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Abstract 

Capelin (Mallotus villosus) populations on the Newfoundland shelf collapsed in the early 1990s, 

coinciding with  an ecosystem regime shift and greatly reduced capelin biomass which both 

persist to this day. The dual-regime nature of this stock’s history suggests it may experience 

nonlinear dynamics, which are difficult to predict using linear models. This thesis explores the 

application of nonlinear Empirical Dynamic Modelling (EDM) forecasting tools to capelin 

biomass data, seeking to determine if capelin dynamics are nonlinear, if nonlinear predictive 

models of capelin population dynamics outperform linear models, what climatic and ecological 

factors drive nonlinear changes in capelin biomass, and if these driving forces can be measured 

and compared. In my first chapter, I found capelin dynamics were nonlinear, and EDM 

predictive models returned equal or improved model diagnostics to linear models in most 

situations. In my second chapter, I identified a strong positive association between capelin and 

Atlantic cod dynamics, with both species being driven by long term climatic change and likely to 

benefit from mild warming. This thesis clearly identifies the utilities of EDM as a tool for use in 

stock assessment in detecting and forecasting nonlinear stock dynamics, and identifying and 

characterizing factors driving population dynamics. 
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General Summary 

Capelin is a key species in the Newfoundland shelf ecosystem which provides the primary link in 

the food web between zooplankton and larger consumers, such as groundfish, seabirds, and 

marine mammals. Capelin populations in Newfoundland collapsed in 1991, possibly due to an 

abnormally cold period, and have not yet recovered. The resulting shift in capelin dynamics 

before and after the collapse makes it difficult to predict this population’s trajectory using 

parametric linear models. This thesis explores the use of nonlinear, nonparametric forecasting 

methods, known as Empirical Dynamic Modelling (EDM), to predict capelin population 

trajectories, identify climate and ecosystem factors which drive these trajectories, and assess how 

these factors have influenced the capelin population and will likely continue to in the future. The 

latter two objectives are also explored using Atlantic cod as an additional study species to 

demonstrate the use of EDM for species with different life history strategies.
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Glossary of Empirical Dynamic Modelling (EDM) Terms 

Attractor Manifold: A representation of the dynamics of a system and its states. May be 

constructed from multiple related time series, or from a time series and its lagged coordinates. 

Convergent Cross Mapping: EDM technique designed to identify causality between variables 

in a system by using the attractor manifolds of each variable to predict the other (Sugihara et al., 

2012). 

Dimensionality: Refers to the value of the embedding dimension. A high embedding dimension 

corresponds to high dimensionality, and vice versa. 

Embedding Dimension I: The number of successive time steps used to reconstruct a time series 

and generate predictions. Measured using Simplex forecasting. 

Empirical Dynamic Modelling: Refers to a group of nonlinear, nonparametric forecasting tools 

predicated on Taken’s theorem that the dynamics of a system (e.g. an ecosystem) can be 

reconstructed from one of its time series using lagged versions of that time series (Takens, 1981). 

Includes Simplex, S-Map, Convergent Cross Mapping, and Multiview Embedding. 

Multiview Embedding: An EDM forecaster which leverages system complexity to generate 

forecasts by combining many valid variable and attractor manifold combinations into a single 

model. Described in Ye and Sugihara (2016). 

Nonlinearity: The degree to which dynamics are nonlinear. Low nonlinearity corresponds to 

linear dynamics, whiles high nonlinearity responds to very nonlinear (chaotic) dynamics. Also 

called state-dependence (e.g. Clark and Luis, 2020). Measured by S-Map θ value – higher θ 

indicates more nonlinearity. 
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Nonlinear Dynamics: Dynamics where change in input is not proportional to change in output 

(Clark and Luis, 2020). May be the result of differing interactions between variables depending 

on the state of the system (i.e., phase changes), multiplicative interactions between multiple 

variables, stochastic noise, etc. 

Scenario Exploration: A method of assessing nonlinear relationships between a target variable 

and its covariate(s) by fitting a multivariate EDM model to the target time series, then 

forecasting on the same time series after artificially increasing and/or decreasing the values of 

the covariate time series. The scenario exploration performed in this thesis uses methodology 

from Deyle et al. (2016a). 

Simplex Projection: A simple nonlinear EDM forecaster, which uses E lagged coordinates to 

predict future values. It is also used to determine the best value of E for a time series, and thus 

quantify the dimensionality of the time series, by comparing prediction skill across simplex 

forecasts with different E values. Described in Sugihara and May (1990). 

S-Map: A nonlinear EDM forecaster, which uses E lagged coordinates and weighting parameter 

θ to predict future values. θ represents how heavily the model weights nearby points when 

making projections. When θ = 0, the S-Map is equivalent to a linear AR1 model, and 

nonlinearity increases with θ. Similar to how simplex projection determines the best value of E, 

S-Maps are used to determine the best value of θ for a time series, and thus quantify the 

nonlinearity of the time series, by comparing prediction skill across simplex forecasts with 

different θ values. Described in Sugihara (1994). 
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Overview 

Capelin (Mallotus villosus) is a subarctic forage fish with a circumpolar distribution throughout 

the Arctic, North Pacific, and North Atlantic oceans. It is considered a keystone species on the 

Newfoundland Shelf, where it serves as the primary trophic link between plankton and larger 

consumers, including seabirds, marine mammals, and many commercially valuable groundfish 

species (Buren et al., 2014). Forage fishes, including sardines, anchovies (Chavez et al., 2003; 

Schwartzlose et al., 1999), herring (Skagseth et al., 2015; Toresen and Østvedt, 2000), and 

Barents Sea capelin (ICES, 2021), are typically subject to cyclical boom-bust cycles, 

characterized by alternating periods of very high and very low biomass separated by population 

booms and collapses. Uniquely on the Newfoundland Shelf, capelin biomass collapsed in the 

early 1990s, hypothesized as the result of a period of abnormally cold climate, and despite a 

period of partial recovery in the mid 2010s, have yet to recover to pre-collapse levels (Bourne et 

al., 2021; Buren et al., 2019). This collapse is also associated with changes to capelin life history, 

including earlier maturation (Bourne et al., 2021) and spawning later in the year (Murphy et al., 

2021), and a general regime shift in the ecosystem, punctuated in declines in groundfish due to 

overfishing and the cold period (Gomes et al., 1995; NAFO, 2010), and increases in shrimp 

(Lilly et al., 2000; Worm and Myers, 2003) and seal (DFO, 2019) populations. 

Predictive models are often used in fisheries science and stock assessment to explain past 

changes in fish stock biomass with the objective of using that knowledge to predict how biomass 

may change in the future under different conditions. Traditional stock assessment models seek to 

parameterize population dynamics and predict how populations would be affected by differing 

levels of fishing pressure. As ecosystems change and models improve, multi-species models and 

models designed for ecosystem-based fisheries management have become more common, 
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seeking to improve these predictions by identifying and accounting for the influence of changes 

in climate and/or other species in the ecosystem. For example, the Barents sea assessment model 

for capelin accounts for cod and herring populations (Bogstad and Gjøsæter, 2001; Gjøsæter, 

2002; Gjøsæter et al., 2015), and the current Newfoundland shelf capelin forecast model includes 

sea ice metrics (Lewis et al., 2019). However, linear parametric models may not be sufficient to 

properly predict chaotic dynamics which are often present in marine systems (Clark and Luis, 

2020). Nonlinear dynamics – where changes in predictors are not proportional to the changes 

they cause in their targets – are extremely common in animal populations, including bony fishes 

(Clark and Luis, 2020). The incidence of nonlinearity is compounded by fisheries, which 

increase the likelihood of their targets exhibiting nonlinear dynamics (Glaser et al., 2014a). To 

properly predict the nonlinear dynamics prevalent in fisheries, nonlinear models are required. 

Empirical Dynamic Modelling (EDM) is a suite of nonlinear, nonparametric forecasting tools 

which use lagged versions of a time series (or related time series in multivariate cases) to 

reconstruct its dynamics and make future predictions. It includes a basic nonlinear simplex 

forecaster used to select the optimal maximum number of lags (Sugihara and May, 1990), the 

weighted nonlinear forecaster S-Map used to measure nonlinearity and strength and sign of 

species interactions (Sugihara, 1994), Convergent Cross Mapping (CCM), which is used to 

identify causal relationships (Sugihara et al., 2012), and Multiview Embedding (MVE), which 

creates multivariate predictions by identifying the best  possible combinations of time series lags 

from multiple time series and averaging them. EDM models can also identify, rank, and visualize 

nonlinear relationships between a target time series and its driving covariates by using EDM 

scenario exploration, which compares how EDM model predictions differ between simulations 

with an increase or decrease to the driving covariate. 
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In the context of stock assessment, EDM has been used successfully on many occasions to 

forecast fisheries and fish population dynamics, including forage fishes similar to capelin. Linear 

models used for stock assessment are often bound to strict assumptions and do not account for 

the existence of multiple states within ecosystems, which may cause the driving forces of 

population dynamics to change based on the biomass of the target species and their 

environments. EDM is not bound by these restrictions, which can make it a better tool for 

predicting the dynamics of complex, dynamic ecosystems. For example, EDM models have been 

shown to outperform linear models at predicting recruitment on many occasions, when 

considered both past stock size, past recruitment, and environmental conditions (Deyle et al., 

2018; Munch et al., 2018; Ye et al., 2015a). EDM can also be used as part of an ensemble 

approach with linear models – for example, Sguotti et al. (2020) found that Atlantic cod stock-

recruitment relationships were better modelled by linear models in stable populations, and by 

nonlinear multivariate simplex projections in chaotic populations which exhibited abrupt changes 

in recruitment and stock size. 

EDM can also provide additional utility to managers beyond improving predictions by 

identifying the environmental, ecological, and anthropogenic conditions that drive species 

biomass, and predicting how such driving effects may change depending on the states of an 

ecosystem. CCM has been used to show that Pacific sardine and northeastern anchovy 

populations off California are both driven by temperature rather than by competition and, as 

such, temperature state-dependent rules are required for proper management of these stocks 

(Sugihara et al., 2012). Similarly, CCM has been used to compare the influence of anthropogenic 

and environmental factors on Bohai Sea and Yellow Sea fish stocks (Zhang et al., 2022), and to 

discern the effects of life history strategies, environmental conditions, and fishing on North Sea 
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fish stocks (Wang et al., 2020). EDM has been used to model climate effects on sardines, and 

disentangle the effects of climate and fisheries on sardines using EDM scenario exploration 

(Deyle et al., 2013; Giron-Nava et al., 2021). EDM has also been used to identify potential for 

regime shifts as compared to continuing stable states by quantifying nonlinearity (Dakos et al., 

2017; Hsieh et al., 2005). Glaser et al. (2014b) found that nonlinear S-Map spatial catch per unit 

effort time series predictions outperformed comparable linear forecasts. In addition to modelling, 

S-Maps can also be used to quantify the magnitude and direction of species interactions, such as 

interactions between temperature, fish, and zooplankton (Deyle et al., 2016b). The abilities of 

EDM to identify, assess, and compare causative relationships between variables, model chaotic 

population dynamics, and work in the context of regime shifts make it an ideal tool for modelling 

capelin on the Newfoundland shelf. 

Predictive models on capelin dynamics by Fisheries and Oceans Canada (DFO) identify timing 

of sea ice retreat, sea ice area, capelin condition, larval capelin abundance, and the regime shift 

itself as useful predictors of capelin biomass (Buren et al., 2014; Lewis et al., 2019). Sea ice 

retreat is hypothesised to indirectly affect capelin biomass via prey availability, but it is not clear 

if sea ice retreat is simply a correlate of the actual physical forcer affecting the spring bloom and 

prey availability. Moreover, the environmental factors and/or ecological factors that contributed 

to the regime shift and changes in capelin condition and both adult and larval capelin abundance 

persistent since the collapse remain unknown. Identifying drivers of capelin biomass is 

particularly difficult due to the chaotic nature of its near instantaneous collapse and partial 

recovery in the mid 2010s, especially using parametric linear models which are not designed to 

work with such dynamics. The main goal of the first chapter of my thesis is to address these 

issues using Empirical Dynamic Modelling (EDM). In this thesis I assess the influence of 
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predator species, capelin catch, or the newly available Newfoundland and Labrador Climate 

Index (Henceforth referred to as NLCI, Cyr and Galbraith, 2021) and its components on capelin 

dynamics, which has been shown to be a useful predictor of capelin spawning timing and year 

class strength (Murphy et al., 2021). 

The objectives for the first chapter of my thesis explores the application of a wide range of EDM 

techniques to capelin biomass data, with the objectives of using EDM to (1) determine if capelin 

dynamics are nonlinear, (2) identify and measure the influence of ecological (predator biomass 

and capelin catch) and climatic (the NLCI and it’s components, as well as timing of sea ice 

retreat) drivers of capelin population dynamics, and (3) create a multivariate forecast model for 

capelin population dynamics using these drivers and compare it to linear forecast models using 

the same data. To assess the influence of the regime shift, I have compared results using all 

available years of data (referred to as the all years dataset) to results using only data from after 

the capelin collapse (referred to as the post-collapse dataset) where possible.  

In the second chapter of my thesis, I expand on the first chapter’s objective of using EDM to 

assess relationships between population dynamics and the climatic and ecological covariates 

which drive them by applying EDM scenario exploration to biomass data for capelin. This 

chapter complements the first by directly exploring specific relationships between capelin and 

their drivers, and how EDM uses those relationships to generate biomass predictions. The second 

chapter also adds Atlantic cod (Gadus morhua) as a second study species. Atlantic cod is a 

larger-bodied species, which as a demersal predator, has different ecological functions and a 

longer lifespan and generation time than capelin, suggesting it is less likely to exhibit nonlinear 

dynamics.  However, cod also shares a similar biomass and life history evolution trajectory with 

capelin over the study period (Bourne et al., 2021; DFO, 2012; NAFO, 2010; Olsen et al., 2004). 
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This makes it an ideal species to test whether EDM analyses of capelin are similarly applicable 

to other fish species, particularly commercially valuable groundfish. The objectives of my 

second chapter are to (1) identify drivers of capelin and cod biomass using CCM, (2) use 

scenario exploration to model the potential magnitude and direction of each driver’s effect on the 

system state of capelin and cod biomass and (3) predict how the magnitude and direction change 

with the relative value of the driver and/or biomass.
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Chapter 1: Exploring Capelin Population Dynamics using EDM 

2.14 Introduction 

Capelin (Mallotus villosus) are a keystone forage species in the subarctic Northwest Atlantic, 

which form the primary energy linkage between zooplankton and high trophic level predators, 

especially commercial fishery species (Buren et al., 2019). The capelin populations of the 

Newfoundland shelf collapsed in the early 1990s during a period of abnormally cold climate and 

has not recovered since (Bourne et al., 2021). This collapse was accompanied by an overall 

regime shift in the region (DFO, 2012), punctuated by declines in groundfish (Gomes et al., 

1995; NAFO, 2010) and increases in shrimp (Lilly et al., 2000; Worm and Myers, 2003) and seal 

populations (DFO, 2019). Capelin life history has also changed since this collapse – on average, 

capelin after the collapse mature a year earlier (Bourne et al., 2021) and spawn 3 weeks later in 

the year (Murphy et al., 2021). Despite reductions in fishing and a return to the normal climate in 

following years, capelin continue to exhibit early maturation, delayed spawning, and low 

productivity (Bourne et al., 2021; Buren et al., 2014; Murphy et al., 2021).  

Past research into the drivers of capelin dynamics identify sea ice timing, capelin condition, 

larval capelin abundance, and the regime shift itself as predictors of capelin biomass (Buren et 

al., 2014; Lewis et al., 2019). The effects of fisheries landings, predator biomass, and other 

climactic variables remain unclear. These knowledge gaps are hard to fill using parametric linear 

models as it is difficult to separate correlation from causation. The current forecast model used 

for capelin stock assessment 68% of the variation in capelin biomass from 2003-2017 with the 

previously mentioned drivers (Lewis et al., 2019, Bourne et al., 2021). However, forage fishes 

often exhibit chaotic, boom-bust dynamics (Buren et al., 2019; Deyle et al., 2013; Giron-Nava et 
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al., 2021) which are difficult to predict using typical parametric linear models. This is 

particularly relevant to capelin forecast modelling in Newfoundland due to the population’s 

sudden and unpredicted collapse in 1991 and lack of recovery since. Empirical dynamic 

modelling (EDM) offers an alternate approach well suited to such problems as this method can 

capture non-linear dynamics and identify causal relationships (Sugihara, 1994; Sugihara and 

May, 1990).  

Specifically, EDM is a method for reconstructing time series dynamics using lagged versions of 

the time series. These lags may come from the original time series itself, or in multivariate cases, 

they may be combined with lags from related time series (Ye and Sugihara, 2016). By comparing 

the ability of one time series to reconstruct another, EDM can also identify and differentiate 

between correlation and causation between time series using convergent cross-mapping 

(Sugihara et al., 2012). In many cases, EDM has been successfully used to model fish population 

dynamics (Glaser et al., 2014b; Kuriyama et al., 2020; Wasserman et al., 2022), including 

chaotic systems such as the boom-bust cycles of pacific sardine (Deyle et al., 2013; Giron-Nava 

et al., 2021) and fisheries recruitment dynamics (Munch et al., 2018). EDM can also be used to 

identify potential for regime shifts and other ecological phase changes by quantifying 

nonlinearity (Dakos et al., 2017; Hsieh et al., 2005). The flexibility of EDM as a nonlinear 

multivariate modelling method, and its ability to identify correlation and causation between time 

series makes it ideal for modelling the dynamics of a short-lived keystone forage fish like 

capelin, which exhibits chaotic population dynamics. 

The three objectives of this study are to: (1) use EDM to test whether capelin dynamics are 

nonlinear; (2) identify environmental and ecological drivers of capelin biomass; and (3) combine 

them to forecast capelin biomass using both EDM and traditional parametric linear models, and 
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(4) to determine if and how nonlinearity and model prediction ability have changed as a result of 

the regime shift. 

 

1.2 Methods 

Data 

Capelin dynamics in NAFO divisions 2J3KL were measured using the capelin stock biomass 

index from Fisheries and Oceans Canada’s spring acoustic survey (henceforth referred to as the 

capelin acoustic index), the methodology of which is described in detail in Mowbray (2012). 

This index was chosen due to its superior temporal coverage, standardization, and accuracy for 

capelin specifically as compared to the depth stratified bottom trawl survey index used for 

groundfish. Two different datasets were analyzed in this study – one using all available data 

(1983-2019), and one using only data from after the capelin collapse (1991-2019). This was done 

because 1) the capelin collapse and regime shift are highly nonlinear events, and separating the 

datasets is of interest to test for changes in the presence and/or degree of nonlinearity in capelin 

dynamics, and 2) because there is no recovery to the pre-collapse state after the collapse, it is 

unclear if including pre-collapse data is helpful, detrimental, or irrelevant for predicting post-

collapse population dynamics.. Both datasets contained some missing data years, which were 

filled using predicted values from a Gaussian process regression fit using maximum likelihood 

estimation (Figure 1.1). To prevent pre-collapse values from influencing filled years after capelin 

is known to have collapsed, post-collapse missing data were filled using regression on only post-

collapse data for both datasets. Both datasets were then normalized by subtracting each data by 

the mean biomass and dividing by the standard deviation.  



10 
 

Capelin catch and biomass indices for Atlantic cod (Gadus morhua) and Greenland halibut 

(Reinhardtius hippoglossoides) were also included in this study to represent potential top-down 

pressures on capelin. Capelin catch data for 2J3KL were gathered from the publicly available 

NAFO STATLANT 21a database (NAFO, 2021). Atlantic cod and Greenland halibut biomass 

indices were derived from Fisheries and Oceans Canada’s Fall random stratified bottom trawl 

surveys comprising NAFO divisions 2J3KL. Methodological details on these surveys can be 

found in Doubleday (1981). Biomass indices were calculated using standard stratified analyses 

described in Smith and Somerton (1981). These datasets were also converted to normalized 

anomalies for use in EDM analyses.  

Climate dynamics were gathered from the Newfoundland Climate Index, and included winter 

North Atlantic Oscillation (NAO), air temperature, sea ice duration and area, iceberg count 

below 48°N, sea surface temperature (SST), vertically averaged temperature and salinity at 

Station 27, cold intermediate layer (CIL) core temperature at Station 27, Newfoundland shelf 

CIL area and bottom temperature, and the Newfoundland and Labrador Climate Index (NLCI), 

which is the sign-adjusted sum of all the previous climate metrics. The climate data used in this 

study, as well as detailed methodology regarding these climate metrics is publicly available and 

can be found in Cyr and Galbraith (2021). All NLCI climate data used in this study were 

gathered as normalized anomalies from their original source and were not transformed further. 

To act as a long-term index of climate phase, the cumulative sum of the NLCI over its history 

(1951-2019) was calculated and used in this study (henceforth referred to as cumulative NLCI). 

Lastly, timing of sea ice retreat (henceforth referred to as ice timing) in day of year was provided 

by Fisheries and Oceans Canada and converted to a normalized anomaly using the years 1969 to 

2021. All covariate time series are plotted in Figure 1.2, and all datasets are listed in Table 1.1. 
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Analyses 

EDM is predicated on Takens’ theorem that the state space of a dynamic system, such as the 

capelin acoustic index, can be reconstructed using its lagged coordinates (Takens, 1981). This 

can be visualized as a 3D attractor manifold by plotting a time series against its 1- and 2-

coordinate lags. The first step of EDM analysis is to determine the embedding dimension I – the 

number of lagged coordinates required to best reconstruct the system’s dynamics (Chang et al., 

2017). This can be done by comparing prediction skill at different values of E in the form of 

correlation coefficient ρ for simplex projections, a nonparametric method using E + 1 

neighboring points in state space to generate time series forecasts (Sugihara and May, 1990). The 

embedding dimension (E) for both capelin datasets was determined by carrying out univariate 

simplex projections over the full dataset using leave one out cross-validation with E values over 

the range of 1-5 and selecting the value of E which maximized predictive skill as measured by 

the correlation coefficient (ρ). Five was chosen as the maximum value to prevent excessive loss 

of temporal coverage due to missing lags. Though dimensionality above E = 5 is possible, it is 

uncommon in bony fishes (Clark and Luis, 2020). These selected E values were used in all 

subsequent analyses.  

Once E has been determined, nonlinearity can be assessed similarly using forecasts via S-Map 

projections. Rather than using only neighboring points, S-Map uses the entire time series with a 

weighting parameter (θ) controlling the degree to which nearby points are prioritized – larger 

values of θ indicate greater influence of nearby points on projections and thus greater 

nonlinearity, with θ=0 indicating a fully linear model (Sugihara, 1994). I tested the nonlinearity 

of both capelin acoustic index datasets with S-Map projections using leave one out cross 

validation with a range of values from 0.01-9 for θ.  
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To identify drivers of capelin population dynamics, the previously discussed climatological and 

ecological covariates were analyzed with both capelin datasets using Convergent Cross Mapping 

(CCM). CCM compares points on attractor manifolds of two time series variables to predict each 

other – if a causative relationship is present, evidence of the manifold of the causative agent 

should be present in the manifold of the affected variable, which is evidenced by increased 

prediction skill of the affected variable cross-mapping the causative variable (Sugihara et al., 

2012). In a true causative relationship, this increase in prediction skill should increase with time 

series length (Sugihara et al., 2012). Ecological covariates were cross-mapped in both directions, 

while climatological covariates were cross-mapped by capelin as capelin cannot drive climate. 

To assess convergence and validate my CCM results, CCMs were compared to maximum cross-

correlation at the same maximum lag (E), and p-values were calculated by comparing CCM 

results to a distribution of 1000 CCMs (Chang et al., 2017) using phase-randomized surrogate 

datasets (Ebisuzaki, 1997). 

EDM can also be used to measure the direction and strength of species interactions using the S-

Map method, which uses S-Maps to calculate partial derivatives in multivariate state space for 

each point of a time series (Chang et al., 2017). These partial derivatives are a useful proxy for 

interspecific interactions, and can be used to discern the strength and direction of interspecific 

interactions, and how these factors change in different ecosystem states (Chang et al., 2017; 

Deyle et al., 2016b; Ushio et al., 2018; Wasserman et al., 2022). To assess interspecific 

interactions of capelin, I used the S-Map method to calculate interaction strength with capelin 

catch, Atlantic cod biomass, and Greenland halibut biomass throughout the time series for both 

datasets. I also regressed these interactions against the climatic variables which returned 
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significant CCM results to see if these interactions were mediated by climate (e.g. Deyle et al., 

2016b). 

Lastly, I used Multiview Embedding (MVE) with the aforementioned climatological and 

ecological covariates to generate a multivariate forecast model for the capelin acoustic index. 

Where most models use a single set of covariates, MVE uses many different combinations of 

lags and covariates to reconstruct the original target time series (in this case, the capelin acoustic 

index), making it particularly useful in time series that are short (~25 points) or highly chaotic 

(Ye and Sugihara, 2016), both of which apply to the capelin acoustic index. To compare the 

predictive ability of MVE to linear models with best performances, I generated an autoregressive 

integrated moving average (ARIMA) model with autoregressive order 1 autocorrelated errors 

and a generalized least squares (GLS) model with no correlation structure to compare to the 

MVE model. To meet the variance assumptions of ARIMA and GLS models, these models were 

fitted using logged raw data for the capelin acoustic index and other ecological covariates, and 

the results were exponentiated and converted to the same standardized scale as the MVE model. 

To balance model fit and computational limitations, all post-collapse models were allowed to use 

a maximum of 4 parameters, selected from the climatological and ecological covariates and their 

lags up to E years. This restriction was not imposed on the all years dataset due to its lower value 

of E, thus requiring less lags, and removing the associated computational limitations. The best 

combination of parameters for the ARIMA and GLS models were chosen by testing all possible 

models and selecting the model returning the lowest AICc. To assess the forecast skill of the 

models, each model was fit to a training set of the first 15 years of fully available data 

(accounting for lags), then used to predict the capelin acoustic index for the next year. After each 
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forecast, the actual value for the forecasted year was added to the training set and the subsequent 

year was forecasted, continuing for the remainder of the dataset. 

1.3 Results 

Univariate Analyses 

E=4 and E=1 were selected as the best embedding dimensions for the post-collapse and all years 

datasets, respectively (Figure 1.3). Prediction skill declined with increasing embedding 

dimension in the all years dataset, but was largely unaffected by embedding dimension in the 

post-collapse dataset with the exception of E=2, which returned much lower prediction skill than 

all other embedding dimensions tested (Figure 1.3). Both datasets exhibited an increase in 

prediction skill with θ, indicating nonlinear dynamics were present in the capelin time series 

(Figure 1.3), though this difference was small for the post-collapse dataset. This increase was 

greater in the all years dataset, and was especially pronounced at low θ values. Prediction skill 

peaked at θ=7 in the all years dataset, and continued to increase through the entire range of tested 

θ values in the post-collapse dataset (Figure 1.3). The capelin acoustic index attractor manifold 

reveals 3 different phases of capelin biomass magnitude and dynamics by visual inspection – the 

pre-collapse period from 1985-1992, followed by the collapsed population from 1991-2012, and 

a partial recovery period distinct from the collapsed population but still well below pre-collapse 

levels from 2013-2017, after which the population returned to the collapsed state in 2018-2019 

(Figure 1.4).  

Convergent Cross-Mapping 

CCM analyses revealed capelin catch, Greenland halibut biomass, Atlantic cod biomass, the 

cumulative NLCI, ice timing, and SST to be the strongest correlates of capelin biomass (Figure 
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1.5). The cumulative NLCI, catch, and cod biomass exhibited very high cross-correlation and 

achieved very high CCM predictive skill at relatively low library sizes (Figure 1.5), suggesting 

these covariates were in synchrony with the capelin acoustic index. This means strong forcing 

was present between these covariates and the capelin acoustic index, preventing CCM from 

reliably discerning the direction (or bidirectionality) of causation. Conversely, the capelin cross-

map of Greenland halibut was stronger than its opposite and continually increased in library size 

(Figure 1.5). This indicates convergence, meaning a causative relationship of Greenland halibut 

on the capelin acoustic index can be inferred (Sugihara et al., 2012). Similar patterns indicative 

of a causative relationship were observed in cross-map patterns with SST and ice timing (Figure 

1.5). Winter NAO, air temperature, bottom temperature, Station 27 temperature, Station 27 

salinity, and Station 27 CIL core temperature were all weakly coupled with the capelin acoustic 

index, though only winter NAO appeared convergent and none of these effects approached 

statistical significance (Figure 1.5). No relationship was detected between the capelin acoustic 

index and the remaining climatic covariates (Figure 1.5).  

Interaction Sign and Strength 

No clear temporal patterns were present by visual inspection in species interaction sign and 

strength except for the post-collapse period for the all years dataset, where they were near 0 

(Figure 1.6). During the pre-collapse period, capelin interactions with cod were primarily 

positive, and interactions with Greenland halibut and catch switched between positive and 

negative, with the negative interactions being stronger (Figure 1.6). Post-collapse, cod 

interactions were stronger than Greenland halibut and catch interactions, with variable signs 

(Figure 1.6). Capelin interactions with Greenland halibut and catch over this period were 
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primarily positive, though they were also highly variable (Figure 1.6). No significant correlations 

were detectable between interaction strength and any cross mapped climatic drivers (Figure 1.7).  

Predictive Modelling 

The MVE predictive model outperformed both linear test models by ρ and R2 in all modelling 

tests except for the all years forecast, where it performed similarly to the ARIMA AR1 model 

and was outperformed by the GLS model (Table 1.2). In all cases, the GLS model outperformed 

the ARIMA model (Table 1.2). As expected, prediction skill was reduced in the forecast 

experiment when compared to model fits (Table 1.2). Error metrics were not directly comparable 

between model fits and forecasts due to differing time series lengths. Models using the post-

collapse dataset returned higher ρ and R2 values than those using the all-years dataset (Table 1.2).  

Time series plots reveal that all 3 models struggled to predict phase changes in both the capelin 

collapse in 1991 and subsequent partial recovery in 2013. In both model fits and the forecast 

experiment, ARIMA and GLS predicted values returned similar patterns (Figures 1.8-1.11). In 

model fits, the linear test models predicted the capelin collapse too early (Figure 1.10), and better 

matched the magnitude of the recovery in 2013, but failed to predict the continued recovery in 

2014 (Figure 1.8). In contrast, the MVE model was generally better able to fit year-to-year 

dynamics but tended to underpredict phase changes (Figure 1.8, Figure 1.10). Similar patterns 

held in the forecast experiment with the exception of the all years GLS model, which predicted 

the 2013-2015 phase change period well, but predicted collapsed years somewhat erratically 

(Figure 1.9, Figure 1.11).  

1.4 Discussion 

Embedding Dimension and Nonlinearity 
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We found the best embedding dimension for the post-collapse period was larger than that for the 

all years period, and that dynamics over both periods were nonlinear, with the all years dataset 

exhibiting stronger nonlinearity. The presence of nonlinearity and relatively high dimensionality 

of the post-collapse period was expected, as animals with shorter generation times are more 

likely to exhibit nonlinear dynamics and higher values of E (Clark and Luis, 2020). The 

difference in predictability between θ at 0 (linear) and its maximum is smaller in the post-

collapse dataset than in the all-years dataset, indicating greater nonlinearity in the all-years 

dataset (Dakos et al., 2017). This agrees with previous literature studying regime shifts using 

EDM, which find increasing nonlinearity is typical of instability and impending collapse in 

marine ecosystems (Dakos et al., 2017; Hsieh et al., 2005), and that nonlinearity is reduced after 

population collapse as the population settles into a more stable post-collapse state (Dakos et al., 

2017). Though nonlinearity does decrease, nonlinear dynamics are maintained after the collapse 

(Figure 1.3) suggesting that small-scale capelin dynamics are still nonlinear, even during “stable” 

periods. The dynamics around nonlinearity and the regime shift in this stock could theoretically 

be better explored by independent nonlinearity testing of each state (e.g. pre-collapse, post-

collapse before partial recovery), but such experiments cannot be performed reliably with the 

data used in this study due to lack of temporal coverage, particularly in the pre-collapse years. 

Convergent Cross-Mapping 

Our CCM results revealed the cumulative NLCI, SST, and ice timing as potential climatic 

drivers of capelin biomass. I can infer from this result that capelin dynamics are strongly forced 

by climatic change, and respond to such changes quickly. My CCM results suggest that SST and 

ice timing are the primary drivers of these climatic changes, which is in line with previous 

literature that capelin are extremely sensitive to changing temperature and react to such changes 
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very quickly (Rose, 2005), and that sea ice retreat timing is a useful predictor of capelin 

dynamics (Buren et al., 2014; Lewis et al., 2019). As capelin cannot drive climate, the synchrony 

between capelin and the cumulative NLCI suggest capelin is strongly forced by long-term 

climatic change, with multiple subsequent years of cold or warm climate having large effects on 

capelin biomass. With the context of CCM alone, it is difficult to tell how exactly changing 

climate will affect capelin, though it seems likely the effect will be pronounced. I detected no 

significant influence of sea ice area, icebergs, NAO, CIL metrics on capelin dynamics. CCM 

final correlation values are more sensitive to noise than the rate of convergence (Mønster et al., 

2017), suggesting that weak, insignificant CCM results with converging patterns such as that of 

Winter NAO in my study may represent a true causative pattern that is obscured by time series 

noise as climatic effects work their way up the food chain to capelin. Further research using 

more advanced CCM and/or CCM-adjacent algorithms such as pairwise asymmetric inference, 

cross map smoothness, multispatial CCM, and continuity scaling may help to clarify these 

patterns (Clark et al., 2015; Ma et al., 2014; McCracken and Weigel, 2014; Ying et al., 2022). 

CCM also revealed capelin catch, Atlantic cod biomass, and Greenland halibut biomass as 

potential drivers of capelin dynamics. Unlike climate, ecological mechanisms can be logically 

applied to clarify directionality of potential capelin drivers identified by CCM, complicating 

interpretation of the synchrony between capelin and both capelin catch and Atlantic cod biomass. 

Previous research suggests that capelin dynamics are driven by bottom-up environmental 

forcing, and not top-down forces (Buren et al., 2014). When present, capelin makes up the 

majority of cod diets, and the presence of capelin has been shown to drive cod condition, growth, 

distribution, biomass and fecundity on both the Newfoundland shelf, and in the Barents sea 

(Bogstad and Gjøsæter, 2001; Rose, 2002, 2005). Thus, scientific literature on the relationship 
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between capelin and cod suggest capelin is far more likely to be driving cod than the reverse. 

This is also supported by data used in this study, as the collapse of capelin occurred one year 

before the collapse of cod (Figure 1.2). Similarly, catch often mirrors biomass of the target 

species and is sometimes used as an abundance index, suggesting it is more likely that capelin 

catch is driven by capelin biomass than the opposite case, especially considering the positive 

relationship between capelin catch and capelin biomass in Figure 1.6. 

Conversely, the CCM results in this chapter suggest Greenland halibut biomass drives capelin 

biomass, with no evidence for the opposite case. Unlike cod and capelin, Greenland halibut 

biomass was relatively unaffected by the collapse and regime shift of the 1990s (Bowering and 

Lilly, 1992; Dawe et al., 2012; Dwyer et al., 2010). Greenland halibut is known to be an 

important predator of capelin, but they are also opportunistic and wide-ranging predators and 

will eat whatever prey species are most available in the ecosystem (Bowering and Lilly, 1992; 

Dawe et al., 2012; Dwyer et al., 2010), which likely explains why CCM found no evidence of 

capelin driving Greenland halibut. It is possible that the reduced population of capelin coupled 

with a similar population of Greenland halibut after the collapse has led to increased relative 

predation pressure on capelin, producing a top-down effect partially responsible for the non-

recovery of capelin, but the effect of Greenland halibut predation on capelin biomass is largely 

unstudied. It is also possible that this result represents indirect causality stemming from a 

different original source (Ye et al., 2015b), or that it is spurious, as it is on the edge of 

significance and CCM is known to sometimes identify causation where there is none for 

oscillating data patterns (Bartsev et al., 2021) such as that of Greenland halibut (Figure 1.2), and 

it runs counter to the convention of past literature that capelin dynamics are primarily bottom-up 
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driven (Buren et al., 2014). Regardless, this result suggests more research into the influence of 

Greenland halibut on capelin population dynamics is needed. 

Interaction Strength 

My interaction strength results found no consistent negative interactions between capelin and any 

of the predators I tested, further supporting the idea that capelin dynamics are primarily bottom-

up driven. I also found that capelin species interactions did not change with changing climate, 

suggesting that climatic effects likely drive capelin directly, or indirectly through bottom-up 

processes rather than through top-down processes. Surprisingly, most of the interactions between 

capelin and its predators were positive, particularly over the post-collapse period, which is not 

consistent with expected patterns from predation (Chang et al., 2017; Deyle et al., 2016b). 

Potential explanations could be that these patterns are proxies for other dynamics (such as the 

regime shift), are statistical artifacts due to some combination of noise, autocorrelation, and 

cross-correlation, or that the presence of these predators assists capelin indirectly through some 

other mechanism that I did not test. The positive relationship between capelin and it’s predators 

suggests that top-down influences on capelin dynamics are weak, which agrees with previous 

literature on the Newfoundland Shelf suggesting capelin dynamics are primarily bottom-up 

driven (Buren et al., 2014). Exploring capelin interactions with potential prey and competitors is 

a potential avenue for future research using these analyses should sufficient data become 

available. 

Predictive modelling 

MVE predictive models explained more variation in capelin dynamics for both fits and forecasts 

with the exception of the all-years forecast, for which the GLS model provided the best forecasts 
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(Table 1.2). The all years forecast result is surprising, as the regime shift is a highly nonlinear 

event, and hypothetically should be more easily modelled by nonlinear models. The failure of the 

MVE model at all years forecasting in comparison to the GLS model, as well as the MVE 

model’s success during the post-collapse period, suggest that pre-collapse dynamics may be 

detrimental to making post-collapse predictions in nonlinear state-space. More specifically, it is 

also possible that the long-term dynamics of capelin are linear, particularly with regards to the 

cumulative NLCI, and the short term, year-to-year dynamics are nonlinear and may be driven by 

different factors. Methodological explanations for the all years forecast results include 

methodological differences in variable selection (the GLS model covariates were selected from 

the fit test and were unchanged for the forecast test and are thus informed by the full dataset, 

while MVE model selection is built into the model and must be run independently each year), 

MVE model averaging causing underprediction of phase changes, and lack of sufficient 

information in the training set to properly calibrate linear dynamics, as each chaotic event in the 

all years dataset only occurs once. Regardless, the success of the MVE model in all other cases 

indicates that it is capable of modelling capelin dynamics, and that MVE and other nonlinear 

models may be useful forecasting and modelling tools for capelin management. The fact that all 

3 models struggled to predict the phase shifts in 1991 and 2013 suggests either that the covariate 

or combination of covariates responsible for these phase shifts was not present in my model, or 

more phase shifts are required in the data for the models to identify patterns responsible for 

causing them. Potential covariates that could improve my models include indices of 

phytoplankton and zooplankton, or more detailed information on the capelin population, such as 

larval abundance and capelin condition (Buren et al., 2014; Lewis et al., 2019).  

Limitations of EDM 
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Though my results show EDM is a useful tool for modelling fisheries population dynamics, it is 

bound by some notable limitations. The first of these is its data requirements – by default, EDM 

requires a time series at least 35-40 points long (Ye et al., 2015a), with no holes. In this study, I 

was unable to retrieve sensible results from CCM using the post-collapse dataset due to this 

limitation. These issues can be somewhat mitigated by using MVE, which recommends a lower 

minimum of ~25 points due to its ability to synthesize dynamics from multiple sources (Ye and 

Sugihara, 2016), by using modified forms of EDM designed to work with missing data (e.g. 

Johnson and Munch, 2022), or by filling missing data, as I did in this study. However, in the 

stock assessment context, a consistent time series of at least 35-40 years is required for 

abundance indices, which limits the number of stocks that can be EDM can be used on and the 

covariates they can be modelled and/or cross mapped with, and precludes EDM from being 

useful on data poor stocks. Even if the time series is long enough, my results also show that it is 

difficult for EDM to predict chaotic dynamics associated with phase changes, such as the capelin 

collapse and partial recovery in 1991 and 2013 respectively. Standard EDM is also not designed 

to incorporate uncertainties in input data, which can call EDM results into question when 

working on point estimates with a high degree of uncertainty. However, these limitations are not 

unique to EDM, and it is possible they can be overcome as time series lengthen, population 

estimates improve, and more chaotic events occur, allowing EDM to better identify patterns in 

other covariates associated with them. Similarly, using more advanced EDM tools designed to 

work on survey components rather than point estimates, and/or to work on shorter time series 

such as the CCM algorithms mentioned previously could help to resolve these issues in the 

future. 
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Another limitation of EDM is that its nonparametric nature makes it difficult or even impossible 

to understand the exact nature of how covariates affect each other, and to perform simulation 

studies to observe the influence of changing covariates, such as harvest rate. Recent research has 

addressed the latter issue through the development of fisheries management strategies using 

Empirical Dynamic Programming. which combines EDM models with a temporal difference 

learning algorithm to simulate different fisheries catch scenarios and enable the use of EDM in 

risk-based management (Brias and Munch, 2021; Giron-Nava et al., 2021). It is also difficult to 

calculate uncertainties for MVE models because they average a multitude of simpler models, 

though this is not an issue for other EDM models. As a result, EDM’s most useful application to 

fisheries management is as part of an ensemble approach, which can improve predictive 

modelling and identify covariates driving population dynamics, while more standard stock 

assessment models or extensions of EDM such as Empirical Dynamic Programming are used for 

such simulation studies, setting reference points, and quantifying uncertainties. 
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1.5 Tables 

Table 1.1  List of datasets used in this chapter, their classifications, and their sources. 

Variable Class Source 

Capelin Acoustic Index Target Received from Fisheries and Oceans Canada 

Capelin Catch Ecological NAFO STATLANT 21a Database 

Atlantic Cod Bottom Trawl Index  Received from Fisheries and Oceans Canada 

Greenland Halibut Bottom Trawl Index  Received from Fisheries and Oceans Canada 

Timing of Sea Ice Retreat Climatic Received from Fisheries and Oceans Canada 

Cumulative Sum of the Newfoundland  

and Labrador Climate Index (NLCI)  Cyr and Galbraith (2021) 

Winter North Atlantic Oscillation (NAO)  Cyr and Galbraith (2021) 

Air Temperature  Cyr and Galbraith (2021) 

Sea Ice Duration and Area  Cyr and Galbraith (2021) 

Iceberg Count Below 48°N  Cyr and Galbraith (2021) 

Sea Surface Temperature (SST)  Cyr and Galbraith (2021) 

Cold Intermediate Layer (CIL) Area  Cyr and Galbraith (2021) 

Bottom Temperature  Cyr and Galbraith (2021) 

Station 27 Temperature  Cyr and Galbraith (2021) 

Station 27 Salinity  Cyr and Galbraith (2021) 

Station 27 CIL Core Temperature  Cyr and Galbraith (2021) 

 

Table 1.2  Model selection metrics for MVE, ARIMA AR1, and GLS predictive models for both 

model fits and the forecast experiment 

Dataset Type Model ρ R2 MAE MSE RMSE 

Post-Collapse Fit Multiview 0.916 0.84 0.409 0.484 0.695 

Post-Collapse Fit ARIMA 0.662 0.438 0.446 0.656 0.81 

Post-Collapse Fit GLS 0.814 0.662 0.324 0.404 0.636 

Post-Collapse Forecast Multiview 0.82 0.673 0.858 1.786 1.336 

Post-Collapse Forecast ARIMA 0.281 0.079 1.082 2.656 1.63 

Post-Collapse Forecast GLS 0.763 0.583 0.917 1.759 1.326 

All Years Fit Multiview 0.89 0.791 0.259 0.232 0.482 

All Years Fit ARIMA 0.813 0.661 0.244 0.363 0.602 

All Years Fit GLS 0.845 0.715 0.196 0.307 0.554 

All Years Forecast Multiview 0.505 0.255 0.105 0.021 0.145 

All Years Forecast ARIMA 0.51 0.26 0.114 0.021 0.146 

All Years Forecast GLS 0.791 0.626 0.084 0.011 0.104 
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1.6 Figures 

 

 

Figure 1.1  Capelin acoustic index, standardized separately for all available years (1982-2019) 

and for years following the capelin collapse (1991-2019). Open points are missing data filled in 

using Gaussian Process regression 
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Figure 1.2  Raw standardized covariate time series used in this study. 
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Figure 1.3  Prediction skill (ρ) of univariate (A) simplex projections using embedding 

dimensions from 1 to 5 and (B) S-Map projections using nonlinear tuning parameter (θ) values 

ranging from 0.01 to 9 for the standardized capelin acoustic index for both all available years and 

only years following the capelin collapse. 
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Figure 1.4  Attractor manifold of the standardized capelin acoustic index for all available years, 

constructed using 1 and 2 year lags. 
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Figure 1.5  Convergent cross-mapping prediction skill (ρ) as a function of library size (time 

series length) between the normalized capelin acoustic index and ecological and climactic 

covariates, using all available years of data and E=1. Maximum cross-correlation with 1-year lag 

and p-values calculated by comparison to cross maps using randomized surrogate time series are 

included for validation. 
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Figure 1.6  Interaction strengths calculated via the S-Map method between capelin and capelin 

catch, Greenland halibut biomass, and Atlantic cod biomass for both the all years and post-

collapse datasets. 
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Figure 1.7  Interaction strengths calculated via the S-Map method between capelin and capelin 

catch, Greenland halibut biomass, and Atlantic cod biomass as a function of the cumulative 

Newfoundland Climate Index (NLCI) and sea surface temperature (SST) for both the all years 

and post-collapse datasets. Dashed lines are linear regression lines. The all years dataset includes 

both red and blue points. 
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Figure 1.8  Model fits for MVE, ARIMA AR1, and GLS predictive models for the standardized 

capelin acoustic index using post-collapse data. 
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Figure 1.9  Forecast experiment for MVE, ARIMA AR1, and GLS predictive models for the 

standardized capelin acoustic index using post-collapse data. 
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Figure 1.10  Model fits for MVE, ARIMA AR1, and GLS predictive models for the standardized 

capelin acoustic index using all available years. 
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Figure 1.11  Forecast experiment for MVE, ARIMA AR1, and GLS predictive models for the 

standardized capelin acoustic index using all available years. 
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Chapter 2: Comparing Capelin and Atlantic Cod Biomass Drivers using Scenario 

Exploration 

2.1 Introduction 

As mentioned in chapter 1, the capelin (Mallotus villosus) stock on the Newfoundland Shelf 

collapsed in the 1991 during a period of abnormally cold climate , contributing to an overall 

regime shift in the ecosystem (Bourne et al., 2021; DFO, 2012). In addition to biomass, capelin 

life histories have changed since then, with capelin maturing earlier (Bourne et al., 2021), and 

capelin spawning later in the year (Murphy et al., 2021). Where chapter 1 focuses exclusively on 

capelin, Atlantic cod (Gadus morhua) is also analyzed in this chapter for comparison. Atlantic 

cod is a larger fish with a higher trophic position in the food web, a longer generation time, and a 

less stochastic time series (Figure 1.2); yet, cod has a similar history to capelin in terms of 

population dynamics, making it an ideal bridge between EDM analyses of capelin and other 

larger fish species. Atlantic cod experienced a similar population collapse in 1992, which is often 

associated with overfishing, and also have not yet recovered to pre-collapse levels (Gomes et al., 

1995; NAFO, 2010). Like capelin, cod also now mature earlier (Gomes et al., 1995). Despite a 

brief period of partial recovery in the mid 2010s, the regime shift and collapsed populations of 

capelin and cod, as well as their changed life history strategies, remain to this day despite 

reduced fishing pressure and more typical climatic conditions (Bourne et al., 2021; Buren et al., 

2014; DFO, 2021; Murphy et al., 2021). As ecosystems on the Newfoundland Shelf change due 

to climate change, changing fisheries, and the slow recovery of capelin, cod, and other collapsed 

fish species, predicting what conditions may lead to cod and capelin recovery or further decline 

is necessary to responsibly manage these species into the future. 
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One potential tool for this purpose is Empirical Dynamic Modelling (EDM) scenario exploration. 

As shown in chapter 1, EDM is capable of identifying causative covariates which drive fisheries 

time series using convergent cross-mapping (CCM, Sugihara et al., 2012), and using these 

drivers to generate nonlinear predictions (Deyle et al., 2013; Giron-Nava et al., 2021; Glaser et 

al., 2014b; Kuriyama et al., 2020; Munch et al., 2018; Wasserman et al., 2022). However, these 

models do not directly show what influence causative drivers have on fish biomass, or how that 

influence may change with changing ecosystem conditions. Scenario exploration seeks to solve 

this issue by comparing how EDM model predictions change when the values of driving 

covariates are perturbed. For example, scenario exploration has been used to show that incidence 

of influenza and humidity are positively correlated at high humidity and negatively correlated at 

low humidity (Deyle et al., 2016a).  

In the context of fisheries, scenario exploration can be a useful tool in ecosystem-based 

management, where it can be used to predict how species react to changes in climatic conditions, 

fishing pressure, or biomass of other species in the ecosystem (Munch et al., 2023). As an 

example, scenario exploration has been used to predict how changes in temperature affect 

sardine abundance, and how this relationship relates to fishing pressure and management of 

future sardine biomass (Deyle et al., 2013). This utility suggests scenario exploration may be an 

ideal tool for predicting population dynamics for capelin and cod, which have experienced 

extreme changes in climatic conditions, fishing pressure, and ecological regimes in recent 

history. 

The objectives of this chapter are (1) to identify drivers of capelin and cod biomass using CCM, 

(2) use scenario exploration to assess the magnitude and direction of each driver’s effect on 
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capelin and cod biomass and (3) how the magnitude and direction change with the relative value 

of the driver and/or biomass. 

 

2.2 Methods 

Data Series 

Data series used were the same as for chapter 1, except for the separation of the NLCI in to the 

cumulative NLCI and annual NLCI to distinguish long-term and short-term climatic change, and 

the addition of cod catch data for 2J3KL, which was also gathered from the NAFO STATLANT 

21 database (NAFO, 2021). Capelin biomass dynamics were gathered from the Fisheries and 

Oceans Canada (DFO) spring acoustic survey (Mowbray, 2012) using the hole-filling 

methodology from chapter 1 to fill missing years. Cod biomass dynamics were derived from the 

DFO fall random stratified bottom trawl survey index in NAFO divisions 2J3KL (Doubleday, 

1981; Smith and Somerton, 1981). Covariate data series tested against the cod and capelin 

biomass indices included timing of sea ice retreat, the Newfoundland Climate Index (NLCI, Cyr 

and Galbraith, 2021), its component parts [winter North Atlantic Oscillation (NAO), air 

temperature, sea ice duration and area, iceberg count below 48°N, sea surface temperature (SST), 

vertically averaged temperature and salinity at Station 27, cold intermediate layer (CIL) core 

temperature at Station 27, Newfoundland shelf CIL area and bottom temperature], the cumulated 

sum of the NLCI (cumulative NLCI), day of year of sea ice retreat (henceforth referred to as ice 

timing), capelin and cod catch (NAFO, 2021), and Greenland halibut fall random stratified 

bottom trawl survey index in NAFO divisions 2J3KL (Doubleday, 1981; Smith and Somerton, 

1981). The same datasets were used for analyses on both capelin and cod except for catch, which 

was matched to the target species. 
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EDM Analyses 

As in chapter 1, univariate simplex projections were used to calculate the optimal embedding 

dimension (E) in the range of 1 to 5, and univariate S-Map projections were used to calculate the 

optimal weighting parameter (θ) in the range of 0.01 to 9 for both the capelin acoustic index and 

cod bottom trawl survey index. Capelin and cod biomass indices at optimal E were tested for 

causative relationships against all covariates using convergent cross mapping (CCM). 

Significance of CCM results was tested by producing p-values by comparison to a null 

distribution of 1000 CCMs (Chang et al., 2017) using phase-randomized surrogate datasets 

(Ebisuzaki, 1997). 

Scenario Exploration 

Scenario exploration methodology was adapted from Deyle et al. (2016). Data were time-delay 

embedded (i.e., separated into lags) and converted to normalized anomalies before scenario 

exploration. For both cod and capelin, multivariate S-Maps predicting the biomass index (B) one 

year in the future (t+1) were fit using the previously calculated optimal weighting parameter θ 

and E lags of the biomass index and the most recent year of each covariate (Cov) which returned 

significant CCM results: 

𝐵(𝑡 + 1) = 𝑓[𝐵(𝑡), 𝐵(𝑡 − 1),… (𝐵(𝑡 − (𝐸 − 1)), 𝐶𝑜𝑣(𝑡)], 

These S-Maps were then used to run predictions on the same dataset with the covariate perturbed 

positively and negatively by a set value (Δ): 

𝐵+(𝑡 + 1) = 𝑓[𝐵(𝑡), 𝐵(𝑡 − 1),…𝐵(𝑡 − (𝐸 − 1)), 𝐶𝑜𝑣(𝑡) + ∆],   (1) 

𝐵−(𝑡 + 1) = 𝑓[𝐵(𝑡), 𝐵(𝑡 − 1),…𝐵(𝑡 − (𝐸 − 1)), 𝐶𝑜𝑣(𝑡) − ∆],  (2) 
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Δ values of 0.5 and 1 (corresponding to half a standard deviation and one standard deviation) 

were used, yielding four perturbation scenarios. The magnitude and direction of each covariate’s 

influence on the biomass indices per change in the covariate (henceforth referred to as ΔB/ΔCov) 

were calculated by subtracting the positive perturbation predictions by the negative perturbation 

predictions, and dividing by the total perturbed difference in the covariate to get a rate, for each 

year in the time series: 

∆𝐵

∆𝐶𝑜𝑣
=

𝐵+(𝑡+1)−𝐵−(𝑡+1)

2∆
,    (3) 

Where 2Δ = [Cov(t) + –] – [Cov(t) - Δ]. Boxplots of ΔB/ΔCov for all covariate and Δ 

combinations were compared to assess the relative magnitude and overall direction of the 

influence of each covariate on capelin and cod biomass indices. For each covariate and Δ 

combination, time series plots of B+ and B-, and plots of ΔB/ΔCov against the covariate were 

produced to assess the relationship between the value of the covariate and its resulting influence 

on biomass, and how this influence changed over time and with the value of the covariate. All 

models used the full dataset, and post-collapse and pre-collapse points were distinguished in 

plots for ease in detecting differences in patterns before and after the regime shift. 

2.3 Results 

CCM testing results are in Table 2.1. CCM testing returned significant results for catch, 

Greenland halibut biomass, the cumulative NLCI, and SST across both capelin and cod. Ice 

timing and air temperature also returned significant CCM results for capelin. No covariates 

returned significant results for cod and not for capelin. Cod and capelin also returned significant 

cross-map results against each other.  
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SST, cumulative NLCI, Greenland halibut biomass, and catch scenario explorations revealed 

positive effects on both capelin and cod (Figure 2.1, Figure 2.2). Capelin and cod also had 

primarily positive effects on each other. Air temperature and ice timing effects were slightly 

negative overall but were generally weak and outlier driven. For both cod and capelin, catch and 

cumulative NLCI had the largest effects on ΔB/ΔCov, followed by their effects on each other. 

The positive effects of SST and Greenland halibut on ΔB/ΔCov were weaker and more outlier-

driven (Figure 2.1, Figure 2.2). 

In scenario explorations using climatic covariates, capelin generally benefitted from warming 

climate during the collapsed period and were affected minimally or negatively by warming 

climate in the pre-collapse period. Perturbing SST upwards led to predictions of several small 

recoveries throughout the post-collapse period, and there was a clear positive relationship 

between ΔB/ΔSST and SST at high SST in the post-collapse period (Figure 2.3). Conversely, 

there was a negative relationship between SST and ΔB/ΔSST in the pre-collapse period, which 

also extended into the brief recovery of capelin in the mid 2010s (Figure 2.3). Increased 

cumulative NLCI decreased capelin predictions before the collapse, increased them in the early 

1990s and from 2005 to 2019, had no effect from 1995 to 2005 (Figure 2.4). This pattern is 

reflected in ΔB/ΔCNLCI as no effect at low cumulative NLCI, to increasing ΔB/ΔCNLCI with 

cumulative NLCI, which eventually turns downwards and becomes negative at the high 

cumulative NLCI values of the pre-collapse period (Figure 2.4). Air temperature and ice timing 

similarly negatively affected ΔB/ΔCov when increased during the pre-collapse period, though 

ΔB/ΔCov was slightly increased by increased air temperature and decreased by increased ice 

timing for most of the post-collapse period (Figure 2.5, Figure 2.6).  
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Capelin surprisingly tended to benefit both from increased presence of predators and increased 

catch in scenario explorations,. Through the entire time series, capelin predictions and ΔB/ΔCov 

consistently increased with increased catch and increased cod biomass (Figure 2.7, Figure 2.8). 

Increased Greenland halibut biomass increased capelin biomass predictions except for the pre-

collapse period using the 0.5 standard deviation perturbation, for which this trend was flipped 

(Figure 2.9). ΔB/ΔGH trended upwards with Greenland halibut biomass at high values, though 

the relative lack of years contributing to this pattern suggests it could be due to chance (Figure 

2.9). 

Across all scenarios explored, Atlantic cod biomass predictions consistently increased with both 

climatic and ecological covariates. Cod biomass predictions increased with SST in the pre-

collapse period and slightly during the post-collapse period and showed a clear increasing pattern 

of ΔB/ΔSST with SST over both periods (Figure 2.10). This pattern was repeated in cumulative 

NLCI (Figure 2.11). Increased catch perturbations resulted in increased cod predictions in the 

years before and immediately after the collapse, and immediately before and during the slight 

recovery period in the mid 2010s (Figure 2.12). Perturbing capelin biomass resulted in cod 

biomass predictions increasing with capelin in every year of the time series, though this increase 

was much larger in the post-collapse period (Figure 2.13). There was no clear pattern between 

capelin biomass and cod ΔB/ΔCapelin (Figure 2.13). Lastly, increasing Greenland halibut 

biomass similarly greatly increased cod predictions in the pre-collapse period and slightly 

increased them in most of the post-collapse period, but conversely exhibited a decreasing pattern 

in ΔB/ΔGH with increasing Greenland halibut biomass (Figure 2.14).  
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2.4 Discussion 

In this study, EDM scenario exploration was able to identify and rank drivers of both capelin and 

cod biomass, and illuminate clear relationships between these biomass drivers and the direction 

and degree to which they drive biomass, though it should be noted that this is predicated on the 

assumption that the relationships between cod and capelin biomass and the other covariates are 

correctly characterized by the S-Map model. For both cod and capelin, I found long-term 

climatic change as measured by the cumulative NLCI was the strongest climatic driver of 

biomass. Capelin and cod biomass were the strongest ecological drivers of each other outside of 

catch, which was likely confounded by it’s use in the model as a driver of biomass when it is 

more likely to be driven by biomass. I also found that warming climate was generally beneficial 

for both capelin and cod across all climatic drivers, though the magnitude of this benefit, and the 

conditions in which it manifested differed. For example, warming climate as measured by the 

cumulative NLCI had a negligible effect on either cod or capelin until a certain threshold was 

reached, and capelin exhibited a second threshold after which warming climate began to have a 

negative effect on biomass, where cod did not (Figure 2.4, Figure 2.11). Conversely, ecological 

drivers were less consistent, exhibiting a variety of different ΔB/ΔCov patterns. 

The main weakness of EDM scenario exploration iI IhiI study is its inability to discern 

directionality in closely related time series. Resulting violations in the assumption that the S-Map 

model is suitable for predicting biomass based on the covariates can cause spurious results, 

which may be further exacerbated by covariate perturbations outside the range of the observed 

data. This weakness is most obvious in the positive relationship returned between catch and 

biomass for both capelin and cod. Logically, it would be expected that catch would lead to 

decreased biomass, especially for the 2J3KL Atlantic cod stock, which has a well-documented 
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history of being overfished (DFO, 2012; Gomes et al., 1995; NAFO, 2010). The positive 

relationship returned by scenario exploration was extremely large in comparison to actual cod 

dynamics and is a statistical artifact likely associated with cod catch acting as an index of cod, 

leading to high cross-correlation between catch and cod (Figure 1.5). Similarly, this also 

represents a weakness of using raw catch data to assess fisheries. It is possible that a different 

relationship could be detected using other metrics which better account for the proportion of 

fishing mortality being experienced by the stock, such as fishing effort or catch per unit effort 

(e.g. Giron-Nava et al., 2021). This serves as an avenue for potential future research into the 

utility of EDM scenario exploration in fisheries management. 

Another potential weakness of scenario exploration in my study is my focus on single covariate 

models. In reality, many environmental and ecological covariates may be constantly changing in 

response to each other, which complicates predictions in comparison to the single covariate tests 

I perform in this study. Focusing on single covariates may result in missed synergistic and/or 

antagonistic interactions between covariates – for example, I show that an increase in cumulative 

NLCI benefits cod, but this does not include how the increase in capelin I also associate with an 

increase in cumulative NLCI would affect cod alongside it. This also applies to covariates which 

are not accounted for in my model. As an example, it remains to be seen whether a return to the 

pre-collapse condition in long-term climate state would result in recovery for capelin and cod, or 

if such a recovery would be hampered by other mechanisms, such as their altered life history 

strategies since the collapse. As these time series grow and experience new phases, these 

interactions, and the ability of EDM to account for them, will become clearer. Though careful 

thought would be required to perturb multiple covariates realistically, multivariate scenario 
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exploration remains an interesting avenue for potential research into the use of EDM scenario 

exploration as a tool for stock assessment. 

Regardless, this study shows EDM scenario exploration can be utilized to predict how species 

may react to environmental and/or ecological changes in their environment. This information can 

be applied in the context of management to predict how species may respond to changes in the 

environment, management actions, or a combination of both (e.g. Deyle et al., 2013). For 

example, EDM scenario exploration could be combined with climate change projections (e.g. 

Deyle et al., 2022), fishing scenarios (e.g. Giron-Nava et al., 2021), or some combination of both 

to predict how species may react to different stressors, or combinations of stressors. In the 

context of cod and capelin, future research into scenario exploration comprising more detailed 

catch information, more species, and more specific potential future scenarios would be beneficial 

to fully explore the potential of scenario exploration as a tool for their management.
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2.5 Tables 

 

Table 2.1  p-values for CCM significance testing                                                                   

against all covariates for both capelin and Atlantic                                                                          

cod. * indicates significant result (p < 0.05). 

Covariate Capelin Atlantic Cod 

Catch <0.001* <0.001* 

Capelin  0.039* 

Atlantic Cod <0.001*  
Greenland Halibut 0.015* 0.008* 

Cumulative NLCI <0.001* <0.001* 

Annual NLCI 0.220 0.107 

Winter NAO 0.163 0.342 

CIL Area 0.807 0.334 

Sea Ice 0.594 0.162 

Icebergs 0.853 0.566 

Ice Timing 0.009* 0.673 

Air Temperature 0.026* 0.060 

SST 0.001* 0.028* 

Bottom Temperature 0.149 0.089 

S27 Temperature 0.072 0.060 

S27 Salinity 0.085 0.640 

S27 CIL 0.269 0.456 
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2.6 Figures 

 

 

Figure 2.1  Boxplots of predicted change in normalized capelin acoustic index per change in 

covariate (ΔB/ΔCov) calculated from EDM scenario exploration using ±0.5 standard deviation 

(top, blue) and ±1 standard deviation (bottom, red) perturbation scenarios.  
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Figure 2.2  Boxplots of predicted change in normalized cod fall bottom trawl survey biomass 

index per change in covariate (ΔB/ΔCov) calculated from EDM scenario exploration using ±0.5 

standard deviation (top, blue) and ±1 standard deviation (bottom, red) perturbation scenarios. 
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Figure 2.3  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with SST perturbed positively and negatively by a half standard deviation and a full standard 

deviation from 1984-2019 (top), and scatterplot of the difference between positive perturbation 

predictions and negative perturbation predictions for each year in the time series plotted against 

normalized SST. 
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Figure 2.4  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with the cumulative NLCI perturbed positively and negatively by a half standard deviation and a 

full standard deviation from 1984-2019 (top), and scatterplot of the difference between positive 

perturbation predictions and negative perturbation predictions for each year in the time series 

plotted against the normalized cumulative NLCI. 
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Figure 2.5  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with air temperature perturbed positively and negatively by a half standard deviation and a full 

standard deviation from 1984-2019 (top), and scatterplot of the difference between positive 

perturbation predictions and negative perturbation predictions for each year in the time series 

plotted against normalized air temperature. 
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Figure 2.6  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with ice timing perturbed positively and negatively by a half standard deviation and a full 

standard deviation from 1984-2019 (top), and scatterplot of the difference between positive 

perturbation predictions and negative perturbation predictions for each year in the time series 

plotted against normalized ice timing. 
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Figure 2.7  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with capelin catch perturbed positively and negatively by a half standard deviation and a full 

standard deviation from 1984-2019 (top), and scatterplot of the difference between positive 

perturbation predictions and negative perturbation predictions for each year in the time series 

plotted against normalized capelin catch. 
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Figure 2.8  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with the Atlantic cod bottom trawl survey biomass index perturbed positively and negatively by 

a half standard deviation and a full standard deviation from 1984-2019 (top), and scatterplot of 

the difference between positive perturbation predictions and negative perturbation predictions for 

each year in the time series plotted against the normalized cod biomass index. 
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Figure 2.9  Predicted changes in the capelin acoustic index using S-Map scenario exploration 

with the Greenland halibut bottom trawl survey biomass index perturbed positively and 

negatively by a half standard deviation and a full standard deviation from 1984-2019 (top), and 

scatterplot of the difference between positive perturbation predictions and negative perturbation 

predictions for each year in the time series plotted against the normalized Greenland halibut 

biomass index. 
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Figure 2.10  Predicted changes in the Atlantic cod bottom trawl survey biomass index using S-

Map scenario exploration with SST perturbed positively and negatively by a half standard 

deviation and a full standard deviation from 1984-2019 (top), and scatterplot of the difference 

between positive perturbation predictions and negative perturbation predictions for each year in 

the time series plotted against normalized SST. 
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Figure 2.11  Predicted changes in the Atlantic cod bottom trawl survey biomass index using S-

Map scenario exploration with the cumulative NLCI perturbed positively and negatively by a 

half standard deviation and a full standard deviation from 1984-2019 (top), and scatterplot of the 

difference between positive perturbation predictions and negative perturbation predictions for 

each year in the time series plotted against the normalized cumulative NLCI. 
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Figure 2.12  Predicted changes in the Atlantic cod bottom trawl survey biomass index using S-

Map scenario exploration with cod catch perturbed positively and negatively by a half standard 

deviation and a full standard deviation from 1984-2019 (top), and scatterplot of the difference 

between positive perturbation predictions and negative perturbation predictions for each year in 

the time series plotted against normalized cod catch. 
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Figure 2.13  Predicted changes in the Atlantic cod bottom trawl survey biomass index using S-

Map scenario exploration with the capelin acoustic index perturbed positively and negatively by 

a half standard deviation and a full standard deviation from 1984-2019 (top), and scatterplot of 

the difference between positive perturbation predictions and negative perturbation predictions for 

each year in the time series plotted against the normalized capelin acoustic index. 
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Figure 2.14  Predicted changes in the Atlantic cod bottom trawl survey biomass index using S-

Map scenario exploration with the Greenland halibut bottom trawl survey biomass index 

perturbed positively and negatively by a half standard deviation and a full standard deviation 

from 1984-2019 (top), and scatterplot of the difference between positive perturbation predictions 

and negative perturbation predictions for each year in the time series plotted against the 

normalized Greenland halibut biomass index. 
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Summary and Conclusion 

Overall, the results of this thesis show that EDM can be used to model and predict 

Newfoundland shelf capelin population dynamics as well as or better than linear models in most 

cases, though a longer time series and range of dynamics exhibited may be necessary to do so 

reliably in all cases. This thesis also shows EDM is capable of identifying and analyzing 

relationships between capelin dynamics and the forces which drive them. In Chapter 1, I show 

that capelin dynamics are nonlinear, and that in almost all cases, EDM MVE modelling draws 

with or outperforms linear models at predicting changes in capelin biomass using both fits and 

forecasts. Chapter 1 also identifies the cumulative NLCI, SST, ice timing, and Greenland halibut 

biomass as drivers of capelin biomass via CCM, while capelin catch and Atlantic cod biomass 

were in synchronicity with capelin biomass, indicating a strong causative relationship with 

unclear directionality. I expanded on this finding in chapter 2, showing that the cumulative NLCI 

was the strongest clear driver of both capelin and cod population dynamics, with warming 

climate improving capelin and cod biomass predictions. Increased SST resulted in a slight 

increase in capelin and cod biomass predictions, supporting this result. Both species exhibited 

strong positive relationships with each other and with their respective catch, with past literature 

indicating that capelin biomass drives cod biomass, and that catch is driven by biomass for both 

species. 

We also found EDM exhibited similar weaknesses in both chapters. As already mentioned, EDM 

was not able to discern directionality in strong causative relationships without the context of past 

scientific literature. Additionally, the data requirements of EDM were difficult to meet in both 

chapters. Most EDM analyses require ~35-40 time points (Ye et al., 2015a), which is rare in time 
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series with one-year timesteps. This prevented the inclusion of some analyses (post-collapse 

CCM), and limited options for potential covariates. EDM can also struggle with noisy data, as 

evidenced in chapter 1 by the interaction sign and strength analyses and difficulty in predicting 

the mid 2010s recovery in capelin biomass. However, it should be noted that these problems are 

not necessarily limited to EDM. Assigning causality is a complex task, and models alone are not 

sufficient to properly identify and assign such relationships (e.g. Arif and MacNeil, 2022). 

Various improvements to EDM have been or are being developed to combat the limitations of 

EDM listed above and others, including multiview embedding (Ye and Sugihara, 2016), variable 

step-size EDM (Johnson and Munch, 2022), Empirical Dynamic Programming (Brias and 

Munch, 2021), pairwise asymmetric inference (McCracken and Weigel, 2014), multispatial 

CCM (Clark et al., 2015), cross map smoothness (Ma et al., 2014), continuity scaling (Ying et 

al., 2022), and others. Exploring the use of these methods in capelin stock assessment is a 

potential area for future research on this topic. 

This thesis also identifies many other opportunities for further research into the use of EDM for 

stock assessment. For example, nonlinear forecasting models can be used to predict stock 

dynamics and compare results to more traditional forecasting and stock assessment models to 

identify which models are best for the target species and situation(Deyle et al., 2018; Munch et 

al., 2018; Sguotti et al., 2020; Ye et al., 2015a). Similarly, CCM and scenario exploration can be 

used to identify potential environmental, ecological, and anthropogenic covariates of interest and 

the ways in which they influence target species biomass, both of which can be incorporated into 

stock assessment models or management advice (Deyle et al., 2013; Giron-Nava et al., 2021; 

Wang et al., 2020; Wasserman et al., 2022; Zhang et al., 2022). EDM is a versatile set of tools 

and techniques which can be applied to solve a wide range of problems, including improving 
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forecast accuracy, identifying nonlinear effects, identifying driving effects of population 

dynamics, and predicting how those effects may change under different scenarios. Though care 

need be applied to work around its limitations and modelling approaches match objectives, 

EDM’s versatility and ability to account for nonlinear effects make it a very powerful tool for 

fisheries science. 

In the cases of capelin and cod on the Newfoundland shelf, the analyses in this thesis could 

easily be extended to include more or different covariates. This is particularly true of my 

ecological covariates, which I limited to only two species representing two trophic levels in this 

study. Capelin is a keystone prey species which supports a variety of fish, seabird, and mammal 

populations on the Newfoundland shelf, that is dependent on phytoplankton and zooplankton-

derived food sources, and competes for those food sources with other forage fish species and 

larval or juvenile fish of other species. Testing the effects of some or all of these species on 

capelin, and vice versa, is a potential area for future research. This logic also extends to the use 

of other environmental and/or socioeconomic covariates, such as fishing effort, to combinations 

of covariates for predictive modelling and scenario exploration, which I limited to four 

covariates and one covariate at a time respectively, and to perturbation values for scenario 

exploration. As more years of data are collected, more potential covariates and species become 

available for use by EDM, and times series of already available covariates and species become 

more informative. 

In the end, this thesis shows that EDM is a potentially useful tool for Newfoundland shelf 

capelin stock assessment due to its ability to detect and account for nonlinear dynamics, reliably 

outperform linear models at predicting capelin biomass, and identify and clearly define both 

linear and nonlinear relationships between capelin, climate, and other species in the ecosystem. 
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Though EDM has some weaknesses, they are clearly defined, not unique, and can be mitigated 

through the use of advanced EDM methods, application of ecological principles and past 

scientific literature, and by using EDM as part of an ensemble approach alongside other stock 

assessment models and methodologies.  
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