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Abstract

This research focuses on ultrasonic transducer responses and elastic wave propaga-

tion in solid materials. This work was inspired by previous studies in geophysics,

and its applications span several disciplines, such as material science, medicine and

civil engineering. Previous geophysical work used a non-destructive testing method

to investigate whether the frequency of a single-cycle ultrasonic pulse is related to

the magnitude of its non-linear interactions. This work was inconclusive because the

elastic wave frequency before and after propagating through the material was inconsis-

tent. Hence, this research focuses on the fundamentals of how to analyze single-cycle

pulses after they’ve travelled through solids using the Fast Fourier Transform and

attempts to identify the source of the reported frequency discrepancy. This unex-

pected frequency discrepancy leads us to two hypotheses: (1) the examined material

possesses the capacity for frequency conversion, or (2) flaws in the experimental setup

led to misleading results. To investigate these hypotheses, we conducted a series of

experiments to establish the capabilities and limitations of our instruments. Before

examining frequency conversion, it was essential to establish our setup’s ability to

generate and measure desired frequencies in the range of 50 kHz to 1 MHz. Using

ultrasonic transducers to trigger wave propagation in various solid materials, we de-

velop optimal operating parameters when coupling transducers to solid samples. The

significance of this research lies in the understanding of how ultrasonic transducers

couple with different materials. Although the motivation for this research lies in

non-linear elasticity, these understandings apply to a diverse variety of fields. This

contribution to the field of physics and instrumentation will lead to improved proto-

cols for non-linear elastic data collection, ultimately enhancing our ability to measure

and understand elastic wave propagation.
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Chapter 1

Introduction

1.1 Wave Propagation

From ocean waves and sound waves to seismic waves and electromagnetic waves, waves

are an integral part of our daily lives. Whether it’s the ripple of the ground after an

earthquake, the light that illuminates the sky, the sound of a roaring crowd, or a

crowd doing the wave, waves are propagating all around us.

This study involves the propagation of ultrasonic waves through various solid ma-

terials. Hence, establishing an understanding of how waves propagate in solids is

critical. The wave is a fundamental model of classical physics, and it describes a

disturbance travelling through a medium. Mechanical perturbations provoke tiny dis-

turbances in media, displacing particles from their positions of rest. The magnitude

of these disturbances depends on the intrinsic elastic properties and mass density of

the medium [12]. In solids, there are two distinct types of waves: compressional waves

and shear waves [7], shown in Figure 1.1. Shear waves (S-waves) are transverse in

nature, meaning the particles of the medium move perpendicular to the direction of
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wave propagation. Some examples of transverse waves include ocean waves and seis-

mic surface waves. In compressional waves or P-waves, also called longitudinal waves,

the particles of the medium move in the direction of propagation. As P-waves prop-

agate through a medium, the particles of said medium move parallel to the direction

of propagation. This parallel motion results in regions of compression (high density)

and rarefaction (low density). Sound waves are an example of longitudinal waves.

This thesis employs both forms of mechanical waves in the context of non-destructive

testing. For this reason, we focus on the propagation of elastic waves, where the

stress-strain relationships in the solid obey Hooke’s Law [7] (see section 1.3). Here,

the particles in a solid oscillate about an equilibrium position and eventually return

to their original state. In other words, elastic waves impose loads which are not severe

enough to cause permanent damage [7].

Elastic waves can be characterized by parameters such as wavelength, frequency,

amplitude, and speed. Wavelength, λ, is the distance between two neighbouring

peaks or regions of compression. The wavelength encompasses a single cycle and is

measured in meters. Frequency, f , describes how frequently oscillations are occurring,

it is measured in Hertz (Hz) and is a measure of the number of cycles passing a fixed

point per second. Frequency and wavelength are related by the following equation:

v = λf (1.1)

Here, v is the wave speed, measured in m/s. Wave speed describes the rate at

which sound propagates through media and is characteristic of the medium [8]. Fi-

nally, amplitude is a parameter describing the magnitude or height of a wave. In

this thesis, we employ the use of transducers, which convert pressure fluctuations to

voltages. Hence, wave amplitude is measured in Volts. As a wave interacts with the
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Figure 1.1: A schematic depicting the direction of motion of particles in a solid in
relation to the direction of wave propagation for (A) P-waves and (B) S-waves.
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particles in a medium, the wave amplitude decreases in a process called attenuation.

The attenuation of mechanical energy in a solid may be attributed to various dis-

sipative phenomena such as absorption, scattering, reflection, refraction, diffraction,

interference, and divergence [14]. Among these classes, the primary contributors of

attenuation in ultrasonic materials characterization are absorption and scattering [14],

which are both frequency-dependant phenomena [6]. Absorption describes the process

by which mechanical energy is lost during transmission through the medium, primar-

ily due to heat transfer [7]. Scattering occurs when inhomogeneities in the medium,

such as cracks and cavities, cause the direction of energy transmission to depart from

its original path, resulting in less energy arriving at the detector [7]. Scattering is

a complex process which depends on factors such as the average size of particles in

relation to the wavelength and particle density [6]. A detailed and mathematical ex-

planation of these processes can be found in Chapter 7 of [7] and [6, p. 127]. Central

to this thesis, the frequency of a wave, in theory, depends only on the emission source

and is independent of the material that it interacts with [8]. In reality, attenuation is

frequency-dependant, meaning the frequency content of a wave changes with distance

travelled through a medium [6]. Specifically, higher frequencies often attenuate faster

with distance than lower frequencies [28].

1.2 Ultrasonic Transducers

Sound is a form of mechanical energy that propagates via longitudinal oscillations,

leading to alternating regions of low-pressure (rarefaction) and high-pressure (com-

pression). The human ear can detect sound waves within the frequency range of

20 Hz to 20,000 Hz [10]. Sound waves with frequencies below 20 Hz are classified

as infrasound waves, whereas those greater than 20 kHz are labelled as ultrasound
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[10]. A sound source, such as a tuning fork, produces longitudinal wave oscillations in

the surrounding medium, causing energy to propagate through the medium. Just as

strumming a guitar string or striking a tuning fork produces sound, ultrasonic waves

can be produced using transducers.

Transducers are instruments that convert energy from one form to another [4].

Ultrasonic transducers are transducers that emit and detect ultrasound waves by

converting between mechanical energy and electrical energy [8]. In ultrasonics, the

sound source is often a piezoelectric material, such as lead zirconium titanate or

quartz. Discovered in 1880 by the Curie brothers, piezoelectricity is a phenomenon

which describes how applying an electric field in certain materials induces proportional

dimensional changes, and vice-versa [4]. When a voltage is incident on a piezoelectric

element within a transducer, the crystal vibrates and generates mechanical energy

in the form of ultrasound waves. Conversely, when ultrasound waves arrive at the

receiver, the mechanical energy is converted into a voltage, which can be measured

using an oscilloscope.

1.3 Nonlinear Elasticity

Materials are made up of spring-like molecular bonds which expand and contract

when subjected to various forces. Strain is a measure of the deformation of an object

under stress, which is governed by the spring constant of these molecular bonds [11].

Specifically, elasticity is related to the strain, ε, induced in a material when an external

stress, σ, is applied. Strain is a dimensionless quantity which describes an object’s

fractional change in length when it is subjected to stress. When an object with length

L, is stretched or compressed by an amount ∆L, the strain is defined as ∆L/L. Stress
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Figure 1.2: Linear and nonlinear stress-strain relationships. Adapted from [2].

is a measure of the force, F , applied over a cross-sectional area, A, and it is measured

in N/m2 [11]. Elasticity is often quantified in terms of Young’s modulus, E, which

describes how an object is stretched when pulled and compressed when loaded. When

the induced strain is proportional to the applied stress, as shown in Figure 1.2, the

material is deemed linearly elastic. Here, the stress–strain relationship adheres to

Hooke’s law, and Young’s modulus is derived from the following equation [11]:

σ = Eε (1.2)

Soft materials with high elasticity, such as rubber, have a small Young’s modulus,

while rigid materials, such as steel, have a relatively large Young’s modulus [11].

Nonlinear elasticity is defined as a deviation from Hooke’s law [20], where the

stress-strain relationship is nonlinear, as shown in Figure 1.2. The study of non-linear

elasticity spans a wide variety of disciplines. Nonlinear elasticity is an indicator of



7

material damage (broken bonds, distorted bond angles, voids etc.) [21]. Therefore, it

is used across fields such as geophysics, medicine, and civil engineering to characterize

the structure of complex solids. For example, nonlinear elastic measurements are

prominently applied to rocks [23], because it allows for an understanding of wave speed

changes in the Earth’s crust, which gives insight into earthquakes, fault slips, and

tides [23]. In medicine, nonlinear ultrasound has been used to indicate accumulated

damage in human bones, which can be indicative of osteoporosis [16]. Finally, the

nonlinear elasticity of concrete has been investigated in the context of construction

and characterizing building materials [30].

1.4 Motivation

The frequency dependence of nonlinear elasticity is an area of interest among re-

searchers [22, 17]. Scientists are interested to see whether changing the frequency of

elastic wave perturbations changes the nonlinear response induced in a material.

This thesis focuses on addressing a very specific problem we identified in the lit-

erature. That is, previous work conducted in our lab has created uncertainty as to

our ability to dictate the frequency of elastic wave pulses [17]. This recent work

employed a non-destructive testing method called Transient Wave Dynamic Acousto-

elastic Testing (TW-DAET), shown in Figure 1.3. TW-DAET uses a pump and probe

configuration to generate and sense ultrasonic elastic waves. It applies a transient per-

turbation load (pump) to the material while simultaneously interpreting wave speed

changes in an elastic probe wave, which provides information on the nonlinear elastic

behaviour of the sample. More information on the post-acquisition calculations used

to relate travel time delays to non-linear elastic parameters can be found in [16, p.
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Figure 1.3: A schematic of the transient wave dynamic acousto-elastic testing (TW-
DAET) experimental setup. Connections and waveforms related to the pump and
probe are shown in red and green, respectively.

1499].

[17] reported that the nonlinear response increases when the wavelength of the

elastic probe wave resembles the separation between known inhomogeneities in the

samples. He suggests that this finding is evidence that there exists a probe wavelength

dependency on the TW-DAET response. He concludes that his claim opens up the

possibility that our ability to image inhomogeneities can be improved by tuning the

frequency of the probe pulses. Upon closer inspection of the raw data [17] used

to make the aforementioned claims, we discovered a discrepancy. The single most

striking observation to emerge from the closer inspection of this data was that the

frequency of the elastic waves did not change as the frequency parameter was changed

on the generator (see Figure 1.4). The frequency of the single-cycle ultrasonic pulses

was examined after propagating through the inhomogenous cement sample. When it
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Figure 1.4: Frequency of S-wave probe after propagating through TW-DAET setup
with a sample of cement with an embedded network of evenly spaced (5mm) copper
wires. All spectra have the same central frequency (300±100 kHz), regardless of the
input frequency. Data collected by [17].

was compared to the frequency which had been set on the waveform generator, it was

found that the two were not in agreement. Pulses with input frequencies ranging from

300 kHz - 700 kHz were examined, and it was found that the frequency of the output

pulses did not reflect their input parameters. Moreover, all spectra have the same

central frequency (300±100 kHz), regardless of the input frequency, as illustrated in

Figure 1.4. This experiment was conducted using a cement sample with an embedded

network of evenly spaced (5 mm) copper wires and a 1 MHz S-wave probe transmitting

single-cycle pulses and a 0.1 MHz S-wave pump (operating at 50 kHz) transmitting

4-cycle pulses.
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1.5 Objectives

This study aims to identify the source of the discrepancy between input and output

frequency in the TW-DAET configuration, as described in section 1.4. This unex-

pected result led us to several potential hypotheses. Firstly, and perhaps least likely,

we consider the possibility that the examined material possesses the capacity for fre-

quency conversion. That is, the inhomogeneities in the sample convert the frequency

of elastic waves to some preferential frequency. Secondly, we consider the possibility

that flaws in the experimental setup yield misleading results. Specifically, we hypoth-

esize that our transducers behave differently when they are coupled to solid materials.

There is not a lot published about how transducers behave when coupled with solids.

We aim to address this gap in the literature and set up a protocol for testing this type

of equipment.

To investigate these hypotheses, we conduct control experiments to establish the

capabilities and limitations of our instruments. Before examining frequency conver-

sion, it is essential to establish our setup’s ability to generate and measure desired

frequencies in the kilohertz range. Using ultrasonic transducers to trigger wave prop-

agation in various solid materials, we develop best practices and optimal operating

parameters when coupling media to new samples.

Improvements in non-destructive testing methods involving dynamic acousto-elastics

would improve our ability to characterize non-linear elasticity. Specifically, this re-

search will allow for the identification of potential problems in the existing TW-DAET

setup and the optimization of the setup for future research. Should this study suc-

cessfully identify the source of the frequency discrepancy, it would allow for further

research into the relationship between elastic wave frequency and non-linear interac-

tions. In geophysics, understanding the frequency dependence of nonlinear elasticity
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is important because it facilitates comparisons between observations made at the lab-

oratory scale and the field scale [22].

1.6 Thesis Outline

The experiments in this study are presented in three sections: (1) No Transducers,

(2) Uncoupled Transducers, and (3) Coupled Transducers. To identify the source of

the frequency discrepancy outlined in section 1.4, the experiments in this thesis are

presented in a step-wise fashion of increasing complexity. Starting from the simplest

case of a pulse sent directly from the waveform generator to the oscilloscope, and

building towards the most complex case of the TW-DAET configuration. The objec-

tive of the first two sections was to evaluate the functionality of the equipment and

establish a baseline for expected outputs. This involved conducting a series of control

experiments to ensure that the equipment was operating properly and assessing the

setup’s ability to produce elastic waves with desired frequencies. The third compo-

nent of this thesis involves evaluating the ability of S-wave and P-wave transducers

to produce and sense elastic waves with desired frequencies under coupled conditions.

That is, when they are fastened to a sample using a couplant and a bar clamp.

The remainder of this thesis document is organized into three chapters. Following

this introductory chapter, Chapter 2 will outline the first two sets of experiments:

No transducers and Uncoupled transducers. The first control experiment evaluates

the waveform generator’s ability to generate pulses with specific parameters and the

oscilloscope’s ability to sense said pulses, and the second control experiment assesses

the responses of uncoupled transducers using a laser vibrometer. This chapter will also

describe the data analysis approach used in this thesis and the limitations associated
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with using the Fast Fourier Transform in this context. In Chapter 3, we present

the results from the third and final set of experiments involving coupled transducers.

Here, we analyze responses after propagating through a variety of coupled systems for

both P-wave and S-wave transducers. Finally, Chapter 4 will act as the concluding

chapter, where significant results will be summarized, and the broader implications

of the study will be stated.



Chapter 2

Equipment Testing and Uncoupled

Conditions

2.1 No Transducers

2.1.1 Introduction

This thesis addresses the viability of using a Transient Wave Dynamic Acousto-elastic

Testing (TW-DAET) (see Figure 1.3) setup for investigating the relationship between

the frequency of ultrasonic waves and their non-linear interactions. To do so, this

study aims to identify the discrepancy between input and output frequency, as de-

scribed in section 1.4. Firstly, in this chapter, we assess the functionality of the

equipment used in the experimental setup. The first and simplest control experiment

in this process is to assess the functionality of the waveform generator and the os-

cilloscope. This involves conducting tests to ensure that these devices are operating

properly. Specifically, we assess their ability to produce and sense elastic waves with
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various frequencies.

The perplexing results obtained by [17] suggested one of two things: either cement

with an embedded copper network possesses frequency conversion properties. Or,

flaws in the experimental setup lead to misleading results. This study will investigate

the functionality of each component of the TW-DET configuration, first established

in [5], to determine whether this apparent frequency conversion was a result of a flaw

in the experimental setup or if this material possesses unique capabilities. In this

chapter, we begin with the simplest case: no transducers or sample materials, just

the function generator and the oscilloscope.

2.1.2 Methods

Experimental Setup

The first component of this study involves a series of control experiments to verify the

functionality of our equipment. These experiments are presented in a step-wise fashion

of increasing complexity, starting from the simplest case of a pulse sent directly from

the waveform generator to the oscilloscope (shown in Figure 2.1), building towards a

TW-DAET configuration.

Firstly, we connect the waveform generator (Keysight 33500B Series Waveform

Generator) directly to the oscilloscope (Agilent Technologies InfiniiVision MSO-X

2014A Mixed Signal Oscilloscope) using coaxial cables. To eliminate any potential

artifacts from our transducers and sample materials, this preliminary experiment aims

to establish the generator’s ability to properly generate the desired signal. This step

allows us to examine whether the parameters we set on the function generator are

truly impacting the properties of the elastic waves it produces. The two parameters
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Figure 2.1: Schematic of the experimental setup for our experiments where pulses are
sent directly from the waveform generator to the oscilloscope, with no transducers.

we adjust in this experiment are frequency and number of cycles. We begin with a

series of single-cycle pulses over the range 100-1000 kHz. We repeat this process with

a four-cycle pulse and a continuous pulse.

Data Analysis: Fast Fourier Transform

Using the Fast Fourier Transform (FFT) to determine the central frequency of a

time-domain signal is a well-established technique [33, 24, 9, 27, 13]. Problems that

are difficult to visualize in the time domain can be simplified by performing a trans-

formation and analyzing signals in the frequency domain. The central frequency is

the frequency at which the peak magnitude occurs in the frequency spectrum [27].

Throughout the entirety of this thesis, the uncertainty in the central frequency is

given by fitting the region surrounding the central maximum of each spectrum with a

Gaussian function and calculating the full width at half maximum (FWHM) of said
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Gaussian. Half the value of the FWHM, rounded to one significant figure, is reported

as the uncertainty in the central frequency.

The raw data from the control experiments are Comma Separated Values (CSV)

files, consisting of two columns: time and voltage. Data in this form represents how

the voltage arriving at the oscilloscope varies over time. As previously stated, the goal

of Chapters 2 is to assess the functionality of our equipment and establish a baseline

of expected output signals. Specifically, we aim to adjust the driving frequency set on

the waveform generator and observe the corresponding change to the output signal

on the oscilloscope. In order to analyze the frequency of the output signal, we use the

Fast Fourier Transform (FFT). This mathematical transformation is a computational

approximation to the well-established Fourier Transform. For a continuous function

f(t), the Fourier Transform, F (ω), is defined as follows: [3]

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt (2.1)

Here, ω is the frequency content of the signal and t is time. In the case of discrete

signals, the frequency domain can be accessed using the Discrete Fourier Transform

(DFT), defined as follows: [3]

F (k∆f) =
N−1∑
n=0

f(n∆t)e−i(2πk∆f)(n∆t) (2.2)

Here, N is the number of data points collected in the time domain, and ∆t is

the spacing between these points, equal to T/N , where T is the total sampling time.

The frequency increment, ∆f , is equal to 1/T , and it describes the spacing between

points in the frequency domain. The DFT output, F (k∆f), is a set of complex values

indicating the relative contribution to the signal by each discrete frequency in the set
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of multiples of the frequency increment, where k = 0, 1, 2, ..N − 1. In this thesis, we

interpret the magnitude of each complex number in the set F (k∆f).

The Fast Fourier Transform (FFT) is a computer algorithm which calculates the

DFT in a time-efficient manner [3]. Using the programming language Python and

NumPy’s FFT routine [18], the FFT is applied to the raw data, bringing it from

the time domain to the frequency domain. The result is a Fourier transform, where

each bin on the independent axis corresponds to the contribution of the corresponding

frequency in the signal. As a proof of concept, previous work generated single-cycle

radio-frequency pulses and analyzed them using an oscilloscope and a spectrum an-

alyzer [13], the latter using a FFT to analyze the pulse. Transforming our raw data

into frequency space allows us to determine central frequencies and compare peak

shifts quantitatively. The goal of our FFT analysis is not to measure absolute in-

tensities but rather to compare FFT spectra at various input frequencies to see if

we observe changes in the central frequency. Therefore, throughout this thesis, all

frequency spectra are normalized. That is, all FFT magnitudes have been divided by

their respective maximum to yield values ranging from 0 to 1, which we refer to as

normalized intensity on the vertical axis.

As previously stated, frequency sampling, ∆f , is the spacing between points in

frequency space. For the remainder of this thesis, frequency sampling will be referred

to as df . This resolution is controlled by the total time window of the raw data.

The inverse relationship between time and frequency sampling is shown in Figure 2.2.

The goal of TW-DAET is to detect fractional changes in travel times. Therefore,

it is beneficial to collect data with the smallest feasible time-step. This ultimately

equates to zooming in on the oscilloscope and recording a pulse with the smallest

possible total time. The more finely we sample the time domain, the more accurately
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Figure 2.2: Inverse relationship between frequency sampling (df) and time sampling
(T), where T is the length of the recorded window.

we can identify time delays. However, smaller df values do not necessarily equate to

improved frequency resolution. This is because our ability to measure the frequency

of an ultrasound pulse using the FFT algorithm is also governed by the width of the

FFT peak and not solely df . As shown in Figure 2.2, the smaller the time window, the

larger the value of df . This is a trade-off where reducing the total time examined in

the time domain means reduced frequency resolution in the frequency domain. These

data were collected using the generator to oscilloscope configuration (Figure 2.1) by

varying the time window on the oscilloscope before saving the raw data. These data

were fit with the function y = 1/x, yielding an R2 value of 1.

Given that detecting frequency shifts is of particular interest in this thesis, we

investigate which parameters control the width of the FFT peaks. Here, we consider

peak width to be the frequency range covered by the base of a peak. Peak widths

were compared by isolating four parameters: the frequency and number of cycles of
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the input waveform (controlled on the waveform generator), the time window dis-

played on the oscilloscope and the number of data points collected (controlled on the

oscilloscope). The results are presented in Figure 2.3. Figure 2.3 is a collection of data

obtained using the waveform generator to oscilloscope configuration to study how the

FFT spectrum is affected by the aforementioned parameters.

Our primary finding from Figure 2.3 is that peak width increases with frequency

when other parameters are fixed. This means that the FFT resolution is inherently

poorer for higher-frequency pulses. When the total time is fixed, peak width can be

thought of as related to the ratio of how much of the total time is used for the pulse

component of the signal. Padding the data with zeros does not narrow the peaks,

as shown in Figure 2.3C. Rather, it causes interpolation using a sinc function. This

improves the frequency sampling by reducing the value of df , but it does not improve

frequency resolution (reduce the width of peaks). We find that adjusting the number

of data points collected in the time domain (within the examined range) has no effect

on the FFT (see Figure 2.3D). Although, we suspect that if the number of collected

data points were small enough, aliasing would eventually occur. Finally, we observed

that peak widths scale with frequency and are inversely proportional to the number of

cycles. In Figure 2.3A, we demonstrate that peaks become narrower as we increase the

number of periods. Therefore, in the case of a continuous wave, recording data over

a longer period of time will yield narrower peaks because more cycles are recorded.

Based on this observation, in our investigation, we focus on changing the frequency

and the number of cycles of our pulses.

Using our knowledge of the relationship between FFT peak widths and the number

of cycles per pulse, gained from Figure 2.3, we employ a curve-fitting exercise. The

period of a wave is equal to the inverse of its frequency. Previous work leveraged this
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Figure 2.3: Parameters affecting FFT Resolution. Data was obtained using the wave-
form generator to oscilloscope configuration. (A) The number of cycles is changed,
and the frequency (100 kHz), time window (1x10−4 s) and number of points are fixed
(7679). (B) The frequency is changed, and the number of cycles (4), time window
(1x10−4 s) and number of points are fixed (7679). (C) The time window is changed,
and the number of cycles (4), frequency (100 kHz) and number of points are fixed
(7679). (D) The number of points is changed, and the number of cycles (4), time
window (1x10−4 s) and frequency (100 kHz) are fixed. FFT peak widths increase
with pulse frequency and decrease with the number of cycles in a pulse.
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Figure 2.4: (A) Curve fitting a 1 MHz single-cycle pulse (orange) with a sine function
of the same period (blue). (B) FFT of a 1 MHz single-cycle pulse (orange) and that
of the function obtained from curve fitting (blue). This plot demonstrates that the
period of our single-cycle pulse is indicative of a sharp and accurate peak in the
frequency domain. Its FFT is broad and skewed towards lower frequencies due to the
limitations associated with the FFT algorithm, not due to problems with our ability
to control pulse frequency.
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inverse relationship by measuring the period of single-cycle radio-frequency pulses and

reporting the frequency corresponding to this period [13]. We employ this strategy by

considering the period of our single-cycle pulse to be indicative of its central frequency.

Hence, using the period as a method to quantitatively describe the frequency. The

single-cycle pulse shown in Figure 2.4.A has an input frequency of 1 MHz. This pulse

has a period of 1 microsecond, which corresponds to a frequency of 1 MHz. To further

illustrate the limitation of using an FFT to measure the frequency of a single-cycle

pulse, this single-cycle pulse was fitted with a sine function of the form Asin(2πft)

using the SciPy optimization and curve fitting package [29]. Using non-linear least

squares, the curve fitting algorithm determines the optimal values for the parameters

A and f to minimize the sum of the squared residuals. Here, the parameters A and f

are the amplitude in Volts and the frequency in Hertz, respectively. The curve fitting

process found that A = 100.8 V and f = 1.009 MHz are the parameters of best-fit,

yielding an R2 value of 0.997. This result reassures us that we are able to control the

period (and consequently, the frequency) of the pulses leaving the waveform generator.

In Figure 2.4.B we compare the FFT spectra from the single-cycle pulse and the curve

of best-fit with the same period. The FFT of the single-cycle pulse (shown in orange)

has a broad spectrum, spanning 2 MHz, and it reaches its maximum at 800 kHz. If

we were to use peak frequency as a method of measuring absolute pulse frequency,

this would lead us to conclude that the frequency of our pulse has shifted from 1 MHz

to 800 kHz. However, when we consider the FFT of the fitted sine function with the

same period as our pulse, we obtain a much narrower peak, which spans just 400 kHz

and has a central frequency of 1 MHz. Both the data and the fitted curves have the

same frequency sampling (df=200 kHz). However, the FFT of the fitted curve has a

much narrower peak, indicating improved frequency resolution. Critically, this plot

demonstrates that the period of our single-cycle pulse is indicative of a sharp peak
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in the frequency domain, centred around 1 MHz. This tells us that the broad peak

skewed towards lower frequencies is attributed to the limitations associated with using

an FFT to measure the frequency of single-cycle pulses and is not indicative of issues

with our ability to control pulse frequency. Given that both pulses have the same

period, Figure 2.4 illustrates that central frequency is not a perfect indicator of the

frequency of our pulse. To improve the quality of this quantitative measurement, we

must increase the number of cycles in our pulse, or fit our pulse with a sine wave with

the same period and analyze the frequency of the fitted sine wave.

Throughout this thesis, it is apparent that the central frequency of spectra be-

comes less reliable at higher frequencies. We have already demonstrated that this

phenomenon is an artifact of our FFT routine and not indicative of our ability to

transmit high-frequency pulses (see Figure 2.4). In an effort to explain the origin of

this broadening, we use synthetic data to illustrate the parameters which govern the

width of frequency spectra.

We begin by controlling parameters such as the number of cycles, the total time of

data acquisition (and therefore, frequency sampling, df) and the number of data points

per cycle sampled in the time domain. As shown in Figure 2.5, all synthetic data sets

have different frequencies, denoted in the legend. The total time of acquisition was

controlled by appending different amounts of zero-padding to each synthetic sinusoid,

yielding a total time of 0.6 microseconds. From Figure 2.5 we see that peaks broaden

with frequency, despite having the same number of points per cycle sampled in time

and the same total time of data acquisition. Here, broadening is not a result of

frequency spacing. Rather, the explanation for this broadening lies in the properties

of the Fourier Transform pair: the sinc function and the boxcar function. Different

frequencies require different amounts of time to complete a given number of cycles
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and are therefore convolved with boxcar functions of various lengths. This equates to

convolving our signals with sinc functions of various widths, leading to increases in

peak width at high frequencies. We refer to this as the sinc phenomenon.

We take this demonstration one step further by carefully choosing time windows

which allow for an integer number of periods. As shown in Figure 2.6, this practice

generates sharp peaks with widths equal to 2df .

From Figures 2.5 and 2.6, we see that peaks broadening with frequency is an inher-

ent and unavoidable truth of the FFT. In the case of Figure 2.6, when we strategically

select time windows leading to an integer number of periods we avoid convolving our

signals with sinc functions of various widths. However, our resolution is then limited

by df . Because higher frequencies have shorter periods, they require less time to com-

plete a given number of cycles, resulting in larger df values and wider FFT peaks. On

the other hand, if we control for df by choosing a fixed total time, higher frequencies

require less time to complete a given number of cycles and are therefore convolved

with a shorter boxcar function, resulting in broader spectra. We also observe that

padding a signal with zeros does not change the shape of the frequency spectrum.

Rather, it simply increases the total time of data acquisition, which in turn reduces

df . As previously shown, a smaller df means finer sampling in the frequency domain,

but does not equate to narrower peaks in our frequency spectra.

2.1.3 Results

We begin by presenting our raw data obtained from transmitting a series of single-

cycle pulses over the range of 100-1000 kHz.

From Figure 2.7, we learn that the waveform generator can produce pulses with
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Figure 2.5: Demonstration of FFT peaks broadening with frequency when the number
of cycles (3), the number of points per cycle (10), frequency resolution (df=16.7 kHz)
and the total time (6x10−5 s) are fixed. This occurs due to the convolution of our
signals with sinc functions of various widths, leading to increases in peak width at
high frequencies when signals are padded due to a time interval corresponding to a
non-integer number of periods.
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Figure 2.6: Demonstration of FFT peaks broadening with frequency when the number
of cycles (3) and the number of points per cycle (10) are fixed, and the time windows
were chosen to reflect an integer number of periods (3). Each pulse has a different
time window and, consequently, a different frequency resolution (df). This removes
the effect of the sinc function by removing the padding, but leads to peaks broadening
with frequency due to increases in df.
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Figure 2.7: Single-cycle pulses transmitted directly from the generator to the oscillo-
scope. Each pulse has a different period. A small time window (0 to 2.5x10−6 s) of
the raw data is shown to illustrate the differences in periods.
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frequencies ranging from 100 kHz to 1 MHz, in accordance with the desired frequency

that we set on the waveform generator. This result also confirms that our oscilloscope

can decipher signals with different frequencies. That is, the oscilloscope is able to mea-

sure voltage changes and record the time at which each voltage occurs. Furthermore,

we use the raw data shown in Figure 2.7 as a reference of what changing the input

frequency looks like in the time domain. To evaluate this data in frequency space, in

Figure 2.8, we present the FFT spectra of the raw data obtained from transmitting

a series of single-cycle pulses over the range of 100-1000 kHz. All FFT spectra in

section 2.1.3 were calculated using the entire raw data set. Each pulse has a distinct

central frequency and all central frequencies are in agreement with their respective

input frequencies within their respective uncertainties.

The results presented in Figure 2.8 support the conclusion that an FFT spectrum

allows for the qualitative resolution of single-cycle pulses. It is worth noting that for

all FFT data presented in this thesis, intensities have been normalized. That is, all

intensities have been divided by their respective maximum intensity to yield values

ranging from 0 to 1. The goal of transforming our raw data into frequency space is

to compare peak shifts, not to analyze absolute intensities. This becomes especially

relevant in Chapter 3 because consideration of the factors affecting amplitude was

outside the scope of this thesis. For example, the amount of couplant, the temperature

of the couplant and the tightness of the bar clamp are all factors that we expect to

impact elastic wave transmission but were not controlled for.

When compared to our motivation data in Figure 1.4, we conclude that the FFT al-

gorithm is not to blame for the apparent frequency conversion (i.e. when the frequency

content of the measured waveform is in disagreement with the input frequency). Here,

the resolution is fine enough to distinguish between elastic waves with frequencies of
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Figure 2.8: FFT spectra of single-cycle pulses transmitted directly from the genera-
tor to the oscilloscope. Each spectrum has a different central frequency (80±50 kHz,
300±200 kHz, 400±300 kHz, 600±500 kHz, 800±500 kHz). FFT spectra were calcu-
lated using the full raw data sets.
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Figure 2.9: FFT spectra of 4-cycle pulses transmitted directly from the generator
to the oscilloscope. Each spectrum has a different central frequency (100±20 kHz,
200±30 kHz, 400±50 kHz, 600±100 kHz, 800±100 kHz, and 1000±200 kHz) that is
in agreement with the input frequency (legend). FFT spectra were calculated using
the full raw data sets.

100 kHz, 300 kHz, 500 kHz, 800 kHz, and 1 MHz. However, this resolution is po-

tentially too broad to provide meaningful quantitative results, especially as frequency

increases. This plot is crucial in illustrating the limitation of using FFT in our anal-

ysis. As illustrated in Figure 2.8, peak widths increase as input frequency increases,

meaning our ability to sharply resolve peak locations decreases with frequency.

We repeat the process of transmitting a series of pulses over the range of 100-

1000 kHz, now for 4-cycle pulses and continuous pulses. Figures 2.9 and 2.10 show the

FFT spectra of 4-cycle pulses and continuous pulses, respectively. When we compare

these results to those in Figure 2.8, we conclude that increasing the number of cycles
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Figure 2.10: FFT spectra of continuous-cycle pulses transmitted directly from the
generator to the oscilloscope. Each spectrum has a different central frequency
(100±4 kHz, 200±4 kHz, 400±10 kHz, 600±10 kHz, 800±20 kHz, and 1000±20 kHz)
that is in agreement with the input frequency (legend). FFT spectra were calculated
using the full raw data sets.

in the signal results in narrower peaks. The central frequencies in Figures 2.9 and

2.10 are all in accordance with their respective input frequencies. In turn, increasing

the number of cycles improves our ability to resolve peak locations which means

an improvement in our ability to obtain reliable quantitative frequency information.

Figure 2.10 shows the FFT spectra of continuous pulses at various input frequencies.

This plot shows how our frequency resolution is significantly improved (peak width,

not df) when the signal interpreted by the FFT algorithm possesses more cycles per

pulse. The degree to which peak widths change with frequency and the number of

cycles was discussed in detail in section 2.1.2.
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The results presented in this section give us confidence in our equipment’s ability

to transmit and receive signals of desired frequencies. That is, our key takeaway from

this chapter is that malfunctions in our waveform generator, oscilloscope and coaxial

cables are not responsible for the frequency shifts presented in our motivation data. It

should be reiterated that the width of FFT peaks increase as input frequency increases,

meaning our ability to sharply resolve peak locations decreases with frequency. This

proves to be an inherent property of applying the FFT algorithm. We conclude that

when attempting to make precise frequency measurements of single-cycle pulses, it is

better to fit the pulse with a sine function instead of simply calculating the FFT of

such narrow pulses.

The resolution of the FFT is a limitation in this study. With peaks spanning

several hundred kilohertz, it is difficult to accurately measure the frequency of the

single-cycle pulses using FFT analysis. Moreover, this study focuses largely on single-

cycle pulses, rendering it impossible to measure narrow peaks. Recalling the single-

cycle FFT presented in Figure 2.8, even under ideal conditions (no transducers and

sample material to distort the signal), the high frequency (1 MHz) FTT peaks resemble

normal distributions. A single-cycle wave consists of a wide range of frequencies

required to create the sharp stop and start regions of the wave. Therefore, an FFT

spectrum is not a useful tool to measure the absolute frequency of a single-cycle pulse.

However, comparing FFT spectra is useful for checking if two pulses have the same

frequency components. This is especially important when the degree of likeness is not

visually apparent in the time domain. This thesis relies on the use of FFT spectra to

provide quantitative measurements of frequency content through peak positions and

widths. The FFT is an effective tool for quantifying single-cycle frequency changes.

However, large peak widths make it difficult to track small changes in frequency.

Luckily for us, the single-cycle FFT is very effective when it comes to comparing the
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frequency content of pulses. This point becomes increasingly evident and important

in section 3.1 when we examine transducer responses in coupled conditions.

2.2 Uncoupled Transducers

2.2.1 Introduction

In section 2.1, we established that the waveform generator, oscilloscope and coaxial

cables are functional. Thus, the question of what is to blame for the frequency shift

described in Chapter 1 remains unanswered. In an attempt to answer this question,

we proceed with the next progression in the step-wise process of building toward

the Transient Wave Dynamic Acousto-elastic Testing setup. This next progression

is the introduction of transducers. In section 2.2, we test transducers in uncoupled

conditions to assess their individual capacity to produce pulses with desired properties.

2.2.2 Methods

The goal of the experiments presented in section 2.2 is to assess our transducer’s

ability to produce waves corresponding to the parameters set on the function gen-

erator. In short, this experiment serves to isolate the ultrasonic transducers, assess

their ability to generate a desired signal and provide a baseline for expected trans-

ducer outputs in uncoupled conditions. To do so, we employ a well-recognized laser

vibrometry technique [25, 31, 26]. In this technique, an optical beam from a laser

interferometer arrives perpendicular to the transducer face. The transducer is excited

by electrical pulses from the waveform generator, causing the transducer face to vi-

brate. The beam reflects off the oscillating transducer surface and travels back to
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Figure 2.11: Experimental setup for testing individual transducers using a laser vi-
brometer.

the interferometer where its phase shift is measured [25]. A mathematical description

of this process is outlined in [25] on page 162. This technique has been employed

on ultrasonic transducers to assess their ability to produce and sense elastic waves

with various frequencies [25] and to measure transducer sensitivity [31]. Furthermore,

at the University of Auckland’s Physical Acoustic Laboratory, the method of pairing

laser vibrometry and ultrasonics is commonplace. For instance, they use this tech-

nique to measure the vibrations of rock surfaces, induced by ultrasonic transducers,

to extract elastic properties [26].

The experimental setup we employ in this chapter is depicted in Figure 2.11. A

coaxial cable connects the velocity output port on the laser vibrometer (Polytec CLV-

2534 Laser Vibrometer) to an input channel on the oscilloscope. The Sync port on

the waveform generator is connected to the oscilloscope via a coaxial cable to the Ext

trig in port. Next, the waveform generator is connected to the ultrasonic transducer.
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The transducer is fixed to a stationary block on the tabletop using a bar clamp, which

allows us to align the laser with the transducer surface. The transducer is clamped

by its sides such that the oscillating surface is uncoupled. The block and clamp have

been omitted from Figure 2.11 for clarity. We apply reflective tape to the face of the

ultrasonic transducer and set the desired parameters on the waveform generator. We

position the optical laser beam at the center of the transducer face using stepping

motor controls. Finally, we record the oscillations on our oscilloscope. This setup

allows us to examine whether the parameters we set on the function generator are

truly impacting the properties of the elastic waves produced by our transducers. The

three parameters we adjust in this experiment are frequency, number of cycles, and

transducer type (P-wave and S-wave). We begin with a series of single-cycle pulses

over the range of 50-200 kHz.

Ultrasonic Transducers

This study uses a variety of Olympus ultrasonic contact transducers fitted with right

BNC connectors (see Figure 2.12). These transducers include S-wave transducers and

P-wave transducers. The Olympus V153 is an S-wave ultrasonic contact transducer

with a frequency of 1 MHz and a diameter of 0.5 inches (1.27 cm). The Olympus

V103 is a P-wave ultrasonic contact transducer with a frequency of 1 MHz and a

diameter of 0.5 inches (1.27 cm). With regards to the pump-probe configuration

discussed in Chapter 1 (see Figure 1.3), the aforementioned transducers used in this

thesis can be categorized as probe transducers, due to their relatively high frequency.

For context, the low-frequency transducers used by Newman (2020) to pump energy

into the system and perturb the samples were the Olympus V1548 S-wave ultrasonic

contact transducers, with a frequency of 0.1 MHz and a 1-inch (2.54 cm) diameter.
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Figure 2.12: Olympus ultrasonic contact transducers. Our P-wave and S-wave trans-
ducers are identical in appearance but distinguishable by serial numbers.

These low-frequency transducers operate at one-tenth the frequency of the probe

transducers used in this thesis.

According to the Ultrasonic Transducers Technical Notes released by Olympus [19],

the manufacturer, our transducers are single-element transducers. They are designed

for direct contact with the object of interest and are built to perform in industrial

settings. The main components of these contact transducers are the piezoelectric

element, the backing, and the wear plate [19]. A wear plate has several functions, such

as increasing the lifespan of the device and offering wear resistance [19]. According to

Olympus (2019), P-wave transducers can be used for “straight beam flaw detection

and thickness gaging, detection and sizing of delaminations, material characterization

and sound velocity measurements, inspection of plates, billets, bars, forgings, castings,

extrusions, and a wide variety of other metallic and nonmetallic components” (p. 8).

On the other hand, our S-wave transducers are designed for “shear wave velocity

measurements, calculation of Young’s modulus of elasticity and shear modulus, and

characterization of material grain structure” (p. 17).

It should be noted that the method we employ in this chapter to test individual
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transducers does not operate in the same frequency range as the transducers them-

selves. The probe transducers used here are 1 MHz transducers, meaning they operate

optimally within a bandwidth centred at 1 MHz. Conversely, our laser vibrometer is

unable to resolve frequencies above approximately 200 kHz. Therefore, we examine

these transducers over the range 50-200 kHz. We acknowledge that this frequency

range is sub-optimal. However, if the transducers are operational at frequencies on

the edge of their bandwidth, it is assumed that their performance would only improve

if they were evaluated at optimal frequencies.

2.2.3 Results

This experiment isolates the ultrasonic transducers to assess their ability to generate

a desired signal and provide a baseline for expected transducer outputs in uncoupled

conditions. The three variables discussed in this section are frequency, number of

cycles, and transducer type (P-wave and S-wave). We begin with a series of single-

cycle pulses over the range of 50-200 kHz, transmitted using an S-transducer. These

time-domain signals are presented in Figure 2.13A, with a small section of the raw

waveforms shaded in grey.

From Figure 2.13A, we learn that our S-transducers can produce pulses with vary-

ing periods. We use the raw data shown in 2.13A as a baseline for what our ultrasonic

pulses look like without the presence of a solid. To evaluate this data in frequency

space, in Figure 2.13B, we present the FFT spectra of the entire raw data shown

above in Figure 2.13A. Throughout this thesis, we calculate our FFT spectra using

the entire raw data set to maintain consistency and maximize our frequency resolution.

Due to limitations in the laser vibrometer setup, which we’ve discussed previously,

we examine FFT spectra calculated using only a section of the raw data to exclude
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Figure 2.13: Uncoupled S-transducers generating 1-cycle pulses. (A) Entire raw wave-
forms with a shaded region. (B) FFT spectra of the entire raw waveform shown in
(A), df=10 kHz. Central frequencies are 40±20 kHz, 100±40 kHz, 120±50 kHz and
120±60 kHz. (C) FFT spectra of raw data were calculated using the data in the
shaded region in (A), df=30 kHz. Central frequencies are 60±50 kHz, 120±40 kHz,
120±50 kHz, 120±60 kHz.
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the artifacts at the end of our signals. In Figure 2.13C, we present the FFT spectra

calculated using only the grey shaded region in Figure 2.13A. As expected, reducing

the time window over which we calculate our FFT spectra worsens our frequency

resolution (from 10 kHz to 30 kHz) because of the inverse relationship between time

and frequency sampling (recall Figure 2.2). Here, we uncover that it is unreasonable

to place significant weight on the exact location of our central maxima, as they are

heavily dependent on input parameters, such as the duration and location of our time

window. This point is discussed further, surrounding the following figure (2.14). In

Figures 2.13B and 2.13C, each of the central frequencies are in accordance with their

respective input frequencies within the range of uncertainty. This suggests that our

S-transducers have the ability to act as ultrasonic sources, which can generate single-

cycle pulses over the range of 50 kHz-200 kHz. Although, in both cases, the latter

two spectra have the same central frequency.

In Figure 2.14, we illustrate how the choice of time window in the time domain has

a significant impact on the FFT spectrum. As previously stated, the exact location

of our central maximum is heavily dependent on the duration and location of our

time window. In changing the time window used to calculate the FFT, the resulting

spectra possess different central frequencies, different resolutions and vastly different

shapes. The central frequency of the full waveform is 120 kHz, but after cropping

the waveform to include only the shaded region shown in Figure 2.14A, the central

frequency shifted to 182 kHz. The central frequency of the cropped waveform (shaded

region) is in closer agreement with the input frequency of 200 kHz, however, the

frequency spacing (df) has increased significantly, from 10 kHz to 182 kHz. This

highlights an important point: central maxima can only exist at multiples of df,

therefore, reporting a frequency shift as a result of changing the time window is

meaningless, as it reflects the lack of resolution and not transducer behaviour. For
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this reason, and to maintain consistency and maximize the frequency resolution, all

FFT spectra we present in this thesis are calculated using the entire raw waveform,

unless stated otherwise. Hence, inconsistencies in the frequency resolution (df) are

attributed to saving the data using different time windows during the acquisition

process and not signal processing.

Due to a malfunction with the oscilloscope’s data acquisition process involv-

ing the USB port, our laser vibrometer data for single-cycle pulses sent from P-

transducers was lost. Therefore, we cannot comment on our P-transducers ability to

send single-cycle pulses in uncoupled conditions. However, in Figure 2.15, we examine

S-transducers and P-transducers by presenting our data obtained from transmitting

a series of 10-cycle pulses over the range of 50-200 kHz.

Here, we independently examine a pair of S-transducers (Figure 2.15A and B) and

a pair P-transducers (Figure 2.15C and D). Once again, the results in Figure 2.15

reaffirm our previous conclusion that FFT peaks narrow when the number of cycles is

increased. In the case of all four transducers, the central frequencies of the frequency

spectra are in accordance with the input frequencies shown in the legends. Critically,

we can conclude that the inability to control output frequency, described in Chapter

1, is not an inherent property of our transducers. This is a key finding, as it allows us

to proceed with the confidence that our transducers can generate pulses with desired

properties.
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Figure 2.14: Time window selection affecting FFT spectrum and central frequency.
(A) Raw data of a single-cycle 200 kHz pulse from S-transducers (blue) and a cropped
region of the first cycle in the pulse (grey). (B) FFT of the full waveform from above
(blue) and the cropped region (grey). Cropping the waveform causes the central
frequency to shift from 120 kHz to 182 kHz, but it increases the frequency spacing
(df) from 10 kHz to 182 kHz, significantly worsening the resolution.
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Figure 2.15: FFT spectra of 10-cycle pulses generated by uncoupled (top) S-
transducers and (bottom) P-transducers using the laser vibrometer setup. FFT spec-
tra were calculated using the entire raw data sets. For all four transducers, the central
frequencies of all pulses are in accordance with the input frequencies (S1: 50±2 kHz,
100±4 kHz and 200±10 kHz; S2: 50±3 kHz, 100±4 kHz and 200±10 kHz; P1:
50±3 kHz, 100±4 kHz and 200±10 kHz; P2: 50±3 kHz, 100±5 kHz and 200±10 kHz).



Chapter 3

Coupled Transducers

3.1 Introduction

In this chapter, we build upon the results obtained in previous chapters to ap-

proach the implementation of a Transient Wave Dynamic Acousto-elastic Testing

(TW-DAET) setup. In Chapter 2, we established that the waveform generator, os-

cilloscope and coaxial cables are functional and are, therefore, not to blame for the

frequency shift described in Chapter 1. Moreover, we tested transducers in uncou-

pled conditions and established that individual transducers can produce single-cycle

pulses with desired properties. Now, we take one more step toward the TW-DAET

set up to investigate whether the act of coupling our transducers to a sample material

causes frequency conversion (i.e. the frequency content of the measured waveform is

in disagreement with the input frequency). Based on the results presented in previous

sections, this essentially isolates the effect that coupling our transducers to a sample

material has on the output signal. In this chapter, we investigate this effect using

S-wave transducers and P-wave transducers.
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Figure 3.1: Expected signal resulting from S-transducers, highlighting the production
of a parasitic P-wave.

With P-wave transducers (P-transducers), the transducer surface moves in the

normal direction to produce compressional waves. The surface of an S-wave transducer

(S-transducer) primarily exhibits lateral motion, which generates S-waves. However,

due to edge effects, the surface of an S-transducer inevitably undergoes translation in

the normal direction, resulting in the production of a parasitic P-wave [32], as shown

in Figure 3.1. P-waves are known to have significantly less energy than S-waves. They

also have higher velocities, so a parasitic P-wave arrives before its corresponding S-

wave. In section 4.2, we propose a series of experiments to investigate these edge

effects and further understand the origin of parasitic P-waves. Interestingly, recalling

the transducer responses presented in Figure 2.13A, we do not observe parasitic P-

waves when S-wave transducers are tested individually in uncoupled conditions.

Parasitic P-waves are relevant to this thesis because Newman (2020) tracked the
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parasitic P-wave portion of the single-cycle probe wave generated and sensed by S-

transducers, leading to the result which motivated this thesis. Therefore, in this

chapter, we investigate our ability to control the frequency of both the intended

S-wave and the parasitic P-wave when our S-transducers are coupled with various

materials.

3.2 Methods

In this chapter, we employ a two-transducer pulse transmission technique [1, 32]. This

technique uses two transducers aligned on opposite ends of the sample, as illustrated in

Figure 3.2. One transducer acts as the source, and the other acts as the receiver. The

source transducer produces an ultrasonic elastic wave which propagates through the

sample and is then sensed by the receiver on the other end. S-transducers generate

transverse waves which displace particles parallel to the transducer’s polarity [32].

According to Olympus, the transducer manufacturer, their S-transducers are polarized

in line with their right-angle BNC connectors. Therefore, we position our transducers

such that the source and receiver BNC connectors are aligned to ensure their polarity

directions are the same. The transducers are bonded to the surface of the sample

using honey and held in place using a bar clamp.

As discussed in Chapter 1, using ultrasonic transducers to measure non-linearity

is important in many fields. Therefore, this study aims to gain an understanding of

how transducers behave when coupled with various materials, such as homogeneous

cement (linear), inhomogeneous cement and sandstone (nonlinear). The dimensions of

the sample materials used in this chapter are presented in Table 4.1. More information

on the synthesis of these cement samples is available on page 25 of [17].
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Figure 3.2: Experimental setup of two-transducer pulse transmission technique.

Sample x y z
Material (mm) (mm) (mm)

Homogeneous Cement 183 117 51.8
Cement with Copper Wires 182 115 39.9

Sandstone 101 101 52.4

Table 3.1: Dimensions of sample materials.

3.3 Results

3.3.1 No Sample

P-Transducers We begin by coupling two P-transducers together without intro-

ducing a sample material between the pair. Here, our P-transducers are bonded

together with honey and clamped together with a bar clamp. In Figure 3.3A, we

present our raw data obtained from transmitting a series of single-cycle pulses over

the range of 100 kHz to 1 MHz. Here, we show the first 3 microseconds of each pulse

to highlight the differences in periods.
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Figure 3.3: Single-cycle pulses from P-wave transducers coupled together with no
sample. (A) A small time window (0 to 3x10−6 s) of the raw data is shown to
illustrate the differences in periods. (B) FFT spectra calculated from entire raw
waveforms. Central frequencies are in accordance with input frequencies (see legend):
100±50 kHz, 180±100 kHz, 440±200 kHz, 600±300 kHz, 800±400 kHz, 800±400 kHz.
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In Chapter 2, we verified that our P-transducers are capable of producing ultra-

sonic pulses of different frequencies. The data presented in Figure 3.3A allows us to

assess our P-transducers’ ability to sense ultrasound pulses with different frequencies.

Upon visual analysis, it is apparent that the single-cycle pulses in Figure 3.3A possess

different periods. This confirms that when acting as the receiver, our P-transducers

do not preferentially sense certain frequencies, as long as amplitude information is

ignored. Furthermore, we use the raw data shown in 3.3A as a baseline for what our

ultrasonic pulses look like when they are both generated and sensed by P-transducers

(clamped together), and have passed through a thin (� λ) intermediate layer of honey

without the presence of a solid. To evaluate this data in frequency space, in Figure

3.3B, we present the FFT spectra of the raw data over the range 100 kHz to 1 MHz.

In Figure 3.3B, it is apparent that each pulse possesses a different frequency spectrum,

many of which have different central frequencies. The central frequency of the 100 kHz

pulse, the 600 kHz pulse and the 800 kHz pulse are exactly in accordance with the

input frequency, while the others are in accordance within their uncertainty ranges.

Notably, both the 800 kHz pulse and 1 MHz pulse have the same central frequency. In

all, all pulses possess different periods and most possess different central frequencies.

This suggests that our P-transducers have the ability to act as receivers which can

sense single-cycle pulses over the examined range.

S-Transducers We repeat the analysis conducted above, but now using S-transducers.

We begin by coupling the two S-transducers together without introducing a sample

material between them. Here, a pair of S-transducers are bonded together with honey

and clamped together with a bar clamp. In Figure 3.4A, we present our raw data

obtained from transmitting a series of single-cycle pulses over the range of 200 kHz-

1 MHz. In this figure, we show only the first 3.5 microseconds of each pulse to highlight
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the differences in periods. However, the FFT spectra in Figure 3.4B were calculated

using the entire raw waveforms.

In Chapter 2, we verified that our S-transducers are capable of producing single-

cycle pulses of different frequencies. Assuming that our transmission is still sound,

we incorporate a reception component to assess our S-transducers’ ability to sense

ultrasonic pulses with different frequencies. Upon visual analysis, it is apparent that

the single-cycle pulses in Figure 3.4A possess different periods. This confirms that

when acting as the receiver, our S-transducers do not preferentially sense certain

frequencies. Further, we do not observe parasitic P-waves when S-wave transducers

are coupled together using honey and a bar clamp. This is likely because the travel-

time difference between the parasitic P-wave and the S-wave is small. We use the

raw data shown in Figure 3.4A as a baseline for what our ultrasonic pulses look like

when they are both generated and sensed by S-transducers. Moreover, this baseline is

crucial in establishing how pulse transmission is affected by clamping our transducers

together and travelling through a thin (� λ) intermediate layer of honey without the

presence of a solid. We tested both configurations for the order of the transducers

(e.g. which one is transmitting and which one is receiving) and found that, aside

from amplitude, the configuration does not affect the signal. To evaluate this data

in frequency space, in Figure 3.4B, we present the FFT spectra of the entire raw

waveforms shown partially in Figure 3.4A over the range 200 kHz to 1 MHz.

In Figure 3.4B, it is apparent that each pulse possesses a different frequency spec-

trum. Given that each pulse in the time domain possesses a different period, this is

expected. It should be noted that all FFT spectra were calculated using the entire

raw data set. Several pulses have distinct central frequencies. The central frequencies



50

A

B

Figure 3.4: Single-cycle pulses from S-wave transducers coupled together with no
sample. (A) A small time window (-1x10−6 s to 3.5x10−6 s) of the raw data is shown
to illustrate the differences in periods. (B) FFT spectra were calculated from entire
raw waveforms. Central frequencies are in accordance with input frequencies (see
legend): 200±50 kHz, 400±200 kHz, 700±300 kHz, 900±300 kHz and 900±300 kHz.
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of the 200 kHz and 400 kHz pulses are exactly in accordance with the input frequen-

cies, while the others are in accordance within their uncertainty ranges. Notably, just

as we found with P-transducers in Figure 3.3B, both the 800 kHz pulse and 1 MHz

pulse have the same central frequency. Unexpectedly, it appears that for 1 MHz

transducers, central frequencies are more accurate at low frequencies. However, these

peak locations are highly dependant on the time-window and segment of data used to

calculate the FFT and therefore may not be indicative of transducer behaviour. This

could be investigated further by fitting the raw data with a function, as shown in sec-

tion 2.1.2 (Figure 2.4). We do not implement this curve-fitting approach throughout

this thesis because our FFT spectra provide sufficient information to draw conclusions

about frequency content without the need for precise frequency measurements. This

confirms that our S-transducers have the ability to act as receivers which can sense

single-cycle pulses over the examined range. The results presented in Figure 3.4B

support the conclusion that the frequency discrepancy described in Chapter 1 is not

a result of our coupling methods. In other words, the bar clamp and honey used to

couple the transducers together do not introduce frequency conversion.

3.3.2 Linear Sample: Homogeneous Cement

S-Transducers Next, we build upon the results obtained previously to approach the

implementation of a Transient Wave Dynamic Acousto-elastic Testing (TW-DAET)

setup. We do so by introducing sample materials between our transducer pair to

investigate whether the act of coupling our transducers to a sample material causes

frequency conversion. We begin by using a sample of homogeneous cement, which is

known to be linearly elastic [17]. We transmit a series of single-cycle pulses ranging

from 500 kHz to 1.2 MHz. It should be noted that all cement samples examined in
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this thesis are the exact samples used by Newman (2020). It must also be noted

that signals have been translated in time to highlight alignment and likeness in the

periods. Therefore, the arrival times in our time-domain figures do not reflect the true

arrival times. We examine the S-wave signal and the parasitic P-wave component of

the signal separately.

Firstly, the parasitic P-wave component of the signal is shown in Figure 3.5A. To

evaluate this data in frequency space, in Figure 3.5B, we present the FFT spectra

of the entire raw data set shown in Figure 3.5A. Here, the most striking observation

to emerge is that the frequency of the elastic waves did not change as the frequency

parameter was changed on the generator. Just as we described in Chapter 1 (see

Figure 1.4), the central frequency of our pulses do not match the input parameters

shown in the legend. Furthermore, all signals possess the same central frequency of

400 kHz. This result allows us to conclude that the frequency of the parasitic P-wave

component of a single-cycle pulse transmitted through homogeneous cement using

S-transducers is independent of the input parameters over the examined frequency

range. Critically, this finding allows us to conclude that the frequency conversion

described in Chapter 1 is not a result of the cement with an embedded network of

evenly spaced (5mm) copper wires possessing frequency conversion properties.

Next, the S-wave component of the signal is shown in Figure 3.6A. To evaluate this

data in frequency space, in Figure 3.6B, we present the FFT spectra of the entire raw

data, shown partially in Figure 3.6A. Once again, we observe that the frequency of the

elastic waves did not change as the frequency parameter was changed on the generator.

The central frequencies of our pulses do not match the input parameters shown in the

legend. Furthermore, all signals possess the same central frequency of 280 kHz. This

result allows us to conclude that the frequency of both the S-wave and the parasitic
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Figure 3.5: Single-cycle pulses from S-wave transducers coupled together with homo-
geneous cement. This figure illustrates (A) the time domain signals of the parasitic
P-wave and (B) the FFT spectra of these signals. FFT spectra were calculated from
entire raw waveforms. All spectra have the same central frequency of 400 kHz (see
Appendix A for individual uncertainties) and are not in accordance with input fre-
quency.
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P-wave components of a single-cycle pulse transmitted through homogeneous cement

using S-transducers are independent of the input parameters.

These signatures become increasingly evident visually when we consider 4-cycle

pulses. We observe that, for both S-waves and parasitic P-waves, the first cycles of

all pulses possess approximately the same period. From Figures 3.7A and 3.8A, we

conclude that the coupling signature imposed by S-transducers exists primarily in the

first cycle of a discrete signal. Given our learnings from Figure 3.4B, we attribute this

likeness in period to the coupling between our transducers and the sample. Specifically,

we hypothesize that the act of attempting to initiate a shear wave in a material normal

to the transducer face is responsible for the signature. It is well-established that S-

transducers produce parasitic P-waves. Hence, we propose that this coupling signature

is another phenomenon induced by the edge effects of the transducer. Curiously, after

transmission of the first cycle, the signals correct themselves and branch off to their

respective frequencies (see Figures 3.7A and 3.8A). This observation tells us that the

coupling signature contaminates the frequency component of only the first cycle. The

first cycle of a single-cycle pulse encompasses the entire signal. Consequently, the

frequency component of a single-cycle pulse is entirely contaminated by the coupling

signature, rendering us unable to control the frequency.

P-Transducers Following the same step-wise approach we took with our S-transducers,

we build upon the results obtained previously to approach the implementation of a

Transient Wave Dynamic Acousto-elastic Testing (TW-DAET) setup using P-transducers.

We do so by introducing sample materials between our P-transducer pair to investi-

gate whether they exhibit a coupling signature, as we observed with our S-transducers.

Using our sample of homogeneous cement, we transmit a series of single-cycle pulses

ranging from 100 kHz to 1 MHz. These time-domain signals are shown in Figure 3.9A.
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Figure 3.6: Single-cycle pulses from S-wave transducers coupled together with homo-
geneous cement. Figure (A) illustrates the time domain signals of the resulting S-wave
and how the period of the S-wave part of a single-cycle pulse does not change with
input frequency. Figure (B) illustrates the FFT spectra of these signals and how the
central frequency of the S-wave part of a single-cycle pulse does not change with input
frequency. FFT spectra were calculated from entire raw waveforms. All spectra have
the same central frequency of 280 kHz (see Appendix A for individual uncertainties)
and are not in accordance with input frequency.
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Figure 3.7: Four-cycle pulses from S-wave transducers coupled together with homo-
geneous cement. This figure illustrates (A) the time domain signals of the parasitic
P-wave and (B) the FFT spectra of these signals. FFT spectra were calculated from
entire raw waveforms. The period of the first cycle of the parasitic P-wave is inde-
pendent of the input parameters.
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Figure 3.8: Four-cycle pulses from S-wave transducers coupled together with homoge-
neous cement. This figure illustrates (A) the time domain signals of the S-wave and
(B) the FFT spectra of these signals. FFT spectra were calculated from entire raw
waveforms. The period of the first cycle of the S-wave is independent of the input
parameters
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Figure 3.9: Single-cycle pulses from P-transducers coupled together with homoge-
neous cement. This figure illustrates (A) the time domain signals and (B) the FFT
spectra of these signals. FFT spectra were calculated from entire raw waveforms. All
spectra have different central frequencies (160±50 kHz, 280±90 kHz, 360±100 kHz,
500±200 kHz, 600±200 kHz, 700±300 kHz).
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To evaluate this data in frequency space, in Figure 3.9B, we present the FFT

spectra of the raw data from Figure 3.9A. Here, it is apparent that each pulse pos-

sesses a different central frequency. This result can be drawn from the fact that the

maximum amplitude of each frequency spectrum occurs at different frequencies. Un-

like our S-transducer results, these central frequencies are in agreement with their

input frequencies, within the range of uncertainty. This result suggests that, unlike

our S-transducers, our P-transducers can be used to transmit single-cycle pulses of

desired frequencies, even when coupled to a sample material. In the case of the P-

transducers, we do not observe a coupling signature, suggesting that it is possible

to generate single-cycle pulses with different frequencies. For this reason, we sug-

gest that P-wave transducers are a viable probe transducer option for studying the

relationship between probe frequency and elastic non-linearity. Given that our P-

transducers are responding as expected, we omit their use in the following section and

turn our attention to S-transducers coupled with nonlinear samples.

3.3.3 Nonlinear Samples

Inhomogeneous Cement

We perform one final expansion upon the results obtained previously to approach the

implementation of a Transient Wave Dynamic Acousto-elastic Testing (TW-DAET)

setup. We do so by introducing nonlinear sample materials between our S-transducers.

Firstly, we incorporate a cement sample with an embedded network of evenly spaced

(5 mm) copper wires. This is the same sample used to obtain our motivation data

(see section 1.4). We transmit a series of single-cycle pulses ranging from 500 kHz

to 1 MHz, and we monitor the S-wave component of the output signal. These

time-domain signals are shown in Figure 3.10A and the FFT of these pulses are
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shown in Figure 3.10B. These FFT spectra were calculated using the time range of

4.85x10−5 s to 6x10−5 s. In Figure 3.10A, the pulses appear sinusoidal until approxi-

mately 6x10−5 s. Therefore, this segment of the pulse was selected such that the FFT

reflects the region prior to the irregularities. Carefully selecting the same time window

for all pulses shown in Figure 3.10 allows us to control the frequency resolution such

that all spectra have the same sampling in frequency space (df=90 kHz). Notably,

upon introducing a nonlinear material, we observe an increase in the complexity of

our time domain signals. Specifically, we note that the supposed “single-cycle” pulses

possess several cycles, and their sinusoidal shape is skewed. In Figure 3.10B., we once

again observe that the frequency of the elastic waves did not change as the frequency

parameter was changed on the generator. Firstly, the central frequencies of our pulses

do not agree with the input parameters shown in the legend. Further, all signals rang-

ing from 500 kHz to 1 MHz possess the same central frequency of 350±200 kHz. This

result allows us to conclude that the frequency the S-wave component of a single-cycle

pulse transmitted through homogeneous cement using S-transducers is independent

of the input parameters.

We transmit a series of single-cycle pulses ranging from 600 kHz to 1 MHz through

our inhomogeneous cement sample, and we monitor the parasitic P-wave component

of the signal. These time-domain signals are shown in Figure 3.11A and the FFT of

these pulses are shown in Figure 3.11B. Here, we do not observe the same level of

increased complexity in the output as we did with the S-wave component. In Figure

3.11B, we once again observe that the frequency of the parasitic P-waves generated

by S-transducers did not change as the frequency parameter was changed on the

generator. This is supported by the fact that all signals ranging from 500 kHz to

1 MHz possess the same central frequency of 600±200 kHz.
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Figure 3.10: Inhomogeneous Cement coupled with S-wave transducers. This figure
illustrates the S-wave part of a single-cycle signal. (a) Entire raw waveform in the
time-domain. (b) FFT of raw time-domain data between 4.85x10−5 s and 6x10−5 s.
All spectra have the same central frequency of 350±200 kHz and are not in accordance
with input frequency.
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Figure 3.11: Inhomogeneous cement coupled with S-wave transducers. This figure il-
lustrates the parasitic P-wave part of a single-cycle signal. (a) Entire raw time-domain
data and (b) the FFT spectra of these raw time-domain data. FFT spectra were cal-
culated from entire raw waveforms. All spectra have the same central frequency of
600±200 kHz and are not all in accordance with input frequency.
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We suggest that this central frequency is not repeatable across different setups,

nor is it indicative of the bulk material. We have shown that central frequency is

highly repeatable within each of the experimental setups, but not between different

setups. This is an important distinction, as it potentially highlights the importance of

the exact coupling situation between setups. We recall our motivation data, (Figure

1.4), which originated from tracking the parasitic-P-wave component of single-cycle

pulses after propagating through the same inhomogeneous cement sample discussed

above. This analysis found that all pulses (ranging from 300 kHz to 700 kHz) had the

same central frequency of 300±100 kHz. However, our results in Figure 3.11 found

that all pulses (ranging from 600 kHz to 1 MHz) had the same central frequency of

600±200 kHz. Given that the identical sample of inhomogeneous cement was exam-

ined in both cases, we conclude that the central frequency of the coupling signature is

not indicative of the bulk material and has poor repeatability across different setups.

Sandstone

Sandstone is another known nonlinear elastic material [15]. We transmit a series of

single-cycle pulses ranging from 600 kHz to 1 MHz through our sandstone sample,

and we monitor the S-wave component of the output signal. These time-domain

signals are shown in Figure 3.12A and the FFT of these pulses are shown in Figure

3.12B. In Figure 3.12B, we once again observe that the frequency of the elastic waves

generated by S-transducers did not change as the frequency parameter was changed

on the generator. This is supported by the fact that all pulses ranging from 600 kHz

to 1 MHz possess the same central frequency of 300 kHz.

Finally, we transmit a series of single-cycle pulses ranging from 600 kHz to 1 MHz

through our sandstone sample, and we monitor the parasitic P-wave component of



64

A

B

Figure 3.12: Sandstone coupled with S-wave transducers. This figure illustrates the
(A) entire time-domain data of the S-wave part of single-cycle pulses and the (b) FFT
spectra of the entire time-domain signals. All spectra have the same central frequency
of 300 kHz (see Appendix A for individual uncertainties) and are not in accordance
with input frequency.
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the output signal. These time-domain signals are shown in Figure 3.13A and the FFT

of these pulses are shown in Figure 3.13B. In Figure 3.13B, we once again observe

that the frequency of the elastic waves generated by S-transducers did not change as

the frequency parameter was changed on the generator. This is supported by the fact

that all pulses ranging from 600 kHz to 1 MHz possess the same central frequency

of 160±70 kHz. With sandstone, we observe the complexity of our signal increase

for the parasitic P-wave component of the signal but not for the S-wave component.

This observation is the opposite of that for inhomogeneous cement, where the S-wave

component of the signal was more complicated, but the parasitic P-wave was not.

When coupled to our sample materials, both elastically linear and nonlinear, our

shear wave transducers generate a coupling signature pulse, whose frequency is inde-

pendent of the waveform frequency set on the generator. When a pulse consists of

multiple cycles, the first cycle of the pulse is contaminated by the coupling signature.

Furthermore, this coupling signature is observed in both the parasitic P-wave and

the S-wave component of these pulses. Interestingly, both components have different

coupling signatures (different central frequencies). When a single-cycle pulse is sent

from a shear wave transducer, the entire pulse is contaminated by the coupling signa-

ture. Therefore, the frequency of a single-cycle pulse will reflect the coupling signature

rather than the frequency set on the generator. In other words, for a given coupled

system, we cannot reliably change the frequency of a single-cycle pulse from a shear

wave transducer. For this reason, shear wave transducers should not be used to study

the relationship between probe frequency and elastic non-linearity. We found that

this “coupling signature” is present for both the parasitic P-wave component of the

signal, as well as the intentional S-wave component. However, it should be noted that

the parasitic P-wave and the S-wave pulses have different coupling signatures with

different central frequencies. The signature becomes more visually evident when we
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A

B

Figure 3.13: Sandstone coupled with S-wave transducers. This figure illustrates the
entire time-domain data of the parasitic P-wave of a single-cycle pulse and (b) the
FFT spectra of the entire signals. All signals possess the same central frequency of
160±200 kHz, and are not in agreement with input frequency.
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observe more cycles. However, the signature does not appear for continuous signals,

suggesting that it is a result of the transducers initiating a pulse.



Chapter 4

Conclusions

4.1 Summary

In all but one case, sending a series of ultrasonic pulses through various setups found

the central frequency of pulses changed as we changed the input frequency. The

exceptional case occurred when we coupled S-transducers to a sample material and

sent a series of single-cycle pulses. Only in this case did we observe that for a given

setup all pulses possessed the same central frequency, regardless of the input frequency.

When a pulse consists of multiple cycles, a signal artifact exists in the first cycle of the

pulse. When a continuous pulse is transmitted, no coupling signature is observed. This

further suggests that the coupling signature is attributed to the initiation of a pulse

sequence because a continuous signal has no discrete start or stop region. When a

single-cycle pulse is sent from a shear wave transducer, the entire pulse is contaminated

by the coupling signature. Moreover, we found that a coupling signature is present for

both the parasitic P-wave component of the signal, as well as the S-wave component.

However, the parasitic P-wave and the S-wave pulses have different coupling signatures
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with different central frequencies. Therefore, the frequency of a single-cycle pulse will

reflect the coupling signature rather than the waveform frequency set on the generator.

In other words, for a given coupled system, we cannot reliably change the frequency

of a single-cycle pulse from a shear wave transducer. For this reason, shear wave

transducers should not be used to study the relationship between probe frequency and

elastic non-linearity. These observations are consistent among linear and nonlinear

materials. Hence, we speculate that this frequency discrepancy is attributed to wave

interactions at the interface between the transducer’s active face and the sample

material, and not induced by inhomogeneities in the sample. When a shear force is

perpendicular to a flat surface, we speculate that the initiation of a pulse causes a

slipping between surfaces at the interface. Further, the transducer’s active surface

and the sample material are not infinitely long, so edge effects are expected. It

is possible that the bevelled outer edge of the transducer’s active face generates S-

wave energy which diffracts. Without the presence of a sample material between

the transducers, these diffracted waves have no mode of arriving at the receiver,

and thus, we do not observe the slipping and/or diffraction effects. Lastly, in the

case of the P-transducers, our results suggest that it is possible to generate single-

cycle pulses with different frequencies. Hence, we conclude that P-transducers do

not produce a coupling signature which contaminates the first cycle. For this reason,

P-transducers are a viable option in probe transducer selection when studying the

relationship between probe frequency and elastic non-linearity.

Overall, we conclude that best practices for future work should monitor waveforms

passing through the sample, and not just input waveforms. This conclusion stems from

our newfound understanding of how transducer responses are related to coupling and

how the properties of ultrasonic pulses change as they propagate through our exper-

imental setup. The results from the experiments in this thesis have allowed us to
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establish a baseline for what we should expect to see in terms of output pulses and

conclude that the frequency conversion reported in Chapter 1 is not a result of dysfunc-

tional equipment. Rather, it should be attributed to how our S-transducers behave

in coupled conditions. When coupled, S-transducers generate a coupling signature

whose frequency is independent of the frequency we set on the waveform generator.

Therefore, we conclude that S-wave transducers are not a viable option when select-

ing a probe transducer to generate single-cycle pulses for measuring the relationship

between probe frequency and nonlinear elasticity.

4.2 Future Work

Can we generalize our theory? It is possible that our S-transducers have been

exposed to conditions which may have altered the way they behave in coupled condi-

tions. To address this possibility, we propose repeating a series of experiments from

Chapter 3 with several new S-transducers. This will allow us to make broader claims

regarding the behaviour of S-transducers at large, rather than just the small sample

size of transducers in our acoustics laboratory.

Multi-cycle probes? Returning to the initial research which motivated this the-

sis, we propose running a series of experiments using the Transient Wave Dynamic

Acousto-elastic Testing (TW-DAET) setup to address the frequency dependence of

nonlinear wave interactions. As we’ve shown throughout this thesis, obtaining reli-

able measurements of single-cycle pulse frequency is challenging, and increasing the

number of cycles greatly improves our peak resolution. Using a well-characterized

material, and a multi-cycle probe wave, we intend to compare our nonlinear responses
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from our single-cycle probe to that of our multi-cycle probe to determine if increas-

ing probe duration affects our non-linear results. In TW-DAET, we monitor changes

in the probe induced by the pump, which is referred to as the perturbed probe. In

theory, a multi-cycle probe is a viable option. However, we question whether or not

increasing the duration of the probe will reduce its ability to resolve finer interactions.

Further, the use of multi-cycle probes may complicate our interpretation because we

assume that the pump signal is unchanged during the passage of the probe, which

may not be true when the probe length is increased. If the results are consistent

among both single and multi-cycle probes, we can proceed with nonlinear scans using

multi-cycle probes, which would greatly improve our ability to measure the frequency

of these pulses. This would allow us to proceed with our investigation into the fre-

quency dependence of nonlinear wave interaction with our current TW-DAET setup,

all the while having confidence in the frequency content of our ultrasonic pulses.

Can a coupling signature be used to identify samples? Our preliminary re-

sults suggest that the central frequency of coupling signatures is not repeatable, nor

are they indicative of the bulk material. We drew this conclusion after comparing the

central frequency spectra from our motivation data in Chapter 1 (Figure 1.4; repeated

in Figure 4.1A) and our results when repeated using the same sample, transducers and

pulses (Figure 3.11; repeated in Figure 4.1B). In both cases, we tracked the parasitic-

P-wave component of single-cycle pulses after propagating through the same exact

inhomogeneous cement sample. However, these experiments were conducted several

months apart, over slightly different frequency ranges and several factors such as tem-

perature, humidity, the volume of couplant, and the force on the bar clamp were not

controlled. In comparing the two, all pulses in the motivation data (ranging from

300 kHz to 700 kHz) had the same central frequency of 300±100 kHz. However, our
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results in Figure 3.11 found that all pulses (ranging from 600 kHz to 1 MHz) had the

same central frequency of 600±200 kHz. These two central frequencies are in agree-

ment within their ranges of uncertainty, but this is an unconvincing agreement due to

the large uncertainties associated with these measurements. Given that the identical

sample of inhomogeneous cement was examined in both cases, we theorize that the

central frequency of the coupling signature is not indicative of the bulk material and

has poor repeatability. To investigate this theory, we propose investigating how the

coupling signature is affected by changing the dimensions of the sample materials.

This will indicate whether the coupling signature can provide insight into the proper-

ties of the bulk material or if it is contingent on the geometry of the setup. Further,

we propose using a variety of different coupling conditions (e.g. volume of couplant

and amount of force on the bar clamp) and, eventually, different sample materials

to determine if any properties of the coupling signature are unique to each coupled

system, addressing the question of whether this single-cycle pulse could be used to

identify unknown samples.

What is behind the parasitic P-wave? Finally, we hypothesize that parasitic

P-waves are a result of the edge of our transducer surface exhibiting motion in the

normal direction when in contact with a solid. Notably, we did not observe parasitic

P-waves when our S-transducers were tested individually using laser vibrometry. We

positioned the laser directly in the centre of the transducer’s active surface. Therefore,

it is unsurprising that parasitic P-waves were not observed. We propose a future

experiment using the laser vibrometry technique, which involves positioning reflective

tape on the outer edges of the transducer’s active surface and positioning the laser

on said edge. This would provide insight as to if parasitic P-waves are inherently

produced by the transducer edges, or if they are a result of the edges interacting



73

A

B

Figure 4.1: FFT spectra of the parasitic P-wave component of single-cycle ultra-
sonic pulses after propagating through inhomogeneous cement (cement with an em-
bedded network of evenly spaced (5mm) copper wires) coupled with S-wave trans-
ducers. (a) Figure 1.4 repeated. All signals possess the same central frequency of
300±100 kHz. (b) Figure 3.11 repeated. All signals possess the same central fre-
quency of 600±200 kHz.
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with a solid. To address the latter, given we also do not observe a parasitic P-wave

when we couple two S-transducers together without a sample, we propose examining

if parasitic P-waves occur when pulses travel through a long sample whose interface is

smaller than the active surface of the transducer. In other words, the face of the solid

is contained within the transducer’s surface and therefore does not interact with the

edges of the transducer. If we do not observe parasitic P-waves, we can conclude that

the edge effect is responsible. Another possibility is that the lack of parasitic P-wave

production is a result of travel time restrictions. We propose examining if parasitic

P-waves occur when pulses travel through a thin intermediate sample. This would

address whether the lack of P-wave production is a matter of limited travel time (The

S-wave is recorded almost immediately, leaving no time to distinguish between P-

wave and S-wave arrivals). Interestingly, just as in the case of the coupling signature,

we observe the parasitic P-wave only when transducers are loaded with a sample.

Furthermore, we do not observe either phenomenon in P-transducers, suggesting that

perhaps there exists a link between these two phenomena.
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Appendix A

Central Frequencies

Experiment Input Frequency Central Frequency ± df

(kHz) (kHz) (kHz) (kHz)

Wave generator 100 80 50 20

to oscilloscope 300 300 200 100

– 1 cycle 500 400 300 200

(Figure 2.7) 800 600 500 200

1000 800 500 200

Wave generator 100 100 20 20

to oscilloscope 200 200 30 20

– 4 cycles 400 400 50 50

(Figure 2.9) 600 600 100 50

800 800 100 100

1000 1000 200 100

Wave generator 100 100 4 20

to oscilloscope 200 200 4 20
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– continuous 400 400 10 50

(Figure 2.10) 600 600 10 50

800 800 20 100

1000 1000 20 100

Single S-transducer 50 40 20 10

– 1 cycle (full) 100 100 40 10

(Figure 2.13B) 150 120 50 10

200 120 60 10

Single S-transducer 50 60 50 40

– 1 cycle (cropped) 100 120 40 40

(Figure 2.13C) 150 120 50 40

200 120 60 40

Single S1-transducer 50 50 2 2

– 10 cycles 100 100 4 5

(Figure 2.15) 200 200 10 5

Single S2-transducer 50 50 3 1

– 10 cycles 100 100 4 2

(Figure 2.15) 200 200 10 10

Single P2-transducer 50 50 3 2

– 10 cycles 100 100 5 2

(Figure 2.15) 200 200 10 2

Single P1-transducer 50 50 3 2

– 10 cycles 100 100 4 5

(Figure 2.15) 200 200 10 10

S-transducer pair 200 200 50 20

No sample – 1 cycle 400 400 200 100
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(Figure 3.4 ) 600 700 300 100

800 900 300 100

1000 900 300 100

P-transducer pair 100 100 50 10

No sample - 1 cycle 200 180 100 20

(Figure 3.3) 400 440 200 40

600 600 300 100

800 800 400 100

1000 800 400 100

Homogeneous Cement 100 160 50 40

P-transducers 200 280 90 40

1 cycle 400 360 100 40

(Figure 3.9) 600 500 200 100

800 600 200 100

1000 700 300 100

Homogeneous Cement 400 400 300 200

S-transducers 500 400 100 200

Parasitic P-wave 600 400 200 200

1 cycle 700 400 200 200

(Figure 3.5) 800 400 200 200

900 400 200 200

1000 400 200 200

Homogeneous Cement 600 280 200 40

S-transducers 700 280 200 40

S-wave – 1 cycle 800 280 200 40

(Figure 3.6) 900 280 200 40
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1000 280 200 40

1100 280 300 40

1200 280 300 40

*Inhomogeneous Cement 500 350 200 90

S-transducers 600 350 200 90

S-wave – 1 cycle 700 350 200 90

(Figure 3.10) 800 350 200 90

900 350 200 90

1000 350 200 90

Inhomogeneous Cement 600 600 200 200

S-transducers 700 600 200 200

Parasitic P-wave 800 600 200 200

1 cycle 900 600 200 200

(Figure 3.11) 1000 600 200 200

Sandstone 600 160 70 40

S-transducers 700 160 70 40

P-wave 800 160 70 40

1 cycle 900 160 70 40

(Figure 3.13) 1000 160 70 40

Sandstone 600 300 200 100

S-transducers 700 300 200 100

S-wave - 1 cycle 800 300 200 100

(Figure 3.12) 900 300 200 100

1000 300 300 100
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Table A.1: Central frequencies. All FFT spectra were

calculated using the entire raw data set, unless stated

otherwise (*). The central frequency of all FFT spectra

in this thesis are reported as the frequency where the

maximum spectral intensity occurs. Each spectrum was

fitted with a gaussian and the full width at half maximum

(FWHM) was calculated and half this value is reported

as the uncertainty (±) in the central frequency.


