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Abstract

Breast cancer is a prevalent disease that can be classified into four molecular sub-

types based on genetic and molecular markers. This study aimed to develop a ma-

chine learning-based approach to classify molecular subtypes of breast cancer using

radiomics features extracted from dynamic contrast-enhanced magnetic resonance

imaging (DCE MRI). The comprehensive dataset used in this study included 4428

radiomics features per patient, as well as clinical features, making it a valuable re-

source for future research. Our methodology involved several stages, including image

preprocessing, feature extraction, initial and final feature selection, and data cleaning

techniques, such as data imputation and Local Outlier Factor (LOF), to ensure the

quality of the dataset. We conducted hyperparameter tuning and robustness analysis

to optimize the performance of the machine learning algorithms. The results were

evaluated in three scenarios: 4-label classification, binary, and 3-label classifications.

Our approach achieved up to 85% F1 score in binary classifications and improved the

overall accuracy of classifying the four molecular subtypes of breast cancer by 12%,

which represents a significant improvement over the original study. These findings

suggest that machine learning algorithms can be a powerful tool for improving the

diagnosis and treatment of breast cancer, paving the way for personalized medicine

approaches. Furthermore, the proposed approach can be applied to other datasets

and may be useful in other areas of medical research that rely on radiomics features

extracted from medical images.
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Chapter 1

Introduction

Breast cancer is a complex disease that affects public health worldwide. It is the

most common cancer among women, with an estimated 2.3 million new cases and

685,000 deaths in 2020 [1]. Breast cancer is a heterogeneous disease with distinct

molecular subtypes that have different clinical presentations, responses to therapy,

and prognoses. These subtypes are typically defined by the expression of biomarkers

such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2). The four main molecular subtypes of breast cancer

are Luminal A, Luminal B, HER2+, and Triple Negative (TN) [2, 3]. Tradition-

ally, breast cancer subtype classification has relied on invasive and time-consuming

histological and immunohistochemical analyses of biopsy samples. However, these

methods may not always provide accurate information on tumor heterogeneity and

are prone to sampling errors [4]. In recent years, non-invasive imaging techniques
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such as magnetic resonance imaging (MRI) have been used to predict the molecular

subtypes of breast cancer [5–10]. MRI is a powerful imaging modality that provides

high-resolution images of breast tissue which can be used for the detection and char-

acterization of breast tumors. Furthermore, machine learning (ML) is a powerful set

of techniques that can be used to analyze complex medical imaging data for the diag-

nosis and prognosis of various diseases, including breast cancer. Deep learning-based

ML algorithms have shown significant improvements in the accuracy of breast cancer

diagnosis and classification [11, 12]. In this thesis, an effective machine learning ap-

proach is developed to predict the molecular subtypes of breast cancer using dynamic

contrast-enhanced (DCE) MRI data. DCE MRI is a non-invasive imaging technique

used to detect and characterize breast cancer [13]. DCE MRI uses a gadolinium-based

contrast agent injected into the patient’s bloodstream through an IV line. Before the

contrast agent is injected, a fat-saturated gradient echo T1-weighted pre-contrast se-

quence is acquired to provide baseline information about the breast tissue. After the

pre-contrast sequence is acquired, a series of post-contrast sequences are acquired to

capture the uptake and washout of the contrast agent in the breast tissue. This study

focuses on pre-contrast and the first three post-contrast sequences of DCE MRI. The

study uses locations of tumors annotated by experienced radiologists to filter out

slices not containing tumors and crop the slices to focus on tumors further. Three

different methods of cropping are used: the original crop based on the locations in

the annotation file, 32× 32 crop, and 64× 64 crop from the middle of rectangles used
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for the first method of cropping. Segmentation is also used to narrow down slices

to some tumors containing slices. Image segmentation is the process of dividing an

image into multiple regions for further analysis. In this study, tumor regions were

segmented from the cropped slices via thresholding. The Pyfeats Python library [14]

is used to generate various features from the cropped images and the corresponding

tumor segmentation as essential inputs. Pyfeats can extract a wide range of features

from molecular dynamics simulations, including first order statistics, radial and bond

angle distribution functions, coordination number distributions, grid-based features,

geometric features, collective variables such as principal component analysis (PCA)

and diffusion map analysis, free energy landscapes, reaction rates estimation, clus-

tering analyses, gray level co-occurence matrix (GLCM) and gray level run length

matrix (GLRM) features, and structural autocorrelation functions. These features

provide insights into the structure, dynamics, and thermodynamics of molecular sys-

tems. Using four different sequences of DCE MRI and three different methods of

cropping, a dataset consisting of 4428 radiomics features is obtained. Clinical fea-

tures such as MRI technical information, demographics, tumor characteristics, and

recurrence information are also included in this dataset. In order to train different

machine learning (ML) models, we used the comprehensive dataset that we created.

However, the dataset had missing values that needed to be handled using proper data

imputation methods such as mean and KNN imputation [15–17].

Developing a machine learning-based approach for predicting the molecular sub-
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types of breast cancer involves a significant challenge of selecting appropriate features.

To address this challenge, initial feature selection methods were performed to elimi-

nate redundant features, resulting in a reduction in computation time. Subsequently,

a variety of feature selection methods [18], including ANOVA and a hybrid method

combining ANOVA and the Forward Selection Algorithm, were used to identify the

most informative features and avoid overfitting for each classification. It was observed

that the performance of the models slightly varied depending on the feature selec-

tion methods used and data imputation method. However, the primary focus was on

ANOVA feature selection and KNN imputation.

We explored three different scenarios of classification based on class numbers,

including 4-label, binary, and 3-label classifications. In the first scenario, we classified

all four subtypes of breast cancer simultaneously. In the second scenario, we used

different methods to make binary classifications, including one vs. the rest, one vs.

one, and two vs. two. In the last scenario, we considered three-label classification

using different methods of either eliminating or combining one class.

To develop our breast cancer classification model, we investigated various clas-

sifiers, such as support vector machines (SVM), logistic regression (LR), random

forests (RF), XGBoost (XGB), linear discriminant analysis (LDA), and neural net-

works (NN). We utilized grid search or random search [19] with cross-validation on

the training dataset to fine-tune the hyperparameters of these classifiers.

To ensure reliable results and avoid overfitting, we split the data into training and
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testing sets using a 90% − 10% ratio. We repeated this process five times by varying

the random state each time. Finally, we constructed a 90% confidence interval for

the average number of features and the F1 score using the t-student distribution with

four degrees of freedom.

Our study demonstrates the effectiveness of our approach in predicting the molec-

ular subtypes of breast cancer using DCE MRI data and extracted features. We

achieved up to 85% F1 score in binary classifications. Moreover, Our approach

achieved great performance compared to the original research [3] in multi-classification,

where all four molecular subtypes available. The overall accuracy of classifying the

four molecular subtypes of breast cancer was improved by 12%, indicating a consider-

able improvement over the original study that utilized the same dataset. We observed

that the precision and recall values were consistent across all subtypes, indicating that

our approach is effective in predicting all subtypes with similar accuracy. In conclu-

sion, our study highlights the potential of machine learning techniques in improving

the diagnosis and classification of breast cancer subtypes using non-invasive imaging

data. By accurately predicting the molecular subtypes of breast cancer, our approach

can lead to the development of personalized treatment plans and improve patient out-

comes. However, further validation studies are necessary to assess the generalizability

of our approach across different datasets and populations. To advance the field of

breast cancer diagnosis and classification, future research should focus on developing

machine learning models that are both interpretable and robust. Additionally, us-
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ing larger datasets or exploring different types of MRI scans could help improve the

accuracy and generalizability of these models.

This thesis makes several contributions to the field of breast cancer diagnosis and

classification using DCE MRI and machine learning algorithms. These contributions

include:

1. Demonstrating that machine learning algorithms can accurately distinguish be-

tween molecular subtypes of breast cancer using DCE MRI data, providing a

non-invasive and efficient method for predicting cancer subtypes.

2. Reducing the workload of radiologists by providing methods for predicting

molecular subtypes of breast cancer with greater precision and recall, which

can help reduce errors and potentially prevent irreparable damages.

3. Identifying the most important classes of features that can be used to generate

features from DCE MRI data, as well as determining certain clinical features

that are effective in predicting cancer types.

4. Evaluating previous research and ensuring reproducibility using a well-known

dataset in breast cancer DCE MRI, which can help to establish the validity and

reliability of the findings and improve the overall quality of research in the field.

This thesis comprises the following chapters:

• Chapter 1 - Introduction: An overview of the research problem, objectives,

and context.
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• Chapter 2 - Background and Related Work: A review of recent research on

applying machine learning algorithms to predict molecular subtypes of breast

cancer using DCE MRI.

• Chapter 3 - Methodology: A detailed description of the steps involved in

processing raw DCE MRI data to prepare it for use with machine learning

algorithms.

• Chapter 4 - Results and Discussion: A review of the achieved results for

three classification scenarios, along with a discussion of the findings and their

significance.

• Chapter 5 - Conclusion: A summary of the major findings in relation to the

research objectives and questions, along with a brief overview of the study’s

limitations and future directions for research.

By reading these chapters, readers will gain a comprehensive understanding of the

research problem, the methods used, the results achieved, and the implications of the

findings.

19



Chapter 2

Background and Related Work

Breast cancer is a complex and heterogeneous disease with various molecular subtypes

that exhibit distinct clinical presentations and responses to treatment [20]. Accurate

and early prediction of molecular subtypes can help in developing personalized treat-

ment plans and improving patient outcomes. Dynamic contrast-enhanced magnetic

resonance imaging (DCE MRI) [13, 21] is a non-invasive imaging technique that can

provide valuable information for predicting molecular subtypes of breast cancer. Ma-

chine learning algorithms have shown promising results in predicting molecular sub-

types of breast cancer using DCE MRI data on extracted features. Several studies

have investigated the use of machine learning algorithms on various extracted features

from medical images to predict molecular subtypes of breast cancer.

Saha et al. [3] analyzed 922 patients with invasive breast cancer and pre-operative

MRI using a computer algorithm to extract 529 features of the tumor and surrounding
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tissue. Machine-learning-based models were trained and evaluated to predict molecu-

lar, genomic, and proliferation characteristics. The models showed promising results

in predicting Luminal A subtype, Triple Negative breast cancer, ER status, and PR

status, but were limited to binary classifications with AUC of 0.69 for Luminal A vs.

other subtypes and 0.566 for Luminal B vs. other subtypes. This inspired further

research into the MRI dataset to improve the results, not only in binary states but

also in multi-class classifications. This thesis utilized the same DCE MRI dataset;

However, only high-quality images from a subset of 200 patients were considered in

this study.

Sutton et al. [22] conducted a retrospective study to differentiate breast cancer

molecular subtypes using machine-learning-based models with features extracted from

MR images of 178 patients. The study achieved an accuracy of 69.9%, 62.9%, and

81.0% for the three subtypes considered. However, limitations of the study included

the use of in-house software for feature extraction and insufficient details regarding

the machine learning methods and reproducibility.

Son et al. [23] conducted a study aimed at predicting molecular subtypes of breast

cancer using a radiomics signature developed from synthetic mammography recon-

structed from Digital Breast Tomosynthesis (DBT). The study included 365 patients

with three subtypes, and the radiomics signature achieved an area under the curve

(AUC) of 0.838, 0.556, and 0.645 for the TN, HER2, and luminal subtypes, respec-

tively. To obtain radiomics features, the researchers segmented regions of interest
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(ROIs) using an open-source software called “PyRadiomics”. A total of 72 radiomics

features were obtained for each view. The researchers used the elastic-net approach

to select appropriate features and to build the machine learning model. Parameter

tuning of the elastic-net was performed through ten-fold cross-validation. The ra-

diomics signature was the only independent predictor of the molecular subtype, and

its combination with clinical features improved the accuracy of distinguishing the TN

subtype. This indicates that the radiomics signature has the potential to serve as a

biomarker for TN breast cancer treatment direction.

Sun et al. [12] utilized an ensemble learning based prediction model to distinguish

between luminal and non-luminal breast cancer subtypes, and achieved an 85.2%

accuracy using 5-fold cross-validation.

Fan et al. [5] extracted 90 features from DCE MRI, including 88 imaging fea-

tures related to morphology and texture, dynamic features from tumor and BPE,

and 2 clinical information-based parameters (age and menopausal status). The study

used the Weka software platform for data mining and machine learning. A logistic

regression model was used for discrimination of the four molecular subtypes. The

Kruskal-Wallis test was used to test the statistical significance of the selected fea-

tures across the subtypes. An evolutionary algorithm-based optimization method

was used to search for optimal feature subsets for classification. The performance of

the classifier was evaluated using a receiver-operating characteristic analysis, and the

area under the curve was computed. The EA chromosome with the highest AUC was
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selected to establish the optimal feature pool and build the optimal classifier. The

classifier achieved an AUC value of 0.869 with high overall classification performance.

While machine learning algorithms on extracted features have shown promising

results in predicting molecular subtypes of breast cancer using DCE MRI, there are

still some challenges that need to be addressed. One of the major challenges is the

limited availability of high-quality DCE MRI data for breast cancer patients. An-

other challenge is the lack of standardization in the methods used to define molecular

subtypes. In addition, there is a need for further validation studies to assess the

generalizability of the machine learning models across different datasets and popula-

tions. Further research is needed to address the challenges and improve the accuracy

and reliability of these algorithms. With the increasing availability of DCE MRI

data and advancements in machine learning techniques, these algorithms have the

potential to revolutionize the diagnosis and treatment of breast cancer. However, it

is important to note that these studies are limited by their small sample sizes and

need to be validated in larger cohorts. Furthermore, the performance of these algo-

rithms needs to be improved to achieve clinically acceptable sensitivity and specificity.

Various feature classes and feature selection methods should be explored to improve

the performance and interpretability of the machine learning models. The upcoming

methodology chapter will provide detailed explanations of the data preprocessing and

methods utilized in this study.
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Chapter 3

Methodology

Breast MRI is a widely used imaging modality to evaluate the extent of disease in

breast cancer patients. Recent studies have demonstrated its potential in predicting

both short-term and long-term patient outcomes, as well as identifying pathological

and genomic characteristics of tumors.

In this study, we will utilize a well-known dynamic contrast-enhanced (DCE) MRI

dataset1 [24], which has been made available through the Cancer Imaging Archive

(TCIA) [25], to differentiate between four molecular subtypes of breast cancer.

3.1 Data Description

In terms of design, the dataset is a single-institutional, retrospective collection of 922

biopsy-confirmed invasive breast cancer patients, over a decade, having the following

1https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226903
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data components:

1. Pre-operative dynamic contrast-enhanced (DCE) MRI: The provided

dataset includes axial breast MRI images acquired in the prone position using

1.5T or 3T scanners. The following MRI sequences are available in DICOM

format (368.4 GB):

• A non-fat saturated T1-weighted sequence

• A fat-saturated gradient echo T1-weighted pre-contrast sequence

• Mostly three to four post-contrast sequences

To ensure data uniformity, a cohort of 200 patients with pre-contrast sequences

and the first three post-contrast sequences were selected for this study. This

decision was based on the fact that many patients in the larger pool of 922

patients did not have all the necessary sequences, or the image quality was

inadequate for our project. By limiting our analysis to this subset of patients,

we aimed to ensure the consistency and quality of the data used in our research.

Pre-Contrast and Post-Contrast Sequences in Dynamic Contrast-

Enhanced MRI for Breast Cancer:

DCE MRI is a non-invasive imaging technique that is particularly useful for

detecting and characterizing breast cancer because it can provide information

about the blood vessels and blood flow within the breast tissue. The contrast
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agent used in DCE MRI is typically a gadolinium-based agent, which is injected

into the patient’s bloodstream through an intravenous (IV) line.

Before the contrast agent is injected, a fat-saturated gradient echo T1-weighted

pre-contrast sequence is acquired. This sequence provides baseline information

about the breast tissue, including its internal structure, fat content, and any

existing lesions or abnormalities. The fat-saturation technique is used to sup-

press the signal from fat tissue, which can interfere with the detection of small

lesions in the breast.

After the pre-contrast sequence is acquired, the contrast agent is injected, and

a series of post-contrast sequences are acquired at regular intervals, typically

every 60-120 seconds. These sequences capture the uptake and washout of the

contrast agent in the breast tissue, providing information about the blood flow

and vascular permeability in the tissue.

The post-contrast sequences are typically acquired using a fast, three-dimensional

gradient echo sequence, with a high temporal resolution to capture the rapid

changes in contrast enhancement that occur in the breast tissue. The images

are acquired in the axial plane, which allows for the most accurate assessment

of lesion size and location.

After the images are acquired, they are processed using specialized software

to create a series of dynamic contrast-enhanced images. These images show

the changes in contrast enhancement in the breast tissue over time, allowing
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radiologists to identify areas of abnormal blood vessel growth and leakage, which

are often associated with breast cancer.

In addition to DCE MRI, other imaging techniques such as mammography, ul-

trasound, and magnetic resonance imaging (MRI) can also be used to detect and

diagnose breast cancer. However, DCE MRI is particularly useful for detecting

small lesions and assessing the extent of disease in the breast tissue, making it

an important tool in the diagnosis and treatment of breast cancer.

2. File Path mapping tables: This CSV file2 is used to filter out different

sequences and slices for each patient.

3. Location of tumors in DCE MRI:

The DCE MRI sequences in this dataset consist of between 50 and 220 slices

providing a comprehensive view of the breast tissue. To isolate the slices that

contain tumors, radiologists annotated the dataset by using a three-dimensional

box to identify the precise location of the primary tumor. The annotations were

recorded in a CSV file, with each row corresponding to a unique patient and

indicating the start and end row, column, and slice numbers of the tumor box

(six coordinates per patient).

The annotations were performed in two parts by a panel of fellowship-trained

radiologists using a graphical user interface developed in MATLAB. In the first

2https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226903
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part, a panel of six radiologists annotated a subset of 271 patients by drawing

boxes around any areas of mass and non-mass enhancement for up to five lesions.

For the remaining 651 patients, a panel of four radiologists was formed, and the

annotation procedure was modified to focus on the largest biopsied lesion. The

radiologists had access to relevant radiology and pathology reports and the

PACS system, if needed.

Overall, the annotations provide precise localization of the tumors in the pre-

contrast, first post-contrast, and subtracted sequences, which can be used for

further analysis and research purposes.

4. Clinical and Other Features: Apart from the Image Annotations CSV file,

there is another file that contains various patient features. These features were

collected from multiple sources, such as clinical notes, radiology reports, and

pathology reports, and have been used in several previously published studies

on radiogenomics, outcomes prediction, and other areas. For this study, only a

subset of these features will be utilized, which will be further described in the

following sections. The CSV file also includes the molecular subtypes of breast

cancer, which will serve as the label for this study.

Molecular subtypes of breast cancer: Breast cancer is a complex disease

that can be classified into different molecular subtypes based on the expression

of specific markers. The most commonly used markers to classify breast cancer

are ER, PR, and HER2.

28



Luminal A breast cancer is characterized by the presence of ER and/or PR

and the absence of HER2 expression. Luminal A tumors have a low proliferative

index, meaning that they grow slowly, and are typically associated with a good

prognosis. They are often treated with hormonal therapy, such as tamoxifen or

aromatase inhibitors [26].

Luminal B breast cancer is also characterized by the presence of ER and/or

PR, but in contrast to Luminal A, HER2 is positive and has a higher prolif-

erative index. Luminal B tumors are associated with a worse prognosis than

Luminal A tumors. Treatment for Luminal B breast cancer usually involves a

combination of hormonal therapy and chemotherapy [27].

HER2+ breast cancer is characterized by overexpression of the HER2 protein

but is typically ER and PR negative. HER2+ tumors are associated with a more

aggressive disease course and a worse prognosis than luminal tumors. Treatment

for HER2+ breast cancer usually involves a combination of chemotherapy and

targeted therapy, such as trastuzumab or pertuzumab [28].

Triple Negative (TN) breast cancer is characterized by the lack of expression

of ER, PR, and HER2. Triple Negative tumors are typically more aggressive

and have a poorer prognosis than other subtypes of breast cancer. Treatment

for Triple Negative breast cancer usually involves chemotherapy, as there are

no targeted therapies currently available for this subtype [29].

In conclusion, molecular subtyping of breast cancer is crucial for personalized
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treatment and prediction of prognosis. Each subtype has its unique character-

istics and treatment options, and understanding these subtypes can help guide

clinical decision-making. It is also worth mentioning that in some instances, the

literature may combine Luminal A and Luminal B subtypes into a single label

known as “Luminal Like”.This is because these subtypes share some character-

istics, such as positive ER and/or PR expression, but may differ in terms of

HER2 expression and proliferation index. Therefore, the Luminal Like subtype

may be used to describe a broader category of breast cancer that has a more

favorable prognosis than HER2-positive or Triple Negative subtypes.

Table 3.1: Molecular subtypes based on ER, PR, HER2

ER PR HER2 Molecular Type

+ − − Luminal A

− + − Luminal A

+ + − Luminal A

+ − + Luminal B

− + + Luminal B

+ + + Luminal B

− − + HER2+

− − − Triple Negative
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3.2 Data Collection

All components of the dataset were gathered from Cancer Imaging Archive (TCIA).

To filter and download the images it is required to use NBIA Data Retriever3.

Through this data retriever, the images related to 200 patients have been down-

loaded. It should be noted that using NBIA Data Retriever there are two options

including Descriptive Directory Name and Classic Directory Name, which the latter

should be selected. It is also possible to use some other applications and software

to see the images in a three-dimensional space or even perform some processes such

as data segmentation and cropping images. Some articles have utilized software to

perform similar tasks [30–32]. However, in this project, the software was only used

for visualization purposes, while all the cropping and segmentation processes were

carried out using Python. These applications are as follows:

1. 3D Slicer4: It is a free and open-source software package for image analysis

and visualization in medical research [33]. It provides a platform for medical

image processing and visualization, as well as for the creation of 3D models for

surgical planning and simulation.

2. RadiAnt DICOM Viewer5: RadiAnt DICOM Viewer is a free and user-

friendly software for medical image visualization and analysis in DICOM format.

3https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images

4https://www.slicer.org/

5https://www.radiantviewer.com/
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It provides a simple interface for viewing, measuring, and analyzing medical

images that can be used for diagnostic purposes, research, and education. In a

3-dimensional space, an image from the first post-contrast sequence of patient

number 37 can be viewed.

Figure 3.1: One single slice out of

144 slices (2D)

Figure 3.2: Combination of all the

slices (3D)

The characteristics of slices

1. Size: There are three different sizes depending on the patients and attributes

of MRI scanner. Slices are originally 320× 320 or 448× 448 or 512× 512 images.

In the Clinical and Other Features CSV file, columns seven and eight indicate

the pixel dimension for each patient.

2. Color: All the slices are grayscale images. Grayscale images are digital images

that only contain shades of gray, without any other colors. They are commonly

used in fields such as photography, medical imaging, and printing due to their

ability to accurately represent brightness and contrast. Grayscale images are
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represented by a two-dimensional pixel matrix, unlike color images which have

three or four dimensions. The simplicity of grayscale images makes them easy

to work with and analyze, and they require less storage space compared to color

images.

3. Extension: All the slices are originally in DICOM (Digital Imaging and Com-

munications in Medicine) extension [34]. DICOM is a widely used standard for

storing and transmitting medical images. This extension enables the customiza-

tion of DICOM files to meet specific requirements of various medical imaging

applications. By using DICOM extension, medical professionals can enhance

their ability to effectively manage and analyze medical images, ultimately lead-

ing to improved patient care. However, DICOM images require significant stor-

age space due to their high resolution and complex data structures. To reduce

storage requirements and make the images more accessible, the original DICOM

images were converted to PNG format which offers high quality and compres-

sion. Despite the conversion, the essential diagnostic information is retained

and the images can be analyzed with the same level of accuracy as the original

DICOM images.
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3.3 Data Filtration

The original dataset was found to be highly imbalanced, with only 59 patients having

the HER2+ subtype and some cases lacking post-contrast 3 images. To address this,

we selected a subset of 200 patients from a larger pool of 922 biopsy-confirmed invasive

breast cancer patients, ensuring that each molecular subtype was represented by 50

patients to achieve a completely balanced dataset. This allowed us to avoid the need

for resampling methods. We also ensured that all images used in the study were of

high quality by selecting only the DICOM images that did not primarily consist of

white or black slices, as these can reduce image quality. The table below shows the

selected patients and their corresponding labels. All selected patients were stored

in four RAR files, each containing all sequences. However, some patients did not

have post-contrast 3 or higher quality DICOM images, so we filtered out all but four

sequences: pre-contrast, post-contrast 1, post-contrast 2, and post-contrast 3. To

obtain the final sample of 200 patients, we used a File Path mapping tables file to

exclude unwanted patients, and an Image Annotations CSV file to select only the

slices that involved tumors, with patient IDs in the first column and start and end

slice information in the sixth and seventh columns, respectively. We narrowed down

further by considering only three middle slices for each patient, reducing computation

time while extracting features. After converting the DICOM images to PNG format,

we saved the selected slices in a separate folder. This process was performed for all

four sequences, resulting in a total of 600 tumor-containing slices per sequence.
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Label Patient Number

Label0 (Luminal A) 3,4,6,18,19,21,23,25,26,33,34,35,41,49,72,73,

120,121,124,125,126,127,138,145,165,199,207,

212,224,291,312,316,354,355,356,357,358,412,

413,434,440,441,447,512,528,600,601,602,690,691

Label1 (Luminal B) 8,22,27,51,56,86,119,133,134,141,143,146,177,214,

222,239,262,302,308,328,345,348,353,369,411,466,

473,491,541,544,552,578,608,610,622,663,666,693,

707,722,782,784,812,822,826,847,867,883,885,891

Label2 (HER2+) 1,17,44,68,74,96,105,144,159,161,179,202,297,306,

321,344,366,373,386,395,400,403,422,429,431,444,468,

470,519,525,558,559,567,577,604,674,679,683,687,748,

758,763,775,797,835,838,873,894,903,907

Label3 (Triple Negative) 9,10,11,20,37,42,43,48,59,64,77,78,97,99,106,132,

148,158,172,178,187,209,211,218,219,220,362,375,

398,438,456,460,463,478,482,485,514,520,523,565,

568,631,636,645,656,662,723,871,906,908

Table 3.2: Patient Identifiers and Labels: Fixed Numbers Assigned for the Study
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3.4 Cropping the Images

Even after excluding the slices that do not contain the tumor, we still need to process

the remaining slices since only a small portion of them involves the tumor. To achieve

this, we crop the slices to focus on the tumors. The Image Annotations CSV file

includes the start and end coordinates for the tumor’s location, with the second to

fifth columns representing the start row, end row, start column, and end column,

respectively. Using these four coordinates, we draw a rectangle around the tumor

using one of three methods:

1. Original Crop: We drew a rectangle around the tumor using the coordinates

provided by the radiologist. As the sizes of the rectangles varied, we resized the

cropped images to a uniform size of 64 × 64 pixels.

2. 32×32 Crop: In some cases, the rectangles drawn by the radiologist did not

contain the tumor effectively. To improve this, we drew other squares of equal

sides that fit better around the tumors. We found the center coordinates of the

original rectangles and drew four lines with a size of 16 pixels from the center to

determine the locations of the new squares. These squares often worked better

than the original crops, although they were sometimes too small to contain the

tumors completely. To address this, we also used 64 × 64 pixel crops. It should

be noted that we did not resize the images in this method of cropping, as all

the squares were already of the same size of 32 × 32 pixels.
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3. 64×64 Crop: In cases where breast cancer tumors grew and extended to in-

volve adjacent organs, the previous cropping methods were not effective. In

these situations, 64 × 64 pixel crops worked well when the tumors were not

concentrated in a small area. We found the center coordinates of the original

rectangles and drew squares of equal sides with a size of 64 × 64 pixels around

the tumors.

We repeated these processes for all 4601 slices in each of the four sequences and saved

the cropped images in separate folders within the directory.

Figure 3.3: Pre-contrast sequence,

Patient #3, Slice#101

Red: Original (57×61)

Green: 32×32

Blue: 64×64

Figure 3.4: Pre-contrast sequence,

Patient #145, Slice#81

Red: Original (21×17)

Green: 32×32

Blue: 64×64
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3.5 Data Segmentation Using Masks

3.5.1 Image segmentation

Medical image segmentation involves dividing an image into regions or segments that

correspond to specific anatomical structures or tissue types, which is a critical task in

aiding clinicians to accurately diagnose various diseases and conditions. In dynamic

contrast-enhanced magnetic resonance imaging (DCE MRI), segmentation is partic-

ularly important for analyzing the uptake and washout of contrast agents in tissues

over time. However, the complexity and heterogeneous nature of the data, along

with the presence of noise and artifacts, make segmentation challenging. Fortunately,

there are various segmentation techniques developed specifically for medical images,

including thresholding, region growing, active contours, and machine learning-based

methods such as convolutional neural networks (CNNs) and clustering. In our study,

we tried several segmentation methods and found that the thresholding method was

the most effective.

With accurate segmentation of the cropped DCE MRI images, we can focus on

detecting lesions or areas of breast tissue suspected to have cancer. This enables

higher accuracy in extracting features and classifying breast cancer into four molecular

subtypes, which is crucial for determining the most effective treatment plan.
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3.5.2 Generating Masks Using Thresholding

The thresholding method is commonly used to segment medical images, including

those obtained through DCEMRI [35–37]. In our study, we applied this method to the

cropped DCE MRI images by setting a threshold value for the grayscale intensity of

the image. Pixels with intensity values above this threshold were retained, while those

below were discarded. This process effectively separated the image into foreground

(object) and background regions.

The choice of threshold value is an important hyperparameter, and tuning it can

potentially improve segmentation results. For our study, we established a threshold

value of T=50 through sample segmentation, which led us to consider only grayscale

pixels in the cropped images with intensity values higher than this cutoff. This

approach allowed us to generate a binary matrix for each cropped image, where the

elements were either zero or one. A value of one indicated that the corresponding

pixel had an intensity value higher than 50 and would be used for feature extraction.

This method was highly effective in identifying the region of interest (ROI), such as

lesions or areas of breast tissue suspected to have cancer.

Experimenting with a broader range of sample segmentation techniques and using

different classes of masks could help determine optimal threshold values and extract

features more effectively. [38]. However, this would be prohibitively expensive due

to the high number of slices and the vast array of features that would need to be

extracted.

39



3.6 Feature Extraction

In image classification problems, there are two main approaches: using pixel matrices

directly to feed machine learning classifiers or extracting features to improve results.

For this study, we focused on feature extraction as it provides uniformity for all im-

ages and can significantly improve results. To extract features, we used Pyfeats6, a

Python library that covers a wide range of feature classes, including textural, morpho-

logical, histogram-based, multi-scale, and moment-based features. Pyfeats generates

these features using cropped images and their corresponding tumor segmentation as

inputs. However, some features generated NA values, requiring data imputation. To

reduce dimensionality while retaining informative features, different feature selection

processes were explored. Ultimately, the feature extraction and selection process

identified the most informative features, which were used to classify medical images

with high accuracy. In the following section, we will explore the main feature classes

extracted through Pyfeats.

1. First Order Statistics (FOS): FOS are statistical measures that describe the

distribution of intensity in an image. These features are computed from the

histogram of the image, which represents the probability density function of in-

dividual pixels. FOS features include mean, standard deviation, median, mode,

skewness, kurtosis, energy [39], entropy [40], minimum and maximum gray lev-

els, coefficient of variation, percentiles, and histogram width.

6https://pypi.org/project/pyfeats/
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2. The Gray Level Co-occurrence Matrix (GLCM): A set of features proposed by

Haralick that estimates the second-order joint conditional probability density

functions [41]. GLCM features include measures such as angular second mo-

ment, contrast, correlation, sum of squares: variance, inverse difference moment,

sum average, sum variance, sum entropy, entropy, difference variance, difference

entropy, and information measures of correlation.

3. Gray Level Difference Statistics (GLDS): A texture extraction algorithm that

uses first-order statistics of local property values based on absolute differences

between pairs of gray levels or of average gray levels. GLDS features include

measures such as homogeneity, contrast, energy, entropy, and mean [42]. These

features provide information about the texture of an image.

4. The Neighborhood Gray Tone Difference Matrix (NGTDM): It is a method

of feature extraction that captures visual properties of texture [43]. NGTDM

features include measures such as coarseness, contrast, busyness, complexity,

and strength.

5. The Statistical Feature Matrix (SFM): It is a method of measuring the statisti-

cal properties of pixel pairs at various distances within an image for statistical

analysis [44]. SFM features include measures such as coarseness, contrast, pe-

riodicity, and roughness.

6. Law’s Texture Energy Measures (LTE/TEM): These are derived from three
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simple vectors that are convolved with themselves to obtain masks of different

sizes [45]. These masks are convolved with an image to extract texture features,

such as texture energy from LL, EE, and SS kernels, as well as average texture

energy from LE and EL, ES and SE, and LS and SL kernels.

7. Fractal Dimension Texture Analysis (FDTA): It estimates the roughness of

natural surfaces using the Fractional Brownian Motion (FBM) Model [46, 47].

FDTA uses parameters such as fractal dimension or Hurst coefficient to repre-

sent a fractal surface and obtain a multiresolution fractal (MF) feature vector

by observing the image at different resolutions.

8. The Gray Level Run Length Matrix (GLRLM): GLRLM is a feature extraction

method that identifies consecutive picture points with the same gray level value

[48]. GLRLM features include measures such as short-run emphasis, long-run

emphasis, gray level non-uniformity, and run length non-uniformity.

9. The Fourier Power Spectrum (FPS): It is a method of feature extraction that

uses the discrete Fourier transform for digital images [49]. Texture features are

based on ring-shaped or wedge-shaped samples of the discrete Fourier power

spectrum and include measures such as radial sum and angular sum.

10. Shape Parameters: They are a set of features that describe the geometric shape

of an object in an image [50]. These features include measures such as x-

coordinate maximum length, y-coordinate maximum length, area, perimeter,
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and perimeter2/area.

11. The Gray Level Size Zone Matrix (GLSZM): It is a feature extraction method

that quantifies gray level zones in an image based on connected voxels. GLSZM

features include measures such as small zone emphasis, large zone emphasis,

gray level non-uniformity, and zone-size non-uniformity [51].

12. Higher Order Spectra (HOS): Radon transform turns 2D images into a line

parameter domain [52, 53]. HOS captures higher moments of a signal, with

bispectrum as its Fourier transform. Bispectrum is symmetric and calculated

in non-redundant region, with entropy as the extracted feature.

13. Local Binary Pattern (LBP): LBP is a texture descriptor that converts pixels

to circular bit-streams [54]. Uniformity is used to identify patterns with few

transitions. Energy and entropy of LBP images at different scales are used as

feature descriptors.

14. Gray-scale Morphological Analysis: This method extracts geometric properties

of components in multilevel binary morphological analysis [55, 56]. It involves

generating three binary images and calculating pattern spectra. Grayscale mor-

phological features include mean CDF and mean PDF of pattern spectra using

the cross as a structural element.

15. Histogram: The histogram is the distribution of grey levels in the region of

interest (ROI) of an image.
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16. Multi-region Histogram: It involves identifying equidistant regions of interest

(ROIs) by eroding the image outline based on its size [57]. The histogram is

then computed for each of these ROIs separately.

17. Amplitude Modulation – Frequency Modulation (AM-FM): AM-FM involves

multi-scale representations of images using least-square approximations [58].

It calculates instantaneous amplitude, phase, and frequency for specific image

components. The input image is processed through bandpass filters, producing

IA, IP, and IF for each block. AM-FM features include histograms of recon-

structed images at different scales: low, medium, high, and dc.

18. Discrete Wavelet Transform (DWT): DWT uses inner product with a function

family to transform signals. For 2D signals like images, 2D DWT can be used

by applying DWT on rows and columns, followed by down-sampling [59]. This

yields four sub-images at each level, which are further decomposed into ap-

proximation and detail sub-images, each created by convolution with half-band

filters. DWT features include mean and standard deviation of the absolute

value of detail sub-images.

19. Gabor Transform (GT): GT convolves an image with a Gabor function, which

is a sinusoidal plane wave with a certain frequency and orientation modulated

by a Gaussian envelope [60]. Gabor filters have frequency and orientation rep-

resentations similar to the human visual system, making them useful for texture
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segmentation and classification. GT features include mean and standard devi-

ation of the absolute value of detail sub-images.

20. Zernikes’ Moments: Zernikes’ Moments are orthogonal complex moments used

in image processing, computer vision, and related fields [61]. They are based on

a set of complete orthogonal polynomials defined over the unit disc in polar co-

ordinate space. Zernike’s Moments consist of 25 orthogonal moments invariants

with respect to translation.

21. Hu’s Moments: Hu’s Moments are a set of image moments used in image pro-

cessing, computer vision, and related fields [62]. They consist of 7 moments

that are invariant with respect to translation, scale, and rotation.

After generating 369 features for each cancer-containing slice using the methods

described earlier, we found that some of the features contain missing (NA) or infinite

(Inf) values. To address this issue, we applied data preprocessing techniques to handle

missing and infinite values.

3.7 Data Preprocessing

3.7.1 Data Averaging

To address the issue of having too many cancer-containing slices in our dataset, we

implemented a data-averaging approach. Specifically, we only considered three middle
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slices out of all cancer-containing slices. After performing feature generation, we took

the average over the extracted features from these three slices and created a single

sample per patient. This approach reduced the sample size from 600 to 200, which

can help improve the computational efficiency of our models while still retaining the

relevant information from the original dataset.

3.7.2 Data Splitting

To ensure reliable results and avoid overfitting, we split the data into training and

testing sets using a 90% − 10% ratio. We repeated this process five times by varying

the random state each time. We performed all data preprocessing steps after splitting

the data to prevent test data from influencing the models’ generalization abilities. By

evaluating the models on unseen test data, we could determine their accuracy and

effectiveness.

3.7.3 Data Scaling

To improve the performance of machine learning algorithms, it is important to nor-

malize or standardize features in datasets containing different scales. Scaling features

can help reduce computation time and improve model accuracy. For normalization,

we performed standardization on the dataset since most features appeared to have a

normal distribution based on their histogram. It is possible to confirm normality using

statistical non-parametric tests such as the Shapiro-Wilk and Kolmogorov-Smirnov
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tests [63]. During standardization, we calculated the mean and standard deviation

of each feature on the training data and scaled all features to have a mean of 0 and

standard deviation of 1. We applied the same transformation to the test data to

ensure the model was not influenced by information from the test set during scaling.

3.7.4 Data Cleaning

To address missing and infinite values in the dataset, we employed three techniques:

mean imputation, KNN imputation, and dropping features with missing or infinite

values [64]. Additionally, we utilized Local Outlier Factor (LOF) to detect and address

the outliers. We evaluated the computational efficiency and effectiveness of each

method, and found that KNN imputation with 10 nearest neighbors showed the best

performance, so we focused on this method for imputation. We emphasized the

importance of selecting an appropriate threshold for generating masks, as it can

significantly impact how missing values are handled when generating features and

affect subsequent analyses.

1. Mean Imputation: Mean imputation is a commonly used method for handling

missing data in datasets and performed well in our study without requiring

hyper-parameter tuning. However, it may introduce bias and reduce variability.

Replacing infinite values with the maximum feature value had minimal impact

on the results as they were rare in the datasets (with at most two per dataset).

2. KNN Imputation: KNN imputation replaces missing data with estimates
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based on the values of the K nearest neighbors in the dataset. It can handle

both numerical and categorical variables but may be computationally expen-

sive and requires careful consideration of K and distance metric. In our study,

we performed a grid search with the values of 5, 10, 15, and 20 to determine

the optimal value of K. Additionally, we replaced infinite values with the max-

imum feature value. While KNN outperformed other imputation methods, the

optimal K value and choice of distance metric can vary based on the dataset

characteristics.

3. Dropping Features With Missing or Infinite Values: Dropping features

with missing or infinite values can be an effective way to handle missing data

in datasets. In our study, we found that most datasets had at most 30 columns

containing missing values, and we chose to drop these features without sac-

rificing too much information. Dropping features also prevented information

leakage between the training and test sets. However, for the previous imputa-

tion methods, we performed imputation on the training data and applied the

same transformation to the test data to avoid information leakage and ensure

reliable results.

4. Local Outlier Factor (LOF): LOF is an unsupervised algorithm used to

detect anomalies in datasets by measuring the local density of points and iden-

tifying those with significantly lower densities as potential outliers [65]. The two

key hyperparameters in LOF are contamination and n−neighbors. The contam-
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ination determines the expected percentage of outliers in the dataset, while

n−neighbors determines the number of neighbors to consider when computing

the local density of each point. A higher value of n−neighbors can improve the

algorithm’s robustness to noise and density fluctuations but increase computa-

tional complexity. In our study, we set contamination to ‘auto’and n−neighbors

to 10, and applied LOF only to the training data without altering the test

data. We also found that applying LOF over the selected features after feature

selection was more effective than applying it over all the features.

3.8 Data Integration

We used four sequences (pre-contrast, post-contrast1, post-contrast2, and post-contrast3)

and three different methods of cropping (original, 32×32, and 64×64) to extract 369

features for each combination, resulting in a total of 4428 (12 × 369) features per

patient. This dataset accurately represents the molecular subtypes of breast cancer,

and the study achieved great results using this dataset. Additionally, we added 23

clinical features from the Clinical and Other Features CSV file to each dataset. These

features are listed below:

• MRI technical information: days to MRI (from the date of diagnosis), man-

ufacturer, manufacturer model name, field strength (tesla), patient position

during MRI, contrast agent, TR (repetition time), TE (echo time), acquisition

matrix, slice thickness, flip angle, field of view
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• Demographics: date of birth (days), menopause at diagnosis, race and eth-

nicity

• Tumor characteristics: tumor location (side of cancer: left: -1,right: +1,not

given: 0)

• MRI findings: multicentric/multifocal, contralateral breast involvement, lym-

phadenopathy or suspicious nodes

• SURGERY: days to surgery (from the date of diagnosis)

• Recurrence: recurrence events (no: 0, yes: 1)

• Follow up: days to last local recurrence free assessment (from the date of

diagnosis), age at last contact

Although technical information regarding MRI machines may not be directly re-

lated to the molecular subtype of breast cancer, they have been considered as candi-

dates for feature selection to mitigate the impact or noise generated by the machines.

Features related to various types of treatments and those closely related to molecular

subtypes, such as tumor grades, were not selected for inclusion in the dataset. More

detailed information regarding feature values can be found in the aforementioned CSV

file.
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3.9 Feature Selection

Feature selection involves identifying and selecting the most relevant and informa-

tive subset of features from a larger set for a given machine learning task. This

process offers several advantages, such as reducing data dimensionality, improving

model accuracy and interpretability, reducing overfitting, and speeding up training.

By selecting only the most important features, we can enhance the efficiency and

effectiveness of the machine learning algorithm, and reduce the complexity and re-

source requirements of the model. Additionally, feature selection helps to identify

and remove redundant, irrelevant, or noisy features that can negatively impact model

performance.

In this study, three initial feature selection methods were used to eliminate redun-

dant features in each dataset. Afterwards, two final feature selection methods were

separately applied to filter the remaining features and identify the most suitable ones

for accurately classifying the molecular subtypes of breast cancer [66–70].

3.9.1 Initial Feature Selections

In order to reduce computation time for the major feature selections, it is necessary

to initially drop some redundant features. These features may have very low variance

or high correlation with other features.
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3.9.1.1 Features with low variance

Some features have a very small variance or even are constant, meaning they are

not informative and can be removed without losing any information. A conservative

threshold of std=0.01 was selected to filter out these features. Some features have

maximum values of 10−24, and not filtering them out could cause scaling problems.

3.9.1.2 Features with low variety

There are other features where a large number of values are the same and cannot

be useful for classifying cancer types. These features may not necessarily have low

variance but do not convey any information. A conservative threshold of P0.05 =P0.95

was used to filter out these features by removing those where the 5th percentile and

95th percentile values of the feature’s distribution are the same.

3.9.1.3 Features with strong correlation

Some features are strongly correlated, meaning that only one of them is needed for

the major feature selection. Pearson correlation was used to measure the linear rela-

tionship between two variables, with values ranging from -1 to 1. A strict threshold

of 0.98 was selected to reduce computation time without significant information loss.

Only one feature was selected from among those with a correlation greater than or

equal to 0.98 to proceed with the final feature selection process. The formula for

Pearson correlation is provided below:
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rxy =
∑n

i=1(xi−x̄)(yi−ȳ)√
∑n

i=1(xi−x̄)2
√
∑n

i=1(yi−ȳ)2

where:

rxy is the Pearson correlation coefficient between variables x and y.

n is the number of observations. xi and yi are the values of variables x and y

for the ith observation, respectively. x̄ and ȳ are the means of variables x and y,

respectively.

3.9.2 Final Feature Selections

After performing an initial feature selection to reduce computation time, we explored

two additional feature selection methods: ANOVA and a hybrid approach that com-

bines ANOVA with forward selection. The goal was to identify the most important

features for classifying the molecular subtypes of breast cancer. ANOVA is a statisti-

cal test that measures the significance of the differences between the means of different

groups, and it can be used to identify features that are significantly associated with

the outcome variable. Forward selection is a wrapper-based feature selection method

that starts with a single feature and iteratively adds the best-performing feature un-

til a stopping criterion is met. The hybrid approach first uses ANOVA to identify a

subset of potentially relevant features and then applies forward selection to further

refine the subset. By combining these two approaches, we aimed to identify a smaller

set of highly informative features for breast cancer subtype classification.
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3.9.2.1 ANOVA Feature Selection

ANOVA feature selection is a well-known method for selecting the most important

features for a classification problem. The method involves calculating the F score,

which measures the difference between the mean of the feature values for each class

and the variance within each class. The higher the F score, the more relevant the

feature is for classification. The F score can be calculated using the following formula:

F =
MSB

MSW
=

∑k
i=1 ni(x̄i.−x̄..)2

k−1
∑k

i=1∑
ni
j=1(xij−x̄i.)2
N−k

where k is the number of classes, ni is the number of observations in the ith class,

N is the total number of observations, x̄i. is the mean of the ith class, x̄.. is the overall

mean, and xij is the jth observation in the ith class.

A high F score or equivalently low p-value indicates that the feature is statistically

significant and should be included in the model. To find the optimal number of

features, a for loop can be used to try different numbers, typically ranging from one

to 150. However, for some computationally intensive classifiers, it may be necessary

to consider lower values of iteration to ensure efficient performance. For each iteration

of the loop, grid search or random search with cross-validation can be used to tune

the hyperparameters and evaluate the performance of the model. The goal is to find

the set of features that provides the best balance between accuracy and efficiency.

The ANOVA feature selection method can help to reduce the dimensionality of

the data and improve the accuracy of the classification model. By selecting only the
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most relevant features, we can reduce the noise and improve the interpretability of

the model. Additionally, the method can help to identify and remove redundant or

irrelevant features that may negatively impact the performance of the model.

3.9.2.2 Hybrid Feature Selection

This method consists of a combination of ANOVA feature selection and forward

feature selection. First, we start by setting k to 150 in ANOVA feature selection,

which selects the most important features based on the F score. Then, we use a

for loop to try different numbers of features, from 1 to 100, using forward feature

selection. Forward feature selection is an iterative method that starts with an empty

set of features and adds one feature at a time, based on the performance improvement

on the validation set [71]. At each iteration, we evaluate the performance of the model

using grid search or random search with cross-validation to tune the hyperparameters

and select the best set of features. This process continues until we reach the desired

number of features or the performance improvement becomes negligible. To evaluate

the performance of the model, we use the test data to calculate the F1 score as the

metric for each set of features. The hybrid feature selection method combines the

benefits of ANOVA feature selection and forward feature selection to identify the

best features for classification. This combined approach can enhance the accuracy

and efficiency of the classification model. Nevertheless, it is a time-consuming process

and can be prohibitively expensive for some machine learning classifiers. Therefore,
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the focus of this thesis is on the first final feature selection method, ANOVA.

In both feature selection methods, we explored a variety of machine learning

classifiers to evaluate their performance in classifying breast cancer subtypes. The

details of these classifiers will be discussed in the next section. By comparing the

performance of multiple classifiers on the selected features, we aimed to identify the

best model for breast cancer subtype classification.

3.10 Classification Using ML Algorithms

This section provides an overview of the machine learning (ML) algorithms utilized

to classify breast cancer subtypes based on the selected features. We explored sev-

eral well-established classifiers, including support vector machines (SVM), logistic

regression (LR), linear discriminant analysis (LDA), random forests (RF), extreme

gradient boosting (XGB), and neural networks (NNs). These classifiers have been

widely used for classification tasks in the biomedical field and have demonstrated

promising results in various studies. Our goal is to compare the performance of these

ML classifiers on the breast cancer dataset and identify the most accurate model for

breast cancer subtype classification. To ensure reliable results and avoid overfitting,

we split the data into training and testing sets using a 90%−10% ratio. We repeated

this process five times by varying the random state each time. This allowed us to

construct a 90% confidence interval for the average number of features and the F1

score using the t-student distribution with four degrees of freedom. We presented the
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results in three different scenarios based on the number of classes. The F1 score was

the main metric used to evaluate the models, which is a useful measure as it is an

average between precision and recall, calculated with the following formula:

F1 score = 2 × precision×recall
precision+recall

precision = true positives
true positives+false positives

recall = true positives
true positives+false negatives

3.10.1 ML Classifiers

1. Support Vector Machines (SVM): SVM is a supervised learning algorithm

that is commonly used for both classification and regression tasks [72], which

finds the hyperplane that maximally separates the classes in the feature space.

SVM is capable of handling both linear and non-linear relationships by using

kernel functions. To optimize SVM’s performance specifically for breast can-

cer subtype classification, we employed a random search technique with 5-fold

cross-validation to fine-tune the hyperparameters. This involved tuning hyper-

parameters such as kernel type, C, degree, and gamma on a training dataset.

The optimal hyperparameters for multiclsification were kernel=‘rbf’, C=0.5,

gamma=‘scale’, and degree=3, with an average for numerical parameters and

mode for string ones.

2. Logistic Regression (LR): LR is a supervised learning algorithm that mod-

els the probability of the target variable using a logistic function, making it
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well-suited for classification tasks [73]. The assumption of a linear relation-

ship between the features and the log-odds of the target variable underpins LR.

To optimize LR for classifying breast cancer subtypes, we employed a random

search technique with 5-fold cross-validation to fine-tune its hyperparameters.

This involved tuning hyperparameters such as penalty type, C, solver algorithm,

and l1-ratio (if using elasticnet regularization). The optimal hyperparameters

for multiclsification were penalty=‘elasticnet’, C=0.05, solver=‘saga’, and L1-

ratio=0.65. We used an average for numerical parameters and mode for string

ones.

3. Linear Discriminant Analysis (LDA): LDA is a supervised learning algo-

rithm that finds the linear combination of features that maximizes the sepa-

ration between classes in the feature space, making it well-suited for classifi-

cation tasks [74]. It assumes that the covariance matrices of the classes are

equal and that the features are normally distributed. To optimize LDA for

breast cancer subtype classification, we used a grid search technique with 5-fold

cross-validation to fine-tune its hyperparameters. This involved tuning hyper-

parameters such as solver, shrinkage, and n-components. We chose grid search

over random search to explore hyperparameters comprehensively since LDA is

a quick classifier. We found that the optimal hyperparameters for multiclsifi-

cation were solver=‘lsqr’, shrinkage=0.04, and n-components=1. We used an

average for numerical parameters and mode for string ones. Additionally, we
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increased the number of iterations of ANOVA feature selection to 250 for better

performance.

4. Random Forests (RF): RF is an ensemble learning method that combines

multiple decision trees to improve classification accuracy, making it well-suited

for non-linear relationships and high-dimensional data [75]. To optimize RF for

breast cancer subtype classification, we employed a random search technique

with 5-fold cross-validation to fine-tune its hyperparameters, which included cri-

terion, n-estimators, max-depth, min-samples-leaf, and min-samples-split. To

reduce the computation time, we limited the number of iterations in random

search to 200. We found that the optimal hyperparameters for multiclsification

were n-estimators=200, criterion=‘gini’, max-depth=6, min-samples-split=2,

and min-samples-leaf=1. We used an average for numerical parameters and

mode for string ones. RF performed well in our experiments, notably in binary

classifications, and outperformed other classifiers.

5. Extreme Gradient Boosting (XGB): XGB is an ensemble learning method

that improves model accuracy by combining multiple decision trees, making it

well-suited for handling non-linear relationships and high-dimensional data [76].

It iteratively adds decision trees to correct errors. To optimize XGB for breast

cancer subtype classification, we employed a random search technique with 5-

fold cross-validation to fine-tune its hyperparameters, which included learning

rate, n-estimators, max-depth, subsample, and regularization-lambda. Due to
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the time-consuming nature of XGB and the large parameter spaces of methods

like RF, we limited the number of iterations in the random search algorithm

to 10. Additionally, we had to limit the iteration loops to 100 for feature se-

lection to avoid affecting the performance of the ANOVA feature selection and

prevent complications in the outer iteration. We found that the optimal hy-

perparameters for multiclsification were learning-rate=0.01, n-estimators=200,

max-depth=3, subsample=0.8, and reg-lambda=0.07. We used an average for

numerical parameters and mode for string ones.

6. Neural Networks (NNs): Neural networks are a type of machine learning

model commonly used for classification tasks [77]. They consist of an input

layer, one or more hidden layers, and an output layer. The hidden layers con-

tain nonlinear activation functions that allow the network to capture complex

relationships between the features and the target variable. Neural networks are

capable of handling non-linear relationships and high-dimensional data, making

them a popular choice in many applications. In this study, we experimented

with several neural networks that had different structures and activation func-

tions, as well as drop-out layers. We also used early stopping to prevent over-

fitting and reduce computation time. To optimize the performance of neural

networks for classifying breast cancer subtypes, we performed a random search

technique with 5-fold cross-validation to fine-tune the following hyperparame-

ters: the number of hidden layers, the number of neurons in each layer, the acti-
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vation function, and the dropout rate. To enable us to perform ANOVA feature

selection, we constrained the iteration loops to 50. After conducting the random

search, we found that the optimal hyperparameters for multiclsification were n-

hidden-layer=4, activation=‘Relu’, hidden-layer-sizes=30, dropout=0.03, and

early-stopping=15. We used an average for numerical parameters and mode for

string ones.

3.11 Hardware Specifications

All programming and coding for this study were conducted using the Python lan-

guage. To enable the processing of large MRI image data and the utilization of ma-

chine learning algorithms, we employed a high-performance computing server with

the following hardware specifications. The server is equipped with 251 GB of RAM

and features two powerful NVIDIA GPUs, each with a memory of 50 GB, as well as

an integrated graphics controller with a memory of 256 MB. Both NVIDIA GPUs are

Quadro RTX 6000/8000 models. These hardware specifications allowed us to perform

computationally intensive tasks efficiently, contributing to the successful completion

of this research project.
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Figure 3.5: The proposed methodology pipeline for developing a machine learning model to

classify molecular subtypes of breast cancer is shown. The pipeline consists of the following

steps: (a) Input data, which includes images and three csv files; (b) Image processing, where

unwanted slices and sequences are filtered out, and images are cropped with three different

methods to segment them using thresholding; (c) Extraction of radiomics features using

Pyfeats library in Python; (d) Merging clinical features with the average of three middle

tumor-containing slices to create one sample per patient (n=200); (e) Data processing, in-

cluding initial feature selections, data splitting, standardization, KNN imputation, ANOVA

feature selection, and outlier detection using Local Outlier Factor (LOF); (f) Three machine

learning classifiers are trained and hyperparameters are tuned using random search with

5-fold cross-validation on the training data. The performance of each model is evaluated

on 5 different test subsets, with F1 score as the main metric.
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Chapter 4

Results and Discussion

In this chapter, we present the findings of our research on breast cancer molecular

subtypes using the dataset composed of 4428 extracted radiomics features and 23

clinical features. We presented the results in three different scenarios based on the

number of classes. To be able to perform fare comparisons with the original study

(Saha et al. [3]), we applied our framework to the dataset from Saha et al. consisting

of 529 radiomics features and 200 samples with IDs given in Table 3.2. To evaluate

the performance of our extracted features in both 4-label and one versus the rest

classifications, we used the F1 score for all evaluations and maintained consistent

settings across experiments, such as data cleaning methods, the number of folds in

cross-validation, and the number of iterations in random search. Our results indi-

cate that, in almost all cases, the machine learning classifiers trained on our dataset

outperformed those reported in the original study.
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4.1 4-label Classification

In the first scenario, we attempted to distinguish between all molecular subtypes of

breast cancer simultaneously, which was a challenging task. Using random forest, we

achieved the highest F1 score of 52.45%. Although the results in this case may not be

very significant, there is a noticeable improvement compared to the original research.

Our Study Saha et al.

Classifier Avg No. of Features Avg F1 Score Avg F1 Score

SVM avg=51.60

90%CI=(9.36,93.84)

avg=46.37%

90%CI=(0.36,0.57)

avg=36.65%

90%CI=(0.35,0.38)

LR avg=36.40

90%CI=(15.70,57.09)

avg=45.73%

90%CI=(0.39,0.53)

avg=38.14%

90%CI=(0.32,0.44)

LDA avg=113.20

90%CI=(6.46,219.94)

avg=43.32%

90%CI=(0.34,0.53)

avg=38.30%

90%CI=(0.33,0.43)

RF avg=30.69

90%CI=(48.53,107.06)

avg=52.45%

90%CI=(0.48,0.57)

avg=38.02%

90%CI=(0.36,0.40)

XGB avg=51.00

90%CI=(23.16,78.85)

avg=48.05%

90%CI=(0.39,0.57)

avg=40.04%

90%CI=(0.36,0.43)

NNs avg=27.98

90%CI=(3.27,52.65)

avg=49.15%,

90%CI=(0.39,0.59)

avg=34.07%

90%CI=(0.32,0.37)

Table 4.1: Comparison of six machine learning models in a 4-Label classification task:

Evaluation of average F1 score and feature count across five random test subsets. A parallel

analysis was performed on the features extracted by Saha et al., with identical settings for

consistency in comparison.
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Table 4.1 demonstrates that in multiclassification where all four molecular sub-

types are available, the random forest algorithm achieves the highest performance,

with an average F1 score of 52.45%. The average number of features across all clas-

sifiers ranges almost from 30 to 50, although the variance is relatively high, and the

average number of features can vary in different test subsets. In LDA, ANOVA feature

selection explores a larger number of features (250) to obtain the optimal k, resulting

in a higher average number of features. LDA is computationally efficient compared

to other classifiers, but RF, XGB, and NNs also perform well, albeit with slightly

lower results. However, these classifiers are slower than RF and require significant

computational resources to explore a broader range of hyperparameters in random

search or increase the number of features in ANOVA feature selection.

4.2 Binary Classifications

In the second scenario, we concentrate on binary classifications derived from four

cancer subtypes. Our results show a significant improvement in binary classifications,

enabling us to accurately predict the molecular subtype of breast cancer with a high

macro-average F1 score. We explore three distinct approaches:

• One Versus the Rest (OvR)

• One Versus One (OvO)

• Two Versus Two (TvT)
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4.2.1 One Versus the Rest (OvR)

OvR is a binary classification approach that is derived from multi-class classifica-

tion [78]. In OvR, a multi-class classification problem is transformed into multiple

binary classification problems, where each class is treated as a separate binary clas-

sification problem. For each binary classification problem, one class is treated as the

positive class (1), and all other classes are treated as the negative class (0). In this

particular case, the dataset was discovered to be imbalanced, with a ratio of 50 to

150 between the two labels. To rectify this issue, an effective technique known as

SMOTE (Synthetic Minority Over-sampling Technique) was utilized to balance the

two labels. However, using this method did not yield improvements in the results,

prompting us to revert to using the original data.

Our Study Saha et al.

Classifier Avg No. of Features Avg F1 Score Avg F1 Score

SVM avg=61.6

90%CI=(1,131.13)

avg=75.04%

90%CI=(0.70,0.81)

avg=64.87%

90%CI=(0.62,0.67)

LR avg=12.66

90%CI=(2.93,22.40)

avg=70.84%

90%CI=(0.65,0.77)

avg=64.94%

90%CI=(0.61,0.68)

RF avg=49.40

90%CI=(2.81,95.99)

avg=77.89%

90%CI=(0.74,0.82)

avg=67.38%

90%CI=(0.64,0.70)

Table 4.2: OvR, Luminal A vs. the Rest
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Our Study Saha et al.

Classifier Avg No. of Features Avg F1 Score Avg F1 Score

SVM avg=17.8

90%CI=(3.07,32.53)

avg=70.00%

90%CI=(0.64,0.77)

avg=60.97%

90%CI=(0.57,0.65)

LR avg=68.4

90%CI=(28.09,108.71)

avg=54.25%

90%CI=(0.47,0.62)

avg=58.25%

90%CI=(0.54,0.62)

RF avg=76.80

90%CI=(29.81,123.79)

avg=65.57%

90%CI=(0.60,0.71)

avg=58.21%

90%CI=(0.56,0.60)

Table 4.3: OvR, Luminal B vs. the Rest

Our Study Saha et al.

Classifier Avg No. of Features Avg F1 Score Avg F1 Score

SVM avg=65.6

90%CI=(13.98,117.22)

avg=72.99%

90%CI=(0.57,0.90)

avg=67.40%

90%CI=(0.60,0.74)

LR avg=20.60

90%CI=(1,42.59)

avg=69.61%

90%CI=(0.54,0.87)

avg=62.38%

90%CI=(0.59,0.65)

RF avg=96.00

90%CI=(39.96,152.04)

avg=77.11%

90%CI=(0.67,0.87)

avg=61.72%

90%CI=(0.60,0.63)

Table 4.4: OvR, HER2+ vs. the Rest
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Our Study Saha et al.

Classifier Avg No. of Features Avg F1 Score Avg F1 Score

SVM avg=74.40

90%CI=(19.85,128.96)

avg=64.78%

90%CI=(0.63,0.67)

avg=67.06%

90%CI=(0.63,0.71)

LR avg=80.00

90%CI=(20.37,139.64)

avg=65.17%

90%CI=(0.62,0.69)

avg=64.18%

90%CI=(0.60,0.68)

RF avg=76.20

90%CI=(25.26,127.14)

avg=71.19%

90%CI=(0.63,0.80)

avg=65.78%

90%CI=(0.63,0.68)

Table 4.5: OvR, TN vs. the Rest

In one versus the rest classifications, the random forest classifiers performed the

best in all cases, except for the Luminal B vs. the rest case, where SVM had a higher

F1 score than random forest. In all four cases, the best model using the generated

features in our study outperformed the features generated by Saha et al. In the first

three cases of Luminal A vs. the rest, Luminal B vs. the rest, and HER2+ vs. the

rest, our methodology using extracted features achieved around 10% higher F1 scores

compared to the extracted features by Saha et al. In the last case of TN vs. the

rest, the difference was approximately 5%. The improvement was attributed to the

utilization of a wider range of extracted features and diverse cropping techniques. As

recall, precision, and accuracy were very similar, if not identical, to the F1 score, we

focused on the F1 score, which is a harmonic average between precision and recall

and places more emphasis on the smaller value. The number of selected features

varied depending on the case and classifier, as well as the test subset. The confidence
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interval obtained for the average number of features provided an understanding of the

minimum and maximum number of features used for classification. Below are the box

plots illustrating the performance of the best model in each OvR binary classification.

Figure 4.1: The Random Forest (RF) model outperforms all other classifiers in every cat-

egory, except for the Luminal B vs. the non-Luminal B classification where the Support

Vector Machine (SVM) model showed better performance in terms of F1 score.

According to Figure 4.1, the model shows a low variance among test subsets for

Luminal A versus the rest, with a minimum F1 score of approximately 75%, indicating

robustness. However, for other scenarios with higher variances, incorporating clinical

information may enhance the accuracy of predicting the molecular subtypes of breast

cancer.
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4.2.2 One Versus One (OvO)

OvO is another binary classification approach that is derived from multi-class clas-

sification. In OvO, all possible pairs of classes are considered and a binary classifier

is trained for each pair. In our study, with four different labels (0, 1, 2, and 3), six

binary classifiers were trained: 0 vs. 1, 0 vs. 2, 0 vs. 3, 1 vs. 2, 1 vs. 3, and 2 vs. 3.

During inference, each of the binary classifiers makes a prediction, and the class

with the most votes is chosen as the final prediction. OvO is typically used when the

number of classes is relatively small, as the number of binary classifiers trained is pro-

portional to the square of the number of classes, which can become computationally

expensive for a large number of classes.

Compared to OvR, OvO requires more models to be trained, but each model is

trained on a smaller and balanced subset of the data. OvO can also be more robust

to imbalanced class distributions, as each binary classifier only needs to distinguish

between two classes. However, in this particular case, only half of the available

samples were used (i.e., 100 samples out of a total of 200), and the results obtained

were quite high, up to 85% F1 score.
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Luminal A vs. Luminal B

Classifier Avg No. of Features Avg F1 Score

SVM avg=56.6

90%CI=(7.16,106.03)

avg=85.81%

90%CI=(0.77,0.95)

LR avg=72.00

90%CI=(27.81,116.17)

avg=77.44%

90%CI=(0.63,0.92)

RF avg=17.40

90%CI=(2.02,32.78)

avg=83.72%

90%CI=(0.75,0.93)

Table 4.6: OvO, Luminal A vs. Luminal B

Luminal A vs. HER2+

Classifier Avg No. of Features Avg F1 Score

SVM avg=11.00

90%CI=(1,23.04)

avg=79.68%

90%CI=(0.70,0.89)

LR avg=46.60

90%CI=(1,95.85)

avg=81.74%

90%CI=(0.74,0.90)

RF avg=31.20

90%CI=(1,70.20)

avg=85.90%

90%CI=(0.75,0.97)

Table 4.7: OvO, Luminal A vs. HER2
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Luminal A vs. TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=44.20

90%CI=(1,92.18)

avg=67.38%

90%CI=(0.59,0.76)

LR avg=53.60

90%CI=(9.86,97.33)

avg=63.71%

90%CI=(0.50,0.78)

RF avg=69.00

90%CI=(29.95,108.05)

avg=77.25%

90%CI=(0.66,0.88)

Table 4.8: OvO, Luminal A vs. TN

Luminal B vs. HER2+

Classifier Avg No. of Features Avg F1 Score

SVM avg=19.60

90%CI=(1,48.86)

avg=77.44%

90%CI=(0.63,0.92)

LR avg82.20

90%CI=(12.35,152.04)

avg=71.71%

90%CI=(0.55,0.89)

RF avg=23.40

90%CI=(1,61.11)

avg=79.88%

90%CI=(0.68,0.92)

Table 4.9: OvO, Luminal B vs. HER2+
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Luminal B vs. TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=42.80

90%CI=(6.23,79.37)

avg=75.80%

90%CI=(0.67,0.84)

LR avg=53.20

90%CI=(19.54,86.86)

avg=73.16%

90%CI=(0.62,0.84)

RF avg=26.80

90%CI=(1,55.78)

avg=77.86%

90%CI=(0.70,0.86)

Table 4.10: OvO, Luminal B vs. TN

HER2+ vs. TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=28.40

90%CI=(1,64.49)

avg=79.39%

90%CI=(0.72,0.87)

LR avg=53.40

90%CI=(3.70,103.10)

avg=75.67%

90%CI=(0.66,0.85)

RF avg=48.60

90%CI=(17.28,79.92)

avg=79.96%

90%CI=(0.68,0.92)

Table 4.11: OvO, HER2+ vs. TN

In one versus one classifications, the random forest model outperformed other

models in all cases except for Luminal A versus Luminal B, where SVM achieved a
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higher F1 score. Across all cases, random forest required fewer features on average

to predict molecular subtypes of breast cancer compared to SVM and LR. Below

are the box plots illustrating the performance of the best model in each OvO binary

classification.

Figure 4.2: In all categories except for Luminal A vs. Luminal B, the Random Forest (RF)

model outperforms all other classifiers in terms of F1 score. However, for the Luminal

A vs. Luminal B classification, the Support Vector Machine (SVM) model showed better

performance.

Based on the results presented in Figure 4.2, the best model shows low variance

among test subsets for most cases, particularly for Luminal A versus Luminal B,

with a minimum F1 score of approximately 80%, indicating robustness. The best

models also perform well in Luminal A versus HER2+ and Luminal A versus TN
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cases. However, for HER2+ versus TN, the variance among different test subsets is

relatively higher, which may make this scenario less robust compared to others.

4.2.3 Two Versus Two (TvT)

TvT is another binary classification approach that is similar to OvO, but instead of

considering all possible pairs of classes, it considers combinations of two labels against

combinations of two other labels. For example, in our study with four different labels

(0, 1, 2, and 3), three binary classifiers would be trained: 01 vs. 23, 02 vs. 13, and

03 vs. 12. This approach can reduce the number of binary classifiers that need to be

trained compared to OvO, while still providing a more robust approach than OvR.

TvT can also be more efficient than OvO, as a smaller number of binary classifiers

need to be trained and evaluated during inference.

Similar to OvO, the dataset in this case is perfectly balanced, thereby eliminating

the need to explore any resampling methods.
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Luminal A,Luminal B vs. HER2+, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=65.00

90%CI=(19.09,110.91)

avg=73.39%

90%CI=(0.64,0.83)

LR avg=53.40

90%CI=(14.76,92.04)

avg=73.58%

90%CI=(0.64,0.83)

RF avg=65.60

90%CI=(30.54,100.66)

avg=75.54%

90%CI=(0.69,0.82)

Table 4.12: TvT, Luminal A, Luminal B vs. HER2+, TN

Luminal A, HER2+ vs. Luminal B, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=19.00

90%CI=(5.77,32.23)

avg=74.80%

90%CI=(0.71,0.79)

LR avg=28.60

90%CI=(1,60.91)

avg=69.87%

90%CI=(0.64,0.76)

RF avg=25.00

90%CI=(11.30,38.70)

avg=74.97%

90%CI=(0.69,0.81)

Table 4.13: TvT, Luminal A, HER2+ vs. Luminal B, TN

76



Luminal A, TN vs. Luminal B, HER2+

Classifier Avg No. of Features Avg F1 Score

SVM avg=35.60

90%CI=(7.95,63.25)

avg=78.95%

90%CI=(0.70,0.88)

LR avg=39.20

90%CI=(14.54,63.86)

avg=76.91%

90%CI=(0.68,0.86)

RF avg=32.40

90%CI=(10.48,54.32)

avg=75.94%

90%CI=(0.68,0.84)

Table 4.14: TvT, Luminal A, TN vs. Luminal B, HER2+

4.3 3-Label Classifications

In the last scenario, we focus on classifications with three labels derived from four

types of cancers. We consider two different approaches:

4.3.1 3-Label with Elimination of One Label

For the first approach, we drop one label in four stages and classify the remaining

three labels. In this case, we are using 150 samples out of 200.
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Luminal A, Luminal B, HER2+

Classifier Avg No. of Features Avg F1 Score

SVM avg=66.60

90%CI=(13.26,119.94)

avg=63.70%

90%CI=(0.56,0.72)

LR avg=105.00

90%CI=(59.16,150.84)

avg=65.09%

90%CI=(0.54,0.76)

RF avg=81.40

90%CI=(34.10,128.70)

avg=63.65%

90%CI=(0.56,0.72)

Table 4.15: 3-Label, Luminal A, Luminal B, HER2+

Luminal A, Luminal B, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=73.80

90%CI=(35.91,111.69)

avg=58.10%

90%CI=(0.49,0.68)

LR avg=63.20

90%CI=(24.62,101.78)

avg=48.45%

90%CI=(0.37,0.61)

RF avg=90.80

90%CI=(60.89,120.71)

avg=55.24%

90%CI=(0.46,0.65)

Table 4.16: 3-Label, Luminal A, Luminal B, TN
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Luminal A, HER2+, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=45.00

90%CI=(1,97.75)

avg=61.80%

90%CI=(0.49,0.75)

LR avg=50.20

90%CI=(9.72,90.68)

avg=60.73%

90%CI=(0.49,0.73)

RF avg=44.20

90%CI=(1,101.78)

avg=63.92%

90%CI=(0.57,0.71)

Table 4.17: 3-Label, Luminal A, HER2+, TN

Luminal B, HER2+, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=40.60

90%CI=(15.80,65.40)

avg=56.18%

90%CI=(0.50,0.63)

LR avg=23.00

90%CI=(1,47.33)

avg=50.39%

90%CI=(0.47,0.54)

RF avg=43.00

90%CI=(1,89.32)

avg=60.57%

90%CI=(0.55,0.66)

Table 4.18: 3-Label, Luminal B, HER2+, TN

In this case, the models can predict three molecular subtypes of breast cancer

simultaneously with a reasonably good F1 score. Although the scores for binary clas-
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sifications are slightly higher, the models perform well compared to the first scenario

where all four subtypes were available. Binary or 3-label classifications can also be

useful in situations where clinical features and other medical resources indicate a very

low possibility of being infected with one or two cancer types, allowing us to use these

models for more accurate predictions.

4.3.2 3-Label with Combining One Label

For the second approach, two labels are combined to create six 3-label classifications.

However, in this study, we only consider the case where Luminal A and Luminal

B are merged to form a single label called Luminal-like, and this label is compared

against two other labels, HER2+ and TN. This is a common comparison made in the

literature.

Luminal Like, HER2+, TN

Classifier Avg No. of Features Avg F1 Score

SVM avg=48.40

90%CI=(7.72,89.08)

avg=57.08%

90%CI=(0.51,0.64)

LR avg=48.80

90%CI=(22.14,75.46)

avg=53.50%

90%CI=(0.46,0.61)

RF avg=88.80

90%CI=(38.70,138.89)

avg=62.00%

90%CI=(0.55,0.69)

Table 4.19: 3-Label, Luminal Like, HER2+, TN
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Similarly to previous cases, the random forest algorithm performs the best in

distinguishing between Luminal Like, HER2+, and TN subtypes. However, there is

a significant variance in the number of features among different test subsets when

compared to SVM and LR algorithms.
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Chapter 5

Conclusion

This chapter summarizes the principal findings that pertain to the research objectives

and assesses their importance and contribution. Furthermore, the limitations of the

study are discussed, and future research directions are suggested.

5.1 Principal Findings

1. The feature classes that are most useful for predicting molecular subtypes of

breast cancer using DCE MRI are FOS, GLCM, GLDS, GLRLM, GLSZM, and

DWT.

2. Among the 23 clinical features, we found that age, menopause at diagnosis,

race and ethnicity, and lymphadenopathy or suspicious nodes were the most

significant based on p-value obtained from ANOVA feature selection. These

p-values ranged from 10−6 to 10−2, depending on the classification category.
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3. The RF classifier and ANOVA feature selection performed the best in most

cases. LOF and KNN imputation are helpful for processing the dataset, pro-

vided that their hyperparameters are fine-tuned. However, resampling methods

did not significantly improve performance, even in cases of imbalanced datasets.

4. In OvR classifications, the methodology consistently predicts Luminal A versus

the other subtypes, achieving a minimum F1 score of 75% (Figure 4.1). In

OvO classifications, the methodology performs well in distinguishing between

Luminal A and Luminal B, with a significant F1 score of 80% up to 100%

(Figure 4.2). This distinction is crucial as Luminal A and Luminal B subtypes

share some characteristics, such as positive ER and/or PR expression, but can

differ in terms of HER2 expression and proliferation index.

5. Our methodology has broad applicability across a range of medical images,

including MRI, CT, ultrasound, and mammography, and can be used to distin-

guish between two or more disease classes.

5.2 Study Limitations

There are several limitations to this study. Firstly, the study was resource-intensive,

with some sections taking several days to complete. As a result, exploring some

ideas in more depth was prohibitively expensive. For example, XGB and NNs showed

promise, but running them with a high number of iterations in ANOVA feature se-
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lection or considering a larger number of iterations in random search was practically

impossible, resulting in lower-than-expected results. Additionally, due to time con-

straints, we were unable to explore a wide range of thresholds in the thresholding

technique used to generate binary masks. We used a threshold of T=50, but using

other thresholds would have required repeating the entire processes of feature ex-

traction, feature selection, and hyperparameter tuning for classification, making it

impossible to explore a wider range. Another limitation of this study is the inherent

complexity and challenge of medical images, even for specialists. Therefore, the con-

tribution of radiologists to advise on medical or biological areas would be useful to

enhance the accuracy and reliability of the methodology.

5.3 Future Work

Future research in this field could focus on exploring additional medical imaging

modalities, such as CT or ultrasound, and even combining multiple medical images

to extract features and improve prediction accuracy. Experimenting with various

thresholds for generating masks and exploring additional feature classes while tuning

corresponding hyperparameters to extract the most informative features would also be

beneficial. Using larger datasets with high-quality images that contain all sequences

and cancer types would help to increase the generalizability of the methodology.

Additionally, creating additional datasets by cropping images in different ways could

provide further insights. However, these processes are computationally expensive, and
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utilizing a powerful server with high GPU and CPU capabilities would be necessary

to enable deeper research.
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Montserrat Muñoz. Molecular subtypes of breast cancer: a review. Biological

Research, 47(1):1–14, 2014.

[3] Ashirbani Saha, Michael R Harowicz, Lars J Grimm, Connie E Kim, Sujata V

Ghate, Ruth Walsh, and Maciej A Mazurowski. A machine learning approach

to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI

features. British Journal of Cancer, 119(4):508–516, 2018.

[4] Britta Weigelt, Frederick L Baehner, and Jorge S Reis-Filho. Challenges in breast

cancer pathology and molecular diagnostics. Nature Reviews Cancer, 10(11):727–

736, 2010.

[5] Ming Fan, Hui Li, Shijian Wang, Bin Zheng, Juan Zhang, and Lihua Li. Radiomic

analysis reveals DCE-MRI features for prediction of molecular subtypes of breast

86



cancer. Plos One, 12(2):e0171683, 2017.

[6] Lars J Grimm, Jing Zhang, and Maciej A Mazurowski. Computational approach

to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes

are associated with imaging features on routine breast mri extracted using com-

puter vision algorithms. Journal of Magnetic Resonance Imaging, 42(4):902–907,

2015.

[7] Hui Li, Yitan Zhu, Elizabeth S Burnside, Erich Huang, Karen Drukker, Kather-

ine A Hoadley, Cheng Fan, Suzanne D Conzen, Margarita Zuley, Jose M Net,

et al. Quantitative MRI radiomics in the prediction of molecular classifications

of breast cancer subtypes in the tcga/tcia data set. NPJ Breast Cancer, 2:16012,

2016.
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