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Abstract 

Overview: The subjective perception of time holds a foundational significance within the realm 

of human psychology and our conceptualizations of reality. It forms an intrinsic component of the 

cognitive framework through which we elucidate the chronological progression of events within 

our lives. While some studies have examined the effects of exercise on time perception during the 

exercise period, there are no studies investigating the effects of fatiguing exercise on time 

perception after the exercise intervention. Thus, this study aimed to investigate the effects of 

physical and mental fatigue on time estimates over 30-seconds (5-, 10-, 20-, and 30-seconds) 

immediately after the exercise intervention and 6-minutes after the post-test. 

Participants: Seventeen healthy and recreationally active volunteers (14 males, 3 females) were 

subjected to three conditions: physical, mental fatigue, and control.  

Methods: All participants completed a familiarization and three experimental conditions (control, 

physical fatigue (cycling at 65% peak power output  for 30 minutes), and mental fatigue (Stroop 

task for 1100 trials for 30 minutes) on separate days. Heart rate and body temperature were 

recorded at the pre-test, the start, 10-, 20-, 30- minutes of the intervention, post-test, and follow-

up. Rating of perceived exertion (RPE) was also recorded during the intervention four times. Time 

perception was measured prospectively (at 5-, 10-, 20-, and 30-seconds) at the pre-test, post-test, 

and 6-minute follow-up.  

Results: Physical fatigue significantly (p=0.001) underestimated time compared to mental fatigue 

and control conditions at the post-test and follow-up, with no significant differences between 

mental fatigue and control conditions. Heart rate, body temperature, and RPE were significantly 

higher in the physical fatigue compared to the mental fatigue and control conditions during the 

intervention and also at the post-test. 
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Conclusion: This study demonstrated that cycling fatigue led to time underestimation compared 

to mental fatigue and control conditions. It is crucial to consider that physical fatigue has the 

potential to lengthen an individual's perception of time when estimating durations in sports or work 

environments. 
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1 Chapter 1: Literature Review 

1.1 Introduction 

People have been fascinated by time for centuries; however, philosophers and scientists from 

ancient times have yet to fully agree on its definition and qualities (Bunnag, 2019). The concept 

of time is one of the experiences that are essential for how we experience the world (Wittmann, 

2009). Our behavioral and cognitive systems depend heavily on duration perception, which allows 

us to interact with the outside world (Jia et al., 2020). Serious consequences can result from 

changes in how one perceives time spent at work, exercising, and participating in sports. An 

accurate perception of time is an indispensable part of many time-constrained sports (i.e., North 

American football, basketball, figure skating, and others) and work environments (Behm & Carter, 

2020).  It is well known that our subjective perception of time can be manipulated and distorted 

under certain circumstances (Eagleman, 2005); however, little is known about how physical and 

mental fatigue affects how people perceive time. 

People who engage in physical activity as part of training or rehabilitation frequently complain 

about fatigue. Numerous research articles have been written about fatigue and how it impacts 

physiological and bodily functions. Physical or mental fatigue can result in difficulty starting or 

continuing voluntary tasks (Chaudhuri & Behan, 2004). Failure of one or more physiological 

processes that enable the contractile proteins to produce force causes fatigue (Abd-Elfattah et al., 

2015). Physical fatigue can be divided into peripheral (distal to the synaptic neuromuscular 

junction) and central (prior to the neuromuscular synaptic junction including all aspects of the 

corticospinal system) components (Chaudhuri & Behan, 2004). Boyas and Guével (2011) have 

developed a principle known as "exercise-induced fatigue" to describe muscular fatigue resulting 

from physical activity.  
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As a psychobiological condition, mental fatigue results from extended periods of demanding 

cognitive activity (Job & Dalziel, 2000). Mental fatigue is a state of tiredness that sets in when 

your brain's energy levels are depleted. Mental fatigue is usually the result of prolonged stress. 

Research has evaluated people's subjective reports of fatigue to measure mental fatigue before, 

during, and after challenging cognitive tasks (Ackerman, 2011). One objective way to examine 

how behavioral performance changes over time while performing various cognitive activities is to 

investigate mental fatigue. After finishing the mentally exhausting task, another approach is to 

look at behavioral performance deficiencies on a subsequent task (Helm, 2021). The best 

explanation for behavioral changes during such tasks is a reduction in top-down (i.e., cerebral 

cortex to periphery) processing, which results in an inability to focus and meet task demands 

(Taylor et al. 2010). The Stroop, continuous attention or vigilance mental performance test, 

psychomotor vigilance, and other tasks has been used to induce mental fatigue (Tran et al., 2020). 

As a result, when a person is experiencing mental fatigue, the skills needed for these tasks become 

less effective. 

Exercising for a long time in a hot environment impairs physical and mental performance 

(González-Alonso et al., 1999). Timing behaviour is sensitive to changes in body temperature; 

hence it has been suggested that there is a temperature-sensitive time mechanism (Tamm et al., 

2015). Studies examining the influence of different temperatures on how people perceive time 

have revealed discrepancies. Some studies claim that a rise in temperature causes time to hasten, 

but others contend that this effect only happens once a certain threshold of perceived fatigue has 

been reached (Tamm et al., 2014, 2015).  

The perception of time by individuals during exercise and whether or not sex-related factors play 

a role in this perception are both unknown (Hanson & Buckworth, 2016). The experience of time 
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during exercise may be influenced by intensity level, physical and mental fatigue, or sex-related 

factors. In addition, how physical and psychological fatigue affects how much time seems to pass 

has yet to be determined.  

The aim of the present study is to explores whether physical and mental fatigue impacts the 

perception of time elapsed after the exhaustive cycling and Stroop task test to determine if any 

sex-related differences are present. Furthermore, we aimed to investigate whether heart rate and 

temperature have an impact on the perception of time. Specifically, the experiment will test the 

hypothesis of whether exhaustive cycling (which leads to physical fatigue) and the Stroop task test 

(which leads to mental fatigue) distorts perception of time.  We hypothesize that physical and 

mental fatigue protocol will lead to an underestimation of the time.  

1.2 Time Perception 

The experience of time is one aspect of human life that remains largely unknown, with scientists 

still struggling to understand its neural basis (Brown, 2008). While both short and long-duration 

activities are judged in terms of their perceived length, it is evident that some may be viewed as 

too brief or not lasting enough (Edwards & McCormick, 2017). In cases when a person engages 

in an enjoyable task that requires attention, time may seem to pass quickly. However, when 

working on a less pleasurable task, time can appear to drag on slowly (Wittmann & Paulus, 2008). 

In some situations, involving increased temporal awareness, such as anticipation, boredom, and 

impatience, time appears to move more slowly (Fraisse, 1984). Therefore, the experience of time 

is a result of the intricate relationships between specific cognitive functions and momentary mood 

states (Wittmann, 1999).  
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The sensation of time is particular among our senses (Wittmann & van Wassenhove, 2009). Recent 

studies have examined how individuals’ perceptions, decision-making processes, and perceived 

exertion are affected by timed exercise (Smits et al., 2014), there is currently limited evidence 

showing whether or not exercise has an impact on how time seems to pass (Lambourne, 2012). 

One aspect of a person's unique relationship to their environment is their temporal experience. 

Time can be perceived as moving quicker or slower than objective measures depending on the 

situation and the person (Hanson & Buckworth, 2016). This integration, which is necessary for 

this experience of time, which is an integration of parallel chains of internal and external events, 

is only possible in a neurological system that is highly functional (Eson & Kafka, 1952). 

Several cognitive and emotional elements influence the accuracy and precision of time estimation 

in the seconds-to-minutes range (Wittmann & van Wassenhove, 2009). In terms of the feeling of 

time about seconds, minutes, and hours, our subjective well-being has a significant impact on how 

time is perceived: time flies when engaging in enjoyable activities but drags when experiencing 

mental distress (Bschor et al., 2004; Flaherty, 1999; Wittmann et al., 2006).  Everyday choices we 

all make, like taking the stairs or waiting for the elevator, are influenced by how we perceive the 

passing of time (Wittmann, 2009). 

It is well known that, in some situations, the way that time is seen (subjective time) can be 

manipulated and distorted (Eagleman, 2005). This is unexpected because studying temporal 

illusions reveals the neurological foundations of time perception, which are essential for the proper 

timing of human performance (Abbiss et al., 2016). Time distortion may occur due to exercise, 

especially during high-intensity, self-regulated exercise where physical discomfort is severe 

(Edwards & Polman, 2013). The study of Edwards and McCormick (2017) as the first empirical 

proof showed that exercise intensity affects perception of time, especially during maximal 
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exercise. In this study participants were asked to verbally indicate when they perceived (subjective 

time) 1) 25%, 2) 50%, 3) 75% and 4) 100% of each bout's measured (chronological) time had 

elapsed. The results showed that in response to the Wingate task, there was no significant 

difference between the durations of subjective time at the 25%, and 50% interval. However, at the 

75% and 100% intervals, the estimate for the rating of perceived exertion (RPE) of 20 was the 

shortest (Edwards & McCormick, 2017). 

The findings of Hanson and Buckworth (2016) revealed that women's overall time estimates were 

significantly lower than men's, indicating that women perceived time to be moving more slowly 

than men. In this study twenty-two recreational runners (11 men and 11 women) took part in a 

treadmill run in which they were given the option to choose their own intensity level. Before, 

during (at 33%, 66%, and 90% of the completed distance), and after the run, 60-second prospective 

time estimates were taken. Additionally, the entire time, heart rate (HR) was measured (Hanson & 

Buckworth, 2016). The main finding of this study was the distinction in how men and women 

participants perceived time during a bout of self-paced exercise. Time seems to pass more rapidly 

when the prospective time estimation ratio is higher than 1.0, while time seems to move more 

slowly when the ratio is lower than 1.0. The average time estimation ratio for women was .895 

(SD =.162), whereas the average for men was 1.054 (SD =.172). According to these ratios, the 

average 60-second time estimates for men and women were 63 and 54 seconds, respectively. The 

results showed that the women in this study experienced time passing more slowly than the males 

did; these differences were present before, during, and after each run. If these findings applied to 

the entire exercise bout, women would have perceived the typical 30-minute exercise session as 

taking more than 3 minutes longer than it actually did, but men would have perceived the same 

session as taking almost 1.5 minutes less time than it actually did (Hanson & Buckworth, 2016). 
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The purpose of the study of Tonelli et al (2022) was to investigate the effects of moderate physical 

activity (cycling) on a temporal estimation task in a group of adult volunteers under three different 

conditions: (1) baseline, (2) during the physical activity phase, and (3) roughly 15 to 20 minutes 

later, when participants were seated and returned to a resting heart rate (POST). They discovered 

that exercise directly alters how people perceive time, causing them to overestimate durations in 

the millisecond range. Notably, the impact lasted during the POST session, ruling out either the 

heart rate or cycle rhythmicity as the primary contributors (Tonelli et al., 2022). In addition, Tamm 

et al. (2015) studied the effects of heat acclimation and factors contributing to time perception 

under heat stress. Following a 10-day heat acclimation program, twenty young, healthy male 

subjects performed three exercise tests on a treadmill: H1 (at 60% VO2peak until exhaustion at 42 

°C), N (at 22 °C; duration equal to H1), and H2 (walk until exhaustion at 42 °C). Their result 

revealed that after 60 minutes of exercise, compared to the pre-trial coefficients, there were 

noticeable distortions (which means they perceive time to have passed by a faster rate than 

chronological time) in the produced intervals prior to heat acclimation, indicating accelerated 

temporal processing. However, this effect was not present in subjects who had already acclimated. 

1.3 Theories of Time Perception 

1.3.1 Scalar Expectancy Theory 

Scalar expectancy theory, also known as the pacemaker accumulator model, is the model that is 

most frequently used when discussing how arousal affects time perception (Allman & Meck, 2012; 

Grondin, 2010). As illustrated in figure one, the scalar expectancy theory uses the clock, memory, 

and decision stages to divides the temporal processing system (Allman & Meck, 2012; Behm & 

Carter, 2020).  
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Figure 1 Adopted from Behm and Carter (2020) 

When a signal first appears, an attention-controlled switch closes, and pacemaker pulses are 

collected into an accumulator (a hypothetical but unidentified function of the brain), the clock 

stage begins (Allman & Meck, 2012). The contents of the accumulator are transferred from 

working memory to reference memory for long-term storage if, after some time, the signal gains 

some additional relevance (such as feedback or changes in the environment). This involves the 

memory stage (Allman & Meck, 2012).The perception of our time is formed by this process.  

1.3.2 Striatal Beat Frequency Model 

The striatal beat frequency model (SBF) describes the way in which timing networks are 

interactive  (Merchant et al., 2013). As outlined in the figure two, this model is better equipped to 

address timing behavior because it not only discusses the timing behaviors, but also identifies 

which neural regions of the brain are involved (Merchant et al., 2013).  
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Figure 2 The neural regions associated with time perception and timing behavior (Adopted from Behm & carter, 2020) 

The model suggests that the speed of a clock is determined by levels of dopamine and glutamate 

activity in regions near the substantia nigra and ventral tegmental area. The timing process starts 

with striatal spiny neurons that monitor activation patterns in the cortex's oscillatory neurons, 

which are controlled by glutamate action (Meck, 2005).The oscillating neurons synchronize when 

an interval starts, and the spiny neurons are reset by phasic dopaminergic input. A dopamine pulse 

is released when the target duration is attained, strengthening the synapses that are active in the 

striatum (Meck, 2005). Time is perceived in the mind according to the oscillatory activity rate. 

Similar to how long-term potentiation and depression mechanism are used to strengthen and 

weaken synaptic weights in order to create a memory of the target duration (Matell & Meck, 2004). 

Once the same signal duration has been timed once more, neostriatal GABAergic spiny neurons 

compare the current activation pattern to the stored pattern to determine when the duration has 
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been reached; when they match, spiny neurons fire to indicate that the period has passed (Matell 

& Meck, 2004; Meck, 2005; Merchant et al., 2013).  

This hypothesis attributes the distortion of time to context-dependent activation dynamics, but 

these dynamics are still largely unknown (Merchant et al., 2013). This temporal distortion effect 

is thought to result from timing-interfering neural activity in various neural networks. This was 

seen in experiments where emotionally charged stimuli caused time perception to be altered 

because of activity in the emotion and association networks (Dirnberger et al., 2012; Merchant et 

al., 2013). This animal model has been used to explain differences in time perception between the 

sexes, but it has not yet been used to explain exercise-induced arousal alteration of time perception 

(Pleil et al., 2011; Sandstrom, 2007). Since the neural activity linked to exercise varies depending 

on the intensity, duration, and type of activity (Behm & Sale, 1993), it is possible to expect activity-

specific changes in time perception (distortion) (Behm & Carter, 2020). 

1.4 Physical Fatigue 

We know much about the physiological impairments that might lead to muscular fatigue. Muscle 

fatigue is a term that describes a temporary decline in one's ability to perform physical activity 

(Enoka & Duchateau, 2008). Muscle fatigue is one of the uncomfortable sensations, making 

performing a physical task more difficult than usual. When you begin work, you first feel robust 

and tenacious before your muscles become tired and weaken. One definition of fatigue is the 

inability to maintain the necessary or expected force (Edwards, 1981). Therefore, fatigue is not 

measured at the start or just when muscles reach failure. Instead, fatigue gradually increases after 

the beginning of a physical task (Enoka & Duchateau, 2008). It is believed that an impairment of 

the contractile mechanism of the muscle fibers is one of the causes of muscle fatigue. This might 

be brought on by the accumulation of metabolic waste in active muscles or the depletion of energy 
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reserves. Several mechanisms have been proposed, including the buildup of intracellular lactate 

and hydrogen ions, ionic changes in the action potential, the failure of sarcoplasmic reticulum (SR) 

Ca2+ release, and the reduced calcium sensitivity of myofibrillar proteins (Allen et al., 2008; 

Olsson et al., 2020; Reid, 2008). There is no known significant cause for fatigue; fatigue can cause 

temporary impairment of voluntary activation and force production and is categorized as either 

local or global (Rattey et al., 2006). Fatigue is generally believed to have a significant impact on 

sports performance, attributable primarily to physical fatigue caused by ametabolic and 

neuromuscular factors. 

1.4.1 Central fatigue 

Before the central neural drive reaches the neuromuscular junction, events in the brain, spinal cord, 

and motor neurons are involved (Gandevia, 2001). Central fatigue is the processes in which the 

function of neurological systems that send signals to the muscle fibers, including the motor cortex 

and the neural pathways that descend the spinal cord to innervate motor neurons is compromised 

(Ashley‐Ross, 2005). Reducing voluntary activation during tasks requiring both maximal and 

submaximal exertion has been identified as a measurement of central fatigue. Although numerous 

studies have investigated how central fatigue affects different aspects, including grip strength and 

MVCs, the precise cause of central fatigue is still unknown. Exercise performance may be 

hampered by a variety of factors, including central fatigue, which is a complex phenomenon 

(Meeusen, 2006). Glutamate, acetylcholine, adenosine, and GABA are just a few of the many 

neurotransmitters that the brain uses to transmit signals, but they have all been linked to central 

fatigue (Meeusen, 2006). Additionally, it's likely that the interactions between several factors, 

including the cerebral metabolic, thermodynamic, and hormonal reactions to exercise, contribute 
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to reducing the amount of communication between the brain and the peripheral muscles (Meeusen, 

2006).  

Central fatigue has also been found to be induced by demanding cognitive tasks (Bray et al., 2008). 

Because of changes in neurotransmitter concentrations, hormonal responses to cognitive exercise, 

and an impaired ability to designate resources to activities, central fatigue impairs the signal 

transmission from the brain to the muscle, which decreases the muscle's ability to maintain optimal 

muscle contraction (Alder et al., 2021; Decorte et al., 2012; Meeusen, 2006; Nordlund et al., 2004; 

Wan et al., 2017) which contributes to the decreased grip, plantar flexor muscles and quadriceps 

muscle maximal voluntary contraction values in participants.  

Furthermore, because it interacts with pre-motor regions and is involved in movement planning 

and decision-making, activation of the prefrontal cortex has been proposed as a sign of central 

fatigue (Thomas & Stephane, 2008). It has been shown that mental fatigue increases prefrontal 

cortex activation, which is a sign of increased cerebral perfusion caused by a buildup of exercise 

by-products and enhanced somatomotor activation in the brain. This increase in blood flow to the 

prefrontal cortex may result from additional neural activation required to produce efferent motor 

commands, which may be one of the reasons why central fatigue can have an impact on physical 

performance (Mehta & Parasuraman, 2014; Nobrega et al., 2014). Previous studies have shown 

that the way in which central fatigue manifests depends on the task specific, with continuous low-

intensity exercise frequently leading to greater central fatigue (Kennedy et al., 2013; Place et al., 

2009). Both maximal and submaximal voluntary contractions have the potential to cause central 

and peripheral alterations; however, central fatigue is more frequently linked to low-intensity 

continuous exercise, whereas peripheral fatigue is more frequently linked to high-intensity 

maximal exercise (Kennedy et al., 2013). 
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To sum up, central fatigue involves CNS-related processes and decreases voluntary muscle 

activation during physical tasks. Although the precise causes of central fatigue are not fully known, 

research has shown that it may be caused by alterations in neurotransmitter levels, hormonal 

responses to exercise, and a decreased capacity to allocate resources for task completion (Alder et 

al., 2021; Kennedy et al., 2013; Meeusen, 2006; Wan et al., 2017). 

1.4.2 Peripheral Fatigue 

Events that originate outside the central nervous system, particularly those that occur distal to the 

motor neurons and within the muscle fibers, are referred to as peripheral aspects of fatigue (Wan 

et al., 2017). After prolonged or repetitive muscle contractions, neuromuscular fatigue can occur 

in, impairing physical performance by preventing sufficient blood flow to the muscle and causing 

metabolites to accumulate (Sjøgaard et al., 1986). This is seen in research by Merton (1954), which 

found that even after peripheral fatigue occurred, if the blood supply was cut off by a blood 

pressure cuff, twitch force did not recover, and participants were unable to exert MVCs to their 

fullest capacity. According to Merton (1954), this shows that fatigue is caused by peripheral causes 

as well as the central nervous system and that voluntary strength might not recover until peripheral 

blood flow to the muscles is restored. Additional peripheral aspects of fatigue include inhibitory 

reactions to metabolite accumulations, such as hydrogen ions and inorganic phosphates (Pi), which 

slow the excitation process that starts at the neuromuscular junction (Kent-Braun, 1999) and 

muscle contractile function will be impaired as well (Kent-Braun, 1999). The neural signal might 

not reach the muscle fibers, or else the  postsynaptic area might lose sensitivity to the neural signal 

(Kent-Braun, 1999). There is a decrease in muscle force output as a result of these, which have 

been seen during both high and low intensity exertion (Kent-Braun, 1999). The depletion of 

neurotransmitters released in the synapse, which may occur due to a decrease in the number of 
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accessible vesicles as well as a decrease in the neurotransmitter's vesicle content, is a contributing 

factor to the failure of neuromuscular transmission (Wu & Betz, 1998). Even when a neuronal 

signal, enough acetylcholine, and calcium are available, post-synaptic potential failure (also 

known as synaptic depression) can still take place. This is because long-term exposure to 

neurotransmitters desensitizes the receptors, which prevents even sufficient amounts of ACh or 

calcium from binding to the tropomyosin complex from binding to the receptors. 

1.5 Mental Fatigue 

The feeling of mental fatigue happens after or during extended periods of cognitive work, and it 

has been linked to a temporary decline in cognitive performance (Borghini et al., 2014). Compared 

to normal functioning levels, mental fatigue is characterized by a decline in alertness and impaired 

performance (Ackerman & Kanfer, 2009). Mental fatigue may result from increased mental effort. 

Prior to, during, and after challenging cognitive tasks, research has assessed people's subjective 

reports of fatigue to measure mental fatigue (Ackerman, 2011). If changes in task performance do 

not occur or when objective measurement may not be practicable, these types of assessments can 

be helpful (Smith et al., 2019). Although, there is some evidence that subjective ratings reflect 

mental fatigue in an individual before they begin to experience impairments during task 

performance (Kanfer, 2011), People can be inaccurate or dishonest when reporting their 

experiences of mental fatigue, as they may not accurately reflect what is happening in their minds. 

As a result, researchers have used more objective techniques to study mental fatigue. 

One way to measure mental fatigue is by assessing how a person's performance changes over time 

during various cognitive tasks. Another way to look at deficits in performance following a mentally 

challenging task is by examining how well people perform on subsequent tasks (Helm, 2021). 

Mental fatigue can be induced through various tasks, including the n-back test, Go/No-Go task, 
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Flanker Task, psychomotor vigilance, Oddball Paradigm Test, Stroop Task, and Continuous 

Performance Test. Behavioral performance changes during difficult tasks can be explained by a 

decrease in top-down processing, which results in difficulty focusing and meeting task demands 

(Tran et al., 2020). As a result, when a person is experiencing mental fatigue, their skills for 

performing tasks such as these become less efficient. 

The ideal task duration to induce mental fatigue in young adults is currently unclear in the 

literature, thus it is not known how long it takes for a change in task performance to become 

significant. Previous studies have employed tasks that continue for several hours. However, new 

research indicates that 60 to 90 minutes is sufficient to cause mental tiredness (Helm, 2021). 

Individual differences may also be a significant factor in the onset of mental fatigue and the length 

of time required to induce it. Little research, however, has looked at individual variations in the 

emergence of mental fatigue. Tasks lasting between two and four hours are used in several 

experimental procedures to induce mental fatigue (Arnau et al., 2017; Boksem et al., 2005; Tanaka 

et al., 2012; Wang et al., 2016; Wascher et al., 2014). However, evidence from these and other 

studies suggests that shorter task durations may be sufficient to cause mental fatigue as significant 

declines in cognitive function were seen after only 30 minutes (Slimani et al., 2018), 45 minutes 

(Smith et al., 2019), 60 minutes (Wascher et al., 2014) or 90 minutes (Wang et al., 2016). Overall, 

evidence from biological, behavioral, and self-report measures suggests that mental fatigue can 

occur during various task durations requiring high cognitive abilities. Vrijkotte et al (2018) in their 

studies used 90 minutes of Stroop task to induce mental fatigue. The primary conclusion of this 

research is that in trained, young, healthy athletes, mental fatigue had no impact on physical or 

cognitive performance during the second exercise bout of the two-bout exercise protocol (Vrijkotte 

et al., 2018). They found that when no mentally fatiguing task was being conducted, the initial 
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maximal exercise test increased mental fatigue. This indicates that individuals were unable to 

distinguish between physical and mental fatigue (Vrijkotte et al., 2018). Slimani et al (2018), in 

their study showed that performing the Stroop task for 30 min successfully induced mental fatigue. 

Human-Computer interaction involves substantial mental activities in every workplace. The need 

for a tool to measure or quantify mental activity is critical, as it provides a more objective means 

of assessing one's cognitive abilities. Any mental activity alters physiological elements as well. 

The Stroop test is based on the idea of associations and inhibitions (or interference). It measures 

how much effort it takes to name the color associated with a word that is written in another color 

(Hakim et al., 2022). The "Stroop effect" is a term used to describe the interference caused by 

irrelevant information while performing a cognitive task. Several theories have been proposed to 

explain the phenomenon known as "Stroop effect." The processing speed theory suggests that the 

brain reads words faster than it can detect colors, while the theory of selective attention claims that 

people are largely unaware of color differences. And finally, automaticity refers to color 

recognition not being an automatic process for most individuals (Stroop, 1935). It has been 

demonstrated that the Stroop task, which demands prolonged attention and response inhibition, 

induces a state of mental fatigue (Smith et al., 2016). The Stroop Color and Word Exam (SCWT), 

a widely used neuropsychological test, measures a subject's capacity to suppress cognitive 

interference, often known as the Stroop Effect, which happens when the processing of one stimulus 

attribute interferes with the concurrent processing of another (Stroop, 1935). The most popular 

form of the SCWT, which Stroop first put forth in 1935, asks participants to read three different 

tables as quickly as possible. Two of them stand for the "congruous condition," which requires 

participants to read color names (hence known as color words) printed in black ink (W) and 

identify various color patches (C). The third table, known as the color-word (CW) condition, on 
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the other hand, prints color words in inconsistently colored ink (for example, the word "red" is 

printed in green ink). Participants are, therefore instead of reading the word, asked to identify the 

color of the ink under this incongruous circumstance. In other words, participants must complete 

a task that is less automated (identifying the color of ink) while preventing interference from a task 

that is more automated (Ivnik et al., 1996; MacLeod & Dunbar, 1988).  The Stroop effect is a term 

used to describe the difficulties in preventing the more automated procedure (Stroop, 1935).  The 

result of Skala and Zemková (2022) study showed that mental fatigue caused by at least 30 min of 

the smartphone application exposure and Stroop color-word task caused a decline in cognitive 

performance in sport-specific tests (Loughborough Soccer Passing Test) and directly in soccer 

games (Decision Making Index) (Skala & Zemková, 2022). According to a different study which 

was conducted by Slimani et al (2018), the result demonstrated that in active male endurance 

athletes, mental fatigue induced by prolonged periods of a mentally demanding activity (i.e., a 30-

minute Stroop task) decreased cognitive and aerobic performance in terms of selective attention 

and estimated VO2max. Additionally, the mentally fatigued condition had greater subjective 

ratings of mental fatigue and ratings of perceived exertion (RPE) than the control condition did. 

They suggested that strength and conditioning coaches can employ the Stroop task to induce 

mental fatigue and to avoid mentally fatigued tasks before the competition (Slimani et al., 2018). 

1.6 Factors affecting Time Perception 

1.6.1 Sex differences 

There has only been one study that examined how men and women perceive time differently when 

exercising. Hanson and Buckworth (2016) examined eleven men and eleven women recreational 

runners, who were asked to run at a speed they chose for themselves for 75% of their daily average 

run distance. The participants were only informed when they arrived at the distance endpoint and 
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were unaware of any time or distance intervals that had passed. The results showed that women 

produced significantly lower time estimates while running at a greater self-selected pace than men. 

Therefore, compared to males, women perceived time was moving more slowly (Behm & Carter, 

2020; Hanson & Buckworth, 2016). It should be noted that these differences in time perception 

existed before, during, and following each run. These findings might support the scalar expectancy 

theory, which states that women during exercise pay greater attention to the passage of time than 

do males, leading to a higher rate of pulse accumulation in the accumulator (Hanson & Buckworth, 

2016). As it was a self-selected intensity assessment, there is still an issue with this study because 

the men and women exercised at different intensities. The fact that women consistently chose 

greater intensities than men may perhaps have contributed to some of the difference in time 

perception (Hanson & Buckworth, 2016). 

Studies on the influences of sex-related factors on how people perceive time have produced 

contradictory results (Block et al., 2000; Espinosa-Fernández et al., 2003; MacDougall, 1904). For 

instance, according to Hanson and Buckworth's (2016) findings, women estimated total time in a 

significantly lower range than men, indicating that they perceived time to be moving more slowly 

than men. 

1.6.2 Body Temperature 

Throughout the course of the day, changes in body temperature are common due to a variety of 

causes, including psychological stress, physical exertion, disease (such as fever), and 

environmental factors like temperature (Nybo, 2012). Exercising for a long time in a hot 

environments impairs physical and mental performance (González-Alonso et al., 1999). Timing 

behaviour is sensitive to changes in body temperature; hence it has been suggested that there is a 

temperature-sensitive time mechanism (Tamm et al., 2015). This is supported by animal timing 
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research, in which the scalar timing theory is used to explain the timing processes (Gibbon, 1977; 

Gibbon et al., 1984). When core temperature rises, time compression (the perception of time as 

being shorter than it is) frequently happens. This is because the pacemaker emits pulses more 

quickly, in a manner similar to how many physiological processes accelerate at higher 

temperatures (Tamm et al., 2014). 

The mechanics underlying this effect can also be explained in terms of classical physics: a rise in 

enthalpy (temperature) causes a rise in entropy, which is consistent with the observation that time 

moves more quickly as entropy increases (Ghaderi, 2019). This is also in accordance with the 2nd 

law of thermodynamics' prediction that time moves in a particular direction as entropy rises. Since 

time is a psychologically interpreted concept, the brain might be considered the system. It has been 

demonstrated in animal models that the cortex temperature can vary daily by 0.5 C, and it is 

assumed that people will experience a similar range. These oscillations, which naturally occur 

throughout the day in response to a variety of physiological stimuli, can be achieved by cooling 

processes involving cerebrospinal fluid, heat exchange with the surroundings (scalp and skulls), 

and circulating blood (Nybo, 2012). It is hypothesized that when environmental and brain 

entropies are different, there will be a mismatch between the two time-systems, resulting in 

differences between perceived and actual time (Behm & Carter, 2020; Ghaderi, 2019). However, 

in humans, brain temperature rises concurrently with body core temperature, making it challenging 

to study the effects of cerebral temperature alone in many contexts. Due to this phenomena, an 

increase in core body temperature brought on by exercise would result in hyperthermia, which 

would affect the experience of time (Behm & Carter, 2020; Nybo, 2012). However, there is no 

research performed on the effects of exercise-related changes in cerebral temperature. 
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Numerous studies have been done on the relationship between body temperature and time by 

changing the environment's temperature, which then affects the body's temperature (Tamm et al., 

2014, 2015). Studies examining the influence of different temperatures on how people perceive 

time have revealed discrepancies. Some studies claim that a rise in temperature causes time to 

hasten, but others contend that this effect only happens once a certain threshold of perceived 

fatigue has been reached (Tamm et al., 2014, 2015).  One study found that time distortion effects 

may be influenced by heat acclimatization (Tamm et al., 2015). Because this study was conducted 

in the winter, the subjects were not accustomed to being in extremely hot conditions. Participants 

were required to walk for 30 minutes on a treadmill in a room that was kept at 42 degrees Celsius. 

The 10-day experiment gave the participants time to gradually get used to the hot and dry 

environment. Time was found to have a substantial main effect of core temperature, indicating that 

prolonged exercise in the heat can alter how people perceive time, but that alterations can be 

countered by acclimation to the heat (Tamm et al., 2015). This is due to the fact that following 

heat acclimatization, the rate of increase in core temperature during exercise in hot settings was 

greatly reduced (Tamm et al., 2015). No studies were conducted to ascertain whether the problems 

with time perception were due to the external heat alone or whether the exercise-induced rise in 

body temperature was a contributing factor. 

1.6.3 Exercise Intensity 

It has been shown that the type and intensity of exercise performed affects time perception 

(Edwards & McCormick, 2017; Hanson & Lee, 2020; Karşılar et al., 2018). Despite limited 

research on this subject, Edwards and McCormick (2017) showed how time perception distortion 

was affected by various exercise intensities. In this study, the Wingate anaerobic cycling test (at 

25%, 50%, 75%, and 100% intensities) and an endurance exercise (rowing ergometry) were 
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compared. The study's findings revealed that higher intensity exercise caused time to seem to pass 

more slowly than chronological time. There appears to be a multiplicative impact (Behm & Carter, 

2020; Edwards & McCormick, 2017; Edwards & Polman, 2013). This impact is ascribed to the 

increased sensory awareness of physical discomfort experienced during high-intensity or maximal 

exercise (Edwards & Polman, 2013) as a result of catecholamines' release, which creates a state of 

hyperarousal (Jansen et al., 1995). Hyperarousal increases the amount of brain information 

processed, giving the impression that more time has passed than has really happened (Behm & 

Carter, 2020). When performing high-intensity or maximal exercise, this experience is once again 

compressed into a shorter time frame, resulting in increased arousal and awareness and temporal 

distortion. The fact that this experiment was conducted on recreationally active people means that 

the findings of this study only apply to this group of people (Edwards & McCormick, 2017). These 

findings are consistent with those of an experiment done by Hanson and Lee (2017), where time 

seemed to slow down as a higher intensity was performed and a higher RPE was reported. Another 

study that looked at walking speed as a measure of intensity found that as walking speed increased, 

time seemed to pass more slowly (passed more slowly) (Karşılar et al., 2018). 

1.7 Conclusion 

Physical fatigue and mental fatigue have both been extensively researched individually, but their 

effects on time perception are relatively unexplored. Therefore, we hypothesized that physical and 

mental fatigue might lead to an underestimation of time; further study into their effects on how we 

perceive time is necessary. Reduced muscle performance due to neuromuscular fatigue can be 

attributed to central fatigue, which affects how signals are transmitted from the brain to the muscle 

and involves central nervous system related processes and decreases voluntary muscle activation 

during physical tasks, however peripheral fatigue, which may be due to inhibitory reactions to 
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metabolite accumulation or the depletion of neurotransmitters in the neuromuscular junction. The 

finding of a study showed that mental fatigue caused by at least 30 min of the smartphone 

application exposure and Stroop color-word task caused a decline in cognitive performance in 

sport-specific tests. Therefore, when a person is experiencing mental fatigue, their skills for 

performing mental tasks become less efficient. 

Time distortion may occur due to sex differences, hot environment, and exercise, especially during 

high intensity, a self-regulated exercise where physical discomfort is severe. There is little research 

has been done on how people perceive time when engaging in maximal cycling exercise. It is also 

unknown whether or not sex-related factors may affect how people perceive time. 
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1.8 Objectives 

The objectives of this study are: 

I. To investigate  the effects of physical and mental fatigue on time perception by testing at 

different time conditions (5-, 10-, 20-, and 30-seconds) immediately after the intervention 

and 6 minutes after the post test.  

II. To investigate if the heart rate and temperature of the body play a role in the perception of 

time.  

1.9 Hypothesis 

Based on pilot studies in our laboratory it is hypothesized that physical fatigue will result in the 

underestimation of time. 

Based on the pilot study results in our laboratory it is hypothesized that mental fatigue protocol 

will lead to an underestimation of time. 
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2 Chapter 2: The Effects of Physical and Mental Fatigue on Time Perception 

 

Abstract 

Overview: The subjective perception of time holds a foundational significance within the realm 

of human psychology and our conceptualizations of reality. It forms an intrinsic component of the 

cognitive framework through which we elucidate the chronological progression of events within 

our lives. While there have been some studies examining the effects of exercise on time perception 

during the exercise period, there are no studies investigating the effects of fatiguing exercise on 

time perception after the exercise intervention. Thus, this study aimed to investigate the effects of 

physical and mental fatigue on time estimates over 30-seconds (5-, 10-, 20-, and 30-seconds) 

immediately after the exercise intervention and 6-minutes after the post-test. 

Participants: Seventeen healthy and recreationally active volunteers (14 males, 3 females) were 

subjected to three conditions: physical fatigue, mental fatigue, and control.  

Methods: All participants completed a familiarization and three experimental conditions (control, 

physical fatigue (cycling at 65% peak power output), and mental fatigue (Stroop task for 1100 

trials) on separate days. Heart rate and body temperature were recorded at the pre-test, the start, 

10-, 20-, 30- minutes of the interventions, post-test, and follow-up. Rating of perceived exertion 

(RPE) also was recorded during the intervention four times. Time perception was measured 

prospectively (at 5-, 10-, 20-, and 30-seconds) at the pre-test, post-test, and 6-minute follow-up.  

Results: Physical fatigue significantly (p=0.001) underestimated time compared to mental fatigue 

and control conditions at the post-test and follow-up, with no significant differences between 

mental fatigue and control conditions. Heart rate, body temperature, and RPE were significantly 
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higher in the physical fatigue compared to the mental fatigue and control conditions during the 

intervention and also at the post-test. 

Conclusion: This study demonstrated that cycling-induced fatigue led to time underestimation 

compared to mental fatigue and control conditions. It is crucial to consider that physical fatigue 

has the potential to lengthen an individual's perception of time estimating durations in sports or 

work environments. 

2.1 Introduction 

People have been fascinated by time for centuries; however, philosophers and scientists from 

ancient to modern times have yet to fully agree on its definition and qualities (Bunnag, 2019). The 

concept of time is one of the experiences that are essential for how we experience the world 

(Wittmann, 2009). Our behavioral and cognitive systems depend heavily on duration perception, 

which allows us to interact with the outside world (Jia et al., 2020). An accurate perception of time 

is an indispensable part of many time-constrained sports (i.e., North American football, basketball, 

figure skating, and others) and work environments (Behm & Carter, 2020).  It is well known that 

our subjective perception of time can be manipulated and distorted under certain circumstances 

(Eagleman, 2005); however, little is known about how physical and mental fatigue affects how 

people perceive time.  

There are two prominent theories pertaining to time perception: the Pacemaker Accumulator 

Model (PAM), alternatively referred to as the Scalar Expectancy Theory (SET) (Gibbon et al., 

1984b), and the Striatal Beat Frequency Model (SB-FM) (Meck, 1983; Meck & Church, 1983). 

Both theoretical frameworks elucidate that time perception is significantly impacted by arousal 

(Allman & Meck, 2012; Grondin, 2010). The scalar expectancy theory uses a clock, memory, and 

decision stages to divide the temporal processing system. The SB-FM not only discusses the timing 
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behaviors, but also identifies which neural regions of the brain are involved (Merchant et al., 2013). 

The model suggests that the speed of a clock is determined by levels of dopamine and glutamate 

activity in regions near the substantia nigra and ventral tegmental area. The timing process starts 

with striatal spiny neurons that monitor activation patterns in the cortex's oscillatory neurons, 

which are controlled by glutamate action (Meck, 2005). The oscillating neurons synchronize when 

an interval starts, and the spiny neurons are reset by phasic dopaminergic input. A dopamine pulse 

is released when the target duration is attained, strengthening the synapses that are active in the 

striatum (Meck, 2005). Time is perceived in the mind according to the oscillatory activity rate. 

Once the same signal duration has been timed once more, neostriatal GABAergic spiny neurons 

compare the current activation pattern to the stored pattern to determine when the duration has 

been reached; when they match, spiny neurons fire to indicate that the period has passed (Matell 

& Meck, 2004; Meck, 2005; Merchant et al., 2013). 

Physical and mental activity can impact arousal levels pacemaker accumulator model or Scalar 

Expectancy Theory (PAM or SET) and impact our perception of time. Arousal involving elevated 

heart rate, increased muscle activation (e.g., motor unit recruitment and firing frequency), 

thermoregulation, and other physiological or external signals, have the potential to alter time 

perception (Graham et al., 2023). The increased activity gives rise to additional events within the 

temporal processing system, leading to an accelerated perception of time in response to higher-

intensity contractions. Given the cerebellum's involvement in both movement and temporal 

processing (Ivry et al., 1988), exercise-induced arousal may exert more influence on time  

perception compared to other forms of arousal. The heightened demands in terms of frequency of 

events during sensory afferent processing may also play a role in impacting time perception 

(Graham et al., 2023).  
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As a psychobiological condition, mental fatigue (e.g., difficulty in maintaining focus, attention, 

cortical excitability) results from extended periods of demanding cognitive activity (Job & Dalziel, 

2000). It has been shown that mental fatigue increases prefrontal cortex activation, cerebral 

perfusion, and somatomotor activation. This increase in blood flow to the prefrontal cortex may 

result from additional neural activation required to produce efferent motor commands, which may 

be one of the reasons why central fatigue can have an impact on physical performance (Mehta & 

Parasuraman, 2014; Nobrega et al., 2014). Previous studies have shown that the way in which 

central fatigue manifests depends on the specific task, with continuous low-moderate intensity 

exercise frequently leading to greater central fatigue (Iannetta et al., 2022; Kennedy et al., 2013; 

Krüger et al., 2019; Place et al., 2009). After finishing a mentally exhausting task, an approach is 

to look at behavioral performance deficiencies on a subsequent task (Helm, 2021). The best 

explanation for behavioral changes during such tasks is a reduction in top-down processing, which 

results in an inability to focus and meet task demands.  

Exercising for a long time in a hot environment impairs physical and mental performance 

(González-Alonso et al., 1999). Timing behaviour is sensitive to changes in body temperature; 

hence it has been suggested that there is a temperature-sensitive time mechanism (Tamm et al., 

2015). Some studies claim that a rise in temperature causes time to hasten, but others contend that 

this effect only happens once a certain threshold of perceived fatigue has been reached (Tamm et 

al., 2014, 2015). Exercise encompasses a wide range of forms, with differences in intensity, 

duration, and movement types. However, time perception research often overlooks the significance 

of contraction types, such as dynamic contractions. Additionally, the impact of varying fatigue 

protocol on time perception remains relatively unexplored, representing an understudied factor 

that could potentially affect time perception positively or negatively.  
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Since no studies have compared physical and mental fatigue on time perception, the objective of 

this study was to compare the effects of physical (exhaustive cycling exercise protocol) and mental 

fatigue (Stroop task test) on the time perception. It was hypothesized that physical and mental 

fatigue protocol will lead to an underestimation of the time.  

2.2 Methods 

2.2.1 Participants 

An “a priori” statistical power analysis (software package, G * Power 3.1.9.7) was conducted 

based on the time perception of related studies (Tonelli et al., 2022) to achieve an alpha of 0.05, 

an effect size of 0.4, and a statistical power of 0.8 using the F-test family. The analysis indicated 

that between 12-14 participants per condition should be sufficient to achieve adequate statistical 

power. Seventeen (17) healthy and recreationally active participants took part voluntarily in this 

study. Exclusion criteria included: participants who have neurological conditions, knee injuries, 

presence of medical issues that prevent high-intensity exercise, or injuries to the quadriceps 

muscles that could affect pedaling. Inclusion criteria included that participants need to be healthy, 

and recreationally active.  

Table 1 Participant anthropometrics 

Participants Age (years) Mass (kg) Height (cm) 

Male (n=14) 28.57 ± 4.92 80.46 ± 11.22 175.71 ± 2.65 

Female (n=3) 24 ± 2.64 69.06 ± 10.96 157.33 ± 2.30 

 

Prior to their lab visit, participants were given instructions to avoid intense activity (24 hours prior 

to participating) and to stop drinking alcohol, smoking, and using caffeine (12 hours). Each 

participant completed the physical activity readiness questionnaire plus (PAR-Q+ 2020), read and 
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signed the informed consent form prior to testing and after a brief explanation of the study and the 

experiment's procedures. During their first visit to the lab, every participant became familiar with 

all psychological measurements. The Institutional Health Research Ethics Board (ICEHR 

#20231533-HK) gave its approval for this study, which was carried out in accordance with the 

most recent version of the Helsinki Declaration. 

2.2.2 Experimental design 

The effects of physical and mental fatigue on time perception were investigated using a 

randomized crossover study design. The participants became familiar with a basic orientation to 

the testing procedures and equipment during the initial familiarization session and, they performed 

an incremental cycling test using Velotron ergometer (Velotron RacerMate, Seattle, USA) to 

determine their peak power output (PPO). The participants then came to the lab for three distinct 

testing sessions, physical fatigue, mental fatigue, or control. Each session was randomized and 

separated by at least 48 hours.  

2.2.3 Measures 

Prior to the intervention, participants watched a digital clock count to 30-seconds, twice, followed 

by four trials of time estimate practice of 30-seconds duration (estimate 5-, 10-, 20- and 30-

seconds) with feedback. Then, for the pre-test data collection participants sat in a chair to estimate 

the time intervals of 5-, 10-, 20-, and 30-seconds, six times without feedback. We chose to execute 

the intervals six times as individuals can ingrain this into memory (as stated by the Scalar 

expectancy theory). Thirty seconds was chosen as this approximate time restriction is common in 

a number of sports including basketball, tennis, North American football, and others. This 

procedure has also been used successfully in prior experiments conducted in this lab with intraclass 



47 
 

correlation coefficients (ICC) of 0.75-0.85 (Gardner et al., 2023; Graham et al., 2023). In the 

present study, a high degree of reliability was found between time perception measurements, with 

an ICC of 0.802 with a 95% confidence interval from .628 to .916 (F(16,176) = 5.058, p<0.001). 

With the six 30-second time estimate attempts for each testing time, the mean scores were 

analyzed, for the pre-test, immediately post-test, and 6-minute follow up. Since six 30-second time 

estimates equals 3-minutes, it was decided to be consistent and permit a 3-minute recovery before 

the next 3-minute testing period (6 minutes in total). To estimate time, a hand dynamometer 

(custom built design) connected to a BioPac AcqKnowledge data acquisition system 

(Massachusetts, USA) was used.  

Heart rate was monitored (T31, Polar, Kempele, Finland), tympanic temperature (IRT6520CA 

ThermoScan, Braun, Germany) and rating of perceived exertion (RPE) (Borg, 1998) were recorded 

in the pre-test, during the experimental protocols (start, 10-, 20-, and 30-minutes), and at the post-

test. The heart rate monitor was fixed using an elastic belt secured around the participant’s sternum. 

Tympanic temperature was acquired with a thermometer's probe, fitted with a disposable plastic 

covering, which was gently inserted into the right ear canal.  

2.2.3.1 Rate of Perceived Exertion (RPE) 

The RPE Borg Scale (Borg, 1998) was used as a tool for assessing the intensity of participants' 

activity during the intervention, utilizing a graduated scale ranging from 6 to 20. Throughout the 

physical, mental fatigue, and control conditions, participants were prompted to provide their RPE 

ratings. The main aim of using the RPE Borg Scale was to gain valuable insights into whether 

participants were engaging in the prescribed activity at the desired intensity (Graham et al., 2023). 
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Figure 3 Experimental Design: PPO: peak power output, RPE: rating of perceived exertion 

2.2.4 Protocol 

Prior to the pre-test, during the intervention (start, 10-, 20-, and 30-minutes), after the time 

perception test, and after the 6-minutes time perception test (follow-up) participants' body 

temperatures and heart rates were recorded. The rating of perceived exertion was also recorded at 

the start, 10-, 20-, and 30-minutes during the intervention for the three conditions.  

Pre-test time perception (6 trials)  

Observe 30-seconds twice 

Physical fatigue (Cycling with 

65% of PPO) 30-min (HR, 

tympanic temperature and RPE 

monitored at the start, 10-, 20- 

and 30-min) 

Mental fatigue Stroop test (1100 

trials) (HR, tympanic temperature 

and RPE monitored at the 

start,10-, 20- and 30-min) 

Post-test time perception (6 trials) 

Body temperature & Heart rate 

 

Warm-up for Physical fatigue 

condition (5-min with 59 watts) 

Control group (HR, tympanic 

temperature and RPE monitored at 

the start,10-, 20- and 30-min) 

6-minutes time perception test 

(follow-up) 

 

Body temperature & Heart rate 

The NASA Task Load Index  

Heart rate & Body temperature 

Four practice trials of time 

perception with feedback 

3-minutes rest 
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Maximal incremental cycling test protocol: The maximum cycling exercise protocol was used to 

determine the maximum wattage (Wmax) for the incremental test on a cycle ergometer (Velotron 

RacerMate, Seattle, USA). Each participant's ideal seat height on the cycle ergometer was 

determined, recorded, and used for the following sessions. Participants warmed up with 59 watts 

with the RPM of 70 for 5-minutes and then participants began cycling at 80 watts for 3-minutes 

with RPM of 70, then raised their resistance by 40 watts every 3-minutes until they reached 

exhaustion (a cadence of less than 60 RPM for more than 5-seconds despite intense verbal 

encouragement). The researcher verbally encouraged participants during the test to perform a true 

all-out effort. The Wmax (i.e., peak power output (PPO)) was calculated with the formula: Wmax= 

Wout + (t/180) × 40 [Wout: workload of the last completed stage; t: time (seconds) in the final stage] 

(Barzegarpoor et al., 2020). 

2.2.4.1 Exhaustive cycling exercise protocol 

Following the orientation practice time estimate sessions (two observations of a clock showing 30-

seconds followed by four estimates of 30-seconds with feedback) and pre-tests, participants 

warmed up on the cycle ergometer for 5-minutes (with 59 watts) and then cycled at 65% PPO for 

30-minutes. On the cycle ergometer, participants' positions were adjusted to replicate their 

maximum cycling exercise. After the exhaustive cycling exercise protocol, participants filled out 

the NASA Task Load Index and then they were tested with six-time estimate trials immediately as 

well as six minutes after the immediate post-test time estimates. 

2.2.4.2 Stroop Task 

The Stroop Colour-word test, a widely used neuropsychological test, measures a subject's capacity 

to suppress cognitive interference, which happens when the processing of one stimulus attribute 
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interferes with the concurrent processing of another (Stroop, 1935). It has been demonstrated that 

the Stroop task, which demands prolonged attention and response inhibition, induces a state of 

mental fatigue (Smith et al., 2016). The participant was asked to identify the colour of the 

word without regard for its actual meaning. Fifty percent (50%) of the trials were congruent 

(matched word and color), whereas 50% were incongruent, according to a pseudo-random 

sequence that was used to govern the trials (with all incongruent word-color combinations). The 

participants were then instructed to push the key on the keyboard that matches the color of the text 

that is displayed on the screen. The computer screen was 33 cm, and all participants used this 

laptop to observe 30-second time estimate and Stroop tasks throughout the study. For 1000 ms, 

each word appeared on the screen in font size 34, and then the screen remained blank before the 

next word appeared (Barzegarpoor et al., 2020). In this investigation, we conducted a total of 1100 

trials to induce mental fatigue, requiring an approximate duration of 30 minutes for its completion. 

Slimani et al (2018), in their study showed that performing the Stroop task for 30 min successfully 

induced mental fatigue. 

2.2.4.3 NASA-TLX 

 The NASA-TLX was implemented for all three conditions. It is a tool for measuring mental 

workload that aims to record workers' subjective perceptions of complex socio-technical systems 

that involve humans and machines. Due to its multidimensional nature and ease of administration, 

the NASA-TLX is perhaps the most commonly used mental workload scale (Colligan et al., 2015). 

NASA-TLX has six subscales that measure mental demand, physical demand, temporal demand, 

performance, effort, and level of frustration (Hart & Staveland, 1988). Following the 

implementation of interventions in each experimental condition, participants manually completed 

the NASA-TLX questionnaire. Participants were required to rate each item using a scale consisting 
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of 20 equidistant intervals delineated by bipolar descriptors (e.g., high/low). Subsequently, the 

computed score was scaled by a factor of 5, yielding a resultant score ranging from 0 to 100 for 

each of the subscales (Barzegarpoor et al., 2020). 

2.2.4.4 Control Condition 

 The control condition executed the six trials (pre-test), watched a documentary film “When We 

Left Earth: The NASA Missions – Episode 6: A Home in Space” (Discovery Channel, USA) for 

30-minutes (Barzegarpoor et al., 2020), and then they filled out the NASA Task Load Index 

(NASA-TLX).  

2.2.5 Statistical Analysis  

Statistical analyses were calculated using SPSS software (Version 28.0, SPSS, Inc., Chicago, IL). 

The Shapiro-Wilk and Mauchly's Tests were used to assess the normality of the distribution and 

assumption of sphericity, respectively (P>0.05). The data for time perception were analyzed using 

the means of six trials. A 3 testing times (pre-test, post-test, and 6-min follow-up) × 3 conditions 

(control, mental and physical fatigue) with repeated measures analysis of variance (ANOVA) was 

conducted to determine significant differences for time perception for each time estimate (5-, 10-, 

20-, and 30-seconds) separately (within time estimate analysis). One-way repeated measures were 

conducted to determine significant differences between testing times (pre-test, post-test, and 

follow-up). A 3 conditions (control, mental and physical fatigue) × 4 time estimates (5-, 10-, 20-, 

and 30-seconds) with repeated measures (ANOVA) was conducted to determine significant 

differences between time estimates. The mean difference (MD) (measures the absolute difference 

between the mean value in two groups) has been used for the analysis, and it estimates the amount 

by which the experimental intervention changes the outcome on average compared with another 
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condition. To analyze body temperature and heart rate, an ANOVA with repeated measures were 

used for 7 testing times (pre-test, start, 10-, 20-, and 30-minutes, post-test, and follow-up) × 3 

conditions (control, physical, and mental). To examine RPE during the intervention, a 4 testing 

times (start, 10-, 20-, and 30-minutes) × conditions (control, mental, and physical fatigue) ANOVA 

with repeated measures was used. To analyze the NASA Task Load Index, a one-way repeated 

measures ANOVA was used for mental and physical demand subscales. If the interactions were 

significant, the Bonferroni post hoc test was conducted to detect the significant differences 

between conditions for each test. The effect sizes of each variable were tested using partial eta 

squared (ηp
2) (0.01= small effect, 0.06= medium effect, 0.14= large effect). The statistical 

significance level was set at P<0.05. Cohen’s d effect sizes were calculated for individual post-

hoc comparisons with effect sizes as trivial (d = <0.2), small (0.2 - 0.5 ), medium (d = 0.5 - 0.8), 

and large (d = 0.8) (Cohen 1988) 

2.3 Results 

2.3.1 Time estimates 

2.3.1.1 Five seconds 

The results of the 5-seconds time estimates revealed a significant main effect for the conditions 

(F(1.63,26.11) =8.44, p=0.003, ηp
2=0.346) as well as an interaction of testing times and conditions 

(F(4,64)=10.08, p=0.001, ηp
2=0.387). However, there was no significant main effect for the testing 

times (F(2,32)=3.20, p=0.054, ηp
2=0.167). There were no significant differences in the interaction 

of condition * testing time between conditions at the pre-test, but there was a significant large 

magnitude, underestimation of time for the physical fatigue condition compared to the mental 

(MD= -0.706 s, p<0.001, d=1.25) and control (MD= -0.577, p<0.001, d=1.45) conditions at the 

post-test and the follow-up (mental fatigue (MD= -0.842 s, p<0.001, d=1.59), and control (MD= -
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0.698 s, p<0.001, d=1.71)). While physical fatigue demonstrated an underestimation of time at 

post-test and follow-up compared to mental and control conditions, the underestimation with 

physical fatigue at post-test (MD= -0.539 s) and follow-up (MD= -0.590 s) was also significantly 

greater than the pre-test, but there was no significant difference between the post-test and follow-

up. Additionally, there were no significant differences between the mental fatigue and control 

conditions during pre-test, post-test, and follow-up. The significant main effect for conditions 

showed an underestimation of time in the physical fatigue condition compared to mental fatigue 

(p<0.011, MD= -0.500 s) and control (p<0.001, MD= -0.469 s) conditions. There were no 

significant differences between mental fatigue and control conditions (Table 2).  

2.3.1.2 Ten seconds 

There were significant main effects with the 10-seconds time estimates for condition (F(1.40,22.39) 

=12.57, p=0.001, ηp
2=0.440), and testing time (F(2,32)=4.75, p=0.016, ηp

2=0.229) as well as a 

significant interaction of testing time and conditions (F(4,64)=16.91, p=0.001, ηp
2=0.514). The 

interaction of condition * testing time showed that there were no significant differences at the pre-

test, but there was a significant, large magnitude, underestimation of time in the physical fatigue 

condition compared to the mental fatigue (MD= -1.612 s, p<0.001, d=1.78) and control (MD= -

1.366 s, p<0.001, d=2.0) conditions at the post-test as well as with the mental fatigue (MD= -2.067 

s, p<0.001, d=1.90) and control conditions (MD= -1.609 s, p<0.001, d=1.95) at follow-up. There 

were no significant differences between mental fatigue and control conditions at the pre-test, post-

test, and follow-up. There was a significant (main effect for conditions) underestimation of time 

in the physical fatigue condition compared to mental fatigue (p=0.001, MD= -1.246 s) and control 

conditions (p<0.001, MD= -1.077 s). Furthermore, the main effect for the testing time 
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(F(2,32)=65.93, p<0.001, ηp
2=0.805) showed a significant underestimation of time in the follow-up 

(MD= -1.308 s) and post-test (MD= -1.244 s) compared to the pre-test (Table 2). 

2.3.1.3 Twenty seconds 

Furthermore, the 20-seconds time estimates revealed a significant main effect for fatigue condition 

(F(1.35,21.64) =17.12, p=0.001, ηp
2=0.517), testing time (F(1.44,23.03)=4.27, p=0.037, ηp

2=0.211), and 

as well as for the interaction of testing time and conditions (F(4,64)=17.12, p=0.001, ηp
2=0.519). 

There was a significant, large magnitude, underestimation of time in the interaction of condition * 

testing time in physical fatigue compared to mental fatigue (MD= -3.418 s, p<0.001, d=2.11) and 

control (MD= -2.708 s, p<0.001, d=2.39) at the post-test and mental fatigue (MD= -3.726 s, 

p<0.001, d=1.93) and control (MD= -2.976 s, p<0.001, d=2.13) conditions in follow-up, but there 

were no significant interactions of condition * testing time at the pre-test among conditions. The 

main effect for conditions revealed a significant underestimation of time with the physical fatigue 

condition compared to mental fatigue (MD= -2.436 s, p<0.001) and control (MD= -2.093 s, 

p<0.001) conditions, but there were no significant differences between mental fatigue and control 

conditions. The main effect for the testing time demonstrated a significant underestimation of time 

in the follow-up (MD= -2.314 s) and post-test (MD= -2.376 s) compared to the pre-test, but there 

were no significant differences between post-test and follow-up (Table 2).  

2.3.1.4 Thirty seconds 

Thirty seconds showed a significant main effect of fatigue condition (F(1.28,20.58)=15.65, p=0.001, 

ηp
2=0.495), testing time (F(1.27,20.46)=5.01, p=0.029, ηp2=0.239), and as well as for interaction of 

testing time and conditions (F(4,64)=15.90, p=0.001, ηp
2=0.499). The interaction of condition * 

testing time revealed that there were no significant differences between conditions at the pre-test, 
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but there was a significant, large magnitude, underestimation of time with physical fatigue 

compared to mental fatigue (MD= -4.763 s, d=1.89) and control (MD= -3.829 s, d=2.45) 

conditions at the post-test and mental fatigue (MD= -5.218 s, d=1.82) and control (MD= -3.700 s, 

d=2.01) conditions in follow-up. Additionally, there were no significant differences between 

mental fatigue and control conditions at the pre-test, post-test, or follow-up. The main effect for 

conditions revealed an underestimation with the physical fatigue compared to mental fatigue 

(MD= -3.458 s, p<0.001) and control (MD= -2.786 s, p<0.001) conditions, but there were no 

significant differences between mental fatigue and control conditions. A significant main effect for 

the testing time showed a significant underestimation of time in the follow-up (MD= -3.208 s) and 

post-test (MD= -3.399 s) compared to the pre-test, but there were no significant differences 

between post-test and follow-up (Table 2). 

Table 2 Means and standard deviations of the time estimates of 5-, 10-, 20-, and 30-seconds from the chronological time at the 
pre-test, post-test, and follow-up 

Time estimates  Mental fatigue (M±SD) Physical fatigue (M±SD) Control (M±SD) 

Deviation from 5-seconds from chronological time 

Pre-test -0.059 ± 0.416 -0.011 ± 0.288 0.121 ± 0.478 

Post-test 0.155 ± 0.751 -0.550 ± 0.255 0.026 ± 0.500 

Follow-up 0.240 ± 0.677 -0.601 ± 0.314 0.096 ± 0.483 

Deviation from 10-seconds from chronological time 

Pre-test 0.360 ± 0.734 0.301 ± 0.549 0.555 ± 0.927 

Post-test 0.669 ± 1.228 -0.942 ± 0.350 0.423 ± 0.898 

Follow-up 1.061 ± 1.446 -1.006 ± 0.524 0.603 ± 1.040 

Deviation from 20-seconds from chronological time 

Pre-test 0.581 ± 1.154 0.417 ± 1.136 1.014 ± 1.542 

Post-test 1.458 ± 2.219 -1.958 ± 0.538 0.748 ± 1.502 

Follow-up 1.830 ± 2.570 -1.896 ± 0.898 0.748 ± 1.502 

Deviation from 30-seconds from chronological time 

Pre-test 0.846 ± 1.938 0.452 ± 1.733 1.281 ± 2.322 
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Post-test 1.815 ± 3.459 -2.947 ± 0.839 0.881 ± 2.042 

Follow-up 2.461 ± 3.790 -2.756 ± 1.413 0.943 ± 2.175 

 

2.3.1.5 Relative (%) Time Changes between each Time Estimate 

With the post-test, relative time changes showed a significant main effect of conditions 

(F(1.27,20.43)=16.83, p=0.001, ηp2=0.513), and testing time (F(1.36,21.89)=4.12, p=0.044, ηp
2=0.205), 

but there was no significant interaction for testing time and conditions (F(2.60,41.63)=0.628, p=0.579, 

ηp
2=0.038). The main effect for fatigue condition showed that physical fatigue had a significant 

relative underestimate of time compared to mental fatigue (MD= -0.158 s, p<0.001,) and control 

(MD= -0.129 s, p<0.001) conditions. There was no significant relative time change between time 

estimates (5-, 10-, 20-, and 30-seconds) at the post-test with all conditions combined (Figure 4).   

With the follow-up, relative time changes showed a significant main effect of testing time 

(F(1.72,27.53)=3.70, p=0.018, ηp
2=0.188), conditions (F(2,32)=18.09, p=0.001, ηp2=0.531), as well as 

for testing time and conditions (F(2.32,27.22)=25.01, p=0.001, ηp
2=0.610). The main effect for testing 

time (all conditions combined), revealed relative time changes between 5-, 10-, 20-, and 30-

seconds in the follow-up with 10- (MD= 0.040 s, p=0.005) and 20-seconds (MD= 0.044 s, 

p=0.039) time estimates significantly, relatively higher overestimates than 5-seconds 

(F(1.72,27.53)=3.70, p<0.043, ηp
2=0.188). There were no significant differences between the 30 

seconds with other time estimates (5-, 10-, and 20-seconds) in the follow-up testing period (Figure 

5).  The main effect for conditions showed that the relative time changes with physical fatigue 

were significantly underestimated compared to mental fatigue (MD= -0.110 s, p=0.002) and 

control (MD= -0.125 s, p=0.001) conditions. The interaction of testing time and conditions relative 

time changes showed that in the mental fatigue, 30-seconds was underestimated compared to the 
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5- (MD= -0.140 s, p=0.005), 20- (MD= -0.183 s, p<0.001), and 10-seconds (MD= -0.198 s, 

p<0.001). The results of relative time changes for the physical fatigue revealed that 30-seconds 

was overestimated compared to the 20- (MD= 0.126 s, p<0.001), 10- (MD= 0.132 s, p<0.001), and 

5- (MD= 0.152 s, p<0.001) seconds. Additionally, there was no significant relative time change in 

the control condition.  

 

Figure 4 Relative (%) time change for the time estimates at the post-test (mean % ± SD). Only the physical fatigue condition 
underestimated time (bolded) 
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Figure 5 Relative (%) time change for the time estimates at the follow-up (mean % ± SD). Only the physical fatigue condition 
underestimated time (bolded) 

2.3.2 Heart Rate 

Analysis revealed significant main effect for the testing time (F(3.69,59.09) =193.12, p=0.001, 

ηp
2=0.923) and conditions (F(1.42,22.77) =286.40, p=0.001, ηp

2=0.947) as well as a significant 

interaction of testing time and conditions (F(4.23,67.73) =158.18, p=0.001, ηp
2=0.908). The condition 

* testing time interaction showed that there were no significant differences between conditions at 

the pre-test, but physical fatigue condition (p<0.001) had a significantly higher heart rate compared 

to the mental fatigue and control conditions at the start,10-, 20-, 30- minutes, post-test, and follow-

up (Figure 6). Additionally, there were no significant differences between mental fatigue and 

control conditions at all testing times. The main effect for conditions showed a significantly large 

magnitude, higher heart rate for physical fatigue than the mental (MD= 54.513, p<0.001) and 

control (MD= 56.126, p<0.001) conditions. There was no significant difference between mental 
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fatigue and control condition. The main effects for testing time showed a significant difference 

(p<0.001) between pre-test, start, 10-, 20-, 30-minutes, and follow-up, except for 20-and 30-

minutes (p=0.184) and between post-test and follow-up (p=0.207) (Figure 6). 

 

Figure 6 The means and standard deviations of heart rate for the three conditions at the seven time stages 

2.3.3 Body temperature 

A significant main effect was evident for testing time (F(2.74,43.84)=27.18, p=0.001, ηp
2=0.629) and 

conditions (F(2,32) =13.35, p=0.001, ηp
2=0.455) as well as the interaction of testing time and 

conditions (F(4.70,75.32)=8.925, p=0.001, ηp
2=0.358). The interaction of condition * testing time 

showed that there were no significant differences between conditions at the pre-test and start, but 

there was significantly elevated body temperature with physical fatigue (p=0<.001) compared to 

mental fatigue and control conditions at the 10-, 20-, and 30-minutes (Figure 7). There was no 

significant difference between mental fatigue and control conditions at these testing times (10-, 

20-, and 30-minutes). In addition, there was a significantly higher body temperature with physical 

fatigue (p=0.006) compared to mental fatigue in the post-test. There was no significant difference 
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among conditions at follow-up. The main effect for conditions showed that physical fatigue had 

significantly, large magnitude, higher body temperature compared to mental fatigue (p=0.001) and 

control (p=0.008) conditions. Additionally, there were no significant differences between mental 

fatigue and control conditions. The main effects for a testing time showed a significantly higher 

body temperature difference in pre-test (p<.001) compared to (start, 10-, 20-, 30-minutes, and post-

test), start (pre-test, 10-, 20-, and 30-minutes), 10-minutes (pre-test, start, 20-minutes, and follow-

up), 20-minutes (pre-test, 10-, 20-minutes, post-test, and follow-up), 30-minutes (pre-test, start, 

post-test, and follow-up), post-test (pre-test, 20-, and 30-minutes), and follow-up (10-, 20-, and 

30-minutes) (Figure 7). 

 

Figure 7 The means and standard deviations of body temperature at the three conditions at the seven time stages 

2.3.4 Rating of Perceived Exertion (RPE) 

A significant main effect was evident for testing times (F(1.78,28.51) =170.51, p=0.001, ηp
2=0.914) 

and conditions (F(2,32) =106.80, p=0.001, ηp
2=0.870) as well as the interaction of testing times and 
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conditions (F(3.04,48.63)=24.72, p=0.001, ηp
2=0.607). The interaction of condition * testing time 

showed that physical fatigue (p<0.001) had a higher RPE than mental fatigue and control 

conditions at the start. Physical fatigue (p=0.021) also had a higher RPE than mental fatigue, and 

mental fatigue (p<0.001) had a higher RPE than control conditions at 10- and 20-minutes (Figure 

8). The results revealed that physical fatigue and mental fatigue (p<0.001) had a higher RPE than 

control conditions, but there were no significant differences between physical fatigue and mental 

fatigue (p=0.157) at 30-minutes. The main effect for the fatigue condition showed significantly 

higher RPE scores for physical fatigue versus mental fatigue and control conditions (p<0.001). 

The main effects for testing time showed a significant difference between RPE (p<.001) the start, 

10-, 20-, to 30-minutes (Figure 8).  

 

Figure 8 The means and standard deviations of Rating of Perceived Exertion (RPE) 
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2.3.5 The NASA Task Load Index 

2.3.5.1 Mental demand 

The one-way repeated measure ANOVA (F(2,32)=41.87, p<0.001, ηp
2=0.724) revealed that the 

mental fatigue condition had a large magnitude, mental demand compared to physical fatigue and 

control conditions. Additionally, there were no significant differences between physical fatigue 

and control conditions (Table 3). 

Table 3 The means and standard deviations for the mental demand 

Conditions Mean Standard deviation 

Mental fatigue 80 18.28 

Physical fatigue 34.11 20.63 

Control 23.23 25.18 

 

2.3.5.2 Physical demand 

Physical fatigue had a large magnitude, significant (F(1.23,19.69)=167.241, p<0.001, ηp
2=0.913), and 

higher physical demand compared to mental fatigue and control conditions, but there were no 

significant differences between mental fatigue and control conditions (Table 4).  

Table 4 The means and standard deviations for the physical demand 

Conditions Mean Standard deviation 

Mental fatigue 14.41 14.45 

Physical fatigue 81.17 14.09 

Control 11.67 17.31 
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2.4 Discussion 

To the best of our knowledge, this is the first study to compare the impacts of mental and physical 

fatigue on the perception of time. The major findings of this research revealed that participants 

subjected to physical fatigue exhibited a significant underestimation of time intervals during the 

post-test and follow-up when compared to those in the mental fatigue and control conditions. In 

addition, physical fatigue had a significantly higher relative (%) underestimation of time change 

in comparison to mental fatigue and control conditions. Moreover, physical fatigue induced 

significantly higher tympanic temperatures and heart rates during the intervention and post-test 

compared to the mental fatigue and control conditions. The NASA Task Load Index demonstrated 

the efficacy of both the physical and mental fatigue protocols in inducing states of physical and 

mental fatigue. 

The underestimation of time at 5-, 10-, 20- and 30-s with the physical fatigue condition were in 

line with the hypothesis predicting significant time underestimations (estimated time was shorter 

than chronological time) compared to the mental fatigue and control conditions. Moreover, the 

results for the physical fatigue (underestimation of time) were congruent with Graham et al. 

(2023), as their results showed an underestimation of time in all three exercise conditions (30-

seconds of knee extensors 100%, 60% and 10% of maximum voluntary isometric contraction) with 

all time estimates (5-, 10- 20- and 30-s) compared to the control condition. In addition, the findings 

of the present study were generally consistent with Gardner et al. (2023), who revealed that 

maximal contractions induced significantly greater time underestimations at 5-, 20-, and 30-s than 

control condition. Moreover, their study showed that submaximal (60% of maximal voluntary 

isometric contractions) contractions also contributed to time underestimation at 30-seconds. 

Furthermore, Edwards and McCormick (2017) utilized cycling wherein participants were asked to 
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estimate the completion of 25%, 50%, 75%, and 100% of the trial duration under various RPE 

conditions. Notably, they observed that at the 75% and 100% intervals, time estimates for the RPE 

20 condition, representing maximal exertion, exhibited the shortest durations when compared to 

those of RPE 11 (light intensity) and RPE 15 (moderate intensity). Additionally, the participants 

also completed a rowing task, wherein they found similar intensity-dependent results (A. M. 

Edwards & McCormick, 2017). Similarly, the RPE findings indicated that participants, upon the 

end of the physical fatigue intervention, reported an average RPE score of 17. This finding was 

aligned with the Edwards and McCormick (2017) and suggested that the perceived level of 

exertion experienced during the physical fatigue condition might be an indicator of 

underestimation of time in the physical fatigue condition.  

In some studies, it has been suggested that an increase in body temperature affects temporal 

perception (Piéron, 1923; van Maanen et al., 2019). Brinnel & Cabanac (1989), suggested that 

tympanic temperature as measured in the present study, when measured accurately, is a good index 

of core temperature and that its variations may reflect variations in brain temperature. Two studies 

showed that core temperature increased (with running in a warm, humid environment) 

corresponding to an underestimation of time (Tamm et al., 2014, 2015). Similarly, in the present 

study, the core temperature was significantly higher in the physical fatigue condition compared to 

mental fatigue and control during the intervention and the post-test. This finding diverges from the 

Graham et al. (2023) study, who reported an absence of significant increase in tympanic 

temperature. Similarly, Gardner et al. (2023) documented that tympanic temperature remained 

unaffected by the contraction intensities. One possible reason for the observed disparity in 

outcomes between the present study and the prior investigation lies in the dissimilarities in 

methodological approaches. Notably, they employed isometric contraction as the primary exercise 
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modality, while we opted for a 30-minute cycling at 65% PPO, which induced a rise in tympanic 

temperature higher compared to Graham et al. (2023), and Gardner et al. (2023) studies. Moreover, 

it is pertinent to acknowledge that the duration of their experimental protocol was comparatively 

shorter than ours, which may have further contributed to differences in physiological reactions and 

subsequent findings of the two studies.  

Another notable finding in this study pertains to the heart rate, which exhibited a significant 

elevation during the physical fatigue condition at the stages of intervention, post-test, and follow-

up in comparison to both the mental fatigue and control conditions. This finding aligns with the 

findings of Gardner et al. (2023), who reported lower heart rate values for the control condition 

(75.3 ± 11.6) in contrast to the maximal (92.5 ± 13.9), 60% submaximal (92.2 ± 14.4), or 

distraction (90.5 ± 14.7) conditions. Similarly, the results obtained by Graham et al. (2023) were 

consistent with our study, as they demonstrated that the control condition exhibited lower heart 

rate values (beats per minute) (74.6 ± 10.6) compared to the maximal (91.6 ± 12.4), 60% MVIC 

(92.5 ± 13.8), or 10% MVIC (90.7 ± 13.5) conditions. 

Contrary to our initial hypothesis, the results of our analysis in the mental conditions did not align 

with our hypothesis, as participants did not exhibit a tendency to underestimate perception of time 

in this condition. The ideal task duration to induce mental fatigue in young adults is currently 

unclear in the literature, thus it is not known how long it takes for a change in task performance to 

become significant. Previous studies have employed tasks that continue for several hours. 

However, new research indicates that, 30 to 90-minutes is sufficient to cause mental fatigue (Helm, 

2021). Individual differences may also be a significant factor in the onset of mental fatigue and 

the length of time required to induce it. Evidence from some studies suggests that shorter task 

durations may be sufficient to cause mental fatigue as significant declines in cognitive function 
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were seen after only 30-minutes (Slimani et al., 2018), 45-minutes (Smith et al., 2019), 60-minutes 

(Wascher et al., 2014) or 90-minutes (Wang et al., 2016). Vrijkotte et al (2018) in their studies used 

90-minutes of Stroop task to induce mental fatigue. The primary conclusion of this research is that 

in trained, young, healthy athletes, a large magnitude of mental fatigue as determined by the NASA 

task load index had no impact on physical or cognitive performance (accuracy and reaction times) 

during the second exercise bout of the two-bout exercise protocol (Vrijkotte et al., 2018). They 

found that when no mentally fatiguing task was being conducted, the initial maximal exercise test 

also increased mental fatigue. The individuals were unable to distinguish between physical and 

mental fatigue (Vrijkotte et al., 2018). Slimani et al (2018), showed that performing the Stroop 

task for 30-minutes successfully induced mental fatigue. Although the NASA-TLX showed that 

Stroop task induced mental fatigue for the participants, the 1100 trials (approximately 30-minutes) 

might not have been enough to affect time perception or had a shorter duration of impact after the 

mental fatigue protocol. Another possible mechanism is that mental fatigue and physical fatigue 

might have different physiological and psychological mechanism that affect time perceptions 

differently. Our findings for the physical fatigue condition were not consistent with Tonelli et al. 

(2022,) study, who investigated the effects of moderate physical activity (cycling) on a temporal 

estimation task in a group of adult volunteers under three different conditions: (1) baseline, (2) 

during the physical activity phase, and (3) roughly 15 to 20-minutes later, when participants were 

seated and returned to a resting heart rate (POST). They discovered that exercise directly alters 

how people perceive time, causing them to overestimate durations in the millisecond range. 

Notably, the impact lasted during the POST session, ruling out either the heart rate or cycle 

rhythmicity as the primary contributors (Tonelli et al., 2022).  
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It was anticipated that when participants estimated the four successive times (5-, 10-, 20-, and 30-

seconds), gradually time variability would increase. Naturally, you would anticipate more time 

variability as time goes on because minor time estimate errors made early in the trial can become 

more amplified as time goes on (Graham et al., 2023). However, it was intriguing that the relative 

results showed that 5-, 10-, and 20-seconds intervals demonstrated relatively higher 

underestimation of time in the physical fatigue condition compared to the 30-seconds. 

The findings that physical fatigue can lengthen an individual's subjective experience of time can 

be elucidated from the perspective of the Pacemaker-Accumulator Model (PAM) as posited by 

Gibbon et al. (1984), Grondin (2010), and Allman and Meck (2012). Specifically, in the physical 

conditions, participants were cycling at 65% of PPO. This physical exertion induced muscle 

fatigue and discomfort attributed to factors such as tension, partial blood occlusion, and metabolite 

accumulation, among others. According to Edwards and Polman (2013), this adverse sensation 

functions as a type of physiological arousal. Arousal has been found to elevate the speed of the 

pacemaker, resulting in an increased number of pulses accumulated in the accumulator (Gil & 

Droit-Volet, 2012; Lambourne, 2012). This heightened arousal contributes to a perceived 

distortion of time, leading to a specific lengthening of perceived time intervals (Gil & Droit-Volet, 

2012). Importantly, this time distortion effect exhibits a multiplicative characteristic, wherein the 

extent of distortion intensifies with longer stimulus durations (Zakay & Block, 1997). 

Consequently, it is plausible to hypothesize that arousal induced by exercise could engender a time 

distortion effect (Behm & Carter, 2020; Dormal et al., 2018). In the present study, the heightened 

state of arousal post-exercise can be attributed to the sustained increase in heart rate and body 

temperature during the post-test phase. This suggests that the distortion in perception of time 

persists even after the cycling activity has concluded. The study findings indicate that mental 
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fatigue led to a slight overestimation of time when compared to chronological time; however, the 

observed difference did not reach statistical significance. Possible reasons for this outcome can be 

attributed to the limited number of trials employed in the Stroop task, which might not have been 

sufficient to induce a notable distortion in time perception. Additionally, it is plausible that mental 

and physical fatigue operate through distinct mechanisms, which could contribute to differential 

effects on the perception of time. Further investigation and a more comprehensive experimental 

design are warranted to delve deeper into these intricacies and better comprehend the underlying 

factors influencing temporal perception in the context of mental and physical fatigue. 

2.5 Limitations 

This research investigation, akin to any other studies, was not devoid of limitations. One of the 

hypotheses of the study aimed to compare time estimates between male and female cohorts. 

However, due to challenges in recruiting an adequate number of female participants, this objective 

remained unfulfilled. Consequently, the sample primarily consisted of male students engaged in 

recreational physical activities. An additional limitation of this study pertains to the substantial 

standard deviations in relation to the mean values, reflecting considerable heterogeneity among 

the various individual outcomes. Future studies should investigate how mental and physical fatigue 

might affects perception of time in males and females differently. Additionally, how might time 

perception be different for endurance exercise above the lactate threshold (e.g., >80-85% max 

aerobic power)? 

2.6 Conclusions 

This study's findings highlight the impact of physical and mental fatigue on participants' perception 

of time. Specifically, under the physical fatigue condition, participants underestimated time during 
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the post-test and follow-up, as compared to the mental fatigue and control conditions, across 

various time intervals (5-, 10-, 20-, and 30-seconds). Moreover, the investigation revealed no 

significant differences between the mental fatigue and control conditions concerning time 

estimates. In addition, the results showed that physical fatigue condition demonstrated 

significantly higher heart rates and body temperatures during both the intervention and post-test, 

as compared to the mental fatigue and control conditions. Furthermore, participants reported 

significantly higher RPE under the physical fatigue condition compared to the mental fatigue and 

control conditions. Additionally, mental demand was significantly higher in the mental fatigue 

condition than in the physical fatigue and control conditions. The physical demand was 

significantly greater in the physical fatigue condition relative to both the mental fatigue and control 

conditions. Overall, these findings contribute valuable insights to the expanding body of research 

on the relationship between exercise-induced fatigue and time perception. The present study 

suggests that individuals engaged in physically demanding activities, such as sports, drivers, and 

work settings, among others may experience alterations in time perception due to the influence of 

physical fatigue. Accordingly, it is recommended that these individuals engage in deliberate 

exercises aimed at enhancing their time perception abilities during periods of physical fatigue. 

Such practices are hypothesized to facilitate the development of an enhanced sense of timing under 

physically demanding conditions.  

Furthermore, there is another practical aspect to consider: how can we offer feedback or modify 

exercise routines for individuals who perceive themselves as having limited time available for 

improvement in order to enhance adherence? This question holds significant relevance, 

particularly for the general populace that may not find exercise enjoyable. Moreover, the 

prospective time estimation ratio could also have a notable influence on endurance athletes or time 
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restricted athletes (e.g., tennis, basketball, North American football) who require precise pacing or 

timing. This factor carries substantial implications, as an athlete who underestimates the time may 

perform too slowly, jeopardizing their chances of winning a race, whereas an overestimation of 

time might lead them to push too hard and experience premature fatigue. 
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2.8 Appendix 
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2.8.1 Peak Power Output (PPO) 

Table 3 The peak power outputs of the participants 

ID W(out) Time (Seconds) W(max) W (65%) HR (Max) 

1 120 58 132.88 86.37 176 

2 200 92.6 220.57 143.37 167 

3 120 34 127.55 82.91 150 

4 120 170 157.77 102.55 182 

5 200 113 225.11 146.32 198 

6 240 52.5 251.66 163.58 171 

7 240 116 265.77 172.75 180 

8 120 1 120.22 78.14 210 

9 200 25.9 205.75 133.74 150 

10 120 76.3 136.95 89.02 178 

11 240 122.6 267.24 173.70 168 

12 200 106 223.55 145.31 188 

13 120 140 151.11 98.22 194 

14 160 8.41 161.86 105.21 182 

15 200 10.41 202.31 131.50 188 

16 200 164 236.44 153.68 190 

17 200 156 234.66 152.53 201 

 

 


