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Abstract

A currently growing interest is seen in developing solvers that couple high-fidelity and

higher-order spatial discretization schemes with higher-order time stepping methods

for various time-dependent fluid plasma models. These problems are famously known

to be stiff, thus only implicit time-stepping schemes with certain stability proper-

ties can be used. Of the most powerful choices are the implicit Runge-Kutta methods

(IRK). However, they are multi-stage, often producing a very large and nonsymmetric

system of equations that needs to be solved at each time step. There have been recent

efforts on developing efficient and robust solvers for these systems. We have accom-

plished this by using a Newton-Krylov-multigrid approach that applies a multigrid

preconditioner monolithically, preserving the system couplings, and uses Newton’s

method for linearization wherever necessary. We show robustness of our solver on the

single-fluid magnetohydrodynamic (MHD) model, along with the (Navier-)Stokes and

Maxwell’s equations. For all these, we couple IRK with higher-order (mixed) finite-

element (FEM) spatial discretizations. In the Navier-Stokes problem, we further

explore achieving more higher-order approximations by using nonconforming mixed

FEM spaces with added penalty terms for stability. While in the Maxwell problem,

we focus on the rarely used E-B form, where both electric and magnetic fields are

differentiated in time, and overcome the difficulty of using FEM on curved domains

by using an elasticity solve on each level in the non-nested hierarchy of meshes in the

multigrid method.
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Lay summary

Numerous real world applications can be described using mathematical models mak-

ing understanding them crucial in enhancing our lives. For many, the exact solution

is often either unknown or very expensive to calculate. Numerical methods are used

instead to find an accurate approximation. These are all applied on a discrete for-

mulation of the original model, achieved by applying discretization schemes. Many

time-dependent problems of interest are especially difficult to solve since they require

these schemes to have certain stability properties. Although some powerful choices

exist, they are rarely used since their application produces a system of equations that

is very large and difficult to solve. This leads to a clear lack of studies developing

solvers for these types of systems.

The goal of this thesis is to find accurate approximations while spending the least

amount of computational time and with minimal memory requirements utilizing the

available parallel hardware. Several numerical schemes can be developed and carefully

combined to do so. One common technique, proven to be effective, is using multiple

levels of mesh hierarchy in what are called multigrid methods. Optimization of these

methods and the use of specific discretization schemes give us the opportunity to build

solvers that find increasingly accurate approximate solutions.

Generally when solvers are developed, robustness is shown by testing their perfor-

mance in solving more than one mathematical problem. One group of most interest is

fluid flow problems due to their vast real world applications in aerodynamics, oceanog-

raphy, meteorology, biology and many more areas. These models are famously tricky

to solve exactly, or numerically using only a single technique. In addition, they might

be modelled on curved domains adding to their numerical difficulty. Manipulation of

the multigrid process included in the solver can adjust for this. The overall goal of this

thesis is to develop an effective and robust numerical solver for such time-dependent
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problems with highly stable discretizations.
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Chapter 1

Introduction

Typically, mathematical models are derived from real world physical applications

in many fields, such as medicine, physics, geology, and engineering. Understanding

these models is vital since they affect many aspects of our day to day lives such

as the travel we use, the climate predictions we make, and the technology we rely

on. These models often take the form of partial differential equations (PDEs). In

practice, numerical methods are often applied to systems of equations that are a

discrete formulation of these considered continuum mathematical models. In time-

dependent PDEs, discretization methods are applied to both the space and time

functions to produce the fully discretized system of equations. Out of the many choices

of temporal discretization schemes, Runge-Kutta methods are considered one of the

most powerful schemes to use. Since many of the PDEs of interest are stiff problems,

among the many Runge-Kutta classifications, implicit Runge-Kutta (IRK) methods

must be applied. Although interest has grown in developing numerical algorithms

and solvers for various stiff PDEs with an IRK discretization, there is still a lack of

efficient solvers. The main goal of this thesis is to develop a novel numerical solver

that is both efficient and robust for stiff PDEs with high-order IRK temporal and

mixed finite-element discretizations resulting in a saddle-point structured system.

Fluid flow models such as time-dependent (Navier-)Stokes and magnetohydro-

dynamics (MHD) are all examples of stiff PDEs with important real applications.

Although no universal definition exists of stiff differential equations, they are known

to be difficult to solve numerically due to the requirement of using a smaller time step

size than accuracy requires in order to avoid instability of the temporal discretization
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scheme. This makes stability of the numerical scheme chosen a crucial difficulty when

dealing with these types of systems. In 1928, the first analysis of the instability of

temporal discretization schemes and the need for a restricted time step size was done

on hyperbolic PDEs by Courant, Friedrichs, and Lewy [11]. It has been shown that,

because of this strict limitation on the time step size, explicit methods cannot be

efficiently used as they are conditionally stable since they have a limited domain of

stability. Instead, implicit methods are preferred since they tend to have unlimited

stability domains making them unconditionally stable [30, 3]. For all implicit time

stepping methods, including IRK, there exist many types of stability. It is usually

sufficient to use A-stable schemes for many stiff problems, but for more complicated

PDEs stricter stability requirements may be needed such as L-stable schemes to bet-

ter attenuate any numerical noise introduced when applying these schemes. In this

thesis, when considering IRK schemes, we require they at least be A-stable methods.

Both A- and L-stability are discussed in detail in later chapters.

Finite element methods (FEM) [7, 13] are among the most popular spatial dis-

cretization schemes used. They depend on defining integral forms of the PDE at

hand using the basis set of selected approximation spaces. Depending on whether the

approximation space is a subset of the solution space or not, finite-element methods

can be categorized into conforming or non-conforming. There exists a wide variety of

both types to choose from depending highly on the problem at hand [21, 13]. In PDEs

with multiple variables in different solution spaces, mixed finite-element methods are

used, where a combination of approximation spaces are needed. Mixed FEM is fa-

mously used in problems with a saddle-point structure such as those considered in this

thesis. The difficulty in mixed FEM lies in ensuring this combination satisfies the inf-

sup stability condition [13, 16]. Usually in incompressible fluid flow problems when

the nonconforming discontinuous Galerkin spaces are used, additional stabilization

“penalty” terms must be included [9, 12]. More details on the specific formulations

of these terms used in this thesis are found in Chapter 4.

Discrete formulations of PDEs are produced using various types of discretization

schemes. Because these formulations are an approximation to the continuum prob-

lem, there are natural errors in the approximations to solutions. Thus, the chosen

discretization scheme(s) must be carefully designed to introduce the least amount of

error, resulting in the closest possible approximation. Any one of these schemes, ei-

ther temporal and spatial, can be categorized by their order, which is an upper bound
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on this error that depends on the step size taken, either temporally or spatially. The

higher the order of a discretization scheme, the more accurate the approximation is.

For time-dependent PDEs, stable high-order time discretization schemes need to be

coupled with stable high-order spatial discretization schemes for even more accurate

approximations. We do note that although there is wide knowledge of higher-order

FEM discretizations on stationary saddle-point problems [15, 18, 19] and, simultane-

ously, of higher-order temporal discretizations with lower-order spatial discretization

[17], to our knowledge there is little comparable research on the analysis of using

higher-order discretization in both space and time.

The systems that are produced from a full discretization process at each time step

are usually very large, making the use of direct methods impractical due to their ex-

tremely high computational cost. Iterative methods, such as Krylov methods, can be

used instead and FGMRES is a common choice for IRK discretized systems due to

their nonsymmetry. This method allows the incorporation of a preconditioner that

can differ with each application. The main goal of preconditioning is to change a

system of equations into an equivalent but easier to solve system, to further acceler-

ate the convergence of any chosen iterative method. Multigrid methods, developed in

the late 1960’s [8, 26, 6], can be seen as a powerful family of preconditioners. Based

on the design of the multigrid preconditioner, one of two general techniques are fol-

lowed: either block or monolithic preconditioning. When block preconditioning in

systems with a RK discretization, a multigrid cycle is applied to each stage separately

to approximately solve the linear subsystems. Since the application of the precondi-

tioner happens to each block individually, the system of equations is decoupled. For

parabolic PDEs with IRK discretization, many block multigrid preconditioners have

been developed [31, 23, 24, 10]. Sometimes, when using these preconditioners, one

(or more) complicated Schur complement blocks need to be approximated which is a

major disadvantage that arises in many problems with a saddle-point structure, such

as fluid flow problems discretized with mixed finite element methods. So, an alternate

approach is to preserve the coupling of the system by applying the preconditioner to

all stages at once, which is done by monolithic preconditioning. Recent interest has

increased in studying these types of solvers [4, 25, 28].

When using preconditioned methods, a clever design of the preconditioner is es-

sential to achieve an overall efficient solver. In monolithic multigrid preconditioners,
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this includes carefully choosing the correct relaxation scheme. Various families of re-

laxation methods have been known to give excellent results, including (but not limited

to) Braess-Sarazin [5], Uzawa [22] and Vanka [29] schemes. In all our work, we use

a Vanka-type relaxation scheme in the monolithic multigrid process following work

found in [1, 14, 2, 20, 27]. Unlike in Braess-Sarazin (and by extension Uzawa) where

an update is calculated simultaneously for all grid points, Vanka relaxation depends

on dividing the domain into patches and performing a local solve on each patch with

the update then accumulating these updates sequentially. We note that our work is

the first using monolithic multigrid with Vanka relaxation for IRK discretized saddle-

point problems.

The work presented in this thesis has contributed in filling a noticeable gap in

the current research by successfully developing a solver for stiff PDEs with IRK dis-

cretizations. This was done through what can be seen as a three step extension.

First, the solver is developed and proven to be efficient for several A-stable families

of IRK schemes on four different types of fluid flow problems varying in complex-

ity. Although high-order A- and L-stable IRK schemes were used, only a lower-order

conforming mixed FEM was chosen. Secondly, this solver was extended to solve the in-

compressible Navier-Stokes equations with higher-order non-conforming mixed FEM

spaces while using even higher-order L-stable IRK discretizations. Thirdly, modifica-

tions were made to the multigrid transfer operators and an elasticity solve was utilized

to show our solver is also effective in dealing with domains with curved boundaries

in both two and three dimensions. This is shown by applying it to the well-known

difficult to approximate Maxwell’s equations. We specifically note that our solver has

been developed to be optimally parallelizable over several cores and parallel numerical

results are included throughout this thesis.

The overview of this thesis is as follows:

In Chapter 2, we introduce background information on mathematical concepts

used in the work. Krylov methods, geometric multigrid, and discretization schemes

are discussed.

In Chapter 3, a Newton-Krylov-Multigrid solver is developed for several types of

incompressible fluid flow models with an implicit Runge-Kutta discretization. Em-

phasis on the use of Vanka type relaxation is made. In all models, a lower-order

mixed spatial discretizations is used. The robustness of the solver is detailed through
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numerical results and a comparison of the effect of different stability properties and

number of stages of a few implicit Runge-Kutta schemes is presented. This work is

published as Monolithic multigrid for implicit Runge-Kutta discretizations of incom-

pressible fluid flow in the Journal of Computational Physics, 2023.

In Chapter 4, an extension of the solver developed in Chapter 3 is made to higher-

order spatial and temporal discretization spaces. The focus of testing of this solver

is the incompressible Navier-Stokes equations. Non-conforming mixed finite element

spaces are used and the introduction of interior penalty terms is needed to enforce

the incompressibility constraint. Although the RadauIIA Runge-Kutta method is

exclusively used, the findings can be generalized to other higher-order L-stable implicit

Runge-Kutta schemes such as LobattoIIIC.

In Chapter 5, the same solver from Chapter 3 is also extended to Maxwell’s equa-

tions on a disk and sphere. Special care must be taken in the multigrid process since

the hierarchy of meshes is non-nested. The main difficulty arises in accurately approx-

imating the elements near the curved boundary of the domain. An elasticity solve is

needed to appropriately handle the curvature.

In Chapter 6, a conclusion of the full thesis is made and topics for future work are

proposed.
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Chapter 2

Background

This chapter presents the mathematical concepts covering the several numerical meth-

ods that make up our solver. First, we discuss Newton’s method, which is the lin-

earization technique we use on the nonlinear problems considered in this thesis. Then,

in section 2.2, we present details on the different methods applied to the resulting

linear system. This includes FGMRES, Chebyshev, multigrid and Vanka schemes.

Finally, we detail the discretization methods of interest where finite-element spatial

discretization is covered in section 2.3 and Runge-Kutta temporal discretization in

section 2.4.

2.1 Newton’s method

As mentioned earlier, we apply numerical methods to a system of equations that are

formed from the discretization of a continuous differential equation. Depending on

the original problem, this system can either be linear or nonlinear. If it is nonlinear,

we usually transform it into a linear system by using a linearization method. In our

work, for all nonlinear models considered, we use Newton’s method as the linearization

technique.

Start by considering F (x) = 0 to be a nonlinear system of equations, and let

δx(0) := x(1)−x(0) where x(0) is an initial guess for the solution. Using Taylor’s series
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with a truncation of all terms of second order or higher, we have the following form:

F
(

x(1)
)

≈ F
(

x(0)
)

+ J
(

x(0)
)

δx(0) = 0,

where J
(

x(0)
)

is the Jacobian matrix at the current approximation. So by solving

the linear system (also called Newton equations), J
(

x(0)
)

δx(0) = −F
(

x(0)
)

for δx(0),

we can find the next approximate Newton guess δx(0) + x(0) = x(1). Usually, x(1) is a

more accurate approximation than x(0), which means that ||x−x(1)|| < ||x−x(0)||. If
x(1) does not have the desired accuracy, we apply Newton’s iteration again using x(1)

to find x(2) and so on achieving a set of approximations x(0),x(1),x(2),x(3), . . . that

become continually closer to the exact solution x. In general, we can define Newton’s

method on F (x) = 0 iteratively with k denoting the current iteration along with an

initial guess x(0) as:

1. Solve J
(

x(k)
)

δx(k) = −F
(

x(k)
)

for δx(k).

2. Set δx(k) + x(k) = x(k+1).

3. Check accuracy of approximation x(k+1).

We note that δx(k) is called the Newton search direction.

Newton’s method is very powerful as it has very rapid convergence (twice as fast

as Picard’s method for example) making it a commonly used linearization technique.

Despite this property, in many practical problems x is very large (several million

entries) thus making finding the solution of the linearized Newton equations at each

iteration very expensive. In such cases, instead of solving the linear system exactly

using a direct method, we can approximate the solution using a numerical method

[40]. This leads to the Newton-iterative method called the inexact Newton method [15].

As for any iterative method, we must define an appropriate stopping criterion (also

called stopping tolerance), denoted by a set of non negative forcing terms {ηk} (these
can be all the same value η). In order for the inexact Newton method to converge,

these forcing terms must all be less than 1. Stopping tolerances demonstrate the

acceptable amount of error in the current approximation. After each iteration, the

error is calculated, if it is smaller than the tolerance then the iterations stop and the

desired approximate solution is reached. In inexact Newton’s method, instead of using

error, we measure how close (or far) we are from the exact solution by finding the
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residual of the system after each iteration. Through good choices of the forcing terms,

the level of accuracy of Newton’s method is maintained [15]. In inexact Newton’s

method, the new update approximation is defined as previously but a residual, rk, of

δx(k) is introduced in the linear system at each iteration:

J
(

x(k)
)

δx(k) + r(k) = −F
(

x(k)
)

, where
||r(k)||
||F (x(k)) || ≤ ηk.

In our solver, we apply inexact Newton’s method by using a combination of FGMRES

and multigrid (detailed in the next section) as the iterative method to approximate

the solution to the linearized system.

Since the inexact Newton’s process itself is iterative, carefully chosen stopping

tolerance(s) must be set to know when convergence is reached. We emphasize that

although there are existing techniques to define this tolerance, there is no universal

theory that specifies the correct value(s) to set for all problems. In general, the

stopping tolerance is decided based on the individual problem at hand and the chosen

iterative method. In all problems considered in this thesis, we either set the values

of {ηk} to be (equal) fixed nonlinear tolerances chosen by experimental hand-tuning,

or set them to be dependant on the physical mesh discretization size, or we use the

Eisenstat-Walker stopping tolerance [18]. Eisenstat-Walker provides two choices for

selecting the forcing term set where, in both choices, finding each ηk for k = 1, 2 . . .

depends heavily on F
(

x(k)
)

and F
(

x(k−1)
)

with a given starting term η0 ∈ [0, 1).

These are: for k = 1, 2, . . .

• choose either

ηk =
||F
(

x(k)
)

− F
(

x(k−1)
)

− J
(

x(k−1)
)

δx(k)||
||F (x(k−1)) ||

or

ηk =
|||F

(

x(k)
)

|| − ||F
(

x(k−1)
)

+ J
(

x(k−1)
)

δx(k)|||
||F (x(k−1)) ||

.

• for γ ∈ (0, 1] and ω ∈ (1, 2], choose ηk = γ

(

||F(x(k))||
||F(x(k−1))||

)ω

.

For each choice, a certain lower threshold criteria is set for all forcing terms. This
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is done to avoid oversolving the nonlinear system meaning produced approximations

after a certain iteration are barely moving closer to exact solution, which happens

when the forcing term is too small.

2.2 Iterative methods and multigrid

2.2.1 Iterative methods

After applying (inexact) Newton’s method, we are left with a linear system of equa-

tions to solve numerically. We simplify the notation in this section for ease of discus-

sion, but we note that, in the following, the system matrix A is the Jacobian matrix

from above, u is the unknown Newton direction and f represents −F
(

x(k)
)

. Thus,

the linear of system we consider is written as Au = f with

A =















a11 a12 . . . . . . a1n

a21 a22
. . . a2n

...
...

. . .
...

an1 an2 . . . . . . ann















, u =



















u1

u2

...

...

un



















, and f =



















f1

f2
...
...

fn



















. (2.1)

Applying a direct method like Gauss elimination to the above system when A is

dense has a computational costO(n3) where n is the dimension of the matrices in (2.1).

Even though this cost is reduced for problems with a sparse A matrix, the cost will

never be as good as O(n). Unlike direct methods, the number of operations involved

in finding a solution of the system using iterative methods is not fixed before hand.

Usually, the goal is to keep iterating until a reasonable approximation of the exact

solution is reached. When that happens, we say a numerical method has converged.

Measuring convergence depends on error introduced in the approximate solution from

the numerical method used. After each iteration the method takes, we can compute

the error in the updated approximation by calculating how far it is from the exact

solution. After some iterations of a convergent iterative method, the error decreases

to an acceptable amount.

Denoting û to be an approximation to the exact solution u, iterative methods find
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û using a series of updates, called iterations or sweeps, on an initial guess. Keeping in

mind that our goal is to find an accurate approximation, the error in û is e = u− û.

Often, u is unknown and so it is hard to find the error this way. Instead, we can use

the residual r = f− Aû as a proxy to measure the size of the error. This leads to an

important relationship between residual and error described in the residual equation

r = Au− Aû = Ae,

which now we can use to understand the error.

One class of iterative methods is Richardson iterations, with

u(k+1) = u(k) + ωk+1r
(k),

where u(k) is the approximation from the current iteration, u(k+1) is the approxima-

tion in the next iteration, and ωk+1 is the scalar weight of the (k + 1)th iteration.

Recursively, we can write this as

u(k+1) = u(0) +
k+1
∑

i=1

ciA
ir(0),

where r(0) is the residual in the initial guess and the set {ci} are all constants depending
on the iterative method. (Note: Richardson method is not used in this thesis and is

just mentioned here purely for concept introduction.)

There is a huge variety in iterative methods. The effectiveness of a certain iterative

method depends highly on the problem at hand to be solved. One of the main classes

is called stationary iterative methods. In these methods, the matrix A is split into

A = M − N making the linear system of equations equivalent to Mu = Nu + f.

Iteratively, it can be written in the form

u(k+1) = u(k) +M−1
(

f− Au(k)
)

,

where the matrix M−1 is called the preconditioner. Two common examples of station-

ary iterative methods are Jacobi and Gauss-Seidel. Considering the common splitting

A = D − L − U , where D is the diagonal matrix of A and L and U are strictly

lower and upper triangular matrices respectively, then in Jacobi M = D making the
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iteration of the form u(k+1) = uk +D−1
(

f− Auk
)

while in Gauss-Seidel M = D − L

making the iteration u(k+1) = uk + (D − L)−1
(

f− Auk
)

. While these two methods

are very useful building blocks, for many of the more complicated differential equa-

tions they are highly unlikely to be used on their own since they tend to be slower to

converge compared to other iterative methods and they can become very expensive

as the problem size grows, having computational cost at least O(n) per iteration ac-

cumulating to a total cost of at least O(n2) over all iterations performed. However

they are still used in combination with other iterative methods such as, mentioned in

the next section, in multigrid methods.

Alternatively, a widely popular class of non-stationary iterative methods are called

Krylov methods. These are constructed using a Krylov subspace. Given a residual

vector r(0) and a matrix A, the k-dimensional Krylov subspace is

Kk(A, r
(0)) = span{r(0), A1r(0), A2r(0), . . . , Ak−1r(0)}.

Based on the system matrix properties, there exists a variety of Krylov techniques

that aim to find the best possible approximation of the form u(k)−u(0) ∈ Kk(A, r
(0)),

where u(k) − u(0) ∈ Rk. They differ based on the optimality condition an approxima-

tion of this form must satisfy. Two of these methods are the generalized minimum

residual method (GMRES) and Chebyshev iteration [37, 19]. We present a detailed

explanation of these next.

GMRES method

In GMRES, of all possible u(k) solutions of the form u(k) − u(0), the vector must also

minimize ||f − Au(k)||. Consider the matrix Rk = [r(0), A1r(0), A2r(0), . . . , Ak−1r(0)],

then we can write

u(k) = u(0) +Rky
(k),

where y(k) ∈ Rk. Since f − Au(k) = f − A(u(0) + Rky
(k)) = r(0) − ARky

(k), then

finding u(k) that minimizes ||f − Auk|| is equivalent to finding y(k) that minimizes

||r(0) − ARky
(k)||. In other words, we solve for y(k) in the following least-squares

problem

minu(k)−u(0)∈Kk(A,r(0))||f − Au(k)|| = miny(k) ||r(0) − ARky
(k)||. (2.2)
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Notice that y(k) is a solution to the following normal equations

RT
kA

TARky
(k) = RT

kA
T r(0).

In some systems, A might be ill-conditioned, so too is ATA, making it difficult to solve

these equations. Additionally, if A is very large, as is the usual case, then solving these

normal equations for each iteration can be very costly. Hence, the formulation of these

normal equations are usually avoided by using the Arnoldi algorithm. This algorithm

produces a set of orthonormal vectors, denoted as {q1,q2, . . . }, that is used in the

above least-squares problem.

With induction, it can be easily proven that given q1 =
r(0)

||r(0)|| , then

span{q1,q2, . . . ,qk+1} = span{r(0), Ar(0), A2r(0), . . . , Akr(0)}.

Meaning the Arnoldi vector set forms a basis forKk(A, r
(0)). Next, we denote the n×k

matrix Qk = [q1,q2, . . . ,qk], and the upper Hessenberg matrix of size (k+1)×k with

entries hij as Hk+1,k. A general upper Hessenberg matrix, (Hl,m)ij, with dimension

l ×m contains entries

(Hl)ij =







hij, j = 1, 2 . . . , l, i = 1, 2, . . . ,min(j + 1, l)

0, otherwise.

Now, after the kth iteration in the Arnoldi algorithm we reach the following matrix

equation

AQk = Qk+1Hk+1,k. (2.3)

Now, if we use the Qk as the basis for our Krylov space in place of Rk, we can

write

u(k) = u(0) +Qky
(k).

So, using (2.3), the minimization problem (2.2) now becomes

minu(k)−u(0)∈Kk(A,r(0))||f− Au(k)|| = miny(k) ||QT
k+1r

(0) −Hky
(k)||.

Due to the definition q1 =
r(0)

||r(0)|| and the orthonormalty of the columns of Qk, we

have QT
k+1r

(0) = βe
(k+1)
1 , where β is a constant and e

(k+1)
1 is a column vector of size
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k + 1 with only the first entry being 1 and the rest are 0. Additionally, we can make

use of the QR factorization of the Hessenberg matrix, which is Hk = UkPk where Uk

is a (k+1)×(k+1) orthogonal matrix and Pk is a (k+1)×k upper triangular matrix.

Finally, these definitions all lead to the minimization problem

minu(k)−u(0)∈Kk(A,r(0))||f− Au(k)|| = miny(k) ||βUT
k e

(k+1)
1 − Pky

(k)||, (2.4)

where Pky
(k) is a (k + 1) × k column with a zero in the last entry. Picking the first

k entries of y(k) such that Pky
(k) matches βUT

k e
(k+1)
1 results in miny(k) ||βUT

k e
(k+1)
1 −

Pky
(k)|| = |νk+1| where νk+1 is the last entry of βUT

k e
(k+1)
1 . The GMRES method

continues to iterate until |νk+1| satisfies a specified stopping tolerance. We note that

the matrix-vector products in the Arnoldi algorithm contribute to the (dominating)

computational cost of GMRES after k iterations to be O(k2n) which is cheaper than

classical iterative methods, such as Jacobi and Gauss-Seidel both with complexity

O(n2), since in practice the GMRES converges in a number of iterations that can

be much smaller than the dimensions of the problem (i.e k ≪ n). In our work,

we specifically use a class of preconditioned GMRES method called flexible GMRES

(FGMRES) as the outer Krylov method in the solver where the preconditioner used

is a multigrid cycle. In FGMRES, the details presented for GMRES above are the

same but applied to a right preconditioned system AM−1Mu = f. Notice using right

preconditioning does not change the residual is the Krylov space definition. The

”flexibilty” in FGMRES refers to the ability of changing M after each iteration of the

method depending on how accurate the approximation is after each iteration. If M is

fixed to be the same for all iterations in FGMRES, then right-preconditioned GMRES

and FGMRES are mathematically equivalent. However, they differ in their implemen-

tation. Where classical right-preconditioned GMRES preforms an extra application

of the preconditioner at the end, FGMRES instead stores the set of matrix-vector

products in the Arnoldi process. Since we are not restricted by memory in the work

done in this thesis and to avoid an extra application of our expensive preconditioner,

we prefer FGMRES as our outer Krylov method over right-preconditioned GMRES.

Chebyshev iteration

Let us revisit the iterative method in the form u(k+1) = u(k) + ωk+1r
(k). If we assume

that the system matrix A is diagonalizable with n eigenvalues denoted as λi in Avi =
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λivi, then we can write the error after the kth iteration as

e(k) =
n
∑

i=1

cipk(λi)vi.

In the above, the polynomial is defined as pk(λi) =
k
∏

j=1

(1− ωjλi) and the coefficients

ci are in the expansion of the initial error e(0) =
∑n

i=1 civi. This defines polynomial

methods.

Since our goal in any numerical method is to minimize the error after the iteration,

here this means to minimize the maximum of the polynomial on the eigenvalues,

||e(k)|| ≤ (max1≤i≤n|pk(λi)|)
n
∑

i=1

|ci|||vi||.

To achieve this, Chebyshev polynomials are an excellent choice [1].

The Chebyshev iteration requires some knowledge of the spectrum of the matrix

A beforehand. We begin by defining the ellipse with the center θ, foci points at θ±γ,

a small semi axis length b, and a large semi axis length a. To apply the Chebyshev

iteration, this ellipse must exclude the origin while completely including the spectrum

of A. We note that if A is symmetric and positive definite, then the length b = 0

and hence the spectrum is included inside the interval [θ − γ, θ + γ]. Chebyshev

polynomials, denoted as Tk(z), were originally derived on the interval [−1, 1], but can
be extended by translating these polynomials to [θ−γ, θ+γ] and rescaling them such

that Tk(0) = 1 [24, 26]. On the interval |z| ≤ 1 we define Tk(z) = cos(k arccos(z)),

while if z is outside [−1, 1] they are defined as Tk(z) = cosh(k arccosh(z)). This

results in the scaled translated polynomials

pk(z) =
Tk(

θ−z
γ
)

Tk(
θ
γ
)
.

We notice that as the vertices of the ellipse get closer, the smaller maxz|pk(z)|
becomes. This means that for the best Chebyshev iteration performance in the SPD

case we can choose θ−γ = λmin(A) and θ+γ = λmax(A). Note this is not necessarily

the best bounds for our usage of Chebyshev iterations within multigrid methods; to

our knowledge there is no concrete theory on a best choice that fits a certain class
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of linear systems in this setting. Thus, in this thesis, we either use experimentally

hand-tuned (interval) bounds or default chosen bounds set by the software used for

iterative solvers (PETSc).

From the discussion above, the knowledge of the spectrum bounds beforehand

requires the number of iterations be fixed beforehand as well since the weights {ωj}kj=1

defined in pk(λi) are different from those in pk+1(λi) [1]. So the classical two-term

Chebyshev recursive algorithm is replaced by a three-term algorithm. The detailed

step-by-step derivation of the three-term recursion version of Chebyshev iteration can

be found in [25].

In our solver, Chebyshev polynomials are used to accelerate the convergence of

the relaxation scheme in the multigrid preconditioner (discussed in the next section).

2.2.2 Geometric multigrid

As mentioned earlier, one of the most powerful families of numerical schemes for the

solution of linear systems are the multigrid methods. Following the naming of these

methods, multiple levels of division of the domain are used to approximate the solution

of a differential equation accurately. Because of their high efficiency, they are one of

the fastest iterative methods developed to this day for a wide range of discretized

elliptic (and other) differential equations. Depending on the technique followed in

defining the levels in the multigrid method, there are several classifications. In all the

work presented here, we focus on using geometric multigrid methods (GMG), where

the geometric information of the problem at hand is used in defining the multigrid

components. Other classes not discussed in this thesis include algebraic multigrid

(AMG) [6], “black-box” multigrid [16], and adaptive multigrid methods [5].

Any error can be described as a combination of waves with varying oscillations,

typically categorized into high frequency (called oscillatory) components and low fre-

quency (called smooth) components. Applying Jacobi or Gauss-Seidel to approxima-

tions with such error vectors, we notice that after several iterations the oscillatory

components are nearly eliminated (also referred in the literature as “dampened” or

“relaxed”) while the smooth components are not significantly affected. This behaviour

is called the smoothing property. Both Jacobi and Gauss-Seidel effectively damp os-

cillatory components of the error after only a small number of iterations making them
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excellent choices as smoothing schemes in multigrid methods. These iterations are

called relaxation sweeps.

For convenience of presenting details of a multigrid method, we will consider a

simple one-dimensional Poisson test problem:

−u′′

(x) = f, in Ω = (0, 1),

u(0) = u(1) = 0.
(2.5)

Multigrid methods are applied to the discrete formulation of (2.5), so for simplicity

we discretize the above using the finite-difference discretization method. To do this,

we divide the domain Ω into the finite set of n + 1 spatial points {xi}ni=0 such that

0 = x0 < x1 < · · · < xn−1 < xn = 1. In the simplest case, this leads to the

uniform mesh (or grid) with mesh size h = 1
n
. Notice that the grid points are xi =

ih. Denoting the approximation as ui ≈ u(xi) and fi = f(xi), the (central) finite-

difference approximation of (2.5) is

1

h2

(

− ui+1 + 2ui − ui−1

)

= fi, for 1 ≤ i ≤ n− 1

u0 = un = 0. (2.6)

This leads to the system of equations Au = f of the form (2.1), where

A =



















2
h2

−1
h2 0 . . . 0

−1
h2

2
h2

−1
h2 0 . . . 0

...
...

...

...

0 . . . . . . 0 −1
h2

2
h2



















Since the boundary conditions at the endpoints, u0 = un = 0, are implicitly

enforced here, A is an (n− 1)× (n− 1) matrix. Remark: since we do not use finite-

difference discretization in any of our research in this thesis, and it is only included

for explanation purposes here, we will not include the details of this discretization

scheme. For details on finite-difference discretization see [23, 47].

Denoting ω as a real weight constant, a weighted Jacobi iteration for example

on the system of equations above is u(k+1) = u(k) + ωD−1
(

f − Au(k)
)

. Using the
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definition of the error after each iteration and the residual equation, we can write the

error formula for each Jacobi iteration as e(k+1) = e(k) − ωD−1Ae(k). As stated, after

a few Jacobi iterations, the oscillatory components of the error are dampened leaving

only smooth components. Since no amount of further iterations will effectively reduce

the smooth errors, we rarely use Jacobi (or Gauss-Seidel) alone. Using multiple levels

of grids as in the multigrid process can effectively dampen these components.

Two important observations arise: smooth errors can be represented well without

significant loss of information on a coarser grid, and low-frequency error components

become high-frequency on a coarser grid which can be further dampened by a smooth-

ing scheme. These are the main ideas of multigrid methods. We define a coarser

uniform mesh, with a mesh size H, referred to as the coarse mesh with the original

h-sized mesh as the fine mesh. The coarse mesh is constructed using a coarsening

factor where the intervals in each spatial direction of the fine mesh is multiplied by

this factor. Typically, the coarsening factor is either 2 or 3 (most popularly 2 mak-

ing H = 2h). See Figure 2.1 for an example of the one dimensional mesh coarsening.

Note: we introduce subscripts in the remainder of this section to indicate which mesh

we are referring to.

Ωh

Ω2h

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6

Figure 2.1: An error appearing smooth on a 13 grid points fine mesh and oscillatory
on coarser meshes of 7 grid points.

Now that we can easily represent errors on a coarser grid, we can use this to increase

the accuracy of the approximation on the fine grid, in other words “correcting” the

approximation. This defines the second main concept of multigrid methods known as
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coarse-grid correction (CGC). Since in most problems of interest the exact solution

is unknown and hence the error cannot be directly computed, we use the residual

equation in the CGC process. Meaning instead of smoothingAHuH = fH on the coarse

grid, we substitute the residual from the fine grid in place of fH , where AHuH = fH is

the approximation of the discrete system on the coarse grid. So, we would be applying

Jacobi for example as a relaxation method to the system AHuH = rH , where rH is

the residual in Ahuh = fh represented on the coarse grid.

A natural question that comes to mind is how do the meshes communicate with

each other to transfer the different components between them? For this, we use

transfer operators defined as restriction and interpolation. Restriction, denoted as

IHh , transfers information (usually vectors) from the fine grid to the coarse grid, while

interpolation, denoted as IhH , transfers from the coarse grid to the fine grid. There

are several types of transfer operators to choose from depending on the discretization

method used in the problem. A usual choice is to set interpolation as the (scaled)

transpose of restriction. So using the meshes in Figure 2.1 with H = 2h, no matter

what the transfer operator choices are we can say

Restriction: I2hh vh = v2h and Interpolation: Ih2hv
2h = vh,

where v2h and vh are vectors on Ω2h and Ωh, respectively.

The last thing left to figure out is how do we define the coarse-grid operator AH .

There are two methods for this: either rediscretizing the continuum problem on the

coarse mesh or using the Galerkin operator, [27], where AH = IHh AhI
h
H . For some

discretizations of differential equations, the two methods are equivalent (as the case

for most of the problems considered in this thesis), for others they differ and hence

rediscretization is usually used (as the case for the problems considered in Chapter

4).

Now that the different components that make up multigrid are defined, the two-

grid multigrid algorithm for the system Au = f is as follows:

Two-grid algorithm: TG(Ah, fh, u
k
h, ν1, ν2)→ uk+1

h :

1. Pre-smoothing: Relax ν1 times on Ahuh = fh to get the approximation ûk
h.
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2. CGC process:

(a) Find the residual on the fine grid: rh = fh − Ahû
k
h.

(b) Restrict the residual to the coarse grid: rH = IHh rh.

(c) Solve the coarse-grid problem AHuH = rH directly.

(d) Interpolate the solution to the fine grid: eh = IhHuH .

(e) Correct the approximation with the interpolation: ûk
h + eh → ûk

h.

3. Post-smoothing: Relax ν2 times on Ahû
k
h = fh to get the approximation uk+1

h .

In the algorithm above, ν1 and ν2 are the number of sweeps of the pre- and post-

smoothing schemes, respectively. These can differ but are usually the same, and in

general no more than 3 sweeps are used. We note that the pre- and post-smoothing

schemes themselves can also be chosen to be different but almost always are the same.

The study of Local Fourier analysis (LFA), [42], can often be used to find the best

parameters included in all components of a multigrid method. This indicates that due

to the many components involved in multigrid, optimization of the scheme is always

possible depending on the problem at hand. For example, for some problems, Jacobi

or Gauss-Seidel will need to be replaced by better relaxation techniques as will be

discussed in the next subsection.

To study the rate of convergence of multigrid methods in general (the two-grid

method in particular) we can use the two-grid error propagation operator

MG = Sν2
h (I − IhHA

−1
H IHh Ah)S

ν1
h ,

where Sh and I are the relaxation operator on the fine mesh and coarse mesh identity

matrix, respectively.

Multigrid methods have optimal complexity in comparison to other stationary

iterative solvers, meaning the number of iterations required to solve a problem with n

degrees of freedom is proportional to n. In other words, their total computational cost

is O(n) making them cheaper than unpreconditioned GMRES. This makes multigrid

methods faster in convergence than other iterative methods (of course this is true

only if all the different components described earlier are chosen optimally). Multigrid
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methods are also scalable in parallel settings, which is a very important property in

the modern world to take advantage of the hardware architecture in solving huge

problems.

A crucial advantage in the optimality of the algorithm described is that the coarse-

grid system is much cheaper to solve than the fine-grid system since it contains fewer

grid points hence fewer unknowns to solve for. However, in almost all realistic models

the number of coarse-grid points is still very large. So, we can further coarsen the

coarse grid, building a hierarchy of meshes, until we get to a coarse enough grid

that the coarsest system can be cheaply solved using a direct method, along the way,

recursively applying the two-grid algorithm. This is why they are referred as the

multigrid methods.

Vanka relaxation

The type of relaxation method chosen is usually based on the problem at hand and

the discretization method used. The choice of an appropriate relaxation method is

extremely important in increasing the efficiency of multigrid methods. As mentioned

in the previous chapter, in our solver we use monolithic multigrid, as opposed to

block preconditioning, when dealing with saddle-point problems. In these problems,

it is common to use more intricate smoothing techniques than classical point-wise

relaxation schemes such as Jacobi or Gauss-Seidel extensions that due to the structure

of A can no longer be applied. The three relaxation methods most commonly used are

either Uzawa [32], Braess-Sarazin [4], or Vanka [44]. We strictly use Vanka smoothing

in this thesis for both the pre- and post-relaxation schemes in the monolithic multigrid

cycle.

The Vanka scheme was famously first introduced as a relaxation method on the

Navier-Stokes equation with a Marker-and-Cell (MAC) finite difference discretization

in [44] during the 1980’s. This scheme is essentially an overlapping Schwarz iterative

method, which is a domain decomposition scheme. Originally introduced as multi-

plicative schemes, Vanka relaxation can also be applied additively. When parallel

computation is used, additive Vanka relaxation is preferred [46].

Unlike in Uzawa and Braess-Sarazin where updates in each iteration happens to

all grid points at once, the main concept of Vanka relaxation is the decomposition
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of all DoFs in the discretized mesh into blocks (also called patches in the literature

[22]). In Vanka, updates to the global approximation are done by restricting to each

individual Vanka block the residual, then performing a local solve, followed by adding

the interpolated solutions globally. The goal is to set up the local Vanka block systems

to have the same saddle-point structure as the global system. The size of the Vanka

blocks highly depends on the discretization used (for example as seen in the blocks

used in Chapter 4 compared to those used in Chapter 3). For incompressible fluid-

flow problems, in order to enforce the incompressibility constraint it is necessary to

include only one DoF of the constraint variable in each patch [31]. All other DoFs

adjacent to this constraint DoF are included also in the Vanka block. No matter the

type/shape of the Vanka blocks, each DoF in the mesh must be included in at least

one block (but can appear in multiple blocks). The details of the Vanka iterations are

discussed more deeply in the later chapters.

2.3 Finite-element method

To formulate the linear Au = f, a discretization method is first applied that trans-

forms the continuous problem to a discrete one. For spatial variables, there are many

discretization methods available to choose from, but one of the most popular and

commonly used is the finite-element method (FEM). The key concept for this method

is that it relies on integrals of functions that one can evaluate on arbitrarily shaped

domains. FEM is usually favoured because it is more flexible in the choice of the

discretized mesh structure which is crucial in problems with irregularly shaped do-

mains. It is also generally easier to develop higher order approximations using FEM

than finite difference methods. An additional advantage to using FEM is they are

easier to implement in software due to the use of reference mapping in the variational

formulation.

To introduce the concept of FEM, consider the d-dimensional Poisson equation,

where d ∈ {2, 3}:

−∆u = f, in Ω,

u = 0, on ∂Ω,

where u is the sufficiently smooth unknown solution in a certain space X, called
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the solution space. We note that, due to the Dirichlet condition above, all functions

included in X vanish on the boundary. The above elliptic DE is sometimes called the

strong formulation. The discrete form of this is based on the weak formulation (or

the variational formulation).

To find the weak formulation, we start off by multiplying both sides of the above

equation with a test function, v ∈ X, then integrating over the domain:

−
∫

Ω

v∆udV =

∫

Ω

vfdV, ∀v ∈ X.

Next, we break down the integral on the left hand side by using integration by parts

to get

−
∫

Ω

v ·∆udV = −
(
∫

∂Ω

v∇u · n̂dA−
∫

Ω

∇v · ∇udV
)

,

=

∫

Ω

∇v · ∇udV −
∫

∂Ω

v∇u · n̂dA,

=

∫

Ω

∇v · ∇udV,

since the boundary conditions imply v = 0 on ∂Ω. This reduces the smoothness

required of u. The weak formulation of the Poisson equation becomes: Find u ∈ X

such that
∫

Ω

∇v · ∇udV =

∫

Ω

fvdV, ∀v ∈ X.

Before we continue, we define two spaces to set up the remaining discussion. The

space of squared integrable functions on the domain is defined as

L2(Ω) :=

{

u

∣

∣

∣

∣

∫

Ω

u2 <∞
}

,

with a norm of ||u||2 := (
∫

Ω
u2)

1
2 and an inner product of ⟨f, g⟩ =

∫

Ω
fgdV . The first

degree Sobolev space for a two-dimensional Ω is denoted as

H1(Ω) :=

{

u

∣

∣

∣

∣

u,
∂u

∂x
,
∂u

∂y
∈ L2(Ω)

}

.

We note that the solution of the strong formulation (with the Dirichlet boundary
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condition) must have continuous second derivatives that are continuous up to the

boundary [3]. While solutions of the weak form are only required to be in the H1

Sobolev space. A sufficiently smooth solution of the weak formulation is also a solution

of the strong formulation (for proof see [7]).

Now, we define Xn, to be the finite n-dimensional approximation space over the

set of basis functions {ϕ1, ϕ2, . . . , ϕn} satisfying the boundary condition ϕi(x) = 0

∀x ∈ ∂Ω. These functions make up a maximal set of linearly independent vectors

that span the space Xn. If un ∈ Xn, then it can be written as a combination of the

basis functions as un =
n
∑

i=1

uiϕi, where the coefficients {ui}ni=1 are the unique set of

real unknown coefficient associated with un. The set of functions un are called trial

functions (or shape functions) and are the approximations to the weak formulation

solution u.

For simplicity, we assume that the basis set of the trial and test function spaces are

the same. Hence, we assume the finite-dimensional version of the weak formulation is

to find un ∈ Xn such that

∫

Ω

∇vn · ∇undV =

∫

Ω

fvndV, ∀vn ∈ Xn. (2.7)

If we plug in the expansions un =
n
∑

j=1

ujϕj and v =
n
∑

i=1

viϕi, where {vi}ni=1 are the

coefficient set for v, in (2.7) we get

n
∑

j=1

uj

∫

Ω

∇ϕi · ∇ϕj =

∫

Ω

ϕif.

This then can be written as the Galerkin system of equations

Auh = f,

where A = [aij] =
∫

Ω
∇ϕi · ∇ϕj is the stiffness matrix and f = [fi] =

∫

Ω
ϕif . So, in

order to find the solution un, we must solve the Galerkin system for uh then plug it

into the expansion of un. We note because of our assumption on the trial and test

spaces, A is a symmetric and positive definite matrix [20].

What differentiates classes of finite-element methods is the choice of the approx-

imation space Xn. If Xn ⊂ X, then we say Xn is X-conforming and we have a
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conforming FE approximation, otherwise it’s called non-conforming. In our work,

we use both classes of methods, depending on the problem at hand. Whatever the

choice of Xn, it must be appropriately made in a way that allows the error in the ap-

proximation un to decrease as the dimensions of the space increase while maintaining

reasonable cost for solving the produced Galerkin system.

We can minimize the cost of solving the Galerkin system by choosing the basis

functions to have as small of a local support as possible. Local support refers to the

narrowest region on the mesh that {ϕi} may have nonzero values. By taking a small

local support basis set we can guarantee that the discretization matrix is sparse, thus

cheaper to solve (under some assumptions). This local area is referred to as an element

in the discretized mesh and most commonly are intervals in one-dimensional meshes,

triangles or rectangles in two-dimensional meshes, or tetrahedra or cubes in three-

dimensional meshes. These elements should be small enough that they approximate

the domain and solution accurately, but not so small that they increase the cost of

finding the approximation.

Generally, smooth functions can be approximated by piecewise polynomials. Com-

monly in FEM, the basis functions of Xn are nodal functions, specifically Lagrangian

interpolants. This means that the bases produce a Kronecker property, ϕj(xi) = δij,

and so un(xi) :=
n
∑

j=1

ujϕj(xi) = ui. Let us consider the decomposition of a two-

dimensional mesh into a finite number, N , of non-overlapping triangles for example

to get a triangulation τN of Ω. This results in a total number of N triangular elements.

If the solution space considered is X = H1(Ω), then the simplest and smallest con-

forming FE space is the piecewise linear function space P1(τN). In this space, on any

given element T ∈ τN , there are 3 nodes, one on each vertex of T . In each element, the

P1(τN) space will only have 3 basis functions that are not zero. These are ϕ1, ϕ2, ϕ3

where the element vertices are numbered 1, 2 and 3 respectively in any order, making

up the local DoFs related to that element T . Since these are Lagrangian interpolants,

the value of ϕi is 1 on node i and zero on the other two nodes of T . If we want a more

accurate approximation, we can increase the dimensions of the approximation space

by adding more approximation nodes in the same triangulation. For example, for the

piecewise quadratic function space, P2(τN), in addition to the three vertex nodes we

also have a node on each edge of T for a total of 6 basis functions on T that are not

zero. In general, the set of all nodes in the mesh make up the total set of DoFs. The
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total number of DoFs in a FE mesh is equal to the number of basis functions of the

approximation space Xn. DoFs do not always come in the form of nodal values as

described for spaces considered in the following chapters. The particular distribution

of the DoFs in an element depends on the approximation space chosen. Since the

value of the basis functions at each DoF contributes to finding un, the more DoFs

used, the more accurate the approximation generally is. We must keep in mind that

with the increase of the number of DoFs comes an increase in the size of the Galerkin

system, thus increasing the computational cost of finding the approximation. Hence

an important trade-off occurs between accuracy and cost of solution. See Figure 2.2

for an example of P1(τN) and P2(τN) elements on an arbitrary triangulation.

(1) (2)

(3)

(1) (2)

(3)

(4)

(5)(6)

Figure 2.2: Left: P1 triangular element. Right: P2 triangular element.

In the Poisson model considered there was only one unknown, u. We note that in

most realistic models, we have more unknown variables to solve for with either all or

none belonging to the same solution space. In this case we use mixed finite-elements.

For example, consider the time-independent Stokes equation on the two-dimensional

domain Ω with viscosity set to 1 as

−∆u+∇p = f ∈ Ω (2.8a)

−∇ · u = 0 ∈ Ω, (2.8b)

u = 0 ∈ ∂Ω, (2.8c)

where u(x) is the velocity, and p(x) is the pressure. Let the solution spaces be

u ∈ H1
0 and p ∈ L2

0(Ω) where L2
0(Ω) :=

{

u ∈ L2(Ω)
∣

∣

∫

Ω
udx = 0 on ∂Ω

}

. To apply

mixed FEM discretization the same general concepts described earlier occur on a
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chosen decomposition of the mesh, taken to be a triangulation for example. For each

of u and p, an approximation space is chosen defining the basis sets denoted as Vh ∈ V

and Qh ∈ Q respectively, where V := H1
0(Ω) and Q := L2

0(Ω). Test functions v and

q are defined from Vh and Qh respectively and DoFs are distributed on the elements.

The final Galerkin system is constructed and solved to then find all approximations

of the unknowns. The difficulty in using mixed FEM is choosing carefully compatible

approximation spaces. In order to avoid instability in the discretization scheme (i.e

well-posedness of the saddle-point system), the approximation spaces chosen must

satisfy the inf-sup condition [20]

inf
q ̸=0

sup
v ̸=0

∣

∣

∫

q divv
∣

∣

||v|| ||q|| ≥ γ, (2.9)

where γ is a strictly non-negative constant. Combinations that satisfy (2.9) are said

to be inf-sup stable. Not all mixed finite-element spaces can be inf-sup, in fact us-

ing spaces of the same degree can never be inf-sup stable. One of the most popu-

lar conforming mixed finite-element spaces for the (Navier)-Stokes equations is the

Taylor-Hood space where (u, p) ∈ Vh × Qh = P2 × P1. Many other conforming and

nonconforming combinations with varying degrees exist on various types of meshes.

All of the mixed finite-element spaces in our work were carefully chosen to be inf-sup

stable.

2.4 Runge-Kutta methods

When spatial discretizaion is applied to a time-dependent PDE, we are left with a

semi-discrete system of equations since the time variable is still continuous. This

technique is known as the method of lines (MOL) [38, 39]. MOL can be applied

to either linear or nonlinear PDEs where all variables are discretized except for one

leading to a system of ordinary differential equations (ODEs). An ODE solver is

then used to solve the produced system. In time-dependent PDEs specifically, MOL

essentially separates the spatial and temporal discretizations since time integration

techniques (also temporal discretizations) are applied to these system of ODEs. There

are also a wide selection of temporal discretization schemes to choose from depending

on the problem at hand and the stability requirements [29]. Although for a small

number of problems, low-order schemes like the Euler method (which is first order) are
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used, generally all low-order time integration schemes have poor convergence. Hence,

higher-order schemes are favoured. Two popular classes of higher-order schemes are

multistep methods and one-step methods. Both types of schemes use information

from previous time steps to find the approximation at the current time step, tn. The

difference is in the number of previous time steps needed (many or just one previous).

A popular multistep method is the kth order backward difference formula (BDF-k).

On the other hand, a powerful family of one-step methods is the set of Runge-Kutta

schemes (RK). In all our work, we use the Runge-Kutta methods.

Given the system of linear time-dependant ODEs u′(t) = f(u(t), t), applying an

r-stage Runge-Kutta method gives

ki = f

(

un +∆t

r
∑

j=1

aijkj, t
n + ci∆t

)

, for i = 1, 2, . . . , r,

un+1 = un +∆t

r
∑

j=1

bjkj.

(2.10)

In the scheme, the set {ki}ri=1 represents the r stage values and the approximation

at time tn = t0 + n∆t is denoted by un. The real coefficients are the nodes ci, the

weights bj, and the Runge-Kutta matrix A = [aij]. All coefficients form what is called

the Butcher tableau [10, 11], where each RK scheme has a unique Butcher tableau

structure.

RK methods can be classified based on the non-zero structure of the coefficient

matrix A. The two main classifications are explicit Runge-Kutta methods (ERK),

where aij = 0 ∀j ≥ i, and implicit Runge-Kutta methods (IRK), where ∃j ≥ i with

aij ̸= 0. IRK methods can further be categorized into diagonally implicit Runge-Kutta

methods (DIRK), where aij = 0 ∀j > i, and fully implicit Runge-Kutta (FIRK).

Further, popular types of DIRK schemes are singly diagonally implicit Runge-Kutta

methods (SDIRK), which have similar DIRK structure with the added property of

aii = ajj for all i and j, and explicit singly diagonally implicit Runge-Kutta methods

(ESDIRK), which in addition to an SDIRK structure have a0j = 0 ∀j. We note BDF-

1, 1-stage IRK and Backward (implicit) Euler are all equivalent time integration

schemes.

In general, the domain of stability, denoted by D, of a scheme is the set of all

complex numbers z, such that limn→∞ |un| ≤ |u0|. This domain can be found by



31

applying the time integration scheme to the Dahlquist test equation:

u′ = λu,

where λ ∈ C denoting z = ∆tλ. The exact solution to this equation is u = u0e
λt.

To avoid the solution blowing up, the real part of the exponent must be negative.

In other words if Re(λt) ≤ 0, then limt→∞ |u| ≤ |u(0)|. Applying the general RK

method Equation (2.10) to the test equation we get the stages

ki = un +∆tλ

r
∑

j=1

aijkj.

If we denote the r × 1 vectors 1 = [1, . . . , 1]T and k⃗ = [k1, . . . , kr]
T , we have

k⃗ = (I −∆tλA)−1
1un,

which we can then plug into the second equation of Equation (2.10) to get

un+1 = (1 + ∆tλbT (I −∆tλA)−1
1)un.

In the above, the function R(z) = 1 + zbT (I − zA)−11 is called the stability function

of the RK scheme. In order for limn→∞ |un| ≤ |u0| to be true, |R(z)| must be less

than 1. For RK methods, this implies that D = {z ∈ C||R(z)| ≤ 1}. Clearly, R(z) is

a rational function, however for ERK it is a polynomial of degree r.

The main advantage of one type of time integrator over another of equal order is

the stability. There are many kinds of stability one might need for a given PDE (see

[45] for details). In this thesis, we focus on two types, A-stability and L-stability. A

method is called A-stable when the left-hand side of the complex plane lies completely

within the domain of stability of the chosen scheme. If a scheme is A-stable, then

the time step size can be chosen only based on accuracy while always guaranteeing

stability. Thus, schemes with this stability are ideal for stiff problems. We note that,

due to Dahlquist’s second barrier, no linear multistep method with order higher than

2 can be A-stable [14], which is not the case for RK methods. This gives RK schemes

a potential advantage over BDF methods. No ERK scheme is A-stable, but in fact

many IRK schemes are. Since most of the problems considered in this thesis are stiff

PDEs, we strictly use RK schemes that are at least A-stable.
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For some problems (as clearly shown in Chapter 3), A-stability is not enough

and a stronger stability criterion is needed, such as L-stability. If, in addition to A-

stability, a scheme satisfies the condition limz→−∞ |R(z)| = 0, then it is called L-stable.

Throughout this thesis, we focus on 3 main IRK schemes: Gauss-Legendre (commonly

referred to as Gauss) [9], RadauIIA [8], and LobattoIIIC [8]. Both RadauIIA and

LobattoIIIC are L-stable, while Gauss methods are only A-stable and not L-stable.

Clearly, for any differential equation that has had a discretization scheme applied

to it (whether to space or time variables or both) some amount of error is introduced in

the approximate solution obtained. In time integration schemes the local and global

errors are found after either one time step is taken or accumulated after all time

steps needed to reach a fixed final time, respectively. Any type of error in each time

integration scheme can be bounded (from above) by a constant times (∆t)p, where

p denotes the global order of the scheme. Since in practice ∆t < 1, the higher the

global order of a scheme means the more accurate the approximation is (smaller error

produced). In RK methods, the order is connected to the total number of stages, r.

There exist ERK methods with p ≤ 4 that have p = r. To achieve ERK schemes

of order p ≥ 5 we must have r = p + 1 stages [12]. This becomes a disadvantage in

higher-order ERK methods since more stages means an increased computational cost.

However, in IRK discretizations the maximum order of the global error achieved can

be as twice as the number of stages, such as in the case of Gauss schemes with an

order of 2r. RadauIIA have an order of 2r − 1 while LobattoIIIC have an order of

2r − 2. In RK methods for stiff equations of differential-algebraic equations (DAEs),

another type of order is of more importance, called the stage order, which is found by

bounding the approximate solution of the ith stage, i.e u(tn+ ci∆t), by some constant

times (∆t)q+1 then defining the stage order to be min{p, q} [12]. For many types

of differential equations, the accuracy is limited by the stage order which limits the

choice of higher-order schemes. IRK schemes have high stage orders that can be as

large as the number of stages which makes them favourable choices for some problems,

like those considered in this thesis, over DIRK methods which have a very limited low

stage order.

Although IRKmethods possess better convergence properties over other RK classes,

especially when considering higher-order schemes, they easily are more computation-

ally expensive. This is because at each timestep, they require solving a system of

stage equations (usually large depending on the spatial discretization chosen). Since
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the stages depend on each other, this dense non-symmetric system does not have sig-

nificant structural properties that one may take advantage of to reduce the cost of

the applied numerical method. This disadvantage is intensified for higher-order IRK

schemes where more stages are needed.

Despite this downside, growing interest has been seen for solver development

specifically addressing IRK discretizations. Solvers that incorporate preconditioners

are a very common technique used. For problems with IRK, several types of precon-

ditioners have been built to handle the stage coupling in various ways. One way is

to decouple the stages by using a block preconditioner and then applying an efficient

method for each single stage system produced. In [13], expanding on work presented

in [33], it was proven that the system with this preconditioner has a condition number

with an upper bound not depending on either ∆t nor ∆x. A novel approach is the

work done in [36] where the preconditioner is based on an LDU (lower-diagonal-upper)

matrix-splitting of the Butcher coefficient matrix. Another novel example of a block

solver is the work done in [41] where the preconditioner used is the same as in the

case of backward Euler time-stepping. This solver has been proven to be optimal for

both finite-element and finite-difference discretization, linear and nonlinear differen-

tial algebraic equations. In both preconditioners mentioned, a mutigrid cycle is used

to solve each block.

One alternative to block structured preconditioners, is to solve for the coupled

stages all at once. One commonly used monolithic preconditioner choice is multigrid

where the relaxation schemes in the multigrid cycle are specifically designed so that

the system solves for all components of k⃗. For example in [43], waveform relaxation

is used to achieve this. Additional examples are [21, 28] where Vanka relaxation is

chosen. The solver we present adds to this already existing small body of work.

With the increased size of the IRK stage system, parallel computation is highly

needed and used in almost all of the solvers mentioned. One strategy is specifically

designing a preconditioner that allows the exploitation of the parallel architecture in

a way that each stage is solved fully on an assigned group of processors, thus solving

for all stages in parallel. This method is called stage-parallel IRK and is fairly new

[35, 34, 17, 2]. Another novel strategy that takes advantage of parallel computing is

proposed in [30] where time-stepping is computed in parallel. There, an SVD-based

(of the the Runge-Kutta coefficient matrix) monolithic preconditioner is used to find
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all stage values at once, but parallelism is applied to the time variable.

2.4.1 Butcher tableaux of Runge-Kutta schemes used

For convenience, we include the Butcher Tableaux of all implicit Runge-Kutta schemes

mentioned and/or used in our work below:

Two-stage Gauss-Legendre:

1
2
−

√
3
6

1
4

1
4
−

√
3
6

1
2
+

√
3
6

1
4
+

√
3
6

1
4

1
2

1
2

Three-stage Gauss-Legendre:

1
2
−

√
15
10

5
36

2
9
−

√
15
15

5
36
−

√
15
30

1
2

5
36

+
√
15
24

2
9

5
36
−

√
15
24

1
2
+

√
15
10

5
36

+
√
15
30

2
9
+

√
15
15

5
36

5
18

4
9

5
18

Two-stage LobattoIIIC:

0 1/2 −1/2
1 1/2 1/2

1/2 1/2

Three-stage LobattoIIIC:

0 1/6 −1/3 1/6

1/2 1/6 5/12 −1/12
1 1/6 2/3 1/6

1/6 2/3 1/6

Two-stage RadauIIA:

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Three-stage RadauIIA:

2
5
−

√
6

10
11
45
− 7

√
6

360
37
225
− 169

√
6

1800
− 2

225
+

√
6

75
2
5
+

√
6

10
37
225

+ 169
√
6

1800
11
45

+ 7
√
6

360
− 2

225
−

√
6

75

1 4
9
−

√
6

36
4
9
+

√
6

36
1
9

4
9
−

√
6

36
4
9
+

√
6

36
1
9
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Crank–Nicolson method:

0 0 0

1 1/2 1/2

1/2 1/2

Two-stage Pareschi-Russo:

x x 0

1− x 1− 2x x
1
2

1
2

Three-stage Alexander:

x x 0 0
1+x
2

1−x
2

x 0

1 −1.5x2 + 4x− 0.25 1.5x2 − 5x+ 1.25 x

−1.5x2 + 4x− 0.25 1.5x2 − 5x+ 1.25 x
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[25] M. H. Gutknecht and S. Röllin. The Chebyshev iteration revisited. Parallel
Computing, 28(2):263–283, 2002.



38

[26] L. Hageman. The Chebyshev polynomial method of iteration. Technical re-
port, BAPL (Bettis Atomic Power Laboratory (BAPL), West Mifflin, PA (United
States)), 1967.

[27] P. W. Hemker. A note on defect correction processes with an approximate inverse
of deficient rank. Journal of Computational and Applied Mathematics, 8(2):137–
139, 1982.

[28] R. C. Kirby. On the convergence of monolithic multigrid for implicit Runge-Kutta
time stepping of finite element problems. arXiv preprint arXiv:2304.14879, 2023.

[29] H.-O. Kreiss and O. E. Ortiz. Introduction to numerical methods for time depen-
dent differential equations. John Wiley & Sons, 2014.
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Chapter 3

Monolithic multigrid for implicit

Runge-Kutta discretizations of

incompressible fluid flow

Abstract

1Most research on preconditioners for time-dependent PDEs has focused on implicit

multi-step or diagonally-implicit multi-stage temporal discretizations. In this pa-

per, we consider monolithic multigrid preconditioners for fully-implicit multi-stage

Runge-Kutta (RK) time integration methods. These temporal discretizations have

very attractive accuracy and stability properties, but they couple the spatial degrees

of freedom across multiple time levels, requiring the solution of very large linear

systems. We extend the classical Vanka relaxation scheme to implicit RK discretiza-

tions of saddle point problems. We present numerical results for the incompressible

Stokes, Navier-Stokes, and resistive magnetohydrodynamics equations, in two and

three dimensions, confirming that these relaxation schemes lead to robust and scal-

able monolithic multigrid methods for a challenging range of incompressible fluid-flow

models.

1Authors are R. Abu-Labdeh, P.E. Farrell, and S.P. MacLachlan. This work is the adapted

version of the published version as Monolithic multigrid for implicit Runge-Kutta discretizations of

incompressible fluid flow in the Journal of Computational Physics, 2023.
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Keywords: Implicit Runge-Kutta time integration, Monolithic multigrid, Newton-

Krylov-multigrid Methods.

3.1 Introduction

Among the many applications of advanced computer simulation, models of fluid flow

have been a persistent and common driving force in research and practice. The history

of spatial discretization of fluid problems dates back at least to the 1960’s (e.g., the

MAC-scheme discretization of the Navier-Stokes equations [30, 19, 60]), but contin-

ues to this day with investigation of higher-order mixed finite-element discretizations

for both Newtonian and complex fluids [56, 69, 37, 28, 55, 32, 34, 33]. Alongside this

thrust to higher-order spatial discretizations comes a need for stable higher-order tem-

poral discretizations, for which implicit Runge-Kutta methods are a natural choice.

In this paper, we investigate the development of efficient Newton-Krylov-multigrid

strategies for implicit Runge-Kutta discretizations of incompressible fluid-flow prob-

lems.

Effective solver strategies for both stationary problems and time-dependent flow

models discretized via either multi-step schemes or diagonally implicit Runge-Kutta

(DIRK) schemes have been studied for many years. For time-dependent Newtonian

flows, both fully and semi-implicit pressure-correction schemes (e.g., [19, 20, 60, 61, 8])

have been proposed, based primarily on multigrid solution of the pressure-Poisson

equation, but the construction and analysis of general high-order schemes is non-trivial

[29]. Monolithic multigrid schemes (both linear and nonlinear) have also been broadly

considered, first arising in the late 1970’s and early 1980’s [14, 13]. More approaches

have been proposed since these early works, including techniques for Newtonian flows

based on Vanka [64] and Braess-Sarazin [12] relaxation, and generalizations of these

techniques to more complex flow settings and discretizations [3, 2, 1]. Simultaneously,

block preconditioning strategies have also been developed, for a variety of discretiza-

tions and flow settings [38, 22, 66, 27, 26, 41]. Despite this substantial body of work

on multi-step methods, there are (to our knowledge) few comparable publications on

solution strategies for multi-stage implicit Runge-Kutta (IRK) discretizations of flow

models [46, 58].

A small body of work exists on solvers for IRK discretizations for parabolic
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PDEs [62, 51, 11, 43, 35, 18, 48, 58, 57]. Much of this work focuses on block-

structured preconditioners for the tensor-product systems generated by IRK dis-

cretization [43, 35, 18, 48] where, for example, standard multigrid methods can be

used to solve the diagonal blocks. The recent method of Southworth et al. [58, 57]

appears to be very effective, again leveraging standard preconditioners for linear sys-

tems corresponding to BDF-type discretizations. On the other hand, the work of

Vandewalle and others [62, 51, 11] applies monolithic multigrid methods to these

discretizations, using block-Gauss-Seidel type relaxation for parabolic equations and

a block-extension of the Hiptmair relaxation [31] for the eddy-current form of the

curl-curl equation. Similar block-Jacobi relaxation was used for both the heat and

Gross-Pitaevskii equations in [24]. Here, we investigate extensions of Vanka relaxation

for IRK discretizations of fluid flow problems.

In this paper, we consider standard mixed finite-element (spatial) discretizations

of Stokes, Navier-Stokes, and magnetohydrodynamic (MHD) flows, coupled with IRK

discretizations in time. We focus on the development of monolithic geometric multi-

grid preconditioners for the coupled systems of equations to be solved at each timestep.

For nonlinear problems, we use these preconditioners in a standard Newton-Krylov-

multigrid setting, using Newton’s method to linearize the coupled nonlinear systems

at each timestep. We expect the same techniques would apply to the various simplifi-

cations of Newton’s method that are applicable in the IRK context [15, 10]. Numerical

results are presented for standard benchmarks in two and three spatial dimensions,

showing that this solution approach is equally effective for IRK discretizations as it

is for BDF discretizations.

The remainder of this paper is organized as follows. In Section 3.2, we review the

Runge-Kutta discretization approach for systems of ODEs. For fluid-flow models, this

is typically used in a method-of-lines approach with some spatial discretization, and

Section 3.3 reviews mixed finite-element discretization of the Stokes, Navier-Stokes,

and MHD models considered here. In Section 3.4, we present the constituent parts

of the monolithic multigrid algorithm that we propose for solution of the resulting

linear(ized) systems of equations. Numerical results that confirm the effectiveness of

this approach are given in Section 3.5. Finally, conclusions and directions for future

work are given in Section 3.6.
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3.2 Runge-Kutta temporal discretizations

While BDF (and other linear multi-step) schemes can achieve higher-order conver-

gence, they do so at a cost to their stability, with the widely known result that no

linear multi-step scheme with order greater than two can be A-stable (the so-called

Second Dahlquist Barrier) [65]. Because of this (and other reasons), Runge-Kutta

integrators are widely used when we seek higher-order time integration methods. In

contrast to multi-step schemes (where solutions at past time-steps are used in the

approximation), Runge-Kutta methods are multi-stage schemes, where a number of

intermediate stage values are used to achieve the approximation. In general, an r-

stage Runge-Kutta method applied to the system of ordinary differential equations

u′(t) = f(u(t), t) is given by

ki = f

(

un +∆t

r
∑

j=1

aijkj, t
n + ci∆t

)

, for i = 1, 2, . . . , r,

un+1 = un +∆t
r
∑

j=1

bjkj.

(3.1)

The coefficients in the scheme are the stage times (or nodes) ci, the weights bj, and the

Runge-Kutta matrix A = [aij]. Taken together, these form the Butcher tableau for a

given scheme [15, 16]. For consistency, we require that
∑r

j=1 bj = 1 and
∑r

j=1 aij = ci,

for all i = 1, 2, . . . , r. The r stage values are represented by the set {ki}ri=1 and the

approximation at time tn = t0 + n∆t is denoted by un.

Runge-Kutta methods are generally classified by the non-zero pattern of the matrix

A. Methods can be explicit, with aij = 0 ∀j ≥ i, or implicit, when ∃j ≥ i with

aij ̸= 0. The implicit methods can further be classified into diagonally implicit, with

aij = 0 ∀j > i, or fully implicit, when ∃j > i such that aij ̸= 0. Further specialization

is also possible, such as singly diagonally implicit Runge-Kutta (SDIRK) methods,

which are diagonally implicit (DIRK) methods with the added property that aii = ajj

for all i and j, and explicit singly diagonally implicit (ESDIRK) methods, which have

an all-zero first row of A, followed by SDIRK structure on lower rows (of which the

Crank-Nicolson scheme is a well-known example).

There are three main points to consider when choosing a Runge-Kutta method, re-

garding its stability, accuracy, and computational cost. For any scheme, we define the
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function r(z) as the map produced when applying the scheme to the (scalar, linear)

Dahlquist test problem, u′ = λu for λ ∈ C, with un+1 = r(λ∆t)un. The domain of

stability of the scheme is defined as the region in the complex plane where |r(z)| < 1.

RK methods are said to be A-stable if their domain of stability includes the entire

left-half of the complex plane. If, additionally, we have that limz→−∞ |r(z)| = 0, we

say that the scheme is L-stable. For many applications, L-stability is the preferred

property, since an L-stable scheme generally damps non-physical high-frequency os-

cillations that may pollute a numerical solution. As is typical, explicit Runge-Kutta

(ERK) methods have finite regions of stability, and only implicit Runge-Kutta (IRK)

schemes can be A- or L-stable.

The local truncation error of an RK scheme is defined as the error made in a single

step of the scheme, starting with the analytical solution of the differential equation

as un, compared to u(tn+1), while the global error is the accumulated error in the

approximate solution over the timesteps needed to reach a fixed time. We typically

discuss such errors by their order, meaning that we bound the error by a constant

(depending on f(u, t) and the analytical solution, u(t)) times (∆t)p to establish that

a scheme has order p. Typically (e.g., when f(u, t) is continuous in t and Lipschitz

continuous in u), the global error is one order less than the local truncation error.

A well-known result is that the order of global error of an ERK method cannot be

greater than its number of stages (and, to achieve order p ≥ 5, an ERK scheme

must have at least p + 1 stages) [17, Section 324]. In contrast, the maximum order

of global error for an IRK discretization can be as much as twice the number of

stages in the scheme. While higher-order global error is attractive, for both stiff DEs

and systems of differential-algebraic equations (DAEs), the so-called stage order of

a Runge-Kutta method is more important [17, Section 362]. Here, the accuracy of

a scheme is determined not just by its truncation error, but also by bounding the

approximation of stage i to u(tn + ci∆t) by some constant (depending on f(u, t) and

u(t)) times (∆t)q+1, defining the stage order to be the smaller of q and the order of

the scheme. For index-2 DAEs (as are considered here), the order of accuracy of a

scheme is limited by its stage order, due to perturbation bounds on the solution of

the constrained system [65, Section VII.4]. This greatly limits our choice of schemes

that allow higher-order accuracy. While DIRK methods can have reasonable global

order, their stage order is typically limited to 1. We note that ESDIRK methods

are an exception to this, with stage order limited to 2, due to the structure of their
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Butcher tableau. In contrast, the stage order of fully IRK schemes can be as large as

the number of stages, making these the preferred schemes for integrating DAEs.

The downside of IRK schemes is their computational cost. ERK methods can be

implemented at the cost of one evaluation of f(u, t) for each stage in the method. In

contrast, IRK methods require solution of a system of equations for each timestep

(that may be large when u represents a spatially discretized approximation to the

solution of a PDE). Herein lies the attraction of DIRK, SDIRK, and ESDIRK schemes.

In these approaches, rather than having to solve for the stages in a coupled manner,

each stage can be solved for sequentially, allowing the reuse of standard linear and

nonlinear solvers from backward-Euler type schemes. SDIRK and ESDIRK afford even

more of an advantage, particularly in the linear case, as the same solver architecture

can be directly reused in the solution process for each stage. General IRK methods,

in contrast, do not allow this simplification. While block-preconditioning strategies

can be used again to leverage existing solver architectures from the multistep case

[43, 35, 18, 48, 58, 57], these theoretical results tend to be limited to simple cases,

excluding (for example) nonlinear systems of DAEs, as arise in standard models of

computational fluid dynamics.

In this paper, we consider a standard Newton-Krylov-multigrid framework for

the solution of the nonlinear systems of equations that arise from using general IRK

discretizations for the Navier-Stokes equations and the equations of magnetohydrody-

namics. Because the details of these solvers depend directly on the spatial discretiza-

tion, we next discuss the mixed finite-element discretization of these models.

3.3 Discretization of fluid models

In this section, we consider the interplay of mixed finite-element spatial discretization

for incompressible models of fluid flow with temporal discretization by IRK methods.

We consider three models: the linear Stokes model, the (nonlinear) Navier-Stokes

equations, and the equations of single-fluid visco-resistive incompressible magnetohy-

drodynamics (MHD). In Section 3.4, we will focus on the development of a monolithic

multigrid methodology for the linearized systems that result from applying Newton’s

method to the nonlinear problems. Both here and in that exposition, we will focus

on the details of the algorithm for the simplest case of the linear Stokes model.
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3.3.1 Time-dependent Stokes equations

In the viscous limit of incompressible flow, inertial forces in the model can be ne-

glected, leading to the time-steady Stokes equations. We consider here the time-

dependent analogue of the Stokes equations on a bounded Lipschitz domain Ω ⊂ Rd,

d ∈ {2, 3}:

ρut − µ∆u+∇p = f in Ω× (0, Tf ) (3.2a)

−∇ · u = 0 in Ω× (0, Tf ), (3.2b)

u = 0 on ∂Ω× (0, Tf ), (3.2c)

u(x, 0) = g(x) on Ω× {t = 0}, (3.2d)

where u(x, t) is the velocity, p(x, t) is the pressure, and f(x, t) is a suitably smooth

forcing term. Here, ρ denotes the fluid density and µ denotes the fluid viscosity; we

set both to 1 for simplicity. The final time is denoted by Tf . Since no time derivative

of the pressure appears in the system, it is a DAE. The index of a DAE is defined as

the number of analytical differentiations needed (along with algebraic manipulations)

to convert the DAE into an explicit system of ODEs [65, Section VII.1]. Here, since

the constraint equation is of the form −∇·u = 0, this is an index-two DAE, since one

differentiation of the constraint (and applying the divergence to (3.2a)) allows us to

explicitly solve for p in terms of u, and a second gives an ODE for p. For index-two

DAEs, the order of accuracy of a Runge–Kutta time-discretization is limited to the

stage order of the scheme.

For the spatial discretization of (3.2), we use the mixed finite-element framework,

considering the stable Taylor-Hood discretization on simplices [22]. Let V = H1
0(Ω),

where H1
0(Ω) = {v ∈ H1(Ω) : u = 0 on ∂Ω}, and W = L2

0(Ω) (the space of zero-

mean functions in L2(Ω)), and consider a weak solution of (3.2) that is (at least) once

continuously differentiable in time and such that for every t ∈ (0, Tf ), u(·, t) ∈ V and

p(·, t) ∈ W . Multiplying the time-dependent equation by v ∈ V and the divergence

constraint by q ∈ W and integrating by parts, we get the weak form

⟨ut,v⟩+ ⟨∇u,∇v⟩ − ⟨p,∇ · v⟩ = ⟨f,v⟩, ∀v ∈ V ,
−⟨q,∇ · u⟩ = 0, ∀q ∈ W ,
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where the inner-product notation, ⟨·, ·⟩, denotes integration in space but not time.

The finite-element discretization is realized by constructing a triangulation, τh, of Ω,

and approximating u and p in piecewise polynomial spaces defined over τh. Here, we

use standard continuous Lagrange finite-element spaces, defining

Pk(Ω, τh) =
{

u ∈ C0(Ω) : ∀T ∈ τh, u|T (x) is a polynomial of degree no more than k
}

.

We consider the standard stable Taylor-Hood discretization, with Vh = (P2(Ω, τh))
d∩V

and Wh = P1(Ω, τh) ∩ W [22, 59]. This leads to the semi-discretized weak form of

finding (u(·, t), p(·, t)) ∈ Vh ×Wh such that

⟨ut,v⟩+ ⟨∇u,∇v⟩ − ⟨p,∇ · v⟩ = ⟨f,v⟩, ∀v ∈ Vh,
−⟨q,∇ · u⟩ = 0, ∀q ∈ Wh.

Now writing u⃗(t) and p⃗ (t) for the (time-dependent) coefficients of u(x, t) and p(x, t)

in the finite-element basis, we can write this as a coupled linear system of DAEs, as

[

M u⃗t

0

]

+

[

K B

BT 0

][

u⃗

p⃗

]

=

[

M f⃗

0

]

,

where f⃗ is the vector of coefficients of the interpolant of f in Vh. Here, M and K are

the (P2(Ω, τh))
d mass and stiffness matrices, respectively, while B is the weak gradient

operator mapping from Wh into Vh.

It is this system of equations that we discretize using Runge-Kutta methods. As

the system is a set of DAEs, and not ODEs, we cannot directly apply (3.1), but use

its DAE analogue [65], writing

u⃗
n
i = u⃗

n +∆t

r
∑

j=1

aij k⃗
(u)
j , p⃗ n

i = p⃗ n +∆t

r
∑

j=1

aij k⃗
(p)
j ,

Mk⃗
(u)
i +Ku⃗

n
i +Bp⃗ n

i = M f⃗ ni , BT u⃗
n
i = 0,

u⃗
n+1 = u⃗

n +∆t

r
∑

j=1

bj k⃗
(u)
j , p⃗ n+1 = p⃗ n +∆t

r
∑

j=1

bj k⃗
(p)
j ,

where f⃗ ni is the interpolant of f in Vh at time tn + ci∆t, u⃗n
i and p⃗ n

i are the approxi-

mations of u⃗ and p⃗ at time tn + ci∆t, and k⃗
(u)
i and k⃗

(p)
i are the RK stages for which
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we solve. Rewriting the equations for k⃗
(u)
i and k⃗

(p)
i , we have

Mk⃗
(u)
i +K

(

u⃗
n +∆t

r
∑

j=1

aij k⃗
(u)
j

)

+B

(

p⃗ n +∆t
r
∑

j=1

aij k⃗
(p)
j

)

= M f⃗ ni

BT

(

u⃗
n +∆t

r
∑

j=1

aij k⃗
(u)
j

)

= 0

or

Mk⃗
(u)
i +∆t

r
∑

j=1

aij

(

Kk⃗
(u)
j +Bk⃗

(p)
j

)

= M f⃗ ni −Ku⃗
n − Bp⃗ n

∆t

r
∑

j=1

aijB
T k⃗

(u)
j = −BT u⃗

n

for 1 ≤ i ≤ r. The matrix on the left can easily be written in tensor-product form,

leading to a concise description of the scheme as

(

Ir ⊗
[

M 0

0 0

]

+∆tA⊗
[

K B

BT 0

])

k⃗ = F⃗, (3.3)

where k⃗ is the vector of stages, ordered consecutively by stage index i, keeping the

ordering of (k⃗
(u)
i , k⃗

(p)
i ) pairs together, and F⃗ is the corresponding vector of right-hand

sides (including terms from timestep n).

3.3.2 Navier-Stokes equations

We next include the full inertial term, leading to the nonlinear incompressible Navier-

Stokes equations,

ρ (ut + u · ∇u)− µ∆u+∇p = f in Ω× (0, Tf ), (3.4a)

−∇ · u = 0 in Ω× (0, Tf ), (3.4b)

u = 0 on ∂Ω× (0, Tf ), (3.4c)

u(x, 0) = g(x) on Ω× {t = 0}. (3.4d)
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We again take the density to be 1, but will allow the viscosity µ to be chosen differently,

to consider problems at different Reynolds numbers. The additional term passes

directly to the weak form, which we again discretize using a Taylor-Hood mixed

finite-element discretization. The semi-discretized weak variational form of (3.4) is to

find (u(·, t), p(·, t)) ∈ Vh ×Wh such that

⟨ut,v⟩+ ⟨u · ∇u,v⟩+ µ⟨∇u,∇v⟩ − ⟨p,∇ · v⟩ = 0,

−⟨∇ · u, q⟩ = 0,
(3.5)

for all test functions (v, q) ∈ Vh×Wh. Again writing u⃗(t) and p⃗ (t) for the coefficients

of u and p in the finite-element basis, this leads to a nonlinear coupled system of

DAEs, as
[

M u⃗t

0

]

+

[

N(u⃗)

0

]

+

[

K B

BT 0

][

u⃗

p⃗

]

=

[

M f⃗

0

]

,

where N(u⃗) represents the discretization of ⟨u ·∇u,v⟩. As above, accounting for this

term in the RK stage equations leads to the nonlinear coupled system

Mk⃗
(u)
i +N

(

u⃗
n +∆t

r
∑

j=1

aij k⃗
(u)
j

)

+∆t
r
∑

j=1

aij

(

Kk⃗
(u)
j +Bk⃗

(p)
j

)

= M f⃗ ni −Ku⃗
n − Bp⃗ n,

∆t

r
∑

j=1

aijB
T k⃗

(u)
j = −BT u⃗

n,

for 1 ≤ i ≤ r. This system is solved using Newton’s method.

Denoting the nonlinear system as F
(

k⃗
n
)

= 0, a standard Newton approximation

would be to solve

F
(

k⃗
n,ℓ+1

)

≈ F
(

k⃗
n,ℓ
)

+ J
(

k⃗
n,ℓ
)

δk⃗
n,ℓ

= 0,

where J
(

k⃗
n,ℓ
)

is the Jacobian of the system at the current approximation, k⃗
n,ℓ

and

δk⃗
n,ℓ

:= k⃗
n,ℓ+1 − k⃗

n,ℓ
is the Newton search direction. Since we are timestepping, we

use the computed solution at the previous time-step, k⃗
n−1

, for the initial guess for

the stage values at step n, k⃗
n,0

. In this work, we use the Eisenstat-Walker stopping

criterion for the Krylov iteration to solve for δk⃗
n,ℓ

[21], requiring that

∥

∥

∥
F
(

k⃗
n,ℓ
)

+ J
(

k⃗
n,ℓ
)

δk⃗
n,ℓ
∥

∥

∥
≤ ηℓ

∥

∥

∥
F
(

k⃗
n,ℓ
)∥

∥

∥
,
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for every step, ℓ, where ηℓ ∈ [0, 1) is updated for each nonlinear iteration based on

convergence of the method.

3.3.3 Magnetohydrodynamics

Finally, we consider the equations of single-fluid viscoresistive magnetohydrodynamics

(MHD). In general, MHD models the flow of conducting fluids in the presence of

an electromagnetic field. These models are nonlinear and contain strong coupling

between the fluid velocity and the electromagnetic variables. We follow the MHD

formulation presented in [1],

ut + (u · ∇)u−∇ · ( 2

Re
ϵ(u)) +∇p− (∇×B)×B = fu in Ω× (0, Tf ), (3.6a)

Bt +
1

Rem
∇×∇×B−∇× (u×B)−∇γ = fB in Ω× (0, Tf ), (3.6b)

−∇ · u = 0 in Ω× (0, Tf ), (3.6c)

∇ ·B = 0 in Ω× (0, Tf ), (3.6d)

u = 0 on ∂Ω× (0, Tf ), (3.6e)

B× n = 0 on ∂Ω× (0, Tf ), (3.6f)

u(x, 0) = gu(x) on Ω× {t = 0}, (3.6g)

B(x, 0) = gB(x) on Ω× {t = 0}, (3.6h)

where the four unknowns are the velocity vector, u, the pressure, p, the magnetic

field, B, and the Lagrange multiplier, γ. The Lagrange multiplier is used to enforce

the solenoidal condition (3.6d), while the pressure is used to enforce the incompress-

ibility condition (3.6c). The strain-rate tensor is ϵ(u) = 1
2
(∇u +∇uT ), and the two

dimensionless constants, Re and Rem, are the hydrodynamic Reynolds number and

magnetic Reynolds number, respectively. We consider this equation in both two- and

three-dimensional domains, Ω; in 2D, the curl and cross-product are defined by the

natural extensions from three-dimensional vector fields to two-dimensional fields.

Here, for Ω ⊂ Rd, we take

(u(·, t),B(·, t), p(·, t), γ(·, t)) ∈ H1
0(Ω)×H0(curl,Ω)× L2

0(Ω)×H1
0 (Ω),
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where

H1
0(Ω) = {v ∈ H1(Ω) : u = 0 on ∂Ω},

H0(curl,Ω) = {c ∈ L2(Ω) : ∇× c ∈ L2(Ω),n× c = 0 on ∂Ω},

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

q dx = 0},

H1
0 (Ω) = {s ∈ H1(Ω) : s = 0 on ∂Ω},

and n is the outward unit normal vector on ∂Ω [1, 54]. We discretize the fluid

variables again with the Taylor-Hood discretization Vh ×Wh ⊂ H1
0(Ω) × L2

0(Ω), and

use lowest-order Nédélec elements for Ch ⊂ H0(curl,Ω) and Sh = P1(Ω, τh) ∩ H1
0 (Ω)

for the Lagrange multiplier. Well-posedness (under small-data assumptions) of both

the continuous and discrete formulations is shown in [54].

Multiplying (3.6) by the test functions (v, c, q, s) ∈ Vh × Ch × Wh × Sh and

integrating by parts, we get the semi-discretized weak variational form of finding

(u(·, t),B(·, t), p(·, t), γ(·, t)) ∈ Vh × Ch ×Wh × Sh such that

∫

Ω

ut · v+ ((u · ∇)u) · v− 2

Re
(ϵ(u) : ϵ(v))− p∇ · v− ((∇×B)×B) · v dx

=

∫

Ω

fu · v dx,
∫

Ω

Bt · c+
1

Rem
(∇×B) · (∇× c)− (u×B) · (∇× c)− (∇γ) · c dx =

∫

Ω

fB · c dx,

−
∫

Ω

(∇ · u)q dx = 0,

−
∫

Ω

B · (∇s) dx = 0,

(3.7)

for all (v, c, q, s) ∈ Vh × Ch × Wh × Sh. The corresponding IRK discretization is

derived from this semi-discretized form as described above, and solved in the same

Newton-Krylov-multigrid manner, using the Eisenstat-Walker stopping criterion for

the Krylov iteration. We note that linear solvers for this spatial discretization using

BDF2 in time was the subject of [1]; given the Dahlquist barrier, and the driving need

for L-stability, multistage schemes, such as IRK, are needed to achieve higher-order

time integration for this problem.
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3.4 Monolithic multigrid for fluid problems

As described above, we use a Newton-Krylov-multigrid framework for solving the non-

linear systems of equations resulting from spatial and temporal discretization of the

models in Section 3.3 (noting that the Newton linearization is trivial in the case of

the linear Stokes equations). Since the systems are nonsymmetric, we use FGMRES

[52] as the Krylov method, and seek to effectively precondition it. For IRK discretiza-

tions of scalar PDEs, such as the heat equation, block-diagonal preconditioning of

the stage-coupled linear systems is known to be effective [43]. While block-diagonal

preconditioning has also been developed for fluid models discretized using BDF-like

methods [22, 66], we leave extension of this approach to IRK discretizations for future

work. Instead, we follow the approach of [64, 62], and develop a monolithic multi-

grid preconditioner that makes use of an overlapping additive Schwarz relaxation that

can be viewed as the extension of Vanka relaxation to the IRK case. Compared to

the use of block-structured preconditioners, this offers the advantage of not needing

to explicitly approximate Schur complements in the stage-coupled IRK linearizations

(which may depend on properties of the specific IRK scheme chosen, for example).

We note that FGMRES and classical right-preconditioned GMRES solve the same un-

derlying optimization problem for the approximation in the same Krylov space, but

that the underlying algorithms have important differences, with FGMRES requir-

ing extra vector storage (to store both the Arnoldi vectors and their preconditioned

counterparts) but right-preconditioned GMRES requiring an extra application of the

preconditioner once the solution to the underlying Hessenberg system has been found.

Thus, we choose to use FMGRES, instead of classical right-preconditioned GMRES,

primarily because the cost of application of our preconditioners is non-trivial, but we

are not memory-bound on the parallel machine used in the numerical results. Thus,

the extra vector storage of FGMRES is an attractive trade-off over the extra precon-

ditioner application required by standard right-preconditioned GMRES. An auxiliary

advantage is that FGMRES allows the use of GMRES inside inner iterations (such as

the relaxation).
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3.4.1 Coarse-grid correction and transfer operators

In the numerical results that follow, we consider hierarchies of grids generated by

taking uniform refinements of a given coarsest grid. To map functions from a coarse

mesh to its refinement, we use canonical finite-element interpolation operators for

each field in the discretization. For the single-stage case, for both the time-dependent

Stokes and Navier-Stokes problems, interpolation takes the form

P =

[

Pu

Pp

]

,

where Pu and Pp represent the interpolation operators for the P2 and P1 finite-element

spaces, respectively. In the MHD case, we introduce finite-element interpolation op-

erators PB for the lowest-order Nédélec space and Pγ for the P1 space (with suitable

boundary conditions for γ), following [1], making the interpolation operator for the

single-stage case

P =













Pu

PB

Pp

Pγ













.

For multistage IRK discretizations, the interpolation operator is defined as Ir ⊗ P ,

creating a block-diagonal interpolation operator that applies the finite-element inter-

polation in P to each stage independently. We use the transpose of interpolation as

the restriction operator.

We use rediscretization to define the coarse-grid operators, noting that this is

equivalent to Galerkin coarsening in the finite-element case (if compatible quadrature

rules are used to assemble on the fine and coarse grids). The coarsest-grid systems

are solved directly, using MUMPS [6].

3.4.2 Vanka relaxation

Vanka relaxation was first introduced for the time-steady MAC-scheme discretization

of the Navier-Stokes equations [63], but it has been extensively used in many more

general settings in recent years [23, 3, 2, 1, 25]. Broadly defined, Vanka relaxation

schemes are overlapping Schwarz (domain decomposition) methods used as relaxation
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for a multigrid algorithm. In order to achieve the expected cost of a multigrid re-

laxation scheme, the subdomain problems are generally quite small, on the order of

10s-100s of DoFs. Historically, the most common approaches were multiplicative in

nature; however, we follow the recent trend towards additive schemes [23, 1, 25] that

are naturally parallelizable.

To specify the details of relaxation, we now describe how the Schwarz subdomains

(commonly referred to as the Vanka “blocks” or “patches”) are constructed from the

underlying mesh on any given level of the multigrid hierarchy. In this work, we follow

the topological construction described in [25]. In particular, we form a Vanka patch

for each vertex in the mesh, which consists of all degrees of freedom associated with

the closure of the cells adjacent to the vertex. As is typical in Vanka relaxation,

we exclude all degrees of freedom associated with P1 constraints (the pressure and

Lagrange multiplier in our systems) from the patch, except for those located at the

vertex around which the patch is formed. For the models considered here, this results

in patches like those shown in Figure 3.1 for regular two-dimensional grids, with a

single pressure degree of freedom and all velocity DoFs on all elements adjacent to

the node. When used in an IRK discretization, these patches include all stage degrees

of freedom. For MHD, we note that the patch shown at right of Figure 3.1 coincides

topologically with the coupled Vanka approach for the BDF2 discretization considered

in [1], but the patches used here contain more degrees of freedom than those used in [1],

due to inclusion of all stages in the IRK discretization.

Denoting the set of DoFs in the ith Vanka patch by Si, we have (by construction)

that every degree of freedom in the domain is contained in at least one patch: S =
⋃N

i=1 Si, where N is the total number of patches and S is the complete set of DoFs

for the problem. Denoting Ri as a “restriction” operator that maps global DoFs to

those in patch Si, we can write a single iteration of a weighted stationary iteration as

k⃗← k⃗+ ω

N
∑

i=1

RT
i (RiJR

T
i )

−1Ri(F⃗− J k⃗),

where J k⃗ = F⃗ is the linear system to be solved, and RiJR
T
i is the restriction of J

to the DoFs in patch Si. In practice, we use several steps of a Vanka-preconditioned

Chebyshev or GMRES iteration as the relaxation scheme for our problems, with the

endpoints of the interval defining the associated Chebyshev polynomials tuned by
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velocity DoF (P2) magnetic field DoF (lowest-order Nédélec)

pressure DoF (P1) Lagrange multiplier DoF (P1)

Figure 3.1: Left: Vanka patch for the Stokes and Navier-Stokes equations, consisting
of P2 velocity DoFs, and one P1 pressure DoF. Right: Vanka patch for the MHD
equations, consisting of P2 velocity DoFs, lowest-order Nédélec DoFs for the magnetic
field, one P1 Lagrange multiplier DoF and one P1 pressure DoF.

hand.

3.4.3 Implementation

The numerical results below are produced using Firedrake [49] for the spatial finite-

element discretization and Irksome [24] for the temporal discretization. Linear and

nonlinear solvers are implemented in PETSc [7], taking advantage of the close inte-

gration between discretizations and solvers provided by this combination [39]. The

Vanka relaxation is implemented through PCPATCH [25]. For reproducibility, the

codes used to generate the numerical results and the major components of Firedrake,

Irksome, and PETSc needed, have been archived on Zenodo [68]. We emphasize that

all aspects of the discretization and solver software are chosen to be naturally par-

allelizable. The coarsest mesh in each hierarchy is distributed across the available

parallel cores, and then refined in parallel. For the two-dimensional problems be-

low, after each refinement, the mesh is redistributed to better balance parallel work,

but this was not done for the 3D example, due to software limitations. While not

rebalancing the meshes leads to a small load imbalance on the finer grids in the hier-

archies, this was not seen to lead to significant loss of performance in the weak scaling

tests reported below. To account for the need to compute residuals for each DoF in
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each Vanka patch, a node-distance-2 halo is included in the parallel mesh distribu-

tion, to allow the relaxation scheme to be performed in parallel without additional

communication [42].

3.5 Numerical Results

For the numerical results in this paper, we focus on 3 families of IRK methods:

Gauss (also known as Gauss-Legendre), LobattoIIIC, and RadauIIA. We note that

LobattoIIIC and RadauIIA are both L-stable and A-stable, while Gauss is A-stable,

but not L-stable. All are fully implicit schemes, with stage order equal to the number

of stages. For an r-stage method, Gauss schemes have order 2r, while RadauIIA have

order 2r − 1 and LobattoIIIC have order 2r − 2. We consider both 2- and 3-stage

schemes here, with standard Butcher tableaux [67, 65].

We present results for four separate test cases: a simple two-dimensional time-

dependent Stokes model, two-dimensional Navier-Stokes flow past a cylinder, and two

MHD examples, a two-dimensional island-coalescence problem and a three-dimensional

lid-driven cavity model. All results presented in this paper were computed on the

Compute Canada cluster, Niagara, consisting of 2,024 nodes, each with 40 2.4 GHz

Intel Skylake cores and 202GB of RAM, connected using a 100Gb/s EDR Dragonfly+

network.

3.5.1 Two-dimensional time-dependent Stokes

We consider a method of manufactured solutions test case, solving (3.2) on the two-

dimensional unit square, Ω = (0, 1)2. The forcing function f and boundary conditions

are chosen so that the exact solution is

u =

[

sin(πx) cos(πy)e−2tπ2

− cos(πx) sin(πy)e−2tπ2

]

, and p = 0.

For this example, we construct a coarsest grid by creating a uniform 8× 8 quadrilat-

eral mesh of the unit square, then cut each quadrilateral cell into 4 triangles, adding

a vertex at the center of the quadrilateral. This mesh is then uniformly refined ℓ

times; below, we present results for ℓ = 5, 6, 7, where the Taylor-Hood discretization



57

of the Stokes equations results in about 1.1 million DoFs per stage for ℓ = 5 up to

about 19 million DoFs per stage for ℓ = 7. The initial condition is chosen by inter-

polating the exact solution into the finite-element space at t = 0, and we integrate

up to time Tf = 0.5, with timestep ∆t = Tf/N for N = 2ℓ+3. To our knowledge,

there are no rigorous stopping tolerances that guarantee discretization-error level ac-

curacy for these systems; we use a hand-tuned stopping tolerance, where we require

the absolute value of the ℓ2 norm of the residual of the system to be reduced below

10−2 ×N−3 at each timestep, or a relative reduction in this norm by 10−8. Based on

preliminary experiments, we accelerate the relaxation process using Chebyshev poly-

nomials of the first kind on the interval [2, 8] and employ 2 pre- and post-relaxation

sweeps. Proper choice of the Chebyshev interval is critical to achieving scalable per-

formance. For two-dimensional problems with geometric coarsening by a factor of two

(as used here), a reasonable strategy is to estimate the largest eigenvalue, λ, of the

relaxation-preconditioned matrix (e.g., using Ritz values from preconditioned GM-

RES) and choose the interval to be [λ/4, λ]. Here, we started from similar estimates,

but hand-tuned the intervals to optimize performance.

Table 3.1 presents a weak scaling study for this problem, for both two- and three-

stage methods. For the two-stage methods, we use 10 cores on 1 node for ℓ = 5, 40

cores on 1 node for ℓ = 6 and 160 cores on 4 nodes for ℓ = 7. For the three-stage

methods, we increase core counts by 50%, to account for the increased number of

degrees of freedom in the resulting linear systems, using 15 cores on 1 node for ℓ = 5,

60 cores on 2 nodes for ℓ = 6 and 240 cores on 6 nodes for ℓ = 7. We report the relative

L2 error in the velocity and the absolute L2 error in the pressure approximation at the

final time, as well as the average number of linear iterations to achieve convergence

over all timesteps and the total computational time needed in minutes. In the final

column of Table 3.1, we report the average wall-clock time per Krylov iteration (t/K)

in seconds.

Table 3.2 summarizes rates of convergence for the results shown in Table 3.1.

We observe at least second-order convergence in the velocity error for all three IRK

schemes; however, we notice much larger errors for the Gauss results than for the

other two schemes. We note that the stopping tolerance decreases by a factor of 8 with

each refinement, so that the slight increase in averaged iterations to convergence is

not overly surprising, and seems to remain bounded at reasonable levels. Nonetheless,

the factor four increase in the number of cores with each refinement is insufficient to
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ℓ velocity error pressure error iterations time t/K

Gauss(2)
5 1.786× 10−2 2.328× 10−2 9.85 57.47 1.401
6 3.155× 10−3 1.162× 10−2 13.39 202.98 1.779
7 5.575× 10−4 6.271× 10−3 19.14 725.02 2.285

RadauIIA(2)
5 3.380× 10−6 6.327× 10−9 8.70 56.13 1.570
6 4.297× 10−7 2.795× 10−9 10.99 171.08 1.837
7 4.971× 10−8 1.028× 10−9 14.22 575.77 2.391

LobattoIIIC(2)
5 9.823× 10−4 4.594× 10−7 9.23 54.13 1.912
6 2.495× 10−4 1.479× 10−7 11.71 181.88 1.833
7 6.289× 10−5 4.823× 10−8 15.25 618.77 2.393

Gauss(3)
5 9.098× 10−5 1.481× 10−4 13.38 109.39 1.929
6 1.839× 10−5 6.802× 10−4 24.51 483.75 2.323
7 3.293× 10−6 3.235× 10−4 25.97 1332.40 3.249

RadauIIA(3)
5 6.151× 10−7 1.298× 10−9 9.32 82.29 2.083
6 1.122× 10−7 1.310× 10−9 12.40 267.78 2.566
7 1.300× 10−8 1.718× 10−10 13.91 877.99 3.786

LobattoIIIC(3)
5 6.019× 10−7 2.728× 10−9 9.61 85.25 2.120
6 1.083× 10−7 1.966× 10−9 12.91 248.95 2.293
7 1.271× 10−8 3.797× 10−10 14.91 938.06 3.770

Table 3.1: Numerical results for two-dimensional Stokes model problem with two-
and three-stage IRK schemes. Relative L2 errors in velocity and absolute L2 errors
for pressure are reported, along with average number of linear solver iterations per
time-step, total wall-clock time-to-solution in minutes, and time per Krylov iteration
in seconds, for refinement levels ℓ = 5, 6, 7.
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Gauss RadauIIA LobattoIIIC

u p u p u p

two-stage
log2 e5/e6 2.5 1.0 3.0 1.2 2.0 1.6
log2 e6/e7 2.5 0.9 3.1 1.4 2.0 1.6

three-stage
log2 e5/e6 2.4 -2.3 2.5 0.0 2.5 0.5
log2 e6/e7 2.5 1.1 3.1 2.9 3.1 2.4

Table 3.2: Rates of convergence in velocity and pressure for data in Table 3.1 with
two- and three-stage IRK schemes for refinement levels ℓ = 5, 6, 7. Here, eℓ denotes
the error in a quantity on refinement level ℓ.

lead to ideal time scaling (which would be to double with each refinement, due to the

doubling of the number of time-steps).

There are several contributing factors to the less-than-perfect scaling, beyond the

simple increase in total number of Krylov iterations with refinement. When going

from ℓ = 5 to ℓ = 6 with the two-stage schemes, we increase the number of cores

used for the calculation, but those cores remain on one physical node, leading to a

saturation of the memory bandwidth available. The same limitation occurs when

going from ℓ = 6 to ℓ = 7 with the three-stage schemes, where we go from using 30

cores on each of 2 nodes to all 40 cores on 6 nodes. While this could be avoided by

using the same number of cores on more nodes of the parallel machine, such usage

is impractical when a single node has sufficient memory for the ℓ = 6 problem with

2 IRK stages. Furthermore, when going from ℓ = 6 to ℓ = 7, the (direct) coarsest-

grid solve goes from being dominated by its computation to being dominated by its

communication. Here, we clearly see another increase in the cost per linear iteration,

especially in the three-stage methods where the time required increases by about 50%

for ℓ = 7. Improved performance would almost certainly be seen by duplicating the

coarse-grid solve on each node, as considered in [9, 44, 50]. We leave these performance

enhancements for future work.

The experiment in Table 3.1 highlights convergence as we change both the spatial

and temporal discretizations. Here, however, we note that the temporal discretizations

are higher order than the spatial, particularly for the 3-stage discretizations. Thus, for

comparison with this data, Table 3.3 presents results with the same setup as Table 3.1,

but using a fixed timestep of ∆t = 0.5/28, to match results with ℓ = 5 (noting that
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ℓ velocity error pressure error iterations time t/K

RadauIIA(2)
5 3.380× 10−6 6.327× 10−9 8.70 56.37 1.560
6 3.119× 10−6 1.896× 10−9 12.18 96.77 0.940
7 3.101× 10−6 2.793× 10−9 18.04 165.42 0.540

RadauIIA(3)
5 6.151× 10−7 1.298× 10−9 9.32 82.07 2.087
6 3.677× 10−8 3.288× 10−9 14.22 116.27 0.964
7 3.566× 10−8 8.063× 10−10 17.30 238.18 0.809

LobattoIIIC(3)
5 6.019× 10−7 2.728× 10−9 9.61 75.87 1.850
6 6.066× 10−8 3.076× 10−9 14.60 107.87 0.866
7 5.611× 10−8 1.136× 10−9 17.47 239.03 0.805

Table 3.3: Results analogous to Table 3.1, but with ∆t = 0.5/28. Relative L2 errors in
velocity and absolute L2 errors for pressure are reported, along with average number
of linear solver iterations per time-step, total wall-clock time-to-solution in minutes,
and time per Krylov iteration in seconds, for refinement levels ℓ = 5, 6, 7.

these results were run independently, so small differences in timings for ℓ = 5 naturally

arise). We see that while quite reasonable convergence is observed in Table 3.1, we

observe significant stagnation in convergence here. Thus, even though the temporal

discretizations are higher order, we still see substantial benefits to varying the timestep

simultaneously with refinement of the spatial mesh.

Finally, Table 3.4 presents comparison results for diagonal IRK schemes. Here, we

consider the two-stage second-order Pareschi-Russo (with parameter 1 −
√
2/2) [45]

and three-stage third-order Alexander [5] integrators, which are both L-stable. While

these results show some outperformance of the theoretical guarantees given by their

stage order of one, they are also quite poor in comparison to the RadauIIA integrators

of the same number of stages. In particular, comparing with the results in Table 3.1,

we see that the errors achieved using DIRK(3) with ℓ = 6 are comparable to those

achieved when using RadauIIA(2) with ℓ = 5, but that the latter calculation was

achieved in about 60% of the wall-clock time and on one-eighth of the number of cores

(10 for RadauIIA(2) with ℓ = 5 vs. 80 for DIRK(3) with ℓ = 6). Similarly, the errors

for DIRK(3) with ℓ = 7 are slightly better than those achieved with RadauIIA(2)

and ℓ = 6, and slightly worse than those achieved with RadauIIA(3) and ℓ = 6. The

two-stage Radau results, however, are achieved in just over 40% of the wall-clock

time, and on one-sixth the cores, while the three-stage Radau results are achieved in

about two-thirds the wall-clock time, on one-fourth the cores. These results highlight
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ℓ velocity error pressure error iterations time t/K

DIRK(2)
5 2.480× 10−5 9.266× 10−8 6.42 35.20 1.312
6 6.198× 10−5 3.254× 10−8 8.23 110.43 1.590
7 1.546× 10−5 1.173× 10−8 10.07 213.76 1.835

DIRK(3)
5 1.106× 10−5 4.161× 10−8 6.99 35.28 1.240
6 2.325× 10−6 1.857× 10−9 9.51 94.98∗ 1.12
7 2.607× 10−7 4.578× 10−9 11.17 415.26 2.36

Table 3.4: Numerical results for two-dimensional Stokes model problem with two-
and three-stage DIRK schemes. Relative L2 errors in velocity and absolute L2 errors
for pressure are reported, along with average number of linear solver iterations per
time-step, total wall-clock time-to-solution in minutes, and time per Krylov iteration
in seconds, for refinement levels ℓ = 5, 6, 7. Due to a change in the configuration of
the machine, results for DIRK(3) at ℓ = 6 were run on 80 cores, instead of 60; all
other results were run with same parallelism as in Table 3.1.

the added accuracy that can be gained using fully implicit RK methods over DIRK

methods, and the added efficiency possible when using state-of-the-art linear solvers

to achieve that accuracy. For this reason, we focus on only the fully implicit RK

schemes in the remainder of the paper.

3.5.2 Two-dimensional Navier-Stokes

We next consider two-dimensional Navier-Stokes flow past a cylinder, following the

example given in [36, 24, 53]. Here, we consider the spatial domain Ω = (0, 2.2) ×
(0, 0.41) \ Br(0.2, 0.2), where Br(0.2, 0.2) is the disc of radius r = 0.05 centred at

(0.2, 0.2), shown in Figure 3.2. No-slip (zero-velocity) boundary conditions are im-

posed on the top and bottom boundaries of the rectangle and along the surface of the

cylinder. Time-dependent inflow conditions are given on the left edge, prescribing

u(0, y, t) =

[

4U(t)y(0.41−y)
0.412

0

]

,

where U(t) = 1.5 sin
(

πt
8

)

is the mean inflow velocity. No-stress outflow is prescribed

on the right boundary. The viscosity is set as µ = 10−3, resulting in a Reynolds

number of 100. The time step for these experiments is fixed as ∆t = 1
400

, and we

consider the final time Tf = 8. As above, we discretize using Taylor-Hood elements
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no slip

inflow outflow

no slip
0.05

2.2

0.41

Figure 3.2: Domain for Navier-Stokes flow past a cylinder.

stages ℓ total DoFs nodes cores

2

3 489,656 1 6
4 1,948,144 1 25
5 7,771,616 4 100
6 31,044,544 10 400

3

3 734,484 1 10
4 2,922,216 1 40
5 11,657,424 4 160
6 46,566,816 16 640

Table 3.5: Total number of DoFs and number of nodes and cores used for the Navier-
Stokes test problem with two- and three-stage IRK discretizations.

in space and IRK in time.

For this problem, an unstructured coarsest grid with 972 triangular elements is

used, chosen to refine the representation around the included cylinder. Below, we

report results for 3 ≤ ℓ ≤ 6, with discrete problem sizes for the Taylor-Hood dis-

cretization ranging from about 245 thousand DoFs per stage for ℓ = 3 to about 15.5

million DoFs per stage for ℓ = 6. Details of the parallelization are provided in Ta-

ble 3.5, where we again note that we have increased the number of cores for the 3-stage

IRK methods by about 60% over those for the 2-stage methods. For this problem,

we use a nonlinear stopping tolerance requiring the absolute ℓ2 norm of the nonlinear

residual be below 1/N3 with N = 2ℓ+3, and use an Eisenstat-Walker inexact Newton

scheme to determine the linear stopping tolerances for each nonlinear iteration. Here,

again 2 pre- and post-relaxation sweeps are used, with Chebyshev polynomials for

relaxation taken over the interval [1.5, 8].

As no analytical solution is available in this case, we instead record the maximum

drag and lift values computed over the simulations, for comparison with reference
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Figure 3.3: Comparison of reference and drag (left) and lift (right) computed using
LobattoIIIC(2) and ℓ = 6.

data [36, 24]. Figure 3.3 presents time-histories of these quantities for one simulation,

showing excellent agreement with reference data. Results for other simulations with

both RadauIIA and LobattoIIIC are visually similar. Table 3.6 presents these values

for both of these integrators, along with the average wall-clock time in minutes per

time-step, and average nonlinear and linear solver iterations per time-step. As before,

we have decreasing solver tolerances as ℓ increases, so the small increase in iterations

counts with refinement are expected.

Using both RadauIIA and LobattoIIIC IRK discretizations, with either two or

three stages, results in computed lift and drag values that are consistent with those

presented in [36, 24]. However, results computed with Gauss were not. Figure 3.4

shows results using the three-stage Gauss method with ℓ = 3, computed with a

stricter stopping tolerance (absolute nonlinear residual norm below 1/N4) than used

above for RadauIIA and LobattoIIIC methods2. The appearance of “thick lines” in

these plots reflects highly oscillatory numerical solutions. We hypothesize that this

is due to the lack of L-stability of the integrator, where large negative eigenvalues of

the linearized spatial operator are not quickly damped but, rather, slowly decay and

oscillate in time due to a stability function value close to −1. Refinement in time for

fixed spatial grids should ameliorate the issue, but leads to increased computational

costs to achieve similar accuracy to that given by RadauIIA and LobattoIIIC with

these timesteps.

2Using the same stopping tolerance led to even more inconsistent data.
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nref drag max lift max time nonlinear its linear its

RadauIIA(2)

3 2.95 0.48 0.03 1.37 1.61
4 2.95 0.48 0.04 1.76 2.39
5 2.95 0.48 0.07 2.14 3.56
6 2.95 0.48 0.13 2.52 5.09

LobattoIIIC(2)

3 2.95 0.48 0.03 1.35 1.80
4 2.95 0.48 0.05 1.79 2.76
5 2.95 0.48 0.07 2.15 4.30
6 2.95 0.48 0.17 2.70 8.19

RadauIIA(3)

3 2.95 0.48 0.04 1.57 2.27
4 2.95 0.48 0.07 1.90 2.78
5 2.95 0.48 0.11 2.17 3.68
6 2.95 0.48 0.17 2.56 5.01

LobattoIIIC(3)

3 2.95 0.48 0.04 1.38 1.74
4 2.95 0.48 0.06 1.78 2.50
5 2.95 0.48 0.10 2.14 3.60
6 2.95 0.48 0.19 2.54 5.06

Table 3.6: Maximum drag and lift values, average wall-clock time per time-step (in
minutes) and average numbers of nonlinear and linear iterations per time step for
3 ≤ ℓ ≤ 6 for Navier-Stokes flow past a cylinder.

Figure 3.4: Drag and lift for ℓ = 4 using Gauss(3). The “thick lines” indicate that the
solutions are highly oscillatory in time, due to the lack of L-stability of the integrator.
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3.5.3 Two-dimensional MHD island coalescence

We next consider a standard test model in MHD, of two-dimensional island coales-

cence. This model mimics flow in a large aspect ratio tokamak, considering a cross-

section of flow of magnetically confined plasma. When a large external magnetic field

is imposed in the “toroidal” direction of the tokamak, essentially two-dimensional

dynamics result. This model geometry is then mapped and rescaled to a square do-

main, Ω = (−1, 1)2, with periodic boundary conditions on the left and right edges

(see [40, 1, 4] for more details). In this geometry, an equilibrium solution to the MHD

equations is given by

u0(x, y) = 0,

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

(

sinh(2πy)

k sin(2πx)

)

,

p(x, y) =
1− k2

2

(

1 +
1

(cosh(2πy) + k cos(2πx))2

)

,

γ(x, y) = 0,

where k = 0.2, when forcing terms of

fu = 0,

fB =
−8π2(k2 − 1)

Rem(cosh(2πy) + k cos(2πx))3

(

sinh(2πy)

k sin(2πx)

)

,

are imposed on the differential equation. To initialize a dynamic problem, these

forcing terms are applied, but the initial condition is perturbed by adding

δB =
−0.01
π

(

− cos(πx) sin(πy
2
)/2

cos(πy
2
) sin(πx)

)

.

to the equilibrium solution at t = 0. The expected effect of this perturbation is to

create two initially separated “islands” of current density that break the magnetic field

lines, which then reconnect. At the reconnection point (or X -point), a sudden sharp

spike should be seen in the magnetic current density. At higher Reynolds numbers, a

“sloshing” effect should occur before the islands of current density merge.

As above, no analytical solution is known for this problem. A key measure of
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ℓ Re = 10 Re = 100 Re = 1000

1
linear its. 6.86 8.34 31.55

nonlinear its. 3.10 2.76 3.52
time 0.11 0.11 0.24

2
linear its 6.61 5.41 17.59

nonlinear its 3.18 2.43 3.02
time 0.21 0.17 0.30

3
linear its 5.76 4.20 6.08

nonlinear its 2.57 2.33 2.16
time 0.22 0.22 0.22

Table 3.7: Average number of linear and nonlinear iterations per time-step and wall-
clock time per nonlinear iteration (in minutes) for the 3D MHD lid-driven cavity
problem with various Reynolds numbers and grid refinements, using the LobattoI-
IIC(2) integrator.

ℓ = 1, 10 cores on 1 node are used, increasing to 80 cores on 2 nodes for ℓ = 2 and

640 cores on 16 nodes for ℓ = 3. We use 3 pre- and post-relaxation sweeps, here

accelerated using GMRES, as this was observed to result in better overall iteration

counts and computation times than using Chebyshev acceleration, likely due to the

convective nature of the problem at high Reynolds numbers. The nonlinear solve at

each timestep requires the absolute value of the ℓ2 norm of the residual to be reduced

below 10−6, and the same stopping criterion is used for the linear solves as well.

Several trends can be observed in these results. First, for fixed values of Re = Rem,

we generally observe improving solver performance as ℓ is increased, as expected.

Similarly, we typically observe degrading solver performance as Re = Rem is increased

for fixed ℓ. Overall, the iteration counts are quite reasonable, except for Re = Rem =

1000 with ℓ = 1, 2. Here, the problem is quite severely under-resolved, with a finest-

grid mesh spacing of h = 0.0625 with ℓ = 2, so it is not surprising that the solver suffers

when the discretization is so poor. For smaller Reynolds numbers, Re = Rem = 1 (not

shown here), using Chebyshev acceleration gave significantly better results than using

GMRES-accelerated relaxation, which failed to converge in some cases. Figure 3.9

presents representative solutions for ℓ = 3 with Re = Rem = 10 (where the solutions

are well-resolved), showing streamlines of both the velocity field, u, and the magnetic

field, B, at the final time at refinement ℓ = 3.
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Figure 3.9: Streamlines of velocity (left) and magnetic field (right) for ℓ = 3 with
Re = Rem = 10.

3.6 Conclusion

In this paper, we have developed monolithic Vanka relaxation schemes for fully-

implicit Runge-Kutta discretizations of saddle point problems arising in models of

fluid flow. Within a Newton-Krylov-multigrid setting, our method is shown to be

effective for both Newtonian and magnetohydrodynamic flows, in both two and three

spatial dimensions. The algorithm is chosen with parallel implementation in mind,

and weak scaling results are shown up to 640 cores.

There are many possibilities for future work. We note primarily that the current

study uses relatively low-order spatial discretizations, based on classical Taylor-Hood

elements for velocity and pressure. A next step in this research is to extend these

solvers to more sophisticated finite-element discretizations that preserve the incom-

pressibility and solenoidality constraints exactly, as in [41, 32]. An important question

for future work is the extension of these techniques to higher-order discretizations,

where the cost of classical sparse direct solvers for the patch problems becomes pro-

hibitive.
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[54] A. Schneebeli and D. Schötzau. Mixed finite elements for incompressible magneto-
hydrodynamics. Comptes Rendus Mathematique, 337(1):71–74, 2003.
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la méthode des pas fractionnaires. II. Arch. Rational Mech. Anal., 33:377–385,
1969.



77

[61] J. van Kan. A second-order accurate pressure-correction scheme for viscous in-
compressible flow. SIAM J. Sci. Stat. Comput., 7(3):870–891, 1986.

[62] J. Van Lent and S. Vandewalle. Multigrid methods for implicit Runge–Kutta
and boundary value method discretizations of parabolic PDEs. SIAM Journal
on Scientific Computing, 27(1):67–92, 2005.

[63] S. P. Vanka. Block-implicit calculation of steady turbulent recirculating flows.
International Journal of Heat and Mass Transfer, 28(11):2093–2103, 1985.

[64] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in prim-
itive variables. Journal of Computational Physics, 65(1):138–158, 1986.

[65] G. Wanner and E. Hairer. Solving ordinary differential equations II, volume 375.
Springer Berlin Heidelberg New York, 1996.
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Chapter 4

Monolithic Multigrid

Preconditioners for High-Order

Discretizations of the

Navier-Stokes Equations

Abstract

1 Recent years have seen substantial interest in the development of high-order spatial

discretizations for the Navier-Stokes equations, using either Scott-Vogelius elements

(on suitable meshes) or H(div)-conforming elements to achieve high-order discretiza-

tions that strongly enforce the incompressibility constraint. For time-dependent prob-

lems, a further complication comes from achieving similar higher-order accuracy for

the time-stepping scheme while maintaining optimal cost per time-step, roughly pro-

portional to the number of spatial degrees of freedom. Despite development of these

higher-order discretizations, due to the large size and implicit structure of the resulting

discrete systems, there has been a clear lack of efficient solvers for these discretiza-

tions in the literature. Monolithic multigrid preconditioning has proven to be among

the more attractive solver choices for problems with high-order IRK discretizations,

as shown in our earlier work [1], where extensions of Vanka-type relaxation schemes

1Authors are R. Abu-Labdeh, P.E. Farrell, R.C. Kirby, and S.P. MacLachlan.
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are used to develop robust solvers. In this paper, we consider the extension of these

monolithic multigrid methods to higher-order H(div)-conforming discretizations, cou-

pled with suitably high-order implicit Runge-Kutta temporal discretizations. We show

that, with a suitable definition of the Vanka “patches”, we achieve a robust solution

algorithm for two- and three-dimensional problems, showing true potential savings for

such higher-order discretizations.

Keywords: High-order discretizations, Implicit Runge-Kutta time integration,

Monolithic multigrid.

4.1 Introduction

The development of numerical solvers for the incompressible Navier-Stokes equations

(NSE) has been of significant interest over the last several decades, due to their wide

range of applications [19, 37]. These equations model the continuum flow of viscous

fluids, modeling a range of flow phenomena including turbulent flows [26]. They are

crucial in many fields of science and engineering, such as the study of flow around an

airplane body, weather and climate modeling, modeling of ocean currents, and the flow

of blood in the body. Despite their importance, several properties of the NSE make

their solution notoriously difficult. First, as a saddle-point problem, we require either

an inf-sup stable finite-element method or to use appropriate stabilizations terms to

make the problem well-posed [26]. Secondly, when the viscosity is small, the NSE lead

to advection-dominated flow problems for which it can be difficult to attain highly

accurate velocity approximations [15]. Thirdly, if we seek accurate pressure solutions,

we must also consider pressure-robust finite-element schemes, to avoid inaccurate

pressure solutions from polluting the velocity solution [46, 32]. Finally, the system

takes the form of differential-algebraic equations, making its time integration more

difficult than for standard systems of PDEs [36]. There has been substantial and

successful effort in the research community to address these discretization difficulties

in recent years; however, the development of efficient non-linear and linear solver

frameworks for these discretizations has lagged behind. The main goal of this paper

is to show that existing monolithic multigrid solver methodologies can be extended

to such discretizations in a robust and effective way.

There are several equivalent formulations of the NSE. Throughout this paper, we
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focus on the incompressible NSE on a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, in the

following form:

ρ (ut + u · ∇u)− 2µ∇ · ϵ(u) +∇p = f in Ω× (0, Tf ), (4.1a)

−∇ · u = 0 in Ω× (0, Tf ), (4.1b)

u = gD on ∂Ω× (0, Tf ), (4.1c)

u(x, 0) = b(x) on Ω× {t = 0}, (4.1d)

where u(x, t) is the fluid velocity, p(x, t) is the fluid pressure and f(x, t) is a suitably

smooth forcing term. Here, gD denotes Dirichlet boundary conditions for the velocity,

b denotes the initial velocity, ϵ(u) = 1
2

(

∇u+ (∇u)T
)

is the symmetric gradient of

u, Tf denotes the final time, while ρ and µ denote the fluid density and viscosity,

respectively. For simplicity, we fix the fluid density, ρ, to be 1, while the viscosity,

µ, varies in order to investigate problems at different Reynolds numbers, denoted by

Re = ρ

µ
(assuming unit characteristic scales for length and velocity).

Historically, spatial discretization of incompressible NSE dates back at least to the

1960’s, with the Marker-and-Cell (MAC) scheme [38], which is still used to this day

as a finite-difference discretization method for the incompressible NSE on uniform

meshes. Since realistic models of interest may be posed on arbitrarily shaped two- or

three-dimensional domains, finite-element methods (FEM) are often a more natural

tool, especially for higher-order discretizations. As is typical in fluid-flow models,

due to the differing solution spaces that arise for the velocity and pressure, mixed

FEM discretization must be used. Depending on the discrete solution spaces and the

desired accuracy of the approximation, there are a wide variety of known mixed finite-

element approximation spaces to choose from (see, for example, [8]). As usual, a major

challenge in using mixed FEM discretizations for any problem is ensuring the chosen

combination is inf-sup stable and satisfies appropriate accuracy properties [8, 26].

In order to obtain even more accurate approximations, higher-order discretizations

can be used [20]. For NSE, various stable high-order mixed FE spatial discretization

spaces, whether classical spaces or more uncommon ones [42], conforming or non-

conforming, have been used and analysed (cf. [8, 59, 63, 39]). One commonly used class

of these stable high-order mixed spaces are the H(div)-DG non-conforming elements

considered here.

An additional challenge in modeling high Reynolds number flows is stability of our
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approach for high velocity flows. As is well-known for advection-dominated advection-

diffusion equations, standard Galerkin FEM approaches can lead to instabilities where

non-physical oscillations appear in the numerical solution unless the mesh fully re-

solves any boundary or interior layers present in the flow. Thus, for simulations at

high Reynolds numbers, it is typical to include additional stabilization terms to avoid

such oscillations on reasonable meshes. Many such stabilization techniques have been

developed for advection-diffusion and Navier-Stokes problems, such as the streamline

upwind Petrov-Galerkin (SUPG) [14], (local) projection methods [33] and interior

penalty methods. Here, we impose an extension of the interior penalty methods de-

scribed in [15], commonly known as Burman stabilization or the gradient jump penalty

approach.

Naturally, high-order spatial discretization shows most benefit when coupled with

stable high-order temporal discretization [34]. Although there are many choices for

temporal discretization of PDEs, we are somewhat limited in our options here. Since

the NSE retain a dissipative term, we tend to consider only implicit methods, so that

stability criteria do not unduly constrain the choice of time step. Furthermore, we have

a preference for A-stable and L-stable integrators, so that any high-frequency errors

introduced in timestepping are numerically dissipated. The well-known Dahlquist

barrier says that no linear multi-step scheme with order greater than two can be A-

stable, leading us to consider Runge-Kutta approaches. Of these, since the NSE (in

the form given in (4.1)) are an index-two system of differential-algebraic equations,

standard analysis tells us that the stage order of the scheme is more important than the

usual global order [66]. Thus, even though diagonally implicit Runge-Kutta (DIRK)

methods are computationally cheaper than fully implicit methods, they cannot yield

high order when applied to DAEs, as their stage order can be no more than two.

This leaves only two practical options: various IMEX schemes, where implicit and

explicit time integrators are applied to the linear and nonlinear parts of the problem

(cf. [4, 18]), and fully implicit Runge-Kutta schemes, that we consider here.

The combination of higher-order spatial finite-element discretizations and higher-

order fully implicit Runge-Kutta discretizations leads to challenging nonlinear systems

to solve at each time-step, as the solutions for each stage in the Runge-Kutta approx-

imation are coupled with one-another in the discrete equations. There is, however, a

long history of the development of effective solvers and preconditioners for similar lin-

ear systems, particularly in the case of lower-order discretizations. Block-factorization
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preconditioners are well-known for the time-stationary and time-dependent NSE [25].

These approaches have been extended to stage-coupled discretizations of parabolic

PDEs [62, 48, 54]. One newly developed approach introduced in [61, 60] is construct-

ing a preconditioner similar in structure to those used for backward Euler time inte-

gration schemes, but applied to 2×2 blocks corresponding to certain pairings of stages

in the system. Another recent approach in block preconditioning of these systems is

the distribution of each of the resulting blocks over multiple parallel processes to be

solved all-at-once instead of solving them sequentially [50, 52]. Monolithic multigrid

preconditioners, in contrast, operate on the fully coupled system. These were orig-

inally developed for stationary (or Euler-type temporal discretizations) Stokes and

NSE [11, 65, 10, 41, 40, 21], but were extended to IRK discretizations of parabolic

equations by Vandewalle and coauthors [64, 57, 9]. Work has also been done to fur-

ther extend monolithic preconditioning with implicit temporal discretizations to flow

problems as in [53], where a matrix-free SVD-based tensor product preconditioner is

constructed for problems with the DG method applied.

In [1], we proposed an efficient Newton-Krylov-multigrid solver for the IRK dis-

cretizations of several incompressible fluid-flow problems, including Navier-Stokes.

This work extends Vandewalle’s earlier work, by combining Vanka-style relaxation [65,

41, 40, 2] for fluids with the stage-coupled relaxation ideas proposed in [64]. A no-

table limitation in the work of [1], however, is that the investigations therein were only

for the lowest-order Taylor-Hood discretization of the flow variables. In the present

work, we aim to advance the solver from [1] to apply it to high-order pressure-robust

discretizations of NSE. To our knowledge, there is very little known work that ad-

dresses high-order pressure-robust discretizations of NSE, and much of this focuses

on low-order temporal (or steady-state) discretizations (such as [29, 30]).

The outline of this paper is as follows: in section 4.2, we provide the details of

the spatial and temporal discretizations considered in this paper. In section 4.3, we

present details of the Newton-Krylov-multigrid numerical scheme that we propose

here. Then, numerical results for two- and three- dimensional model problems are

discussed in section 4.4. Finally, in section 4.5, conclusions and future research pos-

sibilities are discussed.
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4.2 Higher-order discretization in space and time

In this section, we present the discretization techniques used for the time-dependent

incompressible Navier-Stokes problem. In section 4.2.1, we discuss the mixed finite-

element formulation to be used. In section 4.2.2, we detail the chosen IRK time-

stepping scheme.

4.2.1 Spatial discretizations

Equation (4.1) gives the strong form of the Navier-Stokes equations, which we now

convert to weak form in the usual way. We denote the solution spaces as

u ∈ V = H1
0(Ω) =

{

v ∈ H1(Ω)
∣

∣v = 0 on ∂Ω
}

,

p ∈ W = L2
0(Ω) =

{

q ∈ L2(Ω)

∣

∣

∣

∣

∫

Ω

q dx = 0

}

.

We seek to find a weak formulation of (4.1) such that, for any time, t ∈ [0, Tf ],

(u(·, t), p(·, t)) ∈ V × W . This is done by multiplying the momentum equation by

v ∈ V and the constraint equation by q ∈ W , then integrating by parts to get

⟨ut,v⟩+ ⟨u · ∇u,v⟩+ 2µ⟨ϵ(u), ϵ(v)⟩ − ⟨p,∇ · v⟩ = ⟨f,v⟩, ∀v ∈ V ,
−⟨∇ · u, q⟩ = 0, ∀q ∈ W ,

(4.2)

where the inner product ⟨·, ·⟩ denotes spatial integration only.

To spatially discretize the weak formulation in (4.2), we use a mixed finite-element

space. We consider a decomposition, Ωh, of the domain, Ω, of non-overlapping ele-

ments, K. In this paper, we focus on triangular elements in two dimensions and

tetrahedral elements in three dimensions.

A common choice for discretization of the Stokes equations is the Taylor-Hood

mixed finite-element pairing, Pk+1(Ωh)-Pk(Ωh) [63], noted for their ease of implemen-

tation and relatively low cost. Although these elements satisfy the inf-sup stability

condition for all degrees k ≥ 1 [13], they are not pressure-robust elements since the

divergence of vector functions in Pk+1(Ωh) are not guaranteed to be contained in the

pressure space Pk(Ωh). Pressure robustness can be an important property, as it allows

us to achieve error estimates for the velocity approximation that are independent of
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the pressure error [45]. This ensures that, for problems with complicated or large

pressures (or large viscosities), the error in the velocity approximation does not get

polluted by the (necessarily) large pressure errors in these cases [46, 39].

Another higher-order polynomial pairing that we might consider are the Scott-

Vogelius elements, where the velocity is in Pk+1(Ωh) and the pressure is in kth degree

discontinuous Lagrange space, DGk(Ωh). With this choice of spaces, we have that

div(v⃗h) ∈ DGk(Ωh) for every function v⃗h ∈ Pk+1(Ωh), so the space is pressure robust.

However, achieving inf-sup stability for these spaces is known to be difficult. The pair

is inf-sup stable for k ≥ 4 on two-dimensional meshes, Ωh, with no singular vertices [59,

35]. It is also known to be stable for k ≥ d − 1 on d-dimensional simplex meshes

that result from a single step of barycentric refinement of any triangular/tetrahedral

mesh [68]. These mesh requirements make construction of effective solvers for the

resulting discretizations more complicated, as all meshes in a (geometric) multigrid

hierarchy must satisfy such conditions. The multigrid method proposed in [29] is

effective, but relies on a very expensive relaxation scheme that is forced upon it by

the mesh construction needed for stability. Thus, these elements are seen, in practice,

to have a very high computational cost and large memory requirements, so we consider

an alternative pressure-robust discretization here.

Another family of pressure-robust mixed FEM spaces arise when using H (div)-

conforming velocity spaces, where

H (div,Ω) = {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)}.

Here, on simplices, we use the Brezzi-Douglas-Marini (BDM) elements [12] for the

velocity vector field, while the pressure space is chosen to always be DGk(Ωh). The

BDM space of degree k, for k ≥ 1, is denoted by BDMk(Ωh). On each element, K,

of Ωh ⊂ Rd, we consider vector-valued functions in Pk(K), where Pk(K) = (Pk(K))d

and

Pk(K) =
{

u ∈ C0(K) : u(x) is a polynomial of degree no more than k
}

.

Since BDMk is an H (div,Ω)-conforming space, functions in this space have contin-

uous normal components across neigbouring element facets (edges or facets). Follow-

ing [51, 42], for v ∈ BDMk, we can categorize the degrees of freedom for v as
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1.
∫

f
v · nqds, ∀q ∈ Pk(f),

2.
∫

K
v · qdx, ∀q ∈ N 1

k−1(K) for k ≥ 2.

Here, n is the outward unit normal vector to a facet, f , in Ωh, while N 1
k−1(K) is the

Nédélec function space of the first kind on element K. We note that the first type of

DoF leads directly to the normal continuity of vector fields in the BDM spaces.

Since we choose to use anH (div,Ω) conforming velocity space, we apply an interior

penalty formulation to penalize jumps in the tangential derivatives of u, which should

be in H1
0(Ω), following [32, 56, 23, 43]. To do this, we denote the set of all facets

in Ωh as F = F i ∩ F e, where F i are the interior facets of the mesh and F e are the

boundary facets, meaning F e ⊂ ∂Ωh. By definition, each f ∈ F i is shared between

two elements in the mesh. For such facets, we can define the jump operator for a

piecewise smooth function, Φ, across f as [[Φ]] = Φ+−Φ−, where Φ+ and Φ− are the

inward and outward traces of Φ on f , respectively. The average operator is defined

as {{Φ}} = 1
2
(Φ+ + Φ−). Note that if f ∈ F e, then we reduce these definitions to

{{Φ}} = [[Φ]] = Φ. Following [23, Section 4.2], we use the symmetric interior penalty

(SIP) form to stabilize our discretization of (4.1), choosing the jump stabilization

parameter to be σ = 10k2, as in [43]. This gives us the stabilized form (omitting the

scaling by µ) of

2

∫

Ω

ϵ(u) : ϵ(v)−
∑

f∈F

∫

f

({{2ϵ(u)}} : {{v⊗ n}}+ {{2u⊗ n}} : {{2ϵ(v)}})

+
∑

f∈F

σ

hf

∫

f

{{2u⊗ n}} : {{2v⊗ n}}.

To account for the non-homogeneous Dirichlet boundary condition, u = gD on ∂Ω,

the following two terms are added to the above formulation,

−
∑

f∈Fe

σ

hf

∫

f

gD · v+
∑

f∈Fe

∫

f

(gD ⊗ n) · (2ϵ(v)) .

While this stabilization is sufficient for the Stokes equations, we must also deal with

the second instance of ∇u in (4.1), coming from the advective term in the Navier-

Stokes equations. Here, we integrate by parts on ⟨u · ∇u,v⟩ to get −⟨u, div (v⊗ u)⟩
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plus boundary integrals on each element (since only the normal components of u and

v are continuous across element edges). Making similar choices to those above, we

arrive at the terms

1

2

∑

f∈F i

∫

f

[[(u · n+ |u · n|)u]] · [[v]] + 1

2

∑

f∈Fe

∫

f

(u · n+ |u · n|)u · v

+
1

2

∑

f∈Fe

∫

f

(u · n− |u · n|)gD · v.

Pairing the velocity space of BDMk+1(Ωh) with the discontinuous Lagrange space,

DGk(Ωh) leads to an inf-sup stable pairing for the Navier-Stokes equations. Since

divergences of vector fields in BDMk+1(Ωh) are always in DGk(Ωh), these spaces

also lead to a pressure-robust discretization. Error analysis of this discretization is

presented in [58].

Here, we also seek a discretization that is stable in the advection-dominated regime,

when the Reynolds number is large relative to the mesh. In order to avoid additional

non-physical oscillations in the velocity approximation, we follow [43, 15] in adding

the following stabilization term in the discrete formulation,

∑

f∈F i

∫

∂Ω

σβfh
2
f

2
[[∇u · n]] : [[∇v · n]],

where σ is a mesh-independent parameter, chosen here to be 3× 10−3 as in [15], and

each facet, f , of K has a diameter hf . Here, βf is the average of the face-averaged

velocity norms on f , which we simply lag in our time-stepping, using the computed

velocity at the previous time step, to avoid introducing additional nonlinearities.

In all our numerical results, we seek an approximation of (u, p) over Ωh in the mixed

finite-element space Vh×Wh = BDMk+1(Ωh)×DGk(Ωh) on simplices. Defining u⃗(t)

and p⃗ (t) to be the (time-dependent) coefficients of u and p in the finite-element basis,

this leads to a nonlinear coupled system written as

[

Zu⃗t

0

]

+

[

N(u⃗)

0

]

+

[

C B

BT 0

][

u⃗

p⃗

]

=

[

Z f⃗

0

]

, (4.3)

where N(u⃗) represents the discretization of the advection term, Z and C are the mass
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and stiffness matrices respectively, B is the weak gradient operator and f⃗ is the vector

of coefficients of the interpolant of f in Vh.

4.2.2 Runge-Kutta discretizations

As stated above, among the many time integrators available, our main focus in this

work is the use of higher-order temporal discretizations. While many high-order

linear multi-step methods exist, these lack the desired stability properties, as seen

in the second Dahlquist barrier theorem for BDF schemes [66]. Instead, we consider

high-order Runge-Kutta methods. Unlike multi-step methods, Runge-Kutta schemes

are multi-stage, where multiple stage values are used to find the approximate solution

at each timestep. A general r-stage Runge-Kutta method applied to the system of

ordinary differential equations: u
′

(t) = f(u(t), t) is given by

ki = f

(

un +∆t
r
∑

j=1

aijkj, t
n + ci∆t

)

, for i = 1, 2, . . . , r,

un+1 = un +∆t

r
∑

j=1

bjkj.

(4.4)

Here, the coefficients are the stage nodes, ci, the weights, bj, and the Runge-Kutta

matrix, A = [aij]. These form the Butcher tableau for a given method [16, 17]. To

guarantee consistency of the schemes, we require
∑r

j=1 bj = 1 and
∑r

j=1 aij = ci, for

i = 1, 2, . . . , r. The set {ki}ri=1 represents the r stage values, which approximate u′(t)

at the stage times, tn+ci∆t, while un denotes the approximation at time tn = t0+n∆t.

Depending on the non-zero pattern of the matrix A, Runge-Kutta methods can be

categorized into either explicit schemes, where aij = 0 ∀j ≥ i, or implicit schemes,

when ∃j ≥ i with aij ̸= 0. Implicit schemes can also be sub-categorized into either

diagonally implicit schemes, where aij = 0 ∀j > i, or fully implicit, when ∃j > i such

that aij ̸= 0.

To discretize (4.1) fully, we apply the full IRK method to the semidiscrete system

in (4.3). We note that (4.3) takes the form of a system of differential algebraic

equations (DAE), for which the methodology remains well-defined. The resulting
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fully discretized system can be written as

Zk⃗
(u)
i +N

(

u⃗
n +∆t

r
∑

j=1

aij k⃗
(u)
j

)

+∆t
r
∑

j=1

aij

(

Ck⃗
(u)
j +Bk⃗

(p)
j

)

= Z f⃗ ni − Cu⃗
n − Bp⃗ n,

∆t

r
∑

j=1

aijB
T k⃗

(u)
j = −BT u⃗

n,

for 1 ≤ i ≤ r, as discussed, for example, in [1]. We note that when a fully implicit

Runge-Kutta scheme is chosen, this represents a fully coupled system of nonlinear

equations, coupling the stage values across all stages in the Runge-Kutta discretiza-

tion.

The choice of which Runge-Kutta method to use depends heavily on the needs of

the mathematical problem at hand, in terms of stability, accuracy, and computational

cost. For a given method, we let r(z) denote the stability function produced by

applying the method to the Dahlquist test problem, u′ = λu for λ ∈ C, with un+1 =

r(λ∆t)un. Using this, we define the domain of stability of the method to be the region

in the complex plane where |r(z)| ≤ 1. When the entire left-half of the complex plane

is included in the domain of stability of a scheme, it is said to be A-stable. If an

A-stable scheme also satisfies limz→−∞ |r(z)| = 0, then it is also L-stable. Since r(z)

is a polynomial for explicit RK schemes, only implicit RK schemes (where r(z) is a

rational function) can be A- or L-stable.

When measuring the accuracy of an approximate solution, many tools rely on

either the local truncation error, which is the error generated by a scheme in a single

time step comparing the approximation at time tn+1 to that at tn, or the global error,

which is the accumulated error in the approximation over all timesteps taken. A

scheme is said to have an error order of p if the error is bounded by a constant (that

can depend on the analytic solution, u(t), and on properties of f(u, t)) multiplied by

(∆t)p. For some IRK schemes, the maximum global error can be as much as twice the

number of the scheme’s stages, in contrast to explicit schemes where the order cannot

exceed the number of stages. Although schemes with higher-order global error are

generally desirable, for stiff differential equations or DAEs, the stage order of a Runge-

Kutta method is more important in determining the accuracy of the scheme [66]. The

stage order of a method is given by min{q, p}, where q is determined from bounding

the approximation to u(tn + ci∆t) of stage i by a constant that depends on f(u, t)



89

and u(t) times (∆t)q+1.

Among IRK schemes, we have two main families to choose from. Diagonally

implicit schemes offer decreased computational cost (since they can be solved by

forward substitution for one stage at a time), but are known to possess stage order

of at most two [66]. Thus, while they have attractive computational properties, they

are unsuitable for high-order integration of DAEs, as we need here. Instead, we

consider families of fully implicit schemes that are both A- and L-stable, following

the failure of the only A-stable Gauss-Legendre scheme to effectively integrate a low-

order spatial discretization of the Navier-Stokes equations in [1]. Here, we choose to

consider only the RadauIIA IRK schemes, which have global order of p = 2r − 1

and stage order equalling the number of stages, r [36, 66]. One trade-off that we will

consider in the numerical results is that between using a higher-order scheme (more

stages) with larger timesteps and using a low-order scheme with smaller timesteps.

Using RadauIIA, which gives the best-possible order for an r-stage scheme applied

to a system of DAEs like we have, allows us to make the best-possible comparison of

this trade-off.

Although fully implicit RK schemes are a powerful discretization tool, they come

with two main disadvantages. The first is their high computational cost compared to

multistep or diagonally implicit RK schemes. As stated earlier, this is because using

fully implicit RK methods requires the solution of a very large non-linear system of

equations at each timestep, including coupling between the RK stages. For diagonally

implicit schemes, in contrast, we can solve for the stages sequentially, even reusing

some parts of standard linear (and nonlinear) solvers for each stage, cutting down

on the overall cost of solution. Generally, for fully implicit RK schemes, such sim-

plifications cannot be used. Another downside to IRK methods is that the resulting

systems of linearized equations produced at each timestep are usually nonsymmetric,

due to the nonsymmetry of the Butcher matrix, A. This greatly limits the classes of

solvers to choose from, although we note that this limitation is not as significant for

the Navier-Stokes equations, which are already nonsymmetric.
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4.3 Linear and Nonlinear solvers

In the previous section, after fully discretizing (4.1), we arrive at a nonlinear coupled

system that must be solved at each time step. Thus, we use Newton’s method to

linearize the system for the stage values k⃗. This produces a sequence of linear sys-

tems of equations that we solve using a Krylov method, preconditioned by monolithic

multigrid. In this section, we discuss details of the resulting Newton-Krylov-multigrid

solver.

4.3.1 Newton linearization

Denoting the nonlinear discretized system at time step n to be F (k⃗
n
) = 0, then the

ith Newton iteration can be written as

F (k⃗
n,ℓ+1

) ≈ F (k⃗
n,ℓ
) + J(k⃗

n,ℓ
)δk⃗

n,ℓ
= 0,

where δk⃗
n,ℓ

= k⃗
n,ℓ+1 − k⃗

n,ℓ
is the Newton direction and J(k⃗

n,ℓ
) is the Jacobian of the

system at the current approximation. Here, since we apply Newton’s method at each

timestep, we will always use the stage approximation from the previous time step as

the initial guess for Newton’s method at the current time step, meaning k⃗
n

0 = k⃗
(n−1)

.

We continue this iteration until the nonlinear residual norm, ∥F (k⃗
n,ℓ
)+J(k⃗

n,ℓ
)δk⃗

n,ℓ∥,
is below a given tolerance, at which point we determine k⃗

n
= k⃗

n,ℓ
+ δk⃗

n,ℓ
.

For each linear iteration, we use an inexact solver, based on multigrid-preconditioned

FGMRES, that is run to a given stopping tolerance. For this, we use the Eisenstat-

Walker stopping criteria [24]. For any given timestep and linear iteration, the step

δk⃗
n,ℓ

is required to satisfy the following condition:

∥F (k⃗
n,ℓ
) + J(k⃗

n,ℓ
)δk⃗

n,ℓ∥ ≤ ηℓ∥F (k⃗
n,ℓ
)∥,

where ηℓ ∈ [0, 1) is called the forcing term and is carefully chosen based on the

convergence of the method.
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4.3.2 Monolithic multigrid-preconditioned FGMRES

The now linearized system is nonsymmetric, so we use FGMRES for the outer Krylov

method. We note that we primarily use FGMRES not for its flexibility (the ability

to change the preconditioner between iterations), but for its efficiency in the setting

considered here, where we have an expensive preconditioner to apply (as described

below) but sufficient memory for the extra vector storage required by FGMRES over

classical right-preconditioned GMRES.

While block-diagonal and block-triangular preconditioners are commonly chosen

when solving either stationary fluid models or time-dependent models discretized with

BDF-type schemes [26, 67], the tight coupling between stage values in the IRK schemes

considered here suggests that an all-at-once preconditioner may be more successful

(and, moreover, avoids the need to approximate Schur complements that couple the

stages). Hence, we follow the monolithic approach as found in [65, 10] and many other

papers, extending the monolithic multigrid preconditioner developed in [1] for Taylor-

Hood style discretizations. This preconditioner relies on an overlapping Schwarz re-

laxation scheme that is viewed as an extension of the usual Vanka relaxation scheme

first proposed in [65], that preserves the stage coupling of the system. As described

below, we alter the Vanka patches to account for the change in discretization spaces,

but otherwise follow the methodology of [1] for applying monolithic multigrid to IRK

discretizations of systems of PDEs.

Since multigrid solvers rely on having several levels of refinements of a given coars-

est grid, information must be passed between these grids using transfer operators. We

define the interpolation operator for a single stage to be the following block matrix:

P =

[

Pu⃗

Pp

]

,

where the blocks Pu⃗ and Pp are the standard finite-element interpolation operators for

the velocity and pressure spaces, respectively. When using this for IRK discretizations

with more than one stage, the interpolation operator is then defined as Ir ⊗P , where

Ir is an r×r identity matrix. This builds a block-diagonal interpolation operator that

applies Pu⃗ and Pp independently to the stage values of velocity and pressure at each

stage, without introducing any coupling in the interpolation process. The restriction

operator is defined to be the transpose of interpolation. To define the coarse-grid
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system operator, we rediscretize the differential equation on the coarser grids. The

coarsest grid system in the hierarchy is then solved using the direct LU method.

4.3.3 Vanka relaxation

The only remaining component of a standard multigrid algorithm for the IRK coupled

system needed is a relaxation scheme. Since the fully discrete system of (4.1) is

a saddle-point problem, more advanced relaxation methods than Jacobi or Gauss-

Seidel (as are commonly used for scalar diffusion equations) must be used. Here, we

use Vanka-type relaxation [65]. In general, Vanka relaxation schemes are overlapping

Schwarz methods. They can be applied either multiplicatively or additively. In our

work, Vanka is used additively, making it more suitable for parallelization.

On any given mesh in the multigrid hierarchy, Vanka relaxation relies on dividing

the mesh into small subdomains called patches. All degrees of freedom are decomposed

into overlapping patches, where the lth patch is denoted by Sl, and the set of all DoFs

in the mesh is given by S = ∪Nl=1{Sl}, where N is the total number of patches

considered. For our problems, each patch is constructed to contain both pressure and

velocity DoFs. We use Pl to denote the extension operator from the DoFs in Sl to all

of S, where each column of Pl is a canonical unit vector, with a single unit entry in

the row corresponding to the global numbering of the DoF. Using J k⃗ = F⃗ to denote

the linear system to be solved, one iteration of Vanka relaxation can be written as

k⃗← k⃗+ ω
N
∑

i=1

Pl(P
T
l JPl)

−1P T
l (F⃗− J k⃗).

As in [1], good choices of the relaxation weight, ω, are critical to achieving good

performance. Here, instead of choosing a single weight, we use several iterations of

a Vanka-preconditioned Chebyshev iteration as the relaxation scheme on each level.

To achieve best-possible performance, the Chebyshev polynomials are chosen with

endpoints of the associated interval that are tuned by hand, based on preliminary

experiments.

There are two common ways of forming these patches for discretizations of the

Navier-Stokes equations, commonly termed “pressure-centric” or “element-centric”
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patches [40, 2]. Pressure-centric patches are generally built so that each patch con-

tains a single pressure DoF and all velocity DoFs in the closure of the cells adja-

cent to that pressure. In each of these patches, the velocity DoFs generally have a

nonzero connection to the pressure DoF in the divergence constraint matrix of the

problem. This decomposition leads to the number of patches, N , being the same

as the number of pressure DoFs in the discretization. The pressure-centric decom-

position is very common for many discretization spaces, such as the Taylor-Hood

setting [1, 7, 30, 3, 47]. On the other hand, element-centric patches contain all DoFs

in each element, labeled by l [40, 6, 47, 31]. Such patches may contain more than one

pressure DoF, and N will equal the number of elements in the discretized mesh. In [2],

it was shown that using element-centric patches does not always yield scalable results

for the BDM1(Ωh) × DG0(Ωh) discretization of the Stokes equations across varying

mesh sizes. Thus, another choice of element-centric patches was proposed, termed

”extended Vanka” patches. These are defined by extending the element-centric patch

for each element, l, to include all velocity DoFs on elements that share a face with

l. Although using these patches adds to the computational cost in comparison to

standard element-centric patches, the scalability of the resulting solver is shown to

be worth this added expense [2]. Figure 4.1 sketches the various patches discussed

here. We note that one advantage of the extended patches is that they do not change

with the order of the spatial discretization, since all DGk(Ωh) pressures have the same

topological relationship, internal to each element.

4.4 Numerical Results

For all results presented in this paper we use RadauIIA for the temporal integration,

varying the number of stages from 1 to 4 stages. For details on RadauIIA methods

and their Butcher Tables see [66]. For the mixed FEM spaces, we show results using

BDMk+1(Ωh) × DGk(Ω) for k = {2, . . . , 5}, on two- or three-dimensional simplices.

Similar results to those found in this paper can be seen using other L-stable IRK

schemes, such as LobattoIIIC, and/or other H(div,Ω)-conforming spaces, such as

RTk+1 for the velocity.

For the implementation, all our numerical results were produced using Firedrake [55]

for the spatial FE discretizations and Irksome [27] for the IRK discretization. For all
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velocity DoF (P2) pressure DoF (P1 or DG0) velocity DoF (BDM1)

Figure 4.1: Left: a pressure-centric Vanka patch for the Navier-Stokes equations, con-
sisting of P2(Ωh) velocity DoFs, and one P1(Ωh) pressure DoF. Center: an element-
centric Vanka patch consisting of BDM1(Ωh) velocity DoFs, and one DG0(Ωh) pres-
sure DoF. Right: an extended Vanka patch consisting of BDM1(Ωh) velocity DoFs,
and one DG0(Ωh) pressure DoF.

linear and nonlinear solvers, we use PETSc [5], while the extended Vanka relaxation

scheme is implemented using PCPATCH [28]. Since the fully discretized problems

below can contain several million DoFs, we construct our solver in a way that is

naturally parallelizable, and stress the need for the chosen discretization and solver

software to be easily parallelizable. In this setting, the coarsest mesh is distributed

almost evenly across the specified cores and then refined in parallel. We note that in

order for the relaxation scheme to be efficient in a parallel distribution of the mesh,

it is important to include a node-distance-2 halo at each processor boundary. This is

done so that the Vanka patches on each node have all the necessary information to

calculate the residual included in the relaxation iteration [44].

In the following, we present results for two problems: the two-dimensional Chorin

vortex decay problem [19] and the three-dimensional lid driven cavity problem [22].

All tests included in this paper were done on a single machine with 2 Intel(R) Xeon(R)

CPU E5-2650 v2 CPUs, each with 8 physical cores, but 16 virtual cores, at 2.60GHz.

The total RAM size is 128GB.
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4.4.1 Two-dimensional Chorin vortex decay

For the first model, we consider a Chorin vortex decay problem, first presented in [19]

on a unit square domain Ω = (0, 1)2. The manufactured exact solution considered is

u =

[

− sin(πy) cos(πx)e−2π2t

sin(πx) cos(πy)e−2π2t

]

and p = −Re

4
e−4π2t(cos(2πx) + cos(2πy)).

For this problem, we divide the unit square domain into a coarsest grid constructed of

a uniform 4× 4 quadrilateral grid, where each quadrilateral cell is cut into 2 triangles

by drawing the edge from the top left vertex of each cell to the bottom right vertex.The

coarsest mesh is then refined ℓ times, where ℓ ∈ {1, 2, 3, 4}. This results in a finest

grid of N × N quadrilaterals cut in the same way into triangles, where N = 2ℓ+2,

containing various counts of degrees of freedom depending on the degree of the finite-

element space. When using 2 or 3 stages of RadauIIA, we use 1 core for ℓ = 2, 4 cores

for ℓ = 3 and 16 cores for ℓ = 4, while for 4 stage RadauIIA, we use 1 core for ℓ = 1, 4

cores for ℓ = 2, and 16 cores for ℓ = 3. The DoFs counts per stage are summarized

in Table 4.1.

k

ℓ
1 2 3 4

1 - 5472 21696 86400
2 - 10368 41216 164352
3 4240 16800 66880 266880
4 6240 24768 98688 -
5 8624 34272 136640 -

Table 4.1: Number of DoFs per stage as a function of refinement level, ℓ, and degree,
k, of the finite-element space used, BDMk+1(Ωh)×DGk(Ωh).

The initial condition chosen is simply the manufactured solution evaluated at

t = 0, and we integrate to a final time of Tf = 0.25. We vary the timestep taken,

investigating the impact that it has on the accuracy of the discrete solution at the

final time. As we discuss later in this section, stopping tolerances for these systems

are somewhat tricky, since (to our knowledge) there is no theory showing particular

stopping tolerances to use. Through experimentation, we found the optimal nonlinear

stopping criteria for these results is to require the L2 norm of the nonlinear residual

at each timestep be reduced below N−4.
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We found that accelerating the Vanka relaxation scheme with Chebyshev polyno-

mials of the first kind on a chosen interval produces scalable results. Here, we use 2

pre- and post-relaxation sweeps. The default polynomial interval is set to be [λ
4
, λ]

where λ is the estimated largest eigenvalue of the Vanka-Chebyshev-preconditioned

matrix (estimated using PETSc’s default estimation, based on GMRES). We record

relative L2(Ω)-norm errors for velocity and absolute L2(Ω)-norm for pressure, the to-

tal number of linear and nonlinear iterations to converge for each timestep, averaged

over all timesteps, and the total computational time to solution in minutes.

First, we study the effect of the spatial and temporal degrees, fixing the Reynolds

number to be 1. For each time integrator (number of stages), we fix ∆t based on

N and Tf , but allow this to vary slightly between integrators. For 2 stages, we take

∆t =
Tf

4N
, while we take ∆t =

Tf

2N
for 3 stages, and ∆t =

Tf

N
for 4 stages. Table 4.2

shows results for these three integrators and varying spatial discretization order, k. We

clearly see that, when we fix the number of IRK stages, there are limited returns for

increasing the spatial degree beyond the number of stages. This is expected because

of the stage order accuracy of the time integrators. For example, using 2 stages, going

from k = 1 to k = 2 for ℓ = 4, requires significantly more CPU time (an increase of

about 2.5×), but leads to a significant improvement in the velocity approximation.

An even larger increase in CPU time is seen going to k = 3, but no notable change

is seen in the velocity or pressure errors. Thus, for this problem with 2 stages, the

pairing BDM3(Ωh) × DG2(Ωh) seems is optimal. We see similar behaviour in the

accuracies for 3 and 4 stages. We note, however, that solver performance is largely

independent of the number of stages or order of the spatial discretization. For all

problems, we see between 4 and 5.3 nonlinear iterations per timestep (noting that we

use inexact Newton, so expect to see slightly larger nonlinear iteration counts than

may otherwise be typical), and between 10 and 26 linear iterations per timestep.

Next, we study the effects of the time step size on the solver performance, as well

as the accuracy as we vary the number of IRK stages and spatial degree, in Table 4.3.

For this, we fix the “optimal” pairings for stages and spatial degree found in Table 4.2,

taking k = r. For a fixed number of stages and degree, we generally see the expected

increase in accuracy as smaller time steps are taken. However, taking too small of a

temporal step leads to a decrease in accuracy, likely due to accumulating errors from

an increasing number of time steps. For example, using BDM4(Ωh)×DG3(Ωh) with

3-stage RadauIIA, ∆t =
Tf

N
gives the lowest velocity error at ℓ = 4, with about a
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ℓ L2 error u L2 error p time linear nonlinear

Rad(2)

k = 1
2 2.664× 10−4 8.736× 10−4 6.2 10.0 4.0
3 2.184× 10−5 2.351× 10−4 10.9 13.3 4.0
4 2.279× 10−6 5.636× 10−5 44.4 18.0 4.9

k = 2
2 2.385× 10−4 3.239× 10−4 7.2 13.9 4.0
3 5.627× 10−6 2.702× 10−5 41.5 16.2 4.0
4 4.350× 10−7 4.428× 10−6 102.4 21.3 4.4

k = 3
2 1.553× 10−5 1.186× 10−5 21.3 14.4 4.0
3 2.972× 10−6 3.797× 10−6 95.4 18.3 4.6
4 6.382× 10−7 3.996× 10−7 357.3 21.4 4.7

Rad(3)

k = 2
2 3.258× 10−5 2.832× 10−5 12.2 15.7 4.0
3 1.887× 10−6 3.400× 10−6 30.3 19.7 4.2
4 1.083× 10−7 5.734× 10−7 160.5 25.8 4.9

k = 3
2 6.894× 10−6 4.106× 10−6 13.0 16.6 4.2
3 4.611× 10−7 3.285× 10−7 51.9 20.1 4.7
4 2.165× 10−8 4.525× 10−8 302.2 25.0 5.3

k = 4
2 3.333× 10−6 2.769× 10−6 58.6 16.5 4.5
3 1.262× 10−7 1.744× 10−7 96.8 19.6 4.9
4 3.108× 10−8 1.060× 10−8 492.5 24.1 5.1

Rad(4)

k = 3
1 4.334× 10−5 1.908× 10−5 3.9 14.2 4.1
2 1.595× 10−6 1.114× 10−6 13.4 19.0 4.5
3 1.117× 10−7 9.549× 10−8 70.9 22.4 5.0

k = 4
1 1.272× 10−5 7.461× 10−6 5.1 15.1 4.3
2 1.168× 10−6 1.012× 10−6 22.9 18.7 4.8
3 3.096× 10−8 4.431× 10−8 143.4 21.7 5.0

k = 5
1 4.776× 10−6 5.705× 10−6 8.1 14.0 4.1
2 4.631× 10−7 4.601× 10−7 32.0 17.3 4.9
3 2.325× 10−8 4.514× 10−8 312.0 19.8 5.0

Table 4.2: Numerical results for several refinement levels showing the effect of various
degrees of spatial finite-element discretization with different numbers of stages of
the temporal IRK discretization on the velocity and pressure L2 errors, and average
iteration counts and solver times.
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10% increase when we halve ∆t. Again, we see very little direct dependence on solver

performance with ∆t or degree of the discretization, still requiring between 4 and 5.3

nonlinear iterations per time step, and between 13 and 28 nonlinear iterations per time

step. We note that the parallelism here is fixed based on the spatial refinement level,

ℓ, so that the general expectation is for CPU times to double for a fixed discretization

when we halve ∆t, since we have twice as many time steps to solve for.

An expected observation that is clearly shown in these results is the fact that

increasing the spatial and temporal degrees increases the accuracy of the resulting

approximation, but at the expense of an increase in computational cost per nonlinear

time step. This is because the size of the systems that are solved at each time step

increase with more stages and the increase in the degree of the polynomial order

within the FEM approximations. A clear question, then, is where is the trade-off

point? A good example of this is noticing that the best error at ℓ = 4 for the 2-stage

RadauIIA using BDM3(Ωh) × DG2(Ωh) using ∆t =
Tf

2N
is surpassed at ℓ = 3 for

3-stage RadauIIA using BDM4(Ωh) × DG3(Ωh) with ∆t =
Tf

N
. Thus, we see a clear

gain from increasing both temporal and spatial orders, but note that this represents

an overall decrease in the computational cost, taking less CPU time on a quarter of

the cores.

Finally, we study the effect increasing advection may have on the accuracy and

solver performance by changing the Reynolds number. For this, we fix the discretiza-

tion pairings and best time step sizes from the previous experiments and only vary Re

to be 1, 10 or 100. In Table 4.4, we clearly see that the change of Reynolds number has

almost no effect on the the accuracy of both pressure and velocity, which is more-or-

less expected since the solution only depends weakly on Re in this case. Nonetheless,

for similar examples in preliminary work, not including the stabilization terms led

to notable degradation in accuracies, so these are encouraging results. Further, we

see very little dependence of the solver performance on the Reynolds number in this

setting.

4.4.2 Three-dimensional lid-driven cavity

Next, we consider a three-dimensional lid-driven cavity problem on a unit cube do-

main, Ω = (0, 1)3. On the top face (where z = 1), the flow is driven from left to right

by the imposed velocity u = (1, 0, 0)T , while fixing u = (0, 0, 0)T on all other faces.
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For this model, we consider three tests where, in each, a fixed coarsest grid is

refined twice. The coarsest grid is always constructed by cutting the unit cube do-

main into a uniform hexahedral mesh, then cutting each hexahedral element into 6

tetrahedra. We now use ℓ to denote the dimension of the coarsest mesh, with ℓ = 1

denoting the smallest mesh, built by refining a 1 × 1 × 1 mesh twice, while ℓ = 2

denotes a mesh built by refining a 2 × 2 × 2 mesh twice, and ℓ = 3 denotes a mesh

built by refining a 3× 3× 3 mesh twice. These choices (and the limitation on number

of stages used and spatial degree considered) are made due to memory limitations

for 3D simulations, as the increase in finest grid sizes would require more cores (and

the same memory per core) for parallel computation. Table 4.5 summarizes the DoFs

counts per stage for the tests considered.

We use the same spatial discretization here and RadauIIA integration with 1, 2 or

3 stages. We integrate until final time Tf = 0.25, fixing the timestep as ∆t =
Tf

4N
where

N = 4ℓ. Through experimentation, we found the optimal nonlinear stopping criteria

for this test model is to require the L2 norm of the nonlinear residual at each timestep

be reduced below 0.01N−2. A zero pressure initial condition is used while u = (1, 0, 0)T

is the velocity initial condition. We also choose to accelerate the Vanka relaxation

with Chebyshev polynomials of the first kind, using 3 pre- and post-relaxation sweeps

on each level. The polynomial interval is set by estimating the largest eigenvalue

of the Vanka-preconditioned matrix, λ, then choosing the Chebyshev interval to be

[0.25λ, 1.05λ]. We record average linear and nonlinear iterations per timestep, and

the total computational time to solution in minutes.

Fixing the Reynolds number to be 1 and spatial discretization order k = 2, Ta-

ble 4.6 shows the effect of varying temporal degrees on solver computational cost.

Note that ⋆ indicates an out-of-memory error for this test. In these results, we clearly

see that the average iteration counts are independent of the number of stages chosen.

We see a very reasonable number of nonlinear iterations per timestep for all tests,

and between 10 and 15 total linear iterations per timestep. However, using the same

number of parallel cores as we increase the mesh size and number of stages leads to a

notable increase in CPU times.

Next, we study the effects of varying the spatial degree on solver performance,

while continuing to fix the Reynolds number to be 1 and using 2 stages of RadauIIA.
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These results are summarized in Table 4.7. Again, we see reasonable nonlinear iter-

ations per timestep (less than 3). Although CPU times do increase as we increase

the spatial order, we still maintain overall reasonable counts for the total number of

linear iterations per timestep, ranging from about 6 iterations to 13 iterations.

Finally, we present results showing the effect of increasing the advection term on

solver performance, by varying the Reynolds number to be 1, 10 or 100. Here, we fix

the spatial discretization order to be k = 2 and only use 2 stages of the RadauIIA

integrator. As in the Chorin vortex decay problem, we can clearly see in Table 4.8 that

the change in Reynolds number has little effect on the solver performance, even though

the solutions in this setting have stronger dependency on the Reynolds number than

the Chorin problem. Figure 4.2 presents a streamline representation of the computed

velocity field at the final timestep for ℓ = 2 with Re = 10 using Rad(2) and k = 2.

Figure 4.2: Streamlines of the velocity for the lid-driven cavity at final timestep for
ℓ = 2 and Re = 10.

4.5 Conclusion

In this paper, we show that the monolithic Newton-Krylov-multigrid solver devel-

oped for incompressible fluid flow problems in [1] can be extended to higher-order

pressure-robust discretizations, showing advantages in robustness and wall-clock time-

to-solution over the low-order Taylor-Hood spatial discretization considered there.

Here, we consider the combination of implicit L-stable Runge-Kutta temporal dis-

cretizations with the inf-sup stable and pressure-robust BDMk+1(Ωh) × DGk(Ωh)
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mixed finite-element space. Extending the Vanka relaxation patches from [2], we find

order-robust multigrid convergence for standard Navier-Stokes test problems.

Although accurate results are seen with increasing numbers of IRK stages and

finite-element order, a better understanding of the stopping criteria for the models

considered here is needed to achieve expected convergence behaviour for even higher-

order schemes than those used in this paper. Additionally, we note that the wide

range of effective Implicit-Explicit (IMEX) Runge-Kutta time-integration methods

(cf. [49, 18]) allows a possibly broader scope to studies such as this one, as the linear

solver used here could be used for the implicit subsystems that require solution in

such approaches.



102

ℓ L2 error u L2 error p time linear nonlinear

Rad(2)+k = 2

∆t = Tf/N
2 5.278× 10−4 2.547× 10−4 3.9 18.0 4.1
3 4.617× 10−5 4.383× 10−5 7.2 22.3 4.6
4 6.228× 10−6 8.127× 10−6 57.2 25.0 5.2

∆t = Tf/2N
2 3.412× 10−5 4.327× 10−4 4.1 15.4 4.0
3 2.888× 10−6 9.551× 10−5 10.9 19.3 4.2
4 2.140× 10−7 2.017× 10−5 61.4 23.5 4.7

∆t = Tf/4N
2 2.385× 10−4 3.239× 10−4 7.2 13.9 4.0
3 5.627× 10−6 2.702× 10−5 41.5 16.2 4.0
4 4.350× 10−7 4.428× 10−6 102.4 21.3 4.4

Rad(3)+k = 3

∆t = 2Tf/N
2 3.311× 10−5 5.317× 10−5 7.6 21.3 4.9
3 1.635× 10−6 5.623× 10−6 12.1 24.3 5.0
4 6.224× 10−8 7.087× 10−7 97.5 27.6 5.0

∆t = Tf/N
2 3.097× 10−6 5.456× 10−6 12.8 18.8 4.5
3 1.662× 10−7 7.007× 10−7 41.0 22.2 5.0
4 1.834× 10−8 8.506× 10−8 219.5 23.7 5.1

∆t = Tf/2N
2 6.894× 10−6 4.106× 10−6 13.0 16.6 4.2
3 4.611× 10−7 3.285× 10−7 51.9 20.1 4.7
4 2.165× 10−8 4.525× 10−8 420.2 25.0 5.3

Rad(4)+k = 4

∆t = 4Tf/N
1 1.036× 10−3 1.575× 10−3 3.8 19.0 5.0
2 3.011× 10−5 5.341× 10−5 7.3 22.8 5.0
3 6.500× 10−7 2.444× 10−6 40.6 25.6 5.0

∆t = 2Tf/N
1 3.164× 10−5 5.346× 10−5 4.0 17.0 4.5
2 7.886× 10−7 2.420× 10−6 13.7 20.8 5.0
3 3.514× 10−8 3.961× 10−7 91.0 22.1 5.0

∆t = Tf/N
1 1.272× 10−5 7.461× 10−6 5.1 15.1 4.3
2 1.168× 10−6 1.012× 10−6 22.9 18.7 4.8
3 3.096× 10−8 4.431× 10−8 143.4 21.7 5.0

Table 4.3: Results for several refinement levels showing the effect of varying time step
size on discretization accuracy and solver performance.
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ℓ L2 error u L2 error p time linear nonlinear

Rad(2)+k = 2

Re = 1
2 3.412× 10−5 4.327× 10−4 4.1 15.4 4.0
3 2.888× 10−6 9.551× 10−5 10.9 19.3 4.2
4 2.140× 10−7 2.017× 10−5 61.4 23.5 4.7

Re = 10
2 3.413× 10−5 4.328× 10−4 3.4 15.5 4.0
3 2.886× 10−6 9.531× 10−5 12.8 19.3 4.2
4 3.097× 10−7 2.291× 10−5 65.1 23.7 4.7

Re = 100
2 3.427× 10−5 4.342× 10−4 3.4 16.4 4.0
3 2.879× 10−6 9.537× 10−5 12.7 22.2 4.2
4 2.080× 10−7 2.234× 10−5 63.1 24.7 4.7

Rad(3)+k = 3

Re = 1
2 3.097× 10−6 5.456× 10−6 12.8 18.8 4.5
3 1.662× 10−7 7.007× 10−7 41.0 22.2 5.0
4 1.834× 10−8 8.506× 10−8 219.5 23.7 5.1

Re = 10
2 3.098× 10−6 5.458× 10−6 12.8 18.8 4.5
3 1.663× 10−7 7.007× 10−7 44.0 22.2 5.0
4 2.213× 10−8 9.003× 10−8 211.3 23.8 5.1

Re = 100
2 5.115× 10−6 5.168× 10−6 13.2 19.4 4.4
3 5.485× 10−7 7.555× 10−7 44.3 22.6 5.0
4 1.864× 10−8 8.673× 10−8 222.0 23.6 5.0

Rad(4)+k = 4

Re = 1
1 3.164× 10−5 5.346× 10−5 4.0 17.0 4.5
2 7.886× 10−7 2.420× 10−6 13.7 20.8 5.0
3 3.514× 10−8 3.961× 10−7 91.0 22.1 5.0

Re = 10
1 3.164× 10−5 5.346× 10−5 5.1 17.0 4.5
2 7.899× 10−7 2.461× 10−6 13.7 20.9 5.0
3 3.572× 10−8 1.422× 10−7 93.4 23.6 5.0

Re = 100
1 3.379× 10−5 5.314× 10−5 5.2 18.0 4.8
2 3.014× 10−7 2.465× 10−6 28.9 21.8 5.0
3 1.900× 10−8 1.480× 10−7 94.8 25.2 5.1

Table 4.4: Numerical results for several refinement levels showing the effect of varying
Reynolds number on the accuracy of different temporal and spatial discretizations
and the resulting solver performance.
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k

ℓ
1 2 3

1 9024 69888 233280
2 20160 157440 527040
3 37920 297600 997920

Table 4.5: Number of DoFs per stage as a function of refinement level, ℓ, and degree,
k, of the finite-element space used, BDMk+1(Ωh) × DGk(Ωh) in the 3D lid-driven
cavity model.

ℓ time linear nonlinear

Rad(1)
1 3.3 12.31 3.0
2 13.8 12.28 2.88
3 43.7 11.42 2.88

Rad(2)
1 14.9 10.50 2.69
2 60.6 11.16 2.69
3 149.2 10.67 2.73

Rad(3)
1 32.7 11.62 2.56
2 156.3 11.94 2.66
3 ⋆

Table 4.6: Numerical results for several refinement levels for the 3D lid driven cavity
model, showing the effect of using different numbers of stages of the temporal IRK
discretization for Re = 1 and k = 2 on the average iteration counts and solver times.
Note that ⋆ indicates an out-of-memory error for this test.

ℓ time linear nonlinear

k = 1
1 2.0 5.81 2.25
2 10.4 9.03 2.50
3 29.7 9.33 2.71

k = 2
1 14.9 10.5 2.69
2 60.6 11.16 2.69
3 149.2 10.67 2.73

k = 3
1 49.01 13.50 2.56
2 255.7 12.59 2.69
3 ⋆

Table 4.7: Numerical results for several refinement levels for the 3D lid driven cavity
model, with Re = 1 and 2 IRK stages, showing the effect of using different degrees of
the spatial discretization on the average iteration counts and solver times. Note that
⋆ indicates an out-of-memory error for this test.
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ℓ time linear nonlinear

Re = 1
1 14.9 10.5 2.69
2 60.6 11.16 2.69
3 149.2 10.67 2.73

Re = 10
1 15.8 10.31 2.50
2 63.8 11.12 2.69
3 151.9 10.73 2.77

Re = 100
1 12.4 13.4 2.75
2 77.2 15.72 2.88
3 167.5 14.92 2.90

Table 4.8: Numerical results for several refinement levels for the 3D lid driven cavity
model, with k = 2 and 2 IRK stages, showing the effect of using varying Reynolds
number on the average iteration counts and solver times for the 3D lid driven cavity
model.
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Chapter 5

Monolithic Multigrid Methods for

Higher-Order Discretizations of

Time-Dependent Maxwell’s

Equations

Abstract

Maxwell’s equations arise in many challenging applications in computational science.

Several paths exist to achieve high-order discretizations, including the use of spe-

cialized finite-element spaces (such as the Raviart-Thomas, Brezzi-Douglas-Marini,

and both first- and second-kind Nédélec elements) and high-order implicit temporal

integration schemes. While significant effort has been invested in the past 25 years

in developing efficient multigrid methods for various spatial discretizations, much of

the work in the time-dependent case has been focused on multi-step (or diagonally

implicit) temporal discretizations. In this paper, we present work on extending mono-

lithic multigrid methods to fully implicit Runge-Kutta temporal discretizations of the

B−E form of Maxwell’s equations. Particular focus is paid to extending the common

overlapping Schwarz relaxation strategy to these discretizations, as well as their use on

non-nested multigrid hierarchies, as needed to accurately model complex geometries.



113

Keywords: Maxwell’s equations, Implicit Runge-Kutta time integration, Mono-

lithic multigrid, non-nested multigrid

5.1 Introduction

Maxwell’s equations are coupled partial differential equations that provide a mathe-

matical model of the dynamic interaction between magnetic and electric fields [37, 54].

Among many multiphysics problems where they appear, they are used in describing

the electromagnetic dynamics of (multi-)fluid plasma models. Plasma models in gen-

eral, including single-fluid plasma models such as the magnetohydrodynamics (MHD),

are coupled systems of differential equations that model the movement of charged

plasma particles in the presence of electromagnetic (EM) fields. These models have

several applications such as in the construction of rocket engines, in power genera-

tion using thermonuclear fusion reactors, and applications of magnetic confinement of

plasma in tokamak reactors [13]. In these models, accurately resolving the coupling

between the fluid flow and EM variables is critical, in both the continuum models

and the corresponding discrete models and their solution algorithms. So, along with

the many solver developments in the recent years for the governing fluid-flow mod-

els [10, 22, 20, 25, 38, 21], constructing good solvers for plasma models requires also

developing solvers that efficiently handle the EM dynamics. The work proposed here

is motivated by the modelling approach of [43], that proposes a split-stepping ap-

proach for an MHD system where the slower fluid-flow terms are solved explicitly

and the fast EM terms are solved implicitly. In this setting, a high-order fluid model

is considered along with the same EM form of Maxwell’s equations considered here.

The efficient solver developed here for the time-dependant Maxwell’s equations with

an implicit time integration method can be used in their split-step framework.

Many real-world applications of Maxwell’s equations are posed on complicated

domains containing curved edges or faces, adding to the difficulty of solving these

problems. Although the finite-element method is well suited to handle the unstruc-

tured discrete meshes produced on these domains, poor convergence is often seen due

to poor representation of the elements adjacent to the curved boundary. Here, we con-

sider using isoparametric finite-element methods [19], wherein the problem geometry
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is represented by higher-order maps from reference elements to the problem geome-

try. One concern that arises when using these elements in a multigrid hierarchy is the

possible mesh distortion that comes from improving resolution of a curved domain

boundary, which can lead to both degraded finite-element approximation properties

and degraded solver performance. Thus, on every mesh in the multigrid hiererchy, we

make use of the technique proposed in [48], which uses an elasticity solve to improve

the mesh quality, taking the boundary node locations as strongly enforced Dirich-

let boundary conditions for the mesh DoF locations. In particular, we adopt this

approach to yield improving representations of the problem domain with increasing

refinement, without encountering problems with element quality. We note, however,

that this leads us to non-nested multigrid methods, whose performance must be in-

vestigated.

An additional difficulty in solving Maxwell’s equations on any domain is that of

enforcing the constraints on ∇ · B and ∇ · E. In the continuum, it is clear that

if these constraints are satisfied by the initial conditions, they are always satisfied

through the time evolution. However, applying finite-element methods to the contin-

uum problem does not, in general, preserve such constraints [44]. In our context, the

constraint of concern is Gauss’s law, that the divergence of the magnetic field is zero,

∇ · B = 0. Using a Lagrange multiplier, we can enforce this constraint only weakly.

On the other hand, using curl-conforming edge elements for the electric field and

divergence-conforming face elements for the magnetic field may allow us to enforce

this constraint [45]. In particular, [36] shows that Gauss’s law is enforced pointwise

(i.e strongly) with such elements, either through using a magnetic Lagrange multiplier

as in [8, 18, 11, 56, 35, 5], or when using an augmented Lagrangian formulation, as in

[40, 36]. Hence, careful choices of the finite-element spaces must be made along with

including a (augmented) Lagrangian multiplier to enforce the constraint ∇ · B = 0,

emphasizing the difficulty of spatial discretization of Maxwell’s equations. In this

paper, we follow the approach taken in [40] in defining the variational formulation to

strongly enforce Gauss’s Law. We note, of course, that even when using a suitable

spatial discretization, we must also choose a constraint-preserving temporal integrator

in order to preserve the constraint through numerical integration [30].
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In recent years, there has been a growing need to solve these models more accu-

rately, using higher-order discretization schemes to produce higher-fidelity approxi-

mations. For spatial discretizations, (isoparametric) FEM provides the ability to con-

struct higher-order elements on complex domains, as discussed above. On the other

hand, stability of temporal discretization methods is of great concern when used on

stiff systems of differential equations, as we consider here. Implicit schemes are gener-

ally used to avoid having (greatly) limited time step size selection. Multi-step meth-

ods, such as BDF schemes, can be constructed, but higher than second-order linear

multistep schemes lack the required stability properties, hitting the so-called second

Dahlquist barrier. Alternatively, a consistently proven powerful high-order temporal

discretization scheme is the multi-stage implicit Runge-Kutta method (IRK). Since the

systems produced from the application of IRK schemes are very large, these schemes

have been rarely used in large-scale computational PDEs. Recently, however, a small

body of work has been done to investigate IRK schemes for plasma models [47, 2, 6].

To the authors knowledge, the only other work applying IRK to Maxwell’s equations

is [33]. Here, we are particularly interested in the coupling of Gauss-Legendre in-

tegrators to the constraint-preserving spatial discretizations, as these are known to

preserve linear constraints (as of concern here) [30].

Since the systems of equations produced from fully discretizing Maxwell’s equa-

tion at each time step (using an implicit temporal integration scheme) are very large,

efficient solvers need to be constructed. The development of efficient solvers for some

forms of Maxwell’s equations has been a major topic of research since the pioneering

work by Arnold, Falk, and Winther [7] and Hiptmair [31, 32]. Both families of pre-

conditioners have been developed into powerful solvers for problems with divergence-

or curl-conforming FEM. Despite the building blocks these provide and their wide

use in accelerating the convergence of various numerical methods, they have primar-

ily been applied to simpler formulations of Maxwell’s equations than are relevant in

the plasma modelling fomain, such as the Eddy-Current form of Maxwell’s equation.

This so-called “diffusive Maxwell” regime (cf. [12]) is naturally well-suited to efficient

multigrid and domain decomposition solvers, as high-frequency modes can be readily

damped by relaxation and low-frequency modes corrected from the coarse grid. In our

setting, we consider Maxwell in the travelling-wave regime, where important physical

constants such as the speed of light, electric permittivity, and magnetic permeability

are not neglected. Nonetheless, we show that suitable modifications of the Arnold,



116

Falk, and Winther preconditioner construction still lead to effective solvers for the

stage-coupled IRK discretizations.

For problems involving more complicated forms of Maxwell’s equations, block pre-

conditioners can also be built in a way that decouples the problem variables, allowing

known (and simpler) linear solvers to be applied to each block of the system. This

approach is especially useful in more complicated plasma problems with multiple cou-

pled fields that appear with drastically different discretization schemes [29, 5, 50, 51].

While such approaches can be very effective, their development depends on the ap-

proximation of the (possible nested) Schur complement(s) of the system, which can be

complicated to approximate for complicated block structures. Alternatively, mono-

lithic preconditioners are applied to the system as a whole, trading the need for

constructing such Schur complements for that of dealing directly with the coupling

between variables. Here, we consider the family of monolithic multigrid techniques,

building on the success of multigrid methods as efficient preconditioners for many

families of PDEs, and on recent work constructing effective monolithic multigrid pre-

conditioners for MHD and similar systems [46, 2, 3, 4, 62]. To our knowledge, there

has been no work done to apply these preconditioners directly to Maxwell’s equations,

particularly when coupled with IRK temporal discretizations.Here, we use an exten-

sion of the solver developed in [2] that was proven to be efficient on the MHD model,

among other fluid flow problems, with IRK discretization.

The outline of this paper is organized as follows: in section 5.2, we review the

details of the Runge-Kutta time-stepping scheme used for temporal discretization of

a system of ODEs. In section 5.3, we explore multigrid methods for the heat equation

on domains with curved boundaries, developing the non-nested multigrid approach

needed later for Maxwell’s equations. In section 5.4, we discuss the spatial discretiza-

tion of Maxwell’s equations, followed by the development of our multigrid methodol-

ogy in section 5.4.1. Numerical results are presented in section 5.5. Conclusions and

possible directions for future research are presented in section 5.6.

5.2 Runge-Kutta discretizations

Discretization of many time-dependent partial differential equations generally follows

a method-of-lines process [55]. Usually, we first spatially discretize the time-dependent
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partial differential equation, leaving a semi-discrete system of ordinary differential

equations that is then temporally discretized with a selected time-stepping scheme.

There are a wide variety of temporal discretization methods to choose from depending

on the problem at hand. While many high-order multi-step methods exist, these are

generally expected to have stability limitations, for example as seen in the Second

Dahlquist Barrier for linear multistep methods [60]. This makes them unsuitable

for integrating stiff problems such as Maxwell’s equations. Instead, the unconditional

stability of somemulti-stage time-stepping schemes can be taken advantage of. Among

these schemes are some families of Runge-Kutta methods, where multiple stage values

are computed to determine the approximate solution at each timestep. A general r-

stage Runge-Kutta method applied to a system of ordinary differential equations,

u′(t) = f(u(t), t), can be written as

ki = f

(

un +∆t

r
∑

j=1

aijkj, t
n + ci∆t

)

, for i = 1, 2, . . . , r,

un+1 = un +∆t

r
∑

j=1

bjkj.

(5.1)

The set {kj}rj=1 represents the r stage values, while un denotes the approximation

to u(t) at time tn = t0 + n∆t. In (5.1), the coefficients are the stage nodes, ci,

the weights, bj, and the Runge-Kutta matrix, A = [aij]. Altogether, these form the

scheme’s Butcher tableau [16, 17]. To guarantee consistency of the schemes, we must

have
∑r

j=1 bj = 1 and
∑r

j=1 aij = ci, for all i = 1, 2, . . . , r.

Runge-Kutta schemes can be separated into several classifications depending on

the non-zero pattern of the Butcher matrix, A. Notable classes of Runge-Kutta meth-

ods are explicit (ERK) methods, when aij = 0 ∀j ≥ i, and implicit (IRK) schemes,

when ∃j ≥ i with aij ̸= 0. Implicit schemes can also be sub-categorized into either

diagonally implicit (DIRK) schemes, where aij = 0 ∀j > i, or fully implicit (FIRK)

methods, when ∃j > i such that aij ̸= 0. We naturally choose between such families

of schemes based on their cost, accuracy, and stability properties. The cost is deter-

mined by both the number of stages and the classification of the scheme, with ERK

schemes being cheapest (since they only require computing f(u, t) for known values

of u), DIRK schemes being in the middle (since they require an implicit solve for

each stage in sequence), and FIRK schemes being most expensive (since they require
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a coupled implicit solve, typically for all stages at once).

Error analysis generally focuses on either the local truncation error, which is the

amount of error introduced from the scheme in a single timestep, found by comparing

the approximation at time tn+1 to the analytical solution starting from the previous

time tn, or the global error, which is the accumulated error over all timesteps. A time-

integration method is said to have an error order of p if the error is bounded by a

constant (that may depend on the analytic solution, u(t), and on properties of f(u, t))

multiplied by (∆t)p. While ERK schemes cannot have order higher than the number

of stages, r, FIRK schemes are known that have orders as large as 2r. Although

schemes with higher-order global error are generally more accurate, the stage order

of a Runge-Kutta method is generally more important when considering performance

for stiff differential equations or systems of differential-algebraic equations. The stage

order of a scheme is defined to be min{q, p}, where q is determined by bounding the

approximation to u(tn + ci∆t) by stage i of the RK scheme by a constant (that can

depend on f(u, t) and u(t)) times (∆t)q+1 and p is the global error. Again this shows

an advantage of FIRK schemes, as they can have stage order equal to the number of

the stages in the scheme, while DIRK schemes can have stage order of at most two.

For any given time-stepping method, we define r(z) to be the stability function

produced by applying the method to the Dahlquist test problem, u′ = λu for λ ∈ C,

with un+1 = r(λ∆t)un. In general, the domain of stability of the method is the region

in the complex plane where |r(z)| < 1. The scheme is said to be A-stable if its domain

of stability contains the entire left half of the complex plane, and such schemes are

well-suited for stiff problems as they are unconditionally stable for many spatially

discretized PDEs. However, for some stiff problems, A-stability is not enough and a

stricter stability type is required. If an A-stable method also satisfies limz→−∞ |r(z)| =
0, then it is called an L-stable scheme. Here, we are primarily interested in A-stable

schemes, as the B-E form of Maxwell’s equations that are of interest are not diffusive

in nature. Additionally, the A-stable (but not L-stable) Gauss-Legendre schemes are

known to preserve linear and quadrative invariants of the solution of the PDE [30],

which will be useful in our setting.

Despite the powerful performance and stability properties of FIRK schemes, they
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come with two main downsides. First, FIRK discretizations produce large and rel-

atively dense linear or nonlinear systems of equations to solve for the stage approx-

imations at each time step, leading to a high computational cost per time-step. In

comparison, DIRK schemes can solve for the stages sequentially, while ERK schemes

require only function evaluations of f(u, t) and not solves, greatly reducing their com-

putational cost. Generally, similar simplifications do not exist for FIRK schemes.

These large systems are also nonsymmetric, even when the original system of PDEs

is self-adjoint, limiting the classes of numerical methods that can be used for their

solution and, thus, adding to the difficulty of their solution at each timestep. In this

paper, we use a preconditioned flexible GMRES (FGMRES) iteration as the outer

Krylov method in our solver. More detail on the preconditioner is given in later

sections.

5.2.1 Implementation

All numerical results presented in this paper are produced using Firedrake [52] for

the (mixed) finite-element discretization and Irksome [23] for the Runge-Kutta tem-

poral discretization. The linear solvers are implemented through PETSc [9], while

the Vanka iterations used as relaxation schemes (discussed later) are implemented

using PCPATCH [24]. In the development of our solver, all components are carefully

chosen to be naturally parallelizable. The coarsest meshes in our grid hierarchies

are distributed (roughly) evenly over all cores, then refined in parallel. In order to

perform the relaxation scheme in parallel and achieve accurate computation of the

residuals for each DoF in the Vanka patches, we require a node-distance-2 halo in the

parallel mesh distribution [42].

5.3 Multigrid on curved domains

Although the main focus in this paper is on solving Maxwell’s equations, we first

expose the difficulty of achieving high-order approximations for curved domains in

the simpler setting of the heat equation, using standard Lagrange finite elements and

FIRK temporal discretizations.
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Consider, then, the heat equation on a domain Ω ⊂ Rd, d ∈ {2, 3} with homoge-

neous boundary conditions, given by

ut = ∆u in Ω× (0, Tf ) (5.2a)

u = 0 on ∂Ω× (0, Tf ), (5.2b)

u(x, 0) = u0(x) on Ω× {t = 0}, (5.2c)

where Tf denotes the final time. In order to find an approximation u(x, t), we first

spatially discretize (5.2) using Lagrange finite elements, denoting the discretized mesh

by Ωh, which consists of simplex elements. Denoting the discretization space by Vh,

the semi-discretized form of (5.2) is to find u(·, t) ∈ Vh such that

⟨ut, v⟩ − ⟨∇u,∇v⟩ = 0 for all v ∈ Vh (5.3)

and all 0 < t ≤ Tf , where the inner product denoted as ⟨w, v⟩ =
∫

Ω
w(x)v(x)dV .

Since the weak solution, u, of (5.2) is in V = H1
0(Ω) at all times, we can choose Vh to

be the space of continuous piecewise polynomial functions of degree k, referred to as

Pk(Ωh).

We then apply IRK temporal discretization to the semi-discretized weak form,

leading to the fully discretized system of equations. We let u(t) denote the solution

of (5.3), expressed as the vector of coefficients of the basis functions for u(x, t) =
∑N

j=1 uj(t)ϕj(x) ∈ Vh. The IRK temporal discretization then expresses the approxi-

mate solution at time tn+1,

un+1 = un +
r
∑

i=1

biki,

by finding the set of r-stage values, ki ∈ Vh for 1 ≤ i ≤ r, (again expressed by ki for

their coefficients in the basis for Vh in the variational formula

⟨ki, vi⟩+
〈

∇
(

un +∆t

r
∑

j=1

aijkj

)

,∇vi
〉

= 0, for all vi ∈ Vh (5.4)

for 1 ≤ i ≤ r.

As is typical in the finite-element process, we can express (5.4) in terms of the

finite-element stiffness and mass matrices, K and M , respectively. Because of the

coupling between the spatial and temporal discretizations, the matrix form of (5.4)
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becomes a block matrix, with blocks defined by the FIRK stages. The resulting matrix

system is given by

I ⊗M k⃗+∆tA⊗Kk⃗ = F⃗,

where I is the r × r identity matrix, M is the N ×N mass matrix, K is the N ×N

stiffness matrix and A is the r×r Butcher matrix. Both k⃗ and F⃗ are vectors of length

rN , with the ith block in k⃗ being ki and each block in F⃗ coming from the assembled

vector ⟨∇un,∇vi⟩ for known function un ∈ Vh and test functions vi ∈ Vh. Defining

Q := I⊗M +∆tA⊗K, then our goal is solve Qk⃗ = F⃗ efficiently. We note that while

Q is a block-lower triangular matrix if DIRK schemes are used, it is generally block

dense when FIRK schemes are used.

5.3.1 Monolithic multigrid for the heat equation

The linear systems of equations at each time step produced from fully discretizing

the heat equation can be effectively solved using stage-coupled multigrid methods,

as first proposed by Vandewalle and co-authors [58, 53, 14], and later implemented

in Irksome [23]. We use preconditioned FGMRES as an outer Krylov method, due

to the nonsymmetry of these systems. A monolithic multigrid preconditioner is used

in the solver. We note that we use FGMRES primarily because it is the “right”

implementation of right-preconditioned GMRES for our setting, where we have enough

memory available for the added vector storage required by FGMRES, but a relatively

expensive preconditioner. Thus, we would rather store the extra vectors for FGMRES

than pay for the added computational time needed for one additional preconditioner

application, as would be needed by classical right-preconditioned GMRES.

As a preconditioner, we use monolithic multigrid. We define a hierarchy of spatial

meshes and use rediscretization to define the system matrices on each mesh level.

The coarsest mesh is chosen so that the resulting linear system is small enough to

be solved efficiently using LU factorization. Classical finite-element interpolation op-

erators are used for each field in the discretization. If the interpolation operator for

scalar functions from Pk(Ω2h) to Pk(Ωh) is denoted by Pu, then the interpolation op-

erator for the system Qk = f is a block diagonal matrix P = Ir ⊗ Pu, simply using

the same interpolation operator for each IRK stage. For the relaxation scheme, we

follow [58, 23] and use a stage-coupled relaxation scheme. Here, we use vertex-centric
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patches for relaxation. For P1(Ωh), this amounts to just a (weighted) block-Jacobi

iteration, coupling all stage values at each vertex in the mesh. For P2(Ωh), this gives

an overlapping (weighted) block-Jacobi iteration, where all stage values at each vertex

and on each edge incident on the vertex are relaxed together, so that all vertex-based

DoFs are relaxed once per sweep, while all edge-based DoFs are relaxed twice per

sweep. In this section, we use Chebyshev polynomials of the first kind to accelerate

the relaxation, using the default PETSc parameters that estimate the largest eigen-

value, λ, of the Schwarz-preconditioned system and defining the minimax polynomial

over the interval [0.1λ, 1.1λ].

When Ω is a polytope, it is generally straightforward to define a hierarchy of nested

meshes for the multigrid solution process. When Ω has curved boundaries, on the

other hand, a nested multigrid hierarchy would lead to significant errors in resolving

the domain boundaries, as the approximation of these on the coarsest mesh would need

to be carried forward to all meshes in the hierarchy. A simple strategy to generate

non-nested hierarchies that offer better representation of the domain boundaries is to

take a given coarsest mesh, refine it once (uniformly, in the work considered here),

then move all new nodes introduced on the boundary of the coarse mesh to the

true boundary of the domain. As we will see in section 5.3.2, this strategy leads to

problems in both finite-element and multigrid convergence, yielding linear systems

that are difficult to solve in our multigrid framework and whose solutions do not yield

the full accuracy promised by higher-order finite-element spaces. We note that the

results below make use of isoparametric elements, where the map from the reference

element (triangle or tetrahedron) to the elements of the mesh is of the same order as

the finite-element approximation space, as needed to achieve the full approximation

properties expected for higher-order finite-element methods (cf. [19]). Only a slight

modification to the above procedure is needed to account for isoparametric elements,

ensuring that all mesh locations associated with boundary edges are projected to the

domain boundary with each refinement step. Figure 5.1 shows how the nodal degrees

of freedom on the edges of a coarse discretization mesh, using a P2(Ωh) space that is

then once refined, are moved to lie on the curved boundary of a unit circle domain.

At the left of Figure 5.2, we see a likely cause of the problematic convergence. The

simple “refine-and-project” strategy proposed above leads to very different element

quality in the interior of the mesh compared to elements near the mesh boundary.

Those elements, in particular, get “stretched”, as the boundary of the coarsest mesh
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Figure 5.1: P2(Ωh) mesh triangulation of a circle domain with the nodal degrees of
freedom indicated as red dots. At left, a coarse mesh discretization of the domain.
In center, once refined mesh of the original discretization with vertices moved to the
domain boundary. At right, the mesh that results from moving the edge-based nodes
to the curved domain boundary.

does not move, so all introduced mesh nodes along each of the edges on the bound-

ary of the coarsest mesh are forced to stretch to fill the gap between the original

approximation of Ω and its true shape. To resolve this, we must somehow allow the

interior mesh nodes to move closer to the domain boundary. To do so, we follow the

approach introduced in [48], and introduce an additional step, solving for the mesh

coordinates on the refined mesh using the equations of linear elasticity to assign new

coordinates. Here, we treat the locations of the boundary mesh points (nodes of the

mesh for linear elements, nodes and midpoints for quadratic elements) as Dirichlet

data, and solve the linear elasticity equation, finding x ∈ (Pk(Ωh))
d that satisfies the

Dirichlet data and minimizes 1
2
∥ϵ(x)∥2 + 1

2
∥∇ · x∥2, where ϵ(x) = 1

2

(

∇x+ (∇x)T
)

is

the symmetric part of the gradient of x. While we could include more complicated

Lamé coefficients in the energy, preliminary experiments showed that the quality of

solution is not greatly dependent on these parameters. To solve this problem, we

use the algebraic multigrid method in ML with default parameters [27], to a residual

reduction tolerance of 10−6, starting from the uniformly refined mesh node locations

as the initial guess for x. We note that the resulting multigrid hierarchy is now non-

nested in both the interior and near the boundary, as the correspondence between

fine-grid and coarse-grid nodes is broken by the elasticity solves. We choose to not

account for this in our multigrid interpolation operators, simply interpolating from

each coarse mesh to the next finest as if it were a uniform refinement, and will see

that this does not lead to poor convergence on mesh hierarchies generated using the

elasticity solves.
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ℓ L2 error H1 error iterations time

P1(Ωh)
3 2.866× 10−3 3.807× 10−2 3.81 0.14
4 7.512× 10−4 1.934× 10−2 4.03 0.34
5 2.282× 10−4 1.011× 10−2 4.03 0.67

P2(Ωh)
3 4.453× 10−5 1.832× 10−3 3.06 1.56
4 ⋆
5 ⋆

Table 5.1: Numerical results for heat equation on the disk with two-stage LobattoIIIC
schemes, on multigrid hierarchy without elasticity solves. Relative L2 and H1 errors
in u at the final time are recorded, along with the number of linear iterations per time
step, averaged over all timesteps, and the total wall-clock time-to-solution in minutes,
for refinement levels 3 ≤ ℓ ≤ 5.

consider a simple weak scaling study, using 1 core for ℓ = 3, 4 cores for ℓ = 4, and

16 cores for ℓ = 5, on a machine with 2 Intel Xeon E5-2650 v2 CPUs, each with 8

physical cores, but 16 virtual cores, at 2.60GHz, with 128GB of RAM. We note that

we expect the time-to-solution to approximately double with each refinement step

for piecewise linears, and approximately quadruple at each time step for piecewise

quadratics, as the increased parallelism accounts for the increase in number of spatial

degrees of freedom, but not the increase in the number of time steps.

Table 5.1 presents results for the mesh hierarchy with no elasticity solves. We

report the relative L2 and H1 errors in u at the final time, to assess the finite-element

convergence, as well as the number of linear iterations per time step, averaged over all

time steps, and the total computational time taken in minutes. The (⋆) symbol indi-

cates runs where the linear solver did not converge at some point in the time stepping.

While the multigrid solver and finite-element convergence for the piecewise linear dis-

cretization looks acceptable, we see multigrid convergence failures for ℓ = 4 and 5 for

the piecewise quadratic discretization. For comparison, Table 5.2 shows results for

the same experiment, now using linear elasticity solves for the meshes. We see slightly

improved convergence for the piecewise linear case, but substantially improved con-

vergence for the piecewise quadratic case. In particular, we see almost the expected

finite-element convergence now using the piecewise quadratic approximation.

We next consider Ω to be the unit sphere, centered at (0, 0, 0). The initial and
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ℓ L2 error H1 error iterations time

LobIIIC(2)+P1

3 3.040× 10−3 3.744× 10−2 3.06 1.25
4 7.616× 10−4 1.871× 10−2 3.09 1.52
5 1.906× 10−4 9.370× 10−3 3.05 2.16

LobIIIC(2)+P2

3 1.856× 10−5 3.279× 10−4 3.05 1.77
4 4.866× 10−6 8.556× 10−5 4.02 6.32
5 1.075× 10−6 3.075× 10−5 4.01 11.14

Table 5.2: Numerical results for heat equation on the disk with two-stage LobattoIIIC
schemes, on multigrid hierarchy with elasticity solves. Relative L2 and H1 errors in
u at the final time are recorded, along with the number of linear iterations per time
step, averaged over all timesteps, and the total wall-clock time-to-solution in minutes,
for refinement levels 3 ≤ ℓ ≤ 5.

boundary conditions are chosen so that the exact solution, expressed in spherical co-

ordinates, is given by u(r, θ, ϕ, t) = 1
r
sin(rπ)e−π2t. A coarsest mesh of 151 tetrahedral

elements is specified, that is then refined 1 ≤ ℓ ≤ 4 times to construct the hierarchy

of meshes. We again set the final time to be Tf = 0.25, and take ∆t = 2−(2ℓ+2)Tf

for the piecewise linear case and ∆t = 2−(ℓ+5)Tf for piecewise quadratics. We again

use FGMRES stopping tolerances requiring either a relative reduction in the residual

norm by a factor of 10−5 or for the residual norm to be reduced below 0.1/N3 for the

piecewise linear case or 0.1/N4 for the piecewise quadratic case for N = 2ℓ+3 at each

timestep. We again use a V(2,2) monolithic multigrid cycle as preconditioner. Here,

for the weak scaling study, we use 1 core for ℓ = 2 with piecewise linears or ℓ = 1 with

piecewise quadratics, and increase to 4 cores for the first refinement, and 10 cores for

the second refinement. We note that we expect the time-to-solution to approximately

quadruple with each refinement step for these runs, since we only account for part of

the increase in the number of spatial DoFs with each refinement.

Table 5.3 shows the same data for this test problem as recorded before for the

multigrid hierarchy without elasticity solves. Here, we see one multigrid convergence

failure, for ℓ = 4 with piecewise linears, but substantial issues with finite-element con-

vergence, particularly for piecewise quadratics. Table 5.4 presents the corresponding

results using the linear elasticity solves in the definition of the multigrid hierarchy.

Here, we see the expected finite-element convergence for both spatial discretizations,

as well as robust solver performance. Having established the necessity of elastic-

ity solves in the mesh construction for both robust finite-element and linear solver
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ℓ L2 error H1 error iterations time

P1(Ωh)
2 1.850× 10−1 2.171× 10−1 6.44 0.04
3 6.146× 10−2 1.138× 10−1 6.28 0.22
4 ⋆

P2(Ωh)
1 1.047× 10−3 3.235× 10−2 3.36 0.87
2 2.136× 10−4 1.461× 10−2 4.32 2.68
3 6.430× 10−4 9.682× 10−3 4.71 23.24

Table 5.3: Numerical results for heat equation on the sphere with two-stage Lobat-
toIIIC schemes, on multigrid hierarchy without elasticity solves. Relative L2 and H1

errors in u at the final time are recorded, along with the number of linear iterations
per time step, averaged over all timesteps, and the total wall-clock time-to-solution
in minutes, for refinement levels 1 ≤ ℓ ≤ 4.

ℓ L2 error H1 error iterations time

P1(Ωh)
2 6.290× 10−2 1.129× 10−1 6.75 0.25
3 1.726× 10−2 5.600× 10−2 6.07 1.52
4 4.452× 10−3 2.803× 10−2 5.24 21.03

P2(Ωh)
1 4.414× 10−3 2.730× 10−2 3.36 0.53
2 5.083× 10−4 8.160× 10−3 4.30 2.79
3 6.775× 10−5 2.333× 10−3 4.70 13.93

Table 5.4: Numerical results for heat equation on the sphere with two-stage Lobat-
toIIIC schemes, on multigrid hierarchy with elasticity solves. Relative L2 and H1

errors in u at the final time are recorded, along with the number of linear iterations
per time step, averaged over all timesteps, and the total wall-clock time-to-solution
in minutes, for refinement levels 1 ≤ ℓ ≤ 4.

convergence, we now consider solution of Maxwell’s equations, using such multigrid

hierarchies.

5.4 Numerical approximation of solutions of Maxwell’s

equations

Maxwell’s equations are well-known in many settings, including plasma physics [56, 3]

and geophysical electromagnetics [28, 12]. We generally consider different regimes of

the equations, depending on which physical effects are important, and whether we
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treat the problem in the time domain or in the frequency domain. Much of the work

on multigrid solver development, in particular, has been done in the case where we

can reduce the equations to consider just one of the electric, E, or magnetic, B, fields,

taking the form of a Hodge Laplacian or the so-called “eddy current” approximation [7,

31, 32, 34, 39]. Here, we focus on constructing high-fidelity solvers specifically for the

B-E form of Maxwell’s equations in the time domain, noting that there is a general

lack of research addressing this formulation. Similar models have been considered

in [50], where backward Euler was used for discretization in time, and [5], where the

temporal discretization chosen was Crank-Nicholson, developing block preconditioning

approaches. The B-E model was considered in the context of MHD in [40, 41, 35],

where lower-order implicit time stepping schemes are used such as BDF2. In this

paper, we focus on the regime where Maxwell’s equations can be written as

Et − c2∇×B = −1

ϵ
J,

Bt +∇× E = 0,
(5.5)

on domain Ω ⊂ Rd with d ∈ {2, 3}, where E is the electric field, B is the magnetic

field, and J represents a source current. The constants c and ϵ represent the speed

of light in a vacuum (299,792,458 m/s) and permittivity of free space, respectively.

These equations result from taking the full Maxwell’s equations and taking electrical

conductivity σ = 0, magnetic permeability µ = µ0, the permeability of free space,

and the relation c2 = 1
ϵ0µ0

. We note that the scalar constraints of (5.5) are weakly

preserved by time stepping [11].

We consider a standard spatial semi-discretization of (5.5), taking (B,E) ∈ H0(div,Ω)×
H0(curl,Ω), where

H(div,Ω) = {u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)},
H(curl,Ω) = {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)},
H0(div,Ω) = {u ∈ H(div,Ω) : u · n = 0 on ∂Ω},
H0(curl,Ω) = {u ∈ H(curl,Ω) : u× n = 0 on ∂Ω}.

Multiplying (5.5) by the test functions (C,D) ∈ H0(div,Ω) × H0(curl,Ω), then in-

tegrating by parts gives the semi-discretized variational form: find (B(·, t),E(·, t)) ∈
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H0(div,Ω)×H0(curl,Ω) such that

⟨Et,D⟩ − ⟨c2B,∇×D⟩ = −
〈

1

ϵ
J,D

〉

,

⟨Bt,C⟩+ ⟨∇ × E,C) = 0,

(5.6)

∀(c,d) ∈ H0(div,Ω) × H0(curl,Ω). Non-homogeneous (or more general) Dirichlet

boundary conditions can be incorporated in the variational form in the usual way.

We consider mixed finite-element approximation for the variational form in (5.6),

using both first-kind and second-kind elements. For the “first-kind” discretization,

we use Raviart-Thomas (RT) elements for B and Nédléc elements of the first kind

(N1Curl) for E, of equal order. For the “second-kind” discretization, we use Brezzi-

Douglas-Marini (BDM) elements forB and Nédléc elements of the second kind (N2Curl)

for E, again of equal order. For consistency, we follow the convention that the lowest-

order spaces of either first or second kind are of order one, resulting in order k spaces

that are subsets of the vector Pk(Ωh) spaces. Hence, the semi-discretized system can

be written in matrix form as

[

ME 0

0 MB

][

Êt

B̂t

]

+

[

0 −c2LT

L 0

][

Ê

B̂

]

=

[

−1
ϵ
Ĵ

0

]

, (5.7)

where MB and ME are mass matrices for B and E respectively, and L is the finite-

element discretization of the curl operator, mapping from the Nédélec space into the

RT or BDM space. Here, we use Ê and B̂ to denote the coefficients of the finite-

element basis functions for E and B, respectively. To fully discretize the variational

form, we then apply IRK temporal discretization to (5.7), which leads to the following

block-structured system of equations,

(

Ir ⊗
[

ME 0

0 MB

]

+∆tA⊗
[

0 −c2LT

L 0

])

k⃗ = F⃗, (5.8)

where F⃗ is the corresponding right-hand side vector and k⃗ is the vector of IRK stage

values for the system.
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5.4.1 Monolithic multigrid for Maxwell’s equations

As above, we solve the linear system of equations in 5.8 using monolithic multigrid as a

preconditioner for FGMRES. We construct mesh hierarchies using the refine-project-

elasticity solve strategy proposed above, using finite-element interpolation to map

approximations to B and E from one mesh to the next. If the multigrid interpolation

operator for a single temporal stage is given by

P̂ =

[

PE

PB

]

,

then the multistage interpolation operator is given by P = Ir ⊗ P̂ . The coarsest-grid

system is solved by a direct solver.

As a relaxation scheme, we use an extension of the Arnold-Falk-Winther relaxation

from [7], which is closely related to the Vanka relaxation [59] commonly used in

monolithic multigrid solvers for the Stokes and Navier-Stokes equations. Both schemes

can be viewed as overlapping Schwarz methods; here, we use the additive variants.

For the Schwarz subdomains (also known as patches in the multigrid literature), we

use the topological star around each vertex, following the terminology of [24]. For

each vertex in the mesh, we form a patch that includes all DoFs defined at that

vertex, as well as those DoFs on the interior of all edges, faces, and volumes adjacent

to that vertex. The key difference between these patches and Vanka patches is that

we do not include any DoFs on the closure of star. Sample patches for the first-order

RT-N1Curl discretization are shown at left of Figure 5.3, while those for the first-

order BDM-N2Curl discretization are shown at right of Figure 5.3. We note that the

patches used include DoFs for all IRK stages at these mesh locations.

Let Si denote the set of DoFs contained in the ith vertex star patch, noting that

S =
⋃N

i=1 Si, where N is the total number of patches (vertices in the mesh) and S
is the set of all DoFs for the problem, noting that each DoF is contained in at least

one patch, but that a DoF may appear in multiple patches. We use Ri to denote

the “restriction” operator that maps global DoFs from S to those in Si, making Ri

a matrix of size |Si| × |S|, with each row containing a single non-zero entry of one in

the column corresponding to the global index associated with that local index of Si.
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We consider a time-periodic solution given by

[

E(x, t)

B(x, t)

]

=

[

E0 cos(k · x+ ωt)

B0 cos(k · x+ ωt)

]

with E0 = [0, 1, 0], k = [1, 0, 0], and B0 =
−k×E0

c
. For this solution, J = 0. The initial

condition is given by interpolating the exact solution into the finite-element space at

the initial time, t = 0, integrating to the final time, which is fixed to be Tf = 10π
c
.

In both cases that follow, we fix the stopping criterion for FGMRES to be either a

relative reduction in the residual norm by a a factor of 10−14 or for the absolute value

of the residual norm to be reduced below 10−2/N2, where N is (roughly) the number

of elements in one dimension of the mesh, as described below.

5.5.1 Cube domain

For this model, we construct the coarsest grid by cutting the unit cube domain,

Ω = [0, 1]3, into 2 × 2 × 2 cubic elements, each of which is cut into 6 tetrahedra.

This coarsest mesh is then refined ℓ times for 1 ≤ ℓ ≤ 4. Table 5.5 shows the total

number of DoFs per stage for each problem considered. We present results for a

weak scaling study. For the first-order spatial discretization, we use 1 core for ℓ = 2, 8

cores for ℓ = 3, and 32 cores for ℓ = 4 (the full machine). For the second-order spatial

discretization, we use 1 core for ℓ = 1, 8 cores for ℓ = 2, and 32 cores for ℓ = 3.

1 2 3 4
RT(1)-N1Curl(1) - 10712 81712 638048
BDM(1)-N2Curl(1) - 27952 214112 1675456
RT(2)-N1Curl(2) 6680 50224 389216 -
BDM(2)-N2Curl(2) 11892 89736 696720 -

Table 5.5: Number of DoFs per stage for first- and second-degree spaces on a cube.

We first verify that we are achieving the expected discretization accuracy for all

discretizations. For RT(1)-N1Curl(1), we use ∆t = Tf

8N
, while ∆t = Tf

16N
is used for

BDM(1)-N2Curl(1), RT(2)-N1Curl(2) and BDM(2)-N2Curl(2), where N = 2ℓ+1. Fig-

ures 5.4 and 5.5 show the L2 errors for both B and E using the first- and second-degree

spatial discretizations, respectively, with different 2- and 3-stage IRK schemes. We
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5.5.2 Sphere domain

Finally, to solve (5.5) on a sphere, we construct a coarsest grid by approximating the

unit sphere by a mesh of 47 tetrahedral elements that are then refined ℓ times for 1 ≤
ℓ ≤ 4. Table 5.8 presents the total number of DoFs per stage for these experiments.

In the weak scaling study for this model, for the first-degree discretizations, we use

1 core for both ℓ = 1 and 2, 8 cores for ℓ = 3, and 32 cores for ℓ = 4. For the

second-degree discretizations, we use 1 core for ℓ = 1, 4 cores for ℓ = 2, and 16 cores

for ℓ = 3.

As even the coarsest mesh for this experiment is unstructured, we use N = 22+ℓ

as an approximation of the number of elements in one dimension. With this, we

use the time step ∆t =
Tf

4N
for RT(1)-N1Curl(1), BDM(1)-N2Curl(1) and RT(2)-

N1Curl(2), while ∆t =
Tf

16N
for BDM(2)-N2Curl(2). Figures 5.6 and 5.7 show the L2

errors for both B and E using the first and degree spatial discretizations, respectively,

with different 2- and 3-stage IRK schemes. We clearly see the expected first- and

second -order convergence for the RT(k)-N1Curl(k) spaces using k = 1, 2 respectively.

For BDM(k)-N2Curl(k) spaces, we see that the 2-stage Gauss scheme shows slightly

better than 3rd-order convergence. As before, the Lobatto integrator is least accurate,

with comparable accuracy shown by both RadauIIA and Gauss-Legendre. For the

low-order discretizations, we see little improvement going from 2 to 3 stages in the

Gauss-Legendre results, suggesting that spatial discretization error is dominant here

(noting that available memory precluded any experimenting with GL(3) and ℓ = 4

for BDM(1)-N1Curl(1) for this test problem).

Iteration counts and time-to-solution per time step, averaged over all time steps,

are presented in Table 5.9. As for the unit cube domain, these are generally robust.

Here, we again see some poorer performance for the lowest-order discretization, RT(1)-

N1Curl(1), particularly for the LobattoIIIC discretization.

A common concern with Runge-Kutta methods is the phenomenon of order reduc-

tion, which is known to occur for stiff ODEs or differential-algebraic equations. Order

reduction describes cases where the actual convergence observed for a given scheme is

worse than the theoretical convergence anticipated [60]. Here, stage order dominates

convergence behaviour, not scheme order. For example, in Table 5.10, we observe a

sharp drop in convergence using BDM(2)-DG(2) and 2-stage Gauss-Legendre when

increasing the time step size. Although 2-stage Gauss-Legendre is a fourth-order
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method and the expected spatial convergence is third order, the best convergence we

observe is (roughly) second order, because 2-stage Gauss-Legendre has a stage order of

2. An obvious way to improve these results is to increase the number of stages in the

IRK scheme used; however, this can be impractical either due to resource restrictions,

as in our case, or the increase of computational time with more stages. Significant

work has been done in developing techniques to decrease or eliminate the effects of

order reduction [15, 57, 49, 26, 1]; however, we do not investigate this further.

5.6 Conclusion

In this paper, we extend recent work (cf. [2]) on monolithic multigrid preconditioners

to the B-E form of Maxwell’s equations, showing effective results for various mixed

finite-element spatial discretizations and IRK time integrators. Robustness is seen

across two types of H(div)-H(curl) conforming finite-element spaces of first and sec-

ond degree, including on a unit sphere domain, showing capabilities on more realistic

geometries. To achieve this convergence, care must be taken in mesh construction,

using both isoparametric elements and adapting the mesh hierarchy using elasticity

solves to improve mesh quality.

Future work includes extending this to even more realistic geometries, such as the

tokamak geomtry used in fusion reactors. Furthermore, we look to couple the Maxwell

solver developed here with a multi-fluid model for the plasma, to yield a high-fidelity

simulation framework for plasmas in this regime. Finally, we note that extending

three-dimensional simulations to high order (beyond the second-order elements con-

sidered here) requires significant resources, either in terms of memory-per-core on a

parallel machine, or to develop low-memory intensity variants to make higher-order

discretizations feasible.
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RT(1)-N1Curl(1) BDM(1)-N2Curl(1)
ℓ time iteration ℓ time iteration

GL(2)
2 0.04 11.9 2 0.05 7.0
3 0.06 13.6 3 0.14 7.9
4 0.27 14.4 4 0.56 8.0

Lob(2)
2 0.03 12.1 2 0.04 9.0
3 0.06 14.6 3 0.09 9.0
4 0.27 15.1 4 0.67 10.0

Rad(2)
2 0.04 12.4 2 0.04 7.9
3 0.06 14.5 3 0.09 8.6
4 0.30 15.7 4 0.66 9.0

GL(3)
2 0.07 13.7 2 0.03 8.0
3 0.11 15.0 3 0.08 9.0
4 0.54 16.0 4 1.42 9.0
RT(2)-N1Curl(2) BDM(2)-N2Curl(2)
ℓ time iteration ℓ time iteration

GL(2)
1 0.06 6.0 1 0.14 5.8
2 0.19 7.0 2 0.40 6.0
3 0.51 8.0 3 1.06 6.6

Lob(2)
1 0.03 7.0 1 0.08 6.0
2 0.12 8.4 2 0.18 6.7
3 0.38 10.0 3 0.96 7.0

Rad(2)
1 0.05 6.9 1 0.08 5.9
2 0.18 8.0 2 0.18 6.0
3 0.36 9.0 3 0.97 7.0

Table 5.6: Linear iteration counts per time step and computational time (in minutes)
needed per time step, averaged over all time steps, for first- and second-order spatial
discretizations and various IRK temporal discretizations for Maxwell’s equations on
the unit cube.
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RT(1)-N1Curl(1) BDM(1)-N2Curl(1)
ℓ time iteration ℓ time iteration

∆t =
Tf

2N

2 0.03 13.4 2 - -
3 0.09 15.4 3 - -

∆t =
Tf

4N

2 0.02 12.9 2 0.04 9.0
3 0.08 14.3 3 0.13 9.5

∆t =
Tf

8N

2 0.04 11.9 2 0.04 8.0
3 0.06 13.6 3 0.10 8.2

∆t =
Tf

16N

2 - - 2 0.05 7.0
3 - - 3 0.14 7.9
RT(2)-N1Curl(2) BDM(2)-N2Curl(2)
ℓ time iteration ℓ time iteration

∆t =
Tf

4N

2 0.22 9.0 2 0.43 7.0
3 0.61 10.0 3 1.21 7.9

∆t =
Tf

8N

2 0.44 9.9 2 0.41 6.8
3 0.55 11.0 3 1.43 8.8

∆t =
Tf

16N

2 0.18 8.0 2 0.18 6.0
3 0.36 9.0 3 0.97 7.0

Table 5.7: Linear iteration counts per time step and computational time (in minutes)
needed per time step, averaged over all time steps, for first- and second-order spatial
discretizations with 2-stage Gauss-Legendre RK and varying time steps for Maxwell’s
equations on the unit cube.

1 2 3 4
RT(1)-N1Curl(1) 2200 16064 122560 957056
BDM(1)-N2Curl(1) 5696 41920 321152 2513152
RT(2)-N1Curl(2) 10016 75328 583808 -
BDM(2)-N2Curl(2) 17832 134592 1045056 -

Table 5.8: Number of DoFs per stage for first- and second-degree spaces on the sphere.
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RT(1)-N1Curl(1) BDM(1)-N2Curl(1)
ℓ time iteration ℓ time iteration

GL(2)

1 0.02 9.3 1 0.02 7.3
2 0.11 12.3 2 0.13 8.9
3 0.23 13.9 3 0.28 10.0
4 0.41 15.7 4 1.15 11.7

Lob(2)

1 0.02 10.1 1 0.02 8.9
2 0.08 14.9 2 0.18 10.0
3 0.36 23.1 3 0.22 12.0
4 1.97 69.7 4 1.35 14.6

Rad(2)

1 0.02 10.8 1 0.02 7.9
2 0.10 15.7 2 0.18 9.0
3 0.23 21.6 3 0.22 11.0
4 0.56 23.1 4 1.35 12.7

GL(3)

1 0.03 10.0 1 0.06 8.9
2 0.13 15.1 2 0.17 10.7
3 0.55 17.4 3 0.42 12.9
4 0.91 20.4 4 - -
RT(2)-N1Curl(2) BDM(2)-N2Curl(2)
ℓ time iteration ℓ time iteration

GL(2)
1 0.21 6.6 1 0.37 6.0
2 0.60 8.0 2 1.24 7.0
3 1.16 9.0 3 2.05 8.0

Lob(2)
1 0.19 7.0 1 0.26 6.0
2 0.62 9.0 2 1.26 7.9
3 1.03 9.6 3 2.38 9.0

Rad(2)
1 0.23 7.0 1 0.39 6.0
2 0.63 9.01 2 1.14 7.0
3 1.27 10.6 3 2.13 8.6

Table 5.9: Linear iteration counts per time step and computational time (in minutes)
needed per time step, averaged over all time steps, for first- and second-order spatial
discretizations and various IRK temporal discretizations for Maxwell’s equations on
the unit sphere.
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BDM(2)-N2Curl(2)
ℓ L2 errors E L2 errors B

∆t =
Tf

2N

1 4.250× 10−1 5.547× 10−2

2 2.318× 10−2 6.269× 10−2

3 4.829× 10−3 4.652× 10−3

∆t =
Tf

4N

1 4.026× 10−2 2.590× 10−2

2 2.079× 10−3 2.071× 10−3

3 9.461× 10−5 1.084× 10−4

∆t =
Tf

8N

1 6.779× 10−4 7.262× 10−4

2 8.031× 10−5 8.495× 10−5

3 2.487× 10−5 3.151× 10−5

∆t =
Tf

16N

1 2.964× 10−4 2.534× 10−4

2 7.288× 10−5 7.027× 10−5

3 2.466× 10−5 3.124× 10−5

Table 5.10: For Maxwell’s equations on a unit sphere, the L2 errors in E and B using
different sized time steps with BDM(2)-DG(2) and the 2-stage Gauss for temporal
discretization is recorded.
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element method for solving the three-dimensional Maxwell equations. Journal of
Computational Physics, 109(2):222–237, 1993.

[9] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, A. Dener, V. Eijkhout, W. Gropp, et al. PETSc users manual: Revision 3.10.
Technical report, Office of Scientific and Technical Information (OSTI), 2018.



143

[10] M. Benzi, M. A. Olshanskii, and Z. Wang. Modified augmented Lagrangian
preconditioners for the incompressible Navier–Stokes equations. International
Journal for Numerical Methods in Fluids, 66(4):486–508, 2011.

[11] Y. Berchenko-Kogan and A. Stern. Constraint-preserving hybrid finite element
methods for Maxwell’s equations. Foundations of Computational Mathematics,
21(4):1075–1098, 2021.

[12] H. bin Zubair Syed, C. Farquharson, and S. MacLachlan. Block precon-
ditioning techniques for geophysical electromagnetics. SIAM J. Sci. Comp.,
42(3):B696–B721, 2020.

[13] J. A. Bittencourt. Fundamentals of plasma physics. Springer Science & Business
Media, 2004.

[14] T. Boonen, J. Van lent, and S. Vandewalle. An algebraic multigrid method
for high order time-discretizations of the div-grad and the curl-curl equations.
Applied Numerical Mathematics, 59(3):507–521, 2009.

[15] K. Burrage and L. Petzold. On order reduction for Runge–Kutta methods applied
to differential/algebraic systems and to stiff systems of ODEs. SIAM Journal on
Numerical Analysis, 27(2):447–456, 1990.

[16] J. C. Butcher. On the implementation of implicit Runge-Kutta methods. BIT
Numerical Mathematics, 16(3):237–240, 1976.

[17] J. C. Butcher. General linear methods. Acta Numerica, 15:157–256, 2006.

[18] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and non-
matching meshes for Maxwell equations with discontinuous coefficients. SIAM
Journal on Numerical Analysis, 37(5):1542–1570, 2000.

[19] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[20] C. H. Cooke and D. K. Blanchard. A higher order finite element algorithm for the
unsteady Navier-Stokes equations. Mathematics and Computers in Simulation,
22(2):127–132, 1980.

[21] H. Damanik, J. Hron, A. Ouazzi, and S. Turek. Monolithic Newton-multigrid so-
lution techniques for incompressible nonlinear flow models. International Journal
for Numerical Methods in Fluids, 71(2):208–222, 2013.

[22] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A
taxonomy and comparison of parallel block multi-level preconditioners for the
incompressible Navier–Stokes equations. Journal of Computational Physics,
227(3):1790–1808, 2008.



144

[23] P. E. Farrell, R. C. Kirby, and J. Marchena-Menendez. Irksome: Automating
Runge–Kutta time-stepping for finite element methods. ACM Transactions on
Mathematical Software, 47(4):1–26, 2021.

[24] P. E. Farrell, M. G. Knepley, L. Mitchell, and F. Wechsung. PCPATCH: software
for the topological construction of multigrid relaxation methods. ACM Transac-
tions on Mathematical Software, 47(3):1–22, 2021.

[25] P. E. Farrell, L. Mitchell, L. R. Scott, and F. Wechsung. A Reynolds-robust
preconditioner for the Scott-Vogelius discretization of the stationary incompress-
ible Navier-Stokes equations. The SMAI Journal of Computational Mathematics,
7:75–96, 2021.

[26] R. Frank, J. Schneid, and C. W. Ueberhuber. Order results for implicit Runge–
Kutta methods applied to stiff systems. SIAM journal on numerical analysis,
22(3):515–534, 1985.

[27] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala. Ml 5.0 smoothed aggrega-
tion user’s guide. Technical Report SAND2006-2649, Sandia National Laborato-
ries, 2006.

[28] A. V. Grayver and T. V. Kolev. Large-scale 3D geoelectromagnetic modeling us-
ing parallel adaptive high-order finite element method. Geophysics, 80(6):E277–
E291, 2015.
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Chapter 6

Conclusion

In this thesis, our main interest has been the development of an efficient and robust

solver framework for systems of saddle-point type that arise from fully discretizing

fluid flow models. A particular interest has been the use of fully implicit Runge-

Kutta methods for the temporal discretization, resulting in very large and difficult to

solve systems of equations at each time step. Within this Newton-Krylov-Multigrid

method we have implemented monolithic Vanka relaxation schemes, with varying

patches appropriate to the mixed finite-element spaces applied, which allows us to

preserve the coupling between the unknowns in problem (if any) when solving the

system as a whole. We have successfully shown this solver to be effective for several

incompressible Newtonian and magnetohydrodynamic flow problems in two and three

dimensional domains.

We then implemented an extension of this solver to achieve high-fidelity approx-

imations using higher-order discretizations in both space and time focusing on two

well-known difficult problems, the Navier-Stokes equations and Maxwell’s equations,

again in two and three dimensions. For the Navier-Stokes models, an H(div)-DG

finite-element space was used with increasingly higher orders. A Burmann stabiliza-

tion penalty term was added in for testing accuracy of solutions with higher Reynolds

numbers which was found to be the right strategy to achieve robustness. For Maxwell’s

equations, we specifically considered the lesser used E-B formulation, where we have

shown by using an extended Vanka relaxation patch accounting for the H(div)-H(curl)

conforming finite-element spaces used that very robust iteration counts and computa-

tional times are produced. Here, since our motivation was solving Maxwell’s equations
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on more realistic domains that are often curved at the boundary, we investigated our

work on cubical and spherical shaped meshes. We have found it necessary to include

an elasticity solve on each level of the non-nested mesh hierarchy to attain correct

convergence rates and properly represent the domain near the curved boundary in the

discretized meshes.

There are several possibilities for future work based on the research presented in

this thesis:

• We require a better understanding of the stopping tolerances in a way that will

allow us to obtain highly-accurate solutions, specifically for the Navier-Stokes

and Maxwell’s equations models considered, using IRK temporal discretizations

and FEM spaces as those used in this thesis with orders and degrees higher than

6 and 5 respectively.

• Implement our solver for more realistic geometries where Maxwell’s equations

are currently of interest, such as the torus domain. This is seen in many ap-

plications of plasma flow models on a tokamak that can be represented by the

MHD problem.

• All finite-element discretizations in this thesis were defined on a triangulation of

the domains, whether in two or three dimensions. Instead, we have the option

of constructing the discrete meshes using quadrilaterals or hexaderas. Many

inf-sup stable finite-element spaces similar to those discussed here, such as RTcf

and BDMcf spaces, exist on these element shapes. Through preliminary exper-

imentations, we have found that iteration counts can be decreased using these

discretizatations. A more extensive study in this direction is a very valid next

consideration.

• For fluid flow problems specifically, we can also further decrease the nonlinear

iteration counts by using Impicit-Explict (IMEX) Runge-Kutta time stepping

methods. This leaves room for a further study of extending our method to be

implemented in this setting as the chosen implicit solver for the fast dynamic
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terms. Very preliminary results on a simple model of the Navier-Stokes equa-

tions show this can be successfully achieved. An interesting future study would

be comparing this technique with the fully implicit Runge-Kutta schemes used

in this thesis and determining which method outperforms the other.


