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Abstract

In this thesis, we analyze the collocation-based continuous Runge-Kutta
methods for delay differential equations and delay Volterra integro-differential

equations. We will look at the global and local

properties of collocation solutions. We also consider the possible extensions
of these results to neutral type delay equations and higher order equations.

In Chapter 2, we give the resolvent representations for solutions to
Volterra integral and integro-differential equations with constant delay, and

discuss their rel for the gence order problem. We prove

that the resolvent representation does not exist for the proportional delay
case. We then analyze the impact of discontinuities in solutions on our nu-

merical methods. We show that discontinuities occur in higher order deriva-

tives for delay integro-di ial fons than for delay di ial equa-
tions. We also prove that discontinuities arising in solutions to neutral delay
integro-differential equations are different from those for neutral delay differ-
ential equations. Similar results hold for delay Volterra integral equation and
delay Volterra integro-differential equation. We also give the discontinuity

for ions to stat

delay

to various ions with

In Chapter 3, we discuss
constant delay, and survey global and local convergence results. Some exten-
sions to neutral type constant delay problems are also described.

In Chapter 4, we introduce collocation methods for differential and



integro-differential equations with variable delay, especially proportional de-
lay. We prove that the global convergence order equals the number of colloca-
tion parameters used for first order differential equations with proportional

delay. We give concrete ions for i ions after the

first step, and conduct some numerical experiments which suggest that su-
perconvergence does exist in the proportional delay case. An extension to
second order DDE is also given.

In Chapter 5, we suggest a new approach, standard embedding, to the
superconvergence order problem of collocation solutions to differential equa-
tions with proportional delay, and are able to prove that superconvergence

results again do exist under certain conditions.
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Chapter 1

Introduction

In this chapter, we introduce the problems we are concerned with, the methods
we are going to use, some basic definitions, a short history of collocation methods,

and an outline of this thesis.

In the numerical analysis of initial-value problem for ordinary differen-

tial equations, three principal questions have to be answered:
1. Does the numerical method converge as “h — 0%"?

2. What is the optimal order of convergence (globally, on the prescribed
interval; or locally, at the mesh points) of the method?

3. Does the numerical method mimic the stability properties of the given
problem (“h > 0" fixed and “t — 00”)?
Analogous questions arise for integral equations and integro-differential
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equations of Volterra type (functional equations with memory terms), since
they may be viewed as generalized initial-value problems. In this thesis,
we concentrate on collocation methods for delay differential equations, delay

integral equations and delay Volterra integro-differential equations, namely

y'(t) = flt.y(),y6), (1.0.1)

v(t) = g(tu(t) +/olk(t, 5,9(5),y(6(s)))ds. (1.0.2)
and

V() = g6,y(0) + [} ke, u(6), (0(s))ds. (103)

We shall be concerned in particular with the cases () =t —7, 7 > 0,
and 6(t) = qt, 0 < ¢ < 1, although there are some results about disconti-
nuities for equations with more general delay, in particular, state-dependent

delay.

1.1 Collocation methods

0,7 be the interval on which the given initial-value problem is to

be solved, and let [Ty : 0 =ty < t, < --- < ty = T be a (not necessarily
uniform) mesh for I. We set

hn i=tag1 —ta, hi= sz;%aﬁ(_‘{hn), Iy := [tn, tns]s
forn=0,1,---,N — 1, and denote by

SO(My) :={ueC) iulr, €m, 0<R<N—1},

2



the space of (real) piecewise polynomials (or splines) of degree at most
that have continuous derivatives of order d on I, with —1 < d < g. In the
case where d = —1, the elements of SV (Ily) in general have (finite) jump
discontinuities at the interior mesh points; we then set I = (fn,tns1] for

n=1,--,N-1

Theorem 1.1.1 (See [21]) The dis ion of the pi Z l il space
SO(I1y) is given by
dim SO(Iy) = N(u — d) + (d+1).
In particular, if p = m+d (m > 1), we have
dim S& (y) = Nm+ (d+1), d>-1. (111)”
The “classical” spline spaces are given by d = u — 1; thus,
dim S¥~(Ily) = N + p.

The proof of this result is straightforward and therefore omitted. Inter-
ested readers may look at [20] or [21] for more details about the basic setting
of collocation methods.

The basic idea of a collocation method is to approximate the exact
solution of a given functional equation in a suitably chosen finite-dimensional
function space (often, but not always, a subspace of the space containing

the solution) such that the approximating element satisfies the functional

equation on a certain finite subset (consistent with the dimension of the

3



approximating space) of the interval on which the equation is to be solved.
This element will, in general, not satisfy the equation at a point not belonging
to this finite subset (the set of collocation points).

The result of Theorem 1.1.1 indicates, in the context of collocation,
that the natural choice of d in (1.1.1) will be governed by the nature of
the functional equation to be solved: if the equation under consideration
is a differential or integro-differential equation of order x, then d = x — 1.
For problem (1.0.2), we certainly take d = —1, i.e., the collocation solution
is found in the space S (Ily). For problems (1.0.1) and (1.0.3), we take
d =0, i.e., we solve them in space S{?)(IT). The above theorem also suggests
an obvious way of placing these collocation points if they are of multiplicity
one: each of the IV subintervals I, contains u — d collocation points (or, in
the case of the space 5% ,(Tly), m such poiats for all d > —1). We denote

the collocation points in I, by t, + cihn, and set

Xy:={tatcha:0<c1 <- N -1}

<€ua<l, n=01,--

Note that if ¢; = 0 and ¢,_q = 1, then the corresponding collocation solution

uis in C#+1(I), that is, S (1), provided the data are continuous.

For di i i unlike integral in general, colloca-

tion leads directly to a set of algebraic equations for the parameters. The
most common sets of functions used are global or piecewise polynomials,
even though some researchers use non-polynomial splines instead, see [13],

[32] and [68]. Some care is needed in the choice of collocation points if an
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effective algorithm is to be obtained.

1.2 Historical survey of collocation methods

In the late 19605, Loscalzo [74], and Loscalzo and Talbot (73] introduced
collocation methods in the classical spline space S{"~1(I1y) for initial-value
problems of first-order ODES; see also [55]. Callender [31] employed S{)(TT)

as the imating space for A general analysis of polynomial

spline ion (including multiple

points) is due to Milthei
(82, see also the references therein. Keller [68] studied collocation methods
in certain nonpolynomial spline spaces. While these papers are concerned
with the global order of collocation approximations, Guillou and Soulé [50]
had shown in 1969 that collocation in S (IIy) yields an m-stage implicit
Runge-Kutta method, and has a local superconvergence order of 2m if the
collocation points are the Gauss points.

Polynomial spline collocation methods in S~V (Ily) for initial-value
problems for second-order ODEs were analyzed by Harvey [54] and Micula
[78], see also the bibliography [79] for a comprehensive list of references.
Collocation in S¢™=Y(ITy), m > 3, for second-order [VPs was done by Hung
[56].

For (1.0.1), [9] deals with the one-step collocation method with contin-
uous piecewise polynomial functions; primary discontinuities are studied in

[42] and [46]; Runge-Kutta methods for vanishing delay di
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has been studied in [43]; numerical investigation of the long time dynamical
behavior of the solution has been conducted in [47], [59], 72], [73], [87] and
[95], etc.

In recent years, various aspects of numerical methods for (1.0.2) have
been studied. Convergence property results have been found for colloca-
tion and continuous implicit Runge-Kutta methods [16]; iterated colloca-
tion method [17]; continuous Volterra-Runge-Kutta methods [3]; Euler’s
method, the trapezoidal and midpoint method for (1.0.2) with pure delay
[88]; Hermite-type collocation for (1.0.2) [44]; direct quadrature methods
for (1.0.2) with state-dependent delay [29]; extension of ODE Runge-Kutta
methods to (1.0.2) [2]; and general Runge-Kutta methods and their natural
extensions for (1.0.2) [89].

It appears that VIDEs with delay arguments like (1.0.3) were first in-
troduced by Volterra [93] in the late 1920s. More recently, delay VIDES,
and more general Volterra functional equations, have come to play an impor-

tant role in the

hematical modeling of biological (see [38]) and physical
phenomena and, not surprisingly, there has been a growing interest in the nu-
merical solution of such equations; compare the survey papers [10] and [63]-
Linear multistep methods and direct quadrature methods were studied in [4]
for ordinary VIDEs, [64] and [67] for neutral Volterra functional equations
and VIDEs; compare also [63] and the survey [65] for an analysis of one-step

methods for neutral Volterra functional differential equations. Collocation



methods were discussed in [77] for delay VIDEs and [14] for neutral VIDEs
of order r > 1, see also [9] for delay differential equations, [16] and [89] for
Volterra integral equations with delay.

Delay equations arise from many areas, including automatic control,
physics, technology, and even certain areas of economics and the biological

sciences. See [69] and [59] for comprehensive lists of references.

1.3 Outline of thesis

In Chapter 2, we will provide some basic theory for various types of Volterra

relevant to the numerical analysis, especially the analy-

sis of local superconvergence; we also point out some difficulties due to the
discontinuities of the solutions and their derivatives. Resolvent representa-
tion is a classical approach to prove superconvergence results for many types
of initial-value problems. However, it does not work in the proportional delay
case as shown in Section 2.1. Discontinuities may have a negative impact on
the convergence properties of numerical solutions. This problem and related
theorems can be found in Section 2.2. In this chapter, our main contributions
are Theorems 2.1.5-2.1.7, 2.1.9, 2.2.3, 2.2.5 and 2.2.8.

In Chapter 3, we will look in detail at the collocation methods for sev-
eral kinds of equations with constant delay. We survey various known results
related to constant delay in order to compare them with similar results for

equations with proportional delay in Chapter 4. We introduce the collocation
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method for these equations in Section 3.1. We review the global convergence
results in Section 3.2. Local convergence results are covered in Section 3.3.
In Section 3.4, results about delay Volterra integro-differential equations of
neutral type are discussed.

In Chapter 4, we will develop the collocation methods for various equa-
tions with proportional delay. Its global convergence properties are discussed
in Sections 4.1 and 4.2. In Section 4.3, we discuss the order of local conver-
gence of our test equation. In Section 4.4, we extend the results to second-
order DDEs. Some numerical examples will be provided as a further illustra-
tion for these results. Our main contributions in this chapter are Theorems
4.2.1,4.2.2, 4.3.3 and 4.4.2-4.4.3.

In Section 5.1, we will propose a new approach to the superconver-

gence order problem of collocati lutions to differential ions with

proportional delay, and prove the result under certain conditions. In Section
5.2, we look at some potential research projects. In this chapter, our main
contributions are Theorem 5.1.3 and 5.1.4.

We assume that the reader is familiar with the theory of ODEs and
the methods for their numerical solutions. Representative books about this
subject are [27], [39], [51], [52] and [70], see also the references therein. For
an introduction to Volterra integral and differential equations, reader may
consult [21], [26], [34], [48] and [80]. Classical treatments of integral equations
may also be found in [90], [91] and [92].



Chapter 2

Mathematical Background

In this chapter, we present some analytic results which are crucial for the rest of this
thesis. Resolvent representation is a classical approach to prove superconvergence
results for many types of initial-value problems. However, such a representation
does not exist in general in the variable delay case as shown in Section 2.1. Discon-
tinuities may have a negative impact on the convergence properties of numerical

solutions. This problem and related theorems can be found in Section 2.2.
Consider the (linear) ordinary differential equation,
V(O =aOy®) +90), tel 0 = (201)
and the integro-differential equation,
.
V(0 =aly® +9(0) + [ Kt sy()ds, tel, y(0)=w. (202)

Since resolvent representations of solutions are the key to the proof of

9



gence results in i imations, we will study this

issue in next section.

2.1 Resolvent Results

2.1.1 Equations without delay

Definition 2.1.1 If the solution of an equation given above can be expressed

in the form
v(e) = R(t,03(0) + [ “R(t, $)g(s)ds, tel, 2.11)

where R(t, s) depends only on the data in the homogeneous part of the given
equation, then (2.1.1) is called the resolvent representation of the solution.

The function R(t,s) is called the resolvent kernel.

Theorem 2.1.1 If a,g € C(I), then the resolvent representation of the so-

lution for (2.0.1) is given by
’
v(t) = R0w(O) + [ R(t,9)g(s)ds, e,
where R(t,s) solves the resolvent equation
OB _ e, s<t,

with R(t,t) = 1.



In this case, we can directly write down the resolvent kernel as
¢
R(t,s) = exp( / a(z)dz).
4

A number of reasons motivate us to look for such representations of a

solution. For example, if we want to solve an equation whose solution has a

resolvent i i by methods, this eventually

leads to an equation for the collocation error e(t) := y(t) — u(t) (where y(t)
and u(t) are the exact and collocation solutions, respectively) which differs

from the original equation only in the nonhomogeneous term: g(t) is replaced

by the defect term 6(¢) which, by definition, vanishes at the collocation points
{tns

51 for the precise definition. If the solution of the equation has a resolvent

=t tch, 0<c <--<c <l (n=0,1---,N —1)}, see page

representation (2.1.1), then it follows that
’ .
oft) = R0)e(0) + [ Rt 5)6(0)ds = [ R(t,9)d(s)ds.  (212)
Setting ¢ = t, in (2.1.2) leads to
.
e(ta) =AY /0 R(tn, t; + sh)8(t: + sh)ds. (2.1.3)
=

This integral form allows us to derive superconvergence results for the

mesh points ¢ = t,. For (2.0.1), it was shown in [50], see also [51], that the

order of local gence on ILy is related to the degree of
precision of the (interpolatory) m-point quadrature formula having the {c;}

as abscissas:



Theorem 2.1.2 (See [50]) If the collocation parameters {c;} satisfy
1
/ SUM(s)ds =0 Jor k=1,...,r,
o

with M(s) = I (s — ), and if u is the corresponding collocation solution

in SO(I1y) for (2.0.1), then

e mEr 2
mx, ly(t) — u(t)] SCH™7, T <m, (2.1.4)

for some constant C whenever the solution y is sufficiently smooth.

The following remark can serve as an informal proof for the result (2.1.4)

in Theorem 2.1.2.

Remark 2.1.1 Using an m-point interpolatory quadrature formula with
abscissas {t; + ¢h : | = 1,---,m}, weights {w;}, and quadrature errors

i, the integrals in (2.1.3) may be written as
i i

A R(tn, t; + sh)0(ti-+5h)ds =5 wiR (tn, ti +cih)S(ti-+cih) + Ens.
p=1

That is,

/ " Rlta, b + sh)5(t; + sh)ds = By,
because 6(t) = 0 when ¢ =t; + ¢;h € Xy. This implies that the convergence
order of e(t,) is totally determined by the order of the quadrature errors
Ey,; which in turn depends on the degree of smoothness of the integrand.
Indeed, if the given functions are sufficiently smooth, these orders are equal

to 2m when we take the Gauss points, i.e., the zeros of the (shifted) Legendre

12



polynomial Pn(2s — 1), since the quadrature error at m Gauss points always

has an order of 2m.

This simple idea, which was used first in [50], has potentially great im-
pact on the analysis of superconvergence results for more general differential,
or integro-differential equations, even with delay.

We may ask the following question: If u € S (IIy) is the collocation

solution of (2.0.1) or of (2.0.2) for the Gauss points, we know that
e(ta) = O(K™™),

but what about €/(t,)? Can we get the same order for €(t,)? The answer is
not very encouraging: for the Gauss points, we can only get the lower order
of m, ie.,
€(ts) = O(h™).

As we shall see below, e(t,) = O(h?) and €'(t,) = O(k®'), in which p* =
2m — 1, is possible for the Radau II points, i.e., the zeros of Pn(2s — 1) —
P,_1(2s — 1) where P is the Legendre polynomial.

However, when the iterated collocation solution is introduced, the result
is much better. In fact, we again get the same order of 2m. The iterated

collocation solution of (2.0.1) is defined by
uy(t) = a(thu(t) +9(t), tel,
where u(t) is the collocation solution we already have. Accordingly, the

13



iterated error for the derivative is €},(tn) := ¥/(ts) — ui,(tn). We summarize

the above analysis as follows:
Theorem 2.1.3 For equation (2.0.1), if a(t), g(t) € C*™(I), then we have

max {le(ta)], [eke(ta) [} < CH”,

fhia
for some constant C and p* < 2m. We have p* = 2m if, and only if, the

{c:} are the Gauss points.

A more general result can be found in [18], Theorem 3.2.

Another natural question arises, namely, for which {¢;} do we have

e(ta) = O(h"),

€(ta) = O(h?),
with p* > p = m at the same time? A necessary condition is ¢, = 1 (compare
[21]). From (2.1.2), we have

aR(t s)

€(t) = R(t. £)5(t) + / 9 S(s)ds, tel.

In order to have an expression similar to (2.1.3), we need d(t,) = 0, that is,
tn_t + Cmh = tn, ie., ¢y = 1 (Note that in general we have 6(t,) = O(A™)).
This is equivalent to saying that the last collocation point in each subinterval
coincides with its right end-point. Therefore, obviously the answer cannot

be true for Gauss points where ¢, < 1.

14



We have the following theorem concerning the resolvent representation

of the solution of (2.0.2) (see [21] and [49]).

Theorem 2.1.4 If a(£), g(t) and K(t,s) are continuous on their own do-
mains, then the resolvent representation of solution (2.0.2) is given by
:
v(t) = R.0y(0) + [ R(t.s)g(s)ds,
and R(t, s) solves the resolvent equation
;
OR®:s) _ Rt s) + / K(t,2)R(z, s)dz, s<t,
Bt 5

with R(t,t) = 1.

2.1.2 Equations with delay
For delay Volterra integral equations of the form
t et
u(t) = y(t)+/; K, s)y(s)ds+/a Kt s)y(s)ds, tel, (2.13)
v = 6, tel-n0l,
we have the following two results which are slight extensions of similar results
in [17):

Theorem 2.1.5 Assume g, K, and K, in (2.1.5) are continuous, and &pr =
T for some M € N. Then for t € (£, Eus], & := p7, 0 < p < M —1, the
solution y to (2.1.5) has the resolvent representation

v = 90) + [ Rt 9 (s)ds,

15



where g,(t) = g(t) + [~ Kal(t, )yu(s)ds, yu(t) is the solution of (2.1.5) on
[~ &.] with yo(t) = §(t), and R(t,s) solves

R(t,5) = Kilt, ) +/' Ki(tz)R(,s)dz, 0<s<t<T. (216)
Proots For jii= 0, siuppioss
() =300 + /0' R(t,s)g(s)ds, t<[0,7), @17
where R(t,s) is to be determined and §(t) := g(t) + fi~™ Ka(t, s)d(s)ds.
Substituting (2.1.7) back to (2.15), we have
/D‘ R(t,s)a(s)ds = [ " K(t, $)3(s)ds + Ji 3 /[ * Ku(t, s)R(s, 7)3(z)dzds
} 48,
/0 Ki(t,5)g(s)ds + /0 / Ki(t, 7) Rz, s)dzg(s)ds.

Hence, R(t, s) must solve (2.1.6).
For p1 > 0, we use the same argument but work with [—7, &,] and y,(t)
instead of [—7,0] and 6(2). a

The collocation error e := y — u satisfies

¢
e(t) =8(t) + [a Ki(t, s)e(s)ds + F(2),

where F(t) = [;7" Ka(t, s)e(s)ds, and most importantly, we have

Theorem 2.1.6 The error e has a resolvent representation of the form

o0 =80 + [ Rt 5)5u()ds (218)
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on (€, Euet], 0 < 1 < M — 1, where 8,(t) = 6(t) + [g77 Ka(t, s)ew(s)ds, en(t)
is the error on [0, &,] with eo(t) = 0 and R(t, s) satisfies (2.1.6) provided that
each known function in (2.1.5) is continuous.

Due to the presence of 6(t) in (2.1.8), the local superconvergence order
is largely determined by the nature of the defect term &§(¢). A more detailed
discussion about the superconvergence order for (2.1.5), using the resolvent
approach, can be found in [17].

Consider delay Volterra integro-differential equations of the form
¢ o
Y(t) = g(t)+ /ﬂ Ki(t, s)y(s)ds+ /0 Kalt,s)y(s)ds, t€l, (219)
y(t) = 1), te[-70.

Theorem 2.1.7 Let g, K| and K, in (2.1.9) be continuous and &y = T for
some M € N. Then for t € [§,,Eus1), & :=p7, 0 < p < M — 1, the solution

y to (2.1.9) can be ezpressed in the form
‘
v(e) = R 0)y0) + [ At )3u(s)ds,

where gu(t) := g(t) + fg 77 Ka(t, s)yu(s)ds, yu(t) is the solution of (2.1.9) on

[~7. €4, and R(t,s) solves
%(t, 5= /:KA(t,z]R(z,s)d:z, 0<s<t<T. (2.1.10)

Proof: Similar to that of Theorem 2.1.5. a

Since the collocation error satisfies e(0) = 0, we obtain,
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Corollary 2.1.1 If g, K, and K; in (2.1.9) are continuous, and &y = T
for some M € N. Then for t € [€u€u], 0 < p < M — 1, the collocation

error e(t) to (2.1.9) can be expressed in the form
t 5
ot) = [ R(t.5)3.(s)ds, @11y

where 8,(t) = 0(t) + fi7 Kal(t, s)eu(s)ds, eu(t) is the error on [0,&,] with

eo(t) = 0 and R(t,s) solves (2.1.10).

Since we have the integral expression of error e(t) in the form of (2.1.11),
the convergence order of e(t,) is again determined by the order of the quadra-
ture error which in turn, depends on the smoothness of the integrand R(t, 5)5,(s)-

This argument leads to the following superconvergence result.

Theorem 2.1.8 (See [18], Theorem 3.2) Assume that the given functions
in (2.1.9) are sufficiently smooth on their domains, i.e., g € C*™(I), K, €

€™ (S), Ky € C*™(S,) where Sy := 7] and $(t) € C*[—r,0. If

the collocation points are Gauss points, and h = 7/r (constrained mesh Ily)

is sufficiently small, then

2m
1'5‘3.35‘%'1’“") = u(ta)| < CR*™,

for some finite constant C.
Certainly, the most challenging problem is to establish the local super-

convergence properties of solutions in the proportional delay case. Unfortu-

nately, the resolvent approach does not work for this case, since the resolvent
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representation does not exist. As a result, a new approach has to be found.
‘We make this clear by the following result.

Consider integro-diffe ial ions with ional delay,

V0 = o)+ 90 + [ Kl (s)ds, 1€l y(©0) =10, (2112)
with0 <g< 1.

Theorem 2.1.9 There is no resolvent representation of the form (2.1.1) for
the solution of (2.1.18).
Proof: We prove it by contradiction. Rewrite (2.1.12) as
! o=
Y'(z) = a(z)y(z) + g(z) +/D K(z,s)y(s)ds, (2.1.13)
multiply by R(t,z) and integrate from 0 to ¢ on both sides of (2.1.13):
. ¢ (3R(t,s)
= d:
Rt 0900 = RO 00+ [Rit latoyas+ ! (28]
R(t,z)K d: d:
+/0 (/;,,, (t,2)K(z, 5) I) y(s)ds

=RE0wO)+ [ Rt gl [ ([ Rt} Kz, )iz w(ehds

+R(t, s)a(s)) y(s)ds

+/n (BR(” OR(t:s) | pey, s)a(s)+/ R(t.2)K(z, s)dz) y(s)ds.
If the resolvent kernel R(t, ) satisfies the resolvent equation
‘LR(;’S’—S) = ~R(t, 9)als) - [ :q R(t,2)K(z,5)dz, s<t (2.1.14)
with R(t,t) = 1, then
u(t) = R(,004(0) + [ * R(t,5)g(s)ds — /,, : ( / ;, R(t,2)K (z, s)dz) ylelis:
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This is no longer a resolvent representation since y(¢) itself is also involved
in the last term on the right side. This indicates that we cannot have the
resolvent equation (2.1.14) and the resolvent representation (2.1.1) at the
same time unless g = 1 (no delay) or K(t,s) = 0 (no integral term).

a
Another proof of Theorem 2.1.9: Assume a resolvent representation

holds for solution of (2.1.12):
¥(t) = Rt,0y(0) + [ ™ R(t, )g(s)ds, @2.1.15)

with either v = 1 or v = ¢. Substitute it back to (2.1.12),

6R(t 0) ot BR(t IR, e

() + 1R () + [
E a(t)R(t,O)y(0)+ / K(t.s)R(s,O)y(O)ds+g(t
t o qt s
+/: a(t) R(t, s)g(s)ds +/0 fo K(t,5)R(s. 2)g(z)dzds
= aORE YO+ [ Kt 5)R(5, 0u(0)ds + (0
+f * () R(t,5)g(s)ds + if ™ ( / /"i K(t,2)R(z, s)dz:) ().
In either case, we cannot derive the resolvent equation:

"’—R"gi) = a()R(t,5) + /:‘ K(t,2)R(z,s)dz, s<gt,

unless ¢ = 1. Hence, the solution of (2.1.12) does not have a resolvent
representation of the form (2.1.15). o

Similar conclusions hold for other type equations with proportional
delay. For example, Chambers [33] proved that solutions to the following
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integral equations do not have a resolvent representation:
-qt
y(t) = g(t) + /ﬂ K(t,s)y(s)ds, tel. (2.1.16)
Using the Picard iteration method, the iterative solution is given by
"
vnal®) = 90+ [ Kt )un(s)ds,
w(t) = o(t).
Theorem 2.1.10 (/33]) When 0 < q < 1, (2.1.16) has a unique solution,

and it can be ezpressed as
o om
v =90+ 3 [* Kn(t.s)g(e)ds, (21.17)
m=170
where the K, are defined iteratively by
at
Knn(ts) = [ K(t,3)Kn(z,5)dz, m>1,
sa=m
and K (t,s) = K(t, 5)-
However, the above solution does not have a resolvent representation. By

change of variable,
ot
v(t) = 9+ X /0 ¢ Kn(t,q"5)g(q™s)ds
i
= 90+ [ 3 " Knlt.q"s)a(a"s)ds.
0 m=i
It is clear that g(s) can not be separated from the summation. As a result,

the solution to (2.1.16) does not have a resolvent representation. If ¢ = 1

(“classical case”), then (2.1.17) can be written as
() =g(t) + /'m d
y(1) =g(t) + | Rt s)g(s)ds,
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where the resolvent kernel is R(t,s) = S, Km(t,s); this is the resolvent

representation for the solution of (2.1.16) with ¢ = 1.

Remark 2.1.2 The origin of proportional delay integral equations can be
traced back to as early as 1897. In [92], Volterra studied the existence and

uniqueness of solutions to equation
.
[ Ktsye)ds =g, tel.
L
with 0 < g <1, K, g € C}(I); K(t,t) #0, for t € I. Differentiating it gives
t g .
K090 — aK (6 at)u(a) + [ 5K (6 (s = o'(8), el

This is a second kind Volterra integral equation with proportional delay. We

can get a neutral VIDE with proportional delay by further differentiation.

2.2 Primary discontinuities in solutions
Consider the first-order delay differential equation of the form

Y@ = flty®)yt-7), t=0, (2.2.1)
y(t) = ¢(t), te[-70],
where 7 > 0 is a constant. The theory of existence and uniqueness of so-

lutions to (2.2.1) does not present substantial additional difficulties with

respect to the classical (non-delay) case. This is also true when we consider
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differential equations with more general delay afterwards, as long as the de-
lay is uniformly strictly positive and does not depend on the solution y itself.
‘We refer the reader to [53] for a comprehensive introduction to the theory of
DDEs.

In this section, we discuss the possible sources for discontinuities and

prove di inui ies for t of delay integral and integro-

differential equations, and review some known results about (2.2.1). See also
9], [26], [22],46], [69] and [97] for additional details.

Regarding the analytical solution of (2.2.1), the most natural method,
see also [42], is called the method of steps (or the method of successive
integrations). It consists of determining the solution y(t) from the differential

equation without delay,

y'(t) = flty@),e(t—7). te(o7]

y(0) = 4¢(0),
since for 0 < ¢ < 7, the argument ¢ — 7 varies in the initial interval [—r,0]
and, consequently, the third argument y(¢ — 7) of the function f equals the
initial function ¢(¢ — 7). Assuming the existence of a solution y = ¢,(t) of
this initial value problem on the whole interval [0, 7], analogously we obtain:

Y(t) = fty(),0a(t=7)),
for t€nr,(n+1)r], with y(nr)=gu(n7),

where n = 1,2,--- and ¢n(t) is the solution of the considered initial value
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problem on the interval [(n — 1)7, n7].

Definition 2.2.1 If the solution of a DDE (or a DVIDE) and its derivatives
of order y are continuous at some point in the time interval, but the derivative
of order p + 1 is not, then such a point is called a primary discontinuity of

the given problem.

Theorem 2.2.1 The points &, := ut, p=0,1,---, are the primary discon-
tinuities of problem (2.2.1). More precisely, y*) is continuous at &, but y+1
is, in general, not, even if the functions ¢ and f have continuous derivatives

of all orders.

Proof: See [42]. a
Note that, as ¢ increases, the solution becomes smoother. In fact, at
the initial point ¢ = 0, the first derivative y(¢) has a primary discontinuity,

since the integrable equation
Y'(t) = fty(@).¢(t 7)), te[o,7],

may satisfy the condition y(0) = ¢(0), but it is unlikely to satisfy the ad-
ditional condition y'(0+) = ¢'(0—). Only for special choices of the ini-
tial function @(t) is it possible to guarantee continuity of the derivative
of the solution at point 0, for such a function must satisfy the condition

#'(0-) = £(0,4(0), 6(—7))-



Example 2.2.1 Consider

Y'(t) = ay(t—r7), t€[0,+00),

y@) = 1, te[-r0]
Using the method of steps, it is easy to see that the solution y(¢) is a piecewise
polynomial. On each subinterval [ir, (i + 1)7], y(¢) is an (i + 1)-th order

polynomial, i.e.,

i+l gi .
v =3 5= G -1, ieN.

=07

It is also clear that integer multiples of 7 are primary discontinuities for this

particular problem.

The method of steps can be extended to differential equations with
other types of delays, such as multiple delays, variable delay and even state-
dependent delay. The difficulty is to locate the primary discontinuities. As
a generalization of (2.2.1), we consider

YO = flty@)vt—7(), t=0, (2.2.2)
y(®) = o), te[ao],

where ¢ — 7(t) is a strictly increasing function and

0<7(t)<t, gxg(t —7(t).

Remark 2.2.1 Throughout this thesis, when the delay = depends on time
t, we will make this clear by the notation 7(¢). Otherwise, 7 is a positive

constant.



Theorem 2.2.2 (see [97]) The primary discontinuities of problem (2.2.2)
are generated inductively by the recursion
& —1(&) =&-1, k21, (22.3)

where & = 0.

Because of the hypotheses made, a strictly increasing sequence {&}xzo is
determined which can be actually computed a priori by using (2.2.3). In this

way, a sequence of intervals [£_1,&] is also defined, see also [97].

Remark 2.2.2 If the functions ¢(t) and 7(t) in (2.2.2) have some disconti-
nuities with respect to ¢ in some of their derivatives, then such discontinuities
are also propagated by the delay argument ¢ — 7(t) following the rule (2.2.3).
These discontinuities are called secondary discontinuities.
Example 2.2.2 Consider
Y(t) = ay(t-7), te0,+00),
y(6) = é(t), te[-n0]
where
0, tel[-m,-7/2),
() =
1, te[-r/2,0].
On [0,7],

1, te(o,7/2),

t
&) =y(0)+a | é(s—7)ds=
¥ & a/" g § 1+at, te[r/2,7].
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Obviously, in addition to &, = nr, the points nT+7/2 are also discontinuities.
However, they are secondary discontinuities as they inherit this property from
the initial function ¢(t).

If the initial function ¢(t) is changed to

0, tel[-r—67),
8(t) =
1, te[-6r,0],
where 0 < 6 < 1, then on [0, 7], we have
t 1, te[0,7—067),
vlt) =¥(0) +a [ (s —)ds =
9 1+at, te[r—on.
Clearly, nr and nt — 67 (n > 1) are both discontinuities. nr is primary, and
nT — 07 is secondary.

More discussion about this topic, especially the state-dependent delay
case, can be found on the following pages. See also [42] for extension to the
multiple delay case.

The existence of primary and secondary discontinuities may lead to a
loss of accuracy (reduction of order) or to numerical instability if the mesh
underlying a discretization method does not take into account these discon-
tinuities. For a detailed discussion of this problem, see for example, [97].

Similar discontinuity results hold for Volterra integro-differential equa-

tion with constant delay.
V) = f6y@)+ [ Kyl -mds, 120, (224
y(t) = ¢(t), te[-7,0]
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However, we shall see (compare Theorems 2.2.3 and 2.2.1) that there are
fundamental differences between the regularity of solutions to (2.2.4) and
those to (2.2.1).
Remark 2.2.3 If the delay occurs in one of the limits of integration, for
example,

V) = fve) + [ KiltsyeDds+ [ Kalt,s,u(s))ds,  (2:25)
or

) .

VO = FEy0) + [ K(ts.u(6)ds, 226)
we can always convert the equations into the form of (2.2.4) by a suitable
change of variables. For example, in (2.2.5), we may write

V() = Ftve) + [ Ko y(o)ds + [ Kalt,o = ry(o = )do
.
= Sl y®) + [ (Kt s, () + Kalts = ry(s = 7)) s,
where
Ky, velnt],
K=l [
0, velo,].
Therefore, we can change (2.2.5) to the form of (2.2.4). For (2.2.6), we have
VO = fEy) + [ Kalts,(o))ds,
where
0, sef0,t—7],
Ki(t,s,y(s)) =
~K(ts,y(s), s -t
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Then, following the steps for (2.2.5), we can again change it to the form of

(2.2.4). Hence, without loss of generality, we only need to consider (2.2.4).

Theorem 2.2.3 The primary discontinuities of problem (2.2.4) are the

points €, := pr, p=0,1,---. To be more precise, the derivative y®++1(t)

is discontinuous at the point €, but lower order derivatives are continuous

under the assumption that the functions f, K and ¢ are sufficiently smooth.

Proof: Basically, we use the method of steps. In the first interval [0, 7],
) ‘
VO = £v@) + [ K(t5.3(s). d(s = m))ds.

It is possible to satisfy the condition y(0) = ¢(0), but not, in general, also
the condition y'(0+) = ¢'(0—). The continuity of the derivative of the solu-
tion can be guaranteed at the initial point 0 only for special choices of ¢(t)
satisfying the condition ¢/(0—) = £(0,$(0)).

At the point ¢ = 7, the first derivative of the solution is already con-

tinuous. In fact, the derivative
.
YO = Fy) + [ K(ts,9(),u(s = 7)ds,

and the right-hand part are continuous functions of ¢ at the point 7, since

y(#) is continuous at the point 0. The second derivative
3,
v &) =%+ Lo+ e+ [ S oot = )i,

is continuous where we have written X = K(¢,t,y(t),y(t — 7)). However,
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y"(t) is not continuous at 7, since it includes y'(t — 7) as a factor, and
y'(t — 7) is not continuous at T because y’(t) is not continuous at 0.

At the point t = 27, y*)(¢) is continuous, and y®(¢) is not. At ¢ = pr,
we suppose that y®#+1)(¢) is not continuous, while all lower order derivatives

are. Att = (u+1)r, differentiate (2.2.4) 2u+1 and 2u+2 times, respectively

to obtain

SR (1) = y(?~+‘1<t)+%y(2V'(z 7)-+lower order terms,
and

y(zuﬂ)(t)z_y(2u+2)(t)+———-?1f —y ) (¢ —7)-+lower order terms.

According to the hypothesis, y2#+1(¢) is continuous at ¢ = (z + 1)7, as is
y®¥)(t — 7). As a result, y@*+2(¢) is continuous at t = (u + 1)7. Unfortu-
nately, y®*+3)(t) will lose the continuity at ¢ = (u + 1)7 as y@*1(¢) is not
continuous at ¢ = u7. By induction, we know that the derivative y(2++1(t)
is not continuous at the point u7, but lower order derivatives are continuous

under the smoothness assumption for f and K. o

Remark 2.2.4 The difference between Theorem 2.2.1 and Theorem 2.2.3
certainly has some numerical implications. When the mesh Iy is not con-
strained, i.e., h # 7/r for some r € N, we can expect a higher convergence
order for (2.2.4) than for (2.2.1), due to the better regularity property of the

solution for the former problem.
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Consider now
VO = Fey)+ [ KGsuehus—re)ds, £20, 227)
v = o), temol

where @ = infyso(t — 7(£)) < 0. Here, 0 < 7(t) < t and ¢ — (t) < t are

strictly increasing. A result similar to Theorem 2.2.2 holds for (2.2.7).

Theorem 2.2.4 The primary discontinuities of problem (2.2.7) are gener-

ated inductively by the recursion
& —T(6) =&-1, k21,
with & = 0.
We can also give an analogous result for Volterra integral equations
with constant delay of the form
"

y(®) = g() + /0 K(t,s,y(s),y(s — 7))ds, t>0, (2.2.8)

y(t) = ¢(t), te[-7,0]
The given functions g and K are assumed to be sufficiently smooth.
Theorem 2.2.5 The primary discontinuities of problem (2.2.8) are located
at points &, == pt, p=0,1,---. More precisely, y*~*) and lower order deriv-

atives are continuous at &, but y®) is, in general, not, even if the functions

¢ and g have continuous derivatives of all orders.
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Proof: The solution y(t) of (2.2.8) may be not continuous at the initial
point ¢t = 0, since in general, g(0+) # ¢(0—), unless we make a contrary
assumption in advance.

For t = 7, the first derivative is
t 9K
V(O =40 + K6y, 3(t =) + [ Gt s.v(s),u(s = ))ds.

Clearly, y/(t) is not continuous at 7 provided that y(¢) is not continuous at
0. The remaining argument is similar to that in the proof of Theorem 2.2.3.

We leave the details to the reader. o

Remark 2.2.5 It is worth noticing that, in contrast to Theorem 2.2.1, the
primary discontinuities of the integral equation (2.2.8) happen to lower order
derivatives. For the integro-differential equation (2.2.4), such discontinuities

occur in higher order derivatives as shown in Theorem 2.2.3.

Consider now the neutral Volterra integro-differential equation with

constant delay,

VO =FuO)+ Kt 5,3(s), u(s = 7).¥/ (s = )ds, ¢ 20,(2:2.9)
y(t)=4(t), te[-r0.
Theorem 2.2.6 The primary discontinuities of problem (2.2.9) are the
points & = pr, p = 0,1,---. To be more precise, the derivative y*+1(t)
is discontinuous at the point §,, but lower order derivatives are continuous
whenever the functions f, K and ¢ are sufficiently smooth.
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Proof: Similar to that of Theorem 2.2.3. a
Remark 2.2.6 For the neutral DDE,

Y = flty@®).yE-n).y(t-71), t20 (2:2.10)

y(t) = ¢@), te[-n0],

we do not have results similar to Theorem 2. Rather, there are two

notable differences. First, the initial function ¢(¢) for the solution of equation

(2.2.10) must be not merely i but also di iable (or pi

differentiable), since the last term of (2.2.10) involves the derivative of ¢(t)
when t € [0,7]. Second, the solution of equation (2.2.10) is not smoothed.
In fact, the left-hand derivative ¢'(0—) is not only not equal to y'(0+) at the
point 0, but 3/(t) is in general discontinuous at the point 7 because of the
discontinuity of the last argument y'(t — 7) at ¢t = 7. This line of reasoning
shows that the solution y(t) has discontinuities for t = pr, p = 0,1,2,---.
Therefore, no smoothing happens to the solution of the neutral delay equation

(2:2.10).
Consider the state-dependent delay differential equation
Y() = fty@),y06Ey@)). t>0, (2.2.11)
y(t) = ¢(t), te[a0], (22.12)

where @ = infi500(t, y(¢)) < 0 and 6(t,y(t)) < t for ¢ > 0. 6 is called the

retarding function. Some classical treatments for (2.2.11) can be found in
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5], [6], [46] and [83]. (2.2.11) is said to be of continuity class p > 1, if the

followings hold over appropriate domains:
1. The partial derivatives f;;x are continuous for all i +j + k& < p;
2. The partial derivatives 6; ; are continuous for all i +j < p;
3. ¢ € C?[a,0].
CP[L — 6, L +6] is defined by
CPIL—6,L+6]=CP[L—6,LINCPL,L+ 68 NC'[L—6L+3].

Theorem 2.2.7 ([46]) Let problem (2.2.11) have continuity class p > 1.
For L > 0, let the integer | € [1,p] be such that y € Cf_|[L — 6, L + 4| for
some § > 0. Assume that there ezists a least number Z > L, such that Z is
a zero of multiplicity m > 1 of (¢, y(t)) — L. Then y € CE[Z — 6,7 + 8] for

some § > 0 where p = p if m is even, and u = min(p,ml) if m is odd.

When (2.2.11) has continuity class p, we expect the solution y(¢) has
p + 1 continuous derivatives except at the various derivative jump points.

The idea behind Theorem 2.2.7 is the following. Suppose 6 is the re-
tarding function, and L is a discontinuity point. We try to get another point
Z > L, 6(Z,y(Z)) — L = 0 and an interval (Z — 7,2 + 7], such that the
range of 8(¢,y(2)) for t € [Z —n, Z + 7] covers [L — &, L-+£], a neighborhood
of L. When we calculate the derivative on both side of (2.2.11), and eval-

uate it at ¢t = Z, the discontinuity appears on the right-hand side because
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L =0(Z,y(Z)) is such a point. As a result, the left-hand side is discontinuous
at t = Z with a higher order (at least one order higher).

When 6(t, y(t)) = £ — 7, where T is a positive constant, Theorem 2.2.7
reduces to Theorem 2.2.1. In such a case, the discontinuities are pr for
p=0,1,---, and y € CElur — &, ur + 6] for some 5 € (0,7).

When (%, y(£)) = qt, Theorem 2.2.7 tells us that no discontinuities will
occur since we cannot find any ¢ € [0, +00) other than zero such that g¢ < 0.
See also [59].

We now generalize Theorem 2.2.7 to Volterra integral equations of the

form:
W = 9@+ [ Ko y@eueds, t20,  (@213)
y(t) = ¢(t). te[ao0] (2.2.14)

where @ = infi>0 0(t,y(¢)) and 6(¢,y(t)) <t for t > 0. Again, by continuity

class p > 1, we mean that the following holds over appropriate domains:
1. The partial derivatives Kj; are continuous for all i +j + & < p;
2. The partial derivatives 6; ; are continuous for all i + j < p;
3. g(t) € C?[0, +o0] and ¢ € C?[g, 0].

Theorem 2.2.8 Let the data in (2.2.18) be in C?, p > 1. For L > 0, let
integer | € [1,p] be such that y € C_,[L — 6, L + 6] for some 6 > 0. Assume

that there exists a least number Z > L, such that Z is a zero of multiplicity
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m > 1 of 6(t,y(t)) — L. Theny € C2lZ — 6,Z + 6] for some § > 0 where

p=p if m is even, and ju = min(p,ml) if m is odd.

Remark 2.2.7 Note that (2.2.11) and (2.2.13) are not identical. Differenti-

ation of (2.2.13) leads to
Y=g/ 0+ [ Ki(t. 5,300, s+ K6y 0 3(0). (2:2.15)

where K| = 8K /dt. There is an additional integral term on the right-hand

side.

Proof of Theorem 2.2.8: Suppose L — £ < 6(t,y(t)) < L+&fort €
(Z = n.Z + 7). Let w(t) = 0(t, y(t)) and

W(t) = (t.t,y(8(t y()))-
Then W (£) = (1,1,y(8)8V), and
W) = (0,0, Zk: uqy'?(6)),
=

for k > 2. Here, 81) = d(t,y(t))/dt, and

B 0@ 68@)
"l'kQ=Z]-V—"!___]k!("_'I! Yoo (g

The sum is taken over all k-tuples of nonnegative integers (ji,-- ,ji) that

satisfy ji + - -+ jk = Q and j; +2ja + -+ kjr = k. Denote scalar function

KO (¢,,9(6(¢,u(t)))) simply by K, that is, K := K{) (W(t)). Then
y'(t) =g"() + /: Klds + K' + K,

36



¢
¥®() =¥ (1) +/‘ K{'ds + K"+ K{ + K{,
. £
Y& () = g* () + / K0ds + K 4+ 3 KU,
v i=1
and
¢
yEH(8) = g®H0(E) 4+ [ K45+ K® (2.2.16)

k k—itl
+ 2 Y Yo v (- V(VELT o W) o W) o W
==
Observe that the highest-order derivative of W occurs when i = j =
1in (2.2.16). The term is VK o W®*). Consequently the highest order
derivative of y in any term on the right side of (2.2.16) is the k-th derivative.
Since y(t) is continuous, it follows from (2.2.15) that y'(t) = y(t) is the

of i i hence itself continuous at t = Z. Since

(2.2.13) has continuity class p > 1, it is easy to show by induction from
(2.2.16) that y® is continuous at ¢t = Z for all k < I since | < p. The
inducti i at the I-th ivative because y(6(t,y(t))) need not

necessarily have more than [ — 1 derivatives at ¢t = Z. This bound on k can
be improved.

Let m be even. Then 6(t,y(t)) — L remains either nonnegative or non-
positive in some neighborhood of t = Z. In other words, 6(t,y(t)) for t in a
neighborhood of Z does not range over intervals containing the jump point
at t = L. Hence y(6(t, y(t))) for ¢ in a neighborhood of Z could have more
than [ continuous derivatives. It is easy to show by induction from (2.2.16)

that y(® is continuous at ¢t = Z. This establishes the first case.
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Let m be odd. Then either 6(t,y(t)) — L changes sign at Z or Z is a
cluster point of zeros of f(t,y(t)) — L. In either case Z may be a derivative
jump point. It is easy to verify that the derivatives up to order ml — 1 of
y(0(¢,y(t))) that could be discontinuous at ¢ = Z in (2.2.16) are actually
multiplied by appropriate derivatives of order up to m —1 of (2, y(t)) which
are continuous and which by hypotheses vanish at ¢t = Z. Thus the effect
of the discontinuities at ¢ = Z are nullified. This completes the proof of the
remaining case. o

We add an example, also to indicate that Theorem 2.2.8 remains valid

for more general DVIEs.
Example 2.2.3 Consider
t1
¥t) = 1+ / SUey(ny(s)ds, when t21,  (22.17)
1
y(t) = 1, when t<1.
By the step method, we get the solution

t, when 1<t<e,
exp(t/e), when e<t< e

It is clear that y € C§°[1 — 6,1 + 4] with 0 < 6 < 1 since y(1-) = 0 and

¥/(1+) = 1. The root of (¢, y(t)) — L= lny(t) — 1 =0is y(t) = e, ie, t =¢
with single multiplicity. According to Theorem 2.2.8, y € Cf°[e — &, ¢ + 4]

with 0 < § < 1. In fact, y'(e) =1, y"(e—) =0 and y"(e+) = 1/e.
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The proof of Theorem 2.2.8 can be readily modified to establish an anal-

ogous result for Volterra integ; i i it with state-d

delay,
t

¥ = fy@)+ /; K(t,s,y(0(s:y()))ds, £20, (22.18)

y(t) = o), te[ao], (2:2.19)
where @ = infi>0 6(t, y(t)) and 6(t,y(t)) < ¢ for t > 0.
Theorem 2.2.9 Let problem (2.2.18), (2.2.19) have continuity class p > 1.
For L > 0, let integer | € [1,p] be such that y € C},[L — 6, L + 4] for some
& > 0. Assume that there ezists a least number Z > L, such that Z is a zero

of multiplicity m > 1 of 6(t,y(t)) — L. Theny € CE[Z — 6, Z + 5] for some

5> 0 where p=p if m is even, and p = min(p, ml) if m is odd.
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Chapter 3

Collocation for Differential and
Volterra Integro-differential

Equations with Constant Delay

In this chapter, we review some known results related to constant delay problems
in order to compare them with similar results for equations with proportional
delay. We describe the collocation method for constant delay equations in Section
3.1. We present the global convergence results in Section 3.2. Local convergence
results are examined in Section 3.3. In Section 3.4, we survey results about delay

Volterra integro-differential equations of neutral type.
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Consider the first-order differential equation of the form

Y@ = fy@).E-7), tel, (3.0.1)

y(t) = ¢@), tel-r0],

where 7 > 0 is a constant and I := [0, T], the Volterra integro-differential

equations with constant delay,

VO=FEye)+ [ Kes sy s, tel (302

VO = eu@)+ [ Kesy(s)ds, tel, (303)

with initial conditions as in (3.0.1).

Our primary goal is to find the collocation solutions u in SO (ITx) for
(3.0.1), (3.0.2) and (3.0.3) with respect to the Gauss points, and study certain
aspects related to such an approximation. Note that (3.0.3) can always be
changed into the form of (3.0.2) by Remark 2.2.3.

The reader who is interested in Volterra integral equations with con-
stant delay may find results and references in [16]. Collocation methods for
(classical) Volterra integral and integro-differential equations are described

in [21].
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3.1 Collocation methods

For ease of exposition, we choose a uniform mesh Iy on I, given by t, := nh,
n =0,1,---,N, ty = T, and set Iy := {to,t1,---,tn}, o = [to,ta],

I, == (tn, tns1], n > 1. We assume that Iy is a constrained mesh, i.e.,
h=1/r, for some reN. (3.1.1)

The motivation for choosing such meshes is to include the primary discon-
tinuities of the solution in the mesh. The use of arbitrary meshes will in
general result in a loss of order of convergence due to the presence of pri-

mary discontinuities.

3.1.1 Collocation for delay differential equations

We solve (3.0.1) in space S (Ily). For given real numbers {c;} with 0 <

€ <€ <--- < e <1, define the set Xy := {tn;} of collocation points by

tatch, j=1,2--,m n=01,---,N-1 (312

tnj
The collocation solution u € S® (ITy) of (3.0.1) is defined by
V(tn +¢jh) = f (ta + cjh, u(tn + ¢ih), v(tn—r +cjh)), (3.1.3)

for j = 1,2,---,m, n = 0,1,---,N — 1, subject to the initial condition

u(t) = ¢(t), when t € [-7,0]. We may write
V(tn+sh) = 3 VaiLi(s), s€[0,1],
=
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where V. j = v/(t, + c;h). Upon integrating and setting
¢
a5(t) = /o Li(s)ds, (3.1.4)

where
Lj(t) = H
i
are the Lagrange fundamental polynomials with respect to the collocation

parameters {c;}, we have the (local) representation
m
V(tn +sh) =v(ta) + B Y u(s)Vay, s€[0,1], (3.1.5)
=1
where Vp; is determined by (3.1.3), namely

Vai=f (ln +cihUn+ h Y Vaattnor +hY ‘/n»r‘laj,l) s
= =

where a;; ;== e5(ci), 4j=1,2,---,m.
‘We introduce some other notations and properties associated with La-
grange fundamental polynomials for future use.
L=t =y FOER e
1 i=j
and

m m
S Lis)=1, Youy=c, for i=12---,m.
=1 =
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3.1.2 Collocation for delay integro-differential equa-
tions
Consider the Volterra integro-differential equation with constant delay 7,
VO = f6vO) + [ Ksy(o)ds, te, (3.16)
with initial condition
y(t) =¢(t), te[-.0]. (3.1.7)

Here, ¢ is a given C'-function.

The collocation solution u € S (Iy) to (3.1.6) and (3.1.7) is given by
u'(t) = f(t,u(t) + /‘; k(t,s,u(s))ds, t€ Xn, (3.1.8)
with u(t) = 6(¢), ¢ € [~7,0]. Define
Falt)= @(c)-f—/:nk(t, 5,u(s))ds, € [tmtars), If 0<n<r, (3.19)
and
Falt) :=/Lik(t, su(s))ds, 1€ [tmtan, i r<n<N-1, (3.110)
where r is as in (3.1.1), and ®(t) denotes the delay integral
a(t) = /:r k(t, s, 6(s))ds, t € [0,7]. (3.1.11)

Using the notation introduced in Section 3.1.1, equation (3.1.8) defining the
exact collocation solution u € S©(Ily) to (3.1.6) and (3.1.7) may be rewrit-

ten as

Yos = fta + A, Unj) + Znj + Falta + cjh), j
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with
m
Unj=ulta+cih) =yn+hY aju¥ar, aju=aulc),
=1
and

Zn,

<
b [ Kt + cihy ta + vh, u(ta + vh)do.
o

On the interval [ts, tns1], 0 < n < N — 1, the collocation solution is

given by
Ults +vh) =y +h Y 0;(0)Yay, v E[0,1).
=

In contrast to collocation for ODEs or DDEs, which yields an m-stage
implicit Runge-Kutta method, the above method for delay VIDE involves
integrals which in general cannot be calculated analytically, and thus an ad-
ditional discretization step is necessary. The resulting method is a continuous
implicit Volterra-Runge-Kutta method with m stages: if the discretization
of these integrals employs m-point interpolatory quadrature formulas based
on the collocation parameters {c;}, then this method is described by the
equations (3.1.12)-(3.1.17):

.2 -
Wta +vh) = o +h > a;(v) ¥z, vE[0,1], (3.1.12)
=
where
Vs = fltn+ b, Uny) + Znj + Fulta +cjh), (3.1.13)

for j =1,2,---,m, with

58 ] -
Ung=gn+hY_ajp¥ny (3.1.14)
i=

45



i m
Znj = hY wiuk (tn + cih tn + & uhy @tn + k) - (3.1.15)
=

Here, w;,, := cjby, with b, := a,(1) and &,

¢, The lag term approxi-
mations Fy(t) in (3.1.13) corresponding, respectively, to the exact lag terms

(3.1.9) and (3.1.10) are

Faltng) = Bltng) + 3 35 bultngs s Vi), (3.116)
P3P

if0<n<r, and

3 m
Fu(tns) B Y 5k g b+ b, Wt +715,4R))
=4

o
th 33 bkt b i), (3.1.17)

i=nor+lp=l

ifr <n <N -1 Here, @, = (1 — ¢;)b, and 7,

5+ (L= ¢)eu

3.2 Global convergence of collocation solu-
tions

For the sake of later comparison, we recall the following convergence result

for DDESs of the form (3.0.1) from [9].

Theorem 3.2.1 Suppose f(t, v, w) and ¢ in (3.0.1) have derivatives of order

m which are piecewise continuous on their domains; y(t) is the ezact solution
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0f (3.0.1) and u € SO (Iy) is the cor di ined-mesh

solution with collocation parameters 0 < ¢; < -+ < cm < 1. Then
lly—ullo <CR?, p=m.

Proof: See [9] where the author gave a proof for an even more general case,

r=r(t)>0. o

Remark 3.2.1 It should be pointed out that in [9], the author claimed a

higher order of global convergence, i.e., m+ 1 under the condition r = 7(t) >

0. However, in general, this is not true.

We now turn to the delay integro-differential equation (3.1.6). Let
u € SO(Ily) denote the exact collocation solution to (3.1.6) defined by
(3.1.8)~(3.1.11).

For ease of exposition, we choose the linear version of (3.1.6),
;
¥(8) = FOuE) +9(t) + /M k(t,s)y(s)ds, tel, (321
with y(t) = ¢(t) for t € [-7,0], where k € C(S;), S, :==I x [-,T —7].

Theorem 3.2.2 (sce [18]) Assume that the given functions in (3.2.1) and
(8.1.7) satisfy f € C™(I), k € C™(S,), ¢ € C™[~,0], and that, for t €
[0,7], the integral

a(t) = /::lc(t,s)‘t(s)ds, te0,r] (3.2.2)

47



is known ezactly. Then for all sufficiently small h = 7/r, v € N, the
constrained-mesh collocation solution u € S to (3.2.1) satisfies

lly — ulleo < CR™,
for some finite C not depending on h. This estimate holds for all collocation

parameters {c;} with0 < c; <---<en <1

3.3 Local superconvergence on Iy

In Section 3.2, we saw that globally, we can expect a convergence order of
m if the collocation solution is in S(Ily). When we focus on some special

points, (i.e., the mesh points), we certainly expect to attain a higher order.

Definition 3.3.1 Let y(¢) and u(z) be the exact solution and corresponding

collocation solution of (3.0.1) respectively. If

_ "
(B2, ly(ta) = ultn)| < CR”,

where p* > p, with p as in Theorem 3.2.1, then p” is called the local super-

order of the ion solution.

Theorem 3.3.1 Suppose f(t,v,w) and ¢ in (3.0.1) have derivatives of order

2m which are continuous on their domains. If y(t) is the ezact solution of

(3.0.1) and v € SQ(Iy) is the co di ined-mesh coll

solution with collocation parameters 0 < ¢, < --- < ¢, < 1, then

Bax ly(tn) — u(ta)l < CK,  p* < 2m,
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i.e., the superconvergence order p* is at most 2m. More precisely, we have:

(i) If the collocation parameters {c;} are the Gauss points in (0,1), i.e.,
the zeros of the (shifted) Legendre polynomial Pr(25—1), then p* = 2m,

while u' possesses a lower order of convergence on the mesh Iy :

‘ , n
(32 [v/(tn) = v'(ta)] < CuA™

(ii) If the {c;} are the Radau II points, which are zeros of Pm(2s — 1) —
Proi(25 — 1), then

28 [10(tn) —uO(6)] < CR*™, L=0,1.

(iii) If the {c;} are the Radau I points which are zeros of Pn(2s — 1) +

Prno1(2s—1),1e,0=c <c<- <cm<l, then

max [y(ta) — u(ta)] < Coh®™™ ",

1Sn<N
and
2, [V () — v/ (ta)] < CLA™
Proof: See [9]. o

The local superconvergence results of Theorem 3.3.1 remain true for

delay integro-differential equations (3.2.1):

Theorem 3.3.2 Assume that the given functions in (3.2.1) are sufficiently

smooth on their domains, i.e., they are in C™¢ for some d with 0 < d <
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m, and let the delay integral ® in (3.2.2) be known ezactly. Then for all

sufficiently small h = /r, r € N, the constrained-mesh collocation solution

u € SO(Ily) to (3.2.1) is uniquely defined, and has the following properties:
(i) If the collocation parameters {c;} are the Gauss points in (0, 1), then
max, ly(tn) —ulta)| < Coh®™, (3:3.1)

for some finite constant Co, provided d = m, while u' possesses a lower

order of convergence on the mesh Ily:

max [¢(ta) — u'(t)| < CiA™. (3.32)

S
(ii) If the {c;} are the Radau II points and d =m — 1, then

@) — 0 2m—1 P
max [19(t) —uO (k)] < CH™, 10,1 (333)

(iii) If the {c;} are the Radau I points andd =m —1, ie., 0 =¢; < c3 <

ser < em <1, then
B, Iy(te) — u()] < Gobmt, (3.4
and
Bax ' (tn) — ' (ta)] < Cu™ (3.3.5)

Proof: We proceed along the lines of [18]. The collocation error, e(t) :=

y(t) — u(?), is the solution of the initial-value problem
€(t) = f(t)e(t) +5(t) + Gt) + /n ‘k(t,s)els)ds, tel,  (336)
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where
6= T H(t,s)e(s)ds = — i T k(t, s)e(s)ds, (3.3.7)
€(t) =0 on [~ 0]. The defect (or residual) function 6(¢) given by
8(0) = =) + FOu(®) + 90 + [ K o)uls)ds,

vanishes on the set Xy of collocation points and satisfies §(t) =0 for ¢ < 0.
Setting z1(t) = e(t), z(t) = €(t), z(t) = (z1(t), ()7, and writing
zi(t) = [§z(s)ds, the VIDE (3.3.6) may be written as a system of two

Volterra integral equations of the second kind,

2(t) =D(®) + /:k(t,s)z(s)ds, tel, (3.38)
with
0 1
D) = , k(ts) =
5(t) +G(2) k(t,s) f(t)
Let

Ru(ts) Ru(t.s)
Rou(t,s) Ra(t:s)

R(t,s) =

denote the resolvent of k(t,s) in (3.3.8). Note that by definition of R, its
smoothness is governed by the smoothness of k and f. The solution of (3.3.8)

is then given by
¢
2(t) == D(t) + / R(t,s)D(s)ds, tel,
o
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and hence we obtain the representations
0= * Rualt, ) {3(5) + G(s)}ds, (3.3.9)

end
€0 =80 + G0 + [ Rult,){6() + Go) s, (33.10)

where t € [0,T]. For ¢ € [0,7], we have G(t) = 0, since by assumption the

delay integrals in the lag term (3.1.9),
0
(1) = / H(t,s)6(s)ds,
(2=

are evaluated analytically.

Now, we shall show that (3.3.9) and (3.3.10) can be rewritten to yield
representations of the collocation error and its derivative in terms of the
defect function §(). Since this is key to the proof of Theorem 3.3.2, we

summarize the result in Lemma 3.3.1 ([18])

Lemma 3.3.1 Let & = pr, p = 0,1,---, M, and assume, without loss
of generality, that &y = T for some M € N. If t € (€&l b =
0,1,---,M~1, then

=3 A T QO (t, 5)6(s)ds, (3.3.11)
=070
and
B rt—ir
é(t) =6(t) + / QUL(z, 5)6(s)ds, (3.3.12)
=070
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where the QY (with Qs = Rea(t,s), I = 0,1), are functions which depend
on the given kernel function k and on f in (3.2.1), and whose smoothness is

determined by that of these given functions.

To prove Lemma 3.3.1, let ¢ € [r, 2r] (= [&1, &])- It follows from (3.3.7),
(3.3.9) and (3.3.10), that

(]

G(t) /n'_' H(t, s)e(s)ds = /;H H(t.s) /n Ru(s, v)é(v)dvds

f 7 (/ T H(t, 5)Ruals, v)ds) 6(v)do,

or
i
G(t) = /n Qolt,5)d(s)ds, te[r27],
with obvious meaning of Qq(t,s). Since on [, 27] the solution of the error
equation (3.3.6) is given by (3.3.9) and (3.3.10), and the defect function 5(t)

vanishes on the interval [—r,0], we find that for k = 1,2,

[ Rat.966)s = [ Ralt.s) [ Quls.0)s(e)duds

/[ o ( ‘” Rua(t,5)Qu(s, v)ds) 8(0)do.

I

The inductive extension of these results to an arbitrary interval [€,, £u.1] is
now straightforward.
Consider (3.3.11), (3.3.12) and choose ¢ = t, € [€,,&u+1). Note that

tp — iT = ta_4, since 7 = rh from (3.1.1). Setting
UY,(tk + vh) = QU (b, te + vh)S(t + vh), 0<i<p,
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we may write (3.3.11) and (3.3.12) as

ed(t) -

R
o(t) +hY S /\[’K{‘-(tki-uh)du, 1=0,1. (3.3.13)
i=0 k=0 o

Replace each integral over [0,1] by the sum of its (interpolatory) m-point
quadrature formula (with the collocation points as abscissas) and the cor-
responding quadrature error ECy. Note that, by our assumption on the
exact delay integral ®(t), we have E{y" =0 for 0 < n < r. Since the defect
function §(t) vanishes at t = t + c;h € X, we have W&,(t + c;h) = 0, and

thus the above expression (3.3.13) for e®(t,), { =0, 1, reduces to
ol
eO(t) :=1-8(ta) +hY S ERY, (3.3.14)
= =

where { = 0,1, M7 =T and 0 < p < n < p+1 < M. Since by assumption
the integrands WY, (¢ + vh) are in C™*+[0, 1, it follows from Peano’s Theo-

rem (86] that, for sufficiently smooth integrands, the quadrature errors E0

with the i latory formulas ved in (3.3.11)

and (3.3.12) can be bounded by
1BG] < Quam,

where d = m for the Gauss points and d = m — 1 for the Radau II points.

Hence, for [ =0, (3.3.13) yields the uniform estimate

let) ShY 3 IER| < Q™ M- N -h=: Coh™,
==

n=1,2---,N,since N = T, and M = T/r is a fixed integer. Thus, the
statements (3.3.1) and (3.3.3) (with ! = 0) follow readily.
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We note that (3.3.3), when I = 0, is also valid for the Radau I points
which are zeros of P(25 — 1) + Pr_y(2s — 1). So we have (3.3.4).

Consider now (3.3.14) with [ = 1. If the collocation parameters {c;}
are such that ¢ = 1, then ¢, € Xy and hence §(t,) = 0. This holds in
particular for the Radau II points, and hence we obtain (3.3.3) with [ = 1.
If the {c;} are the Gauss points or Radau I points, then ¢, < 1 and thus, in

general, §(¢,) # 0 in (3.3.14):
[€®)] < 16(ta)| + Cih™4, n=1,2,---,N.

It follows from the global convergence analysis (cf. Theorem 3.2.2) that in
these two cases the defect § behaves like 6(t,) = O(h™) in general, implying

the results (3.3.2) and (3.3.5). o

Remark 3.3.1 The local superconvergence results of Theorem 3.3.2 remain

true for nonlinear delay VIDES of the form
Y0 = fity®) + (Vy)(©), tel, (33.15)
where the operator V' is given by
Vo)) = [ ke ds+ [ kat d
VOO = [ kit y@Nds+ [ kalts,u(s))ds.

This can be verified by using linearization techniques (see, for example, [15]
and [51]). Since the equation for the collocation error contains the terms

(Vy)(t) — (Vu)(t) we may write, under the standard smoothness and bound-

o
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edness hypotheses on the kernels &; and ks,

i ,0(5) — Kt () = 5 - e(6) + O,
where the partial derivative of k is evaluated at (¢, 5,y(s)). The O(h*™)-term
stems from terms involving e?(s) and makes use of the nonlinear version of
the global convergence result in Theorem 3.2.2. The delay VIDE (3.1.6)
is a particular case of (3.3.15): it corresponds to the choice ky(t,s,y) =

—ky(t.s,y) in the above operator V.

3.4 Extension of results to neutral DVIDEs

Consider the neutral Volterra integro-differential equation with constant de-
lay 7,
.
VO = fEYO)+ [ Kesye).ve)ds, tel  (341)
yt) = o), tel[-r0] (3.42)
Here, ¢ is a given C'-function. The discretization of such problem is studied

in [18].

3.4.1 Collocation for neutral DVIDEs

The collocation solution u € S (IIy) to (3.4.1) and (3.4.2) is given by the

equation
w(t) = f(tu(e) + /; E(t,s,u(s),u/(s))ds, € Xn, (3.4.3)
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subject to initial condition u(t) = ¢(t), ¢ € [, 0]. Define

Fn(:):=<p(¢)+[k(z,s,u(;).u’(s))ds, € [tartasa], if 0<n <r, (3.4.4)

and
Fu(@)= [ k(t,5,u(s), w(o))ds, ¢ € ltmtusal, if T SREN-1,
op
where r is as in (3.1.1), and ®(t) denotes the delay integral
o
®() = [ klt,s,0(s), 8/(s))ds. te[0,7].
i
As in Section 3.1.1, we set
5
Wt +vh) =3 L) Yas, Yau =t + i),
=

and

m
ultn+vh) =ya+hY a(v)Var, vE[0,1], yn:=u(ta).
=
Then (3.4.3) may be rewritten as
Yoi = fta + cjh,Upj) + Znj + Falta + c;h),
forj=1,--- ,m, with
m
Upj =u(ta +cjh) =va+ b ajiYas, aj=alc),
=t
and
v ,
2y ;./o K (tn + Cih, o + vh, ultn + Vh), U/ (tn + vh)) du.
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On the interval [tn, tn41), 0 < n < N —1, the collocation solution is given by
u(tn +vh) = ya +h Y a;(v)Ya,, veE(01] (3:4.7)
i=t
The above method for neutral delay VIDE involves again integrals which
cannot be calculated analytically, and thus an additional discretization step
is necessary. If the discretization of these integrals employs m-point interpo-
latory quadrature formulas based on the collocation parameters {c;}, then
this method is described by the equations (3.4.8)-(3.4.13) (compare with
(3.1.12)-(3.1.17)):

m
UW(ta +0h) = gn +h Y a;(0)Vny vE[0,1], (3.4.8)
j=1
where
Vg = Fltn + c5h, Ung) + Znj + Fnltn + csh), (3.4.9)
for j=1,---,m, with
o - S
Ung =3n+h Y a¥us (3.4.10)
=
and

Zng=h S wjuk (tntCihy ta -G, Wtn+E1uh), & (ta+Eiuh) . (3.4.11)
=

Here, wj,, 7= cjby, With b, := ar,(1) and &, = cjc,. The lag term approx-
imations Fy(t) in (3.4.9) corresponding, respectively, to the exact lag terms

(3.4.4) and (3.4.5) are
R acl m o
Faltng) = ®(tng) +h 2 3 buk(tn s tige Ui Vi), (3.4.12)
i=0 p=1
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if0<n<r, and

Faltng) = b3 Bjuk(tngstuer + Niuh, @tnr +0juh), @ (tamr + k)
=}
p— o
th 3 3 buk(tng i Us Yiu), (3.413)
P =

if 7 <n < N -1 Here, W, = (1 — ¢;)b, and 7 := ¢; + (1 — ¢;)cpr

3.4.2 Convergence results for neutral DVIDEs

Let u € S©(Ly) denote the exact collocation solution to (3.4.1) defined by

(3.4.6)~(3.4.7). For ease of exposition, we choose the linear version of (3.4.1),
¥ (t) = FO)y(e) + at) + (Vo)(t), tel, (3.4.14)
with
' _—
V@)= [ Kt o) + [T Hult, )y s,
0 w0 0 k=
subject to initial condition (3.4.2).
Theorem 3.4.1 ([18]) Assume the given functions in (3.4.14) and (3.4.2)
satisfy f € C™(I), K € C™(S;), ¢ € C™[~r,0], and for t € [0,7], the
integral
o
®(t) = _/t‘ {Ho(t, s)9(s) + Hi(t, 5)¢/(s)}ds, t€[0,7],  (3415)

is known esactly. Then for all sufficiently small h = 7/r, r € N, the

constrained-mesh collocation solution u € S, m > 1, to (3.4.14) satisfies
Iy - 9| < cim,
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for some finite constant C; not depending on h and | = 0,1. This estimate

holds for all collocation parameters {c;} with0 < ¢, < --- < cm < 1.

Theorem 3.4.2 ([18]) Assume that the given functions in (3.4.14) are suf-
ficiently smooth on their domains, i.e., they are in C™*¢ for some d with
0 < d<m, and let the delay integral @ in (3.4.15) be known ezactly. Then
for all sufficiently small h = 7/r, T € N, the constrained-mesh collocation
solution u € S to (3.4.14) is uniquely defined, and has the following prop-
erties:
(i) If the collocation parameters {c;} are the Gauss points in (0,1), then
i 2m
(22, [y(te) = ulta)] < Coh™™,

for some finite constant Cq, provided d = m, while u' possesses a lower
order of convergence on the mesh Iy:
(22, 1Y (t) = (ta)] < Cih™
(i) If the {c;} are the Radau II points and d =m — 1, then
0] —ul8 2m—1 —
(e WO (tn) —uO(ta)l < G 1=0,1
(iii) If the {c;} are the Radau I points andd =m — 1, i.e, 0 =¢; < ¢ <
< em <1, then
X Iy(tn) — u(ta)[ < Cob®™,
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p ; N
A [/ () = w/(ta)| < CLA™.

Proof: A detailed proof of this theorem can be found in [18].
o
While the collocation methods to integral, differential and integro-
differential equations with constant delay are well understood, the numerical
analysis of these equations with proportional delay is significantly more dif-
ficult. Indeed, the results to date are incomplete and their derivation calls
for new mathematical techniques.
It is known that the collocation method in S (Ily) for constant delay
problems has a global convergence order m and a local superconvergence

order p*, m < p* < 2m. The question is:

if we apply the collocation method to variable delay problems, can
we get a global convergence order m and a superconvergence order p*

(m < p* < 2m) using m collocation points?

It is the scope of next chapter to investigate proportional delay problems and

answer this question.
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Chapter 4

Collocation for Differential and
Volterra Integro-differential
Equations with Proportional

Delay ¢t (0 < g < 1)

In this chapter, we on the discretization analysis of di ial equa-

tions with proportional delay. The collocation method and its global convergence
properties are discussed in Sections 4.1 and 4.2. In Section 4.3, we discuss the lo-
cal convergence of collocation solution to first order DDE and DVIDE. In Section
4.4, we extend the results to second-order DDEs. Some numerical examples are

provided as a further illustration for these results.
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Consider the first-order delay differential equation
y'(6) = f(t.y(t)y(at), tE€L, y(0) =go. (40.1)
and the delay Volterra integro-differential equation
VO = fEy0) + [ Kesu@)ds, tel yO)=v  (102)

with0<g<1.

Many special cases of (4.0.1) and (4.0.2) are encountered in applica-
tions: collection of current by electric locomotives [84], number theory [76],
probability theory on algebraic structures [85], nonlinear dynamical systems
[41], absorption of light by interstellar matter [1].

Theoretical and numerical results on (4.0.1) and (4.0.2) may be found,
for example, in [8], [19], [21], [23], [24], [25], [40}, [47], [59], [61], [62], and
(81].

There are kable di both ytically and numerically,
between differential equations with constant delay and those with propor-
tional delay, see also [73]. In the case of proportional delay, the discontinuity

in Section 2.1 di that is, for smooth data,

property as
the analytic solution is smooth, see [19] and [59] (but see also Remark 4.0.2
below). Hence, there is no need to keep track in the numerical solution of the
primary discontinuities. In the case of constant delay, the solution possesses
discontinuities even for smooth data (see Section 2.2). In this sense, the pro-

portional delay problem is simpler to solve numerically since there is no need
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to use a constrained mesh. However, this is offset by the considerably more

form of di i i as we will see in Section 4.1.1, a

form that renders them difficult to analyze.

Remark 4.0.1 When ¢ > 1, the uniqueness of solutions to (4.0.1) and
(4.0.2) may not hold. A detailed discussion can be found in [66], and for

VIEs in [33]. As a result, we only consider the case of 0 < ¢ < 1.

Remark 4.0.2 If the initial point ¢ = ¢, is not equal to zero, primary dis-

continuities may exist. Baker et al [5] give the following example,
Y(t) =ay(gt) for t>1, yt)=2 for t<1, y(1)=0,

with ¢ € (0, 1], which has primary discontinuities at ¢ = 1/q,1/q%---.

4.1 Collocation and continuous Runge-Kutta
methods

In order to exhibit the essential features of the collocation method, we only
consider a special case of (4.0.1),
y'(t) = f(t.y(et), tel. y(0) =y (4.1.1)
Let Iy be a uniform mesh on the interval [ := [0, ], given by ¢, := nh,
n=0,1,--+ ,N;ty =T. The set
Xn = {tns i=ta+ch, i=1,2,---,m, n=0,1,---,N—1},
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with 0 < ¢; < ¢a < --+ < em < 1, denotes the Nm collocation points in

[0, T7]. Define
Gni = [g(n+c)] €No, Yni=gq(n+c) —gn: €[0,1), (4.1.2)

fori= - ,m, where [z] denotes the greatest integer not exceeding z € R.

With this notation,
Gtni = q(tn + Cih) = qnih + Fnih = ty, , + Tnh.

This is a typical relation in collocation and Runge-Kutta methods for pro-

portional delay problems of the form (4.0.1).

4.1.1 Collocation for differential equations with pro-
portional delay

The approximation u € S (IIy) to the exact solution of (4.1.1) is determined

by the collocation equation
' (tn + ¢jh) = f{tn + cihy vty +Mmgh)), G=12,--,m  (413)

forn=0,1,---,N — 1, subject to the initial condition v(0) = yo. We write

(compare Section 3.1.1)
m
V't +sh) =3 VagLi(s), s€(0.1],
=
where Vi ; i= v/(ta + c;h). Upon integrating, we obtain
n
V(tn + sh) =v(ta) + A u(s)Var, s€[0,1], (4.1.4)
=
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where Vi, is determined by (4.1.3), nauely
A
Vog =1 (1t oo, + 3 Vosmung)) 5 =120 m (415)
z
Thus, (4.1.4)-(4.1.5) define a continuous m-stage implicit continuous Runge-

Kutta method for the first-order delay initial-value problem (4.1.1).

Tllustration:
y'(¢) =ay(t) +by(gt), tel, y(0)=yo, (4.1.6)

where 0 < ¢ < 1. On [tn, as1), the collocation solution for (4.1.6) is deter-

mined by
V' (tni) = av(tns) +bv(gtns), i=1,---,m. (4.1.7)
On this subinterval, v may be written as
(tn + sh) =v,,+hzm;n](s)v,,__7, se0,1], (4.18)
<
where
U =U(ta), v=Y0; Vaji=0(ta+csh).
Thus, using (4.1.8) and (4.1.2) we readily find that the quantities {Va} in
(4.1.8) are defined by the solution of the linear system
Vis—oh i: o Vi & bnfj‘ 0 (rni)Vaurs + an+bupn (419
= o=

=1,--+,m, with ag; := aj(c;). Once the {Vy;} have been found, the

approximation at the next mesh point t,4; is

m
Vns1 =V +h Y bV,

=t
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where we have set b; := a;(1).

Now, we give a more concrete computational formulation for (4.1.8)
and (4.1.9).
CaseI: gpi=nforalli=1,2---,m.

We write (4.1.9) in the form:

V = h(aA +bB)V + (a -+ b)une, (4.1.10)

where V=(Va1, Vo, o+, Vam) Ty A= (@i)ig=120my B=(5(Fa,))ig=1.2m:

and e=(1,1,--,1)T. Hence,
V = (a+ b)va(I — h(ad +bB))e.
Therefore, in this case, (4.1.8) is equivalent to
(tn + 5h) = v + va(a + b)ha(s)T(I — h(ad +bB))"'e,  (4.1.11)

where a(s) = (ca(s), @2(s), -, am(s))T-
Case II: @ni <nifi=1,2,--- ,f;gng=nifi=p+1,---,m for some p
with 1 < p<m.
(4.1.9) is equivalent to
m
V = haAV + hbB,V + avne + b0 +bh 3 BV, (4.1.12)
et

where B, is an m x m matrix whose i-th row is
(o1 (tmi)s @2(mi)s -+ s Om(vmi)) 5
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for i = 1,2,--- ,p, and which has zero vectors for all other rows. B® is an

m x m matrix whose i-th row is

(01(Tns): 02(md)s -+ s m(¥ns) »

and all other rows are zero vectors.

¥ 4 T
(TR ) » Vi= (Uq...ulrvq»_.ﬂ " Bingin) -

<
I

m
= hb(I —h(aA+5B,)™ Y BOV; +ava(l — h(aA +bB,)) e
Lt

i=ptl

+ b(I —h(aA +bB,))""5.
Therefore, (4.1.8) becomes

U(ta+5h) = vn+bh2a(s)(I — h(aA +bB,))™" f: BYY;

i=ptt

+ahvua(s)(I ~ h(aA +bB,))""e

+bha(s)(I — h(aA +bB,)) ™.

Case III: guz<nforalli=1,2,---,m.

In this case, (4.1.9) can be written as
V=haAV+aune+b'E+bhiB“'V;. (4.1.13)
=
Hence,
V = hb(I — had)™ 3" BOV; + av(l — had)~e + b(I — haA)~5.
=
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Therefore, in this case, (4.1.8) takes the form

m
Ut +5h) = va+bha(s)(I — had)™ Y BV

it
+ ahvaa(s)(I — had)~'e + bha(s)(I — had)™'5.

Remark 4.1.1 It is worth noticing that, in the above three cases, the ODE
parts remain the same while the DDE parts change according to the values

of ¢ and n.

4.1.2 Collocation for integro-differential equations
with proportional delay
Consider now the delay Volterra integro-differential equation
¥(6) = F(t.u(®) +/q:k(t,s,y(s))ds. tel, 0<g<l, (4114)

with initial condition y(0) = yo.

The collocation solution u € S (ITy) to (4.1.14) is given by
.
w(t) = f(t, u(t))+/‘ k(t, s, u(s))ds, te€ X, (4.1.15)
o
with %(0) = yo. Define
i
Fa®) = [ (t,s,u())ds, (¢.1.16)

and set

m
U(tn +vh) =Y L)Yy, Yau:=u'(ta +cih),
=
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then

u(tn),

U(tn +vh) =yn + hia‘(v)Y,.,,, ve[0,1], yn:
=1

where L;(v) and (v) are defined in Section 3.1.1. Thus (4.1.15) may be
rewritten as
Yog = f(tn +¢hUnj) + Znj+ Fu(ta + c;h)

~Znj = Fp(tat+cih), j=1,---,m,

with
-
Unj = ttn + G5h) = g+ b 05¥ar, 05 = eu(cs),
=
Zasi=h [“ Kt + csh, tn + vhyulta + vh))dv,
and

Fipr= h/:“” k (tn + b, tg,, +vh,ulty, , +vh)) du.
See (4.1.2) for the definitions of g and 7.
On the interval [ty tn41], 0 < n < N — 1, the collocation solution is
given by
Wt k) = yn+h§;a,(v)yn,,-, vel01].
=

The above method for proportional delay VIDEs involves integrals which

cannot be , and thus an additi i ization step
is necessary. If the discretization of these integrals employs m-point interpo-
latory quadrature formulas based on the collocation parameters {c;}, then
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this method is described by (4.1.17)-(4.1.23):

Ut +vh) =Gu +hY 0;(0)Vn;, veE[0,1], (4.1.17)
=
where
Voi = Flta+cih,Ong) + Zng + Enlta +csh) (4.1.18)
~Znj — Fo, (ta + cjh), om, (4.1.19)
with
o m N
Unj=tn+hY aj¥us (4.1.20)
=t
Zng = h 3 Wik (ta + Cih ta + Eiuh, Altn + Eiuh)), (4121)
b=l
and

Zoj = h Y Tk (ta +cihute,, +Ejuhailte,, +5,0) . (41.22)

=1

Here, wj, := ¢jby, Wi = Tngbyr With by i= cu(1), & = ¢jcu and &, o=

Ynjcu- The lag term approximations Fj(t) in (4.1.19) corresponding to the

exact lag term (4.1.16) is

) alm N
Fatng) =h Y Y buk(tng, tiger Usy)- (41.23)
et
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4.2 Global convergence of collocation solu-
tions

In this section, we give the global convergence results for collocation approx-

imations to of delay di i ions of first order. The dis-

crete version of Gronwall-type inequality is the essential tool for the proof. It
should be mentioned that similar results hold for higher order delay differen-
tial or integro-differential equations with properly modified proofs. In [100],

a proof for global convergence of collocation solutions to Volterra integro-

with i delay gt (0 < ¢ < 1) was given.

Consider the delay differential equation
v'(t) = at)y(t) +b()ylet), tel, y(0)=uyo (4.2.1)

where 0 < ¢ < 1. We know the solution of (4.2.1) is smooth if a and b are
smooth. We seek a collocation solution u for (4.2.1) in S©(IIy), and give

the global convergence order for such a numerical solution.

Theorem 4.2.1 Suppose a, b € C™[0,T] in (4.2.1). Then for any (uni-
fori:t mesh Ty with sufficiently small h = T/N, the collocation solution
u € SO(Ily) to (4.2.1) is uniquely defined. For every choice of the collo-
cation parameters {c;} with0 < ¢ < --- <cm < 1, the errore ==y —u
satisfies

llelleo < Coh™,  l€'lleo < C1A™,



with Cy and Cy denoting suitable finite constants depending on the {c;}.

Proof: The Taylor expansion of the analytic solution y(t) for (4.2.1) is

m
Y(tn +sh) = angs' + A" Ra(s),
=0

where an = Aty (tn) /1!, Ra(s) =y (6)s™ /(M + 1)L &n € (tns tnsr)-

Also, the collocation solution u is of the form
m
utn +sh) = dnys’, s€[0,1].
=1

Hence, the error e satisfies

e(tn + sh) = K™ {Buo + 3 fuus' + Ba(s)}, s€[0,1], (42.2)
=
where R™+' 8, = apy — Gny, L =0,1,--- ,m. Again, the error satisfies the
following equation
€ (tn+sh) = a(ta + sh)e(tn + sh)
+b(tn + sh)e(q(tn + sh)) + 6(tn + sh). (4.2.3)
Computing derivatives on both sides of (4.2.2), we get
€ (tn +sh) = h™{3_ 1Bus™ + Ro(s)}, s€[0,1]. (4.2.4)
=
Substituting (4.2.2) and (4.2.4) into (4.2.3) yields
m m m
S Baicl™t = had Buich+hb 3 B it Vo
= = =0
+ haBn(e:) + hbRq, (Yas) — Ru(), (4.2.5)
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with @ = a(ts + ¢;h) and b = b(t, + cih), where ga; and 7, are defined in

(4.1.2). We may rewrite (4.2.5) as
m m
> 1Basc, — ha Y Buyct
= =
= hafng+hbd Be,cathi+ hbBy, 0 + Dy (4.2.6)
=
i=1,2,---,mn=0,1,--,N -1, with

A = haRy(c) + hbRy, (ni) — Ra(cs).

The continuity of the imating polynomial spline at the knots ITy yields

an additional relationship between f, 0 and the vectors §;, i < n, namely,

Bro = Brro+ 3> Brcri+ Baa(),
=1

n=1,2,---,N — 1. Furthermore, we have
azilom net

Bro= 2. Bu+ Y Re(1). (4.2.7)
i=0 [=1 k=0

Combining (4.2.6) and (4.2.7), we get

m m m
3 Uit — ha Y Buuch = hb Y Ban i Thi
i=1 = =1

where

nlm @izl m
@ni=hay Y Bu+hb 3 3 B
j=0i=1 =0 =1
Pni = ha(Ro(1) — Ba(0)) + hb(Ro(1) = Rg, ;(0)) + Dnys-
‘We now need to consider three cases according to the value of g, ; (see

also the three cases in Section 4.1.1):
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Case I: gu;=nforalli=1,2,-

,m.

In this case, we can switch (4.2.8) to a more compact form, namely
Ba=(A=-hD)™'V,

where A = (Ic™Y) € R™™, D = (ac+by.,) € R™™ and V = (B i4-pns)T €
R™. The matrices A and D are invertible for sufficiently small & > 0. Setting

11Bally = £ |Bn.l. we obtain
wed

1Balli SRC S NGl + R, n=0,1,--- N —1, (4.2.9)
=

where C and R have obvious meanings. This is a discrete Gronwall-type

inequality, and thus we obtain (see Chapter 1 of [21])
[1Balls < ¥R = e R.
Hence, by (4.2.2) and (4.2.7),
len(tn + sh)| < K™(B + My), tn+sh € I,

where My, = max{[y™ (¢)|/ml : ¢ € I}.
Case IT: gz <nifi=1,2,--- 4 qus=nifi=p+1,---,m for some st

with 1 < g < m. In this case,

u
Bn = (A —hDo) (A} Dibo; + V),
=t

where D; (1 < i < 1) is an m x m matrix whose i-th row is (b7}

BRLe%8

and all other rows are zero vectors. Dy is also an m X m matrix: its j-th row
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is (acl,--- ,acl), when j = 1,---,p, and is (ac} + byl , -+ ,acl + by,),
when j = p+1,---,m. The rest of the proof is similar to that of Case I.
Case III: gns<nforalli=1,2,---,m.
The derivation of the analogue of (4.2.9) is straightforward, since in
this case, Do = (ac})mxm- o
Theorem 4.2.1 remains valid for the nonlinear DVIDE (4.1.14).

Theorem 4.2.2 Let [ = f(t,y) and k := k(t.s,y) in (4.1.14) be m times

differentiable on their respective domains, and assume that f,
and ky are bounded. Then there exists h > 0 such that the collocation equation
(4.1.15) defines for each h € (0,h) a unique approzimation u € SO (Ily).
For every choice of the collocation parameters {c;} with0 < ¢; <--+ < cm <

1, the error e =y — u satisfies

llellee < Coh™,  l€'lles < C1A™,
with Cy and C, denoting suitable finite constants depending on the {c;}.
The proof is similar to that of Theorem 4.2.1 using the linearization
techniques described in Remark 3.3.1. The reader may consult [100] for fur-
ther details. See also [21] for analogous results for Volterra integro-differential

equation without delay.

Remark 4.2.1 Theorem 4.2.2 is also valid for Volterra integro-differential

equation with pure delay
' at
Y (t)=y(t)+/D k(t,s,y(s))ds, tel, y(0)=vwo,
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where 0 < g < 1.

4.3 Local superconvergence

In Section 4.2, we investigated the global convergence order of collocation
method. In this section, we want to know what order of convergence we
can get if we only look at the mesh points instead of the whole interval.
Intuitively, we expect a higher order of convergence as in the case of constant
delay equations.

First, we provide some properties of the analytic solution of our prob-
lem. This gives us some ideas about what could happen to the numerical
solution of the problem. Then we look at the problem specifically at t = h
for the DDE and the DVIDE. We also provide a numerical example.

Consider the first-order equation
¥'(t) = by(qt), (0)=1, (4.3.1)

with b € C and 0 < g < 1. The analytic solution of (4.3.1) is

o k(k-1)/2
v = Y T (432)
& ®

Detailed descriptions of its properties may be found in [47], [66], and in [5].
We only mention the following result from [59].

Theorem 4.3.1 The solution of (4.3.1) cannot be uniformly bounded for
>0, regardless of the value of b € C\{0} and q € (0,1).
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All these shows that the DDE (4.3.1) has property that is very differ-
ent from that of its classical (non-delay) counterpart. We may expect this
difference carries over to the collocation solution.

Padé approximants to the exact solution play an important role in the
numerical analysis of initial value problems [27] and [61]. Basically, Padé
approximants are optimal rational approximants to a function possessing a

power series. The following definition makes this more precise.

Definition 4.3.1  Let f(z) have a power series in a neighborhood of z = 0.
If polynomials P() and Q(z), of degrees p and g respectively, can be found

such that
_Pz)
f(2) 2@

with Q(0) = 1, then P(z)/Q(z) is a Padé approximant to f(z). When p =g,

= O(jzp**Y),

P(2)/Q(2) is called a diagonal Padé approximant to f(z).

The following examples are given for illustrative purpose, and we set
2 := bh. The first two diagonal Padé approximants for (4.3.2) are (see [19])
Example 4.3.1

1+(1-%)z
Bslana)e 2
11(239) =
Thus, for g = 4,
1 1+32
Rualzg) = 1= o
compared with
143z
Riu(2) = Riu(51) = —%&,
1-1z
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for f(z;1) = exp(z).
Example 4.3.2
14 Scle=2gt4qt, | a(18-240+10g330") ;2

Raa(z:9) = *,r—*—h ]
K C@-2) a(4-3q)
1+ 55 2 1:(:4.)‘2

In particular,
1, 1+¥-41822
Rpa(z:3) = l_v—%ﬁ::"'
compared with

Rpa(2) = Rpa(2:1) =

for £(z:1) = exp(z).
The collocation equation of (4.3.1) is given by
o = A Vo), Vo= bt + b paLI A
Z
where Vp; := y/(ta + cih). When n=0.2,=0,t; = h,

o(B) =1+ A3 Vasa(D),
2

Vi = {1+ b3 a5(ae)Voy ),

Theorem 4.3.2 Let v € S (Ily) be the collocation solution to the DDE
(4.8.1). Then forq € (0,1),

Prnm(2:9)

v = GG

where

n e N
Pam(2;0) 1= 3 qfCm+1=9/2 N m=3) (gi=m=1) i
=]
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O = i ORIz =) ()
=0

with
N(t) = % e -c)
L=

For a brief proof of this theorem and next example, reader may consult [19)].

Example 4.3.3 For m = 1 we get

It is easy to verify that |y(k) — v(h)| = O(h?) if and only if ¢, = 1/2 which
is a Gauss point.
For m = 2, collocation for DDE (4.3.1) at the Gauss points yields

1+ (1 L)z+1(1—q+!-)z
_Lz+9_72

u(h) =

with y(h) — v(k) = O(h*) forall 0 < g < 1.
‘We now extend the above theorem to a special case of the VIDE (4.1.14)
with proportional delay,
w=— "8 -
vy == [ Tvl)s, v =1, (433)
with b € C and 0 < ¢ < 1. The analytic solution of (4.3.3) is

1)k gkt
o) —gu( 222), o0, @34

which, for g = 1, reduces to y(£) = cos(5t).
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The i form for the coll ion solution to (4.3.3) is given

by
w(tast) = ultn) + h 3 Unjoy(1),
J=t

with

2 b‘l 2 m

Ui = —mZuti) - —"_2 U850
s

Z u(ty) — —— Z Zﬁl(l)l/ﬂ i=1.2--,m,

where

B(t) = /o (¢ — 5)L;(s)ds. (43.5)
Lemma 4.3.1 The collocation solution u of (4.3.3) satisfies
u(h) = (1= 257+ L2 Ao@) e (43.6)
where €7 := (1,2, ,¢m), BT == (aa(1), -+ , @m(1)), and
Ao(q) = (8(gc:))ig=12,m-

Theorem 4.3.3 Let u € SQO(Ily) be the collocation solution to the DVIE
(4.8.8), and set n:=[(m +1)/2]. Then for q € (0,1),

Pomam(2:q)
) = Qaman(zi)
where

Pomam(2:9) - Z( [P gV gy (4:3.7)
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'-f(_l)j?,uuxN(zMHl(o)z“, (4.3.8)
=

with
im
N@) = —T[(t-c).
© =g 1=
Proof: In order to establish the above result, we generalize the approach first
introduced by Norsett for ODESs (see, for example, [61]). Assume, without
loss of generality, that h = 1. Since on [0, 4] = [0, 1], the collocation solution

u is a polynomial of degree m, we set
at b2 15
' (t) — =K - N(t ith N(t) := — — i),
O+ [T Tul)ds = KN, with N =TT e)

with the constant K to be i ive di iation and replac-

ing of u/(¢’t) by the corresponding expressions involving only u'(¢7*'t) and

derivatives of NV leads to

=1
w)(£) - (—1)P82gH = Du(gnt) — K 3 (~1)768 iU+ N@n=2i=1) (i),
i=0

with n = [(m-+1)/2]. If we now set ¢ = 0 and t = 1/¢" in the above equation
and replace b by z (= bh) we readily obtain the result of Theorem 4.3.3.
o
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Example 4.3.4 For m =1, we find

In order to get y(h) — u(h) = O(h?™), we must have ¢, = 1/2 which is a
Gauss point. When g = 1 and ¢; = 1/2,

1-32
1+ 522

u(h) =

‘When m = 2, ¢; and c;, are the Gauss points, we have

Lt (e~ o= Dt + e’ ~ o+ et
T+ (30 - B2 + 507

u(h) = (4.3.9)

Note that y(k) — u(h) = O(h*) holds for all 0 < g < 1. If g = 1, then

12, 14
152 + 52 (4.3.10)
1+ 52+ 37

u(h) =
As an illustration, see also [19], consider the linear DDE (4.2.1) with
a=—1,b=-1/2 and let m = 2 ie., the collocation solution v is in

S8, The collocation parameters are the Gauss points, ¢; = (3 — /3)/6.

= (3+V3)/6.

83



t=t, b y(t) — v(t) y(t) = v(t) | y(t) — ualt)
q=0.9 q=05
h |02 -1.78E-6 5.78E-6
0.1 -3.87E-8 4.48E-7
0.05 || 3.75E-10 3.10E-8
0.025 | 1.20E-10 2.04E-9
(=2 (=4
10 |02 -4.33E-6 -1.55E-8
0.1 -1.88E-7 -3.33E-7
005 || -L1SE8 -2.07E-8 | -6.20E-8
0.025 | -7.57E-10 | -9.51E-10 | -1.30E-9 | -3.87E-9
=4 | =4 | =9 (=49
50 |02 -3.13E-8 | -2.78E-8 | 6.00E-7 1.22E-6
0.1 -L51E9 | -195E9 | L.36E-9 LO1E-7
0.05 | -897E-11 | -1.08E-10 | 9.53E-11 | -8.38E-9
0.025 || -5.65E-12 | -6.80E-12 | 6.20E-12 | -5.21E-10
(p"=4) (p"=4) (p=4) (p=4)

Table 4.1: Numerical results for equation (4.2.1)

The numbers between parentheses for p* indicate the observed order

of local superconvergence. These results suggest that, in spite of the non-

optimal order at ¢, = h, the conjectured (exact) optimal order p* = 2m =4

as the i

is being
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4.4 Extension of results to second-order DDE

In this section, we extend part of our results in Section 4.3 to second-order dif-

ferential i with ional delay, i the vergence

results at t = h. See also [100].
In analogy to first-order ODEs and delay DEs, see [24], [25] and [61],

consider the test equation
v'(t) = ~by(qt), w(0)=1, ¥(0)=0, (4.4.1)

with b € C and 0 < ¢ < 1. The analytic solution of (4.4.1) is (compare
(4.3.4))

(4.4.2)

which, for ¢ =1, reduces to y(t) = cos(bt).

Theorem 4.4.1 ([8]) The solution of (4.4.1) is an entire function of order
zero, and hence cannot be uniformly bounded for t > 0, regardless of the value

of b € C\{0}. Also, y(t) possesses infinitely many zeros for any g € (0,1).

The first part can be proved by calculating the order of (4.4.2), which is
an entire function, in complete analogy to a result for the first-order DDE
(4.3.1) (see [59]). The second part is obtained by applying a result from [94].

The collocation solution to (4.4.1) is given by
e

Uns1 = Vn + B, + B2 Vaafi(1),
i=1
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Yo = v+ h Y Vasai(l),

=

Vai =~ {0, +Amihtl,, + Y Bi(1m)Vans i}
=

where Vpi i= y"(ta + cih), and B(t) is defined by (4.3.3). When n =
to=0,t =h,
o(h) = 1+ K23 VouBi(1),
=

Voi= =0 {L+A Y Bige)Vos}, i=1,2,,m.
=
Theorem 4.4.2 Let v € S, (Ily) be the collocation solution to the DDE

(4-4.1), and n := [(m + 2)/2]. Then forq € (0,1),

h = Pamam(ziq)

o

" Quman(z9)
where
e
Pamam(ziq) 1= 3_(~1Ygii- R =232 (gi=n) 2, (4.4.3)
=
and
i
Qamam 1= 3 (—1)igin=i= y(n-2i-2)(0) 7% (4.4.4)
=
where
n—1(9n — 25 — 1)(—1)i6% g/(2n=1) N (22=2i=2)(g
%:Zmu( =) )E )__zf = ()’ (@45)
Trsa(—1)7b% ¢ien=3) Nn=2i-1)(0)
and

F(t) = (t— ) N(t), N(&) = % Tt = -
=
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Proof: Assume h = 1. Since on [0, 4] = [0, 1], the collocation solution v is a
polynomial of degree m + 1, we set

-

II¢-«).
o

v"(t) + bPu(qt) = K - N(t), with N(t):=

with the constant K to be determined. Successive differentiation and replac-
ing of v"/(¢’t) by the corresponding expressions involving only v(¢/*'t) and

derivatives of IV leads to

n1
) (1) — (1B gy () — K 3 (—1)Y b qien=i=b an=2-2) git),
j=o

with n := [(m+2)/2]. After setting ¢ = 0 and ¢ = 1/q" in the above equation
and substituting b by z = bk we obtain (4.4.3) and (4.4.4). The number

co is ined by further diffe iation and use of the initial condition

y'(0)=0.
'f(,l):bzyq:rzn-nN(zn—n—l)(n) =0,

=
=1
SO (—1)ibH gt [~cQN(”‘""‘)(0)+(Zn—2j—1)1\/’“"‘2”2)(0)] =0
=
Hence, (4.4.5) holds. o
It should be noted that the derivatives in (4.4.3) and (4.4.4) are of even

orders, while those in (4.3.7) and (4.3.8) are of odd orders.

Example 4.4.1 When m = 1, we get

1-(-da)5

h) =
vlk) 1+des
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Ifg=1,¢ =1/2 (Gauss point), then

1-32
1+522

(k) =

When m = 2, collocation for the DDE (4.4.1) at the Gauss points yields

_1-G+5d - 507 (ﬁ——4+mq )g*z
u(h) = e e (4.4.6)

with y(h) — u(h) = O(h*) forall 0 < g < 1. Ifg=1,

1422+ 52t
—— 9% Tt 447
v =13 py (447)

Remark 4.4.1 While (4.4.6) and (4.3.9) are not identical, (4.4.7) and

(4.3.10) coincide.

Theorem 4.4.3 Assume that v € Sy, (Il,) and u € SO(I1,) are, respec-
tively, the collocation solutions for the DDE (4.4.1) and the DVIDE (4.3.5),
using the same collocation parameters {ci,c2,"** ,¢m}. Then att=1t,=h,

u(h) # u(h) whenever 0 < g <1.

If £(2) is given by (4.4.2), one expects its Padé approximant to contain
only even order terms. In the following, we give the first two diagonal Padé
approximants of f(z), also those of cos z (corresponding to ¢ = 1), and make

comparisons between them.

Example 4.4.2 The first two diagonal Padé approximants for (4.4.2) are

- 301 -3d))2*
1+ 35¢°2%

Raa(ziq) =
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and

$0 5 00) P s (i 50 T e ? — 550 72
1-s5 (3 — 5002 + s g t 3 02) 02t

T|’

1+
Ria(zq)=—2

Example 4.4.3 The first two diagonal Padé approximants for cos z are
{8
Rpp(z) = ﬁ = Rap(2:1)

and

22+
Ruale) = B8R ),
T+ 5522 + i 2
Based on the examples in this and the previous sections, we have the

following result.

Theorem 4.4.4 For0 < q < 1, the diagonal Padé approzimants of solutions
of (4-4-1) att = h are not equal to the collocation solutions of (4.4.1) att = h
corresponding to the Gauss points. This is true in particular for ¢ = 1 where

the solution of (4.4.1) is cos z.

Remark 4.4.2 Since the diagonal Padé approximant is unique and has an
order of 2m + 1, Theorem 4.4.4 suggests that the optimal order of colloca-
tion method is less than 2m + 1. This observation is also supported by the

following numerical example.

‘We now provide some numerical results for problem (4.4.1), choosing

m=2,c=(3-V3)/6 ca=(3+3)/6.
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t=t,(nh) | b y(t)-u(t) for
q=1.0 q=0.99 q=0.5 =0.1
h(n=1) |0.1 -231E-10 | -2.40E-10 |-9.40E-11 | -3.02E-13
0.05 | -3.61E-12| -3.75E-12 |-147E-12 |-4.73E-15
0.025 |-5.65E-14 | -5.87E-14 |-2.30E-14| (0)
0.0125 | -8.88E-16 (0) -361E-16|  (0)
(p*=6) (p"=6) (p"=6) | (=6)
1.0 0.1 -1.95E-8 | -2.04E-8 | -1.63E-8 | -6.94E-10
005 | -1.22E9 | -1.29E-9 | -1.O2E-9 | -4.34E-11
0.025 | -7.61E-11| -8.82E-11 |-6.36E-11 | -2.71E-12
0.0125 || -4.76E-12 (0) -3.97E-12 | -1.69E-13
(=9 (=4 (=4 | (=9
5.0 0.1 L11E7 | 184E-7 | -1.98E-7 | -L72E-8
0.05 6.94E9 | 114E-8 | -1.24E-8 | -1.07E-9
0.025 | 4.34E-10 | 7.32E-10 | -7.72E-10 | -6.65E-11
0.0125 | 2.71E-11 ) -4.83E-11 | -4.15E-12
=49 | =49 |@=9 | @E=9

Table 4.2: Numerical illustration for equation (4.4.1)

From the above table, we see that p* = 6 when n = 1 and p* = 4 when
n > 1. This example suggests that the convergence order at ¢, is at least 2m.
‘We are still curious about the result of the first step (n = 1), because the
numerical result at this step suggests a higher order of convergence, 2m + 2.
We showed in Table 4.2 that local superconvergence of order p* = 2m+2

occurs at ¢ = t; = h if collocation is at the m Gauss points. In contrast to
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DDEs with constant delay and VIDEs, the analysis of local superconvergence
at all mesh points ¢ = t,, n < N, ty =T, is much more complex in the case
of the proportional delay gt, 0 < g < 1. See also Section 5.1.

The problem of local superconvergence in collocation methods for differ-
ential and Volterra functional equations with state-dependent delay remains

open.
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Chapter 5

New Approach and Outlook

In Section 5.1, we propose a new approach to the superconvergence order problem

of collocation solutions to differential equations with proportional delay. The

reader may look at [45] in which embeddi iques for delay ions are

discussed. In Section 5.2, we present some potential research projects.

5.1 New approach

As shown in Section 2.1.2, Theorem 2.1.9 in particular, the classical resolvent

approach does not work for blishing local gence results in the
proportional delay case. In this section, we shall outline a new approach to
this problem, and obtain some initial results.

In [45], the authors proposed a standard embedding scheme for delay
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differential equations. The basic idea is to convert the given delay differential
equation into an infinite-dimensional ODE system, and then to truncate it
at some point. The property of the solution to the truncated system largely
reflects that of the solution to the original problem.

In this section, we first embed our proportional delay problem into
an infinite-dimensional ODE system, and then truncate it. The truncated
system is finite-dimensional. The classical superconvergence results hold for
this system. Then, we find the error between the collocation solution to the
original problem and the collocation solution to the truncated system. By
doing so, we are able to measure the collocation error of the proportional
delay problem at mesh points. Thus we determine the superconvergence

order.

5.1.1 Embedding techniques
Consider delay differential equation
y'(t) = f(t.y(2),9(6%))), y(0) =10, (5.1.1)

where f is a smooth function and the differentiable delay function @ satisfies

6(0) =0,0<6(t) <tfort>0. Let 0, be the n-th iterate of the function 6:

n times

0(t) =t, Oa(t) =000

o
oj
2

neN,
and define
za(t) = y(6a(t)), mnEN,.
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Since 2, (£) = 6, (£)y/ (6a(t)), it follows from (5.1.1) that the functions {z,}32o
obey the infinite-dimensional ODE system:
2(t) = 6, () f (Ba(t), 2 (t). z041(t)), 2a(0) =30, nENo.  (5.1.2)
We call (5.1.2) a standard embedding of the delay equation (5.1.1) (see also
[45]).
Choose a (large) M and let 2y, = yo. For every i = M —1, M =2,--- 0,
solve the scalar ODE
2(t) = 6O f(6:(1), z(2), i1 (1), 2(0) = vo-
Consider a special case of (5.1.1), f(t,u,v) = au + bv and 6(t) = qt,
the pantograph equation:
y'(t) = ay(t) + by(at),  ¥(0) = wo. (5.1.3)
For problem (5.1.3), we are able to derive explicitly the functions 2; by
back substitution and compare them to the known exact solution (see [47])
© i)ie““’
i

o0t) = vo(wiglen 3¢

=
where w = b/a and
sk
(di )= [1(1 = ¢*d), [@n = (¢;0)n-
o

Eventually z := 2 is given by

2(t) = w (AW)M"‘Mil
=0

(M—i)(M—i=1)/2
S ——

Moicl jG-1)/2
2 wi
= ld;

Wheis e "'] 4 (5.1.4)



Clearly, z(£) — y(t) as n — oo and if R(e) < 0, then this convergence is
uniform for ¢ > 0. See [45].

‘The main difficulty is to estimate the difference between the collocation
solution to the truncated system and the collocation solution to the original
problem.

For test purpose, consider the delay differential equation
v(t) = bylet), y(0) =10, (5.1.5)
with 0 < ¢ < 1. Its analytic solution is (compare (4.3.2))

oo k(k—1)/2
vy =wY L —(b)*. (5.1.6)
k=0 K

Note that (5.1.6) is not a special case of (5.1.4) in that we cannot simply let
@=0in (5.1.4) (since w = b/a) even though (5.1.3) includes (5.1.5).
First, we embed (5.1.5) into an infinite system of ODEs. Let
(1) =v(d't), ie.
Then (5.1.5) is equivalent to the infinite system
Z{(t) = b0z (t), i€No. (5.1.7)
Observe that, after a finite number of steps, the quantity on the right
side of (5.1.7) can be very small. This fact motivates us to truncate (5.1.7)
after a certain number of steps to get a finite system of ODEs, namely,
24(t) =bg'zn(t), z(0) =w, i=0,12---,M-1, (5.1.8)
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and
2p(t) =0, 2zm(0) =yo.
Our purpose is to understand how large the difference is between the

exact solution and the collocation approximation of (5.1.5) at certain points

(mesh points). But first, we introduce the following compact

Zu(t) = (Zmo(t), Zaa(®), - Zaae(t))"

(z0(t), 21(8), -+ 2me ()T

Zu(0) = yo(1,1,--- ,1)T € RM+L,

P = (ei)r+1)x(M+1)s

where
bg™t, j=i+l,
8 ddivi

e =

Then (5.1.8) may be rewritten as
Z4(t) = PZuclt),  Zut(0) = wo(L1,--- 1) (5.1.9)
From the classical ODE theory we know that the analytic solution of

(5.1.9) is
Zp(t) = exp(tP) - Zp(0).
Its i-th component is given by
Ry

i g
Zuilt) = #(t) = w0 3 (0",
k=0 &
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where i =0,1,2,---, M. In particular,

M qk(k—ll/z "
Zucalt) = m(0) =0 Y. T (o). (5:1.10)
=

Theorem 5.1.1 The difference between the analytic solution of (5.1.5) and

that of (5.1.9) is bounded by Ce® - [bt|*+1, ie.,

[y(t) — Zaro(t)] < Celtth - Jor|M+1, (5.1.11)
where C = [yo| /(M + 1)1
Proof: The result is proved by subtracting (5.1.10) from (5.1.6). o
Remark 5.1.1 We can make C - [bt|*+! arbitrarily small as long as M is

big enough and ¢ is finite.

5.1.2 Collocation solution of the truncated system

Rather than dealing with the problem of ishing local gence
result for the proportional delay differential equation (5.1.5) directly, we first
concentrate on the collocation solution of (5.1.8).
Definition 5.1.1
M +1 times
SO (M) := S (M) x SO (ITy) x --- x SO (M),

the Cartesian product of S@(ILy) which is defined in Section 1.1.
We denote the collocation solution of (5.1.9) by

Var(t) = (Varo(®), Varat)s -+ , Varar(8))" € SQO(Tlw),
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and set

T
Vid(tad) = (Vico(tna): Vira(tns) - Vigar(tns)) - € R¥,

with £,; :=tn + b, for i =1,2,--- ,m. Then,

Vir(tn + sh) = Var(ta) + AV () Bs, (5.1.12)
where

V'(ta) = (Vie(tna): s Varltnm) ) arstym »
B, = (an(s), a2(s), -+ am(s)" -
Note that V(-) also depends on M. For the definition of a;(s) and related
properties, see Section 3.1.1. Setting V(tn) = (Var(tn), - - - ,V}”(t,.))(M“)Xm,
we have
Vig(tn + cih) = PVir(tn + cih) = PVar(ta) +hAPV'(ta) By i =1,2,--- ,m.
Hence,
V'(t,) = PV (ta) + hPV'(t,) B, (5.1.13)

where

B=(By,Be,,+* , Bep) = (0a(6))i =12 m-

Iterating (5.1.13), we find
V'(ta) = PV(ta) + hPV'(ta) B = PV(ta) + hP(PV (ta) + hPV'(t.) B)B
= PV(t,) + hP?V (ts) B + h*P*V'(t,) B?
= PV(ta) + hP?V(t,) B + h*PV (t,) B? + h*P*V (t,) B®
+oo e BMTIPMY () B + O(RY),
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because rankP = M, PM+! = (. Letting s = 1 in (5.1.12), we obtain
Var(tar1) = Var(ta) + hV'(ta) By
= Vi(ta) + hPV (ta) By + h*P?V (t,) BB, + h*P*V (t,) BB,
+ oo+ RMPMV () BM1B + O(RMY). (5.1.14)
Its first component is

Varo(tas1) = Viro(ta) +0hVi(tn) Bi+h*6qVa(tn) BBy +h*6°¢*Va(ta) B* By

b ook RMBM MDY, (¢ VBB L O(RMY),  (5.1.15)

where Vi(ta) = Vigi(tn)e? € R™ and e = (1,1,---,1)T € R™.

The following is a classical result (see, for example, [39] and [51]).

Theorem 5.1.2 For any finite M, the collocation solution Vi (t) € S©(Ily)
to the system of ODEs (5.1.9) has superconvergence order of 2m if the col-

location parameters {c; i =1,2,-+- ,m} are Gauss points. In other words,
1Zaro(tn) = Vao(ta)| < Carh®™, (5.1.16)

where Ciy s a finite constant.

5.1.3 Superconvergence results

Consider now the m-stage collocation solution for (5.1.5).
m
V'(tn + sh) = Z v'(tn + ¢jh) Li(s),

i=1
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'(ta + c:h) = bu(g(ta + cih)) = bu(te,, + Taih),
U(tn + sh) = v(ta) + A i V' (tn + cih)ay(s).
=

In particular, when s =1, we have

Wtnsr) = v(ta) + 5 30V (tn + )05 (1), (5.1.17)
=
Vltn b cih) = bulte,s) + b 30 vt + i)y (), (5.118)
=
fori=1,2,---,m.

In order to highlight the difficulties of the problem, we use the following

diagram to describe them:

Yy’ (t)=by(at) collocation solution (5.1.17)

2

Q
truncated system (5.1.9) l—-‘ collocation solution (5.1.15)

Figure 5.1: New approach

Q: Does the collocation solution (5.1.17) have a superconvergence order of

2m for the Gauss points? i.e., does

p
o, [y(ta) = v(ta)| < CH*™

hold?
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Q2

Q3:

®

73

We break down this question into three subquestions:

: Can the analytic solution of the truncated system be arbitrarily close

to the analytic solution of (5.1.5)7

This question is answered by Theorem 5.1.1.

Does the collocation solution to the truncated system have a supercon-

vergence order of 2m for the Gauss points?

This question is answered by Theorem 5.1.2.

Can the diff between collocation solutions (5.1.17) and (5.1.15)

be bounded by Ch*™? i.e., does
omax Vico(ta) — v(ta)| < CA*™

hold?

If we have an answer to Q3, problem Q is solved by

[y(®) —v(®)] < ly(t) — Zaco(t)| +1Zaco(t) — Varo(8)| +[Varo(t) —v(e)], ¢ € Ty

‘We can explicitly connect Virg(t) to the initial condition by iterating

(5.1.14). However, it is hard to do so for (5.1.17).

For illustration purpose, we consider the collocation solution of (5.1.5)

with . = 1. Since we have only a single collocation parameter c;, and hence

a single value g1, we only need to consider Case I and III (recall Section

4.1, page 67).

101



Case I: gn) =n. Only one value of n satisfies g,; = n, it is » = 0. In this
case,

ly(h) —v(h)| < CR*™,
when collocation is at the Gauss point ¢ = 1/2. It is even true for m > 1.
See Examples 4.3.3-4.3.4, 4.4.1 and [19].
Case III: gn; <n. This is the case for alln > 1.

In this case, (5.1.18) becomes
V(ta1) = bulte,.,) + AV (tn 1) Tmut-

From (5.1.17), we find

U(tas1) = V(tn) + OR(L = 70,1)0(tgns) + bhVn1V(Egn 1) .1.19)

It is hard to get an explicit expression which connects v(t,) and v(0)
from (5.1.19) for general g € (0,1). However, when g is a reciprocal of a

positive integer, we are able to prove the following result (see also [99]):

Theorem 5.1.3 When q = 1/I, | € N, the one-point (m = 1) collocation
solution of (5.1.5) in SO (Ily) possesses the superconvergence order p* =

2m = 2 if and only if collocation is at the Gauss point, i.e., c, = c=1/2.

Remark 5.1.2 In [25], among other results, a sufficient condition for sta-
bility of one-point collocation solution of (5.1.3) with ¢ = 1/2 and yo =1 is

given.
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Proof: The one-point collocation solution of (5.1.5) is of the form (5.1.19).
Let z := bh. When ¢ =1/l, 1 € N, we have

t—1+c
b Mo = —7—

L, for i=12,---,l. (5.120)

Tieti-r

Then (5.1.19) can be rewritten as

U(tiees) = (i) + (1~ L) 2v(te) + lizv(tes), (5.1.21)
for i = 1,2,---,L For ease of exposition, we choose | = 2, then (5.1.20)
becomes
c l+c
Tt = Qs =K Ta =5 Taa = 5

and (5.1.21) is simplified as

2
Vtaen) = wta) + 5oz0(te) + Foultin), (5.1.22)
1 1+ -
taksa) = Vo) + —p20(te) + —g—v(ten).  (5.123)

We claim that

w(ta) = (1 + 2%z +k(k+c— %)27) v(0) + O(2k - %), (5.1.24)

1
(tas) = (1+(2k +)z+ (k) + c)zi)u(n)+o((zk+1)zﬂy (5.1.25)
We prove the claim by induction. Tt is clear that, when & = 0,

o) = (0)+ (1 - Hav(0) + Fru(t).
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Hence,
1+(1—c/2)z
iean
= (1+z+cz*/2)v(0) + O(z%),

v(t)

where O(z%) = O((2k + 1) - 2*). Suppose (5.1.24) and (5.1.25) are true for
allk <n. When k=n+1,

1=

c I4e
otw) = v(tensa) = vltansr) + —5—20(tn) +

2
(1+@n+1)z+(n+1/2)(n+ )2%) v(0) +
14
2

0(tast)
l-c

2

zv(ta)

o ot (tar) + O(2k - ).

If n = 2/, we have

vlta) = (1+ (4 +2)z+ (1/2+ ¢+ 3L+ 2l + 402)22) v(0) + O(2k - )

(1 +2k2 + k(k + c — 1/2)22) v(0) + O(2k - 2).

The same argument can be used for n = 2/ + 1. In either case, we have
proved (5.1.24). Similarly, we can prove (5.1.25).

For the exact solution of (5.1.5), we have (compare (5.1.6))
2,2
y(t) = w (1 +bt+ Lit ) +0((6t)%)
b2
= w (1 +bt+ T) +O((bt)%).
Hence,

y(te) — v(tae)| = [k* = k(k +c = 1/2)| 22 + O(2k - 2°),
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where 2k - 2% = 26°h? - kh < 26°h? - ty = Ch?. Thus |y(tax) — v(tas)| is of
order 2 if and only if k? = k(k + ¢ — 1/2) which implies ¢ = 1/2. Similarly,
[y(ta41) ~v(tats1)| = O(h?) if and only if ¢ = 1/2. This concludes the proof.

a

Remark 5.1.3 If ¢ # 1/2, we will have |y(tn) —v(t,)| = O(h). When ! =1,

hence g = 1, this theorem includes the classical superconvergence result. We

expect that the problem becomes much harder for g # 1/{ (I € N) and m > 1.
‘When m = 1, the collocation solution of (4.3.3) is given by

U(tn + sh) = u(tn) + sh'(ts + ch), (5.1.26)

where /(t, + ch) is determined by

b [loaa+rmih

(tn +ch) = G
' (tn + ch) = la)ile
0% [lanatTnnh B2t
== ds — =
o s =25 [T uterds
_t

“tn.t Gn17lop
- [ A Uty o+ sh)ds+ g /0' u(t‘+sh)ds]
b 2 ph
=g 29n1(tgy 1) + Vo htt' (g, + ch)

Gn1~1
+ > [2ult) + hu'(t: +ch)q 4 (5.1.27)
=1
Let z := bh and eliminate u'(t, + ch), we get

22
Winr) = u(tn)—E[%,uz—vﬂ.uu(thn
s
+7§.xu(tqn.‘+l)+"z [ultis) +u(t,)]} . (5.128)
=
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Theorem 5.1.4 When ¢ = 1/I, | € N, the one-point (m = 1) collocation
solution of (4.3.3) in Sf”(ﬂy) possesses the superconvergence order p* =
2m =2 if and only if collocation is at the Gauss point, i.e., c; =c=1/2.

Proof: When ¢ =1/1, 1 € N, (5.1.20) holds, and (5.1.28) becomes
22
u(tiess) = wltiesicr) — ;—q [lx(2 — LJulty) + Gu(tr+1)
k-1
+ S lultye) + u.(t,)]} . (5.1.29)
=0

for i = 1,2,---,1. For ease of exposition, we choose | = 2, then (5.1.20)
becomes

c
Rt T P

9ot = Qaers

and (5.1.29) is simplified as

,_J Lz k-1
"(fn+x)="(tn)"l’[( © Julte) + St +3 lteen) 0] (5:130)
=0
Ultakr) =ultaes) = [#u(ik)+#+—c’u(th,)
+§[“(ti+l)+u(tr)]:| 3 (5.1.31)
=
We claim that
k
u(te) = (1 - 5lk+2e— 1)8) u(0) + O(hY), (5.1.32)

and prove it by induction. When k& = 0, from (5.1.28) we know
c ?
u(ty) = u(0) — 22 [g(z - ) + Iu(t,)] .
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Hence,

u(t) =

It is also clear that,

1+c
2

l+c

wa) = ultr) - 2 [F552 - ul0) + (3Pult)]
Therefore,

(1= (1+20)22) u(0) + O(AY).

So, (5.1.32) is true for k = 1,2. Suppose (5.1.32) is true for all k < 2n. When
k=2n+1, from (5.1.30) we know
U(trns1) = (1—n(2n+2c—1)z%) u(0) - (¢ +2n)z"u(0) + O(h')

= (1-@n+1)(n+0)2%) u(0) + O(h)

Il

(- 2"24“(21; #1420 1)) u(0) + O(H).

Hence (5.1.32) is true for k = 2n + 1. The same argument can be used for
k= 2n + 2. This completes the proof of (5.1.32).

For the exact solution of (4.3.3), we have (compare (4.3.4))

5
V)= (1 - "7‘) + OB
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Hence,
Bk 2 "
ly(te) — u(te)l = |5 — 5k +2c-1)(2* + O(RY).

Thus [y(tx) — u(te)| is of order 2 if and only if & = ¥(k + 2¢ — 1) which
implies ¢ = 1/2. This finishes the proof.
o

Remark 5.1.4 The technique used in the above proofs appears to work in
the case of m > 1 and ¢ = 1/I, [ € N. But more complex formulations are

expected.

The numerical experiments suggest that the superconvergence results

also hold for ¢ # 1/0 (I € N) and m > 1 (see also Tables 4.1 and 4.2):

The collocation solutions of problems (4.3.3), (4.4.1) and (5.1.3), for

general ¢ € (0,1) and m > 1, all have superconvergence order of 2m,

(ax, ly(ta) — v(ta)| < CH™™,

provided collocation is at the Gauss points.

5.2 Future projects

Based on previous work, some of our potential research projects include the

following:



5.2.1 Stability analysis of collocation methods for DEs
with constant delay

In order to describe the open numerical stability problems for DVIDEs and
DVIEs, we first provide a short survey of stability results for Runge-Kutta
and collocation methods for DDEs.

In the recent years, stability properties of numerical methods for delay
differential equations have been studied by numerous authors, for example,
see [57], [97], [98] and the references therein. In this section, we introduce
some relevant numerical stability concepts for collocation methods based on
several test equations, and survey some known numerical stability results.

Consider

V() = ay(t) +by(t—7), t>0, (5.2.1)

y(t) = (), t<0,

and

Yt) = at)y®) +b(t)y(t—71), t>0, (5.2.2

yt) = 1), t<o.

Theorem 5.2.1 (87)) If ¢ is continuous and R(a) + [b| < 0, then the ezact

solution of (5.2.1) is asymptotically stable for every T.

Theorem 5.2.2 ([87]) The analytic solution of (5.2.2) is bounded by ¢(t),
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provided that,

b8)| < ~R(a(t)), t>0. (5.2.3)

Recall Barwell’s definitions of P-stability and GP-stability (see [7]) for

numerical methods.

Definition 5.2.1 A numerical method for DDEs is P-stable if for all a,
b satisfying R(a) + [b| < 0, the numerical solution y, of (5.2.1) satisfies

limp 00 ¥ = O for every stepsize h > 0 such that

h=r1/r, (5.2.4)
where r is a positive integer. A mesh with this property is called a constrained
mesh.

In other words, a numerical method for DDEs is P-stable if it preserves
the asymptotic stability properties of the solution y(¢) of (5.2.1) under the

constraint (5.2.4) on the stepsize.

Definition 5.2.2 A numerical method for DDEs is GP-stable if, under con-

dition R(a) + |b| < 0, limp_,00 yn = 0 for every stepsize h > 0.

It is clear that a GP-stable method is P-stable too. Definitions of P-

stability and GP-stability regions can be found in, for example, [97].

Theorem 5.2.3 ([96]) A Runge-Kutta method for DDEs is P-stable if, when
used for ODES, it is A-stable.
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Theorem 5.2.4 The one-step collocation method at Gauss points for DDEs
is P-stable.
Proof: See [95] for a direct proof. (m]
It is proved in [58] that no one-step collocation method with abscissae
in [0,1) can be GP-stable.
GP-stability was also studied for the §-method in [71].

Definition 5.2.3 A numerical method for DDEs is PN-stable if, under the

condition (5.2.3), the numerical solution y, of (5.2.2) is such that
lyn] < mex ()], (5.2.5)

for every n and every stepsize h such that h = 7/r, where r is a positive

integer.

Definition 5.2.4 A numerical method for DDEs is GPN-stable if, under
condition (5.2.3), the numerical solution y, of (5.2.2) satisfies (5.2.5) for

every n and every stepsize h > 0.

‘We observe that a GPN-stable method is also PN-stable and that a
PN-stable method for DDEs is AN-stability for ODEs.

PN-stability and GPN-stability are stronger concepts than P-stability
and GP-stability in that they are based on a more general test equation,

to the same extent that AN-stability is a stronger stability concept than
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A-stability for ODEs. Yet another difference is that PN-stability and GPN-
stability are demands for contractivity of the numerical solutions, whereas P-
stability and GP-stability are demands for asymptotic stability (convergence
to zero).

While the A-stability of the numerical method for ODEs is sufficient to

assure P-stability and GP-stability provided a suitable interpolation proce-

dure is emp , PN-stability and GPN-stability cannot be even
if the numerical method for ODEs is AN-stable [97].

The collocation methods at Gauss points, which are A-stable, are P-
stable when applied to DDEs [96]. However, not all AN-stable Gauss colloca-
tion methods are PN-stable. It is shown in [87] that how the one-stage Gauss
collocation method, which is AN-stable, gives rise to a numerical solution y,
which blows up as n — oo for (5.2.2) with a(t) = —b(¢) < 0. As a result, a
stronger stability concept for ODEs methods has to be introduced.

Consider the test equation
Yt = a(y(t) +R(a®)g(®), t=0, (5.2.6)
¥(0) = w,
where g(t) is continuous.

Definition 5.2.5 ([97]) A numerical method is AN-stable if the numerical

solution yy, of (5.2.6) satisfies

[Yns1] < max{lyn], max |g(tn + c:h)|},
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whenever R(a(t)) <0, ¢t > 0, and for any mesh [y.
It is obvious that requiring a numerical method to be ANj-stable is
more than requiring that it be AN-stable. In fact, AN-stability is obtained
as a particular case when the forcing term g(£) is identically zero in the test
equation (5.2.6).
The link between PN-stability, GPN-stability and AN-stability is es-

tablished in the following result.

Theorem 5.2.5 ([97]) If the Runge-Kutta method for DDEs is PN-stable,
then the method for ODEs is ANj-stable. Conversely, if the Runge-Kutta
method for ODEs is AN;-stable, then the method for DDEs is GPN-stable.

The stability of collocation methods and direct quadrature methods for
DVIEs with constant delay have been studied by Vermiglio [89] and Cahlon
[28], respectively. See also [30] for theoretical stability results for a more
general test equation.

Consider the following delay integral equation:
. ro
V) = FO+ [ K(ts,y@)ds+ [ H(ts,u(s)ds, 20, (527)
o o
y(t) = ¢(t), te[-n0],
and the test equation corresponding to (5.2.7),
© = 1+a [y ds+b [Ty(s)ds, t20 (5.2.8)
ylt) = L+a [u(s)ds+d [ y(s)ds, £20, 5.2,

y(t) = ¢(), te[-n0]
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where a, b are complex parameters. We observe that, by differentiating
(5.2.8), we obtain (5.2.1). The P-stability is defined similar to Definition

5.2.1 using test equation (5.2.8).

Theorem 5.2.6 ([89)) If the collocation parameters {c;} are such that they
yield an A-stable collocation method for an ODE, then the corresponding

(discretized) collocation method for delay integral equation (5.2.7) is P-stable.

Stability properties of exact and discretized collocation methods for
Volterra integral and integro-differential equations without delay are studied

in [21], [35], [36] and [37).

5.2.2 Stability analysis of collocation methods for
equations with proportional delay

For numerical solution of the proportional delay problem (the mesh is not
required to be constrained), the concepts of P-stability and PN-stability are
no longer feasible. We only need to consider the classical asymptotic stability
(the numerical solution y, tends to zero as n — co).

‘While the stability analysis of numerical methods for the constant delay

problem is rather developed, only a very limited number of stability results

are known for i delay Several open are ad-

dressed in this section.
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Consider the following two test equations,

Y'(t) =ay(t) +by(gt), ¢=0, y(0)=1, (5.2.9)

Y'(t) = ay(t) + by(qt) +cy'(qt), t20, y(0)=1. (5.2.10)
Theorem 5.2.7 ([59]) The analytic solution of (5.2.10) is asymptotically
stable if and only if R(a) < 0 and |b] < |a| while ¢ has no bearing.
Corollary 5.2.1 The analytic solution of (5.2.9) is asymptotically stable if
and only if R(a) < 0 and [b] < |al.

The stability analysis is difficult in the proportional delay case because
the delay is not fixed. Instead, the lag term (1 — g)¢ becomes bigger as ¢
increases. However, some work has been done for (5.2.9) and (5.2.10) when

¢ =1/2, for example,

Theorem 5.2.8 (25) If 6] < |a| and let

1, 1-d
1A T el <1
or
1 1
I3hdbT gl <1

hold, depending on whether d < 1/2 ord > 1/2 where d is the only collocation
point. Then the one-stage collocation solution y, of (5.2.9) with g = 1/2 is

square-summable, so in particular limg 0 yn = 0.
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A i dition for the ptotic stability of the numerical so-

lution to problem (5.2.10) with a particular value of g, i.e., ¢ = 1/2, is given

in [24]. Let g = 1/2, and consider the following numerical scheme to (5.2.10)

1
Yon = o1+ 7 (Un-1 +39n) + 7(¥n ~ vu-t) (5.2.11)
1 -
Yonsl = Yot Z(Sy,. + Yns1) + V(Ynr1 ~ ), (5.2.12)
where
_l+3ha

o

“lha'
Theorem 5.2.9 ([24]) The numerical solution ya of (5.2.10) with ¢ = 1/2,
defined by (5.2.11)-(5.2.12), is asymptotically stable if R(a) < 0, |b| < |a|

and
1 1 1 -
max{le+ 7hbl,le~ Thbl} < [c = Fhal. (5.2.13)

These conditions coincide with conditions for asymptotic stability of
exact solution of (5.2.10) (see Theorem 5.2.7) except the stepsize h need be
restricted. It is also pointed out in [24] that the conclusion of Theorem 5.2.9
holds when ¢ is a reciprocal of an integer with the last condition (5.2.13)
replaced by

1 1 1
max{|c+ =qhb|, |c — Sghbl} < |c = Shal.
2 2 2
But the approach used there fails for general ¢ € (0, 1).
The stability properties of m-stage collocation solutions to (5.2.9) and

(5.2-10) are still unknown form=1and ¢ #1/2,orm>2and0<g<1.
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In [11], contractivity conditions are found for Runge-Kutta methods as

applied to DDE of the type
Y@ = flty(t),y6)), t=to, (5.2.14)
y(t) = o(t), t<to. (5.2.15)
where 8(t) < t.
The asymptotic stability of exact solution to VIDEs with proportional
delay of the form
g b Y ) =
V) = ay)+ [ viedu@)+ [ Viadvla), >0, y(0) = 10,(5216)

where the integrals being considered are of Riemann-Stieltjes type, is in-
vestigated in [60]. (5.2.16) includes many interesting equations, for example,

(5.2.9) when du(q) = bd(g—p)dq and dv(g) = 0 where § is the Dirac function.

Theorem 5.2.10 ([60]) If R(a) <0, f |du(q)| < |al, and

i .
Jim [ du(@)] = Jimg [ dv(a)| =0,
then the analytic solution of (5.2.16) is asymptotically stable.

The stability analysis of numerical solutions to (5.2.16) is open.
The paper [73] gave the first stability analysis of the 6-method used for

the numerical solution to (5.2.9).
Theorem 5.2.11 ([73]) If R(a) < 0, then the numerical solution yn of a
given 8-method (applied to equation (5.2.9))
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1. tends to 0 asn — oo provided that (20—1)|a| > b] and limp_,eq hn = o0,

2. is uniformly bounded provided that (20 —1)|a| = |b] and T34 k7t < co.

o
The stability analysis of 6-method for neutral functional-differential
equation (5.2.10) is accomplished in [72] (constant stepsize) and [12] (con-

strained variable stepsize).
Theorem 5.2.12 ([72]) The numerical solution of (5.2.10) tends to zero for
any constant stepsize as long as R(a) < 0 and|a| > |b], if and only if§ > 1/2.

The stability analysis of collocation method for differential, integral
and integro-differential equations with proportional delay is one of our fu-
ture projects. In particular, we want to know if the conclusions of the The-
orems 5.2.3 and 5.2.6 hold for the collocation solutions of (4.0.1) and (4.0.2)

respectively.

5.2.3 Convergence of collocation methods for VIDE

with state-dependent delay

The convergence and local gence analysis for collocation methods

when applied to VIDE with state-dependent delay of the form:
) .
V() = o)+ [ K- 5y(s)v0uE))ds, tel,
Y = ér), —r<t<o,
where 7 is a positive constant, is at present an open problem.
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Since the positions of the primary discontinuities in solution y(t) depend
on y(t) itself, it is difficult to predict a priori where they may arise.
However, similar DVIEs with state-dependent delay are studied in [29].

Consider Volterra integral equations of the form
.
V) = SO+ [ Hlts () v@uE) ds, tel,
y(t) = (), —-r<t<O.

The determination of the solution y requires knowledge of y(t) = ¢(t) for

some initial set of negative t. The question of existence of the solution y is

approached using a fixed-point theorem; and numerical methods for deter-
mining an approximate solution involve the replacement of [f k(t, s)y(s) ds
by SF-oWn,j(t)y(tny) in order to discretize the case where H(t,s,y,2) =

k(t, s)ki(t,s,y, z). The convergence of this numerical method is proved.

We state two i followed by corr

1. Do the collocation methods in S{(ITy) for state-dependent DVIDEs

have a global convergence order of m?

2. Is local superconvergence possible for VIDEs with state-dependent de-
lay; i.e., is a convergence order of p* with p* = 2m possible at the mesh

points?
Conjectures:

1. The collocation methods for VIDE with state-dependent delay have a
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global convergence order of m provided that the given functions are

sufficiently smooth.

2. Local superconvergence order of p” with p* = 2m is possible for state-

dependent DVIDE when collocation is at the Gauss points.
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