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Abstract 
Marine traffic in ice-covered waters is increasingly becoming a common practice 

with improved access to the Arctic, new ship technology, and commercial interests, 

including shipping and resource extraction. Currently, ships transiting in ice are exempt 

from carbon emissions reporting while in ice due to a limited understanding of ship 

performance in ice and a lack fairness compared with ships operating in open water. 

Therefore, the first stage in clarifying this area is to design an empirical emissions estimator 

for ships in ice. The lack of environmental reporting, specifically regarding level ice 

thickness, is first addressed by evaluating a method for statistically estimating sea ice 

thickness. The technique uses a model-tested ship performance equation to estimate level 

ice thickness from collected field data from the full-scale ship. The Canadian Coast Guard 

ship (CCGS) CCGS Henry Larsen was used to evaluate this method, and results were 

compared against Canadian Ice Service (CIS) ice charts for validation. Existing empirical 

performance models were compared with the CCGS Henry Larsen field data to investigate 

the limitations of predicting ship emissions in ice. A new empirical method was proposed, 

drawing on the existing prediction methods, and scaled using the CCGS Henry Larsen 

performance model. The International Maritime Organization (IMO) has extensive 

regulations for evaluating ship emissions of ships transiting open water. These regulations 

were adapted to the developed ice performance model to predict fuel consumption and 

carbon emissions for vessels transiting in ice-covered water. The complete model 

developed provides innovative methods for determining environmental conditions and 

predicting emissions for ships in ice.  
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1 Introduction 

1.1 Overview 

 

The marine industry is experiencing increasing pressure to mitigate the level of 

emissions from maritime transportation and to push towards a greener global fleet. The 

emissions must be considered in all shipping aspects, including ice-covered water 

operations. This research proposes an emissions model to predict fuel consumption and 

emissions for ships transiting ice-covered water. It is tested and validated against full-scale 

ship data.  

Emissions in the marine industry are the measure of carbon dioxide mass produced 

by a ship during regular operation. As climate change becomes an ever-impending threat, 

the global consensus is that technology must evolve to adapt, produce less emissions, and 

slow its effects. As one of the largest global producers of emissions, the marine industry 

has an onus to reduce its impacts in the coming years. The marine industry is also known 

to use heavy fuel oils which the emissions and pArcticles emitted can accelerate local ice 

melting in the Arctic. 

 

1.2 Background 

 

Current regulations express some limitations and allocations on advanced 

navigation such as in ice due to complex modelling and a need for fair regulating. 

Therefore, research must be conducted to refine these conditions and improve the 

adaptation of regulations in the marine industry. The International Maritime Organization 

(IMO) regulates the emissions permitted by ships through two standards: the Energy 
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Efficiency Design Index (EEDI) and the Carbon Intensity Index (CII). The EEDI is a term 

for a ship's design efficiency. It is primarily used in design calculations to estimate the 

emissions profile of a ship before construction (International Maritime Organization, 

2018). The EEDI remains constant. However, it can be modified if ships undergo refits to 

modify machinery or improve fuel types.  

The CII, in contrast, is an operational parameter that must be reported to the IMO 

annually (International Maritime Organization, 2022). It is calculated by the ratio of the 

mass of carbon dioxide emissions over the capacity times distance traveled. Capacity is 

considered a ship’s deadweight, or in the case of passenger vessels and ro-ro ferries, the 

gross tonnage is used. Ships are exempt from reporting their CII when transiting in ice. As 

such, the regulations do not apply to the portion of a ship’s voyage through ice.  

The IMO does consider a limited scope of full-scale ships through an ice-capable 

factor. However, this is limited to ice strengthened ice classes of cargo vessels up to 1A 

super (International Maritime Organization, 2018), and instead offers relaxation of the CII 

regulation to icebreakers while transiting open water. The IMO recognizes that not all ships 

are designed equal, and their mission parameters may position them with an emission 

disadvantage. However, it still does not consider the time these ships operate in ice as part 

of the CII calculation. 

Research has been conducted on ship emissions in ice by developing a route-

optimizing agent for ice-covered water (Browne, et al., 2022). This research aimed to 

develop a goal-based route optimizer; one such goal was minimizing fuel consumption. 

This model was based on the Keinonen method for ship performance (Keinonen, Browne, 

Revill, & Reynolds, 1996), and the emissions estimates were determined by the work of 
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Frederking (Frederking, 2003). No further justification was used to validate the accuracy 

of the emissions predictions in the route-optimizing research. This assumption was 

adequate given the objective of optimizing routes where the difference in emission 

production between routes is more critical than the actual mass of carbon dioxide produced.  

The research in this thesis was conducted through a collaboration among Memorial 

University, the National Research Council (NRC) of Canada, and the Canadian Coast 

Guard (CCG). Two primary sources of input data are used to develop this analysis, both of 

which are based on the Canadian Coast Guard Ship (CCGS) CCGS Henry Larsen. The 

NRC developed and tested a 1:20 scaled model of the CCGS Henry Larsen in their open 

water and ice tow tank laboratories. These tests resulted in open water performance based 

on ITTC-57 method and regression-based ice performance parameters, which are the base 

of the operational parameters for statistical ice thickness estimates made in this thesis. The 

full-scale running data was supplied by a joint NRC and CCG full-scale measurement 

campaign on the CCGS Henry Larsen (Wang, et al., 2023). The collection of position and 

propulsion parameters from this ship, measured over an extended period, provided the 

necessary running data for estimating sea ice thickness and predicting emission outputs in 

this thesis.  

 

1.3 Purpose 

 

This research aimed to develop an emissions prediction model and statistical ice 

thickness estimator for ships transiting in ice. The objective was to create a model that could 

be applied to a broad scope of vessels with different hull shapes and performance 
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capabilities. The approach to achieving this model was to evaluate existing methods for 

individual components of ship performance and marine emissions through validation with 

full-scale ship operational data as well as environmental data including ice conditions. 

Regression analysis was used to apply modifications and adapt existing prediction models 

to ice-covered sea conditions.  
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2 Literature Review 
 

A literature review was conducted to find and evaluate scholarly works relevant to 

the project. This review was conducted using Memorial University’s library One Search 

tool, Google Scholar, and through discussions with relevant industry professionals. Some 

key search words included: Ice navigation; Ice resistance; marine emissions; ship 

performance model; ice forecasting; marine propulsion; propeller design; and ship 

efficiency. Preference was placed on the most relevant research within the last decade; 

however, considering the limited research in specific fields, exceptions were made so as 

not to exclude essential or unique information. This consideration is applied to research on 

ice resistance as many of the most cited works in this area exceed 25 years. The following 

section highlights the key literature by categorizing fundamental research objectives, 

including ice resistance models, ship propulsion, marine emissions, and CCGS Henry 

Larsen.  

 

2.1 Empirical Ice Resistance Models 

 

Ships transiting ice face a highly variable environment that is often difficult to 

model using conventional ice resistance methods. One of the most frequent methods for 

estimating ship ice performance is calculating the resistance in equivalent-level ice. This 

term refers to a generalization of the ice cover in terms of a single uniform value for 

thickness which incorporates the different aspects, including ice thickness, snow cover, and 
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pressure, among other variables. This method provides a simple qualitative value for 

evaluating a specific hull form's performance characteristics.  

Many published works have presented semi-empirical based models, often 

generated using full-scale and model test data to estimate ship performance in equivalent-

level ice. These methods are often employed in ship design as a qualitative concept 

development tool to evaluate ice-breaker designs. For this research, the semi-empirical 

models were evaluated against verified ship performance models to evaluate their accuracy.  

Several publications independently review these empirical models and evaluate 

their performance. The report “Review of ship ice interaction mechanics” provides a 

comprehensive historical overview of the existing models (Daley & Riska, 1990). 

However, this publication does not provide insight into the validity of these models and 

merely indicates the evolution of the models with time. The equations for these models get 

progressively more complex with time and incorporate increasingly more performance 

variables. It is also evident that the existing empirical methods are based on performance 

regression instead of physics-based models (Daley & Riska, 1990).  

A comparison of the more commonly used methods is presented in the paper “Semi-

empirical level ice resistance prediction methods” (Erceg & Ehlers, 2017). This review 

evaluates the predictions of ice resistance using six empirical models against field data from 

four ships. The analysis determined that the empirical models are inconclusive and that no 

single model was sufficient to predict the captured data, despite all models estimating 

within the vicinity of the measured values (Erceg & Ehlers, 2017). However, a lack of field 

data used in the analysis results in this inconclusiveness. The results were only plotted for 

a single ice thickness, and the paper does not address the thickness as a changing variable. 
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It was determined that all six methods be evaluated in this research project to enable a 

comparison of the CCGS Henry Larsen's results with those of the four ships presented in 

the publication by Erceg & Ehlers (2017).  

The following sub-sections detail the specific empirical equations considered; their 

origins and fundamental attributes are highlighted.  

 

2.1.1 Vance 

 

The empirical model developed by Vance was derived from full-scale trials on the 

USCG Katmai Bay. The equation comprises two components which are summarized as ice 

submersion and speed dependence. This model is known to typically predict higher 

increasing values with higher ice strength, which alluded to conditions experienced during 

the trials (Vance, 1980).  

The most significant drawback of this model is its limited scope. Unlike the 

following methods, Vance’s model is exclusively based on one ship during one test period.  

 

2.1.2 Lewis 

 

Lewis’ model was developed using full-scale trial data for four ships ranging in 

length from 39.6m to 295.7m (Lewis, Debord, & Bulat, 1982). The consideration of 

multiple model hulls was an improvement over Vance. However, there remained some 

issues with the results of this model. It is noted that the intercept values or ice friction 

predictions are typically higher than Lewis’ prediction. This finding is assumed to have 
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resulted from two ships not having low friction coatings and a high level of snow cover 

during the trials.  

The significant contribution of Lewis to the progression of empirical models is the 

consideration of two ship scale terms and two ice parameters. However, the limitations do 

not make it the most reliable prediction model.  

 

2.1.3 Zahn & Philips 

 

Unlike the previous two methods, Zahn & Philips (1987) based their prediction 

model on model test data instead of full-scale trials. This approach was an attempt to prove 

that ship ice model testing was a valid method for determining ship ice resistance. However, 

like its predecessors, the common flaw is that this model is based solely on one ship, the 

USCG Mobile Bay (Zahn & Philips, 1987). As such, there was no method for determining 

the effects of the ship parameters and the friction component. This method also stands out 

from the rest because the resistance was found to be dependent on velocity squared as 

opposed to linear. As a result, the predictions at higher speeds are often much higher than 

the other methods.  

Zahn suggested the model was appropriate to be applied to ships outside the Bay 

class used for the analysis (Zahn & Philips, 1987). However, they also developed a linearly 

fitted regression equation as an alternative, which is not considered.  
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2.1.4 Lindqvist 

 

Lindqvist was the first to develop an empirical method for ship design to estimate 

ship ice resistance before model testing (Lindqvist, 1989). Lindqvist’s objective was to 

develop a simple equation for ship ice resistance, including three primary breaking terms: 

ice crushing, breaking by bending, and submergence. The model approximates the hull as 

flat surfaces and elements of ice deflection and trim are ignored to achieve simplicity 

(Lindqvist, 1989).  

Lindqvist was the first to propose a method that incorporates the geometry of the 

bow, including stem, flare, and waterline. Bow form is critical when developing a model 

adaptable to various hull forms. The methods were validated using a series of full-scale 

data from three ice-breaking hulls. The only major issue with Linqvist’s model is that all 

trials were taken from the Baltic Sea. As such, the validation did not appropriately 

accommodate changes in the ice parameters, and its accuracy in Arctic regions is not 

guaranteed (Erceg & Ehlers, 2017). Also, the simplified nature of this method adds an 

element of error to the prediction result that may undervalue the ice resistance estimate. 

The predictions are known to be reasonably accurate for larger ships, with some uncertainty 

for smaller ships and for ice parameters that differ from those of the Baltic Sea (Erceg & 

Ehlers, 2017). 

 

2.1.5 Keinonen 

 

Keinonen’s method is known to be one of the most comprehensive empirical models 

because it was developed using full-scale trials and operator expertise for 18 of the world’s 
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most relevant icebreakers. This allowed Keinonen to incorporate the bow shape factors, 

dimensional ship parameters, and ice properties in the greatest detail compared to its 

predecessors (Erceg & Ehlers, 2017). This semi-empirical model consists of three 

components: open water, resistance under 1m/s, and resistance over 1m/s. This is to account 

for the typical speed-dependent variable found in the other methods (Keinonen, Browne, 

Revill, & Reynolds, 1996).  

Keinonen’s method also accounts for hull condition correction based on coating and 

age and for environmental and ice parameters. Bow form is also a large contributor to a 

ship's ice-breaking capability, which is accounted for by using the bow waterline and flare 

angle. Keinonen goes so far as to also divide the semi-empirical equations into two hull 

categories, round and chined (Keinonen, Browne, Revill, & Reynolds, Icebreaker 

characteristics synthesis, 1996). 

Keinonen’s method has proven to be accurate within the following constraints 

(Keinonen, Browne, Revill, & Reynolds, 1996). Keinonen’s method was validated against 

ships and conditions that fall within these ranges, and they are reflective of most hull form 

shapes that operating regularly in ice: 

• Hi = 0.5~1.7m  (Ice thickness) 

• f = 150~700kPa  (Flexural strength of ice) 

•  = 40o ~ 80o   (Average bow flare angle at waterline) 

• β = 12o~40o  (Average buttock angle at waterline) 
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This range of input variables result in a robust prediction method applicable to a 

broad scope of ships. This range incorporates the majority of hull types used for modern 

ice-breaking.  

 

2.1.6 Riska 

 

The most recent model considered in this analysis is the one developed by Riska. It 

is a derivation of the Lindqvist method by incorporation of other relevant research. It was 

validated using full-scale data, however, it only considered Baltic Sea conditions (Erceg & 

Ehlers, 2017). The Riska method uses two terms, one for speed-independent resistance and 

another for speed dependent. Riska assumes many of the ice parameters as constant for 

simplicity and only relies on the ice thickness to describe the ice (Riska, Wilhelmson, 

Englund, & Leiviska, 1998). This method incorporates three variables: external conditions, 

ship size, and hull shape. Since many ice parameters were assumed constant and higher 

than usually measured in full-scale trials, Riska’s method typically slightly overestimates 

measured resistance. 

 

2.1.7 Semi-Empirical Summary 

 

 (Vance, 1980) 

𝑅𝑖𝑐𝑒 = 55.8583(𝜌𝑤 − 𝜌𝑖)𝑔𝐵ℎ
2 + 0.0188𝜎𝑓𝑣𝐵√

ℎ

𝑔
 

 

 (Lewis, Debord, & Bulat, 1982)  
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𝑅𝑖𝑐𝑒 = (3.8989 + 0.0123
𝜎𝑓

𝜌𝑤𝑔ℎ
+ 0.223 (

𝑣

√𝑔𝐵
∙
𝐿

ℎ
)) ∙ 𝜌𝑤𝑔𝐵ℎ

2 

 (Zahn & Philips, 1987) 

𝑅𝑖𝑐𝑒 =∙ (4.254 + 3.963 ∙ 10
−5 (

𝑣

√𝑔𝐵
)

2

(
𝐿

ℎ
)
3

) ∙ 𝜌𝑤𝑔𝐵ℎ
2 

 

 (Lindqvist, 1989) 

𝑅𝑖𝑐𝑒 = (𝑅𝑐 + 𝑅𝑏) (1 +
1.4𝑣

√𝑔ℎ
) + 𝑅𝑠 (1 +

9.4𝑣

√𝑔𝐿
) 

𝑅𝑐 =
𝐹𝑣(𝑡𝑎𝑛𝜑 + (𝜇 ∙ 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜓⁄ ))

1 − (𝜇 ∙ 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜓⁄ )
 

𝑅𝑏 =
27

64
𝜎𝑓

(

 
ℎ1.5

√
𝐸

12(1 − 𝑣2)𝜌𝑤𝑔)

 (𝑡𝑎𝑛𝜑 +
𝜇 ∙ 𝑐𝑜𝑠𝜑

𝑠𝑖𝑛𝛼 ∙ 𝑐𝑜𝑠𝜓
) (1 +

1

𝑐𝑜𝑠𝜓
) 

𝑅𝑠 = ∆𝜌𝑔ℎ𝐵(𝑇
𝐵 + 𝑇

𝐵 + 2𝑇
+ 𝜇(0.7𝐿 −

𝑇

𝑡𝑎𝑛𝜑
−

𝐵

4𝑡𝑎𝑛𝛼
+ 𝑇𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜓√

1

𝑠𝑖𝑛𝜑2
+

1

𝑡𝑎𝑛𝛼2
 

 

 (Keinonen, Browne, Revill, & Reynolds, 1996) 

𝑅(𝑉)𝑡𝑜𝑡𝑎𝑙 = 𝑅(𝑉)𝑜𝑤 + 𝑅(1𝑚𝑠
−1)𝑖𝑐𝑒 + 𝑅(> 1𝑚𝑠

−1)𝑖𝑐𝑒  

Ships With Round Hulls 

𝑅(1𝑚𝑠−1) = 0.015 ∙ ℎ𝑒
1.5 ∙ 𝐶𝑠 ∙ 𝐵

0.7 ∙ 𝐿0.2 ∙ 𝑇0.1 ∙ (1 − 0.0083(𝑡 + 30)) ∙ 𝐶ℎ ∙ (0.63

+ 0.00074 ∙ 𝜎𝑓) ∙ (1 + 0.0018(90 − 𝜓)
1.6) ∙ (1 + 0.003(𝛽 − 5)1.5) 

𝑅(> 1𝑚𝑠−1)𝑖𝑐𝑒 = 0.009 ∙ (𝑉𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 √𝑔𝐿⁄ ) ∙ 𝐵1.5 ∙ 𝐿0.5 ∙ ℎ𝑒 ∙ (1 − 0.0083(𝑡 + 30)) ∙ 𝐶ℎ

∙ (1 + 0.0018(90 − 𝜓)1.6) ∙ (1 + 0.004(𝛽 − 5)1.5) 

Ships with Chined Shoulders 

𝑅(1𝑚𝑠−1) = 0.08 + 0.017 ∙ ℎ𝑒
1.25 ∙ 𝐶𝑠 ∙ 𝐵

0.7 ∙ 𝐿0.2 ∙ 𝑇0.1 ∙ (1 − 0.0083(𝑡 + 30)) ∙ 𝐶ℎ

∙ (0.63 + 0.00074 ∙ 𝜎𝑓) ∙ (1 + 0.0018(90 − 𝜓)
1.6)

∙ (1 + 0.004(𝛽 − 5)1.5) 
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𝑅(> 1𝑚𝑠−1)𝑖𝑐𝑒 = 0.009 ∙ (𝑉𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 √𝑔𝐿⁄ ) ∙ 𝐵1.5 ∙ 𝐿0.5 ∙ ℎ𝑒 ∙ (1 − 0.0083(𝑡 + 30)) ∙ 𝐶ℎ

∙ (1 + 0.0018(90 − 𝜓)1.4) ∙ (1 + 0.003(𝛽 − 5)1.5) 

 (Riska, Wilhelmson, Englund, & Leiviska, 1998) 

𝑅𝑖𝑐𝑒 = 𝐶1 + 𝐶2 

𝐶1 = 𝑓1
1

2
𝑇
𝐵
+ 1

𝐵𝐿𝑝𝑎𝑟ℎ + (1 + 0.021𝜑)(𝑓2𝐵ℎ
2 + 𝑓3𝐿𝑏𝑜𝑤ℎ

2 + 𝑓4𝐵𝐿𝑏𝑜𝑤ℎ) 

𝐶2 = (1 + 0.063𝜑)(𝑔1ℎ
1.5 + 𝑔2𝐵ℎ) + 𝑔3ℎ (1 + 1.2

𝑇

𝐵
)
𝐵2

√𝐿
 

 

 

2.2 Ship Propulsion 

 

Connecting a ship's resistance to its emissions profile requires analyzing its 

propulsion system. This calculation presents one of the most significant challenges in 

creating a generalized emissions profile because many propulsion values are specific to a 

hull and its installed powerplant system. However, the relevant literature does provide some 

insight into methods for predicting the necessary losses in efficiency. This section will focus 

on the efficiency losses and the propeller geometry effects.  

Several transmission losses must be understood to determine the brake power from 

the resistance of a ship. These include the thrust deduction factor (t), equation (1) and the 

total propulsive efficiency (ηP), equation (2). Propulsive efficiency directly relates the 

effective power to the shaft power by combining three other efficiencies: hull efficiency, 

behind hull efficiency, and shaft efficiency (Zubaly, 1996).  

Thrust deduction is effectively the added resistance due to the propeller effects, 

which gives the relation between ship resistance and thrust. Equation (1) defines the 

relationship between total resistance and thrust using the thrust deduction.  
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In typical cases, the thrust deduction can be analyzed using a series of towed and 

self-propelled model tests or by using computational fluid dynamics (CFD). However, 

these methods are costly and therefore not a feasible solution for a general emissions model. 

Zubaly (1996) suggests a range of Harvald (1983) thrust deduction values of 0.15-0.20 for 

single screw ships and 0.10-0.18 for twin screws. (Harvald, 1983) provides additional plots 

for estimating the trust deduction based on the ship parameters, form, and propeller size.  

 
𝑇 =

𝑅𝑇
1 − 𝑡

 (1) 

  where: 

 T  -  Total Thrust 

 RT -  Total Resistance 

 t -  Thrust Deduction 

 

 

The NRC has also provided thrust deduction equations for the CCGS Henry Larsen 

model tests, described further in Section 2.4.1. This analysis determines the thrust 

deduction at various speeds and ice thicknesses. The calculated values are also compared 

against the range provided by (Zubaly, 1996).  

Propulsive efficiency is equally difficult to define for a generalized model. 

Determining these efficiency values would require a detailed analysis of a ship hull and its 

propeller. In most cases, the ships for which the emissions model will be subjected will not 

have the level of specification available to calculate these values accurately. Therefore, the 

propulsive efficiency must be estimated. The components that make up the overall 

propulsive efficiency are described by equation (2). 

 
𝜂𝑃 =

𝑃𝐸
𝑃𝑆
                           (2) 
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=
𝑃𝐸
𝑃𝑇
×
𝑃𝑇
𝑃𝐷
×
𝑃𝐷
𝑃𝑆

 

= 𝜂𝐻 × 𝜂𝐵 × 𝜂𝑆 

  where: 

 PE  -  Effective Power 

  PT -  Thrust Power 

 PD -  Delivered Power 

 PS - Shaft Power 

 ηP  -  Propulsive Efficiency 

  ηH -  Hull Efficiency  

 ηB -  Behind Hull Efficiency 

 ηS - Shaft Transmission Efficiency 

 

 

 

2.3 Marine Emissions Regulations 

 

Regulations surrounding permissible ship emissions and future targets for ships 

transiting open water already exist. The regulations considered are those adopted by the 

IMO. These regulations will serve exclusively as a basis for developing the generalized 

emissions model; however, additions must be made to adapt emission calculations to ships 

in ice. Most notably, according to the International Convention for the Safety of Life at Sea 

(SOLAS), ships are not required to report their emissions as part of the carbon intensity 

index (CII) when operating in ice (International Maritime Organization, 2022). This 

regulation specifically emphasizes cargo ships and ferries with a quantified economic value 

as opposed to service vessels such as offshore supply boats. Additional research was 

conducted to capture methods for adapting the CII methodology to other service vessels. 
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2.3.1 Marine Fuel Consumption 

 

Ship emissions are based on several fuel consumption considerations. Once the 

required power is determined, fuel consumption and carbon dioxide emissions are 

calculated by factoring in the installed powerplant of a vessel. The most basic setup for 

consideration would be a direct drive or geared transmission where the propeller shaft is 

mechanically connected to the main engines. The shaft and engine power are most closely 

related in this arrangement. This would contrast with a diesel-electric or separated 

drivetrain where the power is transferred electrically from the main engines to individual 

propulsion motors. Direct drive systems are common in bulk carriers with large slow-speed 

diesels that often transit at consistent operating conditions. Icebreakers, in contrast, often 

have a separated propulsion system to allow for added power when needed for heavy ice 

conditions. Therefore, the model must be adaptable to various powering systems.  

To translate power into fuel consumption, one must know the specific fuel 

consumption (SFC) of a ship's installed powerplant. Specific fuel consumption will differ 

based on the engines installed and usually sits between 155-225 [g/kWh] for marine diesel 

engines (Sustainable Ships, 2022). However, this value is not constant for each engine. 

Instead, engines are most fuel-efficient when operating near 85%-90% of their maximum 

continuous rating and experience decreased efficiency with decreased power. Therefore, 

the benefit of a separated drivetrain over a direct drive is maintaining all running engines 

in their most efficient operating condition. Engine manufacturers typically provide the SFC, 

however, this data is not always available for specific ships and would need to be estimated 

within the provided range.  
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Carbon emissions are based on fuel types and the amount consumed. The emissions 

can be calculated once the fuel consumption and fuel type are known. The IMO provides a 

table of carbon dioxide production rates in tons of carbon per ton of fuel (CF) for various 

common marine fuel types, summarized in Table 1 (International Maritime Organization, 

2018).  As defined by the IMO, special considerations are required for dual fuel applications 

and gas turbines.  

Table 1 - Conversion factors between fuel consumption and CO2 emissions (International 

Maritime Organization, 2018). 

Type of Fuel Carbon Content CF (t-CO2/t-Fuel) 

Diesel/Gas Oil 0.8744 3.206 

Light Fuel Oil (LFO) 0.8594 3.151 

Heavy Fuel Oil (HFO) 0.8493 3.114 

Liquefied Petroleum Gas (LPG) 0.8182 3.000 

Liquefied Natural Gas (LNG) 0.7500 2.750 

Methanol 0.3750 1.375 

Ethanol 0.5217 1.913 

 

2.3.2 IMO EEDI & CII 

 

The IMO also has a specific set of regulations for emissions reduction and 

monitoring for existing vessels. These regulations are described as the carbon intensity 

index (CII) and the energy efficiency design index (EEDI). They have become an integral 

part of modern commercial cargo transport by sea. The EEDI is considered a design metric, 

and the CII is a quantitative assessment of a ship’s economic benefit to environmental 

impact ratio. Despite neither of these terms being directly required to calculate a ship's live 

fuel consumption, a modern emissions model must consider their relevance.  
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The EEDI is a design metric for evaluating a ship’s emissions profile. It remains a 

constant value and is changed by modifying a ship’s operating parameters, main machinery, 

or cargo capacity. The units of EEDI are the grams of carbon dioxide production over the 

deadweight tonnage times ship speed (International Maritime Organization, 2018). There 

are special considerations for ships transiting ice. However, the EEDI regulations focus on 

deadweight as a metric for evaluating economic capacity and are only mandatory for cargo 

and passenger-type vessels. This metric aims to develop a baseline for ship design and 

lifecycle tracking for greenhouse gas emissions. This regulation does not address a large 

portion of service-based vessels that operate in Arctic regions. Most notably, these 

regulations do not account for scientific research, icebreakers, and supply boats.  

Additional research has reformed how service-based and non-cargo vessels can 

consider the EEDI value. This research looked at ways to evaluate service-based work, 

including tasks like anchor handling, towing and scientific research. Gasper & Erikstand 

(2009) developed a basic formula for assessing EEDI as presented in equation (3) and their 

focus was defining the mission parameter for various service tasks. One example they used 

was for an offshore supply vessel (OSV). They defined six operating profiles and nine 

operating states for this type of vessel. These operating conditions were weighed by time, 

and their emissions profile was defined by the specific fuel consumption of each task. 

Although they focused the research on OSVs, the method of creating customized mission 

profiles for specific specialized ships can be applied.  

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑀𝑖𝑠𝑠𝑖𝑜𝑛 ∙ 𝑇𝑖𝑚𝑒
 (3) 
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The authors of this research admit that there are several limitations and that 

additional work is needed to define accurate operating profiles for specific ships. Most 

notably, they highlight the inaccuracy of estimating the time allotted to each operating 

profile and how that can differ drastically from a ship's actual use. Also, accurately 

assessing the SFC of service-based vessels can be challenging because much of their tasks 

can be tactical, leading to fluctuations in SFC (Gasper & Erikstand, 2009). 

The CII is another method that the IMO uses to regulate ship emissions. The CII 

measures the carbon a ship produces compared to its gross carrying capacity and distance 

traveled. It is mandatory for cargo-carrying vessels over 5000 GT to report (International 

Maritime Organization, 2022). The CII does not consider actual cargo transported; this is 

only considered in the alternate voluntary Energy Efficiency Operational Indicator (EEOI). 

The EEOI requires actual cargo when calculating the emissions per tonne-mile (Det Norske 

Veritas, 2022).  

Much like the EEDI, the CII is a method for providing emissions assessment rather 

than prediction. To predict the attained CII value for a given vessel and operation, it is first 

necessary to predict the fuel consumption and emissions. Accurately predicting fuel 

consumption and emissions for ships in ice represents a gap in the body of knowledge. The 

current research proposes a general method for estimating fuel consumption and emissions 

for ships in ice. 
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2.3.3 CIS Ice Charts 

 

The Canadian Ice Service (CIS), which is part of Environment and Climate Change 

Canada (ECCC), supplies daily ice charts. The ice charts are generated for waterways 

surrounding Canada’s coasts and describe the ice coverage of a pArcticular region. 

Historical ice charts were used as a source of validation for the research (Canadian Ice 

Service, 2022).  

The ice charts use a system of zones identified by egg codes. These codes describe 

the ice coverage of each specified zone in terms of the concentration in tenths, the stage of 

development with associated thickness, and the general floe size (Milakovic, Schutz, Piehl, 

& Ehlers, 2018). There are typically up to three defined ice stages for each egg code. Each 

ice type identified in an ice regime denotes a different stage of development within a range 

of thicknesses. The partial concentrations of each ice type indicate the potential of 

encounter and can be used to assess risk. The zones or ice regimes are determined by 

detailed analysis of satellite imagery which is used to determine the thickness and drift 

patterns of sea ice (Canadian Ice Service, 2022).  

Several methods exist to determine a ship's capability to safely operate in ice 

conditions in the Canadian Arctic. The first and oldest is known as the Zone Date System 

(Transport Canada, 2010). This method is based on historical ice data in the Canadian 

Arctic and does not consider current ice charts. It provides a date range of accessibility to 

specific areas based on historical ice conditions and the ice class of a given ship. This 

method is dated because it does not allow the operator to evaluate their risk and consider 
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current ice conditions. It also does not account for climate change; therefore, ice predictions 

are based on dated ice probability models.  

The second method developed for the Canadian Arctic was AIRSS. This method 

influenced the more recent IMO’s Polar Operational Limit Assessment Risk Indexing 

System (POLARIS). Both systems allow the operator to perform a quantitative risk 

assessment for their ship's Polar classification in a specific zone. In POLARIS, this risk 

calculation is called the Risk Index Outcome (RIO) (International Maritime Organization, 

2016). The RIO is calculated by equation (4), where the risk index values (RIV) are 

determined based on the ship’s Polar classification and ice types.  

RIVs are whole number integers where positive values indicate lower risk and 

increasing negative values indicate higher risk (International Maritime Organization, 

2016). The RIO considers partial concentration as a probability of ice type encounter. As 

such the RIV values are weighted based on concentration levels. This allows the 

calculations to consider concentrations of open water. RIVs are determined in the IMO 

regulations depending on the ships ice class and the ice type. 

RIO’s are used as an operational parameter to determine the risk of transit. Any 

positive values constitute normal operation for the specific class of vessel while negative 

values present elevated operational risk (International Maritime Organization, 2016). When 

the RIO is less than negative ten, the ship may only transit under special considerations and 

under extreme risk.  

 
𝑅𝐼𝑂 =∑𝐶𝑖 × 𝑅𝐼𝑉𝑖

𝑛

𝑖=1

 (4) 
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  where: 

 RIO -  Risk index outcome 

 RIV -  Risk index value 

 Ci - Concentration of partial ice thickness 

 

 

 

2.3.3.1 Equivalent-level Ice 

 

The most common way of defining the thickness of a zone is to define its equivalent 

ice thickness (Hv). This method takes the average thickness for each defined stage and the 

total weighted average by concentration according to Equation (5) (Milakovic, Li, Polach, 

& Ehlers, 2020). The problem with this method is that it averages the entire zone and may 

not accurately describe the location the ship passes through. The interest in the equivalent 

ice thickness lies in understanding the average trend of ice chart ice regime data into a 

single value to support the ability to make performance predictions.  

 
𝐻𝑉 =

∑ ℎ𝑖 ∙ 𝑐𝑖
𝑛
𝑖=1

𝑐𝑡𝑜𝑡
 (5) 

  where: 

 Hv -  Equivalent ice thickness 

 Hi -  ice thickness  

 ci - partial concentration 

 ctot - total concentration 

 

 

 

2.4 CCGS Henry Larsen 

 

The CCGS Henry Larsen forms the basis for all research on sea ice estimation in 

this study. Launched in 1987, this ship is an Arctic class 4 medium icebreaker operated by 

the CCG to carry out missions in the Arctic and along Canada’s East Coast.  The primary 

missions of this ship include Arctic Ocean research, hydrographic surveys, and program 
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icebreaking. The program's icebreaking tasks include seasonal icebreaking along the 

northwestern coast of the island of Newfoundland. This primarily comprises harbor 

breakouts, escorts, and northern resupply missions. Figure 1 shows the CCGS Henry Larsen 

in Deception Bay, Quebec, on October 31, 2022, during one of its Arctic resupply missions.  

 

 
Figure 1 - CCGS Henry Larsen in Deception Bay, QC, on October 31, 2022. 

 

The vessel’s specifications include an overall length of 99.8 m with an installed 

power of 16,080 kW split across three (3) Wärtsilä Vasa – 16V32 main engines. This 

powerplant drives two (2) fixed-pitch shafted propellers through a diesel-electric 

arrangement. The CCGS Henry Larsen also has a bubbler system designed to lubricate the 

hull with air when transiting through pArcticularly heavy ice. The bubbler is operated by 

ejecting pressurized air from the mid-body below the waterline. The bubbler operation was 

not considered in this analysis.  
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The CCGS Henry Larsen was used for this analysis because of the extensive testing 

completed by the NRC at both the model and full scales. The operational parameters of the 

CCGS Henry Larsen are presented through several publications from the NRC, which 

provide the tools that enable extensive statistical analysis. 

 

2.4.1 Type 1200 Model Tests 

 

Model tests were completed on the CCGS Henry Larsen model hull form 

throughout the year 2019 to define the open water and ice-covered performance capabilities 

of the ship (Wang, 2023). 

The model ship was built at 1:20 scale. The overall length of the model was 4.06 

m. Some slight modifications were made in consultation with the CCG to adapt the hull for 

the installed test equipment, including propellers and rudder (Wang, 2023).  

The thrust deduction factor was also determined using a regression analysis of the 

model scale results on the hull form. The resulting regression equation is shown in Equation 

(6) and are derived from the model tests (Wang, 2023).  

Open water tests were conducted in a 200 m towing tank, and the power prediction 

method used was based on the International Towing Tank Conference (ITTC) 57 

procedures (ITTC Resistance Committee, 2011). The correlation allowance for the ITTC 

procedures was 0.0004, which mirrors the approach of the NRC model analysis (Wang, 

2023). There is some concern regarding using the correlation allowance at slow speeds 

because the value is validated against full-scale trials conducted at higher ship speeds. 
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However, the open water component makes up a small portion of ice resistance, and high 

variability exists in the measured full-scale data. 

The open water resistance curve is necessary for statistically estimating sea ice 

thickness because it is a significant component of the net measured thrust. The open water 

curve for the full-scale ship (based on the model test measured values) is shown in Figure 

2. A trend line was used to define the lower speed range because the operational speed in 

all considered ice cases was low, and the fit was acceptable. The equation for open water 

resistance at speeds up to 12 knots is shown in Equation (7). 

 𝑡 = 0.23𝐽2 + 0.04𝐽 + 0.07 (6) 

   

 where:  

 
𝐽 =

𝑉𝐴
𝑛𝐷

  

  where: 

 J  -  Advance Coefficient 

 VA -  Total Resistance 

 n -  Thrust Deduction 

 D  - Propeller Diameter 

 t - thrust deduction 
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Figure 2  - Open water resistance curve for full-scale ship, ITTC 57. 

 𝑅𝑂𝑊 = 1.0193VS
2 − 0.4487𝑉𝑠 (7) 

  where: 

 ROW  -  Open Water Resistance 

 VS -  Ship Speed 

  

 

The model was tested in ice at the National Research Council of Canada's Ocean, 

Coastal and River Engineering Research Centre (NRC-OCRE) for both open water and ice 

performance (Wang, 2023). These tests were conducted between November and December 

of 2020. Several tests were completed to capture the individual components of icebreaking 

resistance, including level ice, pre-sawn ice, creep tests, and open water tests (Wang, 2023). 

This approach allowed the analysis of specific components of icebreaking: breaking, 

clearing, buoyancy, and open water.  

The ice resistance model tests were analyzed using a regression analysis approach. 

The analysis was subdivided into individual components corresponding to icebreaking, ice-

crushing, buoyancy, and open water. Equation (8) illustrates the summation of forces 

contributing to total ice resistance. Equation (9) outlines the regression results for the 

y = 1.0193x2 - 0.4487x
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icebreaking component and includes the ice strength number.  Equation (10) shows the ice 

buoyancy component of total resistance. Equation (11) shows the ice clearing equation and 

includes the ice thickness Froude number (ITTC Resistance Committee, 2011).  

 𝑅𝐼𝑇 = RBR + 𝑅𝐶 + 𝑅𝐵 + 𝑅𝑂𝑊 (8) 

  where: 

 RIT  -  Total Ice Resistance 

 RBR -  Icebreaking Resistance 

 RC -  Ice Crushing Resistance 

 RB  - Ice Buoyancy Resistance 

 ROW - Open Water Resistance 

 

 

 𝑅𝐵𝑅 = 1.896(𝑆𝑁)
−1.66𝜌𝑖𝐵ℎ𝑖𝑉𝑆

2 (9) 

  where: 

 SN - Ice Strength Number 

 ri - Ice Density 

 B - Beam 

 hi - Ice Thickness 

 VS - Ship Speed 

 

 

   

 where:  

 
𝑆𝑁 =

Vs

√
𝜎𝑓ℎ𝑖
𝜌𝑖𝐵

 

 

  where: 

 f  -  Ice Flexural Strength 

  

 

   

 𝑅𝐵 = 1.71(𝜌𝑠 − 𝜌𝑖)𝑔ℎ𝑖𝐵𝑇 (10) 

  where: 

 T  -  Draft 
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 𝑅𝐶 = 1.448(𝐹ℎ)
−1.11𝜌𝑖𝐵ℎ𝑖𝑉𝑆

2 (11) 

  where: 

 Fh  -  Ice Froude Number 

 

 

   

 where:  

 𝐹ℎ = 𝑉𝑠/√𝑔ℎ𝑖  

The primary purpose of the total ice resistance equation is to determine the ice 

resistance for any given ship speed and ice thickness. However, in the current research the 

equation was solved for ice thickness for a given ship speed and thrust to determine 

statistical ice thickness, described in section 3.1. 

 

2.4.2 Full-scale Data 

 

The NRC has led a full-scale data acquisition campaign on the CCGS Henry Larsen 

in cooperation with the CCG and Memorial University (Wang, et al., 2023). The data used 

for the research presented here spans from February 2, 2022 – March 4, 2022. The 

navigation area is in the coastal regions on the west coast of Newfoundland, pArcticularly 

the Strait of Belle Isle. The segments considered in this paper stretch as far south as 

Pakuashipi, Quebec. This period was selected as it presented the highest number of steady 

operating segments to analyze. 

The NRC also tested the bubbler system on the CCGS Henry Larsen during March 

2022 (Wang, et al., 2023); therefore, additional information regarding ice parameters is 
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available. Tests were conducted on ice samples: the measured average ice density (ri) was 

900 kg/m3, and the average ice strength (f) was 500 kPa. These parameters were used to 

calculate statistical ice thickness (Wang, et al., 2023). 

A VAF TT-Sence® was installed on each propulsion shaft to measure the propulsion 

data: Thrust, Torque, RPM, and Power (Wang, et al., 2023). The digital Data Acquisition 

System recorded ground and water speeds, rudder command and angle, and position data, 

among other metrics (Wang, et al., 2023). The data used for this analysis was recorded at 1 

Hz. Figure 3 shows the TT Sense ® as mounted on the port shaft. The primary strain gauges 

for measuring torque and thrust are within the casing surrounding the shaft on the left of 

the photo. 

 

Figure 3 - TT Sense ® mounted on CCGS Henry Larsen port shaft. 
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3 Methodology 
 

In this section, the experimental procedure is outlined in detail. The first area of 

research discussed is the process for statistically estimating sea ice using a ship 

performance model and live captured full-scale field data. Secondly, the process for 

analyzing and comparing semi empirical models is emphasized. The approach to estimating 

general propulsive efficiency is outlined and finally, the method for modelling ship 

emissions is presented.  

 

3.1 Statistical Approach for Estimation Sea Ice Thickness 

 

To ensure data segments were consistent, each day was reviewed to identify 

segments with the highest degree of steady operation. This was achieved by reviewing both 

the RPM and speed through water (STW) outputs. Segments were chosen at times where 

both these metrics were deemed to be constant. Also, only conditions where the ship was 

moving forward were considered. Tactical ice maneuvers, including harbor breakouts, were 

excluded.  

As an example, Figure 4 illustrates the path travelled by the CCGS Henry Larsen 

on February 24, 2022, from which two data segments were derived. The corresponding 

measured RPM and STW for this duration are shown in Figure 5. It is observed that there 

are several durations of constant RPM during this time. The periods from hour markers 2-

3.5 and 4.5-5 were chosen as segments 11 and 12 respectively. During both segments the 

CCGS Henry Larsen is observed to be travelling with a constant heading and with an 
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average speed of 7-8knots. The respective CIS ice chart for February 24 confirms that the 

CCGS Henry Larsen was travelling through an ice field for both segments. This process 

was used to evaluate all data segments used for analysis. Since the rpm remains constant 

the speed oscillations observed from time 4.5-5 are indicative of variations in the ice 

composition and floe size.  

 

Figure 4 - Route plot for segments #11 and #12. 

  

Figure 5 - Full-scale RPM (Left) and Speed (Right) for duration of segments #11 and #12. 
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Twenty-Two segments were selected with durations ranging from 17 minutes to 174 

minutes. In total, 19.84 hours of data was considered for the statistical analysis of sea ice 

thickness. The details of each segment are summarized in Table 2. 

Table 2 - Table of data segments used for statistical estimation of sea ice thickness. 

Run # Date Duration [h] 

1 2-Feb-22 2.02 

2 2-Feb-22 0.60 

3 3-Feb-22 0.19 

4 3-Feb-22 1.02 

5 20-Feb-22 0.77 

6 21-Feb-22 1.53 

7 21-Feb-22 0.28 

8 21-Feb-22 1.05 

9 21-Feb-22 0.35 

10 23-Feb-22 0.50 

11 24-Feb-22 1.63 

12 24-Feb-22 0.50 

13 27-Feb-22 0.40 

14 3-Mar-22 0.40 

15 3-Mar-22 0.73 

16 3-Mar-22 0.33 

17 4-Mar-22 0.77 

18 4-Mar-22 0.93 

19 4-Mar-22 1.42 

20 4-Mar-22 1.07 

21 4-Mar-22 0.45 

22 4-Mar-22 2.90 

 
Total Time: 19.84 
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The data segments were selected based on identifying steady running conditions, 

meaning that the RPM and speed remained at the same magnitude for the duration of the 

data set. These segments typically resulted in estimated thickness values that also remained 

constant within the confines of each segment. Only segments that remained in a single zone 

on the CIS ice chart for their entire duration were selected. This process ensured the highest 

probability that the ice conditions corresponding to the segment were constant.  

Each data set was first identified by plotting the speed over water against time, RPM 

for each propeller against time, and the combined port and starboard thrust over time. The 

advance coefficient (J) was calculated at each time interval using the speed over water and 

the propeller rate of rotation by equation (6) (Wang, 2023). The thrust deduction was then 

determined using the advance coefficient as per Equation (12). The thrust deduction factor 

identifies change in thrust, relative to the resistance of the ship, caused by hydrodynamic 

effects of the rotating propeller in close proximity to the hull. The component of ice 

resistance is defined by Equation (13). The thrust deduction is first applied to the measured 

thrust value and then the Open water resistance is calculated for the measured speed and 

subtracted from the effective thrust.   

Thickness is then calculated using the regression equation developed in the model 

tests. Due to the implicit nature of the regression equation, it is not possible to solve directly 

for ice thickness. Therefore, bilinear interpolation is used in conjunction with a table of 

values to determine ice thickness by Equation (14) as a way to interpolate between two 

variables, those being speed and ice thickness. The table of values was developed using ice 

thicknesses ranging from 0 m to 5 m and speeds ranging from 0 knots to 15 knots. Intervals 
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of calculation were set to 0.1 m and 0.1 knots respectively. Bilinear interpolation was 

achieved by first interpolating the thickness at both the higher and lower bounds of speed. 

The actual thickness was then interpolated between the upper and lower bounds of speed. 

 
𝐽 =

𝑉𝐴
𝑛𝐷

 (12) 

   

 𝑅𝑖(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = 𝑇𝐸(1 − 𝑡) − 𝑅𝑂𝑊  (13) 

   

 
𝑅 =

1

(𝑉2 − 𝑉1)(𝐻𝑖2 − 𝐻𝑖1)
[𝑉2 − 𝑉 𝑉 − 𝑉1] [

𝑅11 𝑅12
𝑅21 𝑅22

] [
𝐻𝑖2 − 𝐻𝑖
𝐻𝑖 − 𝐻𝑖1

] (14) 

  where: 

 R -  Ship Resistance 

 Hi -  Ice Thickness 

 V -  Ship Speed 

 VA  - Speed of Advance 

 J - Advance Coefficient 

 n - Rotations Per Second 

 D - Propeller Diameter 

 

 

There is a degree of error when using bilinear interpolation on a nonlinear equation. 

It was identified that there was a 2% error or  0.002 m in the ice thickness calculated using 

this method because of the assumption of linearity between interpolation points. This level 

of error in the thickness was acceptable given the variability in the ice coverage. It also 

satisfied the desired level of precision like that of the CIS ice charts,  0.005 m. 

The thickness was analyzed by calculating the average thickness over each segment 

including the variance and standard deviation. Having a low standard deviation would 

indicate high consistency in the ice cover throughout each segment. Higher standard 
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deviation would indicate that the ice coverage is either inconsistent or the stage of ice 

encountered changes during the selected segment. High standard deviation could also 

indicate ridge encounters, however the selection process was meant to eliminate segments 

with ridges.   

The CIS ice charts were reviewed for each data segment on their respective day. 

The corresponding global positioning system (GPS) coordinates for each segment were 

plotted using a keyhole markup language (KML) file. Comparing the plots with the ice 

charts indicated the zones through which the CCGS Henry Larsen travelled. Using this 

comparison, the equivalent ice thickness and thickness for each development stage could 

be extracted from the chart egg codes. 

The final analysis was to compare the statistically estimated ice thickness from 

performance models to the equivalent thickness from ice charts. The first method was to 

compare the equivalent ice thickness to identify if a correlation exists between estimated 

thickness and calculated equivalent thickness. The second analysis was to identify the stage 

of development indicated by the comparison of estimated ice thickness and ice chart egg 

codes to verify that the charts accurately account for the encountered ice type identified by 

each segment.  

 

3.2 Empirical Ice Resistance Comparison 

 

The model test performance equation that the NRC developed for the CCGS Henry 

Larsen is its own prediction method for ice resistance. However, unlike the semi-empirical 

methods highlighted in Section 2.1.7, the NRC CCGS Henry Larsen model is specific to 
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only the one ship tested. As it is known that the NRC model has a high degree of prediction 

accuracy for the CCGS Henry Larsen through full scale trials, it can be used to tune a 

chosen empirical model to improve its accuracy. The benefits of this approach include 

maintaining the generalization of these models to adapt to any ship while tuning their 

magnitude.  

The experimental method chosen to analyze the empirical models was a 2k factorial 

design (Montgomery, 2013). The factorial design approach is beneficial for this application 

because of its ability to evaluate the significance of several factors simultaneously with 

minimal analysis. The objective of the factorial design would be to determine the function 

that is the difference between the NRC model equation and a chosen empirical method. To 

achieve this result while maintaining the empirical model’s integrity, only those variables 

which are similar between the two models are considered in the factorial design. Since this 

is an analytical problem any number of factors can be considered, and no limitations or 

replications are required to achieve statistical significance. The experiment will need to 

consider variables pertaining to the ice properties, the ship scale, and operational 

parameters. 

The chosen empirical model is drawn from the ones outlined in Section 2.1. The 

models must be compared to assess their validity and this is achieved by expanding on the 

semi-empirical analysis of Erceg and Ehlers (2017). With the availability of model test data 

from the CCGS Henry Larsen, the methods can be compared against the NRC model across 

a range of both ship speed and ice thickness. This provides a more comprehensive 

assessment of the empirical models than the few field data points that were used in the 

research or Erceg and Ehlers (2017). The objective is to identify which empirical models 
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have the highest prediction accuracy across a range of ice thicknesses. These models will 

form the basis for a modified empirical method. Erceg and Ehlers (2017) concluded that no 

one empirical method was accurate for all the ships tested in his research. However, a lack 

of experimental data limited the scope of that project. It is anticipated that with a more 

thorough analysis of differing ice thicknesses the comparison of empirical models will be 

more conclusive.  

The end goal of this analysis is to define a function of significant terms that is the 

difference between the chosen empirical model and the NRC equation. The objective is to 

achieve a function with the least terms to maintain simplicity of the model while tuning the 

empirical method. Since ice conditions are often generalized for a given area, including 

strength and density, it can be assumed that actual encounters will often not follow a 

prescribed function. These prediction methods are simply a method for quantifying the 

average encounters and therefore it is not necessary to obtain a perfect fit in this analysis.  

 

3.3 Estimating Propulsive Efficiency 

 

As indicated through the literature review in Section 2.2, the propulsion coefficients 

are not easily predictable for general ships since they are dependent on hull, propeller and 

shafting geometry. This presents a challenge in designing an overall emissions model as 

these values must be defined to predict a ship’s fuel consumption in ice with an acceptable 

degree of accuracy. Literature does provide a scope of propulsive values that apply to the 

majority of ships, however they pertain to ships in open water. There is a significant gap in 

understanding of general performance in ice.  
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The most appropriate approach to this scenario is to determine the specific 

propulsion efficiencies for each ship to which the emissions model is applied. However, 

this would significantly increase the complexity of the model and require access to data 

and specifications not readily available in all cases. The CCGS Henry Larsen is a unique 

case in that both the live propulsive data and the machinery specifications are available for 

study in this research. Therefore, CCGS Henry Larsen is used as an example for a detailed 

analysis of propulsive efficiencies. This includes a regressive analysis of the measured 

torque and thrust values at the shaft and considering the propeller efficiency curves. This is 

used to determine an estimate of the total propulsive efficiency from the effective power to 

the shaft power. This regressive value can be compared against the general open water 

values to validate the literature and propose values to use for the emissions model.  

The thrust deduction can also be analyzed through a regression analysis. The NRC 

model tests resulted in a thrust deduction equation which is used to determine the operating 

thrust deduction at full-scale. The regression analysis of this variable focusses on the 

influence of ice thickness on thrust deduction. Similar to the propulsive efficiency, the 

regression analysis of thrust deduction can be used to advise values for use in the general 

emissions model.  
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4 Results 
 

The results are subdivided into three main categories: the statistical estimation of 

sea ice thickness, estimating resistance in ice using modified empirical methods, and 

estimating emissions from regression of propulsion efficiencies. The subdivision treats this 

analysis as three independent studies culminating in the final emissions model. One data 

segment is tracked across all sections to highlight the progression of the research 

calculations. Where necessary, anomalies of other data segments are emphasized. The 

complete dataset for all segments considered is presented in the appendices.   

 

4.1 Ice Thickness Estimates 

 

Ice thickness was estimated for all 22 data segments using a combination of 

software packages that included MATLAB, Microsoft Excel, and Google Earth Pro. All 

data from the CCGS Henry Larsen was provided in spreadsheets and comma-separated 

value (CSV) format and therefore was manipulated and sorted using Microsoft Excel. 

MATLAB was used to expedite the analysis of segment data and to produce the plots of 

measured ship values and ice thickness. Google Earth Pro was used to plot the CCGS Henry 

Larsen’s transit and to compare CIS ice chart data to identify ice presence visually. Figure 

6 shows a plot of all the data segments considered for analysis. Route #14 is emphasized 

as it will be the primary route for discussion and detailed analysis.  
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Figure 6 - Plot of all 22 data segments located around the northwest peninsula of Newfoundland. 

 

4.1.1 Validating Method in Open Water Transit 

 

One form of validation for the statistical method was to test its capacity against open 

water conditions. As there is no ice thickness during this operation, the model would be 

expected to predict as such. Any predicted thickness in open water would suggest an error 

within the model test or some form of additional resistance. Figure 7 shows the map of a 

known open water transit along the southern coast of Newfoundland, where the CCGS 

Henry Larsen was traveling to the south. This is a quasi-steady-state segment adequate for 

validating the methodology. 

The resultant estimated ice thickness during this segment is presented in Figure 8. 

The thickness was calculated at one-second intervals, and the mean thickness predicted was 

1.4cm with a standard deviation of 1cm. It is expected that some value of estimated ice 

thickness would be observed when dealing with full-scale trial data as the ship is not 

running in a genuinely steady condition.  

Segment #14 
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Figure 7 - Map of open water segment. 

 

Figure 8 - Open water estimated ice thickness for model validation. 

It was also noted that at a sample rate of 1Hz, there is a lot of noise in the data, more 

than 6 cm thick during some peaks. This result was compared to the known ice prediction 

segments, which did not indicate the same degree of noise at the same sample rate. It was 
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concluded that this noise is most likely due to the sea state.  It was deemed acceptable to 

ignore this added resistance because it is not present in ice-covered conditions.  

Several open water segments showed a consistently higher ice thickness with an 

average thickness of around 4cm. These sudden changes were observed to occur when the 

CCGS Henry Larsen changed headings or transited between inshore and offshore locations. 

Therefore, it is most likely that the CCGS Henry Larsen is experiencing added wind and 

wave resistance between the head seas and the following seas as it changes heading. As the 

model is designed to estimate sea ice thickness, it associates all added resistance as 

equivalent ice thickness. The wind resistance is also present in ice-covered conditions; 

however, it is difficult to quantify its value without robust wind measurements. If 

meteorological data was collected, the component of wind resistance could be incorporated, 

given that the vessel's profile is known. However, the component of wind resistance 

becomes proportionally smaller as the ice resistance increases. Therefore, its contribution 

to the level ice calculation is reduced as the total ice thickness increases. There are also no 

negative values because the lookup table used for calculating ice thickness in the model 

was incapable of predicting negative thickness.   

 

4.1.2 Statistical Ice Estimate Results 

 

Ice thickness was estimated at a frequency of 1 Hz throughout each data segment 

considered. One of the segments, identified by number 14, is shown in greater detail to 

illustrate the complete result profile. Segment 14 was recorded between 6:38 am and 7:02 

am on March 3rd, 2022. During this time, the CCGS Henry Larsen transited west of 
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Flowers Cove on the Northern Peninsula of Newfoundland for approximately 3.76 nautical 

miles.  

The ice chart for March 3rd, 2022, was accessed through the CIS archives and is 

presented in Figure 10 (Canadian Ice Service, 2022). The general area of operations is 

circled and is identified as the Strait of Belle Isle, and the specific path is shown in Figure 

9. The zone through which the CCGS Henry Larsen transits for this data segment is 

identified by the letter F which identifies the ice code describing the ice in the region. The 

egg code indicates over 90% concentration divided between two stages of development. 

The first stage is identified as 30% concentration of thin-first year ice with thickness 

ranging from 0.3 m to 0.7 m. The second stage is identified as 70% concentration of grey-

white ice with a 0.15 m to 0.3 m thickness. Both stages are identified as big floes with floe 

sizes ranging from 500 m to 2000 m. The equivalent ice thickness is calculated at 0.31 m 

for this zone using equation (5). 

 

Figure 9 - Plot of segment #14 route in the Strait of Belle Isle. 
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Figure 10 - CIS Ice Chart for NE Newfoundland Waters March 3rd, 2022 (Canadian Ice Service, 

2022) © Her Majesty the Queen in Right of Canada, as represented by the Minister of 

Environment Canada, [2022]. 
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The statistical ice thickness was estimated using the model test regression models 

for ice resistance, and the plot of thickness over time is presented in Figure 11. The average 

thickness over this segment was 0.314 m, with a standard deviation of 0.054 m. In this case, 

the average thickness is very close to the equivalent ice thickness determined from the ice 

chart, indicating that the ship has transited an even distribution of the stages of development 

indicated by the egg code. Upon inspection of the thickness, it trends towards thinner ice. 

The first half is identified as thin-first-year ice because the thickness remains above 0.3m. 

However, it is deduced that the CCGS Henry Larsen begins to transition to an area with 

grey-white ice towards the end of the segment. 

The rough floe size can also be identified from this graph in Figure 11. The ice chart 

indicated floe sizes ranging from 500m to 2000m. The total distance traveled was 3.76 

nautical miles or 6900m. Therefore, the CCGS Henry Larsen should have encountered 

between 4-13 major floes. The data shows five distinct prolonged spikes in ice thickness 

that could infer the size of each floe. This is inferred because the estimated thickness is 

directly proportional to the measured thrust based on the statistical model employed. For 

each segment considered, the CCGS Henry Larsen was transiting in a constant direction. 

This result contrasts with the scenario where the ship would navigate along leads in the ice 

cover. Therefore, the ship would encounter complete ice floes rather than transiting between 

them. Most notably, the spike from time stamp 9.7 hr to 9.8 hr would infer a floe size of 

approximately 1700 m, within the predicted range. Similar conclusions were derived from 

all other segments in ice to validate this inference. The NRC identified during trials that the 

thrust was reduced between ice floes as the resistance would shift from a predominance of 

icebreaking resistance to ice clearing (Wang, et al., 2023).  



46 

 

 

Figure 11 - Ice thickness estimate for segment #14. 

Each data segment was analyzed the same way as segment 14. Table 3 shows a 

summary of the results, including the most probable stage of development encountered 

based on the comparison of estimates and ice chart data. Each segment was verified using 

the identical method outlined in segment 14, including comparing ice thickness and 

evaluating floe sizes. It should be noted that not all the data provided a definitive result 

within 20% of the equivalent thickness. For one-third of cases, the estimated thickness was 

comparable to equivalent ice thickness, suggesting an encounter with several stages of 

development. This was identified by a higher variability in thickness and distinct steps in 

thickness. However, most cases did not relate to equivalent ice thickness and were closely 

related to a specific stage of development. Additional details presented in Appendix A. 
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Table 3 - Summary of statistical ice thickness estimates and ice chart comparison. Additional 

Details provided in Appendix A – CCGS Henry Larsen Data Segment Analysis. 

# of 
seg-

ment 
 

Statistical 
Ice 

Thickness 
[m] 

Std 
Dev. 
[m] 

EQ Ice 
Thickness 
equation 
(5) [m] 

First 
Concn. 

Thickness 
[m] 

Second 
Concn. 

Thickness 
[m] 

Third 
Concn. 

Thickness 
[m] 

Stage of 
Develop-

ment 

1 0.010 0.008 0.1 0.225 0.125 0.050 Open Water 

2 0.116 0.023 0.1 0.225 0.125 0.050 Grey Ice 

3 0.087 0.012 0.15 0.225 0.125 0.050 New Ice 

4 0.103 0.016 0.15 0.225 0.125 0.050 Grey Ice 

5 0.329 0.087 0.17 0.225 0.125 ~ 
Grey-White 

Ice 

6 0.198 0.041 0.26 0.500 0.225 0.125 
Grey-White 

Ice 

7 0.307 0.075 0.26 0.500 0.225 0.125 
Thin First 

Year 

8 0.305 0.049 0.26 0.500 0.225 0.125 
Thin First 

Year 

9 0.272 0.020 0.26 0.500 0.225 0.125 
Grey-White 

Ice 

10 0.207 0.026 0.26 0.500 0.225 0.125 
Grey-White 

Ice 

11 0.404 0.046 0.13 0.225 0.125 0.050 
Outside 

Chart Range 

12 0.327 0.062 0.28 0.500 0.225 ~ 
Thin First 

Year 

13 0.184 0.028 0.36 0.500 0.225 ~ 
Grey-White 

Ice 

14 0.314 0.054 0.31 0.500 0.225 ~ 
Thin First 

Year 

15 0.357 0.059 0.31 0.500 0.225 ~ 
Thin First 

Year 

16 0.284 0.052 0.31 0.500 0.225 ~ 
Grey-White 

Ice 
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17 0.178 0.092 0.17 0.225 0.125 ~ 
Grey-White 

Ice 

18 0.066 0.034 0.17 0.225 0.125 ~ 

Limited 

Grey-White 

Ice 

19 0.061 0.044 0.17 0.225 0.125 ~ 

Limited 

Grey-White 

Ice 

20 0.070 0.009 0.09 0.225 0.125 0.050 New Ice 

21 0.089 0.009 0.18 0.225 0.125 0.050 New Ice 

22 0.076 0.020 0.18 0.225 0.125 0.050 New Ice 

 

4.1.3 Special Cases 

 

4.1.3.1 Segment 1 – Open Water 

 

A few special cases indicated no initial obvious correlation to the ice chart 

predictions and therefore required further investigation. Additional analysis was required 

to identify these anomalies. 

 

The analysis of case number one (1) indicated that the ice thickness was near zero 

for the entire duration of the data segment. This indicated that the ship was likely traveling 

through open water. However, as the ice chart indicated otherwise, this needed to be verified 

by other means. Firstly, the advance coefficient (J) was considered across the entire 

segment and remained constant at 0.24. Based on the NRC model test data, advance 

coefficients of 0.24 coincided with open water, and lower values indicated ice encounters 

(Wang, 2023). Also, while consulting the ice chart, it was clear that the CCGS Henry Larsen 
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was transiting a zone that bordered open water. Figure 12 shows the estimated thickness 

for data segment #1.  

 

Figure 12 - Segment #1 ice thickness estimate resembling open water. 

The conclusion for this data segment was that the ship was transiting in open water 

along the border of the ice, which is common practice to maximize fuel efficiency in transit. 

The benefit of this data segment is that it demonstrates a low degree of error from the 

statistical estimation method for ice thickness within 1 cm. This segment also resembles 

the analysis of open water in Section 4.1.1 in that there is a high degree of noise correlating 

to added wave resistance. This date was further analyzed to capture the thickness before 

the chosen segment. Evidently, the CCGS Henry Larsen encountered ice as it left Tête-à-

la-Baleine, QC, until it reached open water and changed heading northeast. 
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4.1.3.2 Segment 11 – Zone Boundary Shift 

 

It was evident that the statistical thickness was beyond the ice thickness described 

by the ice chart for case 11. Upon further inspection of the ice chart for this day, it was 

evident that the CCGS Henry Larsen transited near a border between two identified ice 

zones. The adjoining zone indicated thicker ice than the one in which the CCGS Henry 

Larsen was transiting, which correlated better. When comparing the ice charts between 

consecutive days, it was evident that the zone boundary shifted. Therefore, it is possible the 

CCGS Henry Larsen was transiting the adjoining zone due to boundary shift with time 

since the current chart was dated by 12 hours at the time of encounter. This is an apparent 

disadvantage of the ice chart system in that they become outdated as ice shifts, 

pArcticularly in narrow passages with high currents, such as the Strait of Belle Isle. In these 

cases, it isn't easy to accurately describe the ice conditions at the ship’s location. This 

behavior is expected in areas with fast-moving ice conditions.  

 

4.1.3.3 Segment 19 – Mixed open water and ice encounters 

 

For cases 18 and 19, the estimated average ice thickness falls below the minimum 

ice thickness suggested in the ice chart of 0.1m. Upon inspecting the estimated thickness 

shown in Figure 13, half of this data is operated in an ice-free zone with segments of near 

zero thickness and advance coefficients near 0.24. However, the latter half indicates an 

encounter with grey-white ice. When consulting the CIS ice chart, the total concentration 
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is only 9/10th, which indicates the presence of 1/10th open water. Therefore, the ice chart 

does reflect the estimated thickness.  

 

 
Figure 13 - Estimated Ice Thickness for Dataset 19. 

 

4.2 Modified Empirical Ice Prediction Model 

 

The next part of the research and the first component of estimating ship emissions 

was to develop a method for predicting the resistance of ships. It is acknowledged that a 

complete model would consider open water and ice performance. However, this research 

focuses on methods for predicting ice resistance. The literature is consistent that the Holtrop 

method is adequate for open water predictions, pArcticularly of displacement-type ships 

(Holtrop & Mennen, 1982). Therefore, it is recommended that Holtrop’s method be 

employed for open-water portions of the emissions prediction model. In the case of the 
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CCGS Henry Larsen, the open water test results scaled using ITTC procedures are used for 

greater accuracy (ITTC Resistance Committee, 2011).  

Like open water, several empirical methods for predicting ice resistance are 

described in Section 2.1. However, the literature is undecided on which method is the most 

appropriate for a given ship. The empirical methods are compared against the NRC 

regression equation to evaluate their validity at varying ice thicknesses and ship speeds, 

given the presence of model test data for the CCGS Henry Larsen. A similar approach is 

taken to the empirical review conducted by (Erceg & Ehlers, 2017) while expanding on the 

analysis by looking at a larger spectrum of ice conditions. 

 

4.2.1 Analysis of Existing Empirical Models 

 

Figure 14 through Figure 16 show the comparison of six empirical prediction 

methods with the NRC regression model. The three oldest methods, including Vance, 

Lewis, and Zahn & Philips, are discarded due to their simplicity compared to the more 

recent models. These models consistently overestimate the resistance with high 

inconsistency, especially at thinner ice thickness levels. The older methods are included to 

demonstrate the progression of prediction methods over time.  

Figure 14 shows the ice resistance predictions at an ice thickness of 0.5m. This 

graph indicates that all three modern models, including Riska, Lindqvist, and Keinonen, 

predict close results to the NRC model, while Riska and Lindqvist have the best fit. Figure 

15 shows the same prediction at 1m of ice thickness. Compared with the thinner ice, the 
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Riska and Lindqvist models are now proportionally lower than the NRC model.  Figure 16 

shows the predictions at 1.5m; the results are similar to the medium thickness. 

Of the three newer methods, Keinonen was the most consistent model compared to 

the NRC results.  Riska and Lindqvist were identified as having a higher degree of 

variability compared with the NRC model at different ice thicknesses. PArcticularly in 

thinner ice, these two models predicted higher resistance compared to the NRC model. This 

would become an issue since the prior ice thickness predictions in Section 4.1 are below 

0.5m. In contrast, Keinonen’s model consistently predicts about 20% less resistance than 

the NRC model across all thicknesses. As this model is consistently proportional to the 

NRC model, it is the best candidate for making simple modifications to affect its predicted 

magnitude.  

These results are consistent with the relevant semi-empirical research (Erceg & 

Ehlers, 2017). That research concluded that none of the six prediction methods could 

accurately predict resistance. However, a lack of data points did not allow them to assess 

different changing environmental parameters. They analyzed data from three different 

ships, and upon additional inspection, the Keinonen method also predicts resistance about 

20% lower than measured values for each of those ships. This confirms that the Keinonen 

model is most appropriate as it can be applied to various hull forms with similar prediction 

results.  
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Figure 14 - Empirical resistance estimates for CCGS Henry Larsen at an ice thickness of 0.5m. 

 

Figure 15 - Empirical resistance estimates for CCGS Henry Larsen at an ice thickness of 1m 
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Figure 16 - Empirical resistance estimates for CCGS Henry Larsen at an ice thickness of 1.5m 

 

4.2.2 Factorial Design Experiment 

 

The chosen method for predicting ice resistance was Keinonen’s based on its 

consistency when tested against differing ships, ice thickness and ice flexural strength. 

However, it underpredicts the resistance in all cases. Therefore, a method is proposed by 

which a modifying equation be applied to tune the model using a validated performance 

mode. As previously stated, the NRC model for the CCGS Henry Larsen is a reliable 

prediction method. However, it is specific only to one hull, making it inappropriate to apply 

to other vessel types; this would align its accuracy with the older prediction models based 

on singular ship performance. However, because the NRC model is accurate to the CCGS 

Henry Larsen, it can be used as a datum to tune the Keinonen model if the Keinonen model 
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can be modified to fit the NRC model for the CCGS Henry Larsen while retaining its 

capacity for various hull types. In that case, it can be considered a more appropriate 

prediction method.  

Table 4 - Parameters for chosen empirical methods. 

   Keinonen et al. 

(1996) 

NRC Regression 

(2023) 

Common 

Variables 

Operational 

Parameter 
V Ship speed V V V 

Ship Size L Ship length L L L 
 B Ship breadth B B B 
 T Ship draft T T T 

Bow Shape β 
Average buttock 

angle at waterline 
β   

 ψ 
Average bow flare 

angle at waterline 
ψ   

Ice-Related h Ice thickness h h h 
 σf Ice strength σf σf σf 

 ρi Ice Density  ρi  

 ρw Water Density ρw ρw ρw 
 μ Hull ice friction μ   

 hs Snow thickness hs   

 t 
Ice surface 

temperature 
t   

 Ch 
Hull condition 

factor 
Ch   

 Cs 
Factor of salinity 

of water 
Cs   

 g Speed of Gravity  g  

 

To develop the modified equation, the relevant variables that could be significant 

must be determined. Retaining the benefits of the Keinonen model, such as bow shape, 

requires modifying only the common variables between this model and the NRC model. 

Table 4 defines the variables required for the Keinonen and NRC models and highlights 

seven common parameters. All the common variables except for the water density are 

considered possibly significant for the analysis. Water density is not included because it 
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typically remains constant between predictions relative to the other variables. The chosen 

variables can be written as a potential functional expression shown in equation (15). The 

2k factorial design experiment was used to determine the significant variables and the 

necessary function.  

 𝑅𝑖(𝑁𝑅𝐶)

𝑅𝑖(𝐾𝑒𝑖𝑛𝑜𝑛𝑒𝑛)
= 𝑓(𝑉, 𝐿, 𝐵, 𝑇, ℎ𝑖 , 𝜎𝑓) (15) 

As six factors were considered, this was a 26 factorial design. Stat-Ease® Design 

Expert was used to conduct the factorial experiment. A 2-level six-factor design experiment 

requires 64 runs for a complete experiment. There was no restriction on the calculations 

and no need to modify the experiment to a fractional factorial design because this was an 

analytical experiment. Likewise, there was no need for replications. Four center points were 

also included to test for curvature. Table 5 defines the six factors and their levels. The 

maximum level of ship-based parameters is based on the CCGS Henry Larsen 

specifications, while the low level is based on a concept Coast Guard light icebreaker basic 

dimensions. The ice thickness and speed levels were chosen based on the range of values 

identified during the analysis in Section 4.1.2. The ice strength was based on NRC tested 

values ranging from 300kPa to 700 kPa (Wang, et al., 2023). 

Table 5 - Design of experiments factors. 

Factor Name Units Type SubType Min Max Mean Std. Dev. 

A 
Ice 

Thickness 
m Numeric Continuous 0.2 1 0.6 0.3909 

B Speed m/s Numeric Continuous 0.5 5 2.75 2.2 

C Length m Numeric Continuous 40 100 70 29.32 

D Beam m Numeric Continuous 10 20 15 4.89 

E Draft m Numeric Continuous 4 7 5.5 1.47 

F Ice Strength MPa Numeric Continuous 0.3 0.7 0.5 0.1955 
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The values for each run were calculated by finding the difference between the 

Keinonen and NRC prediction results for each required factor level. A square root 

transformation was chosen since the Keinonen method has a linear fit while the NRC model 

has a second-order polynomial fit. Figure 17 shows the half-normal plot of significant 

terms, indicating a high degree of significant terms and allied terms, meaning a p-value of 

less than 0.05. The Pareto chart in Figure 18 shows the terms sorted by their significance. 

This chart indicates that an excess of 20 terms and allies are significant to satisfy the t-limit 

of 2. It is unreasonable to accommodate many terms in the desired modified equation. The 

goal is not to replicate the NRC model in its exactness but instead to tune the Keinonen 

model to predict closer results to expected values.  

 

Figure 17 - Half-normal plot to identify statistically significant terms StatEase® 
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Based on the Pareto chart, satisfying the Bonferroni limit would allow for a 

reasonable fit for the desired purpose. The Bonferroni correction modifies the threshold by 

dividing the desired threshold by the number of tests. Three significant terms were 

identified to satisfy this limit of 3.523 t-value: Ship speed, length, and draft. Interestingly, 

none of the ice parameters were of high significance between the NRC and Keinonen 

models. This is significant to note because it indicates that the differences between these 

models lie with the ship's scale and not the ice parameters. The analysis of variance showed 

a clear indication of significance with these three variables because their p-values are all 

less than 0.0001.  

 

Figure 18 - Pareto graph showing the t-value of most significant terms StatEase® 

The R2 value for this analysis was 0.6456, which could be identified as low. 

However, as previously mentioned, a perfect fit of the NRC model was not desired to 
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maintain simplicity. StateEase® indicated that this value agreed with the predicted R2 value 

and that the model has adequate precision with little interference from noise.  

The results must first be validated by analyzing residuals using the Design Expert 

software to complete the analysis. Firstly, the results must be normally distributed for the 

analysis to be a full factorial experiment. For this to hold true, the residuals should all be 

distributed close to the normal line when arranged on a normal plot. Figure 19 shows this 

normal distribution and validates that the data can be considered normal because the 

residuals lie close to the line.   

 

Figure 19 - Normal plot of residuals. The assumption of normality is valid. 

The residual vs. predicted plot in Figure 20 verifies the second assumption. This 

shows that the data points are within the desired limits, denoted by the horizontal lines, and 

that the data is evenly distributed about zero. The order of the test runs was randomized; 

however, this is unnecessary for an analytical experiment and therefore did not need to be 
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tested. Regardless of the order, the responses are always the same in an analytical 

experiment.  

 

Figure 20 - Residual vs predicted plot. Residuals are evenly distributed and within limits. 

Once the analysis of residuals was completed to validate the model, the equation in 

terms of actual factors could be used to generate the modified equation for ship ice 

resistance based on Keinonen’s model. Equation (16) shows the complete modified model 

that is implemented into the emissions model for predicting ship performance in ice. As 

previously determined by the full factorial design, three parameters are used to keep the 

model simple: ship speed, length, and draft. These are applied as a quadratic multiplier to 

the Keinonen model. The first term in the modified equation of 1.199 correlates to the 20% 

error observed in the base Keinonen equation.  

 𝑅𝑖 = 𝑅𝑖(𝐾𝑒𝑖𝑛𝑜𝑛𝑒𝑛)(1.199 − 0.0273𝑉 − 0.0017𝐿 + 0.0246𝑇)
2 (16) 
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4.2.3 Validating Modified Keinonen Model 

 

The modified Keinonen method must be validated against existing ship 

performance observations to ensure that it will accurately predict ship performance in ice. 

This was first applied to the CCGS Henry Larsen; the plot is shown in Figure 21. As 

predicted, the new model does not fit the NRC prediction with high precision. However, it 

does predict resistance at the same magnitude. This indicates that the model, based on 

Keinonen’s method, is accurately tuned to predict ice resistance observations on the CCGS 

Henry Larsen. A similar observation was made across a spectrum of ice thicknesses from 

0.2m to 1.5m with minimal variance from the NRC model.  

 

Figure 21 - Modified Keinonen model used to predict the resistance of CCGS Henry Larsen in 1m 

level ice at speeds from 0.5-5m/s. 
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 However, validating the model only against the CCGS Henry Larsen does 

not address the concern for generalization. This does not verify if the model is appropriate 

for other vessel types. Testing this model on other ship types requires additional vessel 

performance data. In the research conducted by Erceg and Ehlers (2017), they compared 

the regression resistance curves of four ice-going vessels. One of these vessels was the MT 

Sotka which has a length of 150m and a beam of 21.5m. These dimensions make the MT 

Sotka almost one and a half times the size of the CCGS Henry Larsen. It also has different 

bow angles and is based on slightly different ice conditions from that of the CCGS Henry 

Larsen. Table 6 presents a complete summary of the ship parameters used to predict the MT 

Sotka ice resistance.  

Table 6 - Empirical prediction parameters for the MT Sotka (Erceg & Ehlers, 2017). 

  MT Sotka 

L Ship length 150m 

B Ship breadth 21.5m 

T Ship draft 9.5m 

β 
Average buttock 

angle at waterline 
290 

ψ 
Average bow flare 

angle at waterline 
43.90 

h Ice thickness 0.54m 

σf Ice strength 500kPa 

μ Hull ice friction 0.15 

hs Snow thickness 0m 

t 
Ice surface 

temperature 
-2C 

Ch 
Hull condition 

factor 
1.0 

Cs 
Factor of salinity 

of water 
0.90 

 

Figure 22 shows the plot of predicted resistance using the Keinonen and modified 

Keinonen models. The regression equation was generated using only five operational 



64 

 

measurements between the speeds of 3-4 m/s. The Modified model intersects the regression 

curve at 4m/s, suggesting high precision. This result indicates that the proposed modified 

equation is valid for use across differing ship types. It has achieved the purpose of adjusting 

the prediction magnitude of Keinonen’s model while retaining the components of ice 

parameters and hull shape.   

 

Figure 22 - Modified Keinonen model used to predict the resistance of MT Sotka in 0.54m level 

ice at speeds from 0.5-5m/s. 

 

4.3 Regression Ship Propulsion Efficiencies 

 

Estimating a ship's propulsion efficiencies is a critical link between its performance 

characteristics and the emissions profile, which is necessary for predicting fuel 
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consumption and carbon output. The specific parameters of the hull and propeller must be 

known to define the propulsion losses properly. With such data for the CCGS Henry Larsen, 

these values can be discussed in more detail. This section provides a detailed method for 

determining the losses in cases where the necessary data is available. The results also serve 

to advise on how to estimate propulsion efficiency in the absence of ship monitoring data. 

The goal of this section is to determine and adequate generalization of propulsive 

efficiencies for use in the emission estimator.  

 

4.3.1 Thrust Estimates 

 

4.3.1.1 Thrust Deduction 

 

Section 2.2 defines the thrust deduction as the portion of resistance caused by the 

propeller operating behind a hull. It is caused by the lower pressure created ahead of the 

propeller and determines the relationship between bare hull resistance and required thrust 

as per equation (1). The NRC model test of the CCGS Henry Larsen included the definition 

of a regression-based thrust deduction curve as shown in equation (17), where the thrust 

deduction is a function of the advance coefficient. This equation was used to determine the 

thrust deduction for the CCGS Henry Larsen emissions analysis, and it is recommended for 

best accuracy to use existing model test data where possible.  

 𝑡 = 0.23𝐽2 + 0.04𝐽 + 0.07 (17) 

  where: 

 t  -  Thrust Deduction 

 J -  Advance Coefficient 
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An equation for thrust deduction based on the advance coefficient is impractical for 

general use cases because it is necessary to know the shaft RPM. This is not always being 

measured, and when predicting ship routes, one cannot assume the shaft speed. Therefore, 

a secondary regression analysis can be completed to relate the thrust deduction to known 

variables such as speed and ice thickness. Figure 23 shows a plot of the model test thrust 

deduction values plotted against the values generated from a modified thrust deduction 

equation (18). Although not a perfect fit for the data, the thrust deduction based on speed 

and ice thickness is adequate.  

 

Figure 23 - Regression analysis of CCGS Henry Larsen thrust deduction for all 22 data segments. 

Thrust deduction as a function of ship speed and ice thickness. 

 𝑡′ = 0.204 − 0.19𝐻𝑖 + 0.013𝑉𝑠 (18) 

  where: 

 t’  -  Estimated Thrust Deduction 

 Hi  - Ice Thickness 

 VS -  Ship Speed 
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As expected, the thrust deduction increases with increased speed. This increase 

happens because the propeller induces a greater low pressure with increased shaft speed. 

The ice thickness has an interesting effect on the thrust deduction as it reduces with 

increased thickness. This decrease is evident in Figure 24, which shows the function of 

thrust deduction at 1m/s speed intervals and thicknesses up to 1m. It can be explained by 

the ice passing through the propeller disk. Ice in the propeller disk and ahead of the 

propeller reduces the low pressure from the propeller due to interactions and changes of the 

fluid properties. The existence of ice can create a blockage effect, which reduces the inflow 

speed and consequently induces a near bollard condition with lower thrust deduction. Also, 

the relative thrust to speed at increasing ice thicknesses would reduce the thrust deduction.  

There are limitations to this conclusion because the analysis of the 22 data segments 

did not include ice thicknesses greater than 0.5m. At the same time, the CCGS Henry 

Larsen can break up to about 1m of level ice (Government of Canada, 2015). It is assumed 

that the function is valid up to 1m based on the regression analysis. It is also known that 

the open water thrust deduction is around 0.24, which correlates well with the regression 

model.   
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Figure 24 - CCGS Henry Larsen thrust deduction curves based on regression equation of speed 

and ice thickness. Curves are shown at speeds ranging from 1m/s to 5m.s in thicknesses up to 1m. 

The regression approach is still specific to the CCGS Henry Larsen; however, it 

provides insight into the behavior of thrust deduction with ice thickness. The ice thickness 

also affects the thrust deduction more than the ship speed. Relevant literature suggests that 

thrust deductions range from 0.1 to 0.2 (Zubaly, 1996). Based on the CCGS Henry Larsen 

model, the open water thrust deduction can be assumed at the highest value of 0.2 and 

decreasing to 0.1 by max designed thickness. This is modeled by equation (19). 

 
𝑡′ = 0.2 − (

0.1

𝐻𝑖𝑑𝑒𝑠𝑖𝑔𝑛
)𝐻𝑖 (19) 

  where: 

 t’  -  Estimated Thrust Deduction 

 Hi  - Ice Thickness 

 ViDesign -  Maximum level ice for given ship 

 

 

4.3.1.2 Thrust Prediction 

 

As stated, the thrust deduction calculated for the CCGS Henry Larsen data segments 

was based on the NRC model equation (17). This was applied to the resistance values 

calculated with the Keinonen model and the proposed modified Keinonen models. Figure 
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25 shows the plot of CCGS Henry Larsen thrust predictions against the measured data at 

the shaft.  

 

Figure 25 - Plot of CCGS Henry Larsen thrust measured and predicted for data segment #14. 

In Figure 25, the solid line represents the measured thrust values from the TT 

Sense® sensor, the dotted line is the straight Keinonen prediction, and the dashed line 

shows the modified Keinonen prediction. These predictions used the measured speed and 

estimated thickness to predict thrust. These predictions show a high degree of accuracy 

compared to the measured thrust values.  

A third estimate is shown in Figure 25 with a solid starred line which appears to 

differ greatly from the other models. This is because it is based on the measured ship speed 

and the equivalent-level thickness from the CIS ice charts. It appears that the thrust 

predictions are inverted, and this occurs because the model is speed dependent. As the 
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model assumes constant level ice, it expects speed increases to correlate with increased 

thickness. However, the speed increases are often indicative of leads with thinner ice and 

lower thrust.  This observation is an issue identified with the equivalent-level ice prediction 

accuracy. However, it will be evident that longer transits with an average thickness near the 

equivalent thickness will result in similar emissions predictions.  

The greatest problem arises when the encountered ice differs significantly from the 

equivalent-level ice thickness from CIS charts. For example, the thrust plots for data 

segment #3 are shown in Figure 26. The average ice thickness during this transit was 

0.087m, while the equivalent thickness was 0.15m, almost twice as thick. This results in a 

predicted thrust for equivalent ice that is three times the actual measured thrust. The result 

is the creation of an inaccurate emission profile. However, no current methods exist for 

predicting the location of individual ice types reported in an ice chart.  

 

Figure 26 - Thrust predictions for data segment #3. 
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4.3.2 Propeller Efficiency 

 

4.3.2.1 Behind Hull Efficiency  

 

The propulsion efficiencies must be estimated for the CCGS Henry Larsen and 

general ship models, similar to the thrust deduction. Since these losses exist between the 

thrust and engine power, they are considered entirely dependent on the installed propeller, 

hull form wake fraction, and shafting system. As defined in Section 2.2, the primary 

propulsion efficiencies are the behind hull efficiency (ηB) and the shaft efficiency (ηs). The 

shaft efficiency is caused by friction in the stern tube and shaft bearings. It typically has a 

value of 0.98 (Zubaly, 1996). The behind hull efficiency, if defined by equation (20), is the 

ratio of thrust power at the propeller to deliver power at the shaft. The thrust power requires 

the use of advance speed; however, this value would rarely be known for general vessels.  

 
𝜂𝐵 =

𝑃𝑇
𝑃𝐷
=

𝑇𝑉𝐴
2𝜋𝑛𝑄𝐷

 (20) 

  where: 

 ηB  -  Behind Hull Efficiency 

 PT -  Thrust Power 

 PD -  Delivered Power 

 T - Thrust 

 VA -  Speed of Advance 

 n - rotations per second (rps) 

 QD -  Torque 

 

 

The TT Sense® sensor on the CCGS Henry Larsen is used to measure thrust and 

torque from the shaft using optical sensors. This allows for the regression analysis of 

behind-hull efficiency. Since the advance speed would not be known for most general ships, 

the ship speed through water was used for thrust power instead of a wake analysis. Note it 
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would be possible to use the advance speed for the CCGS Henry Larsen because the 

advance coefficient can be estimated, and shaft rotations per minute was collected.  

Figure 27 shows a plot of the measured thrust power denoted by small dots and the 

motor power indicated by plus markers. These data points are drawn from all 22 data 

segments. The average difference between these values gives a behind-hull efficiency of 

0.7225 with a standard deviation of 0.3046. Motor power was then estimated for all data 

points using the behind hull efficiency of 0.7225 and plotted with circle markers. The high 

standard deviation in this value does distort the results. However, this occurs to a greater 

degree at lower powers. As most data is below 1MW, this dramatically distorts the standard 

deviation. The average ship typically has a behind-hull efficiency of around 0.8 (Zubaly, 

1996); however, since the CCGS Henry Larsen is an icebreaking hull form, it is expected 

that the losses due to the behind-hull efficiency would be greater. For ships transiting ice, 

assuming behind hull efficiency between 0.72-0.8 would be acceptable, depending on the 

design of the hull form. 
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Figure 27 - Motor power estimated using a regression scaling factor. 

Since propeller and shafting data are available for the CCGS Henry Larsen, there is 

a more accurate and detailed method for deriving the motor power. This can be achieved 

through detailed analysis of the propeller performance curves in open water. The propeller 

geometry must be used to generate the propeller efficiency curves to conduct this analysis. 

The specifications are listed in Table 7, and the efficiency curves are shown in Figure 1.  

Table 7 - CCGS Henry Larsen propeller specifications (Wang, 2023) 

 CCGS Henry Larsen 

Diameter 4120 mm 

Pitch Ratio at 0.7R 0.844 

Blade Area Ratio 0.723 

Number of Blades 4 
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Figure 28 - Propeller performance curves in open water, CCGS Henry Larsen full scale 

propellers. 

The efficiency curves are used to translate from measured thrust to predicted torque. 

This estimated torque can then be compared against the measured values to evaluate the 

method's effectiveness in calculating motor power from thrust. The thrust, shaft speed, and 

propeller diameter can be used to calculate the thrust coefficient using equation (21). The 

corresponding advance coefficient is determined from the thrust coefficient trendline in 

Figure 28. The corresponding torque coefficient is determined from the same plot using the 

advance coefficient. Finally, the shaft torque can be calculated using equation (22). The 

delivered power is by equation (23) using the shaft speed and inferred torque values from 

the propeller efficiency curves.  

The inferred power values were calculated for all data points and plotted against the 

measured values and thrust power in Figure 29. The thrust power is shown with small dot 
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markers, plus markers identify the measured values, and the inferred values are identified 

by circles.  

 
𝐾𝑇 = 𝑓1(𝐽) =

𝑇

𝜌𝑛2𝐷4
 (21) 

 
𝐾𝑄 = 𝑓2(𝐽) =

𝑄

𝜌𝑛3𝐷5
 (22) 

 𝑃𝐷 = 2𝜋𝑛𝑄 (23) 

  where: 

 KT -  Thrust Coefficient 

 KQ -  Torque Coefficient 

 PD -  Delivered Power 

 T - Thrust 

 r -  Water Density 

 n - Rotations Per Second (rps) 

 Q -  Speed of Advance 

 D - Propeller Diameter 

 

 

 

Figure 29 - Motor power estimated using propeller efficiency curves. 
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The average prediction error was within 5%, which is acceptable given the high 

variability in the operating conditions. The standard deviation in the difference of estimated 

power to measured power was 0.272, which is a better result than the single value behind 

hull efficiency. The high density of low power values skews the result like the scaled 

efficiency approach. However, the low calculation error and accuracy at higher operating 

powers indicated that the method of estimating power using propeller efficiency curves is 

superior. Despite this, the scaled behind hull efficiency of 0.7225 is sufficient in the 

probable case where thrust and shaft speed data is unavailable. In the case of the CCGS 

Henry Larsen, live data could be used to predict motor power on demand.  

 

4.3.2.2  Live Power Predictions 

 

The previous methods for calculating power can be used to estimate the live power 

demands from all 22 data segments. Figure 30 shows the plot of required shaft power 

throughout segment #14. Two curves are shown, the solid curve is the predicted shaft power 

using the propeller performance curves, and the dotted curve is based on the constant 

behind hull efficiency of 0.7225. Due to the improved accuracy of the propeller 

performance method and availability of live data, further analysis of CCGS Henry Larsen 

emissions is based on this method. However, the similar prediction results of the constant 

hull efficiency suggests it would be an equally appropriate model for the overall emissions 

predictions.  

These predictions also consider hotel loads. Hotel loads are not a primary 

consideration of this research; however, they present a measurable impact on the emissions 
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profile. In the case of the CCGS Henry Larsen, the hotel loads are known to be 

approximately 600kW. This value is applied to both prediction methods. Hotel loads will 

vary for different ship types. A typical range would be 6%-12% of the total installed power. 

However, this will change drastically based on the type of vessel. For example, the hotel 

load of a passenger vessel would be a significant component of total power when compared 

to a bulk carrier or icebreaker. A database of ship hotel loads would be required to build a 

generalized hotel load prediction model. Such a model could potentially relate ship scale 

and deadweight or other parameters to estimate hotel loads. 

 

Figure 30 - CCGS Henry Larsen Power Predictions using scaled behind hull efficiency and 

propeller curves for segment #14. 

 



78 

 

4.4 Emissions Predictions 

 

4.4.1 Fuel Consumption 

 

Fuel consumption is determined using the given ship's power requirement and 

Specific Fuel Consumption (SFC). The plot of SFC for the main engines on the CCGS 

Henry Larsen is unknown and not available publicly from the manufacturer. Therefore, the 

SFC must be estimated for the CCGS Henry Larsen, and an average value of 200g/kWh 

was chosen. The fuel consumption can be estimated using the function in equation (24), 

where fuel consumed is the integral of the motor power over time divided by the SFC. The 

carbon dioxide production rate can be estimated by multiplying the fuel consumption by 

the non-dimensional conversion factor between fuel and emissions as per equation (25). 

The fuel type on the CCGS Henry Larsen is heavy fuel oil; therefore, the non-dimensional 

factor (CF) is 3.114, as taken from Table 1 in Section 2.3.1. 

 
𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑡) =

1

𝑆𝐹𝐶
∫ 𝑃𝑀(𝑡)𝑑𝑡
𝑡2

0

 (24) 

 𝐶𝑂2(𝑡) =  𝐶𝐹 ∙ 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑡) (25) 

 where: 

 SFC -  Specific Fuel Consumption 

 PM -  Motor Power 

 CF - tons of carbon/ton of fuel 

 

 

The fuel consumption and carbon production for data segment 14 are presented in 

Figure 31 based on the above calculations. The solid line shows the fuel consumed over 

time based on the modified Keinonen resistance prediction and propeller coefficient 

calculated delivered power. This plot indicates an estimated fuel consumption of 0.266 t of 

Heavy Fuel Oil (HFO) for 23.5 minutes of travel through the ice with an average thickness 
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of 31.4cm. The dashed line shows the emission production for the segment. A total of 0.828t 

of carbon dioxide is estimated to have been produced during this segment.  

The dotted line is a secondary fuel consumption estimate based on the CIS ice chart 

equivalent-level ice prediction. This result shows a similar estimate of 0.284 t of consumed 

fuel. The CIS and statistical ice thickness processes yield similar results for most segments 

if the average estimated thickness is close to the equivalent thickness. The CIS chart 

predictions were extremely different for a couple of segments when the statistical and 

equivalent thickness drastically differed.  

 

Figure 31 - Fuel Consumption and carbon emissions for CCGS Henry Larsen segment #14 
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4.4.2 Complete emissions prediction model 

 

The results and analysis can be combined into a single emissions model equation, 

as shown in equation (26). The critical value in this model lies with total resistance 

predictions calculated using the proposed modified Keinonen empirical model. This is most 

important because its simplicity can be applied to any ice-going ship without detailed ship 

specifications. In rare or specific cases where a ship is instrumented with sensing equipment 

like the CCGS Henry Larsen, the more extensive techniques detailed throughout this 

research can be employed. This case includes using model test data to predict the thrust 

deduction and a detailed propeller analysis to define the bare hull efficiency. 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑡) =
1

𝑆𝐹𝐶
(
1

𝜂𝑆𝜂𝐵
∫ 𝑅𝑇(𝑡) ∙

𝑉(𝑡)

1 − 𝑡′(𝑡)
𝑑𝑡

𝑡2

0

+ 𝑃ℎ𝑜𝑡𝑒𝑙) (26) 

          where: 

              Total Resistance: 

𝑅𝑇(𝑡) = (𝑅𝑖(𝐾𝑒𝑖𝑛𝑜𝑛𝑒𝑛)(1.199 − 0.0273𝑉 − 0.0017𝐿 + 0.0246𝑇)
2 + 𝑅𝑜𝑤)(𝑡) 

 

     Thrust Deduction: 

𝑡′(𝑡) = 0.2 − (
0.1

𝐻𝑖𝑑𝑒𝑠𝑖𝑔𝑛
)𝐻𝑖(𝑡) 

 

     Assumptions: 

𝜂𝑆 = 0.98 

𝜂𝐵 = 0.7225 

𝑆𝐹𝐶 = 200𝑔/𝑘𝑊ℎ 

𝑃ℎ𝑜𝑡𝑒𝑙 =
𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑
10
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5 Discussions 
 

5.1 Practical Application of Equivalent-level Ice 

 

This research investigated a method for statistically estimating sea ice thickness 

from measured ship performance. The approach aimed to capture the encountered ice 

thickness during full-scale operation as a basis for developing an emissions model for ships 

transiting in ice. Despite concerns about the accuracy of the TT Sense® measuring 

equipment, this method proved to be adequate at predicting encountered ice thickness 

during quasi-steady state operating conditions with a low degree of error. Therefore, the 

stand-alone estimation model has been proposed to be adapted into the NRC data 

acquisition system. 

There are several practical applications for using such an estimating model. Firstly, 

it can be cost-effective for instrumented ships to capture the ice thickness they are transiting 

in. For ships instrumented with the TT Sense® technology, they can be provided real-time 

feedback about the environment that they are traveling in when the thrust and torque data 

is paired with a detailed performance model. This could allow the operators to inform 

navigational decisions and assist in maintaining operational safety.  

Alternative methods for evaluating ice thickness primarily focus on image 

processing using forward-looking cameras. The main benefit of image processing is 

identifying concentrations and leads ahead of the ship, which is advantageous for 

navigation. However, forward-looking cameras have significant limitations in that they are 

computationally demanding and require clear visibility. Significant precipitation, fog, 
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darkness, and large ship motions can distort or render the process inoperable. Forward-

looking cameras are also incapable of determining ice thickness.  

The NRC has also used over-the-side cameras to measure ice thickness during their 

full-scale trials (Wang, et al., 2023). This method focused on measuring the thickness of 

ice pieces that passed along the side of the hull. The imaging system was calibrated by 

capturing an object with known dimensions and then calibrating the image pixel 

dimensions. Similar to forward-looking cameras, this method has several disadvantages, 

including needing to manually process the images. There would also be some degree of 

depth distortion in the image's edges, and accurate measurements would require that the 

measured ice is planar and not rotated relative to the camera. Also, over-the-side cameras 

only capture individual pieces and do not account for the global ice thickness encountered 

by the hull. Therefore, the proposed estimation method using scaled model test results and 

full-scale data is more reliable when compared with current image processing.  

 

5.2 Limitations 

 

There remain some limitations to the current research. All analysis was conducted 

in quasi-steady state running conditions to estimate sea ice thickness. Therefore, the current 

model does not consider the effects of drastic changes in heading and speed necessary for 

special maneuvers required when operating in ice. To calibrate its predictions, the model 

must be subjected to controlled maneuver cases and compared with measured ice 

thicknesses. This could not be completed with existing CCGS Henry Larsen datasets 

because of a lack of knowledge about the encountered ice.  
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The analysis also highlights significant limitations of the emissions model where a 

ship is used with insufficient specification of available data. Many performance 

characteristics, including propeller and hull efficiencies, heavily depend on comprehensive 

knowledge of a ship’s open water and ice performance. This is usually determined through 

model tests and full-scale trials or regression analysis.  In some cases, such as the behind 

hull efficiency, this can be calculated if the propeller specification is known and the shaft 

speed is assumed. This limits the application of the model as such data are often not 

published. 

Model test data is also not readily available for many existing ships. Especially with 

aging fleets, many vessel designs did not include model testing, limiting the possibility for 

detailed application of this research. However, with modern shipping, there is a high degree 

of interest in emissions reduction and digital twin applications. Therefore, model testing 

and full-scale instrumentation are becoming common on new specialized ships, opening up 

real-time monitoring and performance predicting possibilities. 

Regarding the fuel predictions presented in this research, the limit of data and 

available engine monitoring on the CCGS Henry Larsen did not allow for proper validation. 

Due to a lack of instrumentation, the model could not be validated by full-scale data beyond 

the calculation of propulsion motor power. It is not anticipated that there would be 

significant losses in transmission, and therefore the motor and engine power were 

considered equal. However, future instrumentation to monitor engine power output and fuel 

consumption would be advantageous for comparing real-time performance and fuel 

consumption.  
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This correlation between motor and engine power is interesting on the CCGS Henry 

Larsen because it operates on a diesel-electric system where the main engines operate as 

generators to power the electric propulsion motors. The operational benefits of this system 

include reduced shafting requirements and engine placement freedom to improve the center 

of gravity. However, there is no clear correlation of motor to engine power is unknown 

because they are not mechanically connected. This could have significant implications on 

the fuel economy. Further research is, therefore, necessary to analyze the differences in 

emissions profiles between various propulsion systems.  

 

5.3 Future Applications 

 

There are several applications for this research in the marine industry for predicting 

and forecasting. The first application was presented in Section 5.1, which uses emissions 

and ice thickness estimates for real-time ship operating performance evaluation. More 

specifically, the detailed method of emissions prediction can be employed directly onboard 

for live feedback that can be used to inform navigation decisions on the bridge. The 

emissions model can track the carbon production rate for specific voyages and provide vital 

information about the impacts of certain operations on the emission profile. This can inform 

innovative ways of using the ship to reduce emissions. 

There are also several ways the model can be expanded upon through additional 

research endeavors. One such way is to apply the model in training simulators, and another 

is to use it to inform route planning decisions.  
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5.3.1 Simulator Training 

 

Ship simulators are a regular tool for training new seafarers. The benefits of such 

technology primarily include the reduced cost associated with operating and simulated 

ships over a real one. It allows navigators in training to accumulate virtual sea time without 

the risks of operating a real ship with little experience. Another less common use of 

simulators is replicating dangerous operations in risk-free environments. This approach has 

been used for many years in other industries, such as aerospace and industrial mining, to 

mitigate risks through prior simulation. This technique has expanded offshore to the marine 

industry through large industrial applications such as offshore energy projects and, more 

recently, ice navigation.  

 Over the past few years, a research team at Memorial University has conducted 

novel tests on operator behavior in ice using ship simulators. The early research tested the 

experience level of navigators on their ability to clear pack ice by comparing the 

performance of experienced navigators and cadets (Veitch, et al., 2019). A second research 

project assessed the effects of targeted training on cadet navigation (Thistle & Veitch, 

2019). This theory was expanded through additional research by assessing the value of a 

primitive decision support system for inexperienced navigators in ice (Soper, et al., 2022). 

Despite a limited test group and isolated scenario, the combined research indicated that 

experience drastically improves ice management and that targeted ice navigation advice 

improves how new operators manage prescribed ice fields. However, it is important to note 

that targeted training does not account for all possible scenarios due to the variability in ice 
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conditions. It was discovered through this research that experience through trial and error 

had a significant influence on navigator success (Thistle & Veitch, 2019).  

The main problem with trial and error through success is the safety risk it imposes 

on the marine asset and crew. More recent research was aimed at targeting performance-

based feedback as a means of educating inexperienced navigators to address this issue. The 

most recent research along this line evaluated operator behavior in a simulator when given 

real-time ice load conditions on the hull (Miller, et al., 2023). This addition gave 

pArcticipants measurable feedback on the ships’ performance by informing them if they 

were within operational limits.  

A similar approach could be used to evaluate operator behavior when presented with 

live emission rates. A proposed simulator trial could include testing emissions production 

in different ice navigation scenarios to minimize emissions. This could be compared against 

emergency scenarios to identify navigator decision influence on emissions.  

A simulator could also be used to investigate the emissions profile of various tactical 

maneuvers typical of ice navigation. The benefit of simulator use over full-scale ship in this 

application includes maintaining a constant ice condition, lower experiment cost, and the 

ability to conduct more tests. These tests are an important consideration because tactical 

maneuvers in ice are a higher emissions producer when compared with steady-state 

operations. Tactical maneuvers include turning, harbor breakouts, and ramming to pass 

through ice ridges.  
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5.3.2 Route Planning Optimization 

 

The route a ship takes is a vital factor in the emissions produced. Therefore, route 

optimization is a critical component when planning a voyage. This is usually 

straightforward in open water cases because the optimized route is typically the shortest 

distance. From a corporate perspective, route optimization reduces fuel consumption, cost, 

and time.  

Route planning in the Arctic is significantly more challenging because the sea 

conditions and ice cover are inconsistent. Also, some ships may not be classed appropriately 

to navigate all areas of a given ice field. Therefore, route optimization in ice is a 

multivariable problem. A recent research study at Memorial University developed a digital 

route optimizer for ships transiting in ice (Browne, et al., 2022). This goal-based agent 

evaluates a series of operating parameters by assigning weights to determine the optimal 

path. These goals include the distance, speed, and emissions with the ice class and installed 

power as hard limits. The agent can determine optimal routes by weighing each goal 

separately.  

The emissions goal in this route planning agent could be improved to provide more 

robust predictions, and the agent could be used to optimize routes through ice based on fuel 

consumption. The agent could also be used to replicate planned routes in ice and develop a 

potential emissions profile. When compared, the agent could advise on how to modify one’s 

chosen route to improve the rate of fuel consumption.  

The route optimizing agent can also be used to identify potential ways operators 

could game emissions regulations, such as the CII calculations from the IMO. These 
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findings could be used to inform regulatory bodies on the robustness of their regulations 

and potentially advise methods for improvement.  

 

5.4 Future Improvements 

 

There are a few emissions model limitations and areas that could be improved 

through additional research. They include further analysis of propulsion equipment 

efficiency and improved adaptation to tactical ice operations.  

The current researched emissions model was validated by comparing estimates 

against measured data from the CCGS Henry Larsen. However, data collection was limited 

to the power measured at the motor because the NRC instrumentation does not currently 

include engine power or fuel consumption. Therefore, fuel consumption and emissions 

predictions were based solely on the IMO regulations.  

There are two ways in which the fuel calculation could be improved. The first 

method would be to add instrumentation such as an engine power monitor or fuel meter to 

collect fuel consumption data. A regression analysis could be used to determine the 

relationship between motor power and engine power. Alternatively, an electric load analysis 

could be used to determine the transmission losses of the diesel-electric system on the 

CCGS Henry Larsen. Either analysis would need to be conducted on a series of ice-going 

vessels to capture the efficiency of different propulsion systems.  

As previously stated, the current model is specific to steady ice-breaking conditions 

and does not consider tactical scenarios where the ship changes directions and accelerates 

regularly. Further testing is required to capture the emissions profile of such maneuvers. 
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One proposed method would be to record operating data for prescribed tactical maneuvers 

in different ice conditions. To properly conduct such an analysis, additional metrics would 

need to be considered, including throttle inputs, accelerations, and ship heading. The ice 

condition, including thickness and concentration, would need to be recorded as they cannot 

be estimated using the current statistical approach, and CIS ice charts do not provide 

enough granularity. This information would be used to develop the emissions response in 

transient operating states.  

One of the concerns in tactical maneuvers is the influence of human factors on 

emissions outputs. Simulator trials would be advantageous in this area as they provide a 

low-cost method of evaluating human factors once the tactical emissions profile is 

developed.  
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6 Conclusions  
 

Given basic hull specifications and operating conditions, this research provides a 

novel method for predicting complete consumption for general ships transiting ice-covered 

waters.  Various methods are suggested based on the degree of data available for emissions 

calculation to ensure a high prediction accuracy. The complete model amalgamates existing 

performance methods with new considerations supported by regression analysis and 

rigorous validation.  

The developed method uses a modified empirical model approach to predict the hull 

performance in ice using basic parameters of the hull and a chosen ice thickness, flexural 

strength, and ship speed. This resistance predicts the thrust and power through regression 

analysis of a ship’s propulsion efficiencies or estimated values. The emissions are 

determined by applying the specific fuel consumption rate of the installed machinery to the 

power requirement, and IMO regulations are used to determine emissions based on fuel 

type.  

Through validation of the model with data from the CCGS Henry Larsen, it proved 

to predict ship performance and emissions in known ice fields accurately. However, when 

ice thickness is not known, there was a tendency to have skewed emission results based on 

assumed equivalent thickness from CIS ice charts. This is generally avoided by analyzing 

longer routes where the average ice thickness encountered would be probabilistically close 

to the equivalent thickness. With improvements gained through tactical validation, the 

model can potentially advise route planners and operators of the emissions implications of 

navigational decisions.   
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8 Appendix A – CCGS Henry Larsen Data Segment Analysis 
 

 

This Appendix contains detailed analysis of all twenty-two data segments that were 

analyzed in the research work. Each data segment includes the following summarizing 

information: 

1. Numerical data describing CIS ice chart regimes and segment date. 

2. Map plotting the location and transit for each segment. 

3. Ice thickness estimated through performance estimation. 

4. Plot of empirical ice resistance estimate including Modified Keinonen Method. 

5. Plot of cumulative fuel consumption and carbon dioxide produced. 
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Data Segment #1 

Date 
February 2, 

2022 

Statistical Thickness 0.01m 

CIS equivalent 

thickness 
0.1m 

First Concentration/ 

Thickness 
1% - 0.225m 

Second 

Concentration/ 

Thickness 

4% - 0.125m 

Third Concentration/ 

Thickness 
5% - 0.05m 

Ice Type Open Water 
 

 

 



96 

 

 

 
 



97 

 

Data Segment #2 

Date 
February 2, 

2022 

Statistical Thickness 0.116m 

CIS equivalent 

thickness 
0.1m 

First Concentration/ 

Thickness 
1% - 0.225m 

Second 

Concentration/ 

Thickness 

4% - 0.125m 

Third Concentration/ 

Thickness 
5% - 0.05m 

Ice Type Grey Ice 
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Data Segment #3 

Date 
February 3, 

2022 

Statistical Thickness 0.087m 

CIS equivalent 

thickness 
0.15m 

First Concentration/ 

Thickness 
3% - 0.225m 

Second 

Concentration/ 

Thickness 

4% - 0.125m 

Third Concentration/ 

Thickness 
1% - 0.05m 

Ice Type New Ice 
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Data Segment #4 

Date 
February 3, 

2022 

Statistical Thickness 0.103m 

CIS equivalent 

thickness 
0.15m 

First Concentration/ 

Thickness 
3% - 0.225m 

Second 

Concentration/ 

Thickness 

4% - 0.125m 

Third Concentration/ 

Thickness 
1% - 0.05m 

Ice Type Grey Ice 
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Data Segment #5 

Date 
February 20, 

2022 

Statistical Thickness 0.329m 

CIS equivalent 

thickness 
0.17m 

First Concentration/ 

Thickness 
4% - 0.225m 

Second 

Concentration/ 

Thickness 

5% - 0.125m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #6 

Date 
February 21, 

2022 

Statistical Thickness 0.198m 

CIS equivalent 

thickness 
0.26m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
2% - 0.125m 

Ice Type Grey-White Ice 
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Data Segment #7 

Date 
February 21, 

2022 

Statistical Thickness 0.307m 

CIS equivalent 

thickness 
0.26m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
2% - 0.125m 

Ice Type Thin First Year 
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Data Segment #8 

Date 
February 21, 

2022 

Statistical Thickness 0.305m 

CIS equivalent 

thickness 
0.26m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
2% - 0.125m 

Ice Type Thin First Year 
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Data Segment #9 

Date 
February 21, 

2022 

Statistical Thickness 0.272m 

CIS equivalent 

thickness 
0.26m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
2% - 0.125m 

Ice Type Grey-White Ice 
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Data Segment #10 

Date 
February 23, 

2022 

Statistical Thickness 0.207m 

CIS equivalent 

thickness 
0.26m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
2% - 0.125m 

Ice Type Gey-white Ice 
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Data Segment #11 

Date 
February 24, 

2022 

Statistical Thickness 0.404m 

CIS equivalent 

thickness 
0.13m 

First Concentration/ 

Thickness 
2% - 0.225m 

Second 

Concentration/ 

Thickness 

5% - 0.125m 

Third Concentration/ 

Thickness 
2% - 0.05m 

Ice Type Outside Range 
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Data Segment #12 

Date 
February 24, 

2022 

Statistical Thickness 0.327m 

CIS equivalent 

thickness 
0.28m 

First Concentration/ 

Thickness 
2% - 0.5m 

Second 

Concentration/ 

Thickness 

8% - 0.225m 

Third Concentration/ 

Thickness 
- 

Ice Type Thin First Year 
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Data Segment #13 

Date 
February 27, 

2022 

Statistical Thickness 0.184m 

CIS equivalent 

thickness 
0.36m 

First Concentration/ 

Thickness 
5% - 0.5m 

Second 

Concentration/ 

Thickness 

5% - 0.225m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #14 

Date March 2, 2022 

Statistical Thickness 0.314m 

CIS equivalent 

thickness 
0.31m 

First Concentration/ 

Thickness 
3% - 0.5m 

Second 

Concentration/ 

Thickness 

7% - 0.225m 

Third Concentration/ 

Thickness 
- 

Ice Type Thin First Year 
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Data Segment #15 

Date March 3, 2022 

Statistical Thickness 0.357m 

CIS equivalent 

thickness 
0.31m 

First Concentration/ 

Thickness 
3% - 0.5m 

Second 

Concentration/ 

Thickness 

7% - 0.225m 

Third Concentration/ 

Thickness 
- 

Ice Type Thin First Year 
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Data Segment #16 

Date March 3, 2022 

Statistical Thickness 0.284m 

CIS equivalent 

thickness 
0.31m 

First Concentration/ 

Thickness 
3% - 0.5m 

Second 

Concentration/ 

Thickness 

7% - 0.225m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #17 

Date March 4, 2022 

Statistical Thickness 0.178m 

CIS equivalent 

thickness 
0.17m 

First Concentration/ 

Thickness 
4% - 0.225m 

Second 

Concentration/ 

Thickness 

6% - 0.125m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #18 

Date March 4, 2022 

Statistical Thickness 0.066m 

CIS equivalent 

thickness 
0.17m 

First Concentration/ 

Thickness 
4% - 0.225m 

Second 

Concentration/ 

Thickness 

6% - 0.125m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #19 

Date March 4, 2022 

Statistical Thickness 0.061m 

CIS equivalent 

thickness 
0.17m 

First Concentration/ 

Thickness 
4% - 0.225m 

Second 

Concentration/ 

Thickness 

6% - 0.125m 

Third Concentration/ 

Thickness 
- 

Ice Type Grey-White Ice 
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Data Segment #20 

Date March 4, 2022 

Statistical Thickness 0.07m 

CIS equivalent 

thickness 
0.18m 

First Concentration/ 

Thickness 
6% - 0.225m 

Second 

Concentration/ 

Thickness 

2% - 0.125m 

Third Concentration/ 

Thickness 
1% - 0.05m 

Ice Type New Ice 
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Data Segment #21 

Date March 4, 2022 

Statistical Thickness 0.089m 

CIS equivalent 

thickness 
0.18m 

First Concentration/ 

Thickness 
6% - 0.225m 

Second 

Concentration/ 

Thickness 

2% - 0.125m 

Third Concentration/ 

Thickness 
1% - 0.05m 

Ice Type New Ice 
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Data Segment #22 

Date March 4, 2022 

Statistical Thickness 0.076m 

CIS equivalent 

thickness 
0.18m 

First Concentration/ 

Thickness 
6% - 0.225m 

Second 

Concentration/ 

Thickness 

2% - 0.125m 

Third Concentration/ 

Thickness 
1% - 0.05m 

Ice Type New Ice 
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