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Abstract

In bacteria, many biological processes such as stress response, metabolism, and post-

transcriptional gene expression regulation are mediated by interactions of proteins

with small RNAs (sRNAs). sRNAs are non-coding RNAs (ncRNAs) between 50 to

500 nucleotides long [1]. There are several experimental or wet-lab approaches to

determine sRNA-protein interactions; however, wet-lab methods are expensive, time-

consuming, and labor-intensive. Computational approaches, on the other hand, once

developed, can predict sRNA-protein interactions quickly and affordably.

Current RNA-protein interaction prediction methods have been generated using data

from a variety of RNAs (mRNAs, lnRNAs, ncRNAs, etc) and organisms (mammals,

bacteria, plants). We hypothesized that a model generated specifically with experimentally

validated interacting bacterial sRNA-protein pairs would have a better performance

in predicting bacterial sRNA-protein interactions than current methods. To do that,

we collected from the literature roughly 1.5k experimentally determined interacting

sRNA-protein pairs and used these data to train various machine-learning approaches.

Using cross-validation, we selected the most accurate model. Our model achieves an

average accuracy of 0.885 ±0.03 on four commonly used RNA-protein interaction data

sets which are comparable to other methods. However, we were unable to confirm our

initial hypothesis as ProNA’s performance was not better than that of other methods

in predicting bacterial sRNA-protein interactions.
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NB Näıve bayes

ncRNA Non-coding RNA

ncRPI Non-coding RNA-protein interaction

NDB Nucleic acid database

NLP Natural language processing

PB Protein block

PDB Protein data bank

PPV Positive predictive value

xii



PR Precision recall

PRIDB Protein-RNA interface database

PSSM Position specific scoring matrix

PWM Position weight matrix

PZM Pseudo-zernike moment

RBP RNA binding protein

RF Random forest

RNA Ribonucleic acid

ROC Receiver operating characteristic

RPI RNA-protein interaction

RPKM Reads per kilobase of a transcript, per million mapped reads

RSS RNA secondary structure

SAE Stacked auto-encoder

sRNA Small RNA

sRPI sRNA-protein interaction

SVD Singular value decomposition

SVM Support vector machine

xiii



TNR True negative rate

TPR True positive rate

TSV Tab-separated values

tSVD Truncated singular value decomposition

UniProt Universal protein resource

VCF Variant call format

XGBoost Extreme gradient boosting

xiv



Chapter 1

Introduction

sRNA-protein interaction (sRPI) plays a crucial role in post-transcriptional regulation

in bacteria [6]. Understanding these interactions is essential, among other things, to

realize how bacteria respond to environmental stimuli and bacterial pathogenesis.

Recent high-throughput sequencing techniques have identified the sRNA partners of

several proteins, such as Hfq [14], CsrA [15], ProQ [16], and FinO [17].

There are two approaches for predicting RNA-protein interactions: interface prediction

and partner prediction. The interface prediction approach detects the amino acid

residues in a protein that are expected to bind with an RNA [6]. Partner prediction

is the recognition of specific RNA interaction partner(s) for a known RNA binding

protein [6]. This project focused on sRNA-protein (partner) interaction prediction

in bacteria using only sequence-derived features as protein and sRNA sequences are

widely available. Unlike other partner prediction studies that have used data from
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different organisms (e.g. animals, fungi, and bacteria) and different kinds of RNAs

(e.g. ncRNA and mRNA), we only considered sRNA-protein interactions in bacteria.

In this study, after collecting experimentally-determined sRNA-protein interactions

from the literature, we calculated sequenced-derived features to represent sRNA and

protein sequences in our data set. Next, we selected a subset of these features using

feature selection methods. Then, we generated and assessed the performance of

several machine-learning methods for predicting sRNA-protein interaction. Finally,

we implemented our best model in ProNA, a protein-sRNA interaction predictor.

ProNA achieved an accuracy of 0.885 ±0.03 on four data sets commonly used by

previous studies. The remaining of the thesis is organized as follows:

• Chapter 2: Molecular Biology and Computational Background

• Chapter 3: Methodology

• Chapter 4: Results and Discussion

• Chapter 5: Conclusion
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Chapter 2

Background and Related Works

2.1 Molecular Biology Basics of RNA-Protein Interactions

RNA-protein interactions are crucial for various cellular processes, including gene

expression regulation, RNA processing, transport, and translation[18]. Understanding

the basics of these interactions is essential for comprehending the molecular mechanisms

underlying these processes. Here’s an overview of the key concepts in RNA-protein

interactions [18]:

1. RNA molecules:

• Messenger RNA (mRNA): Carries the genetic information from DNA to

the ribosome, where it serves as a template for protein synthesis.

• Transfer RNA (tRNA): Brings amino acids to the ribosome during translation

3



and helps in assembling polypeptide chains.

• Ribosomal RNA (rRNA): Major component of ribosomes, where protein

synthesis occurs.

• sRNAs are small noncoding RNAs.

2. RNA-binding proteins (RBPs):

• RBPs are a diverse group of proteins that recognize and interact with RNA

molecules. They contain specific RNA-binding domains that allow them

to bind to RNA sequences or structures (Fig. 2.1).

• Some RBPs are general, associating with various RNA molecules, while

others are highly specific, recognizing particular RNA targets.

4



Figure 2.1: RNA-binding domain (in red) interacting with a 20-nucleotide RNA in a
hairpin structure (in green). This figure is sourced from the RCSB Protein Data Bank

(RCSB PDB) website (RCSB.org) for the entry 1EC6 [2].

3. RNA secondary structures:

• RNAmolecules can fold into intricate secondary structures due to complementary

base pairing.

• Common secondary structures include hairpins, loops, stems, and bulges.

These structures play a significant role in RBP recognition and binding.

4. RBP-RNA recognition:

• RBPs recognize specific RNA sequences or structural motifs through their

RNA-binding domains.

5
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• Recognition can involve hydrogen bonding, van der Waals interactions,

electrostatic interactions, and hydrophobic interactions between amino

acids of the RBP and nucleotides of the RNA.

5. Functions of RNA-protein interactions:

• Stabilization and protection: RBPs can protect RNAmolecules from degradation

by forming complexes with them.

• Transport: RBPs facilitate the transport of specific RNA molecules to

their subcellular destinations.

• Translation: Initiation factors and ribosomal proteins interact with mRNA

and tRNA to regulate translation. Post-transcriptional regulation: miRNAs

and RBPs influence mRNA stability and translation efficiency.

2.2 Related Works

In this section, we provide an overview of previous RNA-protein interaction prediction

methods. Most of the researchers have used machine-learning methods for their

predictors, such as RPI-Pred [8], RPISeq [6], and RPI-SE [12]

In recent years, there have been several publications on the computational prediction

of RNA-protein interactions. Muppirala et al. [6] introduced a method named

RPISeq, which used random forest (RF) and support vector machine (SVM) classifiers

based on primary sequence information. Afterward, Xiaowei et al. [7] used Naive-
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Bayes (NB) and Extended Naive-Bayes (ENB) classifiers with sequence information

for RPIs prediction. In 2015, Suresh et al. [8] presented RPI-Pred, a computational

approach based on a support vector machine (SVM) classifier to predict RPIs by

using both sequences and high-order structure information. Hai-Cheng et al. [9]

proposed a model (RPI-SAN) with deep learning stacked auto-encoder network to

mine the hidden high-level features from RNA and protein sequences and feed them

into a random forest (RF) model for RNA-protein interaction prediction. RPiRLS

was created by Shen et al. [10] to predict ncRPI with sequence information. In

2019 Cheng et al. [3] made DM-RPIs for predicting ncRNA-protein interactions with

sequence-derived information. RPITER was built by Peng et al. [11] with deep

learning to predict RPI considering sequence and structure features. Zhu-Hong et al.

[12] created a model (RPI-SE) based on a support vector machine (SVM) classifier

to predict ncRNA-protein interaction using just sequence information from ncRNA

as well as protein sequences. Recently, Zhao et al. [4] created EDLMFC with deep

learning to predict ncRNA-protein interactions using sequence-derived and structure-

derived information. In 2022, Ren et al. [5] made SAWRPI to predict ncRNA-protein

interactions by considering only sequence information. Arora et al. [13] made a deep

learning model with sequence-based features to predict the whole RPI network.

The rest of this chapter will describe all of these methods in more detail. Moreover,

different datasets were used for training and testing the methods which are defined

in each approach.
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2.2.1 RPISeq

RPISeq [6] is a method that uses a support vector machine and random forest

classifiers. For training, RNA-protein interacting pairs were extracted from 943

protein-RNA complexes (containing a total of 9,689 proteins and 2,074 RNAs) in

PRIDB [19]. These protein-RNA complexes form the RPI2241 and RPI369 data

sets. PRIDB is a database of protein-RNA interactions calculated from protein-RNA

complexes in the protein data bank (PDB) [20]. Researchers randomly paired the

RNAs and proteins from the 943 protein-RNA complexes and removed interacting

RNA-protein pairs to generate a negative data set that contains non-interacting RNA-

protein pairs.

For evaluating the method on independent RPI data sets, the following data sets were

used:

• 5,166 mRNA-protein interactions [21]

• 13,243 RPIs, which include all 5,166 interactions in the previous data set [21]

• NPInter database [22] for predicting ncRNA-protein interaction networks

In this approach, each RNA-protein pair is represented as a 599-feature vector. 343

(7 × 7 × 7) features are used to encode the protein sequence with the conjoint triad

function (CTF) method. The CTF representation essentially encodes each protein

sequence using the normalized 3-gram (3-amino acid) frequency distribution extracted

from a 7-letter reduced alphabet representation of the protein sequence. Next, 256
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(4 × 4 × 4 × 4) features are used to encode the RNA sequence using normalized tetra-

nucleotide frequencies extracted directly from the 4-letter ribonucleotide alphabet

representation of the RNA sequence.

Table 2.1 shows the 10-fold cross-validation (CV) performance of random forests (RF)

and support vector machines (SVMs) on the RPI2241 and RPI369 data sets.

Metric RPI2241-RF RPI2241-
SVM

RPI369-RF RPI369-SVM

Accuracy(%) 89.6 87.1 76.2 72.8
Precision 0.89 0.87 0.75 0.73
Recall 0.90 0.88 0.78 0.73
F-measure 0.90 0.87 0.77 0.73

Table 2.1: RPISeq performance summary as reported by [6].

2.2.2 De novo prediction of RNA–protein interactions from

sequence information

This method [7] same as [6] uses only features from RNA and protein sequences

without requiring any structure-derived information. Naive Bayes (NB) and Extended

Naive Bayes (ENB) were implemented for RNA-protein interaction prediction:

• NB classifier is a fast and effective learning approach for predicting protein–RNA

interactions, which follows the assumption of the independence between the

features;

• ENB classifier takes the feature dependency into account and thus is able to

9



offer accurate prediction with correlated features.

Positive sample sets (RNAs and proteins that can interact with each other) consist of

367 interacting pairs of ncRNA and protein. Negative sample sets were constructed

by randomly pairing the RNA and protein sequences after removing the pairs that

existed in the positive sample sets. All the features were combined to form the feature

vector, which was approximately a

4 × 4 × 4 × 4k

RNA-protein interactions. K denotes the nucleotide acids CTF for RNA sequences.

In Tables 2.2 and 2.3 the 10-fold CV performance of the NB and the ENB classifiers,

with 1000 features, are shown:

Metric RPI2241 RPI369 NPInter
Accuracy 0.73 0.74 0.74
Sensitivity 0.41 0.36 0.35
Specificity 0.89 0.94 0.93
Precision 0.65 0.75 0.73
MCC 0.35 0.39 0.37

Table 2.2: Prediction results of the NB classifier as reported by [7].
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Metric RPI2241 RPI369 NPInter
Accuracy 0.74 0.75 0.77
Sensitivity 0.38 0.34 0.47
Specificity 0.91 0.95 0.92
Precision 0.69 0.77 0.76
MCC 0.36 0.39 0.46

Table 2.3: Prediction results of the ENB classifier as reported by [7].

2.2.3 RPI-Pred

RPI-Pred [8] method uses SVM (LibSVM package [23] and polynomial kernel) classifier.

For developing this method, a non-redundant training data set of RPI complexes

was collected by getting the Nucleic Acid Database (NDB) [24] and the protein-RNA

interface database (PRIDB) [13]. NDB [24] provides data for RNA-protein complexes,

whereas the PRIDB [19] provides atomic interfaces for RNA-protein interacting pairs.

As of 1 February 2014, 1560 RPI complexes from NDB were used. Also, atomic

and chain interfaces for 1336 complexes from PRIDB, which consist of both positive

and negative protein-RNA pairs were utilized. RPI369, RPI2241, and NPInter10412

(a subset of NPInter database v2.0 containing 10,412 ncRPI pairs of six model

organisms) [22] data sets were used for testing.

In addition to sequences, experimentally-determined structures were also utilized:

• A protein 3D structure represented by 16-letter 1D structural fragments, called

PBs (Protein Blocks). The PDB-2-PB database [25] provides the PB information

based on the experimentally solved protein structures available in PDB. They

used the PDB-2-PB database to retrieve the 16-letter PB structure features for
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each protein in the training data set.

• 3DNA suite [26] was employed to extract the RSS (RNA Secondary Structure)

from the corresponding 3D structures for each RNA in the training data set.

After that, 112 protein features were obtained by combining 7 amino acid groups times

16 protein blocks. Also, 20 RNA features were gathered by combining 4 nucleotides

(A, C, G, T) times five RNA secondary structures (stem, hairpin, loop, bulge, and

internal loop). In sum, 132 features were utilized to encode RNA-protein interacting

pairs (20 features for RNAs and 112 features for proteins).

To predict protein blocks (PBs) and RNA secondary structures (RSS) in test data

sets, the following libraries were used:

• PB-kPRED method [26] was used to predict the protein block structures for

proteins

• RNAfold from the Vienna package [27] was applied to predict the RNA secondary

structure for RNAs

Table 2.4 illustrates the performance of RPI-Pred using a 10-fold CV:

Metric RPI2241 RPI369 NPInter10412
Precision 0.88 0.89 0.85
Recall 0.78 0.89 0.90
F-score 0.83 0.89 0.87
Accuracy 0.84 0.92 86.9

Table 2.4: RPI-pred performance summary as reported by [8].
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2.2.4 RPI-SAN

RPI-SAN [9] (a sequence-based approach) uses a deep learning stacked auto-encoder

network to mine the hidden features of RNA and protein sequences. These features

were then passed to a random forest (RF) classifier. RPI2241, RPI488, RPI1807,

and NPInter v2.0 data sets were employed. First, RNA sequences were converted

into a k-mers sparse matrix [27]. Then the singular value decomposition (SVD)

was used to extract the feature vector for each sequence [28]. Regarding protein

sequences, a pseudo-Zernike moment (PZM) descriptor [29] was used for extracting

the evolutionary information from the position-specific scoring matrix (PSSM). Finally,

these features were employed to the stacked auto-encoder and random forest for

learning features and predicting RPIs, respectively.

Mentioned data sets were used with a 5-fold CV procedure. The result of the current

method on RPI2241, RPI488, and RPI1807 data sets is shown in Table 2.5, and

researchers found that the accuracy of RPI-SAN is 98.67% on the independent data

set NPInter v2.0 [22].

Metric RPI2241 RPI488 RPI1807
Accuracy(%) 90.77 89.7 96.1
Sensitivity(%) 86.17 94.3 93.6
Specificity(%) 97.37 83.7 99.9
Precision(%) 84.05 95.2 91.4
MCC(%) 82.27 79.3 92.4
AUC 0.962 0.920 0.999

Table 2.5: Prediction results of the RPI-SAN classifier as reported by [9].
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2.2.5 RPiRLS

This method [10] is a machine-learning model that combines a sequence-based derived

kernel (extracts the contextual information around an amino acid or a nucleic acid

as well as the repetitive conserved motif information) with regularized least squares

[30]. There are 2 versions of RPiRLS, RPiRLS, and RPiRLS-7G. In RPiRLS each

protein sequence comprises up to 20 diverse amino acids but in RPiRLS-7G each

protein sequence is represented by using 7-letter reduced alphabets based on their

physiochemical properties.

RPiRLS and RPiRLS-7G classifiers were trained on the RPI2662 data set, and tested

on the RPI2241 and RPI369 data sets. Tables 2.6 and 2.7 show the performance of

classifiers on the RPI369 and the RPI2241 data sets, respectively.

Metric RPiRLS RPiRLS-7G
Accuracy 0.85 0.79
AUC 0.92 0.90
Specificity 0.84 0.72
Sensitivity 0.86 0.87

Table 2.6: RPI369 10-fold CV results as reported by [10].

Metric RPiRLS RPiRLS-7G
Accuracy 0.80 0.67
AUC 0.80 0.74
Specificity 0.82 0.58
Sensitivity 0.79 0.76

Table 2.7: RPI2241 10-fold CV results as reported by [10].
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2.2.6 DM-RPIs

Deep mining ncRNA-protein interactions (ncRPIs) [3] is a classifier that was trained

to predict ncRPIs from sequence information. Three methods were used for training:

1. Random Forest (RF)

2. Support Vector Machine (SVM)

3. Convolution Neural Network (CNN)

These classifiers were then merged with the stacked ensemble method. DSANs were

trained to preprocess raw data. 20 amino acids were divided into 7 groups according

to their dipole moments and the volume of their side chain. Each protein sequence was

represented by conjoint triad features (CTF). CTF shows a normalized frequency of

3-mer in the 7-letter representation of the protein sequence, resulting in 343 (7×7×7)

dimensional features. Each RNA chain was represented by the normalized frequency

of the 4-mer sequence fragment, which made 256 (4×4×4×4) dimensional features.

A vector of 599 (343+256) dimensions represented each interaction. Then, DSANs

(Deep Stacking Auto-encoders Networks) model was used to reduce the dimension of

the features to 128.

Five data sets were utilized for training using a 5-fold CV: RPI369, RPI488, RPI1807,

RPI2241 and RPI13254. Figures 2.2 and 2.3 show the performance of the 4 mentioned

classifiers on RPI369 and RPI2241, respectively.
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Figure 2.2: Comparison of three base classifiers and DM-RPIs on RPI369. Reprinted
from [3] page 107088, Copyright (2019), with permission from Elsevier.

Figure 2.3: Comparison of three base classifiers and DM-RPIs on RPI2241. Reprinted
from [3] page 107088, Copyright (2019), with permission from Elsevier.
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2.2.7 RPITER

RPITER [11] (hierarchical deep learning-based framework) uses sequence as well as

structure information taken from RNA and protein sequences. RPITER utilized two

basic neural network architectures of convolution neural network (CNN) and stacked

auto-encoder (SAE). The same CTF procedure of [3] (previous method) was applied,

and they got a 599 (343+256) dimensions feature vector for all interaction pairs.

Besides CTF, 3 deep learning sequence coding methods were employed: one hot,

word2vec, and doc2vec. After comparing 4 sequence coding approaches, CTF had

better results in comparison with 3 other techniques. The structure information of

the protein and RNA sequences were predicted with SOPMA [31] and viennaRNA

[27], respectively. Moreover, cd-hit [32] was applied to cluster RNA and protein

sequences with an identity threshold of 0.4.

RPI369, RPI488, RPI1807, RPI2241, and NPInter data sets were utilized in this

study with a 5-fold CV procedure. Table 2.8 shows the performance of RPITER on

different data sets.

Metric RPI369 RPI488 RPI1807 RPI2241 NPInter
Accuracy 0.72 0.89 0.96 0.89 0.95
Sensitivity 0.79 0.83 0.98 0.91 0.97
Specificity 0.0.65 0.94 0.94 0.86 0.93
Precision 0.70 0.94 0.95 0.87 0.93
MCC 0.46 0.79 0.93 0.78 0.91
AUC 0.82 0.91 0.99 0.95 0.98

Table 2.8: RPITER classifier results as reported by [11].
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2.2.8 RPI-SE

RPI-SE [12] is a stacking ensemble computational framework that uses three base

classifiers: Gradient Boosting Decision Tree, SVM, and Extremely Randomized Trees

(ExtraTree) to predict ncRNA-protein interactions via sequence information. The

output of these three base classifiers was then combined with Logistic Regression

(LR).

ncRNA and protein sequences were represented as follows:

• RNA sequences: K-mer sparse matrix was implemented. It scanned each RNA

sequence (A, C, G, U) with a k (k=4 for RNA) nucleotide window, moving

one nucleotide at a time. After that, singular value decomposition (SVD) was

implemented to reduce the matrix into a 256-feature vector.

• Protein sequences: position weight matrix (PWM) was employed. It has one

row for each symbol of the alphabet and 20 rows for amino acids in protein

sequences. Next, Legendre Moments (LMs) [33] feature vectors were extracted

from the PWM of protein sequences (676 feature vectors). Then, truncated

singular value decomposition (tSVD) was performed to reduce the influence of

noise with 500 feature vectors.

Finally, each pair of ncRNA-protein was represented with 756 features. Three data

sets, RPI369, RPI488, and RPI1807, were utilized to evaluate the performance of

RPI-SE with a 5-fold CV procedure.
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Table 2.9 depicts the result of this classifier on 3 data sets.

Metric RPI369 RPI488 RPI1807
Accuracy (%) 88.44 89.30 96.86
TPR (%) 83.69 94.49 96.71
TNR (%) 95.87 83.48 97.69
PPV (%) 80.85 95.15 95.83
MCC (%) 77.73 79.31 93.65
AUC 0.92 0.90 0.99

Table 2.9: RPI-SE classifier results on 3 data sets as reported by [12].

2.2.9 EDLMFC

EDLMFC [4] is a deep learning-based method, to predict ncRNA–protein interactions

using primary sequence features, secondary structure sequence features, and tertiary

structure features. CNN (Convolutional neural network) and BLSTM (Bi-directional

long short-term memory network) were used. The Conjoint k-mer (3-mer frequency

feature for proteins and 4-mer frequency feature for ncRNAs) method was used to

extract features. RPI1807, NPInter, and RPI488 data sets were used. To analyze the

contributions of the three kinds of features, seven different feature combinations were

created:

1. sequence

2. secondary structure

3. tertiary structure

4. sequence together with secondary structure
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5. sequence together with tertiary structure

6. secondary structure together with tertiary structure

7. all features together

Figure 2.4 represents the contribution of the 7 mentioned combinations on the RPI1807

data set.

Figure 2.4: Contribution of 7 feature combinations on RPI1807. Figure taken from [4]
(CC BY 4.0).

Table 2.10 shows the performance of EDLMFC on three data sets with a 5-fold CV

procedure.

20



Metric RPI1807 NPInter RPI488
Accuracy(%) 93.8 89.7 86.1
F1-score(%) 95.9 89.9 82.9
MCC(%) 83.3 79.5 74.2
AUC(%) 96.7 95.9 89.9
TPR(%) 96.9 91.7 74.5
TNR(%) 84.5 87.7 96.7
PPV(%) 94.9 88.2 96.1

Table 2.10: EDLMFC 5-fold CV results as reported by [4].

EDLMFC classifier was further evaluated on an independent data set to check whether

ncRNAs interact with proteins or not. RPI1807 and NPInter data sets were used to

train and test the model, respectively. Table 2.11 compares the actual number of

ncRNA–protein pairs in NPInter and EDLMFC’s accuracy.

Organism NPInter pairs EDLMFC accuracy
Homo sapiens 740 631 (85%)
Mus musculus 229 217 (95%)
Saccharomyces cerevisiae 693 632 (91%)
Caenorhabditis elegans 33 31 (94%)
Drosophila melanogaster 46 41 (89%)
Escherichia coli 202 188 (93%)
Total 1943 1742 (90%)

Table 2.11: EDLMFC performance on different organisms as reported by [4].
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2.2.10 SAWRPI

SAWRPI [5] was proposed to make a prediction of ncRNA-protein through sequence

information. This method integrates four base classifiers XGBoost, SVM, ExtraTree

and Random Forest for classification and prediction. The stacking ensemble was

used to integrate 4 base classifiers. They got information on amino acids through a

3-mers sparse matrix and then generated a feature vector through SVD. For ncRNA

representation, natural language processing (NLP) was used to retrieve a representation

of ncRNA nucleic acid symbols, then get comprehensive information through a local

fusion strategy. To make the classification easier, Hilbert Transformation was exploited

to feature extraction which transformed raw feature data into a new feature space.

RPI369, RPI1807, and RPI488 data sets were used with a 5-fold CV. Table 2.12

demonstrated the performance of SAWRPI on these 3 data sets.

Metric RPI369 RPI488 RPI1807
Accuracy 0.71 0.89 0.96
Precision 0.69 0.93 0.96
Sensitivity 0.75 0.84 0.98
F1-score 0.72 0.88 0.97
MCC 0.42 0.79 0.93

Table 2.12: SAWRPI performance on three data sets as reported by [5].

Moreover, Figure 2.5 shows the ROC curve of SAWRPI and 5 classifiers. In figure

2.5, different classifiers show different percentages for distinguishing between classes.
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Figure 2.5: ROC curve of 6 classifiers on RPI1807. Figure taken from [5] (CC BY 4.0).
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2.2.11 De novo prediction of RNA-protein interactions with

graph neural networks

Graph Convolutional Network (GCN) [13] with 2 convolutional layers as a GNN

model was proposed. CLIP-seq data was used to retrieve RBPs and a set of RNAs,

that a protein can bind to. To construct the benchmark data sets, they used the

eCLIP data set for two cell lines (HepG2 and K562):

1. HepG2: 15018 nodes (103 proteins and 14915 RNAs) and 145509 interactions

(edges)

2. K562: 14665 nodes (120 proteins and 14545 RNAs) with 144527 interactions

between proteins and RNAs.

For extracting sequence features, the following methods were used:

1. Proteins: conjoint triad descriptors extract the features based on their dipoles

and volumes of the side chains. Each protein sequence was encoded from a

7-letter reduced alphabet representation.

2. RNAs: 6-mer frequency distribution was taken from each RNA sequence.

The above feature extraction methods were used to generate 73 (343) and 46 (4096)

dimensional feature vectors for protein and RNAs, respectively. Tables 2.13 and 2.14

compare the AUROC (area under the receiver operating characteristic) of the HepG2

cell line and K562 cell line with RNAcommender (another method)[34] and RPIseq
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methods with 10-fold CV procedures, respectively.

Test set with different
percent of edges

RNAcommender RPIseq GCN

10% 0.632 ±0.004 0.808 ±0.003 0.771 ±0.003
20% 0.628 ±0.004 0.799 ±0.002 0.762 ±0.003
30% 0.621 ±0.004 0.791 ±0.001 0.796 ±0.003
40% 0.618 ±0.004 0.782 ±0.002 0.742 ±0.004
50% 0.618 ±0.004 0.773 ±0.001 0.734 ±0.001

Table 2.13: GCN (HepG2) performance comparison with 2 other methods as reported
by [13].

Test set with different
percent of edges

RNAcommender RPIseq GCN

10% 0.855 ±0.003 0.868±0.002 0.926 ±0.002
20% 0.852 ±0.003 0.865 ±0.002 0.921 ±0.001
30% 0.846 ±0.003 0.857 ±0.001 0.911 ±0.002
40% 0.844 ±0.003 0.857 ±0.001 0.909 ±0.002
50% 0.841 ±0.005 0.854 ±0.001 0.904 ±0.001

Table 2.14: GCN (K562) performance comparison with 2 other methods as reported by
[13].
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2.2.12 RNA-protein prediction methods overview

Table 2.15 provides an overview of all of the related works.

Application Year Approach Data used
Prediction

approach
Ref

RPISeq 2011 SVM and RF
sequence

information
Partner [6]

De novo prediction of

RNA–protein interactions

from sequence information

2013 NB and ENB
sequence

information
Partner [12]

RPI-Pred 2015 SVM

sequence and

structural

information

Partner [8]

RPI-SAN 2018

Stacked

Autoencoder

and RF

sequence

information
Interface [9]

RPiRLS 2018

Regularized

Least

Squares

sequence

information
Partner [10]

DM-RPIs 2019
SVM and RF

and CNN

sequence

information
Interface [3]
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Application Year Approach Data used
Prediction

approach
Ref

RPITER 2019
CNN

and SAE

sequence and

structural

information

Partner [3]

RPI-SE 2020

SVM and

XGBoost and

ExtraTree

sequence

information
Partner [12]

EDLMFC 2021
CNN

and BLSTM

sequence and

structural

information

Interface [4]

SAWRPI 2022

XGBoost and

SVM and

ExtraTree

and RF

sequence

information
Partner [5]

De novo prediction of RNA-

protein interactions with

graph neural networks

2022

Graph

Convolutional

Network

sequence

information
Partner [13]

Table 2.15: Related works overview
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2.3 Feature Extraction Methods

Most of the methods described in Section 2.1 used RNA and protein sequence features.

Recently, several methods for extracting sequence-derived features have become available.

Here we present 13 different Python-based programs to extract features from sequences.

2.3.1 propy

propy [35] (2013) extracts PseAAC (pseudo amino acid composition) descriptors from

proteins and peptide sequences. It extracts 13 different features. This method is

suitable for protein sequences.

2.3.2 PyDPI

PyDPI (drug-protein interaction with Python) [36] is a freely available Python package

that can be applied only to protein sequences for extracting 14 features. PyDPI

emphasizes on integration of chemoinformatics and bioinformatics into a molecular

informatics platform for drug discovery.

2.3.3 SPiCE

SPICE [37] (2014) extracts sequence-based features from protein sequences. This

package extracts 17 different features. It also provides easy access to visualization

and classification methods for a set of protein sequences. It can run on Chrome,

Firefox, Opera, and Safari browsers.
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2.3.4 PseKNC-General

This package [38] (the general form of pseudo-k-tuple nucleotide composition) was

developed in 2014. It extracts RNA and DNA features from their sequences. This

package:

1. Can be run on Linux, Mac, and Windows systems

2. Provides a graphical user interface

2.3.5 ProFET

ProFET [39] (Protein Feature Engineering Toolkit) was built in 2015 and extracted

24 features. Unfortunately in this method, some features cannot be obtained directly

from the sequence.

2.3.6 repDNA

repDNA [40] is a Python package that is used for extracting features from DNA and

nucleotide sequences. This package was published in 2014 and is able to extract 15

features.

2.3.7 POSSUM

This tool [41] was published in 2017 to extract 21 features from protein sequences.

POSSUM is an online web server that can generate features based on PSSM (Position-
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Specific Scoring Matrix).

2.3.8 iFeature

This open-source Python package (2018) [42] can find 53 different types of feature

descriptors from protein and peptide sequences. iFeature is also freely available via

an online web server and a stand-alone program.

2.3.9 PyBioMed

This is a Python package that was published in 2018 [43]. It can extract 28 different

features from protein and DNA sequences by providing various user-friendly and

highly customized APIs, 14 features for each of them. This Python package is open-

access and can run on Linux and Windows operating systems.

2.3.10 BioSeq-Analysis

BioSeq-Analysis [44] can be used with RNA, DNA, and protein sequences to produce

different features via 56 feature extraction methods. 20, 14, and 22 methods for

DNA, RNA, and proteins, can be calculated, respectively. This Python package can

run as a stand-alone program and a web server. The program can be directly run on

Windows, Linux, and UNIX.
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2.3.11 PyFeat

PyFeat [45] is a feature extraction tool that can be used for RNA, DNA, and protein

sequences. This package successfully extracts 13 features from DNA and RNA sequences,

as well as 9 features from RNA, DNA, and protein sequences together. PyFeat Comes

with a dimension reduction method to reduce the dimensionality of extracted features.

2.3.12 iLearnPlus

This open-source package [46] can extract multiple feature sets from RNA, DNA,

and protein sequences. iLearnPlus which was built in 2021 is also a machine-learning

platform. Some of its characteristics are:

1. Has graphical and web-based user interface.

2. Can run on multiple operating systems

3. Supports four formats for saving the calculated features, including LIBSVM,

CSV, TSV, and WEKA

2.3.13 MathFeature

MathFeature [47], introduced in 2022 includes 37 features for biological sequences. 20

of them are based on mathematical approaches and are not available in other feature

extraction packages. The other 17 features can be found in other approaches and are

called conventional descriptors. Some of MathFeature’s advantages are:
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1. Suitable for RNA, DNA, and protein sequences

2. Contains GUI and web server

2.3.14 Feature extraction packages overview

Table 2.16 lists the 13 different Python-based programs which can extract features

from sequences.

Package
Number of

features
Year Ref Used sequence

propy 13 2013 [35] Protein

PyDPI 13 2013 [36] Protein

SPiCE 17 2014 [37] Protein

PseKNC-

General
11 2014 [38] RNA and DNA

ProFET 24 2015 [39] Protein

repDNA 15 2015 [40] DNA and RNA

POSSUM 21 2017 [41] Protein

iFeature 53 2018 [42] Protein

PyBioMed 28 2018 [43] DNA and Protein

BioSeq-

Analysis
56 2019 [44]

RNA and DNA and

Protein
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Package
Number of

features
Year Ref Used sequence

PyFeat 22 2019 [45]
RNA and DNA and

Protein

iLearnPlus 117 2021 [46]
RNA and DNA and

Protein

MathFeature
37 2022 [47]

RNA and DNA and

Protein

Table 2.16: Feature extraction methods

For this project, we decided to use iLearnPlus as it is one of the most recent feature

extraction programs and it is the one with the largest number of available feature

sets.
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2.4 Feature Selection Methods

Here, we describe the two methods we used for feature selection.

2.4.1 ANOVA

Analysis of variance, ANOVA, [48] determines each number in a variable’s range and

specifies how far each number is from the mean. The statistical technique called

analysis of variance is used to determine whether the means of two or more groups

differ significantly from one another. A feature’s variance tells us how much it affects

the response (target) variable. Low variance indicates that this feature has no effect

on our target and vice-versa.

2.4.2 Mutual Information

Mutual Information (MI) [48] is a non-negative value, which measures the dependency

between the variables. It is equal to zero if and only if two random variables are

independent. Higher values mean higher dependency.
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Chapter 3

Methodology

This project is to build a classifier for predicting sRNA-protein interactions in bacteria

using only bacterial sRNA and protein sequence features. The classifier can only have

two outputs, 0 or 1. 0 means sRNA and protein do not interact with each other, and

1 means sRNA and protein will interact with each other.

Regarding features, we only considered sequence-derived features. Structural features

were not used since structures for all protein and sRNA sequences are not available.

For the training data set, we collected experimentally validated pairs from several

published studies.
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3.1 Data Collection

Interacting pairs that were validated in experimental or wet-lab methods were used

as positive examples. This means we have gathered sRNA-protein pairs which were

defined to interact with each other as positive samples. In order to have sRNA

sequences, after reviewing more than 200 papers, we used the studies which are listed

in Table 3.1. It is good to mention that the given criteria are taken from their

papers.

Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Escherichia

coli (K-12)

At least 10 chimeric

fragments
U00096.3 Hfq RIL-seq 25 [49]

Escherichia

coli (K-12)

Adjusted P-value ≤

0.05
U00096.3 Hfq

co-ip and

deep-

sequencing

21 [50]

Salmonella

enterica

(LT2)

Enrichment factor ≥

10
AE006468.2 Hfq

co-ip and

deep-

sequencing

25 [51]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Escherichia

coli (Sakai)

Adjusted P-value ≤

0.05
BA000007.2 Hfq CRAC 27 [52]

Salmonella

enterica

(SL1344)

Correlations between

the northern blot

signals of sRNAs

and their relative

coverage in the cDNA

libraries

FQ312003.1 Hfq

co-ip and

deep-

sequencing

63 [53]

Escherichia

coli (MC4100)
wt IP/ wt total < 2 HG738867.1 Hfq

Tiling array

of co-

ip samples

34 [54]

Sinorhizobium

meliloti

(1021)

At least 30 strand-

specific reads
AL591985.1 Hfq

co-ip

and deep

sequencing

94 [55]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Salmonella

enterica

(SL1344)

FDR-adjusted P-

value < 0.05
FQ312003.1 proQ

ip and deep

sequencing
108 [56]

Salmonella

enterica

(SL1344)

Enrichment factors

of log2 fold change

2.0 with adjusted

P-value < 0.05

FQ312003.1 proQ

co-ip

and deep

sequencing

61 [57]

Salmonella

enterica

(SL1344)

Enrichment factors

of log2 fold change

2.0 with adjusted

P-value < 0.05

FQ312003.1 FinO

co-ip

and deep

sequencing

6 [57]

Pseudomonas

aeruginosa

(PAO1)

Manual curation of

sRNAs from size

selection sRNA-seq

AE004091.2 Hfq CLIP-seq 108 [57]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Escherichia

coli (K-12)
IP enrichment ≥ 15 U00096.3 proQ RIL-seq 63 [58]

Escherichia

coli (K-12)
IP enrichment ≥ 15 U00096.3 Hfq RIL-seq 105 [58]

Salmonella

enterica

(SL1344)

Adjusted P-value <

10E-4
FQ312003.1 CsrA CLIP-seq 27 [59]

Salmonella

enterica

(SL1344)

Adjusted P-value <

10E-4
FQ312003.1 Hfq CLIP-seq 126 [59]

Yersinia

pestis biovar

Microtus

(91001)

Adjusted P-value <

0.001
AE01042.1 Hfq CLIP-seq 456 [60]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Agrobacterium

tumefaciens

(C58)

ncRNAs enriched in

Hfq3xF lag AE007869.2 Hfq RIL-seq 113 [61]

Agrobacterium

tumefaciens

(C58)

ncRNAs enriched in

Hfq3xF lag AE007870.2 Hfq RIL-seq 49 [61]

Salmonella

enterica

(SL1344)

log2 fold change ≥

2.0 and Adjusted P-

value ≤ 0.05

FQ312003.1 proQ RIP-seq 24 [62]

Bacillus

subtilis (168)
RPKM > 2 AL009126.3 Hfq

co-ip

and deep

sequencing

22 [63]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Neisseria

meningitidis

(8013)

log2 fold change ≥ 2

and Adjusted p-value

< 0.05

FM999788.1 proQ CLIP-seq 16 [64]

Brucella suis

(1330)

More than 20 cDNA

reads
AE014291.4 Hfq

co-ip

and deep

sequencing

18 [65]

Brucella suis

(1330)

More than 20 cDNA

reads
AE014292.2 Hfq

co-ip

and deep

sequencing

15 [65]

Rhodobacter

sphaeroides

(2.4.1)

Enrichment factor >

1
CP000143.2 Hfq RNA-seq 20 [66]

Erwinia

amylovora

(Ea1189)

0 < Hfq or 0 < Ea1189 FN666575.1 Hfq RNA-seq 38 [67]
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Organism

(Strain)

Criteria used to

identify interacting

pairs taken from

original papers

Genome

annotation

number
Protein

Sequencing

method(s)

#

sRNA
Ref

Clostridioides

difficile (630)

FDR-adjusted P-

value ≤ 0.1 and log2

fold change ≥ 2

CP010905.2 Hfq RIP-seq 26 [68]

Table 3.1: Studies used to collect sRNA-protein interacting pairs

The criteria for considering whether a sRNA and a RBP interact when analyzing

sequencing data, that I listed in the Table 3.1, were mentioned in the original papers.

The criteria vary across the various publications and are not directly comparable.

However, our purpose is to obtain examples of interacting sRNA-RBP pairs.
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In Table 3.2, we provide a brief explanation of the sequencing methods listed in Table

3.1.

Method name Explanation Reference

RIL-seq RNA interaction by ligation and sequencing. [49]

Deep sequencing High-throughput sequencing. [50]

CRAC
UV-induced RNA-protein crosslinking and analysis of

cDNA by high-throughput sequencing.
[52]

Co-ip

Identify physiologically relevant protein-protein

interactions by using target protein-specific antibodies

to indirectly capture proteins that are bound to a

specific target protein.

[69]

ip

A small-scale affinity purification of antigens using a

specific antibody that is immobilized to a solid support

such as magnetic particles or agarose resin.

[69]

CLIP-seq
Cross-linking immunoprecipitation followed by deep

sequencing.
[70]

RNA-seq Deep sequencing of cDNA libraries. [70]

RIP-seq RNA immunoprecipitation sequencing. [68]

Table 3.2: Sequencing-based methods used in the studies listed in Table 3.1
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We collected the genomic coordinates of 1559 sRNAs (BED file) to obtain their

sequences from the corresponding genome (fasta file). The genomic coordinates were

specified in the corresponding publication. To do this, we used bedtools getfasta [71]

as follows:

$ bedtools getfasta [OPTIONS] -fi < FASTA > -bed < BED/GFF /V CF >

With the following arguments:

• We set -s option to force strandedness

• Input FASTA file with whole genome in fasta format /GFF/VCF file with sRNA

coordinates

For protein sequences, UniProt [72] was used. We retrieved 16 different sequences for

our proteins (Hfq, CsrA, ProQ, and FinO) in different bacteria.
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3.1.1 Interacting Pairs

1559 sRNA sequences with their interacting proteins were collected as a positive data

set. Table 3.3 shows the properties of the training data set. Also, we used complete

sequences instead of only binding domains.

Number of

unique protein

sequences

Number of

unique sRNA

sequences

Number of

interacting pairs

Number of non-

interacting pairs

16 1559 1559 1559

Table 3.3: Properties of the training data set

Note that in Table 3.1 there are 26 proteins listed; however, out of these, there are

only 16 unique sequences.

3.1.2 Non-interacting Pairs

To generate non-interacting pairs to train our model, we randomly selected a protein

sequence (one of the 16 proteins) from our training data set and genomic coordinates

from the corresponding bacterial genome. This process was repeated until the number

of non-interacting pairs was equal to the number of interacting pairs.

We used bedtools shuffle [73] to obtain random genomic locations of the same length

as the sRNAs on our training data. Then bedtools getfasta [69] was used to retrieve

the sequences corresponding to the random genomic locations.
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1. bedtools shuffle:

bedtools shuffle [OPTIONS] -i < BED/GFF /V CF > -g < GENOME >

with the following options:

• 50% was chosen as a maximum overlap of random genomic locations with

actual sRNAs to ensure that the sequence of the non-interacting pairs is

substantially different from actual sRNAs.

• BED/GFF/VCF refers to an input bed file with sRNA coordinates

• GENOME refers to a text file with the length of the corresponding bacterial

genome

• Output file refers to another bed file with the random genomic locations

that we get at the end

2. bedtools getfasta:

bedtools getfasta [OPTIONS] -fi < FASTA > -bed < BED/GFF /V CF >

With the following options:

• We set the -s option to force strandedness.

• Input FASTA file with the whole genome

• BED/GFF/VCF file with coordinates of negative instances

46



3.2 Testing Data Sets

In order to test our model for general RNA-protein interaction prediction and

compare it with other programs, we used the four data sets listed in Table 3.4.

Data set
Number

of RNAs

Number

of

proteins

Number

of + pairs

Number

of - pairs
Ref

RPI369 331 623 369 369 [8]

RPI1807 646 868 652 221 [11]

RPI488 13 155 43 47 [11]

NPInter

v2.0
513 448 1943 1943 [11]

Table 3.4: Testing data sets

3.3 Feature Extraction

For extracting features (attributes) from sequences, we used the iLearnPlus [46]

Python package because:

• It can be used for protein and sRNA sequences

• It is a recently published package (2021)

• It is able to extract multiple features
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Table 3.5 shows the different sRNA feature sets which were extracted using

iLearnPlus.

Feature set Description Reference

NAC

(Nucleic Acid

Composition)

NAC calculates the frequency of each nucleic acid type

in a nucleotide sequence.
[46]

DNC

(Dinucleotide

Composition)

Frequency of each nucleotide pair in a sequence. [46]

TNC

(Trinucleotide

Composition

Frequency of each nucleotide trio in a sequence. [46]

PseEIIP

(Electron-

ion Interaction

Pseudopotentials

of Trinucleotide)

calculates the pseudo-electron-ion interaction for each

trinucleotide sequence. It creates a feature vector for

each sequence. The vector contains a value for each tri-

nucleotide. The value is computed by multiplying the

aggregate value of electron-ion interaction of each tri-

nucleotide.

[74]
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Feature set Description Reference

ASDC

(Adaptive Skip

Dinucleotide

Composition)

This descriptor considers the correlation information

present not only between adjacent residues but also

between intervening residues.

[46]

MMI
Multivariate mutual information with 2-mer and 3-mer

DNA/RNA sequence.
[46]

Z-curve-9bit

(The Z curve

parameters for

frequencies of

phase-specific

mononucleotides)

The frequencies of bases A, C, G, and T occurring in

an open reading frame or a fragment of DNA sequence.

They are in fact the frequencies of bases at the 1st, 2nd

and 3rd codon positions.

[46]

CKSNAP

(Composition of

K-spaced Nucleic

Acid Pairs)

Calculates the frequency of nucleic acid pairs separated

by any 3 nucleic acid.
[46]
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Feature set Description Reference

RCKmer

(Reverse

Compliment

Kmer)

A variant of kmer-descriptor, in which the kmers are not

expected to be strand-specific.
[46]

Table 3.5: Extracted sRNA sequence feature sets with iLearnPlus Python package
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Extracted features from protein sequences using iLearnPlus are listed in Table

3.6.

Feature set Description Reference

AAC (Amino Acid

Composition)

Calculates the frequency of each amino acid type in a

protein or peptide sequence.
[46]

DPC

(Di-Peptide

Composition)

Computes the frequency of two amino acids. A protein

sequence can be represented by a 400-dimensional

vector.

[46]

DDE
Computes the dipeptide deviation from the expected

mean value.
[46]

GAAC

(Grouped Amino

Acid Composition)

The 20 amino acid types are categorized into five

classes according to their physicochemical properties

and GAAC is the frequency of each amino acid group.

[46]

GDPC

(Grouped Dipeptide

Composition)

Combination between DPC and GAAC. [75]

GTPC

(Grouped Tripeptide

Composition)

Combination between TPC and GAAC. TPC computes

the frequency of three amino acids which can be

represented by a 8000-dimensional vector.

[75]
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Feature set Description Reference

CTDC

(Composition)

The composition consists of three values: the global

compositions (percentage) of polar, neutral, and

hydrophobic residues of the protein. This feature set

can be shown by a 39-dimensional vector.

[46]

CTDT

(Transition)

The transition also consists of three values: the

global compositions (percentage) of polar, neutral and

hydrophobic residues of the protein. This feature set

can be shown by a 39-dimensional vector.

[46]

CTDD

(Distribution)

The distribution consists of five values for each of the

three groups (polar, neutral and hydrophobic), namely

the corresponding fraction of the entire sequence.

[46]

ASDC

It considers the correlation information present not only

between adjacent residues but also between intervening

residues. This function calculates the frequency of

pair amino acids omitting gaps between them. Then

this function normalizes each value by dividing each

frequency by the sum of all frequencies.

[76]

Table 3.6: Extracted protein sequence feature sets using iLearnPlus Python
package
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As a result of feature extraction, we extracted 9 feature sets (331 features) from

sRNA sequences and 10 feature sets (1648 features) from protein sequences.

Our feature table has 3118 (number of interacting and non-interacting sequences)

rows and 1979 (number of sRNA and protein features) columns.
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Our first step to reduce the number of similar features was to remove them.

We removed less important features for reducing noise and enhancing model

performance. To do this, we calculated pair-wise Spearman correlation among

all feature sets and removed those with a correlation value greater than 0.90.

We used 0.9 as a value because we wanted to remove highly redundant features.

That is features that provide practically the same information. After removing

redundant features we had 182 sRNA features and 743 protein features. Table

3.7 shows the number of remaining features after filtering based on the pair-wise

Spearman correlation values between features.

Feature sets Feature type
Number of features

before correlation

Number of features

after correlation

NAC RNA/DNA 4 4

DNC RNA/DNA 16 16

TNC RNA/DNA 64 63

PseEIIP RNA/DNA 64 0

ASDC RNA/DNA 16 12

MMI RNA/DNA 30 30

Z-curve-9bit RNA/DNA 9 9

CKSNAP RNA/DNA 64 48

RCKmer RNA/DNA 64 0

AAC Protein 20 20
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Feature sets Feature type
Number of features

before correlation

Number of features

after correlation

DPC Protein 400 254

DDE Protein 400 63

GAAC Protein 5 3

GDPC Protein 25 16

GTPC Protein 125 72

CTDC Protein 39 15

CTDT Protein 39 22

CTDD Protein 195 94

ASDC Protein 400 184

Table 3.7: Number of sequences filtered by removing features with a pair-wise
Spearman correlation value greater than 0.9

After the removal of redundant features, three of the feature sets were completely

removed. This happened because all the features in those feature sets were

similar to each other. I calculated the correlation within each of the feature

sets and removed all the features if and only if they had a correlation greater

than 0.9 in the same feature set.
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3.4 Feature Selection

We implemented ANOVA and Mutual Information (MI) methods for feature

selection [48]. The data set that we used for feature selection contains 3118 rows

and 925 columns after removing redundant features with a Spearman correlation

coefficient greater than 0.9.

Several ANOVA and Mutual Information thresholds were considered. Each

threshold can only consider a subset of features. In Figures 3.1 and 3.2, the

horizontal axe shows the features and the vertical axe shows their corresponding

scores. We were aiming to select those features with a high score because

these features exhibit significant differences in means across different groups or

categories of the target variable. To do this, the following thresholds were used:

(a) ANOVA100

(b) ANOVA200

(c) MI0.2

(d) MI0.4
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Figure 3.1: ANOVA feature selection result in our data set

Figure 3.2: Mutual Information feature selection result in our data set

For each of the machine learning methods, different hyperparameters were tested

to find the values which optimize classification performance. Table 3.8 shows

the hyperparameters used to construct the models for each machine-learning
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method. These hyperparameters were taken from grid-search and further used

to evaluate classifiers based on a 10-fold CV.

Classifier Hyperparameters

Decision tree criterion:entropy, max-depth:14

xGBoost gamma:0.01, learning-rate:0.1, max-depth:6, n-estimators:500

Random forest criterion:gini, max-depth:14, max-features:auto, n-estimators:20

Table 3.8: Classifiers hyperparameters

Tables 3.9, 3.10, and 3.11 show the different hyperparameter values used for

grid-search in DT, XGBoost, and RF machine-learning methods, respectively.

Hyperparameter Variables

Criterion gini - entropy

Max-depth 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - None

Table 3.9: DT hyperparameter values explored with grid-search cross-validation
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Hyperparameter Variables

N-estimators 10 - 20 - 30

Max-depth 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - None

Gamma 0.1 - 0.01

Learning-rate 0.001 - 0.01 - 0.1 - 1

Table 3.10: XGBoost hyperparameter values explored with grid-search
cross-validation

Hyperparameter Variables

N-estimators 1 - 5 - 10 - 15

Max-features auto - sqrt - log2

Criterion gini - entropy

Max-depth 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - None

Table 3.11: RF hyperparameter values explored with grid-search cross-validation

Figure 3.3 represents the percentage and number of sRNA and protein features

in the ANOVA100 feature set, which was used for the training. Surprisingly,

most of the features found informative by ANOVA are extracted from the

protein sequence.
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Figure 3.3: ANOVA100 features grouped by their types (sRNA or protein)
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Table 3.12 shows the number of features in ANOVA100.

Feature set
Number of

features
Feature type

NAC 1 RNA/DNA

DNC 3 RNA/DNA

TNC 1 RNA/DNA

ASDC 3 RNA/DNA

MMI 4 RNA/DNA

CKSNAP 3 RNA/DNA

AAC 14 Protein

DPC 98 Protein

DDE 48 Protein

GAAC 2 Protein

GDPC 14 Protein

CTPC 36 Protein

CTDC 12 Protein

CTDT 19 Protein

CTDD 67 Protein

ASDC 144 Protein

Table 3.12: ANOVA100 features
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Chapter 4

Results and Discussion

In this chapter, we present performance metrics for various thresholds for feature

selection, and three machine-learning methods. We present the results of a

comparative assessment of our best model ProNA’s predictive performance with

that of other recent RNA-protein prediction programs.
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4.1 Feature Selection

Table 4.1 shows the number of features selected with two different thresholds

for ANOVA and Mutual Information.

Method Threshold
Selected

features

ANOVA 100 469

ANOVA 200 394

Mutual Information 0.2 531

Mutual Information 0.4 476

Table 4.1: Number of features selected with two feature selection methods at
different threshold settings

Table 4.2 shows the 10-fold CV (cross-validation) accuracy obtained from three

different machine-learning methods with four different feature sets. Based on

Table 4.2, we chose ANOVA100 with XGBoost as it has better accuracy with

fewer features in comparison with the other 3 feature sets. Nevertheless, all

machine learning and feature set combinations have very similar performance.

This is likely due to the fact that the feature sets have a large intersection

between each other (Figure 4.1) and all machine learning methods used are

tree-based approaches.
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Method
ANOVA100

(3118*469)

ANOVA200

(3118*394)

MI0.2

(3118*531)

MI0.4

(3118*476)

decision tree

(grid-search)
0.934 0.938 0.936 0.936

decision tree

(CV)
0.903±0.03 0.938 ±0.03 0.938 ±0.03 0.938 ±0.03

XGBoost

(grid-search)
0.943 0.938 0.936 0.936

XGBoost

(CV)
0.948 ±0.02 0.938 ±0.03 0.938 ±0.03 0.938 ±0.03

Random forest

(grid-search)
0.936 0.938 0.936 0.936

Random forest

(CV)
0.94 ±0.02 0.938 ±0.03 0.938 ±0.03 0.938 ±0.03

Table 4.2: Accuracy obtained using different feature sets. Between parenthesis, the
first number shows the number of sequences and the second number shows the

number of features.

In Figure 4.1, common features between 4 feature sets are shown:

(a) ANOVA100 and MI0.2

(b) ANOVA200 and MI0.4
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Figure 4.1: Similarity between different feature sets

Figure 4.1 shows the number of features selected by ANOVA and mutual information.

All the features in common are protein features which suggest protein features

have a strong signal for this task. The reason we selected these two groups is

their number of features.
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4.2 Feature Importance

After feature selection, based on Table 4.2, we tried feature permutation with

three classifiers (XGBoost, random forest, and decision tree) to determine the

importance of each feature in a machine-learning model. Feature permutation

evaluates the importance of features in a data set by randomly shuffling the

values of a single feature in the data set and then re-evaluating the model’s

performance.
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The five most important features in the Random Forest classifier are shown in

Table 4.3 and Figure 4.2.

Feature
Feature
set

Feature
type

AT ASDC DNA/RNA
Polarity.2.
residue25

CTDD Protein

GG DNC DNA/RNA
postivecharger.
alphaticr

GDPC Protein

CC MMI DNA/RNA

Table 4.3: The five most important
features in the RF classifier

Figure 4.2: RF classifier feature
permutation result on ANOVA100 feature

set, sorted by most important features based
on their weights
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Table 4.4 and Figure 4.3 depicts the five most important features in the XGBoost

classifier.

Feature
Feature
set

Feature
type

TA ASDC Protein
AT.gap0 CKSNAP DNA/RNA
CA ASDC DNA/RNA
TT MMI DNA/RNA
CC MMI DNA/RNA

Table 4.4: The five most important
features in the XGBoost classifier

Figure 4.3: XGBoost classifier feature
permutation result on ANOVA100 feature

set, sorted by most important features based
on their weights
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The five most important features in the Decision Tree classifier are displayed in

Table 4.5 and Figure 4.4.

Feature
Feature
set

Feature
type

hydrophobicity-
PONP930101.1.
residue25

CTDD Protein

hydrophobicity-
ARGP820101.1.
residue25

CTDD Protein

TT MMI DNA/RNA
CA ASDC DNA/RNA
CC ASDC DNA/RNA

Table 4.5: The five most important
features in the DT classifier

Figure 4.4: DT classifier feature
permutation result on the ANOVA100
feature set, sorted by most important

features based on their weights

The di-nucleotide CC was among the five most important features for all three

classifiers. Additionally, TT and CA were both among the five most important

features for DT and XGBoost. The most important protein features were unique

for each classifier. Each classifier has a different number of sRNA and protein
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features. From Figs. 4.2 - 4.4, one can see that the weights of the features vary

among classifiers: For XGBoost and decision tree the most important feature

weights substantially more than all other features; while for RF all features

have comparable weights. It is also noticeable that even though RNA features

comprised the minority of the features, they are found to be among the most

relevant by the classifiers.

4.3 10-Fold CV

To determine the best classifier (machine learning model), we evaluated them

with our feature set (ANOVA100) and determined that XGBoost has the best

accuracy. The following evaluation metrics were used for comparing the classifiers:

(a) AUC-ROC: AUC-ROC stands for Area Under the Receiver Operating

Characteristic Curve. It is a metric used to evaluate the performance

of binary classification models, which are models that predict one of two

possible outcomes (usually represented as 0 and 1).

(b) AUC-PR: AUC-PR stands for Area Under the Precision-Recall Curve.

Similar to AUC-ROC, it’s a metric used to evaluate the performance of

binary classification models, but it focuses on the precision-recall trade-off

rather than the true positive rate and false positive rate.

(c) Accuracy: Accuracy is a common metric used to evaluate the performance
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of classification models. It measures the proportion of correctly predicted

instances out of the total instances in the dataset. In other words, accuracy

quantifies how well the model’s predictions match the actual true labels.

(d) F1 Score: The F1 score is a metric commonly used in binary classification

to provide a balance between precision and recall. It considers both false

positives and false negatives and is particularly useful when the class

distribution is imbalanced.

F1 = 2 ⋅ (precision ⋅ recall)
precision + recall

Table 4.6 shows the different performance metrics of three classifiers.

Metric RF XGBoost DT

ROC AUC 0.986±0.004 0.991±0.003 0.929±0.010

PR AUC 0.988±0.004 0.991±0.003 0.944±0.010

Accuracy 0.939±0.010 0.947±0.013 0.902±0.015

F1 Score 0.937±0.010 0.946±0.013 0.924±0.013

Table 4.6: Performance metrics on three classifiers with ANOVA100 feature set

71



Before plotting the curves, understanding how to interpret each plot is essential.

At each of the 10 folds:

• The ROC curve shows the trade-off between TPR and FPR. A perfect

classifier would have TPR = 1 and FPR = 0, which means it correctly

identifies all positive cases and makes no false positive errors. The worst

classifier would have TPR = FPR = 0.5, which means it performs no better

than random guessing.

• The area under the PR curve (AUC-PR) is a common metric used to

quantify the overall performance of the classifier. A higher AUC-PR value

(ranging from 0 to 1) indicates better model performance in terms of

precision and recall.

Here, we show ROC and PR curves next to each other for all of the classifiers.

(a) Random forest classifier is shown in Figure 4.5. This method was evaluated

with the following hyperparameters:

criterion:gini, max-depth:14, max-features:auto, n-estimators:20
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Figure 4.5: Random forest classifier evaluated with ROC and PR curves
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(b) Figure 4.6 shows the XGBoost classifier. This method was evaluated with

the following hyperparameters:

gamma:0.01, learning-rate:0.1, max-depth:6, n-estimators:500

Figure 4.6: XGBoost classifier evaluated with ROC and PR curves
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(c) Figure 4.7 depicts decision tree classifier. This method was evaluated with

the following hyperparameters:

criterion: entropy, max-depth:14

Figure 4.7: Decision tree classifier evaluated with ROC and PR curves
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Figure 4.8: F1 and accuracy scores for 3 classifiers

XGBoost has the highest F1 scores and accuracy among the three methods.

Although its performance is comparable to that of Random Forest. Based

on Figs. 4.5 and 4.6, XGBoost seems to have slightly less variation (i.e.,

the CV-fold lines clustered more together) in cross-validation than Random

Forest. Thus, our final model (called ProNA) was built using:

i. XGBoost classifier

ii. ANOVA100 feature set
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4.4 Comparative Assessment

For comparing ProNA with other programs, four data sets frequently used

by the approaches described in Section 2.1 were selected:

i. RPI369

ii. RPI488

iii. RPI1807

iv. NPInter v2.0

We used ProNA to estimate the probability of interaction for every sRNA-

protein pair on these data sets and evaluated its predictive performance.

We compared ProNA’s performance with the performance of other programs.

Tables 4.7, 4.8, 4.9, and 4.10 compare the performance of our model

(ProNA) with other programs on RPI369, RPI488, RPI1807, and NPInter

v2.0 data sets, respectively. Note that as some of the programs are no

longer available or we were unable to run some of the programs, the

performance metrics reported in these tables are as reported by the corresponding

manuscript. However, we observed that performance metrics provided for

a given program in another program’s manuscript might differ from the

performance reported in the original publication. This might be due to

variations in the data sets used. For example, there are several versions of

the NPInter data set. It is important to mention that different evaluation
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metrics were used for each data set. In other words, we used only common

evaluation metrics between all the programs.

Programs Accuracy Recall

RPI-Pred 0.92 0.89

RPI-SE 0.88 0.83

RPiRLS 0.85 0.86

ProNA 0.84 0.93

RPiRLS-7G 0.79 0.87

DM-RPIs 0.79 0.83

RPISeq-RF 0.76 0.78

De novo-ENB 0.75 0.34

De novo-NB 0.74 0.36

RPITER 0.72 0.79

RPISeq-SVM 0.72 0.73

SAWRPI 0.71 0.75

Table 4.7: Results of various programs for RNA-protein prediction on
RPI369 data set

Accuracy and Recall were two evaluation metrics in all the programs, Thus

we used these two metrics and compare our program with other programs

based on these two metrics.

78



Programs Accuracy Precision Recall MCC

ProNA 0.90 0.97 0.93 0.89

RPI-SAN 0.89 0.95 0.94 0.79

RPITER 0.89 0.94 0.83 0.79

RPI-SE 0.89 0.95 0.94 0.79

SAWRPI 0.89 0.93 0.84 0.79

EDLMFC 0.86 0.96 0.74 0.74

Table 4.8: Results of various programs for RNA-protein prediction on
RPI488 data set

Programs Accuracy Precision Recall MCC

RPI-SAN 0.96 0.91 0.93 0.92

RPITER 0.96 0.95 0.98 0.93

RPI-SE 0.96 0.95 0.96 0.93

SAWRPI 0.96 0.96 0.98 0.93

EDLMFC 0.93 0.94 0.96 0.83

ProNA 0.88 0.95 0.91 0.85

Table 4.9: Results of various programs for RNA-protein prediction on
RPI1807 data set
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Programs Accuracy Precision Recall MCC Specificity

RPITER 0.95 0.93 0.97 0.91 0.93

ProNA 0.92 0.96 0.97 0.97 0.82

EDLMFC 0.89 0.88 0.91 0.79 0.87

De novo-ENB 0.77 0.76 0.47 0.46 0.92

De novo-NB 0.74 0.73 0.35 0.37 0.93

Table 4.10: Results of various programs for RNA-protein prediction on
NPInter v2.0 data set

For the NPInter v2.0 and RPI369 data sets, ProNA’s performance is

comparable to that of the other approaches. ProNA outperforms other

approaches for data set RPI488 which contains lncRNA-protein interactions.

ProNA’s performance is the poorest for the RPI1807 data set which contains

ncRNA-protein pairs. The results of ProNA are quite good considering

that ProNA was trained on a completely different data set and some of

the other programs were trained on these data sets and their reported

performance is from a CV process. Additionally, RPITER, EDLMFC, and

RPI-Pred use structures and sequences as input data, while ProNA only

uses sequence-based features.
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4.5 ROC and PR Curves

Figures 4.9, 4.10, 4.11, and 4.12 illustrate ProNA ROC and PR curves in

RPI369, RPI488, RPI1807, and NPInter v2.0 data sets, respectively.

Figure 4.9: ProNA result in RPI369 data set

81



Figure 4.10: ProNA result in RPI488 data set

Figure 4.11: ProNA result in RPI1807 data set
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Figure 4.12: ProNA result in NPInter v2.0 data set

4.6 Assessment on an independent bacterial

data set

Recently a small number of sRNA-protein interactions in the bacterium

Pasteurella multocida have been experimentally determined by Gulliver et

al. [77] and Marianne Megroz [78]. In total both studies identified two

sRNAs interacting with the protein Hfq and six sRNAs interacting with

ProQ. None of these sRNA-protein interactions were in any of the data

sets previously mentioned.

We created a FASTA file with the sequences of 32 sRNAs and another

with two protein sequences of Pasteurella multocida and calculated their
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probability of interaction using ProNA and RPISeq RF (available as a web

application). Considering as predicted interactions all sRNA-protein pairs

with a probability of interaction greater than 0.5, ProNA identified 2 out

of 8 experimentally determined pairs and in total predicted 27 interacting

pairs; while RPISeq RF identified 4 out of 8 experimentally determined

pairs and in total predicted 49 interacting pairs. If we assume all other

sRNA-protein pairs are not interacting then ProNA has a precision of

7.4%, while RPISeq RF has a precision of 8.2%. Thus, although ProNA

has a comparable performance with that of RPISeq RF, its performance

does not support our initial hypothesis that a classifier trained on bacterial

sRNA and protein sequences would outperform other classifiers trained on

a general RPI data set. Additionally, our results show that more work

is needed to improve the predictive performance of current programs for

predicting bacterial sRNA-protein interactions.
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Chapter 5

Conclusion

In this thesis, I build a machine-learning method for sRNA-protein interaction

predictions in bacteria using only sequence-based features. Our model,

ProNA, takes two input FASTA files, one with the protein sequences

and one with the sRNA sequences, and returns the probabilities of non-

interaction and interaction between all possible sRNA-protein pairs.

After searching for different feature extraction and selection methods,

we used the iLearnPlus [46] method for extracting features and further

selecting useful and important features with ANOVA[48] method. With

ANOVA, we were able to select 10 different feature sets from protein

sequences and 9 different feature sets from sRNA sequences.

With the features taken from the feature selection step, we evaluated three

machine-learning methods to select the one with the highest 10-fold CV
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predict performance in terms of accuracy. XGBoost was the most accurate

classifier, with a 10-fold CV accuracy of 0.948 ±0.02 on our bacterial

sRNA-protein interaction data, and an average accuracy of 0.885 ±0.03

on four commonly used RPI data sets. This is comparable with other

programs for RPI prediction. For example, RPITER, a program that uses

sequences and structures as input data, reported an average accuracy of

0.88 ±0.11 on the same four data sets.

5.1 Future Work

There are several avenues for future work that could build upon the current

research and address some of its limitations, like considering other species

other than only bacteria. One direction is to explore other feature selection

methods, another is to generate the negative instances with actual sRNA

sequences instead of randomly selected genomic sequences, and another is

to explore other machine learning approaches.
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5.2 Project Code

ProNA code is an open-source model for predicting protein-sRNA interactions

in bacteria, and its code is freely accessible at its GitHub repository, which

can be found at https://github.com/BioinformaticsLabAtMUN/ProNA.
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