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Abstract

In this thesis, we analyze the collocation-based continuous Rlmge-Kutta

methods for delay differential equations and delay Volterra integro-differential

equations. We will look at the global convergence and local superwnvergence

properties of collocation soLutions. We also consider tile possible extensions

of these results to neutral type delay equations and higher order equations.

In Chapter 2, we give the resolvent representations for solutions to

Volterra integral and integro-differential equations with constant delay, and

discuss their relevance for the superconvergeoce order problem. We prove

that the resolvent representation does not exist for the proportional delay

case. 'vVe then analyze the impact of discontinuities in solutions on our nu­

merical methods. We show that discontinuities occur in higher order deriva­

tives for delay integro-differential equations than for delay differential equa+

tions. We also prove that discontinuities arising in solutions to neutral delay

integro-differential equations are different from those for neutral delay differ­

ential equations. Similar results hold for delay Volterra integral equation and

delay Volterra integro-differential equation. We also give the discontinuity

properties for solutions to state-dependent delay equations.

In Chapter 3, we discuss collocation solutions to various equations with

constant delay, and survey global and local convergence results. Some exten­

sions to neutral type constant delay problems are also described.

In Chapter 4, we introduce collocation methods for differential and



integro-differential equations with variable delay, <:special!y proportional de­

lay. 'We prove that the global convergence order equals the number of colloca­

tion parameters used for first order differential equations with proportional

delay. We give concrete representations for collocation solutions after the

first step, and conduct some numerical experiments which suggest that su­

perconvergence does exist in the proportional delay case. An extension to

second order DOE is also given.

In Chapter 5, we suggest a new approach, standard embedding, to the

superconvergence order problem of collocation solutions to differential equa­

tions with proportional delay, and are able to prove that superconvergence

results again do exist under certain conditions.
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Chapter 1

Introduction

In tbis chapter, we introduce the problems we are concerned witb., the methods

we are going to use, some basic definitions, a short history of collocation methods,

and an outline of this thesis.

III tbe numerical analysis of initial-value problem for ordinary differen­

tial equations, three principal questions have to be answered:

1. Does the numerical method converge as "h -oj. O+"?

2. What is the optimal order of convergence (globally, on the prescribed

interval; or locally, at the mesh points) of tile method?

3. Does the numerical method mimic the stability properties of the given

problem ("h > 0" li.....ed and "t -+ oo")?

Analogous questions arise for integral equations and integro-differential



equations of Volterra type (functional equations with memory terms), since

they may be viewed as gcncralized initial-value problems. In this thesis,

we concentrate on collocation methods for delay diffcrential equations, delay

integral equations and delay Volterra integro-differential equations, namely

y'(tl [(t,y(t),y(6(t))), (1.0.1)

yet) = g(t,y(t)) + lk(t,s,y(sJ,y(8(S)))dS, (1.0.2)

and

y'(t} = get, yet)) + l k(t, s, yes), y(lJ(s)))ds. (1.0.3)

We shall be concerned in particular with the cases ott) = t - T, T > 0,

and Ott} = qt, 0 < q < 1, although there are some results about disconti-

nuities for equations with more general delay, in particular, state-dcpendent

delay.

1.1 Collocation methods

Let I := [0, T] be the interval on wEiich the given initial-valuc problem is to

be solved, and let fIN : 0 = to < t 1 < ... < tN = T be a (not necessarily

uniform) mesh for I. We set

for n =0, 1",' ,N -1, and denote by



the space of (real) piecewise polynomials (or splines) of degree at most jl

that have continuous derivatives of order d on I, with -1 ~ d < jl. In the

case where d = -1, the elements of S~-ll(nN) in general have (finite) jump

discontinuities at the interior mesh points; we then set In = (tn, tn+d for

n=l, .. ,N-1.

Theorem 1.1.1 (See [21j) The dimension oj the piecewise polynomial space

S~<t)(nN) is given by

dim S~d)(nN) = N{jl - d) + (d + I),

In particular, if jl = m + d (m ;?: 1), we have

dimS,c,.~AnN)=Nm+(d+l), d;?:-1. (1.1.1)'

The "classical" spline spaces are given by d = jl - 1; thus,

The proof of this result is straightforward and therefore omitted, Inter-

ested readers may look at [201 or [211 for more details about the basic setting

of collocation methods.

The basic idea of a collocation method is to approximate the exact

solution of a given functional equation in a suitably chosen finite-dimensional

function space (often, but not always, a subspace of the space containing

the solution) such that the approximating element satisfies the functional

equation on a certain finite subset (consistent with the dimension of the



approximating space) of the interval on which the equation is to be solved.

This element will, in general, not satisfy the equation at a point not belonging

to this finite subset (the set of collocation poinlS).

The result of Theorem 1.1.1 indicates, in the context of collocation,

that the natural choice of d in (1.1.1) will be governed by the nature of

the functional equation to be soh-ed.: if the equation under consideration

is a differential or integro-differential equation of order It, then d = K; - 1.

For problem (1.0.2), we certainly take d = -I, i.e., the collocation solution

is found in the space S,c,,-I)(IT ..... ). For problems (1.0.1) and (1.0.3), we take

d = 0, i.e., we solve them in space S~)(IT,.,.). The above theorem also suggests

an obvious way of placing these collocation points if they are of multiplicity

one: each of tbe N subintervals I.. contains Jj - d collocation points (or, in

the case of the space S~~(n..... ), m such points for all d ~ -1). We denote

the collocation points in I .. by t... + Cik", and set

x ..... := {t..+Cih... :O$CI < ... < C,,_fI $1, n=O,I,·· ,N-l}.

Note tbat if c, =0 and C,._fI = I, then tbe corresponding collocation solution

u is in CfI+l(J), that is, sC':-~I(nH)' provlded the data are continuous.

For differential equations, unlike integral equations in general, colloea-

tion leads directly to a set of algebraic equations for the parameters. Tbe

most common sets of functions used are global or piecewise polynomials,

even though some researchers use non-polynomial splines instead, see [13),

(321 and (68). Some care is needed in the choice of collocation points if an



effective algorithm is to be obtained.

1.2 Historical survey of collocation methods

In the late 1960s, Loscalzo [74]' and Loscalzo and Talbot (75] introduced

collocation methods in the classical spline space S!n",-I)(IIN) for initial-value

problems of first-order ODEs; see also [55]. Callender [31] employed Sgl(TtN)

as the approximating space for collocation. A general analysis of polynomial

spline collocation (including multiple collocation points) is due to MliLth.ei

[82], see also th.e references therein. Keller [68J studied collocation methods

in certain nonpolynomial spline spaces. While these papers are concerned

with the global order of collocation appro.ximations, Guillou and Soule [50]

had shown in 1969 that collocation in S~}(ITN) yields an m-stage implicit

Runge-Kutta method, and has a local superconvergence order of 2m if the

collocation points are the Gauss points.

Polynomial spLine collocation methods in s!"m-l}(IIN) for initial-vaLue

problems for second-order ODEs were analyzed by Harvey [54] and Micula

[78], see also the bibliography [79] for a comprehensive list of references.

Collocation in S;,,"'-I}(ITN), m:::: 3, for second-order IVPs was done by Hung

(561_

For (1.0.1), [9] deals with the one-step collocation method with contin~

uous piecewise polynomial functions; primary discontinuities are studied in

[42] and [46J; Runge-Kutta methods for vanishing delay differential equations



has been studied in [43J; numerical investigation of the long time dynamical

behavior of the solution has been conducted in {47], [59], [72], [73], (87] and

[95], etc.

In recent years, various aspects of numericaL methods for (1.0.2) have

been studied. Convergence propeny results have been found for colloca­

tion and continuous implicit Runge-Kutta methods [16]; iterated colloca­

tion method {17]; continuous Volterra-Runge-Kutta meth.ods [3]; Euler's

method, the trapezoidal and midpoint method for (1.0.2) with pure delay

[88]; Hermite-type collocation for (1.0.2) [44]; direct quadrature methods

for (1.0.2) with state-dependent delay [291; extension of ODE Runge-Kutta

methods to (1.0.2) [2]; and general Runge-Kutta methods and their natural

extensions for (1.0.2) [89].

It appears that VlDEs with delay arguments like (1.0.3) were first in­

troduced by Volterra [93J in the late 19205. More recently, delay VIDEs,

and more general Volterra functional equations, have come to play an impor­

tant role in the mathematical modeling of biological (see [38n and physical

phenomena and, not surprisingly, there has been a growing interest in the nu­

merical solution of such equations; compare the survey papers [10] and [65].

Linear multistep methods and direct quadrature methods were studied in [4J

for ordinary VIDEs, {64] and [67] for neutral Volterra functional equations

and VIDEs; compare also [63] and the survey [65] for an analysis of one-step

methods for neutral Volterra functional differential equations. Collocation



methods were discussed in [771 for delay VIDEs and (14] for neutral VIDEs

of order T :::: 1, see also [91 for delay differential equations, [16J and (891 for

Volterra integral equations with delay.

Delay equations arise from many areas, including automatic control,

physics, technology, and even certain areas of economics and the biological

sciences. See (69J and [591 for comprehensive lists of references.

1.3 Outline of thesis

In Chapter 2, we will provide some basic theory for various types of Volterra

equations relevant to the subsequent numerical analysis, especially the analy­

sis of local superconvergence; we also point out some difficulties due to the

discontinuities of the solutions and their derivatives. Resolvent representa~

tiOD is a classical approach to prove superconvergence results for many types

of initial-value problems. However, it does not work in the proportional delay

case as shown in Section 2.1. Discontinuities may have a negative impact on

the convergence properties of numerical solutions. This problem and related

theorems can be found in Section 2.2. In this chapter, our main contributions

are Theorems 2.1.5-2.1.7, 2.1.9, 2.2.3, 2.2.5 and 2.2.8.

In Chapter 3, Vie will look in detail at the cotlocation methods for sev-

era! kinds of equations with constant delay. We survey various known results

related to constant delay in order to compare them with similar results for

equations with proportional delay in Chapter 4. We introduce the collocation



method for these equations in Section 3.1. We review the global convergence

results in Section 3.2. Local convergence results are covered in Section 3.3.

In Section 3.4, results about delay Volterra integra-differential equations of

neutral type are discussed.

In Chapter 4, we will develop the collocation methods for various equa­

tions with proportional delay. Its global convergence properties are discussed

in Sections 4.1 and 4.2. In Section 4.3, we discuss the order of local conver­

gence of our test equation. In Section 4.4, we extend the results to second­

order DOes. Some numerical examples will be provided as a further il1ustra­

tiOD for these results. OUf main contributions in this chapter are Theorems

4.2.1,4.2.2, 4.3.3 and 4.4.2-4.4.3.

In Section 5.1, we will propose a new approach to the superconver­

gence order problem of collocation solutions to differential equations with

proportional delay, and prove the result under certain conditions. In Section

5.2, we look at some potential research projects. In this chapter, our main

contributions are Theorem 5.1.3 and 5.104.

We assume that the reader is familiar with tne theory of ODEs and

the methods for their numerical solutions. Representative books about this

subject are [27], [39], [51], [52] and [70J, see also the references therein. For

an introduction to Volterra integral and differential equations, reader may

consult [21], [26], [34], [48] and {80]. Classical treatments of integral equations

may also be found in [90J, [91] and [92].



Chapter 2

Mathematical Background

In this chapter, we present some analytic results which are crucial for the rest of this

thesis. Resolvent representation is a classical approach to prove supercoDvergence

results for many types of initial·value problems. However, such a representation

does not exist in general in the variable delay case as shown in Section 2.1. Discon­

tinuities may have a negative impact on the convergence properties of numerical

solutions. This problem and related theorems can be found in Section 2.2.

Consider the (linear) ordinary differential equation,

y'(t) ~ a(t)y(t) + get), tEl, yeO) ~ Yo, (2.0.1)

and the integro-differentiat equation,

y'(t) = a(t)y(t) + g(t) + l K{t, s}y(s)ds, t E I, y(O) = Yo. (2.0.2)

Since resolvent representations of solutions are the key to the proof of



superconvergence results in collocation approximations, we will study this

issue in next section.

2.1 Resolvent Results

2.1.1 Equations without delay

Definition 2.1.1 If the solution of an equation given above can be expressed

in the form

y(t) = R(t,O)y(O) + l R(t,s)g(s)ds, tEl, (2.1.1)

where R(t, s) depends only on the data in the homogeneous part of the given

equation, then (2.1.1) is called the resolvent representation of the solution.

The function R(t, s) is called the resolvent kernel.

Theorem. 2.1.1 If a, 9 E C{I), then the resolvent representation of the so­

lution for (2.0.1) is given by

y(t) = R(t,O)y(O) + l R(t,s}g{s)ds, tEl,

where R(t, s) solves the resolvent equation

aR~,S} = a(t)R(t,s), s:5 t,

with R(t, t) = 1.

10



In this case, we can directly write down the resolvent kernel as

R(t, s) = exp([ a(x)dx).

A number of reasons motivate us to look for such representations of a

solution. For example, if we want to solve an equation whose solution has a

resolvent representation numerically by collocation methods, this eventually

leads to an equation for the collocation error e(t) := yet) - u(t) (where yet)

and u(t) are the exact and collocation solutions, respectively) which differs

from the original equation only in the nonhomogeneous term: g(t) is replaced

by the defect term oCt) which, by definition, vanishes at the collocation points

{tn.; ;= tn + e;h, 0::; c\ < .. < en ::; 1, (n = 0,1, .. ,N - I)}, see page

51 for the precise definition. If the solution of the equation has a resolvent

representation (2.1.1), then it follows that

e(t) = R(t,O)e{O) + f R(t, s)o(s)ds = fo' R{t, s)o(s)ds. (2.1.2)

Setting t = tn in (2.1.2) leads to

e(tn) = h~[ R(tn,t;+sh)o(ti+sh)ds. (2.1.3)

This integral form allows us to derive superconvergence results for the

mesh points t = tn' For (2.0.1), it was shown in [501, see also [511, that the

attainable order of local superconvergence on TIN is related to the degree of

precision of the (interpolatory) m-point quadrature formula having the {e;}

as abscissas:

II



Theorem. 2.1.2 (See [50J) If the evllocation parameters {c,J satisfy

folSk-IM(s)ds=::O for k=::l, .. ,r,

with M(s):= IT{;I(s - c.), and ifu is the corresponding collocation solution

in S~J(rrN) for (2.0.1), then

for some constant C whenever the solution y is sufficiently smooth.

The following remark can serve as an informal proof for the result (2.1.4)

in Theorem 2.1.2.

Remark 2.1.1 Using an m·point interpolatory quadrature formula with

abscissas {t; + elh : l =:: 1, .. ,m}, weights fwd, and quadrature errors

En';, the integrals in (2.1.3) may be written as

That is,

l R(tn, t; + sh)5(ti + sh)ds =:: En,;,

because o(t) =:: 0 when t = t; + elh E X N. This implies that the convergence

order of e(tn) is totally determined by the order of the quadrature errors

En,. which in tum depends on the degree of smoothness of the integrand.

Indeed, if the given functions are sufficiently smooth, these orders are equal

to 2m when we take the Gauss points, i.e., the zeros of the (shifted) Legendre

l2



polynomial P",(2s-1), since the quadrature error at m Gauss points always

has an order of 2m.

This simple idea, which was used first in [50], has potentially great im­

pact on the analysis of superconvergence results for more general differential,

or integra-differential equations, even with delay.

We may ask the following question: If U E ,g{~)(nN) is the collocation

solution of (2.0.1) or of (2.0.2) for the Gauss points, we know that

hut what ahout e'(t,,)? Can we get the same order for e'(t,,)? The answer is

not very encouraging: for the Gauss points, we can only get the lower order

afm, i.e.,

As we shall see below, e(t,,) = O{hp·) and e'(t,,) = O(hP-), in which p' =
2m - 1, is possible for the Radau II points, Le., the zeros of P",(2s - l}­

P",_1(2s - 1) where P is the Legendre polynomial.

However, when the iterated collocation solution is introduced, the result

is much better. In fact, we again get the same order of 2m. The iterated

collocation solution of (2.0.1) is defined by

U:t(t) := a(t)u(t) + get), tEl,

where u(t) is the collocation solution we already have. Accordingly, the

13



iterated error for the derivative is <t(tn) := y'(tn) - u;/tn). We summarize

the above analysis as follows:

Theorem 2.1.3 For equation (2.0.1), if a(t),g(t) E C 2m (I), then we have

for some constant C and p. s: 2m. We have p' = 2m if, and only if, the

{c;} are the Gauss points.

A more general result can be found in [18], Theorem 3.2.

Another natural question arises, namely, for which {e;} do we have

and

e'(tn)= O(hP-),

withp' > P = m at the same time? A necessary condition is em = 1 (compare

[21]). From (2.1.2), we have

e'(t) = R(t,t)o(t) + l aR~,s) o(s)ds, tEl.

In order to have an expression similar to (2.1.3), we need o(tn ) = 0, that is,

tn_1+em.h = tn, i.e., em. = 1 (Note that in general we have o(tn) = O(hm)).

This is equivalent to saying that the last collocation point in each subinterval

coincides with its right end-point. Therefore, obviously the answer cannot

be true for Gauss points where em < 1.

14



We have the following theorem concerning the resolvent representation

of the solution of (2.0.2) (see [211 and [49]).

Theorem 2.1.4 If aCt), get) and K(t, s) are continuous on theiT own do-

mains, then the resolvent Tepresentation of solution {2.0.2} is given by

yet) = R(t, O)y(O) + 101

R{t, s)g(s)ds,

and R(t,s) solve.s the resolvent equation

aR~,s) = a(t)R(t,s) + t K(t,x)R(x,s)dx, s:5 t,

with R(t, t) = 1.

2.1.2 Equations with delay

For delay Volterra integral equations of the form

yet) = g(t)+ !o'Kt(t, s)y(s)ds+l-rK2(t,s)y(s)ds. tEl, (2.1.5)

y(t) ~ <I(t), t E [-T, OJ,

we have the following two results which are slight extensions of similar results

in [17J:

Theorem 2.1.5 Assume g, K 1 and K2 in {2.1.5} are continuous, and ~M =

T fOT some MEN. Then fOT t E [~,..,~,..+d, ~,.. := p.r, 0 :5 I.l :5 M - 1, the

solution y to {2.1.5} has the resolvent representation

y(t) = g,.,(t) + !o' R(t, s)g,.,(s)ds,

15



where gp(t) := get) + f;-" K'l(t,s)yp(s)ds, yp(t) is the solution of (2.1.5) on

[-r,.;p] with Yo(t) = ¢(t), and R(t,s) solves

R(t,s) = Kdt,s) + [K1(t,x)R(x,S)dx. 0 =:; s =:; t '5 T. (2.1.6)

Proof: For IJ. = 0, suppose

yet) = get) + l R(t, s)g(s)ds, t E [O,T], (2.1.7)

where R(t,s) is to be determined and g(£) := get) + f~-" Kz.(t,s)¢(s)ds.

Substituting (2.1.7) back to (2.1.5), we have

lR(t,S)jj{s)ds l Kdt,s)jj(s)ds+ l f K 1(t,s)R(s,x)g(x)dxds

l Kdt,s)jj{s)ds+ l [Kl{t,x)R(x,s)dx9{s)ds.

Hence, R(t, s) must solve (2.1.6).

For IJ. > 0, we use the same argument but work with [-r,';pl and Yp(t)

instead of(-r,O] and ¢(t).

The collocation error e ;= y - u satisfies

e{t) = oCt) + l K 1(t, s)e(s)ds + F{t),

where F(t) =f~-"Kz.(t,s)e(s)ds, and most importantly, we have

Theorem 2.1.6 The error e has a resolvent representation of the form

o

(2.1.8)
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on [~""~,,,+d, 0 5: ~ 5: !vI -1, whereS... (t) := 6(t)+ fci- r K 2 (t, s)e...(s)ds, e... (t)

is the error on (O,~,,] with eo(t) == 0 and R(t, s) satisfies (2.1.6) provided thaI

each /moum junction in (2.1.5) is continuous.

Due to the presence of aCt) in (2.1.8), the local superconvergence order

is largely determined by the nature of the defect term o(t). A more detailed

discussion about the superconvergence order for (2.1.5), using the resolvent

approach, can be found in (17).

Consider delay Volterra integro-differential equations of the form

y'(t) = g(t)+lKl(t,S)y(S)dS+lH K2 (t,s)y(s)ds, I E I, (2.1.9)

YI') ~ <II'), 'E [-" OJ.

Theorem 2.1.7 Let g, K l and K 2 in (2.1.9) be continuous and ~M = T for

some MEN. Then for t E [~'" ~,,+d, ~" := ~'f', 0 :S ~ 5: .M - 1, the solution

y to (2.1.9) can be expressed in the form

yet) = R(t,O)y(O) + l R(t.s)g,,(s}ds,

where gll(t) := get) + fJ-r K2 (t, s)y... (s)ds, y...(t) is the solution of (2.1.9) on

[-r,€...], and R(t,s) solves

~(t,S) =l KL(t, x)R(x, s)dx, 0:5 s:5 t:5 T. (2.1.10)

Proof: Similar to that of Theorem 2.1.5.

Since the collocation error satisfies e(O) = 0, we obtain,
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Corollary 2.1.1 If g, K l and K 2 in (2.1.9) are continuous, and {M = T

for some MEN. Then for t E [(",{,,+JJ, °:5 11 :5 M - 1, the collocation

error e(t) to (2.1.9) can be expressed in the form

e(t) = l R(t,s)6s.«s)ds, (2.1.11)

where D,,(t) := ott) + ItT K2 (t, s)e,,(s)ds, e,,(t) is the error on [0,(,,1 with

eo{t);::; 0 and R(t,s) solves (2.1.10).

Since we have the integral expression of error e(t) in the form of (2.1.11),

the convergence order of e(t,,) is again determined by the order of the quadra­

ture error which in turn, depends on the smoothness of the integrand R(t, 5)6,,(5).

This argument leads to the following superconvergence result.

Theorem 2.1.8 (See /lB), Theorem 3.2} Assume that the given functions

in (2.1.9) are sufficiently smooth on their domains, i.e., 9 E C2m (I), K l E

C 2m (S), K 2 E C2m(ST) where ST:= [-r,T ~ r] and ¢let) E C2m [_r,OI· If

the collocation points are Gauss points, and h = r/T (constrained mesh fIN)

is sufficiently small, then

for some finite constant C.

Certainly, the most challenging problem is to establish the local super­

convergence properties of solutions in the proportional delay case. Unfortu­

nately, the resolvent approach does not work for this case, since the resolvent
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representation does not exist. As a result, a new approach has to be found.

We make this clear by the following result.

COllSider integro-differential equatiollS with proportional delay,

y'(t) = a(t)y(t) + get) +ft K(t,s)y(s)ds, t E J, y(O) = Yo, (2.1.12)

with 0 < q < 1.

Theorem 2.1.9 There is no resolvent representation of the form (2.1.1) for

the solution of (2.1.12).

Proof: We prove it by contradiction. Rewrite (2.1.12) as

y'(x) = a(x)y(x) + g(x) + f" K(x, s)y(s)ds, (2.1.13)

multiply by R(t,x) and integrate from °to t on both sides of (2.1.13):

R(t,t)y(t)=R(t,O)y(O)+lR(t,s)g(s)ds+l (a~:,s)+R(t,s)a(s)) y(s)ds

+It (J.:q R(t, x)K(x, S)dX) y(s)ds

=R(t,o)y(O)+ f'R(t,s)g(s)ds-/" (J.l R{t,x)K{x,S)dX) y(s)ds
)0 qt '/q

+l (a~:,s) +R(t,s)a(s)+l.;qR(t,X)K(x,S)dX) y(s)ds.

If the resolvent kernel R(t, s) satisfies the resolvent equation

aR~:,s) = -R(t,s)a{s) - J.;q R(t,x)K(x,s)dx, s:5 t, (2.1.14)

with R{t ,t) = 1, then

yet) = R(t,O)y{O) + r R(t,s)g(s)ds -/.' (J.l R(t,X)K{X,S)dX) y(s)ds.
fo qt ./q
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Tills is no longer a resolvent representation since yet) itself is also involved

in the last term OD. the right side. This indicates that we cannot have the

resolvent equation (2.1.14) and the resolvent representation (2.1.1) at the

same time unless q = 1 (no delay) or K(t, s) == 0 (no integral term).

o
Another proof of Theorem 2.1.9: Assume a resolvent representation

holds for solution of (2.1.12):

yet) = R(t,O)y(O) + {,I R(t,s)g(s)ds, (2.1.15)

with either "f = 1 or ~r = q. Substitute it back to (2.1.12),

aR~, 0) yeO) + "f R (:: '"(t)ght) + III aRb~' s) g(s)ds

a(t)R{t, O)y{O) + fa K{t, s)R(s, O)y(O)ds + get)

+ fl a(t)R(t,s)g(s)ds+ fl 1076

K(t,s)R(s,x)g(x)dxds

a(t)R(t, O)y(O) + Ioq/. K{t,s)R(s, O)y(O)ds + get)

+ fl a(t)R(t,s)g(s)ds+ f ql (1.;: K(t,X)R(x,S)dX) g(s)ds.

In either case, we cannot derive the resolvent equation:

aR~,s) = a(t)R(t,s) + [I K(t,x}R(x,s)dx, s $: qt,

unless q = 1. Hence, the solution of (2.1.12) does not have a resolvent

representation of the form (2.1.15). o
Similar conclusions hold for other type equations with proportional

delay. For example, Chambers [33J proved that solutions to the following
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integral equations do not have a resolvent representation:

yet) = g{t) + loqt. K{t,s)y(s)ds, tEl. (2.1.16)

Using the Picard iteration method, the iterative solution is given by

Yn+l(t) = get) + Ioq

( K(t, S)Yn(s)ds,

y,(t) ~ </(t).

Theorem 2.1.10 ([33}) 1¥hen 0 < q ~ 1, (2.1.16) has a unique solution,

and it can be expressed as

yet) = get) + %;;1 loq",j Km{t, s)g(s)ds, (2.1.17)

where the K m are defined iteratively by

Km+dt,s) = J.;~ ... K(t, x)Km{x, s)dx, m ~ 1,

and Kl{t,s) = K(t,s).

However, the above solution does not have a resolvent representation. By

change of variable,

yet) get) + 'fllol
qmKm(t,qms)g(qms)ds

get) + lotfl qmKm(t,qms)g(qms)ds.

It is clear that g(s) can not be separated from the summation. As a result,

the solution to (2.1.16) does not have a resolvent representation. If q = 1

("classical case"), then (2.1.17) can be written as

yet) = get) + l R(t, s)g{s)ds,
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where the resolvent kernel is R(t,s) = 2::=1 Km(t,s); this is the resolvent

representation for the solution of (2.1.16) with q = 1.

Remark 2.1.2 The origin of proportional delay integral equations can be

traced back to as early as 1897. In [921. Volterra studied the existence and

uniqueness of solutions to equation

h: K(t,s)y(s)ds = get), tEl,

with 0 < q < 1, K,g E CI(I); K(t, t) /; 0, for t E T. Differentiating it gives

K(t,t)y{t) -qK(t,qt)y(qt) + i: ~K(t,S)Y{S)dS = g'(t), tEl.

This is a second kind Volterra integral equation with proportional delay. V,:e

can get a neutral VIDE with proportional delay by further differentiation.

2.2 Primary discontinuities in solutions

Consider the first-order delay differential equation of the form

y'(I) j(t, yet), yet - r)), t::: 0, 12.2.1)

y(t) "II), IE [-T,Oj,

where T > 0 is a constant. The theory of existence and uniqueness of so­

lutions to (2.2.1) does not present substantial additional difficulties with

respect to the classical (non-delay) case. This is also true when we consider
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differential equations ",ith more general delay afterwards, as long as the de­

lay is uniformly strictly positive and does not depend on the solution y itself.

We refer the reader to [53] for a comprehensive introduction to the theory of

DOEs.

In this section, we discuss the possible sources for discontinuities and

prove discontinuity properties for solutions of delay integral and integro­

differential equations, and review some known results about (2.2.1). See also

{9], [16], [22],[46], [69] and [97] for additional details.

Regarding the analytical solution of (2.2.1), the most natural method,

see also [42], is called the method of steps (or the method of successive

integrations). It consists of determining the solution y{t) from the differential

equation without delay,

y'(t) f(t,y(t},O(t- T}), t E [O,TJ,

y(O) OrO},

since for 0 $. t $. 1', the argument t - T ....aries in the initial interval [-T,Ol

and, consequently, the third argument yet - 1') of the function f equals the

initial function q,{t - 1'). Assuming the existence of a solution y = tPdt) of

this initial value problem on the whole interval [0,1'], analogously we obtain:

for t E [nT, (n + 1)1'], with y(nT) = q,n(n1'),

where n = 1,2, .. and tPn(t) is the solution of the considered initial value
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problem on the interval [(n -1)T,nTI.

Definition 2.2.1 If the solution ofa DDE (or a DVIDE) and its derivatives

of order fJ. are continuous at some point in the time interval, but the derivative

of order I./. + 1 is not, then such a point is called a primary discontinuity of

the given problem.

Theorem 2.2.1 The points {" := fJ.T, fJ. = 0, 1" " aTe the primary discon­

tinuities of problem (2.2.1). More precisely, yu.) is continuous at{" buty(I'+l)

is, in geneml, not, even if the functions ¢ and f have continuous derivatives

of all orders.

Proof: See [42]. o
Note that, as t increases, the solution becomes smoother. In fact, at

the initial point t = 0, the first derivative y'(t) has a primary discontinuity,

since the integrable equation

y'(t) ~ f(t, y(t), I>(t - T)), t E (0, TI,

may satisfy the condition y(O) = ¢(O), but it is unlikely to satisfy the ad­

ditional condition y'{O+) = ¢J'(O-). Only for special choices of the ini­

tial function ¢(t) is it possible to guarantee continuity of the derivative

of the solution at point 0, for such a function must satisfy the condition

"(0-) ~ frO, o(O),O(-T)).
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Example 2.2.1 Consider

y'(t) ay(t - r), t E [0, +00),

y(t) 1, t E [-r, 01.

Using the method of steps, it is easy to see that the solution Yet) is a piecewise

polynomial. On each subinterval fir, (i + l)rJ, yet) is an (i + 1)-th. order

polynomial, i.e.,

y(t) = ~;(t - (j -1)7-)i, i E No.
j=o)'

It is also clear that integer multiples of r are primary discontinuities for this

particular problem.

The method of steps can be extended to differential equations with

other types of delays, such as multiple delays, variable delay and even state-

dependent delay. The difficulty is to locate the primary discontinuities. As

a generalization of (2.2.1), we consider

yet} f(t,y(t},y(t~T(t)ll, t ~ 0, (2,2,21

y(tl i>(t), t E [0, OJ,

where t - r(t) is a strictly increasing function and

0< r(t) '5 t, a = :~g{t - r(t)).

Remark 2.2.1 Throughout this thesis, when the delay r depends on time

t, we will make this clear by the notation r(t). Otherwise, r is a positive

constant.
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Theorem 2.2.2 (see (97J) The primary discontinuities of problem (2.2.2)

are generated inductively by the recursion

where {o = o.

(2.2.3)

Because of the hypotheses made. a strictly increasing sequence {.;r}k;?:O is

determined which can be actually computed a priori by using (2.2.3). In this

way, a sequence of intervals [{k_L,{kl is also defined, see also [971.

Remark 2.2.2 If the functions ¢J(t) and r(t) in (2.2.2) have some disconti-

nuities with respect to t in some of their derivatives, then such discontinuities

are also propagated by the delay argument t - T(t) following the rule (2.2.3).

These discontinuities are called secondary discontinuities.

Example 2.2.2 Consider

y'(t} ay(t - T), t E (0, +00),

y(t) <itt), t E [-T,O],

where

<ilt) = {o, t E [-T, -T/2),

1, t E [-T/2,01.

On (O,TJ,

I' . {I, t E[0,T/2),
y(t) = y(O) + a Jo tp{s - T)ds =

o l+at, tE(r/2,T].
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Obviously, in addition to {n = nr, the points nr+r/2 are also discontinuitics.

However, they are secondary discontinuities as they inherit this property from

the initial function ,pet).

If the initial function ,pCt) is changed to

{

0, t E [-T, -BT),
,,(t)~

1, t e [-Or, 0],

where 0 < 0 < 1, then on [0, r], we have

{' {', tE[O,T-BT),
y(t) = yeO) + a fo ,p(s - r)ds =

o l+at, te[r-Br,r]_

Clearly, nr and nr - Or (n ~ 1) are both discontinuities. nr is primary, and

nr - Or is secondary.

More discussion about this topic, especially the state-dependent delay

ease, ean be found on the foUowing pages. See also (42] for extension to the

multiple delay case.

The existence of primary and secondary discontinuities may lead to a

loss of accuracy (reduction of order) or to numerical instability if the mesh

underlying a discretization method docs not take into account these discon-

tinuities. For a detailed discussion of this problem, see for example, (97].

Similar discontinuity results hold for Volterra integro-differential equa­

tion with constant delay.

y'(t) f(t,y(t)) +t K(t,s,y{s),y(s - r))ds, t:?: 0, (2.2.4)

y(t) ,,(t), t E [-T, 01.
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However, we shall see (compare Theorems 2.2.3 and 2.2.1) that th.ere are

fundamental differences between the regularity of solutions to (2.2.4) and

those to (2.2.1).

Remark 2.2.3 If th.e delay ocrurs in one of the limits of integration, for

example,

y'(t) = f(t,y(t» + l Kl(t,s,y(s))ds+ l-r K1{t,s,y(s))ds, (2.2.5)

y'(t) = f(t,y(t» + l~r K{t,s,y(s»ds, (2.2.6)

we can always convert the equations into the form of (2.2.4) by a suitable

change of variables. For e.xample, in (2.2.5), we may write

y'(t) = f(t,y(t)) + lK1(t,S,y{S))dS+ lK2(t,v-r,y(v-r))dv

= f(t,y(t)) + l{K\{t, .1, yes)) + K 3 (t, s - r,y(s - r))}ds,

where

{
K" "E (T,tl,

K 3 =
0, v E [O,rl.

Therefore, we can change (2.2.5) to the form of (2.2.4). For (2.2.6), we have

y'{t) = f{t,y(t)) + l-r Ki(t,s,y(s»)ds,

where

K1(t,s,y(s») = {o, s E [0, t - rl,

-K(t,s,y(s)), sE [t-r,tl.
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Then, foHowing the steps for (2.2.5), we can again change it to the form of

(2.2.4). Hence, without loss of generality, we only need to consider (2.2.4).

Theorem 2.2.3 The primary discontinuities of problem (2.2.4) are the

points €p. := J1-T, J1- = 0,1," To be more precise, the derivative y(2p.+lJ(t)

is discontinuous at the point €p., but lower oroer derivatives are continuoU3

under the assumption that the functions f, K and q, are sufficiently smooth,

Proof: Basically, we use the method of steps. In tile first interval [0, TI,

y'(t) = f(t,y(t» + fc' K(t, s,y(s), ¢(s - r»)ds.

It is possible to satisfy the condition yeO) = ¢(O), but not, in general, also

the condition y'(O+) = ¢'(O-). The continuity of the derivative of the solu­

tion can be guaranteed at the initial point 0 only for special choices of q,(t)

satisfying the condition ¢'(O-) = f(O, ¢(O)).

At the point t = T, the first derivati ....e of the solution is already con·

tinuous. In fact, the derivative

y'(t) = f(t,y(t)) + fc' K(t, s,y(s), yes - T))ds,

and the right-hand part are continuous functions of t at the point r, since

yet) is continuous at the point O. The second derivative

y"(t) = ~ + *y'(t) + K + fc' ~(t, 5, yes), yes - rllds,

is continuous where we have written K = K(t,t,y(t),y(t - T»). However,
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y"'(t) is not continuous at T, since it includes y'(t - T) as a factor, and

y'(t - T) is not continuous at T because y'(t) is not continuous at O.

At the point t = 2T, y(4l(t) is continuous, and y(5l (t) is oot. At t = pT,

we suppose that y(2I'+lJ(t) is not continuous, while aU lower order derivatives

are. At t = (p+l)T, differentiate (2.2.4) 2p+l and 2p+2 times, respectively

to obtain

and

y(21'+3l(t)=?1y(21'+2J(t)+~yf2!'-+IJ(t_T)+lowerorder terms.
By By(t-T)

According to the hypothesis, y(21'+L l (t) is continuous at t = (p + I)T, as is

yf2l'l(t _ T). As a result, yf21<+2J(t) is continuous at t = (p + I)T. Unfortu­

nately, y(2!'-+3)(t) will lose the continuity at t = (p + I)T as yf21'+I)(t) is not

continuous at t = J1.T. By induction, we know that the derivative y(21'+Il{t)

is not continuous at the point pT, but lower order derivatives are continuous

under the smoothness assumption for f and K. o

Remark 2.2.4 The difference between Theorem 2.2.1 and Theorem 2.2.3

certainly has some numerical implications. When the mesh ON is not con-

strained, i.e., h =I- T{T for some r E N, we can expect a higher convergence

order for (2.2.4) than for (2.2.1), due to the better regularity property of the

solution for the former problem.

30



Consider now

y'(t) f(t,y(t)) + l K(t,s,y(s),y(s -r(s)))ds, t::::. 0, (2.2.7)

y(t) ¢(t), t E [a, OJ,

where iI = infl,,=o(t - r(t» < O. Here, 0 < ret) < t and t - ret) < t are

strictly increasing. A result similar to Theorem 2.2.2 holds for (2.2.7).

Theorem 2.2.4 The primary dMcontinuities of problem (2.2.7) are gener-

ated inductively by the recursion

with ~o = D.

We can also give an analogous result for Volterra integral equations

with constant delay of the form

y(t)

y(t)

get) + l K(t,s, yes), yes - r))ds, t:?: 0,

¢(t), t E [-T,OI.

(2.2.8)

The given functions g and K are assumed to be sufficiently smooth.

Theorem 2.2.5 The primary discontinuities of problem (2.2.8) are located

at points~I';= 1J.r, 1J. = 0, 1, ... More precisely, yUt-1) and lower order deriv­

atives are continuous at ~I' but yll'J is, in general, not, even if the functions

¢ and 9 have continuous derivatives of all orders.
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Proof: The solution yet) of (2.2.8) may be Dot continuous at the initial

point t = 0, since in general, 9(0+) >F ¢(O-J, unless we make a contrary

assumption in advance.

For t = T, the first derivative is

y'(t) = g'(t) +K(t,t,y(t),y(t- T)) + fa' ~(t,S'Y(s),y(S- r))ds.

Clearly, y'(t) is not continuous at r provided that yet) is not continuous at

O. The remaining argument is similar to that in the proof of Theorem 2.2.3.

We leave the details to tile reader. o

Remark 2.2.5 It is worth noticing that, in contrast to Theorem 2.2.1, the

primary discontinuities of the integral equation (2.2.8) happen to lower order

derivati...-es. For the integra-differential equation (2.2.4), such discontinuities

occur in higher order derivatives as shown in Theorem 2.2.3

Consider now the neutral Volterra integra-differential equation with

constant delay,

y'(t) =f{t,y{t))+fa'K(t, s,y(s), yes - T)'y'{S - r))ds, t ~ 0, (2.2.9)

Y(')~¢(')' 'E[-T,O}.

Theorem 2.2.6 The primary discontinuities of problem (2.2.9) are the

point3 {" := J.lT, J.l = 0, 1, . To be more precise, the derivative y("+i) (t)

is discontinuous at the point (", but lower order derivatives are continuous

whenever the junctions f, K and ¢ are sufficiently smooth.
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Proof; Similar to that of Theorem 2.2.3.

Remark 2.2.6 For the neutral DOE.

o

y'(t) f(t,y(t),y(t - T),y'(t - T)), t ~ 0, (2.2.10)

y(t) ott), t E [-T,OI,

we do not have results similar to Theorem 2.2.6. Rather, there are two

notable differences. First, the initial function ¢(t) for the solution of equation

(2.2.10) must be not merely continuous, but also differentiable (or piecewise

differentiable), since the last term of (2.2.10) involves the derivative of ¢(t)

when t E [0, TJ. Second, the solution of equation (2.2.10) is not smoothed.

In fact, the left-hand derivative ¢'(O-) is not only not equal to y'(O+) at the

point 0, but y'(t) is in general discontinuous at the point T because of the

discontinuity of the last argument y'(t - T) at t = T. This line of reasoning

shows that the solution yet) has discontinuities for t = P.T, J.L "" 0, 1,2""

Therefore, no smoothing happens to the solution ofthe neutral delay equation

(2.2.10).

Consider the state-dependent delay differential equation

y'(t)

yet)

f(t,y(t),y(.(t,y(t)))), t ~ 0,

'(t), t E [a, 01,

(2.2.11)

(2.2.12)

where 'Zi = infj;:o.o OCt, yet)) < °and ott, y(t)) ::; t for t ~ O. (J is called the

retarding function. Some classical treatments for (2.2.11) can be found in
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[5J, [6], [46J and [83J. (2.2.11) is said to be of continuity class p 2: 1, if the

followings hold o\'er appropriate domains:

1. The partial derivatives fiJ,k are continuous for all i + j + k s: p;

2. The partial derivatives Bioi are continuous for all i + j s: p;

3. "EC'I.,OJ.

GfiL - 0, L + 151 is defined by

GrlL -0,L+8] = C'[L -o,L] nC'[L,L +0] nGI[L - 6,L+.5).

Theorem 2.2.7 ((46J) Let problem (2.2.11) have continuity class p 2: l.

For L ;?: 0, let the integer l E [l,p] be such that y E cr_l[L - 6, L + 6] for

some 6 > O. Assume that there exist.s a least number Z > L, such that Z is

a zero ofmultiplicitym 2: 1 ofB(t,y(t)) - L. ThenyE C~[Z -o,Z+6] for

some 0 > 0 where JJ = P if m is even, and JJ = min(p, ml) if m is odd.

When (2.2.11) has continuity class p, we e.'Cpect the solution y(t) has

p + 1 continuous derivatives except at the various derivative jump points.

The idea behind Theorem 2.2.7 is the following. Suppose B is the rc-

tarding function, and L is a discontin.uity point. We try to get anotncr point

Z > L, B{Z,y{Z» - L = 0 and an interval [Z - TI,Z + Til, such that the

range of B(t,y(t)) for t E [Z - TI, Z + TIl covers [L - {, L+€J, a neighborhood

of L. When we calculate tile derivative on both side of (2.2.11), and eval-

uate it at t = Z, the discontinuity appears on the right-hand side because
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L = 8(Z,y(Z)) is such a point. As a result, the left-hand side is discontinuous

at t = Z with a higher order (at least one order higher).

When 8(t,y(t») = t - T, where T is a positive constant, Theorem 2.2.7

reduces to Theorem 2.2.1. In such a case, the discontinuities are p,T for

p, = 0, 1,"', and y E C:[p,T -O,p,T+O] for some <5 E (O,T).

When 8(t,y(t)) = qt, Theorem 2.2.7 tens us that no discontinuities will

occur since we cannot find any t E [0, +00) other than zero such that qt S; O.

See also [59]_

We now generalize Theorem 2.2.7 to Volterra integral equations of the

form:

y(t)

y(t)

get) + l K(t,s,y(8(s,y(s))))ds, t 2: 0,

<P(t). t E [a, 0],

(2.2.13)

(2.2.14)

where a = infl,=:o 8(t, y(t)) and 8(t,y(t») :S t for t 2: O. Again, by continuity

class p 2: 1, we mean that the following holds over appropriate domains:

1. The partial derivatives K;J,J: are continuous for all i + j + k :S p;

2. The partial derivatives 8iJ are continuous for all i + j S; p;

3. get) E CI'[O, +00] and ¢ E CI'[a, 0).

Theorem 2.2.8 Let the data in (2.2.13) be in CI', p 2: 1. For L 2: 0, let

integer l E (l,p] be such that y E Cf_I[L - 0, L + oj for some °> 0, Assume

that there exists a least number Z > L, such that Z is a zero of multiplicity
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m :::: 1 of B(t,y(t» - L. Then y E C~[Z - 6, Z + 6] for some 6> 0 where

Ii. =P if m is even, and Ii. = min(p, mi) if m is odd.

Remark 2.2.7 Note that (2.2.11) and (2.2.13) are not identical. DifJerenti-

ation of (2.2.13) leads to

y'(t)=9'(t)+l K;(t,s,y(B(s,y(s)}))ds+K(t,t, y(B(t,y(t»))), (2.2.15)

where K; =8K f&t. There is an additional integral term on the right-hand

side.

Proof of Theorem 2.2.8: Suppose L - { :5: B(t, yU)) :5: L + { for t E

[2 - '11, Z + 7/]. Let wet) = 8(t,y(t») and

W(t) ~ (t,t,y(O(t,y(t)))).

Then W(l}(t) = (1,1,y(LJ(8)8{Ll), and

W(k)(t) = (0,0, t.. vkQy(Q)(8}),
Q=L

for k?: 2. Here, 8(1) = d8(t,y(t))fdt, and

VkQ = L it! .~!. ik!(8(~!(t»i1 .. (8(:~t»)j•.

The sum is taken over all k-tuples of nonnegative integers Ul, .. ,jA:) that

satisfy j\ + .. + jk = Q and h + 21'2 +... + kjA: = k. Denote scalar function

K;i)(t,t,y(8(t,y(t)))) simply by Kiil , that is, K;i):= Kli)(W(t)). Then

y"(t) =g"(t) + l K;'ds+K' +K;,
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y{3J(t) = gI31(t) + l K',,"ds + K" + K': + Ki',

y{k+II(t) = gCHII(t) + { R1k+lJds + R1kl +t. Kii-IKk-.+ll ,
• i_I

and

y{k+ll(t) =glkHI(t) + { Klk+'Jds + R1kl (2.2.16)

k k_'+1
+ L L LO"k_i+1 'V C''V('VKfi- l )0 \Vli'l)0 W(i,J .. )oW1'j ).

i""l j""L

Observe that the bighest-order derivative or W occurs when i = j =

1 in (2.2.16). The term is 'VK 0 W tll . Consequently the highest order

derivative of y in any term on the right side or (2.2.16) is the k-th derivative.

Since yet) is continuous, it follows from (2.2.15) that y'(t) = yCll(t) is the

composition or continuous functions, heoce itself continuous at t = Z. Since

(2.2.13) has continuity class 'P ~ 1, it is e&S)" to show by induction from

(2.2.16) that y(t) is continuous at t = Z ror all k ~ I since I ~ p. The

induction terminates at the l·th derivative because y(8(t, yet))) need not

necessarily have more than l - 1 derivatives at t =Z. This bound on k can

be improved.

Let m be even. Then 8(t,y(t)) - L remains either nonnegative or 000­

positive in some neighborhood of t = Z. In other words, 8(t,y(t)) for t in a

neighborhood or Z does not range over intervaIs containing the jump point

at t = L. Hence y(8(t, y(t))) ror t in a neighborhood of Z could have more

than I continuous derivatives. It is easy to show by induction from (2.2.16)

that yCPJ is continuous at t =Z. This establishes the first case.
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Let m be odd. Then either O(t, yet)) - L changes sign at Z or Z is a

duster point of zeros of 8(t, yet)) - L. In either case Z may be a derivative

jump point. It is easy to verify that the derivatives up to order ml - 1 of

y(8(t,y(t))) that could be discontinuous at t = Z in (2.2.16) are actually

multiplied by appropriate derivatives of order up to m - 1 of 8(t, yet») which

are continuous and which by hypotheses vanish at t = Z. Thus the effect

of the discontinuities at t = Z are nullified. This completes the proof of the

remaining case. o
We add an example, also to indicate that Theorem 2.2.8 remains valid

for more general DVIEs.

Example 2.2.3 Consider

y(t) 1 + l ~y(s)Y(lny(s))ds, when t ~ 1. (2.2.17)

yet) 1, when t ~ 1.

By the step method, we get the solution

{

t. wn,n
y(t) ~

exp(tle}, when

1 ~t:Se,

It is clear that y E C6"[1-6,1+6j with 0 < 6 «: 1 since y'(I-) = 0 and

y'(l+) = 1. The root of8(t,y(t)) - L = lny(t) -1 = 0 is y(t) = e, i.e., t = e

with Single multiplicity. According to Theorem 2.2.8, y E C;X>(e - 0, e + 6J

with 0 < 0 «: 1. In fact, y'(e) = 1, y"(e-) = 0 and y"(e+) = lie.
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The proof of Theorem 2.2.8 can be readily modified to establish an anal-

ogous result for Volterra integro-differeotial equations with state.depeodent

delay,

y'(t) f{t, y{t)) + l K(t, s,y(8(s,y(s))))ds, t:?: 0, (2.2.18)

yCt) <pCt), t E (0,01, C2.2.19)

where a= infl ?:o9(t,y(t)) and 8(t,y(t)):5 t for t:?: O.

Theorem 2.2.9 Let problem (2.2.18), (2.2.19) have continuity class p ~ 1.

For L :?: 0, let integer IE [1,pl be such that y E Cf_I[L - 0, L + 0] for some

°> O. Assume that there exists a least number Z > L, such that Z is a zero

of multiplicity m:?: 1 of 8(t,y(t)) - L. Then y E C&[Z - 6, Z + 6] for some

6 > 0 where ~ = p if m is even, and ~ = mio(p, ml) if m is odd.
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Chapter 3

Collocation for Differential and

Volterra Integro-differential

Equations with Constant Delay

In this chapter, we review some known results related to constant delay problems

in order to compare them with. similar results for equations with proportioual

delay. We describe the collocation method for constant delay equations in Seetion

3.1. We present the global convergence results in Section 3.2. Local convergence

results are examined in Section 3.3. In Section 3.4, we survey results about delay

Volterra integro-differential equations of neutral type.
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Consider the first·order differential equation of the form

y(t)

y(t)

f(t, y(t), y(t - r)), tEl.

'(t), t E (-r,OI,

(3.0.l)

where T > 0 is a constant and [ ;= [0, TI, the Volterra integro--differential

equations with constant delay,

y'(t)=f(t,y(t))+l k(t,s, y(s},y(s - r))ds, tEl, (3.0.2)

and

y'(t) ~ fIt, y(t)) +{, k(t, "y(,))d" tEl, (3.0.3)

with initial conditions as in (3.0.1).

Ollr primary goal is to find the collocation solutions u in S~)(fIN) for

(3.0.1), (3.0.2) and (3.0.3) with respect to the Gauss points, and study certain

aspects related to such an appro.'cimatioD. Note that (3.0.3) can always be

changed into the form of (3.0.2) by Remark 2.2.3.

The reader who is interested in Volterra integral equations with con·

stant deJay may find resuits and references in [16]. Collocation methods for

(classical) Volterra integral and integro--differential equations are described

in (211.
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3.1 Collocation methods

For ease of exposition, we choose a uniform mesh fIN on [, given by tn := nh,

n = 0,1, .. ,N, t N = T, and set ITN := {to,t!> .. ,tN}, 10 ;= [to,td,

In := (tn, t"+lI, n ;::: 1. We assume that fIN is a constrained mesh, Le.,

h = Tlr. for some r E N. (3.1.1)

The motivation for choosing such meshes is to include the primary discon­

tinuities of the solution in the mesb.. The usc of arbitrary meshes will in

general result in a (ass of order of convergence due to the presence of pri­

mary discontinuities.

3.1.1 Collocation for delay differential equations

We solve (3.0.1) in space S~)(nN)' For given real numbers {Cj} with 0 .$

C1 < C2 < ... < Cm 5 1, define the set X,v := {tnJ } of collocation points by

tnJ:= tn +cjh, j = 1,2, .. 1m, n = 0, 1,' . ,N - 1. (3.1.2)

The collocation solution u E S~)(rr.N) of (3.0.1) is defined by

for j = 1,2, .. ,m, n = 0,1, .. ,N -1, subject to the initial condition

v(t) = ¢(t), when t E [-r,O]. We may write

v'(tn + sh) = ~ VnJL/(s), s E [0,1],
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where V"J ;= v'(t" + cjh). Upon integrating and setting

where

(3.1.4)

m t-co
Lj(t) := !! Cj _ c;' i = 1,2, ", m,

are the Lagrange fundamental polynomials with respect to the collocation

parameters {e;}, we have the (local) representation

v(t" +sh) =v(t,,) +h~O:ECs)V".h s E [0, II, (3.1.5)

where V"J is determined by (3.1.3), namely

V"J = f (t" + cjh, tJ" + h EV"JO'j,I> V,,_r + h f:: V,,~r'lCl:j'l) ,
10;1 1;1

where O:iJ:= O:j(e;), i,i = 1,2"

vVe introduce some other notatiollS and properties associated with La-

grange fundamental polynomials for future use.

and

'f,O:iJ=CO,
j;1

43

i,i = 1,2, .. ,m,

for i= 1,2, ··,m.



3.1.2 Collocation for delay integro-differential equa-

tions

Consider the Volterra integro-differential equation with constant delay 'i,

y'(t) = f(t,y(t» + i~.. k(t,s,y(s)ds. tEl. (3.1.6)

with initial condition

y(t) ~¢(t), t E [-T,OJ.

Here, rjJ is a gh..en CI-function.

(3.1.7)

The coUocation solution u E S~)(rrN) to (3.1.6) and (3.1.7) is given by

u'(t) = f(t, u(t») + i~.. k(t,s, u(s))ds, t E X N , (3.1.8)

with vet) = rjJ(t), t E [-T, 01. Define

Fn(t):= 4>(t)+lAk(t,s, u(s))ds, t E (tn,tn+1], if 0$71 <r, (3.1.9)

and

Pn(t) :=l~:k(t,s,u(s))ds, t E [tn, tn+ll, if r::S; n::S;N -1, (3.1.10)

where r is as in (3.1.1), and 4>(t) denotes the delay integral

<Ii(t):= 1:.. k(t,s,rjJ(s))ds, t E [O,TI· (3.1.11)

Using the notation introduced in Section 3.1.1, equation (3.1.8) defining the

exact collocation solution u E S~l(nN) to (3.1.6) and (3.1.7) may be rewrit-

ten as

Yn.; = f(tn +cjh,Un,j) + Zn.; + Fn(tn +cjh), j = 1, .. ,m,
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with

and

Z"J := h [J k(tn + Cih, t.. + uh, u(t.. + vh))dv.

On the interval [tn, tn+l], 0 :5: n :5: N - 1, the collocation solution is

given by

U(tn+vhl=Yn+hf;Oi{v)VnJ, ve[D,I].
j==1

In contrast to collocation for ODEs or ODEs, which yields an m-stage

implicit Runge-Kutta method, the above method for delay VIDE involves

integrals which in general cannot be calculated analytically, and thus an ad-

ditional discretizatiollstep is necessary. The resulting method is a continuous

implicit Volterra-Runge-Kutta method with m stages: if the discretization

of these integrals employs m.point interpolatory quadrature formulas based

on the collocation parameters {Ci}, then this method is described by the

equations (3.1.12)-(3.1.17):

u(tn + vh) = fin + h f: a:j (v) Y..J , ve [0,11, (3.1.12)
j"l

where

(3.1.13)

for j = 1,2, .. ,m, with

(3.1.14)
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and

Z",j;= h L wi,pk (tn +cjh,t" +f.j,ph,ti.(t" +€j,,,h)).
1'==1

(3.1.15)

Here, Wj,p ;= cjb", with b" ;= a,,(l) and E;j'/l := cic/" The lag term approxi~

mations tn(t) in (3.1.13) corresponding, respectively, to the exact lag terms

(3.1.9) and (3.1.10) are

F"{t,,.j) := 1>(tnjJ + h~ '£ b"k(tnj. t i ,I" Ui,p),
'",Ow·l

iro:s: n < r, and

F,,(tnJ) h f wj,,,k(tn,j. tn_~ + 11i,lJ.h,U(t,,_r +1/j,ph»)
1''''1

+h ~ f: b"k(tn,j, t i ,I" U;J.l),
,,,,,,_r+I,,=1

(3.1.16)

(3.1.17)

if r :s: n:S: N - L Here, wi,I';= (1 - cj)b/l and 1)j.,,:= Cj + (1 - Cj)cw

3.2 Global convergence of collocation solu-

tions

For the sake of later comparison, we recall the following convergence result

for ODEs of the form (3.0.1) from [9J.

Theorem 3.2.1 Suppose jet, v,w) and 4> in (S.O.l) have derivatives a/order

m which are piecewise continuous on their domains; yet} is the exact solution
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of (3. 0.1) and u E S~)(ITN) is the corresponding constrained-mesh collocation

solution with collocation parameters a ::; Ct < ... < Cm S L Then

Proof: See [91 where the author gave a proof for an even more general case,

l' = T(t) :?: O. o

Remark 3.2.1 It should be pointed out that in [9], tbe author claimed a

higher order of global convergence, i.e., m+l under the condition T = T(t) :?:

O. However, in general, this is not true.

We now turn to the delay integro-differential equation (3.1.6). Let

u E S~)(ITN) denote the exact collocation solution to (3.1.6) defined by

(3.1.8)-(3.1.11) .

For ease of exposition, we choose the linear version of (3.1.6),

y'(t) = f(t)y(t) + get) + i~.,- k(t, s}y(s)ds, tEl, (3.2.1)

with yet) = tP(t) for t E [-1',0], where k E C(S.,-), S.,- := I x (-T,T - T].

Theorem 3.2.2 (see [18/) Assume that the given functions in (3.fU) and

(3.1.7) satisfy f E C"'(f), k E cm(s.,-), 4J E Cm[-T,O], and that, fOT t E

[0,1"], the integral

~(t):= i:.,- k(t,s)¢(s)ds, t E [0,1'1,
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is known exactly. Then for all sufficiently small h = T Ir, r E N, the

constrained-mesh collocation solution u E S~) to (S.2.1] satisfies

for some finite C not depending on h. This estimate holds for ail collocation

parameters {Cj} with 0 5. Cj < ... < Cm:S: 1.

3.3 Local superconvergence on [IN

In Section 3.2, we saw that globally, we can expect a convergence order of

m if the collocation solution is in S~)(nN). When we focus on some special

points, (Le., the mesh points), we certainly expect to attain a higher order.

Definition 3.3.1 Let y(t) and u(t) be the exact solution and corresponding

collocation solution of (3.0.1) respectively. If

j~"~N Iy(t,,) - u(t,,)1 :S: ChP
·,

where p. > p, with p as in Theorem 3.2.1, then p. is called the local super-

convergence order of the collocation solution.

Theorem 3,3.1 Suppose f(t,v,w) andq, in (S.D.l] have derivatives of oroer

2m which are continuous on their domains. If y(t) is the e:z;act solution of

{S.O.1} and u E S~)(rrN) is the corresponding constrained-mesh oollocution

solution with collocation parameters 0 ::S: Cl <. . < Cm :S: 1, then
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i.e., the superconvergence order p' is at most 2m. More precisely, we have:

(i) If the collocation parameters {Cj} are the Gauss points in (0,1), i.e.,

the zeros of the (shifted) Legendre polynomial Pm(2s-1), thenp' = 2m,

while u' possesses a lower order of convergence on the mesh fI,v:

(ii) If the {Cj} are the Radau II points, which are zeros of Pm(2s - 1)­

Pm_l(2s - 1), then

(iii) If the {Cj} are the &dau I points which are zeros of Pm(2s - 1) +

Pm _,(2s - I), i.e., 0 = Cl < C2 < .. < (7,. < 1, then

ond

Proof: See [9]. o
The local superconvergence results of Theorem 3.3.1 remain true for

delay integro-differential equations (3.2.1):

Theorem 3.3.2 Assume that the given functions in (3.2.1) are sufficiently

smooth on their domains, i.e., they are in cm+<f for some d with 0 :5 d :5
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m, and let the delay integral {> in (3.2.2) be knoum exactly. Then jar all

sufficiently small h = -r/r, r E N, the constrained-mesh collocation solution

u E S~)(IIN} to (3.!U) is uniquely defined, and haJ the following properties:

(i) /f the collocation parameters {Cj} are the Gauss points in {O, I}, then

(3.3.1)

for some finite constant Co, proui.ded d = m, while u' possesses a lower

order of convergence on the mesh [IN:

(3.3.2)

(ii) If the {Cj} are the Radau /l points and d = m - I, then

(iii) If the {Cj} are the Radau I points and d =m - I, i.e., 0 = Cl < C2 <

... < em < I, then

(3.3.4)

and

(3.3.5)

Proof: We proceed along the lines of (18). The collocation error, e{t)

y{t) - u(t), is the solution of the initial-value problem

e'(t) = f(t)e(t) +6(t) + G(t) + fa' k(t, s)e(s)ds, tEl, (3.3.6)
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where

G(t) = l-r H(t,s)e(s)ds = _l-r k(t,s)e(s)ds, (3.3.7)

e(t) = 0 on [-r, OJ. The defect (or residual) function J(t) given by

c5(t):= -u'(t) + f{t)u(t) + g(t) + l~r k(t,s)u(s)ds,

vanishes on the set X N of collocation points and satisfies c5(t) = 0 for t < O.

Setting z\(t) = e(t), Z2(t) = e'(t), z(t) = (z\(t),Z2(t))T, and writing

ZI(t) = f~ z2(s)ds, the VIDE (3.3.6) may be written as a system of two

Volterra integral equations of the second kind,

z(t) =D(t) + l k(t, s)z(s)ds, tEl, (3.3.8)

with

Dlt) ~ ( 0 ), kIt, ,) ~ (0 1)
6It)+Glt) kIt,,) fit) .

Let

(

R"lt,,) Rdt,,))Rlt,,) ~
R2l (t,S) Rn(t,s)

denote the resolvent of k(t,s) in (3.3.8). Note that by definition of H, its

smoothness is governed by the smoothness of k and f. The solution of (3.3.8)

is then given by

z(t):= D(t) + fat R(t,s)D(s)ds, tEl,
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and hence we obtain the representations

c(tj:= l R l2 (t,S){o(s) +G(s)}ds,

and

c'(t) :=o(t) +G(t) + l R22 (t,s){O(S) +G{s)}ds,

(3.3.9)

(3.3.10)

where t E (0, T]. For t E (0,7], we have G(t) = 0, since by assumption tne

delay integrals in the lag term (3.1.9),

~(t) := LT H(t, s)o;>(s)ds,

are evaluated analytically.

Now, we shall show that (3.3.9) and (3.3.10) can be rewritten to yield

representations of the collocation error and its derivative in terms of the

defect function oCt). Since this is key to the proof of Theorem 3.3.2, we

summarize the result in Lemma 3.3.1 ((18])

Lemm.a 3.3.1 Let ~,. = p.r, p. = 0,1" " lvI, and assume, without loss

of generality, that ~M = T for some ,\lIEN. If t E (~p, ~,.+d, p. =
0,1, .. ,M-l, then

and

e(t) = t l-i'r Q~~(t, s)o{s)ds,
i=<l°

(3.3.11)

e'(t) = ott) + ~l-;'r Q~.\.{t,s)6(s)ds, (3.3.12)
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where the Q~i (with o'~!o = Rn(t, .5), t = 0,1), are junctioru which depend

on till:: ylVfffi kernel function k and on / in (fi-2.1), and whose smoothness is

determined by thal 0/ these gitJn1 junctioru.

To prove Lemma 3.3.1, let t E [T,2TJ (= [{lI~,J). It foHows from (3.3.7),

(3.3.9) and (3.3.10), that

G(t) l-r H(t,.5)e(.5)ds = l-r H(t,") f R t,(.5, v)6(v)dvd.5

l-r (l-r H(t, S)R I2 (S, v)ds) 6(v)dv,

G(t) = l-r Qo(t, s)6(s)ds, t E [T,2T],

with obvious meaning of Qo(l, s). Since on (T,2TJ the solution of the error

equation (3.3.6) is ghu by (3.3.9) and (3.3.10), and the defect function oCt)

vanishes on tbe interval [-T,O], we find that for k. = 1,2,

fo' Rt2(t, s)G(s)ds fo' R.t,(t, s) fo~-rQo(.5, v)6(v)dvd!

fol-r (f.~r Ru(t, s)Qo(s, v)ds) 6(v)dv.

The inductive e..ttension of these results to an arbitrary interval [~,.,~..+d is

now straightforward.

Consider (3.3.11), (3.3.12) and chnose t = tn E [{.. ,{J.l+d. Note that

t... - iT = t.._.r, since T = rh from (3.1.1). Setting
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we may write (3.3.11) and (3.3.12) as

e(ll(t) := [. li(t",) + ht "'f-' t 'lt~~;(tk + I1h)dv, l = 0, L (3.3.13)
i",O .\;",0 )0

Replace each integral over [0,11 by the sum of its (interpolatory) m-point

quadrature formula (with the collocation points as abscissas) and the cor­

responding quadrature error Er~,1). Note that, by our assumption on the

exact delay integrallf>(t), we have E~,~·I) = 0 for 0 ::; n < r. Since the defect

function oCt) vanishes at t = tA: + cjh E XIV, we have 1[1~~i(tk + cjh) = 0, and

thus the above expression (3.3.13) for e(l)(t,,), 1=0, 1, reduces to

(3.3.14)

where I = 0,1, AIr =T and O:S J1. S n::; p+ 1:5 M. Since by assumption

the integrands \lI~~i(tk + vh) are in Cm+cI[O, I), it follows from Peano's Theo­

rem [86J that, for sufficiently smooth integrands, the quadrature errors E1.~'/)

associated with the interpolatory quadrature formulas employed in (3.3.11)

and (3.3.12) can be bounded by

where d = m for the Gauss points and d = m - I for the Radau II points.

Hence, for l = 0, (3.3.13) yields the uniform estimate

le(t,.)[ :5 h~ ",%::lIEt~·Oll :5 Qohm+d
. M· N· h =: Cohm +d

,

n = 1,2, .. ,N, since Nh = T, and M = TIT is a fi.xoo integer. Thus, the

statements (3.3.1) and (3.3.3) (with l = 0) follow readily.
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We note that (3.3.3), when l = 0, is also valid for the Radau r points

which are zeros of Pm(2s - 1) + Pm~1(2s - I}. So we have (3.3.4).

Consider now (3.3.14) with l = 1. If the collocation parameters {Cj}

are sueh that em = 1, then tn E X N and hence o(tn) = O. This holds in

particular for the Radau II points, and hence we obtain (3.3.3) with l = 1.

1£ the {Cj} are the Gauss points or Radau I points, then em < 1 and thus, in

general, o(tn ) =F 0 in (3.3.14):

je'(t)I:5lo(t,,)I+Cl hm
+<l, n=1,2, ··.N.

It follows from the global convergence analysis (cf. Theorem 3.2.2) that in

these two cases the defe<:t J behaves like ott,,) = O(hm ) in general, implying

the results (3.3.2) and (3.3.5). o

Remark 3.3.1 The local superconvergence results of Theorem 3.3.2 remain

true for nonlinear delay VIDEs of the form

y'(tl ~ f(t,y(t)) + (Vy)(t), tEl,

where the operator V is given by

(Vy)(t):= lk1(t,s,y(S)}dS+ l-T k2{t,s,y(s))ds.

(3.3.15)

This can be verified by using linearization techniques (see, for example, [151

and [51]). Since the equation for the collocation error contains the terms

(Vy)(t) - (Vu)(t) we may write, under the standard smoothness and bound-
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edness b.ypotheses on the kernels k t and k'l,

ki(t,s,Y(S)) - ki(t,s,u(s)) = ~. e(s) +O(h'l"').

where the partial derivative of k is evaluated at (t, s,y(s»). The O(h'lm)_term

stems from terms involving e'l(s) and makes use of the nOlllinear version of

tile global convergence result in Theorem 3.2.2. The delay VIDE (3.1.6)

is a particular case of (3.3.15): it corresponds to the choice k'l(t,s,y) =
-k\ (t, s, y) in the above operator V.

3.4 Extension of results to neutral DVIDEs

Consider the neutral VoLterra integro-differential equation with constant de-

lay T,

y'(t) jet, yet)) + i~T k(t, s,y(s),y'(s))ds, tEl, (3.4.1)

y(t) .(t), t E [-T, a). (3.4.2)

Here, t/! is a given Cl~function. The discretization of such problem is studied

in [181.

3.4.1 Collocation for neutral DVIDEs

The cotlocation solution u E S~)(rrN) to (3.4.1) and (3.4.2) is given by the

equation

u'(t) = f(t, u(t)) + i~T k(t, s,u(s),u'(s))ds, t E X N , (3.4.3)
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subject to initial condition u(t) = iP(t). t E (-T.OI. Define

~d

Fn(t):=!c)(t.s, u(s). !J'{s))ds, t E [t,.,tn+t1, if r $n$N-l, (3.4.5)

where r is as in (3.1.1). and ¢let) denotes the delay integral

<fl(t):= i:?, k(t,s,¢(s),<;6'(s))ds, t E [O,TI·

A1; in Section 3.1.1. we set

~d

u(t,. + un) = &/.. + h "f O\I(U)Yn~. u E {O.II, V,,:= !J(tn).

Then (3.4.3) may be rewritten as

for j = 1•..• m. with

ZnJ := h fo~J k (tn + eJh, t n + uh, u(tn + vh), u'{tn + vh)) du.
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On the interval [tn' tn+lJ, 0 «:::; n «:::; N - 1, the collocation solution is given by

u(t" + uh) = y" + h t OJ(vlYnJ' u E [0,1]. (3.4.7)
j=1

Tbe above method for neutral delay VIDE involves again integrals which

cannot be calculated analytically, and thus an additional discretization step

is necessary, If the discretization of these integrals employs m-point interpo-

latory quadrature formulas based on the collocation parameters {Cj}, then

this method is described by the equations (3.4.8)-(3.4.13) (compare with

(3.1.12)-(3.1.17)),

u(t" + vh) = fI" + h t O'j(v)YnJ' v E [0,11, (3.4.8)
j=L

where

for j = 1. .. ,m, with

(3.4.10)

and

Z"J;=h LWj,,,,k (tn+cjh, tn+{j,,,,h, ti.(tn+€j""h), u'(tn+{j,,,,h)). (3.4.11)
1'=1

Here, Wj,l' ;= cjb"" with b", := 0'",(1) and {j,,,, := Cjcpo The lag term approx­

imations Fn(t) in (3.4.9) corresponding, respectively, to the e."mct lag terms

(3.4.4) and (3.4.5) are

Fn(tnJ) := w(tnJ) + hI: f: b",k(tnJ, ti"", Vi,,,,, y.:.I'), (3.4.12)
i=O",=1



ifQ ~ n < r, and

t"(t,,,j) := h f u,·j,JJ.k{t",j, t,,_r + TIj,l'h,u.(t,,_r + T/j.s<h),u.'(t,,_r + T/j,JJ.h»)
1':[

,,-I '"

+h L 2: bl'k(t",j,ti.I"Ui ,I" Yo.!'),
i="-r+II',,,1

3.4.2 Convergence results for neutral DVIDEs

(3.4.13)

Let 11. E S~)(rrN) denote the exact collocation solution to (3.4.1) defined by

(3.4.6)-(3.4.7). For ease of exposition, we choose the linear version of (3.4.1),

,'(t) ~ f(t),(t) + q(tl + (I',)(t), tEl. (3.4.J4)

with

subject to initial condition (3.4.2).

Theorem 3.4.1 ([lB}) Assume the given functions in (3.4.14) and (3.{2)

satisfy f E e"'(I). K E C"'(Sr), ¢ E Cm[-r,O]. and for t E [0,1'1, the

integral

<fl(t) := [r {Ho(t, 8)4'(S) + H1(t,s)¢'(s)}ds, t E (O,r], (3.4.15)

is known ezactly. Then for all sufficiently small h = T/r, r E N, the

constrained-mesh collocation solution u E S~), m:::: 1, to (9.4.14) satisfies
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for some finite constant C1 not depending on hand l = 0, 1. This estimate

holds for all collocation parometers {Ci} with 0 :::; c, < ... < em :5 1.

Theorem 3.4.2 ([18J) Assume that the given functions in (3.4.14) are suf­

ficiently smooth on their domains, i.e., they are in C m+d for some d un·th

0:::; d:5 m, and let the delay integrnl4.1 in (3.4.15) be known exactly. Then

for aU sufficiently small h = Tlr, r E N, the constrained-mesh collocation

solution U E S~) to (3.4.14) is uniquely defined, and has the following prop-

erties:

(i) If the collocation parameters {ci} are the Gauss points in (0, 1), then

for some finite constant Co, provided d = m, while u' possesses a lower

order of convergence on the mesh TIN:

(ii) If the {ci} are the Radau II points and d = m - 1, then

(iii) If the {ci} are the Radau I poinu and d = m - 1, i.e., 0 = c, < C2 <

... < em < 1, then

l~nagcN Iy(tn) - u(tnll :5 CQh2m
-',



and

Proof: A detailed proof of this theorem can be found in [181.

o
While the collocation methods to integral, differential and integro­

differential equations with constant delay are .....ell understood, the numerical

analysis of these equations with proportional delay is significantly more dif­

ficult. Indeed, the results to date are incomplete and their derivation calls

for new mathematical techniques.

It is known that tile collocation method in S~)(nN) for constant delay

problems has a global convergence order m and a local superconvergence

order p' , m < p. :s; 2m. The question is:

if we apply the collocation method to variable delay problems, can

we get a global convergence order m and a superconvergence order p'

(m < p. :s; 2m) using m collocation points?

It is the scope of next chapter to investigate proportional delay problems and

answer this question.
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Chapter 4

Collocation for Differential and

Volterra Integra-differential

Equations with Proportional

Delay qt (0 < q < 1)

In this chapter, we concentrate on the discretization analysis of differential equa­

tions with proportional delay. The coUocation method and its global convergence

properties are discussed in Sections 4.1 and 4.2. In Section 4.3, we discuss the lo­

cal convergence of collocation solution to first order DOE and DVIDE. In Section

4.4, we extend the results to sccond-order DOEs. Some numerical examples are

provided as a further illustration for these results.

62



Consider the first-order delay differential equation

y'(t) ~ f(t, y(t), y(,t)), t E T, y(O) ~ Yo, (4,0,1)

and the delay Volterra integro-differential equation

y'(t) = f(t,y(t)) + L:k(t,S,y(S)dS, tEl, y(O) = Yo, (4.0.2)

withO<q<l.

Many special cases of (4.0.1) and (4.0.2) are encountered in applica­

tions: collection of current by electric locomotives [84], number theory [76],

probability theory on algehraic structures [85], nonlinear dynamical systems

[41J, ahsorption of light by interstellar matter [I].

Theoretical and numerical results on (4.0.1) and (4.0.2) may be (ound,

fo' oxampl,. in [81. {191. [211. [231. [24], [251, [401. [471. [591. {61]' [621. and

{811,

There are remarkable differences, both analytically and numerically,

between differential equations with constant delay and those with propor~

tiona! delay, see also (73]. In the case of proportional delay, the discontinuity

property as discussed in Section 2.1 disappears, that is, for smooth data,

the analytic solution is smooth, see [19] and [59J (but see also Remark 4.0.2

below). Hence, there is no need to keep track in the numerical solution of the

primary discontinuities. In the case of constant delay, the solution possesses

discontinuities even for smooth data (see Section 2.2). In this sense, the pro­

portional delay problem is simpler to solve numerically since there is no need
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to use a constrained mesh. However, this is offset by the considerably more

complicated fonn of discretized equations as we will see in Section 4.1.1, a

form that renders them difficult to analyze.

Remark 4.0.1 When q > I, the uniqueness of solutions to (4.0.1) and

(4.0.2) may oot hold. A detailed discussion can be found in [66], and for

VIEs in [331. As a result, we only consider the case of °< q S 1.

Remark 4.0.2 If the initial point t = to is not equal to zero, primary dis-­

cootinuities may exist. Baker et al (5] give the following example,

y'(t) = ay(qt) for t 2:: 1, y(t) = 2 for t < 1, y(1) =0,

with q E (0,1], which hM primary discontinuities at t = 1!q, l!q2, ..

4.1 Collocation and continuous Runge-Kutta

methods

[n order to exhibit the essential features of the collocation method, we only

cODsider a special case of (4.0.1),

y'(t) = f(t,y(qt»), tEl, y(o) = Yo. (4.1.1)

Let UN be a uniform mesh on the interval I := [0, T], given by tn := nh,

n=O,l, ··,NitN=T. The set

X N := {tn ,;;= tn +Cih, i"" 1,2" . ,m, n "" 0, 1,,·' ,j\l-l},
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with 0 :5 C\ < C2 < ' , < Cm :5 1, denotes the Nm collocation points in

(0, TJ, Define

qn,i;= (q(n + e;)] E No, 1'n,i;= q(n + e;) - qn,i E [0,1), (4.1.2)

for i = 1, .. , m, where {x] denotes the greatest integer not exceeding x E R

With this notation,

qtn,i = q(tn + e;h) = qn,jh + 1'n,ih = tq~,i + "'fn,ih,

This is a typical relation in collocation and Runge-Kutta methods for pro-

portional delay problems of the form (4,0.1).

4.1.1 Collocation for differential equations with pro­

portional delay

The approximation u E S~)(nN) to the exact solution of (4.1.1) is determined

by the collocation equation

for n = 0, 1" " N - 1, subject to the initial condition v(O) = YO. We write

(compare Section 3.1.1)

V'(t" + sh) =~ VnjLt(s), s E [0,1],

where V"J := v'{tn + cjh). Upon integrating, we obtain
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where V,,) is determined by (4.1.3), namely

Vn,j=f(tn+Cjh'Vh.j+h~Vq".j,lCl'I(-ynJ))' j=I,2,· ·,m. (4.1.5)

Thus, (4.1.4)-(4.1.5) define a continuous m-stage implicit continuous Runge­

Kutta method for the first-order delay initial-\'alue problem (4.1.1).

Illustration:

y'(t) = ay(t) + by(qt) , tEl, yeO) = Yo, (4.1.6)

where a < q < 1. On (tn' tn+d, the collocation solution for (4.1.6) is deter­

mined by

v'(tn .;) = av(tn,;) + bv(qt".i), i = 1, ", m. (4.1.7)

On this subinterval, v may be written as

v(tn + sh) = tin + h f:aj(slVn.j, s E [0, Ij, (4.1.8)
j=1

where

Thus, using (4.1.8) and (4.1.2) we readily find that the quantities {Vn,;} in

(4.1.8) are defined by the solution of the linear system

Vn,i = ah I:OiJVnJ + bh I:Oj(l'n,i)Vq~.;J + aVn + bvq~.;, (4.1.9)
j:=1 j=1

i = 1, .. ,m, with o;J := Cl'j(e;). Once the {Vn,i} have been found, the

approximation at the next mesh point tn+ 1 is

Vn+1 = Vn + hL:b;Vn,i,
j:1
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where we have set bi := oi(I).

Now, we give a more concrete computational formulation for (4.1.8)

and (4.1.9).

Case 1: qn.i = n for all i = 1,2" . ,m.

We write (4.1.9) in tile form:

v = nCaA + bB)V + (a + b)vne, (4.l.IO)

and e = (1, 1, ", l)T, Hence,

v = (a+ b}vn(l- h(aA +bB))-te.

Therefore, in this case, (4.1.8) is equivalent to

u(tn + sh) =V n + vn(a + b)ha:(S)T(I - h(a.4. + bB))-le, (4.1.11)

Case II: qn.i < n ifi = 1,2" . ,~; qn,i = n ifi =~+ 1, ",m forsome~

with 1::; ~ < m.

(4.1.9) is equivalent to

V=haAV+hbB/,V+avne+bV+bh E B(ilv" (4.1.12)
i=/,+I

where B". is an m x m matrix whose i·th row is
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for i ::: 1, 2" ',1-', and which has zero vectors for all other rows. 8(i) is an

m x m matri.'C whose i-th row is

and aU other rows are zero vectors.

Hence,

v = hb(l - h(aA +bBp))-1 f B(ilV; +av,,(l- h(aA +bB,,)-le
;",,,+1

+ b(! - h(aA + bE,,))-lv.

Therefore, (4.1.8) becomes

v(t" + sh) = v" + bh2o:(s)(I - h(aA + bB,,))-1 f B(;l\ti
i""J'+1

+ahvnQ(s)(1 - h(a.4. + bB,,»)-le

+bha(s)(l - h(aA + bB,,»)-lii.

Case lll: qn,i <n for all i= 1,2"" ,m.

In this case, (4.1.9) can be written as

v = haAV +av"e +bii +bh~B(i)V;. (4.1.13)

Hence,
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Therefore, in this case, (4.1.8) takes the form

v(tn + sh) vn +bh2o:(s)(l- haA)-: t B(°V;
i=p+l

+ ahvno:(s)(I - haA)-le +bho:(s)(I - haA)-lv.

Remark 4.1.1 It is worth noticing that, in the above three cases, the ODE

parts remain the same whiJe the DOE parts change according to the \'a!ues

of q and n.

4.1.2 Collocation for integro-differential equations

with proportional delay

Consider now the delay Volterra iotegro-differential equation

y'(t) = f(t, y(t») + i: k(t,s, y(s»)ds, tEl, 0 < q < 1, (4.1.14)

with initial condition y{O) = Yo.

The collocation solution u E S~)(nN) to (4.1.14) is given by

u'(t) = f(t, u(t)) + i: k(t, s, u(s»)ds, t E X N , (4.1.15)

with u(O) = Yo. Define

Fn(t);= l' k(t,s,u(s»)ds,

and set

u'(tn + vh) = ~ L,(v)Yn .I , Yn,I:= u'(tn + e,h),
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then

u(tn + vh) = Yn + h~ odv)Yn,j, v E [0,11, Yn:= u(tn).

where Lj(v) and OJ(v) are defined in Section 3.1.1. Thus (4.1.15) may be

rewritten as

with

Un,j:= u(tn +c;h) = Yn +h~Oj,lYnh OJ.j:= OI(C;),

Zn,j := h foe; k(t n + c;h, tn + vh, U(t n + vh)dv.

and

See (4,1.2) for the definitions of qn,i and 1'n,i.

On the interval (tn, tn+ll, 0 :$ n :5 N - 1, the collocation solution is

given by

U(tn+vh)=Yn+hf:Oj(vlYn,j, ve(O,lJ.
;=l

The above method for proportional delay VIDEs involves integrals which

cannot be calculated analytically, and thus an additional discretization step

is necessary. If the discretization of these integrals employs m-point interpo­

latory quadrature formulas based on the collocation parameters {ci), then
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this method is described by (4.1.17)-(4.1.23):

ii.(tn+vh)=Yn+hfO:"j(v)Yn,j, vE[O,l], (4.1.17)
j=1

where

with

Zn,j:= h:E wj,/,k (tn + cjh, tn + {j,,,h,ii(tn + (j,/,h)) , (4.1.21)
/,"'1

Zn,j:= h f: wj.l'k (tn + cjh,tq•.; + (i.ph, ii(tq~.J + (i,,,hl). (4.1.22)
/,,,,1

Here, Wj,/, := cjb", Wj,/, := 'Yn,jbl" with b/' := 0:"/,(1), {j,p. := CjC" and (j.l' :=

'Yn,jcw The lag term approximations Fn(t) in (4.1.19) corresponding to the

exact lag term (4.1.16) is

Fn(tn,j):= hI: f. b/,k(tn,j, ti,p., U,,/,}. (4.1.23)
'",0"",\
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4.2 Global convergence of collocation solu-

tions

In this section, we give the global convergence results for collocation approx­

imations to solutions of delay differential equations of first order. The dis-

crete version of Gronwall-type inequality is the essential tool for the proof. It

should be mentioned that similar results hold for higher order delay differen­

tial or integro-differential equations with proped)' modified proofs. In {lOO],

a proof for global convergence of collocation solutions to Volterra integro­

differential equations with proportional delay qt (0 < q < 1) was given.

Consider the delay differential equation

y'(t) = a(t)y(t) + b(t)y(qt), tEl, y(O) = Yo- (4.2.1)

where 0 < q < 1. We know the solution of (4.2.1) is smooth if a and bare

smooth. We seek a collocation solution u for (4.2.1) in S~)(nN), and give

tile global convergence order for such a numerical solution.

Theorem 4.2_1 Suppose a, b E am[O, T] in {4.2.1}. Then for any (uni­

for.:., mesh II..... with sufficiently small h = TIN, the collocation solution

u E S~)(IIN) to (4.2.I) is uniquely defined. For every choice of the collo­

cation parameters {Cj} with 0 $; C\ < ... < em $; 1, the error e ;= y - u

satisfies
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with Co and C\ denoting suitable finite constants depending on the {Cj}.

Proof: The Taylor expansion of the analytic solution y(t) for (4.2.1) is

where an.l = h1yVl(tn)jl!, R,.,.(s) = y(m+I)((n)sm+lj(m + lJ!, (" E (tn, t"+l)'

Also, the collocation solution u is of the form

u(t" +sh) = ~&n'li, s E [0, I].

Hence, the error e satisfies

e(t" +sh) = hm +l{.o",o + ~(Jn'lsl + R,,(s)}, s E [0, II, (4.2.2)

where hm+l .on,/. = 0'",1 - a",I, l = 0,1, ", m. Again, the error satisfies the

following equation

e'(t" +sh) attn + sh)e(t" + sh)

+b(t" + sh)e{q{t" + sh)) + 6{t" + sh). (4.2.3)

Computing derivatives on both sides of (4.2.2), we get

Substituting (4.2.2) and (4.2.4) into (4.2.3) yields

ha~ .8"Jt{ + hb~ .8qA.'J...,~,i

+ ha!l,,(,,1 + hb!l"•.h •.;) - R'.(,,), (4.2.5)
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with a = a(t" + e;h) and b = b(t" + c;h), where q.. ,i and l'.. ,i are defined in

(4.1.2). We may rewrite (4.2.5) as

~ l,O",leI - ha~ p",ld;

hap".o + hb ~Pq~.'.I1'~'i + hbfJq~."o + ~".;, (4.2.6)

i =1,2, .. ,m; n=O,I,' ·.N -1, with

The continuity of the appro:cimating polynomial spline at the knots fIN yields

an additional relationship between P".o and the vectors Pi, i < n, namely,

n = 1,2, ", N - 1. Furthermore, we have

{J".,,= ~~f3i~+ ~ Rt(l).

Combining (4.2.6) and (4.2.7), we get

(4.2.7)

flf3".Id, - ha f.:.8..~eI - hb f:Pq".,,('f~,i = <II..,; + P.. ,i, (4.2.8)
1=[ 1=1 1=1

where

4>..,; =ha~f{hl+hb qfl fpj,I'
j=OI.. [ j=O 1=1

Po,' ~ ha(I<,(l) - R,,(O)) + hb(I<,(I) - R".,<O)) + "0,..
We now need to consider three cases according to the value of q".i (see

also the three cases in Section 4.1.1):
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Case I: q",i = n for all i = 1,2, .. ,m.

In this case, we can switch (4.2.8) to a more compact form, namely

where A = (ld;-l) E IRm><m, D = (ad;+Irr~,;l E Rm><m and F = (41",i+Pn.;}T E

IR"'. The matrices A and D are invertible for sufficiently small h > O. Setting

IIP.II, s he~ IIPjl!> + R, n ~ 0, I, ", N - I, (4.2.9)
j"'O

where C and R have obvious meanings. This is a discrete Gronwall-type

inequality, and thus we obtain (see Chapter 1 of (21))

Hence, by (4.2.2) and (4.2.7),

len(tn + sh)1 :s: hm(B + Mm), I" + sh E I",

where Mm = ma.'C{ly(m)(t)l/m!: tEl}.

CMe II: qn,i < n ifi = 1,2, .. ,j1-; qn," = n ifi = /.1-+ 1, .. ,m for some /.I-

with 1 :5 j1- < m. In tllis case,

where D; (I :5 i :s: j1-) is an m x m matrix whose i-th row is (Irr~.,., ", try~,.),

and all other rows are zero vectors. Do is also an m x m matrL'C: its j-th row
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is {ae}, .. ,acj'), when j = 1. .. ,p., and is (ae} +frr~J' .. ,aC; + 1r(~J)'

when j = p. + 1, ", m. The rest of the proof is similar to that of Case 1.

Case III: qn,i < n for all i = 1,2, ", m.

The derivation of the analogue of (4.2.9) is straightforward, since in

this case, Do = (acf)mxm'

Theorem 4.2.1 remains valid for the nonlinear DVIDE (4.1.14).

o

Theorem 4.2.2 Let f:= f(t,y) and k:= k(t,s,y) in (4.1.14) be m times

continuously differentiable on their respective domains, and assume that f ,l

and k,l are bounded. Then there exists h > 0 such that the collocation equation

(4.1.15) defines for each h E (O,h) a unique approximation u E S~)(rrN)'

For every choice of the collocation parameters {Cj} with 0 :S Cl < ... < em :S

1, the error e := y - u satisfies

with Co and C1 denoting suitable finite constants depending on the {Cj}.

The proof is similar to that of Theorem 4.2.1 using the linearization

techniques described in Remark 3.3.1. The reader may consult [1001 for fur­

ther details. See also [211 for analogous results for Volterra integra-differential

equation without delay.

Remark 4,2.1 Theorem 4.2.2 is also valid for Volterra integra-differential

equation with pure delay

y'(t)=g(t)+ foqtk(t'S,y(s))ds, t E I, y(O)=Yo,
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whereO<q<1.

4.3 Local superconvergence

In Section 4.2, we investigated the global convergence order of collocation

method. In this section, we want to know what order of convergence we

can get if we only look at the mesh points instead of the whole interval.

Intuitively, we expect a higher order of con\"ergence as in the case of constant

delay equations.

First, we provide some properties of the analytic solution of our prob-

tern. This gives us some ideas about what could happen to the numerical

solution of the problem. Then we look at the problem specifically at t = h

for the DOE and the DVIDE. We also provide a numerical example.

Consider the first-order equation

,'(t) ~ &y(qt), ,(0) ~ 1,

with b E C and 0 < q < 1. The analytic solution of (4.3.1) is

._ <>:l qk(k_L)/2 k
,(t)_ {; -k-'-(btl .

(4.3.1)

(4.3.2)

Detailed descriptions of its properties may be found in [47], [66], and in [59].

We only mention the following result from [59].

Theorem 4.3.1 The solution of (4.3.1) cannot be uniformly bounded fOT"

t:?: 0, regardless of the value ofb E C\{O} and q E (0,1).
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All these shows that the DOE (4.3.1) has property that is very differ-

ent from that of its classical (non-delay) counterpart. vVe may expect this

difference carries over to the collocation solution.

Pade approximants to the exact solution play an important role in the

numerical analysis of initial value problems (27] and [61]. Basically, Pade

approximants are optima! rational approximants to a function possessing a

power series. The foHowing definition makes this more precise.

Definition 4.3.1 Let f(z) nave a power series in a neighbornood of z = O.

If polynomials P(z) and Q(z), of degrees p and q respectively, can be found

such that

f(z) - ~~:; = O(lzlp+q+L),

with Q(O) = 1, then P(z)/Q(z) is a Pade approximant to fez). When p "" q,

P(z)/Q(z) is called a diagonal Pade approximant to f(zl.

The following examples are given for iHustrative purpose, and we set

z ;= bh. The first two diagonal Pade approximants for (4.3.2) are (see [19])

Example 4.3.1

R (,. ) "" 1 + (1 - J)z
1,1 ,q 1- ~z

Thus, for q = ~,

compared with
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ror f(z; 1) =exp(z).

Example 4.3.2

R (. ) _ 1 +~z + ,cll ~21tt5-:a.·lz2
2,2z,q - 1+~z+~z2

(n particuJar,

compared with
l+lZ+..LZ2

R2,2(z) = R2,2(z; 1) = 1 _ !z + ~z2'

for j(z;l) =exp(z).

The collocation equation of (4.3.1) is gi'\-~n by

V..+I = v" +hfv...,CtI(I), V...1=b{v".... +h'f:oj(-r....JY""..J},
i.1 j_1

where VOl,; := y'(t.. +eoh). When n = 0, to = 0, t 1 =h,

v(h) = I + h f \10••0.(1),
1",,1

VO•1 =b{l+hEOj(qc;)lIo,J}, i=I,2, ··,m.
j=l

Theorem 4.3.2 ut v E s<~)(n,v) be the collocation solution to the ODE

(.I.3.1). Then for q e (0, 1),

v(h) = Pm,m(z; q),
Qm,m(Z;q)

where

Pm,m(Ziq):= f,qi('lm+I-il/2N(m-i )(qi-m-I)z-i
j ..o
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on"

Qrn,m := f: qi(2m+l-i )/2 N(m-j)(o)z-1.
j=O

with
1 m

IV(t) := m! Q(t - c,;).

For a brief proof of tllis theorem and next example, reader may consult [19J.

Example 4.3.3 For m = 1 we get

It is easy to ....erify that Iy(h) - v(h)l = O(h2 ) if and only if c\ = 1/2 which

is a Gauss point.

For m = 2, collocation for ODE (4.3.1) at the Gauss points yields

v(h) = 1 + (1 - ~)z:- HI - q + ~.)z2,
1- !ljz+~z2

with y(h) - v(h) = O(h4
} for all 0 < q < L

We now extend the above theorem to a special case of the VIDE (4.1.14)

with proportional delay,

y'(t) = _!oit ~Y(S)dS, y{O) =1,

with bEe and 0 < q < 1. The analytic solution of (4.3.3) is

00 (_l)kq.l:(k-l) 2k

y(t),~t;~(bt) ,

which, for q = 1, reduces to y(t) = cos(bt).
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The computational fonn for the coUocation solution to (4.3.3) is given

by

u(tn+L) = u(tn) + h f. UnJQj(I),
j""l

with

Un,.

where

b2h b2h2 '"
-rn,i--qU(tqft ,;) - q j; Uqft ,;Jf3i('Yn,;)

b2h q••;-! b2h2 qft,;-l m

-- L u(tj)--:L I:f3,(I)Ui,l, i=L2, ",m,
q jcO q j=O 1=1

(4.3.5)

LemDla 4.3.1 The collocation solution u of (4.3.3) satisfies

Theorem 4.3.3 Let u E S~)(rrN) be the collocation solution to the DVIE

(4.3.3), and set n := r(m + l}j21. Then for q E (0,1),

u(h) = P2m,2m(ZjQ),
Q2m.2m(Z;q)

where

.-,
P2m,2m(Z;Q}:= L:(_I)iqiU+l)N(2n-2i -l)(qi-n)z2j , (4.3.7)

j=O
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and

H

Q2m,2",(ZjQ):= L(_1)iqiU+l}N(2n-2;-I)(O)z2i , (4.3.8)
;:0

with
1 m

N(t),~, II(t -~).
m·'=l

Proof: In order to establish the above result, we generalize tile approach first

introduced by N0rsett for ODEs (see, for example, [61]). Assume, without

loss of generality, that h = 1. Since on [0, hI = [0, 1], the collocation solution

u is a polynomial of degree m, we set

u'(t) + I'll ~u{s)ds = K . N{t), with N(t):= ~ :fi(t - e;),
)0 q m'b\

with the constant K to be determined. Successive differentiation and replac-

iog of u'(qit) by the corresponding expressions involving only u'(qi+lt) and

derivatives of N leads to

"-,
0'2 u(2n)(t) _ (_lj"b2"q"(n-llu (q,,t) - K L)~1)ib2jqi{j+I)N(2n-2j-l)(qit),

;=0

with n = r(m+ 1)/21. If we now set t = 0 and t = l/q" in the above equation

and replace b by z (= bh) we readily obtain the result of Theorem 4.3.3.

o
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Example 4.3.4 For m = 1, we find

u(h) = 1 - (2CL - q~)t.
I+QCf;

In order to get y(h) - tI(h) = O(h2m ), we must have CL = 1/2 which is a

Gauss point. When q = 1 and CL = 1/2,

\Vhcn m = 2, C\ and C2 are the Gauss points, we have

Note that y(h) - u{h) = O(h4
) holds for all 0 < q < 1. If q = 1, then

(4.3.10)

As an illustration, see also [19J, consider the linear DDE (4.2.1) with

a = -1, b = -1/2, and let m = 2; Le., the collocation solution v is in

S~Ol. The collocation parameters are the Gauss points, C\ = (3 - ,)3)/6.

C2 = (3+../3)/6.
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t-tn h y(t) - v(t) yet) - Ui!(t) y(t) - v(t) yet) -Uit(t)

q=O.9 q=0.9 q=0.5 q=0.5

h 0.2 -1.78£-6 4.95£-5 5.78£-6 2.43E--5

0.1 ~3.87E--8 6.79E--6 4.48E-7 1.75E--6

0.05 3.75E-1O 8.80E-7 3.10£-8 1.17E--7

0.025 1.20£-10 1.12£-7 2.04£-9 7.60£-9

(po ~2) (pO ~3) (pO~4) (po ~4)

LO 0.2 -4.33£-6 -4.88£-6 -1.55£-8 3.48£-6

0.1 ·1.88E-7 ~2.00E-7 -3.33E-7 ~2.39E-7

0.05 -1.18£-8 -1.20£-8 -2.07£-8 -6.20E--8

0.025 -7.57£-10 -9.51E~10 -1.30£-9 -3.87E~9

(po ~4) (po~,) (po ~4) (pO ~4)

5.0 0.2 -3.13£-8 -2.78£-8 6.00£-7 1.22£-6

0.1 -1.51£-9 -1.95£-9 1.36£-9 1.01E--7

0.05 -8.97£-11 ·1.08E-I0 9.53£-11 -8.38£-9

0.025 -5.65£-12 -6.80E--12 6.20E--12 -5.21E-1O

(pO ~ 4) (pO ~4) (po ~4) (po ~4)

Table 4.1: Numerical results for equation (4.2.1)

The numbers between parentheses for p' indicate the observed order

of local superconvergence. These results suggest that, in spite of the non-

optimal order at t 1 = h, the conjectured (exact) optimal order p' = 2m = 4

is being recovered as the integration progresses (see also Chapter 5).
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4.4 Extension of results to second-order DDE

In this section, we extend part ofour results in Section 4.3 to secood-order dif-

ferential equations with proportional delay, especially the superconvergence

results at t = h. See also [1001.

In analogy to first-order ODEs and delay DEs, see [241. [251 and {GIJ.

consider the test equation

,"(t) ~ -b'y(qt}, y(O) ~ 1, y'(O) ~ 0, (4.4.1)

with bEe and 0 < q < L The analytic soLution of (4.4.1) is (compare

(4.3.4))

(4.4.2)

which, for q =1, reduces to yet) = cos(bt).

Theorem. 4.4.1 (fB}) The solution of (4·4·1) is an entire function 0/ order

zero, and hence cannot be uniformly bounded/or t ~ 0, regardless of the value

alb E C\{O}. Also, yet) possesses infinitely many zeros for any q E (0,1).

The first part can be proved by calculating the order of (4.4.2), which is

an entire function, in complete analogy to a result for the first-order DOE

(4.3.1) (see [59]). The second part is obtained by appLying a result from [941.

The collocation solution to (4.4.1) is given by
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V~+l = v: + h ti V.."Q,(I),

v.." = _b
2

{ Vq~" + 1'n.,hv~~., + h
2 f: I3j(1'..,;)Vq~"J}'

j"'l
where Vn ,; := y"{tn + c,:h), and {3j(t) is defined by (4.3.5). When n = 0,

to =0, t l =h,

t:{h) = 1 +h 2~ Vo,i,B,(l),

Vo" = _b2 {1 +h2 f:,aj(qc,:)VOJ}, i = 1,2,· ',m.
i=1

Theorem 4.4.2 Let v E S~L(rrN) be the collocation solution to the DDE

(1 ..;.1), and n:= rtm + 2)/21· Then for q E (0,1),

11t h ) = P2m,2m(ZiQ) ,
Q2m,2m(Z;Q)

where

P2m,2m(Z;Q):= L(~1)jqi(2n-i-I)Jv(~n-~i-~J(qi-n)z~j, (4.4.3)
j~

ond

QZm.im;= :L(_1)iqi(Z.. -i- l lj'\I"(h-2i -2)(0)z2i , (4.4.4)
i=o

where

ond

L;.:J(2n - 2] _lH_l)Jb2J qlU"-J1N(2"-2J-Z)(O)
eo = L;=~{ I)Jf,2JqJ(2n J)N(Zn-~J-l)(O)

N(t):= (t - eo)N(t), N{t);= ~ g(t -c,:).
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Proof: Assume h = 1. Since on [0, hI = [0, 11, the cotlocation solution u is a

polynomial of degree m + 1, we set

u"(t) +b2v(qt) = [{. lV(t). with iV(!):= -\ fl(t - co),
m'i"'O

with the constant K to be determined. Successive differentiation and replac­

ing of u"{qit) by the corresponding expressions involving only u"(o/+lt) and

derivatives of illeads to

o~ V(2")(1) -(-l)"b2"q,,("-l)v(q"t) - K E(_I)ib2.iqil2"-i- I )!'{(2,,-2i -2)(o/t),
i"'O

with n:= r(m+2)/21. Aftersettingt = 0 and t = l/q" in the above equation

and substituting b by z = bh we obtain (4.4.3) and (4.4.4). The number

CQ is determined by further differentiation and use of the initial condition

y'(0) =0.
"-,L{_1)ib2iqi l2,,-iljV(2n-2i -l){O) = O.
i=iJ

H
L(_ljib2iqilh-i} [_CQNl2n-2i-lJ(O)+(2n_2j_L)i\rl2n-2i-2)(O)] = O.
i"'O

Hence, (4.4.5) holds. o

It should be noted that the derivatives in (4.4.3) and (4.4.4) are of even

orders, while those in (4.3.7) and (4.3.8) are of odd orders.

Example 4.4.1 When m = 1, we get
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If q := 1, Cl := 1/2 (Gauss point), then

1- ~Z2

v(h) = T-+P.
When m:: 2, collocation for the ODE (4.4.1) at the Gauss points yields

v(h) = 1- (j+ Uq2 - $q3)z2 +(-& -lq+ -ffiq3)q2 z4 (44 6)
1 z:2q2C; A"q)+432q5z4 ..

with y(h) - v{h) = O(h4
) for all 0 < q < 1. If q = 1,

(4.4.7)

Remark 4.4.1 While (4.4.6) and (4.3.9) are not identical, (4.4.7) and

(4.3.10) coincide.

Theorem 4.4.3 Assume that v E S~~I(IIQ) and u E S~)(II,,) an:, n:spec­

tively, the collocation solutions for the DDS (4.4.1) and the DV!DE (4.3.3),

using the same collocation parameters {CI,C:l,' . ,c",}. Then at t = t l = h,

v(h) :F u(h) whenever 0 < q :S 1.

If fez) is given by (4.4.2), one expects its Pade approximant to contain

only even order terms. In the following, we give the first two diagonal Pade

approximants of fez), also those of cos z (corresponding to q = 1), and make

comparisons between them.

Example 4.4.2 The first two diagonal Parle approximants for (4.4.2) are
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Example 4.4.3 The first two diagonal Pade approximants for cos z are

R, (z) - 1 - :lli Z2 + rffigZ
4 R.,. .• (z; 1) .

.4 -1+2~12z2+ 15\320Z4

Based on the examples in this and the p~e...ious sections, we have the

following result.

Theorem 4.4.4 ForO < q:5 I, the diagonal Padi. approximants of soiuti07l$

of {-l·4·1} aft = h are not eq"oJ.al to the collocation solutions of U.-l.1} at t = h

corresponding to the Gauss points. This is true in particular for q = 1 where

the solution of {4.4.1} is cos z.

Remark 4.4.2 Since the diagonal Pade approximant is unique and has an

order of 2m + 1, Theorem 4.4.4 suggests that the optimal order of colloca-

tion method is less than 2m + 1. This observation is also supported hy the

following numerical example.

We now provide some numerical results for problem (4.4.1), choosing

m = 2, Cl = (3 - v'J)/6, C2 = (3 + v'J)/6.
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,= '"(nh) h y(t}-u(t) for

q=l.Q q=O.99 q=O.5 q=O.l

h(n~l) 0.1 -2.31E-I0 -2.40£-10 -9.40£-11 -3.02£-13

0.05 -3.61£-12 -3.75£-12 -1.47£-12 -4.73£-15

0.025 -5.65£-14 -5.87£-14 -2.30£-14 (0)

0.0125 -8.88E--16 (0) ~3.61E-16 (01

(p. ~61 (p. ~61 (p. ~6) (po ~61

1.0 0.1 -1.95E-8 -2.04£-8 -1.63£-8 -6.94£-10

0.05 -1.22£-9 -1.29E.-9 -1.02£-9 -4.34E-l1

0.025 *7.61E-11 -8.82£-11 -6.36£-11 -2.ilE-12

0.0125 -4.76£-12 (0) -3.97£-12 -1.69£-13

(p. ~4) (p·~4) (p' ~4) (p. ~41

5.0 0.1 1.11&-7 1.848-7 -L98E-7 ~1.72E-8

0.05 6.94£-9 1.14£.-8 -1.24£-8 -1.07£-9

0.025 4.34E-1O 7.32&10 ·7.72£-10 -6.65E-l1

0.0125 2.71E-ll (01 -4.83£-11 -4.15E--12

(p. ~41 (p. =4) (p' ~ 4) (p. ~ 4)

Table 4.2: Numerical illustration for equation (4.4.1)

From the above table, we see that p' = 6 when n = 1 and p' = 4 when

n > 1. This example suggests that tbe convergence order at tn is at lcast 2m

We are still curious about the result of the first step (n = 1), because the

numerical result at this step suggests a higher order of convergence, 2m + 2.

\Ve showed in Table 4.2 that local superconvergence of order p. = 2m+2

occurs at t = t 1 = h if coUocation is at the m Gauss points. In contrast to
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DOEs with constant delay and VIDEs, the analysis of local superconvcrgence

at all mesh points t = tn, n::; N, tN =T, is much more complex in the case

of the proportional delay qt, 0 < q < 1. See also Section 5.l.

The problem of locaL superconvergence in collocation methods for differ­

ential and Volterra functional equations with state-dependent delay remains

open.
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Chapter 5

New Approach and Outlook

In Section 5.1, we propose 3 new approach to the superconvergence order problem

of collocation solutions to differential equations with proportional delay. The

reader may look at [45) in which embedding techniques for delay equations are

discussed. In Section 5.2, we present some potential research projects.

5.1 New approach

As shown in Se<:eion 2.1.2, Theorem 2.1.9 in particular, the dassical resolvent

approach does not work for establishing local supercollvergeoce results in the

proportional delay case. In tbis section, we shall outline a new approach to

this problem, and obtain some initial results.

In (45], the authors proposed a standard embedding scheme for delay
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differential equations. The basic idea is to convert the given delay differential

equation into an infinite-dimensional ODE system, and then to truncate it

at some point. The property of the solution to tbe truncated system largely

reflects that of the solution to the original problem.

In this section, we first embed our proportional delay problem into

an infinite-dimensional ODE system, and then truncate it. The truncated

system is finite-dimensionaL The classical superconvergence results Bold for

this system. Then, we find the error between the collocation solution to the

original problem and the collocation solution to the truncated system. By

doing so, we are able to measure the collocation error of the proportional

delay problem at mesh points. Thus we determine the superconvergence

order.

5.1.1 Embedding techniques

Consider delay differential equation

y'(t) ~ f(t,y(t),y(B(t))), y(O) ~ Yo, (5.1.1)

where f is a smooth function and the differentiable delay function (J satisfies

(J(O) = 0, 0 :::: (J(t) :s; t for t > O. Let (J" be the n-th iterate of the function (J;

~
Oo(t)=t, (J,,(t)=(Jo(Jo ... o(J, nEN,

and define

z.(t) ~ y(B.(t)), n E No.
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Since z~(t) = 9'n(t)y'(8n(t)), it follows from (5.1.1) that the functions {Zn}~",o

obey the infinite-dimensional ODE system;

We caU (5.1.2) a standard embedding of the delay equation (5.1.1) (see also

[45J).

Choose a (large) ,VI and let ZM = Yo. For e\"eryi = 1\l-I,A'I -2, .. ,0,

soLve the scalar ODE

Consider a special case of (5.1.1), jet, u, v) = au + bv and 8(t) = qt,

the pantograph equation;

y'(t) = ay(t) + by(qt), yeO) = Yo. (5.1.3)

For problem (5.1.3), we are able to derive explicitly the functions Zi by

back substitution and compare them to the known exact solution (see [47])

() ( ) f: (-wi' .,"
yt =YO-W;q""i",o~e ,

where w = bIn and

(d;ql.,~g(l-q'dl, [ql. ,= (q;q) •.

Eventually Z ;= Zo is given hy

[

M M-l (_w)i (M-i-L qjU-11l2 .
z(') = y, (-w) + ~ Tor- ]; [qhw'

q(M-i)(M-i_I){2 _) ]+ w M -' eq'af •

[q]M-i-l
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Clearly, z(t) -+ Yet) as n -+ 00 and if !lea) :s 0, then this con\"ergence is

uniform for t :=: O. See (45].

The main difficulty is to estimate the difference between the collocation

solution to the truncated system and the collocation solutiOn to the original

problem.

For test purpose, consider the delay differential equation

y'(t) ~ by(ot), y(O) ~ Yo,

with 0 < q < 1. Its analytic solution is (compare (4.3.2»

"" qk(k-l)f2

yet) ;= !IO :; -.-,-{btlk.

(5.1.5)

(5.1.6)

Note that (5.1.6) is not a special case of (5.1.4) in that \\"e cannot simply let

a = 0 in (5.1.4) (since w = bja) even though (5.1.3) includes (5.1.5).

First, we embed (5.l.5) into an infinite system of ODEs. Let

Then (5.1.5) is equivalent to the infinite system

(5.1.7)

Observe that, after a finite number of steps, the quantity on the right

side of (5.1.7) can be very small. This fact motivates us to truncate (5.1.7)

after a certain number of steps to get a finite system of ODes, namely,
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and

Our purpose is to understand how large the difference is between the

exact solution and the collocation approximation of (5.1.5) at certain points

(mesh points). But first, we introduce the following compact notations:

ZM(tj (ZM,o(t),2M,I(t)," ,ZM,f,{{t)T

(ZO(t),Zl(t), .. ,ZM(t)T,

Zu(O) = Ya(1, 1, ", 1)T E R.'\.f+I,

where

j=i+l,

j,ei+l.

Then (5.1.8) may be rewritten as

Z~f(t) = PZM(t), ZW/(O) = Yo{!, 1, .. , l)T. (5.1.9)

From the classical ODE theory we know that the analytic solution of

(5.1.9) is

2 M (t) = e.xp{tP)· ZM(O).

Its i~th component is given by

M-i qk(k-ll{2+ik

ZM,;(t) = Zi(t) = Yo {; --k,-(bt)",
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where i =0,1,2",· ,lvI. In particular,

M r/(k-I){2

ZM,O(t) = zo(t) = !Ii! {; -k-'_(bt)k. (5.1.10)

Theorem 5.1.1 The difference between the analytic solution of (5.1.5) and

that of (5.1.9) is bounded by CeIW1·lbtIM+I, i.e.,

ly(t) - ZM,O(t)l :S CelWI ·lbtIM+I,

where C = IYol/(M + l)!.

(5.1.11)

Proof: The result is proved by subtracting (o.LIO) from (5.1.6). 0

Remark 5.1.1 We caD make C ·lbtIM+1 arbitrarily small as long as At[ is

big enough and t is finite.

5.1.2 Collocation solution of the truncated system

Rather than dealing with the problem of establishing local superconvergence

result for the proportional delay differential equation (5.1.5) directly, we first

concentrate on the collocation solution of (5.1.8).

Definition 5.1.1

lvI+1times

the Cartesian product of std)(TIrd which is defined in Section 1.1.

We denote the collocation solution of (5.1.9) by
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and set

with tn,i := tn + e;h, for i = 1,2, -', m. Then,

VM(t n +sh) = V,,-dt n) + hV'(tn)B"

where

V'(tn) = W;r(tn.d, ", V~(tn'''''))(M+I)><'''''

B, = (oi(s),aZ{s), .. ,O,.,.(S))T.

(5.1.12)

Note that V(·) also depends on M. For the definition of Oi(S) and related

properties, see Section 3.1.1. Setting V(tn) = (VM(tn), - -, tt;U(tn))(MHj><,.,.,

we have

V~(tn + e;h)=PVM(tn +e;h)=PVM(tn)+hPV'(tnlBc;, i = 1,2, .. ,m.

Hence,

(5.1.13)

where

B = (B~l' BC2 , . - ,Bem ) = (Oi(ct))iJt=i,Z,..-,m-

Iterating (5.1.13), we find

V'(,.) PV('.) + hPV'(,.)B ~ PV('.) + hPiP"(,.) + hPV'('.)B)B

PV(tn) + hpZV(tn)B + hZpzV'(tn}BZ

PV(tn) + hp2V(tn)B + h2p3V(tn)B2+ h3plV(tn)B3

+ .. + hM-ipMV(tn)BM-t + O(hM },

98



because rankP = M, pM+! = O. Letting s = 1 in (5.1.12), we obtain

VM(tn) + hPV(t,,)B1+ h1. p1.V(tn)BBl + h3 P3V(t,,)B1. B I

+ ··.+hMpMV(t,,)BM~lBI +O(hM+ l ). (5.1.14)

Its first component is

VM,O(tn+l) = VM.o(t,,) +bhVi(tn)B1 +h1.b1.qY1.(tn)BBl +h3b3q3V3 (t,,)B1. B 1

+ ... + hMbMqM(M-l)/1.YM(t,,)BM-IBl +O(hM +I ), (5.1.15)

where V;(tn ) = VM.i(t,,)eT E am and e = (1,1, .. , l)T E Rm.

The foHowing is a classical result (see, for example, [391 and [51]).

Theorem 5.1.2 For any finite M, the collocation solution V"'t(t) E S~)(n.v)

to the system of ODEs (5.1.9) has superconvergence order of 2m if the col-

location parameters {e;: i = 1,2,· " m} are Gauss points. In other words,

(5.1.16)

where eM is a finite constant.

5.1.3 Superconvergence results

Consider now the m~stage collocation solution for (5.1.5).

v'(t" + sh) = f: v'(tn + cjh)Lj(s),
j=l
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v'(tn + e;h) = bv(q(tn + e;h» = bv(t'lft.• + 'Yn,ih),

V{tn +sh) = v(tn) +hEV'(tn +cjh)O:j(s).
j:1

In particular, when S = 1, we have

v(tn+d = v(tn) + h t. v'(tn + cj h)Ctj(l),
j=l

v'{tn +c,h) = bv(tqft .;) +bhEv'(tqft .; + cjh)Ctj(ln.;},
j=t

fori=I,2, .. ,m.

(5.1.17)

(5.1.18)

In order to highlight the difficulties of the problem, we use the following

diagram to describe them:

Figure 5.1; New approach

Q: Does the collocation solution (5.1.17) have a supercouvergeuce order of

2m for the Gauss points? Le., does

bold?
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We break down this question into three subquestions:

Ql: Can the an&I.ytic solution of the truncated system be arbitrarily dose

to the analytic solution of (5.1.5)?

This question is answered by Theorem 5.1.1.

Q2: Does the collocation solution to the truncated system have a supercon­

vergence order of 2m for the Gauss points?

This question is answered by Theorem 5.1.2.

Q3: Can the difference between collocation solutions (5.1.17) and (5.1.15)

be bounded by Ch'lm? i.e., does

hold?

If we have an answer to Q3, problem Q is sol....ed by

b,(t)-v(t)1 :51y(t)-ZM,o(t)I+IZ/ol,D(t)-VM,o(t)j+IVAf,o(t)-v(t)1, t EON'

We can e:'Cplicitly oonnec::t VM,D(t,,} to the initial condition by iterating

(5.1.14). However, it is bard to do so for (5.1.17).

For illustration purpose, we consider tbe collocation solution of (5.1.5)

"lritb m = 1. Since we have only a single collocation parameter Cl, and hence

a single value qn.lt we only need to consider GfUJC I and l!l (recall Section

4.1, page 67).
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Case I: Q",l = 11. Orrly ODe value of 11 satisfies qn,l = n, it is 11 = O. In this

case,

I.(h) - v(h)1 S Ch'-,

when collocation is at the Gauss point c = 1/2. It is even true for m > 1.

See Examples 4.3.3-4.3.4, 4.4.1 and [191.

Case Ill: qn.l < n. This is the case for all n :?: 1.

In this case, (5.1.18) becomes

From (5.1.17), we find

It is hard to get an e."<plicit expression which connects v(tn) and v(O)

from (5.1.19) for general q E (O,1). However, when q is a reciprocal of a

positive integer, we are able to prove the following result (see also [99]):

Theorem 5.1.3 When q "" 1/1, lEN, the one-point (m "" 1) collocation

solution of (5.1.5) in SfO)(IlN) possesses the s1lperconvergence orner p. ""

2m = 2 if and only if collocation is at the Gauss point, i.e., C\ = c"" 1/2.

Remark 5.1.2 In [251, among other results, a sufficient condition for sta·

bility of one-point collocation solution of (5.1.3) with q "" 1/2 and Yo = 1 is

given.
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Proof: The one-point collocation solution of (5.1.5) is of the form (5.1.19).

Let z := bh. When q = 1/1, lEN, we have

Q'Hi_l.l = k, l"H._'., = i - ~ + c =: 1;, for i = 1,2, ", i. (5.1.20)

Then (5.1.19) can be rewritten as

for i = 1,2" " i. For ease of exposition, we choose l = 2, then (5.1.20)

becomes

c l+c
1'... 1 = 2' ,,..,,, = 2'

and (5.1.21) is simplified as

V(!2k) + 2; CZV(tk) + ~zv(tHd, (5.1.22)

v(t2k+l) + 1; C w(tk) + 1; C zv{tHd. (5.1.23)

We claim that

V(t2k) = (1 + 2kz + k(k + c - ~)Z2) v(O) + O(2k . z3), (5.1.24)

v{t2k+d = (1+(2k +l)Z+(k+~)(k+ c)z2)v(0)+O«2k+l)z3). (5.1.25)

We prove the claim by induction. It is clear that, when k = 0,

vetil = v(O) + (l- ~)zv(O)+ ~zv(td.
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Hence,

v(td 1 + (1 - c/2)zv{O)
1- cz/2

(1 + z + cz2/2)v(O) + 0(Z3),

where 0(Z3) = 0«2k + 1) . z3). Suppose (5.1.24) and (5.1.25) are true for

aH k:S; n. When k = n + 1,

v(t2.d V(t2n+2) -= v(t2n+d + 1~ C zv(tn) + 1; C zv(tn+tl

(1 + {2n + l}z + (n + 1/2)(n + C)Z2) v(O) + 1 ; Czv(tn)

+ 1 ; Czv(tn+d + 0{2k . Z3).

If n = 21, we have

v(t2k) (1 + (41 + 2)z + (1/2 + C+ 31 + 21c + 412)z2) v(O) + O(2k . Z3)

(1 + 2kz + k(k + c - 1/2)z2) v(O) + O(2k . Z3).

The same argument can be used for n = 2l + 1. In either case, we have

proved (5.1.24). Similarly, we can prove (5.1.25).

For the exact solution of (5.L5), we have (compare (5.1.6))

yet) ¥o(I+bt+
Qb

:
t2

)+0«bt)3)

Yo (1 +bt+~) +O{(bt)3).

Hence,

ly(t2k ) - V(t2k ll = Ik2 - k(k + C - 1/2)!.l? + O(2k Z3),
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where 2k· Z3 = 2tJh2 . kh $ 2bJ h2 . tN = Ch2. Thus ly(t2k) - V(t2k )1 is of

order 2 if and only if k 2 = k(k + c - 1/2) which implies c = 1/2. Similarly,

Iy(t:n+d -v(t2t+dl = O(h2
) if and only if c = 1/2. This concludes tile proof.

o

Remark 5.1.3 If c =I- 1/2, we will have Iy(t,,) -v(t,,}1 = O(h). Wilen l = 1.

Ilence q = I, this theorem includes the classical superconvergence result. "'Ve

e.xpect that the problem becomes much harder for q i: III (l E N) and m > 1.

When m = 1, the collocation solution of (4.3.3) is given by

u(tn + sh) = u(tn) + shu'(tn + ch), (5.1.26)

where u'(tn + ch) is determined by

u'(tn +ch) -~ l,~,'+"l~·'11u(s)ds

_~lt... ,+-r".'h u(s)ds _ ~ q"f1l l
;+l u(s)ds

q t.~.l q ;=0 Ii

-~ [""'~'IU(tq"I+Sh)ds+qflrlu(ti+Sh)dS]
q io i=oio

b'h [ )' '( )- 2q 2In,IU(tq~., + ~(n,lhu tq"., + ch

+ q'f1

[2u(ti ) + hu'tt, + Ch lJ] (5.1.27)

Let z := bh and eliminate u'(tn + ch), we get

u(tn+!} = u(tn ) - ~[1'n.t(2 -1'n,du(tq~ .• )

+~?n.lU(tq~.,+.) + q~l[U(ti+l) + U(t;)I] (5.1.28)
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Tbeorem 5.1.4 When q = 1/1, lEN, the one-point (m = 1) collocation

.!olution of (4.3.3) in s1°)(II,v) POS.!e5Se.! the .!Uperconvergenct: ord~ p. =
2m =2 if and only if collocation i.! at the CaW.! point, i.e., CI = C = 1/2.

Proof: When q = Ifl, lEN, (5.1.20) holds, and (5.1.28) becomes

(5.1.29)

for i = 1,2, .. ,I. for ease of exposition, we choose I = 2, tben (5.1.20)

qU.1 = q,.... l.I = k,

and (5.1.29) is simplified as

c
'1,.. .• = 2'

l+c
'Y,......,=~.

Weclaimtbat

U(tk) = (1 - ~(k + 2c - 1}%2) u(O) + O(h4),

and prove it by induction. When k = 0, from (5.1.28) we know
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Hence,

u(ttl

It is also clear that,

Therefore,

u(t2 ) [1- (1 ;CfZ2] u(t l ) _ 1 ;c (2 _1 ;c) Z2 U (O)

(,- (1 + '*') u(O) +O(h').

So, (5.1.32) is true for k = 1,2. Suppose (5.1.32) is true for all k::::: 2n. When

k = 2n + 1, from (5.1.30) we know

(1 - 11(2n + 2c - l}z2) u(O} - (c + 2n)z2u(O) + O(h4
)

(1- (2n+ l)(n+ C)Z2) u(O) + O{h"-)

(1 - 2n2+ 1 (2n + 1+ 2c - l)z2) u(O) + O(h"-).

Hence (5.1.32) is true for k = 211 + 1. The same argument can be used for

k = 2n + 2. This completes the proof of (5.1.32).

For the exact solution of (4.3.3), we have (compare (4.3.4»)

( "~"~)y{t) = yo 1 - 2 + O«bt)4).
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Hence,

Ik' k I11/(£.1:) - u(£.I:)1 = "2 - '2(k + 2c - 1) z2 + O(h").

Thus ly(£.I:) - u(£.I:)1 is of order 2 if and only if ¥ = l(k + 2c - 1) which

implies c = 1/2. This finishes the proof.

o

Remark 5.1.4 The technique used in the above proofs appears to work in

the case of m > 1 and q = l/l, lEN. But more complex formulations are

expected.

The numerical experiments suggest that the supercoovergence results

also hold for q I- 1/1 (I E N) and m> 1 (see also Tables 4.1 and 4.2):

The collocation solutions of problems (4.3.3), (4..4.1) and (5.1.3), for

general q e (0, 1) and m > 1, all have supercoovergence order of 2m,

provided collocation is at the Gau.ss points.

5.2 Future projects

Based on previous work, some of our potential research projects include the

following:
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5.2.1 Stability analysis of collocation methods for DEs

with constant delay

In order to describe the open numerical stability problems for DVIDEs and

DVIEs, we first provide a short survey of stability results for Runge-Kutta

and collocation methods for DOEs.

In the recent years, stability properties of numerical methods for delay

differential equations have been studied by numerous authors, for example,

see [571, [97], [9BI and the references therein. In this section, we introduce

some relevant numerical stability concepts for collocation methods based on

several test equations, and survey some known numerical stability results.

Consider

and

y'(t)

y(t)

y'(t)

ay(t) + by(t - T), t;:::: 0,

¢let), t~ 0,

a(t)y(t) + b(t)y(t - T), t;:::: 0,

(5.'.l)

(5.2.2)

y(t) "(t). t,; o.

Theorem 5.2.1 ({S7J) If ¢ is continuous and ~(a) + Ibl < 0, then tile exact

solution of (5.2.1) is asymptotically stable jor every T.

Theorem 5.2.2 ({S7j) The analytic solution oj (5.2.2) is bounded by ¢(t),
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provided that,

Ib(')1 ~ -!l(a(')), ,~o. (5.2.3)

Recall BarweU's definitions of P-stability and GP-stability (see {7]) for

numerical methods.

Definition 5.2.1 A numerical method for DOEs is P·stable if for all a,

b satisfying ~(a) + Ibl < 0, the numerical solution Yn of (5.2.1) satisfies

lim,. ...."'" Yn = 0 for every stepsize h > 0 such that

h=r/r, (5.2.4)

where r is a positive integer. A mesh with this property is called a constrained

mesh.

In other words, a numerical method for DOEs is P-stahle if it preserves

the asymptotic stability properties of the solution yet) of (5.2.1) under the

constraint (5.2.4) on the stepsize.

Definition 5.2.2 A numerical method for DOEs is OP·stable if, under con­

dition ~(a) + Ibl < 0, limn...."'" Yn =0 for every stepsize h > O.

It is clear that a GP-stable method is P~stable too. Definitions of p­

stability and OP-stability regions can be found in, for e,xample, [97}.

Theorem 5.2.3 ([96}) A Runge-Kutta method for DDEs is P-stable if, when

used for ODEs, it is A-stable.
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Theorem 5.2.4 The one-step collocation method at Gauss points for DDEs

isP-stable.

Proof: See [95] for a direct proof. o
It is proved in [58] that no one-step collocation method with abscissae

in [0,1) can be GP-stable.

GP-stability was also studied for the O-method in [71].

Definition 5.2.3 A numerical method for DOEs is PN·stable if. under the

condition (5.2.3), the numerical solution y" of (5.2.2) is such tnat

ly"l::: ~.,agcl¢(t)l, (5.2.5)

for every n and every stepsize h such that h = Tlr, where T is a positive

integer.

Definition 5_2.4 A numerical method for ODEs is GPN-stab!e if, under

condition (5.2.3), the numerical solution U" of (5.2.2) satisfies (5.2.5) for

every n and every stepsize h > O.

We observe that a GPN-stable method is also PN-stable and that a

PN-stabte method for DOEs is AN-stability for ODEs.

PN-stability and GPN.stability are stronger concepts than P-stability

and GP-stability in that they are based on a more general test equation,

to the same extent that AN-stability is a stronger stability concept thao
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A-stability for ODEs. Yet another difference is that PN-stability and GPN­

stability are demands for contractivity of the numerical solutions, whereas P­

stability and GP-stability are demands for asymptotic stability (convergence

to zero).

While the A-stability of the numerical method for ODEs is sufficient to

assure P-stability and GP-stability provided a suitable interpolation proce­

dure is employed, PN-stability and GPN~stabilitycannot be guaranteed even

if the numerical method for ODEs is AN-stable [97].

The collocation methods at Gauss points, which are A-stable, are P­

stable when applied to DOEs [961. However, not all AN-stable Gauss colloca­

tion methods are PN-stable. It is shown in [87] that how the one-stage Gauss

collocation method, which is AN-stable, gives rise to a numerical solution Yn

which blows up as n -+ DO for (5.2.2) with aCt) = -b(t) :5 O. As a result, a

stronger stability concept for ODEs methods has to be introduced.

Consider the test equation

y'(t)

y(O)

where g(t) is continuous.

a(t)y(t) + !II(a(t))g(t), t" 0,

Yo,

(5.2.6)

Definition 5.2.5 ([97]) A numerical method is .-\Nf-stable if the numerical

solution Yn of (5.2.6) satisfies

IYn+d :5 m8.'<:{IYnl. I~;~ Ig{tn + e;h)I},
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whenever R(a(t)) $ 0, t ~ 0, and for any mesh II N .

It is obvious that requiring a numerical method to be ANrstable is

more than requiring that it be AN-stable. In fact, APi~stability is obtained

as a particular case wnen the forcing term get) is identically zero in the test

equation (5.2.6).

The link between PN~stability, GPN-stability and ANrstability is es­

tablished in the following result.

Theorem 5.2.5 (/97jJ If the Runge-Kutta method fOT DDEs is PN-stable,

then the method for ODEs is ANrstable. Conversely, if the Runge~Kutta

method fOT ODEs is ANrstable, then the method for DDEs is GPN-stable.

The stability of collocation methods and direct quadrature methods for

DVIEs with constant delay have been studied by Vermiglio [891 and Cahlon

[281, respectively. See also [301 for theoretical stability results for a more

general test equation.

Consider the following delay integral equation:

yet) = !(t)+{K(t,s,y(s))ds+/oI-'rH(t,S,y(S))ds. t~O, (5.2.7)

y(t) ~ ¢(t), t E I-c, OJ,

and the test equation corresponding to (5.2.7),

yet) = l+a!o'y(s) ds+bl-ry(sl ds, t~O, (5.2.8)

y(t} ~ ¢(t), t E [-c, OJ,
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where a, b are complex parameters. \Ve observe that, by differentiating

(5.2.8), we obtain (5.2.1). The P-stability is defined similar to Definition

5.2.1 using test equation (5.2.8).

Theorem 5.2.6 ({89J) I/ the collocation parameters {c;} are such that they

yield an A-stable collocation method for an ODE, then the corresponding

(discretized) collocation method/or delay integral equation (5.2.7) is P-stable.

Stability properties of exact and discretized collocation methods for

Volterra integral and integra-differential equations without delay are studied

in 121), [351, [361 and [37).

5.2.2 Stability analysis of collocation methods for

equations with proportional delay

For numerical solution of the proportional delay problem (the mesh is not

required to be constrained), the concepts of P-stability and PN-stability are

no longer feasible. We only need to consider the classical asymptotic stability

(the numerical solution Yn tends to zero as n -4 (0).

\Vhi[e the stability analysis of numerical methods for the constant delay

problem is .rather developed, only a very limited number of stability results

are known for proportional delay problems. Several open problems are ad­

dressed in this section.
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Consider the following two test equations,

yt(t) = ay(t) + by{qt), t::: 0, yeO) = 1, (5.2.9)

and

y'(t) = ay(t) + by(qt) + cy'(qt) , t?: 0, yeO) = 1. (5.2.10)

Theorem 5.2.7 ([59/) The analytic solution of (5.2.10) is asymptotically

stable if and only ifR(a) < 0 and lbl < )al whiLe c has no beaTing.

Corollary 5.2.1 The analytic solution of (5.2.9) is asymptotically stable if

and onLy if !R(a) < 0 and Ibl < lal.

The stability analysis is difficult in the proportional delay case because

the delay is not fixed. Instead, the lag term (1 - q)t becomes bigger as t

increases. However, some work has been done for (5.2.9) and (5.2.10) when

q = 1/2, for example,

Theorem 5.2.8 ([25/) If Ibl < lal and let

I~hbl ~-h~al < 1

l~hdb1_1hdal < 1

hold, depending on whetherd < 1/2 ord::: 1/2 whered is the only rollocation

point. Then the one-stage collocation solution Yn of (5.2.9) with q = 1/2 is

square-summable, so in particular Iim,. ...."'" Yn = O.
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A sufficient condition for the asymptotic stability of the numerical so-­

lution to problem (5.2.lO) with a particular value of q, i.e., q = 1/2, is given

in {24J. Let q = 1/2, and consider the following numerical scheme to (5.2.10)

Y2n+t

0Y2n_1 + ±(Yn-l + 3Yn) + "!(Yn - Yn-t},

OY2n + ~(3Yn + Yn+d + 1'(Yn+J - Yn),

(5.'.1l)

(5.2.12)

where
1 + !ha hb c

o := 1 _ ~ha' /3:= 1 _ ~ha' 1':= 1 _ ~ha·

Theorem 5.2.9 ({2.t!J The numerical solution Yn of (5.2.1O) with q = 1/2,

defined by {5.2.11}-{5.2.12}, is asymptotically stable if~(a) < 0, Ibl < lal

and

ma.x{lc+ ±hbl,lc- ~hbl} < Ic- ~hat. (5.2.13)

These conditions coincide with conditions for asymptotic stability of

exact solution of (5.2.1O) {see Theorem 5.2.7} except the stepsize h need be

restricted. It is also pointed out in [24J that the conclusion of Theorem 5.2.9

h.olds wh.en q is a reciprocal of an integer with the last condition (5.2.13)

replaced by

max{lc+ ~qhbl, Ic- ~qhbl} < Ic - ~hal.

But the approach used there fails for general q E (0,1).

The stability properties of m-stage collocation solutions to (5.2.9) and

(5.2.10) are still unknown for m = 1 and q 11/2, or m:::: 2 and 0 < q < 1.
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In [111, contractivity conditions are found for Runge-Kutta methods as

applied to DDE of the type

y'(t)

yet)

l(t,y(t),y(9(t))), t" to,

¢(t), t:s: to·

(5.2.14)

(5.2.15)

where 8(t):s: t.

The asymptotic stability of exact solution to VIDEs with proportional

delay of the form

y'(t) = ay(t)+ ly{qt)d/.'(q) +lY'(qt)dv(q). t > 0, yeO) = Yo,(5.2.16)

where the integrals being considered are of Riemann-Stieltjes type, is in­

vestigated in [60]. (5.2.16) includes many interesting equations, for example,

(5.2.9) when d/.'{q) = M(q- p)dq and dv(q) == 0 where 6 is the Dirac function.

Theorem 5.2.10 ({60/) IfR(a) < 0, Jo1 jdf.L(q)1 < laf, and

l~kh Id~(q)1 = l~kh Idv{q)l = 0,

then the analytic solution of (5.2.16) is asymptotically stable.

The stability analysis of numerical solutions to (5.2.16) is open.

The paper [731 gave the first stability analysis of the 8-method used for

the numerical solution to (5.2.9).

Theorem 5.2.11 ({79/J If !R(a) < 0, then the numerical solution Yn of a

given O-method {applied to equation (5.2.9))
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1. tends toO asn -+ co provided that (28-1)lal>lbl and lim,,-too hn = 00,

2. is uniformly bounded provided that (28-1)lal = Ibl and L~=oh;;l < 00.

The stability analysis of O-method for neutral functional-differential

equation (5.2.10) is accomplished in [72J (constant stepsize) and [12] (con­

strained variable stepsize).

Theorem 5.2.12 ({72/J The numerical solution of (5.2.10) tends to zero for

any constant stepsize as long as R(a) < 0 and lal > Ihj, if and only if0 ?: 1/2.

The stability analysis of collocation method for differential, integral

and integro-differential equations with proportional delay is one of our fu-

ture projects. In particular, we want to know if the conclusions of the The-

orems 5.2.3 and 5.2.6 hold for the collocation solutions of (4.0.1) and (4.0.2)

respectively.

5.2.3 Convergence of collocation methods for VIDE

with state-dependent delay

The convergence and local superconvergence analysis for collocation methods

when applied to VIDE with state-dependent delay of the form:

y'(t) get) + l K(t - s, y(s},y(8(y{s))))ds, tEl,

yet) ¢(t), -7::S; t < 0,

where 7 is a positive constant, is at present an open problem.
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Since the positions of the primary discontinuities in solution y(t) depend

on y(t) itself, it is difficult to predict a priori where they may arise.

However, similar DVIEs with state-dependent delay are studied in [29J.

Consider Volterra integral equations of the form

yet) f(t) + fat H(t, s,y(s},y(8(y(s)))) ds, t E I,

yet) ¢(t), -T ~ t < O.

The determination of the solution y requires knowledge of yet) = ¢(t) for

some initial set of negative t. The question of existence of the solution y is

approached using a fixed-point theorem; and numerical methods for deter­

mining an approximate solution in~'olve the replacement of fJ k(t, s)y(s) ds

by L:j=ownJ(t)y(t"J) in order to discretize the case where H(t,s,y,z) =

k(t, s)k l (t, s, y, z). The convergence of this numerical method is proved.

We state two questions followed by corresponding conjectures:

1. Do the collocation methods in S!::l(ll",) for state-dependent DVIDEs

have a global convergence order of m?

2. Is local superconvergence possible for VIDEs with state-dependent de-

lay; i.e., is a convergence order of p. with p. = 2m possible at the mesh

points?

Conjectures:

1. The collocation methods for VIDE with state-dependent delay have a
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global convergence order of m provided tbat the given functions are

sufficiently smooth.

2. Local superconvergence order of p. with p. = 2m is possible for state­

depeodeot DVIDE wheo collocation is at the Gauss points.
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