a neural network, the objective is to make 

f(x) closely match f*(x). The training data provides noisy and approximate examples of f*(x) 

evaluated at different training points. Each example x is associated with a label y ≈ f*(x). The 

training examples explicitly specify the desired behavior of the output layer at each point x, 

aiming to produce a value that closely aligns with y. However, the behavior of the other layers is 

not directly specified by the training data. The learning algorithm must determine how to utilize 

these layers to achieve the desired output, but the training data does not indicate the specific 

tasks each individual layer should perform. These unspecified layers are referred to as hidden 

layers. The networks are called "neural" as they draw loose inspiration from neuroscience. Each 

hidden layer in the network typically consists of vector-valued elements, where the 
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dimensionality of these hidden layers determines the model's width. Each element in the vector 

can be seen as analogous to a neuron, with the layer representing a collection of units that 

function in parallel. Each unit, similar to a neuron, receives input from multiple other units and 

computes its activation value. The concept of using multiple layers with vector-valued 

representations is influenced by neuroscience. The selection of functions 𝑓 (i)(x) used to compute 

these representations is loosely guided by observations of the functions computed by biological 

neurons. However, modern neural network research encompasses various mathematical and 

engineering disciplines, and the primary goal is not to precisely mimic brain functioning. It is 

more accurate to view feedforward networks as machines designed for function approximation 

that prioritize statistical generalization, occasionally drawing insights from our understanding of 

the brain, rather than serving as brain models themselves. 

   Standard feedforward neural networks are the basis of convolutional neural networks (CNNs) 

used for computer vision (CV) applications and recurrent neural networks (RNNs) utilized for 

natural language processing (NLP) applications. 

2.5.2.2. Hyperparameters 

   The hyperparameters of non-regularized standard feedforward neural network are: 

• Learning rate and its decay rate. 

• Number of layers of the network. 

• Number of nodes in each layer. 

• Mini-batch size. 

• Momentum (𝛽1). 

• Type of activation functions through all layers. 
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   Activation functions [14, 82] play a crucial role in the computations of feedforward neural 

networks by introducing non-linearity. They are applied to the outputs of individual neurons, 

determining their activation levels, which are then passed as inputs to the next layer. By enabling 

neural networks to learn and represent complex relationships between inputs and outputs, 

activation functions facilitate the solution of intricate problems. There exist several widely used 

activation functions in feedforward neural networks. A feedforward usually does not use all types 

of activation functions, but one or two of them are carefully selected for hidden and output layers 

of FNN depending upon the application, either logistic regression, multi-class classification, or 

linear regression. Let's explore some of them: 

a) Sigmoid Activation [83]: 

    The sigmoid function also referred to as the logistic function, possesses an S-shaped 

curve, as shown in Figure 15 , mapping inputs to values ranging from 0 to 1. Its formula 

is: f(x) = 1 / (1 + e^(-x)). The sigmoid activation function proves valuable in scenarios 

where outputs need to represent probabilities, such as in binary classification problems. 

 

Figure 15. Sigmoid Function 

 

b) Hyperbolic Tangent Activation (Tanh): 
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   Similar to the sigmoid function, the hyperbolic tangent function maps inputs to values 

between -1 and 1, as shown in Figure 16. It is defined as: f(x) = (e^(x) - e^(-x)) / (e^(x) + 

e^(-x)). Tanh is commonly utilized in hidden layers of neural networks as it generates 

outputs centered around zero, aiding in training convergence. 

 

Figure 16. Hyperbolic Tangent Activation Function 

c) Rectified Linear Unit (ReLU):     

   The ReLU function is a piecewise linear function that outputs the input if it is positive; 

otherwise, it outputs zero, as shown in Figure 17. Its definition is: f(x) = max (0, x). 

ReLU has gained popularity due to its simplicity and its ability to address the vanishing 

gradient problem, which can arise in deep neural networks. It is usually used for both 

hidden and output layers in non-negative linear regression applications. 
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Figure 17. RELU Activation Function 

 

d) Leaky ReLU: Leaky ReLU is an extension of the ReLU function that introduces a small 

negative slope for negative inputs, preventing the occurrence of dormant neurons, as 

shown in Figure 18. It is defined as f(x) = max (0.01x, x). The small slope ensures that 

neurons are not completely deactivated for negative inputs. 

 

Figure 18. Leaky RELU Activation Function 
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e) Softmax Activation: The Softmax function is employed in the output layer of neural 

networks when dealing with multi-class classification tasks. Taking a vector of real 

numbers as input, it normalizes them into a probability distribution over the classes, 

ensuring that the sum of probabilities equals 1. It is defined as: 𝜎(𝑧)𝑖 = 
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

 for i = 1, 

…, K, z = (𝑧1, 𝑧2, …, 𝑧𝐾 ), and ∑ 𝜎(𝑧)𝑖 
𝐾
1 = 1. 

2.5.3. Regularized Standard Feedforward Neural Network (Deep Learning Model). 

   The hyperparameters of non-regularized standard feedforward neural network are: 

a) Learning rate and its decay rate. 

b) Number of layers of the network. 

c) Number of nodes in each layer. 

d) Mini-batch size of SGD. 

e) Momentum (𝛽1). 

f) Type of activation functions through all layers. 

g) Regularization Parameter (λ). 

   Regularization techniques are exploited to avoid the overfitting of feedforward neural network. 

When learning model overfits the training dataset, they cannot generalize well to cross-validation 

and test dataset. Therefore, regularization minimizes the generalization gap between cross-

validation/testing and training datasets, as shown in Figure 19. The most common regularization 

techniques are [84]: 

a) LP-Norm (Weight Decay) Regularization. 

b) Dropout Regularization. 



  

44 
 

c) Early Stopping Strategy. 

   Dropout and early stopping techniques were discussed in detail in Section 2.4.1.2 above. 

Therefore, the scope of this subsection is explaining the principle of LP-norm regularization 

technique. 

 

Figure 19. Impact of Regularization on Learning Model's Test Accuracy. Reproduced From [85] 

 

2.5.3.1. LP-Norm (Weight Decay) Regularization 

   Regularization [10, 14] has been a common practice in machine learning for many years, even 

predating the emergence of deep learning. Linear models like linear regression and logistic 

regression have straightforward and effective regularization strategies. Various regularization 

approaches aim to limit the capacity of models, such as neural networks, linear regression, or 

logistic regression, by adding a parameter norm penalty Ω(θ) to the objective function J. The 

regularized objective function, denoted as J, is defined as J (θ; X, y) = J (θ; X, y) + α Ω(θ), where 

α ∈ [0, ∞) is a hyperparameter that controls the contribution of the norm penalty term, Ω, relative 

to the standard objective function J. Setting α to 0 eliminates regularization, while larger values 

of α lead to stronger regularization. When our training algorithm minimizes the regularized 
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objective function J, it simultaneously reduces the original objective J on the training data and 

some measure of the parameter size, θ (or a subset of the parameters. Different choices for the 

parameter norm Ω can result in different preferred solutions.  

   In the case of neural networks, we typically choose a parameter norm penalty Ω that only 

penalizes the weights of the affine transformation at each layer, leaving the biases unregularized. 

Biases typically require less data than weights to accurately estimate their values. Each weight 

captures the interaction between two variables, thus requiring observations in various conditions 

to fit well. On the other hand, each bias controls a single variable, meaning that leaving them 

unregularized doesn't introduce excessive variance. Additionally, regularizing the bias 

parameters can lead to significant underfitting. Therefore, the vector w represents all the weights 

affected by the norm penalty, while the vector θ includes both w and the unregularized 

parameters. 

   In the context of neural networks, it may be desirable to use separate penalties with different α 

coefficients for each layer of the network. However, since searching for optimal values of 

multiple hyperparameters can be computationally expensive, it is reasonable to apply the same 

weight decay across all layers to reduce the search space. 

   There are three common forms of LP-norm regularization in the field of machine learning: 

a) L1-Norm Regularization [86]: 

 It is used for logistic regression, including feedforward networks. The optimization 

function using this regularization is: 

J (W; b) = 
1

𝑚
 ∑ 𝐽(𝑖) (𝑊(𝑖);  𝑏(𝑖)) 𝑚

𝑖=1   + 
𝜆

2𝑚
  ‖𝑊‖1, 

‖𝑊‖1 = ∑ |𝑊𝑗|,
𝑛𝑥
𝑗=1  
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where: J (W; b) is the optimization cost function, W: logistic regression model’s 

parameters/weights, ‖𝑊[𝑙]‖
1
 is the value of L1-norm of the weights, b is the bias, λ is 

the regularization parameter, and m is the number of training examples. 

b) L2-Norm Regularization [87]: 

 It is used for logistic regression, including feedforward networks. The optimization 

function using this regularization is: 

J (W; b) = 
1

𝑚
 ∑ 𝐽(𝑖) (𝑊(𝑖);  𝑏(𝑖)) 𝑚

𝑖=1   + 
𝜆

2𝑚
  ‖𝑊‖2

2 , 

‖𝑊‖2
2 =∑ 𝑊𝑗

2 ,
𝑛𝑥
𝑗=1  

where: J (W; b) is the optimization cost function, W: logistic regression model’s 

parameters/weights, b is the bias, ‖𝑊‖2
2 is the squared value of L2-norm of the 

weights, λ is the regularization parameter, and m is the number of training examples. 

c) Frobenius-Norm Regularization [88]: 

 It is used for neural networks, including feedforward networks. The optimization 

function using this regularization is: 

J (W; b) = 
1

𝑚
 ∑ 𝐽(𝑖) (𝑊(𝑖);  𝑏(𝑖)) 𝑚

𝑖=1   + 
𝜆

2𝑚
  ∑ ‖𝑊[𝑙]‖

𝐹

2𝐿
𝑙=1  , 

 ‖𝑊[𝑙]‖
𝐹

2
 = ∑ ∑ (𝑊𝑖𝑗

[𝑙]
)2 𝑛[𝑙−1]

𝑗=1
𝑛[𝑙]

𝑖=1 , 

where: J (W; b) is the optimization cost function, 𝑊[𝑙]: Feedforward neural network 

model’s parameters/weights at layer number “𝑙”, b is the bias, ‖𝑊[𝑙]‖
𝐹

2
 is the squared 

value of Frobenius-norm of the weights, 𝑛[𝑙] is the number of nodes in the layer 

number “𝑙”, λ is the regularization parameter, and m is the number of training 

examples. 
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2.5.4. Support Vector Machine (Supervised Machine Learning Model). 

   This subsection presents an overview of the main concepts and hyperparameters of the Support 

Vector Machine. 

2.5.4.1. SVM Concepts 

   Support Vector Machine (SVM) [14] is a widely utilized and potent supervised machine 

learning technique suitable for both classification and regression tasks, particularly effective in 

handling intricate, high-dimensional data. Initially introduced in the 1990s by Vladimir Vapnik 

and colleagues, SVMs have gained substantial popularity in the machine learning domain. The 

primary objective of SVM is to locate an optimal hyperplane that can effectively separate data 

points belonging to different classes while maximizing the margin. This hyperplane acts as a 

decision boundary, enabling SVM to classify new data based on their features. The margin 

represents the distance between the decision boundary and the nearest data points from each 

class, and the SVM algorithm strives to maximize this margin. What sets SVM apart from other 

algorithms is its ability to handle both linearly separable and non-linearly separable data. When 

the data is linearly separable, SVM aims to find a hyperplane that distinctly separates the classes 

with a margin. However, in the case of non-linearly separable data, SVM employs a technique 

known as the kernel trick. This technique maps the original input space into a higher-dimensional 

feature space where the data becomes linearly separable. Consequently, SVM can effectively 

classify complex, non-linear patterns. SVMs are widely regarded as robust and versatile machine 

learning algorithms, offering several key advantages. They possess strong generalization 

capabilities, allowing them to perform well on unseen data. SVMs are also less prone to 

overfitting compared to some other algorithms. Furthermore, the concept of margin 

maximization employed by SVMs makes them less sensitive to outliers. 
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   Nonetheless, SVMs do have certain limitations [3]. They can be computationally demanding, 

particularly when working with large datasets. Selecting an appropriate kernel function and 

tuning the hyperparameters of an SVM can be challenging and require expertise. Despite these 

limitations, SVMs continue to be popular in various fields, including image recognition, text 

classification, bioinformatics, and finance, owing to their effectiveness and versatility in 

handling complex data patterns. 

   Support Vector Machines (SVMs) are advanced supervised machine learning models utilized 

for classification and regression tasks. They excel particularly in solving binary classification 

problems, though they can also be extended to handle multi-class classification challenges. 

SVMs operate on the fundamental principle of identifying an optimal hyperplane that maximizes 

the margin between data points of different classes. This hyperplane serves as the decision 

boundary, maximizing the separation between the closest data points of distinct classes, known 

as support vectors. By maximizing the margin, SVMs aim to enhance generalization and 

robustness when dealing with new, unseen data. 

   Outlined below is a concise overview of the key elements and concepts in SVMs [8]: 

a) Linear Separability:  

 SVMs operate on the assumption that input data can be separated into distinct classes 

through a linear boundary. When the data is linearly separable, SVMs determine the 

hyperplane that maximizes the margin. 

b) Kernel Trick: 



  

49 
 

 To handle non-linearly separable data, SVMs employ the kernel trick. The kernel 

function (similarity function) implicitly maps input data to a higher-dimensional feature 

space, enabling linear separation. Common kernel functions include: 

• Linear Kernel. 

 It is a special case of the polynomial kernel and is restricted by non-negative 

numbers. Its kernel is defined as follows: 

𝑓𝑗
(𝑖) = kernel (𝑥(𝑖),𝑙(𝑗)) = (𝑥(𝑖))𝑇 𝑙(𝑗), 

where 𝑓𝑗 is the kernel function, 𝑥𝑗 is the feature number "𝑗", and 𝑙𝑗 is the 

landmark number “𝑗”, 𝑤ℎ𝑒𝑟𝑒 i = 0, 1, 2, …, m and j = 0, 1, 2, …, n. “𝑚” is the 

number of training examples and “n” is the number of features. 

• Polynomial Kernel. 

 It has a lower performance than Gaussian radial basis function (RBF) kernel. In 

addition, it is limited to non-negative  

𝑓𝑗
(𝑖) = kernel (𝑥(𝑖),𝑙(𝑗)) = ((𝑥(𝑖))𝑇 𝑙(𝑗))𝑑 

𝑊ℎ𝑒𝑟𝑒 𝑓𝑗 is the kernel function, 𝑥𝑗 is the feature number "𝑗", 𝑙𝑗 is the landmark 

number “𝑗”, and d is the polynomial degree, where i = 0, 1, 2, …, m and j = 0, 1, 

2, …, n. “𝑚” is the number of training examples and “n” is the number of 

features. 

• Gaussian Radial Basis Function (RBF). 

𝑓𝑗
(𝑖) = kernel (𝑥(𝑖),𝑙(𝑗))  = exp(−

‖𝑥(𝑖)− 𝑙(𝑗)‖
2

2 𝜎2 ), 
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where 𝑓𝑗 is the kernel function, 𝑥𝑗 is the feature number "𝑗", 𝑙𝑗 is the landmark 

number “𝑗”, and 𝜎 is the decay coefficient of the kernel, where i = 0, 1, 2, …, m 

and j = 0, 1, 2, …, n. “𝑚” is the number of training examples and “n” is the 

number of features. 

• There are other kernels like sigmoid kernel, string kernel, chi-square kernel, 

histogram, and intersection kernel. 

c) Margin: 

 The margin in SVMs represents the region between the decision boundary and the 

support vectors, as shown in Figure 20. SVMs strive to maximize this margin, as it 

corresponds to greater class separation and improves the model's ability to generalize to 

unseen data. 

 

Figure 20. Support Vector Machine (SVM): Large Margin Classification. Reproduced From [89] 

 

d) Soft Margin Classification: 
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 In scenarios where perfect separability is not achievable, SVMs introduce the concept of 

soft margin classification. This involves allowing some misclassifications to strike a 

balance between maximizing the margin and minimizing classification errors. The 

regularization parameter "C" controls the trade-off between margin maximization and 

error minimization. 

e) Support Vectors: 

 Support vectors are data points lying on the margin or misclassified. They play a pivotal 

role in defining the decision boundary and making predictions. SVMs rely exclusively on 

support vectors, making them memory-efficient compared to utilizing the entire dataset. 

f) SVM Training: 

 Training SVMs involves solving a quadratic optimization problem to determine the 

optimal hyperplane. Various optimization algorithms, such as Sequential Minimal 

Optimization (SMO) and gradient descent, are employed to efficiently solve the 

optimization problem. 

g) SVM Extensions: 

 SVMs have been extended to handle multi-class classification using techniques like One-

vs-One (OvO) and One-vs-All (OvA). Additionally, SVMs can be applied to regression 

tasks by formulating the problem as an optimization task to find a suitable hyperplane 

within a specified margin. 

   Support Vector Machines have gained substantial popularity due to their strong theoretical 

foundations, versatility, and capability to handle complex datasets. Their robustness, 
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effectiveness in high-dimensional spaces, and generalization capabilities make them valuable 

tools in machine learning and pattern recognition applications. 

2.5.4.2. SVM Hyperparameters 

   Hyperparameters can be extracted from the optimization function of SVM [90]. The cost 

function of SVM is as follows: 

Cost (𝜃) = C ∑  [𝑦(𝑖) 𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖))  +  (1 − 𝑦(𝑖)) 𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖))]𝑚
𝑖=1  + 

1

2
 ∑ 𝜃𝑗

2𝑛
𝑗=1 (1), 

where C ( 
1

𝜆
 ) is a regularization parameter to ensure trade-off between minimizing the cost 

function and maintaining large classification margin. It is the reciprocal of the regularization 

parameter used in linear regression, logistic regression, and deep neural networks. The kernel 

function, 𝑓(𝑖) = [
𝑓0

(𝑖)

⋮

𝑓𝑛
(𝑖)

], where n is the number of features.  

   The Cost Function is used to train the SVM. By minimizing the value of J (𝜃), it is ensured that 

the SVM is as accurate as possible. In the equation, the functions cost1 and cost0 refer to the cost 

for an example where y=1 and the cost for an example where y=0, as shown in Figure 21. For 

SVMs, the cost (𝜃)  is determined by kernel (similarity) functions. The most efficient kernel is 

the Gaussian Radial Basis Function (RBF) kernel that satisfies the following relation: 

𝑓𝑗
(𝑖) = kernel (𝑥(𝑖),𝑙(𝑗))  = exp(−

‖𝑥(𝑖)− 𝑙(𝑗)‖
2

2 𝜎2 ) (2), 

𝑊ℎ𝑒𝑟𝑒 𝑓𝑗 is the kernel function, 𝑥𝑗 is the feature number "𝑗", 𝑙𝑗 is the landmark number “𝑗”, and 

𝜎 is the decay coefficient of the kernel, where i = 0, 1, 2, …, m and j = 0, 1, 2, …, n. “𝑚” is the 

number of training examples and “n” is the number of features. 
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Figure 21. Cost Function: SVM VS Logistic Regression. Reproduced From [91] 

 

   According to the equations (1) and (2), the main hyperparameters of SVM are C-

hyperparameter for regularization and sigma (𝜎) that controls the decay rate of the RBF kernel. 

2.5.5. Principal Component Analysis (Unsupervised Machine Learning Model). 

   Principal Component Analysis (PCA) [3] is a widely utilized unsupervised method for 

reducing the dimensionality of data in the fields of speeding up machine learning model’s 

training and compressing data analysis. It enables the transformation of a high-dimensional 

dataset into a lower-dimensional space while retaining the essential information. It was 

introduced by Karl Pearson in 1901. Moreover, PCA has become an indispensable tool for 

exploring and visualizing data, as well as extracting meaningful features. Indeed, PCA is 

inevitable to use when the learning model is trained very slowly or it consumes huge memory 

size. The primary goal of PCA is to identify a new set of uncorrelated variables, called principal 

components, that capture the maximum variance in the original dataset. Each principal 
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component is a linear combination of the original variables, arranged in descending order of 

variance explained. By selecting a subset of these components, the data's dimensionality can be 

effectively reduced while preserving as much pertinent information as possible.  

2.5.5.1. PCA Procedures 

   Executing PCA involves several steps [92] as visualized in Figure 22: 

a) Firstly, the data is standardized to have zero mean and unit variance, ensuring equal 

contributions from all variables by feature scaling and mean normalization as follows: 

• Calculate the mean of each feature in the learning mode: 

µ𝑗 = 
1

𝑚
 ∑ 𝑥𝑗

(𝑖)𝑚
𝑖=1 , 

where µ𝑗 is the mean of feature number "j", m is the number of training examples, 

and 𝑥𝑗
(𝑖)

 is the feature’s value at the training example number "i". 

• Replace each 𝑥𝑗
(𝑖)

 with 𝑥𝑗
(𝑖)

 - µ𝑗 to obtain zero mean. 

• Normalize the mean: 

𝑥𝑗
(𝑖)

 = 
𝑥𝑗

(𝑖)
 

√
1

𝑚
 ∑ (𝑥

𝑗
(𝑖)

)2𝑚
𝑖=1

 

b) Then, the covariance or correlation matrix of the standardized data is computed as 

follows:  

Sigma = Covariance matrix = 
1

𝑚
 ∑ (𝑥(𝑖))𝑚

𝑖=1  (𝑥(𝑖))𝑇, 

where (𝑥(𝑖))𝑇 is the transpose of the features’ matrix with a dimension of n x 1 for the 

training example number “𝑖”, where n is the number of learning model’s features. 
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c) Subsequently, the eigen vectors and eigen values of this matrix are determined using the 

singular value decomposition (SVD) method [93], with the eigenvectors representing the 

principal component directions on which the original dataset’s features are projected and 

the eigen values indicating the variance explained by each component. 

[U S V] = svd (Sigma), 

where U is the matrix of unit eigen vectors that represent the directions of all PCA’s 

components before reduction, in the case that number of PCA’s components equal the 

number of learning model’s features, with a dimension of m x n, and S is the eigen-values 

matrix whose diagonal contains the variance of each PCA’s component. 

d) Finally, the original data is projected onto the eigen vectors to obtain the principal 

components as follows: 

• Extract unit eigen vectors as many as the PCA’s components whose number is K 

as follows: 

U𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = U [1: END, 1: K], 

where U𝑟𝑒𝑑𝑢𝑐𝑒𝑑 is the matrix of unit eigenvectors that represent the directions of 

all PCA’s components after reduction, in the case that number of PCA’s 

components (K) less than the number of learning model’s features (n), with a 

dimension of m x K, m is the number of training examples, and K is the number 

of PCA’s components after dimensionality reduction. 

• Project original dataset X onto the eigenvectors in  U𝑟𝑒𝑑𝑢𝑐𝑒𝑑 to obtain the PCA’s 

components as follows: 

Z = (U𝑟𝑒𝑑𝑢𝑐𝑒𝑑)𝑇 X, 
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where U𝑟𝑒𝑑𝑢𝑐𝑒𝑑 is the matrix of unit eigen vectors that represent the directions of 

all PCA’s components after reduction, in the case that number of PCA’s 

components (K) less than the number of learning model’s features (n), with a 

dimension of m x K, m is the number of training examples, and K is the number 

of PCA’s components after dimensionality reduction, and X  is the features’ 

matrix with a dimension of n x m for the training example number “𝑖”, where n is 

the number of learning model’s features. 

   PCA offers several advantages in data analysis. It simplifies complex datasets by reducing the 

number of variables, facilitating easier data visualization and interpretation. Additionally, it aids 

in identifying important patterns, relationships, and trends within the data. Moreover, PCA can 

be employed for feature extraction, wherein the most informative principal components are 

selected to train machine learning models, resulting in reduced computational complexity and 

mitigated risks of overfitting. 

 

Figure 22. Principal Component Analysis (PCA): Dimensionality Reduction and Projection. Reproduced From [94] 
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   However, it's important to consider the limitations of PCA. It assumes linearity in the data and 

may not effectively capture non-linear relationships. Interpreting the principal components can 

be challenging as they are combinations of the original variables. Furthermore, PCA relies on the 

assumption of variable normality, and outliers can significantly impact the results. Despite these 

limitations, PCA remains a valuable technique for exploratory data analysis, dimensionality 

reduction, and feature extraction tasks. Its applications span diverse domains such as image and 

signal processing, genetics, finance, and social sciences, where it provides insights and simplifies 

the analysis of complex datasets.  

2.5.5.2. PCA Hyperparameters 

   The main hyperparameter at PCA learning models is the number of PCA components (K). This 

hyperparameter should be tuned to obtain the minimum value for K that would satisfy the 

following criterion [3, 14]: 

∑ 𝑠𝑖𝑖
𝐾
𝑖=1

∑ 𝑠𝑖𝑖
𝑛
𝑖=1

 ≥ 0.9, 

where 𝑠𝑖𝑖 is an element of the diagonal of the “U” matrix calculated by the singular value 

decomposition of the covariance matrix as follows: 

Sigma = Covariance Matrix = 
1

𝑚
 ∑ (𝑥(𝑖))𝑚

𝑖=1  (𝑥(𝑖))𝑇 

[U S V] = svd (Sigma) 

∑ 𝑠𝑖𝑖
𝐾
𝑖=1

∑ 𝑠𝑖𝑖
𝑛
𝑖=1

 is called the retained variance. It should be at least 0.9 to maintain the high accuracy of the 

learning model after the dimensionality reduction. 
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2.5.6. K-means Clustering (Unsupervised Machine Learning Model) 

   K-means clustering [95, 96] is a well-known unsupervised machine learning technique utilized 

to partition a given dataset into K clusters based on their similarities. The primary objective of 

the algorithm is to group similar data points together by associating them with the nearest cluster 

centroid. This process aims to minimize the overall intra-cluster variance or the sum of squared 

distances between data points and their respective centroids. The K-means algorithm operates 

through the following steps: 

• Initialization: Initially, K data points are randomly chosen to serve as the initial cluster 

centroids. 

• Assignment Step: Each data point is then assigned to the closest cluster centroid. This is 

accomplished by computing the distance, often using the Euclidean distance measure, 

between each data point and all centroids. The data point is allocated to the cluster whose 

centroid is closest to it. 

• Update Step: After assignment, the centroids of each cluster are recalculated as the mean 

of all the data points assigned to that cluster. This step relocates the centroids to the 

centers of their respective clusters. 

• Repeat Assignment and Update: Steps 2 and 3 are repeated iteratively until the algorithm 

converges. Convergence happens when data points are consistently assigned to the same 

clusters, or a predefined maximum number of iterations is reached. 

• Finally, the algorithm terminates, and the data points are grouped into K clusters, each 

represented by its centroid. 

   Choosing an appropriate value of K is crucial in the K-means algorithm. Various methods, such 

as the elbow method, silhouette score, or domain knowledge-based selection, are employed to 
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determine the most suitable K. Despite some limitations, such as sensitivity to initial centroids 

and difficulties in handling non-spherical clusters or clusters of varying sizes, K-means remains 

widely used in fields like image segmentation, customer segmentation, anomaly detection, and 

others, due to its simplicity and efficiency. It serves as a foundational algorithm in clustering and 

serves as a stepping stone to understanding more intricate clustering algorithms. 

   K-means clustering is a relatively straightforward algorithm with fewer hyperparameters to 

adjust compared to more complex machine learning methods. Nevertheless, there are several 

crucial hyperparameters that can influence the performance and behavior of the K-means 

algorithm: 

• Number of Clusters (K): The most vital hyperparameter in K-means is the number of 

clusters (K) to create. The choice of K significantly impacts the clustering result, 

determining how finely the data will be grouped. Selecting the right K value is crucial 

since too few clusters might oversimplify the data, while too many can lead to overfitting 

or capture noise. 

• Initialization Method: To initiate the clustering process, K-means requires an initial set of 

K centroids. The algorithm's sensitivity to the initial centroids is a known issue, as 

different initializations can lead to varying clustering outcomes. Several initialization 

methods exist, such as random initialization, K-means++, and K-medoids (PAM). K-

means++ is a popular choice as it attempts to place the initial centroids far apart, leading 

to more stable results. 

• Maximum Number of Iterations: K-means is an iterative algorithm, updating cluster 

assignments and centroids in each iteration until convergence. You can set a 

hyperparameter for the maximum number of iterations to control how many iterations the 
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algorithm should perform before stopping. Typically, convergence is reached well before 

reaching the maximum iteration limit. 

• Convergence Tolerance: To determine when the algorithm has converged, you can set a 

convergence tolerance or threshold value. The algorithm stops iterating when the change 

in cluster assignments or centroids becomes smaller than the specified tolerance. 

• Distance Metric: By default, K-means employs the Euclidean distance metric to calculate 

the distance between data points and centroids. However, you can choose other distance 

metrics depending on your data's nature. 

In practice, the most common hyperparameters to tune in K-means are the number of clusters (K) 

and the initialization method. The ideal K value often relies on the specific problem and domain 

knowledge. Techniques like the elbow method or silhouette score can aid in determining an 

appropriate K value, but it's essential to consider that K-means is sensitive to noisy data and 

outliers. Preprocessing the data and handling outliers before applying K-means clustering is a 

recommended practice. 

2.5.7. Decision Trees (Supervised Machine Learning Model) 

   Decision Trees [97, 98] are a well-known supervised machine learning technique used for both 

classification and regression tasks. They are valued for their simplicity, interpretability, and 

effectiveness in making decisions based on input features. The core concept of Decision Trees 

involves recursively dividing the data into subsets based on different feature values, resulting in a 

tree-like structure where internal nodes represent decisions based on features, and leaf nodes 

correspond to predicted outputs. Here's a breakdown of how Decision Trees function: 

• Tree Construction: The algorithm begins with the entire dataset at the root node of the 

tree. It selects the most informative feature to split the data based on certain criteria like 
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Gini impurity, entropy, or mean squared error, which assess the homogeneity of the 

created subsets. The data is then divided into branches, with each branch representing a 

unique value of the chosen feature. 

• Recursive Splitting: The process of feature selection and branching continues for each 

subset (child node) until a stopping condition is met. Stopping criteria may involve 

reaching a maximum tree depth, having a minimum number of samples in a node, or 

achieving data homogeneity. 

• Tree Pruning (Optional): After constructing the full tree, pruning techniques may be 

applied to prevent overfitting. Pruning involves removing branches that contribute little 

to improving the tree's predictive performance. 

• Prediction: To predict outcomes for new data points, they traverse the tree from the root 

node to a leaf node, following the decisions made at each internal node based on input 

features. The prediction at a leaf node corresponds to the majority class (in classification) 

or the mean value (in regression) of the samples in that leaf. 

Here, the advantages and disadvantages of the algorithm can be summarized as follows: 

• Advantages of Decision Trees: 

✓ Easy to comprehend and interpret, making them suitable for visualization and 

explanation. 

✓ Can handle both categorical and numerical data without extensive data preprocessing. 

✓ Able to capture non-linear relationships between features and the target variable. 

✓ Implicitly perform feature selection by selecting important features near the top of the 

tree. 

• Disadvantages of Decision Trees: 
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✓ Prone to overfitting, particularly when the tree becomes deep and complex. 

✓ Sensitive to slight changes in the data, potentially resulting in different tree structures. 

✓ May not be ideal for tasks with highly complex relationships between features and the 

target variable. 

   Ensemble methods like Random Forest and Gradient Boosting can mitigate some of the 

limitations of individual Decision Trees by combining multiple trees to enhance predictive 

performance and generalization. Despite their drawbacks, Decision Trees remain widely used 

due to their simplicity and interpretability, especially when dealing with smaller datasets and 

situations where model interpretability is crucial. 

   The Decision Tree algorithm has several hyperparameters that can be tuned to optimize its 

performance and prevent overfitting. Here are the main hyperparameters of the Decision Tree 

algorithm: 

• Criterion: The criterion is the function used to measure the quality of a split. Two 

common criteria are: 

• "Gini impurity": Used for classification tasks, it measures the degree of impurity or 

disorder of a node. A lower Gini impurity indicates more homogeneous classes. 

• "Entropy": Also used for classification tasks, it measures the level of information or 

uncertainty in a node. A lower entropy implies more pure classes. 

• Splitter: The splitter determines the strategy used to choose the best feature to split the 

data at each node. The two options are: 

• "Best": The best feature is selected based on the criterion to optimize the split. 

• "Random": A random subset of features is considered for each split. 
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• Max Depth: The maximum depth of the decision tree. Setting a maximum depth limits 

the number of levels in the tree and helps prevent overfitting. If not specified, the tree 

will expand until all leaves are pure or contain a minimum number of samples. 

• Min Samples Split: The minimum number of samples required to perform a split at a 

node. If the number of samples at a node is less than this value, the node becomes a leaf 

node. 

• Min Samples Leaf: The minimum number of samples required to be at a leaf node. If the 

number of samples at a leaf node is less than this value, the tree might prune it, or the 

node may be removed. 

• Max Features: The maximum number of features considered when looking for the best 

split. Setting this parameter can help control overfitting and improve the model's 

generalization. 

• Class Weights: For imbalanced datasets, this parameter allows assigning different weights 

to classes to balance the impact of minority classes during the training process. 

• Presort: Whether to presort the data to speed up the fitting process for small datasets. For 

larger datasets, setting it to "True" might lead to longer training times. 

   It's essential to choose appropriate hyperparameter values through hyperparameter tuning 

techniques like grid search or random search to achieve the best model performance for a 

specific problem. The optimal hyperparameter values can vary depending on the dataset and the 

complexity of the problem being addressed. 

2.6.  Datasets and their organization 

   This thesis uses three different kinds of datasets that feed the various learning models utilized 

in this thesis to conduct 3D image semantic segmentation, binary classification, and dataset 
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visualization. These datasets are sufficient to feed all diverse deep convolutional and feedforward 

neural networks and supervised and unsupervised machine learning models. The three datasets 

are as follows: 

2.6.1. Point Cloud Images of Submarine Pipelines 

   The Dataset used is obtainable from  [64, 99] as an open source for researchers. It was acquired 

by a 3D RGB two-camera stereo rig mounted on an autonomous vehicle to provide depth and 

color information which are the backbone of the classification process. Calibration was 

performed using a chess board to obtain rectification, extrinsic matrices, and distortion 

coefficients for both cameras. Depth was calculated online through the disparity between pairs of 

images by applying epipolar matching techniques using a ROS package [100] that gives deep 

insight into stereo calibration and epipolar matching. The dataset was labeled, as shown in Figure 

23, with three colors: pipe (0,255,0), valve (0,0,255), and background (0,0,0), Green, Blue, and 

Black, respectively. Therefore, classification accuracy was calculated by measuring the matching 

percentage between labeled ground-truth pixels and classified pixels. 

 

Figure 23. Original Dataset vs. Labeled Dataset. Reproduced from [65] 
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   The dataset was partitioned into two subsets: 262 cloud points from an artificial pool and 22 

points from a sea, as shown in Figure 24. The pool subset was used for training, validation, and 

base testing; it was split as follows: 80% of the pool subset is for training, 10% for validation, 

and 10% for base testing. Otherwise, the whole sea subset was used only for secondary testing. 

Indeed, Ng [55] recommends this data-splitting ratio when the dataset has a range of hundreds of 

examples.  

 

Figure 24. Dataset Splitting. Reproduced from [64]  

 

2.6.2.  Sklearn’s Dataset: sklearn.datasets.make_moons 

   The sklearn.datasets.make_moons function is a convenient tool provided by the scikit-learn 

library (sklearn) [101] for generating a synthetic dataset that consists of two interconnected half-

moon shapes, as shown in Figure 25. Its primary use is in binary classification tasks and serves 

as a valuable resource for assessing algorithms capable of handling non-linearly separable data. 

By utilizing the make_moons function, you can adjust various parameters to tailor the 

characteristics of the generated dataset. These parameters include the number of samples, noise 

level, and random state. Here is an overview of these parameters: 

• n_samples: 

 This parameter allows you to specify the total number of data points to be 

created. The resulting dataset will contain an equal number of samples from each 

class. 
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• noise: 

 The noise parameter determines the standard deviation of the Gaussian noise that 

is added to the data. Increasing the noise value introduces greater randomness, 

thereby making the dataset more challenging to classify. 

• random_state: 

 By setting the random_state parameter, you can control the seed for the random 

number generator. This ensures that the same dataset can be reproduced if the 

same random_state value is used. 

   The function returns a tuple comprising two arrays: the input features (X) and the 

corresponding class labels (y). The input features are represented as two-dimensional arrays, 

with each row denoting a data point and each column representing a feature. The class labels are 

stored as one-dimensional arrays, indicating the class membership for each data point. 
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Figure 25. Make_Moons Dataset for Binary Classification. Reproduced From [101] 

 

Here's an example of how to utilize the make_moons function in Figure 26: 

 

Figure 26. How to use the sklearn library for generating the make_moons dataset 
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   In this code snippet, a moons dataset is generated with 100 samples, a noise level of 0.1, and a 

specific random state of 42. It then proceeds to print the shape of the input features (X) and the 

class labels (y). 

   The make_moons function is highly valuable for producing synthetic datasets that exhibit non-

linear patterns, enabling machine learning developers to evaluate and test machine learning 

algorithms on such data. 

2.6.3.  The Dataset of Human Faces 

   The dataset of human faces used in Ng's PCA course [102] is a curated collection of images 

showcasing various human faces. Its primary purpose is to illustrate the concepts and 

methodologies of PCA within the realm of face recognition and image analysis. This dataset 

consists of grayscale images, each representing a distinct individual's face. Each image is 

represented by an unrolled pixel vector with a size of 1024. To ensure consistency in the dataset, 

the images are typically aligned and standardized, guaranteeing uniform positioning and facial 

feature sizes across all samples. The faces in the dataset encompass a range of variations, 

including diverse poses, expressions, lighting conditions, and other factors, enabling a 

comprehensive analysis, as shown in Figure 27. 
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Figure 27. The Dataset of Human Faces. Reproduced From [102] 

   The human faces dataset is a valuable tool for comprehending the practical application of PCA 

in face recognition endeavors. Through the application of PCA on this dataset, one can observe 

how this technique proficiently reduces the dimensionality of facial images while retaining the 

most crucial features. This reduction in dimensionality facilitates efficient representation and 

examination of facial data, contributing to tasks such as face identification, expression analysis, 

and facial feature extraction. 
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Chapter 3 

Methodology 

   This chapter presents three hyperparameter tuning techniques applied to various five machine 

learning and deep learning models, achieving superior classification accuracy while minimizing 

memory usage and computation time, unlike other iterative hyperparameter tuning methods such 

as Bayesian optimization, gradient descent, and population-based training techniques. The choice 

of a hyperparameter tuning approach is influenced by various factors, including the number of 

hyperparameters to be optimized. The selection of the most suitable method is not solely based 

on the count of hyperparameters, but it does play a role in determining the most effective 

approach [103]. Here's a general guide on how the number of hyperparameters might influence 

the choice of tuning method [104]: 

1. Grid Search: 

• Advantage: Straightforward and intuitive. Suitable when dealing with a small 

number of hyperparameters. 

• Limitation: Becomes computationally expensive and impractical as the number 

of hyperparameters or their possible values increases, resulting in an exhaustive 

search. 

2. Random Search: 

• Advantage: More efficient than grid search when dealing with a large number of 

hyperparameters. 
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• Limitation: Might not guarantee the optimal solution due to its random nature. 

3. Bayesian Optimization: 

• Advantage: Efficient for optimizing a moderate number of hyperparameters and 

their respective ranges. It models the underlying function and narrows down the 

search space. 

• Limitation: Computationally intensive and may not scale well with an extremely 

high number of hyperparameters. 

4. Evolutionary Algorithms (e.g., Genetic Algorithms): 

• Advantage: Can handle a large number of hyperparameters. It uses a population-

based approach that can efficiently search the hyperparameter space. 

• Limitation: The computational cost might be high, and they might not converge 

quickly for complex problems. 

5. Gradient-Based Optimization: 

• Advantage: Suitable for a large number of hyperparameters when combined with 

techniques like automatic differentiation. 

• Limitation: Depends on the differentiability of the objective function and might 

not be applicable in all scenarios. 

6. Hyperopt and other specialized libraries: 
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• These libraries offer a variety of algorithms (TPE, Annealing, etc.) that can be 

efficient for different numbers of hyperparameters. They are versatile and might 

be suitable for varying scenarios. 

   Accordingly, when the learning model has a few hyperparameters, the search-based 

hyperparameter tuning methods are more efficient than the iterative tuning approaches. In the 

thesis, at most, three hyperparameters are needed to be tuned after determining the most 

influential hyperparameters and discarding others for each learning model based on the 

hyperparameter screening process. The thesis aims to show how efficient hyperparameter 

optimization is at increasing the efficiency of the most common and influential machine learning 

and deep learning models using even just a combination of conventional search-based 

hyperparameter tuning approaches. Therefore, the selected tuning learning models cover 

supervised and unsupervised machine learning models and feedforward and convolutional neural 

networks, proving the generality and versatility of these tuning approaches in the field of data 

science and artificial intelligence development. Accordingly, SVM was selected as an example of 

supervised machine learning models, PCA was selected as an example of unsupervised machine 

learning models, and FNN and PointNet CNN were selected as examples of deep learning-based 

neural networks. The iterative approach proves its effectiveness, particularly for CNN models 

with complex and high-dimensional hyperparameter space based on the criteria of 

hyperparameter optimization algorithms’ selection in [16]. In this thesis, the focus is on tuning a 

maximum of three hyperparameters, so the following non-iterative tuning techniques are 

exploited, as mentioned in Chapter 2: 

• Random search-based hyperparameter tuning. 

• Hybrid random and grid search-based hyperparameter tuning. 
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• Hybrid random and manual search-based hyperparameter tuning.  

These techniques are applied to five learning models: 

• PointNet convolutional neural network. 

• Standard feedforward neural network without regularization 

• Standard feedforward neural network with regularization, 

• Support vector machine (SVM) 

• Principal component analysis (PCA). 

   Therefore, this chapter is partitioned into five sections to discuss the methodology and dataset 

utilized for each model. 

   The F1-score is used in this thesis as a metric in measuring the accuracy of learning models, 

because it provides a balance between precision and recall, which are two important aspects of 

model performance. It is particularly valuable when dealing with imbalanced datasets where one 

class significantly outnumbers the other. 

Here's why the F1-score is a useful metric: 

1. Balance between Precision and Recall: The F1-score is the harmonic mean of precision 

and recall. Precision measures the ability of the model to correctly identify positive 

instances, while recall measures the model's ability to find all the positive instances. By 

using the harmonic mean, the F1-score gives equal weight to precision and recall, 

ensuring that a model doesn't focus too much on one at the expense of the other. 

2. Sensitivity to Imbalanced Data: In cases where one class is much smaller than the other, a 

high accuracy rate can be misleading if the model just predicts the majority class most of 
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the time. The F1-score takes into account false positives and false negatives, which are 

particularly important in such imbalanced scenarios. 

3. Trade-off Awareness: By using the F1-score, a model's performance can be evaluated 

while considering the trade-off between precision and recall. Depending on the problem 

and its consequences, an F1-score threshold can be chosen based on specific needs. For 

example, in a medical diagnosis task, recall might be prioritized to ensure as many true 

positives as possible, even if it means accepting some false positives. 

4. Robustness: The F1-score provides a single, easy-to-understand metric that combines 

multiple aspects of model performance. This makes it convenient for comparing different 

models or tuning hyperparameters. 

   First of all, let’s discuss the main steps of each hyperparameter tuning technique mentioned 

above regardless of the specific settings of the five learning models and their datasets, which will 

be discussed later in this chapter. 

3.1. The Procedures of Hyperparameter Tuning Techniques 

3.1.1. Random Search-Based Hyperparameter Tuning 

   This proposed hyperparameter tuning technique is the random search-based coarse-to-fine 

hyperparameter tuning [105], an optimized version of the regular random hyperparameter search 

discussed above. Specifically, it is a random hyperparameter search performed through two or 

three stages instead of one step in the usual random search to ensure the model’s generalization 

to the training, cross-validation, and test datasets. Two stages (coarse and fine-tuning) were 

conducted using the cross-validation dataset and the third stage was conducted using the test 

dataset for PointNet CNN only as follows: 
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a) Coarse Random Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based 

Evaluation):  

• Setting hyperparameters scales: 

 Initial scales were set for the tuned hyperparameters using the recommended values 

by experts for each learning model’s type. These scales can be continuous or discrete. 

• Hyperparameter search: 

 The coarse random search-based tuning stage is performed by generating 

combinations of the corresponding randomly generated values within the manually 

predefined scales above. These random values satisfy the uniform distribution using 

the Python numpy library, as shown in Figure 28.   

• Performing evaluation: 

   Learning model’s accuracy versus cross-validation dataset was set as an evaluation 

metric to narrow these scales to save time wasted at tuning the model’s 

hyperparameters with values that can never optimize the accuracy of the learning 

model and then transit to the second stage (fine-tuning). 

 

Figure 28. Code Snippet of Coarse Hyperparameter Tuning (Random Search) 
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b) Fine Random Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based 

Evaluation): 

• Setting hyperparameters scales: 

 Narrower scales were defined depending on evaluating hyperparameters’ 

combinations in the coarse random search stage. The new scales contain the values 

that gave high accuracy for cross-validation in the coarse random search stage. These 

scales can be continuous or discrete. 

• Hyperparameter search: 

 The fine random search-based tuning stage is conducted by generating combinations 

of the corresponding randomly generated values within the new hyperparameters’ 

scales. These random values satisfy the uniform distribution using the Python numpy 

library, as shown in the code snippet in Figure 29.  

• Performing evaluation: 

 Similar to the coarse random search-based tuning stage, the learning model’s 

accuracy for cross-validation was used to evaluate the combinations for tuned 

hyperparameters. 

 

Figure 29. Code Snippet of Fine Hyperparameter Tuning (Random Search) 
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c) Test Dataset-Based Evaluation (Exclusive for PointNet Experiment): 

 This thesis employs the Caviar approach, as discussed in Section 2.2, for 

hyperparameters’ values that made the model perform best according to the evaluation of 

the fine-tuning stage of the random search-based coarse-to-fine hyperparameter tuning 

technique. This work uses the overall average F1-score [106] of the mean F1-scores of 

the model for both pool and sea testing datasets mentioned in Section 2.5.1 as an 

evaluation metric to select the optimum model among the best models. F1-score should 

be calculated for each class (pipe, valve, or background) using the following 

mathematical equations: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

F1-score = 2 x  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, 

where: 

For each class (pipe, valve, or background): 

• TP (True Positives): number of pixels correctly classified that they belong 

to the class. 

• FP (False Positives): number of pixels incorrectly classified that they 

belong to the class.  

• FN (False Negatives): number of pixels incorrectly classified that they do 

not belong to the class.  
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   Lastly, applying the Caviar approach in the proposed work can be summarized as it is 

an approach that uses three measures as follows: 

a. Mean F1-score of the model for pool testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 3). 

b. Mean F1-score of the model for sea testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 3). 

c. Overall average of mean F1-score|pool and mean F1-score|sea (test dataset-based 

evaluation metric). 

3.1.2. Hybrid Random and Grid Search-Based Hyperparameter Tuning 

   Due to the effectiveness of random search at determining the best-performing hyperparameters’ 

scales, this proposed technique merges random search with grid search. Accordingly, a random 

search is used as a guide for the grid search to help it focus on the well-performing regions in the 

hyperparameter space. Therefore, it avoids wasting computation time and storage resources at 

tuning the learning model’s hyperparameters by ineffective values that would not make the 

learning model perform with high accuracy. As discussed in Section 2.1.2, grid search is very 

accurate at tuning small number of hyperparameters up to three hyperparameters. 

   As shown above in Figure 30, the hyperparameters of PointNet CNN were tuned through three 

stages: 

a) Random Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based 

Evaluation): 

   It has the same procedures as the first stage of random search-based hyperparameter 

tuning in part (a) in Section 3.1.1, as follows: 
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• Setting hyperparameters scales: 

   Initial scales were set for the tuned hyperparameters using the recommended 

values by experts for each learning model’s type. These scales can be continuous 

or discrete. 

• Hyperparameter search: 

   Narrower scales were defined depending on evaluating hyperparameters’ 

combinations in the random search stage. However, the mini-batch size remained 

unchanged in this stage. The new scales contain the values that gave high 

accuracy for cross-validation in the random search stage. 

• Performing evaluation: 

The learning model’s accuracy versus cross-validation dataset was set as an 

evaluation metric to narrow these scales to save time wasted at tuning the model’s 

hyperparameters with values that can never optimize the accuracy of the learning 

model and then transit to the second stage (grid search-based tuning). 

b) Grid Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based Evaluation): 

• Setting hyperparameters scales: 

 Narrower scales were defined depending on evaluating hyperparameters’ 

combinations in the random search stage. The new scales contain the values that 

gave high accuracy for cross-validation in the random search stage. These scales 

must be discrete, so the scales resulting from the random search-based tuning 

must be discretized. 
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• Hyperparameter search:  

 All possible combinations of the values within the new discretized scales of tuned 

hyperparameters were considered. For instance, if hyperparam1 ∈ {x1, x2} and 

hyperparam2 ∈ {y1, y2, y3}, then six combinations should be taken into 

consideration. 

• Performing evaluation: 

 Similar to the random search-based tuning stage, learning model’s accuracy for 

cross-validation was used to evaluate all combinations coming from the grid 

search. 

c) Test Dataset-Based Evaluation (Exclusive for PointNet Experiment): 

 This thesis employs the Caviar approach, as discussed in Section 2.2, for 

hyperparameters’ values that made the model perform best according to the evaluation of 

the random search-based tuning stage. This work uses the overall average F1-score [106] 

of the mean F1-scores of the model for both pool and sea testing datasets mentioned in 

Section 2.5.1, as an evaluation metric to select the optimum model among the best 

models. F1-score should be calculated for each class (pipe, valve, or background) using 

the following mathematical equations: 

• F1-score should be calculated for each class (pipe, valve, or background) using 

the following mathematical equations: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 
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F1-score = 2 x  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, 

where: 

For each class (pipe, valve, or background): 

✓ TP (True Positives): number of pixels correctly classified that they 

belong to the class. 

✓ FP (False Positives): number of pixels incorrectly classified that they 

belong to the class.  

✓ FN (False Negatives): number of pixels incorrectly classified that they 

do not belong to the class.  

• Lastly, applying the Caviar approach in this thesis can be summarized as it is an 

approach that uses three measures as follows: 

✓ Mean F1-score of the model for pool testing dataset ([F1-score|pipe+ 

F1-score|valve+ F1-score|background] / 3). 

✓ Mean F1-score of the model for sea testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 3). 

✓ Overall average of mean F1-score|pool and mean F1-score|sea (test 

dataset-based evaluation metric). 

 



  

82 
 

 

Figure 30. Hybrid Random and Grid Search-Based Hyperparameter Tuning Procedures 
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3.1.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning 

   Due to the effectiveness of random search at determining the best effective areas in the 

hyperparameter space, this proposed technique merges random search with manual search. 

Accordingly, a random search is used as prior knowledge for the manual search to facilitate it by 

searching through narrow and effective hyperparameters’ scales. Therefore, computation time 

and storage resources would be spent in a more effective manner than the regular manual search 

without any prior knowledge. Without prior knowledge about the recommended 

hyperparameters’ scales, the manual search would be a tedious task, as discussed in Section 

2.1.1. The manual search is an evitable option when human or computation resources are scarce. 

In this technique as shown in Figure 31, the hyperparameters of PointNet CNN are tuned through 

three stages: 

a) Random Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based 

Evaluation): 

   It has the same procedures as the first stage of random search-based hyperparameter 

tuning in part (a) in Section 3.1.1 and the part (a) in Section 3.1.2, as follows: 

•  Setting hyperparameters scales: 

 Initial scales were set for the tuned hyperparameters using the recommended 

values by experts for each learning model’s type. These scales can be continuous 

or discrete. 

• Hyperparameter search: 

 The random search-based tuning stage is performed by generating combinations 

of the corresponding randomly generated values within the manually predefined 
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scales above. These random values satisfy the uniform distribution using the 

Python numpy library. 

• Performing evaluation: 

 The learning model’s accuracy versus cross-validation dataset was set as an 

evaluation metric to narrow these scales to save time wasted at tuning the model’s 

hyperparameters with values that can never optimize the accuracy of the learning 

model and then transit to the second stage (manual search-based tuning). 

b) Manual Search-Based Hyperparameter Tuning (Cross-Validation Dataset-Based 

Evaluation): 

• Setting hyperparameters scales: 

 Narrower scales were defined depending on evaluating hyperparameters’ 

combinations in the random search stage. The new scales contain the values that 

gave high accuracy for cross-validation in the random search stage. These scales 

must be discrete, so the scales resulted from the random search-based tuning must 

be discretized. 

• Hyperparameter search:  

 The hyperparameters’ scales obtained by random search-based tuning were 

discretized. The hyperparameters were tuned by walking through the discretized 

scales one at a time. While a hyperparameter is being tuned by increasing its value 

within its discrete scale, the other hyperparameters were kept with constant 

values. The tuning process for each hyperparameter should stop when the learning 

model starts to give a lower cross-validation accuracy than before. 
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c) Test Dataset-Based Evaluation (Exclusive for PointNet Experiment): 

 This thesis uses the Caviar approach, as discussed in Section 2.2, for hyperparameters’ 

values that made the model perform best according to the evaluation of the random 

search-based tuning stage. This work uses the overall average F1-score [106] of the mean 

F1-scores of the model for both pool and sea testing datasets mentioned in Section 2.5.1. 

as an evaluation metric to select the optimum model among the best models. F1-score 

should be calculated for each class (pipe, valve, or background) using the following 

mathematical equations: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

F1-score = 2 x  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, 

where: 

For each class (pipe, valve, or background): 

✓ TP (True Positives): number of pixels correctly classified that they 

belong to the class. 

✓ FP (False Positives): number of pixels incorrectly classified that they 

belong to the class.  

✓ FN (False Negatives): number of pixels incorrectly classified that they 

do not belong to the class.  

• Lastly, applying the Caviar approach in the proposed work can be summarized 

as it is an approach that uses three measures as follows: 
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✓ Mean F1-score of the model for pool testing dataset ([F1-score|pipe+ 

F1-score|valve+ F1-score|background] / 3). 

✓ Mean F1-score of the model for sea testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 3). 

✓ Overall average of mean F1-score|pool and mean F1-score|sea (test 

dataset-based evaluation metric). 

 

Figure 31. Hybrid Random and Manual Search-Based Hyperparameter Tuning Procedures 



  

87 
 

3.2. Hyperparameter Screening Procedures 

In the field of machine learning and hyperparameter optimization, screening refers to the 

procedure of identifying and eliminating hyperparameters that do not notably influence the 

model's performance, as assessed by metrics such as the F1 score or cross-validation score. This 

process is commonly carried out to streamline the model, lower the computational expenses 

associated with hyperparameter optimization, and enhance the overall efficiency of the machine 

learning workflow. 

Here is an outline of how the screening process was conducted in the thesis: 

1. Initial Hyperparameter Selection: Initially, you compile a set of hyperparameters that 

you believe could be relevant to your model. This initial set can be extensive, especially 

when dealing with intricate models. 

2. Hyperparameter Optimization: You employ methods like grid search, random search, 

or Bayesian optimization to explore various hyperparameter combinations and assess the 

model's performance using a chosen evaluation metric, such as the F1 score or cross-

validation score. 

3. Performance Assessment: Following the training and evaluation of the model for each 

set of hyperparameters, you amass data on how each set of hyperparameters has 

performed. This data enables you to compare their impact on the model's performance. 

4. Hyperparameter Screening: During the screening phase, you pinpoint hyperparameters 

that exert minimal or insignificant influence on the chosen performance metric. These 

hyperparameters can either be excluded from consideration or set to default values, 
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simplifying the model and narrowing down the search space for hyperparameter 

optimization. 

5. Refinement: Your attention can then be concentrated on the remaining hyperparameters, 

which have a more pronounced impact on the model's performance. You can allocate 

additional optimization resources to fine-tune these hyperparameters. 

By sieving out non-significant hyperparameters, you streamline the hyperparameter tuning 

process, enabling you to allocate more resources to the optimization of crucial hyperparameters. 

This approach strikes a balance between identifying an effective model and conserving 

computational resources. It's important to exercise caution during screening, as seemingly 

unimportant hyperparameters may, at times, have non-linear or interactive effects with other 

hyperparameters, and their impact on the model's performance may not be immediately evident. 

3.3. Experiments 

3.3.1. PointNet Convolutional Neural Network 

   The learning rate, momentum, and mini-batch size were the tuned hyperparameters of the 

PointNet CNN which was fed by the point-cloud dataset mentioned in Section 2.5.1. This dataset 

contains images of pipes, valves, and backgrounds. The PointNet architecture takes point clouds 

as input and assigns a class label to each point. During training, the network is fed with ground 

truth point clouds where each point is labeled with its corresponding class. The PointNet 

employs a softmax cross-entropy loss along with an Adam optimizer. The number of cloud 

points used for each training example is 4096 points. The decay rate for batch normalization 

starts at 0.5 and gradually increases to 0.99. Additionally, a dropout with a keep-prob ratio of 0.7 

is applied on the last fully connected layer before predicting class scores. By employing the early 

stopping technique described in detail in Section 2.4.1, the training process becomes more 
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generalized and avoids overfitting. This experiment aims to improve PointNet’s accuracy at 3D 

semantic segmentation (pixel-wise classification) through the following procedures of 

hyperparameter tuning in Table 1. 

Table 1. Tuning The Hyperparameters of PointNet CNN 

Hyperparameter Tuning Technique PointNet CNN 

 

 

 

 

 

 

Random 

Search-

Based 

Tuning 

 

 

 

 

 

Coarse 

Random 

Search 

 

Setting 

hyperparameters’ 

scales 

Based on the recommendations of Ng in [55] 

and Goodfellow et al. in [10] for tuning deep 

learning models, initial scales were set as 

follows: 

• Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 

• Mini-batch size: {16,32} 

Hyperparameter 

search 

Thirty ternary combinations were generated 

randomly based on the three manually 

predefined scales above. 

       Evaluation Based on Cross-validation (10% of the pool 

dataset) accuracy is the criterion of 

evaluation.  

 

 

Fine 

Random 

Search 

Setting 

hyperparameters’ 

scales 

New and narrower three scales were deduced 

by the evaluation of coarse random search. 

Hyperparameter 

Search 

250 ternary combinations were generated 

randomly based on the new scales. 
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Evaluation 

Based on Cross-validation (10 % of the pool 

dataset) accuracy, the 250 ternary 

combinations were evaluated in parallel 

according to the Caviar approach. 

 

 

 

 

Test 

Dataset-

Based 

Evaluation 

 

 

 

 

 

Final Evaluation 

Based on the test dataset (10 % of pool 

dataset + sea dataset), the best 25 performing 

models in fine random search stage were 

evaluated based on F1-score: 

a. Mean F1-score of the model for pool 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 

b. Mean F1-score of the model for sea 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 

c. Overall average of mean F1-

score|pool and mean F1-score|sea 

(Final evaluation metric). 

Hybrid 

Random 

and Grid 

Search- 

 

Random 

Search 

Tuning 

 

Setting 

Hyperparameters’ 

Scales 

Based on the recommendations of Ng in [54] 

and Goodfellow et al. in [10] for tuning deep 

learning models, initial scales were set as 

follows: 
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 • Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 

• Mini-batch size: {16,32} 

 

Hyperparameter 

Search 

Thirty ternary combinations were generated 

randomly based on the three manually 

predefined scales above. 

Evaluation Based on Cross-validation (10% of pool 

dataset) accuracy is the criterion of 

evaluation.  

 

 

 

Grid Search 

Tuning 

Setting 

Hyperparameters’ 

Scales 

Narrower three scales were obtained by 

random search. These scales were discretized 

before applying grid search. 

 

Hyperparameter 

Search 

All possible combinations of the values 

within the new discretized scales of learning 

rate and momentum. The mini-batch size was 

kept with the same scale. Random values as 

many as these combinations were generated 

for mini-batch size. 

Evaluation Cross-validation (10 % of pool dataset) 

accuracy is the criterion of evaluation. 

Test 

Dataset 

Evaluation 

 

 

 

Based on test dataset (10 % of pool dataset + 

sea dataset), the best performing models in 

random search stage were evaluated based on 
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Final Evaluation 

F1-score: 

a. Mean F1-score of the model for pool 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 

b. Mean F1-score of the model for sea 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 

c. Overall average of mean F1-

score|pool and mean F1-score|sea 

(Final evaluation metric). 

Hybrid 

Random 

and 

Manual 

Search 

Tuning 

 

 

Random 

Search 

 

Setting 

Hyperparameters’ 

Scales 

 

Based on the recommendations of Ng in [55] 

and Goodfellow et al. in [10] for tuning deep 

learning models, initial scales were set as 

follows: 

• Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 

• Mini-batch size: {16,32} 

 

Hyperparameter 

Search 

Thirty ternary combinations were generated 

randomly based on the three manually 

predefined scales above. 
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Evaluation Based on Cross-validation (10% of pool 

dataset) accuracy is the criterion of 

evaluation.  

 

 

 

 

Manual 

Search 

Setting 

Hyperparameters’ 

Scales 

Narrower three scales were obtained by 

random search. These scales were discretized 

before applying manual search. 

 

 

 

Hyperparameter 

Search 

The three hyperparameters were tuned by 

walking through the discretized scales one at 

a time. While a hyperparameter was being 

tuned by increasing its value within its 

discrete scale, the other hyperparameters 

were kept with constant values. The tuning 

process for each hyperparameter should stop 

when the learning model starts to give a 

lower cross-validation accuracy than before. 

 

 

 

Test 

Dataset-

Evaluation 

 

 

 

 

Final Evaluation 

Based on test dataset (10 % of pool dataset + 

sea dataset), the best performing model in 

random search stage is evaluated based on 

F1-score: 

a) Mean F1-score of the model for pool 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 
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b) Mean F1-score of the model for sea 

testing dataset ([F1-score|pipe+ F1-

score|valve+ F1-score|background] / 

3). 

c) Overall average of mean F1-

score|pool and mean F1-score|sea 

(Final evaluation metric). 

 

3.3.2. Standard Feedforward Neural Network Without Regularization 

   A three-layer standard feedforward neural network was exploited to apply the three proposed 

hyperparameter tuning techniques on the following network’s hyperparameters: 

• Learning rate. 

• Momentum (𝛽1). 

• Mini-batch size. 

The network consists of an input layer, two hidden layers, and an output layer, as shown in 

Figure 32. The input layer has two features, the first hidden layer has five activation units, the 

second hidden layer has two activation units, and the output layer has one activation unit because 

the network is used for the binary classification. ReLU activation function is used in the whole 

network except for the output layer that has Sigmoid activation function. The network was fed by 

make_moons dataset provided by scikit-learn library (sklearn), as mentioned in Section 2.5.2. 

The distribution of the features’ values versus the output classification resembles two half-moons 

or crescents in this dataset. 
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Figure 32. Three-layer Feedforward Neural Network 

 

This experiment aims to improve the network’s accuracy at the binary classification through the 

following procedures of hyperparameter tuning in Table 2. 

Table 2. Tuning the hyperparameters of Standard Feedforward Neural Network. 

Hyperparameter Tuning Technique PointNet CNN 

 

 

 

 

 

 

 

 

 

 

 

Setting 

hyperparameters’ 

scales 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 
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Random 

Search-

Based 

Tuning 

Coarse 

Random 

Search 

• Mini-batch size: {16,32} 

Hyperparameter 

search 

50 ternary combinations were generated randomly 

based on the three manually predefined scales 

above. 

 

Evaluation 

Based on Cross-validation (10% of pool dataset) 

accuracy is the criterion of evaluation.  

 

 

Fine 

Random 

Search 

Setting 

hyperparameters’ 

scales 

New and narrower three scales were deduced by the 

evaluation of coarse random search. 

Hyperparameter 

Search 

500 ternary combinations were generated randomly 

based on the new scales. 

 

 

Evaluation 

Based on Cross-validation (10 % of the pool 

dataset) accuracy, the 500 ternary combinations 

were evaluated in parallel according to the Caviar 

approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random 

Search 

Tuning 

 

Setting 

Hyperparameters’ 

Scales 

 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 

• Mini-batch size: {16,32} 

Hyperparameter 

Search 

Fifty ternary combinations were generated 

randomly based on the three manually predefined 
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Hybrid 

Random 

and Grid 

Search-

Based 

Tuning 

scales above. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

 

Grid Search 

Tuning 

Setting 

Hyperparameters’ 

Scales 

Narrower three scales were obtained by random 

search. These scales were discretized before 

applying grid search. 

 

 

Hyperparameter 

Search 

All possible combinations of the values within the 

new discretized scales of learning rate and 

momentum. The mini-batch size was kept with the 

same scale. Random values as many as these 

combinations were generated for mini-batch size. 

Evaluation Cross-validation accuracy is the criterion of 

evaluation. 

 

 

 

 

 

 

 

 

 

Random 

Search 

Setting 

Scales 

 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Learning rate: [0.0001,1] 

• Momentum: [0.9,0.999] 

• Mini-batch size: {16,32} 

Hyperparameter 

Search 

Fifty ternary combinations were generated 

randomly based on the three manually predefined 

scales above. 
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Hybrid 

Random 

and 

Manual 

Search- 

Based 

Tuning 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

 

 

 

Manual 

Search 

Setting 

Hyperparameters’ 

Scales 

Narrower three scales were obtained by random 

search. These scales were discretized before 

applying manual search. 

 

 

 

Hyperparameter 

Search 

The three hyperparameters were tuned by walking 

through the discretized scales one at a time. While a 

hyperparameter was being tuned by increasing its 

value within its discrete scale, the other 

hyperparameters were kept with constant values. 

The tuning process for each hyperparameter should 

stop when the learning model starts to give a lower 

cross-validation accuracy than before. 

 

3.3.3. Standard Feedforward Neural Network With Regularization 

   A three-layer standard feedforward neural network was exploited to apply the three proposed 

hyperparameter tuning techniques on the following network’s hyperparameters: 

• Learning rate. 

• Regularization parameter (λ).  

The network consists of an input layer, two hidden layers, and an output layer, as shown in 

Figure 33. The input layer has two features, the first hidden layer has 20 activation units, the 

second hidden layer has three activation units, and the output layer has one activation unit 

because the network is used for the binary classification. ReLU activation function is used in the 
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whole network except for the output layer that has Sigmoid activation function. The network was 

fed by make_moons dataset provided by scikit-learn library (sklearn), as mentioned in Section 

2.5.2. The distribution of the features’ values versus the output classification resembles two half-

moons or crescents in this dataset. 

 

Figure 33. Three-layer Feedforward Neural Network With Regularization 

 

This experiment aims to improve the network’s accuracy at the binary classification through the 

following procedures of hyperparameter tuning in Table 3. 

 

Table 3. Tuning the hyperparameters of a standard feedforward neural network with regularization 

Hyperparameter Tuning Technique PointNet CNN 

Random 

Search 

Tuning 

Coarse 

Random 

Search 

Setting 

hyperparameters’ 

scales 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 



  

100 
 

• Learning rate: [0.0001,1] 

• Regularization parameter (λ): [0.1,10] 

Hyperparameter 

search 

50 ternary combinations were generated randomly 

based on the two manually predefined scales above. 

 

Evaluation 

Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

Fine 

Random 

Search 

Setting 

hyperparameters’ 

scales 

New and narrower two scales were deduced by the 

evaluation of coarse random search. 

Hyperparameter 

Search 

500 ternary combinations were generated randomly 

based on the new scales. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation. 

Hybrid 

Random 

and Grid 

Search 

Random 

Search 

 

Setting 

Scales 

 

Based on the recommendations of Ng in [54] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Learning rate: [0.0001,1] 

• Regularization parameter (λ): [0.1,10] 

 

Hyperparameter 

Search 

50 ternary combinations were generated randomly 

based on the two manually predefined scales above. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  
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Grid Search 

Tuning 

Setting 

Hyperparameters’ 

Scales 

Narrower two scales were obtained by random 

search. These scales were discretized before 

applying grid search. 

 

 

Hyperparameter 

Search 

All possible combinations of the values within the 

new discretized scales of learning rate and 

regularization parameter (λ). The mini-batch size 

was kept with the same scale. Random values as 

many as these combinations were generated for 

mini-batch size. 

Evaluation Cross-validation accuracy is the criterion of 

evaluation. 

 

Hybrid 

Random 

and 

Manual 

Search- 

Based 

Tuning 

Random 

Search 

Setting 

Scales 

 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Learning rate: [0.0001,1] 

• Regularization parameter (λ): [0.1,10] 

 

Hyperparameter 

Search 

50 binary combinations were generated randomly 

based on the two manually predefined scales above. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

Setting  

Scales 

Narrower two scales were obtained by random 

search. These scales were discretized before 
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Manual 

Search 

applying manual search to be ready for the manual 

search in the following step. 

 

 

 

Hyperparameter 

Search 

The two hyperparameters were tuned by walking 

through the discretized scales one at a time. While a 

hyperparameter was being tuned by increasing its 

value within its discrete scale, the other 

hyperparameters were kept with constant values. 

The tuning process for each hyperparameter should 

stop when the learning model starts to give a lower 

cross-validation accuracy than before. 

 

3.3.4. Support Vector Machine (SVM)  

   A support vector machine (SVM) model was exploited to apply the three proposed 

hyperparameter tuning techniques on the following model’s hyperparameters: 

• Regularization parameter (C=1/λ).  

• sigma (𝜎). 

   The SVM model aims to optimize the binary classification of the make_moons dataset 

provided by scikit-learn library (sklearn), as mentioned in Section 2.5.2. The distribution of the 

features’ values versus the output classification resembles two half-moons or crescents in this 

dataset. The optimization hypothesis, as mentioned in Section 2.4.4, is as follows: 

Cost (𝜃) = C ∑  [𝑦(𝑖) 𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖))  +  (1 − 𝑦(𝑖)) 𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖))]𝑚
𝑖=1  + 

1

2
 ∑ 𝜃𝑗

2𝑛
𝑗=1  

𝑓𝑗
(𝑖) = kernel (𝑥(𝑖),𝑙(𝑗))  = exp(−

‖𝑥(𝑖)− 𝑙(𝑗)‖
2

2 𝜎2
) 
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This experiment aims to improve the SVM model’s accuracy at the binary classification through 

the following procedures of hyperparameter tuning in Table 4. 

 

Table 4. Tuning the hyperparameters of SVM model 

Hyperparameter Tuning Technique PointNet CNN 

Random 

Search-

Based 

Tuning 

 

Coarse 

Random 

Search 

 

Setting 

hyperparameters’ 

scales 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Regularization parameter (C=1/λ): [0.01,30]  

• sigma (𝜎): [0.01,30] 

Hyperparameter 

search 

50 binary combinations were generated randomly 

based on the two manually predefined scales above 

for Regularization parameter (C) and sigma (𝜎). 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

Fine 

Random 

Search 

Setting 

hyperparameters’ 

scales 

New and narrower two scales were deduced by the 

evaluation of coarse random search. 

Hyperparameter 

Search 

500 binary combinations were generated randomly 

based on the new scales. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation. 
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Hybrid 

Random 

and Grid 

Search-

Based 

Tuning 

 

 

 

 

Random 

Search 

Tuning 

Setting 

Hyperparameter 

Scales 

 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Regularization parameter (C=1/λ): [0.01,30]  

• sigma (𝜎): [0.01,30] 

 

Hyperparameter 

Search 

50 binary combinations were generated randomly 

based on the two manually predefined scales above. 

 

Evaluation 

Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

Grid Search 

Tuning 

Setting 

Hyperparameters’ 

Scales 

Narrower two scales were obtained by random 

search. These scales were discretized before 

applying grid search. 

Hyperparameter 

Search 

All possible combinations of the values within the 

new discretized scales of C-hyperparameter and 

sigma.  

Evaluation Cross-validation accuracy is the criterion of 

evaluation. 

Hybrid 

Random 

and 

Manual  

 

 

 

 

 

 

Setting 

Hyperparameters’ 

Scales 

 

Based on the recommendations of Ng in [55] and 

Goodfellow et al. in [10] for tuning deep learning 

models, initial scales were set as follows: 

• Regularization parameter (C=1/λ): [0.01,30]  

• sigma (𝜎): [0.01,30] 
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Random 

Search 

 

Hyperparameter 

Search 

50 binary combinations were generated randomly 

based on the two manually predefined scales above. 

Evaluation Based on Cross-validation accuracy is the criterion 

of evaluation.  

 

 

Manual 

Search 

Setting 

Hyperparameters’ 

Scales 

Narrower two scales were obtained by random 

search to optimize the performance of the manual 

search. These scales were discretized before 

applying manual search. 

Hyperparameter 

Search 

The two hyperparameters were tuned by walking 

through the discretized scales one at a time. While a 

hyperparameter was being tuned by increasing its 

value within its discrete scale, the other 

hyperparameters were kept with constant values. 

The tuning process for each hyperparameter should 

stop when the learning model starts to give a lower 

cross-validation accuracy than before. 

 

3.3.5. Principal Component Analysis (PCA) 

   A principal component analysis (PCA) model was exploited to apply the three proposed 

hyperparameter tuning techniques on the following model’s hyperparameter: 

• Number of PCA components (K). 
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   The PCA model aims to reduce the dimensionality of the dataset mentioned Section 2.5.3 for 

data compression. Data compression should be conducted while retaining at least 90 % of the 

variance of the original dataset before the dimensionality reduction. The following equations are 

the basis of PCA, as discussed in Section 2.4.5 for data compression 

Sigma = Covariance Matrix = 
1

𝑚
 ∑ (𝑥(𝑖))𝑚

𝑖=1  (𝑥(𝑖))𝑇 

[U S V] = svd (Sigma) 

U𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = U [1: END, 1: K] 

This experiment aims to select the minimum number of PCA components that can keep the 

possession of at least 90 % of the variance of the original dataset before the dimensionality 

reduction through the following procedures of hyperparameter tuning in Table 5 

Table 5. Tuning the hyperparameters of PCA model 

Hyperparameter Tuning Technique PointNet CNN 

 

Random 

Search-

Based 

Tuning 

 

 

Coarse 

Random 

Search 

Setting 

hyperparameters’ 

scales 

Initial scale was set as follows: 

• Number of PCA components:{1,2, …,1024}  

Hyperparameter 

search 

50 unary combinations were generated randomly 

based on the manually predefined scale above to 

select the best-performing ones among them 

 

Evaluation 

Selecting the minimum number of the PCA 

components (K) that retain at least 90 % of the 

variance of the original dataset.  



  

107 
 

 

 

Fine 

Random 

Search 

Setting 

hyperparameters’ 

scales 

A new and narrower scale was deduced by the 

evaluation of coarse random search. 

Hyperparameter 

Search 

50 unary combinations were generated randomly 

based on the new scale. 

 

Evaluation 

Selecting the minimum number of the PCA 

components (K) that retain at least 90 % of the 

variance of the original dataset. 

Hybrid 

Random and 

Grid Search 

 

Random 

Search 

Tuning 

 

Setting 

Hyperparameters’ 

Scales 

 

Initial scale was set as follows: 

• Number of PCA components:{1,2, …,1024}  

 

Hyperparameter 

Search 

50 unary combinations were generated randomly 

based on the manually predefined scale above. 

Evaluation Selecting the minimum number of the PCA 

components (K) that retained at least 90 % of the 

variance of the original dataset. This ensures 

maintaining the visibility of human faces. 

Grid 

Search 

Tuning 

Setting 

Hyperparameters’ 

Scales 

A new and narrower scale was deduced by the 

evaluation of coarse random search. 
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Hyperparameter 

Search 

50 unary combinations through the new discretized 

scale of the number of PCA components (K). 

Evaluation Selecting the minimum number of the PCA 

components that retain at least 90 % of the variance 

of the original dataset. 

 

 

 

 

 

 

Hybrid 

Random and 

Manual 

Search 

 

Random 

Search 

 

Setting 

Hyperparameters’ 

Scales 

 

Initial scale was set as follows: 

• Number of PCA components:{1,2, …,1024} 

Hyperparameter 

Search 

50 unary combinations were generated randomly 

based on the two manually predefined scales above. 

 

Evaluation 

Selecting the minimum number of the PCA 

components that retain at least 90 % of the variance 

of the original dataset. 

 

 

Manual 

Search 

Setting 

Hyperparameters’ 

Scales 

A narrower scale was obtained by random search. 

This scale was discretized before applying manual 

search. 

Hyperparameter 

Search 

The hyperparameter was tuned by walking through 

the discretized scale. The tuning process of the 

hyperparameter should stop when at least 90 % of 

the variance of the original dataset was retained 
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Chapter 4 

Results and Discussion 

4.1. PointNet Convolutional Neural Network 

 

   Based upon Section 3.2.1, the work was carried using three distinct hyperparameter tuning 

techniques: the random search-based tuning, the hybrid random and grid search-based tuning 

stage, and the hybrid random and manual search-based tuning. 

4.1.1. Random Search-Based Hyperparameter Tuning Technique  

4.1.1.1 Random Search-Based Coarse Tuning  

   As discussed in Section 3.2.1, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. Therefore, 

30 models, with distinct and random values for each hyperparameter, were composed by 

producing 30 ternary combinations from the three scales, as visualized in Figure 34.  

 

Figure 34. Random Search-Based Coarse Hyperparameter Tuning Stage 
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   Subsequently, the model’s classification accuracy for the cross-validation dataset was used to 

evaluate the 30 models, as shown in Figure 35 and Figure 36. The hyperparameters’ values, that 

made the PointNet model achieve an accuracy of at least 99%, were exploited to shrink the 

aforementioned initial scales and set narrower ones that can optimize the learning model.

Table 6. Corse-to-Fine Tuning: Coarse-Tuning Evaluation 

Batch_size Learning_rate Momentum 
cross_validation accuracy 

(%) 

16 0.060 0.999 96.000 

32 0.031 0.977 95.667 

16 0.428 0.988 95.667 

32 0.129 0.997 95.667 

16 0.015 0.978 95.667 

16 0.092 0.912 95.667 

32 0.073 0.976 95.667 

32 0.068 0.969 95.667 

16 0.073 0.995 95.333 

32 0.024 0.972 95.333 

32 0.036 0.929 95.333 

16 0.013 0.991 95.333 

16 0.315 0.974 95.000 

16 0.017 0.972 95.000 

32 0.148 0.969 95.000 

16 0.017 0.976 95.000 

16 0.802 0.999 95.000 

16 0.126 0.952 94.667 

32 0.759 0.994 94.667 

32 0.077 0.987 94.667 

16 0.006 0.997 94.333 

32 0.236 0.991 94.333 

32 0.084 0.952 94.333 

32 0.069 0.989 94.333 

16 0.028 0.998 94.333 

16 0.077 0.986 94.333 

16 0.006 0.997 94.333 

16 0.006 0.997 94.333 

16 0.004 0.992 94.000 

16 0.622 0.976 94.000 
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16 0.007 0.984 94.000 

32 0.015 0.979 94.000 

16 0.022 0.997 93.667 

16 0.003 0.995 93.667 

32 0.005 0.981 93.667 

16 0.009 0.999 93.667 

16 0.015 0.998 93.667 

16 0.002 0.996 93.333 

16 0.002 0.980 92.333 

32 0.002 0.974 90.000 

32 0.001 0.997 87.667 

32 0.002 0.987 87.333 

32 0.001 0.999 79.667 

16 0.000 0.995 75.000 

16 0.000 0.998 74.333 

32 0.000 0.920 73.333 

32 0.000 0.933 71.667 

32 0.000 0.991 69.667 

16 0.000 0.998 69.000 

32 0.000 0.998 67.333 

 

 

 

 

Figure 35. Random Search-Based Coarse Tuning 

Evaluation 

 

 

 

Figure 36. Random Search-Based Coarse 

Tuning Evaluation: Shrunk scales 

represented by a blue rectangle. The mini-

batch size remained unchanged {16,32}
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4.1.1.2 Random Search-Based Fine Tuning  

   According to the results in Section 4.1.1.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were {16,32}, [0.9,0.999], and [0.0001,0.01], respectively. Thus, 

250 models, with distinct values for each hyperparameter, were formed by generating 250 

ternary combinations from the three updated scales, as shown in Figure 37. 

 

Figure 37. Random Search-Based Fine Hyperparameter Tuning 

 

   After that, the model’s classification accuracy for the cross-validation dataset was used to 

evaluate the 250 models. The 25 (10% of 250 models) best-fit models shown in Table 7 and 

Figure 38 that achieved the highest classification accuracy for the cross-validation dataset were 

passed to the following phase (test dataset-based evaluation) to conduct the final evaluation 

discussed in Section 4.1.3. 
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Table 7. Random Search-Based  Fine-Tuning Evaluation 

Batch_size Learning_rate Momentum Cross-Validation accuracy (%) 

32 0.002 0.985 99.341 

32 0.002 0.970 99.303 

16 0.001 0.985 99.274 

32 0.004 0.963 99.261 

32 0.004 0.951 99.256 

16 0.002 0.996 99.254 

32 0.001 0.983 99.252 

16 0.000 0.944 99.251 

16 0.004 0.980 99.248 

16 0.001 0.999 99.247 

32 0.002 0.998 99.244 

32 0.002 0.930 99.238 

16 0.001 0.999 99.234 

32 0.001 0.930 99.233 

16 0.001 0.975 99.232 

16 0.004 0.995 99.224 

16 0.001 0.991 99.222 

32 0.002 0.999 99.221 

16 0.002 0.999 99.217 

16 0.005 0.980 99.217 

32 0.004 0.997 99.217 

32 0.002 0.993 99.216 

32 0.002 0.944 99.216 

16 0.002 0.987 99.213 

16 0.0003 0.960 99.209 
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Figure 38. Random Search-Based Fine-Tuning Evaluation 

 

4.1.1.3 Test Dataset-Based Evaluation  

   As mentioned in Section 3.1.1, the Caviar approach evaluated the 25 best-fit models in fine-

tuning based upon the overall average F1-score of the model’s mean F1-scores for both the pool 

and sea testing datasets described in Section 2.5.1. The mean F1 score for each test is the mean 

of the model’s F1 scores at classifying pipes, valves, and backgrounds, as shown in Table 8 and  

Table 9. Table 10 exhibits all 25 models organized in descending order concerning the overall 

average F1 score. 
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Table 8. Model's F1-Score for SEA Test 

   F1-score SEA (%)  

Batch_size Learning_rate Momentum Pipe Valve Background 
Mean F1-score 

SEA (%) 

32 0.001 0.983 91.18379 87.20054 99.29950 92.561 

16 0.004 0.980 91.18379 87.20054 99.29950 92.561 

16 0.001 0.999 89.77786 83.43736 99.19445 90.803 

16 0.001 0.985 91.64296 80.07675 99.31364 90.344 

16 0.002 0.996 90.47661 81.90911 99.25996 90.549 

16 0.001 0.991 89.31994 80.71519 99.11436 89.716 

32 0.002 0.998 88.21873 79.40421 98.93944 88.854 

16 0.004 0.995 90.14265 78.27166 99.33323 89.249 

32 0.002 0.970 86.28244 82.00425 98.75982 89.016 

16 0.005 0.980 84.83878 83.39958 98.91522 89.051 

32 0.002 0.985 84.76974 81.87706 98.64838 88.432 

32 0.004 0.951 87.23657 80.73881 98.87393 88.950 

16 0.002 0.999 86.85116 80.4352 99.03736 88.775 

16 0.002 0.987 85.39890 83.5376 98.74217 89.226 

32 0.002 0.999 86.09997 78.00805 98.85162 87.653 

32 0.002 0.930 86.75265 77.07091 98.77484 87.533 

32 0.004 0.997 86.21083 77.62683 98.83800 87.559 

16 0.001 0.975 85.49581 76.08517 98.82482 86.802 

32 0.002 0.944 85.94014 75.34251 98.72862 86.670 

32 0.002 0.993 85.03387 78.59784 98.65931 87.430 

16 0.000 0.944 84.78496 75.02595 98.54909 86.120 

16 0.001 0.999 83.03012 74.60763 98.97020 85.536 

32 0.001 0.930 79.81216 74.22816 98.54594 84.195 

32 0.004 0.963 82.97906 72.46437 98.69687 84.713 

16 0.0003 0.960 77.30915 67.52302 98.30673 81.046 

 

Table 9. Model's F1-Score for Pool Test 

   F1-score POOL (%)   

Batch_size Learning_rate Momentum Pipe Valve Background 
F1-mean POOL 

(%) 

32 0.001 0.983 95.92166 89.86706 99.73055 95.17309 

16 0.004 0.980 95.92166 89.86706 99.73055 95.17309 

16 0.001 0.999 96.69780 92.71112 99.75707 96.38866 

16 0.001 0.985 96.37904 92.53906 99.73820 96.21877 

16 0.002 0.996 96.30988 90.66188 99.74553 95.57243 

16 0.001 0.991 96.31416 91.49583 99.74079 95.85026 

32 0.002 0.998 96.60445 92.81558 99.74619 96.38874 

16 0.004 0.995 96.21727 91.13641 99.73489 95.69619 

32 0.002 0.970 96.34981 91.10408 99.75286 95.73558 
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16 0.005 0.980 96.26732 90.32199 99.74608 95.44513 

32 0.002 0.985 96.47412 91.91982 99.75121 96.04839 

32 0.004 0.951 96.22139 90.31585 99.73078 95.42267 

16 0.002 0.999 96.2391 90.70055 99.74521 95.56162 

16 0.002 0.987 96.17375 88.98667 99.72725 94.96256 

32 0.002 0.999 96.72249 92.87800 99.76147 96.45399 

32 0.002 0.930 96.44832 91.40134 99.76129 95.87032 

32 0.004 0.997 96.08609 91.04505 99.73797 95.62304 

16 0.001 0.975 96.47802 92.90641 99.74771 96.37738 

32 0.002 0.944 96.52124 92.11995 99.73240 96.12453 

32 0.002 0.993 95.92086 88.90118 99.74460 94.85555 

16 0.000 0.944 96.53996 92.08869 99.74750 96.12538 

16 0.001 0.999 95.75398 88.08890 99.75692 94.53327 

32 0.001 0.930 96.11274 91.28621 99.73313 95.71070 

32 0.004 0.963 95.41904 87.67930 99.66652 94.25495 

16 0.000 0.960 95.58806 91.41910 99.68947 95.56554 

 

Table 10. Overall Average PointNet’s F1-Score (Sea and Pool Tests) 

      

Batch_size Learning_rate Momentum 
Mean F1-score 

SEA (%) 

Mean F1-score 

POOL (%) 

Overall Average 

F1-score (%) 

32 0.001 0.983 92.561 95.17309 93.87 

16 0.004 0.980 92.561 95.17309 93.87 

16 0.001 0.999 90.803 96.38866 93.60 

16 0.001 0.985 90.344 96.21877 93.28 

16 0.002 0.996 90.549 95.57243 93.06 

16 0.001 0.991 89.716 95.85026 92.78 

32 0.002 0.998 88.854 96.38874 92.62 

16 0.004 0.995 89.249 95.69619 92.47 

32 0.002 0.970 89.016 95.73558 92.38 

16 0.005 0.980 89.051 95.44513 92.25 

32 0.002 0.985 88.432 96.04839 92.24 

32 0.004 0.951 88.950 95.42267 92.19 

16 0.002 0.999 88.775 95.56162 92.17 

16 0.002 0.987 89.226 94.96256 92.09 

32 0.002 0.999 87.653 96.45399 92.05 

32 0.002 0.930 87.533 95.87031 91.70 

32 0.004 0.997 87.559 95.62304 91.59 

16 0.001 0.975 86.802 96.37738 91.59 

32 0.002 0.944 86.670 96.12453 91.40 
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32 0.002 0.993 87.430 94.85555 91.14 

16 0.000 0.944 86.120 96.12538 91.12 

16 0.001 0.999 85.536 94.53327 90.03 

32 0.001 0.930 84.195 95.71070 89.95 

32 0.004 0.963 84.713 94.25495 89.48 

16 0.000 0.960 81.046 95.56554 88.31 

 

   The results show that the model overfits neither the training dataset nor the cross-validation 

dataset (10 % of pool dataset) and generalizes to the sea and pool datasets even though the sea 

dataset is challenging and unseen data that comes from a different distribution from that 

distribution of the training and cross-validation datasets. The random search-based coarse-to-fine 

tuning and the test dataset-based evaluation managed to find a model that made PointNet NN 

classify pipes, valves, and backgrounds with high accuracy at pool and test datasets that have 

various distributions. Indeed, the proposed work succeeded in tuning hyperparameters to obtain, 

among the best-fit models shown in Table 10, a model that gave an overall average F1 score of 

93.6% (F1-score|pool = 96.4%, F1-score|sea = 90.8%) using the following hyperparameter’s 

values: mini-batch size = 16, momentum = 0.9985268, and learning rate = 0.001466154. By this 

score, the proposed technique outperforms and generalizes better to the sea dataset than the state-

of-the-art work [64] which has a maximum overall average F1 score of 92.75% (F1-score|pool = 

96.2%, F1-score|sea = 89.3%) with the same data and model but with different hyperparameters’ 

values: mini-batch size = 16, momentum = 0.9, and learning rate = 0.001. This score indicates 

the low variance and small generalization gap that the model has, thanks to selecting a small 

mini-batch size and a significant momentum coefficient of more than 0.9 because both of them 

improve the model’s generalization, as discussed in section 2.4.1.2. 
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      In addition, these results surpass the pixel-wise accuracy of the literature [107], which 

achieved an accuracy of 73.4% using AlexNet NN [108] for classifying underwater pipes, and it 

did not pay much attention to tuning hyperparameters. 

4.1.2. Hybrid Random and Grid-Search Based Hyperparameter Tuning Technique  

4.1.2.1 Random Search-Based Tuning  

   As discussed in Section 3.2.1, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. The same 

procedures and results exactly as Section 4.1.1.1 were conducted. 

4.1.2.2 Grid Search-Based Tuning  

   According to the results in Section 4.1.2.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were discretized as follows: 

• Mini-batch size: {16,32} 

• Momentum: {0.9,0.92475,0.9495,0.97425,0.999} 

• Learning rate: {0.0001,0.00109,0.00208,0.00307,0.00406,0.00505, …,0.01} 

   Fifty five combinations of the values within the new discretized scales of learning rate and 

momentum. The mini-batch size was kept with the same scale. Fifty five random values as many 

as these combinations were generated for mini-batch size within {16,32}, as shown in Figure 39. 

Therefore, they were evaluated based on the PointNet CNN’s cross-validation dataset-based 

visual classification accuracy, as shown in Figure 40.
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Figure 39. Grid search based on cross-
validation accuracy 

 

Figure 40. Cross-validation accuracy-
based evaluation 

 

Table 11 shows the best performing models ordered in descending order based on the PointNet’s 

cross-validation accuracy.      

Table 11. Cross-validation accuracy of grid search points 

Batch-size 
Learning-

rate 
Momentum Cross-validation accuracy (%) 

32 0.00208 0.97425 99.3030 

16 0.00109 0.99900 99.2470 

32 0.00208 0.99900 99.2210 

32 0.00604 0.99900 99.2070 

16 0.00703 0.94950 99.2041 

32 0.00208 0.94950 99.2020 

16 0.00208 0.90000 99.1983 

32 0.00406 0.92475 99.1860 

16 0.00604 0.90000 99.1820 

16 0.00505 0.94950 99.1802 

32 0.00703 0.97425 99.1730 

32 0.00307 0.97425 99.1720 

32 0.00802 0.92475 99.1690 

16 0.00307 0.92475 99.1642 

32 0.00901 0.94950 99.1630 

32 0.00307 0.99900 99.1530 

16 0.01000 0.92475 99.1517 
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16 0.00505 0.97425 99.1490 

16 0.00109 0.97425 99.1490 

16 0.00901 0.97425 99.1435 

16 0.00703 0.90000 99.1426 

16 0.01000 0.99900 99.1396 

32 0.00604 0.94950 99.1360 

16 0.00703 0.92475 99.1344 

16 0.01000 0.94950 99.1316 

16 0.00109 0.94950 99.1220 

16 0.00505 0.90000 99.1174 

16 0.00208 0.92475 99.1170 

16 0.00010 0.97425 99.1090 

16 0.00109 0.92475 99.1060 

16 0.00703 0.99900 99.0931 

16 0.00604 0.97425 99.0897 

32 0.00406 0.99900 99.0810 

16 0.00802 0.94950 99.0793 

16 0.00307 0.90000 99.0630 

32 0.00307 0.94950 99.0610 

16 0.00802 0.90000 99.0497 

16 0.00010 0.99900 99.0380 

16 0.00901 0.99900 99.0292 

16 0.00406 0.94950 99.0290 

16 0.00505 0.99900 99.0264 

16 0.00109 0.90000 99.0171 

32 0.00010 0.92475 98.9980 

16 0.00802 0.99900 98.9512 

32 0.00901 0.92475 98.9320 

16 0.01000 0.97425 98.9297 

16 0.00901 0.90000 98.9247 

32 0.00010 0.94950 98.9210 

16 0.01000 0.90000 98.8897 

32 0.00010 0.90000 98.8830 

16 0.00604 0.92475 98.8812 

16 0.00406 0.90000 98.8728 

16 0.00406 0.97425 98.8565 

16 0.00505 0.92475 98.8409 

16 0.00802 0.97425 98.6542 
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4.1.2.3 Test Dataset-Based Tuning  

   As mentioned in Section 3.1.2, the Caviar approach evaluated the best-fit models in grid 

search-based tuning based upon the overall average F1-score of the model’s mean F1-scores for 

both the pool and sea testing datasets described in Section 2.5.1. The mean F1 score for each test 

is the mean of the model’s F1 scores at classifying pipes, valves, and backgrounds, as shown in 

Table 12 and Table 13. Table 14 exhibits all models organized in descending order concerning 

the overall average F1 score. 

Table 12. F1-score evaluation based on SEA dataset 

      F1-score SEA (%) 

Batch_size Learning_rate Momentum Pipe Valve Background 

16 0.00109 0.99900 89.7779 83.4374 99.1944 

32 0.00208 0.97425 86.2824 82.0043 98.7598 

32 0.00208 0.99900 86.1000 78.0081 98.8516 

16 0.00505 0.9495 86.8926 78.5681 99.0078 

 

Table 13. F1-score evaluation based on POOL dataset 

      F1-score POOL (%) 

Batch_size Learning_rate Momentum Pipe Valve Background 

16 0.00109 0.99900 96.6978 92.7111 99.7571 

32 0.00208 0.97425 96.3498 91.1041 99.7529 

32 0.00208 0.99900 96.7225 92.8780 99.7615 

16 0.00505 0.9495 96.4684 91.1416 99.7502 

 

Table 14. Overall average of mean F1-scores on sea and pool datasets 

Batch 

size 

Learning 

rate 
Momentum 

F1-mean SEA (%) 

F1-mean POOL 

(%) Overall Mean (%) 

16 0.001 0.999 90.803 96.389 93.596 

32 0.002 0.974 89.016 95.736 92.376 

32 0.002 0.999 87.653 96.454 92.054 

16 0.005 0.950 88.156 95.787 91.971 
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   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the PointNet CNN achieve high visual classification accuracy in shorter 

time and with less computation units. For example, without using the random search, the grid 

search would not have been conducted using only 55 ternary combinations of hyperparameters’ 

values. Otherwise, it would have been conducted using 100 or 200 or 300 ternary combinations 

or even more.  

   The results show that the efficiency of grid search at tuning the learning rate and momentum 

because model overfits neither the training dataset nor the cross-validation dataset (10 % of pool 

dataset) and generalizes to the sea and pool datasets even though the sea dataset is challenging 

and unseen data that comes from a different distribution from that distribution of the training and 

cross-validation datasets. The random search-based tuning and the grid search-based tuning 

evaluation managed to find a model that made PointNet NN classify pipes, valves, and 

backgrounds with high accuracy at pool and test datasets that have various distributions. Indeed, 

the proposed work succeeded in tuning hyperparameters to obtain, among the best-fit models 

shown in Table 10, a model that gave an overall average F1 score of 93.6% (F1-score|pool = 

96.4%, F1-score|sea = 90.8%) using the following hyperparameter’s values: mini-batch size = 

16, momentum = 0.9985268, and learning rate = 0.001466154. By this score, the proposed 

technique outperforms and generalizes better to the sea dataset than the state-of-the-art work [64] 

which has a maximum overall average F1 score of 92.75% (F1-score|pool = 96.2%, F1-score|sea 

= 89.3%) with the same data and model but with different hyperparameters’ values: mini-batch 

size = 16, momentum = 0.9, and learning rate = 0.001. This score indicates the low variance and 

small generalization gap that the model has, thanks to selecting a small mini-batch size and a 
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significant momentum coefficient of more than 0.9 because both of them improve the model’s 

generalization, as discussed in section 2.4.1.2. 

      In addition, these results surpass the pixel-wise accuracy of the literature [107], which 

achieved an accuracy of 73.4% using AlexNet NN [108] for classifying underwater pipes, and it 

did not pay much attention to tuning hyperparameters. 

4.1.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning Technique  

4.1.3.1 Random Search-Based Tuning  

   As discussed in Section 3.2.1, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. The same 

procedures and results exactly as Section 4.1.1.1 were conducted. 

4.1.3.2 Manual Search-Based Tuning  

     According to the results in Section 4.1.3.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were discretized as follows: 

• Mini-batch size: {16,32} 

• Momentum: {0.9,0.92475,0.9495,0.97425,0.999} 

• Learning rate: {0.0001,0.00109,0.00208,0.00307,0.00406,0.00505, …,0.01} 

   The three hyperparameters were tuned by walking through the discretized scales one at a time. 

While a hyperparameter was being tuned by increasing its value within its discrete scale, the 

other hyperparameters were kept with constant values. The tuning process for each 

hyperparameter should stop when the learning model starts to give a lower cross-validation 

accuracy than before, as shown in Figure 41 and Table 15. 
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Figure 41. Manual Search based on Cross-Validation accuracy 

 

Table 15. Manual Search based on Cross-Validation accuracy 

Batch_size Learning_rate Momentum 
Cross_validation accuracy 

(%) 

Learning_rate Tuning 

16 0.00010 0.90000 98.8123 

16 0.00109 0.90000 99.0171 

16 0.00159 0.90000 99.2504 

16 0.00307 0.90000 99.0630 

16 0.00208 0.90000 99.1983 

Momentum Tuning  

16 0.00159 0.90000 99.2504 

16 0.00159 0.91238 99.0352 

16 0.00159 0.92475 99.0494 

16 0.00159 0.97425 0.990436 

Batch Size Tuning 

16 0.00159 0.90000 99.2504 

32 0.00159 0.90000 99.1148 

 

4.1.3.3 Test Dataset-Based Tuning  

As mentioned in Section 3.1.2, the Caviar approach evaluated the best-fit models in manual 

search-based tuning based upon the overall average F1-score of the model’s mean F1-scores for 
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both the pool and sea testing datasets described in Section 2.5.1. The mean F1 score for each test 

is the mean of the model’s F1 scores at classifying pipes, valves, and backgrounds, as shown in 

Table 16, Table 17, and Table 18. exhibits all models organized in descending order concerning 

the overall average F1 score. 

Table 16. F1-score evaluation based on SEA dataset 

     F1-score SEA (%) 

Batch_size Learning_rate Momentum Pipe Valve Background 

16 0.00159 0.90000 82.8764 76.5802 98.5995 

 

Table 17. F1-score evaluation based on POOL dataset 

     F1-score POOL (%) 

Batch_size Learning_rate Momentum Pipe Valve Background 

16 0.00159 0.90000 96.3089 91.7342 99.7330 

 

Table 18. Overall average of mean F1-scores evaluation based on SEA and POOL datasets 

Batch_size Learning_rate Momentum 
F1-mean SEA 

(%) 

F1-mean 

POOL (%) 

Overall Mean 

(%) 

16 0.00159 0.90000 86.0186867 95.92534765 90.97201718 

 

   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the PointNet CNN achieve high visual classification accuracy in shorter 

time and with less computation units. This productive hyperparameter space guides the manual 

search with prior-knowledge that would accelerate the manual search-based hyperparameter 

tuning. 

   Furthermore, the results show that manual search-based hyperparameter tuning is less efficient 

than both random and grid search-based tuning. The tuned hyperparameters made the model 

achieve an overall average F1 score of 90.97% (F1-score|pool = 95.93%, F1-score|sea = 86.02%) 

using the following hyperparameter’s values: mini-batch size = 16, momentum = 0.9, and 
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learning rate = 0.00159. These results include lower classification accuracy than the results of 

both random and grid search-based tuning mentioned in Section 4.1.3.1 and Section 4.1.3.2. 

However, it is a shortcut tuning technique that saves computation time and resources when prior-

knowledge is available. 

4.2. Standard Feedforward Neural Network Without Regularization   

   Based upon Section 3.2.2, the work was carried using three distinct hyperparameter tuning 

techniques: the random search-based tuning, the hybrid random and grid search-based tuning 

stage, and the hybrid random and manual search-based tuning. The standard feedforward NN 

was fed by the dataset, make_moons, as mentioned in Section 2.5.2. 

4.2.1. Random Search-Based Hyperparameter Tuning Technique     

4.2.1.1 Random Search-Based Coarse Tuning  

   As discussed in Section 3.2.2, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. Therefore, 

50 models, with distinct and random values for each hyperparameter, were composed by 

producing 50 ternary combinations from the three scales, as visualized in Figure 42.  
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Figure 42. Coarse Random Search-Based Hyperparameter Tuning 

   Subsequently, the model’s binary classification accuracy for the cross-validation dataset was 

used to evaluate the 50 models. The hyperparameters’ values, that made the deep feedforward 

NN model achieve an accuracy of at least 95%, were exploited to shrink the aforementioned 

initial scales and set smaller ones, as shown in Table 19, Figure 43, and Figure 44. 

Table 19. Cross-validation dataset-based evaluation of coarse random search 

Batch_size Learning_rate Momentum Cross-validation accuracy (%) 

16 0.05950 0.99860 96.0000 

32 0.03076 0.97692 95.6667 

16 0.42769 0.98792 95.6667 

32 0.12947 0.99750 95.6667 

16 0.01488 0.97831 95.6667 

16 0.09183 0.91226 95.6667 

32 0.07343 0.97585 95.6667 

32 0.06805 0.96913 95.6667 

16 0.07346 0.99461 95.3333 

32 0.02365 0.97164 95.3333 

32 0.03579 0.92864 95.3333 

16 0.01331 0.99087 95.3333 

16 0.31453 0.97398 95.0000 
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16 0.01731 0.97195 95.0000 

32 0.14826 0.96885 95.0000 

16 0.01725 0.97610 95.0000 

16 0.80181 0.99867 95.0000 

16 0.12583 0.95231 94.6667 

32 0.75944 0.99441 94.6667 

32 0.07728 0.98724 94.6667 

16 0.00582 0.99694 94.3333 

32 0.23579 0.99108 94.3333 

32 0.08376 0.95167 94.3333 

32 0.06861 0.98933 94.3333 

16 0.02806 0.99799 94.3333 

16 0.07692 0.98602 94.3333 

16 0.00587 0.99663 94.3333 

16 0.00626 0.99742 94.3333 

16 0.00433 0.99223 94.0000 

16 0.62249 0.97589 94.0000 

16 0.00663 0.98439 94.0000 

32 0.01477 0.97908 94.0000 

16 0.02186 0.99711 93.6667 

16 0.00253 0.99522 93.6667 

32 0.00452 0.98149 93.6667 

16 0.00905 0.99851 93.6667 

16 0.01519 0.99753 93.6667 

16 0.00197 0.99552 93.3333 

16 0.00169 0.98000 92.3333 

32 0.00243 0.97404 90.0000 

32 0.00147 0.99747 87.6667 

32 0.00204 0.98722 87.3333 

32 0.00076 0.99864 79.6667 

16 0.00026 0.99470 75.0000 

16 0.00024 0.99763 74.3333 

32 0.00041 0.91979 73.3333 

32 0.00036 0.93271 71.6667 

32 0.00027 0.99073 69.6667 

16 0.00012 0.99819 69.0000 

32 0.00018 0.99841 67.3333 
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Figure 43. Random Search-Based Coarse 

Tuning Evaluation 

 

Figure 44. Random Search-Based 

Coarse Tuning Evaluation: Shrunk 

scales represented by a blue 

rectangle.

4.2.1.2 Random Search-Based Fine Tuning  

   According to the results in Section 4.2.1.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were {16,32}, [0.9,0.999], and [0.01,1], respectively. Thus, 500 

models, with distinct values for each hyperparameter, were formed by generating 500 ternary 

combinations from the three updated scales, as shown in Figure 45. 
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Figure 45. Random Search-Based Fine Hyperparameter Tuning 

 

   After that, the model’s binary classification accuracy for the cross-validation dataset was used 

to evaluate the 500 models, as shown in Table 20 and  Figure 46. 

Table 20. Random Search-Based Fine-Tuning Evaluation 

Batch-size 
Learning-

rate 
Momentum Cross-validation accuracy (%) 

16 0.35476 0.99200 96.6667 

32 0.80205 0.97973 96.3333 

32 0.13542 0.93202 96.3333 

16 0.47685 0.99226 96.3333 

16 0.21756 0.95625 96.3333 

32 0.05301 0.99897 96.3333 

16 0.03833 0.97206 96.3333 

16 0.25178 0.99638 96.3333 

32 0.17398 0.99730 96.3333 

32 0.22119 0.95138 96.3333 

32 0.06899 0.99846 96.3333 

16 0.20056 0.99555 96.3333 

16 0.13113 0.99691 96.3333 

16 0.10383 0.99835 96.0000 
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32 0.07460 0.99891 96.0000 

32 0.05567 0.99893 96.0000 

32 0.46492 0.98959 96.0000 

32 0.45261 0.99345 96.0000 

16 0.29367 0.99639 96.0000 

 

 

Figure 46. Random Search-Based Fine-Tuning Evaluation 

 

   The results show that the random search-based coarse-to-fine tuning managed to find a model 

that made standard feedforward NN conduct the binary classification with high accuracy of 

96.67 % using the hyperparameters’ values: mini-batch size = 16, learning rate = 0.35476, 

momentum = 0.99200, as shown in Table 20. By this binary classification accuracy shown in 

Figure 47, the deep feedforward neural network (FNN) outperforms the state-of-the-art work in 

[109] that achieved using a RBF kernel-based SVM a binary classification accuracy of 96 % for 
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the same dataset, make_moons provided by scikit-learn library (sklearn), as mentioned in Section 

2.5.2. Therefore, this indicates the superiority of deep neural networks over traditional machine 

learning algorithm such as SVM. 

 

   Figure 47. Binary Classification of make_moons with an accuracy of 96.67 % 

 

4.2.2. Hybrid Random and Grid-Search Based Hyperparameter Tuning Technique  

4.2.2.1 Random Search-Based Tuning  

   As discussed in  Section 3.2.2, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. The same 

procedures and results exactly as Section 4.2.1.1 were obtained. 

4.2.2.2 Grid Search-Based Tuning  

   According to the results in Section 4.2.2.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were discretized as follows: 
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• Mini-batch size: {16,32} 

• Momentum: {0.9,0.9045,0.909,0.9135, …,0.999} with step size = 0.0045 

• Learning rate: {0.01,0.0145,0.019, …,1} with step size = 0.0045 

529 combinations of the values within the new discretized scales of learning rate and 

momentum. The mini-batch size was kept with the same scale. 529 random values as many as 

these combinations were generated for mini-batch size within {16,32}, as shown in Figure 48. 

Therefore, they were evaluated based on the learning model’s cross-validation-based binary

classification accuracy, as shown in Figure 49.

 

Figure 48. Grid search-based on cross-validation accuracy 
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Figure 49. Cross-validation accuracy-based evaluation

 

Table 21 shows the best performing models ordered in descending order based on the learning 

model’s cross-validation accuracy.      

Table 21. Cross-validation accuracy of grid search points 

Batch_size Learning_rate Momentum Cross-validation accuracy 

(%) 

16 0.1450 0.9675 96.6667 

16 0.1000 0.9585 96.6667 

32 0.1900 0.9090 96.6667 

32 0.1900 0.9180 96.6667 

32 0.2800 0.9315 96.6667 

16 0.1000 0.9540 96.3333 

16 0.1000 0.9675 96.3333 

16 0.8650 0.9855 96.3333 

16 0.0550 0.9990 96.3333 

32 0.3700 0.9900 96.3333 

32 0.1900 0.9135 96.3333 

16 0.8650 0.9945 96.3333 

32 1.0000 0.9855 96.3333 

16 0.7300 0.9900 96.0000 

16 0.1000 0.9360 96.0000 
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32 0.2350 0.9945 96.0000 

16 0.5950 0.9945 96.0000 

16 0.6400 0.9945 96.0000 

16 0.6850 0.9945 96.0000 

                     

   The results show that the hybrid random and grid search-based tuning managed to find a model 

that made standard feedforward NN conduct the binary classification with high accuracy of 

96.67 % with hyperparameters’ values: mini-batch size = 16, learning rate = 0.1450, momentum 

= 0.9675, as shown in Table 21. The results prove the impact of random search on obtaining the 

productive hyperparameter space that would make the feedforward NN achieve high binary 

classification accuracy in shorter time and with less computation units. For example, without 

using the random search, the grid search would not have been conducted using only 529 ternary 

combinations of hyperparameters’ values. Otherwise, it would have been conducted using 1000 

or 2000 ternary combinations or even more.  

   By this binary classification accuracy shown in Figure 50, the deep feedforward NN 

outperforms the state-of-the-art work in [109] that achieved using a RBF kernel-based SVM a 

binary classification accuracy of 96 % for the same dataset, make_moons provided by scikit-

learn library (sklearn), as mentioned in Section 2.5.2. Therefore, this indicates the superiority of 

deep neural networks over traditional machine learning algorithm such as SVM. 
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                Figure 50. Binary Classification accuracy of 96.67: make_moons dataset 

                                                                            

4.2.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning Technique  

4.2.3.1 Random Search-Based Tuning  

   As discussed in  Section 3.2.2, the recommended scales by experts for mini-batch size, 

momentum, and learning rate are {16,32}, [0.9,0.999], and [0.0001,1], respectively. The same 

procedures and results exactly as Section 4.1.1.1 were conducted. 

4.2.3.2 Manual Search-Based Tuning  

   According to the results in Section 4.2.2.1, the updated shrunk scales for mini-batch size, 

momentum, and learning rate were discretized as follows: 

• Mini-batch size: {16,32} 

• Momentum: {0.9,0.9045,0.909,0.9135, …,0.999} with step size = 0.0045 

• Learning rate: {0.01,0.0145,0.019, …,1} with step size = 0.0045 
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   The three hyperparameters were tuned by walking through the discretized scales one at a time. 

While a hyperparameter was being tuned by increasing its value within its discrete scale, the 

other hyperparameters were kept with constant values. The tuning process for each 

hyperparameter should stop when the learning model starts to give a lower cross-validation 

accuracy than before, as shown in Figure 51 and Table 22. 

 

Figure 51. Manual Search based on Cross-Validation accuracy 

 

Table 22. Manual Search based on Cross-Validation accuracy 

Batch_size Learning_rate Momentum Cross_validation accuracy (%) 

Learning_rate Tuning 

16 0.0100 0.9000 94.3333 

16 0.0550 0.9000 95.0000 

16 0.1000 0.9000 95.6667 

16 0.1225 0.9000 95.3333 

16 0.1450 0.9000 95.0000 

Momentum Tuning  

16 0.1000 0.9000 95.6667 

16 0.1000 0.9045 95.6667 

16 0.1000 0.9090 95.6667 

16 0.1000 0.9135 95.6667 

16 0.1000 0.9180 95.6667 
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16 0.1000 0.9225 95.6667 

16 0.1000 0.9270 95.6667 

16 0.1000 0.9315 95.6667 

16 0.1000 0.9360 96.0000 

16 0.1000 0.9383 96.0000 

16 0.1000 0.9405 95.6667 

Batch Size Tuning 

16 0.1000 0.9360 96.0000 

32 0.1000 0.9360 94.3333 

 

   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the standard feedforward NN achieve high binary classification accuracy 

of 96% with hyperparameters’ values: mini-batch size = 16, learning rate = 0.1000, momentum = 

0.9360 in a shorter time and with less computation units. This productive hyperparameter space 

guides the manual search with prior-knowledge that would accelerate the manual search-based 

hyperparameter tuning. It is obvious when we compare these results with those in Section 4.2.1 

and Section 4.2.2 that the hybrid random and manual search-based tuning is less efficient than 

both random search-based tuning and the hybrid random and grid search-based tuning.  

   By this binary classification accuracy shown in Figure 52, the deep feedforward NN have a 

comparable binary classification accuracy to the state-of-the-art work in [109] that achieved 

using a RBF kernel-based SVM a binary classification accuracy of 96 % for the same dataset, 

make_moons provided by scikit-learn library (sklearn), as mentioned in Section 2.5.2.  
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Figure 52. Binary classification accuracy of 96 %: make_moons dataset 

 

4.3. Standard Feedforward Neural Network With Regularization 

   Based upon Section 3.2.3, the work was carried using three distinct hyperparameter tuning 

techniques: the random search-based tuning, the hybrid random and grid search-based tuning 

stage, and the hybrid random and manual search-based tuning. The standard feedforward NN 

was fed by the dataset, make_moons, as mentioned in Section 2.5.2  

4.3.1. Random Search-Based Hyperparameter Tuning Technique     

4.3.1.1 Random Search-Based Coarse Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for learning rate and 

regularization parameter (λ) are [0.0001,1] and [0.1,10], respectively. Therefore, 50 models, with 

distinct and random values for each hyperparameter, were composed by producing 50 binary 

combinations from the two scales, as visualized in Figure 53.  
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Figure 53. Coarse Random Search-Based Hyperparameter Tuning 

 

   Subsequently, the model’s binary classification accuracy for the cross-validation dataset was 

used to evaluate the 50 models. The hyperparameters’ values, that made the deep feedforward 

NN model achieve an accuracy of at least 93.5%, were exploited to shrink the aforementioned 

initial scales and set smaller ones, as shown in Table 23, Figure 54, and Figure 55. 

Table 23. cross-validation accuracy evaluation of coarse random search-based tuning 

Learning-

rate 

Regularization-

parameter 

Train-accuracy 

(%) 

Cross-validation accuracy 

(%) 

0.07343 0.41404 93.83886 95.5 

0.14826 0.32100 93.83886 95.0 

0.31453 0.38426 94.31280 95.0 

0.06805 0.32396 93.83886 95.0 

0.03076 0.43329 93.36493 95.0 

0.02365 0.35266 93.36493 95.0 

0.12583 0.20971 93.83886 94.5 

0.03579 0.14014 93.36493 94.5 

0.08376 0.20692 93.36493 94.5 

0.01488 0.46103 92.89100 94.0 

0.09183 0.11397 93.83886 94.0 
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0.01725 0.41845 92.89100 94.0 

0.01477 0.47791 92.89100 94.0 

0.01731 0.35655 92.89100 94.0 

0.06861 0.93741 92.41706 93.5 

0.07728 0.78399 92.41706 93.5 

0.01331 1.09527 92.41706 93.5 

0.07692 0.71517 92.89100 93.5 

0.62249 0.41478 93.83886 93.5 

0.23579 1.12156 92.41706 93.0 

0.00663 0.64073 91.94313 93.0 

0.00433 1.28739 92.41706 93.0 

0.07346 1.85404 92.41706 93.0 

0.00253 2.09075 91.94313 92.5 

0.05950 7.15939 90.52133 92.5 

0.00076 7.34617 88.62559 92.5 

0.42769 0.82787 92.41706 92.5 

0.00587 2.96638 91.46919 92.5 

0.00147 3.95588 91.94313 92.5 

0.00452 0.54034 91.94313 92.5 

0.00905 6.69177 90.99526 92.5 

0.00197 2.23042 91.94313 92.0 

0.01519 4.04798 91.94313 92.0 

0.00626 3.88311 91.94313 92.0 

0.02186 3.45805 91.46919 92.0 

0.00169 0.50009 91.94313 92.0 

0.12947 3.99989 91.94313 92.0 

0.02806 4.96910 91.94313 92.0 

0.00582 3.27076 91.46919 92.0 

0.00204 0.78243 91.94313 92.0 

0.00243 0.38516 91.94313 92.0 

0.00036 0.14861 90.04739 90.5 

0.00041 0.12468 90.04739 90.5 

0.75944 1.78978 88.15166 89.5 

0.00026 1.88646 88.62559 89.0 

0.00027 1.07852 89.09953 89.0 

0.00024 4.21086 86.72986 88.0 

0.00018 6.30654 86.72986 87.5 

0.00012 5.51331 84.36019 84.5 

0.80181 7.53255 78.67299 78.0 
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Figure 54. Random Search-Based Coarse Tuning 

Evaluation 

 

 

Figure 55. Random Search-Based Coarse Tuning 

Evaluation: Shrunk scales represented by a blue 

rectangle

  

4.3.1.2 Random Search-Based Fine Tuning  

   According to the results in Section 4.3.1.1, the updated shrunk scales for learning rate and 

regularization parameter (λ) were [0.01,1] and [0.1,1], respectively. Thus, 500 models, with 

distinct values for each hyperparameter, were formed by generating 500 binary combinations 

from the two updated scales, as shown in Figure 56. 
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Figure 56. Random Search-Based Fine-Tuning 

 

   After that, the model’s binary classification accuracy for the cross-validation dataset was used 

to evaluate the 500 models, as shown in Table 24 and Figure 57.  

Table 24. cross-validation accuracy evaluation of fine random search-based tuning 

Learning-

rate 

Regularization-

parameter 

Train-accuracy 

(%) 

Cross-validation accuracy 

(%) 

0.19088 0.39008 93.36493 96.0 

0.47311 0.20664 94.31280 96.0 

0.49691 0.15732 94.31280 96.0 

0.48558 0.20245 93.83886 96.0 

0.17311 0.51256 93.83886 96.0 

0.17539 0.53131 94.78673 95.5 

0.05001 0.33828 93.83886 95.5 

0.25740 0.56234 92.41706 95.5 

0.07656 0.51628 94.78673 95.5 

0.08167 0.41539 93.83886 95.5 

0.03405 0.52650 93.36493 95.5 

0.04779 0.34942 93.83886 95.5 

0.13871 0.41895 93.83886 95.5 

0.11538 0.51971 94.78673 95.5 
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0.03527 0.31349 93.83886 95.5 

0.12002 0.52794 94.78673 95.5 

0.18391 0.50868 94.78673 95.5 

0.16466 0.54635 94.78673 95.5 

0.22304 0.27373 91.94313 95.5 

 

 

Figure 57. Random Search-Based Fine-Tuning Evaluation 

 

   The results show that the random search-based coarse-to-fine tuning managed to find a model 

that made standard feedforward NN conduct the binary classification with high accuracy of 96% 

with hyperparameters’ values: learning rate = 0.49691 and momentum = 0.15732, as shown in 

Table 24. By this binary classification accuracy shown in Figure 58, the deep feedforward NN 

has comparable performance to the state-of-the-art work in [109] that achieved using a RBF 

kernel-based SVM a binary classification accuracy of 96% for the same dataset, make_moons 
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provided by scikit-learn library (sklearn), as mentioned in Section 2.5.2. Moreover, the tuning 

technique managed to decrease the generalization gap between the training accuracy (94.31280 

%) and cross-validation accuracy (96 %), as visualized in Figure 58. 

 

   Figure 58. Binary Classification of make_moons with an accuracy of 96% 

 

4.3.2. Hybrid Random and Grid-Search Based Hyperparameter Tuning Technique  

4.3.2.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for learning rate and 

regularization parameter (λ) are [0.0001,1], and [0.1,10], respectively. The same procedures and 

results exactly as Section 4.3.1.1 were obtained. 
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4.3.2.2 Grid Search-Based Tuning  

   According to the results in Section 4.3.2.1, the updated shrunk scales for the learning rate and 

the regularization parameter (λ) were discretized as follows: 

• Learning rate: {0.01,0.055,0.1,0.145, …,1} with step size = 0.045 

• Regularization parameter (λ): {0.1,0.14091,0.18182, …,1} with step size = 0.0409 

529 combinations of the values within the new discretized scales of the learning rate and 

regularization parameter (λ). Therefore, they were evaluated based on the learning model’s cross-

validation-based visualization accuracy, as shown in Figure 59.

 

Figure 59. Grid Search-Based Hyperparameter Tuning Evaluation 

 

Table 25 shows the best performing models ordered in descending order based on the learning 

model’s cross-validation accuracy.      
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Table 25. Cross-validation accuracy of grid search points 

Learning_rate Regularization_parameter train_accuracy 

(%) 

cross_validation accuracy 

(%) 

0.190 0.38636 93.3649 96.0 

0.505 0.14091 94.7867 96.0 

0.235 0.50909 93.8389 96.0 

0.190 0.55000 94.3128 96.0 

0.235 0.55000 92.8910 96.0 

0.190 0.46818 93.8389 96.0 

0.460 0.42727 93.3649 96.0 

0.055 0.42727 93.8389 95.5 

0.055 0.38636 93.8389 95.5 

0.550 0.34545 93.3649 95.5 

0.100 0.46818 93.8389 95.5 

0.145 0.59091 93.8389 95.5 

0.100 0.59091 93.8389 95.5 

0.145 0.46818 93.8389 95.5 

0.190 0.67273 93.3649 95.5 

0.775 0.18182 94.7867 95.5 

0.415 0.26364 92.8910 95.5 

0.235 0.67273 93.3649 95.5 

0.145 0.55000 94.7867 95.5 

                     

   The results show that the hybrid random and grid search-based tuning managed to find a model 

that made standard feedforward NN conduct the binary classification with high accuracy of 96% 

with hyperparameters’ values: learning rate = 0.505 and momentum = 0.14091, as shown in 

Table 25. By this binary classification accuracy shown in Figure 60, the deep feedforward NN 

has comparable performance to the state-of-the-art work in [109] that achieved using a RBF 

kernel-based SVM a binary classification accuracy of 96% for the same dataset, make_moons 

provided by scikit-learn library (sklearn), as mentioned in Section 2.5.2. The random search is 

used to narrow the hyperparameter space through which the grid search tunes the 

hyperparameters. Thus, the process of grid search was speeded up with less computation units. 

Moreover, the tuning technique managed to decrease the generalization gap between the training 
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accuracy (94.7867%) and cross-validation accuracy (96%) through selecting a suitable value for 

the regularization parameter (λ). This generalization gap is smaller than the gap obtained using 

the random search-based tuning technique. 

 

                Figure 60. Binary Classification accuracy of 96%: make_moons dataset 

                                                                            

4.3.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning Technique  

4.3.3.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for learning rate and 

regularization parameter (λ) are [0.0001,1], and [0.1,10], respectively. The same procedures and 

results exactly as Section 4.3.1.1 were obtained. 

4.3.3.2 Manual Search-Based Tuning  

   According to the results in Section 4.3.3.1, the updated shrunk scales for the learning rate and 

the regularization parameter (λ) were discretized as follows: 
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• Learning rate: {0.01,0.055,0.1,0.145, …,1} with step size = 0.045 

• Regularization parameter (λ): {0.1,0.14091,0.18182, …,1} with step size = 0.0409 

   The two hyperparameters were tuned by walking through the discretized scales one at a time. 

While a hyperparameter was being tuned by increasing its value within its discrete scale, the 

other hyperparameters were kept with constant values. The tuning process for each 

hyperparameter should stop when the learning model starts to give a lower cross-validation 

accuracy than before, as shown in Figure 61 and Table 26. 

 

Figure 61. Manual Search based on Cross-Validation accuracy 

 

 

Table 26. Manual Search based on Cross-Validation accuracy 

Learning_rate Regularization_parameter 
Training accuracy 

(%) 

Cross_validation accuracy 

(%) 

Learning_rate 

0.0100 0.1000 92.8910 94.0 

0.0550 0.1000 93.8389 94.0 

0.1000 0.1000 92.8910 94.0 

0.1450 0.1000 92.4171 95.0 

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

1 2 3 4 5 6 7 8 9 10 11 12 13

PROGRESS DAYS 

Cross-validation accuracy (%)



 

141 
 

0.1900 0.1000 93.3649 94.0 

0.2350 0.1000 92.8910 95.0 

0.2800 0.1000 92.4171 95.0 

0.3250 0.1000 93.8389 95.0 

0.3475 0.1000 94.3128 94.0 

0.3700 0.1000 91.4692 93.0 

Regularization_parameter 

0.3250 0.1000 93.83886 95.0 

0.3250 0.1205 0.92417 95.0 

0.3250 0.1409 92.89100 94.0 

 

   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the standard feedforward NN achieve high binary classification accuracy 

of 95%, with hyperparameters’ values: learning rate = 0.3250 and momentum = 0.1000, in 

shorter time and with less computation units. This productive hyperparameter space guides the 

manual search with prior-knowledge that would accelerate the manual search-based 

hyperparameter tuning. It is obvious when we compare these results with those in Section 4.3.1 

and Section 4.3.2 that the hybrid random and manual search-based tuning is less efficient than 

both random search-based tuning and the hybrid random and grid search-based tuning. 

Moreover, the tuning technique managed to decrease the generalization gap between the training 

accuracy (93.83886%) and cross-validation accuracy (95%) through selecting a suitable value for 

the regularization parameter (λ), as visualized in Figure 62. 
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Figure 62. Binary classification accuracy of 95%: make_moons dataset 

 

4.4. Support Vector Machine (SVM) 

   Based upon Section 3.2.3, the work was carried using three distinct hyperparameter tuning 

techniques: the random search-based tuning, the hybrid random and grid search-based tuning 

stage, and the hybrid random and manual search-based tuning. The standard feedforward NN 

was fed by the dataset, make_moons, as mentioned in Section 2.5.2. 

4.4.1. Random Search-Based Hyperparameter Tuning Technique     

4.4.1.1 Random Search-Based Coarse Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for the regularization 

parameter (C) and RBF kernel’s decay coefficient (σ) are [0.01,30] and [0.01,30], respectively. 

Therefore, 50 models, with distinct and random values for each hyperparameter, were composed 

by producing 50 binary combinations from the two scales, as visualized in Figure 63.  
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Figure 63. Evaluation of Coarse Random Search-Based Hyperparameter Tuning: Shrunk scales represented by a 

blue rectangle. 

 

   Subsequently, the model’s binary classification accuracy for the cross-validation dataset was 

used to evaluate the 50 models. The hyperparameters’ values, that made the SVM model achieve 

an accuracy of at least 93%, were exploited to shrink the aforementioned initial scales and set 

smaller ones, as shown in Table 27, Figure 63, and Figure 64. 

Table 27. cross-validation accuracy evaluation of coarse random search-based tuning 

C-Hyperparameter Sigma 
Cross-Validation accuracy 

(%) 

07.08171 0.074785 94.50 

08.37748 1.557405 93.00 

06.13192 2.720513 92.50 

04.41453 1.507646 92.50 

15.42726 4.581572 92.50 

09.23100 3.292534 92.50 

24.84318 7.949606 91.00 

07.96736 4.890161 90.50 

21.40088 9.126181 90.00 

15.78761 0.819916 90.00 
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11.18065 6.038645 90.00 

07.67080 0.725054 90.00 

20.76059 7.109374 90.00 

18.49177 7.727771 90.00 

24.49241 9.115573 90.00 

21.57886 3.093985 89.50 

28.06753 10.56337 89.50 

13.30005 8.188076 89.50 

11.23669 7.148095 88.50 

16.91226 9.181184 88.50 

22.62561 11.41278 87.00 

12.33111 8.913598 86.50 

23.03391 12.67465 85.50 

17.08182 11.62793 85.50 

26.50687 15.07422 85.00 

18.55037 13.80177 83.50 

09.65563 27.30578 82.00 

08.09098 28.36566 82.00 

01.79265 9.966723 82.00 

03.87833 28.07651 82.00 

25.02118 25.53341 82.00 

06.52950 9.896007 82.00 

04.43403 12.84301 82.00 

13.11491 15.27467 82.00 

28.65501 20.92113 82.00 

25.62024 22.44929 82.00 

15.47592 16.39478 82.00 

06.56612 13.17037 82.00 

00.06338 3.188395 82.00 

23.69041 21.54339 82.00 

10.60420 20.90456 82.00 

16.67345 18.12112 82.00 

14.31609 19.40928 81.50 

09.39150 28.95847 81.50 

10.18593 21.62891 81.50 

01.13613 27.87041 81.50 

12.33297 17.59264 81.50 

22.88406 29.52208 81.50 

05.80351 24.72276 81.50 
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Figure 64. Random Search-Based Coarse Tuning Evaluation 

4.3.1.2 Random Search-Based Fine Tuning  

   According to the results in Section 4.3.1.1, the updated shrunk scales for regularization 

parameter (C) and RBF kernel’s decay coefficient (σ) were [0.01,10] and [0.01,1], respectively. 

Thus, 500 models, with distinct values for each hyperparameter, were formed by generating 500 

binary combinations from the two updated scales, as shown in Figure 65. 
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Figure 65. Random Search-Based Fine-Tuning 

 

   After that, the model’s binary classification accuracy for the cross-validation dataset was used 

to evaluate the 500 models, as shown in Table 28 and Figure 66.  

Table 28. cross-validation accuracy evaluation of fine random search-based tuning 

C-

Hyperparameter 
Sigma 

Cross-Validation accuracy 

(%) 

0.63199 0.09677 97.00 

1.03507 0.13515 97.00 

1.89893 0.09040 96.50 

0.04449 0.08337 96.50 

0.87363 0.15585 96.50 

1.55704 0.11433 96.50 

2.29715 0.09496 96.50 

1.23845 0.21886 96.00 

0.27034 0.09654 96.00 

0.67486 0.14998 96.00 

5.30430 0.18807 96.00 

2.73004 0.12081 96.00 

7.97183 0.21742 96.00 

0.58625 0.07106 96.00 
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5.46759 0.18783 96.00 

1.79429 0.10790 96.00 

2.13395 0.09709 96.00 

0.87316 0.07537 96.00 

2.86136 0.08906 96.00 

 

 

Figure 66. Random Search-Based Fine-Tuning Evaluation 

 

   The results show that the random search-based coarse-to-fine tuning managed to find a model 

that made SVM model conduct the binary classification with high accuracy of 97% with 

hyperparameters’ values: C-hyperparameter = 0.63199 and Sigma = 0.09677, as shown in Table 

28. By this binary classification accuracy shown in Figure 67, the deep feedforward NN has 

comparable performance to the state-of-the-art work in [109] that achieved using a RBF kernel-
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based SVM a binary classification accuracy of 96% for the same dataset, make_moons provided 

by scikit-learn library (sklearn), as mentioned in Section 2.5.2.  

 

Figure 67. Binary Classification of make_moons dataset with an accuracy of 97% 

 

4.4.2. Hybrid Random and Grid-Search Based Hyperparameter Tuning Technique  

4.4.2.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for C-hyperparameter and 

RBF kernel’s decay coefficient (σ) are [0.01,30], and [0.01,30], respectively. The same 

procedures and results exactly as Section 4.4.1.1 were obtained. 
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4.4.2.2 Grid Search-Based Tuning  

   According to the results in Section 4.4.2.1, the updated shrunk scales for the C-hyperparameter 

and RBF kernel’s decay coefficient (σ) were discretized as follows: 

• C-hyperparameter: {0.01,0.46409,0.91818, …,10} with step size = 0.45409 

• RBF kernel’s decay coefficient (σ): {0.01,0.055,0.1, …,1} with step size = 0.045 

529 combinations of the values within the new discretized scales of the C-hyperparameter and 

RBF kernel’s decay coefficient (σ). Therefore, they were evaluated based on the learning model’s 

cross-validation binary classification accuracy, as shown in Figure 68.

 

Figure 68. Grid Search-Based Hyperparameter Tuning Evaluation 

 

Table 29 shows the best performing models ordered in descending order based on the learning 

model’s cross-validation accuracy.      
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Table 29. Cross-validation accuracy of grid search points 

C-Hyperparameter Sigma 
Cross_Validation accuracy 

(%) 

0.91818 0.100 97.00 

0.46409 0.010 96.50 

0.91818 0.145 96.50 

0.91818 0.280 96.50 

1.37227 0.100 96.50 

2.28045 0.055 96.50 

0.46409 0.055 96.00 

0.91818 0.055 96.00 

0.91818 0.235 96.00 

1.37227 0.055 96.00 

1.37227 0.235 96.00 

1.37227 0.775 96.00 

1.37227 0.820 96.00 

1.37227 0.865 96.00 

1.37227 0.910 96.00 

1.82636 0.055 96.00 

1.82636 0.100 96.00 

1.82636 0.235 96.00 

1.82636 0.505 96.00 

                     

   The results show that the hybrid random and grid search-based tuning managed to find a model 

that made SVM model conduct the binary classification with high accuracy of 97% with 

hyperparameters’ values: C-hyperparameter = 0.91818 and sigma = 0.1, as shown in Table 29. 

By this binary classification accuracy shown in Figure 69, the deep feedforward NN has 

comparable performance to the state-of-the-art work in [109] that achieved using a RBF kernel-

based SVM a binary classification accuracy of 96% for the same dataset, make_moons provided 

by scikit-learn library (sklearn), as mentioned in Section 2.5.2. The random search is used to 

narrow the hyperparameter space through which the grid search tunes the hyperparameters. Thus, 

the process of grid search was speeded up with less computation units.  
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                Figure 69. Binary Classification accuracy of 97%: make_moons dataset 

                                                                            

4.4.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning Technique  

4.4.3.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the recommended scales by experts for C-hyperparameter and 

RBF kernel’s decay coefficient (σ) are [0.01,30], and [0.01,30], respectively. The same 

procedures and results exactly as Section 4.4.1.1 were obtained. 

4.4.3.2 Manual Search-Based Tuning  

   According to the results in Section 4.4.3.1, the updated shrunk scales for the C-hyperparameter 

and RBF kernel’s decay coefficient (σ) were discretized as follows: 
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• C-hyperparameter: {0.01,0.46409,0.91818, …,10} with step size = 0.45409 

• RBF kernel’s decay coefficient (σ): {0.01,0.055,0.1, …,1} with step size = 0.045 

   The two hyperparameters were tuned by walking through the discretized scales one at a time. 

While a hyperparameter was being tuned by increasing its value within its discrete scale, the 

other hyperparameters were kept with constant values. The tuning process for each 

hyperparameter should stop when the learning model starts to give a lower cross-validation 

accuracy than before, as shown in   Figure 70 and         Table 30. 

 

  Figure 70. Manual Search based on Cross-Validation accuracy 

 

        Table 30. Manual Search based on Cross-Validation accuracy 

C-Hyperparameter Sigma Cross-validation accuracy (%) 

Sigma Tuning 

0.01000 0.010 43.50 

0.01000 0.055 43.50 

0.01000 0.100 43.50 

0.01000 0.145 43.50 

0.01000 0.190 43.50 

0.01000 0.235 43.50 

0.01000 0.280 43.50 

0.01000 0.325 43.50 

0.01000 0.370 43.50 

0.01000 0.415 43.50 

0.01000 0.460 43.50 

0.01000 0.505 43.50 

0.00

50.00
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150.00
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0.01000 0.550 43.50 

0.01000 0.595 43.50 

0.01000 0.640 43.50 

0.01000 0.685 43.50 

0.01000 0.730 43.50 

0.01000 0.775 43.50 

0.01000 0.820 43.50 

0.01000 0.865 43.50 

0.01000 0.910 43.50 

0.01000 0.955 43.50 

0.01000 1.000 43.50 

C-Hyperparameter Tuning 

0.01000 0.100 43.50 

0.46409 0.100 94.50 

0.91818 0.100 97.00 

1.14523 0.100 96.50 

1.37227 0.100 96.5 

 

   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the SVM model achieve high binary classification accuracy of 97%, with 

hyperparameters’ values: C-hyperparameter = 0.91818 and momentum = 0.1000, in shorter time 

and with less computation units. This productive hyperparameter space guides the manual search 

with prior-knowledge that would accelerate the manual search-based hyperparameter tuning. It is 

obvious when we compare these results with those in Section 4.4.1 and Section 4.4.2 that the 

hybrid random and manual search-based tuning is as efficient as both random search-based 

tuning and the hybrid random and grid search-based tuning, as visualized in Figure 71.  
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Figure 71. Binary classification accuracy of 97%: make_moons dataset 

 

4.5. Principal Component Analysis 

 

   Based upon Section 3.2.3, the work was carried using three distinct hyperparameter tuning 

techniques: the random search-based tuning, the hybrid random and grid search-based tuning 

stage, and the hybrid random and manual search-based tuning. The PCA model was fed by the 

dataset, the human faces, as mentioned in Section 2.5.3. 
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4.5.1. Random Search-Based Hyperparameter Tuning Technique     

4.5.1.1 Random Search-Based Coarse Tuning  

   As discussed in Section 3.2.3, the length of the unrolled vector of the images in the dataset is 

1024. Therefore, the initial scale of the number of PCA components (K) was set as follows: K ∈ 

{1,2,3, …,1024} with a step size equal to 1. Therefore, 50 models, with distinct and random 

values for the hyperparameter, were composed by producing 50 unary combinations from the 

initial scale, as visualized in Figure 72.  

 

Figure 72. Evaluation of Coarse Random Search-Based Hyperparameter Tuning 

 

   Subsequently, the dataset’s retained variance was used to evaluate the 50 models. The criterion 

of evaluation is to get the smallest K that produces dimensionally-reduced dataset with retained 

variance of at least 90% of the original dataset’s variance, as described in Section 3.2.5. This 

evaluation was exploited to shrink the aforementioned initial scale and set a smaller one, as 

shown in Table 31. 
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Table 31. retained variance evaluation of coarse random search-based tuning 

K-Hyperparameter Retained variance (%) 

1020 99.9999 

1009 99.9995 

0986 99.9984 

0972 99.9974 

0971 99.9973 

0956 99.9960 

0935 99.9938 

0878 99.9847 

0862 99.9813 

0859 99.9807 

0857 99.9802 

0855 99.9797 

0839 99.9757 

0819 99.9699 

0789 99.9598 

0781 99.9567 

0734 99.9350 

0706 99.9187 

0672 99.8949 

0667 99.8909 

0664 99.8885 

0637 99.8647 

0628 99.8559 

0620 99.8477 

0572 99.7894 

0558 99.7689 

0542 99.7433 

0536 99.7331 

0532 99.7260 

0505 99.6736 

0493 99.6474 

0481 99.6190 

0443 99.5126 

0385 99.2881 

0374 99.2344 

0316 98.8644 

0277 98.5033 

0253 98.2149 

0244 98.0907 

0219 97.6864 

0196 97.2181 
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0190 97.0774 

0176 96.7129 

0162 96.2890 

0145 95.6718 

0083 91.6812 

0067 89.7531 

0057 88.1543 

0025 78.7695 

0014 71.8058 

4.5.1.2 Random Search-Based Fine Tuning  

   According to the result in Section 4.5.1.1, the updated shrunk scale for the number of PCA 

components (K) was {317,318,319, …,374} with a step size of 1. Thus, 50 models, with distinct 

values for the hyperparameter, were formed by generating 50 unary combinations from the 

updated scale, as shown in Figure 73. 

 

Figure 73. Random Search-Based Fine-Tuning 
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   After that, the dimensionally-reduced dataset’s retained variance was used to evaluate the 50 

unary combinations of the K-hyperparameter, as shown in       Table 32. 

      Table 32. retained variance evaluation of fine random search-based tuning 

K-Hyperparameter Retained variance (%) 

374 99.2344 

373 99.2293 

372 99.2241 

371 99.2189 

370 99.2137 

369 99.2084 

365 99.1869 

364 99.1814 

363 99.1759 

362 99.1704 

361 99.1648 

360 99.1591 

359 99.1535 

358 99.1478 

357 99.1420 

356 99.1362 

355 99.1304 

354 99.1246 

352 99.1127 

351 99.1067 

350 99.1006 

349 99.0945 

348 99.0884 

347 99.0822 

346 99.0760 

345 99.0697 

343 99.0571 

342 99.0507 

341 99.0442 

340 99.0378 

339 99.0312 

338 99.0245 

337 99.0178 

336 99.0111 

335 99.0042 

334 98.9973 
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333 98.9904 

332 98.9835 

330 98.9694 

328 98.9550 

327 98.9478 

326 98.9405 

325 98.9332 

324 98.9258 

323 98.9183 

322 98.9108 

320 98.8955 

319 98.8878 

318 98.8800 

317 98.8722 

 

   The results show that the random search-based coarse-to-fine tuning managed to find a model 

that made PCA model conduct the dimensionality reduction with K = 335 retaining 99.0042% of 

the original dataset’s variance, as shown in       Table 32 and Figure 74.  

 

Figure 74. Dimensionally-reduced human faces at K = 335 
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4.5.2. Hybrid Random and Grid-Search Based Hyperparameter Tuning Technique  

4.5.2.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the length of the unrolled vector of the images in the dataset is 

1024. Therefore, the initial scale of the number of PCA components (K) was set as follows: K ∈ 

{1,2,3, …,1024} with a step size equal to 1. The same procedures and results exactly as Section 

4.5.1.1 were obtained. 

4.5.2.2 Grid Search-Based Tuning  

   According to the results in Section 4.5.2.1, the updated shrunk scale for the number of PCA 

components (K) was discretized as follows: 

• K-hyperparameter: {317,318,319, …,374} with a step size of 1. 

Therefore, these K values were evaluated based on the dimensionally-reduced dataset’s retained 

variance of the original dataset’s variance, as visualized in Figure 75.

 

Figure 75. Grid tuning evaluation based on retained variance 
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Table 33 shows the best performing models ordered in descending order based on the learning 

model’s cross-validation accuracy.      

Table 33. retained variance evaluation of grid search 

K-Hyperparameter Retained variance (%) 

374 99.2344 

373 99.2293 

372 99.2241 

371 99.2189 

370 99.2137 

369 99.2084 

368 99.2031 

367 99.1977 

366 99.1923 

365 99.1869 

364 99.1814 

363 99.1759 

362 99.1704 

361 99.1648 

360 99.1591 

359 99.1535 

358 99.1478 

357 99.1420 

356 99.1362 

355 99.1304 

354 99.1246 

353 99.1187 

352 99.1127 

351 99.1067 

350 99.1006 

349 99.0945 

348 99.0884 

347 99.0822 

346 99.0760 

345 99.0697 

344 99.0634 

343 99.0571 

342 99.0507 

341 99.0442 

340 99.0378 

339 99.0312 
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338 99.0245 

337 99.0178 

336 99.0111 

335 99.0042 

334 98.9973 

333 98.9904 

332 98.9835 

331 98.9764 

330 98.9694 

329 98.9622 

328 98.9550 

327 98.9478 

326 98.9405 

325 98.9332 

324 98.9258 

323 98.9183 

322 98.9108 

321 98.9032 

320 98.8955 

319 98.8878 

318 98.8800 

317 98.8722 

                     

   The results show that the hybrid random and grid search-based tuning managed to find a model 

that made PCA model conduct the dimensionality reduction with K = 335 retaining 99.0042% of 

the original dataset’s variance, as shown in Table 33 and Figure 76.  
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Figure 76. Dimensionally-reduced Images with K = 335 

                                                                            

4.5.3. Hybrid Random and Manual Search-Based Hyperparameter Tuning Technique  

4.5.3.1 Random Search-Based Tuning  

   As discussed in Section 3.2.3, the length of the unrolled vector of the images in the dataset 

is 1024. Therefore, the initial scale of the number of PCA components (K) was set as 

follows: K ∈ {1,2,3, …,1024} with a step size equal to 1. The same procedures and results 

exactly as Section 4.5.1.1 were obtained. 

4.5.3.2 Manual Search-Based Tuning  

   According to the results in Section 4.5.3.1, the updated shrunk scale for the number of 

PCA components (K) was discretized as follows: 

• K-hyperparameter: {317,318,319, …,374} with a step size of 1. 

   Therefore, these K values were evaluated based on the dimensionally-reduced dataset’s 

retained variance, as shown in Figure 77 and Table 34.  The hyperparameters were tuned by 
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walking through the discretized scale in order until getting retained variance of at least 90% 

of the original dataset’s variance. 

 

Figure 77. Retained variance evaluation of manual search 

 

 

Table 34. Manual Search based on retained variance of the dimensionally-reduced dataset 

K-Hyperparameter Retained variance (%) 

317 98.8722 

319 98.8878 

321 98.9032 

323 98.9183 

325 98.9332 

327 98.9478 

329 98.9622 

331 98.9764 

333 98.9904 

335 99.0042 

336 99.0111 

337 99.0178 

    

98.7500

98.8000

98.8500

98.9000

98.9500

99.0000

99.0500

1 2 3 4 5 6 7 8 9 10 11 12

PROGRESS DAYS

Retained variance (%)
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   The results prove the impact of random search on obtaining the productive hyperparameter 

space that would make the PCA model achieve the dimensionality reduction keeping 

99.0042% of the original dataset’s variance using 335 PCA components in a shorter time and 

with less computation units, as shown in Figure 78. This productive hyperparameter space 

guides the manual search with prior-knowledge that would accelerate the manual search-

based hyperparameter tuning. It is obvious when we compare these results with those in 

Section 4.5.1 and Section 4.5.2 that the hybrid random and manual search-based tuning is as 

efficient as both random search-based tuning and the hybrid random and grid search-based 

tuning.  

 

Figure 78. Dimensionally-reduced Images with K = 335 

4.6. Comparison Between the Hyperparameter Tuning Techniques for Each Learning 

Model Based on the Performance and Computation Time 

    It is clear, based on Table 35, that merging random search with grid search optimizes the 

performance of the grid search. Particularly, the hybrid random and grid search can improve 
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the learning model’s accuracy as efficiently as the random search within the same 

computation time approximately while the hyperparameter space has low dimensionality up 

to three hyperparameters. Therefore, mixing random search with grid search mitigates the 

exhaustive computation effort needed by the pure grid search. Moreover, the hybrid random 

and manual search takes advantage of random search as prior knowledge to manually tune 

the hyperparameters within a narrow scale and, thereby, less computation time. It gives the 

learning model’s accuracy less than both random search and the hybrid random and grid but 

in a shorter time. Hence, manual search or babysitting one model method is a shortcut 

hyperparameter tuning technique. The computation time in Table 35 is the total number of 

training epochs divided by 100. Notably, the model needs at most 100 training epochs to be 

trained, so the computation time in Table 35 is the percentage portion of the maximum 

training time corresponding to 100 training iterations. 

   When the learning model has low dimensional hyperparameter space, non-iterative 

hyperparameter optimization techniques such as random and grid search are more efficient 

in terms of computation time and storage resources consumption than iterative 

hyperparameter optimization techniques such as gradient-based, population-based training 

(PBT), and Bayesian techniques. Therefore, it is a wise decision to select these three 

hyperparameter optimization techniques and prefer them over the iterative hyperparameter 

optimization techniques in this thesis that uses at most three hyperparameters in all 

experiments discussed in Section 3.2. Yang et al proved empirically in  [15] that grid and 

random search outperforms the iterative Bayesian-based hyperparameter optimization 

technique in terms of classification accuracy and computation time for a SVM model that 

has only two hyperparameters. Accordingly, if an iterative technique was applied in this 
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thesis, it would make the learning models obtain less efficient performance and consume 

more computation time and storage units for replacement and exploitation processes 

explained in Section 2.1. 

 

Table 35. Comparison of the evaluation of the three hyperparameter tuning techniques for each learning model 

Dataset Learning Model Random 

Search 

Hybrid 

Random and 

Grid Search 

Hybrid Random 

and Manual 

Search 

 

 

 

 

Pointcloud-

based images 

for submarine 

pipelines 

 

 

 

 

 

PointNet CNN 

 

 

F1-score of 

pixel-wise 

classification 

overall average 

F1 score of 

93.6%  

 

F1-score|pool 

= 96.4%, 

 F1-score|sea = 

90.8% 

overall average 

F1 score of 

93.6% 

 

F1-score|pool 

= 96.4%, 

 F1-score|sea = 

90.8% 

overall average 

F1 score of 

90.97% 

 

F1-score|pool = 

95.93%, 

 F1-score|sea = 

86.02% 

Computation 

Time 

 

280 time-unit 

 

85 time-unit 

 

41 time-unit 

Hyperparameter 

Values 

Mini-batch size 

= 16 

 Learning rate 

= 0.001 

Momentum = 

0.999 

 

Mini-batch size 

= 16 

 Learning rate 

= 0.001 

Momentum = 

0.999 

 

Mini-batch size 

= 16  

Learning rate = 

0.00159 

Momentum = 

0.9 

 

make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

 

 

FNN Without 

Regularization 

Cross-

validation 

binary 

classification 

accuracy 

 

96.67 % 

 

96.67 % 

 

96% 

Computation 

Time 

550 time-unit 579 time-unit 68 time-unit 

Hyperparameter 

Values 

Mini-batch size 

= 16  

Learning rate = 

0.35476 

Momentum = 

0.992 

 

Mini-batch size 

= 16  

Learning rate = 

0.145 

Momentum = 

0.9675 

 

Mini-batch size 

= 16  

Learning rate = 

0.1 

Momentum = 

0.936 
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make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

 

FNN With 

Regularization 

Cross-

validation 

binary 

classification 

accuracy 

Training:  

94.31280 %   

cross-

validation: 

 96 % 

Training:  

94.7867 %  

cross-

validation: 

 96 % 

Training: 

93.83886% 

 cross-

validation: 95% 

Computation 

Time 

550 time-unit 579 time-unit 63 time-unit 

Hyperparameter 

Values 

Learning rate = 

0.49691 

Regularization 

Parameter = 

0.15732 

 

Learning rate = 

0.505 

Regularization 

Parameter = 

0.14091 

 

Learning rate = 

0.325 

Regularization 

Parameter = 0.1 

 

make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

 

 

 

RBF kernel-

Based SVM 

Cross-

validation 

binary 

classification 

accuracy 

 

97% 

 

97% 

 

97% 

Computation 

Time 

550 time-unit 579 time-unit 78 time-unit 

Hyperparameter 

Values 

C-

hyperparameter 

= 

0.63199 

Sigma = 

0.09677 

C-

hyperparameter 

= 0.91818 

Sigma = 0.1 

C-

hyperparameter 

= 0.91818 

Sigma = 0.1 

 

 

Images of 

human faces 

 

 

PCA 

Number of PCA 

components (K) 

 

335 

 

335 

 

335 

Retained 

Variance 

99.0042% 99.0042% 99.0042% 

Computation 

Time 

100 time-unit 108 time-unit 62 time-unit 

Hyperparameter 

Values 

K = 335 K = 335 K = 335 
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4.7. Comparison Between Thesis Results and the Results of the State-of-the-art 

Publications  

   As shown in Table 36, the proposed work succeeded in tuning hyperparameters to obtain, 

among the best-fit models shown in Table 10, a model that gave an overall average F1 score 

of 93.6% (F1-score|pool = 96.4%, F1-score|sea = 90.8%) using the following 

hyperparameter’s values: mini-batch size = 16, momentum = 0.9985268, and learning rate = 

0.001466154. By this score, the proposed technique outperforms and generalizes better to 

the sea dataset than the state-of-the-art work [64] which has a maximum overall average F1 

score of 92.75% (F1-score|pool = 96.2%, F1-score|sea = 89.3%) with the same data and 

model but with different hyperparameters’ values: mini-batch size = 16, momentum = 0.9, 

and learning rate = 0.001. This score indicates the low variance and small generalization gap 

that the model has, thanks to selecting a small mini-batch size and a significant momentum 

coefficient of more than 0.9 because both of them improve the model’s generalization, as 

discussed in section 2.4.1.2. 

   Moreover,  the results show that the random search-based coarse-to-fine tuning managed 

to find a model that made standard feedforward NN either with or without regularization 

conduct the binary classification with high accuracy of 96.67 % and 96 %, respectively, 

using the hyperparameters’ values: mini-batch size = 16, learning rate = 0.35476, 

momentum = 0.99200, as shown in Table 20. By this binary classification accuracy, the deep 

feedforward neural network (FNN) outperforms the state-of-the-art work in [109] that 

achieved using a RBF kernel-based SVM a binary classification accuracy of 96 % for the 

same dataset, make_moons provided by scikit-learn library (sklearn), as mentioned in 
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Section 2.5.2. Therefore, this indicates the superiority of deep neural networks over 

traditional machine learning algorithm such as SVM. 

   For the SVM model, the results show that the random search-based coarse-to-fine tuning 

managed to find a model that made the SVM model conduct the binary classification with a 

high accuracy of 97% with hyperparameters’ values: C-hyperparameter = 0.63199 and 

Sigma = 0.09677, as shown in Table 28 and Table 36. By this binary classification accuracy, 

the model surpasses, in terms of classification accuracy, the state-of-the-art work in [109] 

that achieved using an RBF kernel-based SVM a binary classification accuracy of 96% for 

the same dataset, make_moons provided by scikit-learn library (sklearn), as mentioned in 

Section 2.5.2. 

   For PCA, the results show that the used tuning techniques managed to find a model that 

made PCA model conduct the dimensionality reduction with K = 335 retaining 99.0042% of 

the original dataset’s variance, achieving comparable results with the state-of-the-art article 

[110].  

Table 36. Comparing Obtained Results With the Recent Articles' Results 

Dataset Learning Model Results 

Thesis The state-of-the-

art Publications 

Thesis The state-of-the-art 

Publications 

Pointcloud-

based images 

for submarine 

pipelines 

PointNet CNN 

 

 

 

 

 

 

 

 

PointNet CNN 

 

 

 

 

overall average 

F1 score of 

93.6% 

 

F1-score|pool = 

96.4%, 

F1-score|sea = 

90.8% 

overall average F1 

score of 92.75% 

 

F1-score|pool = 

96.2%, 

F1-score|sea = 

89.3%) 

[64] 



 

171 
 

make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

FNN Without 

Regularization 

RBF kernel-

Based SVM 

 

Cross-validation 

binary 

classification 

accuracy: 

 

96.67 % 

Cross-validation 

binary 

classification 

accuracy: 

 

96.67 % 
 

[109] 

make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

FNN With 

Regularization 

 

RBF kernel-

Based SVM 

 

Training: 

94.7867 % 

 

 

Cross-validation 

binary 

classification 

accuracy: 

96 % 

Cross-validation 

binary 

classification 

accuracy: 

 

96.67 % 
 

[109] 

make_moons, 

provided by 

scikit-learn 

library 

(sklearn) 

RBF kernel-

Based SVM 

 

RBF kernel-

Based SVM 

 

Cross-validation 

binary 

classification 

accuracy: 

97% 

Cross-validation 

binary 

classification 

accuracy: 

 

96.67 % 
 

[109] 

Images of 

human faces 

PCA 

 

PCA Number of PCA 

components (K) 

= 

335 

Retained 

Variance = 

99.0042% 

Number of PCA 

components (K) = 

400 

Retained Variance 

= 99% 

[110] 

4.8. Limitations 

   To summarize the work in the thesis professionally, the three hyperparameter tuning 

methods presented in this thesis have demonstrated their efficacy in optimizing learning 
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model’s hyperparameters while significantly reducing computational overhead compared to 

iterative methods like gradient-based or Bayesian-based approaches. These discussed 

techniques, being non-iterative, are characterized by their efficiency, requiring minimal 

memory and shorter execution times. 

Furthermore, these methods highlight the advantages of combining traditional tuning 

techniques to achieve more efficient hyperparameter optimization across various machine 

learning and deep learning applications. However, it's important to note that the validity of 

this conclusion is bounded by the number of hyperparameters associated with the learning 

model, which should not exceed three due to scalability considerations. Specifically, the 

proposed tuning approaches do not leverage distributed computing and parallelization 

during execution, so computation time dramatically increases when the number of tuned 

hyperparameters grows. Additionally, it's worth mentioning that grid search exhibits 

exponential time complexity as the number of hyperparameters increases. To put it in 

mathematical terms, if there are 'k' hyperparameters, each with 'n' distinct values, the 

computational complexity grows exponentially at a rate of O(𝑛𝑘). 
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Chapter 5 

Conclusions and Recommendations 

   This thesis applied three competent hyperparameter tuning techniques to tune the 

hyperparameters of five different machine and deep learning models. In this chapter, we 

explore three methods for tuning hyperparameters in machine learning and deep learning 

models. The following hyperparameter tuning techniques were employed: random search-

based hyperparameter tuning, hybrid approach combining random and grid search-based 

hyperparameter tuning, and hybrid approach combining random and manual search-based 

hyperparameter tuning. These tuning techniques were implemented on five different models: 

PointNet convolutional neural network, regularized standard feedforward neural network, 

non-regularized standard, feedforward neural network, support vector machine (SVM), and 

principal component analysis (PCA). 

5.1. Conclusions 

   The random search-based coarse-to-fine hyperparameter tuning is an enhanced version of 

the standard random hyperparameter search method. In this approach, the random 

hyperparameter search is performed in two or three stages instead of a single step, ensuring 

that the model's performance generalizes well across training, cross-validation, and test 

datasets. The first two stages, referred to as coarse and fine tuning, were conducted using the 

cross-validation dataset. The third stage, however, was specifically applied to the PointNet 

CNN model utilizing the test dataset for further tuning. The hybrid random and grid search 

combines the effectiveness of random search in determining optimal hyperparameter scales 
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with the benefits of grid search. By utilizing random search as a guiding mechanism, the 

grid search was directed towards the regions in the hyperparameter space that have shown 

promising performance. This approach avoided unnecessary computational time and storage 

resources spent on tuning hyperparameters with values that are unlikely to significantly 

improve the accuracy of the learning model. The grid search is particularly accurate in 

tuning a small number of hyperparameters, typically up to three. In order to leverage the 

effectiveness of random search in identifying optimal areas within the hyperparameter space, 

the hybrid random and manual search combines random search with manual search. By 

using random search as a preliminary step, it provided prior knowledge that helped guide the 

manual search towards narrower and more effective ranges for the hyperparameters. As a 

result, computational time and storage resources were utilized more efficiently compared to 

a standard manual search without any prior knowledge. Without this prior knowledge about 

recommended hyperparameter ranges, manual search could have been a time-consuming and 

challenging process. Manual search becomes a necessary option when there is a scarcity of 

human or computational resources. In this technique, the hyperparameters of the PointNet 

CNN model were tuned through three stages. 

   The three tuning techniques were used to improve the image classification accuracy of 

convolutional deep neural networks such as PointNet. The three hyperparameter tuning 

techniques tuned three hyperparameters: the mini-batch size of SGD, momentum, and 

learning rate. Moreover, tuning aimed to prevent the deep-learning model from overfitting 

the training or validation datasets and improved its generalization to distinct datasets. 

Therefore, two diverse datasets, pool and test datasets, were used for two independent tests 

to guarantee that the model has a low variance and can accurately classify the unseen data 
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model will confront at application time. The sea dataset comes from a different distribution 

from training and validation datasets. 

The results of pool and sea tests demonstrate clear evidence of the distinct generalization 

and low variance that the model as the tuned model generalized to unseen datasets with high 

classification accuracy, surpassing the results of related recent research documents. Notably, 

the model gave an overall average F1 score of 93.6% (F1-score|pool = 96.4%, F1-score|sea 

= 90.8%) using both the random search and hybrid random and grid search. On the other 

hand, the hybrid random and manual search approach leveraged the insights gained from 

random search as prior knowledge to manually tune the hyperparameters within a narrow 

range. As a result, it reduced the computational time required for hyperparameter tuning. 

However, this approach yielded a lower classification accuracy compared to both random 

search and the hybrid random and grid search methods. The model gave an overall average 

F1-score of 90.97% (F1-score|sea = (F1-score|pool = 95.93%, F1-score|sea = 86.02%). 

   The random search-based coarse-to-fine tuning and the hybrid random and grid search 

managed to find a model that made standard feedforward NN conduct the binary 

classification with high accuracy of 96.67% for the dataset, make_moons, provided by 

scikit-learn library (sklearn). On the contrary, the hybrid random and manual search 

approach leveraged the insights gained from random search as prior knowledge to manually 

tune the hyperparameters within smaller ranges. As a result, it reduced the computational 

time required for hyperparameter tuning. However, this approach yielded a lower 

classification accuracy compared to both random search and the hybrid random and grid 

search methods and achieved a high binary classification accuracy of 96%.  



 

176 
 

   The three hyperparameter tuning techniques successfully identified a model that enabled 

the SVM model to achieve a high binary classification accuracy of 97% for the dataset, 

make_moons, provided by scikit-learn library (sklearn). Moreover, these techniques had 

success at obtaining the minimum number of PCA components (K = 335) by which the 

dimensionality of the dataset (human faces) was reduced and kept the possession of 

99.0042% of the original dataset’s variance. 

   In conclusion, the three hyperparameter tuning techniques discussed in this thesis have 

succeeded in optimizing the learning model’s hyperparameters with less computation cost 

than iterative approaches (gradient-based, Bayesian-based, etc.). The discussed techniques 

are non-iterative methods that do not require much memory or long execution time. 

Moreover, these techniques underscore the effectiveness of combining standard tuning 

techniques to obtain more efficient hyperparameter optimization for various machine and 

deep learning applications. The validity of this conclusion is limited by the number of 

learning model’s hyperparameters, which should not exceed three hyperparameters due to 

scalability concerns. In particular, the proposed tuning methods do not exploit the 

parallelization feature at execution. In addition, grid search has a time complexity increasing 

exponentially with the number of hyperparameters, as follows: if there are k 

hyperparameters, each with n distinct values, the computational complexity increases 

exponentially at a rate of O(𝑛𝑘).     

5.2. Recommendations and Future Work 

   It is recommended in future work to replace the early stopping strategy in PointNet used 

for regularization with a better technique, such as LP-norm regularization. The LP-norm 

regularization is superior because it follows the orthogonalization concept in deep learning 
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as it deals with regularization and training as separate tasks; however, it needs the effort to 

tune the regularization factor as an additional hyperparameter in the model. On the other 

hand, the early stopping strategy performs regularization and training synchronously but 

with less classification accuracy. In addition, it is preferred to use an iterative 

hyperparameter tuning technique like the Bayesian approach, Gradient-based approach, or 

Population-based training (PBT) to iteratively optimize a significant number of 

hyperparameters (not only three) until obtaining the desired cross-validation classification 

accuracy. The state-of-the-art hyperparameter optimization frameworks such as Optuna 

should be exploited to implement the iterative hyperparameter tuning techniques. Moreover, 

ASHA algorithm should be utilized to make the full use of parallel programming available at 

modern multi-core supercomputers to reduce the computation time of the recommended 

iterative hyperparameter tuning techniques. Besides, a combination of random search or grid 

search and one of iterative tuning techniques can be implemented to obtain further 

hyperparameter optimization. 

   Furthermore, it is worth mentioning that addressing scalability concerns beyond 

hyperparameter optimization requires a bunch of tools, libraries, or techniques to be 

considered: 

1. Distributed Computing: To handle scalability concerns related to training models 

on large datasets or performing complex data processing tasks, distributed omputing 

frameworks like Apache Spark or Dask may be needed to use. 

2. Data Preprocessing: Large datasets often require efficient data preprocessing 

pipelines. Libraries like Apache Beam or Dask can help in parallelizing and scaling 

data preprocessing tasks. 
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3. GPU/TPU Utilization: When dealing with deep learning models, using GPUs or 

TPUs can significantly improve scalability. Libraries like TensorFlow and PyTorch 

have built-in support for GPU/TPU acceleration. 

4. Feature Engineering: Scalable feature engineering can be achieved using tools like 

feature stores or distributed feature engineering libraries. 

5. Model Parallelism and Distributed Training: For very large models, model 

parallelism and distributed training techniques can be employed to train models 

across multiple devices or machines. This can be achieved using frameworks like 

Horovod or Ray. 
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