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Abstract 

Risk analysis for autonomous underwater vehicles (AUVs) is essential to enable AUVs to 

explore extreme and dynamic environments. This research aims to augment existing risk 

analysis methods for AUVs, and it proposes a suite of methods to quantify mission risks and to 

support the implementation of safety-based decision making strategies for AUVs in harsh 

marine environments. This research firstly provides a systematic review of past progress of risk 

analysis research for AUV operations. The review answers key questions including fundamental 

concepts and evolving methods in the domain of risk analysis for AUVs, and it highlights future 

research trends to bridge existing gaps. Based on the state-of-the-art research, a copula-based 

approach is proposed for predicting the risk of AUV loss in underwater environments. The 

developed copula Bayesian network (CBN) aims to handle non-linear dependencies among 

environmental variables and inherent technical failures for AUVs, and therefore achieve 

accurate risk estimation for vehicle loss given various environmental observations. Furthermore, 

path planning for AUVs is an effective decision making strategy for mitigating risks and 

ensuring safer routing. A further study presents an offboard risk-based path planning approach 

for AUVs, considering a challenging environment with oil spill scenarios incorporated. The 

proposed global Risk-A* planner combines a Bayesian-based risk model for probabilistic risk 

reasoning and an A*-based algorithm for path searching. However, global path planning 

designed for static environments cannot handle the unpredictable situations that may emerge, 

and real-time replanned solutions are required to account for dynamic environmental 

observations. Therefore, a hybrid risk-aware decision making strategy is investigated for AUVs 

to combine static global planning with dynamic local re-planning. A dynamic risk analysis 
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model based on the system theoretic process analysis (STPA) and BN is applied for generating 

a real-time risk map in target mission areas. The dynamic window algorithm (DWA) serves for 

local path planning to avoid moving obstacles. The proposed hybrid risk-aware decision-

making architecture is essential for the real-life implementation of AUVs, leading eventually to 

a real-time adaptive path planning process onboard the AUV. 
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Chapter 1. Introduction 

1.1 Background and motivation 

Autonomous underwater vehicles (AUVs) are effective platforms for navigating underwater or 

under-ice to provide automated measurements without human intervention (Xu et al., 2013; 

Brito and Griffiths, 2016). The high level of autonomy of AUVs makes them an ideal tool for 

multiple data-gathering applications in scientific (Wadhams et al., 2006; Dowdeswell et al., 

2008; Jenkins et al., 2010), commercial (Kleiner et al., 2011), military (Rothrock and 

Wensnahan, 2007), and geopolitical (Brito et al., 2012) areas. Equipped with various advanced 

sensors, AUVs can deliver high spatial and temporal resolution subsurface measurements 

(Rudnick et al., 2004b). However, operating in harsh marine environments with dynamic 

underwater conditions, poor visibility, and potential corrosion will inevitably pose the risk of 

vehicle damage or loss. Therefore, it is essential to conduct an effective risk analysis to ensure 

the safe deployment of AUVs. Hence, this study aims to provide systematic risk analysis 

approaches and safety-based decision making strategies for AUVs in challenging marine 

environments.  

This thesis addresses risk analysis and risk-based decision making for AUVs. The following 

subsection defines the research questions and objectives that underlie this thesis. 

1.2 Research questions and objectives 

The overall research topic is risk-based decision making for navigation of AUVs. To achieve 
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this core research objective, four subquestions need to be answered. The four subquestions and 

subobjectives of this thesis are presented in Fig. 1.1. Details of the research questions and 

objectives are elaborated in the following subsections. 

 

Fig. 1.1. Framework of the research problems and objectives 

1.2.1 The first research question and objective 

As AUV technologies have gradually matured, risk analysis for AUVs has become essential to 

ensure safer operations and assist decision making. A number of past efforts regarding risk 

analysis have been undertaken to improve the safety performance of AUVs. However, a 

systematic review and analysis of past studies has not yet been reported. As a thorough review 

will enable researchers to gain a better understanding of AUV risk analysis and benefit future 

development, a critical review of the state-of-the-art is timely. 
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In light of the above, the first objective of this study was to provide a structured review of risk 

analysis research regarding AUV operations. It aimed to answer four key questions arising from 

historical developments and to highlight future trends in this domain. The main contribution of 

the literature review was to help researchers and AUV stakeholders obtain comprehensive 

insights about fundamental concepts and evolving methods for the risk analysis of AUVs. 

Meanwhile, it was also intended to indicate directions for future research to bridge existing 

gaps. 

1.2.2 The second research question and objective 

Autonomous underwater gliders (AUGs) are a type of autonomous underwater vehicles (AUVs), 

which are characterized by long endurance, slow speed, low energy consumption, and a wide 

survey range (Roper et al., 2021; Wang et al., 2021b; Wang et al., 2022b). AUGs can operate in 

multiple types of underwater environments, such as in open water, under sea ice or ice shelves, 

and near coastal areas (Brito et al., 2008). However, complex underwater conditions and the 

long cruise endurance of AUGs could expose them to an increased risk of loss. The main 

limitation of current studies for AUGs is the lack of a tailored method for risk analysis 

considering both dynamic environments and potential functional failures of the vehicle.  

Hence, the second objective of this study was to propose a coupla-based approach for risk 

prediction of AUGs in dynamic underwater environments. Both open water and coastal water 

environments were considered in this study, while conditions of under ice or under ice shelves 

were not within the scope. The developed coupla Bayesian network (CBN) aimed to capture 

non-linear environmental impacts on the functional failures of AUGs, thereby estimating the 
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risk of vehicle loss given various environmental conditions. The contribution of this research 

was twofold. Firstly, the proposed method was tailored for AUGs. It captured the synergies 

between AUGs’ inherent functional failures and influential environmental factors, whilst 

considering the dynamic nature and non-linear dependencies among their relationships. The 

predicted risk profile can assist further decision making and risk mitigation during real AUG 

missions. Secondly, this study not only added details to risk analysis for AUGs, but also 

extended the application of the CBN model into a broader AUV domain. The present model is 

not restricted to an AUG system but can be flexibly adapted to other AUV platforms by 

incorporating the vehicle’s specifications to enhance safety performance. 

1.2.3 The third research question and objective 

An oil spill is one of the major accidents in the ocean that can damage the marine ecosystem, 

social economy, and human health (Hwang et al., 2020; Zhu et al., 2021). Due to hazardous 

effects of oil spills, it is essential to detect and track the oil during or after a spill for 

environmental impact assessment and response decision-making (White et al., 2016). 

Compared with traditional survey tools such as ships or unmanned aerial vehicles, AUVs 

coupled with multiple sensors are superior in providing high-resolution sampling data of 

submerged oil plumes, achieving communication of spill information in near real-time, as well 

as preventing personnel exposure to hazardous oil spill environments (Pereira et al., 2013; 

Vinoth Kumar et al., 2020). Therefore, it is beneficial to deploy AUVs to search and delineate 

subsurface oil plumes, capturing oil behaviors, and improving the efficiency of oil spill 

response. However, operating in an oil spill environment could expose AUVs to the risk of loss 
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due to the effects of ocean currents, surface waves, potential underwater obstacles, and oil 

contamination on sensors. Hence, it is essential to minimize the risk of loss presented by these 

factors and enhance their safety navigation during spill response missions. Risk-based path 

planning is one of the critical techniques for mitigating risks and ensuring AUVs’ safe 

deployment before a mission. It refers to planning an optimal path for the vehicle from its initial 

state to the goal state of a mission considering the risk involved, which is under certain criteria 

(e.g., shortest path length, minimal cruise time, minimal risk profile), and as the same time, 

avoiding obstacles along a path (Zeng et al., 2015; Lefebvre et al., 2016; Guo et al., 2021). 

While previous studies have explored different risk-based path planning methods for mitigating 

AUV risks, limitations were observed from them. Firstly, most of the former research only 

addressed risks in a general marine environment with impacts of a single environmental 

variable, for example, underwater currents (Pereira et al., 2013). However, to the authors 

knowledge, there are no former studies considered the scenario of AUVs navigating in complex 

oil spill environments with interactions of multiple risk variables, and accordingly provided the 

mission planning strategy from a safety perspective. Secondly, limited past works have applied 

a probabilistic model for quantifying the risk state of AUVs given varied environmental 

observations. While probabilistic reasoning could enhance the accuracy of risk prediction and 

further improve the efficiency of decision making, therefore, a rigorous method that integrates 

a probabilistic risk model into the path planning problem for AUVs is needed. 

Therefore, the third objective of this study was to propose a risk-based path planner for AUVs 

to improve their safety performance and enhance autonomous capabilities in oil spill 
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environments. Specifically, hazardous impacts of potential risk variables in oil spill regions 

were analyzed. A risk analysis model based on the Bayesian network (BN) was then developed 

for probabilistic reasoning over current risk states of vehicle loss, which considered various 

environmental conditions and potential underwater obstacles. This risk model was extended to 

assist in generating a risk map of a gridded mission area. In order to avoid high-risky regions 

while achieving a relatively shorter path length, the A* algorithm was employed to search for 

a Risk-A* solution. The performance of the proposed planner was demonstrated in a simulated 

case study with a spill area in Baffin Bay.  

1.2.4 The fourth research question and objective 

Global path planning designed for static environments cannot handle the unpredictable 

situations that may emerge, and re-planned solutions are required to account for dynamic 

environmental observations. Hence, the last objective of this study was to explore a hybrid risk-

aware architecture for AUVs’ autonomous mission planning to combine static global planning 

and dynamic local re-planning, which is essential for the real-life decision making of AUV 

missions. Specifically, a risk model based on the STPA-BN was adopted to predict the risk of 

vehicle loss given varied environmental conditions. The A* algorithm was applied for global 

path planning to generate a global path for AUVs to reach the target. Then the dynamic window 

algorithm (DWA) was used for local path planning to avoid dynamic obstacles. 

1.3 Research contributions 

The research outcomes of this thesis represent original contributions to the domain of risk 
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analysis and safety-based decision making for AUVs navigation. The contributions of this thesis 

mainly contain four aspects. 

(i) This research presented a comprehensive review of past progress of risk analysis research 

for AUV operations. This review addressed questions related to basic concepts and developing 

methods within the field of risk analysis for AUVs, while also emphasizing potential trends for 

future research. The underlying risk factors were identified, and the evolving risk analysis 

methods were comparatively analyzed. The main contribution of this review is beneficial for 

domain researchers to obtain comprehensive insights about risk analysis of AUVs. Meanwhile, 

it is expected to indicate directions for future research to bridge existing gaps. 

(ii) This study contributed a potential approach of risk prediction tailored for AUGs in complex 

underwater environments. It captured the synergies between AUGs’ inherent functional failures 

and dynamic environmental conditions, whilst achieving updated risk prediction for AUG loss 

both temporally and spatially. The developed model can be extended to applications for other 

types of AUVs by incorporating the vehicle’s inherent specifications. The present work can 

potentially improve the safety performance of AUGs and assist risk mitigation in decision 

making. 

(iii) This study provided a rigorous global path planning method for AUVs from a safety 

perspective. The integrated BN-based risk model can predict the risk states of AUVs while 

intuitively presenting spatial risk distributions in a complex oil spill environment. The 

probabilistic reasoning can enhance the effectiveness and accuracy of further risk-based 

decision making. Furthermore, the developed Risk-A* planner can avoid potential risky regions 
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and obstacles, and meanwhile, it achieved a trade-off between risk mitigation and mission 

efficiency. It is expected that the proposed strategy can serve as a worthwhile precomputing 

policy to prevent AUV loss at the path planning stage, and therefore enhance the safety 

decision-making capability of AUVs for safer navigation. 

(iv) This research developed a risk-ware hybrid path planning strategy for AUVs operating in 

challenging environments. The risk factors of vehicle loss were identified from a control 

perspective using the STPA framework. The risk state of the vehicle during navigation was 

rigorously estimated based on an online STPA-BN model. The predicted risk index was 

integrated into a hybrid path planning module to achieve real time risk-aware decision making. 

The proposed risk-aware path planning strategy that considers the risk cost during cruising 

exhibited better performance in avoiding risky regions along a path. It helped to select safer 

waypoints in real time, and at the same time, it mitigated the risk level within a tolerable 

threshold to ensure safe navigation. 

1.4 Thesis outline 

This thesis consists of six chapters and is organized in a manuscript format. Four of the chapters 

include parts that have been submitted or accepted for publication. The thesis abides by ‘A thesis 

by peer-reviewed research publication’ strategy. The overview of each chapter is provided as 

follows. 

Chapter 1 introduced the background, motivation, research questions, research objectives, 

contributions, and outline of this thesis. 
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Chapter 2 provided an extensive literature review of risk analysis research regarding AUV 

operations. It aimed to answer key questions covering historical developments and future trends 

in this research domain. By retrieving and analyzing former literature, this chapter identified 

critical risk factors of AUV operations, summarized the evolving risk analysis models, and 

highlighted the existing limitations and future directions. This chapter provided the research 

foundation for the following chapters. 

Chapter 3 proposed a copula-based approach for risk prediction of AUV loss in dynamic 

underwater environments. The developed CBN model aimed to handle non-linear dependencies 

among environmental variables and inherent technical failures for AUVs. In the constructed 

CBN structure, a Bayesian Belief Network (BBN) model was firstly applied for identifying 

potential risk variables and their causal relationships to vehicle loss. Copula functions were 

then incorporated to quantitatively capture the dependencies among risk variables and predict 

the risk level. The effectiveness of the proposed method was demonstrated in a case study, 

which considered deploying a Slocum G1 Glider in a real water region. Risk mitigation 

measures were also provided according to case study results. This chapter has proved that the 

BBN model can serve as a basic risk model for AUVs. Therefore, the following chapters mainly 

applied the BBN model for risk-based decision making. 

Chapter 4 proposed an offboard risk-based path planning strategy for AUVs considering the 

complex oil spill environment. A risk model based on the BN was developed for probabilistic 

reasoning of risk states given varied environmental observations. This risk model further 

assisted in generating a spatially-distributed risk map covering a potential mission area. A Risk-
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A* searching algorithm was then employed to plan a Risk-A* path through the constructed risk 

map. The proposed planner was applied in a case study with a Slocum G1 Glider in a real-world 

spill environment around Baffin Bay. This chapter was the foundation for the next chapter to 

propose a hybrid path planner combining both static global planning and dynamic local re-

planning. 

Chapter 5 proposed a hybrid risk-aware decision making strategy for AUVs, which aimed to 

bridge risk identification from a control perspective, real-time risk modelling, and risk-aware 

path planning to achieve more intelligent and safer deployment of AUVs. Specifically, the risk 

state of the vehicle during navigation was rigorously estimated based on an online risk model. 

The predicted risk index was integrated into a hybrid path planning module to achieve real time 

risk-aware decision making. 

Chapter 6 summarized the overall thesis and discussed the key research findings of each 

chapter. A comprehensive conclusion was derived from the thesis outcomes. As the closing 

chapter of this thesis, limitations and future work were also highlighted in this chapter. 
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Chapter 2. Literature Review 

Preface  

A version of this chapter has been published as: Chen X, Bose N, Brito M, et al. A review of 

risk analysis research for the operations of autonomous underwater vehicles [J]. Reliability 

Engineering & System Safety 2021, 216: 108011. I am the primary author along with the Co-

authors, Neil Bose, Mario Brito, Faisal Khan, Bo Thanyamanta, and Ting Zou. I developed the 

conceptual framework for the review of risk analysis research for the operations of autonomous 

underwater vehicles. I prepared the first draft of the manuscript and subsequently revised the 

manuscript based on the co-authors’ and peer review feedback. Co-authors Neil Bose, Mario 

Brito, and Faisal Khan provided support in implementing the concept development, reviewing, 

and revising the manuscript. Co-authors Bo Thanyamanta and Ting Zou provided assistance in 

reviewing and correcting the results. The co-authors also contributed to the review and revision 

of the manuscript.  

Abstract: This chapter presents a comprehensive literature review of past progress of risk 

analysis research for AUV operations. It answers key questions including fundamental concepts 

and evolving methods in the domain of risk analysis for AUVs, and it highlights future research 

trends to bridge existing gaps. Forty-two domain articles are retrieved and analyzed in this 

chapter. Through this literature review, critical risk factors and causal relationships of AUV 

operations were identified. A comparative analysis of evolving methods and models was 

performed by categorizing them as qualitative, semi-quantitative, and quantitative. Future 

trends of research in this field were also outlined. This chapter plays a key role to provide 
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fundenmental knowledge and comprehensive understanding of the research of AUV risk 

analysis. 

2.1 Introduction 

AUVs are untethered and unmanned platforms to provide automated measurements in 

dangerous, distant, and dynamic ocean environments (Caress et al., 2008). They have been 

increasingly applied in various oceanic observations, such as seawater sampling (Hwang et al., 

2019), oil spill detection (Wang et al., 2022c), seafloor mapping (Zwolak et al., 2017), pipeline 

inspection (Xiang et al., 2010), and so on. The expanded applications of AUVs are in parallel 

with significant improvements in cruise endurance, range, and payload sensor advancement 

(Zhang et al., 2011). In recent research, AUVs are increasingly deployed in harsh environments 

such as under sea ice or ice shelves in the Antarctic (Jenkins et al., 2010; Williams et al., 2015; 

Gwyther et al., 2020) and the Arctic regions (Wadhams et al., 2006; Dowdeswell et al., 2008; 

Salavasidis et al., 2016). Operating in such extreme conditions, including thick ice cover, 

permafrost, fragile material integrity, unpredictable climatic changes, and poor visibility, will 

inevitably pose a higher risk to both the physical vehicle and the onsite AUV supervisors (Loh 

et al., 2020c). Hence, it is essential to conduct effective risk analysis before a mission to ensure 

the safe deployment of AUVs. 

Table 2.1, which is adapted from a former study (Hu et al., 2013), summarizes potential accident 

types of AUV operations and their severity according to the level of damage to the vehicle itself, 

where AUV loss could be regarded as the most severe accident. AUV loss usually refers to the 

complete loss of the physical vehicle or an AUV being damaged and unrepairable for future 
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missions. It is not only financially costly due to the higher insurance premium and acquisition 

costs of the vehicle (Griffiths et al., 2007a), furthermore, it may also cause time delays or even 

the termination of research projects, lead to the loss of valuable gathered data, and potentially 

harm fragile polar environments (Griffiths and Collins, 2007; Brito et al., 2010). 

Table 2.1. Classification of the consequence severity of AUV operations, adapted from 

(Hu et al., 2013). 

Level Consequence Severity 

I AUV loss Catastrophic 

II Severe damage, mission failure, mission abort Critical 

III Mitigable damage, mission degraded, mission delayed Moderate 

IV Minor damage  Marginal 

V Minimal damage or no damage Negligible 

Over the years, there have been a number of formally reported accidents of AUV losses during 

deployment, as shown in Fig. 2.1. For example, the AUV Autosub2 was lost under the 

Fimbulisen ice shelf in Antarctica in February 2005. A formal accident inquiry concluded that 

this accident was equally likely to have been caused by an abort command or a loss of power. 

Such technical failures could be most likely introduced during the manufacturing and assembly 

phases (Strutt, 2006). Another lost vehicle, SeaBED, which was designed to scan the seafloor 

below overhanging sea ice, became trapped under the Antarctic ice during a mission and was 

almost crushed by an iceberg before it was rescued (Waters, 2015). The Autonomous Benthic 

Explorer (ABE) was lost in March 2010, during its 222nd research dive off the coast of Chile. 

Researchers believed that the loss of the ABE was also caused by a technical failure. More 

specifically, the ABE may have suffered a catastrophic implosion of a glass sphere used for 
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providing buoyancy, causing instant destruction of the on-board systems. Consequently, the 

ABE failed to send fail-safe commands for helping itself float to the surface for recovery 

(Lippsett, 2010). An underwater glider, Seaglider SG522, lost communication in the Antarctic 

in February 2012 after having completed 156 dives. The inquiry panel identified that the root 

cause was an erroneous command, which resulted in this glider continuously diving and 

eventually being lost (Brito et al., 2014b). In April 2014, the Autosub Long Range AUV lost 

communication during a mission near the Irish coast. Luckily, it re-transmitted its position 

signal and was recovered after three months. More recently, a Hugin AUV was lost during its 

first under ice mission in the Antarctic in January 2019, and it was recovered four days later. 

Pre-dive checks had been reviewed for this vehicle without any irregularities. Technicians 

believed the vehicle was trapped below an ice floe, causing the Iridium signal for the AUV 

position failing to be received (Bound, 2019). 

 

Fig. 2.1. Timeline and potential causes of historical accidents of AUV loss. 

Autosub2, ﻿an abort command or a loss of power

﻿Seaglider SG522, ﻿erroneous parameters set

﻿SeaBED, ﻿got stuck under Antarctic ice

2005

2010

2012

﻿Autonomous Benthic Explorer (ABE), ﻿destruction 
of on-board systems

﻿Autosub Long Range AUV, ﻿lost communication2014

﻿Hugin AUV, ﻿trapped below Antarctic ice floes2019
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From the overview of historical accidents of AUV loss, it can be observed that the potential 

causes of historical accidents show a wide variety, which confirms the unpredictable and 

uncertain features of AUV related accidents. This non-uniform accidental pattern and relatively 

severe consequences imply the vulnerability of AUV operations and reinforce the necessity of 

implementing effective risk analysis before an AUV mission. 

Risk analysis is a proactive approach for hazard identification, consequence analysis, and risk 

estimation for potential accidents (Rausand, 2013). There is a long history of the development 

of risk analysis techniques that have been applied in multiple fields, including nuclear power, 

chemical process, aerospace, and offshore oil and gas industries (Paté-Cornell and Dillon, 2001; 

Khakzad, 2015; Yang and Haugen, 2016; Zhou et al., 2021). Currently, with the booming 

development of the maritime industry, applications of risk analysis methods are also stimulated 

in this area (Madsen et al., 2000; Thieme and Utne, 2017; Wróbel et al., 2018b; Du et al., 2020; 

Wang et al., 2021a). Since marine systems are becoming more autonomous, using the AUV is 

an ongoing trend in the maritime industry for ocean research, ocean monitoring, military and 

commercial data-gathering, and so on (Brito and Griffiths, 2016; Thieme and Utne, 2017). As 

AUV technologies have gradually matured, risk analysis for AUVs has rapidly become essential 

to ensure safer operations and assist decision making. A number of past efforts regarding risk 

analysis have been undertaken to improve the safety performance of AUVs. However, to the 

best knowledge of the author, a systematic review and analysis of past studies has not yet been 

done. As a thorough review will enable domain researchers to gain a better understanding of 

AUV risk analysis and benefit future development, the author believe that a comprehensive 

literature review is timely. 
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In light of the above, the objective of this chapter is to provide a structured review of risk 

analysis research regarding AUV operations. It aims to answer four key questions arising from 

historical developments and to highlight future trends in this domain. As listed in Table 2.2, the 

four key questions show the overall structure of this literature review from analyses of past 

studies. The main contribution of this chapter is to help researchers and AUV stakeholders 

obtain comprehensive insights about fundamental concepts and evolving methods for the risk 

analysis of AUVs. Meanwhile, it is expected to indicate directions for future research to bridge 

existing gaps. 

Table 2.2. Research questions and corresponding sections. 

Question Description Section 

Q1 What is risk analysis for AUV operations? Section 2.1 

Q2 What is the benefit of risk analysis for AUV operation? Section 2.1 

Q3 How is risk analysis implemented for AUV operations? Section 2.2&2.3 

Q3,1: What are the key risk factors identified in past studies? Section 2.2 

Q3,2: Which risk analysis method was adopted in past studies? Section 2.3 

Q3,3: What are the advantages and disadvantages of these 

methods? 

Section 2.3 

Q3,4: What trends can be observed regarding past studies? Section 2.2&2.3 

Q4 What are the future challenges of risk analysis for AUV 

operations? 

Section 2.4 

The scope of this chapter is restricted to risk analysis for AUV operations. According to the 

objective and scope of this review, the literature retrieval was performed based on keywords 

searching including AUVs with the combination of risk identification, risk analysis, risk 

assessment, risk management, risk mitigation, risk modeling, safety measures, and emergency 
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system. A total of forty-two articles with significant relevance to the research purpose and scope 

were retrieved. In addition, to better answer the research questions and facilitate further 

statistical analysis, the selected publications were classified into various aspects, including the 

type of identified risk factors, the type of adopted risk analysis methods, the type of mission 

forms, the area of operations, and the type of potential consequences. The dataset of selected 

literature is classified and summarized in the Appendix. 

The chapter is structured as follows. In section 2.2, critical risk factors of AUV operations are 

analyzed by categorizing them into technical factors, environmental factors, and human factors. 

Section 2.3 compares the evolving methods or models applied for AUV risk analysis by 

classifying them as three types: qualitative methods, semi-quantitative methods, and 

quantitative methods. Section 2.4 outlines current research gaps and future directions. The 

summary and conclusion of this chapter are given in Section 2.5. 

2.2 Risk factors identification for AUV operations 

Risk factors identification is defined as the process of identifying potential risk factors, which 

is the first step of the risk analysis phases (Rausand, 2013). Based on past studies, risk factors 

related to AUV operations are identified and analyzed in this section by categorizing them into 

technical factors, human factors, and environmental factors. Fig. 2.2 presents the number and 

distribution of former publications regarding these three types of risk factors. As mentioned in 

Section 2.1, the publication counting for the statistical analysis is based on the Appendix table.  
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(a) (b) 

Fig. 2.2. Statistics of the research of three risk factors regarding (a) the accumulative number 

of publications and (b) the proportion of the publications. 

From Figure. 2.2, it is observed that risk analysis research of AUVs regarding technical factors 

has been steadily increasing over the last two decades and surpasses the number of research 

regarding other two factors. By contrast, risk analysis research of AUVs regarding human 

factors, environmental factors, and interactive factors is emerging in recent years and receiving 

more attention. Each of the three risk factors is elaborated in the following subsections. 

2.2.1 Technical Factors 

Before the analysis of technical factors regarding an AUV system, it is important to understand 

different concepts between a failure, fault, and error. A failure refers to the inability of a 

component or system to perform a required function. A fault is defined as an abnormal condition, 

state, or defect, which may lead to a failure. An error refers to the discrepancy between a value, 

condition, or human behavior. It usually occurs when deviating from the target performance, 
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which can also cause a failure (Rausand and Høyland, 2003). 

A technical factor is defined as a risk contributor that is directly related to the AUV technical 

systems and components (Hegde et al., 2018). Previous studies have primarily focused on 

improving the technical performance of AUVs. As shown in Fig. 2.2(b), the number of studies 

related to technical factors accounts for 47.6% of the domain publications. With complex 

subsystems and components of an AUV, a technical failure can easily occur with 

electromechanical equipment, and then cause functional failures of a certain subsystem. Since 

an AUV works mainly depending on the cooperation of their subsystems, once a subsystem 

fails to work, there is a high risk of the overall mission failure. In particular, as a self-contained 

submarine robot, there is limited scope for calibrating and testing each component or subsystem 

thoroughly before a mission. Therefore, technical factors are most fundamental and paramount 

for the safe deployment of AUVs. 

To better identify technical factors of AUVs, it is important to understand the main functions of 

AUV subsystems and key components, which are summarized in Table 2.3. The major 

subsystems of an AUV consist of the propulsion system, navigation system, communication 

system, power system, sensor system, and others.  

A propulsion system is responsible for providing the propulsive force and, in the case of gliders, 

for changing the buoyancy. In general, AUVs can be classified into two types according to their 

different propulsion systems. The first type is actively-propelled AUVs with traditional 

propellers or thrusters to empower propulsion behavior, including horizontal and vertical 

movement. Another type is passively-propelled AUVs, such as traditional underwater gliders, 
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which employ variable-buoyancy propulsion without any propellers or thrusters. Traditional 

gliders can ascend and descend underwater purely controlled by a buoyancy changing system. 

Simultaneously, they use wings to convert the vertical motion into horizontal motion, thereby 

achieving a sawtooth pathway in the water column. Currently, hybrid-driven gliders were born 

combining both propulsion and buoyancy systems. The hybrid gliders, such as the Slocum 

glider, Seaglider, Sea Explorer, and Folaga glider, are more maneuverable compared to 

traditional gliders, as they can fulfill both the depth-keeping cruise and saw-tooth gliding 

(Alvarez et al., 2009).  

A navigation system enables an AUV to follow a predefined trajectory by measuring its position, 

attitude, and velocity. Among several kinds of navigation systems of AUVs, the inertial 

navigation system (INS) is widely used. The INS typically contains an inertial measurement 

unit (IMU) including accelerometers and gyroscopes. For inertial navigation, the linear 

acceleration is measured by accelerometers, and the angular velocity is measured by gyroscopes, 

and these parameters are combined to calculate the instantaneous velocity and position of the 

vehicle (Paull et al., 2014; Bao et al., 2020). In addition, some additional components, such as 

a Doppler Velocity Log (DVL), compass, pressure sensor, or global positioning system (GPS), 

are usually combined with the INS to provide integrated navigation. Among these auxiliary 

components, a DVL is an acoustic sensor that measures the velocity and position of the vehicle 

relative to both the sea bottom and sea flow, which can only function when the seabed is within 

the range of the instrument; a compass is used for orientation that provides the heading direction 

for the vehicle; a pressure sensor is used to measure the external pressure of the vehicle, from 

which the water depth can be estimated; GPS is a satellite-based positioning system, which 
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enables an AUV at the water surface to acquire its position information, and GPS signals are 

input to the INS to correct the position measurement.  

A communication system is used for transferring the mission instructions and monitoring the 

vehicle’s state, and it is particularly crucial during multi-vehicle missions. This system includes 

two parts: underwater communication is achieved by an acoustic modem, and above-water 

communication is achieved by local radio or satellite communication with an antenna.  

A power system provides electrical energy by lithium-ion batteries or alkaline batteries 

(Griffiths et al., 2007b). Former studies have proved that more than 50% of AUV loss accidents 

are related to a power failure (Meng and Qingyu, 2010; Yu et al., 2017). In particular, an early 

study analyzed 63 mission abort incidents from a total of 205 glider missions (Brito et al., 

2014a). As shown in Fig. 2.3, among the identified 19 failure modes of gliders, power failure 

was ranked as the second most common failure mode. Since the power system provides energy 

for all electrical motors, sensors, and the central computer, it is critical for the normal 

functioning of AUVs. In addition, it impacts the mission endurance, which is influenced by the 

available energy storage and the energy consumption rate.  

An environmental recognition system generally processes sensor data to perceive the 

surrounding environment, detects the forward obstacles, and prevents the AUVs from colliding 

with the seafloor.  

An emergency system ensures safety in emergency situations. It overrides the navigation system 

by employing low-risk path planning during the collision avoidance maneuver (Hegde et al., 
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2018). In addition, it also predominates the propulsion system in dangerous situations. For 

example, it can provide fail-safe measures by releasing the drop-weight, aborting the mission, 

and floating the vehicle to the water surface for rescue. 
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Table 2.3. Identification of AUV subsystems and risk factors. 

AUV Subsystem Functionality Main Component Risk Factor Reference 

Propulsion System Provide the propulsive force 
Change the buoyancy 

Propeller or thruster 

(active-propelled AUV) 

Variable-buoyancy system 

(passive-propelled AUV) 

Thruster failure 

Buoyancy pump failure 

Bladder leak 

Fin actuator failure 

Rudder broken 

(Griffiths et al., 2003; Bian et 

al., 2009a, b; Xu et al., 2013; 

Aslansefat et al., 2014a; Yu et 

al., 2017; Hegde et al., 2018) 

Navigation System Measure the position, attitude, 
and velocity data 
Provide dead-reckoning 
navigation 
Follow the predefined trajectory 

DVL 

On-board GPS receiver 

Attitude sensor 

Depth sensor 

Altimeter 

DVL failure 

Depth sensor failure 

Altimeter failure 

Inertial navigation failure 

GPS module failure 

(McPhail, 1998; Griffiths et 

al., 2003; Bian et al., 2009a, 

b; Xu et al., 2013; Aslansefat 

et al., 2014a; Yu et al., 2017; 

Hegde et al., 2018) 

Communication 

System 

Underwater communication 
Above water communication 
Transfer and control the mission 
instruction 

Acoustic sensor 

Radio transceiver module 

Underwater acoustic sensor 

failure 

Radio communication failure 

Signal transmission failure 

Host computer failure 

(Bian et al., 2009a, b; 

Aslansefat et al., 2014a; Brito 

et al., 2014b; Yu et al., 2017; 

Hegde et al., 2018) 

Power System Provide electrical energy Lithium-ion battery Energy depletion (Bian et al., 2009a, b; Xu et 
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Alkaline battery Fail to charge 

Overcharging 

Battery detection failure 

Voltage and current 

monitoring failure 

al., 2013; Aslansefat et al., 

2014a; Allotta et al., 2017; Yu 

et al., 2017; Hegde et al., 

2018; Locorotondo et al., 

2021)   

Environmental 

Detection System 

Perceive the surrounding 
environment 
Avoid the forward obstacles 
Prevent colliding with the 
seafloor 

Camera 

Forward-looking sonar 

Underwater camera failure 

Light sources failure 

Sonar suite failure 

(Bian et al., 2009a, b; Xu et 

al., 2013; Aslansefat et al., 

2014a; Yu et al., 2017; Hegde 

et al., 2018) 

Emergency System Ensure safety in an emergency 
Alternate the low-risk path 
planning 
Jettison weight for fail-safe 

Drop-weight Hermetic hull broken 

Leak detection sensor failure 

Jettison device failure 

Mission aborting command 

failure 

(Ortiz et al., 1999; Bian et al., 

2009a, b; Xu et al., 2013; Yu 

et al., 2017; Hegde et al., 

2018) 
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Fig. 2.3. Failure modes and their frequency during 63 abort incidents from 205 glider 

missions (Brito et al., 2014a). 

There are various strategies to improve the technical performance of an AUV. Redundancies of 

key components can be adopted from the hardware level (Yu et al., 2017). For example, the 

redundancy of the propulsion system plays a key role in enhancing the safety of the vehicle. In 

case of a propulsion failure, a backup propulsion system could assure that the vehicle completes 

the mission and safely returns to the base, without losing any degree of freedom (Pugi et al., 

2018). In another word, this backup functionality makes the vehicle more tolerant to a single 

failure. Therefore, the redundant solution not only achieves improved maneuverability but also 

enhances the failure robustness of the vehicle. From the software level, online monitoring and 

repairing could serve as effective risk mitigation measures (Aslansefat et al., 2014a). In addition, 

as most failures occur in the early phase of a mission, an endurance test can be performed in 
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the operational configuration to monitor key subsystems before a mission (Kaminski et al., 

2010). A mission can then proceed only when the vehicle operates properly during the 

endurance test. Otherwise, the vehicle should be recovered for onboard fault checking. 

Moreover, since AUVs might periodically return to a docking station for recharge, the problem 

of improper manipulation and positioning of electrical connections during recharging should 

be noticed. To address this problem, a current work provided a valid solution of underwater 

wireless power connection for the recharge (Allotta et al., 2017). This wireless recharging 

strategy could significantly simplify recharge operations in the underwater environment and 

protect the vehicle from the power failure as well. Another solution to prevent the power failure 

is to assure the safe state of batteries. A real-time diagnostic method was proposed to assess and 

monitor the state of health of lithium batteries (Locorotondo et al., 2021). A fast impedance 

measurement was applied to provide accurate diagnostic detecting of the operating conditions 

of the battery, which is simple to be implemented for AUVs. 

2.2.2 Human Factors 

The maturing of AUV technologies has fostered a gradual shift to risk analysis of human 

operators. To comprehensively control the risk of AUV deployments, human factors, which are 

critical but relatively difficult to quantify, are receiving more attention in the AUV risk 

management process. Human intervention influences the autonomy of AUVs. It should be noted 

that the autonomy is defined as the capability of a system to make decisions independently, 

which can be measured by six levels, namely (i) human operated, (ii) human assisted, (iii) 

human delegated, (iv) human supervised, (v) mixed initiative, and (iv) fully autonomous 
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(Thieme et al., 2015b). The level of autonomy denotes the involvement of human operators, 

i.e., a higher level of autonomy refers to less human intervention. Current AUV systems can be 

categorized into levels (ii), (iii), and (iv), while future AUVs may reach the level (v) and level 

(vi). Therefore, although an AUV system in the current state has a certain level of autonomy, 

human operators still play a vital role as a supervisor. The main intervention of human operators 

includes determining mission plans in the design phase, performing the launch and recovery of 

the vehicle, making decisions when encountering emergencies, and so on (Wróbel et al., 2017; 

Loh et al., 2020c). Noticeably, human errors may lead to the AUV being susceptible to failure. 

During the four-year missions of the Autosub3 AUV from 1996 to 2000, most of the faults were 

notably identified as a result of human errors rather than technical failures, as shown in Fig. 2.4 

(Griffiths et al., 2003). This former study proved that human factors play a key role for AUV 

risks. 

 

Fig. 2.4. Failure modes and their frequency during missions 1-240 of the Autosub3 AUV from 

1996 to 2000 (Griffiths et al., 2003). 
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Other researchers have begun to recognize the importance of human factors contributing to the 

overall risk of AUV operation (Manley, 2007; Ho et al., 2011; Akhtar and Utne, 2014). A risk 

management framework incorporating human and organizational factors was established 

(Thieme et al., 2015a). This study proposed a structured approach to assess the risk of AUV 

loss and mission aborts resulting from human factors. Potential risk mitigation measures were 

provided, including procedures improvement, mission planning, and fault recognition. A case 

study involving the operation of the REMUS 100 AUV was conducted, which proved that risk 

analysis should consider not only the technical system itself but also the human interaction with 

the system. Extended studies assessed human factors in risk monitoring of AUV missions 

(Thieme et al., 2015b; Hegde et al., 2018). Detailed information of human factors, such as the 

level of training, operator experience, operator fatigue, and situation awareness, were analyzed 

in these studies. Furthermore, a system-based risk analysis framework was proposed for an in-

depth analysis of the impact of human factors (Loh et al., 2019; Loh et al., 2020a; Loh et al., 

2020b; Xu et al., 2020). Based on these former studies, identified human factors are summarized 

in Table 2.4. Several key findings were demonstrated as follows. Firstly, the risk level of AUV 

loss will gradually drop in the initial years of the formation of an AUV team, reaching a minimal 

level before rising again in later periods. In addition, the incident rate of human errors was 

proven to decline with the overall increase of the experience of an AUV team. Therefore, 

increasing the experience of AUV operators can be an effective way for risk mitigation, which 

can be achieved by safety training, human resources allocation, recruitment, and staff retention.  

Table 2.4. Identified human factors in previous literature. 

Human Factor Description Reference 
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Supervisory error 

checking 

Ability of the operator to timely identify 

errors and contingency situations during a 

mission. 

(Loh et al., 2020c) 

Supervisory 

handling 

Ability of the human supervisor to take 

required actions. 

(Hegde et al., 2018; Loh et 

al., 2020c) 

Wrong configuration 

setting 

Wrong configuration parameters of a 

sensor are set which might lead to 

incorrect measurement. 

(Loh et al., 2020c) 

Workload Number of tasks that the operators are 

required to execute. 

(Parasuraman and Miller, 

2004; Ho et al., 2011; 

Thieme et al., 2015b) 

Experience of 

operators 

Level of experience of the operators with 

the deployment mission. 

(Manley, 2007; Loh et al., 

2020a; Loh et al., 2020c, b) 

Human fatigue Inability to function at the desired level 

due to incomplete recovery from the 

demands of prior work and other working 

activities. 

(Akhtar and Utne, 2014; 

Loh et al., 2020c) 

Training of 

operators 

Level of required operational and safety 

training for a human supervisor. 

(Thieme et al., 2015b; 

Hegde et al., 2018) 

Situational 

awareness 

Ability to monitor the system, 

comprehend the information and take the 

right decisions. 

(Ho et al., 2011; Johnson 

and Lane, 2011) 

Communication of 

operators 

Level of communication effectiveness 

among operators and the crew. 

(Thieme et al., 2015b) 

Trust in the system Level of the operator’s belief in the 

autonomous capabilities of the AUV. 

(Parasuraman and Miller, 

2004; Johnson et al., 2007; 

Ho et al., 2011) 
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2.2.3 Environmental Factors 

AUVs operate in several typical subsea environments, such as under open water (Brito et al., 

2008; Brito et al., 2014a), under sea ice or shelf ice (Griffiths and Brito, 2008; Brito and 

Griffiths, 2016), and along with coastal areas (An et al., 2001; Oliver et al., 2013), as shown in 

Fig. 2.5. Due to the dynamic and hazardous nature of subsea environments, ensure safe 

deployment is challenging. Therefore, it is vital to identify underwater environmental factors 

and understand how they can cause risks to AUVs. Based on former studies, this section has 

analyzed four critical risk-related environmental factors, namely, sea ice or shelf ice, 

underwater currents, ambient temperature, and water density. 

 

Fig. 2.5. Typical operating environments of AUVs. 

2.2.3.1 Underwater current 

Underwater currents result from the surface winds, gravitational tides, water density, and water 

pressure (Hegde et al., 2018; Ullah et al., 2020b). Underwater currents are critical for the 
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dynamic motion control of AUVs, especially for the relatively slow-moving underwater gliders 

with a typical velocity below 0.5 m/s (Griffiths et al., 2007b; Petillo and Schmidt, 2012). 

Without external thrusters, a glider is easily subjected to environmental disturbances (e.g., 

strong currents). For example, strong currents may deviate it from a planned path, and as a 

result, a glider cannot reach its target position.  

Various strategies have been proposed to improve AUV control against underwater currents, 

such as increasing the surfacing frequency to reduce positioning errors resulting from the 

currents (Bachmayer et al., 2006), and optimizing the navigation system by integrating current 

models (Smith et al., 2012). 

2.2.3.2 Water density 

Water density has a critical influence on the buoyancy control of AUVs. Basically, water density 

is decided by the combination of water depth, water temperature, and salinity (Hegde et al., 

2018). 

It is noted in Section 2.2.1 that some passively-propelled AUVs, such as underwater gliders, 

usually control their buoyancy either by filling an external bladder or by pushing seawater in 

or out of an internal reservoir (Griffiths et al., 2007b). However, in some mission regions, for 

instance, near melting glaciers, seawater density can change significantly due to the salinity 

dilution. As a result, decreasing water density will require more buoyancy for the vehicle’s 

rising motion (Bachmayer et al., 2006; Dowdeswell et al., 2008). On the contrary, in other areas 

where the water density is relatively high, redundant buoyancy could be provided and 
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consequently compromises the vehicle’s diving motion. In conclusion, once the water-density 

gradients exceed the compensating range of the vehicle, the buoyant-control failure will occur. 

Consequently, the vehicle may become trapped in a neutrally buoyant water-layer and fail to 

float to the surface, or the vehicle is unable to dive to the target depth. Thus, pre-measurement 

of the water density is necessary before an AUV mission to prevent the buoyant-control failure. 

2.2.3.3 Sea ice 

Deploying an AUV in the polar regions has a higher risk than in other areas, since sea ice is a 

risky contributor. Specifically, a former study proved that the median probabilities of AUV loss 

in under sea-ice and ice-shelf missions are 4.9 and 9.4 times higher than in open water missions, 

respectively (Brito et al., 2010).  

Sea ice, which is characterized by ice thickness and ice concentration, can affect the operational 

risk of AUVs in multiple ways. Firstly, sea ice with modest thickness may pose a collision risk 

and poor visibility in the recovery phase or the fail-safe phase, as it could form a rigid lid and 

cause the AUV being trapped under the ice when floating to the surface. Moreover, sea ice may 

damage components such as the antennas and propeller blades during the floating process or 

crack the vehicle hull and cause leakage. Secondly, the occurrence probability of these collision 

incidents will increase with ice concentration. Moreover, the communication efficiency can be 

affected by both ice thickness and concentration (Brito and Griffiths, 2016). Consequently, the 

ability to receive satellite signals will be compromised under ice, and poor communication will 

in turn increase the difficulties for vehicle relocation.  
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To prevent the collision with ice, risk mitigation measures have been provided, such as attaching 

a tether to the vehicle (Doble et al., 2009; Forrest et al., 2012), mounting a locating beacon 

inside the vehicle (Kukulya et al., 2010), temporarily parking the vehicle in a safe location 

(Ferguson, 2008; Kaminski et al., 2010), and optimizing the obstacle avoidance system (Pebody, 

2008; Eichhorn, 2009). 

2.2.3.4 Ambient temperature 

Another key environmental factor for AUVs is the ambient temperature. Low ambient 

temperature, especially in polar regions, can cause large temperature gradients between the air 

and the water column. Consequently, the vehicle or component may suffer integrity failure and 

the leakage problem (Ferguson, 2008). For instance, the CTD sensor may suffer cracks at low 

ambient temperatures, and therefore seawater will penetrate and freeze inside, eventually 

causing sensor failure (Kaminski et al., 2010). Additionally, low temperature also forces ice 

formation on the equipment. One example found that the GPS of an AUV was unable to acquire 

satellite signals when working in the Arctic, possibly due to a thin layer of ice that formed on 

the antenna (Bellingham et al., 2008). Another potential challenge caused by low temperature 

is the degradation of the power system. As introduced in Section 2.2.1, lithium batteries are 

widely used for AUVs. However, the battery capacity may drop significantly especially when 

the ambient temperature is below -20℃. As a result, poor battery performance could further 

lead to the premature of power depletion and a mission abort (Bandhauer et al., 2011). Apart 

from the impact on the vehicle itself, low temperature will cause harsh working conditions for 

the AUV operators both physically and psychologically. 
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According to the above analysis, the impacts of various subsea environmental factors and their 

interacting relationships are topologically represented in Fig. 2.6, where the arrows point to the 

functional failures caused by environmental factors. It is evident that distinct environmental 

factors may interact with each other and cause different functional failures. Hence, when 

conducting the risk analysis of AUVs in a certain environment, the operator must be aware of 

this and update the environmental factors according to local configuration. 

 

Fig. 2.6. Risk identification of subsea environmental factors. 

2.3 Risk analysis methods for AUV operations 

This subsection provides an overview of existing methods for risk analysis of AUV operations. 

It aims to outline the evolution of the developed methods and models, critically analyze the 

progress and limitations of past research, and highlight future research trends in this domain. 

This subsection is expected to help researchers gain a better understanding of historical 

developments for AUV risk analysis methods and bridge the existing research gaps in future 
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work. In this subsection, the reviewed methods are categorized into qualitative, semi-

quantitative, and quantitative methods. The classification of major risk analysis methods 

regarding AUV operations is shown in Table 2.5. Related to the three types of methods, Fig. 2.7 

shows the accumulative number of publications of each type over the last two decades. It is 

observed that research using quantitative methods has rapidly increased in recent years, which 

implies that quantitative representation is becoming more widespread in the risk analysis of 

AUVs. In the following subsections, typical methods relating to the risk analysis of AUVs will 

be elaborated. 

Table 2.5. Classification of typical risk analysis methods regarding AUV operations. 

Risk Analysis Method Reference 

Qualitative Safety layer method (Ortiz et al., 1999) 

 Tree diagram (Madsen et al., 2000) 

Semi-quantitative Risk management process (Griffiths and Trembanis, 2007; Brito et al., 

2010; Griffiths and Brito, 2011; Thieme et 

al., 2015a) 

 Failure Mode and Effects 

Analysis 

(Hu et al., 2013; Harris et al., 2016) 

Quantitative Bow-tie model (Yu et al., 2017) 

 Kaplan-Meier survival 

model 

(Brito et al., 2010; Brito et al., 2014a; Brito 

and Griffiths, 2016) 

 Fault tree analysis (Bian et al., 2009a, b; Hu et al., 2013; Xu et 

al., 2013; Aslansefat et al., 2014a; Thieme et 

al., 2015a; Brito, 2016; Harris et al., 2016; 

Xiang et al., 2017; Brito and Chang, 2018) 

 Event tree analysis (Thieme et al., 2015a; Brito et al., 2018) 

 Bayesian network (Griffiths and Brito, 2008; Brito et al., 2012; 



 

36 

Thieme et al., 2015b; Brito and Griffiths, 

2016; Brito and Griffiths, 2018; Hegde et 

al., 2018; Bremnes et al., 2019; Yang et al., 

2020) 

 Markov chains (Brito and Griffiths, 2011; Griffiths and 

Brito, 2011) 

 System dynamics (Brito and Griffiths, 2012; Loh et al., 2020a; 

Loh et al., 2020c, b; Xu et al., 2020) 

 

Fig. 2.7. Accumulative number of publications of the three types of risk analysis methods 

over the last two decades. 

2.3.1 Qualitative methods 

Qualitative risk analysis refers to a non-numerical representation to describe the frequency and 

the severity of a hazardous event. The representations include flow diagrams, graphs, sources 

of data, and other descriptive scales (Rausand and Høyland, 2003; Khan et al., 2015). Within 

the domain of risk analysis of AUVs, qualitative methods emerged in the early phase as shown 
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in Fig. 2.7. A safety layer method was firstly proposed (Ortiz et al., 1999), which analyzed the 

technical reliability of AUVs, emphasizing that internal fault detection in the hardware structure 

is an essential step to achieve safe operations. Subsequently, a failure diagnosis layer was 

developed for AUV mission control (Madsen et al., 2000). A tree diagram was built to represent 

the potential causes of the mission failure.  

The aforementioned qualitative research primarily used non-probabilistic models combining 

with expert knowledge. In the early development of AUVs, qualitative methods were ideal tools 

to analyze operating risks owing to a lack of available data. However, few of them explicitly 

capture the underlying risk contributors and complex causal relationships, and thereby the 

overall risk level cannot be determined accurately. Hence, qualitative methods can only offer 

general guidelines in the AUV risk analysis, and quantitative information is further required to 

handle the inherent uncertainties of AUV operational risk. 

2.3.2 Semi-quantitative methods 

Semi-quantitative methods fall in between qualitative and quantitative methods (Khan et al., 

2015). They can roughly quantify probabilities and consequences and provide more detailed 

measurement than qualitative methods (Rausand and Høyland, 2003). Based on early research, 

a number of semi-quantitative approaches for risk analysis of AUVs have been successively 

proposed, including the risk management process (RMP) model and the failure mode and 

effects analysis (FMEA) method.  

The RMP model was proposed to support decision making in extreme environments (Griffiths 
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and Trembanis, 2007), as shown in Fig. 2.8. The proposed RMP model was the first systematic 

risk management approach to help an AUV team determine an acceptable risk level of 

deployment. It estimated the probability of AUV loss based on both expert knowledge and 

statistics. Applications of the RMP model have been discussed in subsequent studies (Brito et 

al., 2010; Griffiths and Brito, 2011; Thieme et al., 2015a).  

 

Fig. 2.8. The flow chart for the risk management process of AUVs (Griffiths and Trembanis, 

2007). 

FMEA is a systematic method for failure analysis. It is usually performed in the initial design 

phase of a system to analyze potential failure modes and their effects on the system. In another 

word, FMEA is particularly beneficial for preliminary risk analysis of a component or a system 

which has relatively constrained failure modes and simple causal relationships. Within the 

robotic industry, FMEA has been widely used to identify critical components and their effects 

on the robotic system (Harris et al., 2016). For instance, FMEA was applied to analyze different 

failure modes for an AUV mechanical system (Hu et al., 2013). Key components including the 
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sealing elements and hermetic hulls were identified, which have the greatest impact on the 

failure of the overall mechanical system. 

To sum up, semi-quantitative methods perform well in analyzing potential failure modes and 

consequences in the AUV domain. However, as the risk estimation in these methods mainly 

depends on experts rather than precise probabilistic calculation, bias and uncertainties are 

inevitably introduced. Thus, although semi-quantitative methods provide a valuable reference 

in initial risk analysis, quantitative methods are highly required to further reduce uncertainties 

and enhance the analysis accuracy. 

2.3.3 Quantitative methods 

Quantitative risk analysis provides a numerical estimation for probabilities, consequences, and 

severities (Rausand and Høyland, 2003). A remarkable benefit of quantitative methods is that 

they offer a reliable reference for tackling uncertainties and informing decision making (Khan 

et al., 2015). More recently, extensive studies have been carried out using quantitative risk 

analysis for AUVs.  

Fault tree analysis (FTA) is a widely used quantitative method for risk analysis. It is a deductive, 

graphical, and structured tool which can capture the failure propagation between an undesired 

event and its potential causes with connection by logic gates (Khakzad et al., 2011). Currently, 

several advanced FTA methods have been developed. Fuzzy set theory was combined with FTA 

to address the uncertainty from expert judgement (Lin and Wang, 1997; Yazdi and Zarei, 2018). 

Dynamic FTA model was proposed to capture the time dependency among failures (Čepin and 
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Mavko, 2002; Ghadhab et al., 2019). In the domain of AUVs, the FTA method was also widely 

applied (Bian et al., 2009a, b; Xu et al., 2013). Among these studies, AUV mission failure was 

denoted as the top event, whereas the subsystem failure or component failure were identified 

as root causes. The fault tree was then built to depict the failure propagation and logical 

relationships between root causes and the top event. The Monte Carlo simulation was 

subsequently used in these studies to assist in the quantitative calculation for the probability of 

mission failure. 

Event tree analysis (ETA) is an inductive and graphical method, which presents all potential 

outcomes and event sequences resulting from an initiating hazardous event (Rausand, 2013; 

Khan et al., 2015). It is widely used to identify possible accident scenarios and estimate the 

probability of the final outcome, considering the failure of installed safety barriers. Past studies 

have identified three consequences of AUVs using the ETA method, including AUV mission 

failure, mission abort, and AUV loss (Thieme et al., 2015a; Brito et al., 2018).  

In addition to the FTA and ETA methods, another three advanced quantitative methods that 

applied in the AUV domain are comparatively analyzed in the following subsections, namely, 

Bayesian network, Markov chains, and the system dynamics method. Different characteristics 

between these methods are clarified by distinguishing their graphical models, advantages, and 

limitations as summarized in Table 2.6. 
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Table 2.6. Characteristics of the three risk analysis methods. 

Risk Analysis 

Method 
Graphical Model Advantage Limitation Reference 

Bayesian 

network 

 
Adapted from (Brito and Griffiths, 2016) 

Provides quantitative risk estimation, even when 
experimental data is limited. 
Risk factors and dependency relationships can be 
systematically identified and presented. 
Critical risk factors can be determined by BN 
inferences. 
Achieves updating risk estimation when new 
evidence is involved, which is specifically 
beneficial for AUVs in dynamic subsea 
environments. 

The process of risk nodes identification, 
states definition, and CPTs computation 
may incorporate expert knowledge, 
which could induce uncertainties and 
biases. 
Constructing CPTs will become 
considerably complex as the number of 
variables increases. 
Unable to model complex non-linear 
correlations among variables. 

(Khakzad et al., 

2011; Khakzad, 

2015; Brito and 

Griffiths, 2016; 

Hegde et al., 

2018) 

Markov 

Chains 

 

Identifies risks involved in distinct states and state 
transition processes, thereby can model the 
complete sequence of an AUV mission and 
facilitate risk analyses of each mission phase. 
A valuable tool for predicting the risk of AUV 
mission abort. It allows for quantifying the failure 
probability of each state by using STP, and it 
iteratively calculates the failure probability of the 
final mission goal. 

Estimations of STP are usually derived 
from expert knowledge due to limited 
experimental data, which may lead to 
judgmental biases. 
Weak in representing the underlying risk 
factors and their causal relationships. 

(Brito and 

Griffiths, 2011; 

Griffiths and 

Brito, 2011) 
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Adapted from (Brito and Griffiths, 2011) 

System 

Dynamics 

 
Adapted from (Loh et al., 2020b) 

Complex causal relationships among risk factors 
can be captured effectively in the causal loop 
diagram. 
Dynamic behaviors of risk factors can be flexibly 
represented by stock and flow structures, which are 
particularly useful for dynamic AUV missions. 
Relatively easy to understand and apply without 
complex probabilistic computations. 

Defining each risk variable and its 
correlation equation can be challenging 
and time-consuming. 
Constructing the SD model could 
become rapidly complex with the 
increase of the number of risk variables.  
Unable to address uncertainties in 
interrelationships of risk factors due to 
the deterministic nature of the SD 
model. 

(Loh et al., 

2019, 2020c, b) 
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2.3.3.1 Bayesian Network 

Bayesian network (BN) is a robust method for risk analysis of multi-variable systems. Based 

on a well-defined Bayes theorem, BN is powerful to capture dependencies between variables 

in a probabilistic way (Hossain et al., 2019). It consists of a directed acyclic graph, in which 

nodes represent system variables, such as risk factors and potential consequences, while arcs 

denote causal relationships among nodes. The dependency degrees among nodes are specified 

using conditional probabilities, which can be defined by expert judgment or experiment data. 

With conditional probabilities and known prior probabilities of parent nodes, BN can provide 

both forward (predictive) and backward (diagnostic) inferences. In the forward reference, the 

probability of a child node can be predicted according to the law of total probability. While in 

the backward reference, the posterior probabilities of parent nodes are updated given new 

evidence of the child node, following Bayes theorem (Song et al., 2016). 

BN can be combined with other risk analysis methods to enhance its accuracy and reduce 

uncertainty. By mapping the fault tree, event tree, or Bow-tie model into BN, it can help clearly 

represent dependencies between nodes (Yang et al., 2017a). To capture the time dependence of 

a system, the dynamic Bayesian network (DBN) is more advanced than the BN (Khakzad, 2015; 

Kammouh et al., 2020). The states and occurrence probabilities of variables in the DBN are 

updated over time, and the logic of the DBN is changed based on new observations. Therefore, 

the DBN can model the dynamics by using time series data (Khan et al., 2020). Although the 

classic BN is capable of handling the uncertainties through experts’ knowledge, it is still 

required to deal with incomplete data and vague information. A resulted fuzzy Bayesian 
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network (FBN) was proposed to address this limitation by employing the fuzzy set theory. The 

FBN has been widely applied in multiple areas, such as maritime and offshore systems (Wan et 

al., 2019; Yu et al., 2021), process industries (Yazdi and Kabir, 2017), human reliability analysis 

(Zhou et al., 2018), and so on. Another limitation of the traditional BN is its inability to model 

complex correlations, such as non-linear dependencies among risk variables. To address this 

concern, a Copula Bayesian network was proposed by combining Copula functions with the 

BN (Elidan, 2010b). This integrated model acts as an excellent tool to measure non-linear 

dependencies among multivariate variables, and therefore it has been especially performed in 

complex systems and uncertain domains, such as the process system (Hashemi et al., 2016), the 

metro tunnel system (Pan et al., 2019), the complex electronic system (Sun et al., 2021a), and 

so on. 

So far, within the domain of risk analysis of AUVs, the BN model is mainly used for estimating 

the risk of AUV loss (Griffiths and Brito, 2008; Brito and Griffiths, 2016) and monitoring the 

mission success (Thieme et al., 2015b; Hegde et al., 2018). It was first used for estimating the 

risk of loss of AUVs in a sea ice environment (Griffiths and Brito, 2008). Operations under sea 

ice or ice shelves may involve significant risks to AUVs. Earlier methods for assessing the risk 

were mainly based on expert judgment. However, subjective expert judgment can hardly 

provide accurate risk estimation. Thus, a solution using BN was proposed (Griffiths and Brito, 

2008). The causal effects of the environments and the vehicle were captured in their study, and 

the expert judgment was included to provide conditional probabilities of the BN model. By 

quantitative calculation, the probability of vehicle loss was obtained. An extended study also 

applied BN for predicting the risk of AUV loss (Brito and Griffiths, 2016), where the ice 
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concentration, ice thickness, environmental constraints, and vehicle types were highlighted as 

the main contributors to AUV loss. 

Another application of the BN model for monitoring AUV mission success was proposed 

(Thieme et al., 2015b). The risk influencing factors (RIFs), which can cause the mission to abort, 

were modeled in their study. Although the BN model was proved as an effective method to 

assess risks before executing a mission, the study lacks quantitative estimations for the 

relationships among RIFs. To address this problem, an extended study presented a novel BN 

model to quantify the probability of the mission failure during the submarine operations of 

inspection, maintenance, and repair (IMR) (Hegde et al., 2018). Through this BN model, the 

RIFs that affect the failure of IMR missions were identified, including technical, organizational, 

and operational factors. The established BN model is relatively systemic and holistic, which 

can support the decision making of operators to achieve safer IMR operations. 

Comparing to traditional risk analysis methods (i.e., FTA, ETA, and FMEA) for AUVs, BN 

outperforms in several aspects. Firstly, BN shows a clear structure to present causal 

relationships among risk variables. Secondly, with the forward and backward inference, BN can 

update the previous belief given new observing evidence, thereby it can reduce uncertainties 

and provide more accurate risk estimation. This characteristic is particularly beneficial for 

AUVs operating in dynamic underwater environments. Lastly, BN can be easily built by 

combining expertise, even when the historical information is incomplete. In another word, if 

the historical data are limited, using data-driven approaches to obtain conditional probabilities 

could be difficult, whereas involving expert judgment can be an effective solution in this case. 
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These advantages of BN broaden its range of applications. In addition to AUVs applied in the 

subsea oil and gas industry, the potential application of BN-based methods can be extended to 

other domains, such as deep-sea mining and aquiculture that may utilize AUVs for routine 

submarine operations. 

2.3.3.2 Markov Chains 

A Markov chain is a widely-used stochastic model for reliability analysis (Lisnianski et al., 

2012). Here, a significant property should be noticed: finite discrete states of a system are 

considered in the Markov chain, and the state transition probability (STP) is only determined 

by the current state, rather than historical information. Therefore, the Markov chain is suitable 

for predicting the occurrence probability of a future state. 

In an AUV mission, a complete deployment process comprises sequential phases from the initial 

predive test to the final recovery, where varied risks pertain to different phases. For instance, 

higher risks are associated with the launch and recovery phases (Griffiths et al., 2007a). Given 

that a Markov chain can identify system states and quantify the STP of a sequence of operations, 

it serves as an ideal method for the risk analysis of AUV deployment. 

Former studies proposed a systematic Markov chain approach for modeling AUV risks in 

different phases and multiple scenarios (Brito and Griffiths, 2011; Griffiths and Brito, 2011). 

The developed Markov chain method consists of two steps. Firstly, a topological structure is 

established to present the sequential phases of AUV deployment. A total of 11 states are 

identified as shown in Fig. 2.9. The state descriptions and different risks which are involved in 
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each phase are summarized in Table 2.7. Secondly, the STP is determined by embedding the 

extended Kaplan-Meier survival statistics. Hence, with the integration of the Markov chain and 

survival statistics, the failure probability of each state and of the overall mission goal can be 

quantified. 

 

Fig. 2.9. Markov chain model capturing the sequential phases of the AUV deployment, 

adapted from (Brito and Griffiths, 2011). 

Table 2.7. State description and risk involved in each phase of AUV deployment, adapted 

from (Brito and Griffiths, 2011; Griffiths and Brito, 2011). 

State Number State Name State Description Risk Involved 

X1 Pretest state Fault identification and 

rectification 

- 

X2 Post-test state Ready to launch - 

X3 Overboard state Ready for predive checks Loss risk next to a 

deployment platform 

X4 Diving Proceed with the mission Uncontrolled dive, Loss 

risk 
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X5 Holding/test 

Pattern phase 

Test during the first dive Loss risk 

X6 Underway state Proceed with the mission Loss risk 

X7 Loss Temporary or permanent 

loss of the vehicle 

Loss risk 

X8 Recovery Recover the vehicle Loss risk, collision risk 

X9 Find Find the vehicle - 

X10 Salvage Salvage the vehicle Loss risk 

X11 Scrap Scrap the vehicle as being 

beyond economical repair 

- 

The application of the Markov chain in their studies proved its efficiency for the risk analysis 

of multiple phases of AUV deployment. The clear graphical structure facilitates the risk 

estimation of each state and the overall mission achievement. However, a simple assumption is 

made in this method: the AUV risk is quantified as a function of the traveled distance. As the 

mission formats become more complex and dynamic in unpredictable environments, especially 

with the interaction of multiple vehicle platforms, an extended study based on the Markov chain 

is required as a suitable solution to provide updating STP in future studies. 

2.3.3.3 System Dynamics 

The system dynamics (SD) method was proposed for the analysis of dynamic complex systems 

(Forrester, 1997). It is an objective-oriented deterministic approach to understand non-linear 

behaviors of the system in real-time by using internal feedback loops, stock and flow structures, 

and time delays (Eusgeld et al., 2011). The central concept of the SD method is that it uses 

feedback control to represent how the system structure responds to dynamic behaviors (Loh et 
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al., 2020c). Therefore, this method can effectively model both the dynamic nature and causal 

relationships among risk variables. 

For the AUV system, the SD method was firstly used to analyze the risk influenced by multiple 

AUV deployments (Brito and Griffiths, 2012). The risk mitigation efforts were analyzed 

focusing on human resource management. Although that study lacks a structured framework 

and validation of the proposed SD method, it proves the potential capabilities of the method 

applied for risk analysis in the AUV domain. Furthermore, a system-based SD framework was 

firstly proposed for analyzing the risk of AUV loss (Loh et al., 2020c). Presented as a structured 

framework, this study mainly examined the human error in Antarctic AUV programs and 

provided measures for risk mitigation. The strength of the SD method is well recognized in this 

study: complex causal relationships between risk factors can be modeled, and the dynamic 

nature of these variables can be captured effectively by the stock and flow structures. However, 

solely applying the SD model for risk analysis has its drawbacks. Risk is often viewed as 

derived from uncertainties, which features the risk with a multi-dimensional, dynamic, and 

fuzzy nature (Haimes, 2009). However, such uncertainties cannot be effectively addressed by 

the classic deterministic SD model. This limitation has promoted the recent development of 

integrating the SD method with fuzzy logic (Loh et al., 2020a; Loh et al., 2020b; Xu et al., 

2020). A resultant fuzzy system dynamics risk analysis (FuSDRA) method was proposed to 

achieve a more robust risk analysis for AUVs (Loh et al., 2020b). In the FuSDRA framework, 

the SD method can model the dynamic interrelationships among risk variables from different 

dimensions such as human and organizational factors, technical factors, and external 

commercial factors. At the same time, fuzzy logic is integrated to account for stochastic 
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uncertainties of risk variables and their dependencies. An extended study used the FuSDRA 

approach to explore the relationships between the experience of operators and the risk of AUV 

loss (Loh et al., 2020a). It was the first time that the FuSDRA method was utilized for in-depth 

risk analysis of human factors. In a more specific application, the FuSDRA method was applied 

to analyze how the government support and technological obsolescence could influence AUV 

loss (Xu et al., 2020).  

In conclusion, the hybrid FuSDRA approach leverages the strength while overcoming the 

constraints of both the SD method and fuzzy logic theory. Since it has been proved to be a 

powerful tool for risk estimation and decision making, it can be employed to offer more reliable 

measures of risk mitigation. 

2.4 Future challenges of risk analysis for AUV operations 

Based on the above analysis of past progress, section 2.4 identifies current research gaps and 

discusses future challenges in the domain of AUV risk analysis. 

2.4.1 Dynamic risk analysis for AUV operations 

In general, the dynamic risk of AUV deployment results from two factors. The first is the 

complexity of the AUV itself. The interaction between components and subsystems leads to 

complex functional dynamics. Secondly, AUVs usually operate in highly dynamic marine 

environments. Unsteady working conditions result in the dynamic nature that evolves with time 

and space. Thus, due to the dynamic nature, real-time risk analysis and decision making in 

uncertain underwater environments is challenging.  
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For now, the majority of risk analysis models applied to AUVs are traditional methods that have 

a static structure, which cannot capture dynamic uncertainties existing in the complex AUV 

system and the environment. Therefore, dynamic risk analysis (DRA) methods are required. 

DRA is defined as a method which is capable of updating the risk estimation dynamically. The 

key difference between the traditional risk analysis method and a DRA method is that DRA can 

monitor and assess abnormal conditions and update the overall risk level when new information 

is incorporated. In the AUV domain, tailored DRA methods are demanded to provide a 

dynamical way for risk estimation. Noticeably, effective and timely risk analysis is vital to 

predict an abnormal situation and prevent accidents. In particular, adopting DRA methods will 

help decision making based on the real-time situation, inform stakeholders to take early actions 

before incidents occur, and enable safer performances of AUVs operating in extreme 

environments 

2.4.2 Risk analysis for AUVs with limited historical data 

Historical data record fault information of AUV performances, which are the fundamental data 

required in many traditional risk analysis models (i.e., FTA, ETA, BN). Noticeably, historical 

data are essential for accurate risk estimation. However, in the early phase of employment of 

an AUV platform, fault data tend to be limited. In this case, the data basis for risk analysis 

models is insufficient, leading to the challenge of accurate risk estimation. 

To address the concern of limited historical data, combining expert knowledge can be adopted. 

Specifically, incorporating expert judgments into the risk analysis process can provide 

qualitative reasoning and handle the missing data. However, merely relying on experts may 
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lead to judgmental uncertainties, which indicates a need for more advanced methods to address 

the problem due to scarce data in future studies. Such advanced methods can compensate for 

missing data in a quantitative way and additionally use the data to predict in-situ risk estimation. 

Machine learning techniques have great potential to tackle data limitation problems. A number 

of studies have used machine learning algorithms to improve the quantification accuracy under 

scarce data conditions (Ramoni and Sebastiani, 2001; Rachman and Ratnayake, 2019), and 

provide valuable references to the AUV domain. Hence, machine learning based methods are 

effective tools for future research to reduce the dependence on historical data and expert 

judgments, and improve the accuracy and efficiency of risk estimation with incomplete data. 

2.4.3 Intelligent risk analysis for AUV operations 

Intelligent behaviors of an autonomous system are defined as onboard capabilities of decision-

making, mission planning and re-planning, and fault tolerance (Seto, 2012). With the 

development of AUV technologies, risk analysis of AUV operations is broadening to an 

intelligent scope (Bremnes et al., 2019). Intelligent risk analysis in the AUV domain refers to 

performing risk analysis and decision making by the vehicle itself instead of human operators. 

More specifically, intelligent risk analysis enables the vehicle to process real-time data, assess 

in-situ risk levels, adapt path planning and motion control strategies according to current risk 

scenarios, and thereby assist the vehicle to accomplish a mission autonomously without much 

human intervention. 

Most of the classic risk analysis methods applied in the AUV domain are based on the offline 

assessment before a mission. These methods aim to assist operators to estimate the current risk 



 

53 

level, take necessary risk mitigation measures, and adapt their mission plans accordingly. 

However, traditional offline risk analysis relying on humans tends to be time-consuming. Time 

delays caused by manual analysis processes will result in real-time risk scenarios that cannot 

be precisely identified. Delayed risk identification will successively compromise the accuracy 

of current risk estimation and reduce the effectiveness of subsequent decision making. This 

leads to the consideration of changing the way of risk analysis from human offline prediction 

to autonomous online risk analysis. 

Intelligent risk analysis can be a game-changer in future trends of risk analysis for autonomous 

vehicular systems. A potential solution is combining classic risk analysis models with machine 

learning techniques, and subsequently incorporating them into the online decision system. 

Currently, a number of studies have adopted machine learning methods to aid onboard risk 

analysis in the marine robotics domain (Hollinger et al., 2016; Xiang et al., 2017). The major 

advantage of machine learning algorithms is their self-learning capabilities to explore all 

possible interactions between non-linear input and output risk variables (Hegde and Rokseth, 

2020). High computational speed enables them to achieve real-time risk prediction with much 

higher efficiency than human operators. In addition, a wide variety of data are continuously 

generated from sensor platforms. Machine learning techniques can process various forms of 

these data, including numerical data, textual data, and image data. The combination of data 

information is used to assess in-situ environmental and operational conditions, and thus achieve 

more systematic and accurate risk estimation. Therefore, the online decision system can take 

reasonable actions based on the current risk state. To sum up, in order to improve the autonomy 

level of AUVs and increase the efficiency of risk analysis, intelligent risk analysis is expected 
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to be developed as an integral part of an AUV system. 

2.4.4 Risk analysis for multi-AUVs collaboration 

As the technology of AUVs gradually matures, the mission format of multi-AUVs is rapidly 

emerging (Harris et al., 2016). Multi-AUVs missions refer to the cooperative work of multiple 

AUVs to achieve a mission goal. As the mission format becomes more synergic, the multi-

AUVs system can cruise larger areas and complete more difficult tasks than a single vehicle. 

At the same time, as the multi-vehicles operations are more interactive and dynamic, 

operational risks will inevitably become more complex, and thus effective risk analysis is 

required. However, most of the current risk analysis research has concentrated on traditional 

single-vehicle missions and cannot represent the interactive risk associated with multiple 

platforms. Therefore, novel methods are required in future research to facilitate the risk analysis 

for multi-AUVs collaboration. 

When conducting risk analysis for a multi-AUVs scenario, the interactive impact among 

multiple vehicles is a key consideration. During the cooperation between multiple vehicles, 

reliable communication is needed for data updating and data transmission. This process requires 

consideration of the constraints of space and time for both vehicles within dynamic underwater 

environments whilst preventing collisions. On the other hand, the interaction between vehicles 

can influence the risk associated with vehicles. For example, if failures occur in the navigation 

system and the vehicle takes incorrect headings, the likelihood of colliding with nearby vehicles 

can be increased. Therefore, future studies of risk analysis for multi-AUVs collaboration should 

ensure cooperative efficiency whist improve the safety performance of involved platforms. 
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2.5 Summary and conclusion 

The main objective of this chapter is to provide a systematic review of past progress of risk 

analysis research for AUV operations. This review answers key questions including 

fundamental concepts and evolving methods in the domain of risk analysis for AUVs, and it 

highlights future research trends to bridge existing gaps. The scope of this chapter is restricted 

to the research questions. Based on the aim and scope of this chapter, a total of forty-two articles 

with significant relevance to AUV-related risk analysis were retrieved. The underlying risk 

factors identified from selected literature are summarized into three categories: technical factors, 

environmental factors, and human factors. A comparative analysis was undertaken to provide a 

clear picture of the evolution process, advantages, and limitations of adopted risk analysis 

methods from qualitative, semi-quantitative, and quantitative aspects. Current research gaps 

and future challenges in this domain were briefly outlined. 

In light of the review and analysis, three key conclusions can be drawn from this chapter. Firstly, 

systematic identification of risk factors and their causal relationships is vital for further risk 

analysis. Most of the early research focused on technical factors of AUVs, relying on historical 

performance data. Whereas in current trends, environmental factors, human factors, and their 

interactive impacts are increasingly receiving attention. Secondly, it is evident that quantitative 

methods have been rapidly implemented in recent years to enhance the accuracy and handle the 

uncertainties of risk analysis of AUVs. However, former studies still heavily rely on expert 

knowledge, which may introduce judgmental bias. Lastly, future challenges for risk analysis for 

AUVs may focus on addressing dynamic risk analysis, scarce historical data, intelligent risk 
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analysis, and multi-vehicles risk analysis. 
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Chapter 3. A Copula-based Method of Risk Prediction for 

Autonomous Underwater Gliders in Dynamic Environments 

Preface  

A version of this chapter has been published as: Chen X, Bose N, Brito M, et al. A copula-

based method of risk prediction for autonomous underwater gliders in dynamic environments 

[J]. Risk Analysis, 2023. https://doi.org/10.1111/risa.14149. I am the primary author along 

with the Co-authors, Neil Bose, Mario Brito, Faisal Khan, and Ting Zou. I developed the 

conceptual framework for a copula-based method of risk prediction for autonomous 

underwater gliders in dynamic environments. I prepared the first draft of the manuscript and 

subsequently revised the manuscript based on the co-authors’ and peer review feedbacks. Co-

authors Neil Bose, Mario Brito, and Faisal Khan provided support in implementing the concept 

development, reviewing, and revising the manuscript. Co-authors Ting Zou provided assistance 

in reviewing and correcting the results. The co-authors also contributed to the review and 

revision of the manuscript.  

Abstract: Based on the literature review results, this chapter aims to achieve the second 

research sub-objective, that is to provide a risk analysis model for risk prediction for AUVs in 

various environmental conditions. This chapter considers a certain type of AUVs, namely, 

autonomous underwater gliders (AUGs). AUGs are effective platforms for oceanic research and 

environmental monitoring. However, complex underwater environments with uncertainties 

could pose the risk of vehicle loss during their missions. It is therefore essential to conduct risk 

prediction to assist decision making for safer operations. The main limitation of current studies 

https://doi.org/10.1111/risa.14149
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for AUGs is lacking a tailored method for risk analysis considering both dynamic environments 

and potential functional failures of the vehicle. Hence, this chapter proposed a copula-based 

approach for evaluating the risk of AUG loss in dynamic underwater environments. The 

developed copula Bayesian network (CBN) integrated copula functions into a traditional 

Bayesian belief network (BBN), aiming to handle non-linear dependencies among 

environmental variables and inherent technical failures. Specifically, potential risk factors with 

causal effects were captured using the BBN. A Gaussian copula was then employed to measure 

correlated dependencies among identified risk factors. Furthermore, the dependence analysis 

and CBN inference were performed to assess the risk level of vehicle loss given various 

environmental observations. The effectiveness of the proposed method was demonstrated in a 

case study, which considered deploying a Slocum G1 Glider in a real water region. Risk 

mitigation measures were provided based on key findings. This chapter potentially contributes 

a tailored tool of risk prediction for AUGs in dynamic environments, which can enhance the 

safety performance of AUGs and assist in risk mitigation for decision makers. 

3.1 Introduction 

Autonomous underwater gliders (AUGs) are a type of autonomous underwater vehicles (AUVs), 

which are characterized by long endurance, slow speed, low energy consumption, and a wide 

survey range (Wang et al., 2021b; Wang et al., 2022b). They are buoyancy driven vehicles 

without any thruster, which can move vertically and horizontally with fixed wings, and thereby 

achieve a sawtooth pathway in the water column (Webb et al., 2001; Hwang et al., 2019). 

Currently, AUGs have been widely used in various oceanic observations such as oceanography 
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sampling (Rudnick et al., 2022), ecosystem investigation (Reiss et al., 2021), oil spill detection 

(Dhont et al., 2019), underwater pipeline integrity monitoring (Zhang et al., 2021), and so on. 

AUGs can operate in multiple types of underwater environments, such as under open water, 

under sea ice or ice shelves, and near coastal areas (Brito et al., 2008). However, complex 

underwater conditions and the long cruise endurance of AUGs could expose them to the risk of 

loss. Therefore, effective risk prediction and risk mitigation are significant to enhance the safety 

performance of AUGs. 

In the general domain of AUVs, considerable studies for risk analyses have been conducted to 

assist decision making and ensure their safer operations. A systematic review of typical methods 

for risk analyses of AUV operations was presented in (Chen et al., 2021b), covering both 

qualitative, semi-quantitative, and quantitative perspectives. However, different types of AUVs 

operate with various characteristics. For example, buoyancy-driven AUGs are more easily 

impacted by underwater currents and water depths compared to propeller-driven AUVs with a 

thruster (Fan and Woolsey, 2014; Loh et al., 2019). This implies that the potential risk factors 

leading to vehicle loss could differ widely given inherent features of different vehicle types. 

Hence, how to accurately identify the specific risk factors and propose a tailored risk analysis 

method for a certain type of AUVs remains to be addressed. 

Recently, a number of studies have investigated risk analysis methods particularly for AUGs. 

Merckelbach (Merckelbach, 2013b) proposed a probabilistic model to analyze AUG loss due 

to a collision with a ship. Results proved that the probability of a collision between an AUG 

and a ship is proportional to the ship density in a mission region. Ship density is an indicator of 
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the complexity of ship traffic, and it represents the number of ships in a given area. Pereira et 

al. (Pereira et al., 2013) developed a risk-aware path planner based on ocean current predictions, 

aiming to minimize the risk of collision between an AUG and underwater obstacles. Brito et al. 

(Brito et al., 2014a) summarized potential failure modes of AUGs based on 205 glider missions, 

where the leak problem, power failure, buoyancy pump failure, and collisions were observed 

as the most common failure modes of AUGs. Aslansefat et al. (Aslansefat et al., 2014b) utilized 

a fault tree method to conduct the risk assessment for AUG subsystems. The constructed fault 

tree enables designers to diagnose AUGs’ faults and their effects on subsystems’ functionality. 

Anderlini et al. (Anderlini et al., 2021) developed a remote fault detection system for Slocum 

gliders, which can diagnose a range of anomalies, such as wing loss, in near real time to improve 

safety performance. However, some limitations are observed in past research. Firstly, for an 

AUG operating in complex underwater conditions, multiple environmental factors could 

interact with each other to cause a technical failure and even further lead to vehicle loss. So far, 

limited studies have systematically identified potential environmental factors, internal 

functional failures, and their causal relationships to vehicle loss. Secondly, as a result of their 

long endurance, AUGs could experience different environmental conditions during a mission. 

Hence, compared to other types of AUVs, it is essential to apply a dynamic risk model for 

AUGs to capture the non-linear dependencies among multivariate risk factors, whilst 

continuously predicting the risk of vehicle loss given changing environmental observations. 

A Bayesian belief network (BBN) is a robust method for risk analyses. It is powerful in 

capturing dependencies among risk variables in a probabilistic way, and thereby it is suitable 

for complex multi-variable systems (Yuan et al., 2015; Cai and Golay, 2022). Over the years, 
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BBN has been widely applied for risk analyses in the AUV domain. Former applications of the 

BBN model mainly include estimating the risk of AUV loss (Brito and Griffiths, 2016; Bremnes 

et al., 2019; Yang et al., 2020) and monitoring the mission abort (Thieme et al., 2015b; Brito 

and Griffiths, 2018; Hegde et al., 2018). There are several advantages of using the BBN to assist 

risk analyses. Firstly, a topology structure of the BBN can clearly present the causal 

relationships among multiple risk variables. Secondly, with the predict inference and diagnose 

inference, BBN can achieve updating risk estimation given new observations, and this feature 

is particularly beneficial for an AUV system that operates in a dynamic underwater environment. 

In addition, despite a lack of historical accident data of the vehicle, BBN can provide 

quantitative risk prediction by incorporating expert knowledge, and therefore it well handles 

the uncertainties (Brito et al., 2022). However, despite the wide applications, limitations of the 

BBN are identified as follows: Most of the former studies applying the BBN for AUVs have 

used deterministic point-based probabilities rather than a continuous distribution, which could 

introduce uncertainties in probability estimations. In addition, conditional probability tables 

have been applied to measure the dependence degree among network nodes. However, 

constructing conditional probability tables could become considerably complex as the number 

of network nodes increases. Meanwhile, simply using conditional probability tables to describe 

the dependence structure is limited for modeling non-linear relationships among nodes. 

In order to address the restrictions of the BBN model, Elidan (Elidan, 2010a) proposed a novel 

copula Bayesian network (CBN) by combining copula functions with a traditional BBN model. 

The copula function is a powerful tool to build joint distributions of multivariate variables with 

various marginals, which specializes in modeling non-linear dependencies (Bedford et al., 2016; 
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Bai and Lam, 2022). Therefore, the integrated CBN model can inherit strengths from both the 

copula functions in measuring multivariate dependencies and the BBN model in capturing 

causal relationships among random variables (Wang et al., 2016). A number of studies have 

applied the CBN model to conduct risk analyses for different multivariate systems. For instance, 

Hashemi et al. (Hashemi et al., 2019) and Guo et al. (Guo et al., 2019) used the CBN for 

multivariate safety analysis of process systems. They demonstrated the superiority of a CBN 

structure compared with a traditional BBN model. Zilko et al. (Zilko et al., 2016) utilized the 

CBN model to predict the lengths of railway disruptions, validating high computational 

efficiency of the CBN. Pan et al. (Pan et al., 2019) developed a hybrid CBN-based approach to 

model the structural health of an operational metro tunnel, which proved that the CBN is 

beneficial for real-time risk assessment. Sun et al. (Sun et al., 2021a) performed a reliability 

analysis for complex electronic systems using the CBN, realizing the dependent failure 

modeling of modules and components. Chen et al. (Chen et al., 2021a) applied the CBN to 

analyze the causality of a risky driving maneuver, which provided crash risk evaluation and 

assisted decision-making for traffic safety. 

The objective of this chapter is to propose a CBN-based approach for risk prediction of AUGs 

in dynamic underwater environments. Both open water and coastal water environments are 

considered in this chapter, while conditions of under ice or under ice shelves are not within the 

scope. The developed CBN model aims to capture non-linear environmental impacts on the 

functional failures of AUGs, thereby estimating the risk of vehicle loss given various 

environmental conditions. The contribution of this research is twofold. Firstly, the proposed 

method is tailored for AUGs. It captures the synergies between AUGs’ inherent functional 
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failures and influential environmental factors, whilst considering the dynamic nature and non-

linear dependencies among their relationships. The predicted risk profile can assist further 

decision making and risk mitigation during real AUG missions. Secondly, this chapter not only 

adds details to risk analysis for AUGs, but also extends the application of the CBN model into 

a broader AUV domain. The present model is not restricted to an AUG system but can be 

flexibly adapted to other AUV platforms by incorporating the vehicle’s specifications to 

enhance safety performance. 

The structure of this chapter is organized as follows. In Section 3.2, the background on the BBN 

model, the copula theory, and the CBN model is introduced. Section 3.3 describes the detailed 

process of the proposed CBN model, which mainly contains the CBN model development and 

the CBN model analysis. Section 3.4 provides a case study for applications of the proposed 

method, considering a Slocum G1 Glider operating in a real water region. Section 3.5 discusses 

the benefits, limitations, and future works of this chapter. Key findings are concluded in Section 

3.6. 

3.2 Theoretical background 

3.2.1 Bayesian Belief Network 

A BBN is defined as a directed acyclic graph (DAG) associated with a joint probability 

distribution, where the causal dependencies among variables can be captured by conditional 

probabilities (Pearl, 1986; Zarei et al., 2022). For a set of random variables 𝑋 = (𝑥!, 𝑥", … , 𝑥#), 

the joint probability distribution of 𝑋 can be calculated according to the chain rule of Bayes 



 

64 

theorem in Eq. (3-1). 

𝑃(𝑥!, 𝑥", … , 𝑥#) =+𝑃,𝑥$-𝑥$%&'.
#

$(!

 (3-1) 

where 𝑛 is the number of variables, 𝑥$%&'  is the parent node of 𝑥$ , and 𝑃,𝑥$-𝑥$%&'. is a 

conditional probability distribution. 

3.2.2 Copula theory 

Copula is a function that constructs the multivariate joint cumulative distribution of random 

variables which have various marginal distributions (Nelsen, 2006). Based on Sklar’s theorem 

(Sklar, 1959), any multivariate joint distribution can be represented as a copula function of its 

marginals. Accordingly, let 𝒙 = (𝑥!, 𝑥", … , 𝑥#)  be a finite set of random variables, and 

therefore the multivariate joint distribution function 𝐹(𝑥!, 𝑥", … , 𝑥#) can be expressed as: 

𝐹(𝑥!, 𝑥", … , 𝑥#) = 𝐶,𝐹!(𝑥!), 𝐹"(𝑥"), … , 𝐹#(𝑥#). (3-2) 

where 𝐶(∙) indicates a copula function and 𝐹$(𝑥$) denotes the marginal distribution function 

of each variable. Assuming that the joint distribution function 𝐹(𝑥!, 𝑥", … , 𝑥#) has n-order 

partial derivatives, the joint density function can be obtained following the chain rule: 

𝑓(𝒙) =
𝜕#𝐶,𝐹!(𝑥!), 𝐹"(𝑥"), … , 𝐹#(𝑥#).
𝜕𝐹!(𝑥!)𝜕𝐹"(𝑥")…𝜕𝐹#(𝑥#)

+𝑓(𝑥$)
#

$(!

 

					= 𝑐,𝐹!(𝑥!), 𝐹"(𝑥"), … , 𝐹#(𝑥#).+𝑓(𝑥$)
#

$(!

 

(3-3) 
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where 𝑐,𝐹!(𝑥!), 𝐹"(𝑥"), … , 𝐹#(𝑥#). represents the copula density function, and Eq. (3-3) can 

be used to construct a joint density function of multivariate variables. 

3.2.3 Copula Bayesian Network (CBN) 

Based on the copula theory, a CBN model is proposed by incorporating the copula function into 

a traditional BBN network (Amin et al., 2021). As a BBN model mainly uses conditional 

probabilities, similarly, the foundation of a CBN model is the conditional density function. Let 

𝑓(𝑥|𝒚) , with 𝒚 = (𝑦!, 𝑦", … , 𝑦)) , be a conditional density function, and let 𝑓(𝑥)  be the 

marginal density function of variable x. Then, a copula density function 

𝑐,𝐹(𝑥), 𝐹(𝑦!), 𝐹(𝑦")… , 𝐹(𝑦)). can be specified that satisfies the following equation: 

𝑓(𝑥|𝒚) = 𝑅*,𝐹(𝑥), 𝐹(𝑦!), 𝐹(𝑦"), … , 𝐹(𝑦)).𝑓(𝑥) (3-4) 

where 𝑅*(∙) is a scale factor which can be expressed as: 

𝑅*(∙) =
𝑐,𝐹(𝑥), 𝐹(𝑦!), 𝐹(𝑦"), … , 𝐹(𝑦)).
𝜕)𝐶,1, 𝐹(𝑦!), 𝐹(𝑦"), … , 𝐹(𝑦)).

𝜕𝐹(𝑦!)𝜕𝐹(𝑦")…𝜕𝐹(𝑦))

 (3-5) 

According to Eq. (3-4) and Eq. (3-5), any copula density function 𝑐(∙), together with a marginal 

density function 𝑓(𝑥), can be combined to construct a conditional density function 𝑓(𝑥|𝒚). 

The detailed proof can be seen in Elidan’s work (Elidan, 2010a). 

3.3 Methodology 

The proposed CBN model for risk prediction of AUGs in dynamic environments includes two 
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major steps, as shown in Fig. 3.1. The first step develops the CBN structure, and the second 

step conducts the CBN model analysis. Details of each step are elaborated in the following 

subsections. 

 

Fig. 3.1. Flowchart of the proposed CBN model. 

3.3.1 CBN model development 

In general, the development process of a CBN model mainly includes the identification of 

network nodes, the development of the network topology, and copula learning. 

3.3.1.1 Identification of network nodes 

The first step to construct a CBN model is the identification of network nodes. Three types of 

nodes are considered in this chapter, namely, root nodes, intermediate nodes, and leaf nodes. 
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The description of different network nodes is defined in Table 3.1. 

Table 3.1. Three types of CBN nodes. 

Node Type Description Example 

Root node Root causes that influence a system fault 
Abnormal environmental 

conditions 

Intermediate 

node 

System faults that influence an 

undesirable event 

Functional failures of 

AUGs 

Leaf node Undesirable abnormal events AUG loss 

3.3.1.2 Network topology development 

The process of converting a BBN into a CBN structure is shown in Fig. 3.2. The BBN model 

is a graphical structure to present the causal relationships among network nodes. Similarly, the 

topology of a CBN model remains the same as the corresponding BBN structure (Hashemi et 

al., 2016). However, in contrast to a BBN that uses conditional probability tables, a CBN model 

adopts local copula functions to capture the dependency among system nodes. In addition, 

another key difference between these two models lies in that a CBN model replaces the prior 

probabilities of BBN nodes with marginal probability distributions.  
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Fig. 3.2. Mapping a BBN into a CBN structure. 

3.3.1.3 Copula learning 

Copula learning of a CBN model mainly involves two steps. The proper marginal distributions 

of each network node can be firstly identified. Then, a suitable copula function modelling the 

dependencies among nodes should be determined. 

3.3.1.3.1 Determine marginal distributions 

Marginal distributions should be properly assigned for each network node. Different types of 

marginal distributions are not constrained by the CBN model. In this chapter, three widely used 

marginal distributions are selected to show the flexibility of the CBN model, namely normal, 

log-normal, and Beta distributions, which are summarized in Table 3.2. 

Table 3.2. Three candidate marginal distributions. 

Distribution Probability Density Function Mean Variance 

Normal 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝-−

(𝑥 − 𝜇)!

2𝛿! 1 𝜇 𝛿! 

Log-normal 𝑓(𝑥) =
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝-−

(𝑙𝑛𝑥 − 𝜇)!

2𝛿! 1 𝑒𝑥𝑝	(𝜇 +
𝛿!

2 ) 
(𝑒𝑥𝑝(𝛿!) − 1)𝑒𝑥𝑝	(2𝜇 + 𝛿!) 

Root/Intermediate/Leaf
nodes

Root/Intermediate/Leaf
nodes

Probability of nodes Marginal probability 
density of nodes

Conditional probability 
tables Local copula functionsStep 3

Dependence Mapping

BBN CBN

Step 1
Nodes Mapping

Step 2
Marginal Estimation
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Beta 𝑓(𝑥; 𝛼, 𝛽) =
𝑥"#$

𝐵(𝛼, 𝛽) (1 − 𝑥)
%#$ 

𝛼
𝛼 + 𝛽 𝛼𝛽

(𝛼 + 𝛽)!(𝛼 + 𝛽 + 1) 

3.3.1.3.2 Select the copula function 

A Copula function is important to describe the dependency degree among CBN nodes, while 

different copula functions are varied in dependency characteristics (i.e., symmetry, tail 

dependence, and so on) (Pan et al., 2021). The Gaussian copula is a widely used symmetric 

copula, which is powerful in handling multi-variable problems (Sun et al., 2021b). The density 

function of the Gaussian copula is expressed as follows: 

𝑐+,&-..(𝑥!, 𝑥", … , 𝑥#; 𝜌) = |𝜌|/
!
"𝑒𝑥𝑝 A−

1
2 𝜁
(𝜌/! − 𝐼)𝜁0F (3-6) 

where 𝜁 = ,𝛷/!(𝑥!), 𝛷/!(𝑥"), … , 𝛷/!(𝑥#). , 𝛷/!  is an inverse function of the standard 

univariate normal cumulative distribution function, 𝜁0 	is the transpose of the matrix 𝜁 , 𝐼 

denotes the identity matrix, and 𝜌 represents the matrix of correlation coefficients among 

nodes. The correlation coefficient in 𝜌 measures the dependency degree between a pair of 

nodes, which is in the range of [-1, 1]. Specifically, two nodes are closely correlated when the 

absolute value of the correlation coefficient closes to 1. Oppositely, two nodes are mutually 

independent when the absolute value of the correlation coefficient closes to 0. 

According to its definition, the Gaussian copula has n-dimensional generalizations, which can 

effectively capture the dependency degree among complex multi-variables. Thus, the Gaussian 

copula is applied in this chapter to construct the copula density function of the CBN model. 
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3.3.2 CBN model analysis 

CBN model analysis is critical for exploring the dependency relationships among network 

nodes and assisting decision making. It mainly includes the dependence analysis, predict 

inference, and diagnose inference. 

3.3.2.1 Dependence analysis 

Dependence analysis can measure the dependence degree of a pair of variables, implying how 

two variables could change together. Key variables can be identified through the dependence 

analysis. Such variables normally have stronger impacts on the occurrence of an accident, and 

therefore they require more attention in risk mitigation and safety control. In this chapter, the 

dependence analysis was conducted based on the correlation coefficients, which were defined 

based on domain experts’ knowledge. 

3.3.2.2 Predict inference 

Predict inference aims to predict the probability distribution of an accidental event given 

observation of involved risk variables. As mentioned in Section 3.2, a CBN model can be 

applied to perform network inference by using the conditional density function. Assuming that 

𝐴 denotes an accidental event, 𝑺 represents a series of influential risk variables. According to 

Eq. (3-4), the predict inference analysis of CBN can be specified as: 

𝑓(𝐴|𝑺) = 𝑅*,𝐹(𝐴), 𝐹(𝑆!), 𝐹(𝑆")… , 𝐹(𝑆)).𝑓(𝐴) (3-7) 

where 𝑓(𝐴|𝑺) presents the posterior probability of the event 𝐴  given the observation of 
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certain risk variables 𝑺, 𝑓(𝐴) is the prior marginal probability distribution of the accident, 

and 𝑅*(∙) is the conditional copula density function that was defined in Eq. (3-5). Thus, the 

predict inference using Eq. (3-7) can achieve an updated probability of an accident based on 

new observations of risk variables. 

3.3.2.3 Diagnose inference 

Conversely, diagnose inference can estimate the posterior probability distribution of each risk 

variable given certain evidence of an accidental event, aiming to diagnose the most influential 

factor. The diagnose inference can be conducted according to Eq. (3-8). The variation between 

the prior distribution and the posterior distribution of a variable indicates its contribution to the 

observed accident, and greater variation implies larger criticality for this variable. In order to 

validate the diagnose inference of the proposed CBN model, a sensitivity analysis was 

conducted in Section 3.4.2.3. 

𝑓(𝑆$|𝐴) = 𝑅*,𝐹(𝑆$), 𝐹(𝐴).𝑓(𝑆$) (3-8) 

where 𝑓(𝑆$|𝐴)  indicates the occurrence probability of the 𝑖 -th risk factor given certain 

evidence of the accident 𝐴. 

3.4 Case study 

To validate the effectiveness of the proposed CBN model, a case study was conducted by 

evaluating the risk level of a Slocum G1 Glider that deploys in a real open water region. The 

basic specification of a Slocum G1 Glider is summarized in Table 3.3. In this case study, firstly 
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potential risk factors causing vehicle loss were identified, which further assisted in constructing 

the CBN model. Then, the developed CBN model was utilized for dependence analysis, predict 

inference, and diagnose inference, respectively. Two risk scenarios considering AUG missions 

with dynamic time and space were separately analyzed. Accordingly, relative measures for risk 

mitigation were suggested in the case study. 

Table 3.2. The specification of the Slocum G1 Glider (Wang et al., 2021c). 

Parameter Value 

Weight in air ~52 Kg 

Displacement 52 L 

Depth Range 4-200 m 

Speed 0.4 m/s horizontal 

Range 1500 km 

3.4.1 CBN model development 

The CBN model was developed in this case study. Risk variables regarding AUG loss were 

systematically identified. Then, the BBN topology was presented to show their causal 

relationships. Copula learning was finally conducted to characterize network nodes and 

determine copula functions. 

3.4.1.1 Identification of risk variables 

As a premise to establish a CBN model, it is necessary to identify risk variables given AUG’s 

inherent characteristics. Based on technical documents and domain experts’ knowledge, seven 
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environmental factors (E1-E7) and six functional failures (F1-F6) of an AUG system were 

extracted to describe AUG loss (T). To create the cause-effect links in the CBN model, 

environmental factors (E1-E7), functional failures (F1-F6), and AUG loss (T) were considered 

as root nodes, intermediate nodes, and the leaf node, respectively. The description of different 

nodes is provided in Table 3.4. To gain a better understanding of the mechanism that how the 

risk variables interact with each other, causal relationships among these nodes were elaborated 

as follows. 

Table 3.4. Description of CBN nodes. 

Node Description Node Description 

E1 Low temperature (°C) F1 Integrity failure 

E2 Large water depth (m) F2 Power degradation 

E3 Large ship density 

(routes/0.08km²/year) 
F3 Invisibility 

E4 High wave height (m) F4 Collision 

E5 Close to the seabed (m) F5 Buoyancy control failure 

E6 Large water density gradient (kg/m3) F6 Path deviation 

E7 Large current speed (m/s) T Glider loss 

3.4.1.1.1 Integrity failure (F1) 

Integrity failure refers to a leak where water enters the pressure vessel of an AUG, which is a 

key failure mode leading to AUG loss. An early study analyzed 63 AUG incidents from a total 

of 205 missions (Brito et al., 2014a). Results showed that among the identified 19 failure modes 

of AUGs, integrity failure was ranked as the top common failure mode. In general, integrity 

failure can be caused by low ambient temperature (E1) and large water depth (E2). 
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Low ambient temperature (E1), especially in polar regions, can cause large temperature 

gradients between the air and the water column. Consequently, the vehicle or components may 

suffer integrity failure and leakage (Ferguson, 2008). For instance, a CTD sensor may suffer 

cracks at low ambient temperature, and seawater could therefore penetrate and freeze inside, 

eventually causing a sensor failure (Kaminski et al., 2010). Water depth (E2) also influences 

AUG’s integrity. A robust hull structure is required for the vehicle to resist external water 

pressure and protect internal electronics (Rudnick et al., 2004a). Since a larger water depth 

tends to generate higher water pressure, and such an exterior load will cause an adverse impact 

on the stability of the hull structure. Therefore, the large water depth will cause an AUG to 

suffer a higher risk of integrity failure. 

3.4.1.1.2 Power failure (F2) 

The amount of stored energy on an AUG affects its mission length and duration. Former studies 

have proved that more than 50% of AUV loss accidents were related to a power failure (Meng 

and Qingyu, 2010; Yu et al., 2017). Power failure is mainly affected by three influential factors, 

namely, low ambient temperature (E1), large water depth (E2), and a large water density 

gradient (E6). 

Low ambient temperature (E1) can cause the energy degradation of batteries. The battery 

capacity may drop significantly especially when the ambient temperature is below -20℃ 

(Bandhauer et al., 2011). As a result, poor battery performance could further lead to premature 

energy depletion and a mission abort. In addition, since most of the available energy (~70%) is 

consumed to provide buoyancy across the pycnocline, the water depth of diving (E2) and the 
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water density gradient (E6) are also critical factors influencing energy consumption (Meyer, 

2016). Therefore, for an AUG, lower energy consumptions require deep dives in areas with low 

water density gradients. 

3.4.1.1.3 Invisibility (F3) 

Invisibility is mainly influenced by large ship density (E3) and high surface waves (E4). 

Intuitively, a large number of ships and high surface waves will cause poor visibility, especially 

in a recovery phase or a fail-safe phase of an AUG mission. They could cause difficulties for 

operators to find the vehicle when it is floating to the surface, and thereby the vehicle could be 

lost. 

3.4.1.1.4 Collision (F4) 

A collision accident includes colliding with ships, the seabed, and other underwater obstacles, 

which is a key contributor to the damage or loss of an AUG. The major factors causing collisions 

consist of large ship density (E3), close to the seabed (E5), and large current speeds (E7). 

Operating in the surface regions could pose AUGs to the risk of collision with ships. A former 

study proved that the probability of collision between ships and AUGs is proportional to the 

shipping density in the mission region (Merckelbach, 2013b). Hence, operating the AUG in 

low-traffic regions would minimize the collision risk with ships. Colliding with the seafloor 

will potentially cause a hull leak, a broken antenna, a breakage in the external bladder, or a 

buoyancy engine problem. Since AUGs move at a relatively slow speed, fortunately, colliding 

with the seafloor could not cause extensive damages to AUGs unless the environment is 
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energetic (e.g., strong near-bottom currents or dynamic underwater obstacles). Current speed 

could be another influential factor to the risk of collision. Low-speed AUGs could experience 

motion problems when the current speed exceeds its maximum forward speed (Claus et al., 

2010). Consequently, the AUG might drift into shipping lanes or near-bottom water regions, 

causing collisions with ships, the seafloor, or other underwater obstacles. 

3.4.1.1.5 Buoyancy control failure (F5) 

Buoyancy control is a crucial function of AUGs. A buoyancy control failure could be a fatal 

contributor to AUG loss, which mainly has two influential factors, namely, large water density 

gradient (E6) and large water depth (E2).  

A large water density gradient (E6) has a critical impact on buoyancy control. Generally, AUGs 

can control their buoyancy either by filling an external bladder or by pushing seawater in or out 

of an internal reservoir (Griffiths et al., 2007b). However, in some water regions (e.g., regions 

near melting glaciers), the seawater density can change significantly due to salinity dilution. As 

a result, decreasing water density will require more buoyancy for the vehicle’s rising motion. 

In this case, once the required buoyancy exceeds the compensating buoyancy provided by 

external bladders, a buoyancy control failure will occur. Consequently, the vehicle may be 

trapped in a neutrally buoyant layer and fail to return to the surface. Therefore, AUGs should 

be employed in regions with lower water density gradients to prevent buoyancy control 

problems. The buoyancy control of AUGs is also influenced by the large water depth (E2). In 

fact, both volumes of the external bladders and the pressure hull would become smaller with an 

increasing water depth (Yang et al., 2017b). Such deformation of the vehicle decreases 
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buoyancy. If the vehicle cannot handle this decreasing buoyancy, it would also suffer buoyancy 

control failure. 

3.4.1.1.6 Path deviation (F6) 

High wave height (E4) and large current speed (E7) can affect the motion of an AUG by 

deviating the vehicle from its desired path. 

High wave height (E4) could cause irregular external disturbances for the vehicle. For example, 

wave-induced forces can drag the vehicle toward the surface, and deviate it from its desired 

path (Fossen, 2012). Former research has shown that a higher wave height has a greater impact 

on the AUG’s motion (Ullah et al., 2020a); specifically, when the wave height exceeds 1.5 m, 

the trajectory and pitch angle performance of a vehicle can be significantly affected. In addition, 

since AUGs are relatively slow-moving vehicles with a typical velocity below 0.5 m/s, they 

also tend to be easily influenced by large current speed (E7) (Petillo and Schmidt, 2012). A 

previous study has shown that an AUG could suffer difficulties in flying against currents that 

exceed 0.3 m/s (Bachmayer et al., 2006). Hence, strong currents may deviate an AUG from a 

planned path significantly, and as a result, the vehicle may not reach its target position, or even 

worse, could be lost. 

3.4.1.2 Network topology development 

Based on the above analysis, a BBN model was initially developed as shown in Fig. 3.3, which 

presents the relationships among environmental parameters (E1-E7), potential functional 

failures (F1-F6), and AUG loss (T). Conditional probability tables should be assigned among 
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BBN nodes. For simplicity, in this chapter, the assigned conditional probability employed a 

logical OR-gate, where values 1 and 0 represent the occurrence or non-occurrence of associated 

events respectively. According to Table V, the values of environmental nodes were divided into 

three levels: low, medium, and high, representing their severity degrees. The prior probability 

of each node was also provided in Table V. Ideally, the prior probability data should be obtained 

based on historical field data, technical documents, and statistical data. However, due to a lack 

of associated data, this chapter used the probability data based on domain expert knowledge 

and prior engineering experience. Considering the riskiest scenario according to Table 3.5, 

namely, all environmental nodes were at a high level, the occurrence probability of functional 

failure nodes (F1-F6) and AUG loss (T) can be predicted by applying Bayes’ theorem in Eq. (3-

1). The results were shown in Table 3.6. Different degrees of the probability value of AUG loss 

are defined in Table VII. It can be seen that when all environmental variables were at a high 

level, both predicted probabilities of functional failure nodes and AUG loss reached a 

“significantly high” level, which should be reduced by risk mitigation measures. 

 

Fig. 3.3. The developed BBN topology. 

Table 3.5. Value ranges and prior probability data of environmental nodes. 
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Node Value Level Value Range Probability 

E1 

low 0-higher 0.0001 

Medium (-10)-0 0.0011 

High below (-10) 0.34 

E2 

low 0-50 0.0001 

Medium 50-150 0.0012 

High 150-higher 0.35 

E3 

low 0-30 0.0002 

Medium 30-100 0.0013 

High 100-higher 0.36 

E4 

low 0-0.6 0.0002 

Medium 0.6-1.2 0.0012 

High 1.2-higher 0.38 

E5 

low 10-higher 0.0001 

Medium 5-10 0.0011 

High 0-5 0.36 

E6 

low 0-4 0.0001 

Medium 4-8 0.0018 

High 8-higher 0.37 

E7 
low 0-0.15 0.0002 

Medium 0.15-0.3 0.0017 
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High 0.3-higher 0.39 

Table 3.6. Predicted probability data of functional failures and glider loss, considering 

the riskiest scenario where all environmental nodes are at a high level. 

Node Probability 

F1 0.57 

F2 0.73 

F3 0.60 

F4 0.75 

F5 0.59 

F6 0.62 

T 0.96 

Table 3-7. Degrees of the occurrence probability of glider loss. 

Degree of occurrence probability Value range 

Significantly high 10-1 - 1 

High 10-2 -10-1 

Moderate 10-3 -10-2 

Low <10-3 

The topology structure of the CBN model was transformed from the BBN model, as shown in 

Fig. 3.4, where C1-C7 represents local copula conditional density functions. In Fig. 3.4, 

similarly to the developed BBN in Fig. 3.3, causal relationships among nodes were identified, 

whereas the local copula functions assisted in modeling the dependence structure among nodes. 
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Fig. 3.4. The developed CBN model. 

3.4.1.3 Copula learning 

As described in Section 3.3.1.3, the process of copula learning includes determining marginal 

distributions to characterize each node and selecting local copula functions to describe the 

dependence relationships among nodes. 

3.4.1.3.1 Determine marginal distributions 

The marginal distribution of each environmental variable (E1-E7) was considered to follow 

three commonly used distributions (i.e., Normal, Log-normal, and Beta distributions) to test the 

flexibility of the CBN model. Table 3.8 summarizes the marginal distribution of each node. The 

principle of determining the parameters of each distribution is that the mean value of each 

distribution equals the probability of the associated node that was defined in Table 3.5, whereas 

an exact method for estimating each marginal distribution is not within the scope of this chapter. 

Table 3.8. Probability distributions of environmental nodes (E1-E7) in the CBN model. 
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Node Value Level Marginal distribution Parameters 

E1 

low Normal 𝜇=0.0001, 

𝜎=0.00001 

Medium  𝜇=0.0011, 

𝜎=0.0003 

High  𝜇=0.34, 𝜎=0.10 

E2 

low Log-Normal 𝜇=-9.22, 𝜎=0.10 

Medium  𝜇=-6.76, 𝜎=0.25 

High  𝜇=-1.09, 𝜎=0.28 

E3 

low Beta 𝛼=8.16, 𝛽=40799 

Medium  𝛼=18.75, 𝛽=14406 

High  𝛼=7.93, 𝛽=14.11 

E4 

low Normal 𝜇=0.0002, 

𝜎=0.00001 

Medium  𝜇=0.0012, 

𝜎=0.0003 

High  𝜇=0.38, 𝜎=0.10 

E5 

low Log-Normal 𝜇=-9.22, 𝜎=0.10 

Medium  𝜇=-6.85, 𝜎=0.27 

High  𝜇=-1.06, 𝜎=0.27 

E6 

low Beta 𝛼=2.78, 𝛽=27771 

Medium  𝛼=20.21, 𝛽=11209 

High  𝛼=8.25, 𝛽=14.06 

E7 

low Normal 𝜇=0.0002, 

𝜎=0.00001 

Medium  𝜇=0.0017, 

𝜎=0.0003 

High  𝜇=0.39, 𝜎=0.10 
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Similarly, considering the riskiest scenario where all environmental nodes are at a high level, 

the marginal distributions of functional failures (F1-F6) and AUG loss (T) can be determined 

based on Table 3.6, and the results are shown in Table 3.9. 

Table 3.9. Probability distributions of functional failures (F1-F6) and AUG loss (T), 

considering the riskiest scenario where all environmental nodes are at a high level. 

Node Marginal distribution Parameters 

F1 Log-Normal 𝜇=-0.58, 𝜎=0.17 

F2 Log-Normal 𝜇=-0.32, 𝜎 =0.10 

F3 Normal 𝜇=0.60, 𝜎=0.09 

F4 Normal 𝜇=0.75, 𝜎=0.07 

F5 Log-Normal 𝜇=-0.54, 𝜎=0.13 

F6 Beta 𝛼=29.19, 𝛽=17.89 

T Log-Normal 𝜇=-0.04, 𝜎=0.01 

3.4.1.3.2 Select the local copula function 

As mentioned in Section 3.3.1.3, the Gaussian copula function is a widely used elliptical copula 

function, which outperforms in handling multi-variable dependencies and fast speed calculation. 

Therefore, the Gaussian copula was integrated into the established CBN model to measure the 

dependence relationships among variables.  

3.4.2 CBN model analysis 

Based on the above analysis, a complete CBN model was built. Then, the CBN model analysis, 

which includes the dependence analysis, predict inference, and diagnose inference, can be 
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conducted to explore dependency relationships among risk variables and predict the risk profile 

of AUG loss given various environmental conditions. 

3.4.2.1 Dependence analysis 

Dependence analysis explores the dependency degree among risk variables, which aims to 

identify critical factors that impact AUG loss. Based on domain experts’ knowledge, the 

correlation coefficients among variables were determined. The strength of the correlation 

coefficients can be visualized using a heatmap, as shown in Fig. 3.5, where the color patch 

indicates the correlated strength from deep red (strong correlation) to light yellow (weak 

correlation). Accordingly, a hierarchical dendrogram divided all variables into six clusters with 

different colors in Fig. 3.5 (left side), and each cluster reveals an accidental pathway that results 

in AUG loss. For example, the node of AUG loss (T) is directly connected with the node of 

buoyancy control failure (F5), which is shown as the deepest color in the heatmap with the 

correlation coefficient of 0.69 compared to the other five functional failures. Subsequently, 

buoyancy control failure (F5) is further connected with the node of a large water density 

gradient (E6) and large water depth (E2), and therefore the first cluster (T, F5, E6, E2) is created. 

In other words, buoyancy control failure (F5) has greater influences on AUG loss than the other 

five functional failures, whereas a large water density gradient (E6) and large water depth (E2) 

are key environmental contributors to buoyancy control failure (F5). Therefore, F5 and its 

related environmental factors E6 and E2 require more attention to prevent AUG loss. Similarly, 

the accidental pathway of the other five functional failures and their related environmental 

factors can be identified as the first cluster. 
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Fig. 3.5. Heatmap and dendrogram of correlation coefficients for pairs of CBN nodes. 

After determining the correlation coefficients, the joint probability distributions among nodes 

can be determined using the Gaussian copula function. The scatter plots in Fig. 3.6 present 

examples of the joint probability distributions among different pairs of nodes, where Fig. 3.6 

(a)-(d) present the dependencies between AUG loss (T) and its four most key functional failures, 

namely buoyancy control failure (F5), collision (F4), power degradation (F2), and path 

deviation (F6). Fig. 3.6 (e)-(h) exhibit the dependencies between AUG loss (T) and its four most 

critical environmental factors, including a large water density gradient (E6), large current speed 

(E7), large ship density (E3), and a short distance to the seafloor (E5). Noticeably, the blue 

points in Fig. 3.6 denote 1000 samples based on Table 3.8 and Table 3.9 without considering 

correlation coefficients, whereas the red points symbolize 1000 samples using the proposed 

CBN model with correlations incorporated. As can be seen, red points in Fig. 3.6 are more 

clustered and denser than blue points, and red points become denser with a larger correlation 

coefficient, which proves that a CBN model considering correlation coefficients can better 
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describe dependency relationships among variables. 

To intuitively show the degree of dependencies, assuming that two nodes are linearly related, 

and their dependency can be represented by linear regression lines, which are shown as the red 

lines in Fig. 3.6. To take Fig. 3.6 (e) as an example, the probability of AUG loss (T) can be 

roughly estimated when the probability of a large water density gradient (E6) is given according 

to the fitted linear regression function. By comparing Fig. 3.6 (e)-(h), it can be seen that Fig. 

3.6 (e) presents stronger positive monotonicity with a greater slope due to a larger correlation 

coefficient (0.61), which indicates an obvious positive dependency among a large water density 

gradient (E6) and AUG loss (T). In other words, a great water density gradient (E6) is a 

dominant factor for causing AUG loss compared with the other six environmental variables. 

Nevertheless, in Fig. 3.6 (f)-(h), with the correlation coefficient decreasing from 0.43, 0.42, to 

0.24, the slope of the regression line is gradually declining. At the same time, red sample points 

become more random. These findings indicate that a smaller correlation coefficient could lead 

to relatively weak dependency among variables. Similarly, by comparing Fig. 3.6 (a)-(d), the 

buoyancy control failure (F5) is also observed as the most important failure mode for AUG loss 

(T) due to its largest correlation coefficient (0.69) compared with the other functional failures, 

which deserves more attention in failure diagnosis and safety control during an AUG mission. 

Based on the above, results from linear regression analyses indicate that the dependencies 

modeled by the CBN are concordant with the defined correlation coefficients in Fig. 3.5. 
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Fig. 3.6. The joint probability distribution and linear regression for pairs of CBN nodes. 

3.4.2.2 Predict inference 

Predict inference of the CBN model aims to update the probability distribution of AUG loss (T) 

given new evidence of involved risk variables. The developed CBN model can continuously 

predict the probability distribution of both functional failures (F1-F6) and AUG loss (T) using 

Eq. (7). Results of the predict inference are discussed as follows:  

Changes in the probability distribution of environmental variables could lead to an updated 

distribution of both functional failures and AUG loss accordingly. Fig. 3.7 presents the updated 

a b

c

e f

g h

d



 

88 

probability when all environmental variables are at a low level, medium level, and high level, 

separately. Results show that updated mean probabilities of functional failures (F1-F6) and 

AUG loss (T) have a clear increase with the rising level of environmental variables. This 

indicates that a higher level of environmental factors is crucial to cause an increasing risk for 

both technical failures and vehicle loss. Specifically, the mean probability of AUG loss (T) 

increases largely from 0.0009, 0.0094 to 0.96. According to Table 3.7, the mean probability of 

AUG loss (0.96) reaches the “significantly high” range when all environmental variables are at 

a high level. In such a case, the risk of AUG loss should be effectively mitigated to an acceptable 

level by operating the vehicle in conditions where ambient environmental variables are at a 

relatively low level. 

 

Fig. 3.7. Updated probability of functional failure nodes (F1-F6) and AUG loss (T) when all 

environmental variables are at a: low level (scenario 1), medium level (scenario 2), and high 

level (scenario 3), respectively. 

As known in the former dependence analysis, a large water density gradient (E6), large current 
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speed (E7), and large ship density (E3) were observed as the three most influential factors that 

affect AUG loss. A greater probability of these critical factors can cause an increasing risk of 

AUG loss. Considering all environmental variables are at a medium level initially, by limiting 

the probability of these three factors to new intervals, which is [0.0024, 0.0025] for a large 

water density gradient (E6), [0.0021, 0.0022] for large current speed (E7), and [0.0017, 0.0018] 

for large ship density (E3), respectively. The probability distributions of functional failures and 

AUG loss can be updated simultaneously, as shown in Fig. 3.8. By comparing the updated 

probability distribution (blue color) and the prior probability distribution (red color), it can be 

seen that updated probability distributions of both functional failure nodes and AUG loss have 

experienced obvious changes. Taking Fig. 3.8 (g) as an example, the main changes of the 

updated probability distribution of AUG loss (T) include the increasing mean value with the 

changing rate of 6.38% and the decreasing standard deviation with the changing rate of 53.33%, 

where the changing rate in this chapter is defined as Eq. (3-9). In other words, the risk level of 

AUG loss rises with the increasing probability of three key environmental factors. At the same 

time, the shape of the updated distribution becomes narrow with a reduced standard deviation, 

which denotes the decreasing uncertainty of the prediction. Similarly, Fig. 3.9 summarized the 

updated mean probability and standard deviation of all functional failure nodes, where most of 

the updated distributions experience an increase of the mean probability and a decrease of the 

standard deviation. Only the probability distribution of integrity failure (F1) exhibits no change 

because it is not correlated with the aforementioned three environmental factors, and therefore 

it is not influenced by the changes of these three factors. These findings proved that when 

narrowing the probability interval of key environmental factors into a relatively larger value 
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range, the probability of both correlated functional failures and AUG loss will increase 

accordingly. Therefore, key risk variables should be monitored as the major checkpoints to 

mitigate the risk of AUG loss. 

 

Fig. 3.8. Updated probability of: (a)-(f) functional failure nodes; and (g) AUG loss. 

𝐶ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 = T
𝑈𝑝𝑑𝑎𝑡𝑒𝑑	𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑖𝑜𝑟	𝑉𝑎𝑙𝑢𝑒

𝑃𝑟𝑖𝑜𝑟	𝑉𝑎𝑙𝑢𝑒 T × 100% (3-9) 
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Fig. 3.9. Updated value and changing rate for: (a) mean probability; and (b) standard 

deviation. 

On the contrary, a smaller probability of critical risk factors (i.e., a large water density gradient 

(E6), large current speed (E7), and large ship density (E3)) can effectively reduce the probability 

of AUG loss. Specially, modifying the probability of these three environmental variables into a 

relatively low interval, which is [0.0012, 0.0013] for E6, [0.0013, 0.0014] for E7, and [0.0008, 

0.0009] for E3, respectively. As a result, the probability distribution of functional failure nodes 

and AUG loss can be updated accordingly, as shown in Fig. 3.8, where the purple color denotes 

the updated distribution. In Fig. 3.8 (g), the mean probability of AUG loss (T) decreases from 

0.0094 to 0.0088, achieving a 6.4% reduction in the overall risk level. At the same time, the 

standard deviation also drops with a changing rate of 57.1%, which proves that the uncertainty 
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of the prediction is also reduced. Similarly, Fig. 3.9 summarizes the updated mean probability 

and standard deviation of all functional failure nodes. Results show that only integrity failure 

(F1) remains no variation with the probability and standard deviation as it is not correlated with 

E6, E7, and E3 in the CBN model. However, the other five functional failures (F2-F6) 

experience various degrees of reduction in both the mean probability and the standard deviation, 

which in turn demonstrates that a decreasing probability of an environmental factor can 

effectively mitigate the probability of its correlated functional failures. 

Former analyses proved that the predict inference of the established CBN model can effectively 

update the risk level of AUG loss given different environmental observations. Accordingly, risk 

mitigation of AUV operations can be achieved by controlling the occurrence probabilities of 

key risk factors. In addition, a narrow probability interval of risk factors is promising to reduce 

the prediction uncertainty. This means it is proper to operate an AUG in a relatively gentle 

environment, where the value of environmental parameters changes in a moderate range. 

3.4.2.3 Diagnose inference 

Diagnose inference of the CBN model aims to predict posterior probability distributions of each 

environmental variable given a certain state of AUG loss. Specifically, considering that the 

occurrence probability of AUG loss is known, the backward propagation from Eq. (3-8) can be 

carried out to diagnose the most likely environmental factors causing the accident. 

A sensitivity analysis can be investigated to validate the diagnose inference of the proposed 

model. A sensitivity analysis identifies the variation of an output variable of a model by 
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modifying the input variables, which is an effective method for performance validation of 

probabilistic models, such as BN-based models (Rositano et al., 2017). Through a sensitivity 

analysis, the most influencing factors can be determined for the diagnose inference, and this 

assists in suggesting specific safety measures for risk mitigation (Govender et al., 2022). 

A sensitivity analysis based on the one-at-a-time (OAT) method was performed in this chapter. 

The OAT method is a classic method to investigate the effect of variation of parameters on 

posterior probabilities (Coupé et al., 1999). It works by changing one input variable and 

obtaining the variations of other output variables, and thereby determining the critical 

influential variables with high sensitivity (Riedmann et al., 2015).  

In this chapter, assuming that the occurrence probability of AUG loss (T) is relatively high, 

which changed gradually from 0.0095 to 0.01. The posterior probabilities of each 

environmental variable can be obtained via diagnose inference, and the changing rates between 

their posterior probabilities and prior probabilities were calculated. Results of the sensitivity 

analysis are shown in Fig. 3.10. By comparison, the posterior probability of a large water 

density gradient (E6) experiences the greatest change with its mean probability rising by 

32.22%. It validates that when the occurrence probability of AUG loss (T) is at a high level, a 

large water density gradient (E6) can be a dominant contributor. Similarly, the probabilities of 

a large current speed (E7) and a large ship density (E3) also show a large increasing rate of 

23.08% and 17.06%, respectively. Therefore, these two nodes have a great influence on vehicle 

loss. Thus, in order to mitigate the risk of AUG loss from a higher level to an acceptable level, 

it is reasonable to give a priority to the probability mitigation of these critical influential factors.  
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Based on the sensitivity analysis, the diagnose inference was validated to achieve continuous 

updates of the posterior probability of environmental variables given different risk levels of 

AUG loss, and it assists in diagnosing the major contributors accordingly and providing 

reasonable safety measures. Therefore, once an acceptable risk level is determined by the 

decision maker, diagnose inference can be applied for targeted risk mitigation for AUG loss by 

adaptively controlling the key environmental variables until achieving the desired risk level.  

 

Fig. 3.10. Changing rates between posterior probabilities and prior probabilities of 

environmental nodes (E1-E7) given varying evidence of vehicle loss (T). 

3.4.2.4 Application 

Based on the above analysis, the proposed CBN model can be applied for risk prediction over 

time and space for a Slocum G1 Glider operating in a real water region. The area of Holyrood 

(47.4621-47.4624 °N, 53.1086-53.1083 °W) was selected as the target mission area. The data 

of each environmental variable on February 3rd, 2021 were collected from the website of Ocean 

Networks Canada (https://www.oceannetworks.ca/) and Marine Traffic 

(https://www.marinetraffic.com/), as shown in Fig. 3.11. In particular, Fig. 3.11 (a) displays the 

https://www.oceannetworks.ca/
https://www.marinetraffic.com/
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hourly changes of environmental variables of ambient temperature (E1), wave height (E4), 

water density gradient (E6), and current speed (E7), whereas Fig. 11 (b) roughly shows the ship 

density (E3) in the target area. 

 

Fig. 3.11. Environmental data from the Holyrood area on February 3rd, 2021. 

For simplicity, the value of each environmental variable was transferred to three levels 

according to Table 3.5, as shown in the top subplot in Fig. 3.12, where the value of water depth 

(E2) and distance to the seafloor (E5) was assumed to remain at a low level due to lack of data. 

Accordingly, the real-time occurrence probabilities of functional failures and AUG loss were 

predicted using the proposed CBN model, and the results are shown in the bottom subplot in 

Fig. 3.12. Noticeably, the probability of AUG loss (T) reached the “significantly high” level 

(>0.1) on three occasions, namely 15:00, 21:00, and 22:00. Specifically, at the time of 15:00 

and 21:00, with the probability of high wave height (E4) rising to the high level, the probability 
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of both visibility (F3) and path deviation (F6) experienced a clear increase. Consequently, the 

probability of AUG loss (T) further rose to 0.24 and 0.26, respectively. In addition, at the time 

of 22:00, a warning increase for the probability of large current speed (E7) occurred, as a result, 

the probability of collision (F4) exhibited an obvious increase in one hour reaching 0.34, which 

further caused a high probability of 0.24 with AUG loss (T). 

 

Fig. 3.12. Real-time risk prediction of functional failures and AUG loss with changes of 

environmental variables. 

To explore the updating risk level over space, especially when an AUG operates at different 

water depths, the environmental variables of water depth (E2), ship density (E3), distance to 

the seafloor (E5), and water density gradient (E6) were mainly considered. A scenario can be 

assumed with the value level of these variables changing over water depth, as shown in the top 

subplot in Fig. 3.13. Results of the predicted probability of AUG loss and functional failures in 

various water depths are shown in the bottom subplot in Fig. 3.13, where the degree of 

probability changes from light yellow (lowest probability) to deep red (highest probability). As 
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can be seen, in the surface water column (0-50 m), a high level of a large ship density (E3) can 

cause increases in the probability of invisibility (F3) and collision (F4), which further led to a 

higher probability (0.36) of AUG loss (T). As the water depth increases, the probability of E5 

(close to the seafloor) and E6 (large water density gradient) also rose accordingly. As a result, 

probabilities of integrity failure (F1), power loss (F2), and buoyancy control failure (F5) grow 

accordingly. Once the water depth exceeded the maximum depth range (200 m) of the vehicle, 

the probability of AUG loss had a remarkable increase to 0.35. These findings revealed that the 

middle-water column was relatively safer than the surface and deep-water regions in this 

scenario. Therefore, risk mitigation measures can be taken accordingly. For instance, it is 

beneficial to reduce the surfacing times of AUGs in an area with busy shipping traffic. In 

addition, the risk of AUG loss can also be mitigated by avoiding deploying the vehicle in deep-

water regions, especially with great water density gradients and high altitudes of the seafloor. 

 

Fig. 3.13. Probability (×10-2) of functional failures and AUG loss under different water 

depth. 
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3.5 Discussion 

Based on the case study analysis, the proposed CBN model was demonstrated to be a potential 

risk prediction method for AUGs operating in dynamic environments. In particular, the above 

applications proved that this model can effectively predict the risk of AUG loss given different 

observations of environmental factors. Correspondingly, a higher probability of environmental 

factors could lead to an increase of the probability of AUG loss. Hence, it is essential to operate 

in benign operating environments to enhance AUG safety. In summary, this chapter can be used 

to continuously update the risk level by monitoring different environmental conditions over 

time and space, and it can be implemented to minimize the risk of potential functional failures 

and AUG loss in advance of a mission. Therefore, this chapter can help decision-makers 

adaptively predict hazardous environmental conditions and provide insights for mitigating the 

risk level for safer operations. It should be noted that this chapter utilized the Slocum G1 Glider 

in the case study for model validation. Since different types of AUGs may have various 

characteristics, such as displacement, depth range, and cruise speed. Such inherent differences 

could cause the value level of risk variables to change as well. Therefore, a precondition of 

applying the proposed method or adapting it to risk analyses for other types of AUGs is 

considering their specifications. 

Limitations of this chapter are recognized which should be addressed in future work. Firstly, 

this research only employed the Gaussian copula function to model the correlation relationships 

among risk variables. Future works will explore different kinds of copula functions (i.e., 

Archimedean copula functions) to describe the dependencies more accurately. Secondly, due to 
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insufficient measured data, the case study combined measured environmental data with 

assumed environmental conditions, which could compromise the accuracy of risk prediction. 

In future work, real-time environmental data measured by multiple sensors should be 

incorporated to improve assessment accuracy. Lastly, this chapter provided an offline risk 

assessment method for AUGs, which could be extended to an online decision network for 

setpoint selection and path control given the current predicted risk level.  

3.6 Conclusion 

This chapter proposed a risk prediction method based on the copula Bayesian network (CBN) 

model for AUGs operating in dynamic underwater environments. In the constructed CBN 

structure, a BBN model was initially applied for identifying potential risk variables and their 

causal relationships to AUG loss. Copula functions were incorporated to quantitatively capture 

the dependencies among risk variables and predict the risk level of AUG loss. The potential 

application of the developed CBN model was demonstrated with a case study, which assisted 

in risk prediction for a Slocum G1 Glider deploying in a real open water region. Specifically, 

seven influencing environmental variables and six types of functional failures were identified. 

Three kinds of marginal distributions were applied to characterize each risk variable. The 

Gaussian copula function was then employed for modeling correlated dependencies among 

these variables. The CBN reference was finally conducted to evaluate the risk level for AUG 

loss both temporally and spatially.  

Based on the results of the case study, four key findings are highlighted from this chapter: (1) 

Based on the dependence analysis, the most critical environmental variables contributing to 
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AUG loss were identified, including a large water density gradient (E6), large current speed 

(E7), and large ship density (E3), which deserve constant attention in the environmental 

monitoring and risk mitigation process. (2) Predict inference of the CBN model can 

continuously update the occurrence probability of AUG loss given new observations of 

environmental conditions. Results proved that the risk level of AUG operations can be mitigated 

by reducing the occurrence probabilities of key risk factors. Moreover, a narrow probability 

interval of these factors can minimize the prediction uncertainties, which gave insights into 

deploying the vehicle in a relatively gentle environment where the ambient conditions change 

moderately. (3) From the diagnose inference of the CBN model, the posterior probability of 

each risk variable can be obtained given a certain state of AUG loss. Hence, by defining an 

acceptable risk level of AUG loss, environmental conditions can be adaptively adjusted to 

achieve the safety requirement. (4) Applications considering a Slocum G1 Glider operating in 

the Holyrood water region validated that the proposed CBN model is effective for risk 

prediction both over time and space, which indicated that this chapter can be implemented to 

prevent risky occasions and areas in advance of a mission. In addition, risk mitigation measures 

can be provided according to the above findings, such as reducing the surfacing times for AUGs 

in the water column with busy shipping, and cruising away from deep-water regions with a 

large density gradient or with a close distance to the seafloor.  

In conclusion, this chapter contributes a potential approach of risk prediction tailored for AUGs 

in complex underwater environments. It captures the synergies between AUGs’ inherent 

functional failures and dynamic environmental conditions, whilst achieving updated risk 

prediction for AUG loss both temporally and spatially. The developed model can be extended 
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to applications for other types of AUVs by incorporating the vehicle’s inherent specifications. 

The present work can potentially improve the safety performance of AUGs and assist risk 

mitigation in decision making. 
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Chapter 4. Risk-based Path Planning for Autonomous 

Underwater Vehicles in an Oil Spill Environment 

Preface  

A version of this chapter has been published as: Chen X, Bose N, Brito M, et al. Risk-based 

path planning for autonomous underwater vehicles in an oil spill environment [J]. Ocean 

Engineering, 2022, 266: 113077. I am the primary author along with the Co-authors, Neil Bose, 

Mario Brito, Faisal Khan, Gina Millar, Craig Bulger, and Ting Zou. I developed the conceptual 

framework for the risk-based path planning for autonomous underwater vehicles in an oil spill 

environment. I prepared the first draft of the manuscript and subsequently revised the 

manuscript based on the co-authors’ and peer review feedbacks. Co-authors Neil Bose, Mario 

Brito, Faisal Khan, and Ting Zou provided support in implementing the concept development, 

reviewing, and revising the manuscript. Co-authors Gina Millar and Craig Bulger provided 

assistance in data investigation, reviewing and correcting the results. The co-authors also 

contributed to the review and revision of the manuscript.  

Abstract: This chapter aims to answer the third research sub-question: “How to design a risk-

base decision making strategy based on the risk analysis model?” The applications of AUVs in 

complex environments have been hindered by the risk of vehicle loss. Path planning for AUVs 

is an effective technique for mitigating such risks and ensuring safer routing. Yet previous 

studies did not address path searching problems for AUVs based on probabilistic risk reasoning. 

This chapter aims to propose an offboard risk-based path planning approach for AUVs 

operating in an oil spill environment. A risk model based on the Bayesian network was 
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developed for probabilistic reasoning of risk states given varied environmental observations. 

This risk model further assisted in generating a spatially-distributed risk map covering a 

potential mission area. An A*-based searching algorithm was then employed to plan a Risk-A* 

path through the constructed risk map. The proposed planner was applied in a case study with 

a Slocum G1 Glider in a real-world spill environment around Baffin Bay. Simulation results 

proved that the Risk-A* planner outperforms in risk mitigation while achieving competitive 

path lengths and mission efficiency. The proposed method is not constrained to AUVs but can 

be adapted to other marine robotic systems. 

4.1 Introduction 

An oil spill is one of the major accidents in the ocean that can damage the marine ecosystem, 

social economy, and human health (Hwang et al., 2020; Zhu et al., 2021). Due to hazardous 

effects of oil spills, it is essential to detect and track the oil during or after a spill for 

environmental impact assessment and response decision-making (White et al., 2016). Although 

surface oil slicks can be detected and mapped by traditional survey methods (i.e., satellite 

imagery and ship-based sampling), subsurface oil detection could be more challenging due to 

the deep presence of oil and its spatial-temporal changes over time (Ji et al., 2020). AUVs are 

advanced marine robots that can be used for detecting, tracking, and assessing subsurface oil in 

deep water (Kinsey et al., 2011; Sahoo et al., 2019). Compared with traditional survey methods, 

AUVs coupled with multiple sensors are superior in providing high-resolution sampling data 

of submerged oil plumes, achieving communication of spill information in near real-time, as 

well as preventing personnel exposure to hazardous oil spill environments (Pereira et al., 2013; 
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Vinoth Kumar et al., 2020). Therefore, it is beneficial to deploy AUVs for searching and 

delineating subsurface oil plumes, capturing oil behaviors, and improving the efficiency of oil 

spill response. 

Due to their ability to obtain in-situ data, some scientists have implemented AUVs for oil spill 

detection. During the Deepwater Horizon spill in the Gulf of Mexico, which was one of the 

largest oil spill accidents in history, a Sentry AUV was employed with underwater mass 

spectrometers to localize and track submerged oil plumes at approximately 1100 m depth 

(Camilli et al., 2010; Kinsey et al., 2011). A REMUS-600 AUV was deployed with a 

fluorometer at a natural oil seep off the coast of Santa Barbara, California, with a mission depth 

up to 35 m (DiPinto, 2019). A glider AUV coupled with a fluorometer was used to detect oils 

in Tallinn Bay in the Gulf of Finland, which proved that the glider is suitable to monitor the oil 

distribution over a larger sea area due to its long-endurance capability (Pärt et al., 2017). A 

Jaguar AUV was effectively used in the ice-mapping missions to detect the under-ice oil spills 

in the Northern Alaska coast (Maksym et al., 2014).  

Yet none of the missions above have considered the risk of vehicle loss as part of their mission 

planning. However, operating in an oil spill environment could expose AUVs to the risk of loss 

due to the comprehensive effects of ocean currents, surface waves, potential underwater 

obstacles, and oil contamination on sensors. Therefore, it is essential to minimize such risks 

and enhance their safety navigation during spill response missions. Risk-based path planning is 

one of the critical techniques for mitigating risks and ensuring AUVs’ safe deployment before 

a mission. It refers to planning an optimal path for the vehicle from its initial state to the goal 
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state of a mission considering the risk involved, which is under certain criteria (e.g., shortest 

path length, minimal cruise time, minimal risk profile), and as the same time, avoiding obstacles 

along a path (Zeng et al., 2015; Lefebvre et al., 2016; Guo et al., 2021). 

A number of studies have investigated risk-based path planning methods for AUVs to realize 

safer operations. Pereira et al. (Pereira et al., 2011) proposed a minimum risk planner that 

minimized the cumulative surfacing risk for a glider AUV. Based on this work, an expanded 

study (Pereira et al., 2013) considered the effects of ocean currents on the vehicle for planning 

AUV paths and predicted ocean currents using a probabilistic model. The proposed planner 

effectively reduced the collision risk with ships and land. Hegde et al. (Hegde et al., 2016a) 

presented a method for developing collision risk indicators for AROVs. The proposed indicators 

(i.e., time to collision, mean time to collision, and mean impact energy) were used to identify 

risk prone waypoints for a given AROV path, which could further assist in mission path 

planning/replanning and provide risk reduction measures. Lefebvre et al. (Lefebvre et al., 2016) 

addressed the collision risk for AUV path planning using a hierarchical A* approach. To 

enhance the autonomy capability of the vehicle, the authors highlighted the integration of path 

planning in the AUV control architecture. However, that study only considered underwater 

obstacles while ignoring hazardous impacts of other environmental variables (e.g., underwater 

currents, ship density, etc.). Yan et al. (Yan et al., 2022) applied a whale optimization algorithm 

to tackle a three-dimensional planning problem for AUVs. The proposed planner can effectively 

avoid risky regions and achieve the shortest and safest path with minimal energy consumption. 

Zhang et al. (Zhang et al., 2022) addressed the AUV path tracking with real-time obstacle 

avoidance via a reinforcement learning technique. The risk constraints were adopted in reward 
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functions to realize collision avoidance and ensure safety control. 

While previous studies have explored different risk-based path planning methods for mitigating 

AUV risks, limitations are observed from them. Firstly, most of the former research only 

addressed risks in a general marine environment with impacts of a single environmental 

variable, for example, underwater currents. However, limited studies have considered the 

scenario of AUVs navigating in complex oil spill environments with interactions of multiple 

risk variables, and accordingly provided the mission planning strategy from a safety perspective. 

Secondly, limited past works have applied a probabilistic model for quantifying the risk state 

of AUVs given varied environmental observations. While probabilistic reasoning could 

enhance the accuracy of risk prediction and further improve the efficiency of decision making, 

therefore, a rigorous method that integrates a probabilistic risk model into the path planning 

problem for AUVs is needed. 

The objective of this chapter is to propose a risk-based path planner for AUVs to improve its 

safety performance and enhance autonomous capabilities in oil spill environments. Specifically, 

hazardous impacts of potential risk variables in oil spill regions were analyzed. A risk analysis 

model based on the Bayesian network (BN) was then developed for probabilistic reasoning over 

current risk states of vehicle loss, which considered various environmental conditions and 

potential underwater obstacles. This risk model was extended to assist in generating a risk map 

of a gridded mission area. In order to avoid high-risky regions while achieving a relatively 

shorter path length, the A* algorithm was employed to search for a Risk-A* solution. The 

performance of the proposed planner was demonstrated in a simulated case study with a spill 
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area in Baffin Bay.  

The contribution of this chapter is twofold. Firstly, this chapter provided a rigorous path 

planning method for AUVs from a safety perspective. The integrated BN-based risk model can 

predict the risk states of AUVs while intuitively presenting spatial risk distributions in a 

complex oil spill environment. The probabilistic reasoning can enhance the effectiveness and 

accuracy of further risk-based decision making. Secondly, the developed Risk-A* planner can 

avoid potential risky regions and obstacles, and meanwhile, it achieves a trade-off between risk 

mitigation and mission efficiency. It is expected that the proposed strategy can serve as a 

worthwhile precomputing policy to prevent AUV loss at the path planning stage, and therefore 

enhance the safety decision-making capability of AUVs for safer navigation. The proposed 

method is not constrained to AUVs but can be adapted to other marine robotic systems. 

The structure of this chapter is organized as follows. Section 4.2 defines the risk-based path 

planning problem and the solution of this chapter. Section 4.3 elaborates a BN-based model 

used for risk map generation and describes the A* algorithm used for path searching. Results 

of a simulated case study are discussed in Section 4.4, and Section 4.5 concludes this chapter. 

4.2 Risk-based path planning: problem definition and solution 

The proposed risk-based path planner in this chapter aims to find a Risk-A* path based on a 

probabilistic risk map. In this section, the general problem formulation was defined and the 

solved algorithm was described. 
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4.2.1 Problem definition 

Generally, methods for AUV path planning can be broadly divided into two categories: global 

path planning and local path planning. Global path planning searches for a globally optimal 

path with known environmental information beforehand with an AUV mission, whereas local 

path planning finds a locally optimal strategy under unknown and dynamic environments 

(Cheng et al., 2021). This chapter mainly focused on the global path planning for AUVs, 

especially for a glider AUV, to plan an optimal risk path. The reason lies in that a local path 

planning algorithm would require an onboard implementation and consume more energy, while 

gliders consume low energy to secure high longevity of their missions. Therefore, real-time 

implementation of local path planning could be difficult considering energy consumption. In 

addition, environmental information for AUV missions, such as locations of large static 

obstacles (e.g., islands or rocks), could be obtained beforehand. In this case, it is worthwhile to 

conduct the offline global path planning prior to AUV missions as precomputing policies to 

ensure safe deployment. 

In general, a global path planning problem can be formulated as an optimization problem, which 

can be defined as Eq. (4-1) 

𝑃∗ = argmin
%!∈3

𝑔( 𝑝)) (4-1) 

where 𝑃 = {𝑝!, 𝑝", … , 𝑝#} is a set of feasible paths, 𝑝) is the kth path amongst the set 𝑃, and 

𝑃∗ denotes the optimal path that minimizes the cost function 𝑔. Through various cost functions, 

different optimal objectives can be realized, such as achieving the minimal involved risks, the 
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minimal routing length, the minimal travel time, and so on. 

The objective of this chapter is to search for a Risk-A* path for AUVs travelling from a given 

initial position to a goal position, whilst achieving a competitive path length. The risk state of 

an AUV can be specified by a risk index, which refers to the probability of vehicle loss. Hence, 

the objective function of this chapter can be modified as Eq. (4-2), and the cost functions of 

both the risk of vehicle loss and the path length are defined in Eq. (4-3) and Eq. (4-4), separately: 

𝑃∗ = argmin
%!∈3

[𝑔'(𝑝)) + 𝑔4(𝑝))] (4-2) 

𝑔'(𝑝)) =i𝑟(𝑤$)
$

 (4-3) 

𝑔4(𝑝)) =i𝑑(𝑤$ , 𝑤$5!)
$/!

 (4-4) 

where 𝑤$ 	is the ith waypoint to be reached along the path 𝑝), 𝑟(𝑤$) ∈ [0, 1] denotes the risk 

index of the waypoint 𝑤$, which is calculated using the Bayes theorem as Eq. (4-7) that is 

elaborated in Section 4.3.1; 𝑔'(𝑝)) represents the accumulative risk cost along the path 𝑝), 

which is under the constraint of the risk threshold that is defined in Eq. (4-5); 𝑔4(𝑝)) 

represents the accumulative length cost along the path, and 𝑑(𝑤$ , 𝑤$5!)	denotes the Euclidean 

distance between the two adjacent waypoints. 

𝑟(𝑤$) < 𝑟6 (4-5) 

where 𝑟6	is a predefined risk threshold that specifies the maximum acceptable risk index for a 

waypoint. 
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4.2.2 Problem solution 

To find a globally Risk-A* path, the A* algorithm was applied in this chapter. The A* algorithm, 

which is oriented from the Dijkstra’s algorithm, is an effective solution for searching the 

globally minimum-cost path in a static network, and it is widely applied to address low-

dimensional path planning problems (Dijkstra, 1959; Hart et al., 1968). The evaluation function 

of this algorithm is defined in Eq. (4-6): 

𝑓(𝑤$) = 𝑔(𝑤$) + ℎ(𝑤$) (4-6) 

where 𝑔(𝑤$)	is the actual cost from the start state 𝑤.	to the current waypoint 𝑤$ in the search 

network, ℎ(𝑤$)	represents the estimated cost called a heuristic from the current waypoint 𝑤$ 

to the goal state 𝑤7, and 𝑓(𝑤$)	is the total cost from the start state through the waypoint 𝑤$ 

to the goal state. 

Therefore, A* calculates the total cost 𝑓(𝑤$) of candidate nodes in the searching network, and 

it selects a node with the minimal value of 𝑓(𝑤$) as the next traversal node until reaching the 

goal node. Meanwhile, A* relies on a heuristic ℎ(𝑤$)	to fast drive the network exploration to 

the desired areas by exploring the fewest number of nodes. This exhibits its advantage in 

reducing the computational time and improving the path searching efficiency (Cheng et al., 

2021). Another advantage of the A* algorithm is its flexibility to be adapted by modifying the 

heuristic and cost functions given various optimization objectives, which is particularly 

beneficial to AUV path planning considering different mission requirements in complex marine 

environments (Singh et al., 2018). Hence, the A* algorithm has been commonly used for 

planning global paths of AUVs with various optimization criteria, including the shortest path 
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length (Wang et al., 2017; Wang and Pang, 2019), the minimal collision risk (Pereira et al., 2011; 

Lefebvre et al., 2016), the minimal energy consumption (Li et al., 2017; Yao et al., 2018), and 

the shortest searching time (Szczerba et al., 2000; Li and Zhang, 2020). Given its superiority in 

fast searching and flexible adaptation from the risk perspective, the A* algorithm was chosen 

as the path planning solution in this chapter. 

4.3 Methodology 

The flowchart of the proposed methodology is presented in Fig. 4.1. It can be broadly divided 

into three steps. A risk analysis model based on the BN was firstly established for probabilistic 

reasoning of waypoint risk indices. A risk map was then created based on the BN inference 

results. Through the generated risk map, an A*-based algorithm was employed to search for a 

Risk-A* path in the potential mission area. Details of the proposed approach were elaborated 

in the following subsections. 

 

Fig. 4.1. Flowchart of the proposed method. 
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4.3.1 Development of the BN-based risk model 

Risk variable identification is a premise to establish a BN-based risk model. Risk variables, 

which can potentially lead to AUV loss in an oil spill environment, should be firstly captured 

in this chapter. To facilitate further BN inference, identified risk variables can be discretized 

into three states according to their observed values, representing low, medium, and high severity, 

respectively.  

BN is a probabilistic graphical model composed of vertices (nodes) and edges (arrows), where 

each node denotes a random variable and arrows represent causal relationships among nodes 

(Afenyo et al., 2017). Their dependency degrees can be captured mathematically using 

conditional probabilities with the Bayesian theorem. For each BN, there is a unique probability 

model. Assuming that 𝑋 is a set of random variables: 𝑋 = (𝑥!, 𝑥", … , 𝑥#), where 𝑛 is the 

number of variables in the network. The joint probability 𝑃(𝑥!, 𝑥", … , 𝑥#) can be calculated 

according to the chain rule of the Bayes theorem using Eq. (4-7) (Jäger et al., 2018): 

𝑃(𝑥!, 𝑥", … , 𝑥#) =+𝑃(𝑥$|𝑃𝑎(𝑥$))
#

$(!

 (4-7) 

where 𝑃𝑎(𝑥$) represents the set of parent nodes of 𝑥$, and 𝑃(𝑥$|𝑃𝑎(𝑥$)) is the conditional 

probability distribution. 

Bayesian networks have been well applied for risk analyses in the AUV domain. Griffiths and 

Brito (Griffiths and Brito, 2008) firstly used a BN model for predicting the risk of AUV loss in 

a sea ice environment. An extended study based on it applied a BN model for AUV risk 
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management in Polar regions (Brito and Griffiths, 2016). The proposed BN structure coped well 

with the uncertainties by eliciting expert judgement. Meanwhile, it captured the risk variables 

from both environmental factors (i.e., ice concentration and ice thickness) and the vehicle 

platform to produce an updated probability of vehicle loss. Hegde et al. (Hegde et al., 2018) 

presented a BN model for monitoring the mission abort during AUV operations of inspection, 

maintenance, and repair (IMR). This application of the BN model identified risk factors from 

technical, organizational, and operational perspectives, and it quantified the probability of the 

IMR mission failure. More recently, Bremnes et al. (Bremnes et al., 2019; Bremnes et al., 2020) 

proposed a Bayesian approach towards supervisory risk control of AUVs for under-ice 

operations. The BN reasoning was employed to predict the risk state for online risk modelling. 

The constructed risk model further assisted in decision-making for waypoint selections of the 

vehicle. Yang et al. (Yang et al., 2020) provided an approach for dynamic risk analyses of a 

long-range AUV based on a dynamic BN model. The risk state can be updated online when the 

vehicle experiences different operating environments, which automatically guides the AUV to 

avoid hazardous environmental conditions. 

There are clear advantages of using the BN for AUV risk modelling. Firstly, due to the 

challenging operational environments of AUVs, multiple risk factors could interact to cause 

vehicle loss. BN contains a clear topological structure to present causal relationships among 

complex risk contributors, which facilities risk identification especially for a multi-variable 

system (Obeng et al., 2022). Secondly, BN is a probabilistic risk assessment tool. Adopting the 

conditional probability theory could enhance the accuracy of risk prediction and decrease 

uncertainties. In addition, based on its predictive reasoning, BN can update the current risk state 
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of the vehicle given new environmental observations (Yazdi et al., 2021). This feature is 

particularly beneficial for an AUV platform which exposes to various operating environments 

during a mission, and thereby its spatial-temporal evolution of risk states can be timely 

predicted. Lastly, BN can be easily employed by combining expertise even when the historical 

data are limited (Brito et al., 2022). To our knowledge, the BN model has not been used for 

AUV path planning. This chapter extended the application of the BN model to the domain of 

AUV decision making. 

4.3.2 Risk map generation 

A risk map of a potential mission area can be generated based on BN reasoning results. The 

created risk map is represented in the form of probabilistic occupancy grids. Each grid evaluates 

the risk index 𝑟(𝑤$) ∈ [0, 1], which is specified by the probability of the AUV loss given 

contained environmental conditions. As described in Section 4.2.1, the risk index 𝑟(𝑤$)	is 

calculated using the Bayes theorem as Eq. (4-7). Therefore, the risk map serves as a 

probabilistic measure of spatial risk states in the desired mission area. A trade-off should be 

considered when determining the grid resolution, as a relatively lower resolution could speed 

up the search progress but meanwhile sacrifice the accuracy of the planned vehicle’s positions. 

4.3.3 Development of the path planning model 

Based on the constructed risk map, an A*-based path planning model can be then applied to 

obtain an optimal solution from the safety perspective. It firstly analyzes the cost functions of 

both risk indices and path lengths. Then, the objective function can be determined according to 
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involved costs, and the A* algorithm is finally used to search for a Risk-A* path. 

4.3.3.1 Cost function analysis 

When considering the risk cost along a path, an actual risk cost 𝑔'(𝑤$)	of the current waypoint 

𝑤$ , which was originally defined in Eq. (4-3), can be adapted to Eq. (4-8). Moreover, an 

admissible heuristic ℎ'(𝑤$) (i.e., an estimated risk cost) used for A* searching can be defined 

in Eq. (4-9). The method for heuristic estimation was adapted from former research (Pereira et 

al., 2011; Pereira et al., 2013; Lefebvre et al., 2016). 

𝑔'(𝑤$) = 𝑟(𝑤$) (4-8) 

ℎ'(𝑤$) = 𝑁 ∗ 𝑟8$# (4-9) 

where 𝑟(𝑤$) denotes the risk index of the waypoint 𝑤$, which was elaborated in Section 4.2.1. 

𝑟8$#	is the globally minimum risk index among all grids in the risk map, and 𝑁 is the minimal 

number of transitions from the current waypoint 𝑤$ to the goal 𝑤7, which can be defined in 

Eq. (4-10): 

𝑁 = o
𝑑,𝑤$ , 𝑤7.
𝑑8&9

p (4-10) 

where 𝑑,𝑤$ , 𝑤7. denotes the Euclidean distance between the current waypoint 𝑤$ and the 

goal 𝑤7, and 𝑑8&9	is the maximum Euclidean distance between two adjacent waypoints. 

When considering the length cost along a path, an actual length cost of the current waypoint 

𝑔4(𝑤$), which was based on Eq. (4-4), can be adapted to Eq. (4-11). This actual length cost 

calculates the Euclidean distance 𝑑(𝑤., 𝑤$)	from the start point 𝑤.	to the current point 𝑤$. We 
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adopted an admissible heuristic ℎ4(𝑤$)	that was defined in Eq. (4-12), which estimates the 

Euclidean distance 𝑑(𝑤$ , 𝑤7)	from the current waypoint	𝑤$ to the destination 𝑤7. 

𝑔4(𝑤$) = 𝑑(𝑤., 𝑤$) (4-11) 

ℎ4(𝑤$) = 𝑑(𝑤$ , 𝑤7) (4-12) 

4.3.3.2 Objective function analysis 

Based on Section 4.2.2, the objective function of this chapter combines the accumulative costs 

of both involved risks 𝑓'(𝑤$)	and path lengths 𝑓4(𝑤$) along a path. Specifically, the risk cost 

𝑓'(𝑤$)	sums up the actual risk cost 𝑔'(𝑤$)	and the heuristic risk cost ℎ'(𝑤$). While the length 

cost 𝑓4(𝑤$)	combines the actual length cost 𝑔4(𝑤$)	and the heuristic length cost ℎ4(𝑤$) . 

Therefore, the objective function of the proposed Risk-A* planner can be specified in Eq. (4-

13): 

𝑃∗ = 	argmini[𝑓'(𝑤$)
$

+ 𝑓4(𝑤$)] 

= argmini{[𝑔'(𝑤$) + ℎ'(𝑤$)] + [𝑔4(𝑤$) + ℎ4(𝑤$)]}
$

 

(4-13) 

4.4 Case study 

In this section, a simulated case study using a Slocum G1 Glider was performed in a real-world 

oil spill environment near Baffin Bay to validate the effectiveness of the proposed path planner. 

Firstly, the BN model was developed by incorporating various risk variables of a spill 

environment. A probabilistic risk map for vehicle loss was generated, presenting the spatial risk 
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distributions in a selected mission area. Then, the searching A* algorithm was implemented to 

find a Risk-A* path based on the risk map. Comparative analyses with the other two classic 

planners were conducted to demonstrate the superiority of the proposed Risk-A* planner. 

The employed AUV type in this chapter is Slocum G1 Glider. Its basic specification is 

summarized in Table 4.1. Although the actual motion of a glider AUV is in three dimensions, 

this case study only considered a two-dimensional trajectory of the vehicle in the horizontal 

plane for global path planning, which is particularly relevant in missions detecting an oil spill 

released by vessels without consideration of significant depth changes. However, this chapter 

can be expanded to a higher dimension by considering various mission depths, and the 

application scenario could be monitoring oil spills from reservoirs where the vehicle is required 

to dive much more deeply.  

Table 4.1. The specification of the Slocum G1 Glider (Wang et al., 2021c). 

Parameter Value 

Weight in Air ~52 Kg 

Hull Diameter 0.213 m 

Width including Wings 1.003 m 

Vehicle Length 1.5 m 

Minimum Turning Radius ~17 m 

Displacement 52 L 

Depth Range 4-200 m 

Speed 0.4 m/s horizontal 
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Range 1500 km 

4.4.1 Mission profile description 

The mission area in this case study was selected as an open water area around Scott Inlet 

(71.10941 N, -71.10576 W), which is on the east coast of Baffin Island where oil seeps are 

naturally present. The satellite radar imagery has confirmed that large oil slicks over this region 

exceed 250 km2, each representing over 50,000 barrels of surface oil (Oakey et al., 2012). Hence, 

with sufficient oil in the water, this region was chosen as a potential mission area. However, 

due to limited data for this area, we used information of oil concentrations in the region from a 

study following a hypothetical spill from an anthropogenic source. The size of the selected 

mission area was relatively small and set as 500 m ×	500 m. The whole search space was 

discretized into grids and the resolution for each grid was 10 m ×	10 m, namely, the minimum 

distance between two adjacent waypoints was 10 m. Fig. 4.2 illustrated the gridded mission 

area, where the start position and goal position were defined as (50 m, 20 m) and (450 m, 480 

m) respectively in coordinates. 

 

Fig. 4.2. Illustration of the selected mission area, where (a) shows the mission location near 

Scott Inlet

a.
Baffin Bay

Start Point

b.
Goal Point
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Scott Inlet, Baffin Bay, and (b) shows an example of a gridded spill area with the start and 

goal positions. 

4.4.2 Risk variable identification 

As a precondition for the development of the BN model, in this case study, we mainly identified 

two types of risk variables that can lead to vehicle loss: environmental variables and mission 

complexity factors. In particular, we considered environmental variables including the current 

speed, wave height, ship density, and oil concentration. While mission complexity factors 

contain the mission depth and obstacle numbers. The description of identified BN variables is 

summarized in Table 4.2. 

Table 4.2. Description and value ranges of the BN variables. 

BN Variables Description 
Value Range 

Low Medium High 

E1 Current speed (m/s) <0.05 0.05-0.15 >0.15 

E2 Wave height (m) <0.25 0.25-0.5 >0.5 

E3 Oil concentration (ppb) <50 50-100 >100 

E4 
Ship density 

(routes/0.08km²/year) 
<20 20-50 >50 

M1 Mission depth (m) <50 50-100 >100 

M2 Obstacles / / / 
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T AUV loss / / / 

4.4.2.1 Environmental variables 

A current speed can influence the motion of an AUV by deviating it from its planned path 

(Griffiths and Trembanis, 2007; Petillo and Schmidt, 2012). Such impacts could be more 

prominent for slow-moving AUVs, such as underwater gliders. In this case, the vehicle may not 

reach its target position, and as a result, it could collide with other vehicles or even get lost. 

Surface waves could cause the vehicle out of sight, and this may lead to difficulties especially 

for the recovery phase of an AUV mission. In addition, the wave-induced force can also drag 

the vehicle from its desired path. Oil in high concentration could cause contamination of optical 

sensors, and substantially degrade the sensor’s ability to detect obstacles (Chen et al., 1987). In 

addition, if the oil coats the inside of a CTD sensor, it can possibly affect the sensor’s calibration 

and thus cause false measurement. Ship density is another key factor and the probability of 

collision between ships and AUVs is proportional to the shipping density in a mission area 

(Merckelbach, 2013a). 

4.4.2.2 Mission complexity factors 

The number of underwater obstacles and the mission depth can influence the mission 

complexity. A large number of obstacles could cause higher requirements for the AUV’s ability 

of obstacle avoidance, and they could also raise the possibility of collisions. The mission depth 

can affect both the vehicle’s integrity, buoyancy control, and energy consumption (Chen et al., 

2021b). 
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4.4.2.3 Data sources of risk variables 

In this case study, environmental data in the mission area were collected based on the website 

of National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/) and Marine 

Traffic (https://www.marinetraffic.com/). The oil concentration data used in the case study was 

randomly generated and referred from former research (Reich et al., 2016). Based on the above 

information, the collected environmental information can be visualized in Fig. 4.3, which 

presents the spatial distributions of the value of various risk variables. It should be noted that 

all the risk variables, except underwater obstacles, were assigned three discrete levels: low, 

medium, and high states, representing their severity. The expert elicitation method is a useful 

method to deal with limited historical data. In this chapter, we invited six domain experts to 

constitute the expert panel. The panel has sufficient experience in both the fields of AUV 

operations and risk assessment. The panel provided analyses and reviews including the 

identification of the risk variables, division of value ranges of the risk variables, assignment of 

prior probabilities and construction of the conditional probability tables (CPTs) for the proposed 

BN model. The detailed process of the expert elicitation method was adapted from previous 

studies (Brito and Griffiths, 2016; Huang et al., 2020; Wang et al., 2022a). The value ranges 

were divided as shown in Table 2 based on the judgements of domain experts, considering the 

specification of the Slocum G1 Glider. The mission depth in this study was assumed as 50 m, 

which is at the low level according to its severity division. According to Fig. 3 (d), the severity 

of ship density in the selected mission area was also indicated as a low level. Fig. 3 (e) presented 

200 obstacles in the mapped area which were plotted in black. The obstacles inside the mission 

area were randomly generated to test the capability of obstacle avoidance of the proposed 

https://www.marinetraffic.com/
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planner. For simplicity, only stationary obstacles (e.g., islands, buoys, rocks, and so on) were 

considered. Hence, the spatial distributions of severity states for the remaining three risk 

variables, namely, the current speed, wave height, and oil concentration, can be simplified 

according to the discretized value ranges in Table 4.2, which can be plotted in Fig. 4.4. 

 

Fig. 4.3. Spatial data distributions of different risk variables in the selected mission area. 

 

Fig. 4.4. Spatial distributions of severity states for the (a) current speed, (b) wave height, and 

(c) oil concentration. 

a. Current Speed b. Wave Height c. Oil Concentration

d. Ship Density e. Obstacles Map

a. Current Speed b. Wave Height c. Oil Concentration
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4.4.3 BN development and risk map generation 

Based on the above identification of potential risk variables and their causal relationships with 

vehicle loss, a BN model can be developed as shown in Fig. 4.5. The prior probability of each 

state of the risk variable and conditional probabilities among risk variables were determined 

according to domain experts’ judgements. 

 

Fig. 4.5. Developed BN model. 

On the basis of obtained environmental information and BN reasoning results, a risk map in 

terms of the probability of vehicle loss in the mission area can be generated and illustrated in 

Fig. 4.6. This risk map intuitively presents high-risky regions where the AUV should avoid, 

where the numbers on the scale represent risk indices. For instance, locations with obstacles 

have the highest risk index, which can always prevent the vehicle from selecting an obstacle as 

a waypoint. Other locations, for example, with large wave heights or with high oil concentration, 

also show relatively high risky in the risk map. 

E1

E2

E3 E4

M2

M1

Environmental variables
Mission complexity factors

T
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Fig. 4.6. Generated risk map in the mission area, where the numbers on the scale represent 

risk indices. 

4.4.4 Simulation results and discussion 

Based on the obtained risk map, an A* algorithm was employed for path planning. Effectiveness 

of the proposed Risk-A* planner was demonstrated by comparing it with the other two classic 

path planners: the minimal-length planner and the minimal-risk planner. Furthermore, 

influences of different risk thresholds on the Risk-A* planner were investigated. In realistic 

AUV operations, an acceptable risk threshold should be defined by stakeholders before a 

mission. In this study, the risk threshold was defined by the expert panel to forbid the vehicle 

from selecting a waypoint with an unacceptable risk index. According to the risk map in Fig. 

4.6, the maximum risk index (i.e., the probability of vehicle loss) in the mission area is 

calculated as 0.14. A relatively low threshold of 0.05, which is around 36% of the maximum 

risk index, was used to rigorously test the vehicle’s ability to avoid obstacles and risky regions. 

It is noted that the predefined risk threshold can be tuned according to the willingness of risk 
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tolerance. 

4.4.4.1 Comparative analyses of the three path planners 

We conducted simulations using the three path planners (i.e., minimal-length planner, minimal-

risk planner, and the proposed Risk-A* planner) in the same risk map. The obtained paths were 

presented in Fig. 4.7 (left column), while their waypoint risk indices and accumulative risk 

indices along the path were compared in Fig. 4.7 (right column). The start and goal positions 

were arbitrarily set and depicted with red and blue dots, respectively. Searched paths of the 

three planners show obvious differences while both of them were observed to be able to 

successfully avoid obstacles. In Fig. 4.7 (a), the minimal-length planner finds the shortest path 

from the start position to the destination without considering the cost of waypoint risks. Hence, 

its obtained path is approximately straight and directly toward the target. But with this said, a 

number of waypoints’ risk indices along this path far exceed the predefined risk threshold of 

0.05. For instance, the peak value (0.1) of the waypoint risk index occurs at the mission distance 

of 140 m, where the vehicle is directly passing through a high-risky area as shown in the risk 

map. On the contrary, Fig. 4.7 (b) shows that the minimal-risk path selects a set of waypoints 

with the lowest risk index, no matter how much path lengths cost. The resulted path is long and 

winding, which loiters to avoid any potential risky regions rather than making progress toward 

the goal. While the proposed Risk-A* planner, as shown in Fig. 4.7 (c), considers the costs of 

both the path length and waypoint risks. It searches a path with a moderate risk level and 

relatively shorter mission distance, and meanwhile, it satisfies the constraint of the risk 

threshold at each waypoint. 
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Fig. 4.7. Obtained paths, waypoint risk indices, and accumulative risk indices of the three 

path planners: (a) minimal-length planner; (b) minimal-risk planner; and (c) Risk-A* planner. 

To provide additional comparisons, Fig. 4.8 compares the path length, max risk index (i.e., the 

maximum of waypoint risk indices), accumulative risk index, and computational time of three 

planners, respectively. The computational time of the three planners was normalized for 

comparison. The reference time, which was defined as 100%, was chosen as the computational 

time of the minimal-risk planner. Although this chapter mainly explored an offline global path 

planning approach for AUVs prior to a mission, computational time is still a key parameter to 



 

127 

be considered. It impacts the efficiency of mission planning, which is important especially in 

dealing with large-scale planning problems with complex environmental conditions and long 

mission endurance. It can be seen from Fig. 4.8 (a) and (b) that the minimal-path length achieves 

the shortest path length of 627 m, however, its max risk index far exceeds the predefined risk 

threshold of 0.05, which is not acceptable for the safety requirement. On the contrary, the 

minimal-risk planner has the minimal max risk index among the three planners, which is only 

0.009. In return, it has the largest path length, which is 12.6% higher compared with the 

minimal-length planner. As for the Risk-A* planner, its max risk index is 20% lower than the 

risk threshold (0.05), which means risk states along the whole path remain tolerable. In addition, 

its path length is 10.2% longer than the minimal-length planner. As it aims to mitigate risks 

associated with the path to ensure safe deployment, although it could sacrifice certain mission 

lengths. 

 

Fig. 4.8. Comparisons of the three planners including (a) path length, (b) max waypoint risk 

index, (c) accumulative risk index, and (d) normalized computational time. 

a. b. 

c. d. 
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In comparing the accumulated risk index in Fig. 4.8 (c), it is noteworthy that the minimal-length 

planner attains the largest value of 1.04, which is nearly triple that of the minimal-risk planner 

(0.37). However, the minimal-risk planner achieves the minimum accumulative risks at the 

expense of routing length, and in turn, the searching time could substantially increase along 

with an increasing number of waypoints. In this case, the computational time of the minimal-

risk planner in finding a solution could also grow correspondingly, which reaches the maximum 

amongst these three planners, as shown in Fig. 4.8 (d). In contrast, the proposed Risk-A* 

planner performs moderately well, namely, its accumulative risk index is decreased by 20.2% 

compared with the minimal-length planner, whilst its computational time is 9.5% shorter than 

the minimal-risk planner. 

Based on the above analyses, it can be concluded that: (1) The minimal-length planner 

outperforms in both the routing length and computational time. However, it overlooks the risk 

associated with the path, and as a result, the waypoint risk index exceeds a predefined risk 

threshold, which is unacceptable in terms of the vehicle’s safety requirement in real 

implementation. (2) The minimal-risk path is clearly over-conservative. Although it has the 

lowest waypoint risk index, it comes at a cost of the path distance, which further leads to the 

increasing computational time. Such a path could be infeasible in practice as it might fail to 

meet the criteria of available energy consumption for the vehicle. (3) The Risk-A* planner is a 

safer bet that exhibits good performance in avoiding risky regions along a path. It also achieves 

a balance between the involved risks, the path length, and computational efficiency. At the same 

time, it satisfies the precondition of operating below a risk tolerance threshold to ensure safe 

navigation. 
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4.4.4.2 Influences of different risk thresholds on the Risk-A* planner 

Determination of a risk threshold is also an important issue for planning an AUV route. Impacts 

of various risk thresholds on the proposed Risk-A* planner were investigated. Fig. 4.9 plots the 

resulting paths under four different risk thresholds in the same environment. When the tolerable 

risk threshold gradually decreases, which refers to a higher safety requirement for the vehicle 

that demands more rigorous risk tolerance, the resulting path gets longer and the AUV moves 

further away from potential high-risky regions to attain the acceptable risk level, which 

consequently wastes additional route lengths. 
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Fig. 4.9. Obtained paths, waypoint risk indices, and accumulative risk indices under different 

risk thresholds. 

Particularly, Fig. 4.10 compares the path length, max risk index, accumulative risk index, and 

the normalized computational time under four risk thresholds. As shown in Fig. 4.10 (a), with 
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decreasing risk threshold from 0.07 to 0.04, the path length increases from 650 m to 706 m with 

a changing rate of 8.6%. This implies that it is possible to achieve a higher safety level with a 

reduced risk threshold while only slightly degrading its length optimality. Similarly, the 

computational time in Fig. 4.10 (d) shows the same trend, which consumes 7.6% longer time 

when the risk threshold reduces from 0.07 to 0.04. In Fig. 4.10 (b), the max waypoint risk index 

drops gradually with the decreasing risk thresholds. It is noteworthy in Fig. 4.10 (c) that the 

accumulative risk index under the risk threshold of 0.05 is higher than that under the risk 

threshold of 0.06. This manifests a particular situation that should be considered in realistic 

mission planning, as a path with a lower risk tolerance could require more path lengths to avoid 

risky regions, and in turn, the accumulative risks could substantially increase along with the 

increasing traversed waypoints. 

 

Fig. 4.10. Comparisons under different risk thresholds including (a) path length, (b) max 

waypoint risk index, (c) accumulative risk index, and (d) normalized computational time. 

Therefore, the safest path does not indicate an optimal solution in practice, because it may 

a. b. 

c. d. 
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sacrifice the mission length and deteriorate the computational efficiency at the same time. This 

prompts an insight to adjust the risk threshold for achieving a trade-off between an acceptable 

risk tolerance and the mission efficiency. 

4.4.5 Limitations and future work 

Limitations of this chapter were discussed below. This work only considered static 

environmental conditions and obstacles for global path planning of AUVs. It is desirable to 

conduct such offline mission planning beforehand given known environmental information. 

However, static global path planning requires accurate environmental predictions prior to a 

mission, which is difficult to achieve in reality, and it is possible that only limited environmental 

information can be obtained for a target mission area. In addition, ambient environmental 

conditions, such as ocean currents and oil spills themselves, can change dynamically, which 

subsequently causes the risk of vehicle loss to varying accordingly. The possibility of colliding 

with moving obstacles also exists. In such cases, global path planning designed for static 

environments cannot handle the unpredictable situations that may emerge, and re-planned 

solutions will be required to account for dynamic environmental observations. Hence, future 

research should explore a hybrid risk-based architecture for AUVs’ autonomous mission 

planning to combine static global planning and dynamic local re-planning, which is essential 

for the real-life decision making of AUV missions.  

Furthermore, some recent research provided advanced methods for model validation for marine 

robotic systems (Albarakati et al., 2021; Liu et al., 2022). These studies considered multiple 

simulation scenarios with various vehicle maneuvers in practical environments. They provided 
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insights to bridge the gap between pure computer-based simulations and real experimental 

validation. For potential experimental simulations, other key parameters besides the path length 

could be considered, such as the vehicle velocity, turning maneuvers, travel time, and energy 

consumption, which can be affected by ambient environmental conditions as well. Analyses 

from multiple perspectives of the simulations could enhance the feasibility of the planner, 

especially for multi-objective problems. An accurate estimation of AUVs navigational data is 

also crucial for safe path planning. The use of multiple sensors’ data could be beneficial for 

high-fidelity validation in practical environments in the future. 

4.5 Conclusion 

In this chapter, a systematic risk-based path planning approach for AUVs operating in an oil 

spill environment was proposed. The risk of vehicle loss was incorporated into a classic global 

planning problem of AUVs. A BN-based risk model was developed for probabilistic prediction 

of risk states given various environmental observations. The established risk model was then 

employed to generate a spatially-distributed risk map covering a potential mission area. 

Subsequently, an A* algorithm was applied to plan a Risk-A* path through the risk map by 

combining costs of mission lengths and risk indices. The proposed path planner aims to avoid 

high-risk regions to ensure safer operations, whilst achieving a relatively shorter path length. A 

case study using a Slocum G1 Glider in an oil spill environment around Baffin Bay was 

conducted to demonstrate the effectiveness of the proposed planner. Key findings from the case 

study results were highlighted below:  

(1) The proposed BN-based risk model can forecast risk states of vehicle loss given 
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comprehensive spill environments. Its probabilistic reasoning enhances the accuracy for further 

path searching and risk-based decision making. The generated risk map based on BN reasoning 

intuitively presents the spatial distributions of high-risk regions in a gridded mission area, 

which provides insights of risk mitigation through obstacle avoidance and waypoint selections. 

(2) Comparisons between the Risk-A* planner with two classic path planners (i.e., minimal-

length planner and minimal-risk planner) have indicated that a trade-off exists between the 

routing length, associated risks, and computational efficiency along a path. The proposed Risk-

A* planner outperforms in risk mitigation by avoiding potential risky regions and obstacles, 

whilst it is highly competitive in terms of path distance and computational time. 

(3) Different risk thresholds can affect the performance of Risk-A* path planning. A lower 

tolerable risk threshold, which refers to a higher safety requirement, can increase the mission 

length and consume more computational time. In this case, considering a particular scenario 

during an oil detection mission, a lower risk threshold can drag the vehicle away from the most 

highly-concentrated oil regions, which causes the vehicle to miss nearby plumes with rich 

information and thereby degrading its detection efficiency. Hence, the risk threshold should be 

modulated to achieve a trade-off between safety performance and mission efficiency. 

(4) The developed risk-based planner can be practical in realistic AUV implementation. 

Although this chapter only investigated the off-line global path planning for AUVs with static 

environmental conditions, it is a potential precomputing policy to save the computational 

memory for a vehicle, and it is a worthwhile investigation for preventing AUV loss at the path 

planning stage prior to a mission. In addition, this chapter considered a two-dimensional 
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trajectory of AUVs, which is particularly useful for missions in detecting oil spills released by 

vessels without significant depth changes. The approach could also be applied for AUV path 

planning in tracking oil spills from reservoirs. For this scenario, the vehicle would have to dive 

to higher depths. To capture this scenario, both the risk model and the path searching algorithm 

should be updated to take a 3D problem into consideration. A modification would be required 

to our methodology to include the 3D body dynamics property of the AUV. 

Future work based on this chapter should incorporate dynamic risks into the path planning 

framework for AUVs. To this end, a hybrid risk-based path planner combining both static global 

planning and dynamic local re-planning for AUVs should be investigated. 
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Chapter 5. Hybrid Risk-based Path Planning for Autonomous 

Underwater Vehicles in Dynamic Environments 

5.1 Introduction 

As introduced in Chapter 4, path planning is an important issue for AUVs to plan a feasible and 

safe route in uncertain environments. To make AUV systems more risk-aware during path 

planning, it is crucial to take the vehicle’s risk state into account. Risk-aware path planning is a 

critical technique for AUVs. It refers to planning an optimal path for the AUV from its initial 

position to the target while considering the navigational risks along the path simultaneously 

(Chen et al., 2022). 

Former studies have investigated risk-aware path planning methods for AUVs to achieve safer 

navigation. (Pereira et al., 2011) proposed a minimum risk planner for a glider AUV, taking the 

surfacing risks into account. As an extension of their work, a risk-aware path planner was 

designed for AUVs to mitigate the collision risk with ships and land (Pereira et al., 2013). 

(Hegde et al., 2016b) identified the collision risk indicators for AROVs, which assisted in 

finding risky waypoints during path planning. (Lefebvre et al., 2016) presented a hierarchical 

A* approach for global path planning, which addressed the collision risk of AUVs. (Yan et al., 

2022) applied a whale optimization algorithm to address the AUV 3D planning problem. This 

algorithm is inspired by imitating the bubble-net hunting behavior of humpback whales to 

obtain an optimal global solution with a fast convergence speed. The proposed planner is able 

to effectively avoid risky mission areas and achieve the shortest distance while consuming 

minimal energy. (Zhang et al., 2022) tackled AUV path tracking with real-time obstacle 



 

137 

avoidance using reinforcement learning. The risk thresholds were incorporated into reward 

functions to generate a collision-free path. In our former work (Chen et al., 2022), we proposed 

a path planning framework for AUVs using a Risk-A* algorithm, which is an adapted A* 

approach that incorporates the risk of vehicle loss under an oil spill environment. 

In general, path planning methodologies can be roughly divided into global path planning, local 

path planning, and hybrid path planning. Global path planning aims to find a globally optimal 

path with known environmental information. It is usually performed in a large-scale mission 

area. A variety of global path planning algorithms for AUVs have been investigated, including 

the Dijkstra algorithm (Dijkstra, 1959), A* algorithm (Hart et al., 1968), rapidly exploring 

random trees (RRT) (Karaman et al., 2011), to name a few. It is desirable to conduct global path 

planning prior to a mission. However, it requires complete and accurate environmental 

information, which is difficult to collect in reality. In addition, ambient surrounding conditions 

can change fast and moving obstacles also exist. In this case, global path planning cannot handle 

unpredictable situations and react rapidly. 

In the contrast, local path planning searches for a locally optimal solution under unknown or 

changing environments (Cheng et al., 2021). It relies on real-time environmental observation 

from sensors for fast reactions and path adjustment. A number of local path planning algorithms 

have been proposed, such as the dynamic window approach (DWA) (Fox et al., 1997), the 

artificial potential field (APF) (Vadakkepat et al., 2000), and the vector field histogram (VFH) 

(Borenstein and Koren, 1991). Despite these local path planning algorithms possessing high 

computational efficiency and real-time performance, only applying local path planning may 
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lead to the local optimum problem and cause the vehicle to fail to reach its target. 

Therefore, it is essential to combine a global planner and a local planner into a hybrid 

architecture. A hybrid path planner can balance the computational complexity and real-time 

reaction to unforeseen changes. (Nakhaeinia et al., 2015) proposed a hybrid path planner for 

mobile robot navigation in an unknown dynamic environment, where the global planner 

generated a collision-free path with the shortest distance, while the local planner produced safe 

and time-minimal paths. (Chen et al., 2019) presented a hybrid path planning algorithm for 

unmanned surface vessels (USV), which combines the A* algorithm to generate a global path 

with the DWA method to avoid local dynamic obstacles. 

Despite much progress having been made in AUV path planning, limited research has been 

done to design a tailored hybrid path planner for AUVs, especially taking a risk-aware strategy 

into consideration. Therefore, the overall objective of this chapter is to propose a hybrid risk-

aware decision making strategy for AUVs. The proposed strategy is expected to achieve risk 

identification from a control perspective, and bridge real-time risk modelling with risk-aware 

path planning to realize more intelligent and safer deployment of AUVs. Specifically, the risk 

state of the vehicle during navigation is rigorously estimated based on an online risk model. 

The predicted risk index is integrated into a hybrid path planning module to achieve real time 

risk-aware decision making. 

The structure of this chapter is organized as follows. Section 5.2 elaborates the details of the 

proposed hybrid risk-aware decision making methodology. Section 5.3 designs a case study 

using the ecoSUBm5 AUV in the Baffin Bay area and Section 5.4 presents the simulation results. 
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Section 5.5 concludes this study. 

5.2 Methodology: development of a hybrid risk-based decision making strategy 

The overall framework of the proposed method consists of five modules, as shown in Fig. 5.1. 

Environmental observation aims to provide the mission map and environmental data, which 

serve as the input for the online risk analysis model. The online risk model is developed based 

on the systems theoretical process analysis (STPA) model for risk identification and the 

Bayesian network (BN) for risk prediction. The global path planner can generate an optimal 

global path based on the Risk-A* algorithm, which is realized in Chapter 4. A local path 

generator using the dynamic window algorithm (DWA) is designed to assist in avoiding 

dynamic obstacles. The detail of each step is elaborated in the following subsections. 

 

Fig. 5.1. The overall flowchart of the proposed methodology. 
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5.2.1 Environmental observation and situation awareness 

Situation awareness based on the onboard sensors is important for observing the ambient 

environment and path planning for the vehicle. The global environmental map is obtained from 

a gridded satellite map of the mission area. 

5.2.2 Development of the STPA-BN risk analysis model 

An autonomous system features advanced sensory perception, situation awareness, path 

planning and replanning capabilities, and can be classified as a deliberative control system 

utilizing the feedback loops of sense, model, plan, and action to make decisions (Utne et al., 

2020). Given that autonomous systems are highly dependent on complex software, the 

software-intensive feature makes it difficult to apply conventional risk analysis methods, many 

of which decompose the system into components while not considering the hazard of system 

behavior. Previous studies provided a number of risk models for AUV operations (Thieme et 

al., 2015b; Brito and Griffiths, 2016). However, only a few of the aforementioned studies have 

integrated and implemented the risk analysis model as part of the control system. In addition, 

several former studies considered a risk in the collision avoidance module of the AUV (Hegde 

et al., 2016b; Lefebvre et al., 2016). However, the risk was addressed as a general parameter, 

and a rigorous risk model is lacking. By observing the limitations of the current literature, it is 

essential to integrate the risk analysis model into the control system to achieve risk-aware 

decision making for AUV platforms. 

(Rasmussen, 1997) stated that risk management should be considered as a control mechanism 
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to ensure that system processes are within a safe operational envelope. Based on this principle, 

(Leveson, 2011) has proposed the STPA method to identify the hazards for complex control 

systems, in which safety is considered as a control problem of a system instead of a component 

failure problem, and accidents are caused by inadequate control or inadequate enforcement of 

safety constraints (Bensaci et al., 2023).  

Due to the superiority of the STPA in risk identification from the control perspective, this 

method has been applied as a hazard analysis technique for multiple autonomous systems, 

including autonomous ships (Wróbel et al., 2018b, a; Chaal et al., 2022; Yang and Utne, 2022), 

maritime autonomous surface ships (MASS) (Thieme et al., 2018; Utne et al., 2020), 

autonomous vessels (Valdez Banda et al., 2019), and multi-mobile robotic systems (Bensaci et 

al., 2023). These former studies have demonstrated the effectiveness of the STPA framework in 

capturing the hazards associated with system component interaction and unsafe behaviors of an 

autonomous system. They also highlighted the potential of STPA in mitigating the risk and 

guiding the design for autonomous systems. However, the original STPA method is a purely 

qualitative technique for hazard analysis, and it has not yet taken quantitative risk estimation 

into consideration (Bjerga et al., 2016). 

In order to address this limitation of the STPA method, several studies have combined STPA 

with the BN model, in which the STPA was used for hazard identification for an autonomous 

system, while the BN model was applied for estimating the system risk state. As clarified in the 

former chapters, BN is a probabilistic tool for risk analysis under uncertainty. It is a graphical 

model composed of a directed acyclic graph, where each node denotes a random variable and 



 

142 

arrows represent causal relationships among nodes (Afenyo et al., 2017). The dependency 

degrees among variables can be captured using conditional probabilities. According to (Thieme 

et al., 2018), BN is a powerful technique for risk modelling and estimation regarding an 

autonomous system, such as autonomous ships, and should be incorporated as a part of the risk 

model of the system. Specifically, (Utne et al., 2020) outlined a general framework by 

combining the STPA and BN for online risk modelling for autonomous ships, based on which 

(Johansen and Utne, 2022; Johansen et al., 2023) extended and integrated the STPA within a 

BN model to enable real-time supervisory risk control for autonomous ships in changing 

conditions. The proposed hybrid risk model provided the basis for selecting appropriate control 

and machinery modes. More latterly, (Wang et al.) extended the application for reliability 

assessment of autonomous vehicles. The authors modelled the safety control structure via the 

STPA framework and constructed the BN model to assess the system reliability. (Chaal et al., 

2022) proposed a hybrid framework to ensure ship safety, in which the STPA was used for 

hazard analysis and identification of risk control operations, while the BN model was employed 

for estimating the system risks. The authors highlighted the possibility of integrating the STPA 

and BN to cover most of the steps of risk assessment for ships. These studies proved that the 

combination of STPA and BN can mutually compensate by permitting quantitative risk 

estimation and prioritizing the risk mitigation control actions. 

Therefore, considering the advantages of combining STPA and BN for risk analysis of complex 

control systems, the STPA-BN framework is selected for risk identification and risk estimation 

for an AUV platform in this chapter. The purpose of developing the STPA-BN risk model is to 

assist in path selection and decision making during AUV navigation. The developed risk model 
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aims to predict the real-time risk state of the vehicle. Fig. 5.2 shows the flowchart of the 

proposed STPA-BN model for risk analysis, which applies STPA in conjunction with the BN 

model. Firstly, environmental mapping and situation awareness based on onboard sensors are 

applied for assessing ambient conditions. Then, the STPA method is applied for hazard analysis 

for AUVs. The outcomes of the STPA are then utilized as the basis for developing the BN model. 

According to (Leveson and Thomas, 2018), the STPA results mainly include the losses, system-

level hazards, control structure, unsafe control actions (UCAs), causal scenarios, and safety 

constraints or requirement. Among the outcomes, the control structure serves only for the STPA 

analysis, while other outcomes are subsequently used for BN analysis. The predicted risk index 

from the BN enables the path planning module in Section 5.2.3 to make risk-aware decisions 

for the vehicle during navigation. 

 

Fig. 5.2. Overall process of integrating risk analysis results into decision making module. 



 

144 

5.2.2.1 Risk identification based on the STPA model 

The first step of the proposed STPA-BN risk analysis model is risk identification through STPA. 

The STPA model mainly consists of four steps. The detailed implementation process of STPA 

is presented by (Leveson, 2011; Leveson and Thomas, 2018). 

a. Define the system boundary and analysis purpose 

The system boundary and the analysis purpose should be firstly defined. The definition of the 

system boundary impacts the scope of the overall analysis, which should specify the system 

components, sub-systems, system context, ambient environment, and how they could interact 

with each other. In general, the analysis purpose includes the identification of the system loss 

and system-level hazards. 

b. Develop the control structure of the system  

A control structure of a system refers to an ensemble of feedback control loops that shows 

control interactions among system components. In this step, the control structure is developed 

to identify different controllers, their control actions to enforce the safety constraints, and 

control variables that describe the state of the control process. 

c. Identify the unsafe control actions (UCAs) 

UCAs can be defined as unsafe control actions which violate safety constraints and cause 

system-level hazards (Johansen and Utne, 2022). In this stage, the control structure is examined 

to determine UCAs that can lead to losses and hazards identified in the first step. In general, 
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there are four kinds of UCAs: (i) a control action that, if provided, causes a hazard; (ii) a control 

action that, if not provided, causes a hazard; (iii) a control action that, if provided too late or 

too early, causes a hazard; (iv) a control action that, if applied for a too long or too short time, 

causes a hazard. 

d. Identify causal factors and safety requirements 

The objective of this step is to identify the underlying causes of UCAs defined in the former 

step. The causal factors are further applied to determine the safety constraints. Possible causal 

factors may include controller failures, inadequate control algorithms, wrong control inputs, 

inadequate process models, and so on. 

In summary, the outcomes of STPA contain the system-level hazards, the UCAs that can lead 

to the hazards, and the causal factors that could lead to the UCAs. Based on this identification, 

the safety constraints that can prevent unsafe scenarios and secure safer operations are further 

provided. The outcomes obtained from STPA provide a basis for developing the BN-based risk 

model in the next step. 

5.2.2.2 Online risk prediction based on the BN model 

Based on the outcomes of STPA, the BN model for risk analysis can be developed. The process 

of mapping the BN structure from STPA outcomes is shown in Fig. 5.3. In the top-down BN 

structure, the top node represents the system loss which is identified in the first step of the STPA. 

Subsequently, the system-level hazard nodes that lead to the top node are shown as the 

intermediate nodes in the BN, which are further linked to their parent nodes of UCAs. Finally, 
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the causal factors that lead to each UCA are identified as input nodes in the bottom level of the 

STPA. 

 

Fig. 5.3. Mapping the BN structure from the STPA outcomes. 

5.2.3 Development of hybrid path planners 

The core idea of the proposed hybrid path planner is as follows. Firstly, the Risk-A* which was 

proposed in Chapter 4 is firstly applied to generate an optimal global path as a planned route 

for the vehicle to follow. Once dynamic obstacles occur and the collision risk exceeds a 

predefined risk threshold, the local path planner based on the DWA algorithm could be triggered 

to generate a local collision-free trajectory. After the collision risk is mitigated to an acceptable 

level, the vehicle continues to track the remaining global path until reaching the target. 

5.2.3.1 Global path planner based on the Risk-A* algorithm 

The details of the process of applying the Risk-A* algorithm to generate a global path were 

elaborated in Chapter 4. Based on it, the output of the global path planner is a Risk-A* global 

path for the vehicle to follow. 
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5.2.3.2 Local path planner based on the DWA algorithm 

The local path planner is a part of the hybrid path planner for AUVs in this study. It is applied 

to generate a locally optimal path for the vehicle to avoid dynamic obstacles. The adapted DWA 

algorithm is used in this section to generate the local path. DWA is a velocity-space-based 

approach used in robotics for motion planning and control under an uncertain environment. It 

was originally proposed in the application of obstacle avoidance for indoor robots (Fox et al., 

1997). The DWA is intended to search for a feasible path in a velocity space consisting of the 

surge velocity and the rotational rate (Jian et al., 2020). The DWA algorithm mainly includes 

three steps. It firstly samples a desired velocity search space composed of multiple velocity 

pairs (𝑢, 𝑟), where 𝑢 denotes the forward velocity and 𝑟 is the rotational rate. Each velocity 

pair is then used to generate a trajectory for a certain time interval. The trajectory is generated 

by simulating the vehicle’s motion over time, considering its kinematics and other constraints. 

Finally, the generated trajectories are evaluated by the cost function, and the velocity pair 

corresponding to the optimal trajectory is selected as the reference command for the vehicle’s 

controller. 

DWA is widely used in different agents to realize autonomous obstacle avoidance. (Shen et al., 

2020) proposed a real-time obstacle avoidance method for AUVs based on the DWA. Since the 

original DWA with constant weights is limited to dealing with complex environments, their 

study incorporates reinforcement learning to learn the appropriate weights under different 

environments and optimizes the DWA. (Kobayashi and Motoi, 2022) reported a novel local pp 

method by combining the DWA with virtual manipulators for the mobile robot. (Dobrevski and 
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Skočaj, 2020) proposes an adaptive DWA approach for local navigation of the mobile robot. It 

uses the deep convolutional neural network to dynamically update the weight parameters of the 

DWA considering the sensor readings. (Liu et al., 2021) developed a global dynamic path 

planning fusion algorithm combining the Jump-A* algorithm and the DWA to improve the 

global optimality of a robot. (Jian et al., 2020) demonstrates a hybrid pp strategy for AUVs by 

combining a modified DWA and the RRT* algorithm. The proposed planner can automatically 

evaluate the collision risk and switch from RRT* to DWA when dynamic obstacles are 

approaching. 

5.2.3.2.1 Define the velocity search space 

Defining a velocity search space is the precondition of applying the DWA. The velocity search 

space consists of two parts. A set of possible velocities 𝑉.  is firstly defined in Eq. (5-1), 

indicating the velocity range that the AUV can reach considering the kinematic constraints. 

Since the AUV is a symmetrical platform, its maximum and minimum angular velocities are 

assumed to have the same amplitude in opposite directions. 

𝑉. = {(𝑢, 𝑟)|	𝑢 ∈ [𝑢8$#, 𝑢8&9] ∧ 𝑟 ∈ [−𝑟8&9 , 𝑟8&9]} (5-1) 

where 𝑢8$#  and 𝑢8&9	are the minimum and maximum forward speeds, while 𝑟8&9	is the 

maximum rotational rate. 

The second velocity space called dynamic window 𝑉: 	is defined in Eq. (5-2), implying the 

velocity that the AUV can actually achieve in a time interval after the acceleration (Eriksen et 

al., 2016; Chen et al., 2019). 
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𝑉: = {(𝑢, 𝑟) ∈ 𝑅 × 𝑅|𝑢 ∈ [𝑢* − 𝑢̇8$#∆𝑡, 𝑢* + 𝑢̇8&9∆𝑡] 

∧ 𝑟 ∈ [𝑟* − 𝑟̇8&9∆𝑡, 𝑟* + 𝑟̇8&9∆𝑡]} 

(5-2) 

where 𝑢* 	and 𝑟* 	are the current surge speed and yaw rate, 𝑢̇8$# is the maximum backward 

acceleration, 𝑢̇8&9  is the maximum forward acceleration, 𝑟̇8&9  is the maximum turning 

acceleration, and ∆𝑡 denotes the time step. 

Therefore, the overall velocity search space 𝑉' can be determined as: 

𝑉' = 𝑉. ∩ 𝑉: (5-3) 

5.2.3.2.2 Trajectory prediction 

After the velocity search space is generated, each feasible velocity pair can be used to predict a 

local trajectory in a certain time interval considering the kinematics constraints of AUVs. 

Assuming that the vehicle moves in the two-dimensional earth coordinate frame with the 𝑥-

axis pointing to the north direction and the 𝑦-axis pointing to the east direction. The posture of 

the vehicle includes the global position (𝑥, 𝑦) and the heading angle 𝜃 within the range of 

(−𝜋, 𝜋). This study considers a simplified kinematic model to update the vehicle state after a 

time step ∆𝑡 as follows: 

w	
𝑥65! = 𝑥6 + 𝑢6∆𝑡 cos 𝜃6
𝑦65! = 𝑦6 + 𝑢6∆𝑡 sin 𝜃6
𝜃65! = 𝜃6 + 𝑟6∆𝑡

 (5-4) 

By defining the kinematics model of the AUV, the local trajectories can be predicted in a time 
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period 𝑇 = 𝑛 ⋅ ∆𝑡. 

5.2.3.2.3 Cost function analysis 

The predicted local trajectories are evaluated by the cost function, and the trajectory that 

minimizes the cost function is selected as the optimal trajectory (Shen et al., 2020). The velocity 

pair of the optimal trajectory is served as the reference velocities of the vehicle, and thereby the 

vehicle can create a locally collision-free path to avoid dynamic obstacles. 

The overall cost function in this study mainly considers four parts as defined in Eq. (5-5), which 

is the weighted sum of the four types of costs. The first part 𝑑𝑖𝑠𝑡7;&4(𝑢, 𝑟)	calculates the 

Euclidean distance between the vehicle and the local target to force the vehicle toward the local 

goal. The second cost 𝑑𝑖𝑠𝑡7;&4(𝑢, 𝑟)	is the Euclidean distance between the vehicle and the 

nearest obstacle. The third part 𝑣𝑒𝑙(𝑢, 𝑟)	denotes the velocity cost of the vehicle, which is the 

difference between the maximum forward speed in a local trajectory and the current forward 

speed of the vehicle. To enhance the safety navigation performance of the AUV, the risk cost 

𝑟𝑖𝑠𝑘(𝑢, 𝑟)	predicted from the STPA-BN model is incorporated as the fourth part of the cost 

function. The risk cost is an essential term to ensure safe navigation along the local path. 

𝐺(𝑢, 𝑟) = 𝛼 ∙ 𝑑𝑖𝑠𝑡7;&4(𝑢, 𝑟) + 𝛽 ∙
1

𝑑𝑖𝑠𝑡;<(𝑢, 𝑟)
+ 𝛾 ∙ 𝑣𝑒𝑙(𝑢, 𝑟) + 𝛿 ∙ 𝑟𝑖𝑠𝑘(𝑢, 𝑟) 

𝑠. 𝑡.		(𝑢, 𝑟) ∈ 𝑉' 

(5-5) 

where 𝛼, 𝛽, 𝛾, and 𝛿 are constant weights of the cost function.  
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5.2.4 Development of the navigation controller 

The pure pursuit controller is selected as the navigational controller in this study. The generated 

optimal path is composed of a set of discrete waypoints. Pure pursuit is an effective algorithm 

for a vehicle following a path defined by waypoints (Coulter, 1992; Samuel et al., 2016). The 

core idea of this method is to find the closest waypoint around the vehicle, and then steer the 

vehicle towards that waypoint given the estimated desired heading. Given that the pure pursuit 

algorithm is computationally efficient and easy to implement, it is adopted in this study for path 

following for AUVs. 

5.3 Case study: considering an oil spill scenario in Baffin Bay 

In the case study, an ecoSUBm5 AUV operating in an oil spill scenario in Baffin Bay is 

considered to demonstrate the effectiveness of the proposed method. Our former work (Chen 

et al., 2022) has clarified the difficulties of AUVs operating in an oil spill environment and 

discussed the importance of risk-based decision making to assist in safer navigation. In addition, 

the former study has demonstrated the effectiveness of the proposed Risk-A* algorithm in 

controlling risks and moderating the path length. It should be noted that this case study assumed 

the environmental data obtained from onboard sensors can be accurately measured and directly 

used. Moreover, it is assumed that the time delay of data converting can be neglected. 

5.3.1 Mission profile description 

As described in Chapter 4, the mission area in this case study is selected as an open water area 

around Scott Inlet (71.10941 N, -71.10576 W), which is on the east coast of Baffin Island where 
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oil seeps are naturally present. 

5.3.2 Risk identification from the STPA model 

Considering the operating characteristics and historical accidents of AUVs. Three types of 

system losses for AUVs are identified, as listed in Table 5.1. The three undesired system losses 

are ranked according to their severity. 

Table 5.1. System losses of AUVs. 

System loss Description 

SL-1 Vehicle loss or unrepairable 
damage 

Complete loss of the physical vehicle or an 
AUV being damaged and unrepairable for 
future missions.  

SL-2 Severe damage, mission 
failure, mission abort 

Inability to complete the mission. 

SL-3 Mitigable damage, mission 
degraded, mission delayed 

Can be fixed in the next planned 
maintenance. 

According to determined system losses, potential system-level hazards that could lead to a 

system loss are identified, as shown in Table 5.2. A total of seven system hazards are identified, 

covering most of the technical hazards that an AUV could possibly suffer during deployment 

in an oil spill environment. 

Table 5.2. System-level hazards of AUVs operating in an oil spill environment. 

Identifier System-level hazard Related loss 
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SH-1 Integrity failure SL-1, SL-2 

SH-2 
Collision with ships or underwater 
obstacles 

SL-1, SL-2, SL-3 

SH-3 Emergency system failure SL-1, SL-2 

SH-4 Communication system failure SL-1, SL-2, SL-3 

SH-5 Undesired path deviation SL-1, SL-2, SL-3 

SH-6 Invisibility of the vehicle SL-1, SL-2, SL-3 

SH-7 Buoyancy control failure SL-1, SL-2, SL-3 

Although a number of UCAs remain to be identified in a realistic situation, the risk analysis 

model would become rapidly complicated to evaluate if all of them were involved. Therefore, 

this study focuses on four typical UCAs relating to path planning and navigational control of 

AUVs, as listed in Table 5.3, to facilitate the validation of the proposed framework. 

Table 5.3. Identified UCAs and their causal factors. 

UCAs Related System-level Hazard Causal Factors 

UCA-1 Control module 

does not provide 

appropriate speed 

SH-5 Undesired path deviation 

SH-6 Invisibility of the vehicle 

CF-1 Current speed 

CF-2 Wrong waypoint generation 

CF-3 Limited power capacity 

CF-4 Insufficient environmental 

information for accurate path prediction 
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UCA-2 Control module 

does not provide 

appropriate yaw 

SH-5 Undesired path deviation 

SH-6 Invisibility of the vehicle 

CF-1 Current speed 

CF-2 Wrong waypoint generation 

CF-3 Limited power capacity 

CF-4 Insufficient environmental 

information for accurate path prediction 

CF-5 Failure of steering system 

UCA-3 Navigation 

system provides 

inaccurate position and 

heading 

SH-5 Undesired path deviation 

SH-6 Invisibility of the vehicle 

CF-1 Current speed 

CF-4 Insufficient environmental 

information for accurate path prediction 

CF-6 Depth sensor failure 

CF-7 Current speed sensor failure  

CF-8 Sensor contamination caused by 

dense oil 

UCA-4 Sensor system 

does not identify 

obstacles timely 

SH-2 Collision with ships or 

underwater obstacles  

CF-9 Delay of sensor data converting 

CF-10 Acoustic sensor failure 

CF-11 Dynamic obstacles 

Among the causal factors, several nodes are defined as monitoring nodes, which could be 

monitored or measured during the mission by onboard sensors. These nodes assist in 

environmental observation and situation awareness in rapidly changing conditions. The 

monitoring nodes and potential employed sensors are summarized in Table 5.4. 
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Table 5.4. Monitoring nodes and employed sensors. 

Monitored Node Employed Sensor 

CF-1 Current Speed ADCP/DVL 

CF-8 Sensor contamination 
caused by dense oil 

Fluorometer 

CF-11 Dynamic obstacles Sonar 

5.3.3 Development of the STPA-BN risk analysis model 

The STPA outputs are used as the basis to develop the BN risk model. The structure of the 

developed BN risk model is shown in Fig. 5.4. For simplicity, this case study only considered 

the most severe system loss as the top node, namely, the vehicle loss or unrepairable damage. 

The occurrence probability of the top node can be specified as a risk index that could assist in 

further path planning and decision making. 

 

Fig. 5.4. The developed BN model. 
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In order to reduce the complexity of BN reference, the states of BN nodes are discretized into 

no more than three states. It is noted that a more comprehensive BN model can be expanded by 

adding nodes and their states, following the same process as this case study. A full description 

of BN nodes is defined as follows. Among the BN nodes, several monitoring nodes, namely, 

CF-1 current speed and CF-8 Sensor contamination caused by dense oil have three states of 

[Low, Medium, High], while other nodes only have two states of [Occur, Not occur]. The prior 

probability of each state of the BN node and conditional probabilities among nodes are 

determined according to domain experts’ judgements. 

5.3.4 Risk map generation 

On the basis of obtained environmental information and STPA-BN reasoning results, a risk map 

in terms of the probability of SL-1 in the mission area can be generated and illustrated in Fig. 

5.5. This risk map intuitively presents high-risk regions which the AUV should avoid, where 

the numbers on the scale represent risk indices. For instance, locations with obstacles have the 

highest risk index, which can always prevent the vehicle from selecting an obstacle as a 

waypoint. 
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Fig. 5.5. Risk map generated from the STPA-BN reasoning results. 

5.4 Simulation results and discussion 

5.4.1 Simulation setup 

In this section, the proposed hybrid risk-aware path planning strategy is simulated in the Python 

environment. The simulation is investigated to test the proposed method in a realistic 

environment with consideration of real environmental information, the real-time risk state of 

the vehicle, and the dynamic obstacles. The specification of the applied ecoSUBm5 AUV is 

summarized in Table 5.5. 

Table 5.5. The specification of the ecoSUBm5 AUV. 

Parameter Value [Unit] 

Vehicle length 1 [m] 

Hull diameter 1.46 [m] 

Weight in air 12 [kg] 
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Depth range 500 [m] 

Cruising speed 1 [m/s] 

Yaw rate 10-40 [degree/s] 

The global map is generated by rasterizing the satellite map of the mission area in Baffin Bay, 

converting the world space into a binary array map. The size of the selected mission area is set 

as 50 m ×	50 m. The whole search space is discretized into grids with the resolution for each 

grid being 1 m ×	1 m, namely, the minimum distance between two adjacent waypoints was 1 

m. The start and goal positions are set as (5 m, 2 m) and (45 m, 48 m) respectively in coordinates. 

To verify that the hybrid risk-aware planner can flexibly avoid dynamic obstacles, a dynamic 

obstacle with a constant forward velocity is added to the mission area. The dynamic obstacle is 

set to interfere in the predefined global path of the vehicle. The radii of the vehicle and the 

moving obstacle are set to be 0.5 m, to prevent the obstacle from approaching too close to the 

vehicle. 

The schematic flowchart of the hybrid path planning simulation is presented in Fig. 5.6. Once 

the vehicle detects a dynamic obstacle and the distance between them is less than the safety 

distance of 10 m, the local path planner is triggered. In this case, the vehicle switches from 

following the global path to following a local optimal trajectory for obstacle avoidance. Once 

the dynamic obstacle moves far away from the vehicle and their distance exceeds the safety 

distance of 10 m, the vehicle will continue to follow the global path. 
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Fig. 5.6. Schematic flowchart of the hybrid path planning strategy. 

5.4.2 Risk-aware hybrid path planning 

The global path planner firstly plans an optimal global path using the Risk-A* algorithm, which 

can be obtained from Chapter 4, as shown in Fig. 5.7. In a normal scenario without dynamic 

obstacles, the vehicle will follow the generated global path using the pure pursuit controller.  
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Fig. 5.7. The global path obtained from Chapter 4. 

Despite that the global path can be obtained by the Risk-A* algorithm, only following the global 

path cannot avoid dynamic obstacles. Therefore, local path planning is simulated.  

To validate that the proposed risk-aware path planning strategy can better assist in safe 

navigation, simulations under two different scenarios are implemented for comparative analysis: 

The first scenario does not consider the real-time risk cost for local path planning, while the 

second scenario involves the risk cost as a term of the cost function. For simplicity, the forward 

speed of the dynamic obstacle is held constant. The weights of various parameters in the cost 

function are defined under two scenarios. In the first scenario, the parameters are specified as 

𝛼 = 0.02, 𝛽 = 0.41, 𝛾 = 0.01, 𝛿 = 0, ∆𝑡 = 0.2𝑠, and 𝑇 = 2𝑠. In the second scenario with 

the risk cost taken into consideration, 𝛿 = 0.56 while other parameters remain the same. The 

allocation of weight value is based on expert knowledge, which can be adjusted according to 

the willingness to take greater risks and reduce other costs. To test the obstacle avoidance ability 

of the vehicle, 23 static obstacles and 1 moving obstacle are considered. 
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5.4.2.1 Scenario 1: Without the risk cost considered 

The simulated path planning process of the ecoSUBm5 AUV under Scenario 1 is shown in Fig. 

5.8. The symbols and color codes shown in Fig. 5.8 (a) are specified as follows. Five types of 

nodes are represented with different colors, including static obstacles, a dynamic obstacle, the 

start position, the target position, and the current position of the vehicle in real time. Four kinds 

of curves are shown with different colors, including the obtained global path, the historical 

trajectory of the vehicle that has traveled, the optimum local trajectory predicted by the DWA, 

and the historical trajectory of the dynamic obstacle. Once the distance between the vehicle and 

the target is shorter than 3 m, the target is assumed to be reached and the mission is complete.  

 

Fig. 5.8. Simulated path planning process under Scenario 1. 

It can be seen that the vehicle kept following the global path from the start position until the 

time of 16.8 s in Fig. 5.8 (a). On this occasion, the vehicle detected a moving obstacle and the 
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distance between them was less than the predefined safety distance of 10 m, and therefore, the 

DWA local planner was triggered. Fig. 5.8 (b) shows that the vehicle gave up following the 

global path and switched to follow a local optimal path obtained by the DWA to avoid the 

approaching moving obstacle. After successfully avoiding the moving obstacle, instead of 

immediately returning back to the global path, the vehicle made the decision to continually re-

plan the local path, as shown in Figs. 5.8 (c) and (d). The reason is that the vehicle ran into a 

cluster of static obstacles at this moment, and there was a higher collision probability if it 

returned to the global path. At the time of 57.2 s in Fig. 5.8 (e), the vehicle has moved far away 

from all the obstacles, with their distance exceeding the safety distance. In other words, the 

collision risk was lifted. Therefore, the vehicle switched back to follow the global path and 

finally reached the target in Fig. 5.8 (f).  

5.4.2.2 Scenario 2: With the risk cost considered 

The simulated path planning process of the ecoSUBm5 AUV under Scenario 1 is shown in Fig. 

5.9. It can be seen that Figs. 5.9 (a) and (b) show the process of global path following and 

dynamic obstacle avoidance, which is similar to Scenario 1. However, from the time of 42.2 s 

in Fig. 5.9 (c), the vehicle chose to detour around the static obstacles. It should be noted in Fig. 

5.9 (e) at the time of 57.8 s, the vehicle successfully avoided all obstacles and reached the safety 

distance from them. However, the vehicle continued to detour instead of sailing back to the 

global path. At the time of 65.4 s in Fig. 5.9 (f), the vehicle reached the target after a detour. 
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Fig. 5.9. Simulated path planning process under Scenario 2. 

5.4.2.3 Comparison of the risk state under two scenarios 

The obtained final paths under the two scenarios are presented in Fig. 5.10 (left column), which 

are overlapping on the same risk map. During the global path following and local path 

adaptation, the risk state of the vehicle is updated in real-time based on the developed STPA-

BN risk model. The data of measurable nodes are dynamically monitored and transferred as the 

input for the risk model. Accordingly, Fig. 5.10 (right column) visualizes the changing waypoint 

risk index and the accumulative risk index along the path under the two scenarios. The estimated 

risk index at each time point represents the probability of “SL-1 vehicle loss or damage” under 

the current environmental conditions. 
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Fig. 5.10. Obtained final paths, waypoint risk indices, and accumulative risk indices under (a) 

Scenario 1 and (b) Scenario 2. 

It can be seen that with the location and the ambient environmental conditions changing, the 

risk state of the vehicle also varies accordingly. As shown in Fig. 5.10 (a), without considering 

the risk cost predicted by STPA-BN, candidate waypoints are potentially selected for the local 

trajectory, no matter how risky they are. For example, the risk state from 43.4 s to 47.8 s in the 

local path rises to an unacceptable level that exceeds the predefined risk threshold of 0.05. In 

this case, the vehicle was directly running into a high-risk region according to the risk map. The 

path planner without the risk taken into account fails to select a safer waypoint to mitigate the 

risk state, and the vehicle could have a major chance of being lost during this mission. In 

contrast, with the risk cost considered, the performance of avoiding high risk regions can be 

significantly improved, as shown in Fig. 5.10 (b). The vehicle made a detour to avoid the high-
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risk region, and thereby the waypoint risk index remained lower than the risk threshold of 0.05. 

Based on the comparative analysis of simulations of scenario 1 and scenario 2, it can be seen 

that the proposed hybrid path planner embedding the risk analysis model has better risk-aware 

abilities. It can not only avoid static and dynamic obstacles in real time, but also can be aware 

of risky regions and select safer trajectories in a timely manner. The simulation results 

demonstrate the optimum and effectiveness of the proposed strategy. 

5.5 Conclusion 

In this study, a risk-aware hybrid path planning strategy for AUVs operating in challenging 

environments is proposed. The risk factors of vehicle loss are identified from a control 

perspective using the STPA framework. The risk state of the vehicle during navigation is 

rigorously estimated based on an online STPA-BN model. The predicted risk index is integrated 

into a hybrid path planning module to achieve real time risk-aware decision making. The 

proposed risk-aware path planning strategy that considers the risk cost during cruising exhibits 

better performance in avoiding risky regions compared with the traditional DWA algorithm 

which neglects the risk cost. It helps to select safer waypoints in real time, and at the same time, 

it mitigates the risk level within a tolerable threshold to ensure safe navigation. 

The limitations of this study are observed. Since the original DWA algorithm uses constant 

weights in the cost function, it lacks flexibility to handle complex situations with an increasing 

number of dynamic obstacles. In future work, an advanced DWA algorithm should be 

introduced to learn and adjust the weights of the cost function, which should overcome the 
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shortcomings of the traditional DWA and improve the applicability of the proposed path planner 

in multiple environments. In addition, the proposed strategy will be carried out in field trials to 

further validate its effectiveness. 
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Chapter 6. Conclusions and Future Directions 

This chapter concludes the research progress performed in this thesis and highlights the key 

findings of individual chapters. It also provides a summary of the overall research outcomes, 

discusses the limitations of the current work, and specifies the directions for future research. 

6.1 Conclusions 

Risk analysis and safety-based decision making is a critical issue for autonomous underwater 

vehicles (AUVs) operating in dynamic underwater environments. The primary objective of this 

research was to investigate systematic risk analysis approaches and safety-based decision 

making strategies for the AUV system in challenging marine environments. The expected 

research outcomes of this thesis addressed the following research questions: 

(i) What is the current state-of-the-art for the domain of risk analysis for AUVs? What are the 

critical risk factors and evolving risk analytical models? What are existing research gaps and 

future research trends in this domain? 

(ii) What are the main inherent technical failures of AUVs? How can they be impacted by 

environmental conditions? How is it possible to predict the risk level of an AUV platform 

considering the non-linear relationships among inherent technical failures and complex 

environmental variables? 

(iii) How is it possible to use the estimated risk state for safer navigation for AUVs? How can 

a design of a risk-based mission planning strategy for AUVs aid in global navigation and 
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decision making? 

(iv) How is it possible to address the real-time mission planning problem considering the 

dynamic risks and moving obstacles in realistic operating environments for AUVs? 

The key findings from this thesis are summarized as follows: 

Through an extensive literature review, it is found that the systematic identification of risk 

factors and their causal relationships is vital for further risk analysis. Most of the early research 

focused on technical factors of AUVs, relying on historical performance data. Whereas in 

current trends, environmental factors, human factors, and their interactive impacts are 

increasingly receiving attention. Furthermore, it is evident that quantitative methods have been 

rapidly implemented in recent years to enhance the accuracy and to handle the uncertainties of 

risk analysis of AUVs. However, former studies still rely heavily on expert knowledge, which 

may introduce judgmental bias. Lastly, future challenges for risk analysis for AUVs may focus 

on addressing dynamic risk analysis, scarce historical data, intelligent risk analysis, and multi-

vehicles risk analysis. 

Based on the dependence analysis in Chapter 3, the most critical environmental variables 

contributing to the loss of an autonomous underwater glider (AUGs) were identified, including 

a large water density gradient (E6), large current speed (E7), and large ship density (E3), which 

deserve constant attention in the environmental monitoring and risk mitigation process. The 

predict inference of the copula Bayesian network (CBN) can continuously update the 

occurrence probability of AUG loss given new observations of environmental conditions. Case 
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study results proved that the risk level of AUG operations can be mitigated by reducing the 

occurrence probabilities of key risk factors. Moreover, a narrow probability interval of these 

factors can minimize the prediction uncertainties, which gave insights into deploying the 

vehicle in a relatively gentle environment where the ambient conditions change moderately. In 

addition, according to the diagnose inference of the CBN model, the posterior probability of 

each risk variable can be obtained given a certain state of AUG loss. Hence, by defining an 

acceptable risk level of AUG loss, environmental conditions can be adaptively adjusted to 

achieve the safety requirement. Moreover, applications considering a Slocum G1 Glider 

operating in the Holyrood water region validated that the proposed CBN model is effective for 

risk prediction both over time and space, which indicated that the proposed risk model can be 

implemented to prevent risky occasions and areas in advance of a mission. In addition, risk 

mitigation measures can be provided according to the above findings, such as reducing the 

surfacing times for AUGs in the water column with busy shipping, and cruising away from 

deep-water regions with a large density gradient or with a close distance to the seafloor. 

Chapter 4 provides a systematic risk-based path planning approach for AUVs operating in an 

oil spill environment. The proposed BN-based risk model can forecast risk states of vehicle loss 

given comprehensive spill environments. Its probabilistic reasoning enhances the accuracy for 

further path searching and risk-based decision making. The generated risk map based on BN 

reasoning intuitively presents the spatial distributions of high-risk regions in a gridded mission 

area, which provides insights of risk mitigation through obstacle avoidance and waypoint 

selections. In addition, comparisons between the Risk-A* planner with two classic path 

planners (i.e., minimal-length planner and minimal-risk planner) have indicated that a trade-off 
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exists between the routing length, associated risks, and computational efficiency along a path. 

The proposed Risk-A* planner outperforms in risk mitigation by avoiding potential risky 

regions and obstacles, whilst it is highly competitive in terms of path distance and 

computational time. Moreover, different risk thresholds can affect the performance of Risk-A* 

path planning. A lower tolerable risk threshold, which refers to a higher safety requirement, can 

increase the mission length and consume more computational time. In this case, considering a 

particular scenario during an oil detection mission, a lower risk threshold can drag the vehicle 

away from the most highly-concentrated oil regions, which causes the vehicle to miss nearby 

plumes with rich information and therefore degrades its detection efficiency. Hence, the risk 

threshold should be modulated to achieve a trade-off between safety performance and mission 

efficiency. In summary, the developed risk-based planner can be practical for realistic AUV 

implementation. It is a worthwhile investigation for preventing AUV loss at the path planning 

stage prior to a mission.  

Chapter 5 designs a risk-ware hybrid path planning strategy for AUVs operating in challenging 

environments. The risk factors of vehicle loss are identified from a control perspective using 

the systems theoretical process analysis (STPA) model. The risk state of the vehicle during 

navigation is rigorously estimated based on an online STPA-BN model. The predicted risk 

index is integrated into a hybrid path planning module to achieve real time risk-aware decision 

making. The proposed risk-aware path planning strategy that considers the risk cost during 

cruising exhibits better performance in avoiding risky regions compared with the traditional 

DWA algorithm which neglects the risk cost. It helps to select safer waypoints in real time, and 

at the same time, it mitigates the risk level to within a tolerable threshold to ensure safe 
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navigation. 

6.2 Future directions 

The current work aims to address risk analysis and safety-based decision making strategies for 

AUVs in harsh marine environments. Several limitations of the current study are observed and 

can be further addressed in future work: 

Chapter 3 only employed the Gaussian copula function to model the correlation relationships 

among risk variables. Future work could explore different kinds of copula functions (i.e., 

Archimedean copula functions) to describe the dependencies more accurately. Furthermore, due 

to insufficient measured data, the case study combined measured environmental data with 

assumed environmental conditions, which could compromise the accuracy of risk prediction. 

In future work, real-time environmental data measured by multiple sensors should be 

incorporated to improve assessment accuracy. Lastly, this chapter provided an offline risk 

assessment method for AUGs, which could be extended to an online decision network for 

setpoint selection and path control given the current predicted risk level.  

Chapter 4 and Chapter 5 both considered a two-dimensional trajectory of the AUVs, which is 

particularly useful for missions in detecting oil spills released by vessels without significant 

depth changes. The approach could also be applied for AUV path planning in tracking oil spills 

from reservoirs. For this scenario, the vehicle would have to dive to higher depths. To capture 

this scenario, both the risk model and the path searching algorithm should be updated to take 

the 3D problem into consideration. A modification would be required to the methodology to 
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include the 3D body dynamics properties of the AUV. In addition, in the case of path planning, 

it is also important to consider the vehicle’s mechanical features in the path planning, such as 

the minimum turn radius of the vehicle. 

Another limitation of Chapter 5 is that the original dynamic window approach (DWA) uses 

constant weights in the cost function, it lacks flexibilities to handle complex situations with an 

increasing number of dynamic obstacles. In future work, an advanced DWA algorithm should 

be introduced to learn and adjust the weights of the cost function, which should overcome the 

shortcomings of the traditional DWA and improve the applicability of the proposed path planner 

in multiple environments.  

Furthermore, some recent research provided advanced methods for model validation for marine 

robotic systems (Albarakati et al., 2021; Liu et al., 2022). These studies considered multiple 

simulation scenarios with various vehicle maneuvers in practical environments. They provided 

insights to bridge the gap between pure computer-based simulations and real experimental 

validation. For potential experimental simulations, other key parameters besides the path length 

could be considered, such as the vehicle velocity, turning maneuvers, travel time, and energy 

consumption, which can be affected by ambient environmental conditions as well. Analyses 

from multiple perspectives of the simulations could enhance the feasibility of the planner, 

especially for multi-objective problems. An accurate estimation of AUVs navigational data is 

also crucial for safe path planning. The use of multiple sensors’ data could be beneficial for 

high-fidelity validation in practical environments in the future. In addition, the proposed 

strategy should be carried out in field trials to further validate its superiorities. 
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Appendix 

Table. A1. Classification of literature regarding the risk analysis of AUVs. 

No. Literature 
Risk Factor Identification  

Risk Analysis Method Mission Type 
Mission 

area 
Consequence 

Type 
Technical 

Factor 
Environmental 

Factor 
Human 
Factor 

1 
(Ortiz et 
al., 1999) 

ü   
Safety layers 

analysis  
Qualitative General mission General area 

AUV abnormal 
working 

2 
(Madsen et 
al., 2000) 

ü   Tree diagram Qualitative 
Deep water and 

under ice 
mission 

General area Mission abort 

3 
(Griffiths 

et al., 
2003) 

ü   
Kaplan-Meier 

survival 
model 

Quantitative 
Under sea ice 

mission 
The 

Antarctic 
AUV loss 

4 

(Griffiths 
and 

Trembanis, 
2007) 

ü   RMP 
Semi-

quantitative 

Under sea ice 
and ice shelf 

mission 
Polar regions AUV loss 

5 
(Griffiths 
and Brito, 

2008) 
 ü  BN Quantitative 

Under sea ice 
mission 

Polar regions AUV loss 

6 
(Bian et 

al., 2009a) 
ü   Fuzzy FTA Quantitative General mission General area 

AUV abnormal 
working 

7 
(Bian et 

al., 2009b) 
ü   FTA Quantitative General mission General area 

AUV abnormal 
working 
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8 
(Brito et 
al., 2010) 

 ü  
RMP, Kaplan-
Meier survival 

model 
Quantitative 

Under sea ice 
and ice shelf 

mission 

The 
Antarctic 

AUV loss 

9 
(Meng and 

Qingyu, 
2010) 

ü   
Safety 

measures 
analysis 

Qualitative General mission Lake area 
Battery failure, 
leakage, fishing 

net wrapped 

10 
(Kaminski 

et al., 
2010) 

 ü  
Fault 

Response 
Table  

Qualitative 
Under ice 

bathymetric 
surveys 

The Arctic AUV loss 

11 
(Brito and 
Griffiths, 

2011) 
ü ü  Markov chain Quantitative General mission General area AUV loss 

12 
(Griffiths 
and Brito, 

2011) 
ü ü  

RMP, Markov 
chain 

Quantitative 
Under sea ice 

mission 
Polar regions AUV loss 

13 
(Ho et al., 

2011) 
  ü 

Human factor 
analysis 

Qualitative General mission General area Mission abort 

14 
(Brito et 
al., 2012) 

ü   BN Quantitative 
Under sea ice 

mission 
The Arctic Operational risk 

15 
(Brito and 
Griffiths, 

2012) 
ü   SD Quantitative 

Multi-vehicles 
mission 

General area AUV loss 

16 
(Hu et al., 

2013) 
ü   FMECA, FTA Quantitative General mission General area 

AUV loss, 
mission abort 

17 
(Xu et al., 

2013) 
ü   FTA 

Semi-
quantitative 

Deep-sea 
minerals 

exploration 

Deep-sea 
hydrothermal 

area 
Mission abort 

18 (Pereira et  ü  Markov chain Quantitative Path planning General area AUV collision 
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al., 2013) 

19 
(Aslansefat 

et al., 
2014a) 

ü   FTA Quantitative General mission General area 
AUV abnormal 

working 

20 
(Brito et 

al., 2014b) 
ü   

Probability 
tree model 

Quantitative General mission General area 
Loss of 

communication 

21 
(Brito et 

al., 2014a) 
ü   

Kaplan-Meier 
survival 
model 

Quantitative 
Shallow water 
and deep-water 
glider mission 

Shallow 
water, deep 

water 
AUV collision 

22 
(Zhang et 
al., 2015) 

ü   
Grey relation 

analysis 
Qualitative General mission General area Thruster fault 

23 
(Thieme et 
al., 2015b) 

ü ü ü BN Quantitative General mission General area Mission abort 

24 
(Thieme et 
al., 2015a) 

ü ü ü 

Risk 
management 
framework, 

human 
reliability 

analysis, FTA, 
ETA 

Quantitative 
Seafloor 
mapping 

Coastal area 
AUV loss, 

mission abort 

25 
(Brito and 
Griffiths, 

2016) 
 ü  

BN, Kaplan-
Meier survival 

model 
Quantitative 

Under sea ice 
mission 

the Antarctic AUV loss 

26 
(Hegde et 
al., 2016a) 

ü ü  
Risk indicator 

model 
Quantitative 

Subsea IMR 
operation, path 

planning 
General area AUV collision 

27 
(Harris et 
al., 2016) 

ü   
FMEA, FTA, 
Markov chain  

Quantitative 
Multi-vehicles 

mission 
General area AUV loss 
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28 
(Brito, 
2016) 

ü   FTA Quantitative General mission General area 
Glider mission 

abort 

29 
(Yu et al., 

2017) 
ü ü  Bow-tie Quantitative 

IMR operation 
of offshore oil 

and gas 
platform 

General area AUV collision 

30 
(Xiang et 
al., 2017) 

ü   FTA  Quantitative General mission General area 
Failure of 

onboard system 

31 
(Hegde et 
al., 2018) 

ü ü ü BN Quantitative 
Subsea IMR 

operation 
Åsgard field, 

Norway 
Mission abort 

32 
(Brito et 
al., 2018) 

  ü ETA Quantitative 
Adaptive 
mission 
planning 

General area Mission failure 

33 
(Brito and 
Griffiths, 

2018) 
ü   BN Quantitative General mission General area 

Mission abort, 
AUV loss 

34 
(Brito and 

Chang, 
2018) 

ü   FTA Quantitative General mission General area AUV loss 

35 
(Hegde et 
al., 2019) 

ü ü  

Safety 
envelop, 

Octree method 

Semi-
quantitative 

Subsea IMR 
operation, path 

planning 
General area AUV collision 

36 
(Loh et al., 

2019) 
ü ü ü 

Fuzzy set 
theory 

Semi-
quantitative 

Under sea ice 
mission 

The 
Antarctic 

AUV loss 

37 
(Bremnes 

et al., 
2019) 

ü ü  BN Quantitative 
Under ice 

altitude control 
The Arctic AUV loss 

38 (Loh et al., ü  ü FuSDRA Quantitative Under sea ice The AUV loss 
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2020a) mission Antarctic 

39 
(Loh et al., 

2020b) 
ü ü ü FuSDRA Quantitative 

Under sea ice 
mission 

The 
Antarctic 

AUV loss 

40 
(Loh et al., 

2020c) 
  ü SD Quantitative 

Under sea ice 
mission 

The 
Antarctic 

AUV loss 

41 
(Xu et al., 

2020) 
ü  ü FuSDRA Quantitative 

Under sea ice 
mission 

The 
Antarctic 

AUV loss 

42 
(Yang et 
al., 2020) 

ü ü  BN Quantitative 
Under sea ice 

mission 
The 

Antarctic 
AUV damage 
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