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Abstract 

Numerical models are the primary tools to look into the fluid flow behavior in the complex and 

uncertain reservoir environment. Engineers use numerical models to perform crucial tasks in 

reservoir engineering, such as uncertainty quantification, history matching, production 

forecasting, and optimization, to eventually make the best decisions for field development. A 

conventional numerical model often consists of millions of grid blocks, and depending on the 

level of complexities within the model, it may take hours or days to perform a single run. A 

comprehensive study of a numerical reservoir model requires hundreds or thousands of 

repetitions, making the decision very costly and time-intensive. Proxy modeling is a solution for 

the computational cost related to the numerical models. They make a relationship between the 

input design parameters and the desired outputs by using various statistical/mathematical/data-

driven underlying models. Nevertheless, they have their own limitations. The biggest 

disadvantage of the conventional proxy models is that they cannot keep the complexities within 

the reservoirs. It means they have no or limited sense of objects that exist in the reservoirs such 

as faults, boundaries, wells, etc. 

The main objective of this research is to present smart proxy modeling (SPM) as a substitute for 

numerical models to address the computationally expensive and time-consuming drawbacks of 

numerical models and find a solution for keeping the complexities within the reservoir as 

conventional proxy models have. SPM is developed based on the implementation of pattern 

recognition and machine learning techniques, and it has an additional feature engineering step 

compared to the traditional known proxy models in the literature. The feature engineering step 

extracts new static and dynamic parameters from the numerical model. The constructed SPM 

takes only a few seconds to perform a single run. The SPM in this research is developed in grid-
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based and well-based types. The grid-based SPM can predict the grids’ properties, such as fluid 

saturation and pressure, and the well-based SPM is used to predict well production. Furthermore, 

the parallel implementation of the well-based SPM with grid-based SPM (named hybrid well-

based SPM) is tested in this research. 

The proposed SPM in this research is modified at different construction steps compared to 

existing SPMs in the literature that suffer from construction efficiency and reliability. Based on 

our literature review, we target our investigation into techniques to improve efficiency and 

accuracy by focusing on sampling, feature ranking, and underlying model construction. In 

existing SPM literature, only one technique is used during each construction step where there are 

opportunities to explore novel construction steps to improve overall SPM accuracy and 

efficiency. The presented sequential sampling technique avoids repeating the construction 

procedure from resampling and running the high-fidelity model, thereby saving time and making 

the SPM workflow more efficient. In the feature ranking step, an average of multiple ranking 

algorithms is used to find the best subset of input parameters which eventually helps the overall 

efficiency in the feature selection step. The performance of the convolutional neural network 

(CNN) as the underlying model is also tested and compared to the implemented artificial neural 

networks (ANN) in the literature.  

In this research, the SPMs are constructed for two case studies. The first case study corresponds 

to a waterflooding scenario for the offshore Norway Volve field. The design parameters involve 

five parameters of the wells’ liquid production rates, and the objectives are to screen and 

optimize oil recovery. For the screening purpose, the grids’ pressure and oil saturation are 

considered as the outputs of the grid-based SPM. For production optimization, the wells' 

cumulative oil production is the output of the well-based SPM. Finally, the performance of well-
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based SPM coupled with two derivative-free optimizers, particle swarm optimization and genetic 

algorithm, are compared. The SPM with ANN underlying model provides an accuracy of 89-

92% compared to the 94-99% of the CNN technique for the grid-based SPMs. However, for the 

well-based SPM, the goodness of fit for the 1D-CNN model is similar to the ANN model, but its 

accuracy (presented in MAPE) is slightly better than ANN. The well-based for this case study is 

coupled with PSO and GA optimization algorithms to find the best selection of designing 

parameters (individual well’s LPR) and to maximize the cumulative oil production over ten 

years. Both optimizers are quite successful in finding the global optimum. Nevertheless, PSO 

shows a more reliable and faster convergence to the solution. 

The second case study corresponds to a water alternating gas (WAG) scenario for the offshore 

Norway Norne field. This case study aims to test the whole procedure of SPM construction in 

another field with different levels of complexities and more design parameters. The design 

parameters for the WAG scenario are nine parameters of gas/water injection cycle, field 

gas/water injection rate, gas/water injection distribution between two injectors, and injectors’ 

BHPs. Similar to the first case study, screening and oil recovery optimization are the targets for 

this case study. The trained CNN models give an accuracy of 85-87% for different timesteps of 

the grid-based dataset at the blind test. However, after adding five more sample points using the 

sequential LHS, the accuracy increases to 94-99%. The well-based SPM, similar to the first case 

study, does not give promising improvement in terms of accuracy.  
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Chapter 1. Introduction 

1.1. Problem Statement and Motivation 

The most crucial role of a reservoir engineer is to plan the right strategy for managing and 

developing a field. Any decisions on field development plans can affect the volume of produced 

oil, cost, and revenue. This is essential because it directly impacts the economic viability and 

overall success of oil and gas operations. The subsurface environment is inherently 

unpredictable, with various geological and geophysical factors at play. This complexity makes 

decision-making a hard task. Decisions are even more complicated to make when other 

constraints are involved, such as resources and operation limitations. Resource constraints, 

including available manpower and equipment, as well as operational limitations, like safety 

regulations, add layers of complexity to the decision-making process. These factors necessitate a 

comprehensive approach to field development. Numerical models can be a handy tool to help 

engineers to simulate different scenarios and evaluate their impact on field performance. They 

provide a systematic way to account for all relevant constraints and variables in the decision-

making process. Numerical models help solving complicated problems by breaking them down 

into smaller grids and using specific mathematical rules. Their accuracy depends on how small 

we select these grids. If we make the cells very small, we get highly accurate results, but it takes 

a long time to do the calculations. On the other hand, if we use larger grids, it's faster, but the 

results might not be accurate. 

Numerical models help assess field production and find new opportunities in the field. However, 

they come with their own set of challenges, such as complexity of handling numerous parameters 

and strategies, as well as the significant time investment required for each simulation run. These 

challenges can lead to simplifications in production optimization and hinder the identification of 
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the best solution. These models with the help of advanced computer technologies run faster than 

before, but engineers still tend to get more detailed information from the subsurface environment 

by considering smaller grids and removing the simplifying assumptions. In industries like oil and 

gas, where data is collected rapidly, understanding subsurface conditions is crucial. However, 

updating plans quickly and accurately can be difficult using numerical models. This has led to 

the exploration of computationally efficient proxy models (PMs) as an alternative technique. 

PMs are representations of numerical models. They can deal with some of the challenges, and 

they are mainly beneficial where the computational burden associated with simulators, 

particularly in cases where running multiple simulations is resource-intensive [1]. Conventional 

proxy models use the underlying statistical, mathematical and data-driven models to create a 

simple relationship between input design variables and the output. PMs can be applied to various 

reservoir engineering tasks, such as production forecasting and optimization [2], uncertainty 

analysis [3], and history matching [4]. In order to build a PM, it is necessary to select the 

influential input parameters on the desired output under investigation. This demands a deep 

understanding of the problem at hand and the ability to recognize which factors are most 

influential. [5]. Proxy models are built by running numerical simulations with carefully chosen 

input parameters and recording corresponding output data. However, due to practical constraints, 

proxy models often simplify the representation by omitting some input parameters related to 

geology, geophysics, fluid properties, and rock characteristics. While this simplification reduces 

computational time, it can also affect the accuracy compared to full numerical models.  

PMs can be categorized based on different aspects such as time dependency, approximation 

strategy, or objective. Various categorization techniques for PMs are elaborated in Chapter 2, but 

in general, some of the main classes include multi-fidelity, reduced-order, and data-fit models. 
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Multi-fidelity PMs utilize physics rules to create a simplified version of the main model. 

Reduced-order PMs aim to eliminate irrelevant parameters by projecting the problem into a 

lower-dimensional space, while data-fit models employ statistical and data-driven techniques to 

replicate the model for output prediction. All these categories of PMs construct simpler models 

to predict the output by establishing a direct relationship between input design parameters and 

the output. In this work, a novel classification of PMs that categorizes them into four groups: 

multi-fidelity, reduced-order, traditional, and smart proxy models, based on their development 

strategy, is elaborated in Section 2.2. Smart proxy modeling (SPM), used in this work, is a type 

of PM with additional steps in development.  

Smart proxy modeling takes proxy modeling a step further by incorporating advanced 

techniques, such as pattern recognition and feature engineering, into its development process. 

These techniques enable SPMs to uncover previously unseen relationships between input and 

output parameters that conventional PMs may miss. This is achieved by extracting a wide range 

of both static and dynamic parameters from simulation runs, allowing SPMs to capture unseen 

relationships. The methodology of developing an SPM was first introduced by Mohaghegh in 

2006 [6], but it was recognized with the term “surrogate model” at that time. A few years later, 

in 2018, he used the term “smart proxy model” for the rest of his work [7]. The time needed to 

run an already constructed SPM is just a few seconds, similar to the PM. However, SPMs 

surpass conventional PMs in accuracy due to their incorporation of additional parameters into the 

model. The SPM can be constructed in two different types of grid-based and well-based. The 

grid-based SPM predicts the outputs at grid level such as grids’ saturations and pressure, while 

the well-based SPM predicts outputs at well level such as oil production for the wells. The 

results obtained from screening with grid-based SPM can be used for various purposes such as 



4 

 

well placement optimization to increase oil production or observing pressure changes within the 

reservoir. Monitoring pressure is particularly crucial in immiscible gas injection recovery 

methods to ensure that the pressure remains below the minimum miscibility pressure. 

The main motivation behind this research project, or any SPM, is to provide an efficient 

alternative to the time-intensive numerical models that works as a fast tool for production 

screening and optimization of a field. Furthermore, we are motivated to provide a comprehensive 

guideline to familiarize readers with the current state of SPM, its application in literature, and the 

different steps required to construct the SPM. We also investigate novel techniques in the 

development stages (such as sampling, feature extraction, and underlying models) to further 

improve the SPM capability compared to the existing literature.  

1.2. Research Objectives 

This work aims to develop SPMs to screen and optimize production during waterflooding and 

water alternating gas (WAG) processes. To perform screening, grid-based SPMs are developed 

from scratch to predict the grids’ outputs, such as fluid saturations and pressure. For the 

production optimization tasks, well-based SPMs are developed to predict the cumulative oil 

production of the wells and the field. Furthermore, the efficiency and accuracy of the proposed 

SPMs are improved in various steps such as sampling, feature engineering, feature ranking, 

feature selection, and underlying model. The main research objectives of this study are as 

follows: 

• Identify and fulfill existing gaps in PM and SPM classification techniques. 

• Describe PM and SPM development workflow, and investigate the main existing 

techniques for the individual steps. 
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• Review existing work on the subject of PM and SPM to get familiar with their 

applications in reservoir engineering. 

• Construct grid-based SPMs to screen a waterflooding case in terms of grids’ oil 

saturation and pressure involving five design parameters. 

• Construct a hybrid well-based SPM that works in parallel with grid-based SPM to predict 

cumulative oil production in the same waterflooding case study. 

• Compare the performance of different derivative-free algorithms when coupled with the 

well-based SPM to find the optimal design parameters. 

• Repeat the whole procedure with another case study that has different levels of 

complexities and consider more design parameters with another EOR process (WAG case 

study). 

1.3. Novelties and Contributions 

In existing SPM literature [8]–[13], only one technique for the individual steps during 

development is tested. We identify this as a gap in literature where SPM models can be improved 

through a more rigorous sensitivity analysis of method selection on the overall SPM accuracy. 

The detailed novelties and contributions implemented in this research are as follows: 

• A new classification of PMs, including multi-fidelity models (MFM), reduced-order 

models (ROM), traditional proxy models (TPM), and SPM is proposed in the literature 

review. The existing classification in the literature could not cover all proxy models [7], 

[14]–[20], and in some studies, different proxy models are even considered as one model 

[21], [22]. 

• Sequential sampling technique is introduced. Sequential sampling helps to construct the 

SPM with the lowest number of high-fidelity model execution, and it avoids resampling, 
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thereby saving time and making the SPM workflow more efficient. In existing SPM 

literature [8]–[13], only stationary Latin hypercube sampling technique is implemented. 

• The average feature ranking technique is applied to find the best prioritization of input 

parameters. It provides a confident ranking for the feature selection step. In the feature 

selection step then, the best subset of input parameters can be identified. 

• Convolutional neural network (CNN) deep learning modeling is trained and compared to 

ANN underlying model. In the literature, the majority of the studies only investigates the 

implementation of ANN as the underlying model of the SPMs. As a result, the need for 

testing novel models such as deep learning techniques is required. 

• A new tiering system around the wells is introduced. This tiering system includes the 

grids surrounding the well at various radius for the whole well trajectories. New features 

can then be engineered based on the included grids in the tiers. In the existing literature, a 

tiering system considers the grids based on the drainage area of the wells [8], [9] 

• A hybrid well-based SPM is constructed to consider the effect of surrounding grids’ 

dynamic parameters on the individual wells’ production. The dynamic parameters are 

obtained in the parallel implementation of the grid-based and well-based SPMs. 

• The performance of two derivative-free optimizers, particle swarm optimization (PSO) 

and genetic algorithm (GA), when coupled to well-based SPM, are investigated. The two 

optimizers help find the best design parameters selection and recover more oil. 

1.4. Outline of Thesis 

The thesis includes six chapters in total. The organization of the thesis is as follows: 

Chapter 1 is the current chapter and presents the thesis problem, motivations, objectives, and 

novelties. 
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Chapter 2 provides a literature review on the PM and SPM, including the classifications, 

workflow description, and applications in reservoir engineering. A similar version of this chapter 

is published in Energies journals. 

Reference: P. Bahrami, F. Sahari Moghaddam, and L. A. James, “A review of proxy modeling 

highlighting applications for reservoir engineering,” Energies, vol. 15, no. 14, Art. no. 14, Jan. 

2022, doi: 10.3390/en15145247. 

Chapter 3 presents the implementation of a grid-based SPM to screen waterflooding in the 

Volve case study. The SPM is constructed by considering five design parameters. A similar 

version of this chapter is published in Geoenergy Science and Engineering journal. 

Reference: P. Bahrami and L. A. James, “Screening of waterflooding using smart proxy model 

coupled with deep convolutional neural network”, Geoenergy Science and Engineering, vol. 221, 

p. 111300, Feb. 2023, doi: 10.1016/j.petrol.2022.111300. 

Chapter 4 introduces a well-based SPM to predict and optimize the production during 

waterflooding in the Volve case study. The SPM is constructed by considering five design 

parameters. A similar version of this chapter has been presented at SPE conference.  

Reference: P. Bahrami and L. A. James, “Field Production Optimization Using Smart Proxy 

Modeling; Implementation of Sequential Sampling, Average Feature Ranking, and 

Convolutional Neural Network”,  Presented at 23 SPE Canadian Energy Technology Conference 

and Exhibition, Calgary, Canada, March 2023, SPE-212809-MS, 

https://doi.org/10.2118/212809-MS 

Chapter 5 describes the constructed grid-based and well-based SPMs for screening and 

production optimization purposes in a WAG process. The Norne field case and a total of nine 
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design parameters are considered for this investigation. This chapter is under preparation for 

journal submission. 

Chapter 6 provides conclusions for the thesis research and summarizes its contributions. In 

addition, recommendations are made for future research work on the SPM. 
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Chapter 2. A Review of Proxy Modeling Highlighting Applications for 

Reservoir Engineering 

Preface 

A version of this chapter has been published in the Energies journal. I am the primary author, 

along with the co-authors, Farzan Sahari Moghaddam, and Dr. Lesley A. James. The detail of the 

author's contributions are as follow: 

Peyman Bahrami: Conceptualization, Methodology, Writing–original draft, Writing–Review & 

Editing, and Visualization 

Farzan Sahari Moghaddam: Writing–Review & Editing 

Dr. Lesley A. James: Conceptualization, Methodology, Writing–Review & Editing, and 

Supervision 

Reference: P. Bahrami, F. Sahari Moghaddam, and L. A. James, “A review of proxy modeling 

highlighting applications for reservoir engineering,” Energies, vol. 15, no. 14, Art. no. 14, Jan. 

2022, doi: 10.3390/en15145247. 

Abstract 

Numerical models can be used for many purposes in oil and gas engineering, such as production 

optimization and forecasting, uncertainty analysis, history matching, and risk assessment. 

However, subsurface problems are complex and non-linear, and making reliable decisions in 

reservoir management requires substantial computational effort. Proxy models have gained much 

attention in recent years. They are advanced non-linear interpolation tables that can approximate 

complex models and alleviate computational effort. Proxy models are constructed by running 

high-fidelity models to gather the necessary data to create the proxy model. Once constructed, 
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they can be a great choice for different tasks such as uncertainty analysis, optimization, 

forecasting, etc. The application of proxy modeling in oil and gas industry has had an increasing 

trend in recent years, and there is no consensus on the correct choice of proxy model. As a result, 

it is crucial to better understand the advantages and disadvantages of various proxy models. The 

existing work in the literature does not comprehensively cover all proxy model types, and there 

is a considerable requirement for fulfilling the existing gaps in summarizing the classification 

techniques with their applications. We propose a novel categorization method covering all proxy 

model types. This review paper provides a more comprehensive guideline on comparing and 

developing a proxy model compared to the existing literature. Furthermore, we point out the 

advantages of smart proxy models (SPM) compared to traditional proxy models (TPM) and 

suggest how we may further improve SPM accuracy where the literature is limited. This review 

paper first introduces proxy models and shows how they are classified in the literature. Then, it 

explains that the current classifications cannot cover all types of proxy models and proposes a 

novel categorization based on various development strategies. This new categorization includes 

four groups multi-fidelity models (MFM), reduced-order models (ROM), TPM, and SPM. 

MFMs are constructed based on simplifying physics assumptions (e.g., coarser discretization), 

and ROMs are based on dimensional reduction (i.e., neglecting irrelevant parameters). 

Developing these two models requires an in-depth knowledge of the problem. In contrast, TPMs 

and novel SPMs require less effort. In other words, they do not solve the complex underlying 

mathematical equations of the problem; instead, they decouple the mathematical equations into a 

numeric dataset and train statistical/AI-driven models on the dataset. Nevertheless, SPMs 

implement feature engineering techniques (i.e., generating new parameters) for its development 

and can capture the complexities within the reservoir, such as the constraints and characteristics 
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of the grids. The newly introduced parameters can help find the hidden patterns within the 

parameters, which eventually increase the accuracy of SPMs compared to the TPMs. This review 

highlights the superiority of SPM over traditional statistical/AI-based proxy models. Finally, the 

application of various proxy models in the oil and gas industry, especially in subsurface 

modeling with a set of real examples, is presented. The introduced guideline in this review aids 

the researchers in obtaining valuable information on the current state of PM problems in the oil 

and gas industry. 

Keywords: Proxy model; Surrogate model; Traditional proxy; Smart proxy; Multi-fidelity; 

Reduced-order; Sensitivity analysis; Sampling; Machine learning; Application 

2.1. Introduction 

In the late 1990s, with the increase in the computational power of computers, industries 

increased the use of numerical models to solve complex problems. Numerical modeling is a 

mathematical representation of physical or chemical behaviors wherein the governing properties 

in the process are spatially and temporally characterized [23]. It plays a significant role in the 

development, uncertainty analysis, and optimization of many processes in various areas such as 

engineering, geology, geophysics, applied mathematics, and physics. Numerical models can 

reduce time and cost compared to more traditional trial and error methods [24]. Nevertheless, 

achieving accurate results quickly has always been a challenge, even using numerical models or 

software implementing them. Numerical models divide the problem into a large number of small 

cells and solve it based on discrete calculus, considering the initial conditions, boundary 

conditions, and underlying assumptions [25]. The accuracy of a numerical model depends on the 

size of the cells used to capture the governing equations of the problem or grid spacing. A fine-

grid numerical model is also referred to as a high-fidelity model [26]. There is always a trade-off 



12 

 

between the accuracy and speed of numerical models. Performing an analysis with a low number 

of cells might be quick; however, it sacrifices the quality of the results, or it does not yield 

convergence. Conversely, a high number of cells increases the computational time, so obtaining 

the results at the various realizations of the problem is very time-consuming [27]. In recent years, 

improvements in computational hardware and software, and the emergence of the parallel 

processing of CPUs have boosted the speed of running numerical models. However, as 

computers become more powerful, users, in turn, are demanding more, such as applying more 

parameters or removing simplifying assumptions, in order to increase the quality of the results. 

Therefore, the availability of computing resources remains a limiting factor, and researchers are 

looking for ways to reduce the computational load related to the use of numerical models or the 

software implementing them. 

In the oil and gas industry, and especially in reservoir modeling, there are many sources of data, 

such as drilling, seismic, well tests, production, etc., that are collected very quickly, which may 

change the understanding of subsurface conditions and uncertainties. In parallel, field 

development plans need to be updated in shorter periods, and performing real-time analysis can 

be very beneficial to understanding the evolving conditions in the reservoir. However, having a 

real-time analysis limits the usage of these expensive numerical models, or the software 

implementing them. As a result, the application of computationally efficient proxy models (PMs) 

has been investigated in recent years. 

PMs, also called surrogate models, or metamodels, are substitutes or approximations of 

numerical models, mathematical models, a combination of them (such as models behind a 

complex software), or even an experimental test. A simple description of proxy models is that 

they are advanced interpolation tables from which we can quickly interpolate ranges of non-
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linear data to find an approximate solution. Figure 1 demonstrates the use of these equivalent 

terms in the literature extracted from the Web of Science Core Collection by searching the exact 

keywords in the titles of the papers published since 1990 [28]. As shown in this figure, there has 

been an increasing trend in the use of these models since 2000, and “surrogate modeling” is the 

most widely applied term in the literature. In this paper, the term “proxy modeling” has been 

selected and will be used henceforth. Additionally, “high-fidelity model” will be used to describe 

the model (numerical, mathematical, or a combination) that the PM is trying to approximate. 

 
Figure 1. The use of equivalent terminologies for “proxy model” in the literature extracted from the Web of Science 

Core Collection since 1990 [28] 

In proxy modeling, a modest sample of input parameters is chosen, and the high-fidelity model is 

run within the given space of the parameters to obtain the outputs. Then, the PM fits these data. 

This PM is only valid for the given set of inputs and corresponding search spaces. The advantage 

of a PM is that once it is developed, it only requires a few seconds to run. PMs provide the 

increased speed required for decision-making compared to high-fidelity models; however, the 

accuracy of the models remains a challenge. It should be noted that the advantage of using a PM 
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is its high speed, and that a high-fidelity model still provides the most accurate results over all 

the spatial and temporal locations. 

There are different objectives for using PMs, including sensitivity analysis, uncertainty 

quantification, risk analysis, and optimization [29]. This review paper highlights the use of proxy 

modeling in the oil and gas industry, in particular, reservoir modeling and related areas such as 

history matching, field development planning, and reservoir characterization. Forrester et al. [29] 

discuss four common applications of PMs: (1) providing accelerated results from expensive 

high-fidelity models such as a software; (2) calibration mechanisms for predictive models with 

limited accuracy; (3) dealing with noisy or missing data; and (4) gaining insight into the 

functional relationships between parameters. It must be remembered that PMs utilize and boost 

the usage of high-fidelity models by creating an approximation, and achieving the objectives still 

requires the implementation of the high-fidelity models as the initial and main step in the proxy 

modeling development process. 

This review aims to provide a set of guidelines for PM development by introducing the different 

classes of PM, the methodology, and their applications in oil and gas. In Section 2.2, different 

classes of PMs are reviewed, as well as the proposed classification in this paper; the steps to 

create a PM are explained in Section 2.3; and the application of PMs in oil and gas engineering is 

discussed in Section 2.4. 

In this work, we provide a new classification of PMs, including multi-fidelity models (MFMs), 

reduced-order models (ROMs), traditional proxy models (TPMs), and smart proxy models 

(SPMs). The existing classification in the literature could not cover all proxy models [7], [14]–

[20], and in some studies, different proxy models are even considered as one model [21], [22]. 

To fully comprehend the models, the advantages and disadvantages of each class are discussed. 
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The superiority of fast-to-construct TPMs and SPMs compared to other time-consuming models 

(MFM and ROM) is demonstrated. Both TPMs and SPMs require less scientific knowledge of 

the problems because they decouple the mathematical equations of the problem into a numeric 

dataset. However, SPMs preserve the complexities within the reservoir, such as the faults, 

boundaries, and characteristics of the grids, compared to TPMs. As a result, SPMs provide 

higher accuracy by considering more related parameters within the reservoir. In this paper, we 

discuss more thoroughly the methodology to construct an SPM, describing in detail the different 

steps, such as sampling and training the underlying model. In the existing SPM literature [8]–

[13], only one technique for each step is tested. For example, only one type of underlying model 

(ANN) or one type of sampling technique (Latin hypercube sampling) is tested. We identify this 

as a gap in the literature where SPM models can be improved through a more rigorous sensitivity 

analysis of method selection on the overall SPM accuracy. 

2.2. Proxy Modeling Classification 

PMs can be categorized in various ways, such as by their objective/application, the 

approximation strategy used, or their time-dependency. Figure 2 presents the various ways PMs 

are classified in the literature. 

Ahmed and Qin [14] divided PMs into two groups, black-box-based and physics-based 

approaches, according to the approximation strategy. In a black-box-based approach, the high-

fidelity model cannot be modified, and the PM makes a less expensive approximation of the 

relationship between inputs and outputs. Conversely, a physics-based approach modifies the 

governing equations of the problem to make it computationally cheaper, which will be discussed 

later in this section. Black-box PMs are further divided into parametric and nonparametric, 

according to the nature of the unknown parameters. In both parametric and nonparametric 
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models, the output parameters are determined using the initial training set; however, parametric 

models do not implement the training set to make the predictions, whereas nonparametric models 

do [30]. Polynomial regression (PR) is an example of a parametric model, and kriging (KG), 

artificial neural networks (ANN), radial basis functions (RBF), multivariate adaptive regression 

splines (MARS), and support vector regression (SVR) are examples of non-parametric 

approaches. 

 
Figure 2. Summary of categorization classes in the literature for proxy models (Ahmed and Qin [14], Eldred and 

Dunlavy [15], Panjalizadeh et al. [16], Mohaghegh [7], Bartz and Zaefferer [17], Barton and Meckesheimer [18], 

Jaber et al. [19]) 

Eldred and Dunlavy [15] classified PMs into data-fit, multi-fidelity (also called hierarchy), and 

reduced-order types (also called projection-based reduced models). Data-fit models, which are 

primarily used for the evaluation of experimental data, involve the interpolation or regression of 
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the generated results from a few runs of the high-fidelity model. PR, KG, MARS, ANN, and 

many other methods are examples of data-fit PMs. In data-fit models, the underlying physics 

does not change, and they are identified as non-physics-based approaches. 

A multi-fidelity model, which is a physics-based approach, attempts to solve a low-speed, high-

fidelity problem by replacing it with a high-speed, low-fidelity model [30]. Fidelity here is used 

to describe the level at which a model could reproduce the physics of the desired phenomenon. 

The process of achieving a lower-fidelity model can be fulfilled through coarser discretization 

[31], simplifying physics assumptions [32], etc. In an ROM, a high-fidelity model projects down 

into a low-dimensional system with equivalent characteristics that have fewer degrees of 

freedom [33]. In other words, an ROM lowers the dimensionality of the primary system by 

neglecting irrelevant parameters while holding the characteristics and physics over defined 

space. They are based on the discretization of the underlying partial differential equations of the 

high-fidelity models. ROMs can be grouped [20] based on the type of system (linear, partially 

linear or non-linear, parametric or non-parametric, and time-dependent or time-independent). 

Some popular techniques to solve ROMs are proper orthogonal decompositions (POD) [34], 

trajectory-piecewise linear (TPWL) [35], and the discrete empirical interpolation method 

(DEIM) [36], and they are further explained in Section 2.4.2. In some studies, the terms “multi-

fidelity model” and “reduced-order model” have been interchangeably used, and they are 

considered within one group [21], [22]; however, the majority of the literature considers them as 

separate models. 

There are pros and cons to each of the three types of PMs in this classification (data-fit, MFM, 

and ROM). Data-fit models are easy to use in low-dimensional problems; however, if the number 

of parameters increases, their application is problematic. Additionally, data-fit models cannot 
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approximate functions other than first- and second-order responses, and the high-fidelity models 

need to be run many times [37]. To use MFMs, a significant engineering effort is required, and 

they are usually implemented in an opportunistic manner with the made assumptions. In contrast, 

the data-fit and reduced-order models are mathematically derived from the high-fidelity model 

[30]. Although the use of ROMs requires a good understanding of simulation codes for 

projection, they do not require numerous computational models (that might not always be 

accessible), in comparison with MFMs [15]. Data-fit models and ROMs can be compared in 

different aspects. One is that the procedure of generating the PMs using the data-fit models is 

non-intrusive, and it only needs to define the system inputs and obtain the outputs by running the 

high-fidelity model. On the other hand, this procedure is intrusive for ROMs, and system 

operators should be projected into a reduced subspace [30]. Another feature of ROMs is that they 

are capable of estimating the errors and bounds between the high-fidelity model and the reduced 

one [38]. Additionally, ROMs are considered as physics-based models; therefore, they have the 

advantage of better prediction accuracy compared with the data-fit models, and as they retain the 

underlying physics, they are even capable of extrapolating away from the initially given space. 

As a result, they can evolve dynamically in time [15]. 

Another way to classify PMs is based on time dependency, i.e., static and dynamic modeling 

[16]. Static PMs are typically built for one or a few discrete time steps and are not valid for 

processes at other times. In static modeling, only the spatial phenomenon is important. On the 

contrary, if temporal dependence is added, then the phenomenon is treated as dynamic rather 

than static, and it is called dynamic or time-dependent proxy modeling. Dynamic models are 

constructed for the whole desired time interval, not just discrete times [16]. There may be some 

spatial dependency in the context of static modeling, but no orders in time are effective. In 
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contrast, in temporal or dynamic modeling, past, present, and future concepts exist. In a temporal 

definition, the sample locations happen in the past, and the predictions extrapolate the future 

[39]. Some of the popular techniques to deal with spatial problems are described in Section 2.3.3. 

To model temporal problems, other techniques, such as a recurrent neural networks, are needed. 

For details about the models that deal with temporal datasets, please refer to the book written by 

Lazzeri [40]. 

Mohaghegh [7] divides PMs into two main categories: traditional and smart. The previously 

discussed methods (data-fit, MFM, and ROM) fall into the “traditional” proxy model (TPM) 

category. “Smart” proxy models (SPMs) are trained using machine learning and pattern 

recognition techniques and require some additional steps in the development process, compared 

to TPMs. The development steps will be discussed in detail in Section 2.3. SPMs are capable of 

reproducing the high-fidelity models without reducing the physics and order of the original 

system, and they do not decrease the resolution of the model in time or space [41]. SPMs can be 

developed as grid-based or well-based models depending on the objective of the study [42]. The 

SPM is referred to as well-based if the objective is to make predictions for parameters at the well 

locations, such as production rates for oil, gas, and water [43]. In reservoir engineering, 

production optimization and history matching fall within this class of SPM. If it is desired to 

build the SPM with outputs at the grid level, it is considered grid-based. Pressure and saturation 

prediction for different phases are examples of parameters at the grid level, and monitoring their 

alteration is of paramount importance during injection scenarios where front propagation 

tracking is needed [44]. Gholami et al. [8] developed another class of SPM; a coupled SPM, 

which is a combination of well-based and grid-based models and is able to generate the results 

both in well and grid levels simultaneously. Gholami et al. used a workflow to transfer the 
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parameters between grid-based and well-based models, and they used a cascading procedure to 

produce the results when the model moves forward in time. 

If the objective for generating the proxy model is optimization, it is called surrogate model-based 

optimization (SBO). Bartz and Zaefferer [17] grouped the SBOs into three types: single, multi-

fidelity, and ensemble models. In single SBO, there is only one model to construct the PM in the 

specified search space. Multi-fidelity and ensemble SBOs use more than one model to 

approximate the high-fidelity model; however, the multi-fidelity models describe the high-

fidelity model in different levels of detail, whereas the ensemble model presents it at the same 

level of detail. Any of the single, multi-fidelity, or ensemble SBOs can then be coupled with 

either deterministic or non-deterministic optimization algorithms to optimize the output. Barton 

and Meckesheimer [18] described SBO in two groups based on the way they search for the 

optimum. One group updates in an iterative manner and looks for local optimums, and the other 

finds the global optimum with only one fitting chance. ANN and KG are examples of a global 

surrogate model, which can be coupled with a non-deterministic (evolutionary) optimization 

algorithm to find the global optimum. On the other hand, for the local surrogate model, we can 

name response surface model (RSM) as an example that can be coupled with a deterministic 

algorithm to find the local optimums [45]. 

Other classifications for PMs can be seen in the literature; for example, Jaber et al. [19] divide 

PMs into statistical and virtual intelligence models. The statistical models involve using RSM, 

and the virtual intelligence models employ machine learning techniques. 

We discussed earlier in this section that Mohaghegh considered the PMs in two broad classes of 

SPMs and TPMs. However, PMs in this work are classified into four classes: MFMs, ROMs, 

TPMs, and SPMs. Each of these classes has a different development procedure. The 
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development methodology for SPM and TPM will be discussed in Section 2.3. Figure 3 

summarizes the different classes of PMs mentioned under the classification used in this review, 

and it groups them into four main categories. 

 
Figure 3. Newly defined proxy model categories-MFM, ROM, TPM, and SPM 

2.3. Methodology 

The development of ROMs is based on the projection of the problem into a lower dimensional 

case, and MFMs are based on simplifying physics. Detailing the procedure to develop these two 

proxy types is not the purpose of this work. Instead, it is more focused on the TPMs and SPMs. 

TPMs in this paper include all classes of PMs that have a development procedure similar to the 

one shown in Figure 4, such as data-fit, parametric and non-parametric, statistical or virtual 

intelligence, and static or dynamic. The development strategy of SPM is also presented in Figure 

4 based on the strategy introduced by Mohaghegh [7]. 

A proxy model cannot be built without a high-fidelity model. For example, in the case of 

reservoir modeling, the high-fidelity model is the numerical model. The main steps to construct a 

TPM include the following: (1) define the objective, inputs, and output parameters for the high-

fidelity model with their range, (2) perform the sensitivity analysis if needed, (3) perform the 

sampling and generation of different design scenarios, (4) run the high-fidelity model to produce 
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the preliminary results, (5) train and validate a new underlying model, and (6) employ a TPM to 

generate results. 

 
Figure 4. Traditional and smart proxy models development schematic 

In the first step, which may be considered the most crucial, the reason to construct the TPM is 

determined. The high-fidelity model (or subsequent TPM) may be used to accomplish many 

objectives. Optimizing a parameter such as total production rate or watercut in a waterflooding 

scenario, obtaining the highest net present value, or history matching are examples of objectives. 

Then, depending on the objective, the essential parameters with their ranges for the output of the 

problem must be selected. For example, in the waterflooding case, injection rates, water 

viscosity, well production rates, etc., can be the effective parameters. A reservoir environment is 

considered a non-linear and complex problem in which many parameters play a role. Dealing 

with many parameters in such an environment and running the simulator based on all the 

parameters is sometimes very costly and time-consuming. In such a case, sensitivity analysis can 

find the non-influential inputs and reduce the number of them. So, sensitivity analysis is essential 

in constructing the PM in cases with a high number of inputs, and is performed before the 

sampling step [46], [47], and it can lower the dimensionality of the model [48]. This will be 

reviewed in Section 2.3.1. In the sampling step, we design the experiment, we distribute the 
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parameters in their ranges, and the high-fidelity model runs at these designed selections of 

parameters. Section 2.3.2 discusses the sampling techniques in more detail. After running the 

high-fidelity model and recording the desired output, the new machine learning model trains and 

validates the inputs and outputs. An issue in this step is the significant number of potential 

modeling techniques, and sometimes it is difficult to determine what technique is suitable for 

specific applications. A brief description of the different models is presented in Section 2.3.3. 

Finally, the built model, which is referred to as the TPM, can predict the output parameter in a 

much shorter time for the initially selected design parameters. The TPM can then be used for 

other purposes such as SA, optimization, uncertainty quantification, etc. 

The creation of an SPM has a few additional steps compared to the TPM, as shown in Figure 4. 

The most crucial part of the SPM, like TPMs, is determining the objective for model 

construction. Then, a set of effective parameters is picked, and sampling is performed within the 

specified range for the parameters. In the next step, the high-fidelity model is run to generate 

different realizations of the model. Then, a combination of static and dynamic parameters 

(including both inputs and outputs) is extracted from the high-fidelity model, and they are used 

to create a new database [7]. Generating new parameters is called feature engineering, which 

leads to finding new hidden patterns in the dataset. In TPM construction, we do not involve this 

step, and the proxy only makes a relationship between the initial design parameters and the 

output. Hence, SPM provides higher accuracy in approximating the output parameters compared 

to TPM. Feature engineering also helps SPM to accurately predict the grids’ characteristics. In 

comparison, TPM suffers in grid level predictions because a trained model on a limited number 

of input parameters cannot predict the complex changes in all grids. Neither a TPM nor SPM 

solves the mathematical equations of a high-fidelity model. They basically decouple the 
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equations, constraints, and complexities of the problem into a numeric dataset. This dataset then 

can be used to train a(n) AI/statistical model to approximate the desired output. Decoupling the 

equations makes the TPM and SPM superior to MFM or ROM. It is worth mentioning that the 

MFM and ROM are the simplified or reduced form of the high-fidelity model, and their 

construction still needs a great knowledge of the problem. However, TPM and SPM require less 

scientific knowledge, and they need less time and effort in development. 

For a well-based dataset, the rows (observations) in the new dataset are the wells in the reservoir 

model, and the columns are the extracted parameters from the high-fidelity model at the well 

level and various time steps. However, for a grid-based dataset, the rows are the individual grids 

within the high-fidelity model, and the columns are parameters extracted at the grid level and 

various time steps. For example, Gholami et al. [8] considered various parameters such as 

porosity, permeability, pressure, saturation for phases, location of the grids, distances to the 

boundary and closest offset well, production data, bottom-hole pressure (BHP), etc., as the 

parameters of the grid-based dataset. The authors introduced a tiering system to consider the 

impact of the surrounding grids as well, and the static and dynamic parameters related to the tiers 

were imported into the dataset. Such datasets for the generation of the smart proxies would be 

massive, and reducing both the number of observations and parameters prior to the proxy 

development would be needed. In the aforementioned work [8], the authors reduced the size of 

the dataset (from 396,000 to 55,000 observations, and over 1000 parameters to 310 only for one 

of the realizations out of 13) through grid lumping in the Z-direction and feature selection 

techniques. The number of parameters in the dataset depends on the number of introduced tiers, 

offset wells, and the previous timesteps that are going to be cascaded into the new timestep. 

After forming the dataset, the rest of the steps are similar to those of the TPM. 
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The main advantage of using an SPM is that it only takes a few seconds to approximate the full 

reservoir. However, this is only an advantage if the SPM construction time is reasonable. An 

SPM produces a massive amount of data, which are extracted from different scenarios or 

realizations of the high-fidelity model. So, picking a small number of sample points is required 

to avoid generating such a massive dataset and to decrease the construction time [49]. The 

number of required runs usually depends on the geological properties and operational 

constraints, and it should cover as much necessary information as possible, depending on the 

purpose of the study. For instance, in the work carried out by Gholami et al. [8], the total number 

of realization runs was only 13 for the four design parameters, or in the research by He [9], the 

number of runs was only three for the two parameters of porosity and permeability in a history 

matching process. SPM is a novel approach and expects to provide higher accuracy than TPM. 

TPM approximates the outputs only based on the initial designing parameters, while SPM creates 

an approximation by involving many new parameters. The newly introduced parameters usually 

have positive importance on the outputs [7]. The usage of SPM is more significant in grid-based 

models where it can predict the outputs at the grid level. A TPM with only a few input 

parameters lacks the prediction ability for the individual grids in the reservoir. There are only a 

few SPM examples in the literature, and they almost used the same strategy for development [8]–

[13]. We suggest that conducting a sensitivity analysis comparing various techniques for the 

main steps involved in SPM construction can improve the overall SPM accuracy and 

development time. For example, only the ANN model for the underlying model construction 

step, stationary Latin hypercube sampling for the sampling step, or similar tiering systems have 

been tested for the data extraction step. As a result, it is crucial to know the main techniques for 

each step. Then, it is important to apply the techniques for future research, and compare them to 
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check how each technique improves the SPM in terms of accuracy and construction time. The 

next sections provide a comprehensive review of the existing procedure and specific step 

techniques required in TPM and SPM. 

2.3.1. Sensitivity Analysis 

Sensitivity Analysis can be used to study how the outputs of a model change due to the variation 

in the inputs of the specified ranges. The input parameter is called “sensitive” if the variation in 

its range significantly changes the output. Additionally, a parameter is considered “insensitive” 

or “robust” if the output does not change a lot [50]. Sensitivity analysis establishes the 

importance of parameters and the inner workings of the models, which can lower the 

dimensionality of the model [48]. 

Performing a sensitivity analysis can be significant; for instance, a reservoir model that is 

representative of a very non-linear environment includes many parameters. As a result, many 

sample points are required to cover all the search space for the parameters, and running a high-

fidelity model for all the designed points is very costly. In such a case, with a large number of 

parameters for the model, sensitivity analysis is an essential step in generating the TPM, and is 

performed before the sampling step [46], [47]. Consequently, sensitivity analysis can find the 

non-influential parameters and reduce the number of inputs. Sensitivity analysis can sometimes 

be considered as an objective for constructing a TPM [48], [51]. The relationship of inputs with 

the output in a model could be complex and challenging. In this case, a TPM can be constructed 

based on all the inputs. This TPM can then be used for sensitivity analysis and run numerous 

times to find the effect of inputs on the output very quickly. 

sensitivity analysis is categorized into local sensitivity analysis (LSA) and global sensitivity 

analysis (GSA) [52]. In LSA, the inputs are subjected to small perturbations at specific points, 
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and the changes in the output parameter are studied. LSA is also known as the one-at-a-time or 

univariate method [52], [53]. It studies the derivative of output to only one input parameter while 

keeping the rest of the inputs constant. It cannot investigate the effect of all inputs varying at the 

same time. LSA is popular for models with a low uncertainty level [54], but it is not suitable for 

complex reservoir modeling problems. On the other hand, in GSA, the behavior of the output 

over the entire range of the inputs is studied [52]. Some of the common methods for GSA are 

based on Monte Carlo (MC) sampling, Sobol, or Morris methods, which are based on probability 

distributions [55]. MC-based sampling methods allow us to analyze the influence of the 

parameters, but using them is computationally expensive [56]. The MC-based sampling methods 

can also be used to find the global optimum of a problem. The Sobol method works based on the 

variance decomposition theory. It investigates the interaction and contribution of input 

parameters to the output in a certain number of sample points compared to MC [57]. The Morris 

method, an extension of LSA, studies multiple points in the parameter range instead of only one 

[58]. More information on GSA methods can be found in Song et al. [59]. Typically, GSA 

methods that are based on probability distributions need more runs of the high-fidelity model. As 

a result, they are computationally more expensive compared to LSA. 

2.3.2. Sampling 

Sampling is defined as the process of obtaining data points over the search space of the 

parameters to be able to construct a PM. The quality and performance of a PM depend strongly 

on the number of sample points in the specified range of parameters [60]. As discussed earlier, 

one of the merits of using PMs is to provide a fast and accurate duplicate of the high-fidelity 

model. Regardless of the underlying model, having a large number of sample points to construct 

the PMs eventually results in an accurate model; however, the computational cost in the 
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generation of the PMs would be significant. Another effective factor in increasing this cost is the 

number of implemented parameters in the process of creating the model, which has a direct 

relationship with the number of sample points as well. High computational cost in the 

construction of the PMs due to high number of parameters diminishes their applicability 

compared with the high-fidelity model. This is known as the curse of dimensionality [14], [61]. 

This cost is usually incurred prior to the implementation of the PM in running the high-fidelity 

model at sample points and steps in designing the model. The objective in sampling is to acquire 

the maximum information using the minimum possible number of sample points or the minimum 

number of high-fidelity model runs. Therefore, the selection of a proper sampling strategy to 

construct a trustworthy PM is of immense importance. Consequently, once the PM is 

constructed, hundreds or thousands of runs can be completed in a fraction of a second, which is 

essential in production optimization and field development planning in the oil and gas field. 

Sampling strategies are grouped into the two broad classes of stationary (also known as one-shot, 

static, priori, domain-based, or model-free strategies) and sequential (also known as model-

based, adaptative, or posteriori) sampling. The workflow of both techniques is demonstrated in 

Figure 5. 
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Figure 5. Workflow for (a) stationary and (b) sequential sampling  (Modified from Ref [62] published by Ghent 

University, 2011) 

In stationary sampling, the sample points are distributed throughout the whole design space 

based on a pattern [63]. In stationary sampling, after the selection of the design points, the high-

fidelity model is evaluated at each of the specified input sets, and the corresponding output is 

obtained. Consequently, the PM is constructed, and it can be applied for further decisions. The 

advantages of stationary sampling are ease of deployment and uniform coverage of the domain. 

However, if the performance of the PM was not approved at any stage, the whole procedure 

should be performed from the beginning with new and more numerous sample points, which 

increases the cost of computation. The situation becomes even worse when the problem is highly 

non-linear and many parameters are involved in the process of constructing the PM, which 

together increases the number of sample points and makes the modeling inefficient and 

unreasonable [64]. The stationary sampling methods focus on a uniform fill-up of the domain 

with sample points, and they usually have a fixed pattern in all of the cases under study. Some 
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famous techniques in this category are factorial designs (full and factorial designs), optimal 

designs, Latin hypercube sampling (LHS), orthogonal array sampling (OAS), and random 

sampling such as MC. 

In the simplest case of full factorial design, which only considers two levels for each parameter, 

2K sample points are generated, where k is the number of parameters. The sample points are 

maximized in the distance using the full factorial design; however, the number of sample points 

increases rapidly when the number of parameters increases [65]. The fractional factorial design, 

a sub-class of the full factorial design, does not consider some sample points in the full factorial 

design without losing information, making it viable for higher dimensions [66]. Different 

designs, such as the Plackett–Burman design (PBD), central composite design (CCD), Box–

Behnken design (BBD), and Taguchi, fall into the category of fractional factorial designs [67]. In 

optimal designs, the parameters are determined without bias and with minimum variance; hence, 

they require a lower number of sample points [68]. 

LHS, as a stratified sampling technique, divides each parameter into N bins or equal intervals. 

Then, each bin for each of the parameters fills with only one sample point. In LHS, there is 

control over the number of sample points, which is a big advantage in the construction of a PM, 

where we are looking to limit the number of high-fidelity runs [69]. However, not all Latin 

hypercube designs uniformly distribute the sample points in the domain, and it is necessary to 

optimize the space-filling procedure. Viana et al. reviewed some of the techniques to optimize 

the LHS to better fill up the domain under study [70]. 

OAS is a generalization of LHS, and it uniformly distributes the sample points in the 

dimensional projection of the parameter dimensional domain [62], [71]. In OAS, four 

parameters—sample point size, domain dimension, the number of bins per dimension, and the 
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strength—need to be defined. For example, OAS (9, 2, 3, 2) includes nine sample points, two 

domain dimensions, three bins per dimension, and a strength of two. LHS is considered as an 

OAS with a strength of one. To understand the construction procedure, and for details about 

OAS, refer to the work carried out by Hedayat et al. [71]. The selection of the four parameters of 

OAS is sometimes challenging. Additionally, different selections for bins and the placement of 

samples in the bins might exist for each problem, limiting OAS usage [64]. In MC, the 

independent samples are randomly generated, and this process is repeated many times to achieve 

the desired quantity. 

In sequential sampling, the sample size starts with an initial and limited number of points, and 

new data points are added to the existing ones. The model then stops once it reaches a preferred 

performance and accuracy [72]. Hence, using this approach, the total time to develop a PM is 

significantly reduced, as less deployment of the high-fidelity model is needed than when using 

the stationary sampling technique [73]. There are two main objectives in sequential sampling, 

known as exploration and exploitation. Exploration means evenly filling up the search space and 

avoiding redundant new samples. The intention of the exploration part of sequential sampling is 

the same as stationary sampling, and it tries to find new pivotal regions such as discontinuities 

and the global optimum. In exploration, the new samples are chosen only based on the initial 

samples, not the responses of the high-fidelity model [62]. The methods with exploration 

objectives are usually referred to as exploration-based sequential sampling. Markov chain Monte 

Carlo (MCMC), low-discrepancy sequence methods (such as Sobol and Halton), nested LHS, 

and quasi LHS are examples of this subcategory. 

MCMC is based on a sequence of random sampling from a probability distribution. In MCMC, 

the sample points are generated systematically in such a way that the new sample point is 
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probabilistically dependent on the prior sample point [74]. In the low-discrepancy sequences, the 

term “low-discrepancy” implies that the sample points are, more or less, equally spread within 

the domain of parameters. A low-discrepancy sequence is a sequence with the property that all 

the new points are as far as possible from the existing points. In Sobol and Halton sequences 

[75], [76], the sample points are randomly produced within the parameters’ domain without 

overlapping the existing points in a progressive manner. However, Sobol outperforms Halton as 

the number of dimensions increases [77]. We can use nested and quasi-LHS to sequentially 

generate the sample points for LHS. Nested LHS includes various designs requiring one as the 

subset of another one [78]. The evaluation performs on the smallest subset, and if the results are 

not desirable, the superset could be evaluated. This process can continue to the next supersets. 

Here, each subset is known as a layer, which is an LHS with a level of accuracy [79]. In quasi-

LHS, the new sample points are added to keep the distance from the existing design points [80]. 

Exploitation-based sampling techniques look for regions that have already been recognized as 

key domains and add the new sample points at each iteration focused on these regions. In 

exploitation, unlike exploration, the new samples are added only based on the information 

provided by the high-fidelity model. The LOLA-Voronoi sampling method [62] falls into this 

subcategory. This method works based on the local gradient approximation to find the non-

linearity of the problem under study, and it picks more sample points near the non-linear region 

to increase the chance to find the local optimum. 

2.3.3. Popular Models for PM Construction 

PMs, as discussed in Section 2,2, can fall into different categories. This section discusses the 

most prominent underlying models that can be used in the construction of TPMs or SPMs. 
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2.3.3.1. Polynomial Regression (PR) 

PR is the most straightforward technique to construct a PM. It fits a non-linear relationship at 

any order between the inputs (xi) and the output (y). PR is also known for the response surface 

method. It is usually applicable for lower-dimensional problems and is not suitable for high-

dimensional and highly non-linear systems. PR can be given by the general form of Equation (1). 
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where ŷ is the approximated output, m is the number of dimensions or parameters, β is the 

polynomial coefficient, and p is the polynomial order. To construct a high-order polynomial, a 

large number of training points are needed. Furthermore, high-order PR models cause instability 

and sometimes yield a false optimum [81]. 

2.3.3.2. Kriging (KG) 

KG or Gaussian process regression is a technique to interpolate the output based on the Gaussian 

process by considering the prior covariances [82]. In 1989, Sacks et al. [83] used the KG to 

construct a PM for the first time in engineering. There is always a residual error ε between a PM 

response (ŷ) and the high-fidelity model response (y). 

y(x) =  ŷ(x) +  ε (2) 

The basic assumption behind most PMs is that this residual error between the responses of 

models is independent. However, in KG models, this error is dependent on another term [84]. 

KG involves using a polynomial function f(x) and a random function (i.e., stochastic process) 

Z(x). 



34 

 

y(x) =  f(x) +  Z(x) (3) 

The polynomial term determines the global trend of the data, and the stochastic term accounts for 

the deviation of the output from the polynomial term. The stochastic term Z(x) is assumed to 

have zero mean and variance of σ2. In many problems, the polynomial term f(x) can be replaced 

by a constant without losing performance, and this is known as ordinary KG [85]. 

A KG proxy model is suitable for low-order non-linear and large-scale problems, and it can work 

for a wide range of sample sizes and designs. However, applying it to a large-scale problem 

might be time-consuming [86]. It also does not work accurately for problems containing 

discontinued parameters and a dimensionality higher than 20 [87]. 

2.3.3.3. Multivariate Adaptive Regression Splines (MARS) 

MARS, introduced by Friedman [88], is a regression algorithm that implements linear regression 

modeling for the sub-intervals of each design parameter. The location at which the sub-intervals 

connect to each other is known as a knot. MARS is an extension of linear regression models, and 

it uses a set of coefficients and basis functions to make a relationship between inputs and the 

output. The process of constructing MARS happens in forward/backward iterations for different 

sub-intervals. First, it creates a basis function (i.e., spline) for each sub-interval with its 

corresponding linear regression and coefficients. In the forward procedure, it looks for the 

optimum locations to place the knots. 

ŷ(x, β) = ∑ βmBm(x)

M

m=1

 (4) 

where βm is a vector of regression coefficients, M is the number of basis functions, and Bm is the 

basis function which can be described as 
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Bm(x) =  ∏ bi,m

km

i=1

(xv(i,m) − ti,m)]+
q

 (5) 

where km is the number of design parameters in the mth basis function, bi,m = ±1, v(i,m) is for 

labeling the design parameters, xv(i,m) is the ith parameter in the total of k parameters, ti,m is the 

knot location of the corresponding parameter, q is the order of the spline, and + subscript is for 

the positive part of the function (it is zero for negative values of the function). 

(xv(i,m) − ti,m)]+
q

=  {
(xv(i,m) − ti,m)]q       if      (xv(i,m) − ti,m) > 0      

0                              if      (xv(i,m) − ti,m) ≤ 0
 

(6) 

In the forward step, the algorithm creates functions and looks for the locations of the knots to 

improve the performance, which might cause overfitting. In the backward step, MARS prunes 

the non-influential design parameters based on the generalized cross-validation techniques [89]. 

MARS is suitable to deal with large and high-dimensional datasets. It is capable of performing 

feature selection through the backward step; however, choosing the knot locations is challenging, 

and it sometimes faces overfitting [90]. 

2.3.3.4. Artificial Neural Networks (ANN) 

ANN works based on the biological neural system in the brain, which consists of many 

chemically connected neurons [91]. Neurons are placed in three main layers: input, hidden, and 

output layers. Neurons receive signals from neurons in the previous layer and transmit them to 

the next layer. Each neuron is accompanied by a weighting factor that should be adjusted. 

Adjusting the weights usually happens via an optimization algorithm, most often via the 

backpropagation technique [87]. The receiving signal for a neuron in the hidden layer multiplies 

into the adjusted weights and sum. Then, an activation function is applied to the summation to 

generate the output for that neuron. Some commonly used activation functions are linear, 
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sigmoid, rectified linear unit (ReLU), and hyperbolic tangent [92]. There are some controlling 

parameters that should be optimized to have an accurate ANN model, such as the number of 

hidden layers, the number of neurons in each layer, and the activation function. ANN can 

approximate the problems with unknown nature, but sometimes finding the optimal controlling 

parameters is challenging. Additionally, using the ANN is computationally expensive, and it 

requires high memory. Recurrent neural networks (RNN) and convolutional neural networks 

(CNN) are two well-known and robust types of ANN. RNN works similarly to backpropagation 

ANN, with the difference that RNN has a memory to store information, and is suitable for a 

sequence of data and timeseries data [93], whereas CNN adaptively learns spatial patterns within 

the parameters, and is designed to process data in grid formats such as images [94]. 

2.3.3.5. Radial Basis Function (RBF) 

RBF is a network that includes an input layer of nodes, a hidden layer with a radial basis 

function (kernel), and an output layer of linear weights [95]. This network approximates the 

problem in a feed-forward process through Equation (7). 

ŷ(xp) = ∑ wiϕi(xi, xp)

N

i=1

 (7) 

where xp is the vector of inputs, xi is the ith center of the total N radial functions, ϕi(xi, xp) is the 

ith kernel to calculate the distance between xi and xp, and wi is the corresponding weight factor 

for the radial function. The radial function can be selected in different forms such as linear, 

cubic, thin plate spline, Gaussian, multi-quadratic, and inverse multi-quadratic. Several methods 

exist to define the centers of the radial functions, such as the orthogonal least-squares method 

[96]. 
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RBF, like ANN, is easy to implement; however, RBF is suitable for training noisy datasets 

because of its non-linear characteristics. RBF is not recommended for problems with a high 

number of parameters that would be very expensive to compute. 

2.3.3.6. Support Vector Regression (SVR) 

SVR was first developed by Vapnik [97] to find a function to relate the inputs and the output. It 

can approximate the problem based on the weighted sum of basis functions added to a constant 

term as 

ŷ(x) = μ + ∑ wiϕi(xi, x)

n

i=1

 (8) 

where μ is a constant bias term, ϕ is the basis function, and wi is the corresponding weight factor 

for the basis function. For the basis function, either linear or non-linear functions can be 

considered. The main idea behind the SVM is to look for the best fit line (hyperplane) and the 

boundary lines to obtain the maximum number of data points. The formula used to approximate 

the output in SVR is similar to RBF; however, the methods they use to obtain the unknowns are 

different. In RBF, the unknowns are determined by minimizing the error between the actual and 

predicted outputs, but in SVR, μ and w are obtained through solving an optimization problem for 

the threshold between the hyperplane and the boundary lines [98]. 

SVR has the advantage of accurate and fast prediction, and it is robust to outliers. Furthermore, 

SVR is suitable for high-dimensional problems with non-linear data. However, training SVM 

and selecting the appropriate parameters is challenging [99]. 
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2.3.3.7. Genetic Programming (GP) 

GP was initially proposed by Koza [100], which is an extension of the genetic algorithm (GA), 

and it is used mostly for symbolic regression. Both techniques are based on evolutionary 

Darwinian theory. They start with a population of random solutions (known as parents), and the 

solutions evolve through generations by dropping the not-fitted solutions. In GA, these 

candidates are in the form of coded strings (also known as chromosomes), while they are in the 

form of mathematical expressions in GP [101]. GP uses a tree structure to represent the 

mathematical expressions. The two main components of these trees are the function set (nodes) 

and terminal set (leaves) [100]. The function set can be chosen through mathematical operators, 

functions, or conditional statements, and the terminal set includes constants and problem 

parameters. In GP, the evolution mainly happens in two different processes, mutation and 

crossover. Mutation involves substituting a random new segment with a segment in the parent, 

and crossover happens by exchanging segments between two parents and forming two new 

solutions (offspring). The algorithm also reproduces random solutions to compensate for the 

dropped solutions in the previous generation. All the solutions again check for the fitness in the 

new generation, and this process continues until an acceptable fitness value is achieved or the 

algorithm reaches its generation limit. 

One of the drawbacks of using GP is that it needs to be run multiple times because of the 

stochastic nature of the algorithm. The fixed value of the algorithm parameters (such as 

crossover and mutation probability) constructs different models at each run. Too-simple models 

may result in poor predictions, and too-complex models may cause overfitting [102]. On the 

other hand, GP can generate a high number of potential solutions without considering the 

underlying assumptions of the problems. 
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2.3.3.8. Random Forest (RF) 

RF is an ensemble learning technique initially developed by Breiman [103]. RF is an ensemble 

of multiple unpruned decision trees. It implements the bootstrap sampling (bagging) technique, 

which uses a random selection of the dataset as the training set and uses the rest of the dataset as 

the testing set for each tree in the ensemble. The random selection in RF helps the diversity in 

the ensemble of trees and improves the predictions, and prevents overfitting [104]. RF gives the 

final result as an average of the results from individual trees, also known as aggregation. 

In the process of growing individual trees, a small subset of size m out of M parameters for each 

node (m < M) will randomly be picked to train the trees. The size of m is kept constant during 

the forest growing, but the parameters are changed for each node. This process helps the model 

to use all the potential parameters for the prediction and prevents the model from relying on any 

specific parameters. Consequently, the best split at each node is chosen among m parameters 

rather than all the parameters of M. Hence, RF involves using the feature selection technique. It 

analyses all the parameters without deleting them and selects the influential ones [105]. As a 

result, RF is a suitable algorithm for large datasets with a high number of parameters, and it 

produces very accurate results even when a part of the data is missed. However, it lacks 

prediction ability beyond the training data range [2]. 

2.3.3.9. Extreme Gradient Boosting (XGboost) 

XGboost is a supervised learning method proposed by Chen and Guestrin in 2016 [106], which is 

based on the gradient boosting machine (GBM) technique introduced by Friedman [107]. In the 

GBM technique, the algorithm sequentially adds the input parameters to an ensemble of decision 

trees to help to improve the prediction. Unlike the RF, which is an ensemble of deep independent 

decision trees, GBM is an ensemble of shallow trees. GBM builds only one decision tree at a 
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time, and it sequentially improves the ensemble’s performance as it goes forward to the next tree 

[108]. RF involves averaging the results from all the independent decision trees, while GBM 

calculates the loss function for each tree. XGboost differs from GBM in the way it minimizes the 

loss function. XGboost uses the second-order gradient of the loss function, which helps to more 

easily minimize the function. Additionally, the parallel computing ability and the implementation 

of some generalization terms to prevent overfitting are other benefits to using the XGboost 

compared to the GBM [109]. Some of the main disadvantages of XGboost are the high training 

time for large datasets and the inability to predict beyond the training data range. 

2.3.3.10. Polynomial Chaos Expansion (PCE) 

PCE was introduced first by Wiener [110] to project the output on an orthogonal stochastic 

polynomial basis function in the random inputs. The general form of the PCE can be defined as 

Equation (9) [111]: 

ŷ(X) = ∑ βαΨα(X)

α∈ℕM

 (9) 

where α is the index with M dimensions, βα are the deterministic polynomial chaos coefficients, 

Ψα = {Ψ1, Ψ2, …, ΨM} is a set of multivariate orthogonal polynomial basis, and X is the vector of 

input parameters with M dimension. The multivariate orthogonal polynomial basis can be written 

as the product of univariate polynomials ϕαk
of degree αk: 

Ψα(X) =  ∏ ϕαk
(X)

M

k=1

 
(10) 

where ϕαk
 is the univariate orthogonal polynomial in the kth parameter of degree αk. There are 

different univariate polynomial families such as Hermite (based on Gaussian distribution), 

Laguerre (based on gamma distribution), and Jacobi (based on beta distribution) [112]. 
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The main benefit of using PCE is that as the order of expansion increases, it guarantees the 

convergence of ŷ to y, preventing the drawback of overfitting in many other techniques. 

Additionally, PCE is almost applicable to all input distribution types [113]. However, PCE 

sometimes slowly converges, and if the order of expansion increases in high-dimensional 

problems, it requires a large number of high-fidelity model runs. A summary of the 

aforementioned modeling techniques with their pros and cons is presented in Table 1. 

Table 1. Advantages and disadvantages of different modeling techniques. 

Modeling 
Technique 

Advantages Disadvantages 

PR • Suitable for lower-dimensional problems. 

• Not suitable for high-dimensional and 

highly non-linear systems. 

• A large number of training points is needed 

to construct a high-order polynomial [81].  

• High-order PR models cause instability and 
sometimes yield a false optimum [81].  

KG 

• Suitable for low-order non-linear and large-

scale problems. 

• Works for a wide range of sample sizes and 
designs. 

• Applying it to a large-scale problem might 
be time-consuming [86].  

• Not accurate for the problems containing 
discontinued parameters and the 
dimensionality higher than 20 [87].  

MARS 

• Suitable to deal with large and high-

dimensional datasets 

• Capable of doing the feature selection through 
the backward step 

• Choosing the knot locations is challenging, 
and it sometimes faces overfitting [90].  

ANN 
• It can approximate the problems with unknown 

nature 

• Easy implementation 

• Finding the optimal controlling parameters 

is challenging. 

• It is computationally expensive, and it 
requires high memory. 

RBF 
• Suitable for noisy datasets 

• Easy implementation 

• Very expensive computation for problems 
with a high number of parameters. 

SVR 

• It is accurate with fast prediction 

• It is robust to outliers. 

• Suitable for high-dimensional problems with 
non-linear data.  

• Training and selecting the appropriate 
parameters is challenging [99].  

GP 
• Can generate a high number of potential 

solutions without considering the underlying 
assumptions of the problems. 

• Needs to be run multiple times because of 

the stochastic nature of the algorithm.  

• Too-simple models may result in poor 
predictions. Too-complex models may cause 
overfitting [102].  

RF 

• Suitable for large datasets with a high number 

of parameters. 

• It produces very accurate results even when a 
part of the data is missed. 

• Lacks the prediction ability beyond the 
training data range [2] 

XGBoost 
• Able to do parallel computing 

• Implementation of some generalization terms 
to prevent overfitting 

• High training time for large datasets 

• Unable to predict beyond the training data 
range. 
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PCE 

• Almost applicable to all input distribution 

types 

• As the order of expansion increases, it 
guarantees the convergence of prediction, and 
prevents overfitting 

• It slowly converges. 

• If the order of expansion increases in high-
dimensional problems, it requires a large 
number of high-fidelity model runs. 

2.3.4. Optimization 

Once the PM with the chosen underlying model is built and evaluated for its accuracy and 

fitness, the model is ready for further use, such as in predictions and optimization. In the 

optimization process, to find the best selection of the design parameters, an objective function 

based on the purpose of the problem should be defined. 

Optimizers are divided into deterministic (gradient-based) and stochastic (meta-heuristic) 

approaches. Deterministic methods implement the gradient of the objective function, and they 

are suitable for objective functions with a smooth surface. The biggest drawback of deterministic 

approaches is that their performance depends on the initial guess of the design parameters, and 

they may become trapped in a local optimum, preventing them from finding the global optimum. 

Deterministic methods can be categorized into ensemble-based, simultaneous perturbation, and 

adjoint methods [114]. 

Stochastic approaches solve the problem by borrowing rules from nature. Popular methods in 

this category are GA, particle swarm optimization (PSO), simulating annealing, ant colony 

optimization (ACO), and differential evolution (DE), which are the standard methods to find the 

global optimum. 

GA is an evolutionary algorithm proposed by Holland [115], and it uses Darwin’s rule and 

creates solutions by implementing processes such as mutation and crossover, which was 

previously discussed in Section 2.3.3.7. GA is a strong method to find the global optimum that 

works for both continuous and discrete optimization problems. GA can be parallelized and is 
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applicable to multi-objective functions in global optimization problems; however, it is 

computationally expensive and time-consuming [116]. 

PSO, like GA, is a population-based method, and it uses the collective behavior of animal groups 

such as birds and fish. PSO was first introduced by Kennedy and Eberhart [117]. The algorithm 

generates random solutions in which each solution is known as a particle, and the group of 

particles forms a swarm. Each particle in the swarm moves in the searching space of the design 

parameters. The position and velocity of the particles continue to update at each step based on 

the individual and global best solutions at the previous step until the particles find the global 

optimum. PSO has less computational burden but is more reliable in finding the global optimum 

compared to GA. Furthermore, the PSO approach is less effective for problems of more than 

three input parameters [116]. 

Simulating annealing is a probabilistic method that is inspired by the annealing process in metals 

[118]. Simulating annealing allows finding the global optimum in a large search space with the 

ability to jump out of any local optimum it finds [119]. In the simulating annealing algorithm, the 

controlling parameter is called temperature. The algorithm starts with a positive temperature, and 

this temperature decreases gradually to a zero value. At each step, a random solution close to the 

previous solution is generated, and it tries to move the temperature-dependent probability toward 

zero. In other words, while the algorithm searches the working space, the probability of 

accepting worse solutions gradually decreases. Simulating annealing is suitable for problems that 

contain many local optimums, and it also works on problems with discrete search space [120]. 

ACO is also a population-based algorithm and works based on the behavior of real ants when 

they are searching for food [121]. Real ants find the shortest path between a food source and the 

colony by communicating with each other and following substances named pheromones. If they 
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sense a pheromone in their vicinity, they reinforce their movement toward that path. Similarly, in 

optimization problems, artificial ants iteratively search the domain space of parameters for the 

best solution in different generations. When an ant finds a solution, it marks the path to that 

solution as a transition rule and deposits an amount of pheromone on that route. The fitness of 

that path or the solution is determined based on the amount of pheromone left on that path. In the 

next generations, the ants are guided by the pheromone concentration left by the previous 

generations toward better solutions. ACO shows similar advantages and disadvantages to PSO, 

and it is not suitable for problems with more than three dimensions [116]. 

DE, as a population-based algorithm, was first proposed by Price et al. [122] for global 

optimization over continuous search space. Despite its name, this method does not require any 

calculations for the gradient, and the problem does not need to be differentiable. DE is a robust 

technique that converges to the solution, requiring only a few controlling parameters. The 

algorithm starts searching the design space by creating a population of random solutions and 

forms new solutions by combining the existing ones. DE, like GA, involves using mutation, 

crossover, and selection, which help the solutions evolve at each generation. However, DE deals 

differently with mutation and crossover. DE performs the mutation by creating a mutant vector 

of three randomly selected vectors and performs the crossover by creating a trial vector of the 

mutant vector and target vector [123]. Then, the fitness of the trial and target vectors is 

evaluated, and the best is kept for the next generation [124]. In DE, the selection of the parent 

solution is not based on fitness. In contrast, every solution is selected as a target vector (one of 

the parents); therefore, all the vectors have the chance to be one of the parents. DE only needs to 

adjust three parameters, and it has lower computational complexity compared to GA. 
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Additionally, the algorithm stops the solution from being trapped in local optimums [125]. 

Nevertheless, adjusting the controlling parameters is sometimes challenging [126]. 

2.4. Application of Proxy Models in the Oil and Gas Industry 

This section discusses the application of different proxy types in the oil and gas industry, 

especially in reservoir modeling. Based on the literature, data-fit models are prevalent, and the 

application of MFMs and ROMs is limited. This review tries to cover the comprehensive 

implementation of all types of proxy models in different areas of the subsurface environment. 

Various applications of proxy modeling such as SA, uncertainty quantification, risk analysis, 

history matching, field development planning, and reservoir characterization are presented in this 

section. Furthermore, implemented cases for other models are briefly discussed in this section. 

2.4.1. Multi-Fidelity Models (MFM) 

MFMs try to reduce the physics of the problem. Streamline modeling, upscaling, and 

capacitance-resistance modeling (CRM) are the most popular techniques of MFMs in reservoir 

modeling. Streamline models decouple the governing flow equations in a reservoir along one-

dimensional streamlines, and as a result, they boost the speed of calculation [127]. Streamline 

modeling has been applied in a variety of subsurface problems, such as production optimization, 

mainly through waterflooding [128], [129], uncertainty quantification [130], history matching 

[131]–[134], and well placement optimization [135]. Streamline models are often applied to a 

fine-scale reservoir model [136], and they need to run the high-fidelity model at different time 

steps. Consequently, the speedup capability of streamline models is limited [137]. In upscaling, 

as another way to simplify the physics, the equivalent petrophysical properties at a coarser scale 

are calculated [138]. Upscaling has been implemented for a wide range of objectives in reservoir 

modeling [139]–[142]. 
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The idea of duplicating the subsurface behavior using a circuit of capacitors and resistors was 

first presented by Bruce in 1943 [143]. He used this concept to mimic the behavior of a strong 

water drive reservoir. This was achieved by comparing the governing equations of electrical 

circuits and porous media; the potential difference is the motive for the electrons to flow in 

electrical circuits while the pressure difference is the main reason for the fluid flow in porous 

media. Both systems have the characteristic of storing energy. In subsurface porous media, 

compressibility causes the fluid to accumulate, but the electrons are stored in capacitors. CRM 

was first presented by Yousef et al. [144]. The proposed model was capable of mimicking the 

porous media behavior between injectors and producers to identify the transmissibility trends and 

flow barriers. CRM estimates the values for parameters by relating the input and output signals. 

It considers the pressure changes caused by injectors and the aquifer as the inputs, production 

rates as the outputs, and the properties of rock and fluid (such as compressibility and saturation) 

as the related parameters. The CRMs can provide an insight into the inter-well connectivity, 

drainage volume, and reservoir heterogeneity, for example, by channeling along the layers [145]. 

Furthermore, they can be applied for history matching and production forecasting, requiring only 

production/injection rates and BHPs [146], [147]. 

In general, any technique that tries to solve the problem by simplifying the underlying physics is 

an example of an MFM. For example, in work carried out by Wilson and Durlofsky [148], in 

which a dual-porosity, dual-permeability reservoir model was simplified into a single-porosity, 

single-permeability model, the model can be considered as a reduced physics or a MFM proxy 

approach. 
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2.4.2. Reduced-Order Models (ROM) 

The popular methods in the class of ROM that are used for reservoir modeling approximations 

are POD, TPWL, and DEIM. As discussed in Section 2.2, ROM methods project the exact model 

into a lower-dimensional subspace. The subspace basis in POD is achieved by accomplishing a 

singular value decomposition of a matrix containing the solution states obtained from previous 

runs [149]. POD has been implemented in different areas such as reservoir modeling [150], 

[151], finding the optimal control parameters in waterflooding [152], [153], and history matching 

[154]. Nevertheless, POD methods need to solve the full Jacobean of the matrix for projecting 

the non-linear terms in every iteration. Since the reservoir environment is highly non-linear, the 

speedup potential of POD to approximate the reservoir simulation is not significant. For instance, 

Cardoso et al. [151] achieved speedups of at most a factor of 10 for ROMs based on POD in 

reservoir simulation. To solve this drawback, retain the non-linear feature of parameters and 

further increase the speedup potential, a combination of the TPWL or DEIM method and POD 

has been the focus of attention in the literature. The combination of TPWL and POD was 

implanted in various cases such as waterflooding optimization [155], [156], history matching 

[157], [158], thermal recovery process [159], reservoir simulation [155], and compositional 

simulation [160]. In work carried out by Cardoso and Durlofsky [155], a POD in combination 

with TPWL could increase the speedup for the same reservoir discussed earlier from a factor of 

10 to 450. Additionally, the application of DEIM and POD is applied in some studies to create 

proxies for reservoir simulation [161], [162], fluid flow in porous media [163], [164], and water 

flooding optimization [165]. Other methods to treat the non-linearity can be pointed out, such as 

Gauss-Newton with approximated tensors [166], truncated balanced realization [165], localized 

discrete empirical interpolation method [167], trajectory piecewise quadratic [168], and sparse 
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proper orthogonal decomposition-Galerkin [169]. A comprehensive study of these methods in 

reservoir modeling can be found in work carried out by Suwartadi [170] and He [171]. 

2.4.3. Traditional Proxy Models (TPM) 

In the literature, a wide variety of techniques can be considered as TPMs. This type of proxy can 

approximate different areas in the subsurface or surface environment such as production 

optimization [2], [172], uncertainty quantification [3], [173], history matching [4], [174], field 

development planning [175], risk analysis [176], [177], gas lift optimization [114], [178], gas 

storage management [179], screening purposes in fractured reservoirs [180], hydraulic fracturing 

[181], assessing the petrophysical and geomechanical properties of shale reservoirs [182], 

waterflooding optimization [183]–[186], well placement optimization [187]–[189], wellhead data 

interpretation [190], and well control optimization [191]. Additionally, TPMs have a wide range 

of applications in various EOR recovery techniques such as steam-assisted gravity drainage 

(SAGD) [192], CO2-gas-assisted gravity drainage (GAGD) [193], water alternating gas (WAG) 

[194], [195], and chemical flooding [196]. 

2.4.4. Smart Proxy Models (SPM) 

SPMs are implemented in various areas such as waterflood monitoring [10], [197], gas injection 

monitoring [11], and WAG monitoring [8] using the grid-based SPM, history matching [9], [12], 

and production optimization in a WAG process [8] using the well-based SPM. A brief summary 

of the PMs (including the TPMs and SPMs) used in the literature can be found in Table 2.
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Table 2. Examples of PM applications in reservoir modeling. 

Ref. Subject 
Sampling 

Technique 

Underlying 

Model 
Optimizer Class 

Kovscek and Wang [130] Uncertainty quantification in a carbon dioxide storage case – Streamlines – MFM 

Tanaka et al. [128] Production optimization in waterflooding – Streamlines GA MFM 

Wang and Kovscek [131] History matching in a heterogeneous reservoir – Streamlines – MFM 

Tang et al. [198] 
Investigating the effects of the permeability heterogeneity 

and well completion in near-wellbore region 
– Streamlines – MFM 

Kam et al. [133] Three-phase history matching – Streamlines GA MFM 

Taware et al. [135] Well placement optimization in a mature carbonate field – Streamlines – MFM 

Allam et al. [139] History matching – Upscaling – MFM 

Yang et al. [141] Multiphase uncertainty quantification and history matching – Upscaling – MFM 

Holanda et al. [146] Reservoir characterization and history matching – CRM – MFM 

Artun [147] Characterizing interwell reservoir connectivity – CRM – MFM 

Cardoso and Durlofsky 

[155] 
Production optimization in waterflooding – TPWL/POD Gradient-based ROM 

Xiao et al. [157] History matching 
Smolyak sparse 

[199] 
TPWL/POD Gradient-based ROM 

Rousset et al. [159] Production prediction of SAGD operation – TPWL/POD – ROM 

He and Durlofsky [160]  Compositional simulation of the reservoir – TPWL/POD – ROM 

Gildin et al. [161] Simulation of flow in heterogeneous porous media – DEIM/POD – ROM 

Li et al. [163] Compressible gas flow in porous media – DEIM/POD – ROM 

Alghareeb and Williams 

[165] 
Production optimization in waterflooding – DEIM/POD – ROM 

Al-Mudhafar [2] Production optimization in cyclic CO2 flooding – 
PR, MARS, 

RF 
– TPM 

Golzari et al. [172] 
Production optimization in three different cases to increase 

recovery and net present value (NPV) 
Adaptive LHS ANN GA TPM 

Amiri Kolajoobi et al. 

[173] 

Uncertainty quantification and determination of cumulative 

oil production 
LHS ANN – TPM 

Peng and Gupta  [3] Uncertainty quantification in a fluvial reservoir Factorial PR – TPM 

Zubarev [4] History matching and production optimization LHS 
PR, KG, 

ANN 
GA TPM 

Guo et al. [174] History matching in a channelized reservoir 
Random  

Selection 
SVR 

Distributed Gauss-

Newton [200] 
TPM 

Avansi [175] Field development planning BBD PR – TPM 

Ligero et al. [176] 
Risk Assessment in economic and technical parameters on an 

offshore field 
Factorial PR – TPM 
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Risso et al. [177] Assessment of risk curves for uncertainties in the reservoir BBD, CCD PR – TPM 

Ghassemzadeh and 

Charkhi [178] 
Gas lift optimization to maximize recovery and NPV – ANN GA TPM 

Ebrahimi and E. 

Khamehchi [114] 
Gas lift optimization in NGL process LHS SVR PSO, GA TPM 

Zangl et al. [179] Gas storage management and optimization for pressure Factorial ANN GA TPM 

Artun et al. [180] 
Screening and optimization of cyclic pressure pulsing in 

naturally fractured reservoirs 
– ANN GA TPM 

Gu et al. [183] Waterflooding optimization in terms of watercut – XGboost DE TPM 

Chen et al. [184] Waterflooding optimization in terms of recovery and NPV LHS KG DE TPM 

Ogbeiwi et al. [185] 
Optimization of water injection rate and oil production rate in 

waterflooding 
BBD PR GA TPM 

Bruyelle and Guérillot 

[186] 
Waterflooding optimization in terms of well parameters BBD ANN 

Covariance  

Matrix Adaptation 

Evolution Strategy 

[201] 

TPM 

Bruyelle and Guérillot 

[187] 
Well placement Optimization to maximize recovery and NPV BBD ANN 

Covariance Matrix 

Adaptation 

Evolution Strategy 

TPM 

Hassani et al. [188] Optimization the horizontal well placement Optimal, LHS PR, RBF GA TPM 

Nwachukwu et al. [189] 
Injector well placement optimization to maximize recovery 

and NPV 

Random  

Selection 
XGboost – TPM 

Aydin et al. [190] 
Monitoring of a geothermal reservoir temperature and 

pressure from wellhead data 
– ANN – TPM 

Wang et al. [191] Well control optimization to maximize recovery and NPV LHS SVR 

Non-dominated 

sorting GA-II 

[202] 

TPM 

Simonov et al. [203] Production optimization in a miscible flooding case LHS RF MC TPM 

Redouane et al. [204] Well placement optimization to maximize recovery 
LHS, Sobol, 

Halton 
ANFIS [205] GA TPM 

Fedutenko et al. [192] Production prediction of SAGD operation LHS PR, KG, RBF – TPM 

Al-Mudhafar and Rao 

[193] 
Recovery evaluation in CO2-GAGD operation LHS 

PR, MARS, 

GBM 
– TPM 

Jaber et al. [194] Recovery evaluation in miscible CO2-WAG flooding BBD PR – TPM 

Agada et al. [195] 
Recovery and net gas utilization factor optimization of a 

CO2-WAG operation in a fractured reservoir 
BBD PCE GA TPM 

Elsheikh  et al. [206] Watercut determination in waterflooding cases 
Nested Sampling, 

MCMC 
PCE – TPM 

Yu et al. [207] History matching and production forecasting Hammersley [208] GP – TPM 
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Kalla and White [209] Optimization of a gas well with water conning OAS PR – TPM 

Ibiam et al. [196] Sensitivity analysis and polymer flooding optimization LHS PR PSO TPM 

Kim and Durlofsky[210] 
History matching and well-by-well oil and water flow rate 

prediction in waterflooding 

Random  

selection 
RNN PSO TPM 

Kim and Durlofsky [211] Predict NPV with time-varying BHP 
Uniform 

distribution 
RNN PSO TPM 

Kim et al. [212] Multi-well placement optimization 
Uniform 

distribution 
CNN PSO TPM 

Haghshenas et al. [10] 
Evaluating the effect of injection rates on oil saturation using 

the grid-based SPM 
LHS ANN – SPM 

Alenezi and Mohaghegh 

[197] 

Evaluating the effect of injection rates on oil saturation and 

pressure using the grid-based SPM 
Random Selection ANN – SPM 

Amini and Mohaghegh 

[11] 

Gas injection monitoring in porous media using the grid-

based SPM 
– ANN Gradient descent SPM 

Gholami et al. [8] 
WAG monitoring and production optimization using the grid-

based and well-based SPMs 
LHS ANN – SPM 

He et al. [9] History matching using well-based SPM LHS ANN DE SPM 

Shahkarami et al. [12] History matching using well-based SPM LHS ANN – SPM 

Ng et al. [13] Production optimization in a fractured reservoir – ANN PSO SPM 

ANFIS: adaptive neuro fuzzy inference system; ANN: artificial neural networks; BBD: Box-Behnken design; CCD: central composite design; CNN: 

convolutional neural networks; CRM: capacitance-resistance modeling; DE: differential evolution; DEIM: discrete empirical interpolation method; GA: genetic 

algorithm; GBM: gradient boosting machine; GP: genetic programming; KG: kriging; LHS: Latin hypercube sampling; MARS: multivariate adaptive 

regression splines; MC: Monte Carlo; MCMC: Markov chain Monte Carlo; MFM: multi-fidelity model; NPV: net present value; OAS: orthogonal array 

sampling; PCE: polynomial chaos expansion; POD: proper orthogonal decompositions; PR: polynomial regression; PSO: particle swarm optimization; RBF: 

radial basis functions; RF: random forest; RNN: recurrent neural networks; ROM: reduced-order model; SPM: smart proxy model; SVR: support vector 

regression; TPM: traditional smart model; TPWL: trajectory-piecewise linear; XGBoost: extreme gradient boosting.
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2.5. Conclusions 

The most significant advantage of constructing a proxy model is the reduction in computational 

load and the time required for tasks such as uncertainty quantification, history matching, or 

production forecasting and optimization. According to the literature, different classes of proxy 

models exist, and there is no agreement on the proxy model categorization. Existing categories 

do not provide a comprehensive overview of all proxy model types with their applications in the 

oil and gas industry. Furthermore, a guideline to discuss the required steps to construct proxy 

models is needed. 

In this review, different classes of proxy models are discussed, and a new classification based on 

the development strategy is proposed. The proxy models in this classification fall into four 

groups: multi-fidelity, reduced-order, traditional proxy, and smart proxy models. The 

methodology for developing the multi-fidelity models is based on simplifying physics, and 

reduced-order models are based on the projection into a lower-dimensional. The procedure to 

develop traditional and smart proxy models is mostly similar, with some additional steps 

required for smart proxy models. Smart proxy models implement the feature engineering 

technique, which can help the model to find new hidden patterns within the parameters. As a 

result, smart proxy models generate more accurate results compared to traditional proxy models. 

Different steps for proxy modeling construction are comprehensively discussed in this review. 

For the first step, the objective of constructing a proxy model should be defined. Based on the 

objective, the related parameters are chosen, and sampling is performed. The sampling can be 

either stationary or sequential. Then, a new model is constructed between the considered inputs 

and outputs. This underlying model may be trained based on statistics, machine learning 

algorithms, simplifying physics, or dimensional reduction. For optimization purposes, this work 
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describes some of the popular stochastic optimizers as a tool to couple with the proxy models. 

Finally, the application of various proxy models in oil and gas and reservoir modeling for each 

category is presented in this paper. 

This review paper provides a comprehensive guideline to develop proxy models. This guideline 

provides a better, structured, and more efficient approach to help model, optimize, and forecast 

more complex problems in future studies. Additionally, this paper provides the reader with a 

better understanding of the different proxy model categories, and it provides various applications 

for the proxy models in the oil and gas industry. 
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Chapter 3. Screening of Waterflooding Using Smart Proxy Model Coupled 

with Deep Convolutional Neural Network 

Preface 

A version of this chapter has been published in the Geoenergy Science and Engineering Journal. 

I am the primary author, along with the co-author Dr. Lesley A. James. The detail of the author's 

contributions is as follow: 

Peyman Bahrami: Conceptualization, Methodology, Writing–original draft, and Writing–Review 

& Editing, Visualization 

Dr. Lesley A. James: Conceptualization, Methodology, Writing–Review & Editing, and 

Supervision 

Reference: P. Bahrami and L. A. James, “Screening of waterflooding using smart proxy model 

coupled with deep convolutional neural network,” Geoenergy Science and Engineering, vol. 221, 

p. 111300, Feb. 2023, doi: 10.1016/j.petrol.2022.111300. 

Abstract 

The objective of this work is to identify any efficiency and accuracy improvements in smart 

proxy modeling (SPM). SPM is a novel methodology which include additional steps in the 

construction process compared to traditional proxy models (TPM). We discuss the advantages of 

SPM compared to TPM where SPM implements feature engineering techniques which involves 

generating new static and dynamic parameters. The new extracted parameters help the model to 

capture hidden patterns within the parameters, which eventually increase the accuracy of SPMs 

compared to TPMs.  
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Based on our literature review, we target our investigation into techniques to improve efficiency 

and accuracy by focusing on sampling (sequential sampling), feature ranking, and underlying 

model construction (CNN instead of ANN). In existing SPM literature, only one technique is 

used during each construction step where there are opportunities to explore novel construction 

steps to improve overall SPM accuracy and efficiency. Sequential sampling helps to construct 

the SPM with the lowest number of high-fidelity model execution and it avoids resampling, 

thereby saving time and making the SPM workflow more efficient. The average feature ranking 

technique described in this work provides a more confident prioritization of input parameters 

which eventually helps the overall efficiency in the feature selection step. CNN model as the 

underlying model provides higher accuracy than implemented ANN models in literature. The 

SPM with ANN underlying model provides an accuracy of 89-92% compared to the 99% and 

94% of the CNN technique for the pressure and oil saturation predictions, respectively. 

In this paper, we construct a grid-based SPM of a Norwegian offshore field undergoing 

waterflooding. The designed parameters for this case are the individual liquid rate of the 

producers, and the outputs are individual grid’s oil saturation and pressure. It is shown that the 

final results for screening purposes generated by SPM can confidently be used to mimic the 

behavior of the numerical models. Also, the results of feature ranking illustrate that some of the 

extracted data used in the SPM construction steps influence the model’s outputs, confirming 

SPM capability. 

Keywords: Smart proxy model; Convolutional neural network; Average feature ranking; 

Sequential sampling; Waterflooding screening; Machine learning 
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3.1. Introduction 

Waterflooding is the most widely and economically applied secondary recovery method. There 

are two main reasons to perform waterflooding: (1) to keep the pressure above the saturation 

pressure and prevent gas production, and (2) to sweep the oil toward the producers and have a 

higher ultimate oil recovery [213]. It is always a good practice to screen the waterflooding 

process using the numerical models to fulfill these goals. A good screening plan, or observation 

of the changes in grids’ oil saturation and pressure, significantly increases the required 

knowledge for any field development decisions. Hence, to have a proper screening for the 

reservoir, a large number of numerical model runs need to be performed. However, this task is 

challenging in terms of computational time and manpower.  

Using a proxy model (PM) is an alternative way to speed-up getting the desired results from the 

numerical model. PM is a substitute or an approximation of a numerical model, mathematical 

model, or a simulator which generates the results in a reasonable accuracy much quicker. PMs 

can be categorized based on different aspects such as time dependency, approximation strategy, 

or objective, but one of the main categorizations is the one done by Eldred and Dunlavy [15]. 

They grouped PMs into data-fit, multi-fidelity, and reduced-order types. Data-fit models 

implement a regression on the data obtained from the original high-fidelity model, and they 

usually use a machine learning method as the underlying model. Polynomial regression, artificial 

neural networks, and kriging are a few examples that fall into this category. In multi-fidelity 

models, a high fidelity model is simplified into an easier model through simplifying assumptions 

[32] or coarser discretization [31]. Streamline modeling, upscaling, and capacitance-resistance 

modeling (CRM) are the most popular techniques of multi-fidelity models in reservoir modeling. 

Reduced-order models (ROM) project the high-fidelity model into a lower-dimensional subspace 
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with equivalent characteristics by neglecting the irrelevant parameters. Some popular techniques 

in this class are proper orthogonal decompositions (POD) [34], trajectory-piecewise linear 

(TPWL) [35], and discrete empirical interpolation method (DEIM) [36]. 

In the literature, each of these classes was previously used in various areas of reservoir 

engineering. Data-fit models were applied on production optimization [2], [172], [214], 

uncertainty quantification [3], [173], history matching [4], [174], [207], field development 

planning [175], risk analysis [176], [177], gas lift optimization [114], [178], gas well 

optimization [209], gas storage management [179], screening purposes in fractured reservoirs 

[180], waterflooding optimization [183]–[186], well placement optimization [187]–[189], 

wellhead data interpretation [190], and well control optimization [191]. Also, they had a wide 

application in various enhanced oil recovery (EOR) techniques such as steam-assisted gravity 

drainage [192], CO2-gas assisted gravity drainage [193], water alternating gas (WAG) [194], 

[195], and chemical flooding [196]. Multi-fidelity models were applied in production 

optimization [128]–[130], history matching [131]–[134], and well placement optimization [135] 

through streamline modeling, and upscaling is used in reservoir modeling objectives [139]–

[142]. CRM as another class of multi-fidelity model is implemented in history matching and 

production forecasting [146], [147]. In the ROM category, POD was implemented in different 

areas such as reservoir modeling [150], [151], control parameters optimization in water flooding 

[152], [153], and history matching [154]. The use of TPWL was tested in various cases such as 

waterflooding optimization [155], [156], history matching [157], [158], thermal recovery process 

[159], reservoir simulation [155], and compositional simulation [160], and DEIM is applied in 

reservoir simulation [161], [162], fluid flow in porous media [163], [164], and water flooding 

optimization [165]. 
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Another classification method for the PMs is the one done by Mohaghegh [7]. He divided PMs 

into traditional proxy models (TPM) and smart proxy models (SPM). TPM involves using 

mathematically simplified and statistically driven models such as ROMs, multi-fidelity, and 

data-driven models. PMs in this work are classified into four classes of multi-fidelity models, 

ROMs, TPMs, and SPMs based on their different development strategies [215]. TPM in this 

work refers to the PMs that use a machine learning method as the underlying model (is the same 

class as data-fit PMs). These models have shortcomings in accuracy when they reproduce the 

results obtained from numerical models, especially in complex cases. SPMs have additional steps 

in the construction process compared to TPMs, and it is needed to form a new dataset with new 

parameters to uncover the hidden patterns within the problem for the underlying model. SPMs 

are grouped as grid-based or well-based. A grid-based SPM reproduces the results at the grid-

level, and it is suitable for problems where it is desired to monitor an output parameter in grid 

blocks. The grid-based SPM has been implemented for waterflood monitoring [10], [197] and 

gas injection monitoring [11], WAG monitoring [8]. A well-based SPM generates the results at 

the well-level, and it applies to cases when having an estimate of the production is essential such 

as history matching [9], [12] and production optimization [8]. The existing literature regarding 

the SPM used the same technique in different steps of SPM construction [8]–[12], [197]. For 

example, only one type of sampling technique (stationary Latin hypercube sampling), one feature 

ranking technique (ANN ranking), and one underlying model (ANN) are implemented in the 

models.  

 Our objective is to identify efficiency and accuracy improvements in SPM modeling. 

Specifically, we investigate the use of sequential sampling to avoid the need to repeat the whole 

procedure using resampling where we can possibly augment more sample points to the existing 
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design to save the time of resampling, generation of data sets, and the rest of the SPM workflow. 

While existing literature does not specifically say how they selected and ranked input parameters 

in the SPM, average feature ranking technique is introduced in this work. This technique helps to 

have a more confident prioritization of input parameters to do the feature selection which 

eventually helps the overall efficiency. We also investigate the use of CNN instead of ANN to 

predict oil saturation and pressure profiles in grid-based modeling. In this paper, a grid-based 

SPM for the Volve reservoir model is constructed, and it is used to screen the oil saturation and 

pressure of grids during a waterflooding process. Section 3.2.3 discusses the sampling step in 

more detail, Section 3.2.4 introduces the average feature ranking that is used in this paper, 

Section 3.2.5 describes the CNN model in detail, and Section 3.3 introduces the Volve case study 

used in this paper. 

3.2. Methodology 

This work tries to show the differences between a TPM and an SPM in the construction process. 

A TPM is usually constructed by the following steps: (1) define the objective, input, and output 

parameters, (2) perform the sensitivity analysis (if needed), (3) sampling, (4) run the high-fidelity 

model to extract only the output parameter, (5) train and validate the underlying model, and (6) 

employ the TPM to obtain the results. These steps are discussed in Sections 3.2.1 to 3.2.5 in 

more detail. 

The SPM has additional development steps compared to the TPM. Figure 4 presents the steps 

required to construct a TPM and an SPM. After sampling and running the simulator (or high-

fidelity model) at the sample points, a combination of static and dynamic parameters needs to be 

extracted from the simulator. Then, these parameters are used to form a new dataset. Finally, an 

underlying model trains and validates between the inputs and outputs to complete the SPM 
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construction. The constructed SPM can then predict the output parameter in a much shorter time 

for the initially selected inputs and is applicable to fulfill the objective of the problem. In general, 

if the aim is to run the simulator a few times, constructing an SPM is not recommended. 

However, if we desire to run the simulator many times, the SPM construction can be quite 

helpful. 

This paper presents the construction of a grid-based SPM. Rows in the new dataset correspond to 

individual grids of the numerical reservoir model, and the columns are the static and dynamic 

parameters extracted at different timesteps. The parameters forming the columns could be a wide 

variety of parameters such as the grids' location, geometry, properties, or distances to the objects 

such as wells, boundaries, etc. Extracting the parameters for the individual grids sometimes 

forms a massive dataset. For example, in work done by Gholami et al. [8], the grid-based dataset 

initially consisted of 396,000 rows and over 1000 parameters. 

Constructing a TPM on such a big dataset can be challenging and time-consuming. On the other 

hand, one of the main advantages of using an SPM is that it only takes a few seconds to 

approximate the full reservoir. If the time required to construct an SPM is significant, the 

applicability of the SPM diminishes, and it is known as the curse of dimensionality [14], [61]. 

So, it is crucial to do some preprocessing to reduce the number of rows (observations) and 

columns (parameters) of this dataset. Also, performing the sampling in an effective procedure is 

needed to save time on the construction of the SPM, which can be fulfilled through sequential 

sampling used in this research. 

3.2.1. Defining Objective, Inputs, Outputs and Ranges 

To construct a PM, one must first determine the objective and the dependent inputs and outputs. 

Choosing the proper inputs and outputs may be the most important step in PM construction. The 
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objective of a reservoir engineering problem could be production optimization, history matching, 

uncertainty analysis, and many others. In each of the objectives, some input and output 

parameters are effective. For example, suppose the objective is the production optimization in a 

WAG injection case. In that case, the inputs can be water or gas injection rates, water viscosity, 

cycle length, well production rates, etc., and the output can be the total oil production rate, 

watercut, or gas-oil ratio. In this study, the objective is to screen the oil saturation and pressure 

during a waterflooding case. The effective parameters, in this case, are the individual liquid 

production rate of wells. 

3.2.2. Sensitivity Analysis 

A reservoir environment is considered a non-linear and complex problem in which many 

parameters play a role. Dealing with many parameters in such an environment and running the 

simulator based on all the parameters sometimes is very costly and time-consuming. In such a 

case, sensitivity analysis can find the non-influential inputs and reduce their number. So, 

sensitivity analysis is essential in constructing the PM in cases with a high number of inputs and 

is performed before the sampling step [46], [47]. There are only five inputs under investigation 

in this paper, and sensitivity analysis is not performed. 

3.2.3. Sampling 

Sampling is defined as the procedure to generate datapoints in the domain range of the input 

parameters. Usually, a higher number of sample points over the search space results in a more 

accurate PM (or SPM). However, as the number of sample points increases, the PM’s 

construction time increases, and picking a small number of sample points is required to avoid 

falling into the curse of dimensionality. Hence, the main objective of sampling is to get 
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maximum information by generating the minimum possible sample points. Therefore, choosing a 

proper sampling strategy is a crucial construction step in the construction of a PM. 

Sampling techniques are divided into stationary and sequential methods. Stationary sampling 

techniques seek to evenly distribute the sample points over the domain of the inputs, and they 

use a fixed pattern in all the problems under study [63]. Factorial designs (full and factorial 

designs), optimal designs, Latin hypercube sampling (LHS), orthogonal array sampling, and 

random sampling such as Monte Carlo are examples of this technique. 

Stationary sampling is easy to employ; however, if the PM was not approved in any stages 

during construction (mainly in the validation stage) the whole procedure for SPM construction 

from sampling stage needs to be repeated. This shortcoming can cause an increase in the 

computation cost associated with constructing a new PM with a higher number of sample points. 

This problem is even more significant in non-linear and complex problems such as the reservoir 

environment involving many parameters. Constructing an SPM also suffers the disadvantage of 

the stationary sampling techniques. The number of sample points (accordingly, the required runs) 

depends on different geological properties and operational constraints, and there is no rule of 

thumb to select the suitable number of sample points. For example, in the research done by 

Gholami et al. [8], the number of sample points were 13 for the four designing parameters in a 

WAG process, or in work done by He et al. [9], only three sample points were picked for the two 

design parameters to construct an SPM for a history matching problem. Hence, using an 

alternative sampling technique, such as sequential sampling, could be beneficial. 

In sequential sampling, the design starts with initial sample points, and if the constructed PM 

does not achieve a good accuracy, new sample points are sequentially added to the existing ones. 

This process stops whenever the model reaches a preferred performance and accuracy [72]. 
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Hence, PM construction time is significantly decreased using sequential sampling techniques, 

and it avoids repeating the sampling and running the simulator [73]. Workflows for stationary 

and sequential sampling techniques are presented in Figure 5. 

In this paper, sequential LHS sampling technique is used, which is a novel procedure in the 

SPM’s construction. There are various types of algorithms to generate the initial sample points 

and the augmented points. 

3.2.3.1. Random LHS 

LHS is a stratified sampling technique that divides each parameter into N bins or equal intervals. 

Then, it distributes the sample points in each bin of the parameters. In LHS, it is possible to 

choose any number of sample points, and splitting the parameters domain happens based on that 

number. So, there is a control over the number of sample points, and it is a big advantage in 

constructing the PMs where we are looking to limit the number of simulator runs [69]. Not all 

Latin hypercube designs uniformly distribute the sample points in the domain, and it is necessary 

to optimize the space-filling procedure. For example, Figure 6 shows an unfavorable LHS design 

in which major parts of the space are not filled with sample points. Viana et al. reviewed some of 

the techniques to optimize the LHS to better fill up the domain under study [70].  

 
Figure 6. An example of an unfavorable LHS design 
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In random LHS, the sample points are randomly placed in the intervals so that they only repeat in 

the intervals of each parameter once. Figure 7a shows an example of the random LHS design for 

two parameters with 15 sample points. As can be seen, the sample points are not uniformly 

distributed in the parameters’ domain, and there are big spaces that are not covered by sample 

points. Simple augmentation or optimized augmentation can be implemented if more sample 

points are required to be added to the initial design. In simple augmentation, it is not guaranteed 

that the new points keep the distance from the existing points; however, the optimized 

augmentation tries to keep the distance from the existing points. In Figures 7b and 7c, five more 

points are added to the initial design using the simple and optimized augmentation techniques. 

   
(a) (b) (c) 

Figure 7. Random LHS design: (a) initial design, (b) simple augmented, and (c) optimized augmented points 

3.2.3.2. Optimal LHS 

This sampling technique seeks to create an LHS design that uniformly distributes the initial 

sample points in the parameters’ domain. The algorithm for the optimal design is based on the 

columnwise pairwise with respect to the S-optimality criterion. S-optimality distributes the 

sample points by maximizing the harmonic mean distance from other sample points [216]. 

Figure 8 shows the initial design and the augmented points in an optimal LHS. 
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(a) (b) (c) 

Figure 8. Optimal LHS design: (a) initial design, (b) simple augmented, and (c) optimized augmented points 

3.2.3.3. LHS with a Genetic Algorithm 

This sampling technique uses genetic algorithm (GA) to better distribute sample points in an S-

optimality criterion. An example of the sample points and the augmented points is demonstrated 

in Figure 9. 

   
(a) (b) (c) 

Figure 9. LHS with GA: (a) initial design, (b) simple augmented, and (c) optimized augmented points 

In this work, a genetic algorithm coupled with LHS is used to create the initial sample points, 

and an optimized algorithm is used to augment more sample points. 

3.2.4. Dataset Generation, and Feature Selection 

After setting the sample points, it is necessary to run the high-fidelity model (here it is the 

simulator) at the sample points. Then various static and dynamic parameters are extracted from 

the simulator runs and forms a new dataset. In this dataset, the number of columns equals the 
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number of parameters, and the number of rows is the multiplication of grid numbers and the run 

numbers  

To justify that extraction of more data and forming a new dataset is important in SPM 

construction, the influence of the extracted parameters on the output is tested using the feature 

ranking technique. Feature ranking is the process of finding the importance of input parameters 

on the output parameter in the dataset. There are different feature ranking algorithms such as 

linear machine learning, decision tree, and permutation techniques [217]. In linear machine 

learning techniques, a regression model fits a dataset, and a set of coefficients for parameters is 

obtained. Hence, the model’s prediction is a weighted sum of the input parameters, and the 

coefficients can be used further for parameter importance scoring. Linear regression, ridge 

regression, logistic regression, or elastic net are examples of this category. Decision tree 

techniques try to do the feature ranking by reducing the criterion to choose the split points in a 

tree or an ensemble of trees. Random Forest (RF) or gradient boosting algorithms fall in this 

class of feature ranking methods. In permutation techniques, the algorithm takes a parameter at a 

time and tests the model’s performance by applying random noise to the parameter. So, the 

algorithm can determine how much the model depends on the individual parameters. 

The importance of parameters can be used to reduce the dimensions of the dataset, which is 

called feature selection. Feature selection speeds up data collection, decreases training time, and 

lowers the overfitting chance. There are three classes of feature selection; filter, wrapper, and 

hybrid. The filter class employs a statistical factor which scores the relationship of the individual 

input parameters to the output parameter. Then, the input parameters are ranked, and the method 

selects the best subset of input parameters. Different algorithms can be used in the wrapper class 

that iteratively search different input parameters’ combinations to find the optimal subset. The 
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wrapper methods have the advantage of selecting the optimal set from all the available input 

parameters [218]. Although wrapper methods are accurate, they are computationally more 

expensive compared to filter methods, and they might overfit. As a result, for a dataset with a 

large number of input parameters, using the standalone wrapper methods would not be 

recommended. Instead, hybrid methods, which are a combination of filter and wrapper methods, 

are more applicable. Most recent hybrid methods initially reduce the number of input parameters 

using one of the filter methods, then they employ an expensive wrapper method [219]. 

Different results of variable importance and ranking would be achieved depending on the choice 

of predictive models for the feature ranking approach [220]. Hence, it is always a challenging 

decision to choose a proper model in feature ranking to be further used for feature selection. In 

this work, fscaret R package [221] is used to rank and reduce the input vector. fscaret is a filter 

method that generates a data frame of variable importance, errors of the input parameters, and 

the gradient of parameter importance by combining different algorithms. In this work, a 

combination of 23 different models is compared in fscaret and averaged to provide a more stable 

variable ranking. Then, we used the gradient of importance to select different subsets of input 

parameters. The gradient of importance was calculated using Equation 11.  

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
× 100 (11) 

The list of applied models for feature ranking and feature selection is presented in Table 3. 
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Table 3. Different predictive models used for feature ranking 

1 random forest (RF) 13 polymerase chain reaction (PCR) 

2 penalized regression 14 partial least squares (PLS) 

3 binary search tree (BSTREE) 15 fits elastic net regression (ENET) 

4 neural network 16 cubist 

5 Bayesian generalized linear model (GLM) 17 multilayer perceptron with weight decay 

6 gradient boosting machine (GBM) 18 multilayer perceptron 

7 weighted K-nearest neighbors (KKNN) 19 ridge regression 

8 K-nearest neighbors (KNN) 20 relaxed lasso 

9 least angle regression (LARS) 21 projection pursuit regression (PPR) 

10 
feed-forward neural networks and multinomial 

log-linear  
22 

partial least squares regression for generalized 

linear models (PLSRGLM) 

11 Lasso regression 23 
recursive partitioning and regression trees 

(RPART) 

12 
neural networks with a principal component step 

(PCANNET) 
  

3.2.5. Training and Validating the Underlying Model 

The next step after forming the grid-based dataset includes training a machine learning model on 

the data. In this research, a one-dimensional convolutional neural network (1D-CNN) model was 

constructed. Using the 1D-CNN model is a novel way to build the underlying model of the SPM 

not previously used in the literature. 

CNN is a type of deep neural network primarily designed for the analysis of 2D image data. 

However, in recent years, its usage has been extended to 1D (such as time series and natural 

language processing) and 3D data (such as video) [222]. CNN is a generalized technique that 

works well in big datasets with many parameters. In common artificial neural networks, if the 

dataset contains many parameters, the training time would become significant if the number of 

hidden layers increases [223] whereas CNN trains more quickly as it uses the filters to reduce the 

size of dataset. CNN structure generally involves using three main layers of convolutional, 

pooling, and fully connected layers. In the convolution layer, multiple filters are applied to the 

inputs. The filter is a sliding window that can move in different directions, and it extracts 

parameters from the dataset. The filter applies to a part of the dataset (or image or videos) by 
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taking a dot product between the filter and that part of the dataset. The CNN is referred to as 3D, 

2D, and 1D if the filter moves in three, two, and one direction(s), respectively (Figure 10).  

 
(a) 

 
(b) 

 
(c) 

Figure 10. Illustration of movement in: (a) 3D-filter, (b) 2D-filter, and (c) 1D-filter 

The pooling layer reduces the dimensionality and selects the most significant parameters through 

subsampling. Max-pooling, min-pooling, and average-pooling are the most common pooling 

operations in this layer. When different filters are applied to the input data, the result is flattened 

and goes through the fully connected layer (dense layer) or a multi-layer perceptron network 

(MLP). This fully connected layer consists of neurons, weights, and biases in which the neurons 

in one layer are connected to the neurons in the next layer and finally to the output layer. In the 

model used in this research for the grid-based model, the convolution layer consists of three filter 
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sublayers; the fully connected layer includes two hidden sublayers and no pooling layer. A 

schematic of a 1D-CNN with one filter layer and one dense layer is shown in Figure 11. 

There are some important parameters associated with each CNN model that need to be designed, 

such as filter size, kernel size, neuron size, and the number of sublayers in the convolutional 

layer or fully connected layer. Filter size refers to the number of filters in each filter sublayer, 

and kernel size is the width of the sliding filter window. These parameters need to be designed to 

train a more accurate model. The design procedure started by choosing the number of sublayers 

in the convolutional and fully connected layers. Various sublayers were tested and eventually, 

three filter sublayers and two hidden layers were selected as the base structure of the 1D-CNN 

model. Then, a design of the experiment was performed on different adjusting parameters based 

on the D-optimal method.  

 
Figure 11. 1D-CNN schematic with one filter layer and one dense layer 

After training the underlying model, the goodness of fit was evaluated using Root Mean Squared 

Error (RMSE) and the coefficient of determination (R2). The model that has a lower RMSE and 
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higher R2 can be considered a reliable model. RMSE and R2 are calculated based on Equations 

(12) and (13).  

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑎𝑐𝑡,𝑖)
2𝑛

𝑖=1

𝑛
 (12) 

𝑅2 = 1 −
∑ (𝑦𝑎𝑐𝑡,𝑖 − 𝑦𝑝𝑟𝑑,𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑎𝑐𝑡,𝑖 − 𝑦𝑚)
2𝑛

𝑖=1

 (13) 

where yact is the actual value, yprd is the predicted value, i is the data record number, ym is the 

average of the experimental value, and n is the total number of records. Figure 12 demonstrates 

the SPM construction workflow used in this work.  

  
Figure 12. Workflow for the presented SPM methodology 
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3.3. Case Study 

In this work, an SPM for the Volve reservoir simulation model is constructed. The Volve field 

was discovered in 1993, and it is an offshore oil field located 200 km west of Stavanger and 5 

km north of the Sleipner Øst field. The Volve field is a 2×3 km, fault-delimited structure with a 

total proven 27.5 million Sm3 of oil that is expected to produce 11.4 million Sm3 oil and 1.5 

billion Sm3 rich gas. The field consists of a sandstone reservoir with 93% net-to-gross ratio, 

porosity of 21%, well test permeability of 1 Darcy, and average water saturation of 20% in the 

oil zone. The developed reservoir simulation model for this field uses a reservoir pressure and 

temperature of 340 bar and 110 °C at 3060 m, respectively. The gas-oil ratio varies between 111 

and 157 Sm3/Sm3, and the formation volume factor varies between 1.33 and 1.45 m3/Sm3. Based 

on the capacities of the process plant on the jack-up platform, the field has limitations of 16,000 

Sm3/d for injected water, 9000 Sm3/d for oil production rate, and 10,400 Sm3/d for water 

production rate. The field started to produce oil in February 2008, and it was under 

waterflooding recovery until it was shut in September 2016. Volve produced a total of 9.98 

million Sm3 oil. Figure 13 shows the location of Volve field, and Figure 14 illustrates the 

reservoir simulation model. The reservoir model in this study has three injectors and five 

producers. The location and trajectory of the wells are presented in Figure 15. 

 
Figure 13. Volve field location (modified from https://www.norskpetroleum.no/en/facts/field/volve) 
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Figure 14. Volve simulation model showing the oil saturation 

 
Figure 15. Well locations and their paths in Volve reservoir model 

An SPM of the Volve field was constructed to screen the oil saturation and pressure during 

waterflooding more quickly than could be achieved using the reservoir simulation model. The 

chosen design parameters were the individual liquid production rate of the five wells. As there 

are only five design parameters under investigation, a sensitivity analysis was not performed. A 

genetic algorithm coupled with sequential LHS sampling was used to create the initial sample 

points, and an optimized algorithm was used to augment more sample points. Then, the simulator 
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software was used to run for ten more years (from 2017 to 2027), and every six months was 

considered as a timestep (or an output) for the grids’ oil saturation and pressure in the new 

formed dataset. A combination of 23 different models were tested and averaged for feature 

ranking. A 1D-CNN model was used to train a machine learning model on the data. Finally, the 

model was validated by evaluating the goodness of fit using RMSE and R2.  

3.4. Results and Discussion 

3.4.1. Sequential LHS Design 

As explained in the methodology for SPM, the design parameters with their ranges need to be 

selected. The design parameters are then used in the sampling step to run the model in various 

configurations. We used the individual liquid production rate (LPR) of the producers as the 

designed parameters, and a range of zero to 5000 Sm3/d was chosen. The water injection rates for 

the individual injectors were not considered as design parameters in this study. In the Volve 

field, the maximum BHP of injectors is met very quickly even under oil production and low 

injection rates. As a result, they are not suitable parameters to be chosen for further purposes 

such as optimization. Table 4 presents the initial sampling points generated based on the LHS 

design with GA for producers’ LPRs. 

Table 4. Initial sampling design based on LHS with GA 

Sample 

point 

LPR (Sm3/d) 

Prod#1 

LPR (Sm3/d) 

Prod#2 

LPR (Sm3/d) 

Prod#3 

LPR (Sm3/d) 

Prod#4 

LPR (Sm3/d) 

Prod#5 

LPR (Sm3/d) 

Total 

1 68 1,521 2,632 3,665 4,027 11,912 

2 2,142 4,936 1,268 4,450 1,942 14,739 

3 1,956 2,416 4,764 3,134 323 12,594 

4 4,964 3,812 4,282 2,601 3,153 18,812 

5 3,336 3,098 882 1,688 4,887 13,892 

6 1,434 848 321 2,305 1,386 6,293 

7 4,118 1,084 2,001 4,915 2,003 14,121 

8 2,812 134 3,894 1,308 3,966 12,115 

9 866 4,257 3,473 921 2,850 12,366 

10 3,781 2,911 1,502 240 777 9,210 
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Figure 16. Field cumulative oil production at different sample points 

In the initial design, a total of 10 sample points was considered. The simulator software was run 

on each of the sample points for ten more years (from 2017 to 2027), and the field cumulative oil 

production for each is shown in Figure 16. By comparing the total LPRs (from Table 4) and the 

total cumulative produced oil (from Figure 16) it can be concluded that by having a higher total 

LPR, we can not guarantee that a higher total cumulative produced oil would be achieved over 

time. Hence, an optimization problem clearly exists when the individual well LPR is selected as 

the designing parameters that can be used for future research. For example, the maximum total 

LPR of 18,812 Sm3/d that corresponds to sample point 4 does not result in the highest total 

cumulative produced oil after ten years of water flooding. Also, the minimum total LPR of 6,293 

Sm3/d, which corresponds to sample point 6, does not result in the least total cumulative 

produced oil. 
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The extracted data from the simulator in these 10 sample points was used to create a dataset and 

construct the grid-based SPM. Subsequently, five more sample points (shown in Table 5) were 

added based on the optimized augmentation method to the initial sample points. Adding more 

sample points to extract more data eventually increased the model accuracy.  

Table 5. Added sample points based on the optimized augmentation method 

Sample 

point 

LPR (Sm3/d) 

Well#1 

LPR (Sm3/d) 

Well#2 

LPR (Sm3/d) 

Well#3 

LPR (Sm3/d) 

Well#4 

LPR (Sm3/d) 

Well#5 

LPR (Sm3/d) 

Total 

11 364 423 4484 596 412 6,279 

12 4,470 4,558 605 4,032 4,589 18,255 

13 1,218 3,407 3205 3,697 1,114 12,642 

14 3,278 1,970 1981 1,536 3,467 12,231 

15 2,653 2,091 2815 2,972 2,458 12,989 

In summary, considering a sequential sampling method is crucial because there is no rule to 

know how many sample points are needed to construct the SPM. This sampling strategy helps 

extract more data in the domain space of the parameters in the case of low accuracy of the 

constructed model. 

3.4.2. Data Extraction and Dataset Preparation 

After running the simulator at the sample points, different static and dynamic data was extracted. 

Table 6 lists parameters that were used to create the grid-based dataset. 

Table 6. Static and dynamic parameters extracted for the grid-based dataset 

Parameter Details 

Static  

LHS design parameters LPRs for producers 

Grid indexing i, j, k 

Grid location X, Y, Z 

Grid type injector, producer, null 

Distances of grids to the closest fault 

 to the 1st closest, 2nd closest, and 3rd closest injectors 

 to the 1st closest, 2nd closest, and 3rd closest producers 

Rock properties porosity, permX, permY, permZ, TransX, TransY, TransZ, NTG 

Grid geometry vertical thickness, stratigraphic thickness, volume, angle 

Grid initial properties So(t), P(t) 

Dynamic 
 

Grid oil saturation So(t+1), So(t+2), … 

Grid pressure P(t+1), P(t+2), … 
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In the formed dataset for the grid-based model, the number of columns equals the number of 

parameters, and the number of rows is the multiplication of grid numbers and the run numbers (is 

also equal to the sample points). It means, in this case, that the model consists of 680,400 grids; 

the number of rows is 680,400×15 with the initial design. The configuration of the grid-based 

dataset is shown in Figure 17. To decrease the size of the dataset, a preprocessing filter was 

applied to the dataset to remove the corresponding rows of the grids with zero oil saturation. The 

grids located in the aquifer have zero oil saturation, and they are not of the interest for any 

predictions. By applying a filter to remove aquifer grids, the number of rows was reduced to 

61,416×15.  

 
Figure 17. Grid-based dataset configuration 

3.4.3. Feature Ranking and Feature Selection 

The average feature ranking method using fscaret was tested on the grid-based dataset at 

timestep 7 (Jul 2020). Figures 18 and 19 show the results of feature ranking when the output is 

the grids’ pressure and oil saturation. Figures 20 and 21 also demonstrate the result of feature 

ranking on the same dataset using the random forest method. The figures clearly show that 

magnitude and the order of influential parameters are very different between the results obtained 

from average and random forest methods. 
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Figure 18. Parameter importance on grids’ pressure 

using average feature ranking method (timestep 7) 

 

Figure 19. Parameter importance on grids’ oil saturation 

using average feature ranking method (timestep 7) 

 
Figure 20. Parameter importance on grids’ pressure using 

random forest feature ranking method (timestep 7) 

 
Figure 21. Parameter importance on grids’ oil saturation 

using random forest feature ranking method (timestep 7) 

Figure 18 shows that the most important parameter is the initial pressure, and other parameters 

relating to the grids’ location (X and Z) also have a high impact on the grids’ pressure in the next 
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timestep (output). However, Figure 19 shows that only the initial oil saturation of the grids has a 

big impact on the output. This may be due to the fact that a small percentage of recoverable oil is 

left in the reservoir, and 9.98 million Sm3 out of 11.4 million Sm3 expected recoverable oil is 

produced by 2016. Figures 22 and 23 show the pressure and the oil saturation histograms of the 

grids. The mean oil saturation around 0.3 from Figure 23 proves this justification.  

 
Figure 22. Pressure histogram of the grids 

 
Figure 23. Oil saturation histogram of the grids 

Also, another reason for the high impact of the initial saturation might be that the grid-based 

dataset is representative of all grids in the reservoir model. Nevertheless, only a small percentage 

of the grids are located near the wells, and injected water or produced liquid could not affect all 

grids in the reservoir model. To check on this hypothesis, the dataset was investigated in two 

stages to check the impact of parameters on the grids’ oil saturation in the vicinity of wells. In 

the first stage, the grid-based dataset corresponding to all grids in the reservoir model was shrunk 

to all grids within a 60 m radius of the injection and production wells. In the second stage, the 

dataset further shrunk to the corresponding grids in 30 m vicinity of the wells. The feature 

ranking results for these two stages are presented in Figures 24(a) to 24(d). 
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(a) (b) 

  
(c) (d) 

  
Figure 24. Parameter importance and gradient of importance using average feature ranking method (timestep 7) in vicinity of wells for 

(a) grids’ pressure dataset including grids within 60 m of wells, (b) grids’ oil saturation dataset including grids within 60  m of wells, (c) 

grids’ pressure dataset including grids within 30 m of wells, and (d) grids’ oil saturation dataset including grids within 30 m of wells 
 

Based on Figures 24(b) and 24(d) (relating to oil saturation), it can be concluded that the more 

the dataset is limited to grids in the vicinity of wells (tighter radius around the wells), the greater 
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the influence of other parameters. Also, limiting the datasets to a shorter range of wells causes 

the important parameters to shift toward parameters relating to the production rates, grids’ 

location and distances to wells. 

In the feature selection step, different subsets of parameters were chosen with respect to the 

gradient of importance (for the datasets including grids within 30 m of the wells). Accordingly, 

wherever the gradient of importance was greater than ten, the number of features prior to that 

point was selected as a subset. For example, in Figure 24c, the gradient of importance in the 2nd, 

4th, 5th, 7th, 10th, and 22nd parameters were all greater than ten, and consequently we selected the 

subsets containing 1, 3, 4, 6, 9, and 21 parameters. Then, the model accuracy on each subset was 

checked to select the optimal subset. 

3.4.4. Model Training/Validating 

The goodness of fit for ANN for different subsets was obtained at the initial effort. Accordingly, 

80 percent of the dataset was randomly picked for the training set, and the rest 20 percent was 

picked for the test set. Furthermore, 10 percent of the training set was selected to do the 

validation and to ensure that the overfitting does not happen. The ANN models gave the best 

results with two hidden layers (each containing 200 neurons). The results of the ANN models at 

different subsets of parameters in timestep seven are presented in Table 7. Accordingly, the 

subsets containing the first nine parameters (for the pressure dataset) and 16 parameters (for the 

oil saturation dataset) were chosen for further analysis. 
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Table 7. ANN models at different subsets of parameters in timestep 7 

Pressure Oil saturation 

No. features in 

different subsets 

R2  

(test set) 

RMSE  

(test set) 

No. features in 

different subsets 

R2  

(test set) 

RMSE  

(test set) 

1 61.25 80.7623 1 55.39 0.0111 

3 78.79 45.8134 2 66.71 0.0084 

4 83.29 35.0527 5 75.22 0.0063 

6 88.42 25.4004 8 82.62 0.0045 

9 91.50 18.9462 16 87.39 0.0033 

21 92.13 17.0063 24 88.28 0.003 

31 (all) 92.02 17.5116 31 (all) 89.06 0.0028 

In the next effort, we used CNN as a deep learning technique to build more accurate underlying 

models for the selected subsets. Initially, we focused on optimizing the adjustable hyper-

parameters of the CNN model for the selected datasets. Table 8 demonstrates the selected 

adjusting hyper-parameters with their ranges to be optimized. D-optimality design of the 

experiment was applied to the grid-based datasets. By analyzing the results of the D-optimality 

test, the optimum value for the CNN adjusting parameters was achieved, as shown in Table 9. 

These values for the CNN parameters were then applied to each dataset and different timesteps. 

Table 10 presents examples of the trained CNN models corresponding to the datasets resulting 

from 10 sample points. 

Table 8. Adjusting parameters for CNN model and their ranges 

Parameter Range  

Filter size 1 10 - 90 

Filter size 2 10 - 90 

Filter size 3 10 - 90 

Kernel size 2 - 3 

Neuron size 1 10 - 90 

Neuron size 2 10 - 90 

Table 9. Optimum values for parameters resulting from D-optimality test 

Parameter Value  

Filter size 1 90 

Filter size 2 85 

Filter size 3 78 

Kernel size 3 

Neuron size 1 60 

Neuron size 2 90 
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Table 10. R2 and RMSE of CNN models for datasets corresponding to 10 sample points at different timesteps 

Date Timestep 
Pressure Oil saturation 

R2 (test set) RMSE (test set) R2 (test set) RMSE (test set) 

JUL 2017 1 98.88 1.9137 94.91 0.00145 

JUL 2020 7 98.72 2.1528 94.77 0.00149 

JUL 2023 13 98.76 2.0803 94.36 0.00160 

JUL 2026 19 98.61 2.3584 94.30 0.00161 

Comparing the results obtained from CNN and ANN models, we see that the CNN models 

worked better than the ANN models. To check if the trained models work well on unseen data, a 

random blind test based on the designed parameters of the SPM was introduced (Table 11), and 

the accuracy of the CNN models was checked. Table 12 presents the results of the CNN model 

for both grids’ oil saturation and pressure in the datasets resulted from ten sample points for this 

blind test. 

Table 11. Blind test for waterflooding scenario 

 LPR well #1 LPR well #2 LPR well #3 LPR well #4 LPR well #5 
Blind Test 4,399 2,605 308 4,149 4,782 

Table 12. R2 and RMSE of CNN models for blind test, and for datasets corresponding to 10 sample points 

Date Timestep 
Pressure Oil saturation 

R2 RMSE R2 RMSE 

JUL 2017 1 81.63 38.4685 79.43 0.00525 

JUL 2020 7 81.69 38.3693 79.39 0.00526 

JUL 2023 13 81.57 38.6394 79.22 0.00529 

JUL 2026 19 81.41 38.9835 79.36 0.00526 

The results show that, unlike the good accuracy of the trained models around 94- 99%, the CNN 

models did not give promising results for the blind test. Hence, as discussed in Section 3.4.1, five 

more sample points were added to the ten initial sample points using sequential sampling to 

cover more domain space for the design parameters. The CNN model was constructed again for 

the new datasets at different timesteps. Table 13 presents the accuracy of the constructed CNN 

models in some of the timesteps as examples. This time the results obtained from the blind test 

showed an improved accuracy of around 92-96%, as shown in Table 14. Consequently, these 

SPMs can reliably be applied for screening purposes. 
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Table 13. R2 and RMSE of CNN models for datasets corresponding 15 sample points at different timesteps 

Date Timestep 
Pressure Oil saturation 

R2 (test set) RMSE (test set) R2 (test set) RMSE (test set) 

JUL 2017 1 98.89 2.3682 94.17 0.00167 

JUL 2020 7 98.83 2.4826 93.93 0.00173 

JUL 2023 13 98.61 3.0374 93.86 0.00175 

JUL 2026 19 98.55 3.2262 93.91 0.00174 

Table 14. R2 and RMSE of CNN models for blind test, and for datasets corresponding to 15 sample points 

Date Timestep 
Pressure Oil saturation 

R2 RMSE R2 RMSE 

JUL 2017 1 96.18 7.6266 92.63 0.00203 

JUL 2020 7 96.16 7.7230 92.59 0.00205 

JUL 2023 13 95.87 8.7157 92.38 0.00211 

JUL 2026 19 95.77 9.1406 92.41 0.00210 

In the last effort, to prove that the SPM outperforms the TPM, we excluded all the extracted 

parameters from the datasets. This dataset only included the design parameters (LPRs for 

individual wells) and the output. However, such a dataset cannot be used to predict the grids’ oil 

saturation and pressure, and the training models overfit. 

3.4.5. Screening 

The target parameters for screening in this study were the oil saturation and pressure of the grid 

blocks. The results obtained from the blind test at layer one and different timesteps are presented 

in Figures 25 (grid oil saturation) and 26 (grid pressure). In these figures, the predicted values 

from the SPM, the predicted values from the simulator (i.e., actual values), and the error between 

them are demonstrated. More figures related to other layers of the Volve model can be found in 

Appendix A. From the oil saturation figures, the effect of water injection and oil production can 

be seen. The figures can be used for further decision-making in the field. The same figures for 

different layers, timesteps, and blind production rates of the wells can be generated by running 

the SPM, and it only takes a few seconds to screen the result while using a simulator might take 

hours for a single run. To be more specific, each simulator run for the Volve case took around 

five hours on a machine with 16 GB RAM, and 3.20 GHz processor. This run time was only four 
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seconds for each SPM deployment on the same machine. This difference between using the 

numerical model and the SPM will be even more significant if we desire to have more runs. For 

example, 100 runs for the simulator will take three weeks, but this number would be around 

seven minutes for SPM, which is very considerable. It should be mentioned that Volve model is 

a small case that only includes five production wells. The difference can be substantially larger 

for a bigger reservoir model with more complexities. In the work presented by Gholami et al. [8], 

they compared SPM and black oil simulation time for the SACROC field. They concluded that 

the simulator would take seven months and six years to perform 100 and 1000 runs, respectively.  

It is worth mentioning that the process of constructing the SPM, including the research, 

numerical model tunning, coding the full workflow, getting results, and validating the whole 

procedure, might be tedious and time-consuming for the first time. It took us around two years 

for the first case including learning what SPM models were and literature review. However, the 

second case only took two weeks as the process was well organized in Python code. Most of this 

time was also spent on running the numerical model at the sample points and training the 

underlying models. 

Finally, to quality check the CNN results, the percentage error histogram for both the oil 

saturation and pressure datasets in the blind test were achieved (Figure 27). The mean value is 

very close to zero, and the high frequency in ranges between -0.05% and 0.05% again shows the 

accurate results obtained from the CNN model and the consequent SPM. 
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Predicted, timestep 1 

 

Actual, timestep 1 

 

Error, timestep 1 

 
Predicted, timestep 10 

 

Actual, timestep 10 

 

Error, timestep 10 

 
Predicted, timestep 20 

 

Actual, timestep 20 

 

Error, timestep 20 

 
Figure 25. Grids oil saturation in layer 1 for the blind test (waterflooding case) 
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Predicted, timestep 1 

 

Actual, timestep 1 

 

Error, timestep 1 

 
Predicted, timestep 10 

 

Actual, timestep 10 

 

Error, timestep 10 

 
Predicted, timestep 20 

 

Actual, timestep 20 

 

Error, timestep 20 

 
Figure 26. Grids pressure in layer 1 for the blind test (waterflooding case) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 27. Percentage error histogram for the datasets corresponding to (a) oil saturation at timestep 1, (b) oil 

saturation at timestep 20, (c) pressure at timestep 1, and (d) pressure at timestep 20 

3.5. Conclusions 

The objective of this paper was to investigate accuracy and efficiency improvements to smart 

proxy modeling (SPM) introduced by Mohaghegh [7]. We used a grid-based the SPM workflow 

for a waterflooding using the Volve field as a case study. Based on our literature review, we 

specifically targeted our investigation into techniques in sampling (sequential sampling), feature 

ranking, and underlying model construction (CNN instead of ANN).  

Sampling consisted of choosing individual liquid production rates as our design parameters 

where a novel sequential sampling technique (LHS with a GA) was applied. Initially, ten sample 

points were introduced to run the numerical model, but five more sample points were later added 
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to achieve the highest accuracy in the lowest number of the runs. The sequential sampling used 

in this work helped to construct the final SPM more efficiently rather than resampling the whole 

procedure used in the literature. After running the simulator, different static and dynamic 

parameters were extracted for all individual grids. The extracted data for the grids was used to 

form a new dataset called a grid-based dataset. In this work, a new feature ranking method is 

proposed, which is an average of 23 models. The average feature ranking technique described in 

this work provides a more confident prioritization of input parameters compared to the case of 

considering only one model which eventually helped the overall efficiency in the feature 

selection step. Additionally, feature ranking results showed that some of the static and dynamic 

parameters extracted from the simulator are among the most influential parameters. Next, a one-

dimensional CNN model (as a novel deep learning technique) was used to predict the grids’ oil 

saturation and pressure. The goodness of fit for both ANN and CNN models were tested. The 

SPM with ANN underlying model provided an accuracy of 89-92% compared to the 99% and 

94% of the CNN technique for the pressure and oil saturation predictions, respectively. Also, the 

accuracy of the SPM used in this work was tested for different timesteps and showed an accuracy 

of 92-96% for the blind test.  

The constructed SPM in this work was capable of reproducing the results of the simulator at very 

high accuracy in a very short time. The SPM can be used for screening various EOR scenarios 

and any parameters at the grid level, such as gas saturation, component concentration, and many 

others. 
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Chapter 4. Field Production Optimization Using Smart Proxy Modeling; 

Implementation of Sequential Sampling, Average Feature Ranking, and 

Convolutional Neural Network 
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Modeling; Implementation of Sequential Sampling, Average Feature Ranking, and 

Convolutional Neural Network”,  Presented at 23 SPE Canadian Energy Technology Conference 

and Exhibition, Calgary, Canada, March 2023, SPE-212809-MS, 

https://doi.org/10.2118/212809-MS 

Abstract 

This work aims to create an approximation of the reservoir numerical model using smart proxy 

modeling (SPM) to be used for production optimization. The constructed SPM in this work is 

further improved in different steps to increase its accuracy and efficiency compared to the 

existing literature. These steps include sequential sampling, average feature ranking, 

convolutional neural network (CNN) deep learning modeling, and feature engineering. 
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SPM is a novel methodology that generates results faster than numerical models. SPM decouples 

the mathematical equations of the problem into a numeric dataset and trains a statistical/AI-

driven model on the dataset. Major SPM construction steps are: objective, input, and output 

selection, sampling, running numerical model, extracting new static and dynamic parameters, 

forming a new dataset, performing feature selection, training and validating the underlying 

model, and employing the SPM. Unlike traditional proxy modeling, SPM implements feature 

engineering techniques that generate new static/dynamic parameters. The extracted parameters 

help to capture hidden patterns within the dataset, eventually increasing SPMs’ accuracy. 

SPM can either be constructed to predict the grids’ characteristics, called grid-based SPM, or to 

predict the wells' fluid rates, called well-based SPM. In this work, the well-based SPM is 

constructed to duplicate the Volve offshore field production results undergoing waterflooding. 

We used Latin hypercube sampling coupled with genetic algorithm (GA) in the sampling step. 

The designed parameters to perform sampling are the individual liquid rate of the producers, and 

the output is the individual well’s cumulative oil production. In the formed dataset, various 

extracted parameters relating to the wells are prepared, such as well types, indexes, trajectories, 

and cumulative oil production. Furthermore, a grid-based SPM is constructed in parallel to the 

well-based SPM. At each timestep of the prediction, dynamic parameters relating to grids (in this 

case: grids’ pressure/saturations) are transferred to the existing well-based dataset. This 

technique helps the well-based SPM further increase in accuracy by finding new patterns within 

the dataset. We implement an average of 23 different models to rank, and perform the feature 

selection process. Finally, the CNN model is trained on the dataset, and is coupled with two 

derivative-free optimizers of GA and particle swarm optimizer to maximize the oil production 

over the selected time period. 
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Sequential sampling used in this work is a novel technique to construct the SPM with the lowest 

number of numerical model executions. It provides an efficient workflow to perform sampling, 

thereby saving time instead of repeating the whole SPM construction steps. The average feature 

ranking implemented in this paper provides the best prioritization of input parameters. It 

provides a confident ranking for the feature selection step. Finally, the underlying CNN model is 

compared to the prediction accuracy of the ANN model. 

Keywords:  Smart proxy model; Machine learning; Convolutional neural network; Sequential 

sampling; Average feature ranking 

4.1. Introduction 

During field development planning and production, the reservoir model is considered one of the 

main tools to predict fluid production. Reservoir models are categorized as either static or 

dynamic. A static reservoir model includes geological parameters related to the architecture of 

the reservoir, such as the lithologies, porous media characteristics, and barriers [224]. These 

parameters remain almost unchanged in the lifetime of the reservoir during production and are 

known as static parameters. A conventional static model usually consists of millions of grid 

blocks for geological characterization, which may increase to hundreds of millions in more 

complex reservoirs [225]. A dynamic reservoir model is about the movements of fluids within 

the porous media as a function of the pressure gradient [226]. Since the wells produce the fluids, 

the parameters related to fluid movement and pressure vary over time and are recognized as 

dynamic parameters. A numerical reservoir model incorporates static and dynamic parameters 

and implements partial differential equations to characterize the fluid pressure and saturations in 

grid blocks over time [227]. Engineers tend to reduce the size of grids as much as possible to 

achieve more accurate predictions and capture the complexities within the reservoir using 
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numerical models. Smaller grid size means having more grids and requiring higher computation 

power to solve all partial differential equations. In recent years, even with improvements in 

computation power such as parallel computing, users desire to have higher quality results with 

less simplifying assumptions and smaller grids. As a result, the need for computer resources 

increases exponentially, hence researchers try to implement alternative methods to speed up the 

process of prediction from the numerical models.  

While one single run for a numerical model may take hours to perform, optimizing field 

development plans that require hundreds of runs takes days or months to be completed. Proxy 

modeling (PM) is an alternative method to reproduce the results from numerical models, with 

run times in seconds rather than days or months. PMs are also referred to as surrogate models, 

meta models, and RSM in the literature. Since the output from a numerical model provides the 

data to train the PM, an accurate numerical model is the main requirement to construct a PM. 

PMs can be classified into traditional proxy models (TPM) and smart proxy models (SPM) based 

on development strategy [215]. TPM usually implements statistical/AI-driven models and 

sometimes can use simplified theories in physics or dimensional reduction approaches to relate 

the input parameters to the output parameter. The methodology of constructing a TPM includes 

running the numerical models, recording the outputs, and making a relationship between the 

inputs and outputs. TPMs usually require a higher number of numerical model runs and suffer in 

terms of prediction accuracy [9]. As with traditional models, SPM also creates a methodology to 

relate inputs to outputs. However, SPMs work based on pattern recognition and machine learning 

methods and have additional steps in the construction process compared to TPMs. The main 

additional steps in SPM construction are extracting new static/dynamic parameters and forming a 
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new dataset. The newly extracted parameters help to capture unseen patterns within the reservoir 

under investigation.  

In this work, an SPM is developed to mimic the individual well’s cumulative oil production 

during a waterflooding process. Even though waterflooding is one of the most widely used 

secondary recovery methods, finding an optimal selection of the design parameters is 

challenging. Selecting suitable values for the controlling parameters of the injectors or producers 

often happens through trial and error, or a design of experiments that involves running a large 

number of runs. An SPM can alleviate this drawback in waterflood production optimization by 

providing an alternative approach that, once built, is faster than the numerical models and is 

more accurate than the TPMs. 

This study aims to increase SPM accuracy and efficiency by implementing sequential sampling, 

feature ranking using the average of multiple algorithms, underlying model selection, and 

introduction of an applied tiering system for the grids. Latin hypercube sampling (LHS) coupled 

with a genetic algorithm (GA) is used for the initial sampling design at the lowest number of 

design points. Then, sequential sampling is used to add more design points to the existing design. 

Sequential sampling prohibits starting the whole sampling procedure and running the numerical 

model from the beginning. This saves a lot of time in the construction procedure of the SPM. In 

the feature ranking step, an average of different algorithms’ results is used to make the outcome 

of this step more reliable. 

Furthermore, the implemented tiering system helps to feature engineer and generate a new set of 

parameters. These new parameters make it possible to reveal new patterns within the formed 

dataset and eventually increase the accuracy of the SPM. The process of forming the tiering 
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system and extracting the parameters happens in a hybrid implementation of two different SPMs, 

which will be explained in detail in the dataset preparation section. SPM implements training an 

underlying machine learning method. In this work, two algorithms, artificial neural network 

(ANN) and one dimensional convolutional neural network (1D-CNN) are trained and compared 

in terms of goodness of fit and accuracy. The validated SPM is then coupled with two optimizers 

to find the maximum cumulative oil production for the field in an interval of ten years. 

4.2. Work Background 

As previously discussed, PMs can be classified as TPM and SPM based on the development 

strategy. TPMs have a more extended history of implementation in the literature and can be 

constructed through different approaches such as statistical/AI-driven models, simplifying 

physics, or dimensional reduction concepts. TPMs based on statistical/AI-driven models were 

used in various reservoir applications such as production optimization [2], history matching [4], 

uncertainty quantification [3], gas lift optimization [114], waterflooding optimization [185], well 

placement optimization [188], well control optimization [191], fractured reservoirs screening 

[180], chemical flooding [196], gas assisted gravity drainage [193], and water alternating gas 

(WAG) [195]. TPMs based on simplifying physics create an easier model through simplifying 

assumptions [32] or coarser discretization [31] compared to the high-fidelity model, and it is 

usually recognized as multi-fidelity proxy models in the literature. There are some applications 

of this category in petroleum engineering, such as history matching [133], [139], well placement 

optimization [135], production optimization [129], and production forecasting [147]. The last 

category for TPMs is based on the dimensional reduction of the problem in which irrelevant 

parameters are neglected. This type of TPM is also known as the reduced-order model. 

Applications of this category include water flooding optimization [152], history matching [154], 
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[157], fluid flow in porous media [164], and thermal recovery process [159]. The readers are 

encouraged to refer to the review by Bahrami et al. (2022) to gain more insight into TPM’s 

categories with more comprehensive applications in reservoir. 

There are two classes of SPM: grid-based and well-based. The constructed SPM is called grid-

based if it is used to predict the dynamic parameters of the grids, such as pressure and fluid 

saturations. It is called well-based if the outputs are related to the wells, such as fluid 

productions. There are limited applications of SPM in the literature. Grid-based SPM is applied 

to waterflood monitoring [10], [197], gas injection monitoring [11], WAG monitoring [8], and 

CO2 storage observation [228]. Examples of well-based SPM are in history matching [9], [12], 

and production optimization [8]. 

4.3. SPM Development Workflow 

The workflow for the SPM development is presented in Figure 28. The initial step in any proxy 

modeling development is objective determination. The objective might be production 

optimization, uncertainty analysis, history matching, etc. After setting the objective, different 

design parameters and their ranges are selected. The objective of our case study is production 

optimization over a fixed period of time in waterflooding. The design parameters are the 

individual liquid production rate (LPR) of the wells.  
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Figure 28. Workflow for the SPM methodology with all essential steps performed in this work 

The next main step is sampling. Sampling is the process of using the design of experiment 

methods to select a set of design or sample points over the domain space of the designing 

parameters. Then, the numerical model runs at each sample point to extract the desired data. 

Since the main reason to construct an SPM is to speed-up reduplicating the numerical model 

outputs, it is vital to construct the SPM with the least number of sample points, making sampling 

very challenging. If we waste so much time running the numerical model at a high number of 

sample points, the applicability of SPM diminishes. On the other hand, if the number of sample 

points is low, the constructed SPM may not capture the main patterns within the problem, and we 

lose the prediction accuracy. There is no scientific procedure to choose the optimum number of 
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sample points for a given problem. The sample size depends on the heterogeneity of the problem 

under investigation. 

To solve this challenge, we use sequential sampling. Based on a literature review, this sampling 

approach has not previously been used for SPM construction. Unlike stationary sampling 

techniques that have a fixed number of sample points, in sequential sampling, sample points can 

be added until the desired coverage of the domain is achieved and the performance is acceptable 

[72]. In this work, LHS is the main algorithm for the initial design. It is possible to start the LHS 

design with any number of sample points, and since the goal is to construct the SPM with the 

lowest number of sample points, this is a significant advantage. Other sampling techniques, such 

as factorial and optimal designs, have a fixed structure for design, and it is impossible to set an 

optional number of sample points in the domain space of the parameters. SPM uses pattern 

recognition techniques by extracting extra parameters from the numerical model runs, and it can 

provide more insight into the problem under investigation with fewer runs. That is why the LHS 

needs to be implemented in SPM construction to control the number of sample points. LHS is 

considered a stratified approach that divides each designing parameter into equal intervals 

depending on the sample point size. Then, it distributes the sample points in each interval of the 

parameters. However, the LHS can still not be considered a perfect algorithm, and there are 

chances that the algorithm distributes the sample points non-uniformly. So, it is important to 

optimize the distance between sample points.  

In this work, LHS is coupled with GA, which works based on the S-optimality criterion. S-

optimality looks for the maximum mean distances between sample points [229]. It is possible to 

add more sample points to the initial design in sequential sampling. This is also done by 
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implementing an optimized algorithm based on the S-optimality criterion, just like the initial 

design. 

After running the numerical model at the sample points, different static and dynamic parameters 

are extracted from each run and stored in a new dataset. This process is called feature 

engineering. The new dataset includes the initially selected designing parameters for the 

objective, the new extracted parameters, and the outputs. The initial designing parameters of this 

work are the individual LPR for the wells, and the output is the cumulative oil production. The 

extracted parameters include various parameters such as porosities, permeabilities, saturations, 

distances, indexes, etc. We introduced a tiering system to consider the impact of the surrounding 

grids of the wells, and the static and dynamic parameters related to the tiers were imported into 

the dataset. The rows in the well-based and grid-based datasets correspond to the individual well 

and grid in the numerical model, respectively. The number of columns equals the number of 

parameters that are considered for either the well-based or grid-based dataset. Such datasets for 

grid-based SPM, or well-based SPM (with a high number of wells) would be massive, and 

reducing the number of rows and parameters before training any underlying model is a must. The 

number of rows can be reduced by picking a random fraction of all rows, or it is possible to lump 

the grids before any numerical model executions. For example, in work done by Gholami et al. 

[8], the authors reduced the number of rows (from 396,000 to 55,000 rows) and the number of 

columns (1,000 features to 310) through grid lumping in the Z-direction and feature selection 

techniques. Feature selection may even lower the chance of overfitting during underlying model 

training. However, the result of feature selection highly depends on the feature ranking step that 

happens prior to that.  
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Many predictive models are available to rank the importance of input parameters on the output. 

These predictive models may result in entirely different ordering and magnitudes for the input 

parameters and, consequently, change the results of the feature selection step [220]. The fscaret 

package presented by Szlęk et al. [221] provides an ensemble of feature importance based on 

multiple predictive models. Using the ensemble of algorithms can lead to better-selected 

parameters and more consistent results [230]. The generated importances are then averaged for 

each parameter and scaled up to 100 to rank the parameters. Furthermore, fscaret provides a list 

of the gradient of parameters’ importance that can be used for the feature selection step. We can 

search for the optimal subset of parameters based on the gradient of importance. This procedure 

is similar to the wrapper feature selection techniques that look into different subsets of the 

parameters. 

The underlying model construction involves three main steps of training, testing, and blind test 

verification. Initially, the dataset splits into training and test sets. Two different models of ANN 

and 1D-CNN are applied to the training set. Then, the test set that is not used in the training 

process is applied to the models to check the goodness of fit and prediction accuracy. The 

goodness of fit is determined in two terms root mean squared error (RMSE) and coefficient of 

determination (R2), and the prediction accuracy is obtained by calculating the mean absolute 

percentage error (MAPE) using Equation 14. 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑦𝑎𝑐𝑡,𝑖 − 𝑦𝑝𝑟𝑑,𝑖

𝑦𝑎𝑐𝑡,𝑖
|

𝑛

𝑖=1

 (14) 

where 𝑦𝑎𝑐𝑡  is the actual value, 𝑦𝑝𝑟𝑑 is the predicted value, 𝑖 is the data record number, and 𝑛 is 

the total number of records. The ANN model used in this work consists of an input layer, two 

hidden layers, and an output layer in which the number of hidden layers is chosen by trial and 
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error to give the best prediction accuracy. A 1D-CNN model, which is a type of deep learning 

technique, has additional layers compared to ANN. These layers are convolutional and pooling 

layers. The convolutional layer reduces the size of the initial dataset. In this layer, a 

mathematical calculation (dot product) is applied between the input dataset and a sliding filter. 

The kernel size for this moving filter is M×N, where M is equal to the height of the dataset, and 

N is the width of the filter. The convolutional layer can have multiple sub-layers with a different 

number of filters at each sub-layer. The number of sub-layers and filters can be optimized 

through trial and error, and it depends on the amount of data and the complexity. The pooling 

layer decreases the dimensionality and can find the influential parameters. This layer is not 

implemented in this work as feature selection is already applied to the dataset. The outputs of the 

pooling layer are flattened and fed into a fully connected layer similar to the ANN model. 

Once the underlying model is trained and validated, the SPM can be applied for other tasks such 

as forecasting or optimization. It is used SPM to optimize the field's cumulative oil production 

over ten years of production. Optimizers used in this work are particle swarm optimization 

(PSO) and GA.  

PSO is a stochastic optimization algorithm that was first introduced by Kennedy and Eberhart 

[117] in 1995. PSO is inspired by the social cooperation of animals, such as birds when looking 

for food. The algorithm determines the velocity and position information of the individual 

models, which is known as a particle. The group of models forms a swarm, which is a group of 

solutions. The main objective of the PSO algorithm is to find the global optimum in the domain 

space of the parameters. Hence, an individual particle updates at each step based on the 

individual and global best solutions at the previous step.  
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In PSO, the position of each particle in the search space updates in iterations as follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜈𝑖
𝑡+1 (15) 

𝜈𝑖
𝑡+1 = 𝜔𝜈𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑖,𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (16) 

where 𝑥𝑖
𝑡 is the position vector of particle 𝑖 at iteration 𝑡, and 𝜈𝑖

𝑡+1 is the velocity vector of 

particle 𝑖 at the next iteration,  𝑃𝑖,𝑏𝑒𝑠𝑡 is the individual best position of particle 𝑖 from 

initialization through time 𝑡, 𝐺𝑏𝑒𝑠𝑡 is the swarm's best position from initialization through time 𝑡, 

𝜔 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration coeffiecients, and 𝑟1 and 𝑟2 are the random 

values between zero and one. Variables 𝑐1, 𝑐2, 𝑟1, and 𝑟2 are usually constant values that are 

obtained empirically. Term 𝑐1𝑟1(𝑃𝑖,𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) is recognized as the cognitive learning component. 

This term checks the personal history of the particle's position and analyzes the particle’s 

performance through time. Basically, this term helps each particle to move toward its best 

personal position. Term 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) is known as the social learning component, which 

looks into the performance of the particles compared to a group of neighbor particles. The term 

inertia weight in equation 16 can be considered either fixed or a varying value through iterations. 

Inertia helps to keep the influence of the previous velocity in the ongoing iteration. The process 

of calculations for particle positions continues until the particles find the global optimum. 

GA is also a stochastic algorithm for optimization introduced by Holland [115] in 1992. GA uses 

the principles of genetic and natural selection inspired by Darwin’s theory. The algorithm 

initiates with a population of solutions or chromosomes. Each solution is a set of optimizing 

parameters and is often expressed as a string of binaries. At each iteration (generation), the 

fitness values for the solutions are calculated, and the best solutions pass to the next iteration. 

The algorithm undergoes three main processes of selection, mutation, and crossover at each 

iteration, and it moves from one generation (parents) to the next (children). Selection is the 



103 

 

process of choosing the solutions for breeding in the next generation. Mutation helps to maintain 

the diversity of solutions from one step to another. On the other hand, crossover recombines the 

solutions in the previous step to inherit the crucial information for the next step. 

PSO and GA are recognized as strong algorithms for finding the global optimum. GA can be 

applied to continuous and discrete optimization problems, but it is an expensive and time-

consuming method if the number of parameters increases. On the contrary, PSO is 

computationally cheap but is less applicable when the number of parameters increases [116]. 

4.4. Case Study 

A reservoir model of the Volve field is used as the base numerical model to construct the SPM. It 

is an offshore sandstone reservoir located west of Stavanger, Norway. Figure 29 shows the Volve 

field reservoir model, and Table 15 presents the key characteristics of the field.  

 
Figure 29. Volve reservoir model showing the water saturation 
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Table 15. Key characteristics of the Volve model 

Parameter Value Unit 

Size 2×3 Km2 

Number of cells 108×100×63= 680,400 - 

Total proven oil 27.5 million Sm3 

Net-to-gross 93% - 

Average porosity 21% - 

Average permeability 1 Darcy 

Average water saturation in the oil zone 20% - 

Gas-oil ratio 111-157 Sm3/Sm3 

Formation volume factor 1.33-1.45 m3/Sm3 

Maximum water injection rate 16,000 Sm3/d 

Maximum oil production rate 9,000 Sm3/d 

Maximum water production rate 10,400 Sm3/d 

Maximum liquid production rate 13,000 Sm3/d 

The reservoir includes five producers and three injectors, and it was produced between 2008 and 

2016. The model is history matched in this eight-years interval. Figure 30 demonstrates the 

history matched watercut and oil production rate of the model in this period of time as examples. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 30. History match for (a) field watercut, (b) oil production rate, (c) well 3 watercut, and (d) well 3 oil 

production rate 
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In this work, oil production is extended for ten more years (i.e., to Jan 2027) under a 

waterflooding scenario. Results for different parameters related to the grids and wells are 

extracted every six months to form the datasets for the grid-based and well-based SPM. The 

main goal of this work is to construct a well-based SPM and optimize production; however, we 

have implemented a hybrid SPM that requires the grid-based SPMs to work in parallel. The grid-

based SPMs help to extract some dynamic parameters related to the grids and transfer them to 

the well-based SPM. 

4.5. Results and Discussion 

4.5.1. Sequential LHS Design 

The reservoir includes five production wells, and LPR of each well is recognized as a designing 

parameter for production optimization. The LPR of the individual producers varies between zero 

and 5,000 Sm3/d. As discussed in the SPM workflow section, the LHS design with GA was 

chosen to perform the sequential sampling. We began the initial design with ten sample points 

based on our experience. However, the underlying models (ANN and 1D-CNN) generated by 

only ten sample points failed to provide accurate results in the verification step with blind tests 

(further discussed in model training). As a result, we added five more points to the initial sample 

points based on the optimized algorithm to increase the accuracy. Table 16 presents a summary 

of these sample points. 
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Table 16. Initial and augmented sample points for sampling in Volve case study 

 Sample 

point 

LPR 

(Sm3/d) 

well#1 

LPR 

(Sm3/d) 

well#2 

LPR 

(Sm3/d) 

well#3 

LPR 

(Sm3/d) 

well#4 

LPR 

(Sm3/d) 

well#5 

LPR 

(Sm3/d) 

Total 

Initial 

sample points 

1 68 1,521 2,632 3,665 4,027 11,912 

2 2,142 4,936 1,268 4,450 1,942 14,739 

3 1,956 2,416 4,764 3,134 323 12,594 

4 4,964 3,812 4,282 2,601 3,153 18,812 

5 3,336 3,098 882 1,688 4,887 13,892 

6 1,434 848 321 2,305 1,386 6,293 

7 4,118 1,084 2,001 4,915 2,003 14,121 

8 2,812 134 3,894 1,308 3,966 12,115 

9 866 4,257 3,473 921 2,850 12,366 

10 3,781 2,911 1,502 240 777 9,210 

Additional 

sample points 

11 364 423 4,484 596 412 6,279 

12 4,470 4,558 605 4,032 4,589 18,255 

13 1,218 3,407 3,205 3,697 1,114 12,642 

14 3,278 1,970 1,981 1,536 3,467 12,231 

15 2,653 2,091 2,815 2,972 2,458 12,989 

Figure 31 shows the field cumulative oil production at Run 1,4, 6,7, and 10 between 2017 and 

2027. This figure clearly justifies the selection of liquid production rates to have a good case for 

production optimization. For example, run 4 has the highest total liquid production rates 

(obtained from Table 16) among all sample points, but it did not have the highest cumulative oil 

production at any time in these ten years. Similarly, run 6 used the sample points with the lowest 

produced liquid; however, it produced more cumulative oil than run 1, which had twice the 

liquid production. Furthermore, by observing the curve for run 10, we cannot conclude that if the 

field is producing low in the initial years, it will continue with that trend to the final years. Run 

10 initially had the lowest cumulative oil production, but it was the highest-producing scenario in 

the final year.  
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Figure 31. Field cumulative oil production at five sample points 

4.5.2. Dataset Preparation 

To construct the well-based SPM, various static and dynamic parameters corresponding to the 

wells were extracted. This dataset consists of the initial design parameters and the obtained 

parameters from the numerical model’s run. Table 17 lists the parameters that were used for the 

well-based dataset. It should be noted that the LHS design parameters refer to the LPRs, and they 

are the rates at which the producers start to produce liquid. 

A tiering system was introduced to increase the model's accuracy and find new patterns in the 

well-based dataset. Each tier contains a layer of grids around the wells, as demonstrated in 

Figures 32 and 33. For example, tier one only consists of the grids that the wellbore passes 

through, and tier two consists of the grids in the wellbore plus the next layer of grids, and so on. 

Consequently, various static and dynamic parameters were averaged for each tier and added to 

the dataset. 



108 

 

Table 17. Static and dynamic parameters extracted for the well-based dataset 

Parameter Details 

Static  

LHS design parameters LPRs for producers 

Distances to 1st, 2nd, and 3rd producers At four different vertical depths 

Distances to 1st, 2nd, and 3rd injectors At four different vertical depths 

Well index  

Well type Injector, producer 

Porosity Tier 1 to tier 5 

Permeability Tier 1 to tier 5 

Transmissibility Tier 1 to tier 5 

Dynamic 
 

Oil saturation Tier 1 to tier 5 

Pressure Tier 1 to tier 5 

Cumulative oil production Individual wells 

 

Figure 32. Tiering system for the wells 

(a) (b) (c) 

   
Figure 33. Tiering system for (a) Well#3, (b) tier 1, and (c) tier 2 
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The averaged dynamic parameters (oil saturation and pressure) for the grids in each tier were 

obtained using a hybrid implementation of grid-based SPM with well-based SPM. Further details 

on the construction of the grid-based SPM can be found in the paper presented by Bahrami and 

James [231]. Figure 34 demonstrates the workflow for the hybrid implementation of well-based 

and grid-based SPMs.  

The configuration of the well-based dataset is shown in Figure 35. The number of rows equals 

20×15n, where n is the number of producers. Also, the number of columns is 62, of which 61 are 

the inputs, and one corresponds to the outputs listed in Table 17. 

 

Figure 34. Workflow for parameter exchange between well-based and grid-based SPMs 
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Figure 35. Well-based dataset configuration 

4.5.3. Feature Ranking and Feature Selection 

To find a generalized ranking of the all the parameters, the fscaret package was used. We used 

23 different predictive models, listed in Table 3, to determine the importance of each input 

parameter. The individual predictive model’s importance was then averaged and scaled to 100 to 

rank the parameters. Figure 36 demonstrates the ten parameters with the highest average 

importance when the output is the cumulative oil production.  
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Figure 36. Parameters’ importance and gradient of importance on cumulative oil production 

The variable shown in this figure may not necessarily have a relationship with the physics of the 

problem. For example, it is assumed that the designing parameters (LPRs) are the most 

influential parameters, but in the formed dataset, LPR well#1 is placed in the fifth rank, and 

other LPRs are in lower ranks. If LHS generates other sample points, the parameters’ 

importances may differ from the current ranking order. Nonetheless, this figure presents the 

important parameters for building an underlying model in the next step. The fscaret package is a 

filter feature selection method, and it helps find the best subsets of parameters to train the 

underlying model. These subsets can be determined by having the gradient of importance shown 

in Figure 36. Based on this figure, wherever we have a big gradient of importance, the 

parameters prior to that point can be selected as a subset. Accordingly, four reduced input 

vectors containing 7, 9, 15, and 19 parameters were selected to train the underlying models with 
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ANN and 1D-CNN. Finally, the models’ goodness of fit and accuracy on each subset were 

checked to select the optimal subset. 

4.5.4. Model Training and Validation 

We trained and tested the ANN models at different subsets of 7, 9, 15, and 19 parameters 

obtained in the feature selection step. Table 18 displays the goodness of fit and accuracy for 

these subsets. The vector of input parameters holding 15 parameters was selected as the best 

subset for further improvements. This subset was selected because it was determined that 

keeping more parameters in the dataset did not add much value to the model, and the same 

goodness of fit and accuracy could be achieved with a lower number of parameters. The subset 

with 15 parameters contained all the design parameters, indexing parameters, and eight other 

generated parameters.  

Table 18. ANN models’ goodness of fit and accuracy at different subsets 

Test Selected subset 
Test set 

R2 (%) RMSE (Sm3) MAPE (%) 

1 LHS design parameters + index parameters 92.65 456E+3 3.18 

2 First 7 parameters from feature selection 97.16 228E+3 1.94 

3 First 9 parameters from feature selection 99.21 94E+3 0.68 

4 First 15 parameters from feature selection 99.63 54E+3 0.31 

5 First 19 parameters from feature selection 99.68 50E+3 0.28 

6 All parameters 99.59 60E+3 0.32 

The 1D-CNN model was also trained on the same dataset, including 15 parameters, to compare it 

to the ANN model. The best results obtained in a 1D-CNN model consist of two convolutional 

layers (each containing 50 filters and kernel size equal to four) and two fully connected layers 

(each containing 60 neurons). The goodness of fit for the 1D-CNN model was similar to the 

ANN model (R2 = 99.61, and RMSE=36E+3), but the 1D-CNN accuracy (MAPE = 0.23%) was 

slightly improved compared to the ANN model. 
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We also performed an analysis to check how a traditional proxy model would behave if 

constructing an SPM was not an option. Accordingly, an ANN was trained on a dataset 

consisting of only the design input parameters (i.e., LPRs for individual wells), the indexing 

parameters, and the output (test 1 in Table 18). We conducted a grid search to find out the best 

ANN hyperparameters using 10-fold cross-validation. The ANN with two hidden layers, each 

containing 100 neurons, Rectified Linear Unit (ReLU) activation function, and batch size equal 

to two, produced the best goodness of fit. The R2 and RMSE for the test set were 0.9265 and 

456E+3, respectively. Consequently, it can be concluded that constructing the SPM could raise 

the accuracy by 3% compared to the TPM trained in this case study. The difference between 

SPM and TPM performance can be very significant in grid-based cases. In another study carried 

out over grid-based SPM on the Volve model [231], the goodness of fit was approximately 94-

98%. However, the TPM was overfitted on the same dataset. 

In a final effort to validate the model on unseen data, random LPRs were introduced (Table 19). 

Then, to generate the input vector to be fed into the 1D-CNN model, the grid-based SPM was 

run in parallel to extract the parameters relating to the well tiers. Finally, the 1D-CNN models' 

goodness of fit and accuracy were obtained. The results show that for three blind tests, R2 was 

above 99%, and MAPE was below 1%. Figure 37 demonstrates the performance of the model on 

blind test 3 as an example. 

Table 19. Blind tests and the goodness of fit for the 1D-CNN model 

 
LPR 

(Sm3/d) 

well #1 

LPR 

(Sm3/d) 

well #2 

LPR 

(Sm3/d) 

well #3 

LPR 

(Sm3/d) 

well #4 

LPR 

(Sm3/d) 

well #5 

R2 

(%) 

RMSE 

(Sm3) 

MAPE 

(%) 

Blind Test 1 4,399 2,605 308 4,149 4,782 99.38 72E+3 0.52 

Blind Test 2 1,873 3,389 3,614 4,532 1,528 99.28 81E+3 0.60 

Blind Test 3 1,937 273 3,720 2,257 4,777 99.31 80E+3 0.59 
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Figure 37. Cumulative oil production for the Volve model at blind test 3 

It is worth mentioning that we did all the procedures to construct the SPM with ten sample points 

before applying 15 sample points. However, at the validation step using the blind test, the R2, 

RMSE, and MAPE were obtained at 93.20, 411E+3, and 3.04, respectively. As a result, five 

more sample points were added to the initial design to increase the prediction ability of the SPM. 

4.5.5. Optimization 

The presence of an objective function is necessary for every optimization problem. This work 

uses the SPM as our fitness function to evaluate the individual well’s cumulative oil production 

at the end of the production period. Moreover, the objective function is the summation of the 

cumulative oil production of all wells.  
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The constrained maximization optimization problem of this work is as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     ∑ 𝐶𝑂𝑃𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑ 𝐿𝑃𝑅𝑖 < 13,000

𝑛

𝑖=1

 

(17) 

where n is the number of wells, COP is the cumulative oil production, LPR is the liquid 

production rate (optimized parameters), and 13,000 is the maximum LPR allowed to be produced 

for the field. In every iteration of PSO and GA, the SPM works as the fitness function and 

predicts the cumulative oil production. One of the drawbacks of using the LHS design of 

experiment is that it misses having sample points at the parameters’ minimum and maximum 

values. This makes the SPM extrapolate at the minimum and maximum points. The range for the 

designed parameters (LPRs) was set between 0 and 5,000 Sm3/d. To avoid the SPM from 

extrapolation, the range for optimized parameters in the optimization process was 100 Sm3/d 

shortened. Consequently, the lower and upper bounds for the optimized parameters were selected 

as 100 and 4,900 Sm3/d, respectively. 

There are some parameters that need to be set in PSO. One is the number of particles in the 

swarm. The initialization of the swarm is very important to cover the search space and find the 

optimum more efficiently. If a low-intensity swarm is selected, the algorithm may be trapped in 

the local optimum. We selected 200 particles to be distributed randomly in the parameters' 

domain space. However, this problem is a constrained optimization, and it is important always to 

meet the constrained condition. This means the condition should be met for the initial 

distribution of the particles and updates to the particles' velocity and position. The initial 

distribution can be controlled simply by dropping the particles that violate the condition. Hence, 

we started with 1,000 random particles. Then, 200 particles were kept from the ones that met the 
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condition. A penalty term was also added to the objective function to control the updated 

particles. The penalty term prevents the particles from violating the introduced condition of the 

problem. This penalty term was selected as a big negative value to help the algorithm avoid the 

violated domain in the subsequent iterations. Another parameter in the PSO algorithm is the 

stopping criteria. We used 40 iterations as the stopping criteria. At each iteration, each particle 

that is a vector of the optimizing parameters was fed into the SPM, and the cumulative oil 

production was evaluated. So, the total number of fitness function evaluations was 200 for one 

iteration and 8,000 for all iterations. In this study, values of inertia, and acceleration coefficients 

𝑐1 and 𝑐2 were kept constant at 0.7, 0.7, and 1.4, respectively.  

PSO is a stochastic algorithm, and one realization or run may not provide a confident final result. 

In this work, five realizations based on random particles’ positions were introduced. Table 20 

presents the best particle values and the global optimum at different PSO realizations. Figure 38 

displays the cumulative oil production versus iterations at PSO realizations in the last timestep. 

Table 20. Summary of random PSO realizations in waterflooding optimization 

Realization 
LPR 

(Sm3/d) 

well #1 

LPR 

(Sm3/d) 

well #2 

LPR 

(Sm3/d) 

well #3 

LPR 

(Sm3/d) 

well #4 

LPR 

(Sm3/d) 

well #5 

LPR 

(Sm3/d) 

Total 

Global best value 

(cumulative oil production) 

1 2,542 100 3,986 100 4,900 11,628 1.232E+7 

2-5 2,491 1,223 3,873 100 4,900 12,587 1.238E+7 
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Figure 38. Cumulative oil production vs. iteration at different PSO realizations in waterflooding optimization 

For the GA optimization, the same objective function and constraint were used. The optimization 

started with a population size of 200 solutions, and the stopping criteria was set at 40 iterations. 

The mutation rate and crossover rate of 0.02 and 0.8 were used to generate the new offsprings. 

The total fitness function evaluations in GA optimization were, similar to the PSO. We repeated 

the GA process five times to check how the stochastic nature of this algorithm would change the 

results. Table 21 shows the best particle values, and the global optimum at different GA 

realizations. Figure 39 illustrates the cumulative oil production versus iterations at GA 

realizations in the last timestep. 

Table 21. Summary of random GA realizations in waterflooding optimization 

Realization 
LPR 

(Sm3/d) 

well #1 

LPR 

(Sm3/d) 

well #2 

LPR 

(Sm3/d) 

well #3 

LPR 

(Sm3/d) 

well #4 

LPR 

(Sm3/d) 

well #5 

LPR 

(Sm3/d) 

Total 

Global best value 

(cumulative oil production) 

(Sm3) 

1,4 2,491 1,223 3,873 100 4,900 12,587 1.238E+7 

2 1,690 1374 4,002 100 4,900 12,066 1.234E+7 

3, 5 2,542 100 3,986 100 4,900 11,628 1.235E+7 
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Figure 39. Cumulative oil production vs. iteration at different GA realizations in waterflooding optimization 

Based on the results, both PSO and GA found the global optimum at input vector of (2491, 1223, 

3873, 100, 4900). GA was able to find the global optimum two times out of five realizations. In 

GA, the convergence to the final result happened in fewer than 30 iterations. On the other hand, 

PSO converged the results to optimum in fewer than 20 iterations. Furthermore, in five 

realizations of PSO, only one failed and was trapped in the local optimum. Consequently, it can 

be concluded that with five optimizing parameters, PSO was more confident in finding the global 

optimum, and it converged to a solution in fewer iterations than GA. Also, the calculation time 

for the PSO was slightly faster than for GA. 

The time spent to do the optimization with PSO and GA was approximately 11 to 11.5 hours for 

one realization on a machine with 16 GB RAM, and 3.20 GHz processor. The SPM was applied 

8,000 times in this time frame, meaning each SPM deployment took only five seconds. One 

numerical run on the same machine took approximately five hours. So, it would take years to 

finish the task if one wanted to apply a similar optimization algorithm on the numerical model. It 



119 

 

should be noted that the Volve model is a small case with limited wells. The difference can be 

enormous in a bigger reservoir or numerical compositional model. Implementing SPM can save a 

huge amount of time, justifying the effort to construct the SPM. 

It should be noted that the SPM used in the optimization process can handle cases in that 

producers have varying production rates in the determined period of time. We started the 

simulation runs based on the given LPRs (from LHS design of experiment); however, it does not 

mean that the producers continue to produce fluid at the introduced LPR values. The individual 

wells and field may decline in liquid production for many reasons, such as constraints applied to 

the injectors or producers. The newly generated dataset in this work includes the production data 

for cases where producers continue to produce liquid at fixed or varying values. Consequently, 

the constructed SPM can capture both cases, and optimizers are viable even when the production 

rates decline. 

4.6. Conclusions 

In this work, we developed an SPM for use as an approximation of the Volve reservoir model. 

This method was first introduced by Mohaghegh [7]. SPM can quickly reproduce the results 

from the reservoir numerical model without losing much underlying reservoir information. SPM 

works based on machine learning and pattern recognition techniques that can uncover unseen 

patterns within the numerical model. 

The objective of this paper was to develop a well-based SPM to mimic the well/field cumulative 

oil production and to optimize the field production. The implemented SPM was further modified 

in sampling, feature engineering, and feature ranking steps. Furthermore, the applicability of the 

1D-CNN model as the underlying model was tested in the SPM construction workflow.  
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In the sampling step, we used the sequential sampling approach. LHS sampling was the main 

algorithm in this step that was coupled with GA to find the optimum sample points. Later, we 

added five more sample points to the initial points to prohibit resampling from the beginning. As 

one of the main goals of constructing the SPM is to speed up the process of getting results from 

the numerical model, sequential sampling helped to save a lot of time. After running the 

numerical model at sample points, we feature-engineered and extracted various static and 

dynamic parameters directly from the wells or the introduced tiering system. The tiering system 

was the wells' surrounding grids that helped obtain new averaged parameters such as oil 

saturation, pressure, porosity, etc. 

Furthermore, we used an average feature ranking technique using the fscaret package to find the 

best subsets of parameters for the feature selection step to reduce the well-based dataset's size. 

Only 15 out of the total 61 input parameters were chosen based on the feature selection process. 

The average feature ranking provided a more confident ranking for the parameters. In the 

underlying model step, we trained both ANN and 1D-CNN techniques on the selected 15 

parameters. The goodness of fit for the 1D-CNN model was similar to the ANN model, but its 

accuracy (presented in MAPE) was slightly better than ANN. 

Finally, we implemented the PSO and GA optimization algorithms to find the best selection of 

designing parameters (individual well’s LPR) and to maximize the cumulative oil production 

over ten years. Both optimizers were quite successful in finding the global optimum. 

Nevertheless, PSO showed a more reliable and faster convergence to the solution. 
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Chapter 5. Screening and Production Optimization in A Water-Alternating-

Gas (WAG) Process 

5.1. Introduction 

Water-alternating-gas (WAG) is a tertiary oil recovery technique that requires injecting water 

and gas into the reservoir. WAG is generally performed when the primary and secondary 

recovery techniques do not enhance the oil production. The main objective of WAG is to 

increase the reservoir pressure and sweep more oil toward the producers. This happens by 

injecting a slug of gas for a period of time, followed by a slug of wag. In WAG, the sweep 

efficiency usually increases by two mechanisms of microscopic and macroscopic displacement 

[232]. Microscopic displacement efficiency refers to dissolving the gas slug into the oil at the 

microscopic scale, which helps mobilize the remaining oil. On the other hand, macroscopic 

displacement efficiency that is controlled by water injection pushes the miscible slug forward to 

the producers. Two common classes of WAG are miscible and immiscible injection processes. In 

miscible WAG, the reservoir pressure is kept above the minimum miscibility pressure of the 

fluids, and all proportions of gas can be mixed in the oil and swell the remained oil. Miscible 

WAG can usually result in a higher recovery than an immiscible WAG. The main objective of an 

immiscible WAG is to stabilize the front and improve contact with the unswept areas. Many 

factors can affect the WAG process, such as reservoir heterogeneity and characteristics, rock and 

fluids characteristics, injected gas composition, injection pattern, WAG ratio, and injection rates 

[233], [234].  

The objective of this chapter is to develop grid-based and well-based SPMs for the immiscible 

WAG process with the same methodology introduced in chapters 3 and 4. The grid-based and 

well-based SPMs can then be applied to screen and optimize the oil production for the WAG 
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process, respectively. Among the effective parameters in WAG optimization, the parameters 

related to reservoir heterogeneity, rock and fluids characteristics, injected gas composition, and 

well patterns are fixed. Nevertheless, other operational parameters such as gas/water cycles, 

gas/water injection rates, distribution of injecting fluids between the injectors, and BHP of 

producers are considered as influencing parameters for WAG design. The WAG cycle can vary 

in value from days to months, and it depends on reservoir heterogeneity, well patterns, and 

injection and production volumes [235]. The volumes of the injected fluid and recovered oil also 

depend on the fluids' injection rate at their cycle length and the BHP of the producers. Designing 

a WAG process and optimizing oil production can sometimes be very challenging when 

incorporating all the controlling parameters. This chapter aims to construct and implement the 

grid-based and well-based SPMs to ease the process of WAG screening and optimization. 

5.2. Case Study 

Norne is a sandstone reservoir located in the Norwegian sea discovered in December 1991. It 

was in production between November 1997 and December 2006. The field had an original oil in 

place of 157 million Sm3. The Norne structure consists of four main sections C, D, E, and G, in 

which nearly 98% of the original oil is placed in segments C, D, and E. Figure 40 shows the 

Norne field’s different segments.  

 
Figure 40. Different segments of the Norne field  
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The Norne reservoir model contains 46×112×22 grids in which 44,927 are active. In this work, 

the history-matched E-segment reservoir model is used as the case study to construct the SPM. 

The average porosity is 0.24, the permeability is 330 mD, and the NTG is 0.87 for the E 

segment. Wells F-1H and F-3H are the injectors, and wells E-2H, E-3H, and E-3AH are the 

producers for the E-segment. The well location and paths in the Norne E-segment are shown in 

Figure 41. 

 
Figure 41. Well locations and their paths in Norne E-segment reservoir model 

5.3. Results and Discussion 

5.3.1. Sequential LHS Design 

Sampling started with choosing nine parameters of the gas/water injection cycle, field gas/water 

injection rate, gas/water injection distribution between two injectors, and BHP for production 

wells E-2H, E3H, and E-3AH. Table 22 presents the WAG parameters and the selected ranges 

for the design of experiment. The minimum and maximum values for the injection rates and the 

BHPs were chosen based on the production history. The WAG injection, in this case, was started 

by injecting a gas cycle since the injectors were under water injection in 2005, which was the 

starting time for the WAG process. The injection cycles were chosen between 3 and 24 months. 

The fluid distribution ratio between wells varies between zero and one, in which fluid 
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distribution equal to zero means that all fluid is injected by well F-3H, and one refers to injection 

only by well F-1H. 

Table 22. WAG parameters with their ranges 

Parameter Range Unit 

Gas cycle 3-24 months 

Water cycle 3-24 months 

Field gas injection rate 3-9 MMSCM/d 

Field water injection rate 10-32 MSCM/d 

Gas distribution ratio 0-1  

Water distribution ratio 0-1  

BHP (Well E-2H) 100-260 bar 

BHP (Well E-3H) 100-260 bar 

BHP (Well E-3AH) 100-240 bar 

The design started with 20 sample points based on the rule of thumb and the experience of the 

previous Volve case study. In Volve case, we had five parameters, and the initial sample points 

number was equal to 10. Similar to previous chapters, the LHS algorithm coupled with GA was 

used to perform the initial design. Also, five more sample points later were added based on the 

optimized augmentation algorithm to fill the empty domains of the parameters and increase the 

underlying model accuracy. Table 23 presents a summary of these sample points and a blind 

sample point. This blind sample point was used for the underlying model validation. The WAG 

process continued for seven years, between 2005 and 2012. Figure 42 shows the gas/water 

injection cycles for all the sample points during this period. We considered the field gas/water 

injection rates as the design parameters in the sampling. The individual well’s gas/water injection 

rate was calculated using the gas/water distribution ratio between wells. Another important 

parameter in the WAG process is the WAG ratio, which is the ratio of the injected water volume 

to the injected gas volume in their cycles. The WAG ratio was not a design parameter in this 

work and was calculated based on other parameters. Figures 43 and 44 illustrate the relationship 

between water and gas injection rates for well F-1H and F-3H. The diameter of the points in 
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these figures demonstrates the WAG ratio magnitude. The higher values of the injected water 

volume and the lower values of the injected gas volume result in higher WAG ratios. As a result, 

the WAG ratios are smaller on the lower right side of the figures, and the points at the top left 

side are bigger. 
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Table 23. Initial and augmented sample points for sampling in Norne case study 

 Sample 

point 

Gas 

cycle 

(month) 

Water 

cycle 

(month) 

Gas inj. rate 

(well F-1H) 

(MMSCM/d) 

Gas inj. rate 

(well F-3H) 

(MMSCM/d) 

Water inj. rate 

(well F-1H) 

(MSCM/d) 

Water inj. rate 

(well F-3H) 

(MSCM/d) 

BHP 

(well E-2H) 

(bar) 

BHP 

(well E-3H) 

(bar) 

BHP 

(well E-3AH) 

(bar) 

In
it

ia
l 

sa
m

p
le

 p
o

in
ts

 

1 17.9 21.5 1.95 5.96 2.94 16.67 233 226 209 

2 9.3 7.8 1.88 1.13 20.48 0.68 154 134 130 

3 22.6 12.8 1.49 4.45 4.27 7.67 117 189 109 

4 6.3 23.9 1.12 5.46 14.23 2.01 162 142 198 

5 3.6 6.0 2.96 3.90 21.06 9.39 213 233 184 

6 21.5 10.2 0.38 4.91 15.25 8.85 240 111 167 

7 17.7 22.9 4.47 3.11 22.91 4.98 190 176 104 

8 10.4 16.2 7.79 0.80 6.77 7.58 139 239 194 

9 19.3 11.3 5.23 1.81 10.69 10.29 132 101 239 

10 8.7 19.1 4.82 0.74 15.29 12.07 249 148 231 

11 23.8 4.6 5.13 1.11 7.84 18.46 223 206 144 

12 20.3 14.0 1.86 1.89 16.97 1.20 184 252 225 

13 11.7 8.9 4.87 2.36 8.15 2.26 259 161 140 

14 5.2 11.9 4.42 3.73 0.52 22.37 168 122 124 

15 12.7 17.4 0.08 4.07 7.20 24.60 143 169 185 

16 14.1 15.6 4.54 0.17 10.12 19.32 104 217 162 

17 15.3 6.7 1.01 7.76 18.64 6.74 116 204 176 

18 16.1 20.2 2.85 0.71 0.94 14.41 199 131 156 

19 7.3 3.3 1.71 3.20 1.45 11.57 179 184 217 

20 4.7 17.9 1.65 2.56 7.29 10.23 204 253 114 

A
d

d
it

io
n

al
 

sa
m

p
le

 p
o

in
ts

 

21 3.9 21.4 2.39 6.00 10.08 1.15 109 117 222 

22 21.2 5.2 3.17 0.26 12.69 9.25 246 258 134 

23 17.1 8.7 0.68 3.80 7.45 21.88 121 246 159 

24 11.2 16.9 1.16 3.83 9.73 5.23 135 153 148 

25 13.4 13.7 4.90 1.92 9.02 14.60 148 178 168 
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Figure 42. Gas and water injection cycles at all the sample points 

 
Figure 43. Gas injection rate vs. water injection rate for well F-1H at different sample runs 
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Figure 44. Gas injection rate vs. water injection rate for well F-3H at different sample runs 

Figures 45 and 46 demonstrate the relationship between water and gas slug volumes at the 

sample points. 

 
Figure 45. Gas slug volume vs. water slug volume for well F-1H at different sample runs 
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Figure 46. Gas slug volume vs. water slug volume for well F-3H at different sample runs 

Figure 47 shows the injection and oil production rates at sample point 22, and Figure 48 

illustrates the field cumulative oil production at some of the sample points as the examples. 

 
Figure 47. Injection and oil production rates at sample point 22 
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Figure 48. Field cumulative oil production between 2005 and 2012 at selected sample points 

5.3.2. Dataset preparation 

After running the simulator at the sample points, different static and dynamic data were extracted 

for the grid-based and well-based datasets, similar to the list introduced in Tables 6 and 17, with 

this difference that for the grid-based dataset, the outputs were the grids’ oil, water, and gas 

saturations. The Norne field consists of 113,344 grid blocks, of which 8,922 grid blocks 

correspond to the E-segment. Consequently, the grid-based dataset contained 8,922×25 rows; 

each corresponds to one grid block. The number of columns in this dataset was equal to 62, of 

which 41 were the input parameters and 21 were the outputs at various time steps.  

On the other hand, the well-based dataset had 21×25×3=1,575 rows (21 timesteps, 25 runs, and 3 

producers) and 58 columns. As in Chapter 4, a tiering system was introduced, and the average of 

the grids’ dynamic parameters within each tier was calculated. These new feature-engineered 

parameters related to the tiers eventually helped to increase the accuracy of the well-based SPM.  
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5.3.3. Grid-Based Underlying Model 

The procedure to train the grid-based SPMs when the output is the grids’s oil saturation is 

explained in this section. Similar procedures were also carried out to predict the grids’ water and 

gas saturations. To find a generalized ranking of the all the parameters, the fscaret package was 

used. We used 23 different predictive models, listed in Table 3, to determine the importance of 

each input parameter. The individual predictive model’s importance was then averaged and 

scaled to 100 to rank the parameters. Figure 49 demonstrates the first 20 parameters with the 

highest average importance when the output was the grids’ oil saturation in the grid-based 

dataset in January 2008. These subsets can be determined by having the gradient of importance 

shown in this figure. Wherever we have a big gradient of importance, the parameters prior to that 

point can be selected as a subset. Accordingly, four reduced input vectors containing 6, 8, 17, 

and 22 parameters out of a total of 41 parameters were selected to train the underlying models 

with ANN.  

 
Figure 49. Parameter importance on grids’ oil saturation in January 2008  
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Table 24 displays the goodness of fit for these subsets and two additional subsets of only 

designing parameters and all 41 parameters. Finally, the subset with 17 parameters was selected 

to check if the 1D-CNN model could further improve the predictions. We did not have the design 

parameters related to the gas slugs among the selected parameters. This means gas injection rates 

were less influential on the grids’ oil saturation, and it is possible to predict the oil saturation 

even without considering them in the model.  

Table 24. ANN models’ goodness of fit at different subsets for grid-based dataset (Jan 2008) 

Test Selected subset 
Test set 

R2 (%) RMSE 

1 LHS design parameters + initial Sg + Z 54.42 0.1424 

2 First 6 parameters from feature selection 76.83 0.1015 

3 First 8 parameters from feature selection 80.34 0.0934 

4 First 17 parameters from feature selection 94.26 0.0505 

5 First 22 parameters from feature selection 94.73 0.0484 

6 All parameters 94.97 0.0473 

The 1D-CNN model was also trained on the same dataset, including 17 parameters, to compare it 

to the ANN model. The best results obtained in a 1D-CNN model consist of three convolutional 

layers (first and second layers, each containing 100 filters, third layer containing 70 filters and 

kernel size equal to four) and two fully connected layers (each containing 100 neurons). The 

goodness of fit for the 1D-CNN model was improved compared to the ANN model (R2 = 99.38, 

and RMSE=0.0374). Other CNN models for various timesteps also resulted in R2 of around 99%. 

To validate the trained models, a blind test presented in Table 25 was randomly created, and R2 

was achieved at 94-99%. In the initial design with 20 sample points, R2 was obtained at 85-87%, 

and five more sample points were added using sequential sampling to have the R2 of 94-99% for 

different timesteps. 
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Table 25. Blind test for WAG scenario 

Parameter Value Unit 

Gas cycle 13.7 month 

Water cycle 6.7 month 

Gas injection rate (well F-1H) 1.67 MMSCM/d 

Gas injection rate (well F-3H) 2.77 MMSCM/d 

Water injection rate (well F-1H) 1.16 MSCM/d 

Water injection rate (well F-3H) 21.6 MSCM/d 

BHP (well E-2H) 188 bar 

BHP (well E-3H) 247 bar 

BHP (well E-3AH) 233 bar 

5.3.4. Well-Based Underlying Model 

We performed a similar procedure to train and validate the underlying model for the well-based 

dataset. Figure 50 demonstrates the first 20 parameters with the highest average importance 

when the output was cumulative oil production. Subsequently, four reduced input vectors 

containing 4, 8, 17, and 19 parameters out of a total of 41 parameters were selected to train the 

underlying models with ANN.  

 
Figure 50. Parameter importance and gradient of importance on cumulative oil production 
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Table 26. ANN models’ performance at different subsets for the well-based dataset 

Test Selected subset 
Test set 

R2 (%) RMSE (Sm3) MAPE (%) 

1 LHS design parameters + index parameters 96.57 2.8E5 2.61 

2 First 4 parameters from feature selection 26.44 15.6E5 10.30 

3 First 8 parameters from feature selection 90.25 4.43E5 2.97 

4 First 17 parameters from feature selection 98.81 2.29E5 1.65 

5 First 19 parameters from feature selection 99.94 0.96E5 0.81 

6 All 57 parameters 98.13 1.67E5 1.22 

Table 26 presents the ANN models’ performance at different subsets for the well-based dataset. 

We selected the subset containing 19 parameters and tried to improve the performance using the 

1D-CNN on the well-based dataset; however, it did not outperform the ANN model. To validate 

the trained model, a blind test presented in Table 25 was used, and R2, RMSE, and MAPE were 

obtained at 99.80, 1.18E+5, and 1.6, respectively. 

5.3.5. Screening and Production Forecasting 

The grid-based SPMs were used to screen the WAG process at different timesteps. The target 

parameters for screening in this study were the grid blocks' oil, water, and gas saturations. The 

results obtained from the blind test at layer one and timestep one (May 2005) are presented in 

Figure 51, and more figures corresponding to other layers and timesteps can be found in 

Appendix B. These figures demonstrate the predicted values from the grid-based SPMs, the 

simulated values (i.e., actual values), and the error between them. In WAG optimization, it is 

important to screen the water and gas propagation in the reservoir. The generated figures from 

grid-based SPM take less than a second to demonstrate the fluids' saturations at different 

reservoir layers. 
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Figure 51. Grids oil saturation in L1, and T1 (May 2005) for the blind test (WAG case) 

The well-based SPM was implemented to predict the cumulative oil production for the individual 

wells at different timesteps at the same blind test. The field's cumulative oil production can then 

be calculated. Figure 52 shows these predicted and calculated results. It is evident that the 

coefficients of determination R2 for wells E-3H and E-3AH were not promising. The production 

for these two wells quickly dropped to zero when the BHP fell below their respective set 

pressures of 247 and 233 bar. This behavior of zero production was observed only in two runs, 

indicating that the model did not have enough data to be trained and to predict this outcome. In 

order to address this issue, it was necessary to include more sample points to improve the R2 

value. However, in this particular case, we did not add more sample points. The reason for this 

decision was that the mean absolute percentage error (MAPE) for these two wells was less than 3 

percent, and the overall field production was predominantly influenced by the production of well 
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E-2H. It is evident from the field production data that the prediction accuracy and goodness of fit 

are highly reliable. 

  

 
 

Figure 52. Blind test predicted cumulative oil production of the individual wells, and the calculated results (from 

well predictions) for the field 

5.3.6. Optimization 

This case study aimed to maximize the field's cumulative oil production at the last time step. The 

fitness function in this optimization problem was the well-based SPM. When the well-based 

SPM takes an input vector of the WAG design parameters, it predicts the individual well’s 

cumulative oil production at the desired timestep. Then, the summation of production for all the 

producers can be calculated and optimized.  
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As discussed in section 4.5.5, to avoid the possibility that SPM extrapolates the result, the ranges 

of the design parameters were shortened to the values presented in Table 27. 

Table 27. New ranges for the WAG design parameters in the optimization problem 

Parameter Range Unit 

Gas cycle 4-23 months 

Water cycle 4-23 months 

Field gas injection rate 3.3-8.7 MMSCM/d 

Field water injection rate 10.5-31.5 MSCM/d 

Gas distribution ratio 0.1-0.9  

Water distribution ratio 0.1-0.9  

BHP (Well E-2H) 105-255 bar 

BHP (Well E-3H) 105-255 bar 

BHP (Well E-3AH) 105-235 bar 

For the PSO, we selected 200 particles to be distributed randomly in the design parameters' 

domain space. The number of iterations was equal to 40, inertia was equal to 0.65, and 

acceleration coefficients 𝑐1 and 𝑐2 were kept constant at 0.8 and 1.4. Consequently, the total 

number of fitness function evaluations was 200 for one iteration and 8,000 for all iterations. In 

this work, five realizations based on random particles’ positions were introduced. Table 28 

presents the best particle values and the global optimum at different PSO realizations. Some 

other calculated parameters are also listed in this table. Figure 53 displays the cumulative oil 

production versus iterations at PSO realizations. 
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Table 28. Summary of random PSO realizations in WAG optimization 

 
Design Parameter Unit 

Realization 

1 

Realization 

2 

Realization 

3 

Realization 

4 

Realization 

5 

O
p

ti
m

iz
at

io
n

 p
ar

am
et

er
s 

Gas cycle  month 4 5.8 13.5 5.8 13.5 

Water cycle month 4 5.8 15.1 5.8 15.1 

Field gas inj rate MMSCM/d 8.7 7.31 5 7.31 5 

Field water inj rate MSCM/d 31.5 29.9 29.2 29.9 29.2 

Gas distribution ratio  0.21 0.23 0.9 0.23 0.9 

Water distribution ratio  0.87 0.9 0.34 0.9 0.34 

BHP (well E-2H) bar 105 105 105 105 105 

BHP (well E-3H) bar 242 245 219 245 219 

BHP (well E-3AH) bar 164 121 126 121 126 

C
al

cu
la

te
d

 

Gas inj rate (well F-1H) MMSCM/d 1.83 1.68 4.5 1.68 4.5 

Gas inj rate (well F-3H) MMSCM/d 6.87 5.62 0.5 5.62 0.5 

Water inj rate (well F-1H) MSCM/d 27.4 26.9 9.9 26.9 9.9 

Water inj rate (well F-3H) MSCM/d 4.1 3 19.3 3 19.3 

WAG ratio (well F-1H)  2.65 2.85 0.44 2.85 0.44 

WAG ratio (well F-3H)  0.11 0.09 7.63 0.09 7.63 

 

 
Figure 53. Cumulative oil production vs. iteration at different PSO realizations in WAG optimization 

Based on the results, PSO found the global optimum at realizations 2 and 4. PSO converged the 

results to the global optimum in fewer than 30 iterations. Furthermore, in five realizations of 

PSO, three realizations failed and were trapped in a local optimum. Optimum parameters in 

realizations 2 and 4 (Table 28) had smaller WAG cycles. The WAG ratio is generally selected 
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between 0.5 and 4 in most of the cases, but lower values are also observed in literature [236]. 

Low values of WAG ratio ensure that a substantial gas slug is injected before water 

breakthrough, but it should be nonzero to maintain macroscopic sweep efficiency. For this case 

study, the WAG ratio for well F-1H in realizations 2 and 4 was 2.85; however, it was 0.09 for 

well F-3H which was smaller than the normal range of WAG ratio. Furthermore, field water and 

gas injection rates were closer to the higher ranges, and for the water cycles, most of the water 

was injected through well F-1H. Calculated WAG ratio in this table for realization 2 and 4 could 

also lead to higher recovery. The next highest converged cumulative oil production was related 

to realization one, in which the optimum parameters had very close values to realization 2 and 4. 

A final validation was performed to check the result of the numerical model at the optimum 

parameters in realizations 2 and 4. The field cumulative oil production in the last timestep was 

obtained at 1.453E+7 Sm3 compared to the 1.461E+7 Sm3 recorded from the well-based SPM. 

This difference shows that the SPM tended to slightly over-predict for the cumulative oil 

production. 

5.4. Conclusions 

In this chapter, we developed both grid-based SPMs and grid-based SPM to quickly reproduce 

the results from the reservoir numerical model to screen and optimize the production in the 

Norne E-segment WAG case study. The same procedure introduced in chapters 3 and 4 was 

followed to construct the SPMs. The 1D-CNN underlying model for the grid-based dataset 

performed better than the ANN model. However, 1D-CNN could not increase the accuracy 

associated with the well-based dataset. It can be concluded that the 1D-CNN model is best fit 

into the big datasets (such as the grid-based dataset in this work) 
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The sampling in this work started with 20 sample points distributed in the domain space of nine 

design parameters related to the WAG process. The trained CNN models gave an accuracy of 85-

87% for different timesteps of the grid-based dataset at the blind test. However, after adding five 

more sample points using the sequential LHS, the accuracy increased to 94-99%. The R2, RMSE, 

and MAPE were obtained for the well-based dataset at 99.80, 1.18E+5, and 1.6 at the blind test 

using the ANN model. 

The trained grid-based SPMs successfully predicted the grids’ fluid saturations at different 

reservoir layers. Moreover, the well-based SPM was coupled with PSO to optimize the 

cumulative oil production. The results showed that the smaller WAG cycles, water and gas 

injection rates closer to the higher selected ranges, and injecting the water with a higher portion 

through well F-1H caused the highest oil recovery. 
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Chapter 6. Conclusions and Future Research 

6.1. Conclusions 

Engineers mainly use numerical reservoir models to predict reservoir behavior during the 

reservoir's lifetime. However, making a proper decision is not an easy task. A conventional 

reservoir contains many complexities with respect to geological characterization and fluid flow 

behavior. Furthermore, there are always constraints associated with production and injection 

operations, making it more time-consuming and complex to analyze. 

In this research, an approximation of a numerical reservoir model, called SPM, was developed to 

mitigate the problems associated with the expensive computational cost of simulators. The 

methodology to construct the SPM was improved at different steps of sampling, feature ranking, 

underlying model training, and feature engineering steps. The construction of the SPM is an 

objective-oriented problem, and each SPM targets to predict a specific output. We tested the 

proposed SPM methodology using two different case studies to examine the performance in 

different geological complexities. 

In the first case, the Volve numerical model was considered to investigate a waterflooding 

scenario. The objective was to screen and optimize the oil production to have an acceptable 

picture of the field performance. For screening purposes, grid-based SPMs, and for production 

optimization, a well-based SPM were constructed. The liquid production rates of the five 

producers were selected as the design parameters to have a good case for optimization. In the 

sampling step, we proposed a sequential sampling technique to avoid repeating the construction 

from the start. The initial sampling was performed by LHS with a GA, and the extra points were 
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added by the optimized augmentation algorithm. After running the simulator at the points, 

various static and dynamic parameters were extracted and named as feature engineering.  

To construct the grid-based SPM, these parameters were the grids’ characteristics, location of the 

grids, distances to the boundary and closest offset well, production data, bottom-hole pressure 

(BHP), etc. For the well-based case, the parameters were the well types, distances to the closest 

producers and injectors, production data, and indexing parameters. Also, a tiering system 

surrounding each well was generated to consider the effect of dynamic parameters related to the 

grids (such as fluid saturation and pressure) in that tier. The process of getting the dynamic 

parameters of the grids requires implementing the constructed grid-based SPMs in parallel with 

the well-based SPM. The model was then named hybrid well-based SPM in this work.  

After forming the grid-based and well-based datasets, an average of 23 ranking algorithms was 

used. The average technique showed that results differed in magnitude and order compared to 

using only one technique. In the last step of the SPM construction, CNN and ANN underlying 

models were trained and tested. For the grid-based SPM, CNN models outperformed the ANN 

and showed they were better candidates to handle big datasets. Nevertheless, using CNN did not 

have a significant advantage over ANN for the well-based dataset.  

The grid-based SPM showed perfect matches in the screening process with the results obtained 

from the numerical model. We coupled the well-based SPM with two different optimizing 

algorithms of PSO and GA to find the best selection of designing parameters (individual well’s 

LPR) and to maximize the cumulative oil production. Both optimizers were quite successful in 

finding the global optimum. However, PSO showed a more reliable and faster convergence to the 

solution. 
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The Norne E-segment black oil numerical model was used for the second case study to 

investigate a WAG scenario. The objective was to test the methodology in another case with 

different levels of complexities and involving more design parameters. Nine parameters of 

gas/water injection cycle, field gas/water injection rate, gas/water injection distribution between 

two injectors, and BHP for production wells E-2H, E3H, and E-3AH were considered as the 

design parameters. A similar methodology to the first case study was used to get the final grid-

based and well-based SPMs. The outputs of the grid-based SPMs this time were oil, water, and 

gas saturations. The results of grid-based SPM were generated in only a few seconds, and they 

could perfectly show the water and gas propagation within the reservoir. Moreover, the results 

obtained from the optimization using the well-based SPM indicated that the reservoir performed 

better in the case of smaller WAG cycles, higher water and gas injection rates, and injecting the 

majority of water through well F-1H. 

The main benefit of using the SPM is to provide a fast approximation of the numerical model to 

predict a selected output parameter. The results obtained from the Volve case study showed that 

SPM could finish the task of 8,000 runs in 11 hours, but this would take years if a numerical 

model was used. The difference in time would be more significant if a bigger numerical model, 

with a higher number of wells or a numerical compositional model, were the cases under study.  
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6.2. Future Perspectives 

There are a few recommendations for future research on the subject of SPM: 

1. In this work, individual grid-based SPMs were trained for different timesteps to predict 

the properties of the grids (such as saturations). One way to make a more comprehensive 

prediction is to train one SPM for all the timesteps. As a result, to predict the grids 

properties for all timesteps, the output of the first timestep is considered as the inputs for 

the next timestep, and so on. However, this procedure has a big challenge. Each 

timestep’s prediction is associated with some error, which propagates into the next 

timesteps, making the predictions poor as we go forward in timesteps. One solution to 

avoid this error propagation may be using machine learning techniques for time series, 

such as Long Short-Term Memory (LSTM) which needs to be tested for future research. 

2. In this work, a wide variety of static and dynamic parameters was extracted from the 

reservoir simulator, and we could reach a reasonable level of accuracy for the constructed 

SPMs. However, there are still more parameters that can be extracted directly from the 

simulator or can be generated by feature engineering. We can mention different 

realizations of the geological parameters such as porosity and permeability distribution. 

The parameters used in this work may not work well for more complex reservoir models. 

As a result, more parameters can be incorporated into the SPM construction. 

3. We constructed the SPM to approximate the black oil simulators in this work. However, 

the application of SPM can be tested on compositional simulators for cases such as 

miscible gas injection. Compositional simulators are usually very time-consuming to run, 

and the usage of SPM becomes bold. Also, the modified steps such as sequential 

sampling, average feature ranking, and the CNN underlying model or any other types of 



145 

 

machine learning methods can be addressed in the generated SPMs for compositional 

simulators. 

4. It is helpful to investigate the efficiency of constructing the SPM. This can happen by 

analyzing the time we spent on using different steps such as sequential sampling, using 

CNN models, and feature engineering, and comparing the accuracy we obtain if we do 

not use these techniques. 
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Appendix A 

The results of grid-based SPM for the 20th, 40th, and 63rd layers at 1st, 10th, and 20th timesteps are 

presented in this appendix. These results were obtained for the Volve field when it was under 

waterflooding. 
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Figure 54. Grids oil saturation in layer 20 for the blind test (waterflooding case) 
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Figure 55. Grids oil saturation in layer 40 for the blind test (waterflooding case) 

 

 

 

 

 

 



165 

 

Predicted, timestep 1 

 

Actual, timestep 1 

 

Error, timestep 1 

 
Predicted, timestep 10 

 

Actual, timestep 10 

 

Error, timestep 10 

 
Predicted, timestep 20 

 

Actual, timestep 20 

 

Error, timestep 20 

 
Figure 56. Grids oil saturation in layer 63 for the blind test (waterflooding case) 
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Figure 57. Grids pressure in layer 20 for the blind test (waterflooding case) 
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Figure 58. Grids pressure in layer 40 for the blind test (waterflooding case) 
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Figure 59. Grids pressure in layer 63 for the blind test (waterflooding case) 
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Appendix B 

The results of grid-based SPM for the 1st, 5th, 10th, and 15th layers at 5th, 10th, 15th, and 21st 

timesteps are presented in this appendix. These results were obtained for the Norne E-section 

field when it was under WAG injection. 
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Figure 60. Grids oil saturation in L1 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 61. Grids oil saturation in L1 and T10 (May 2008) for the blind test (WAG case) 
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Figure 62. Grids oil saturation in L1 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 63. Grids oil saturation in L1 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 64. Grids oil saturation in L5 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

 

Figure 65. Grids oil saturation in L5 and T10 (May 2008) for the blind test (WAG) 
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Figure 66. Grids oil saturation in L5 and T15 (Jan 2010) for the blind test (WAG case) 

 

 
Figure 67. Grids oil saturation in L5 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 68. Grids oil saturation in L10 and T5 (Sept 2006) for the blind test (WAG case) 

 

 
Figure 69. Grids oil saturation in L10 and T10 (May 2008) for the blind test (WAG case) 
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Figure 70. Grids oil saturation in L10 and T15 (Jan 2010) for the blind test (WAG case) 

 

 
Figure 71. Grids oil saturation in L10 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 72. Grids oil saturation in L15 and T5 (Sept 2006) for the blind test (WAG case) 

 

 
Figure 73. Grids oil saturation in L15 and T10 (May 2008) for the blind test (WAG case) 
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Figure 74. Grids oil saturation in L15 and T15 (Jan 2010) for the blind test (WAG case) 

 

 
Figure 75. Grids oil saturation in L15 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 76. Grids water saturation in L1 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 77. Grids water saturation in L1 and T10 (May 2008) for the blind test (WAG case) 
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Figure 78. Grids water saturation in L1 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 79. Grids water saturation in L1 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 80. Grids water saturation in L5 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 81. Grids water saturation in L5 and T10 (May 2008) for the blind test (WAG case) 
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Figure 82. Grids water saturation in L5 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 83. Grids water saturation in L5 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 84. Grids water saturation in L10 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 85. Grids water saturation in L10 and T10 (May 2008) for the blind test (WAG case) 
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Figure 86. Grids water saturation in L10 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 87. Grids water saturation in L10 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 88. Grids water saturation in L15 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 89. Grids water saturation in L15 and T10 (May 2008) for the blind test (WAG case) 
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Figure 90. Grids water saturation in L15 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 91. Grids water saturation in L15 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 92. Grids gas saturation in L1 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 93. Grids gas saturation in L1 and T10 (May 2008) for the blind test (WAG case) 
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Figure 94. Grids gas saturation in L1 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 95. Grids gas saturation in L1 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 96. Grids gas saturation in L5 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 97. Grids gas saturation in L5 and T10 (May 2008) for the blind test (WAG case) 
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Figure 98. Grids gas saturation in L5 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 99. Grids gas saturation in L5 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 100. Grids gas saturation in L10 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 101. Grids gas saturation in L10 and T10 (May 2008) for the blind test (WAG case) 
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Figure 102. Grids gas saturation in L10 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 103. Grids gas saturation in L10 and T21 (Jan 2012) for the blind test (WAG case) 
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Figure 104. Grids gas saturation in L15 and T5 (Sept 2006) for the blind test (WAG case) 

 

 

Figure 105. Grids gas saturation in L15 and T10 (May 2008) for the blind test (WAG case) 
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Figure 106. Grids gas saturation in L15 and T15 (Jan 2010) for the blind test (WAG case) 

 

 

Figure 107. Grids gas saturation in L15 and T21 (Jan 2012) for the blind test (WAG case) 


