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Abstract

A gravitational soliton is a geodesically complete, globally stationary (and horizon-

free) non-trivial solution of the Einstein equations, with prescribed asymptotic geom-

etry. It is a classic theorem of Lichnerowicz [1] that in the standard four-dimensional

Einstein-Maxwell theory, asymptotically flat solitons do not exist, and that the only

non-trivial electrovacuum solutions must contain black holes. However, in dimensions

greater than four, many explicit asymptotically flat examples are now known. This

thesis is concerned with gravitational solitons that are asymptotic to (locally) anti-de

Sitter (AdS) spacetime. AdS is the maximally symmetric solution of the Einstein

equations with negative cosmological constant. Asymptotically AdS geometries have

attracted a great deal of interest in theoretical physics over the past two decades.

In Chapter 2, we construct supersymmetric, asymptotically AdS5 gravitational soli-

ton solutions of five-dimensional gauged supergravity. We show that the solitons

contain evanescent ergosurfaces and give an argument that these solitons should be

nonlinearly unstable. In Chapter 3, we revisit a well-known example of a gravita-

tional soliton in AdS, the Eguchi-Hanson-AdS5 solution, and investigate a number of

its geometric and thermodynamic properties. In particular we show that the linear

scalar (Klein-Gordon) wave equation admits normal mode solutions, just like pure

AdS. In Chapter 4, we then construct supersymmetric gravitational soliton solutions

that are are complete, globally stationary, 1/4-BPS and are asymptotically locally

AdS5. Finally, in Chapter 5, we discuss some future directions and ongoing research.
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Lay summary

Black holes are one of the most fascinating and interesting objects in the theory of

General Relativity. They can be described as a region where the gravity is so strong

that not even light can escape them. This “no-escape” boundary, called the event

horizon, divides spacetime into two regions, and it plays a significant role in deter-

mining the properties of black holes. Considering the importance of the existence of

an event horizon, the natural question to ask would be, “What happens if we had

objects that behave like black holes but do not have an event horizon?”

Many physical systems that are governed by nonlinear equations admit soliton so-

lutions. These are localized ‘packets’ of energy that are smooth and maintain their

shape as they move. By analogy, a gravitational soliton is a non-trivial solution of

Einstein field equations that is asymptotically flat, globally stationary, and geodesi-

cally complete. Unlike black holes, gravitational solitons do not have event horizons.

More interestingly, those asymptotically flat and electrovacuum solutions do not ex-

ist in four-dimensional spacetimes. But, they do, indeed, exist in greater than four

dimensions.

In this thesis, we have looked at certain types of gravitational solitons in asymptot-

ically negatively-curved spacetimes, i.e., anti de-Sitter spacetimes. We construct the

solutions, analyze their geometric structure, calculate their physical properties and

investigate their stability by solving the wave equation on fixed soliton backgrounds.
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Chapter 1

Introduction

The theory of general relativity (GR) is our mathematical framework for describing

gravitational fields. It has passed all the experimental tests to this date. One of

its most striking predictions, the existence of gravitational waves, was confirmed by

the Laser Interferometer Gravitational-Wave Observatory (LIGO). On 14 September

2015, two detectors of LIGO simultaneously observed gravitational waves and a binary

black hole merger [4]. Later in 2017, they also announced that they had observed a

binary neutron star merger by the Advanced LIGO and Advanced Virgo detectors

through gravitational waves [5]. With these new developments and observations, the

theory of general relativity has become more relevant when trying to determine the

evolution of the Universe and in the physics of massive objects, such as black holes.

As general relativity is a geometric theory of gravitation, the structure of curved

spacetimes is explained with a mathematical object, called the metric tensor. A metric

tensor is a covariant, second-degree, symmetric tensor on a differentiable manifold,

often denoted by gµν . It encodes both geometrical information about the coordinate

system and physical information about the gravitational field. It is used to compute

distances and angles, and hence the curvature. The invariant spacetime interval, for

instance, is given by

ds2 = gµνdx
µdxν . (1.1)
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In general relativity, the Einstein field equations relate the curvature of the spacetime

to the distribution of matter within the spacetime as follows

Gµν =
8πG

c4
Tµν , (1.2)

where Gµν is the Einstein curvature tensor and Tµν is the total energy-momentum

tensor. The Einstein curvature tensor is defined as

Gµν ≡ Rµν −
1

2
Rgµν , (1.3)

where Rµν is the Ricci tensor and R is the scalar curvature. Considering the sym-

metries of the Einstein curvature tensor and the total energy-momentum tensor, the

Einstein field equations is a set of second-order, partial differential equations of the

metric tensor gµν . These equations are not only coupled, but also non-linear in the

metric tensor and its first derivatives. However, they are linear in the second deriva-

tives of the metric tensor. In general relativity, the motion of masses is necessarily

dictated by the Einstein field equations.

The simplest solution of the Einstein field equations occurs when there are no sources

of energy present. This spacetime which is called the Minkowski spacetime explains

the kinematical rules of special relativity. It is described by the flat metric, given by

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.4)

In general relativity, studying isolated systems is very common. Even though it is

not always possible to physically isolate a system, it is reasonable to assume that a

distant object would not affect the local structure of the spacetime. In other words,

at large distances, an isolated gravitational system is described by asymptotically

flat geometries where the curvature vanishes at large distances. This means that the

spacetime curvature decays to zero when it is far from the matter source. For those

asymptotically flat spacetimes, one can define physical invariants such as mass, angu-

lar momenta and charge.

The simplest curved spacetimes of general relativity are the ones with the most sym-

metry, e.g., an empty space outside a spherically symmetric source. This geometry is

called the Schwarzschild solution. The spherically symmetric solution to the Einstein
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field equations in vacuum is given by the Schwarzschild metric, which is

ds2 = −c2

(
1− RS

r

)
dt2 +

(
1− RS

r

)−1

dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (1.5)

where RS is Schwarzschild radius defined as

RS ≡
2GM

c2
, (1.6)

and the time coordinate t ∈ R, the radial coordinate r > RS, and θ and φ are the

standard coordinates on 2-sphere.

The Schwarzschild solution also tells us the strong field behavior of general relativity,

i.e., the prescription for the spacetime after the gravitation collapse of a spherical

body. The vacuum Schwarzschild solution that describes the aftermath of a gravita-

tional collapse contains a spacetime singularity hidden within a black hole.

Ignoring the constants (G = c = 1), the boundary of this black hole, event horizon,

is located at r = 2M . For external observers, there are only two relevant regions: on

and outside the event horizon. Events that are happening inside the event horizon

cannot affect the outside. It is important to point out that the singularity in the

Schwarzschild metric at r = 2M is not a singularity in the geometry of the space-

time, but a singularity in the Schwarzschild coordinates. By using the Eddington-

Finkelstein coordinates, for instance, one can rewrite the same metric in a form that

is manifestly smooth across the surface r = 2M .

The presence of an event horizon is one of the defining properties of a black hole

and the event horizon plays a significant role in determining those properties. The

No-Hair Theorem explains the characterization of black holes as follows:

Theorem 1 (A black hole has no hair) The external gravitational and electromag-

netic fields of a stationary black hole are determined uniquely by the black hole’s mass

M, charge Q, and intrinsic angular momentum J - i.e., a black hole can have no

“hair” (no other independent characteristics) [6].

The theorem shows that the three-parameter family of stationary Kerr-Newmann

black hole solutions are the unique, stationary asymptotically flat black hole solutions
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of the Einstein-Maxwell theory.

The concept of energy and the conservation laws play a crucial role in physics. In

general relativity, the energy properties of matter are represented by the energy-

momentum tensor, Tµν , also known as the stress-energy tensor. Therefore, the local

energy density of matter measured by an observer is well-defined. One of the prop-

erties of the stress-energy tensor, ∇µTµν = 0, might also be interpreted as local

conservation of energy. However, considering the absence of the notion of the energy

density of the gravitational field, this property of the stress-energy tensor does not

address a global energy conservation law. Yet, there exists, indeed, a notion of total

energy for an isolated system.

In general, it is expected to relate the total energy of a physical system to its Hamil-

tonian. With that regard, a notion of total energy and momentum at spatial infinity

on a hypersurface Σ was given in the Hamiltonian formalism by ADM mass. The

gravitational mass of an asymptotically flat spacetime is

MADM = − 1

8π
lim
St→∞

∮
St

(k − k0)
√
σd2θ. (1.7)

In this notation, St is a two-sphere at spatial infinity with a specific choice of shift

and lapse, σAB is the metric on it, k is the extrinsic curvature of St embedded in Σ,

and k0 is the extrinsic curvature of St embedded in the flat space. Since the ADM

mass is independent of choice of spatial slice, in this thesis, we will refer to it as the

total mass of the spacetime even though it is, in fact, the mass of the hypersurface.

Additionally, the mass is well-defined for any asymptotically flat spatial hypersurface

in the spacetime satisfying appropriate fall-off conditions at spatial infinity.

An alternative definition for the mass for stationary spacetimes was given by Komar

[7] in 1959 and hence, known as Komar mass, is

MKomar = − 1

8π
lim
St→∞

∮
St

∇αξβ(t)dSαβ, (1.8)

where ξα(t) is the timelike Killing vector field. The surface element is defined as

dSαβ = −2n[αrβ]

√
σd2θ, (1.9)
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where nα is the timelike and rα the spacelike normal of St. For stationary spacetimes,

the Komar formalism and the Hamiltonian formalism give equivalent results, and we

will simply denote this mass by M .

Similarly, one can also define the angular momentum for axially symmetric spacetimes

in this formalism as

J =
1

16π
lim
St→∞

∮
St

∇αξβ(φ)dSαβ, (1.10)

where ξα(φ) is the rotational Killing vector field. Since both M and J are defined by

using integrals over a closed two-surface at infinity, they can be thought of as the

properties of the asymptotic structure.

Theorem 2 (Positive Mass Theorem) Assuming the dominant energy condition,

the mass of an asymptotically flat spacetime is non-negative. It is zero if and only if

the space is flat [8, 9, 10].

The second law of thermodynamics states that the total entropy of all matter in the

Universe cannot decrease in any physically allowed process. A similar statement was

given for black holes by Hawking in 1971 [11]. The black hole area theorem tells us

that the total area of the black hole in the Universe cannot decrease in any physically

allowed process. This analogue for black holes of the second law of thermodynamics

extends to the other laws of thermodynamics, as well.

The event horizon of a stationary black hole is a Killing horizon, which means it is a

null hypersurface N whose normal is a Killing vector field. In other words, there is

a Killing vector field ξa which becomes null on the event horizon, and the associated

one-form ξa = gabξ
b is normal (and tangent) to N . Let us start with the definition of

the surface gravity of a stationary black hole

κ2 = −1

2
ξα;βξα;β

∣∣∣∣∣
N

. (1.11)

It can be proved that κ is in fact a constant over the event horizon of a stationary black

hole, just like the temperature being constant throughout body in thermal equilibrium.

In fact, the concept of temperature for black holes, introduced by Hawking in his
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famous discovery that black holes radiate, is well-defined as follows

T =
~
2π
κ. (1.12)

Therefore, surface gravity κ plays the role of temperature in the black hole physics.

Classically speaking, the surface gravity can also be considered the force needed to

hold the test particle at rest near the horizon. The surface gravity for the Schwarzschild

solution, for instance, is κ = 1
4M

.

A classic result is the first law of black hole mechanics which states that under small

variations in the parameters of a stationary black hole,

δM =
κ

8π
δA + ΩHδJ + ΦHδQ (1.13)

which relates the changes in mass with the changes in surface area and angular mo-

mentum. Here, ΩH is the angular velocity of the black hole and it measures the rate

at which the black hole rotates with respect to a static observer at infinity. Also, ΦH

is the (constant) electric potential on the horizon.

Given the importance of electrovacuum solutions of the Einstein-Maxwell field equa-

tions, are there solutions with positive mass, but without an event horizon? We

emphasize that there are certainly isolated gravitating systems, such as stars, that

have positive mass, but these are not vacuum. A gravitational soliton is a non-trivial

solution of Einstein field equations that is asymptotically flat, globally stationary,

and geodesically complete. For gravitational solitons, the positive mass theorem also

applies. One feature that separates gravitational solitons from black holes is that they

do not have event horizons. A classic result in four-dimensional general relativity by

Lichnerowicz tells us that asymptotically flat and electrovacuum gravitational soli-

tons cannot exist [1]. This result can also be shown using the positive mass theorem,

Stokes’ theorem, and stationary Killing vector field identities, as follows:

Let us consider a simple example of supergravity theory, stationary Einstein-Maxwell

system for an asymptotically flat, n-dimensional, globally hyperbolic spacetime with

a timelike everywhere Killing vector field K. The field equations are then

Rab = 2

(
FacF

c
b −

1

2(n− 2)
gabF

2

)
, (1.14)
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dF = 0 and d ? F = 0 (1.15)

where F is the Maxwell field strength two-form. The interior product dF = 0 tells

us that there exists a globally defined electric potential ψ which comes from the

topological assumption that the spacetime is simply connected [12], and dψ is a one-

form which is exact. On the other hand, the exterior product d ? F = 0 tells us that

there exists a closed (n-3)-form, iK ? F , which is only exact if, in four dimensions,

iK ? F = dµ is exact.

In four dimensions, by applying the Stokes’ theorem to the Komar mass formalism

M = − 1

8π

∫
S2
∞

?dK = − 1

8π

∫
Σ

d ? dK. (1.16)

Using the fact that K is a Killing vector field

M =
1

4π

∫
Σ

?Ric(K). (1.17)

By using the field equations

M =
1

4π

∫
Σ

d(µF ). (1.18)

We have already established that dψ is exact, and in four dimensions, dµ is also exact.

In the absence of an inner boundary, the mass is zero. By the positive mass theorem,

the only allowed spacetime in this case is the Minkowski spacetime. In other words,

an isolated self-gravitating system in equilibrium with positive energy must contain a

black hole [13]. Gibbons summarized this with the slogan

“No solitons without horizons.”

This result extends to higher dimensions for pure vacuum [14], static solitons were

ruled out in Einstein-Maxwell theory [15], and no known stationary examples are

known (see, e.g., the review [16]). However, gravitational solitons in higher than four

dimensions naturally arise in supergravity theories. Explicit examples of asymptoti-

cally flat soliton spacetimes with bubbles have been shown in [17, 18, 19]. In addition to

those supersymmetric solitons (i.e. they admit Killing spinors), non-supersymmetric
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solutions in five dimensional spacetimes were also constructed [20, 21, 22]. Due to the

fuzzball conjecture [23], those gravitational solitons have drawn attention. Similar to

the black hole case, soliton first law and Smarr relation was rigorously demonstrated in

the asymptotically flat case in [24] extended to a particular example of an asymptot-

ically globally Anti-de Sitter soliton case in [25]. Typically, gravitational solitons are

characterized by some non-trivial topology in the spacetime, such as non-collapsing

spheres or bubbles. A bubble, in the context of solutions to the Einstein equations,

refers to a ‘hole’ in a spatial hypersurface in spacetime. Mathematically speaking,

it is a non-contractible cycle, that is a closed n−dimensional submanifold, located

at some region of space. For the solutions considered in this thesis, these bubbles

are two-dimensional spheres (S2) that cannot be shrunk to a point. The geometries

smoothly ‘pinch off’ near a bubble, so the four-dimensional spatial surface near the

bubble looks like R2×S2 where the R2 factor has polar coordinates (r, ψ). The bubble

is located at r = 0 where the polar angle ∂ψ degenerates. For this degeneration to be

smooth (no conical singularities), we must impose constraints on the parameters of

the solution.

In [24], the first law of black hole mechanics and Smarr relation in a general five

dimensional theory of Einstein gravity coupled to an arbitrary number of Maxwell

fields F I and neutral scalars χA are derived. The result applies to asymptotically flat

spacetimes that could contain both black holes and solitons (i.e. an arbitrary number

of bubbles as described above). They found that even in the absence of black holes,

the mass of a soliton in an asymptotically flat, stationary spacetime is

M =
1

2

∑
[C]

Ψ[C]qI [C] + Eχ, (1.19)

and the mass difference between nearby solitons in phase space satisfies

δM =
∑
[C]

Ψ[C]δqI [C]. (1.20)

Here, the sum over [C] denotes a sum over the bubbles, or 2-cycles, q[C] is a magnetic

flux associated to each bubble, Eχ is a contribution coming from background scalar

fields, and Ψ[C] is a certain potential associated to each bubble. Thus solitons also

satisfy a ‘law of soliton mechanics’ analogous to the well-known black hole first law
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discussed above.

Anti-de Sitter spacetime (AdS) is a maximally symmetric solution to Einstein field

equations with negative scalar curvature. Geometries arising in general relativity that

are asymptotically Anti-de Sitter have been of huge interest for the last two decades

because of the famous conjectured relationship between Anti-de Sitter spacetimes and

conformal field theories, called the gauge theory/gravity duality [26]. This conjectured

relation asserts that quantum gravity in asymptotically Anti-de Sitter backgrounds is

equivalent to a certain type of quantum field theory defined on the boundary of this

Anti-de Sitter spacetime. In principle, this provides a formulation of quantum gravity

in this setting in terms of a well-defined quantum field theory with many qualitative

similarities to the theories describing particle physics. This gives a new approach

to describing phenomena in particle physics that cannot be studied using standard

techniques.

The metric for n-dimensional AdS spacetime is given by

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ2
n−2, (1.21)

where ` is the AdS length parameter and dΩ2
n−2 is the round metric on Sn−2. The

Ricci curvature is

Rµν = −(n− 1)

`2
gµν . (1.22)

By using the coordinate transformation

t = `τ and r = ` sinh(ρ), (1.23)

one can draw the Penrose diagram.

One of the interesting features of AdS spacetimes is that although AdS is maximally

symmetric and geodesically complete, it is not a globally hyperbolic spacetime. As it

can be seen from the Penrose diagram, AdS has closed timelike curves and ρ = π
2
, the

spatial infinity is timelike. Hence, there is an information leak to and from infinity,

which can be sealed by using reflective boundary conditions.

Finding solutions to (1.22) is significantly more challenging than finding electrovacuum
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Figure 1.1: Penrose diagram for AdS spacetime
In this diagram, the coordinates θ1 and ψ are suppressed, I represents the conformal
infinity, and the red curve represents a timelike geodesic. Considering the future and
past domain of dependence of a hypersurface and predictability of the set of initial
data that hypersurface forms, shaded triangles denote the regions where no prediction
can happen.

solutions (mathematically, this is analogous to finding Einstein metrics with non-

zero curvature). A natural question is whether black hole solutions exist that are

asymptotically AdS. The best known example of this kind is the static and spherically

symmetric Schwarzschild-AdS solution

ds2 = −
(

1− 2M

rn−3
+
r2

`2

)
dt2 +

(
1− 2M

rn−3
+
r2

`2

)−1

dr2 + r2dΩ2
n−2, (1.24)

which reduces to the Schwarzschild solution in the limit of vanishing cosmological

constant `→∞. While there is a generalization of these solutions to include angular

momenta (the Kerr-AdS black holes), there is no analogue of the no-hair theorems

for AdS black holes. This is ultimately tied to the complexity of (1.22).

For asymptotically anti-de Sitter spacetimes, a formalism for calculations of conserved

quantities, such as mass and angular momenta, was developed by Ashtekar, Magnon,

and Das [27]. In this formalism, given any infinitesimal asymptotic symmetry and
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d− 2 sphere cross section C at infinity, a conserved quantity is defined by

Qξ[C] ≡ − 1

8πG

`

n− 3

∮
C

EabξadSb, (1.25)

where Eab is the electric part of the (leading order) Weyl tensor and ξa is the conformal

Killing vector field. Effectively, the definition measures the rate of decay of the Weyl

tensor as we approach infinity (since AdS is conformally flat and has vanishing Weyl

tensor). Applying this to the static Killing field ∂t for the Schwarzschild-AdS metric,

one finds that its mass is proportional to the parameter M . Note that the standard

Komar mass will diverge for asymptotically AdS spacetimes. The problem of defining

well-behaved conserved charges in asymptotically AdS spacetimes remains an active

area of research.

Naturally, one might ask whether asymptotically AdS gravitational solitons exist. It

has proved harder to find explicit analytic examples in any dimension. A general class

of asymptotically globally AdS5 gravitational solitons was considered in [25]. They

are solutions of minimal five-dimensional gauged supergravity, which is essentially

Einstein-Maxwell theory with a negative cosmological constant (the precise action

will be given later in this thesis). The metric is given by

ds2 = −r
2W (r)

4b(r)2
dt2 +

dr2

W (r)
+
r2

4

(
σ2

1 + σ2
2

)
+ b(r)2 (σ3 + f(r)dt)2 , (1.26)

with the metric functions

b(r)2 =
r2

4

(
1− j2q2

r6
+

2j2p

r4

)
,

W (r) = 1 +
4b(r)2

`2
− 2

r2
(p− q) +

q2 + 2pj2

r4
,

f(r) = − j

2b(r)2

(
2p− q
r2

− q2

r4

)
,

(1.27)

where p, q, j ∈ R. Left-invariant one-forms σi on SU(2) are

σ1 = − sinψdθ + cosψ sin θdφ,

σ2 = cosψdθ + sinψ sin θdφ,

σ3 = dψ + cos θdφ,

(1.28)
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satisfying

dσi =
1

2
εijkσj ∧ σk, (1.29)

with the identifications

ψ ∼ ψ +
4π

k
,

ψ ∼ ψ + 2π, φ ∼ φ+ 2π,

θ ∈ (0, π).

(1.30)

Since the metric is written in terms of these SU(2)−invariant forms, it automatically

inherits this as its isometry group. In addition it has a U(1) isometry generated by

∂ψ. Therefore, the full set of symmetries is R × SU(2) × U(1) where the first factor

corresponds to time translations. The bubble r0 is located where the metric functions

b(r)2 and W (r) have simultaneous zeros. From the metric we see that this means ∂t

is timelike at r = r0 but the spacelike Killing field ∂ψ degenerates there, much like the

axial vector y∂x − x∂y degenerates at the origin in R2. The (θ, φ) coordinates then

define a S2 (the “bubble”) of radius r0/2. This puts restrictions on the parameters as

follows:

1− j2q2

r6
0

+
2j2p

r4
0

= 0,

1− 2

r2
0

(p− q) +
q2 + 2pj2

r4
0

= 0,

(1.31)

which means

p =
r4

0(r2
0 − j2)

2j4
and q = −r

4
0

j2
. (1.32)

Note that the coordinate singularity for r = r0 can easily be avoided by using a

coordinate transformation. In the original work, only the k = 1 case was considered.

Then the geometry is asymptotically globally AdS5 (that is, the conformal boundary

as r →∞ is R× S3). The resulting geometry has the following conserved quantities

Mass M =
π

4

(
3 (p− q) +

j2p

`2

)
,

Electric charge Q = −
√

3

2
π
r4

0

j2
,

Angular momentum J =
πj

4
(2p− q) ,

(1.33)
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and the following first law holds

dM = V dP +
∑
[I]

Ψ[I]dq[I], (1.34)

where P, V are a ‘thermodynamic pressure’ and ‘volume’ associated to asymptotically

AdS spacetimes. The progress that has been completed so far to generalize this work

for the general k ∈ N values is presented in Chapter 5.

This thesis is organized as follows:

� In Chapter 2, we construct new supersymmetric, asymptotically globally AdS5

gravitational soliton solutions of five-dimensional gauged supergravity and show

that they contain evanescent ergosurfaces. We argue that this indicates they

nonlinearly unstable. This chapter is based on the article “Supersymmetric

multicharge solitons in AdS5” by Turkuler Durgut and Hari K. Kunduri pub-

lished on Physical Review D 105, 064068 (2022).

� In Chapter 3, we analyze the family of Eguchi-Hanson-AdS5 gravitational soli-

tons. These are static soliton solutions of the vacuum Einstein equations with

negative cosmological constant. They are characterized by a positive integer

p ≥ 3 and they are not asymptotically globally AdS5, but rather asymptotic

to AdS5/Zp. We study mode solutions of the linear scalar wave equation and

show it has a normal mode spectrum. We also study various geometric and

thermodynamic properties of these solutions which had not been investigated

before. This chapter is based on the article “Phase Transitions and Stability

of Eguchi-Hanson-AdS Solitons” by Turkuler Durgut, Robie A. Hennigar, Hari

K. Kunduri and Robert B. Mann (Journal of High Energy Physics 114 (2023)).

� In Chapter 4, we construct new supersymmetric gravitational soliton solutions

of five-dimensional gauged supergravity coupled to arbitrarily many vector mul-

tiplets which are asymptotic to AdS5/Zp. These can be thought of supersym-

metric generalizations of the Eguchi-Hanson-AdS5 solution. This work is based

on an article “Supersymmetric asymptotically locally AdS5 gravitational soli-

tons” by Turkuler Durgut and Hari K. Kunduri, which is accepted to Annals of

Physics 457 (169435) in July 2023.



14

Finally, in the conclusion we summarize our main results and present some ongoing

work on extending the analysis of Chapter 3 to the more general, charged and rotating

solitons with local metrics given by (1.21). In particular we discuss progress on solving

the linear wave equation, the calculation of the Euclidean action, and new solutions

which are asymptotically AdS5/Zp for p > 1.

1.1 Supplementary Material

This thesis is written in the manuscript style, and the following chapters are taken

directly from the published version of the corresponding articles. They are therefore

written for a specialized audience and contain certain field-specific terms which are

assumed to be well-known. Here, we provide some background material for the reader

unfamiliar with these details.

A supergravity theory can be thought of as a theory of gravity that is also invariant

under local supersymmetry transformations. It necessarily contains both bosonic

fields B, such as the metric gab, which has spin 2, and Maxwell fields F I , which are

spin 1, and spinorial fields F , such as the gravitino, which has spin 3/2. In addition

to the usual diffeomorphism invariance, the action is invariant under supersymmetry

transformations in the form of

δB = εF, δψ = Dε (1.35)

where ε can be considered a spinor parametrizing the transformation, and D denotes

the covariant derivative acting on spinors. This is analogous to how a tensor field T

transforms under an infinitesimal transformation generated by a vector field X, i.e.,

T → T + εLXT . Since we are interested in classical solutions that are purely bosonic,

we consider solutions with F = 0. In this case, a supergravity theory typically re-

duces to general relativity plus additional matter fields. For example, the familiar

four-dimensional Einstein-Maxwell theory can be thought of as the bosonic part of a

supergravity theory.

A subset of bosonic solutions of a supergravity theory (i.e., solutions of the equations
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of motion with all fermions set to zero) will also ‘preserve’ some fraction of the super-

symmetry. These are called supersymmetric or BPS solutions. For these solutions, we

have δF = Dε = 0. Here, the spin connection D depends on the metric and possibly

other bosonic fields. Solutions ε to this equation are called Killing spinors. The idea

here is similar to how geometries admitting a continuous isometry admit a Killing

vector field K satisfying D(aKb) = 0. Hence, looking at supersymmetric solutions is

similar to, for instance, restricting attention to stationary solutions.

A supergravity theory generally admits more than one independent supersymmetry,

and is generally labeled by its total number of generators. For example, the five-

dimensional supergravity theories considered in this thesis are called ‘N = 1 super-

gravities’, which perhaps confusingly means they admit eight supercharges (a spinor

has eight independent components). A BPS solution will generally only preserve a

fraction of these supersymmetries or, equivalently, admit only a smaller number of

Killing spinors than the maximal number. In particular, for the theories considered

here, it can be proved that BPS solutions can preserve only 1/4 or 1/2 of the max-

imal number. It is customary to refer to these solutions as 1/4 BPS or 1/2 BPS,

respectively. Using the algebra satisfied by the supersymmetry generators, one can

show that for BPS solutions, the energy M , charge Q, and angular momentum J will

be related; such an equation is called a BPS relation. For the gauged supergravity

theories considered here, the unique solution which preserves the full set of super-

symmetries (admitting the maximal number of independent Killing spinors) is global

AdS5; physically, it is interpreted as the ground state, or vacuum, solution. However,

this doesn’t guarantee that it is dynamically stable.

If a solution admits a Killing spinor, then the integrability conditions obtained from

the first-order equation Dε = 0, which put a number of differential and algebraic

constraints on the bosonic fields. In particular, the field equations (which are second-

order) can be shown to hold as a consequence. Therefore, finding BPS solutions is

more tractable. A great deal of work has been done to find the necessary and sufficient

conditions for the existence of a BPS solution; these conditions are easier to solve than

trying to directly solve the field equations and then impose supersymmetry. We will

use this technology in the thesis with appropriate references to their derivation.

Given a Killing spinor ε, one can construct an associated vector field V a = ε̄γaε (here
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γa is a ‘gamma matrix’ which acts on spinors, and ε̄ denotes the conjugate of ε). This

vector field V is necessarily a Killing vector field and must be either timelike or null,

so we can write gabV
aV b = −f 2 ≤ 0 for some smooth function f . For the solution in

this thesis, we consider the case where V is timelike almost everywhere, particularly

at infinity, and so we refer to this preferred vector field as the supersymmetric timelike

Killing field. Note that there are other timelike Killing fields one could construct by

taking linear combinations of other Killing fields; it will turn out that ergorsurfaces,

where an asymptotically timelike Killing vector field becomes null, may exist with

respect to one choice but not the other.

Finally, we make some comments on the particular supergravity theories considered

in this thesis. We construct BPS solutions of five-dimensional gauged supergravity

coupled to n− 1 vector multiplets. The bosonic content of this theory consists of the

metric, n Maxwell fields F I , and n− 1 scalar fields ΦI . It is more convenient to work

with n scalar fields XI subject to a constraint, namely CIJKX
IXJXK = 6. Here the

CIJK are a set of constants which characterize the theory; for the particular choice

CIJK = |εIJK | with I = 1, 2, 3 the corresponding supergravity theory is the so-called

‘U(1)3 gauged N = 1 supergravity ’ that is much studied in the theoretical physics

community as it arises as a dimensional reduction on S5 of the low-energy limit of

ten-dimensional Type IIB string theory. This is relevant for studies of AdS-CFT

correspondence, although our motivation is purely from the gravitational perspective.



Chapter 2

Supersymmetric Multicharge

Solitons in AdS5

This chapter is based on “Supersymmetric multicharge solitons in AdS5” by Turkuler

Durgut and Hari K. Kunduri published in Phys. Rev. D 105, 064068 (2022).

2.1 Abstract

We construct supersymmetric, asymptotically AdS5 gravitational soliton solutions of

five-dimensional gauged supergravity coupled to arbitrarily many vector multiplets.

These generalize the supersymmetric solitons of U(1)3 gauged supergravity previously

constructed by Chong, Cvetic, Lu, and Pope. We show that the solitons contain

evanescent ergosurfaces and give an argument that these solitons should be nonlinearly

unstable.

2.2 Introduction

A gravitational soliton is a geodesically complete, globally stationary (and horizon-

free) non-trivial solution of the Einstein equations, with prescribed asymptotic geom-

etry. It is a classic theorem of Lichnerowicz [1] that asymptotically flat, electrovacuum

gravitational solitons cannot exist. The proof is considerably simpler if one employs
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the spacetime positive mass theorem [13]. In the pure vacuum case, the result ex-

tends to higher dimensions [14], and in Einstein-Maxwell theory, static solitons can

be ruled out [15] and no stationary examples are known (see, e.g. the review [16]).

On the other hand, within supergravity theories which have Maxwell fields (or higher

p−form field strengths), there are many known families of asymptotically flat solitons

carrying mass, angular momenta, and electric charge ‘magnetic fluxes’ which support

non-trivial cycles in the spacetime. These charges satisfy variational laws analogous

to the first law of black hole mechanics [24].

The majority of these known solutions are asymptotically flat and supersymmetric

(i.e., they are supergravity solutions admitting one or more Killing spinors [28]).

However, this is likely a result of the fact that the integrability conditions imposed

by supersymmetry allow for the construction of explicit solutions (see [29] for classi-

fication of supersymmetric black holes and solitons with U(1)2 isometry in minimal

ungauged supergravity). Fewer examples are known in the asymptotically globally

AdS setting with conformal boundary R × Sn. Non-supersymmetric examples were

constructed in [30] by taking limits of local solutions of gauged supergravity that were

first used to obtain charged, rotating asymptotically AdS5 black holes. As the soli-

tons do not have horizons, they cannot be interpreted as thermal states from the CFT

perspective. It is reasonable to interpret them as pure states with non-zero vacuum

expectation values for energy and R-charge.

Given the difficulty in constructing solutions of gauged supergravity, it is natural

to focus attention on supersymmetric soliton geometries. A general formalism for

constructing BPS solutions of minimal gauged supergravity was given in [31] with

the purpose of constructing the first examples of supersymmetric AdS5 black holes.

The analysis shows that BPS solutions can be categorized into either a timelike or

null class. Solutions in the timelike class can be constructed by first selecting a

four-dimensional Kähler base B; the remaining field equations are then reduced to

geometric equations on B. This work was extended [32] to the more general setting

of gauged supergravity coupled to vector multiplets, which contains the U(1)3 gauged

supergravity as a particular case. Solutions of the latter theory naturally lift to local

solutions of Type IIB supergravity compactified on S5 (or, more generally, a Sasaki-

Einstein five-manifold). This was subsequently used to construct a four-parameter

family of 1
4
−BPS AdS5 black hole solutions [33]. This led to a strict quantitative

test of AdS/CFT: could the semi-classical entropy of these black holes be obtained
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by counting the degeneracy of dual BPS CFT states? Remarkably, this computation

was recently achieved through different approaches [34, 35, 36] (see also the review

article [37]).

The above constructions focused mainly on black hole solutions, but the local metrics

of [38] produced as a byproduct the first examples of 1
2
− BPS asymptotically globally

AdS5 gravitational solitons. All the known BPS black holes and solitons have a base

space which is a particular member of a class of orthotoric Kähler spaces parameterized

by two arbitrary functions of a single variable. A systematic approach to classifying

BPS solutions in minimal supergravity with this general class of base spaces was

carried out in [39]. This analysis reproduced the known solutions as well as producing

new families; in particular, the BPS solitons of [38] were rederived and their regularity

investigated. The summary was that there is an asymptotically globally AdS5 soliton

with positive energy and non-zero angular momenta and electric charge and no free

continuous parameters. The spacetime metric possesses an R×SU(2)×U(1) isometry

group. Interestingly, the Killing spinors are invariant under a different SU(2) action,

and thus if one writes this solution into the canonical supersymmetric form, the base

space B does not inherit this symmetry and is merely toric. Note that recently, a

classification of BPS solutions of the minimal theory, which admit an SU(2) action

as isometries, was achieved [40]. In particular, this work established a uniqueness

theorem for SU(2)-invariant BPS AdS5 black holes of [31].

The purpose of the present work is to construct generalizations of these BPS solitons

to the case of gauged supergravity coupled to an arbitrary number of Abelian vector

multiplets (referred to as ‘U(1)N supergravity’). These new solutions reduce in the

case of equal electric charges to the solutions of the minimal theory found by [38].

In the special case of U(1)3 supergravity, our solutions reduce to the ones obtained

in [41] by taking a combined BPS and horizonless limit of a local family of SU(2)×
U(1)-invariant solutions. The main difficulty in this construction is that in addition

to multiple gauge fields, there are also scalar fields that must be determined. The

supergravity equations couple these fields together, which makes a systematic analysis

of all solutions with the given orthotoric base space along the lines of [39] difficult.

We hope to return to a general analysis in the future.

A global analysis of the local metrics reveals a family of everywhere regular solutions

parameterized by N positive moduli subject to one constraint. We also demonstrate
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that they must possess an evanescent ergosurface instability. This is an instability

of stationary solutions associated with the stable trapping of null geodesics near a

timelike hypersurface along which the asymptotically stationary Killing field becomes

null. A subtlety here is that in asymptotically AdS5 spacetimes, there is more than one

such choice of a stationary Killing field, and for a particular choice, this ergosurface

is revealed. A second observation is that the subfamily of solutions of U(1)3-gauged

supergravity can indeed be oxidized to globally smooth solutions of Type IIB super-

gravity on S5/Zp, p ≥ 3 provided the moduli parameterizing the solution is suitably

quantized (as previously noted in [41] the case of S5 leads to a global obstruction to

smoothness). The dual CFT duals defined on the R×S3 conformal boundary of these

geometries are quivered gauge theories.

Our work is organized as follows. In Section 2.3, we review the construction of su-

persymmetric solutions of U(1)N gauged supergravity and derive our local solutions.

We then perform a global analysis of these solutions and compute their conserved

charges. We also give a self-contained description of the three-charge BPS soliton

solutions of U(1)3−supergravity and describe their lifting to ten dimensions. Finally,

in Section 2.4, we discuss in some detail the existence of evanescent ergosurfaces and

the associated stable trapping on null geodesics. We argue that this provides strong

evidence that our solutions must suffer from (at least) a nonlinear instability whose

endpoint would be a spacetime containing one or more near-BPS AdS5 black holes.

2.3 Supersymmetric AdS5 solitons

2.3.1 Supersymmetric solutions to gauged supergravity

The bosonic sector of the theory consists of the metric, N gauge fields AI , and N − 1

real scalar fields, which are represented by N real scalar fields XI subject to the

constraint [32, 33]
1

6
CIJKX

IXJXK = 1. (2.1)

The CIJK are constants and as a tensor it is totally symmetric, i.e. CIJK = C(IJK)

with I = 1 . . . N . A particular combination that often comes up is

XI =
1

6
CIJKX

JXK . (2.2)
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The theory is governed by the action [33]

S =
1

16πG

∫ (
R ?5 1−QIJF

I ∧ ?5F
J −QIJdXI ∧ ?5dXJ

−1

6
CIJKF

I ∧ F J ∧ AK + 2g2V ?5 1

)
,

(2.3)

with F I := dAI where AI are local U(1) gauge fields. The matrix QIJ is given by

QIJ =
9

2
XIXJ −

1

2
CIJKX

K . (2.4)

The CIJK are assumed to satisfy the following symmetric space condition

CIJKCJ ′(LMCPQ)K′δJJ
′
δKK

′
=

4

3
δI(LCMPQ). (2.5)

This condition ensures that QIJ has an inverse

QIJ = 2XIXJ − 6CIJKXK , (2.6)

with the identification CIJK := CIJK . This also allows us to invert for XI in terms

of the XJ :

XI =
9

2
CIJKXJXK , (2.7)

which then implies

CIJKXIXJXK =
2

9
. (2.8)

Finally the potential

V̂ = 27CIJKX̄IX̄JXK , (2.9)

where the X̄I are a set of constants. As shown in [32], the vacuum AdS5 background

with radius ` = 1/g corresponds to AI ≡ 0 and constant scalars XI = X̄I , and

X̄I ≡ 9

2
CIJKX̄JX̄K . (2.10)

The special U(1)3 supergravity case corresponds to N = 3, CIJK = 1 if (IJK) is a

permutation of (123) and CIJK = 0 otherwise and X̄I = 1, or equivalently X̄I = 1/3.

The symmetric space condition (2.5) holds automatically.

Given a Killing spinor, one can show that there is a Killing vector field V , which is
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non-spacelike. So we assume we are in a region where V 2 = f 2 < 0 so that f > 0 for

some function f and the metric can be decomposed as

ds2 = −f 2(dt+ ω)2 + f−1habdx
adxb, (2.11)

where V = ∂/∂t. Supersymmetry implies that the 4d metric h is Kähler with Kähler

form J , and the orientation of the base space B chosen so that J is anti self dual

?J = −J . The 5-form (dt+ω)∧dvol(h) has a positive orientation in the full spacetime.

The Maxwell field has to take the form

F I = d
[
XIf(dt+ ω)

]
+ ΘI − 9gf−1CIJKX̄JXKJ, (2.12)

and ΘI are self-dual two-forms on B, and we must have

XIΘ
I = −2

3
G+, (2.13)

and G± is the (anti-)self dual two-form with ?G± = ±G±, defined as

G± =
1

2
f(dω ± ?dω). (2.14)

Above ? refers to the Hodge dual with respect to (B, h). This can be inverted so that

dω = f−1(G+ +G−). (2.15)

Since (B, h, J) is Kähler, we can define the Ricci two-form

Rab =
1

2
RabcdJ

cd. (2.16)

Supersymmetry implies that R = dP where P is the one-form

P = 3gX̄I

(
AI − fXIω

)
. (2.17)

This determines completely the function f as

f = −108g2

R
CIJKX̄IX̄JXK , (2.18)
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and the following condition holds

R− R

4
J = 3gX̄IΘ

I . (2.19)

All these conditions are necessary and turn out to be sufficient to guarantee the

existence of a supercovariantly constant spinor. All the field equations are satisfied

provided dF I = 0 (which is automatically true if we specify potentials), and the

Maxwell equations

d(QIJ ?5 F
J) = −1

4
CIJKF

J ∧ FK (2.20)

are satisfied. The Bianchi identity and the Maxwell equation respectively reduce to

the following equations on the base space

dΘI = 9gCIJKX̄Jd(f−1XK) ∧ J, (2.21)

and

d ?4 d(f−1XI) =− 1

6
CIJKΘI ∧ΘJ + 2gX̄If

−1G− ∧ J

+ 6g2f−2(QIJC
JMNX̄MX̄N + X̄IX

JX̄J)dvol(h).
(2.22)

For convenience, we also record here an alternate form of the symmetric space condi-

tion (2.5) as follows

CIJK(CJLMCKPQ + CJLPCKMQ + CJLQCKMP ) =δILCMPQ + δIMCPQL

+ δIPCQLM + δIQCLMP .
(2.23)

2.3.2 The local solution

We now present the local form of our solution (g, F I , AI). Our construction is based

on the analysis of the supersymmetric solitons of the minimal theory written in terms

of the above Kähler decomposition [39] (this corresponds to setting the XI constant

and setting all the F I equal) and a similar analysis of the 3-charge solutions discussed

in [41].

Our starting point is a selection of a Kähler base [39], which we take to be the following
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orthotoric Kähler base metric, which in terms of local coordinates (y, x,Φ,Ψ) is

h = g−2

[
y − x
F (x)

dx2 +
F (x)

y − x
(dΦ + ydΨ)2 +

y − x
G(y)

dy2 +
G(y)

y − x
(dΦ + xdΨ)2

]
(2.24)

for yet-to-be determined single-variable C2-functions F = F (x) and G = G(y).

The vector fields ∂Φ, ∂Ψ are Killing vector fields of the Kähler space, and we will

assume they extend to the whole spacetime. The Kähler form is

J = g−2d [(y + x)dΦ + xydΨ] . (2.25)

It is explicitly

g2J = dy ∧ dΦ + dx ∧ dΦ + ydx ∧ dΨ + xdy ∧ dΨ. (2.26)

A natural orthonormal frame is

e1 = g−1

[
y − x
F (x)

]1/2

dx, e2 = g−1

[
F (x)

y − x

]1/2

(dΦ + ydΨ), (2.27)

e3 = g−1

[
y − x
G(y)

]1/2

dy, e4 = g−1

[
G(y)

y − x

]1/2

(dΦ + xdΨ). (2.28)

The orientation is chosen so that ε1234 = −1, so the volume form dvolh = −1
2
J ∧ J ,

where

J = e1 ∧ e2 + e3 ∧ e4. (2.29)

Then this form is obviously anti-self dual. We will use the same symbol for the (1, 1)

tensor field Jab. It can be easily checked that JabJ
b
c = −δac. The Ricci scalar is easily

calculated to be

Rh = −g
2(f ′′(x) + g′′(y))

y − x
. (2.30)

We may also identify the other 2 anti self-dual forms:

J2 = e1 ∧ e3 − e2 ∧ e4 and J3 = −e1 ∧ e4 − e2 ∧ e3. (2.31)

These satisfy the algebra (setting J1 := J)

J i · J j = −δijI + εijkJk, (2.32)
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where · indicates matrix multiplication, i, j = 1, 2, 3 and I is the identity matrix. The

case i, j = 1 has been mentioned above. The Ricci form R, defined by

Rab =
1

2
RabcdJ

cd (2.33)

is closed and hence locally exact, i.e., R = dP , with

P = −F
′(x)(dΦ + ydΨ) +G′(y)(dΦ + xdΨ)

2(y − x)
. (2.34)

Having specified the base metric, we now turn to the rest of the fields which determine

the full solution. Let qI ∈ R and suppose qI > 0. The scalar fields XI are chosen to

take the form

f−1XI =
X̄Iy + qI
y − x

. (2.35)

Using (2.8) we find

f =
y − x

[P (y)]1/3
, P (y) = y3 + α2y

2 + α1y + α0, (2.36)

where the αi are defined by

α0 =
9

2
CIJKqIqJqK , α1 =

27

2
CIJKX̄IqJqK , α2 =

27

2
CIJKX̄IX̄JqK . (2.37)

The Kähler metric h is fully fixed by the choice

F (x) = 4α0(1− x2), G(y) = 4y(y2 + (α0 + α2)y + α1). (2.38)

Note that the Ricci scalar of h is

Rh = −8g2(3y + α2)

y − x
, (2.39)

and it is easily verified that the BPS constraint (2.18) is satisfied. Note the scalars

XI are determined as

XI =
9

2
CIJKXJXK =

X̄Iy2 + 9CIJKX̄JqKy + 9
2
CIJKqJqK

[P (y)]2/3
. (2.40)
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Thus to specify a supersymmetric solution (g, F I , XI), it remains to specify the func-

tions ω and ΘI , and then actually check that the remaining supersymmetry conditions

and field equations are satisfied. For the self-dual two-forms ΘI we take

ΘI =

(
9CIJKqJqK + (x+ y)9CIJKX̄JqK + 2xyX̄I

)
g(y − x)2

[dy ∧ (dΦ + xdΨ)

−dx ∧ (dΦ + ydΨ)] .

(2.41)

It is evident that these forms are self-dual by writing them in terms of the orthonor-

mal frame {ea}. A long but straightforward computation verifies that the necessary

conditions (2.19) and (2.21) are automatically satisfied. To perform this calculation,

note that

d
[
(y − x)−2dy ∧ (dΦ + xdΨ)− dx ∧ (dΦ + ydΨ)

]
= 0. (2.42)

For the one-form ω, we take

ω = ωΦdΦ + ωΨdΨ, (2.43)

where

ωΦ =
2

g(y − x)2

[
α0(1− x2 + xy) + α1y + y2(y + α2)

]
, (2.44)

ωΨ =
2y

g(y − x)2

[
α0 + α1x+ α2xy + xy2

]
. (2.45)

Recall that supersymmetry requires XIΘ
I = −2

3
G+. This requires calculating ?dω.

It is useful to record that the volume form in the (y, x,Φ,Ψ) coordinates is given by

dVol(h) =
y − x
g4

dy ∧ dx ∧ dΦ ∧ dΨ. (2.46)

and the inverse metric components are

hyy =
g2G(y)

y − x
, hxx =

g2F (x)

y − x
, hΦΦ =

g2(G(y)x2 + F (x)y2)

F (x)G(y)(y − x)
, (2.47)

hΦΨ = −g
2(G(y)x+ F (x)y)

F (x)G(y)(y − x)
, hΨΨ =

g2(F (x) +G(y))

F (x)G(y)(y − x)
, (2.48)
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and hence we compute that

?(dx ∧ dΦ) =
G(y)x2 + F (x)y2

G(x)(y − x)
dy ∧ dΨ +

G(y)x+ F (x)y

G(y)(y − x)
dy ∧ dΦ, (2.49)

?(dy ∧ dΦ) = −G(y)x+ F (x)y

F (x)(y − x)
dx ∧ dΦ− G(y)x2 + F (x)y2

F (x)(y − x)
dx ∧ dΨ, (2.50)

?(dx ∧ dΨ) = −G(y)x+ F (x)y

G(y)(y − x)
dy ∧ dΨ− F (x) +G(y)

G(x)(y − x)
dy ∧ dΦ, (2.51)

?(dy ∧ dΨ) =
F (x) +G(y)

F (x)(y − x)
dx ∧ dΦ +

G(y)x+ F (x)y

F (x)(y − x)
dx ∧ dΨ. (2.52)

We now wish to verify that

f−1XIΘ
I = −1

3
(dω + ?dω), (2.53)

The left-hand side is given by the self-dual two-form

f−1XIΘ
I =

2

3g(y − x)3
[(α1 + (x+ y)α2 + 3xy)y + 3α0 + (x+ y)α1 + xyα2] (2.54)

· [dy ∧ (dΦ + xdΨ)− dx ∧ (dΦ + ydΨ)] .

We have once again verified that (2.53) is satisfied. It only remains to verify that the

Maxwell equation (2.22) holds without any further constraints. This is possible after

a tedious calculation, with the use of the identities

CIJKX̄
JCKPQX̄P qQ =

9

2
CIJKC

JLMX̄LX̄MC
KPQX̄P qQ =

qI
3

+
α2

3
X̄I ,

(2.55)

CIJKC
JLMCKPQX̄LqMX̄P qQ =− 1

9
CIJKX̄

JCKMQqMqQ +
2

27
α1X̄I +

2

27
α2qI ,

(2.56)

CIJKC
JLMCKPQqLqMX̄P qQ =

2

27
(α0X̄I + α1qI). (2.57)

Therefore we have satisfied all the necessary and sufficient conditions to produce a

local BPS solution where in particular, the metric takes the canonical form (2.11).



28

2.3.3 Global analysis and conserved charges

The soliton solutions constructed above have an SU(2)×U(1) isometry, although this

is incompatible with a supersymmetric decomposition [39]. Nonetheless, having the

explicit bosonic solution, we can express the metric in a coordinate chart where the

symmetry is manifest. To this end define a new chart (T, r, ψ, θ, φ) by

r =

[
y

g2α0

]1/2

, θ = arccosx, T = t, ψ = 4α0Ψ, φ = 4α0Φ− 2gt, (2.58)

so that in particular we have a Killing vector field

∂

∂T
=

∂

∂t
+

g

2α0

∂

∂Φ
. (2.59)

In this coordinate chart, the metric takes the manifestly SU(2)×U(1)-invariant form

ds2 = −H(r)1/3W (r)dT 2

α0B(r)
+
H(r)1/3α0dr2

W (r)
+

r2B(r)

4H(r)2/3
(dψ + cos θdφ+ Ω(r)dT )2

+
H(r)1/3

4g2α0

(
dθ2 + sin2 θdφ2

)
,

(2.60)

where we have defined

W (r) = g4α2
0r

4 + g2α0r
2(α2 + α0) + α1, B(r) = g4α2

0r
4 + g2r2α2α0 + α1,

H(r) = α0(g6α2
0r

6 + g4α2α0r
4 + g2α1r

2 + 1), Ω(r) = −2gα0

B(r)
.

(2.61)

In these coordinates, we may identify the geometry in the asymptotic region r →∞
with AdS5 with radius g−1 . This is realized by shifting the radial coordinate as

r2 = R2 − α2/(3α0g
2) so that as R→∞, the metric has the expansion

ds2 → −(1 + g2R2 +O(R−2))dt2 +
dr2

1 + g2R2 +O(R−2)

+
R2 +O(R−2)

4

(
dψ + cos θdφ+O(R−4)dT

)2
+
R2 +O(R−2)

4

(
dθ2 + sin2 θdφ2

)
,

(2.62)

and hence to recover an asymptotically globally AdS5 spacetime we must take ψ ∈
(0, 4π), φ ∼ φ+ 2π, and θ ∈ (0, π) (with standard coordinate singularities at θ = 0, π



29

corresponding to the poles of the S3). Note that(
∂

∂T

)2

= gTT = −α
2
0g

6r6 + α0g
4(α0 + α2)r4 + α1g

2r2 + 1

H2/3
< 0, (2.63)

and hence ∂T is strictly timelike everywhere. A similar computation shows that

(dT )2 = gTT < 0 everywhere, and hence the function T may be identified a time

function on the spacetime, which is stably causal. Timelike surfaces of constant r > 0

have topology R× S3.

The functions W (r), H(r), B(r) > 0 from the requirement qI > 0. Hence the metric is

non-degenerate for all r > 0. As r → 0, gψψ = O(r2) and the Killing vector field ∂/∂ψ

degenerates. To ensure a smooth degeneration of the S1 generated by this vector field,

we must impose the regularity constraint

α0 = α1. (2.64)

This places one algebraic constraint on qI . Thus, a member of this family of globally

smooth asymptotically AdS5 gravitational soliton is parameterized by the N positive

real constants qI subject to (2.64). The 2-cycle at r = 0 is a round S2 of radius

rS2 = (2gα
1/3
0 )−1 . With the condition (2.64) the full soliton spacetime metric extends

to a global metric on R × CP2 \ {pt} where the first factor corresponds to the time

direction and the second to spacelike Cauchy surfaces Σt induced on the level sets of

constant t. The topology of Σt is easiest to read off by noting that the induced metric

is toric and the resulting toric diagram (rod structure) is that of CP2 with one vertex

removed corresponding to the point ‘at infinity’. Equivalently Σt has the topology of

Taub-Bolt space O(−1)→ S2 , i.e., the tautological bundle over CP1 [39].

Physically, the 2-cycle is prevented from collapse by the magnetic fluxes

DI =
1

2π

∫
S2

F I =
9

2gα0

CIJKqJqK . (2.65)

The total mass of the spacetime may be computed using the conformal mass of

Ashtekar-Magnon-Das [27]. Setting Ω = 1/(gR) and defining the conformal met-

ric ḡab = Ω2gab with conformal boundary at Ω = 0 ( R →∞) , we define the electric
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part of the Weyl tensor to be

Ēab = (gΩ)−2ḡcdḡefndnfC
a
cbe, (2.66)

where n = dΩ. The conserved quantity associated with a Killing vector field ξ is

Q[ξ] =
1

16πg

∫
S3

ĒabξbdSa, (2.67)

where the integral is taken over the S3 of radius g−1 at conformal infinity with unit

timelike normal dT . The mass is associated to ξ = ∂T , which is non-rotating at

infinity. A computation reveals that as R→∞, the relevant components of the Weyl

tensor decay as

CT
RTR =

2α2

g4α0R6
+O(R−8), (2.68)

and we obtain the mass

E := Q[∂T ] =
πα2

4g2α0

. (2.69)

Next, consider the electric charges QI . Note that

?F = −f−2 ?4 d(XIf) + e0 ∧
(
XIf ?4 dω + ΘI + 9f−1gCIJKX̄JXKJ

)
(2.70)

where e0 = f(dt+ ω). We define

QI =
1

8π

∫
S3
∞

QIJ ? F
J , (2.71)

where the integral is taken over the boundary sphere as r →∞ on a spatial hypersur-

face defined by t = T = constant. One finds as y →∞ that, pulled back to a surface

y = constant,

?F J =

[
4α0

g2
(α2X̄

I − 9CIJKX̄JqK) +O(y−1)

]
dx ∧ dΦ ∧ dΨ. (2.72)

Using the fact that QIJ = 9
2
X̄IX̄J − 1

2
CIJKX̄

K +O(y−1) as y →∞, we find

QI = − 3πqI
4g2α0

. (2.73)

Note that the mass (2.69) of these supersymmetric solutions satisfies the BPS relation
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E = |X̄IQI | =
πα2

4g2α0

. (2.74)

The angular momentum associated to the Killing vector field η = 2∂ψ, which has

2π−periodic closed orbits, is computed from the Komar integral

J =
1

16π

∫
S3
∞

?dη =
π

2α0g3
. (2.75)

where we have used the expansion

?dη|S3
∞ =

(
1

2α0g3
+O(r−1)

)
sin θdθ ∧ dψ ∧ dφ. (2.76)

This corresponds to equal angular momenta in two orthogonal planes of rotation at

spatial infinity. Note that the angular momentum associated to the Killing vector

field ∂φ vanishes.

2.3.4 The U(1)3 supergravity theory

Of particular interest in the class of supergravity theories is the N = 1 gauged su-

pergravity coupled to two Abelian vector multiplets, which has gauge group U(1)3

that arises as a reduction of Type IIB supergravity on S5 (one keeps the maximal

Abelian subgroup U(1)3 of the of maximal 5d SO(6)-gauged supergravity). At least

locally, a five-dimensional solution to this theory can be oxidized to a solution of

type IIB supergravity theory reduced appropriately on S5. In this special case, the

solutions presented here were previously obtained [41] by performing a BPS limit of

a more general family of local supergravity solutions [38]. The theory is recovered by

setting I = i = 1, 2, 3 with X̄i = 1/3 (or equivalently X̄ i = 1) , and Cijk = |εijk|
where ε123 = ±1 is totally antisymmetric. For simplicity, we rescale our dimensionless

charge parameters qi → qi/3. We then have the simplified expressions

α0 = q1q2q3, α1 = q1q2 + q1q3 + q2q3, α2 = q1 + q2 + q3. (2.77)

The parameters qi are subject to the regularity condition is simply q1q2q3 = q1q2 +

q1q3 + q2q3. The solution then takes the canonical supersymmetric form (2.11) in the
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(t, y, x,Φ,Ψ) coordinates with

f =
y − x

(H1H2H3)1/3
and Hi = y + qi, (2.78)

and the scalar fields are given by

Xi =
f

3
· y + qi
y − x

, (2.79)

or equivalently

X1 =
y2 + (q2 + q3)y + q2q3

(H1H2H3)2/3
(2.80)

with similar expressions for X2, X3 with the natural permutations of the qi. The

Kähler base space metric h is given by (2.24) where

F (x) = 4q1q2q3(1− x2),

G(y) = 4y
(
y2 + (q1q2q3 + q1 + q2q3)y + q1q2 + q1q3 + q2q3

)
.

(2.81)

The one-form ω is given by (2.43) where the constants αi are given by (2.77). The

Maxwell fields F i are then determined by (2.12) where the Kähler form J is given by

(2.25), and the self-dual forms Θi by

Θ1 =
2xy + (x+ y)(q2 + q3) + 2q2q3

g(y − x)2
[dy ∧ (dΦ + ydΨ)− dx ∧ (dΦ + ydΨ)] , (2.82)

with similar expressions for Θ2,Θ3 with the obvious permutations of the qi.

In the coordinate system (T, r, θ, ψ, φ) the metric takes the form (2.60) where the

functions W (r), B(r) and Ω(r) are given by (2.61) with the constants αi given by(2.77)

and the function H factors as

H(r) = q1q2q3(1 + g2q1q2r
2)(1 + g2q1q3r

2)(1 + g2q2q3r
2). (2.83)

The conserved charges and angular momentum are given by

E =
π

4g2q1q2q3

(q1 + q2 + q3), Qi = − πqi
4g2q1q2q3

, J =
π

2g3q1q2q3

, (2.84)

and the angular momentum is associated to the Killing vector field m = 2∂ψ. The

angular momentum associated to the Killing field ∂φ vanishes, Jφ = 0. We note that
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the parameters qi used in [41] (c.f. (3.28) of that work) are related to the ones used

here by qi = qi/(g
2qiq2q3). The magnetic dipole fluxes out of the S2 are given by

Di =
|εijk|qjqk

2g(qiq2q3)
=

1

gqi
. (2.85)

From this and the regularity condition it follows that

g

4π

∫
S2

3∑
i

F i =
g

2

3∑
i=1

Di =
1

2
, (2.86)

which is the Dirac quantisation condition appropriate for a manifold with a spinC

structure.

Above, we mentioned that the U(1)3 solutions could be locally uplifted to Type IIB

supergravity along a Sasaki-Einstein five-manifold Y5. However, in the case that the

five-dimensional spacetime has a non-trivial topology, there will generically be global

obstructions to producing a smooth ten-dimensional metric. Indeed, it was observed

in [41] that the solutions constructed here could not be lifted along the simplest

Sasaki-Einstein manifold, S5 (in contrast, to the three-charge supersymmetric AdS5

black holes [33]). In the equal charge case (qi = q), the solutions above become

solutions of minimal gauged supergravity. It was proved there that in this case,

globally regular oxidization was indeed possible along more general regular Sasaki-

Einstein manifolds [39]. In particular, suppose that Y5 is a circle bundle over a Fano

Kähler-EinsteinM4 with Fano index I (e.g. CP2 has I = 3). Suppose for generality, we

allow the coordinate ψ to have period 4π/p (p = 1 corresponds to the asymptotically

globally AdS5 case we have hitherto assumed). A regular oxidization can be achieved

provided kp/I ∈ Z where k ∈ Z divides I, with k = 1 if and only if Y5 is simply

connected [39]. For a concrete example , take the asymptotically globally AdS5 case

p = 1 and M4 = CP2. In this case k = 3 and Y = S5/Z3, with the boundary CFT

being a quiver gauge theory living on R × S3. More generally a del Pezzo surface

M4 = dPi, 3 ≤ i ≤ 9 has I = 1 (hence k = 1) and the boundary CFT is placed on

S3/Zp for any p ≥ 1.

In the general case of unequal charge parameters qi, however, we are not aware of a

compactification of Type IIB supergravity on a general Sasaki-Einstein manifold Y5

which reduces to the U(1)3 gauged supergravity theory. A compactification on S5 is
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known, and since the isometry group has a maximal torus of rank 3, the three gauge

fields to be naturally incorporated into the ten-dimensional metric [42]. In particular,

one takes as Type IIB fields

g10 = W 1/2ds2
5 +W−1/2

3∑
i=1

(X i)−1
[
dµ2

i + µ2
i (dφ

i + gAi)2
]
,

F5 = (1 + ?10)

(
2g

3∑
i=1

((X i)2µ2
i −WX i)dVol5 −

1

2g

3∑
i=1

(X i)−1 ?5 dX i ∧ dµ2
i

+
1

2g2

3∑
i=1

(X i)−2dµ2
i ∧ (dφi + gAi) ∧ ?5F

i

) (2.87)

where W :=
∑3

i µ
2
iX

i > 0, and (µi, φ
i) are coordinates on S5 where the ‘direction

cosines’ satisfy the constraint µ2
1+µ2

2+µ2
3 = 1. To cover S5, the angles φi must each be

identified with period 2π. More precisely, the 3-torus parameterized by φi is defined

by the identifications T1 : (φ1, φ2, φ3) ∼ (φ1 + 2π, φ2, φ3) with similar expressions for

T2, T3. Since the compactification is purely local, we can also use1 this embedding

with S5/Zp replacing S5, provided we define the lattice with the identifications T̂ :

(φ1, φ2, φ3) ∼ (φ1 + 2π/p, φ2 + 2π/p, φ3 + 2π/p) along with any two of the original

identifications T1, T2, T3. These identifications can be straightforwardly derived by

relating the above standard coordinates on S5 with those used in writing S5 as a U(1)

bundle over CP2. The Killing vector field ∂ψ = 1
3
(∂φ1 +∂φ2 +∂φ3) is non-vanishing and

generates the U(1) fibre. The Zp quotient corresponds to identifying ψ ∼ ψ + 6π/p,

with S5 corresponding to p = 1. The ten-dimensional metric extends globally to a

smooth manifold provided that the connection on the T3-bundle is globally defined.

This requires
g

2π

∫
S2

F i =
ki

p
, ki ∈ Z (2.88)

which from (2.85) implies ki = p/qi > 0. However the regularity constraint (2.86)

imposes the condition

k1 + k2 + k3 = p. (2.89)

It is clear p = 1 is not allowed. In the case of equal charges previously investigated

in [39], ki = 1 and p = 3 corresponding to uplifting on S3/Z3. We have therefore

demonstrated that general members of this family of asymptotically globally AdS5

1We thank J. Lucietti for this observation.
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BPS soliton spacetimes can also be uplifted, provided qi = p/ki and (2.89) is satisfied.

2.4 Evanescent ergosurface and stable trapping

As observed above, there is a strictly timelike Killing vector field ∂T , which is static in

the asymptotically globally AdS5 region. This differs from the supersymmetric Killing

vector field V = ∂t associated to the bilinear of a Killing spinor field ε via V a ∼ ε̄γaε.

The Killing vector field V is everywhere causal:

|V |2 =

(
∂

∂t

)2

= −f 2 = −(y − x)2

P (y)2/3
≤ 0. (2.90)

and |V |2 vanishes if and only if y = x. This relation defines a smooth timelike

hypersurface S along which V is null. Hence S may be identified as an evanescent

ergosurface [43, 44, 45]. The geometry of S is simplest to see in the (T, r, θ, φ, ψ) coor-

dinate chart, as ∂T remains timelike. The induced metric on the timelike hypersurface

S is

ds2 = H(r)1/3

[
−W (r)dT 2

α0B(r)
+

H(r)dr2

W (r)(1− g4α2
0r

4)
+
r2B(r)

4H(r)

(
dψ + g2α0r

2dφ+ Ω(r)dT
)2

+
(1− g4α2

0r
4)dφ2

4g2α0

]
(2.91)

A simple analysis of the fixed points sets of the torus action generated by (∂ψ, ∂φ)

reveals that the constant T -surfaces have S3−topology and an inhomogeneous metric.

To see, this observe that the metric in the above coordinates is smooth and positive

definite when the radial coordinate takes value in 0 < r < (g
√
α0)−1. S intersects the

S2 bubble at r = 0, where ∂ψ smoothly degenerates, and at r = (g
√
α0)−1 the Killing

vector field ∂φ − ∂ψ smoothly degenerates.

The supersymmetric Killing vector field V is easily seen to be tangent to affinely

parametrized null geodesics on S:

∇V V |S = −1

2
d(|V |2)|S = 0 (2.92)

since V has a second-order zero on S. With respect to an observer at infinity moving

along the orbits of V , the conserved energy along these geodesics must vanish because
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E = −V ·V = 0 on S, that is, V is tangent to zero-energy geodesics on the evanescent

ergosurface. Such geodesics are also stably trapped as proved in [44]. We will briefly

overview their elegant argument, which employs the Jacobi equation for geodesic

deviation and the fact that V is a Killing vector field such that −|V |2 is minimized

on S.

Given a energy-minimizing null geodesic γ on S with tangent vector field V , consider

a one-parameter family of causal geodesics γs with γ0 = γ and associated causal

tangent vector fields Xs and geodesic deviation vector field Y . The geodesic deviation

equation on γ

∇V∇V Y
a|γ = Ra

bcdV
bV cY d|γ (2.93)

admits a first integral as a consequence of the Killing property of V

|LV Y |2 +HabY
aY b = C, (2.94)

where C is a constant on γ, andHab is the Hessian of−V 2/2, i.e., Hab = ∇a∇b(−V 2/2).

Using the fact that |Xs|2 is maximized on γ, it can be shown that V · Y is a constant

on γ. Thus

V · LV Y = 0, (2.95)

from which it follows that LV Y is spacelike or null on γ. Hence, the first term in

(2.94) is non-negative. Moreover a direct computation shows that

Hab = 4g2nanb, (2.96)

where the spacelike unit normal to S is given by

n =
1

2gH1/3
d
(
g2α0r

2 − cos θ
)
. (2.97)

Hence Hab is a positive-definite metric on the space on the vectors normal to S and

vanishes on those vectors tangent to S. In particular, (2.94) implies that C ≥ 0 and

HabY
aY b = 4g2(n · Y )2 ≤ C, (2.98)

where n · Y measures the component of the deviation vector field Y normal to S.

Therefore the normal component of Y remains bounded on the evanescent ergosurface.
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This demonstrates the stable trapping property, namely, that initially nearby causal

geodesics to γ remain sufficiently close.

The phenomena of stable trapping provide a geometric obstruction to the establish-

ment of sufficiently strong decay statements for solutions of wave equations [44, 45, 46].

Intuitively, since the behavior of high-frequency waves can be approximated by null

geodesics, the trapping property should lead to the clumping of energy in a bounded

region. In particular, a fast (e.g., polynomial) decay of such solutions is widely ex-

pected to be required for nonlinear stability. On the other hand, unstable trapping,

such as that which occurs at the photon sphere r = 3M of the Schwarzschild space-

time, is known not to prevent sufficiently fast decay. As shown above for the gravita-

tional solitons considered here, however, the trapping is stable, and in addition, there

is no event horizon to aid in decay.

In the stationary, asymptotically flat case, Moschidis has rigorously proved that pro-

vided an energy boundedness statement is true for solutions of the linear wave equa-

tion, then the local energy of waves must decay at least inverse logarithmically [47].

The question arises whether, in a given spacetime, such a decay statement is sharp

or whether one can prove faster decay. For supersymmetric microstate geometries

with evanescent ergosurfaces (and hence fall outside the hypotheses of Moschidis’

theorem), Keir rigorously established that a stronger decay statement cannot exist

and indeed any spacetime possessing an evanescent ergosurface but no event horizon

exhibits a linear instability [45] (see also his analysis of a particular family of super-

symmetric microstate geometries [48]). Analogous results have been established for

non-supersymmetric microstate geometries that exhibit stable trapping despite not

having an evanescent ergosurface [49] (in fact, the energy of solutions to the linear

wave equation are uniformly bounded).

In the asymptotically Anti-de Sitter case, slow decay of waves caused by stable trap-

ping has been investigated by Holzegel and Simulivici in Kerr-AdS4 spacetimes [50, 51].

Here the underlying geometric obstruction to decay is a combination of unstable trap-

ping near the horizon and the lack of dispersion at null infinity (assuming standard

reflective boundary conditions). In the present case for the family of asymptotically

globally AdS5 solitons considered there, one has both the combined effect of stable

trapping at an evanescent ergosurface along with the usual lack of dispersion at in-

finity, and moreover, there is no horizon to help with decay. These considerations
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strongly suggest that these solutions, despite being supersymmetric, are nonlinearly

unstable and likely also unstable at the linear level, as is generically the case for simi-

lar asymptotically flat and asymptotically Kaluza-Klein spacetimes [45]. Indeed, even

the maximally supersymmetric AdS vacuum is now known to be nonlinearly unstable

to arbitrarily small, generic perturbations that lead to the formation of black holes

[52, 53, 54], and therefore it is reasonable to expect the endpoint of instability of

supersymmetric globally AdS5 solitons would be a near-BPS, asymptotically AdS5

black hole spacetime.



Chapter 3

Phase Transitions and Stability of

Eguchi-Hanson-AdS Solitons

This chapter is based on “Phase Transitions and Stability of Eguchi-Hanson-AdS Soli-

tons” by Turkuler Durgut, Robie A. Hennigar, Hari K. Kunduri and Robert B. Mann

published in JHEP 114 (2023).

3.1 Abstract

The Eguchi-Hanson-AdS5 family of spacetimes are a class of static, geodesically com-

plete asymptotically locally AdS5 soliton solutions of the vacuum Einstein equations

with negative cosmological constant. They have negative mass and are parameterized

by an integer p ≥ 3 with a conformal boundary with spatial topology L(p, 1). We

investigate mode solutions of the scalar wave equation on this background and show

that, similar to AdS5, the geometry admits a normal mode spectrum (i.e. solutions

that neither grow or decay in time). In addition, we also discuss other geometric

properties of these soliton spacetimes, including the behaviour of causal geodesics

and their thermodynamic properties. We also point out a surprising connection with

the AdS soliton.
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3.2 Introduction

A classic theorem of Wang [55] states that Anti-de Sitter (AdS) spacetime is the unique

conformally compact (globally) static solution to the vacuum Einstein equations Gab+

Λgab = 0 where Λ < 0 and with spherical conformal spatial boundary. The theorem

holds in situations where the positive mass theorem for asymptotically hyperbolic

manifolds is valid (see also [56, 57]). This result lends support to the expectation that

AdS spacetime is the appropriate ‘ground state’ amongst the class of all solutions

with the same asymptotic behaviour. A putative ground state would, in turn, be

expected to be dynamically stable, and indeed studies of the wave equation on a fixed

AdS background are consistent with this intuition. However, the remarkable result

of Bizon et al. [52] demonstrates that, in fact, AdS is nonlinearly unstable under

arbitrarily small perturbations whose endpoint is the formation of black holes - that

is, small amounts of energy tend to concentrate at shorter and shorter scales, rather

than dissipating as in Minkowski spacetime [52, 53].

A natural question is whether the vacuum Einstein equations with negative cosmo-

logical constant admit other static solutions that are asymptotically locally AdS but

with a different conformal boundary. The family of AdS soliton spacetimes provides

such an example with toroidal conformal spatial boundary [58, 59]. Clarkson and

Mann considered the problem of finding static solutions asymptotic to a freely acting

discrete quotient of AdS [60, 61]. They succeeded in constructing solutions in odd

dimensions (referred to as Eguchi-Hanson-AdS spacetimes) that are asymptotic to

AdSd+1/Zp. These spacetimes have negative energy relative to that of pure AdS. In

five spacetime dimensions, p ≥ 3 (see below) and spatial cross sections of the con-

formal boundary are lens spaces L(p, 1) equipped with the standard round metric.

Clarkson and Mann conjectured that these metrics are the states of lowest energy in

their asymptotic class [60].

The Eguchi-Hanson-AdS5 geometry, in addition to being static, has a local SU(2)×
U(1) isometry group, which acts with three-dimensional orbits. Hence its spatial

sections belong to the biaxial Bianchi IX class of geometries. Dold exploited this

symmetry to study the evolution of initial data within this symmetry class [62]. In

addition to showing that the resulting system of equations forms a well-posed initial-

boundary value problem (with the fields satisfying an appropriate Dirichlet condition
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at conformal infinity), he rigorously proved that the maximal development of this re-

stricted class of initial data sufficiently close to Eguchi-Hanson-AdS5 data cannot form

a horizon in the future. Assuming that Eguchi-Hanson-AdS5 is indeed the only static

solution within its conformal class, this implies that the endpoint of the evolution

must generically be a spacetime containing a naked singularity.

In the present article, we will take a different perspective and study mode solutions

to the massless Klein-Gordon equation

�gΦ = 0 (3.1)

on the fixed Eguchi-Hanson-AdS5 background. One advantage of this approach is

that we do not need to make any special symmetry restrictions on Φ. It easy to see

that (3.1) is separable and so it is relatively straightforward to reduce the problem

to a single radial Schödinger-type equation. Since the background is static, it is

straightforward to show that there is a conserved energy and hence a uniform bound

for the energy associated with the field Φ in terms of its initial energy. This kind of

bound, however, does not tell us if the field is being concentrated within a compact

region as a result of some geometric mechanism (e.g. trapping).

For simplicity we will study quasinormal mode solutions of (3.1). We will show that,

similar to AdS spacetime, Eguchi-Hanson-AdS5 admits normal mode solutions (i.e.

they neither grow nor decay in time). Our results will be based on a robust numerical

approach as well as analytic methods.

In addition to the Klein-Gordon test field, we consider many other aspects of these

solutions that have not been addressed to date in the literature. We begin with an

analysis of the mechanical properties of these solitons. We compute their mass and

show that these solutions have a non-trivial thermodynamic volume of topological

origin [63, 25]. Examining the thermodynamics in the canonical ensemble, we show

that there is an analog of the Hawking-Page phase transition [64]. The two relevant

states in the phase transition are the Eguchi-Hanson-AdS5 soliton and the black hole

resulting from performing Zp identifications to the spherical AdS black hole. We

then study the geodesics in the spacetime, which is relevant for two reasons. First,

we seek to find whether or not there exists stable trapping of null geodesics (the

confinement of null geodesics to a compact subregion of space) in the Eguchi-Hanson-

AdS5 spacetime. Stable trapping presents an obstruction to proving strong decay
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statements for solutions of the wave equation [51, 65]. For example, decay might

be no faster than inversely logarithmic in time, rather than inverse polynomial [48].

The latter is expected to be necessary if there is any hope of demonstrating nonlinear

stability. In particular, stable trapping has been shown in several examples of families

of horizonless soliton spacetimes, which typically have some nontrivial spatial topology

(e.g., two-cycles or ‘bubbles’) [48, 25, 49] or ultracompact objects [46]. However, we

find that stable trapping is absent in the Eguchi-Hanson-AdS5 spacetime. Second,

we investigate the light-crossing time of the geometry and find that it turns out to

be relevant to understanding the spacing between overtones for the normal mode

solutions of the Klein-Gordon equation.

A recurring theme throughout each aspect of our work is a connection between the

Eguchi-Hanson-AdS5 soliton and the AdS soliton that has not been pointed out in the

literature. Namely, starting with the former with spatial boundary metric (the round

L(p, 1) lens space), we find that formally taking the p→∞ limit gives the (universal

cover of the) AdS soliton as the limiting solution. As such, we show how the relevant

quantities of the AdS soliton govern the asymptotics of the corresponding quantities

for the Eguchi-Hanson soliton.

The outline of our paper is as follows. In Section 3.3, we review the basic structure

of the Eguchi-Hanson soliton and show its limit is AdS soliton as p→∞. In Section

3.4, we analyze the mass and thermodynamic behaviour of the soliton, and in Section

3.5, we consider the behaviour of timelike and null geodesics in this spacetime. We

find that both massive and null particles oscillate between the edge of the soliton and

infinity, with no stable trapping regions. In Section 3.6, we proceed with the main

purpose of our paper, that of analyzing the scalar wave equation in the Eguchi-Hanson

soliton spacetime. As an analytic solution is apparently intractable, we solve the

equation numerically, checking our results against various approximations in certain

limits. Amongst our most intriguing results is that the normal modes interpolate

between those of a scalar wave on the orbifold AdS5/Z2 and on the AdS soliton as the

parameter p is varied. We close our paper with some concluding remarks in Section

3.7. Several appendices contain details showing how we arrived at our results.
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3.3 Metric and Structure

Clarkson and Mann [60] obtained a solution of the D = 5 Einstein equations with

negative cosmological constant, namely

Rab = − 4

`2
gab , (3.2)

given by

ds2 = −g(r)dt2 + r2f(r)

[
dψ +

cos(θ)

2
dφ

]2

+
dr2

f(r)g(r)
+
r2

4
dΩ2

2 (3.3)

g(r) = 1 +
r2

`2
and f(r) = 1− a4

r4
. (3.4)

This is a cohomogeneity-one metric with local isometry group R × SU(2) × U(1).

When a = 0 this reduces to the AdS5 metric with spherical boundary when t ∈ R,

r > 0, ψ ∈ (0, 2π), θ ∈ (0, π) and φ ∈ (0, 2π) with a standard apparent singularity

at r = 0, where the (ψ, θ, φ) part of the metric degenerates, representing the origin

of coordinates. However, for a 6= 0 (we fix a > 0 without loss of generality) the

metric extends globally to a manifold with non-trivial topology, provided that certain

regularity conditions are satisfied. The Killing vector field ∂/∂ψ becomes degenerate

at r = a; examining the (r, ψ) sector of the geometry, absence of conical singularities

requires the identification

ψ ∼ ψ +
2π

2
√
g(a)

. (3.5)

The ensures that the geometry smoothly ‘pinches off’ leaving a round S2 of radius

a/2. This condition must be combined with the independent condition, arising from

regularity of the constant (t, r) surfaces, that demands

ψ ∼ ψ +
2π

p
, (3.6)

where p ∈ Z (this ensures the geometry is that of L(p, 1)). Satisfying both conditions

requires that

a2 =

(
p2

4
− 1

)
`2 . (3.7)
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Thus regularity requires that we must have p ≥ 3. This means that asymptotically

the boundary metric is a lens space L(p, 1) (p = 1 would be S3). Thus, we have a

gravitational soliton (a geodesically complete, strictly stationary solution) that has

a 2-cycle in the interior region and has a lens space as its boundary. The above

metric is often referred to as the ‘Eguchi-Hanson-AdS5’ soliton as constant time hy-

persurfaces generalize the well-known four-dimensional Eguchi-Hanson gravitational

instanton metric which must have p = 2 [66].

3.3.1 The Large p Limit of the Metric: AdS Soliton

As we have just seen, the Eguchi-Hanson-AdS5 soliton is characterized by a single

integer p. For several reasons, it will be fruitful to consider these solutions for large

values of p.

Beginning with the Eguchi-Hanson-AdS5 metric (3.3), we perform the following trans-

formations

t =
2τ

p
, r = az , θ =

4ρ

p
, ϕ = ψ +

p

2
φ , (3.8)

and then take the limit p→∞. The result is

ds2 = −z2dτ 2 +
`2dz2

z2f(z)
+
`2z2f(z)

4
dϕ2 + `2z2

[
dρ2 + ρ2dφ2

]
+O

(
1

p

)
(3.9)

where

f(z) = 1− 1

z4
. (3.10)

One can then convert the polar coordinates on the R2 to standard Cartesian coordi-

nates, giving

ds2 = −z2dτ 2 +
`2dz2

z2f(z)
+
`2z2f(z)

4
dϕ2 + `2z2

[
dx2 + dy2

]
+O

(
1

p

)
. (3.11)

In the strict p→∞ limit, this is an AdS5 soliton belonging to the class first reported

in [67], in coordinates such that the location of the bubble is at z = 1. One can

easily check that the coordinate ϕ is periodic with period 2π. Strictly speaking, there

are several topologically distinct solitons that can be obtained from the same local

metric (3.11) depending on identifications performed on the auxiliary flat directions
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(x, y) — see, e.g., [68]. In this case, the soliton corresponding to the large p limit of

Eguchi-Hanson-AdS has no identifications on these coordinates, i.e. the spatial part

of the boundary metric is S1 × R2. This is the same configuration first considered

in [67], and henceforth we will refer to this case as “the” AdS soliton. To the best

of our knowledge, this connection between the Eguchi-Hanson-AdS5 soliton and the

AdS soliton has not been previously reported on1.

Regularity of the solution requires that p ≥ 3 is an integer. Therefore, the p → ∞
limit may be most cautiously considered as a ‘formal’ limit. Nonetheless, it is difficult

to overstate the utility of this result. As we will see in the subsequent sections, many

of the quantities of interest cannot be evaluated exactly for the Eguchi-Hanson-AdS5

soliton, but the asymptotics of these quantities can be effectively captured by the

corresponding quantities for the AdS soliton. Said another way, Eguchi-Hanson-AdS5

solitons for large values of p behave in a manner similar to the AdS soliton.

3.4 Soliton Mechanics

3.4.1 Smarr Relation & First Law

While it is well-known that black holes satisfy a first law and Smarr relation, similar

relationships can be found for solitons and soliton-black hole configurations. This

was rigorously demonstrated in the asymptotically flat case in [24], and extended

to a particular example of an asymptotically globally AdS soliton in [25]. Here we

apply these considerations to the Eguchi-Hanson-AdS5 soliton. While the mass was

calculated in the original manuscript [60], the notion of thermodynamic volume [63]

— which proves crucial for deriving the Smarr relation and first law in this case —

was at that point not developed. We note also that considerations of extended ther-

modynamics have been previously carried out for Eguchi-Hanson-dS soliton in [70].

In Section 3.8 we compare the results of these computations with the formalism of

holographic renormalization.

Let ξ = ∂t be the stationary Killing field. It has zero divergence so d ? ξ = 0, where ?

is the Hodge dual. It follows that one can write the closed four-form ?ξ = −d ?$ for

1The connection between the Eguchi-Hanson and AdS soliton geometries could be inferred from
the results for lensed CFT partition functions [69]. We are grateful to Edgar Shaghoulian who, after
this work was completed, brought this reference to our attention.
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some locally defined 2-form $, or equivalently

ξ = ?d ? $. (3.12)

On the other hand a basic identity is

d ? dξ = 2 ? Ric(ξ) =
8

`2
d ? $ (3.13)

where the second equality follows from the Einstein equation Rab = − 4
`2
gab and (3.12).

This means we have the conservation equation

d ?

[
dξ − 8

`2
$

]
= 0 (3.14)

which we will integrate over a spatial hypersurface t =constant. If we introduce the

basis

e0 =
√
gdt, e1 =

dr√
fg
, e2 = r

√
f

(
dψ +

cos θ

2
dφ

)
,

e3 =
r

2
dθ, e4 =

r

2
sin θdφ

(3.15)

and assume $ takes the form

$ = A(r)e0 ∧ e1 +B(r)e1 ∧ e2 (3.16)

then a calculation gives

A(r) =
1√
f

(
r

4
+
C1

r3

)
, B(r) =

C2

r2
√
g

(3.17)

so that

$ =
1

f

(
r

4
+
C1

r3

)
dt ∧ dr +

C2

rg
dr ∧

(
dψ +

cos θ

2
dφ

)
. (3.18)

whose Hodge dual is

?$ = −1

4

(
r4

4
+ C1

)
sin θdψ ∧ dθ ∧ dφ+

C2

4
sin θdt ∧ dθ ∧ dφ. (3.19)

Note that the degeneracy of ∂/∂ψ at the ‘centre’ r = a implies that ?$ is not well

defined there unless C1 is chosen to be C1 = −a4/4. However, as is typical — and as

we will see below — regularity is not the correct prescription for fixing the parameter
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C1.

Next, we integrate the closed form defined by (3.14) over a hypersurface Σ defined as

a surface of constant time, t = constant, over the region R0 ≤ r ≤ ∞ with R0 > a.

On this region $ is well-defined and we can apply Stokes’ theorem. The identity gives

0 =

∫
Σ

d

[
?

(
dξ − 8

`2
$

)]
=

∫
∂∞Σ

?

(
dξ − 8

`2
$

)
−
∫
∂ΣR0

?

(
dξ − 8

`2
$

)
(3.20)

where ∂∞Σ and ∂ΣR0 represent the asymptotic and inner boundaries respectively.

Let us first focus on the contribution at conformal infinity. A calculation shows that

as r →∞,

?dξ =

(
− r4

2`2
+

a4

2`2
+O(1/r2)

)
sin θdψ ∧ dθ ∧ dφ , (3.21)

and we note that the divergent term is precisely cancelled by the corresponding di-

vergent term of ?$ when the two terms are combined as in (3.20). We identify a

renormalized Komar mass as [63]

MKomar := − 3

32π

∫
∂∞Σ

?

(
dξ − 8

`2
$

)
= − 3π

8p`2

(
a4 + 4C1

)
. (3.22)

The fact that the free parameter C1 appears in the Komar mass can be understood

as an ambiguity in the ground state energy. We will now fix this ambiguity.

We can ensure the integral over the asymptotic boundary evaluates to the mass by

choosing C1 appropriately. To calculate this we use the Ashtekar-Magnon proce-

dure [71] which is well-defined in this setting. The relevant component of the Weyl

tensor is

Ct
rtr = − a4

(r2 + `2)(r4 − a4)
= −a

4

r6
+O(r−8) (3.23)

as r →∞. Setting Ω = `/r and defining the conformal metric ḡab = Ω2gab with Ω = 0

as r →∞, the Ashtekar-Magnon mass is then defined as

Q[∂t] =
`

16π

∫
∂M

Ēab(∂t)bdSt (3.24)

where dSt is a constant time slice of the conformal boundary, which has a round lens
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space metric of radius `. The quantity Ēab is the electric part of the Weyl tensor

Ēab =
`2

Ω2
ḡcdḡefndnfC

a
cbe, (3.25)

with unit spacelike normal n = dΩ.

Noting that ḡrr = r4`2, it is then a straightforward matter to obtain the relevant

component

Ē tt =
r6

`6
Ct
rtr = −a

4

`6
(3.26)

yielding

M := Q[∂t] =
`

16π

∫
∂M

(
−a

4

`6

)
`3 sin θ

4
dψdθdφ = − πa

4

8`2p
(3.27)

so the mass is negative, a fact already observed in [60] — c. f. eq.(10) of that work.

Comparing the above with the result of the Komar integration implies C1 = −a4/6.

Once the Komar mass has been computed, the thermodynamic volume is identified

by evaluating the integral of the Killing potential over the inner boundary, and taking

the limit R0 → a. This gives:

V = −
∫
∂ΣR

?$ =
π2

2p

(
a4 + 4C1

)
=
π2a4

6p
. (3.28)

using the choice C1 = −a4/6. For some black hole solutions the thermodynamic

volume can be interpreted as the volume of a Euclidean ball of radius a that is removed

from the spatial hypersurface [72]. This interpretation is not available in this case

because there is no ‘ball’ in Euclidean space for which a lens space is its boundary. In

this case, the thermodynamic volume V has a topological origin: it arises not due to

the presence of an horizon, but instead because the choice of constant C1 that leads

to the correct mass leads to a Killing potential that is not regular at the location of

the bubble.

Noting that thermodynamic pressure is [72]

P := − Λ

8π
=

3

4π`2
(3.29)

then we have

M = −PV (3.30)
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which is the Smarr formula for this system. Using the regularity condition (3.6) and

the mass (3.27) we have

dM = − π

4p

(
p2

4
− 1

)2

`d` (3.31)

Alternatively, using (3.28), (3.29), and the regularity condition (3.6), we have

V dP = − π

4p

(
p2

4
− 1

)2

`d` (3.32)

and consequently

dM = V dP (3.33)

which is the expression of the first law for the Eguchi-Hanson-AdS5 soliton.

The fact that the regularity condition is required for the validity of the first law is

consistent with previous studies of (extended) mechanics of smooth geometries [24,

73, 25]. It is worth remarking that in some cases, e.g., for accelerating black holes or

spacetimes containing Misner strings, it is possible to formulate the Smarr relation

and first law without requiring the regularity condition to hold [74, 75]. It may be

interesting to better understand when, exactly, regularity of the geometry is crucial

for formulating a sensible first law and Smarr relation.

3.4.2 Euclidean action

By sending t → iτ the Eguchi-Hanson-AdS5 solution (3.3) may be analytically con-

tinued to produce a Riemannian (positive signature) Einstein metric:

ds2 = g(r)dτ 2 + r2f(r)

[
dψ +

cos θ

2
dφ

]2

+
dr2

f(r)g(r)
+
r2

4
dΩ2

2. (3.34)

The geometry is smooth and complete with an S2-bolt at r = a provided the regularity

condition (3.7) is imposed. We now periodically identify the τ -coordinate as τ ∼ τ+β

so that it parameterizes an S1. The vector field ∂τ is nowhere vanishing since g(r) > 0

and therefore this S1 does not degenerate. In particular there is no condition on

β. The underlying manifold will therefore be S1 × T ∗S2 (the latter factor being the

cotangent bundle of S2). The metric is conformally compact with conformal boundary
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S1 × L(p, 1) equipped with the conformal boundary metric

γ = dτ 2 + `2

[(
dψ +

cos θ

2
dφ

)2

+
dΩ2

2

4

]
. (3.35)

The metric on the boundary L(p, 1) is the round metric.

We may easily produce a Riemannian Einstein metric with the same conformal bound-

ary by taking appropriate angular identifications of the Euclidean Schwarzschild-AdS5

metric to obtain an Einstein metric on R2 × L(p, 1):

ds2 = U(r)dτ 2 + U(r)−1dr2 + r2

[(
dψ +

cos θ

2
dφ

)2

+
dΩ2

2

4

]
(3.36)

where U(r) = 1 − µ/r2 + r2/`2. We take, as above, ψ ∼ ψ + 2π/p and θ ∈ (0, π),

φ ∈ (0, 2π) and r > r+ where r+ is the largest root of U(r). As is well known,

regularity at r = r+, the largest root of U(r), requires that the angle τ must be

identified as τ ∼ τ + β with

β =
2π`2r+

2r2
+ + `2

. (3.37)

Thus for fixed temperature T = β−1 there are two possible black holes

r+ =
π`2 ± `

√
π2`2 − 2β2

2β
(3.38)

provided T > Tmin where

Tmin =

√
2

π`
. (3.39)

Note that rather than closing smoothly to an S1 × S2 ‘bolt’ as in Euclidean Eguchi-

Hanson-AdS5, the above space has a L(p, 1) bolt.

We now follow the standard procedure [76, 77] to compare the finite Euclidean on-

shell actions for these two possible infilling metrics for fixed temperature T = β−1.

The renormalized Euclidean action is

I = − 1

16πG

[∫
M

(
Rg +

12

`2

)
dVol(g) + 2

∫
∂M

(
TrK − 3

`
− `Rh

4

)
dVol(h)

]
(3.40)

where h is the metric induced on a hypersurface r = R and Rg, Rh are the respective

scalar curvatures of the metrics g and h.
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For Eguchi-Hanson-AdS5 we have

IEH =
β`2Vol(L(p, 1))

16πG

[
3

4
−
(
p2

4
− 1

)2
]

(3.41)

where Vol(L(p, 1)) = 2π2/p is the volume of the boundary L(p, 1). For the Euclidean

black hole metric (3.36) a computation gives

IBH =
β`2Vol(L(p, 1))

16πG

[
3

4
+
r2

+

`2

(
1−

r2
+

`2

)]
. (3.42)

With the actions at hand, simple calculations reveal that the situation is analogous to

the Hawking-Page transition [64]. At low temperature the Eguchi-Hanson-AdS5 soli-

ton has the least action and dominates the canonical ensemble, whereas at sufficiently

large temperatures, it is a large black hole that dominates. When the actions are equal

there is a transition analogous to the Hawking-Page transition. The temperature at

which the phase transition occurs can be shown to be2

TEHB =
1

2π`

4 +
√
p4 − 8p2 + 20√

2 +
√
p4 − 8p2 + 20

. (3.43)

At large values of p this has the asymptotic form

TEHB =
p

2π`

[
1 +

1

p2
+

5

2p4
+ · · ·

]
. (3.44)

In the strict p→∞ limit, this phase transition is related to that which occurs between

the toroidal AdS black hole and the AdS soliton [80].

3.5 Geodesics

In this section we consider the behaviour of null and timelike geodesics in the Eguchi-

Hanson-AdS5 geometry. Our primary interest is to investigate instabilities in this

horizonless spacetime. As is now well established, there is a close connection between

the geometrically induced stable trapping of null geodesics and instabilities due to the

2See also [78, 79] where an analogous computation was performed. We thank the referee for
bringing these references to our attention.
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clumping of wave energy. In the geometric optics approximation, the propagation of

solutions to the wave equation in a fixed background can be described by the trajectory

of null geodesics. Stable trapping is a phenomena by which properties of the geometry

create obstacles forcing null geodesics to be confined in a spatially compact region.

The prototypical example of null trapping is the photon sphere at r = 3M in the

Schwarzschild spacetime; null geodesics exist in circular orbits at fixed radius. Such

trapping, however is unstable because any small perturbation of the orbit will cause

the null geodesics to either fall towards the horizon or escape to infinity. By contrast,

stable trapping occurs when small perturbations of the orbits remain small so the

trapping region is ‘attractive’. Stable trapping has been shown to lead to inverse-

logarithmic time decay of wave energy in both asymptotically flat [65, 48, 49] and

asymptotically AdS spacetimes [51]. As discussed in the introduction, this is sugges-

tive of a non-linear instability, as linear stability typically requires decay that is an

inverse polynomial function of time.

To exploit the local R×SU(2)×U(1) isometry of the Eguchi-Hanson-AdS5 spacetime,

it is convenient to (3.3) in the form

ds2 = −g(r)dt2 +
dr2

f(r)g(r)
+
r2f(r)

4
[dψ̄ + cos(θ)dφ]2 +

r2

4
dΩ2

2 (3.45)

where we have defined a new coordinate ψ̄ = 2ψ. Then (ψ̄, θ, φ) become the famil-

iar Euler angles, with θ ∈ (0, π), ψ̄ ∈ (0, 4π/p), φ ∈ (0, 2π), and the metric can be

expressed as

ds2 = −g(r)dt2 +
dr2

f(r)g(r)
+
r2

4

(
σ2

1 + σ2
2

)
+
r2f(r)

4
σ2

3 (3.46)

where σi are left-invariant one-forms on SU(2) defined by

σ1 =− sin ψ̄dθ + cos ψ̄ sin θdφ , (3.47)

σ2 = cos ψ̄dθ + sin ψ̄ sin θdφ , (3.48)

σ3 =dψ̄ + cos θdφ . (3.49)



53

Explicitly, the spatial Killing vector fields are given by

R1 = cot θ cosφ∂φ + sinφ∂θ −
cosφ

sin θ
∂ψ (3.50)

R2 = − cot θ sinφ∂φ + cosφ∂θ +
sinφ

sin θ
∂ψ (3.51)

R3 = ∂φ, L3 = ∂ψ. (3.52)

The trajectories of geodesics of mass m̂ are easily found using this symmetry and the

Hamilton-Jacobi method as outlined in [81]. In particular the Hamiltonian for the

motion of uncharged particles is H = gabpapb where pa are the canonical momenta.

The Hamiltonian system is Liouville integrable as there are five Poisson commuting

functions associated with the local isometries (there is an additional conserved quan-

tity associated with a reducible Killing tensor). The Hamilton-Jacobi equation is

∂S

∂λ
+ gab

∂S

∂xa
∂S

∂xb
= 0 (3.53)

where λ is an affine curve parameter and it is clear one can express the Hamilton-

Jacobi function S in the separable form

S = m̂2λ− Et+ pψψ + pφφ+ Θ(θ) +R(r) (3.54)

where (E, pψ, pφ) correspond to conserved energy and angular momenta along particle

trajectories, with pa = ∂aS. Omitting details, we simply present the resulting curve

equations for xa(λ):

ṫ =
2E

g(r)
˙̄ψ = −8 cot θ

r2

[ pφ
sin θ

− cot θpψ̄

]
φ̇ =

8

r2 sin θ

[ pφ
sin θ

− cot θpψ̄

]
(3.55)

and

ṙ2 = 4E2f(r)− 16g(r)

r2
p2
ψ̄ − 4m̂2f(r)g(r)− 16C

r2
f(r)g(r) (3.56)

θ̇2 =
64

r2

[
C −

(
cot θpψ̄ −

pφ
sin θ

)2
]

(3.57)

where C is another constant of the motion associated with the existence of the re-

ducible Killing tensor.
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We will now perform more detailed studies of the geodesics.

3.5.1 Time-like Geodesics: Negative Mass Repulsion

Let us begin with a consideration of time-like geodesics, i.e. m̂ 6= 0. To illustrate

some similarities/differences with time-like geodesics in AdS, we will restrict attention

here to radial time-like geodesics. After defining E = E/m̂ and rescaling the affine

parameter accordingly, we arrive at the equation

ṙ2 = f(r)
[
E2 − g(r)

]
. (3.58)

We immediately see that the large−r turning point of the motion is exactly the same

as it is for AdS3:

rmax = `
√
E2 − 1 . (3.59)

This result is sensible — the space is asymptotically locally AdS and so at large enough

distances the radial motion should approach that of AdS. There is a further constraint

to consider since the only physically relevant cases are those for which rmax ≥ a. This

in turn enforces that the energy must be larger than a given threshold,

E ≥ Emin =
p

2
, where

a

`
=

√
p2

4
− 1 . (3.60)

A second turning point arises due to the presence of the bubble, this is at r = a,

where f(r) = 0. The motion of a massive particle is therefore oscillatory, bouncing

back and forth on the interval a ≤ r ≤ rmax.

The presence of the bubble has implications for the motion at smaller values of r. To

highlight this, consider the acceleration

r̈ = − r

`2
− a4

r3`2
+

2a4(E2 − 1)

r5
(3.61)

where the first term on the right-hand side is the acceleration term present in pure

AdS. This makes manifest the well-known fact that the motion of time-like geodesics

in AdS is periodic with period 2π`. Further, note that the sign of the acceleration

3Of course, the radial coordinate for the soliton is not the same as the radial coordinate for pure
AdS. These differences disappear at sufficiently large r, as can be confirmed by putting the metric
into Fefferman-Graham form. What we mean here is that the functional form of rmax is identical.
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in pure AdS is always negative — a stone tossed in AdS will always be returned to

sender.

The additional acceleration terms for a 6= 0 have interesting consequences. The last

term in the above always makes a positive contribution, since E ≥ Emin > 1. Close

to the bubble this positive term actually dominates, leading to a region where the

acceleration is positive, indicating a repulsion.

It is a simple matter to prove this. First, note that for sufficiently large r, the leading

AdS term will always dominate, meaning that r̈ < 0 at large r. Next, let us consider

the possibility of solutions to the equation r̈ = 0. Define a new variable r = `(x+ α)

where α = a/`. Then, the equation r̈ = 0 becomes equivalent to the polynomial

equation4

x6 + 6αx5 + 15α2x4 + 20α3x3 + 16α4x2 + 8α5x+ 2α4
(
1− E2 + α2

)
= 0 . (3.62)

Every term in this polynomial is manifestly positive except for the very last one. It

will vanish for

E = Emin =
p

2
. (3.63)

For E > Emin the last term is negative. In this case, applying Descartes’ rule of signs

tells us that there will be a single positive value of x where the above polynomial has

a zero. There are no zeros for positive x under other circumstances. Undoing our

substitutions, x > 0 implies r > a. Thus, we have concluded that there is exactly

one zero for the acceleration for r > a. Since we know from the above analysis that

r̈ < 0 for sufficiently large r, we then conclude that in a neighbourhood of the bubble

the acceleration is positive for particles with E > p/2. Since this corresponds to the

minimum possible energy, it follows that all massive particles feel a repulsion in the

vicinity of the bubble, except those for which E is exactly Emin as these particles just

sit at the bubble without motion.

The extent of this repulsion is bounded and approaches a constant, as can be seen by

expanding the acceleration in the vicinity of the bubble:

r̈ =
(4E2 − p2)

`
√
p2 − 4

+O(r − a) . (3.64)

4While an explicit solution for x in this equation can be obtained, it is sufficiently complicated
that it is not beneficial to present it here.
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The origin of this effect is the negative mass of the bubble. To see this, it is instructive

to re-write the expression for the acceleration in terms of the mass given in (3.27). It

is a simple matter to show that it then takes the form,

r̈ = − r

`2
− 8pM

π

(2r2
max − r2)

r5
, (3.65)

where rmax was introduced in eq. (3.59). Since r ≤ rmax we see directly that if it

were possible to have positive mass, then the acceleration would always be attractive.

However, since the mass is necessarily negative, there is a competition between the

confining potential of AdS and the negative mass repulsion of the bubble. This leads

to a thin layer in the vicinity of the bubble where massive particles find themselves

accelerated away from the bubble.

Finally, it is important to emphasize that the repulsion does not result in a situation

where a (positive energy) particle ‘hovers’ at some fixed position r > a. When E >
Emin the velocity is necessarily non-zero at the point where the acceleration vanishes.

The only case when it is possible for ṙ = r̈ = 0 simultaneously is when E = Emin,

corresponding to a particle at the location of the bubble.

The (radial) motion of massive particles in Eguchi-Hanson-AdS5 is therefore qual-

itatively similar to the motion of massive particles in AdS. The motion is forever

oscillatory, with particles confined in some layer surrounding the bubble, the thick-

ness of which depends on the energy of the particle. Unsurprisingly, this suggests that

Eguchi-Hanson-AdS5 may suffer from a similar non-linear instability as global AdS,

however, here without the possibility of forming horizons [62].

3.5.2 Null Geodesics: Absence of Stable Trapping

Consider, now, null geodesics. These are obtained by setting m̂ = 0 in (3.56), yielding

ṙ2 = 4f(r)− 16g(r)η2

r2
− 16Ĉ

r2
f(r)g(r) (3.66)

where η := pψ/E and Ĉ = C/E2 and we have performed an appropriate rescaling of

the affine parameter. For convenience, we will work with dimensionless parameters
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by scaling out ` (this is equivalent to fixing ` = 1). Doing so produces

ṙ2 = V (x) =
4

x3
P (x), P (x) = c3x

3 + c2x
2 + c1x+ c0. (3.67)

where x = r2 and

c3 = 1− 4Ĉ − 4η2, c2 = −4(Ĉ + η2), c1 = −a4(1− 4Ĉ), c0 = 4a4Ĉ. (3.68)

Trajectories are only allowed in regions where the effective potential V (r) > 0 with

turning points at the zeroes, whereas regions with V (r) < 0 are forbidden. Stable

trapping will occur if there exist x1, x2 such that 0 < a2 ≤ x1 < x2 with V (xi) = 0,

V (x) > 0 for x ∈ (x1, x2), and V (x) < 0 in neighbourhoods to the left of x1 and right

of x2 (see [49, Fig 2]). This translates into similar conditions on the cubic P (x). First

note that Ĉ ≥ 0 by definition. Observe that

P (0) = 4a4Ĉ ≥ 0, P (a2) = −4a4(1 + a2)η2 ≤ 0. (3.69)

We now consider several distinct cases.

Case 1: η, Ĉ 6= 0

From above, we have P (0) > 0 and P (a2) < 0. Thus there must be at least 1 root x0

with 0 < x0 < a2. For stable trapping we will need two further positive roots x1, x2

each strictly greater than a2. As x → ∞, the sign of P is controlled by c3. If c3 > 0

then it is clear there cannot be a 2nd root x2. This occurs if

0 < Ĉ <
1

4
− η2 <

1

4
(3.70)

Thus we find there is no stable trapping in this case. Now, suppose that c3 < 0. then

Ĉ >
1

4
− η2 (3.71)

Now consider Descartes’ rule of signs. We are assuming c3 < 0, and c2 < 0, whereas

c0 > 0 automatically. Thus there is only one sign flip between adjacent coefficients:

if c1 > 0 there is a sign flip between the x2 and x coefficients, and if c1 < 0 there is

a sign flip between the x and x0 coefficients. Thus the rule of signs indicates there
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can be only one positive root, but we already know one exists in (0, a2). Thus stable

trapping cannot occur in this case either.

Finally suppose c3 = 0 so that

Ĉ =
1

4
− η2 > 0 (3.72)

in which case we must have η2 < 1/4. Writing η2 = 1/4− ε for 0 < ε < 1/4, we have

P (x) = −x2 + a4(4ε− 1)x+ 4a4ε (3.73)

which is a downward-pointing parabola. It is easy to see that the only turning point

has to be for x < 0; in particular there cannot be two roots to the right of x = a2.

Thus there is no stable trapping here either.

Case 2: Ĉ = 0

In this case we get

P (x) = x((1− 4η2)x2 − 4η2x− a4). (3.74)

Then x = 0 is automatically a root. Suppose that η2 = 0. Then P = x(x−a2)(x+a2)

for which we easily read off the roots and find stable trapping cannot occur. Hence

assume η2 > 0. To get stable trapping we need the quadratic Q(x) = (1 − 4η2)x2 −
4η2x − a4 to have two roots that are greater than a2. From Descartes’ rule of signs

we see that there can be at most 1 sign flip between adjacent coefficients, and hence

only one positive root. Thus there is no stable trapping here either.

Case 3: η = 0

We have

P (x) = (1− 4Ĉ)(x− a2)(x+ a2)

(
x− 4Ĉ

1− 4Ĉ

)
(3.75)

If C = 1/4 then this is just

P = −(x− a2)(x+ a2) (3.76)
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which is a downward pointing parabola and there is no stable trapping here. Hence

assume Ĉ 6= 1/4. There is a root x− = −a2 and x1 = a2. Then the only way we have

the final root x2 to the right of x = a2 is if

4Ĉ

1− 4Ĉ
> a2 (3.77)

which, since Ĉ > 0 implies we must have 1 − 4Ĉ > 0. But then P ′(x2) > 0, which

cannot occur for stable trapping.

The above cases exhaust all possibilities, establishing that stable trapping does not

occur.

3.5.3 Null Geodesics: Light-Crossing Time

In AdS, a light ray sent from a given point completes a round-trip to infinity and back

in finite time coordinate time. Taking this point to be the origin, we have

TAdS = 2

∫ r=∞

r=0

dr
ṫ

ṙ
= 2

∫ ∞
0

dr

g(r)
= π` . (3.78)

This in turn defines a fundamental frequency naturally associated with AdS:

ωAdS` =
2π`

TAdS

= 2 . (3.79)

This is relevant because the fundamental frequency matches the spacing for the over-

tones of scalar normal modes in AdS. Since we will study scalar normal modes in the

next section, it is relevant to understand if a similar effect occurs for the soliton.

The computation for the light-crossing time in the soliton proceeds along the same

lines. The integral to evaluate is now

Tp = 2

∫ ∞
a

1

g(r)
√
f(r)

dr , (3.80)

where here the subscript p refers to the integer defining regularity of the geometry.
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Figure 3.1: A plot of the light-crossing time Tp as a function of p (black curve)
compared with the asymptotic approximations as p → 2 (blue curve) and as p →∞
(red curve). In each case we include the first three terms of the approximation. We
see that the large p approximation is quite accurate for all physical values of p ≥ 3.

This integral actually has a closed form expression,

Tp
`

=
1

48
√

2π(p2 − 4)3/2

{
48(p2 − 4)2Γ

(
3

4

)2 [
2F1

(
−1

4
, 1,

1

4
,

16

(p2 − 4)2

)
− 1

]

+Γ

(
1

4

)2
[

48(p2 − 4) +
256

p
√
p2 − 8

2F1

(
1

2
,
3

4
,
7

4
,

16

(p2 − 4)2

)]}
. (3.81)

Expanding this in different limits is more useful. First, for p→ 2, the expansion is

Tp
`

= π−
√

2

π
Γ

[
3

4

]2√
p− 2−4πΓ [1/4] + 3

√
2Γ[3/4]3

24
√
πΓ[3/4]

(p−2)3/2+
π

2
(p−2)2+O(p−2)5/2 .

(3.82)

The other limit of interest where this can be expanded is p → ∞. In this case the

expansion reads,

Tp
`

=
Γ[1/4]2√

2πp
+

√
2

π

Γ[1/4]2 − 8Γ[3/4]2

p3
+

3 (17Γ[−3/4]2 − 256Γ[3/4]2)

8
√

2πp5
+O(p−6) .

(3.83)
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We show in Figure 3.1 a plot of the exact evaluation of the light crossing time, com-

pared with the approximate forms described above. Here we have plotted the result

treating p as a continuous parameter. It must be kept in mind that regular geometries

exist only for integer p ≥ 3. First, we note that the light-crossing time for the soliton

is always less than that of pure AdS. Regarding the approximations, for p ∼ 2 the

approximation is accurate in the close vicinity of p = 2, but is a poor approximation

for larger, physical values of p. The large p approximation is much better suited for

all cases p ≥ 3. Finally, in the limit p→∞, we recover the light-crossing time of the

AdS soliton, τAdSS = Γ[1/4]2/(2
√

2π).5 This is observed after performing the shift of

the time coordinate necessary for that limit τ = pt/2 — see Section 3.3.1.

3.6 Wave Equation on Eguchi-Hanson Solitons

A massive Klein-Gordon field Φ obeys the equation

∇µ∇µΦ = M̂2Φ (3.84)

in the spacetime background metric (3.3). We use the separation ansatz

Φ = e−iωteimψY (θ, φ)R(r) (3.85)

where Y (θ, φ) is an eigenfunction of the charged scalar Laplacian on S2 = CP 1,

satisfying

D2Y (θ, φ) = −µY (θ, φ) (3.86)

where Aµ is a one-form on S2 defined as Aµ = cos θ
2
dφ, and the connection is Dµ =

∇S2
µ
− imAµ. The spectrum of this operator, and the associated eigenfunctions have

been studied [83, 84, 85], and the spectrum is

µ = l (l + 2)−m2 , (3.87)

l = 2k + |m| , (3.88)

k = 0, 1, 2, . . . . (3.89)

5See, for example, [82].
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Requiring Φ to be smooth implies m = np, as ψ is identified with period 2π/p. With

this observation, the problem reduces to that of a single radial equation, which reads

1

r

d

dr

(
f(r)g(r)r3dR(r)

dr

)
+

[
ω2r2

g(r)
− m2

f(r)
− M̂2r2 − µ

]
R(r) = 0 . (3.90)

The radial equation (3.90) can be cast into Schrödinger equation form. To see this,

we introduce a new independent variable x

dx

dr
=

1

g
√
f
, x(a) = 0 (3.91)

and a dependent variable Ψ

Ψ = f 1/4r3/2R . (3.92)

This puts the radial equation into a formally self-adjoint form

−d
2Ψ

dx2
+ V (r(x))Ψ = ω2Ψ (3.93)

with potential

V (r) = −gf
1/4

r3/2

d

dr

[
r3fg

d

dr
(f−1/4r−3/2)

]
+
g

r2

(
m2

f
+ µ+ M̂2r2

)
. (3.94)

We now seek solutions of this equation. We have not been able to find an analytic

solution, and so we proceed with a combination of numerical and approximate tech-

niques.

3.6.1 Approximate Solution: WKB Analysis

In the limit of large eigenvalues the differential equation can be solved approximately

using, for example, the WKB method [86]. Here we set the mass parameter M̂ = 0.

For the purposes of this analysis, it is useful to rewrite the differential equation (3.90)

by defining

r = za , (3.95)
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which maps the domain to z ∈ [1,∞). After this transformation and applying the

regularity condition, the resulting equation is given by

0 =z(z4 − 1)
(
4 + (p2 − 4)z2

)
R′′(z) +

(
4− (p2 − 4)z2 + 12z4 + 5(p2 − 4)z6

)
R′(z)

+ 4z3

[
−4k2 − 2np− 4k(1 + np) +

n2p2z4

1− z4
+

(p2 − 4)z2`2ω2

4 + (p2 − 4)z2

]
R(z) . (3.96)

We work here in an approximation where the overtone number N is larger than the

other fixed quantum numbers characterizing the problem, i.e. N � n, k. In this case,

by defining a new function and variable according to

z = 1 + ex , (3.97)

and

Ψ =

√
z

(z + 1)(z2 + 1)(4 + z2(p2 − 4))
R(z) , (3.98)

the differential equation takes the form of a Schrödinger equation,

− 1

(ω`)2

d2Ψ

dx2
+ VΨ = 0 , (3.99)

with potential

V =
4z4(z − 1)(p2 − 4)

(4 + z2(p2 − 4))2 (z + 1)(z2 + 1)
(3.100)

in the limit of large (ω`). The transformation (3.97) has mapped the problem to

the interval (−∞,∞), which allows for direct comparison with the analysis of [86].

Examining the potential as a function of x we see that it vanishes at the boundaries

x→ ±∞, and there are no turning points on the interior domain. We can then apply

directly the results of [86, Sec. 10.5] for the quantization condition of normal mode

solutions in the geometric optics approximation:

ω`

∫ ∞
−∞

√
V (x)dx =

(
N +

1

2

)
π +O

(
1

ω

)
, (3.101)

where N is a non-negative integer. Written as an integral over z, the left-hand side
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of the above becomes∫ ∞
−∞

√
V (x)dx =

∫ ∞
1

2z2

(4 + z2(p2 − 4))

√
p2 − 4

z4 − 1
dz =

Tp
2`
, (3.102)

where in the last equality we recognize the integral as being identical to that defining

the light crossing time of the soliton geometry given in (3.80). Therefore, applying

the quantization condition as above, we have in the geometric optics approximation

the following result for the frequencies:

ω =

(
N +

1

2

)
2π

Tp
=

(
N +

1

2

)
ωfun , (3.103)

where the fundamental frequency ωfun = 2π/Tp for the Eguchi-Hanson-AdS5 soliton.

We expect this relationship to be accurate in the limit of large overtone number, since

we have assumed that `ω is large. Later, in our numerical results, we will verify this

is remarkably accurate even at small overtone number.

As explained below (3.80), the light crossing time can be evaluated analytically and

was presented in Eq. (3.81). While this closed-form solution for the light-crossing

time (or, equivalently, the fundamental frequency) is convenient, it is not necessarily

illuminating. Therefore in Table 3.1 we list the numerical values for the fundamental

frequency for a few values of p. Since the asymptotics of Tp are dominated by a 1/p

term, we have factored out an overall multiple of p in the numerical expressions for

ωfun. This allows one to see more clearly the limiting behaviour for larger values of p.

The results in this table should be compared with the fundamental frequency for the

AdS soliton, which is

`ωAdSS
fun =

4
√

2π3/2

Γ[1/4]2
= lim

p→∞

2`ωfun

p
≈ 2.39628 . (3.104)

That is, at large values of p, the fundamental frequency, which governs the normal

modes at large overtone number N � k, n, asymptotically approaches p/2 times the

fundamental frequency of the AdS soliton. This is directly related to the fact that

there is a sense in which the AdS soliton is formally the large p limit of the Eguchi-

Hanson-AdS5 soliton, as explained in Section 3.3.1. The factor of 2/p is precisely the

factor required to match the time coordinates between the two geometries.
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Numerical values of ωfun

p 3 4 5 6 7 8 8 10
`ωfun/p 1.16822 1.18337 1.18917 1.19207 1.19375 1.19481 1.19553 1.19604

Table 3.1: A selection of numerically obtained ωfun values.

3.6.2 Numerical Solution: Boundary Conditions & Regular-

ity

To implement our numerical methods, it is essential to understand the behaviour of

the solutions to the radial equation in the vicinity of the bubble and asymptotically.

It will also be more convenient to compactify the semi-infinite domain to a finite

interval. We therefore begin our numerical analysis of the radial equation with an

analysis of the asymptotic behaviour of the solutions and boundary conditions. For

the sake of comparison with the broader literature, here we will re-instate the mass

parameter M̂ in our formulas.

We begin by introducing a new coordinate

u =
2(r − a)

r + a
− 1 , (3.105)

which maps the semi-infinite domain r ∈ (a,∞) to the interval u ∈ [−1, 1]. To

understand the singularity structure, we perform a Frobenius analysis. Near r = a

we write,

R(u) = (u+ 1)s
∑
i=0

ai(u+ 1)i (3.106)

and extract s by solving the differential equation near u = −1. Provided that m 6= 0,

the equation allows for two solutions, corresponding to the values

s = ±m
2p
. (3.107)

We require regularity of the solution as u→ −1, and therefore only one of the above

solutions is physically acceptable, depending on the sign of m. In general, for m 6= 0

we have the regular behaviour s = |m|/(2p).

The case m = 0 must be treated separately, since the Frobenius method gives a
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degenerate root in that case. Since the degenerate root corresponds to s = 0, from

the general theory of Frobenius analysis, we can conclude in this case that the solution

must be of the form

R(u) =
∑
i=0

ai(u+ 1)i + log(u+ 1)
∑
i=0

bi(u+ 1)i . (3.108)

It can easily be shown that this ansatz leads to a consistent series solution in the

vicinity of u = −1. Regularity of the solution there forces us to set b0 = 0, and so

when m = 0, the solution approaches a constant as r → a. This behaviour is in fact

captured by the result above, s = |m|/(2p), in the case m = 0.

The asymptotic analysis near u = 1 (i.e. r → ∞) is more standard. We can again

proceed via Frobenius analysis. Taking the Frobenius ansatz

R(u) = (u− 1)ŝ
∑
i=0

ai(u− 1)i , (3.109)

expanding the differential equation near u → 1 and demanding a solution of the

indicial equation, we find

ŝ = 2±
√

2 + (M̂`)2 . (3.110)

Requiring the solution to be real gives the well-known Breitenlohner-Freedman bound

[87], (M̂L)2 > −2. As usual, we proceed by taking the normalizable solution,

ŝ = 2 +

√
2 + (M̂`)2 . (3.111)

With the asymptotic behaviours understood, we now recast the differential equation

into a form that is more amenable to numerical solution. To this end, we define a

new function

R(u) = (1− u)2+
√

2+(M̂`)2(1 + u)|m|/(2p)h(u) . (3.112)

We then recast (3.90) in terms of the new function h(u). The resulting expression

is somewhat messy, and so we do not present it here. The prefactors implement

the appropriate fall-off conditions in the two relevant limits, and therefore the only

requirement on h(u) is that it should be regular. Demanding this, a series solution
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near either u→ −1 or u→ +1 results in Robin boundary conditions

h′(−1) =

[
(4 + p2)(m2 + 2|m|p) + 4p4 + 8ω2 + 2p2(µ− ω2)

2p3(|m|+ p)

]
h(−1) (3.113)

h′(1) =

(
1 +
|m|
4p

)
h(1) (3.114)

that must be imposed on the function h(u).

Before moving on, it is worth commenting in a bit more detail about the solution

in the near bubble regime r → a. In this regime, the radial solution behaves as

R(r) ∼ (r−a)n/2, and so it appears to be continuous but not smooth there. To study

this more carefully, we carry out the transformation

ρ =
4
√
r − a

p
√
f ′(a)

, ϕ = pψ (3.115)

which yields

ds2 = dρ2 + ρ2dϕ2 (3.116)

namely the standard polar metric on R2 as r → a, with ϕ ∼ ϕ+ 2π due to the 2π/p

periodicity of ψ.

Consider next the solution to the wave equation as r → a. Focusing just on the terms

with r and ψ dependence, and transforming these according to the polar coordinates

(3.115) defined above, we obtain

φ(r, ψ) ∼ ρneinϕ . (3.117)

Despite the fact that neither ρ nor ϕ are themselves smooth functions — as can be

confirmed by transforming these quantities to a Cartesian frame — the combinations

as appearing here are indeed smooth. The solutions have the same structure as Bessel

functions.

3.6.3 Numerical Solution: Normal Modes

We can now perform a numerical analysis of the radial equation (3.90),which we carry

out for the case M̂ = 0. To solve this equation, we have employed two different numer-

ical schemes. Our primary method has been a pseudospectral method for obtaining
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the eigenvalues of the differential operator. However, we have also cross-checked and

benchmarked this method with a simpler shooting method. In Section 3.9 we compare

the two techniques.

For an in-depth review of the pseudospectral method we refer to various references,

e.g. [88, 89, 90]. After the transformations (3.105) and (3.112), the radial equation is

a problem on the interval [−1, 1]. On this interval, we introduce a grid consisting of

N + 1 grid points ui, which we take to be the Gauss-Lobatto points,

ui = cos
iπ

N
for i = 0, . . . ,N . (3.118)

We then discretize the differential equation. The eigenfunction h(u) becomes a vector

defined at the Gauss-Lobatto points, hi := h(ui), and the derivatives appearing in the

differential equation are replaced with the corresponding Chebychev differentiation

matrices6 Di,j. The differential equation then reduces to a generalized eigenvalue

problem,

Hi,jhj = ω2Vi,jhj (3.119)

where Hi,j is the discretization of the differential operator and Vi,j is the matrix

discretization of the terms multiplying ω2 in the original differential equation. To

implement the Robin boundary conditions, we replace the first row of the above with

the discretization of equation (3.114), and the last row with the discretization of

equation of (3.113).

After the differential equation has been discretized, we utilize the built-in eigenvalue

solvers of Mathematica to obtain the eigenvalues ω. For a given choice of N we will

obtain a set of eigenvalues {ω}N for the generalized eigenvalue problem described

above. Of course, for any discretization of the differential equation, the eigenvalues of

the corresponding matrix equation will differ from the true eigenvalues of the differ-

ential operator. We expect that the error in this discretization will become smaller as

N is increased. We monitor convergence in the following way. We set a priori a tol-

erance that we regard as the minimum acceptable absolute error in the eigenvalue ω.

We then choose a number of grid points N and compute the spectrum {ω}N first for

N and then the spectrum {ω}N+1 for a grid with N +1 points. For each eigenvalue in

{ω}N we assess whether there is a corresponding eigenvalue in {ω}N+1 that is within

6We refer to, for example, [89] for an explicit form of these objects — c.f. section 2.4.2 therein.
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Figure 3.2: A comparison of the WKB approximate results for n = k = 0 (black lines)
with the numerically computed eigenvalues for p = 3, 4, 5, 6 corresponding to the blue,
red, green and orange dots, respectively.

the specified tolerance. If it is, then we conclude that this particular eigenvalue has

been determined to the specified tolerance. We continue in this way, identifying each

eigenvalue in {ω}N that has converged within the specified tolerance. For most of

our results the tolerance has been set to 10−5, meaning the eigenvalues are accurate

to at least five decimal places. In most cases, we have repeated the above procedure

for several values of N to gain a better understanding of the convergence proper-

ties. In Section 3.11 we present additional details on convergence for particular cases.

Furthermore, in Section 3.9 we compare the results obtained via the pseudospectral

method with those obtained via the shooting method, to ensure consistency.

When confusion may arise, when referring to a particular element of {ω} we will

use the notation ω
(p)
N,k,n to indicate the dependence on the various parameters that

appear in the equation. Here N is a non-negative integer indicating the overtone,

and n = m/p. Since the equations and boundary conditions are invariant under

m→ −m, we will without loss of generality consider only the case where n is a non-

negative integer. When there is less risk of confusion, we will suppress additional data

attached to the spectral element ω
(p)
N,k,n to avoid unnecessary bulky notion.

To begin our discussion of the numerical results, we compare the output of the pseu-

dospectral method with the approximate results obtained via the WKB method. In
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Figure 3.3: A plot showing the error in the WKB approximation as a function of
overtone number for p = 3, 4, 5, 6 corresponding to the blue, red, green and orange
dots, respectively. Here we show the logarithm of the relative absolute error, |ωWKB−
ωNum|/ωNum.

0 50 100 150 200 250 300 350

0.005

0.010

0.050

0.100

0.500

1

Figure 3.4: A plot showing the difference between the overtone spacing for the nu-
merically computed frequencies ∆ωNum = ωN+1 − ωN and the fundamental frequency
ωfun on a logarithmic scale. The plot shows the case n = 20, k = 0 for p = 3, 4, 5, 6
corresponding to the blue, red, green and orange dots, respectively. The results are
consistent with the fundamental frequency governing the spacing between successive
overtones provided that N � n, k.
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the case of modes with n = k = 0, the WKB approximation is rather accurate for

all overtone numbers. This is shown in Figure 3.2, where we show the output of

the numerical methods (coloured dots) with the analytic approximation provided by

the WKB method (black lines). The plot shows this comparison for overtones up to

N = 50 for p = 3, 4, 5 and 6. In all cases, the agreement between the WKB result

and the more accurate numerical approach is superb. This is further backed up by

Figure 3.3, which shows the relative error between the WKB approximation and the

numerical result for the same set of p values. This plot shows that the WKB approx-

imation is most accurate for the p = 3 case, but in all cases is accurate to about one

part in one-thousand for overtone number N ≥ 10. As expected, the accuracy of the

WKB approximation becomes better the larger the overtone number becomes.

When n and k are non-vanishing, the WKB result no longer provides particularly

good agreement, and we will discuss these cases at greater length below. However, it

is important to note that even in these cases the WKB approach yields the correct

spacing between overtones, provided the overtone number is sufficiently large com-

pared to the values of n and k. We illustrate this in Figure 3.4, which compares the

overtone spacing ωN+1 − ωN as obtained numerically to the fundamental frequency,

which governs the overtone spacing in the WKB approximation. The plot shows this

comparison as a function of overtone number for the n = 20 and k = 0 mode for the

cases of p = 3, 4, 5 and 6. We see in all cases that the absolute difference between the

numerically determined spacing and the fundamental frequency is a monotonically

decreasing function of the overtone number. This result, which we have verified in

more examples in our numerical computations, is consistent with the notion that the

fundamental frequency universally governs the spacing between overtones in the large

overtone limit.

As mentioned, the WKB results provide a good approximation to the eigenvalues

when n = k = 0, and more generally allow us to understand the spacing between

overtones in the limit of large overtone number. However, there are a number of

instances when the approximate solutions obtained in this way are insufficient. We

move on to discuss these cases now. While the Eguchi-Hanson-AdS5 soliton is defined

only for integer p ≥ 3, the radial equation is sensible from a mathematical perspective

under more general circumstances. To understand the spectrum {ω} for the soliton,

we have found it useful to analyse the radial equation for real values of p ∈ [2,∞).

The main reason for this is that it is possible, through a combination of numerical
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and analytical techniques, to obtain simple asymptotic forms for ω as p → 2 and as

p → ∞. By piecing together these approximate forms in various ways it is possible

to get a good handle on the spectra over the full range of parameters.

In the limit p→ 2 we find the following behaviour:

ω
(p)
0,k,n ≈ 2 (2 + k + n) + n (p− 2)

+

[
6 (2n2 − n− k)

(k + n)(1 + 2k + 2n)(−1 + 2k + 2n)

]
(p− 2)2 + · · · (3.120)

where the first term has been obtained analytically; the analysis is outlined in Sec-

tion 3.11. Essentially, in the strict p = 2 limit, the radial equation reduces to that of

a Klein-Gordon field on the orbifold AdS5/Z2. That problem is obviously analytically

solvable, and leads to the first term in the above. We find excellent numerical agree-

ment between the p → 2 limit of the numerical results and this analytically derived

result, as detailed in Section 3.11.

The second and third terms in (3.120) have been inferred from the numerical results.

For simplicity, we have focused here only on the fundamental mode, and have not

worked out the dependence for the overtones due to the complexity. Our procedure

to determine these corrections was the following. We have computed, for numerous

choices of n and k, the spectrum on the interval p ∈ (2, 3]. For a given choice of n

and k, we then fit the numerical results to a polynomial in (p − 2). Adjusting the

order of the polynomial fit, we see that the coefficients converge rapidly to particular

values7. We take this as an indication that a series in (p− 2) captures accurately the

behaviour of the spectrum in the close vicinity of p = 2 for given values of n and k.

By comparing the results of this procedure across several different values of n and k,

we arrive at a collection of values cn,k,i for the coefficients of the (p− 2)i term in the

polynomial fit. We then study the way the different cn,k,i depend on n and k, and from

this infer their analytical dependence. The analytic dependence is then cross-checked

against numerical results for values of n and k that were not part of the sample used

when deducing the candidate analytic form. This process becomes more involved as

the power i is increased. However, for the linear and quadratic terms, the dependence

is simple enough that it can be inferred, giving the results presented above8. The fact

7For example, including terms up to order (p − 2)10 in the fit we find that the coefficient of the
linear term (p− 2) converges to five decimal places.

8We have also found that the behaviour of the (p−2)3 term can be deduced in certain limits. For
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Figure 3.5: Here we compare the approximate form of fundamental mode (black line)
against the numerically determined spectra (blue dots) over the range p ∈ (2, 3]. The
plots show the cases n = 1, k = 1 (top left), n = 1, k = 10 (top right), n = 10, k =
1 (bottom left) and n = 10, k = 10 (bottom right). The plots indicate that the
approximate form is valid over a larger range of p values as the value of n or k is made
larger.

that the dependence of these terms on n and k appears so simple suggests that it may

be possible to determine these corrections analytically, though we shall not pursue

this any further.

In Figure 3.5, we compare the analytic approximation (3.120) with the numerical

results for different values of n and k, over the interval p ∈ [2, 3). While this range

of p does not correspond to regular five-dimensional geometries, it does concisely

summarize important information about this approximation. First, we see that the

approximate form is quite accurate over this interval. Second, we note that the

approximation does better for large values of n and k. The reason for this second fact

seems to be the following. For large n or k, the coefficient of the quadratic term in

example, we have found that for n = 0 the coefficient of this term is −3/(4k2 − 1) while for k = 0
the coefficient of this term is 3/(2n+ 1)2. However, the functional form of the cubic term for general
values of n and k has eluded us.
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Figure 3.6: Plots of the frequencies vs. p for n = 0 and k = 9, 11, 13 and 20 (top left,
top right, bottom left, bottom right, respectively). These plots highlight the fact that,
for k > 2n2−n, it is possible for the eigenvalue to initially decrease as p increases. In
all cases, the light gray line indicates the analytic approximation (3.120), while the
blue dots indicate numerical data.

(3.120) behaves like 1/n or 1/k2, respectively. This suggests that series (3.120) — if

it is convergent — converges more rapidly for large values of these quantum numbers,

or — if it is an asymptotic series rather than a convergent one — that the series

approximates the true function for a large range of p values in this limit.

A careful analysis of the analytic approximation shows that the quadratic term is

negative whenever k > 2n2 − n. This leads to some interesting structure in the

spectrum, but does not lead to any complex eigenvalues. Namely, we find that in

some circumstances the eigenvalues can initially decrease as a function of p. However

this behaviour is ultimately reversed when p becomes large — for sufficiently large

p, the eigenvalues are monotonically increasing as a function of p, as we will discuss

below. Examples are shown in Figure 3.6 for n = 0 and different choices of k. For all

values of k that we have explored, the shape of the eigenvalue curve as a function of

p is qualitatively the same. At larger values of k, the ‘dip’ occurs at larger values of

p. In all cases, the depth of the dip is rather small, and in no cases do the eigenvalues
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come close to crossing through zero. In practice, we observe this effect for physical

values of p only in the case n = 0. For n 6= 0, the small p → 2 approximation is less

accurate for k > 2n2 − n. Indeed, for any fixed values of n and k, the approximate

form derived in the p→ 2 limit will ultimately become bad when p is sufficiently large.

Roughly, this occurs when the quadratic piece in the approximation dominates.

When p becomes sufficiently large compared to the quantum numbers n and k, the

approximate form derived in the p→ 2 limit fails to accurately capture the details of

the spectrum. In this regime, we can make progress by understanding the solution of

the radial equation in the limit of large p. Numerical experiments suggest that, when

p � n, k the eigenvalues exhibit a linear dependence on p. This observation can be

explained analytically. As described in Section 3.3.1, in the large p limit, there is a

formal sense in which the geometry limits to the AdS soliton. The normal modes of

the AdS soliton then govern the slope of the eigenvalues ωN,k,n. Explicitly, we have

the following relation that holds for large p:

dω
(p)
N,k,n

dp
= αN,n + . . . as p→∞ , (3.121)

where the dots denote terms that are subleading as p→∞. Here αN,n are the normal

modes of the AdS soliton which, unfortunately, cannot be determined analytically9.

We tabulate in Section 3.10 the numerically determined values of these normal modes

and overtones for several values of n. We also note that the WKB approximation

gives a reasonably accurate approximation when N � n,

`αN,n ≈
2
√

2π3/2

Γ[1/4]2

(
N +

1

2

)
. (3.122)

Note that the fact that the quantum number k is absent in the above expressions is

result of neither an assumption nor a typo. There is an ‘emergent degeneracy’ that

appears for sufficiently large p that eliminates any dependence on k in the leading

expressions.

While (3.121) provides a good approximation for the slope, additional details are

required to determine the intercept and thereby obtain a good approximation to the

eigenvalues themselves, rather than just their slope. One simple — and surprisingly

9Strictly speaking, αN,n are the normal modes for the AdS soliton when the time coordinate is
rescaled by a factor of 2 from the usual value.
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Figure 3.7: Plot of the fundamental mode for k = 0 (top left), k = 1 (top right), and
k = 2 (bottom). In all cases, the curves correspond to n = 0, 1, 2, 3 in order from
bottom to top (or, in colour order, orange, blue, red, and green). The solid black
lines correspond to an analytic approximation to the curves, while the coloured discs
correspond to the results of the numerical computation.
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accurate — option is to combine this large p approximation with the fact that we

know as p→ 2 the eigenvalues approach 2(2 + n+ k +N). Choosing the constant of

integration to be such that the eigenvalues have this point as the intercept, we obtain

the approximation:

ω
(p)
N,k,n ≈ (p− 2)αN,n + 2(2 + n+ k +N) . (3.123)

This approximate form gives very good agreement with the numerically determined

eigenvalues over the full range of physical p values, provided that n is sufficiently large.

In this sense, one may consider (to a first approximation) that the normal modes of

Eguchi-Hanson-AdS interpolate between the normal modes of AdS5/Z2 and the AdS

soliton as the parameter p is varied.

A more accurate approximation can be obtained by carrying out the same series of

steps that we followed in the p→ 2 limit. That is, through a combination of numeric

and analytic techniques, we can determine the next-to-leading order terms in the large

p expansion. If instead we do this, we obtain the following:

ω
(p)
N,k,n ≈ pαN,n +

n(2k + 1)

αN,n
+O(1/p) . (3.124)

We show this approximation for a few representative cases in Figure 3.7 for small

values of n.

Despite the constant term being heuristically derived, the approximation (3.123) ac-

tually does a better job than one might naively expect, at least for the fundamental

mode. One reason for this is the following. Though we have not been able to prove

this behaviour analytically, we numerically observe that as n becomes large, α0,n ≈ n.

Therefore, in this limit, the large p approximation given in (3.123) approaches

ω
(p)
0,k,n ≈ 2(2 + n+ k) + n(p− 2) for n→∞ . (3.125)

If we compare this result with the large n → ∞ limit of the p → 2 approximation

given in (3.120) we see that the two expressions are exactly the same. Therefore, the

approximate forms derived in the p� n and p� n limits are identical. This explains

why both approximate forms do better than expected for large values of n.

For the sake of completeness, we tabulate a number of the numerically determined
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normal modes in Section 3.12.

3.7 Conclusions

Eguchi-Hanson-AdS solitons are conjectured to be the ground states for anti de Sitter

gravity with lens space L(p, 1) boundary conditions at infinity, analogous to how

the AdS soliton is the conjectured ground state for toroidal boundary conditions at

infinity. In this manuscript, we have considered various aspects of Eguchi-Hanson-

AdS5 solitons. Our primary objective, which we have initiated here, is to understand

to what extent these geometries are likely to be stable or not. In this sense, it is

known [62] that under certain circumstances perturbations of the geometry may result

in the formation of naked singularities. However, the precise mechanism underlying

such an instability remains unknown. Since relatively little is understood about these

geometries, our study here has focused on other related properties as well.

A key observation we have made concerns the relationship between the Eguchi-

Hanson-AdS5 solitons and the AdS soliton. We demonstrated that in the limit where

the lens space L(p, 1) parameter p → ∞, the geometry becomes identically equal to

that of the AdS soliton, up to a rescaling of the time coordinate. This observation is

more than a curiosity, as we have found here this allows one to obtain approximations

for various quantities of interest in terms of those same quantities for the simpler AdS

soliton geometry.10

We have studied the conserved quantities of the Eguchi-Hanson-AdS5 solitons and

constructed the extended first law of soliton mechanics. In doing so, we observe that

these solitons possess a non-trivial thermodynamic volume, despite having vanishing

entropy. Commensurate with a previous study of thermodynamic volume for asymp-

totically globally AdS5 solitons [25], the source of this quantity is topological in nature,

and has to do with the structure of the Killing potential in the vicinity of the bubble.

It would be interesting to extend these observations for other examples of solitons, as

it may allow for further elucidation of the role and interpretation of thermodynamic

volume in gravitational thermodynamics.

10After the first version of this manuscript appeared, Edgar Shaghoulian brought to our atten-
tion [69], where the same observation was made for the partition functions of CFTs on lens spaces.
Our result for the connection between Eguchi-Hanson-AdS and the AdS soliton could be inferred
from these results.
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We also considered the thermodynamics of Eguchi-Hanson-AdS5 solitons in the canon-

ical ensemble. After computing the on-shell action, we showed that for low temper-

atures the soliton dominates the canonical ensemble, while at higher temperature a

Schwarzschild-AdS-type black hole with lens space horizon dominates. The phase

transition between these two states is of the same type as studied for the toroidal

AdS black hole and the AdS soliton first studied in [80].

We examined the geodesics of the Eguchi-Hanson-AdS5 solitons, finding no evidence

suggestive of instability such as trapping of null geodesics. However, the time-like

geodesics exhibit are oscillatory in nature analogous to geodesics in global AdS. Thus,

an instability of the type shown in [52] for pure AdS may be present also for these

solitons. Investigating this in more detail is something we hope to return to in the

future.

Finally, we studied the separable solutions to the massless Klein-Gordon equation on

this background. Via numerical and approximate analytical methods, we find a set

of modes that oscillate, never decaying, analogous to AdS. We find no evidence of

frequencies with a non-vanishing imaginary component. Using the WKB approxima-

tion, we have been able to study the separation between successive overtones, showing

that it is well-approximated by the light-crossing time of the geometry by radial null

geodesics. We have found it possible to understand the normal mode frequencies by

piecing together two approximations. The first involves an analysis of the equation

in the vicinity of the value p → 2. While this does not correspond to a physical

soliton solution, the radial equation in this limit reduces to that for AdS5/Z2, which

admits analytic solutions. The second approximation involves the p → ∞ limit of

the radial equation, which reduces to the wave equation on the AdS soliton. Joining

the two approximations together gives a quite accurate approximation for the normal

modes of the Eguchi-Hanson-AdS5 solitons for any physical value of p in terms of

a single parameter that must be numerically determined: the normal modes for the

AdS soliton. In an approximate sense, one can then consider the normal modes of the

Eguchi-Hanson solitons as interpolating between those of the orbifold AdS5/Z2 and

the AdS soliton.

There remain a number of areas for future investigation. First among these, along the

lines of understanding potential mechanisms for instability, would be an understanding

of the gravitational perturbations of the geometry. This task is simplified since the
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solution is cohomogeneity-one, allowing for the techniques of [91] to be used. An

understanding of these perturbations may hint toward the existence of ‘resonating’

solutions constructible as non-linear extensions of the normal mode solutions [92, 93].

It would furthermore be interesting to understand the implications of these geometries

within the AdS/CFT correspondence, where they may be relevant for understanding

aspects of confined phases of CFTs on lens space geometries [94, 95, 82]. It would

also be interesting to understand the role of higher-curvature corrections for these

geometries [96, 97, 98].
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3.8 Appendix A: Comparison of Komar Mass with

Holographic Renormalization

In the main text, the mass was computed via the Komar approach which required

the gauge fixing of the Killing potential. We chose a gauge for the Killing potential

so that the Komar and Ashtekar-Magnon mass agree. This method of gauge fixing
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is standard in black hole chemistry, and was first implemented in this fashion in [99]

(see also [100]). In this section, we briefly compare this computation with holographic

renormalization, and in particular map the choice of gauge to a choice of quadratic

counterterms.11

Consider the following counterterm action,

Ict =
1

8πG

∫
d4x
√
h

[
3

`
+
`

4
R + `3

(
α1R

2 + α2RabR
ab + α3χ4

)]
, (3.126)

where χ4 = RabcdR
abcd−4RabR

ab+R2 is the Gauss-Bonnet density. This counterterm

action includes the terms necessary to cancel all divergences coming from the bulk

action and Gibbons-Hawking-York boundary terms. The quadratic terms included

here are not necessary to cancel divergences. Nonetheless, these terms can have the

effect of shifting the action by a solution-independent constant, as we will now show.

Without presenting details, the computation of the Euclidean action proceeds in ex-

actly the same manner as discussed in the main text. Now, with the quadratic coun-

terterms we arrive at the final result

IE = − πa4β

8`2pG
+

3π`2β

32pG
(1 + 96α1 + 32α2) , (3.127)

where the contributions from the quadratic counterterms are manifest. It is then a

trivial matter to obtain the mass,

M = − πa4

8`2pG
+

3π`2

32pG
(1 + 96α1 + 32α2) , (3.128)

= MAM +
3π`2

32pG
(1 + 96α1 + 32α2) . (3.129)

Here, in the second line, we have introduced MAM which denotes the Ashtekar-Magnon

mass computed in the main text. In the absence of the quadratic counterterms,

the mass computed via holographic renormalization differs from the AM mass by a

constant term,

M0 =
3π`2

32pG
. (3.130)

11We thank the anonymous referee for encouraging us to elaborate on this connection.
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This term has the same origin as the Casimir energy present for global AdS with spher-

ical boundary — see e.g. [76]. By restricting to the family of quadratic counterterms

Iquad
ct =

1

8πG

∫
d4x
√
h

[
`3

(
α1R

2 −
(

1

32
+ 3α1

)
RabR

ab + α3χ4

)]
, (3.131)

the M0 term can be eliminated and the mass computed via holographic renormaliza-

tion agrees with the Ashtekar-Magnon mass. We can also identify the gauge ambiguity

in the Komar mass (3.22) in terms of the coefficients of the quadratic counterterms

introduced above. Comparing the mass computed via holographic renormalization

with (3.22) we identify

C1 = −a
4

6
−
(

6α1 + 2α2 +
1

16

)
L4 . (3.132)

We then see how the appropriate choice of quadratic counterterms described above

yields the value of C1 chosen in the main text.

A few comments are in order. The main thing we have done here is to show how

the gauge ambiguity in the Komar potential can be directly related to the coefficients

of certain quadratic terms in the counterterm action. The relationship between the

AM mass and holographic renormalization has been previously explored in certain

cases [27, 101]. A term such as M0 is present only for even boundary dimensions.

In odd boundary dimensions the Ashtekar-Magnon mass agrees with that mass com-

puted via holographic renormalization using the standard counterterms. It would be

interesting to perform a similar analysis for the Komar mass, in particular demon-

strating how the gauge ambiguity is related to ambiguities in the counterterm action

under more general circumstances.

3.9 Appendix B: Solution of the Radial Equation

via the Shooting Method

In this section, we provide independent confirmation for the results obtained via the

pseudospectral method. To this end, we consider the solution of the radial equation

via the shooting method.

We construct two numerical solutions of the radial equation. One solution begins
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Figure 3.8: Plots of the logarithmic derivative of the numerical solutions. The blue
curves correspond to solutions integrated from u = −1, while the red curves corre-
spond to solutions integrated from u = +1. In this case, we have set p = 3, n = 0,
k = 0. The plots correspond to ω = 5.2, 5.4, 5.2985999 in order of left to right.

near the bubble at r = a, using a power series solution of the differential equation in

this neighbourhood to construct initial conditions, along with an initial guess for the

eigenvalue ω. This solution is integrated outward, toward r =∞, using the standard

built-in numerical methods of Mathematica. The second numerical solution proceeds

in much the same way, but begins near the asymptotic boundary, and is integrated

inward toward r = a.

The idea is simple: if ω has been chosen correctly, then the solution must be ev-

erywhere regular, and moreover, the two numerical solutions should agree over the

domain. However, since the equation is linear, and both R(r) and cR(r) for some

constant c are equally valid solutions, it is not so simple to directly compare the so-

lutions obtained by integrating from either end. (As there is no simple way to ensure

consistent normalization from the different starting points.) Instead, we compare a

logarithmic derivative,
R′in/out

Rin/out

, (3.133)

of the numerical solutions at intermediate points. In this way, differences in the nor-

malization of the solution can be eliminated. Matching of the logarithmic derivatives

of the two numerically constructed solutions over the domain is taken to mean the

correct value of ω has been identified.

As the purpose of this method is to serve as independent confirmation of the pseu-

dospectral results, we will not perform an exhaustive analysis here. Rather, we will

present a few instances that demonstrate consistency of the two approaches.

We show in Figure 3.8 an example of how the process works. The graphs show the
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logarithmic derivative of the solution over the domain u ∈ [−1, 1]. The blue curves

are those solutions obtained by numerically integrating the equation beginning at

u = −1, while the red curves are those solutions obtained by numerically integrating

the equation beginning from u = +1. The three graphs correspond to three different

choices of the eigenvalue ω, while we have set p = 3, n = 0 and k = 0 here. The

pseudospectral method outputs a value ωPS = 5.2985999 — this choice of ω appears

in the rightmost graph. The leftmost graph corresponds to the choice ω = 5.2, while

the center one corresponds to ω = 5.4. For both cases shown where ω is different from

ωPS, the two solutions are clearly in disagreement. However, for the choice ω = ωPS

the curves are visually indistinguishable over much of the domain, except for very

near the end points12. This is consistent with ω = ωPS being the correct choice for a

consistent solution.

It is also insightful to understand the difference in the in/out solutions as a function

of ω, to ensure that the implementation of the pseudospectral method is not missing

certain overtones, or returning incorrect eigenvalues. To this end, it is useful to

introduce an integrated residual. Of course, for any finite resolution, we expect that

the numerical solution that begins from u = −1 to blow up sufficiently close to

u = +1, and vice versa for the solution that begins from u = +1. Therefore, an

integrated residual should focus on an intermediate domain where both solutions can

be expected to be accurate. For this, we (arbitrarily) choose u ∈ [−1/2, 1/2]. Another

issue is the following. When ω becomes larger than the fundamental frequency, the

solution possesses a zero somewhere in the domain. (The number of zeros increases as

ω becomes larger than the various overtones). This leads to poles in the logarithmic

derivative — see the center plot of Figure 3.8 for an example. To remedy this, it is

convenient to work with an integrated reciprocal residual,

Res(ω) =

∫ 1
2

− 1
2

du

|∂u logRout − ∂u logRin|
. (3.134)

Viewed as a function of ω, the residual Res(ω) will peak when the difference between

the two solutions tends to zero. We can identify those peaks as the values of ω where

a consistent solution exists.

We show a few representative examples in Figure 3.9. In these plots, the peaks

12Quantitatively, the difference in solutions is on the order of 10−6 over the interval u ∈ [−1/2, 1/2].
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Figure 3.9: Plots of the integrated (reciprocal) residual for n = 1, 2, 3 (first, second,
and third rows, respectively) and k = 0, 1 (first and second columns, respectively). In
all cases, p = 3 has been chosen. The reciprocal residual peaks at the values of ω for
which a consistent solution exists — the absolute heights of the peaks shown in the
graphs is meaningless. In all cases, the peaks correspond precisely to those values of
ω determined via the pseudospectral method.
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correspond to values of ω for which the boundary value problem admits a sensible

solution. In all cases, these peaks correspond exactly to those values of ω obtained

via the spectral method. No additional values of ω have been obtained, and no errors

have been determined.

3.10 Appendix C: Radial Equation at Large p: Ex-

tracting the Slope of the Eigenvalues

As discussed in the numerical solution of the radial equation, it is fruitful to consider

the radial equation for arbitrary values of p. In particular, we have discussed the

numerical observation that the behaviour of the eigenvalue ω rapidly becomes dom-

inated at large p by a linear dependence. This fact can be explored in more detail,

semi-analytically, to give a better understanding of that result.

Consider the radial equation (3.90) and perform the transformation

r = za , (3.135)

which maps the domain to z ∈ [1,∞). After this transformation, the resulting equa-

tion is given by

0 =z(z4 − 1)
(
4 + (p2 − 4)z2

)
R′′p(z) +

(
4− (p2 − 4)z2 + 12z4 + 5(p2 − 4)z6

)
R′p(z)

+ 4z3

[
−4k2 − 2np− 4k(1 + np) +

n2p2z4

1− z4
+

(p2 − 4)z2`2ω2

4 + (p2 − 4)z2

]
Rp(z) , (3.136)

where we have included the subscript p to reinforce that, here, we are thinking of this

as an arbitrary constant parametrizing the solution.

Consider (3.136) in the limit where p is very large. Doing so, it becomes clear that the

leading-order behaviour in each term behaves as O(p2). Thus, a consistent possibility

is for the dominant p-dependence of ω to be such that

ω ∼ α

`
p (3.137)

at large p.

We can extract the equation that governs this behaviour and determines α. Rescale
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ω = αp and peel off the terms in the differential equation that behave as O(p2) at

large p. For consistency of notation, let us call Rp(z) in this limit h0(z). Carrying

this out, we find the following differential equation:

0 = (−1 + z4)h′′0(z) +
(−1 + 5z4)

z
h′0(z) + 4

(
n2z4

1− z4
+ α2

)
h0(z) . (3.138)

By determining the values of α for which regular solutions to the above equation

exist, we can determine the large p slope of the eigenvalues ω. Note that it is only

the quantum number n (= m/p) that enters into the equation, as k has no fixed

dependence on p. Thus, the eigenvalues α = αN,n are characterized by two numbers:

the overtone N and the quantum number n. In other words, there is an ‘emergent

degeneracy’ at large p: The eigenvalues for all choices of k are effectively the same,

provided that p > k is sufficiently large.

Unfortunately, we have not been able to solve this problem analytically (the equation

is of Heun type). However, it is straight-forward to apply the same pseudospectral

numerical techniques to this problem. We do not repeat the basic set up of this

problem, and proceed directly to the results.

Some selected values of αN,n are presented in Table 3.2. These have been computed

using the pseudospectral method to the accuracy shown in the table. While there is

not a clear, discernible pattern for smaller values of n, it is clear that when n becomes

large we have αN,n ≈ n. Unfortunately, it becomes increasingly expensive to perform

the computations when n becomes very large. Computing αN,n to five decimal places

requires a Chebychev discretization of more than 1000 points when n exceeds about

1000.

3.10.1 Subleading Terms in a Large p Expansion

In the previous subsection, we have extracted a differential equation whose solution

leads to the leading-order slopes of the eigenvalues ω at large values of p. It is possible

to do somewhat better than this, without encountering additional obstructions. To

this end, we approach the problem as one in perturbation theory, expanding in the

small parameter ρ = 1/p.

We begin by expanding the eigenvalue and the eigenfunction as a perturbative series
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Values of αN,n

n N
0 1 2

0 1.70203 2.93798 4.15256
1 2.42243 3.61436 4.80816
2 3.25439 4.38480 5.54238
3 4.14123 5.21301 6.33085
4 5.05869 6.07883 7.15802
5 5.99504 6.97048 8.01368
6 6.94397 7.88064 8.89089
7 7.90176 8.80456 9.78483
8 8.86607 9.73904 10.69202
9 9.83533 10.68180 11.60991
10 10.80848 11.63122 12.53658

50 50.47989 50.98209 51.54973
100 100.38136 100.78145 101.23488
500 500.22318 500.45767 500.72385
1000 1000.17715 1000.36329 1000.57462

Table 3.2: A selection of numerically obtained αN,n values.
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in ρ:

ρ2Rp(z) = h0(z) + ρh1(z) + ρ2h2(z) + · · · , (3.139)

ρ2ω2 = α2
N,n + ρβ1 + ρ2β2 + · · · . (3.140)

These expansions are then inserted into the differential equation, and an expansion in

powers of ρ is performed. In general, determining the corrections requires knowledge

of both the eigenvalues and the eigenfunctions at previous orders. However, a happy

accident at O(ρ) allows for direct determination of β1. The differential operator for

h1(z) is identical to that determining h0(z), allowing for all terms involving derivatives

to be eliminated. The problem then reduces to an algebraic equation that determines

β1, with the result

β1 = 2n(1 + 2k) . (3.141)

Unfortunately, at higher orders it does not appear to be possible to obtain analytic

results for the corrections. While progress could be made numerically, the problem

becomes more complicated. Therefore, it is not clear there is any benefit to pursuing

this path further.

3.11 Appendix D: Eguchi-Hanson Solitons as p→ 2

Having fruitfully studied the large p limit of the Eguchi-Hanson soliton in the previous

section, here we will consider the limit p → 2. The limit should be taken at fixed

cosmological scale `, so that the theory under consideration is not altered. To this

end, we write a = A ` and consider the limit p → 2. This is simple, and just results

in A → 0. The resulting geometry is

ds2 = −g(r)dt2 +
dr2

g(r)
+
r2

4
[dψ + cos(θ)dφ]2 +

r2

4
dΩ2

2 , g(r) = 1 +
r2

`2
, (3.142)

with ψ normalized to have period 2π. The metric on the sections of constant (t, r) is

that of the projective space S3/Z2. The analysis of the wave equation on this space is

useful for understanding the normal modes of Eguchi-Hanson-AdS for smaller values

of p.
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3.11.1 Solution of the Radial Equation as p→ 2

While (regular) Eguchi-Hanson solitons exist only for integer p ≥ 3, it is sensible

from the mathematical point of view to study properties of the radial equation (3.90)

without this restriction imposed on p. Within this line of thought, the case p = 2 is

special, since for p = 2 the parameter a vanishes. That is, if we directly substitute

p = 2 into the radial equation, it reduces to the radial equation for a scalar field

on AdS, but with a special choice m = 2n inherited from the fact that the limiting

geometry is not globally AdS5, but instead the quotient space AdS5/Z2. In this special

case, the equation can be solved directly.

Substituting p = 2 into the radial equation we obtain,

0 = r2(r2+L2)R′′(r)+r(3L2+5r2)R′(r)+L2

(
−4(k + n)(1 + k + n) +

L2r2ω2

L2 + r2

)
R(r) .

(3.143)

After setting L = 1, the above equation has the following solution in terms of hyper-

geometric functions

R(r) = (1 + r2)ω/2
[
C1r

2(−1−k−n)
2F1

(
−1− k − n+

ω

2
, 1− k − n+

ω

2
,−2k − 2n,−r2

)
+ C2r

2(k+n)
2F1

(
k + n+

ω

2
, 2 + k + n+

ω

2
, 2(1 + k + n),−r2

)]
. (3.144)

Enforcing the boundary conditions proceeds in exactly the same manner as when

studying the wave equation on AdS. To ensure regularity as r → 0 we must set

C2 = 0. Then expanding near r →∞, the behaviour is

R(r) ∼ C1Γ [2(1 + k + n)]

Γ [2 + k + n− ω/2] Γ [2 + k + n+ ω/2]

+
C1 [2(k + n) + ω] Γ [2(1 + k + n)]

2r2Γ [1 + k + n− ω/2] Γ [2 + k + n+ ω/2]
+O(r−4) . (3.145)

To obtain the proper fall off, we must have the first two terms vanish, so that the

radial solution decays at O(r−4). Obviously, we cannot set C1 = 0, since this results

in the trivial solution. Therefore, we use the property of the gamma function that

Γ[−N ] =∞. Then, taking ω to be a positive quantity, we obtain the solution:

ω
(p=2)
N,k,n = 2 (2 + k + n+N) . (3.146)
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Remarkably, this analytic result matches with numerical results, despite the fact that

the limit p → 2 is in a sense singular13. Numerical indications suggest that the

eigenvalues ω of the radial equation have a well-defined limit as p→ 2 with result the

same as that given just above:

ωp→2+

N,k,n = ω
(p=2)
N,k,n = 2 (2 + k + n+N) , (3.149)

where N is the overtone. We initially deduced this form by inspection, computing

numerically values of ω as a function of p in the close vicinity of p = 2 for several

values of n and k.14

To highlight the convergence of the numerical scheme in the limit p→ 2, we include

in Figure 3.10 relevant plots. The top row depicts the case n = 0, k = 0 with

p = 2 + 10−3, while in the bottom row the case n = 1, k = 0 is shown — the

results for different parameters are qualitatively similar. The top left plot shows the

numerically computed value for the fundamental frequency as a function of the number

of points used in the Chebychev discretization. The result converges to (3.149) from

above/below depending on whether the number of points is odd/even. In the top

right plot, we show the difference between the numerical results computed with N
and N + 1 points. The plot shows clearly the convergence. The plots included in the

bottom row illustrate how, for n 6= 0, convergence is much more rapid (this has been

a general feature of all our analysis here; it is not particular to the p→ 2 limit.)

Finally, in Figure 3.11, we illustrate the dependence of the eigenvalues on n and k as

a function of p in the case when p → 2. The left plot shows n = 1 with the three

curves corresponding to k = 0, 1, 2 (bottom to top), while the right plot shows the

same values of k now for n = 2. The structure of the curve is rather close to a linear

dependence on p, but this is not as accurate as in the large p limit.

13Consider the behaviour in the vicinity of r = a. For p > 2, we have the behaviour

R(r) ∼ (r − a)|n|/2 (3.147)

while for p = 2, the behaviour is
R(r) ∼ r2(k+|n|) . (3.148)

Obviously, there is a singular change in behaviour as p→ 2 (i.e. a→ 0), provided n, k 6= 0.
14For example, it is possible to obtain convergent results with the pseudospectral method for

p = 2 + 10−5 with a Chebychev discretization of about 500 points.
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Figure 3.10: Top left: A plot of the lowest eigenvalue for n = 0, k = 0 and p = 2+10−3

as a function of the number of points N used in the Chebychev discretization. The
even and odd values of N converge to the final result from opposite directions. Top
right: A plot of the difference between the values of ω determined for even and odd
N — it is clear that the difference is quite rapidly approaching zero as the number
of points used in the discretization is increased, indicating convergence. At N = 300,
the value is ω2 = 16.000044, with even and odd discretizations differing at order 10−6.
The bottom row shows the same information, but now for the n = 1 mode. In this
case, convergence is more rapid.

3.12 Appendix E: Tabulated Normal Mode Fre-

quencies

Here we list the numerical values of the normal mode frequencies and the first eight

overtones for p = 3, 4 and 5 for 0 ≤ n ≤ 5 and 0 ≤ k ≤ 5.
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Figure 3.11: Left: a plot of ω as a function of p near p = 2 for n = 1 and k = 0, 1, 2.
The value of k increases vertically between the different curves. Right: a plot of ω as
a function of p near p = 2 for n = 2 and k = 0, 1, 2. The value of k increases vertically
between the different curves. In all cases, the red dots at the far left indicate the value
of ω at p = 2 determined via analytic calculations.
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Selected Normal Modes for Eguchi-Hanson Solitons with p = 3

n k `ωN,n,k

0 0 5.29860 8.76887 12.26738 15.77064 19.27494 22.77952 26.28420 29.78891
0 1 6.30468 9.36992 12.69502 16.10285 19.54661 23.00934 26.48335 29.96461
0 2 7.92469 10.47381 13.51160 16.74837 20.07941 23.46252 26.87741 30.31310
0 3 9.82910 11.95092 14.65595 17.67462 20.85428 24.12706 27.45838 30.82877
0 4 11.84344 13.69088 16.06398 18.84279 21.84686 24.98695 28.21527 31.50380
0 5 13.88455 15.60829 17.68099 20.21454 23.03088 26.02396 29.13512 32.32874

1 0 7.91778 11.14589 14.49899 17.90981 21.35104 24.81006 28.28034 31.75819
1 1 9.42922 12.27359 15.38076 18.62934 21.95728 25.33320 28.74012 32.16812
1 2 11.18450 13.69814 16.53884 19.59402 22.78002 26.04869 29.37222 32.73377
1 3 13.06839 15.33579 17.92177 20.77130 23.79787 26.94192 30.16632 33.44760
1 4 15.01696 17.12117 19.48357 22.12918 24.98833 27.99678 31.11066 34.30082
1 5 16.99615 19.00469 21.18562 23.63863 26.32954 29.19684 32.19277 35.28387

2 0 10.70812 13.74673 16.95599 20.26005 23.62075 27.01752 30.43849 33.87643
2 1 12.41615 15.15809 18.13273 21.25980 24.48596 27.77830 31.11641 34.48725
2 2 14.24590 16.75210 19.50481 22.44836 25.52750 28.70191 31.94433 35.23645
2 3 16.14687 18.47772 21.03384 23.79816 26.72551 29.77380 32.91141 36.11579
2 4 18.08915 20.29630 22.68719 25.28394 28.06072 30.97927 34.00632 37.11648
2 5 20.05521 22.17902 24.43771 26.88344 29.51531 32.30412 35.21778 38.22946

3 0 13.57626 16.47128 19.55515 22.75613 26.03311 29.36154 32.72616 36.11706
3 1 15.38154 18.04874 20.92806 23.95921 27.09791 30.31357 33.58533 36.89890
3 2 17.25647 19.74496 22.44133 25.30787 28.30562 31.40240 34.57400 37.80273
3 3 19.17545 21.52829 24.06727 26.78005 29.63908 32.61474 35.68177 38.82033
3 4 21.12238 23.37482 25.78276 28.35616 31.08231 33.93772 36.89830 39.94336
3 5 23.08710 25.26671 27.56875 30.01910 32.62084 35.35928 38.21360 41.16357

4 0 16.48583 19.27040 22.24843 25.35576 28.55222 31.81198 35.11796 38.45854
4 1 18.34645 20.95265 23.75643 26.70864 29.77172 32.91802 36.12749 39.38560
4 2 20.25075 22.71605 25.36763 28.17479 31.10726 34.13883 37.24843 40.41971
4 3 22.18434 24.54022 27.06206 29.73690 32.54451 35.46273 38.47128 41.55312
4 4 24.13770 26.40968 28.82319 31.37983 34.07039 36.87869 39.78682 42.77817
4 5 26.10450 28.31272 30.63743 33.09049 35.67318 38.37654 41.18636 44.08744

5 0 19.41999 22.11767 25.00675 28.03092 31.15262 34.34625 37.59409 40.88356
5 1 21.31516 23.87006 26.61105 29.49631 32.49325 35.57697 38.72861 41.93395
5 2 23.23959 25.68024 28.29302 31.05090 33.92866 36.90416 39.95895 43.07815
5 3 25.18453 27.53459 30.03810 32.68119 35.44702 38.31775 41.27663 44.30901
5 4 27.14397 29.42265 31.83427 34.37546 37.03769 39.80841 42.67359 45.61964
5 5 29.11376 31.33639 33.67164 36.12358 38.69119 41.36761 44.14231 47.00348

Table 3.3: A selection of normal modes and their overtones for p = 3.
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Selected Normal Modes for Eguchi-Hanson Solitons with p = 4

n k `ωN,n,k

0 0 6.93332 11.72096 16.48465 21.23594 25.98100 30.72257 35.46202 40.20008
0 1 7.60124 12.11154 16.76178 21.45093 26.15667 30.87111 35.59069 40.31358
0 2 8.78461 12.85744 17.30284 21.87462 26.50456 31.16608 35.84667 40.53964
0 3 10.30489 13.90214 18.08440 22.49536 27.01807 31.60343 36.22728 40.87641
0 4 12.03169 15.18497 19.07726 23.29755 27.68810 32.17741 36.72868 41.32121
0 5 13.88412 16.65214 20.25081 24.26344 28.50374 32.88095 37.34608 41.87064

1 0 10.24051 14.73250 19.33705 23.99139 28.67155 33.36672 38.07137 42.78236
1 1 11.51463 15.63997 20.03509 24.55669 29.14584 33.77494 38.42953 43.10133
1 2 13.01805 16.77399 20.92989 25.29093 29.76658 34.31176 38.90201 43.52302
1 3 14.67832 18.09221 21.99768 26.18007 30.52492 34.97130 39.48473 44.04451
1 4 16.44563 19.55760 23.21485 27.20908 31.41103 35.74686 40.17295 44.66234
1 5 18.28645 21.13971 24.55950 28.36294 32.41454 36.63116 40.96143 45.37263

2 0 13.83063 18.05755 22.48254 27.01100 31.59912 36.22446 40.87447 45.54163
2 1 15.36757 19.27010 23.47076 27.84021 32.31142 36.84779 41.42809 46.03928
2 2 17.02663 20.63114 24.60448 28.80398 33.14613 37.58225 42.08290 46.62951
2 3 18.77399 22.11310 25.86469 29.88939 34.09436 38.42154 42.83431 47.30889
2 4 20.58567 23.69313 27.23391 31.08382 35.14699 39.35901 43.67739 48.07369
2 5 22.44462 25.35262 28.69663 32.37531 36.29506 40.38791 44.60699 48.91994

3 0 17.55790 21.56648 25.82210 30.22019 34.70659 39.25103 43.83548 48.44859
3 1 19.23356 22.97093 27.01462 31.24942 35.60858 40.05209 44.55499 49.10106
3 2 20.98243 24.47698 28.31610 32.38580 36.61238 40.94854 45.36342 49.83637
3 3 22.78667 26.06675 29.71220 33.61852 37.70992 41.93430 46.25615 50.65094
3 4 24.63314 27.72554 31.19021 34.93744 38.89332 43.00329 47.22844 51.54105
3 5 26.51208 29.44134 32.73898 36.33320 40.15505 44.14953 48.27554 52.50291

4 0 21.36191 25.19187 29.29583 33.56898 37.95281 42.41246 46.92611 51.47943
4 1 23.12032 26.72433 30.63627 34.75182 39.00691 43.36073 47.78648 52.26597
4 2 24.92639 28.32918 32.05982 36.02062 40.14580 44.39074 48.72473 53.12633
4 3 26.76978 29.99453 33.55583 37.36661 41.36251 45.49695 49.73651 54.05703
4 4 28.64264 31.71054 35.11495 38.78177 42.65040 46.67401 50.81744 55.05453
4 5 30.53890 33.46910 36.72904 40.25880 44.00325 47.91671 51.96326 56.11529

5 0 25.21339 28.89566 32.86589 37.02311 41.30781 45.68286 50.12401 54.61483
5 1 27.02548 30.51774 34.31643 38.32580 42.48500 46.75368 51.10430 55.51758
5 2 28.87050 32.19326 35.83160 39.69815 43.73313 47.89463 52.15280 56.48605
5 3 30.74204 33.91404 37.40346 41.13315 45.04632 49.10086 53.26550 57.51693
5 4 32.63507 35.67325 39.02504 42.62444 46.41905 50.36769 54.43849 58.60695
5 5 34.54561 37.46519 40.69025 44.16628 47.84620 51.69068 55.66798 59.75290

Table 3.4: A selection of normal modes and their overtones for p = 4.
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Selected Normal Modes for Eguchi-Hanson Solitons with p = 5

n k `ωN,n,k

0 0 8.60470 14.66629 20.66753 26.64481 32.61081 38.57065 44.52678 50.48049
0 1 9.11324 14.96233 20.87733 26.80748 32.74369 38.68298 44.62408 50.56631
0 2 10.05321 15.53752 21.29074 27.12989 33.00784 38.90668 44.81805 50.73752
0 3 11.31716 16.36255 21.89628 27.60647 33.40018 39.23985 45.10745 50.99326
0 4 12.80896 17.40204 22.67861 28.22944 33.91625 39.67973 45.49046 51.33228
0 5 14.45752 18.62026 23.62024 28.98940 34.55055 40.22285 45.96475 51.75293

1 0 12.62102 18.34009 24.16444 30.03559 35.93107 41.84070 47.75927 53.68385
1 1 13.78099 19.15265 24.78554 30.53704 36.35106 42.20180 48.07588 53.96567
1 2 15.14170 20.14934 25.56199 31.16994 36.88404 42.66161 48.47991 54.32587
1 3 16.65357 21.30438 26.48018 31.92650 37.52523 43.21697 48.96923 54.76291
1 4 18.27861 22.59355 27.52596 32.79821 38.26919 43.86428 49.54130 55.27497
1 5 19.98870 23.99529 28.68546 33.77618 39.11009 44.59954 50.19332 55.86000

2 0 17.02736 22.41656 28.02660 33.75054 39.53958 45.36902 51.22514 57.09976
2 1 18.48045 23.54323 28.93701 34.51085 40.19082 45.93785 51.72970 57.55290
2 2 20.04220 24.79302 29.96427 35.37729 40.93753 46.59272 52.31222 58.07710
2 3 21.68881 26.14828 31.09683 36.34228 41.77463 47.33009 52.97014 58.67048
2 4 23.40202 27.59345 32.32364 37.39823 42.69681 48.14618 53.70070 59.33097
2 5 25.16787 29.11511 33.63442 38.53767 43.69872 49.03708 54.50100 60.05635

3 0 21.62601 26.73381 32.13452 37.70106 43.36904 49.10308 54.88238 60.69395
3 1 23.23681 28.06247 33.25231 38.66034 44.20662 49.84506 55.54763 61.29643
3 2 24.91336 29.47653 34.45875 39.70509 45.12438 50.66151 56.28186 61.96287
3 3 26.64301 30.96426 35.74486 40.82877 46.11756 51.54890 57.08243 62.69125
3 4 28.41581 32.51548 37.10236 42.02508 47.18140 52.50364 57.94659 63.47945
3 5 30.22393 34.12150 38.52371 43.28799 48.31124 53.52215 58.87156 64.32526

4 0 26.33349 31.20580 36.41467 41.82709 47.37057 53.00282 58.69778 64.43856
4 1 28.03963 32.67149 37.68495 42.94117 48.35921 53.88953 59.50052 65.17118
4 2 29.78887 34.19866 39.02355 44.12449 49.41520 54.84053 60.36408 65.96115
4 3 31.57388 35.77939 40.42368 45.37162 50.53434 55.85255 61.28592 66.80645
4 4 33.38873 37.40685 41.87916 46.67746 51.71253 56.92233 62.26344 67.70499
4 5 35.22865 39.07512 43.38440 48.03724 52.94584 58.04671 63.29407 68.65470

5 0 31.10896 35.78320 40.81996 46.08697 51.50826 57.03751 62.64499 68.31085
5 1 32.87760 37.34615 42.20524 47.32327 52.62040 58.04577 63.56568 69.15707
5 2 34.67621 38.95485 43.64412 48.61614 53.78933 59.10958 64.53997 70.05460
5 3 36.50024 40.60382 45.13146 49.96119 55.01143 60.22602 65.56548 71.00152
5 4 38.34592 42.28828 46.66260 51.35432 56.28326 61.39222 66.63984 71.99588
5 5 40.21015 44.00411 48.23336 52.79171 57.60152 62.60539 67.76074 73.03575

Table 3.5: A selection of normal modes and their overtones for p = 5.



Chapter 4

Supersymmetric Asymptotically

Locally AdS5 Gravitational Solitons

This chapter is based on “Supersymmetric asymptotically locally AdS5 gravitational

solitons” by Turkuler Durgut and Hari K. Kunduri, which is accepted in Annals of

Physics 457, 169435 in July 2023.

4.1 Abstract

We construct supersymmetric gravitational soliton solutions of five-dimensional gauged

supergravity coupled to arbitrarily many vector multiplets. The solutions are com-

plete, globally stationary, 1/4-BPS and are asymptotically locally AdS5 with confor-

mal boundary R× L(p, 1). The construction uses an SU(2)× U(1)−invariant ansatz

originally used by Gutowski and Reall to construct supersymmetric asymptotically

AdS5 black holes. A subset of these solutions have previously been obtained as super-

symmetric limits of a class of local solutions of U(1)3 gauged supergravity found by

Chong-Cvetic-Lu-Pope, and by Lucietti-Ovchinnikov in their classification of SU(2)-

invariant solutions of minimal gauged supergravity.
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4.2 Introduction

The Eguchi-Hanson-AdS5/Zp solution constructed by Clarkson and Mann is a globally

static, U(1)×SU(2)-invariant, geodesically complete vacuum solution of the Einstein

equations with negative cosmological constant Rab = −4`−2gab [60, 61]. The geometry

is not asymptotically globally AdS but rather to a freely acting discrete quotient of

AdS5. It has a timelike conformal boundary I = R × L(p, 1) where the lens space

L(p, 1) ∼= S3/Zp with p ≥ 3. The solution is therefore best interpreted as an asymp-

totically locally AdS5 gravitational soliton. The underlying space is characterized by

the presence of an S2 ‘bolt’ in the interior region. The solution has negative mass

and is conjectured [62] to have the least mass amongst the space of metrics with the

same conformal boundary, in much the same way that the classic AdS soliton, another

vacuum solution of the Einstein equations with negative cosmological constant, is ex-

pected to have the least mass amongst all metrics with flat toroidal spatial sections

on their conformal boundaries [58, 59].

Global AdS5, in addition to being the maximally symmetric vacuum solution (and

the unique static spacetime with spherical spatial conformal boundary [?]) is also

the unique maximally supersymmetric solution of five-dimensional gauged supergrav-

ity [102, 32]. In contrast the Eguchi-Hanson-AdS5/Zp soliton does not preserve any

(local) supersymmetry. It is natural to expect, however, that it belongs to a larger

family of solitons which carry charge and angular momenta, which could possibly

contain supersymmetric members. Indeed, there are static, charged supersymmetric

asymptotically locally AdS solitons with toroidal spatial conformal boundary [103].

As we discuss below, there are also supersymmetric solutions that are asymptotically

locally AdS5 in the sense that the spatial conformal boundary has topology S1 × S2

[104].

As a byproduct of their recent classification of supersymmetric solutions to five-

dimensional minimal gauged supergravity with SU(2) symmetry, Lucietti and Ovchin-

nikov [40] constructed a family of U(1) × SU(2)-invariant supersymmetric solitons

asymptotic to AdS5/Zp for p ≥ 3 (the local solutions had been found earlier in the

more general U(1)3 supergravity theory, but a global analysis was not carried out [41]).

The main result of [40] was to establish a uniqueness theorem for SU(2)-invariant

BPS AdS5 black holes, namely, that the Gutowski-Reall family of solutions [31] ex-

haust the moduli space of this class of asymptotically globally AdS5 BPS black holes.
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This is a remarkable result, given the lack of uniqueness statements for AdS black

holes in any dimension beyond the simple spherically symmetric setting. An analo-

gous result for more general families of toric (U(1)×U(1)-invariant) BPS AdS5 black

holes [38, 33] remains an open problem, although significant progress has been made

in the direction [105]. A complete classification of classical BPS AdS5 black hole

solutions is motivated by the long standing problem to quantitatively reproduce the

Bekenstein-Hawking entropy using the AdS/CFT correspondence (see the review [37]

for details on the substantial progress made in recent years).

Analogous classification results for supersymmetric, horizonless soliton spacetimes re-

main to be addressed, although in minimal gauged supergravity, the situation for

SU(2) symmetry is severely constrained [40]. The aim of the present work is to con-

struct new SU(2)× U(1)-invariant, supersymmetric and asymptotically locally AdS5

soliton spacetimes of five-dimensional gauged supergravity coupled to an arbitrary

number of vector multiplets (see (4.1) below). We will show how these solutions con-

tain the regular solutions found in [40] (i.e. in a particular truncation of the theory

when the scalar fields are constants and the Maxwell fields are set equal). In addition,

we compute the conserved charges of these solutions and show that they have strictly

negative mass, despite being supersymmetric and have equal and non-zero angular

momenta in two independent planes of rotation. There is also a BPS relation that

appears to depend on p.

Imposing the full set of regularity conditions on our general family of solutions is more

difficult than in the minimal theory, for which there is only a single (zero-parameter)

regular solution for fixed p. However, in the special case of U(1)3 gauged supergravity,

we exhibit new explicit solutions which are indeed globally regular (local solutions of

this type were constructed in [41] by taking supersymmetric limits of a family of local

metrics, although a global analysis was not performed). The problem of whether

there are asymptotically globally AdS5 solitons within our class of solutions (that is,

with p = 1) remains open but we expect that there is enough freedom in the space of

solutions to allow for this possibility.

Our local construction of these solutions is based upon a mild generalization of an

SU(2) × U(1)-invariant ansatz originally employed by Gutowski and Reall in their
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novel construction of the first asymptotically AdS5 BPS black holes of gauged super-

gravity coupled to an arbitrary number of vector multiplets [32]. Supersymmetric solu-

tions of gauged supergravity (in regions where the supersymmetric Killing vector field

is timelike) can be constructed in a systematic manner by choosing a four-dimensional

Kähler ‘base space’ and then solving a set of coupled PDEs defined on this base space

for various fields that are subsequently used to reconstruct the full spacetime metric,

scalars, and Maxwell fields. In particular, for the class of solutions constructed in the

present work, guided by the solutions of the minimal theory [40], we start from a nat-

ural SU(2)×U(1)−invariant family of Kähler metrics and then, assuming the various

geometric fields are themselves invariant under this symmetry, we can proceed in a

systematic manner to construct a local family of cohomogeneity-one solutions param-

eterized by various integration constants. We then examine the regularity conditions

required to extend the local metrics to globally regular, asymptotically locally AdS5

solitons. Note that these solitons, like the Eguchi-Hanson soliton described above, are

characterized by an S2 ‘bolt’. This is in contrast to the novel BPS solutions numeri-

cally constructed in [104], which have conformal boundary S1 × S2 and are of ‘NUT’

type (i.e. the spatial hypersurfaces have R4 topology).

The gravitational solitons we construct are 1/4 BPS, as are all known asymptotically

AdS5 BPS black holes [33]. This should be contrasted with the asymptotically glob-

ally AdS5 multi charged gravitational solitons we previously constructed [2] (special

cases of these solutions were previously constructed in the minimal theory [39] and

in U(1)3 supergravity [41]) which are 1/2-BPS and satisfy a simpler BPS relation

which does not include an angular momentum term (see [41] for a discussion of BPS

bounds in U(1)3 gauged supergravity) . Those solutions are also cohomogeneity-one

and SU(2) × U(1)-invariant. However, in the standard decomposition for solutions

admitting Killing spinors described above, the Kähler base is merely orthotoric and

does not inherit the isometry group of the spacetime (this is related to the fact that

the Killing spinor fields are not invariant under the symmetry [39]). As we demon-

strated [2] , this second class of solutions must possess an evanescent ergosurface [43],

which strongly suggests that they are non-linearly unstable due to the stable trapping

of null geodesics [45, 44]. For the class of solutions constructed in the present work,

however, we find no evidence of such ergosurfaces.

The remainder of this note is organized as follows. Section 4.3 provides a concise

review of the construction of supersymmetric solutions of U(1)N gauged supergravity
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and gives details on the derivation of the local solutions. We then impose regular-

ity conditions to produce smooth soliton spacetimes and investigate the asymptotic

behaviour of the solutions and compute the conserved charges. Finally we investi-

gate some special subsets of solutions (in particular U(1)3 ‘STU’ gauged supergravity

and minimal gauged supergravity) for which the regularity conditions can be solved

explicitly. Section 4.4 concludes with a brief discussion.

4.3 Asymptotically locally AdS5 supersymmetric

solitons

4.3.1 Supersymmetric solutions to gauged supergravity

Here we briefly review the local construction of supersymmetric solutions to five-

dimensional gauged supergravity coupled to N vector multiplets with scalars taking

values in a symmetric space. The analysis was originally performed in [32] (see also

[33] which uses the same mostly plus signature as used here). The bosonic sector of

the theory is governed by the action

S =
1

16π

∫ (
R ?5 1−QIJF

I ∧ ?5F
J −QIJdXI ∧ ?5dXJ

−1

6
CIJKF

I ∧ F J ∧ AK + 2g2V ?5 1

) (4.1)

where the field content (g, F I , XI) consists of the spacetime metric, N Maxwell fields

F I = dAI (I = 1 . . . N) and the AI are locally defined U(1) gauge fields, and N − 1

real scalar fields which are conveniently parameterized by N real scalar fields XI

satisfying the constraint
1

6
CIJKX

IXJXK = 1. (4.2)

The CIJK are constants and as a tensor it is totally symmetric, i.e. CIJK = C(IJK)

with I = 1 . . . N (their indices may be raised and lowered with a flat metric). The

constant g appearing (4.1) is a constant which we will identify below with the inverse

AdS length scale. A particular quadratic combination of scalar fields XI that arises

naturally is

XI =
1

6
CIJKX

JXK . (4.3)
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In terms of these, the matrix of couplings QIJ appearing in the action is given by

QIJ =
9

2
XIXJ −

1

2
CIJKX

K . (4.4)

The CIJK are assumed to satisfy the following symmetric space condition

CIJKCJ ′(LMCPQ)K′δJJ
′
δKK

′
=

4

3
δI(LCMPQ). (4.5)

We note that this condition is satisfied by the U(1)3 gauged supergravity theory

that arises from compactification of Type IIB on S5. More generally, in reduc-

tions of eleven-dimensional supergravity on a Calabi-Yau space Y , one obtains a

five-dimensional ungauged supergravity theory in which the potential V above is the

intersection form, XI and XI as defined above correspond to moduli parameterizing

the size of two- and four-cycles, and CIJK are the intersection numbers of Y . Gauging

this theory leads to the theory (4.1). We refer the reader to [?] for further discussion.

For later use, we note that this can be rewritten explicitly as

CIJK(CJLMCKPQ + CJLPCKMQ + CJLQCKMP ) =δILCMPQ + δIMCPQL

+ δIPCQLM + δIQCLMP .
(4.6)

This condition ensures that QIJ has an inverse

QIJ = 2XIXJ − 6CIJKXK , (4.7)

where, as mentioned above, we make the identification CIJK := CIJK . This also

allows us to invert for XI in terms of the XJ :

XI =
9

2
CIJKXJXK , (4.8)

which then implies

CIJKXIXJXK =
2

9
. (4.9)

Finally the scalar potential is given by

V = 27CIJKX̄IX̄JXK , (4.10)
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where the X̄I are a set of constants (in the original work on constructing supersym-

metric solutions of this theory, the V is expressed in terms of scalars VI [32] which

are proportional to X̄I). As shown in [32], the vacuum AdS5 background with radius

` = 1/g corresponds to AI ≡ 0 and constant scalars XI = X̄I , and

X̄I ≡ 9

2
CIJKX̄JX̄K . (4.11)

The special U(1)3 ‘STU’ supergravity theory which arises from the dimensional reduc-

tion of Type IIB on S5 corresponds to N = 3, CIJK = 1 if (IJK) is a permutation of

(123) and CIJK = 0 otherwise and X̄I = 1, or equivalently X̄I = 1/3. The symmetric

space condition (4.5) holds automatically. For an explicit embedding of this theory

into Type IIB supergravity, see [42].

Given a Killing spinor, one can show that there is a Killing vector field V , which is

non-spacelike. In an open spacetime region where V 2 = −f 2 < 0 so that f > 0 for

some function f one can introduce a local chart in which the metric can be decomposed

as

ds2 = −f 2(dt+ ω)2 + f−1habdx
adxb, (4.12)

where V = ∂/∂t. Supersymmetry implies that the 4d metric h is Kähler with Kähler

form J , and the orientation of the base space B is chosen so that J is anti self

dual ?4J = −J . We choose the 5-form (dt + ω) ∧ dvol(h) to be positively oriented

in the full spacetime. In the following we summarize the necessary and sufficient

conditions on the metric, Maxwell fields, and scalar fields to be a supersymmetric

solution of the supergravity field equations [32]. We emphasize that apart from these

two requirements, no further conditions have yet been made. In Section 2..2 below we

will restrict attention to solutions that are invariant under SU(2)× U(1) symmetry.

The Maxwell field can be expressed in the form

F I = d
[
XIf(dt+ ω)

]
+ ΘI − 9gf−1CIJKX̄JXKJ, (4.13)

where the ΘI are self-dual two-forms on B, and we must have

XIΘ
I = −2

3
G+, (4.14)
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and G± is the (anti-)self dual two-form with ?4G
± = ±G±, defined as

G± =
1

2
f(dω ± ?4dω). (4.15)

and ?4 refers to the Hodge dual with respect to (B, h). This can be inverted so that

dω = f−1(G+ +G−). (4.16)

Since (B, h, J) is Kähler, we can define the Ricci two-form

Rab =
1

2
RabcdJ

cd. (4.17)

Supersymmetry implies that R = dP where P is the one-form

P = 3gX̄I

(
AI − fXIω

)
. (4.18)

This determines completely the function f as

f = −108g2

R
CIJKX̄IX̄JXK , (4.19)

and the following condition holds

R− R

4
J = 3gX̄IΘ

I . (4.20)

All these conditions are necessary and turn out to be sufficient to guarantee and

the existence of a supercovariantly constant spinor [32]. All the field equations are

satisfied provided dF I = 0 (which is automatically true if we specify potentials), and

the Maxwell equations

d(QIJ ? F
J) = −1

4
CIJKF

J ∧ FK (4.21)

are satisfied. The Bianchi identity and the Maxwell equation respectively reduce to

the following equations on the base space

dΘI = 9gCIJKX̄Jd(f−1XK) ∧ J, (4.22)
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and

d ?4 d(f−1XI) =− 1

6
CIJKΘI ∧ΘJ + 2gX̄If

−1G− ∧ J

+ 6g2f−2(QIJC
JMNX̄MX̄N + X̄IX

JX̄J)dvol(h).
(4.23)

4.3.2 Derivation of the local solution

In their original construction of SU(2) × U(1)-invariant BPS black holes, Gutowski

and Reall considered a natural ansatz in which the Kähler base itself is assumed to

admit an isometric action of SU(2)×U(1), which is then naturally inherited by the full

spacetime [32]. This is in contrast to the soliton solutions considered in our previous

work [2] for which the full spacetime admits the full SU(2)× U(1) symmetry group,

but when decomposed into the form (4.12), the associated Kähler base is merely

(ortho)toric.

We take as Kähler metric (h, J) the following SU(2)× U(1)-invariant metric

h =
dr2

V (r)
+
r2

4
(dθ2 + sin2 θdφ2) +

r2V (r)

4
(dψ + cos θdφ)2,

J = d

(
r2

4
(dψ + cos θφ)

) (4.24)

where V (r) is an arbitrary smooth function. The full SU(2) × U(1) case is achieved

if we choose θ ∈ (0, π), ψ ∈ (0, 4π/p), φ ∈ (0, 2π) where p ∈ N. It is natural to write

the metric in terms of the right-invariant one-forms

σ1 = sinψdθ − cosψ sin θdφ, σ2 = cosψdθ + sinψ sin θdφ, σ3 = dψ + cos θdφ

(4.25)

In particular the Kähler form is simply

J = d

[
r2

4
σ3

]
. (4.26)

The right-invariant 1-forms σi obey

dσi = −1

2
εijkσj ∧ σk. (4.27)
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They are invariant under the ‘left-invariant’ Killing fields Ri

R1 = − cos θ cosφ∂φ − sinφ∂θ +
cosφ

sin θ
∂ψ,

R2 = − cot θ sinφ∂φ + cosφ∂θ +
sinφ

sin θ
∂ψ,

R3 = ∂φ

(4.28)

and in addition the particular quadratic combination of the σi appearing in h is

invariant under the U(1) generator L3 = ∂ψ. The simplest spacetime solution resulting

from this class of Kähler bases is AdS5 itself, which has p = 1, vanishing Maxwell

fields F I = 0, constant scalars XI = X̄I , and

f = 1, ω =
r2

2`
σ3, V = 1 +

r2

`2
. (4.29)

where ` = g−1 is the AdS5 length scale normalized so that Rab = −4`−2gab. For p > 1,

one obtains an AdS5 orbifold, which is singular at the fixed point of the symmetry

group at r = 0.

Returning to the general metric, the scalar curvature is determined by V (r) and its

derivatives:

Rh = −8(V − 1) + 7rV ′ + r2V ′′

r2
, (4.30)

and the Ricci form can be written

R = d [P (r)σ3] , (4.31)

with

P (r) = −1

4
(rV ′ + 4(V − 1)). (4.32)

Choose now an orthonormal frame basis for (B, h)

E1 =
dr√
V
, E2 =

rdθ

2
, E3 =

r sin θdφ

2
, E4 =

r
√
V

2
(dψ + cos θdφ) (4.33)

and an associated orthonormal frame for the spacetime: e0 = f(dt+ω), ei = f−1/2Ei.

The Kähler form can be expressed as

J = E1 ∧ E4 − E2 ∧ E3 (4.34)
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which demonstrates that it is anti self dual, i.e. ?4J = −J . In order for the full

spacetime to inherit the full SU(2)×U(1) isometry, it is natural to search for solutions

ω of the form ω = ω3(r)σ3. We then have

dω =
2ω′3
r
E1 ∧ E4 − 4ω3

r2
E2 ∧ E3, ?4dω =

2ω′3
r
E2 ∧ E3 − 4ω3

r2
E1 ∧ E4. (4.35)

This gives

G+ = rf
[
r−2ω3

]′
(E1∧E4+E2∧E3), G− =

f

r3

[
r2ω3

]′
(E1∧E4−E2∧E3) (4.36)

which are manifestly self-dual and anti self-dual respectively. The Maxwell fields are

also assumed to be invariant under SU(2)×U(1), which allows us to parameterize it

in the form

AI = XIe0 + U Iσ3 (4.37)

where the U I = U I(r) are smooth functions of r to be determined. The scalar fields

are also assumed to be single-variable functions, namely XI = XI(r). Now using

(4.19) and (4.30) yields

f =
108g2r2CIJKX̄IX̄JXK

8(V − 1) + 7rV ′ + r2V ′′
. (4.38)

The Maxwell fields are then

F I = dAi = d(XIe0) +
dU I

dr
dr ∧ σ3 − U Iσ2 ∧ σ3 (4.39)

where σ2 ∧ σ3 = sin θdθ ∧ dφ. Comparing this with the general formula for F I (4.13)

allows us to solve for the self-dual 2 forms ΘI . Taking the self dual and anti self dual

parts of the resulting equation gives two conditions

ΘI = r
d

dr

(
U I

r2

)
(E1 ∧ E4 + E2 ∧ E3), (4.40)

f

r3

d

dr

(
r2U I

)
= −9gCIJKX̄JXK . (4.41)

These two equations are sufficient to guarantee that

dΘI = 9gCIJKX̄Jd(f−1XK) ∧ J (4.42)
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which from (4.13) is equivalent to the Bianchi identity dF I = 0. Now using (4.14)

yields

f−1XI
d

dr

(
U I

r2

)
= −2

3

d

dr

(w3

r2

)
(4.43)

To make progress we will seek a solution for the scalars XI of the same form as for

the SU(2)× U(1)-invariant BPS black holes [32]:

f−1XI = X̄I +
qI
r2
, (4.44)

where the qI are constants. This choice guarantees that in the asymptotic region

r →∞, XI → X̄I assuming that f → 1, as expected for asymptotically locally AdS5

metrics. Using the constraints (4.2), (4.9) we find from (4.44) that

f =
r2

[F (r)]1/3
, F (r) = r6 + α2r

4 + α1r
2 + α0 (4.45)

with

α0 =
9

2
CIJKqiqJqK , α1 =

27

2
CIJKX̄IqJqK , α2 =

27

2
CIJKX̄IX̄JqK . (4.46)

Using the assumption (4.44) we can integrate (4.41) to find

U I = −9

2
gCIJKX̄J

[
X̄Kr

2

2
+ qK

]
+
U I

0

r2
(4.47)

where U I
0 are constants. We then integrate (4.43) to find

w3 =
gα2

2
+
gα1

4r2
+ w0r

2 − 3U I
0 X̄I

2r2
− U I

0 qI
r4

(4.48)

where w0 is another integration constant. Comparing this functional form to that of

the minimal solution [40] suggests that generically U I
0 6= 0. The integration constant

w0 will be determined by imposing the Maxwell equation below. We now arrive at an

explicit expression for ΘI :

ΘI =

(
9gCIJKX̄JqK

r2
− 4U I

0

r4

)
(E1 ∧ E4 + E2 ∧ E4). (4.49)
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Substituting this into the condition (4.20) produces an ODE for V (r):

−2r2 + 2V r2 − 3

4
r3V ′ − r4V ′′

4
= 2g2α2r

2 − 12gX̄IU
I
0 . (4.50)

In the minimal theory, a general analysis of supersymmetric solutions was carried out

in this symmetry class. It was shown that the soliton solutions (i.e. those with a

‘bolt’) must have a V (r) that has a simple zero at some r0 > 0 (the case of having

an event horizon or a NUT solution corresponds allowing allowing r to reach zero

with f vanishing or non vanishing respectively). We therefore assume V (r) takes the

factorized form

V (r) =
(r2 − r2

0)(a0 + a1r
2 + r4g2)

r4
(4.51)

for some constants (r0, a0, a1). Inserting this form of V (r) into (4.50) imposes

a1 = 1 + g2r2
0 + g2α2 (4.52)

a0 = r2
0(1 + g2r2

0 + g2α2)− 6gX̄IU
I
0 = r2

0a1 − 6gX̄IU
I
0 . (4.53)

The remaining necessary and sufficient requirement for a supersymmetric solution is

the Maxwell equation (4.23). The left hand side is easily found to be

d ?4 d(f−1XI) =
2qIV

′

r3
= qI

(
4g2

r2
+

4

r6
(−a0 + a1r

2
0) +

8a0r
2
0

r8

)
. (4.54)

The right hand side is significantly more complicated, involving various products of

the parameters U I
0 and qI . We will not give it here, but simply note that it can be

expressed as a sum of even powers of r. Satisfying the Maxwell equations then reduces

to matching powers of r (from r−8 to r0). In particular, the left hand side has no

constant term. This gives the condition

0 = X̄I(−16gw0 + 8g2) (4.55)

which fixes the integration constant

w0 =
g

2
=

1

2`
. (4.56)

The r−2 coefficients agrees automatically and the r−4 condition is also automatically
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satisfied, taking into account the identity

CIJKC
JLMCKPQX̄LqMX̄P qQ = −1

9
CIJKX̄

JCKMQqMqQ +
2α1

27
X̄I +

2α2

27
qI (4.57)

which follows from the symmetric space condition. The r−6 and r−8 coefficients yield

the following constraints:

(3X̄JU
J
0 )qI = 3CIJKU

J
0 C

KMNX̄MqN − (UJ
0 qJ)X̄I , (4.58)

a0r
2
0qI = −2

3
CIJKU

J
0 U

K
0 . (4.59)

We will assume a0, r0 6= 0. Define

u3
0 := CIJKU

I
0U

J
0 U

K
0 . (4.60)

Then (4.59) imposes

u3
0 = −3

2
a0r

2
0qIU

I
0 . (4.61)

Finally (4.58) imposes

3(X̄LU
L
0 )CIJKU

J
0 U

K
0 = 3I − u3

0X̄I (4.62)

where

I = CIJKC
KMNCNPQU

J
0 X̄MU

P
0 U

Q
0 . (4.63)

Rewriting the symmetric space condition (4.5) as

CMKN

[
CKIJCNPQ + CKIPCNJQ + CKIQCNJP

]
= δMICJPQ + δMJCPQI+

δMPCQIJ + δMQCIJP ,
(4.64)

and contracting this with UJ
0 X̄MU

P
0 U

Q
0 yields

3I = 3CMKNC
KIJCNPQUP

0 U
Q
0 U

J
0 X̄M = u3

0X̄I + 3(X̄LU
L
0 )CIJKU

J
0 U

K
0 . (4.65)

This identity guarantees that the constraint (4.58) is satisfied. This exhausts the

conditions imposed the Maxwell equation.

In summary, we have constructed a local supersymmetric solution that is parame-

terized by the integration constants U I
0 and the parameter r0. These determine the
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parameters qI implicitly through (4.59), which reads

3
[
r2

0(1 + g2r2
0 + g2α2)− 6gX̄KU

K
0

]
qI = −2CIJKU

J
0 U

K
0 (4.66)

and recall α2 depends linearly on the parameters qI .

4.3.3 Global analysis and conserved charges

In the (t, r, ψ, θ, φ) coordinate system, the local metric is obviously analytic, and so

any potential singularities will occur at the zero sets of f and V [40]. It turns out

that in the minimal theory [105] the only regular case with f = 0 corresponds to

the BPS black hole solutions of [31] and we expect a similar conclusion will hold in

the general gauged supergravity theory (4.1). From (4.45), we see f will vanish at

r = 0 provided α0 6= 0 (if we allow for f to vanish at r = 0, then one gets a ‘NUT’

type soliton provided V (0) = 1 and V (r) is a smooth function of r2, see e.g. the

numerical solutions constructed in [104]). To obtain a soliton, we need that r ≥ r0

with V (r0) = 0 and f(r0) > 0. The geometries we have constructed are asymptotically

locally AdS5 in the sense that they are conformally compact with a timelike conformal

boundary I ∼= R× S3/Zp. This can be seen by introducing a new set of coordinates

(T,R, ψ̂, θ, φ) defined by

T = t, ψ̂ = ψ − 2

`
t, R =

√
r2 +

α2

3
. (4.67)

In the asymptotic region R → ∞, the solutions take the manifestly static (locally)

AdS5 form

ds2 =−
(

1 +
R2

`2
+O(R−4)

)
dT 2 +O(R−2)dt(dψ̂ + cos θdφ)

+

(
1 +

R2

`2
+O(R−4)

)−1

dR2

+
R2

4

(
1 +O(R−4)

) (
(dψ̂ + cos θdφ)2 + dθ2 + sin2 θdφ2

)
.

(4.68)

The conformal boundary carries the metric

ds2
4 = −dT 2 +

`2

4

(
(dψ̂ + cos θdφ)2 + dθ2 + sin2 θdφ2

)
(4.69)
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Spatial sections are L(p, 1) with a round metric provided θ ∈ (0, π) and the (ψ̂, φ)

plane has the identifications (ψ̂, φ) ∼ (ψ̂ + 4π/p, φ) and (ψ̂, φ) ∼ (ψ̂ + 2π, φ + 2π).

Global AdS5 with conformal boundary R × S3 corresponds to p = 1. Regularity of

the metric in the interior will impose restrictions on allowed values of p.

Possible singularities will occur at f = 0 and V = 0. The former situation is charac-

teristic of an event horizon (i.e. the non-spacelike supersymmetric Killing vector field

∂t becomes null) which is necessarily degenerate. This will occur if the coordinate

r ranges to r = 0. As our primary interest is in gravitational solitons, which are

globally stationary, we will assume r0 > 0 and so V has one root and assume the

parameters αi are chosen so that f > 0 for all r ≥ r0. Thus the metric is defined on

R× (r0,∞)×L(p, 1). At r = r0, the Killing field ∂ψ degenerates. In a neighbourhood

of r = r0, constant time slices have topology R2 × S2 with r = r0 playing the role of

the ‘origin of coordinates’ in the (r, ψ) place. We may then compactify the interior

region by adding an S2 at r = r0, producing a smooth manifold without boundary.

The region r ≥ r0 is then geodesically complete (i.e. geodesics that reach r = r0 can

be extended again to large values of r, as in the behaviour of geodesics near the origin

in Euclidean space). Note that this is equivalent to requiring that the Kähler metric h

has a smooth bolt at r = r0 where the Killing vector field ∂ψ degenerates. Regularity

of the spacetime metric (removal of Dirac-Misner strings) requires that ω(∂ψ) = 0 or

equivalently ω3(r0) = 0. This imposes the constraint

u3
0 = 3a0r

6
0

[
−gα2

4
− gα1

8r2
0

− gr2
0

4
+

3X̄IU
I
0

4r2
0

]
. (4.70)

This guarantees that ω vanishes as O(ρ2) where ρ =
√
r − r0. Assuming that ψ is

identified with period 4π/p, smoothness at the fixed point of ∂ψ at r = r0 requires

p =
r0V

′(r0)

2
= a1 +

a0

r2
0

+ g2r2
0 (4.71)

To see this, note that the spatial geometry near the bolt (ρ2 = r − r0 → 0) is

h =
4dρ2

V ′(r0)
+
r2

0V
′(r0)ρ2

4
(dψ + cos θdφ)2 +

r2
0

4
(dθ2 + sin2 θdφ2)

=
4

V ′(r0)

(
dρ2 +

r2
0V
′(r0)2

16
ρ2(dψ + cos θdφ)2

)
+
r2

0

4
(dθ2 + sin2 θdφ2)

(4.72)
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Thus smoothness as ρ → 0 requires that ψ̃ := r0V
′(r0)/4ψ be identified with period

2π. However, since ψ ∼ ψ + 4π/p, we arrive at (4.71). We then obtain

a0 = r2
0p− a1r

2
0 − g2r4

0 (4.73)

and using (4.53) gives

a1 =
1

2

[
p− g2r2

0

]
+

3gX̄IU
I
0

r2
0

(4.74)

and using the formula for a1 (4.52) we find

g2α2 =
1

2

[
p− 2− 3g2r2

0 +
6gX̄IU

I
0

r2
0

]
(4.75)

which allows us to solve for a0:

a0 =
r2

0

2

[
p− g2r2

0 −
6gX̄IU

I
0

r2
0

]
. (4.76)

This then determines qI via (4.59) totally in terms of the integration constants U I
0 ,

p ∈ N and r0. With the symmetric space condition we find

α1 =
8(X̄IU

I
0 )u3

0

a2
0r

4
0

. (4.77)

Subbing this back into (4.70) gives, using (4.61)

−3

2
a0r

2
0qIU

I
0 = −3a0r

4
0

[
gr4

0

4
− 3

4
X̄IU

I
0 +

g(X̄IU
I
0 )u3

0

a2
0r

4
0

+
g

4
r2

0α2

]
. (4.78)

This produces is a complicated constraint between (U I
0 , r0, p) which should determine

the allowed values of p. We therefore expect smooth soliton solutions with one discrete

parameter p and N − 1 continuous parameters. We have been unable to analyze all

solutions to (4.78) in generality. We will proceed below by looking at the special case

of the U(1)3 supergravity, and in particular, the special case of minimal supergravity

which arises when the three gauge fields are set equal.

Before doing so, however, we may compute the asymptotic conserved charges associ-

ated to our general family of solutions. We emphasize that in general we have not

addressed existence of an open set in the space of parameters that actually satisfy
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the regularity conditions. To compute the mass, it is convenient to use the Ashtekar-

Magnon prescription [?], which assigns a conserved charge to a spacetime with a

Killing vector field. To compute the mass, we use the timelike Killing vector field

∂T that is non-rotating at infinity. The asymptotic fall-off of the Weyl tensor in the

coordinate chart (4.67) as R→∞ is

CT
RTR =

1

R6

[
−4r4

0

(
1 +

r2
0

`2

)
+ 2`2α2

(
1− 2r4

0

`4

)
+ 3α1 +

4α0

`2

+6`U I
0 X̄I

(
3 +

4r2
0

`2

)
+

16U I
0 qI
`

]
+O(R−8)

(4.79)

which yields the mass after a suitable rescaling by the conformal boundary defining

function and an integration over L(p, 1) spatial boundary at infinity (see [2] for details

of a similar computation)

MAD =
π

8p

[
−4x2`2 (1 + x) + 2α2

(
1− 2x2

)
+

3α1

`2
+

4α0

`4

+
6U I

0 X̄I

`
(3 + 4x) +

16U I
0 qI
`3

] (4.80)

where we have defined the dimensionless parameter x := r2
0/`

2 which is a rough

measure of the radius of the S2 bubble in AdS length units. The angular momentum,

computed using a Komar integral with respect to −∂ψ gives1

J =
1

16π

∫
L(p,1)

?d [g(−∂ψ,∼)]

=
π`3

p

[
1

8`6
(2α0 + α1`

2)− x2α2

4`2
+
U I

0 qI
`5

+
3U I

0 X̄I

4`3
(1 + 2x)− x2

4
(1 + x)

]
.

(4.81)

The angular momentum associated to the spatial Killing field ∂φ vanishes identically.

The soliton spacetime therefore has equal angular momenta with respect to two or-

thogonal planes of rotation at infinity. The soliton also carries electric charge defined

by

QI :=
1

8π

∫
L(p,1)

QIJ ? F
J , (4.82)

where the integral is taken over the conformal boundary as R → ∞ on a spatial

1the sign in the prefactor follows the convention used in [32].
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hypersurface defined by t = T = constant. A computation gives

?F I = −f−2 ?4 d(XIf) + e0 ∧
(
XIf ?4 dω + ΘI + 9f−1gCIJKX̄JXKJ

)
. (4.83)

As R → ∞, we find that, pulled back to an R =constant, T =constant surface, as

R→∞

?F I =

(
− 9

8`2
CIJKqJqK −

U I
0

2`
+

3

4`
UJ

0 X̄JX̄
I +

α1X̄
I

8`2
+
α2X̄

I

4

−9

4
CIJKX̄JqK −

9α2

2`2
CIJKX̄JqK +O(R−2)

)
sin θdψ ∧ dθ ∧ dφ

(4.84)

and clearly as R → ∞, QIJ = 9
2
X̄IX̄J − 1

2
CIJKX̄

K + O(R−2). This leads to global

electric charges

QI =
2π

p

[
3

2

(
− α1

8`2
− 3UK

0 X̄K

4`
− 3α2X̄

JqJ
`2

+
α2

2

2`2

)
X̄I +

3

8

(
1 +

2α2

`2

)
qI

+
CIJKX̄

JUK
0

4`
+

9

16`2
CIJKX̄

JCKMNqMqN

]
.

(4.85)

A considerable simplification arises if one considers the ‘total charge’

X̄IQI =
π

p

[
α1

8`2
+ α2

(
1

4
− α2

`2

)
+

3U I
0 X̄I

4`

]
. (4.86)

We now turn to studying the existence of solutions which satisfy all the regularity

conditions. The above regularity condition (4.78) is difficult to analyze in the general

multicharge theory. We will focus on the standard U(1)3 supergravity theory obtained

by dimensional reduction of a truncation of Type IIB supergravity on S5. We take

I = i = 1, 2, 3 and X̄i = 1/3, X̄ i = 1. The constants Cijk = |εijk| = 1 if (i, j, k) are a

permutation of 1, 2, 3 and zero otherwise. We set qi := 3qi. Using these relations one

finds α0 = q1q2q3, α1 = q1q2 + q2q3 + q1q3, α2 = q1 + q2 + q3 and hence

f−3 =
(

1 +
q1

r2

)(
1 +

q2

r2

)(
1 +

q3

r2

)
. (4.87)

We have from (4.59) that

q1 = −4U2
0U

3
0

a0r2
0

(4.88)
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and similar expressions for q2, q3. The remainder of the solution is then explicitly

given by

ω3 =
g

2

∑
i

qi +
g

4r2
(q1q2 + q1q3 + q2q3) +

gr2

2
− 1

2r2

∑
i

U i
0 +

4U1
0U

2
0U

3
0

a0r2
0r

4
(4.89)

A1 =
(

1 +
q1

r2

)−1

(dt+ w3(dψ + cos θdφ))−
(
g

2

(
r2 + q2 + q3

)
+
U1

0

r2

)
(dψ + cos θdφ)

(4.90)

X i =
[
f
(

1 +
qi
r2

)]−1

(4.91)

with similar expressions for A2, A3 with the obvious permutations of the charge pa-

rameters qi.

We now examine the restrictions on the parameters in detail. It is convenient to

introduce dimensionless parameters yi0 := U i
0/`

3 = U i
0g

3 and x := r2
0/`

2. Firstly,

(4.53) and (4.52) give respectively

∑
yi0 =

g2

2
(r2

0a1 − a0),

y1
0y

2
0 + y2

0y
3
0 + y1

0y
3
0 =

g4a0r
2
0

4
(1 + x− a1).

(4.92)

Squaring the first and subtracting twice the second gives

∑
i

(yi0)2 =
g4

4
(a2

0 + a2
1r

4
0 − 2a0r

2
0(1 + x)). (4.93)

Now the condition that ω3(r0) = 0 becomes

1 =
a1

2
+
a0

2r2
0

+
8y1

0y
2
0y

3
0

g2a0x3
+

1

4x
(1+x−a1)2− 4

g4a2
0x

3
((y1

0y
2
0)2 +(y2

0y
3
0)2 +(y1

0y
3
0)2). (4.94)

The last term above can be written as

− 4

g4a2
0x

3
((y1

0y
2
0)2 + (y2

0y
3
0)2 + (y1

0y
3
0)2) =

2

g4a2
0x

3
((y1

0)4 + (y2
0)4 + (y3

0)4)

− g4

8a2
0x

3

[
a2

0 + a2
1r

4
0 − 2a0r

2
0(1 + x)

]2
.

(4.95)
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We also have the algebraic identity

3y1
0y

2
0y

3
0 = (y1

0)3 + (y2
0)3 + (y3

0)3 +
∑
i

yi0 ·

(
y1

0y
2
0 + y2

0y
3
0 + y1

0y
3
0 −

∑
j

(yj0)2

)
. (4.96)

One can replace the right hand sides of these identities with expressions for the charge

parameters yi0 in terms of (a0, a1, r0) using (4.92) and (4.93). Then, we eliminate a1

in terms of (r0, a0) using the regularity condition (4.71). Next, one can eliminate

any power of a0 higher than 1 by solving for a2
0 using (4.93). Finally one can get

a linear equation for a0 by substituting this back into (4.94). This allows us to

determine (a0, a1) in terms of the yi0 and x. Carrying this out produces a complicated

polynomial equation in (x, yi0) (8th-order in x) which we will not display here. There

does not seem to be a simple way to determine all allowed values of (p, x) from this

in general unless additional simplifications are assumed. We will be able to show that

the procedure described above can be carried out in two specific cases.

Equal charges

In the case of equal charges qi = q, U(1)3 theory will simplify, upon suitable field

redefinitions, to the minimal theory and our solutions should reduce to those found

in [40]. Then we have immediately from (4.52) that

a1 = 1 + x+ 3g2q. (4.97)

Since all the gauge fields Ai = A, we should have equal integration constants U i
0. Fix

the dimensionless parameter U0 = U I
0 /`

3. Then

q = − 4U2
0

a0r2
0g

6
. (4.98)

We then have from (4.97)

U2
0 =

1

12
(1 + x− a1)g4a0r

2
0. (4.99)
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On the other hand (4.53) gives

U0 =
g2

6
(r2

0a1 − a0) (4.100)

and combining these two expressions for U2
0 gives

a2
0 − 3a0r

2
0 + a0a1r

2
0 + a2

1r
4
0 − 3a0r

2
0x = 0. (4.101)

Note that this is precisely (4.93) when one sets all dimensionless charge parameters

equal, i.e. yi0 ≡ U0. The regularity conditions (4.71) inserted into (4.70) gives the

condition

−6U2
0

x
+

12U4
0

x3g2a0

+
g2a0x

2
− 3U0a0

2r2
0

+
4U3

0

x3
= 0. (4.102)

This gives an equation quadratic in a0, a1 (keeping in mind to eliminate the U4
0 ,U3

0

terms using (4.99)). Then use the regularity condition to get rid of a1 terms, the

constraint (4.101) to eliminate the a2
0 terms , and one is left with the condition

a0 =
2p2 − 4p+ 3 + (p− 8)x

g2(p+ 1)
. (4.103)

Subbing back into (4.101) produces

27x2 − (p− 2)(p2 + 14p− 5)x+ (p− 2)3p = 0. (4.104)

This equation is identical to the regularity condition derived in [40]. For fixed p

this yields a quadratic for x. The analysis of [40] demonstrates that the only possible

smooth solutions have p ≥ 3 with the corresponding larger (positive) root x of (4.104).

For this class of solutions of the minimal theory, there are no continuous parameters

once the topology is fixed by the choice of p. Explicitly, the spacetime metric is (4.12)
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is determined by

f =

(
1− r2

0 + 1− a1

3r2

)−1

(4.105)

ω3 =
r2 − r2

0

2`
+

(a1 − 1)`

2
+
r4

0 + r2
0`

2(2− 5a1) + 3a0`
2 + `4(1− a1)2

12`r2
(4.106)

− (a0 + a1r
2
0)(r2

0 + (1− a1)`2)`

18r2
− `(a2

0`
2 + a0(a1 − 3)`2r2

0 − 3a0r
4
0 + a1`

2r4
0)

18r6
,

(4.107)

along with the relations

a1 = p− x− a0

r2
0

,
a0

r2
0

=
2p2 − 4p+ 3 + (p− 8)x

x(p+ 1)
, (4.108)

x =
p− 2

54

(
(p2 + 14p− 5) + (1 + p)

√
(1 + p)(25 + p)

)
, (4.109)

and the Maxwell field by

F = d

[√
3

2
[f(dt+ ω)] +

`

2
√

3
P

]
(4.110)

where P is given by (4.32).

For these globally smooth and stationary gravitational solitons with conformal bound-

ary R × L(p, 1), we may compute their conserved charges. The asymptotic integrals

are computed in the limit R → ∞ in the asymptotically static (T,R, ψ̄, θ, φ) coordi-

nate chart (4.67). For the mass, it is natural to use the Ashtekar-Magnon mass, which

yields the result

MAD = −(p− 2)2(2p+ 5)`2π

108p
(4.111)

where we have used the asymptotically static Killing field ∂T to define the mass.

Note that since p ≥ 3, MAD is strictly negative. This is not unexpected, as these

solutions are not asymptotically globally AdS5 and a positive energy theorem does

not apply. Indeed, the mass of the vacuum Eguchi-Hanson-AdS5/Zp soliton family

of solutions (whose members are also asymptotically locally AdS5/Zp for p ≥ 3) is

strictly negative. The angular momentum computed using the Komar integral (4.81)

is

J = −`
3(p− 2)3π

108p
. (4.112)
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Finally, the electric charge can be computed from the integral

Q =
1

4π

∫
L(p,1)

?F = −`
2(p− 2)π

6p
√

3
(4.113)

where we have used the formula

?F =

√
3

2

[
f ′V r3

8f 2
sin θdθ ∧ dφ ∧ dψ +

rf 2ω′3
2

(dt+ ω3σ3) sin θ ∧ dθ ∧ dφ− 2f 2ω3

r
dt ∧ dr ∧ σ3

]
+

`

2
√

3

[
rfP ′

2
(dt+ ω3σ3) ∧ sin θdθ ∧ dφ− 2Pf

r
(dt+ ω3σ3) ∧ dr ∧ σ3

]
.

(4.114)

Using these definitions, we arrive at the BPS-type relation (p ≥ 3)

MAD =

√
3(p− 2)Q

2
+

2J

`
. (4.115)

One can of course define the mass for a family of non-supersymmetric black hole solu-

tions in terms of a ‘thermodynamic energy’ as in [41] and then take a supersymmetric

limit, and then choose the local parameters in these metrics so that a soliton geome-

try, rather than a black hole, is obtained. However, the Ashtekar-Magnon definition

appears more natural here, particularly since solitons have no horizon and hence no

associated temperature 2. As further evidence in support of identifying MAD with

the mass of the soliton spacetimes, consider the holographic stress tensor approach

[77, 106] . Adapted to the present setting, one considers a dual CFT on R × L(p, 1)

in a spacetime with conformal metric (4.69) and computes the expectation value of

the stress tensor given by (in units where the gravitational constant G = 1)

〈Tµν〉 = lim
R→∞

R2

8π`2

[
−(Kµν − Trh̄Kh̄µν)−

3

`
h̄µν +

`

2
Ḡµν

]
(4.116)

where (h̄, K) are the (Lorentzian) metric and extrinsic curvature associated to the

surfaces R =constant in the asymptotically static chart (4.67), and Ḡµν is the Ein-

stein tensor of h̄. In particular, we choose the outward pointing normal so that

Kµν = ˙̄hµν/(2gRR) where the overdot ˙ denotes a derivative with respect to R. The

2Nonetheless, solitons are still thermodynamically relevant. One can derive a ‘soliton mechan-
ics’, i.e. a Smarr-type relation and variation formulae for both globally and locally Anti-de Sitter
solitons [70, 25, 3]. Moreover, solitons arise in Hawking-Page type phase transitions between black
holes and solitons with the same conformal boundary [80, 3].
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holorgraphic energy is then obtained by integrating the function TTT over the confor-

mal boundary with metric (4.69). One obtains

E =

∫
L(p,1)

TTT dvol(h̄) =
`2π(−79 + 96p+ 24p2 − 16p3)

864p
(4.117)

which is strictly negative for p ≥ 3. This energy can be expressed in terms of the

Ashtekar-Magnon mass as

E = MAD +
3`2π

32p
. (4.118)

The second term is recognized to be the Casimir energy of the CFT on R × L(p, 1);

this is the energy of the AdS5/Zp orbifold (it has an orbifold singularity at the fixed

point of the SO(4) action). Note that MAD < 0, so the presence of the (globally

smooth) soliton lowers the energy with respect to the orbifold vacuum geometry.

Finally, we note that the non-contractible S2 at r = r0 carries a ‘dipole charge’ D
which is physically interpreted as a flux of F that prevents its collapse. In particular

note that F is not globally exact, and the dipole charge is

D =
1

4π

∫
S2

F =
`(p− 2)

4
√

3
. (4.119)

The charge is not conserved in the sense that it is only non-zero if the 2 surface on

which it is defined encloses the bubble.

Solutions with non-equal charges

A second set of smooth solutions can be obtained by choosing the dimensionless

integration constant vector to take the form yi0 = (y0, y0, βy0) for β ∈ R. We then

have for the charge parameters

q1 = q2 = − 4βy2
0

g4a0x
, q3 = − 4y2

0

g4a0x
(4.120)

where, as above, x = r2
0g

2 is dimensionless. The constraints (4.92) immediately can

be used to find

y0 =
g2(a1r

2
0 − a0)

2(2 + β)
(4.121)
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and using the regularity condition (4.71) to eliminate a1 as well as (4.94) one can follow

the procedure described above to eliminate a0 and obtain a polynomial equation for

x with coefficients depending on the parameter β and the natural number p:

4(β − 1)3x3 −
(
(β − 1)2p(p+ 2)− 7β2 + 22β + 4)β + 8

)
x2

+ (p− 2)(4p+ β(β2(p− 1)2 − 4 + 2p(p+ 2)− 2β(1 + p(p− 4)))x− pβ(p− 2)3 = 0.

(4.122)

For β = 1 this reduces to the quadratic that determines x in the minimal theory

(4.108). We also note that the case β = 0 leads to a solution for which p ≥ 3 and

Q1 = Q2 6= 0,Q3 = 0. Although this special case appears pathology-free, we find

that it has MAD = 0 so we will not pursue it further.

Rather than attempting an exhaustive analysis of the full space of solutions of (4.122),

we will confine ourselves to some simple illustrative example. An obvious question

is whether one can obtain asymptotically globally AdS5 solitons (p = 1) which, as

we explained above, cannot exist for β = 1. We have not yet been able to find any

smooth examples with simple values for β (one finds the function f has zeroes for

r > r0). However, a systematic investigation may lead to examples. Consider the

case β = 2, p = 3. Then the cubic (4.122) factors as 2(2x−3)(1−18x+x2) producing

solutions x1 = 3/2, x2 = 9 + 4
√

5, x3 = 1/x2. Consider x = x1. Then we have

a0 = 3/(8g2), a1 = 5/4, and y0 = 3/16. This leads to

q1 = q2 = − 1

2g2
, q3 = − 1

4g2
. (4.123)

Then we may write

f 3 =
r6(

r2 − r2
0 + 2`2)2(r2 − r2

0 + 5`2

4

) (4.124)

which is obviously positive for r > r0 =
√

3/2`. The solution has a mass MAD =

−π`2/48 and Q1 = Q2 = −3Q3/2 = 3π`2/32. Repeating this procedure for the case

β = 4, p = 3 leads to a well behaved solution of (4.122) with x± = 2/3±
√

11/27 > 0.

The resulting solutions for either root leads to regular solitons with non vanishing

mass MAD, angular momentum J and charges Qi.



123

4.4 Discussion

We have constructed asymptotically AdS5/Zp supersymmetric gravitational soliton

solutions of five-dimensional gauged supergravity coupled to an arbitrary number of

vector multiplets. The solutions are globally stationary and admit an SU(2) × U(1)

isometry group. The local solutions are characterized by N + 1 continuous param-

eters (r0, U
I
0 ). The local solutions extend to globally defined metrics provided these

parameters satisfy an additional two constraints for a given p ∈ N which determines

the topology of the conformal boundary. We have investigated in detail a subset of

these local solutions for which we can explicitly solve these constraints for p ≥ 3 and

showed there are examples beyond the minimal theory. Given their similarity to the

Eguchi-Hanson-AdS5/Zp vacuum solitons, we could identify these solutions as super-

symmetric generalizations that carry, in addition to negative mass relative to the AdS

orbifold background, non-vanishing angular momentum and charge.

We close with a brief discussion of some further problems which arise as a conse-

quence of our work. A natural question to investigate is the question of stability.

Famously, robust numerical investigation have provided strong evidence that global

AdS is nonlinearly unstable [52, 54] to the formation of black holes as energy tends to

get concentrated to shorter scales. One might expect supersymmetric solitons in AdS

to suffer from a similar instability. Dold has rigorously established that the maximal

development of SU(2)×U(1)-invariant initial data sufficiently close to Eguchi-Hanson-

AdS5/Zp do not form future horizons. This suggests that the endpoint of the evolution

(assuming it settles to a static spacetime with the same conformal boundary) would

be a spacetime containing a naked singularity.

More recently, mode solutions of the linear scalar wave equation on the Eguchi-

Hanson-AdS5/Zp soliton were analyzed [3]. It was shown that, similar to AdS, the

geometry admits a normal mode spectrum, so that scalar modes neither grow nor

decay in time. These two stability results are consistent, as [3] is purely a linear

result. It would be interesting to extend both of these analyses to the stationary, su-

persymmetric solitons constructed here to determine whether there are obstructions

to horizon formation and/or a normal mode spectrum. A related challenging problem

would be to study linearized gravitational perturbations of the background. Since

the solutions have SU(2)×U(1) symmetry, one could decompose metric and Maxwell

field perturbations using the strategy developed in [107].
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Our preliminary analysis at least reveals that there are no ergoregions (with respect to

either the stationary Killing fields ∂t or ∂T ), which are known to be another channel for

instabilities. As mentioned in the Introduction, this is in stark contrast to the 1/2-

BPS supersymmetric solitons constructed in [2] which actually contain evanescent

horizons (the supersymmetric Killing vector field becomes null on a co-dimension two

timelike surface) which provide a geometric mechanism for instability. The absence of

such tapping mechanisms suggests that the supersymmetric solitons constructed here

could be nonlinearly stable.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has presented several new results on the topic of asymptotically AdS5

gravitational solitons. Broadly, we have focussed on finding new explicit examples of

such solutions, generalizing previous work, and studying their geometric properties.

Secondly, we have performed a thorough stability analysis of a well-known family

of solitons, by studying solutions of the linear wave equation on the fixed soliton

background.

In more detail, the results for the projects presented above can be summarized as

follows:

� Asymptotically globally AdS5 gravitational soliton solutions of five-dimensional

gauged supergravity coupled to arbitrarily many vector multiplets were con-

structed. It is shown that they contain evanescent ergosurfaces and hence gives

strong evidence that they exhibit nonlinear instability through the mechanism

of stable trapping.

� The mode solutions of the scalar wave equation of the Eguchi-Hanson-AdS5

gravitational solitons were investigated. In addition, geometric and thermody-

namic properties of these solitons were analyzed.

� New supersymmetric gravitational soliton solutions of five-dimensional gauged

supergravity coupled to arbitrarily many vector multiplets were constructed by a
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systematic search of SU(2)×U(1) solutions of the supergravity equations. These

differ from the ones in the first chapter in that they preserve one-quarter of the

supersymmetry as opposed to one-half. All the examples we have constructed

explicitly are asymptotically locally AdS5, that is they approach a quotient

AdS5/Zp for p ≥ 3. These solutions can be thought of as BPS versions of the

Eguchi-Hanson-AdS5 solitons studied in the previous chapter.

5.2 Future Work

In this section, we will present our ongoing project about generalization of asymp-

totically globally AdS5 gravitational solitons that were first considered in [25] as in-

troduced in Chapter 1. This work is in preparation. The work on the Klein-Gordon

equation in 5.2.3 is my own and the material in 5.2.1 and 5.2.2 is work in collabora-

tion with my supervisor, Dr. Robert Mann and Dr. Robie Hennigar and is a natural

progression of our article.

In the following subsections, we will be referring to the asymptotically AdS5 non-

supersymmetric gravitational soliton (1.26) and refer to the notation given there.

The local solutions have only been studied in the asymptotically globally AdS case,

when there is a spherical boundary. This means k = 1 in the identifications of the

angles (1.30). In our ongoing work we are studying what happens if constraint the

parameters so that we allow k > 1. Note that in this case, these solitons are like

charged, rotating generalizations of the vacuum Eguchi-Hanson-AdS5 solution.

5.2.1 Asymptotically locally AdS5 solutions

The action for minimal five-dimensional supergravity is

I =
1

16π

∫
M

[(
R +

12

`2

)
dvol(g)− 2F ∧ ?F − 8

3
√

3
F ∧ F ∧ A

]
. (5.1)
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The equations of motion are

Rab = 2

(
FacF

c
b −

1

6
|F |2gab

)
− 4

`2
gab,

d ? F +
2√
3
F ∧ F = 0.

(5.2)

It can be verified directly that the soliton metric (1.26) along with the Maxwell field

F =
3q

2
d

[(
1

r2

)(
j

2
σ3 − dt

)]
(5.3)

gives a solution to the field equations. Now we choose our parameters so that there is a

simultaneous simple zero of b(r)2 and W (r) at r = r0. This imposes the conditions on

the parameters given by (1.32). In order that the vector field ∂ψ degenerate smoothly

at r = r0 (i.e. there are conical singularities) imposes

ψ ∼ ψ +
4π√

W ′(r0) (b2(r0))′
. (5.4)

By defining dimensionless parameters

x ≡ r2
0

j2
and α ≡ j2

`2
, (5.5)

the regularity condition is written as

(2 + x)2 [1 + x (α− 1)]− k2 = 0. (5.6)

It can also be written as

(1− α)x3 + (3− 4α)x2 − 4xα + k2 − 4 = 0 (5.7)

The globally AdS5 case corresponds to k = 1 and has been analyzed before. The

appearance of k > 1 dramatically changes the space of solutions. For k = 1 it was

shown that there is a single solution provided that 0 ≤ α ≤ 1. We have checked that

for k = 2 there are two solutions, but only one has x > 0 (the case x < 0 implies r0 is

imaginary, so must be discarded). If k ≥ 3, some detailed analysis indicates that there

is a real constant α∗ such that for 0 < α < α∗ there are no solutions, for α∗ < α < 1
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there are two regular solutions for x, and for α > 1 there is a single regular solution.

This implies that for fixed asymptotic boundary conditions (i.e. fixed k ≥ 3) one can

have two possible solutions, a ‘large’ and ‘small’ soliton, corresponding to the two

roots x2 > x1 > 0.

5.2.2 Conserved charges

Here we briefly study the computation of the mass and angular momentum of these

solutions for general k. To calculate the Ashtekar–Magnon–Das mass, we first need

to map the metric to its conformal boundary by

ḡµν = Ω2gµν (5.8)

where the conformal scale is

Ω =
`

r
. (5.9)

The conformal boundary is the asymptotic region as r →∞. The conformal boundary

metric is the metric induced by pulling back ḡµν to a surface r =constant with r →∞:

ḡ4 = −dt2 + `2g3 (5.10)

where g3 is the round metric on L(k, 1). This is the metric at timelike infinity I.

The electric part of the Weyl tensor, which is calculated by projecting the Weyl tensor

to the boundary, is given by

Ēµν =
`2

Ω2
ḡαγ ḡβσnγnσC

µ
ανβ (5.11)

where n = dΩ is the unit normal for constant-r surfaces. The conserved quantity

associated with the Killing vector K is given by

Q [K] =
`

16π

∫
Σ

ĒµνKνdΣµ. (5.12)

The integral will be taken at infinity with the timelike normal dt and the timelike

Killing vector is ∂/∂t and Σ is spatial geometry L(k, 1) equipped with the round

metric as described above. It has a volume 2π2/k. Therefore, ν and µ in the above

equation should be taken as t. This shows us that the only relevant Weyl tensor
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component would be Ct
rtr, which is

Ct
rtr =

6`2p− 6`2q + 4pj2

r6
+O

(
1

r8

)
. (5.13)

Hence, the Ashtekar-Magnon-Das mass is

M =
π

4k

(
3p− 3q +

pj2

`2

)
. (5.14)

To calculate the angular momentum in the ψ-direction, consider the Killing vector
2∂
∂ψ

, i.e., 2π-periodic orbits. In this case, the only relevant component of the Weyl

tensor is Ct
rψ̃r

. Then, the angular momentum is

J

[
2∂

∂ψ

]
= −(2p− q)jπ

2k
. (5.15)

It should be noted of course that the parameters (p, q) appearing here are actually

fixed by (1.32) and then these parameters must satisfy the regularity conditions for

the given k.

5.2.3 Euclidean Action

We have argued above that for general k ≥ 3, there are regions in the parameter space

where there are two solitons, one large, and one small. Thus for a fixed conformal

boundary (say L(k, 1)) there are multiple solutions: a black hole with these asymp-

totics (this can be easily found by taking quotients of known globally AdS5 black

hole metrics) and also additional solitons. Typically, when this happens, we expect

‘phase transitions’ between solutions as we vary some parameter (such as the charge

or angular momentum, or temperature if we have a black hole). The most famous

example of this is the Hawking-Page phase transition, which describes a transition

from empty AdS to a Schwarzschild-AdS black hole (see Chapter 3 for a discussion in

the Eguchi-Hanson-AdS case).

To get a positive-definite metric, the obvious choice is to define an imaginary time

by t = iτ . To get a real metric we then set j = iĵ. However the parameter q

appears linearly in the metric functions, which means q = iq̂ cannot be set. The
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positive-signature metric is

ds2
E =

r2Ŵ (r)

4b̂(r)2
dτ 2 +

dr2

Ŵ (r)
+
r2

4

(
σ2

1 + σ2
2

)
+ b̂(r)2

(
σ3 + f̂(r)dτ

)2

, (5.16)

with the metric functions

Ŵ (r) = 1 +
4b(r)2

`2
− 2

r2
(p− q) +

q2 − 2pĵ2

r4
,

b̂(r)2 =
r2

4

(
1 +

ĵ2q2

r6
− 2ĵ2p

r4

)
, (5.17)

f̂(r) =
ĵ

2b(r)2

(
2p− q
r2

− q2

r4

)
,

and the Maxwell field is

F =

√
3q

2
d

[(
1

r2

)(
jσ3

2
− dt

)]
=

√
3iq

2
d

[(
1

r2

)(
ĵσ3

2
− dτ

)]
(5.18)

would be imaginary, which does not cause a problem. The equations of motion for

(g, F ) are

Rab = 2

(
FacF

c
b −

1

6
|F |2gab

)
− 4

`2
gab, d ? F +

2√
3
F ∧ F = 0. (5.19)

This means on-shell

R =
1

3
|F |2 − 20

`2
, − 8

3
√

3
F ∧ F ∧ A =

4

3
d(?F ∧ A) +

4

3
F ∧ ?F. (5.20)

but A is not globally defined. Using the identity

F ∧ ?F =
|F |2

2
dVol(g), (5.21)

we find the on-shell supergravity Lagrangian(
R +

12

`2

)
dvol(g)− 2F ∧ ?F − 8

3
√

3
F ∧ F ∧ A (5.22)

= − 8

`2
dvol(g) +

4

3
d(?F ∧ A). (5.23)
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The Euclidean action is then given by

Î = − 1

16πG

[∫
M

(
− 8

`2

)
dVol(g) (5.24)

+2

∫
∂M

[
2

3
? F ∧ A+

(
TrK − 3

`
− `Rh

4

)
dVol(h)

]]
. (5.25)

At r = r0 provided we fix

q =
r4

0

ĵ2
, p =

r4
0(r2

0 + ĵ2)

2ĵ4
, (5.26)

and using similar definitions as in the Lorentzian case

x̂ := −r
2
0

ĵ2
, α̂ := − ĵ

2

`2
, (5.27)

the regularity condition becomes

(2 + x̂)2(1− x̂(1− α̂)) = k2. (5.28)

A computation gives

?F =

√
3iq

2

[
− f̂ Ŵ

8b̂2
dτ ∧ sin θdθ ∧ dφ

− b̂
2

r2

(
1 +

f̂ ĵ

2

)
(σ3 + f̂dτ) ∧ sin θdθ ∧ dφ− ĵ

r3
dτ ∧ dr ∧ σ3

]
.

(5.29)

We see that the gauge field A appears within the boundary integral for the Euclidean

action. We can choose it to be (up to additional gauge freedoms)

A =

√
3iq

2

(
1

r2

)(
ĵσ3

2
− dτ

)
. (5.30)

At r = r0 the vector field ∂ψ degenerates, so to be in a regular gauge we need A(∂ψ) = 0

at r = r0. This requires choosing

A =

√
3iq

2

[(
1

r2

)(
ĵσ3

2
− dτ

)
− ĵdψ

2r2
0

]
. (5.31)
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The last term in ?F above vanishes when pulling back to a surface of constant r.

Thus,

?F ∧ A

∣∣∣∣∣
r=R

=
3q2

4
dτ ∧ dψ ∧ sin θdθ ∧ dφ

[(
1

R2
− 1

r2
0

)[
b̂2ĵf̂

2R2

(
1 +

f̂ ĵ

2

)
+
ĵf̂ Ŵ

16b̂2

]

+
b̂2

R4

(
1 +

f̂ ĵ

2

)
− c1

b̂2

r2

(
1 +

f̂ ĵ

2

)]
.

(5.32)

While this looks complicated, as one takes R → ∞ the terms in square brackets

vanish as O(1/R2). Thus we do not expect these to contribute to the action. In the

(Euclidean) black hole case, the Maxwell boundary term does contribute.

The Euclidean action reduces to the calculation if the ?F ∧A term is not present and

gives

Î =
πβ

32`2k

[
(3`4 + 8j2p+ 8`2(p− q))− 8r4

0

]
=

πβ

32`2k

[
3`4 + 4r4

0

(
1 +

`2

j2

)[
r2

0

j2
− 1

]]
=
πβ`2

32k

[
3 + 4x̂2(1 + x̂)(1− α̂)α̂

]
.

(5.33)

It remains to evaluate the action for the two possible solitons for fixed k and α∗ <

α < 1 . The soliton with least action is ‘favoured’ (i.e. it has less free energy). A

phase transition occurs when we move into a region where the other soliton becomes

preferred.

5.2.4 Klein-Gordon Equation

Finally we note that even for k = 1, there has been no attempt at a stability analysis

for the class of gravitational solitons given by (1.26). We have already performed an

analysis for the simpler static Eguchi-Hanson-AdS solution (Chapter 3). The present

case is somewhat more difficult as the metric is more complicated, and in particular,

stationary but non-static. Here we describe some preliminary work by showing that

the equation admits separable solutions, and the analysis can be reduced to a single

radial Schödinger type equation. To begin, recall that the Klein-Gordon equation for
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a scalar field Φ with a mass M is given by

∇µ∇µΦ = M2Φ, (5.34)

or
1√
−g

∂

∂xµ

(
gµν
√
−g ∂Φ

∂xν

)
= M2Φ. (5.35)

Explicitly

1√
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∂
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(
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+
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−g

∂
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(
gAB
√
−g ∂Φ

∂xB

)
= M2Φ

where A,B = t, φ, ψ̃. Then the Klein-Gordon equation becomes

1
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1
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∂2Φ

∂ψ̃2
= M2Φ. (5.36)

By using the separation ansatz

Φ = e−iωteimψ̃R(r)Y (θ, φ), (5.37)

we get

1

r3

∂

∂r

(
r3W (r)

∂Φ
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+

4

r2 sin θ

∂

∂θ

(
sin θ
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4
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− 4im cos θ

r2 sin2 θ
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∂φ
− m2

b̃(r)2
Φ = M2Φ. (5.38)

Defining a one-form on S2

Aµ =
cos θ

2
dφ, (5.39)

and letting

Dµ = ∇S2
µ
− imAµ, (5.40)

the Klein - Gordon equation can be rewritten as

1
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(
r3W (r)

∂Φ
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+
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+

b̃(r)2
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2

)2
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Or, explicitly

1

r3
e−iωteimψ̃Y (θ, φ)

d

dr

(
r3W (r)

dR(r)

dr
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+ e−iωteimψ̃R(r)
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e−iωteimψ̃R(r)Y (θ, φ)− m2
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e−iωteimψ̃R(r)Y (θ, φ)

= M2e−iωteimψ̃R(r)Y (θ, φ). (5.42)

Here, Y (θ, φ) is an eigenfunction of the charged scalar Laplacian on CP 1, satisfying

D2Y (θ, φ) = −µY (θ, φ) (5.43)

where

µ = l (l + 2)−m2,

l = 2k + |m|, (5.44)

k = 0, 1, 2, ...

Therefore, the Klein-Gordon equation is reduced to a one-variable equation as follows

1

r3

d

dr

(
r3W (r)

dR(r)

dr

)
+

[
− µ
r2

+
b̃(r)2

r2W (r)

(
ω +

mf(r)

2

)2

− m2

b̃(r)2
−M2

]
R(r) = 0.

(5.45)

In future work we intend to determine the spectrum of allowed frequencies ω satisfying

the boundary conditions (i.e. reflective at conformal infinity, and regular at the ‘origin’

r = r0). In particular, it is open question as to whether, like the Eguchi-Hanson-AdS

soliton, these more complicated solitons also have normal modes (i.e. there are no

decaying or growing ‘quasi’-normal modes).



Bibliography
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[29] Veronika Breunhölder and James Lucietti. Moduli space of supersymmetric
solitons and black holes in five dimensions. Commun. Math. Phys., 365(2):471–
513, 2019.

[30] Simon F. Ross. Non-supersymmetric asymptotically AdS(5) x S**5 smooth
geometries. JHEP, 01:130, 2006.

[31] Jan B. Gutowski and Harvey S. Reall. Supersymmetric AdS(5) black holes.
JHEP, 02:006, 2004.

[32] Jan B. Gutowski and Harvey S. Reall. General supersymmetric AdS(5) black
holes. JHEP, 04:048, 2004.

[33] Hari K. Kunduri, James Lucietti, and Harvey S. Reall. Supersymmetric multi-
charge AdS(5) black holes. JHEP, 04:036, 2006.

[34] Alejandro Cabo-Bizet, Davide Cassani, Dario Martelli, and Sameer Murthy.
Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5

black holes. JHEP, 10:062, 2019.

[35] Sunjin Choi, Joonho Kim, Seok Kim, and June Nahmgoong. Large AdS black
holes from QFT. 10 2018.

[36] Francesco Benini and Elisa Milan. Black Holes in 4D N=4 Super-Yang-Mills
Field Theory. Phys. Rev. X, 10(2):021037, 2020.

[37] Alberto Zaffaroni. AdS black holes, holography and localization. Living Rev.
Rel., 23(1):2, 2020.

[38] Z. W. Chong, Mirjam Cvetic, Hong Lu, and Christopher N. Pope. General non-
extremal rotating black holes in minimal five-dimensional gauged supergravity.
Phys. Rev. Lett., 95:161301, 2005.

[39] Davide Cassani, Jakob Lorenzen, and Dario Martelli. Comments on super-
symmetric solutions of minimal gauged supergravity in five dimensions. Class.
Quant. Grav., 33(11):115013, 2016.

[40] James Lucietti and Sergei G. Ovchinnikov. Uniqueness of supersymmetric AdS5
black holes with SU(2) symmetry. Class. Quant. Grav., 38(19):195019, 2021.



138

[41] Mirjam Cvetic, Gary W. Gibbons, Hong Lu, and Christopher N. Pope. Rotating
black holes in gauged supergravities: Thermodynamics, supersymmetric limits,
topological solitons and time machines. 4 2005.

[42] Mirjam Cvetic, M. J. Duff, P. Hoxha, James T. Liu, Hong Lu, J. X. Lu,
R. Martinez-Acosta, Christopher N. Pope, H. Sati, and Tuan A. Tran. Em-
bedding AdS black holes in ten-dimensions and eleven-dimensions. Nucl. Phys.
B, 558:96–126, 1999.

[43] Gary W. Gibbons and Nicholas P. Warner. Global structure of five-dimensional
fuzzballs. Class. Quant. Grav., 31:025016, 2014.

[44] Felicity C. Eperon, Harvey S. Reall, and Jorge E. Santos. Instability of super-
symmetric microstate geometries. JHEP, 10:031, 2016.

[45] Joseph Keir. Evanescent ergosurface instability. Anal. Part. Diff. Eq.,
13(6):1833–1896, 2020.

[46] Joe Keir. Slowly decaying waves on spherically symmetric spacetimes and ul-
tracompact neutron stars. Class. Quant. Grav., 33(13):135009, 2016.

[47] Georgios Moschidis. Logarithmic local energy decay for scalar waves on a general
class of asymptotically flat spacetimes. 9 2015.

[48] Joseph Keir. Wave propagation on microstate geometries. Annales Henri
Poincare, 21(3):705–760, 2019.

[49] Sharmila Gunasekaran and Hari K. Kunduri. Slow decay of waves in gravita-
tional solitons. Annales Henri Poincare, 22(3):821–872, 2021.

[50] Gustav Holzegel and Jacques Smulevici. Decay properties of Klein-Gordon fields
on Kerr-AdS spacetimes. Commun. Pure Appl. Math., 66:1751–1802, 2013.

[51] Gustav Holzegel and Jacques Smulevici. Quasimodes and a lower bound on
the uniform energy decay rate for Kerr–AdS spacetimes. Anal. Part. Diff. Eq.,
7(5):1057–1090, 2014.

[52] Piotr Bizon and Andrzej Rostworowski. On weakly turbulent instability of anti-
de Sitter space. Phys. Rev. Lett., 107:031102, 2011.
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Henri Poincaré, 5(2):245–260, apr 2004.

[58] G. J. Galloway, S. Surya, and E. Woolgar. A Uniqueness theorem for the AdS
soliton. Phys. Rev. Lett., 88:101102, 2002.

[59] G. J. Galloway, S. Surya, and E. Woolgar. On the geometry and mass of static,
asymptotically AdS space-times, and the uniqueness of the AdS soliton. Com-
mun. Math. Phys., 241:1–25, 2003.

[60] R. Clarkson and Robert B. Mann. Soliton solutions to the Einstein equations
in five dimensions. Phys. Rev. Lett., 96:051104, 2006.

[61] R. Clarkson and Robert B. Mann. Eguchi-Hanson solitons in odd dimensions.
Class. Quant. Grav., 23:1507–1524, 2006.

[62] Dominic Dold. Global dynamics of asymptotically locally AdS spacetimes with
negative mass. Class. Quant. Grav., 35(9):095012, 2018.

[63] David Kastor, Sourya Ray, and Jennie Traschen. Enthalpy and the Mechanics
of AdS Black Holes. Class. Quant. Grav., 26:195011, 2009.

[64] S. W. Hawking and Don N. Page. Thermodynamics of Black Holes in anti-De
Sitter Space. Commun. Math. Phys., 87:577, 1983.

[65] Gabriele Benomio. The stable trapping phenomenon for black strings and black
rings and its obstructions on the decay of linear waves. Anal. Part. Diff. Eq.,
14(8):2427–2496, 2021.

[66] Tohru Eguchi and Andrew J. Hanson. Asymptotically Flat Selfdual Solutions
to Euclidean Gravity. Phys. Lett. B, 74:249–251, 1978.

[67] Gary T. Horowitz and Robert C. Myers. The AdS / CFT correspondence and a
new positive energy conjecture for general relativity. Phys. Rev. D, 59:026005,
1998.

[68] Don N. Page. Phase transitions for gauge theories on tori from the AdS / CFT
correspondence. JHEP, 09:037, 2008.

[69] Edgar Shaghoulian. Modular Invariance of Conformal Field Theory on S1S3

and Circle Fibrations. Phys. Rev. Lett., 119(13):131601, 2017.



140

[70] Saoussen Mbarek and Robert B. Mann. Thermodynamic Volume of Cosmolog-
ical Solitons. Phys. Lett. B, 765:352–358, 2017.

[71] A. Ashtekar and A. Magnon. Asymptotically anti-de Sitter space-times. Class.
Quant. Grav., 1:L39–L44, 1984.

[72] David Kubiznak, Robert B. Mann, and Mae Teo. Black hole chemistry: ther-
modynamics with Lambda. Class. Quant. Grav., 34(6):063001, 2017.

[73] Sharmila Gunasekaran, Uzair Hussain, and Hari K. Kunduri. Soliton mechanics.
Phys. Rev. D, 94(12):124029, 2016.

[74] Michael Appels, Ruth Gregory, and David Kubiznak. Thermodynamics of Ac-
celerating Black Holes. Phys. Rev. Lett., 117(13):131303, 2016.

[75] Alvaro Ballon Bordo, Finnian Gray, Robie A. Hennigar, and David Kubizňák.
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