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Abstract

Operon is a characteristic of prokaryotic genomes that enables the co-regulation

of adjacent genes. Identifying which genes belong to the same operon can help in un-

derstanding bacterial gene function and regulation, which can enhance, for instance,

drug development and antibiotic resistance inhibition. There are numerous exper-

imental and computational approaches for operon detection; however, many of the

computational approaches have been developed for a specific target genome or re-

quire specific information only available for a restricted number of bacterial genomes.

Here, we develop a novel general method that directly utilizes RNA-seq reads as a

signal over nucleotide bases in the genome, extracting all the information from the

RNA-seq data. This representation enabled us to employ deep learning techniques

without limitations on species. The final model (OpDetect) demonstrates superior

performance in terms of recall, f1-score and Area Under Receiver Operating Charac-

teristic curve (AUROC) compared to previous approaches. Additionally, it showcases

species-agnostic capabilities, successfully detecting operons even in Caenorhabditis

elegans (C. elegans), the only eukaryotic organism known to have operons.
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Chapter 1

Introduction

In molecular biology, an operon refers to a group of neighbouring genes that are

regulated together by one or more overlapping transcription units, all of which are

transcribed in the same direction and contain at least one common gene. The reg-

ulation of operons is based on transcription units, which are regions of DNA that

encompass the area from the promoter, where transcription is initiated, to the ter-

minator, which marks the end of transcription. Genes within an operon are typically

functionally related or involved in specific biological processes [1, 2, 3, 4].

Operon detection is the task of identifying genes belonging to the same operon

in the genome, which results in mapping the organization of genes and regulatory

networks. This will lead to a better understanding of gene functionality in prokaryotic

genomes [3, 5]. Moreover, it enables the inference of unknown protein functionalities

based on the known functions of co-transcribed genes [6, 7].
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Bacteria, among prokaryotic organisms, are of particular interest due to their

significant impact on the stability of multicellular organisms and ecosystems, with

both beneficial and pathogenic effects. Therefore, comprehending their molecular

functions is crucial. Operons play a critical role in bacteria gene regulation and are

the functional basis of bacterial genome organization. Accordingly, operons have been

identified as targets for drug development and the inhibition of antibiotic resistance

[2, 3]. Detecting operons is particularly relevant for unannotated bacterial genomes,

as it contributes to a better understanding of their genetic makeup and function

[8, 9, 10]. This understanding has broad implications in various fields, including

biological, medical, and environmental sciences [11].

Over the years, significant advancements have been made in experimental and

computational techniques for operon detection in bacterial genomes. These compu-

tational techniques produce high-performance identification mechanisms for vastly

studied and annotated bacterial genomes like Escherichia coli (E. coli) and Bacillus

subtilis (B. subtilis) [7, 12]. However, these methods rely on the accurate annotation

of the target genome sequence, which is not available for all bacteria. Therefore,

providing a species-agnostic system for prokaryotic genome remains a challenge.

This thesis aims to overcome the challenge of identifying operon structures in

diverse bacterial species by developing a generalizable tool for genomic analysis that

enables researchers to uncover the functional organization of genes within bacterial

genomes, with minimum requirements for processed data input.
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The thesis is organized into the following main sections: The Related Work sec-

tion (Chapter 2) delves into existing computational methods, both traditional and

machine learning-based that have been utilized for operon prediction. It discusses

previous approaches and identifies the research gap that motivates the need for the

current study. The Methodology section (Chapter 3) is dedicated to explaining the

process followed in this research. It details the data used for training and evaluation,

the features extracted for model input, and the architecture of the machine learn-

ing model used. The Results section (Chapter 4) covers the benchmarking process

to evaluate the model’s performance across different datasets, and how it compares

to existing methods. Finally, the Conclusion section (Chapter 5) summarizes our

research outcomes and, reiterates the significance of our study’s contributions, and

suggests future research directions.
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Chapter 2

Related Work

Initially, operon detection was performed empirically by human experts. Many oper-

ons were detected using wet lab experimental techniques such as RNA polymerase

footprinting and primer extension or S1 mapping [7]. Another technique is the man-

ual annotation of operons by biologists; they decide the operon regions and bound-

aries based on the sequence features and phylogenetic distances [3]. The results of

experimental methods are highly accurate, and they have produced experimentally

verified datasets of operon-annotated bacterial genomes such as DBTBS[13], Operon

DataBase (ODB)[14], RegulonDB[15], and others [12, 16]. However, due to their

time and resource-intensive nature and reliance on human judgment, the application

of these techniques on a large scale is limited. As a result, computational approaches

have been developed as an alternative means to address these constraints.
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2.1 Computational Methods - Traditional

The first step in designing computational systems is choosing and extracting the

proper features from the genome. There are three main categories of popular features

in the literature: Primary Sequence features, External Data Source features, and

Transcript Expression features [3, 5, 6, 7, 17, 18].

Primary sequence features include characteristics such as intergenic distance and

the presence of transcription signals like promoters or terminators. Intergenic dis-

tance, for example, is often shorter within operons and is widely utilized in operon

detection studies. External Data Source features, such as functional annotation of the

protein products and the conservation of gene sequences across species, are commonly

identified using comparative genomics analysis. External data source features mainly

rely on the accurate annotation of genomes. This makes these features less suitable

for poorly studied genomes. Transcript expression features are based on the idea that

the co-expression of genes increases the likelihood of belonging to the same operon.

Early studies used the microarray technique; however, the growth of RNA-seq has

replaced microarray with RNA-seq data. RNA-seq is a high-throughput sequencing

method that provides a comprehensive quantification of RNA molecules in a given

sample, offering unprecedented insights into gene expression [19].

Conway et al. [4] demonstrated that the only necessary features for operon detec-

tion are transcription signals that bound the operon region (promoters and termina-
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tors), and deep coverage1 of transcript expression data, obtainable using the RNA-seq

technique.

Ref Year
Intergenic

Distance

Promoter/

Terminator

Functional

Annotation

Expression level by

micro-array

Expression level by

RNA-seq

[20] 2002 ✓ - - ✓ -

[21] 2002 ✓ - - ✓ -

[22] 2005 ✓ - ✓ - -

[23] 2010 - ✓ - - ✓

[24] 2014 ✓ ✓ - - ✓

[25] 2014 ✓ - ✓ - -

[26] 2018 - ✓ - - ✓

Table 2.1: Features used in traditional computational methods for operon detection.

As demonstrated in Table 2.1, traditional computational studies have explored

various features for operon detection. Sabatti et al. [20] and Tjaden et al. [21]

were among the first to investigate the use of transcription information in operon

detection. In [22], it is shown how intergenic distance can improve the accuracy of

operon detection. Sharma et al. [23] and Slager et al. [26] specifically focused on

detecting the operons in the genome of human pathogens, respectively Helicobacter

pylori (H. pylori) and Streptococcus pneumoniae (S. pneumoniae). Fortino et al. [24]

performed condition-dependent operon detection by combining the information from

RNA-seq data and genomic sequence features. The algorithm of the Database of

1Deep coverage of transcript expression data refers to the process of generating a substantial

amount of sequencing reads to obtain detailed information about gene expression within a sample.
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Prokaryotic Operons [25] utilizes a combination of linear and non-linear classifiers,

considering various features such as intergenic distance, the presence of a specific

DNA motif in intergenic region, the ratio of gene lengths, the functional similarity

between genes, and the conservation level of the genes’ neighborhood.

2.2 Computational Methods - Machine Learning

2.2.1 Operon-mapper

Operon-mapper[27] is a publicly available web-based tool, accessible at https://

biocomputo.ibt.unam.mx/operon_mapper/, that enables the prediction of operons

in prokaryotic genomes. It utilizes computational algorithms derived from the Prokary-

otic Operon Database (ProOpDB)[28, 29]. ProOpDB uses a two-layer neural network

approach that incorporates intergenic distance and protein functional relationship

scores of the genes, obtained from STRING[30]. It was trained and evaluated using

E. coli and B. subtilis . The label sources and reported performances are available in

Table 2.2.

Organism Database Accuracy Sensitivity Specificity

E. coli RegulonDB (version 6.4)[16] 94.6% 95.2% 93.9%

B. subtilis DBTBS[13] 93.6% 92.9% 94.9%

Table 2.2: Reported performance of ProOpDB obtained from [29].
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2.2.2 Rockhopper

Rockhopper[7], available at https://cs.wellesley.edu/~btjaden/Rockhopper/, is

a computational tool developed for analyzing RNA-seq data and predicting bacterial

operons. It employs a Näıve Bayes model that leverages intergenic distances and gene

expression levels extracted from RNA-seq data to make precise operon predictions.

It has been trained and evaluated using E. coli , B. subtilis and H. pylori ; the label

sources and reported performances are in Table 2.3.

Organism Database Sensitivity Specificity

E. coli RegulonDB (version 6.4)[16] 90% 81%

B. subtilis DBTBS[13] 88% 96%

H. pylori [23] 95% 88%

Table 2.3: Reported performance of Rockhopper obtained from [7].

2.2.3 Operon Hunter

Operon Hunter[3] is a deep learning approach to predict operons based on a visual

representation of genomes. The top six species with the most experimentally con-

firmed operons from the ODB[14] were obtained to construct the training data, see

Table 2.4. Visual representations of the genomes were obtained using the Compare

Region Viewer service provided by PATRIC[31], see Fig.2.1.

To address the limited size of the training data, operon hunter uses transfer learn-

ing to re-train the ResNet18 model, which is trained on ImageNet from FastAI[32].
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The final model preserves the visual recognition strengths of the original ResNet18

and uses it to detect whether a pair of genes are in the same operon or not. The

performance of Operon Hunter is reported in Table 2.5.

Organism Operon pairs Non-operon pairs

E. coli 1443 1322

Listeria monocytogenes (L. monocytogenes) 806 780

Legionella pneumophila (L. pneumophila) 611 791

Corynebacterium glutamicum (C. glutamicum) 525 396

Photobacterium profundum (P. profundum) 447 544

B. subtilis 474 457

Total 4306 4290

Table 2.4: Details of the data used to train Operon Hunter.

Figure 2.1: Visual representations by PATRIC. Arrows represent genes and their sizes

indicate their actual relative length proportions. Red and Blue arrows represent the

target paired genes, the first row is the query genome, and each other row is a region

in an evolutionary close genome. This figure is from [3] (CC BY 4.0).
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Organism Database Sensitivity Specificity

E. coli ODB[14] 88% 95%

B. subtilis ODB[14] 97% 88%

Aggregate ODB[14] 92% 92%

Table 2.5: Reported performance of Operon Hunter obtained from [3].

In contrast to previous studies, Operon Hunter excludes the genome they aimed to

evaluate from the training data. This exclusion is crucial as it prevents data leakage

and over-optimistic evaluation of the model. Data leakage refers to the unintended

transfer of information from the training data to the evaluation phase of a model,

which can misleadingly boost performance metrics [33]. Moreover, the performance of

a model can be misleading when the model is biased on patterns specific to the training

data and is assessed only with similar data, the same organism in this scenario. These

unintentional biases can lead to an over-optimistic evaluation of the model. A clear

separation of train and test data must be conducted in order to guarantee a robust

assessment of machine learning models.

In addition to addressing reliable evaluation concerns, excluding the genome from

the training data verifies the generalizability of models. The variation between the

genome of different organisms can be significant; by evaluating the model on an unseen

genome, the model’s capacity to handle genomic variations is tested.

Operon Hunter introduces a novel approach to represent a genome that preserves

features such as gene conservation, strand direction, size, and intergenic distance,
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which were broadly used for operon detection in the literature. By leveraging the

power of deep learning, Operon Hunter achieves performance on par with previous

works in the field. This innovative approach unlocks the potential of utilizing deep

learning techniques for accurate operon prediction.

Operon Finder [34], available at https://www.mefyi.com/operon, is a user-friendly

web service that builds upon Operon Hunter. Operon Finder utilizes a similar deep

learning-based model to predict operons in prokaryotic genome. However, it improves

upon the implementation of the prediction pipeline and model architecture to enhance

computational efficiency and user experience.

2.2.4 OperonSEQer

OperonSEQer[11] is a voting system that combines six machine learning algorithms,

including Logistic Regression with L2 ridge regularization, Support Vector Machine

with an RBF kernel, Random Forest, XGBoost and Multi-Layer Perceptron. This

system takes RNA-seq reads as input and extracts Kruskal-Wallis [35] statistics and

p-values for gene pairs and their intergenic regions from the raw reads to determine

whether the read counts of the genes and their intergenic region are statistically dif-

ferent. These features serve as input for each of the algorithms in the system. The

operon labels used for training OperonSEQer were obtained from MicrobesOnline[36],

a computational database known for its extensive collection of organisms. The train-

ing RNA-seq data used in this system encompassed eight different organisms in diverse

11
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environments: E. coli , B. subtilis , Clostridium difficile (C. difficile), Burkholderia

pseudomallei (B. pseudomallei), Staphylococcus aureus (S. aureus), Synechococcus

elongatus (S. elongatus) PCC 7942, Synechocystis sp. PCC 6803, Synechococcus sp.

PCC 7002.

Figure 2.2: From top to bottom, examples of relative expression levels in operon

pairs, non-operon pairs (both genes expressed), and non-operon pairs (only one gene

expressed). Here, A and B indicate genes, and the arrows indicate the direction of

their transcription. Actual data refers to read counts observed from RNA-seq data.

This figure is from [11] (CCO 1.0).

The Kruskal-Wallis statistic was chosen as the feature extraction method based

on observing RNA-seq signals between adjacent genes, visualized in Fig.2.2. Based

on this observation, the expression levels of adjacent genes can imply whether they

are in the same operon. OperonSEQer focuses on gene pairs where at least one of the

genes exhibits sufficient expression, typically defined as an average of 10 reads.

The reported performance of OperonSEQer is recall and specificity of at least 80%,

with respect to MicrobesOnline labels. The validation data used for assessing the

12



performance of OperonSEQer consists of RNA-seq reads from four of the organisms

included in the training process. Additionally, the individual models’ performances

with respect to MicrobesOnline labels, are presented in Table 2.6.

Algorithm Recall Specificity

Support Vector Machine 91% 84%

Multilayer Perceptron 92% 81%

Logistic Regression with Ridge 93% 87%

Random Forest 95% 94%

Gaussian Näıve Bayes 95% 80%

XGBoost 99% 99%

Table 2.6: Reported validation performance of OperonSEQer by [11].

2.3 Research Gap and Objectives

Operon detection plays a crucial role in understanding the organization and regulation

of bacterial genomes. Previous methods have demonstrated accurate results for well-

studied species such as E. coli and B. subtilis . However, developing a system that

detects operons in any bacterial genome remains a significant challenge. Therefore,

this research aims to design a species-agnostic system that accurately detects operons

in bacterial genomes.

Previous models for operon detection exhibit several limitations, which necessitate

further research in this field:
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• Lack of Systematic Assessment of Models: The assessment of operon

detection models requires more consistency. Different models utilize various

reference datasets and measurements, making comparing and selecting the most

accurate approach difficult. Moreover, some studies evaluate models on the

same organisms used for training, resulting in biased performance estimates

and limited generalizability.

• Training on Computationally Derived Labels: Certain models, like Oper-

onSEQer, utilize computationally derived labels for training. This approach

can lead the model to imitate the decisions made by another computational

algorithm, MicrobesOnline. Consequently, the reported performances may not

accurately reflect real-world scenarios.

• Constraining Feature Selection: Some approaches, like Operon Hunter, in-

corporate features from external data sources, but these features are typically

only available for well-studied organisms. As a result, the generalizability of

these models to less-studied bacterial genomes is limited. On the other hand,

Primary Sequence features and Transcript Expression features are readily avail-

able for most bacteria.

This research aims to address the limitations of previous models for operon detec-

tion in bacterial genomes. To achieve this, the following objectives will be pursued:

• Utilization of Accessible Input Data: Use genome sequence and RNA-seq
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data only, which are commonly accessible for a wide range of bacteria.

• Better Assessment of Models: Develop a standard evaluation framework

for operon detection models. This involves standardizing reference datasets and

evaluation measures. Establishing a systematic evaluation process can enhance

the reliability of model assessments and facilitate model comparisons.

• Utilization of Experimentally Verified Labels: Incorporate existing ex-

perimentally verified operon labels to enhance the real-world performance and

reliability of the operon detection system. The model can learn from accurate

operon structures by integrating reliable experimental data, leading to improved

prediction accuracy and increased confidence in the system’s output.

• Employment of Deep Learning Techniques: Employ deep learning tech-

niques while ensuring high usability. Operon Hunter demonstrated the possibil-

ity of using deep learning techniques for operon detection using Visual represen-

tations from PATRIC. However, this study will avoid the constraints imposed

by specific data sources that limit usability.

• Development of a Generalizable Model: Strive to develop a genome-

agnostic operon detection model to detect operons in bacterial genomes across

different species effectively. Focus on creating a model that can adapt and per-

form well even in the presence of dynamic changes in operon structures under

varying environmental conditions.
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Chapter 3

Methodology

The feature representation pipeline and machine learning model in this study are

developed using Python (version 3.10.2), and the list of used packages with their

versions is available in Table 3.1.

Package Version Package Version Package Version

numpy 1.23.2 pandas 1.4.0 matplotlib 3.7.0

scipy 1.9.3 tensorflow 2.11.0 scikit learn 1.2.1

pydot 1.4.2 Orange3 3.30.0

Table 3.1: List of Python packages with their versions.
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Figure 3.1: Data Gathering workflow

3.1 Data

This study utilizes genome sequences, RNA-seq data, and operon annotations as the

primary data sources (Fig.3.1). The genome sequence and annotation files are ob-

tained from the RefSeq[37] database, with a selection of seven bacterial organisms

used for training purposes and another seven organisms for the testing process. Con-

sidering the dynamic nature of transcription and the potential variations in operon

structures under different environmental conditions [7], RNA-seq data for up to six

samples of each organism are used. The Sequence Read Archive (SRA)[38] and the

European Nucleotide Archive (ENA)[39], the sources of this data, are well-known for

storing, sharing, and providing access to high-throughput sequencing data. Detailed

information on organisms and their accession codes for genome sequences and RNA-

seq data are available in Table 3.2. Operon annotations are obtained from ODB, the

fourth version of OperonDB introduced by [14]. This curated database, available at
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A) fastp -i in.R1.fq [-I in.R2.fq] -o out.R1.fq [-O out.R2.fq]

--cut_front_window_size 1 --cut_front_mean_quality 3

-r --cut_right_window_size 4 --cut_right_mean_quality 15

B) samtools view -b -o BAM_file.bam SAM_file.sam

samtools sort BAM_file.bam -o sorted_BAM_file.bam

C) bedtools genomecov -d -ibam sorted_BAM_file.bam > read_counts.bed

Figure 3.2: A) Fastp command. The -I and -O option are used for paired-end data.

B) Commands to convert SAM file to BAM and sort it. C) Command to extract read

counts from BAM file.

the website https://operondb.jp/, contains experimentally known operons. The

number of experimentally verified operon pairs in ODB is in Table 3.3.

The initial steps in processing the data involve trimming and filtering the raw

sequencing data in FASTQ format. This process is performed using fastp (ver-

sion 0.23.1)[40], a reliable tool for quality control and preprocessing RNA-seq reads

by eliminating low-quality reads and adapter contamination. The trimmed and fil-

tered FastQ files are then aligned to the reference genomes using HISAT2 (version

2.2.1)[41] with default arguments. HISAT2 employs a mapping algorithm that ensures

the precise assignment of sequencing reads to their corresponding genomic locations.

RNA-seq read coverage for each genome base was extracted from aligned reads using

SAMtools (version 1.17)[42] and BEDtools (version 2.30.0)[43]. The resulting base

coverages, along with the operon labels obtained from ODB, form the basis for our
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feature representation. The specific employed commands are detailed in Fig.3.2.

Organism RNA-seq

Training

Name Genome Study Samples Ref

B. subtilis subsp. subtilis str. 168 NC 000964.3
GSE179533 SRR15049591 SRR15049592 SRR15049593 [44]

E-MTAB-10658 ERR6156944 ERR6156945 ERR6156946 [45]

C. glutamicum ATCC 13032 NC 006958.1
GSE120924 SRR7977557 SRR7977561 SRR7977565 [46]

E-MTAB-8070 ERR3380462 ERR3380465 ERR3380468 [47]

E. coli K-12 substr. MG1655 NC 000913.2
GSE65642 SRR1787590 SRR1787592 SRR1787594 [48]

GSE114917 SRR7217927 SRR7217928 SRR7217929 [49]

H. pylori 26695 GCA 000008525 GSE94268 SRR5217496 [50]

L. pneumophila str. Paris NC 006368.1 E-MTAB-4095 ERR1157043 ERR1157044 ERR1157045 [51]

L. monocytogenes EDG-e NC 003210.1 GSE152295
SRR11998208 SRR11998211 SRR11998214

[52]
SRR11998217 SRR11998220 SRR11998223

Mycoplasma pneumoniae (M. pneumoniae) M129 NC 000912.1 E-MTAB-8537
ERR3672190 ERR3672191 ERR3672192

[53]
ERR3672193

Validation

P. profundum SS9
NC 006370.1,

NC 006371.1
GSE38259 SRR500950 SRR500951 [54]

Agrobacterium fabrum (A. fabrum) str. C58
NC 003062,

NC 003063
GSE173921 SRR14432343 SRR14432344 SRR14432345 NA

Borrelia burgdorferi (B. burgdorferi) B31 NC 001318.1 GSE152295 SRR11997800 SRR11997801 SRR11997802 [52]

Bradyrhizobium diazoefficiens (B. diazoefficiens)

USDA 110
NC 004463.1 GSE163004 SRR13238987 SRR13238988 SRR13238989 [55]

Pseudomonas aeruginosa (P. aeruginosa) PAO1 NC 002516.2 GSE152295 SRR11998427 SRR11998428 SRR11998429 [52]

Yersinia pestis (Y. pestis) CO92 NC 003143.1 PRJNA384395 SRR5489122 SRR5489125 NA

C. elegans GCF 000002985.6 GSE149300 SRR11605370 SRR11605378 SRR11605385 NA

Table 3.2: Data used in this study.
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Train Validation

Organism Operon pairs Organism Operon pairs

E. coli K-12 substr. MG1655 1726 C. elegans 1184

C. glutamicum ATCC 13032 1077 P. profundum SS9 676

L. monocytogenes EDG-e 1031 P. aeruginosa PAO1 67

L. pneumophila str. Paris 877 B. burgdorferi B31 20

H. pylori 26695 744 B. diazoefficiens USDA 110 15

B. subtilis subsp. subtilis str. 168 644 A. fabrum str. C58 14

M. pneumoniae M129 246 Y. pestis CO92 6

Total 6345 Total 1982

Table 3.3: Number of operon pairs in each organism, from ODB. As we

use the same database for operon annotations as Operon Hunter, this table

can be compared with Table 2.4. This comparison shows we have increased

the number of species and operon pairs by using fewer constraints toward

organisms. Moreover, C. elegans is the only known eukaryote whose genome

is organized in operons. We further evaluated our model’s generalizability by

testing its performance on this non-bacterium organism.

3.2 Feature generation

The feature representation used in this study draws inspiration from signal processing

techniques, particularly the work of [56] in classifying human activities using signals

from wearable sensors. However, instead of analyzing signals over time, we focus on

the RNA-seq read counts across nucleotide bases in a genome. In our case, the differ-

ent sensors correspond to multiple samples of the same organism. This perspective
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allows us to leverage signal processing advancements for our task, operon detection.

By adopting this representation, we aim to maximize the utilization of informa-

tion from RNA-seq data. Previous approaches often relied on statistical analyses

of RNA-seq data, which by summarizing the data with statistics, removed poten-

tial informative patterns from the input data. Our feature representation enables us

to not only use this information but also to combine them with primary sequence

features, such as gene length, gene borders, and intergenic distances. Another ad-

vantage of our feature representation is the compatibility of the final dataset’s shape

with convolutional neural network architectures which allows us to take advantage of

advancements in this field.

The features used in our model are derived from read counts per base of the

genome, and the operon labels obtained from ODB. To construct the feature repre-

sentation, we follow a step-by-step process:

1. Grouping Reads: The read counts for each gene are grouped using genome

annotations, which specify each gene’s start and end bases. We extract the

corresponding portion of the read count data from the starting base to the end

base of each gene and put the read counts in a vector.

2. Pairing Genes: The vector of read counts of consecutive genes are paired up,

and their intergenic region’s read counts are extracted by assembling a vector

for each gene pair that includes the read counts from the first gene’s end base

to the second gene’s start base. This process is done separately for each strand
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(forward and reverse) to ensure that genes from different strands are not paired

together. The read counts vector for each pair consists of [first gene, intergenic

region, second gene].

3. Handling Samples: The Pairing Genes process is repeated for up to six sam-

ples for each organism. If an organism has fewer than six samples, the available

samples are duplicated to fill the remaining slots, which ensures consistency

across all organisms, with each gene pair having six samples.

4. Resampling: All vectors are resampled so that the total size of genes and

their intergenic distance is a fixed size of 150. The relative size of each part

is calculated, and the vectors of genes and intergenic regions are resampled to

these sizes. This step ensures uniform array sizes across all gene pairs. Also, as

the relative length of genes and their intergenic region is reflected, these primary

sequence features are built-in into the input.

5. Scaling: After resampling, we perform scaling to transform the gene pairs’ read

counts to a range of 0 to 255. This scaling is carried out because we ultimately

treat the gene pairs as visualizations akin to images. Scaling the read counts to

the image range allows us to interpret and analyze the data effectively.

6. Constructing Channels: Next, we construct separate channels for each part

of the gene pairs by padding the vectors with zeros to replace the other parts.

By doing so, we create arrays where the gene of interest retains its original
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values while the locations of the other parts are filled with zeros. For example,

the vector of the first gene in each pair starts with the read counts of that gene,

followed by zeros for the length of the intergenic region and the second gene.

This process makes each part’s final length to be the fixed size we determined

earlier, 150. This construction of separate channels allows us to treat each

vector as an independent entity within our feature representation. It parallels

the concept of RGB channels in images, where each channel emphasizes different

aspects of visual information. In our case, the separate channels highlight the

first gene, intergenic regions, and second gene of the gene pair, respectively.

7. Final Shape: The resulting vector for each gene pair has a shape of (resample

size, number of samples, number of vectors). Hence, the shape of each gene

pair’s vector in the data is (150, 6, 3); As we use the vectors for two neighbouring

genes and their intergenic region, the number of vectors is three.

8. Labelling: Labels are assigned to each gene pair based on the operon annota-

tion from ODB. Gene pairs labelled as 1 are in the same operon, while pairs

labelled as 0 are not. Pairs labelled as 2 indicate that at least one gene is

not mentioned in the annotation file, meaning there is insufficient experimental

evidence to determine their operon relationship. Gene pairs with label 2 are

excluded from the training data. Note that label 2 is only used for filtering gene

pairs. The size of the training data and each label is in Table 3.4.
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Label Operon(1) Non-operon(0) Unknown(2)

Number of gene pairs 6345 4030 9828

Table 3.4: The size of each label class in our training data. Labels 0 and 1 are used

to train the model, making the final size of train data 10375 gene pairs.

Figs. 3.3, 3.4, and 3.5, illustrate examples of the data visualization obtained from

our processing pipeline, showcasing different labels. These visualizations utilize a

colour scheme where red, green and blue represent the first gene, the intergenic region,

and the second gene. Each figure consists of a series of subfigures, with six subfigures

displaying the read count signals over nucleotide bases for each sample corresponding

to the gene pair. As observed in Fig.2.2, the transcription levels of genes and their

corresponding intergenic regions align with their presence in the same operon.
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Figure 3.3: Example of data visualization with label Operon(1) in C. glutamicum

ATCC 13032. The top six plots show the resampled read counts for the first gene

(red), intergenic region (green) and second gene (blue). The pattern in this sample

resembles the first example in Fig. 2.2

.

25



Figure 3.4: Example of data visualization with label Non-operon(0) in E. coli K-12

substr. MG1655. The top six plots show the resampled read counts for the first gene

(red), intergenic region (green) and second gene (blue). The pattern in this sample

resembles the second example in Fig. 2.2

.
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Figure 3.5: Example of data visualization with label Non-operon(0) in

M. pneumoniae M129. The top six plots show the resampled read counts for the

first gene (red), intergenic region (green) and second gene (blue). The pattern in this

sample resembles the third example in Fig. 2.2

.
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3.3 Model

Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), is the deep

learning architecture employed by [56]. It combines the strengths of two popular

neural network models, Convolutional Neural Network (CNN) and Long Short-Term

Memory (LSTM) [57], to capture both spatial and temporal dependencies in data.

In the context of this study, this fusion of architectures proves beneficial for operon

detection, allowing for efficient and accurate analysis of the underlying sequential

patterns in RNA-seq data.

The CNN component of the architecture is responsible for extracting spatial fea-

tures from the input data. CNNs are widely used in image recognition tasks, as they

are adept at detecting patterns and structures within the data. By applying convolu-

tional filters to the input data, CNNs can effectively learn hierarchical representations,

enabling them to identify meaningful features.

The LSTM component, on the other hand, is a specialized type of recurrent neural

network (RNN) designed to model and capture temporal dependencies in sequential

data. LSTMs are particularly effective in processing and understanding time series

data, as they can remember information from previous time steps and utilize it to

make predictions. This memory capability allows LSTMs to handle long-range de-

pendencies, making them suitable for tasks involving sequential patterns.

Self-attention mechanism by [56] is a notable extension to CNN-LSTM architec-

ture. This mechanism enhances the model’s ability to focus on informative features
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within the data by assigning weights to different elements based on their relevance.

3.3.1 Architecture

The CNN-LSTM architecture that is utilized in this study includes a CNN, a Lambda,

an LSTM, an Attention, and a Dense layer, respectively.

The CNN layer functions as a feature detector, extracting spatial patterns from

the input data. It scans the data and identifies relevant features that are crucial for

understanding the underlying structure. A Lambda layer is incorporated to ensure a

seamless transition between the CNN and LSTM layers. Its purpose is to reshape the

output from the CNN layer, making it compatible with input into the LSTM layer.

The LSTM layer plays a critical role in capturing the sequential dependencies present

in the data. Its ability to remember information from previous steps allows it to

predict future steps. To further enhance the model’s performance, an Attention layer

is included. This layer assigns weights to different elements of the sequence based on

their relevance, enabling the model to focus on important regions within the data.

The dropout regularization technique is employed to prevent overfitting, which is a

common problem in deep learning models. Dropout randomly sets a fraction of the

input units to 0 at each training step, forcing the model to learn more robust and

generalized representations. This regularization technique helps prevent the model

from relying too heavily on specific features or patterns in the training data, thereby

improving its ability to generalize to new, unseen data. Finally, the Dense layer takes
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Figure 3.6: Architecture. (None, 150, 6, 3) specifies that the CNN model can accept

input data with variable batch sizes (None), where each sample has a length of 150

elements (resample size), a height of 6 rows (number of samples), and a width of 3

columns (number of vectors). The Lambda layer is used to adjust the shape of the

output from the CNN layer to input for the LSTM layer.
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the processed information from the previous layers and generates the final binary

output and the classification result. The architecture is illustrated in Fig.3.6.

3.3.2 Training

During the training process, the dataset consisted of 6,289 gene pairs labelled as 1,

indicating that they belonged to the same operon, and 3,998 gene pairs labelled as 0,

indicating that they did not belong to the same operon (Table 3.4). The remaining

9,765 gene pairs labelled as 2 were excluded from the training data to prevent the

injection of false information into the model, as these gene pairs had incomplete

information, making it unclear whether or not they belonged to the same operon.

To prevent overfitting, the model underwent 10-fold cross-validation during training,

and the final decision is based on the average of the results across the folds. This

technique divides the dataset into ten equal parts, called folds, and performs training

and evaluation ten times, each time using a different fold as the test set and the

remaining folds as the training set. This approach allows for a robust assessment of

the model’s performance across different data subsets.

The hyperparameters listed in Table 3.5 were selected to achieve a high AUROC.

The specifications for the attention layer in this model are exactly as defined in [56].

Since the attention layer hyperparameters have been proven effective in the referenced

study, we decided to adopt them without modification in our implementation.

Moreover, several techniques and metrics were utilized to improve and evaluate
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Hyperparameter Value Hyperparameter Value Hyperparameter Value

Batch size 32 Epoch 100 Dropout rate 0.3

Kernel size (5, 6) CNN filters 64 LSTM units 64

Optimizer Adam Learning rate 0.001 Early stopping patience 10

Metric AUROC Loss
Categorical cross

entropy

Table 3.5: Hyperparameters used in the model.

the performance of the model. These include early stopping, the Adam optimizer,

and the AUROC as the evaluation metric. Early stopping prevents overfitting by

monitoring the model’s performance on a validation set during training. If the per-

formance does not improve for a specified number of epochs (patience), training is

stopped. This method helps prevent the model from continuing to train on data that

it has already learned, thus improving its generalization ability. Adam is an adap-

tive optimization algorithm widely used for training deep learning models. It adjusts

the learning rate based on parameter gradients, leading to faster convergence and

improved optimization performance. AUROC is a metric used to evaluate the per-

formance of binary classification models, particularly when dealing with imbalanced

datasets. It measures the model’s ability to classify positive instances while minimiz-

ing false positives. Maximizing the AUROC indicates a better model performance in

operon detection.
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3.3.3 Evaluation

In this section, we discuss the metrics used to evaluate our final model’s performance

compared to existing models in the literature. For this evaluation, we consider only

samples with 0 and 1 labels in Table 3.6,

Organism Operon(1) Non-operon(0) Unknown(2)

C. elegans 1184 56 43520

P. profundum SS9 676 87 4806

P. aeruginosa PAO1 67 3 63264

B. burgdorferi B31 20 0 817

B. diazoefficiens USDA 110 15 2 7119

A. fabrum str. C58 14 0 4560

Y. pestis CO92 6 0 4028

Table 3.6: The size of each data set per label class in our validation data. Labels 0

and 1 are used to compare the performance of models.

Recall, also known as sensitivity or true positive rate, quantifies the proportion

of correctly predicted positive instances out of all actual positive instances. In the

context of operon detection, recall is of paramount importance as it indicates the

model’s ability to identify operons, which are positive instances. Precision, on the

other hand, quantifies the proportion of correctly predicted positive instances out of

all instances predicted as positive. It provides insights into the accuracy of positive

predictions made by the model. F1-score is a metric that combines precision and

recall into a single value by taking their harmonic mean. This metric is particularly

33

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid6239
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid298386
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid208964
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid224326
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid224911
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid176299
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=txid214092


useful when dealing with imbalanced datasets.

To comprehensively evaluate our model’s effectiveness in operon detection, we

primarily consider the f1-score. However, due to limited 0-label samples in five of the

seven test organisms, f1-score calculation is unreliable. To overcome this, we assess

our model’s performance by comparing the number of identified operons with those

reported in the literature for each organism.

In addition to these metrics, we also utilize the AUROC. The Receiver Operating

Characteristic (ROC) curve visually represents the trade-off between the True Positive

Rate (TPR) and the False Positive Rate (FPR) at various classification thresholds.

The ROC curve is created by plotting TPR on the y-axis against FPR on the x-axis.

It allows us to assess the model’s discriminative ability across different thresholds. An

ideal model with high TPR and low FPR values would exhibit a curve approaching

the plot’s top-left corner, representing perfect prediction. This curve also includes a

reference line known as the “random chance” line. The random chance line represents

the expected performance of a classifier that makes predictions by random chance.

Any model that performs better than random chance will have a ROC curve above the

random chance line. Additionally, (AUROC) is calculated as a summary measure of

the model’s discriminative performance. A higher AUROC indicates a better overall

performance.
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3.4 Comparative assessment

In order to compare the performance of our model with existing approaches, we

evaluated four models from the literature using all training and validation organisms

using the genome files listed in Table 3.2. Here, we provide a brief overview of our

evaluation process for each model:

• Operon Mapper: In the Operon Mapper’s website, https://biocomputo.

ibt.unam.mx/operon_mapper/, we uploaded the FASTA file with genome se-

quence and GFF file with the coordinates of the ORFs1 in the genome sequence

as input files for each organism and chose “Predicted operonic gene pairs” as

output option. As Operon Mapper does not use transcript expression features,

the RNA-seq data was not used. The output file contains gene pairs with the

predicted “Opero” or “NoOperon” class. We mapped these classes to 1 and 0

to match the labels we prepared for evaluation.

• Rockhopper: To perform the prediction for each organism, we obtained the

Rockhopper application from https://cs.wellesley.edu/~btjaden/Rockhopper/.

Following the provided instructions, we downloaded the Rockhopper.jar file and

utilized the command “java -Xmx1200m -cp Rockhopper.jar Rockhopper” fol-

lowed by the respective genome sequence files and RNA-seq data files in fastq

format to execute the prediction process. The output consists of lines with

comma-separated gene names, where each line represented an operon. The

1Open Reading Frames
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downside of this output format is that it focuses on displaying predicted oper-

ons, meaning predicted non-operon pairs were not included. To address this

limitation, we labelled gene pairs mentioned within the line as operons(1), while

labelling other gene pairs as non-operons(0).

• Operon Finder: To perform the prediction for each organism, Operon Finder

only required to select the organism’s name from the provided list of available or-

ganisms in https://www.iitg.ac.in/spkanaujia/operonfinder.html. It’s

worth noting that Operon Finder relies on external data sources, which lim-

its its predictions to the organisms available in those specific sources. Similar

to Rockhopper, the output of Operon Finder specifically identifies genes be-

longing to the same operon. To categorize the predictions into operons(1) and

non-operons(0), we employed a similar method as described earlier.

• OperonSEQer: We obtained the source code of operonSEQer from https:

//github.com/sandialabs/OperonSEQer and utilized it to generate predic-

tions for our dataset. Each sample of organisms from Table 3.2 was separately

predicted by operonSEQer, and the final label for each gene pair was deter-

mined based on the average prediction from these samples. We used threshold

3 in operonSEQer, as it was the preferred threshold according to [11]. The out-

put file contains gene pairs with the predicted operons(1) and non-operons(0)

classes.

We compared the performances of multiple methods on various species using sta-
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tistical analyses. We used the Friedman test to assess AUROC differences between

the models, using stats.friedmanchisquare() from scipy. For pairwise comparisons, we

employed the Nemenyi post-hoc test. We obtained ranks using stats.rankdata() from

scipy and calculated the Critical Difference (alpha=0.05) using evaluation.compute CD()

from Orange3 module. The graphical representation of ranks was created using eval-

uation.graph ranks() from the same library.
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Chapter 4

Results and Discussion

In this chapter, we provide the results of evaluating our final model and comparing

its performance with that of existing methods.

4.1 Cross-validation results

For the aggregated training data of the seven organisms, the performance of our model

over 10-fold cross-validation is as follows:

• Mean Recall: 89.21%, with a 90% confidence interval1 of [88.46%, 89.96%].

• Mean F1-score: 89.49%, with a 90% confidence interval of [88.78%, 90.21%].

• Mean AUROC: 89.21%, with a 90% confidence interval of [88.46%, 89.96%].

• Mean Accuracy: 90.09%, with a 90% confidence interval of [89.43%, 90.76%].

1The confidence interval suggests that the model’s recall is 90% probable to be within this range.
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While accuracy is reported, it may not be the most suitable metric when dealing

with unbalanced labels. In the case of operon detection, where the goal is to correctly

identify positive instances (operons), recall and f1-score are the most informative

measures.

4.2 Comparative assessment

4.2.1 Limitations

In the following sections, we conducted a performance comparison between our model

and four methods previously described in the literature. While comparing we encoun-

tered additional constraints or drawbacks related to the previous method:

• Due to the large size of the genome files for C. elegans , we faced difficulties

in uploading them to the Operon Mapper website for prediction. Despite our

attempts to find alternative solutions, we did not receive any response from

the authors. As a result, we currently do not possess predictions of C. elegans

operons from the Operon Mapper.

• Due to the reliance of Operon Finder on external data sources, the predictions

generated by this method are restricted to the organisms that are available

within those specific sources. Consequently, were unable to obtain predictions

for Y. pestis CO92, B. diazoefficiens USDA 110, and C. elegans as these organ-

isms were not included in the available data sources used by Operon Finder.
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• While evaluating operonSEQer, we identified certain constraints in the predic-

tions it generated. Notably, operonSEQer attempted to predict gene pairs from

different strands, whereas it is known that genes within the same operon must

be located on the same strand [58]. This discrepancy could potentially affect the

accuracy of operonSEQer’s predictions. Moreover, we observed that this model

was unable to predict labels for certain gene pairs due to limitations related to

the average read counts of genes.

4.2.2 Validation Organisms

This section presents the evaluation results for each method on the validation organ-

isms. Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 display the number of predicted and

true operons and non-operons for each method per organism.

The highlighted numbers in the tables represent the highest count of correctly

identified operons and non-operons among the five evaluated methods. For instance,

Table 4.1 shows that for C. elegans , operonSEQer correctly identified 225 operons (1)

and 17 non-operons (0). Similarly, our method detected 1042 operons (1), which is the

highest count among all methods for identified operon pairs, and 33 non-operons (0)

in this organism. This table also shows that out of 56 non-operon pairs, only 18, and

out of 1184 operon pairs, only 1041 were predicted with a label by operonSEQer. This

suggests that operonSEQer struggled to make predictions for a significant portion of

the gene pairs in the dataset. This limitation should be taken into account when
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assessing OperonSEQer’s overall performance compared to the other methods.

To further evaluate the models’ discriminative abilities, we have included ROC

curves in Figures 4.1 and 4.2, and f1-scores and recalls in Table 4.8. F1-score and

ROC curves are only available for two organisms, C. elegans and P. profundum SS9,

since they provide sufficient samples with both labels (operons and non-operons).

Upon examining the ROC curves, it becomes evident that our model exhibits the

highest AUROC for both organisms. Visually, the lines representing our model, blue

lines, are closer to the reference line representing a perfect prediction.

It is important to note that in the case of P. profundum SS9 in Table 4.2, operon-

SEQer and Rockhopper have detected the largest number of operon and non-operon

pairs, respectively. However, this higher detection rate comes at the cost of mislabel-

ing a greater number of pairs from the other class. Our model has the best balance

between the identified operon and non-operon pairs which is evident in Fig.4.2, where

our model has the highest AUROC among the five methods for P. profundum SS9.

The evaluation results demonstrate that our model has higher recall rates than

the other evaluated models. On P. profundum SS9, our model has a slightly lower

f1-score than OperonSEQer (70% vs 74%); however, it is worth noting that our model

successfully labelled all the gene pairs in the input data while OperonSEQer missed

to give a prediction for 2.5% of the gene pairs, which might have contributed to

achieving a higher f1-score.
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Operon Mapper Rockhopper

True/Predicted 0 1 All

NA 0 56 0 56

1 1117 67 1184

Operon Finder OperonSEQer

True/Predicted 0 1 All

NA 0 17 1 18

1 816 225 1041

Our model

True/Predicted 0 1 All

0 33 23 56

1 142 1042 1184

Table 4.1: Comparative performance on C. elegans . Highlighted numbers indicate

the highest number of True Positives (1,1) or True Negatives (0,0) achieved.

Figure 4.1: ROC for C. elegans .
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Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 65 22 87 0 74 13 87

1 391 285 676 1 504 172 676

Operon Finder OperonSEQer

True/Predicted 0 1 All True/Predicted 0 1 All

0 43 44 87 0 31 37 68

1 71 605 676 1 20 656 676

Our model

True/Predicted 0 1 All

0 60 27 87

1 95 581 676

Table 4.2: Comparative performance on P. profundum SS9. Highlighted numbers

indicate the highest number of True Positives (1,1) or True Negatives (0,0) achieved.

Figure 4.2: ROC for P. profundum SS9.
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Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 3 0 3 0 3 0 3

1 27 40 67 1 32 35 67

Operon Finder OperonSEQer

True/Predicted 0 1 All True/Predicted 0 1 All

0 3 0 3 0 1 1 2

1 4 63 67 1 6 61 67

Our model

True/Predicted 0 1 All

0 2 1 3

1 0 67 67

Table 4.3: Comparative performance on P. aeruginosa PAO1. Highlighted numbers

indicate the highest number of True Positives (1,1) or True Negatives (0,0) achieved.

Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 - - - 0 - - -

1 15 5 20 1 14 6 20

Operon Finder OperonSEQer

True/Predicted 0 1 All True/Predicted 0 1 All

0 - - - 0 - - -

1 3 17 20 1 5 15 20

Our model

True/Predicted 0 1 All

0 - - -

1 0 20 20

Table 4.4: Comparative performance on B. burgdorferi B31. No non-operon labels

are available in ODB4. Highlighted numbers indicate the highest number of True

Positives (1,1) or True Negatives (0,0) achieved.
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Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 - - - 0 - - -

1 12 2 14 1 9 5 14

Operon Finder OperonSEQer

True/Predicted 0 1 All True/Predicted 0 1 All

0 - - - 0 - - -

1 1 13 14 1 2 12 14

Our model

True/Predicted 0 1 All

0 - - -

1 0 14 14

Table 4.5: Comparative performance on A. fabrum str. C58. No non-operon labels

are available in ODB4. Highlighted numbers indicate the highest number of True

Positives (1,1) or True Negatives (0,0) achieved.

Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 1 1 2 0 2 0 2

1 5 10 15 1 12 3 15

Operon Finder OperonSEQer

True/Predicted 0 1 All

NA 0 1 1 2

1 3 11 14

Our model

True/Predicted 0 1 All

0 1 1 2

1 2 13 15

Table 4.6: Comparative performance on B. diazoefficiens USDA 110. Highlighted

numbers indicate the highest number of True Positives (1,1) or True Negatives (0,0)

achieved.
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Operon Mapper Rockhopper

True/Predicted 0 1 All True/Predicted 0 1 All

0 - - - 0 - - -

1 0 6 6 1 0 6 6

Operon Finder OperonSEQer

True/Predicted 0 1 All

NA 0 - - -

1 0 6 6

Our model

True/Predicted 0 1 All

0 - - -

1 0 6 6

Table 4.7: Comparative performance on Y. pestis CO92. No non-operon labels are

available in ODB4. Highlighted numbers indicate the highest number of True Posi-

tives (1,1) or True Negatives (0,0) achieved.
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F1-scores

Operon Mapper Rockhopper Operon Finder OperonSEQer Our model

C. elegans NA 10% NA 20% 61%

P. profundum SS9 41% 31% 67%* 74% 70%

Average NA 20.5% NA 47% 65.5%

Recalls

Operon Mapper Rockhopper Operon Finder OperonSEQer Our model

C. elegans NA 53% NA 58% 73%

P. profundum SS9 58% 55% 69%* 71% 77%

P. aeruginosa PAO1 80% 76% 97% 71% 83%

B. burgdorferi B31 12% 15% 42% 38% 100%

A. fabrum str. C58. 7% 18% 46% 43% 100%

B. diazoefficiens USDA 110 58% 60% NA 64% 68%

Y. pestis CO92 100% 100% NA 100% 100%

Average NA 53.9% NA 63.6% 85.9%

Table 4.8: F1 scores for all validation organisms with non-operon labels, C. elegans

and P. profundum SS9, and recalls for all validation organisms. The highlighted

numbers in the tables represent the best performance per organism among different

methods. * indicates that the target organism is included in the training data of the

corresponding method.
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4.2.3 Training Organisms

The evaluation process was extended to the training organisms to assess the perfor-

mance of all methods on more organisms. The evaluation employed metrics similar to

the validation phase, including AUROC, recall and f1-score. To avoid any data leak-

ing and over-optimistic evaluation, we excluded the organism we specifically wanted

to evaluate from the training process of our model. However, excluding the target

organism from the training of the other methods was not possible since we used their

pre-trained models. To show the effect of including the organism to be evaluated in

the training data, we also calculated the performance of our model without exclud-

ing the target organism from our training data. The ROC curves for the training

organisms can be found in figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9, illustrating the

models’ detection abilities across different organisms. In these figures, “Our Model

NE” refers to our model without excluding the examined organism from the training

process. Additionally, Table 4.9 presents the f1-scores and recalls for each method on

the training organisms. In every case, our model outperformed or achieved similar

performance compared to the other methods, demonstrating its effectiveness.
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F1-scores

Organism Operon Mapper Rockhopper Operon Finder OperonSEQer Our Model
Our Model

NE

E. coli K-12 substr. MG1655 63%* 79%* 87%* 85%* 85% 90%*

C. glutamicum ATCC 13032 62% 41% 81%* 71% 87% 89%*

L. monocytogenes EDG-e 46% 24% 80%* 34% 85% 89%*

L. pneumophila str. Paris 42% 27% 67%* 62% 79% 81%*

H. pylori 26695 46% 20%* 75% 70% 89% 90%*

B. subtilis subsp. subtilis str. 168 54%* 68%* 82%* 73%* 84% 89%*

M. pneumoniae M129 62% 50% 53% 71% 78% 79%*

Recalls

Organism Operon Mapper Rockhopper Operon Finder OperonSEQer Our Model
Our Model

NE

E. coli K-12 substr. MG1655 65%* 78%* 87%* 86%* 86% 90%*

C. glutamicum ATCC 13032 64% 53% 81%* 73% 87% 89%*

L. monocytogenes EDG-e 68% 56% 88%* 63% 82% 88%*

L. pneumophila str. Paris 63% 57% 77%* 72% 78% 78%*

H. pylori 26695 69% 54%* 87% 85% 87% 88%*

B. subtilis subsp. subtilis str. 168 68%* 79%* 87%* 86%* 84% 88%*

M. pneumoniae M129 69% 62% 64% 74% 76% 77%*

Table 4.9: F1-scores and recalls achieved on the training organisms. Our model

showed a slightly lower f1-score for E. coli , and recall for E. coli , L. monocytogenes

and B. subtilis . However, Operon Finder includes these organisms in its training

data, which contributes to its relatively better performance on this specific organ-

ism. As it can be seen from the column “Our Model NE”, when the organism to be

evaluated upon is left in the training data, our model achieves better performance,

outperforming Operon Finder. Note that column “Our Model” more accurately re-

flects the generalization capabilities of our model. The highlighted numbers in the

tables represent the best performance per organism among different methods. * indi-

cates that the target organism is included in the training data of the corresponding

method.
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Figure 4.3: ROC for E. coli K-12 substr. MG1655.

Figure 4.4: ROC for C. glutamicum ATCC 13032.
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Figure 4.5: ROC for L. monocytogenes EDG-e.

Figure 4.6: ROC for L. pneumophila str. Paris.
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Figure 4.7: ROC for H. pylori 26695.

Figure 4.8: ROC for B. subtilis subsp. subtilis str. 168.
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Figure 4.9: ROC for M. pneumoniae M129.
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4.3 Statistical analysis of the results

To highlight the performance differences among the models, we generated a plot dis-

playing the mean AUROC obtained on all training organisms and two validation

organisms, C. elegans and P. profundum SS9. Fig.4.10 clearly illustrates that our

model achieved the highest mean AUROC compared to all other methods. Moreover,

our model’s standard deviation (± 4.14) is notably smaller than the closest competi-

tors, OperonSEQer(± 7.85) and Operon Finder(± 8.48). This observation indicates

that our model exhibits greater robustness across different organisms.

Figure 4.10: Mean AUROC. The dot indicates the mean AUROC and the lines are

the standard deviation of the evaluated methods over seven training organisms and

two validation organisms for which predictions were obtained from all methods.
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Moreover, we employed the Friedman non-parametric statistical test that is suit-

able for comparing multiple classifiers over multiple datasets to assess the statistical

significance of performance differences between the models [59]. The Friedman test

yielded a p-value of 0.0001, indicating that the mean AUROC obtained by certain

classifiers significantly deviates from the others. We conducted pairwise comparisons

using the Nemenyi post-hoc test [59] to further investigate this difference.

Since the Nemenyi test operates on ranks, we ranked each model based on the

mean AUROC obtained on all training organisms and two validation organisms,

C. elegans and P. profundum SS9. The model with the highest AUROC was assigned

rank one, while ties received the same rank (Table 4.10).

Organism Operon Mapper Rockhopper Operon Finder OperonSEQer Our Model

C. elegans 5 3 5 2 1

P. profundum SS9 4 5 3* 2 1

E. coli K-12 substr. MG1655 5* 4* 1* 3* 2

C. glutamicum ATCC 13032 4 5 2* 3 1

L. monocytogenes EDG-e 3 5 1* 4 2

L. pneumophila str. Paris 4 5 2 3 1

H. pylori 26695 4 5* 1 3 2

B. subtilis subsp. subtilis str. 168 4* 5* 1* 2* 3

M. pneumoniae M129 3 5 4 2 1

Table 4.10: Rank of AUROC of the evaluated methods over seven training organisms

and two validation organisms. The highlighted numbers in the tables represent the

best rank per organism among different methods. * indicates that the target organism

is included in the training data of the corresponding method.
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Upon applying the Nemenyi test, we observed that three groups of classifiers with

similar ranks emerged, as illustrated in Fig.4.11. According to the Nemenyi test

results, both Operon Finder and Our Model demonstrated statistically significantly

lower ranks (p-value = 0.0001) than the other three models’ ranks. The critical

difference boundary is at a mean rank of 2.156.

Figure 4.11: Critical Difference plot, over seven training organisms and two valida-

tion organisms. Classifiers that do not show significant differences according to the

Nemenyi test at a significance level of 0.05 are connected with a horizontal line. The

methods with the best performance are to the right.

Based on these results, we have found significant differences in ranks between our

model and the three other classifiers, Operon Mapper, Rockhopper and OperonSEQer.

While Operon Finder showed comparable performance, it comes with the limitation

of predicting only specific types of species due to its reliance on external data source

features. Additionally, our model exhibited the highest mean AUROC with a rela-

tively low standard deviation, indicating more consistent performance across different
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datasets. As a result, we can confidently conclude that our model outperforms the

other classifiers in terms of AUROC in the task of operon detection.

4.4 Code and data availability

The code used in this research and the datasets utilized for training and evaluation

are openly available on GitHub at https://github.com/BioinformaticsLabAtMUN/

OpDetect. By making the code and data publicly accessible, we aim to promote

transparency and reproducibility in scientific research. Users can freely explore the

implementation details of our model, replicate the experiments, and further con-

tribute to the advancement of operon detection and deep learning methodologies in

genomics. This open availability of resources will foster collaboration and facilitate

the development of more robust and accurate models for gene-related tasks.
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Chapter 5

Conclusion

The contributions made by this thesis to the field of operon detection are:

• Utilization of Accessible Input Data: Our approach exclusively relies on

genome annotations and RNA-seq reads, avoiding the need for external data

source features. This ensures a more accessible process for operon detection.

• Systematic Assessment of Models: We conducted a thorough comparison

with recent best-performing models available for operon detection, highlighting

the strengths and advantages of our proposed approach.

• Effective Feature Representation: We have proposed a new feature rep-

resentation for RNA-seq data, which draws inspiration from signal processing

techniques. This approach allows for broader and more effective application of

deep learning techniques in the context of operon detection.
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• CNN-LSTM Architecture: We employed a CNN-LSTM architecture, which

has never been applied to operon detection before. This unique combination

harnesses the respective strengths of both networks, enabling us to effectively

capture both spatial and temporal dependencies in the RNA-seq data.

• Superior Performance: Our model outperforms previous methods for operon

detection in terms of recall, f1-score and AUROC, demonstrating its efficacy in

identifying co-transcribed gene pairs.

• Species Agnostic Model: Our model’s versatility extends even beyond bac-

terial genomes by detecting operons in C. elegans .

However, one significant limitation is the relatively limited number of experi-

mentally verified operon pairs and non-operon pairs available in the current dataset.

Increasing the data available could increase our model’s robustness and reliability.

For future work, we propose exploring the inclusion of promoter and termina-

tor data, as they have been reported to have significant influence [4]. Additionally,

we recommend exploring the application of transfer learning techniques in operon

detection. Investigating alternative architectures by replacing the CNN and LSTM

layers with pre-trained models designed explicitly for sequence analysis tasks could

also yield valuable improvements..

In conclusion, this thesis opens up exciting possibilities for more accurate and

widely applicable operon detection methods, paving the way for advancements in

understanding gene regulation and interactions in various biological systems.
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