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ABSTRACT

The scale ofobservatioD alTects how we perceive all ecological patterns and

processes. The problem of scale is in finding ways to relate observations across space and

time. In this study. I quantified 1"\'0 measures of eelgrass (Zostera marina) habitat

structure as a function of spatial scale. I determined a scaling law comparing perimeter.

to-area ratios of eelgrass habitat over a range of resolutions. I then used this function to

compUie ju\"enile cod abundance across scales. I also investigaled the effect of spalial

scale on the frequency distribution of eelgrass patch sizes. Due 10 temporally and 5patially

lagged mechanisms ""ithin eelgrass systems. I hypothesized that the frequency

distribution of patch sizes for eelgrass would lit a power law. My results suppon this

hypothesis. regardless ofobservation scale. In this thesis. I demonstrate that

measurements taken at coarse resolutions can be used to .:stimate eelgrass habitat

structure and cod abundance at liner resolutions using a simple scaling law. Thus. the

frequency distribution of patch sizes at one scale can be computed from the frequency

distribution at a scale that may be logistically more convenient to obtain.
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CHAPTER I: INTRODUcnON AND OVERVIEW

R~ognitionof the imponance of scale in ecolog.y has increased radically in recent

years (Gardner et aL 1989. O'Neill 1989. Weins 1989. Holling 1<;l<;l2. levin 1992.

Schneider 1994. Picken ct al. 1997. Gustafson 1998. Peterson et at 1998. Ludwig et al.

2000). Ho ever. this insight has not progressed much beyond the observation that the

scale of in estigation does make a difference. The fundamental problem of scale is in

finding ways to relale obser...ations across space and time. and re\·ealing what is

maimained or lost in the process. One way to address the problem of scale is to find a

way to compUle across spatial scales. Ho.....e...er. before in...estigating methods for

computing information across spatial scales. we need to consider the limited rnnge of

scales lor which infonnation currently exists.

Karei'·a and Anderson ll988l re... iewed six year.> of experimental community

ecology studies published in Ecology and found that plots used in half the studies were no

larger than a meter in diameter. Their re...ie ..... confirmed that many ecologists study

problems at scaies far smaller than the scale of biological interaclion and ecological

panems. In this example. spatial and lemporal extent is sacrificed for experimental

control: however. it is also sacrificed for increased resolution (Fait et al. (998).

Ecological studies that are conducted at spatial scales thaI are either 100 fmc or too coarse

can often be WlSUitable. as they may 131110 reveal significant relationships betv,ieen the

~ological variables of concern llevin 1992),

Biological processes. such as predator-prey or compc:titive interactions. occur at

multiple spatial sca.les. The impact of such processes on the distribution and abundance of



organisms may only be detectable at specific scales (Pecharsky et aI. 1997). For instance,

correlation ....ith prey has been reported as scale-dependent for zooplankton (Mackas and

Boyd 1979. Star and Mullin 1981). marine birds (Schneider and Piatt 1986. Hunt and

Schneider 1987. Logerwell and Hargreaves 1996. Logerwell el aI. 1998), and Atlantic cod

IHome and Schneider (997. Rose and Leggett (990). It is therefore crucial that

invesligations be designed to integrate biological interactions with ecological patterns

(e.g.. habitat structure). which are often at different spatial scales.

The effect of spatial scale on measurement is not only evident in interactions

occurring between organisms. but also in associations between organisms and their

habital. Such relationships can be expected to be scale-dependent; yeL multi-scale studies

of organisms and habitat are rare. Most multi·scale studies are limited to a few selected

scal~ and may fail 10 detect ecologically significant distributional panerns at other scales.

:vturphy et aI. ( 1998) found that the aggregation of stream invertebrates on anificial leaf

packs decreased with increasing patch size (i.e. ~I. as well as decreasing spatial eXlent

of patches. The processes in11uencing the distributions of these invertebrates were

suggested as intrinsic aggregation and resource partitioning. In another multi-scale study.

Schneider et aI. (1987) found the association between epibenthic megafauna and substrate

to be stronger at large than at smaller spatial scales in swimming animals. "The opposite

was true for sessile. discretely motile and crawling animals. Thus. processes such as

movement and migration can determine the spatial scale(s) over which the densities of

organisms are associated with substrate variability.

Like most animals. fIsh associate ....ith their habitat over a range of spatial scales.

Their distributions are a result of ecological processes that operate within this range.



Associations between the density of fish and habitat are strong at some scales and non­

existent at others. The scale of observation has been suggested to determine the perceived

imponance of a habitat variable. such as % substrate cover or vegetation density (Bult et

aL 1998). In a study examining the influence of spatial scale of observation on perception

of subsume use by benth.ic fishes. Welsh and Perry (1998) suggested that substrate use

should be examined across several spatial scales They found estimates of substrate use

were sensitive to small changes in spatial scale. Thus. multi-scale studies of fish· habitat

interactions and multi-scale habitat models may be bener at describing how fish associate

with their habitat than single-scale studies and models. Despite such insights. the field of

ecology has not progressed much beyond the observation that measurement scale has an

etTect on results. ;"'Ioreo\·er. multi·scale studies are not always logistically feasible at all

relevant spatial and temporal scales. Therefore. the next logical step is to develop ways to

l;;ompute across spatial scales.

In this study I quantified the complexity of eelgrass tZoSlera marina) habitat

Strul;;ture as a function of spatial 5l:a1e. Eelgrass is a significant habitat component for

many species of !ish. ~Iore fish species (Edgar and Shaw 1995) and more individuals

(Branl;;h and Grindley 1979. DrIb and Heck 1980. Beckley 1983. Stoner 1983. Bell et aI.

1987. Heck et aI. 1989. Sogard 1989. Ferren and Bell (991) are associated with seagrdSS

habitat than ....-jth UD\'egemted habitat. The recent collapse of northern stocks of Atlantic

l;;od in the northwest Atlantic has sparked new interest in the ecology ofjuvenile Atlantic

cod {Taggan et aI. 19941. This commercially imponant species remains under fishing

moratoria in some areas. Cod produces large nwnben of eggs that hatch in the water

column. are pelagic for a 90 day period. then senle into limited areas of suitable benthic



habitat (Schneider et a1. 1997). Eelgrass habitats are important nurseries for juvenile cod

in the northern pan of their range. providing refuge from larger predators (Gotceitas et al.

1997). Limitation of this critical habitat may be important for this species (Gotceitas et al.

1997. Linehan et al. 100 I). Ho.....ever. we also need to consider habitat structure in

addition to the total amount of eelgrass habitat. We need to take into account the effect of

spatial scale on the way we perceive structure in habitaL and how this changes our

estimates of organism abundance at different scales.

There are several methods that quantify habitat structure as a function of spatial

scale. The first. and most common method is the 'dividers method' for measuring length

by using different ruler steps (Sugihar:J. and May 1990). The second is the ·box counting'

method for 1 dimensional surtaces. sudl as habitat. The box counting method overlays a

l-dimensional surface ",ith various grids of different box sizes. and counts the number of

boxes containing some pan of the habitat (Sugihara and May 1990. Milne 1991). These

[v"o methods produce estimates of the 'fmctal dimension' (Sugihar:J. and May 1990). The

third method. derived from box counting calculates perimeter/area at each scale (Sugihara

and May \990). [n this thesis. I examined this traditional method of scaling habitat using

measures of perimeter and area. 10 addition. I also uied a novel method using frequency

distributions.

A SCALING LAW FOR PERIMETER-TO-AREA RATIOS

[n Ne",foundland most sites ",ith eelgrass have high densities ofjuvenile cod

(logs in prep.). However. eelgrass cover by itself is a poor predietorof cod abundance.

The differences in abundance may be artribtnahle to the considerable variation in size and

complexity of shape ofeelgrass beds. Because community and population characteristics



differ bet\.l."een the interior and the edge of a habitat (Fonnan and Godron 1981).

comparing such charncteristics ....ith the edge (perimeter) to interior (area) ratio of habitat

is useful in evaluating the ecological imponance of habitat complexity (Hamazalci 1996).

The developmo:nt of scaling la.....s that describe pattern across scales (ludwig et al. :!OOO)

allows for measurement of habitat complexity across spatial scales. Scaling laws are

power laws that can be used 10 express the change in measurement for the perimeter or

area ofa habitat as the function of spatial scale (e.g.. resolution). The exponent ofa

scaling law (i.e. the scaling exponent) quantifies the change in length or area. and can be

.:stimmed by regression of perimeteNo-area against resolution. Thus. the ability to

compute the perimeter-ta-area ratio at any spatial measurement scale depends upon the

presence of a power law relmionship between perimeler-ta-area ratio and resolution.

Scaling laws are linked to the fractal dimension of a habitat. because the fractal

dimension is calculated using lhe exponent of the scaling law (Mandelbrot 1981.

Pennycuick and Kline IQS6. Sugihara and Ma~· 19'm).

Population characteristics such as gastropod density \Beck IQQS). epifaunal

community strucrure (Gee and Warv.ick 19'M). distributions ofanhropods (Morse Ifl

<1.11985), locust sv,·arm fonnation (Despland.N a1. 1988). and feeding in ungulates (Milne

.N 01. 1991) are kno\\.TI to be strongly associated with the fractal dimension of habitat. In

red-eockaded woodpeckers (Wigley et 01. 1999). landscape variables (including fractal

dimension) were more strongly related to reproductive SUC1:ess than were measures of

foraging substrate or area in suitable foraging habitat. This suggestS that the fractal

dimension is a habitat measure superior to traditional variables. such as non-scaled

measures of~or perimetert\\igley eloi. 1999). Pennycuickand Kline (1986) also



propose that the fractal dimension of coastline described the density of bald eagle nests

better than perimeter alone. Scaling laws. wmch include fractal techniques. appear to be

useful in the analysis of scaling population characteristics driven by perimeter-to-area

ratios. Such ana.I)"ses can quantifY changes in habitat complexity across measurement

scales and may allow for calculations of organism abundance across such scales. Despile

this potential use. fractal techniques and scaling laws have not been widely applied to

quantify population characteristics in ecology.

FREQUENCY DISTRIBUTIONS OF PATCH SIZE

Another critical issue in ecology is the etTecl of patchy landscapes on the

distribution and abundance of species. VeL there is no characteristic scale over which an

organism's response to habitat patchiness should be measured (Han and Horwitz 1991). It

is therefore important to examine the etTect of spatial scale on observations of palch sizes.

High macrofaunal biomass combined .....ith a .....ide range of patchiness makes eelgrass an

ideal system tor assessing the dTects of habitat patchiness on animal abundance (Robbins

and Bdl 1994. Bell et 31. 19Q5. Fonseca 1996. Eggleston et al. 1998). Eelgrass patchiness

ma~.. affect populations through a variety of mechanisms. including alteration of predator

distribution. abundance and foraging beha\-;our (Leber 1985. Main 1987. Bell and Hicks

1991.lrlandi 1994. lrlandi et aL 1995). modifications of water flow (Eckman 1983. Bell

et al. 1995). and changes in animal behaviour (Heck and Crowder 1991).

Habitat patchiness is usually quantified using simple data summaries such as

means. variances. or any of a variety of indices (e.g.. Taylor's Index of patchiness..

Relative Richness Index. Diversity Index. Fragmentation Index: Turner 1989). Although

frequency distributions~ rarel:-' used. they provide more information about the observed



panem ofany given habitat characteristic than any single index. A linear regression of a

frequency distribution at various resolutions can be used to characterize the effect of

spatial scale on rhe frequency distribution ofa habitat characteristic. The slope of this

frequency distribution on a log-log plot is called the -Ko~ak exponent- (Kortak 1940.

Korvin 199::!1. A comparison of Kortak exponents across resolutions provides a measure

of how the frequency distribution changes across spatial scale. For this investigation the

etTect of spatial scale on rhe KorCak exponent was examined using rhe distribution of

.xlgrass patch sizes in a tjord located on the northeast coast of Newfoundland.. Canada.

The number of small patches lost at coarse: resolutions can be expected to drive rhe

change in slope ofrhe frequency distributions.

\1~. intention was to detennine how eelgmss characteristics could be computed

across spatial scales of study. and how this may enable us to calculate abundances of

juvenile: Atlantic cod. The goals were to: II test for and characterize scaling regions for

perimeteNO-area ratios in .xlgrass habitats: ::!) identify the extent of acceptable scaling

regions: 3) to compute estimates of juvenile cod abundance within appropriate scaling

regions. using a pre\iously knOv.TI model ofjuvenile cod abundance in eelgrass habitat

(Wells et 011. in prep. I: -1-1 to calculate changes in the KorCak Exponent for patch size

frequency diStributions over a range of spatial scales: and 5) to develop a model that can

be used to compute the frequency distribution at one spatial scaJe (i.e. resolution). from

that at another spatial scale.
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CHAPTER 2: A SCALING LAW FOR EELGRASS HABITAT IN NEWMAN
SOUND, NEWFOUNDLAND

ABSTR"cr

Ecology is a scale-dependent science. All ecological panems and processes are

affected by scale to some degree. and 3nempts to interpret ecological data or to apply

tindings are constrained by scale. The fundamental problem ofscale is in ftnding ways to

relate observations across space and time. and revealing what is maintained or lost in the

process. (n this study we quantified the complexity of¢elgrass (UJstera marina) habitat

structure. calculated as the ratio of perimeter-to-area. as a function ofs:patial scale. We

then used this function 10 compute estimates of juvenile cod abundance across scales. We

delennined a scaling law comparing perimeter-Io-area ratios of eelg:rass habitat over a

range of resolutions in a tjord on the northeast coast of Newfoundland. Canada.

Consistent values were found for the exponenl of the scaling law over spatial scales

spanning r..\;o orders of magnitude. This indicates that large-scale features are simply

magnified ·..ersions of smaller ones ....ithin this range of spatial scales. We show that

measurements taken at coarse resolutions (e.g.. satellite imagery) can be used to estimate

~Igrass habitat structure and cod abundanl;e at fineT resolutions (e.g. aerial pb.otography)

using a simple scaling law.
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INTROOUcnON

Many of the major problems in ecology require predictions at large scales. based

on calculations across space and time. The problem lies in trying to understand panerns

observed at one level of detail. in terms of processes that are operating on odler levels.

One of the main objccti\'es in ecolog~" is to explain the pattern of distribution and

abundance of species or populations lKrebs IQ78). However. ecology is a scale­

dependent science. with p:merns of abundance and distribution that change .....ith

measurement scale. Recognilion of dle imponance of scale in ecology has increased in

recent years lGardnerel aI. IQ8Q. O'Neill IQ89. Weins IQ89. Holling 1~2. Levin 1992.

Schneider 1994. Picken et aI. 1997. Gustafson 1998. Peterson et aI. I~8. Ludwig et al.

~OOQ). VeL dlis insight has not progressed much beyond dle observation that dle scale of

investigation makes a difference on how we percei\'e our environment. Applying dlis

concept in ecology requires laking dle next step. which is [0 develop ways to compute

across spatial scales.

One way [0 measure habitat complexi~' across spatial scales is to develop scaling

laws iliat link scale ....ith panem in nature lLud.....ig el al. :000). Scaling [aM can be

developed [0 quantify dle effect of spatial scale resolution on the measuremenl of

perimeter or area of a habitaL Lengths and areas of natural objects differ when we change

the scale at which objeas are measured (van Hees 1994). Changes in length or area with

scale can be quantified using a scaling exponenL The scaling exponent can be calculated

as the slope of the regression of perimeter.lo-area ofan object againsl resolutioo--t.e. the

power law exponent for the log·/ioear function. It is [0 be expected that a highly complex
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(i.e. convoluted) habitat would have a greater scaling exponent lhan less complex habitat

because changing resolutions would have a greater effect on me perimeter-to-area ratio of

a highly convoluted habitat. Ifme relationship between perimeter-to-area ratio and

resolution can be ~xpressedas a power law. men it is possible to compute me perimeter­

to-area ratio at any spatial scal~ of measuremenL Since community and population

characteristics in me interior of a habitat differ from those at me edge (Fonnan and

Godron 1981). comparing mese characteristics ....ith th~ edge (perimeter) to interior (area)

ratio of habitat proves useful in evaluating me ecological importance of2-dimensional

habitat complexity (Hamazaki 19961.

Fractals are a special type of scaling law. where a fractal dimension is calculated

using the exponent of a scaling law (Mandelbrot 1981. Pennycuick and Kline 1986.

Sugihara and May j9Q()). Developing scaling laws can thus be considered a prerequisite

[Q fractal techniques. The fracui dimension of habitat is known 10 be strongly associated

v.ith population characteristics such as gastropod density (Beck 1998). epifaunal

communi~' structure (Gee and Warvoick 1994). locust swann formation (Despland ~t aI.

1988). feeding in ungulates (Milne et at 1992). and dis\:ibutions ofanhropods (Morse er

o.f. 1985). Fractal dimension has also been suggested as a habitat measure superior to

traditional variables. such as non-scaled measures of area or perimeter (Wigley et aI.

1999). (n a srud:-' relating reproduction of red-eockaded woodpeckers to habitat attributes.

Wigley' et al. ( 1999) found that reproductive success was more strongly related to

landscape variables-including fractaJ dimension-than to measures of foraging substrate

or area in suitable foraging babitaL Pennycuick and Kline (1986) proposed that the fractal

dimension of coastline described the densi~' of bald eagle nests bencr than perimeter
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alone. Thus. it is possible that fractal analyses of habitat can be used in scaling population

dynamics driven by perimeler-to-area ratios. Such analysis can determine me nature of

changes in habitat complexiry across scales of study and may permit calculations of

organism abundance across such scales. Despite me potential for using fractal techniques

and scaling laws to quanti~· population parameters in ecology. few such applications

currently exist.

(n this study we examined whether a scaling law could be used to quantify

structural complexity in eelgrass habitat (Zostera marina). We men used me scaling law

to estimate abundance of juvenile Atlantic cod (Gadus morhual in a fjord located on the

nonheast coast ofSe....-toundland. Canada. Eelgrass is a significant habitat in

;-.Jev.1oundland coastal waters. Past studies have shown that fish species diversity and

density arc associated more ....ith seagrass habitat than wim less complex unvegetated

habitat. such as sand or mud (Branch and Grindley 1979. Onh and Heck 1980. Beckley

11:183. Stoner [983. Bell ttl af. 1987. Heck <:'1 al. 1989. Sogard 1989. Ferrell and BeIlI9C11.

Edgar and Shaw 1995. Gotceitas et al [99n. The recent collapse ofGadus morfrua in the

nonh....-est Atlantic has sparked interest in the ecology of juveniles of this species. This

once commercially dominant demersal species has been under a fishing moralOriwn in

many Canadian areas since [992 (Taggan et a1. 1994). Atlantic cod produce large

numbers of eggs that hatch. in the water column. are pelagic for an approximately 90 day

period IAndersonand Dalley 19<Jn. then settle to the bonom in limited areas (Schneider

et al. 1W7). After Gadus morhua settle. eelgrass habitats are considered imponant

nW'Series for juvenile cod. providing refuge from larger predators (Gotceitas et al 1997.

Linehan et al. 2001). Limitation of this critical habitat is believed lO be imponant for this
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species (Turin 1942. Tveite 1984. Go(ceitas et al. 1995). However. because the structure

of habitat is known to influence quality of refuge (Gotceiras and Colgan 1989). the

structure of this habitat also needs to be considered. in addition (0 the total amount of

eelgrass cover.

Our intention was (0 quantitY eelgrass structure as a function of different spatial

scales. and then use this function to estimate the abundance of juvenile Atlantic cod in

this critical habitat. In this study we: I) detennined the scaling law betv.'een perimeter-to­

area ratios and resolution lor eelgrass habitats. ~l identified the range of scales over

which this scaling law was applicable li.e. the 'scaling region'). and 3) estimaledjuvenile

cod abundance "ithin this scaling region. using a model ofjuvenile cod abundance in

edgrass habitat (Wdls et aL in prepl.

~ETHODS

Stud~· Area

Our study area was localed in Newman Sound. a fjord located in southwestern

Bonavista Bay. on the northeaslern coast of Ne\hfoundland. Canada (48°35' N. 53°55'

\\r). The maximum depth \hithin the sound ranges between 55 m (inner sound) to -300 m

(OUler sound). ~earshore «10 m deepl substrnte includes mud. silt. sand. gravel. cobble.

and bedrock. Eelgrass was associated "ith mud. silt. sand. and gravel SUbstrales.

Macroalgae (Lamincuiu digituta lamourou.x.. Agcznun cribrosum Bory. Chondrus crispus

Stackhouse. Fucus wsicu10sw L. and Ascophyllum nodosum (L) leJo[is) was
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associated 'With the coarse cobble and bedrock substrates (Lindul.Il ct aI. ~OOI). Where

pre:senl. eelgrass 'W"aS generally resuiaed lO depths shalloweT than 6 m in Nev.'tIlan Souoci

Winltt sea conditions in this aze3 are sc:,..~ due lO me Labrador Current and its transpon

of pack ice and icebergs formed in Greenl.and and me labrndor Sea. occlJ!'Ting generally

betv..een Mart:h and July each ycart~l1lT'aY 1%9. Dinsmore IQ72. NOROCO 1980).

Covcs "ithin and outside Nev.man Sound often free:zc over during the 'Winter. due to

freshwa~ input from streams and rivet'S.

~~man Sound .."..as selected as our study area because eelgrass \\'as present along

much of the shallow ne:trShore en\ironment in a wide range of structural complexities.

Funhermore. data from previous and concurt'entjuvenile cod studies were available 'or

the ~e\\man Sound area ,Crocker et al. in prep. Gorman et al. in prep. Gregory et al.

~OOI. Ings e[ aI. in prep. :"-Ioms et aI. in prep. Sargent et aI. in prep. Wells et aI. in prep).

Habitat Mappi.Dg

We used a compact airborne spectrographic imi1&er (CASt) to obtain thematic

images of eelgrass habitat in me study area. CASI is a multispectral imager operating in

the visible and near infl"llmll-l7o-876 nml region oflhe light spectrum.. This imager can

be configured for quantitath'e digital mapping of marine habitats CRiner and. Lanzer

19Q7t CASI imagery wilScollected July 26-31. 1m. from a rtWtimum heigbtof3600 m.

Habiw was classified using pre..iously known spectral signatutts. and then further

calibrated using extensive on-site ground trUth data. The resu.lting thematic image

consiS!Cd of shallow marine habitats spanning the entire coastline ofNewman Sound

(Figure2.lt
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Figure 2. 1. Map of shallow marine habitat in Newman Sound, Newfoundland. Green and turquoise areas represent eelgrass habitat. To
detennine if the scaling exponent ofeelgrass was constant across the study area. we divided the imagery of Newman Sound inlo three
subsections ofequal area: A) Image 1contained the North Subsection of the imagery; B) Image 2 contained the Middle Subsection of
the imagery; and C) Image 3 contained the South Subsection of tile imagery.



Grouod Truth Methods

We obtained extensive habitat data to calibrate the spectral signatureS applied in

the habitat classification. In Iota!. we collected data from 311 ground truth points within

the study area. The imagery "<is revised based on PL'l:e1 cbamcteristics from these points

ofknov.n habitat composition. A.lI of the areas mapped in Newman Sound were ground

uuthed using a 4m alwninum boaL at 10..... tide. and as close as possible to the dates of the

CASI flights. Sites of all areas of significant interest were surveyed (e.g.. major eelgrass

and algae bedsl. Within these sites. an::as of relatively uniform habitat were sun.eyed at

50 m intervals along. the shoreline. \,Iihen possible. 2-3 points were surveyed at each

interval perpendicular to the shore. from shallow into deeper watel'. In areas of

heterogeneous habitaL surveys were performed in the same manner. but more often. in

order 10 record as many habitat types as possible. Sun:eys .....ere restricted where possible

to pure. dense and extensive features. We used large features because positioning error

\,\,115 about 3 pixels ( I:! x I:! m I. even \,\,ith differential GPS. Thus. selected fearwes had 10

be at least 5 x 5 pixels (20 x 20 m) to be useful as a ground truth poinL

CASI data were obtained in line uansects tlo\,\,n under varying conditions of

illwnination.. ride. and visibili~·. To account for possible \1Uiations in spectral signal from

different sections of the imagery. which were acquired O'ler six days. we ground trutbed

data from all pans of the image over :! I days. Different areas of the same !labitat type can

!lave slightly different spectral characteristics depending on factors such as desiccation..

physiological stale. degree of substrate coverage. and presence ofother species. CASt
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data for several siu:5 of the same habitat type provided the expected variability in the

spectral characteristics for that class (G. Borstad unpublished).

At every site surveyed. overlying water \l,1lS measured using a weighted length of

line. Tide height was r«orded at the time of ground truth. landmarks were used to mark

every site on a map as a backup of position. We !ei:orded data on substrate type. %

coverage of the \·egetation. dominant vegetation (or relative proportion in a mixed

\'egetation bed). and the presence of any coloured organism (e.g.. smooth cord weed.

Chorda filum) or g~logical fealures.

BOx.-couDring method

We used a box-counting method tRodriguez-lturbe and Rinaldo 199n to quantify

eelgr.1SS habitat at \·arying scales of resolution. The imagel'~... was in raster (i.e. grid)

tonnal. there tore. boxes represented pixels in the imagery. Box-counting consisted of

gathering contiguous pixels inlO boxes. and then quanti~·ing the habitat characteristic at

each successive resolution 01' box size. The outcome was a series of counts of grid boxes

containing habitat tor various box sizes.

We began the box-counting process v.;th a map of eelgrass habitat mapped at a

pi.''(el size of 16 m: 14m x 4m pixeil. We quantified polential habitat by first counting the

number of 16 m: pixels that c:ontained 100 % eelgrass habitaL The number of pi.xels was

then convened to the are:l of eelgrass tm=). We quantified perimeter by counting the

boxes c:ontaining 100 % eelgrass along the perimeter of the habitaL and oonverting this

number to a measure of length (m)..-V'ter these c:onversions we then took the ratio of the

perimeter to the area. The pixels were then aggregaled by 2 on a side (8m x 8m). 3 on a



side ({2m x 12m). and soon up 10 20 on a side {80m x 80m). The next 5 maps ofeelgrass

distribution .....-ere produced by aggregating pi..xels by lOon a side. to 30 x 30 pixels (120m

x 120m). 40 x40 pixels (160m x 160m). 50 x 50 pi..xels (200m x 200m). 60 x60 pi.xels

(240m x 240m). and 70 x 70 pixels 1280m x 280m l. After every aggregation we men

counted ail me boxes thai contained at least 50% eelgrass by area as well as boxes along

me perimeter of the habitat. We did not use maps at coarser resolutions because the box

size became too large to accurately measure perimeter and area of eelgrass habitats. For

instance. a cove containing 30-40 % eelgrass would be classified as a non-eelgrass area if

me size of me box exceeded the size of the cove. Nevertheless. the resolutions of these

maps provide a range of nearly four orders of magnitude in box size.

Data Analysu

We described the structural complexity of eelgrass habitat as me perimeter to area

ratio. and measured this parameter across a ",ide range of scales. To determine if the

scaling exponent of .:e1grass was constant across the study area. we divided the imagery

of Nc"'man Sound into three subsections ofequai area Image 1 contained the North

Subsection of the imagery. Image 2 contained the Middle Subsection oCthe imagery. and

Image 3 contained the South Subsection of the imagery (Figure 1). Within each of the

three regions. all eelgrass patches were aggregated in calculating the PIA ratio. Our

criteria tor identit~;inga 'scaling region' .....ere 11 me relation betv..een perimeter to area

ratio and resolution could be expressed as a power function (linearity on a log-log plol).

and 2) the slopes tor ail three images were homogeneous (determined using ANCOVA).

We examined the residuals from the regression to \'erify that these were homogeneous.
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independent and normal. Logarithms were taken for both the ratio of perimeter to area [P

(m)iA (m:)] of~lgrassand the corresponding box area-or resolution lR). Thus. me

relation between me twO was:

Log<IP! ..1) = a + p. Log<R

This is equivalent to me power law:

PIA "'-r:~ R fJ

(2.1)

(2.2)

where p is me slope of me regression.

The exponent of the power law is also knO\VTI as the sca.ling exponenL which is the slope

of the plot lor the range of scales over which the power law relationship applies.

We used AJ'ICOVA to compare the relationship bern·een P I A and resolution

across the three images. in order!O lind a scaling region with a slope Pcommon to a.I1

images. The model lor this ANCOVA was:

(2.3)

where p .. perimeter (mI. A'"' <Jtea(m:l. Po '" overall mean.p~ '" overall slope. R ..

resolution (m:l.p,,,, mean lor each image ./= image (i.e. I.~. or 3). and PRJ = slope for

each image. This model results in a po.....-Cf law ....ith two exponential terms:

(2.4)

RESULTS

We found tbat the perimeteNo-area relationship lor eelgrass habitat did not fit a

power function over the entire range of resolutions examined (Figure 2.2 A). However. an

intermediate section described by a power law was found between the resolutions of784
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m: and 6400 m:. which. we called the 'scaling region. This intermediate section was

detennined as the region where a power law was applicable. and where me slope was me

same for all three images (f:!.- 16"'0.69. pzO.507. 55 lOUI =1 1.23). Because the interaction

between resolution and image \.\"as not significant. this term .....as removed from the modeL

The slope (/JR). or scaling exponent of the revised model. within the scaling region was ­

0.2.02. After substituting the parameter estimates for the overall slope I!JR) and the overall

mean IPo) into Equation ~.3. me lormal model was:

Log~ IPI.·lJ = -J. 819-'-' -().lO] Log~R - P, I.

which expressed as a power function blx:omes:

(Fu .. = 275.1~. p<O.OOL SS 1OUII=11.~3).

12.5)

(2.6)

The South Subsection (i.e. Image 3) contained \'ery little eelgrass. and did not

have the range of patchiness seen elsewhere in the study area. After removing this image

irom the analysis. the resulting scaling region included resolutions between 256 m: and

25.600 m= (Figure 2.2 B). The slope th). or scaling exponent. within the scaling region

was -0.203. The image (1 in Eqwtion 2.3) and resolution by image (R'/ in Equation 1.3)

terms were removed from the model blx:ause they were not significant 1F l. 3-l = 2.21.

p=O.147. S5 lOUI =1041 and Fl.3-I = 0.56. p=0.46 I. S5 _ =2Al respectively). Equation 1.1

shows the lonnal model for the ANCQVA. After substituting the parameter estimates for

the overall slope 'h) and the overall mean tfJo) into Equation 1.3. the formal model ....-as:

Log. ,P..A! = -J.·U91 - - 0.103 Log~ R

This equation can also be expressed as the power function:
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P I A =e-'+l91 R-<J-~03 (2.8)

lFl.3.' "" 354.36. p<O.OOI. SS lOU! =2AI).

For me analysis including illl three subsections. and the analysis including only the North

and Middle Subsections (i.e. Image I and 2). we found that the relation of the perimeter­

to-area ratio to resolution fit a power function over a ...,,;de range of resolutions. Thus. we

were able to delennine a scaling exponent for eelgrass habitalS over these resolutions.

DISCUSSION

The search lor consistent scaling relations (Bak et a1. 1988) and the dynamic

processes that generate them (Tainaka 1994. Loreto et a1. 1995. Vespignani el a1. 1995.

Grassberger and Zhang 1996. ~lilne 19CJ8) are essential to understanding complex

ecological s~'stems. Scaling relations (Stanky et al. \9%) are a major analytical tool in

studying complexity. in which the behaviour ofa system can be described as a function of

a parameter. temporal scale. spatial scale. or all three. Scaling relations indicate that the:

system is controlled by rules that propagate across a wide range of scales (Meakin (993).

The limits of power law relations reveal domains of scale over which particular processes

operate (Krummel et al. 1987. Weins 1989. Weins and Milne 1(89). Domains of scale are

interpreted as evidence of hierarchical organization in nature (Allen and Star 1982. King

1991).

In this study. we have described the complexity of the eelgrass habitat in terms of

its perimeter-Io-area ratio. and measured this parameter across a ..."ide range of scales. as

defined by the resolution of the remotely sensed imagery. Over the entire range of



resolutions. the relationship belWeen perimeler.to-area ratio and resolution was not linear.

However. an intermediate range. the 'scaling region'lNikoraet aI. 1999). was found

where a power function ""as applicable. and the slope was the same for all images. The

signiticance of this finding is thai a coarse measurement of the perimeter-to-area ratio can

be taken at a low resolution (e.g.. 6400 m~) and calculated 10 high resolutions (e.g.. 784

m~) using a simple power function. Funhermore. we can apply this function to new data

sets within the scaling region because the scaling exponent was constant for all images. A

non-linear function would be required to calculate beyond the scaling region. After

removing Image 3 from the analysis. the resulting scaling region included the resolutions

betv...een 256 m~ and 25.600 m=. Thus. a coarse measurement taken at a resolution of

25.600 m: can be calculated down to the scale of256 m~ using a simple power function.

Consistent values for the scaling exponenL 13 = -0.203. were obtained over spatial scales

spanning twO orders ofmagnituc1e. The removal of the image inconsistent \.\-ith the rest of

the study area resulted in a significant increase in the range of the scaling region.

TherelOre. we \\ill focus our discussion on inferences derived from the analysis of the

first two images.

Different processes affect the distribution ofeelgrass at various scales. A power

function did not describe the system over the v.idest range of spatial scales. However. it is

likel~' that an object does not have the same structure over all measuremenl scales. Hence.

a scaling region spanning a Iimiled range of resolutions is to be expected. Funherrnore.

the biological and physical processes generating these power functions are expected to

operate over a restricted range of scales (Bradbury f!t af. 1984). These restricted ranges. or

'scaling regions' are found in geomorphology (Rodriguez and lturbe 1997). and in
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various measures of landsca~helerogeneity lNikora el at. 1999). A constant scaling

exponenl o..'er a range of resolutions indicates that within this region large-scale features

are magnified versions of smaUer ones. A sudden change in scaling exponents reflet:ts a

scale-dependent threshold mat is probably caused by different landscape processes

operating ""ithin distinct scaling regions (Loo\\ig et ai, 2000). Thus. me shift in scaling

exponenl al either end of me scaling region defines the limits within which interpolation

is possible (Sugihara and May 1990). There may be 'domains' of scale (i.e.. scaling

regionsl, ""ithin which functional relationships remain relatively COnstanl and

interpolation is possible (Weins 1989. Lud\\ig el al. 2000).

It is exp<::(:ted that strucluring mechanisms of eelgrass. a type ofseagrass. would

change ""ithin each domain of scale. In general. seagrass beds exhibit 'domains of scale'

in biological structure, ranging from individual rhizomes and groups of shoots

Icentimetres to metres). to discrete patches of seagrnss (metres to tens of metres). to

seagrass landscapes liens of metres to kilometresl (Duane and Sand·Jensen 1990a and b.

Duane et al. 1994. Olesen and Sand-Jensen 1994. Robbins and Bell 1994.lrlandi et al.

1995. Tumeret al. 19%. 1999). Foreelgr.lSs systems on me northeast coast of

~e""1ound1and.it is likely that the physiology ofeelgrass would affect growth panerns

le.g.. b~; underground root systems called rhizomes) at small scales «lOm~). Al

intennediate scales (100s ofm:) freshwater input. depth. or subStrate could affect discrete

patches. Wind exposure. ice scouring. temperature and coastline StrUctUre may regulate

the stnJCtUI'al complexity of eelgrass landscapes at large scales (I 00s of ml
10 1ooos of

m1
). And at even larger scales (> km:)' oceanographic processes could determine the

distribution ofeelgrass along this coast. For example. alongshore currents could transport

30



eelgrass seeds from one cove to the nen. \4'hcr"c successful colonization would depend

upon a combination of suitable substrates. temperature. wind e.'(posurc:. salinitY and

coastline stnK:lUJ'C" Tbe COnstanl scaling e:otponcnt \4ithin our sca1ing region suggestS the:

possibility of processes gcncr.uing self·similar eelgrass struelUJ'C \4ithin this intermediate

range of resolutions (256 m: 10 25. 600 m~l. The: processes dominating eelgrass suucnue

\4ithin this scaling region arc unknO\4u. We can however. speculate that the: break point at

either end of the sca1ing region suggests changes in Ihc domain of scale. signalling a

s....itch in ecological or environmental processes.

Computing Ju,-"cnilc Cod Abundancc from 'bc Scaliog [sponcr.. of Eclgl1lSS H.bib'

Many biologic31 variables cannot be remolely sensed. Hence. there is need for

scaling relations that connect remolely sensed variables I i.e.. habitat variables) to

population variables. such as density. biomass.. production. mo'-"emcnt. rccruiuncnt. and

monalit~... Ideally. srudies linking population ,-"ariables 10 habiw should be performed at

tbe: sca1e;u: which in.fonnation is obtained in tbe: field. Howe\"er. fine resolution maps that

span large areas are expensive :md incom·enient to produce. As a result. C03lSC sc.ale

maps arc most commonl~' used in large-scale population studies that span large areas

le.g.• Anderson and Dalley 1997). This creates a need for calculating populatioo variables

3CTOSS spatial resolutions. L:sing mnolCly sensed imagcry.". scaling e.'(poncnts can be

estimated over 3 scope: ....ide enough. to be useful. from large areas do.....n to small·scale

plots practical for experimenl and directm~ent of population and communitY

dynamics.
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Estimates offish abundance are normally required at both local (e.g.. point source

habiut changes) and global scales l~.g.. stock assessment}. but field measurements are

limited to small scales (Figure 2.3). Eelgrass is an important habitat for age 0 Atlantic cod

within a narrow band off the coast of northeast Newfoundland (Linehan ~t aI. 2001).

Thus. scaling relations can link population abundance of age 0 cod to eelgrass habitat

I.\ithin this zone. H~re. we anempt to demonstrate how scaling laws can be deri....ed and

appli~d to calculations of population dtimates from habitat complexity. nus catch

estimate is dependent upon factors that affect catch per seine haul. including type of site.

time of day. tide cycle and seasonal timing. We used the fish catch data for the months of

September and OClober only. since ju....enile cod abundance is most predicti ....e of~..eae.

class strength during these months in Nel.\ioundland (Gregory et aI. 2001). W~ assumed

that distributional patterns among e.::lgrass habitats are most apparent during these

months. This calculation assumes that no age 0 cod exist outside the SSm reach of the

beach seine: an assumption we know to be false. However. Methven and Schneider

(1998) found most age 0 cod \,\,ithin this SSm reach. suggesting this assumption is not fae

off. It is also imponant to note that the sites that were seined do not necessarily represent

all sites along the coastline. ~y sites I.\ithin Ne....man SOWld are not seinable and may

ha\'e lower abundances of ju....eniles due to the nature of unseinable substrate or habitat

(e.g.. sandy/rock substrate. rocky/venical cliff shorelines). Our intent here is to

demonstrate the use of a scaling function to obtain a first cut estimate that recognizes the

de~dence of ecological ....ariables on spatial scale. This demonsuates bow scaling laws

can be deri....ed and applied to calculations of population estimates from habitat

complexity.
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Using the scaling exponent of eelgrass habitat. we calculated fish abundance within a 55

m band li.e. the scale of typical field measurements using a beach seine: Methven and

Schneider 1998. Linehan 2(01). Wells et a1. (in prep.) found that catch of age 0 cod

increased \l.ith the scaling exponents of eelgrass habitats lFigute 2.4). The scaling

exponent for eelgrass habitat in Newman Sound I/l ~ 0.202) and fish catch can be used to

estimate the density of age 0 cod as 50.1 fish per seine haul tarea=880 m~).

Further. we can calculate the number of 16-metre wide beach seines that fit along the

coastline of Newman Sound.. and estimate how man~· age 0 cod are in the sound..

assuming that there were no age 0 cod beyond the 55 m extem of the seine from the

beach. This can be accomplished by using the dividers method (Mandelbrot 1981.

Sugibara and Ma~- 1990j to calculate the fractal dimension of the coastline for Ne.....-man

Sound. The dividers method consists ,)fmeasuring the length of the coastline using

differem ruler sizes. The lengths of the coastline wen:: regressed against size of the

measurement ruler. and the fractal dimension was then calculated from the slope of the

regression (methodological details in logs. in prep.). We calculated the fractal dimension

of the Nev.man Sound coastline to be D= 1..2188 using a topographic map (scale I:

50.000). We calculated the: number of 16-mene beach seines that fit along the Newman

Sound coastline by:

(2.9)

where CL ,;_ is the coastline length at the scale of 16m. Cl..c_ is the coastline length at

180m. L ri... is the length of the ruler at 16m. Lcoarx is the: length of the ruler at a 180m.

and D is the fractal dimension ofthe Newman Sound coastline (see Appendix I for

derivation of Equation 2.9). Through substituting \-aIues forCL~L.- Ljint and D
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into Equation 2.9. we calculated the coastline length to be:

CL/iM =CL Ibm "" 17.820 m (16 m 1180 m) 1·111 "" 30.350 m = 30.350 km

Therefore. the number of 16 m beach seines that fit along the coastline of Newman Sound

can be calculated by dividing CL Ibm by 16 m:

# of 16 m beach seines = CL Ibm/16 m = 30.350 m 116 m = 1.896.88 beach seines

To calculate an o;:stimate of how many juvenile Atlantic cod are within 55 m of me shore

in Newman Sound. we took the product of beach. seines and catch per seine haul to

obtain:

1.896.88 beach. sdno;:s x 50.1 [ish per seine haul:::: <)5.000 juvenile Atlantic cod along the

coastline of No;:""man Sound. This calculation needs a tina! correction thaI computes the

proponion of sites at the scale of a 16m beach. seine that contain eelgrass habitat within

55 mofthe shore.
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CHAPTER3: USING POWER L.o\.WS TO QUANTIFY THE PATCH SIZE
DISTRIBUTION OF EELGRASS H..o\.BITAT

ABSTRACT

The scale of observation affects now we perceive all ecological patterns and

processes. As a resulL attempts to interpret ecological data or to apply ecological fmdings

are often constrained by scale. The fundamental problem of scale is in finding ways to

relate observations across space and time. and revealing what is maintained or lost in the

process. [n this study. we investigated the effect of spatial scale on the frequenc~;

disuibution of <:::elgrnss (ZfJstera marinal patch sizes in a fjord on the nonhc:ast coast of

~e.....1oundland. Canada. Based on the dynamics of this system. we hypothesized that the

frequency distribution of patch sizes for eelgrass would fit a power law. We found that

the patch size distribution tit a power law. 'A'bicn is consistent with complexity generated

by competing exponential rates. We show that the fuji frequency distribution of patch

sizes at one scale can be computed from the frequency di:..tribution at a scale that may be

logistically more convenient to obtain. Thus. less expensive coarse resolution maps may

be used to calculate the patch size frequency distribution at the smaller scales common for

many population field studies.
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INTRODUCTION

One of the key goals of ecology is 10 explain patterns of diStribution and

abundance of species or populations (Krebs 1978). However. such patterns change with

the scale of measurement. The description of any syslem depends on the spatial and

temporul perspective chosen. :\11 ecological patterns and processes depend on scale of

measuremenL and anempts to make sense of ecological data or to use ecological findings

in management are constrained by seale (Peterson et at 1998). Hence. it is essentiaJ to

understand not only how panems and dynamics vary ....1th scale. but also how panerns al

one scale are expressions of processes operuting at other scales IHolling 1992). The

fundamental problem of scale is in finding ways to relate observations across space and

time. in understanding how information is transferred across scales. and revealing what is

maintained or lost in the process. Although recognition of the importance of scale in

ecology has greatly increased in recem years (Gardner et al. 1989. O'Neill 1989. Weins

[989. Holling. 1992. Le\in 1992. Schneider 1994. Picken et al. 1997. Gustafson 1998.

Peterson et 31. 1998. Ludwig et aJ. 20001. this insight has not progressed much beyond the

obsen,'ation that the scale of investigation does make a difference. The next logical step is

to develop methods to compute across spatial scales.

The dfect of patchy landscapes on the diStribution and abundance of species is a

critical issue in applied ecology. Habitat patchiness affects population dynamics. such as

recruiunent (Minchinton 1997. Eggleston et at. 1998. Hen:zberg et al. 2000). settlement

IBologna and Heck 20001. feeding (Turner et a1. 19911 and predation (Gorman et: al. in

prep. Irlandi et at. (995). YeL th= is no single scale at which an organism's response to
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habitat patclUness sbould be measured (Han and Horv.itZ 1991). Thus. it is important to

examine the effect of spatial scale on observations of palcb sizes in habitat. High

macrofaunal biomass combined ""ith a ""ide range of patchiness. makes eelgrass an ideal

sySiem tor assessing the effects o(habitat patchiness on animal abundance (Robbins and

Bell 1994. Bell et a1. 1995. Fonseca 1996. Eggleston et ill. 1998). Edgrass patchiness may

affect populations through a \'ariety of mechanisms. including alteration of predator

distribution.. abundance and foraging behaviour (Leber 1985. Main 1987. Bell and Hicks

J991. Irlandi 1994. ldandi el ill. 1995). modifications of wattt flow (Bell et aI. (995). and

changes in animal behaviour (Heck and Crowder 1991). In this study. we investigaled

patchiness of eelgrass habitats as a function of spatial scale lor the northeast coast of

~e ....1oundland. Canada.

Quantitication of habitat patchiness is usually accomplished with simple data

summaries such as means. variances. or any ofa varie~' of indices (e.g.. Taylor's Index of

patchiness. Relative Richness Index. Diversi~·lndex.Fragmentation Index; Turner 1989).

However. a more inlormative method of measuring the 'patchiness' ofa habitat across

spatial scales is to compare Ihe frequency distribution of patch sizes to map resolution

H.e. spatial scale). :\ full frequenc)" distribution prm.ides more information tban any

single summary statistic or index used to describe babitat. Further. any index can be

computed from the frequenc)" distribution. The frequency distribution of patch sizes (at

the scale specific to a biological mechanism) can be used to calculate Ihe impact of a

mechanism on a population. For example. if the scale is known at which anima1 nwnbers

depend on habitat. !.hen the patcb size frequency disaibution at that scale can be used to

quantif')-Ihe abundance of this anima1 in this habitat. From this frequency distn"bution
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simple data summaries such as means. "-:uiances. or any of a variety of indices can be

calculated..

Frequency distributions that fit 3. pov.'CT law result nom two competing

exponential rates thai~ lemporally or spatiall~.. lagged (Stanley et aI. 1996). The contest:

bc{\.\."CCtl these roues must be W1equal. For c-umple. unequal accumulation and release: of

cnet"£y occurs during eanhqU3kes along fauhlincs IBak and Chen 1995. Stanley et al.

19%t or during lorcst·nres(loreto el aI. 1995). Sole 3fld Manrubia(I995) found that the

size diStribution of gaps in a rainforest fit a power law. They attributed this finding to

processes of gap lonnation (i.e. treefalll and regeneration. wh.ich are major influences in

tropical ecosystems IV.'hitmore 19911. A gap in the rainJorest is fonned.. not only b~' a

single tree. but also by ,,'in.:s 3tt::1ched to neighbouring trees. This causes a domino-like

collapse. resulting in 3. much larger gap than would be formed by the fall of a sing.le uec.

Successional phases then slowly b.:gin 10 regenerate the forest within this opening

(Jonsson and Esseen 1990). For eelgrass systems on the northeastern coast of

~ev.fOWMilimd.ice scouring ('w:nts and growth act as competing rates that are both

temporally and spatiall~' lagged.. Gro\.l,'tf! and ice scouring occur on two v~' different

time scales. \\-rule gfO\.l,th is steady throughout the summer' months (June to Augustl. icc

scouring events occur rapidl~' and episodically during the winter' months (December 10

~aYI. Furthermore. it is likel~' that the desuuction caused by ice scouring events occurs at

a much larger spatial scale than the regeneration of eelgrass shoots. Based on these

dynamics. we hypothesize thai the frequency distribution of patch. sizes for eelgrass will

fit a PO""'CT law.



The slope of a frequency distribution that follo...."5 a power law distribution is

called the 'Kortakexponent' (Kortak 1940, Korvin 1992). In geography it is well known

that the size of islands follows a power law distribution. that is called KorCak's t 1940)

law:

P [A >al = ktJ~,

where P [A > <11 is the frequency of islands of size .-\ > tJ. and b is the Kortak exponent.

The Kortak exponent is assumed to remain constant over different spati:l1 scales

(Mandelbrot Iq7S. Rodriguez-lrurbe and Rinaldo Iqqn. To inv~tigate the effect of

spatial scale on the size distribution of ~Igrnss patches we compared Kortak exponents

across resolutions of imagery.

We investigated whether patch size distributions for eelgrass habitat on the

northeast coast of ~ev.1·oundlandchanged o\"er spatial scales. We hypothesized: I) the

frequency distribution of patch sizes tor eelgrass habitat would fit a power law called

Kortak's Law (Kortak 1940). and 2) the slope of the frequency distribution (the KorCak

exponent I of patch size. would change depending on the resolution of the imagery.

~ETHODS

OUT study area was ~e'o\man Sound, a fjord located in southwest Bonavista Bay.

on the northeastern coast ofNe....foundland. Canada (4S03S' ~. 53°55' W). The maximum

depth within the sound ranges betv.;ecn 55m (inner sound) 10 -300 m (outer sound).

Nearshore «10 m deep I subSUate includes mud. SilL sand. gravel. cobble and bedrock.



Eelgrass {Zostera marinalis associated ....ith mud. silt. sand and gravel substrates.

Macroalgae (Laminaria digitala Lamouroux. Agarum cribrosum Bory. Chondrus crispus

Stackhouse. FUCllS ~'esiculosusL. and AscophylJum nodosum (Ll Le Jolis) is associated

....ith the coarse cobble and bedrock substrates. \\'here present. eelgrass is generally

restricted to depths shallower than 6 m in Newman Sound. The cold Labrador Current

tr.lnSpons icebergs from Greenland and pack ice fonned in the Labrador Sea along the

northeast coast of Ne....1oundJand between March and July each year (Murray 1%9.

Dinsmore 1972. :'\IORDCD 1980). Coves in the vicini!)· of Newman Sound often freeze

over during the winter. due 10 freshwater input from streams and rivers.

:'\Ie....man Sound ....-as selected because eelgrass ....-as present along much of the

shallow nearshore environment « 10 m deepl and occurred in a wide range of structural

complexities. Funher. data from previous and conconent stUdies on neaxshore

interactions between juvenile cod and eelgrass habitat were :l'..ailable for the Ne....man

Sound area (Crocker et al. in prep. Gorman et al. in prep. Ings el al. in prep. Norris et a1.

in prep. Sargent et al. in prep. Wells et al. in prep. Gregory et al. 2001. Linehan et al.

200l).

Habitat Mapping

We used a compact airborne spectrographic imager (CASIl to obtain thematic

images of eelgrass habitat in the study area. CASI is a multispectral imager operating in

the visible and near infrared (·HQ-876 oml region of the light spectrum.. whicb was

configured for quantitative digital. mapping of marine habitats (Ritter and Lanzer 1997).

CASl imag~' wascoUected July 26-31. 1999. from a heighl of 3600 m. Habitat was



classified using previously known spectral signatures. then fwther calibrated using

extensive on site ground truth data.. The resulting thematic image consisted of shallow

marine habitalS spanning the entire coastline of Newman Sound (Figure 3.1).

Ground Trutb Metbods

We obtained extensi....e habitat data to calibI11te the spectral signatures applied in

the habitat classification. In tolal. we collected data from 322 ground truth poinlS within

the study:lrell. The imagery was revised based on pixel characteristics from these poinlS

of known habitat composition. All of the areas mapped in Newman Sound were ground

truthed using a -1m aluminum boat. at low tide. and as close as possible to the dates of the

CASI tlights. Sites orall :lreas of signiticant interest were sur....eyed (e.g.. major eelgrass

and algae bedsl. Within these sites. areas ofrelati ....ely uniform habitat were surveyed at

50 m inten..:lis along the shoreline. 'W'hen possible. 2-3 sites were surveyed at each

inter....al perpendicular to the shore. from shallow inlo deeper water. In areas of

heterogeneous habitat. sur....eys were performed in the same manner. but at a greater

frequency. in order to record as many habitat types as possible. Sunleys were restricted

where possible to pure. dense and extensive features. We used large features because

positioning error \10115 about 3 pi.'l(els (I:! x 12 m). e....en with differential GPS. Thus.

selected features had to be at least 5 x 5 pixels (20 x 20 m) to be useful as a ground truth

point.

CASI d::ua were obtained in line uanseets tlo ....n under \'arying conditions of

illumination. tide. and atmosphere. We ground truthed data from all pans afthe image
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Figure 3.1. Map of shallow marine habitat in Newman Sound, Newfoundland. Green and turquoise areas represent eelgrass habitat. To
determine If the scaling exponent ofec:lgrass was constant across the study area, we divided the imagery of Newman Sound into three
subsections ofequal area: A) Image I contained the North Subsection of tile imagery; B) Image 2 comained the Middle Subsection of
the imagery; and C) Image 3 contained the South Subsection of the imagery.



over :! I days. thereby accounting for possible variations in spectral. signal from different

sections of the imagery acquired over 5 days. Different areas of the same habitat type can

also have slightly different spectral. characteristics depending on factors such as

desiccation. physiological Slale. degree of substrate coverage. and presence ofother

species {G. Borstad. unpublished).

At every site surveyed. overlying water \\135 measured using a weighted length of

line. and lid~ height was recorded at the time of ground truth. Landmarks were used to

mark every site on a map as a backup of position. We recorded data on substrate type. %

coverage of the vegetation. dominant ,,-egetation (or rdative proportion in a mixed

vegetation bed). and the presence of any coloured organism {e.g.. smooth cord \';eed.

('ho,.dajifuml or g.eolo~cal features.

Box-counong method

We used a box-counling method (Rodriguez·lrurbe and Rinaldo 1997) to quantify

eelgrass habitat at varying sca.les of resolution. The imagery was in raster (Le. grid)

tonnaL therefore. boxes represented pixels in the imagery. Box-counting consisted of

gathering contiguous pixels into boxes. and then quantifying the habitat characteristic at

each successive resolution or box size. The outcome was a series ofcounts of grid boxes

containing habitat tor various box sizes.

The box-counting method was initially performed ""'ith imagery ofeelgrass habitat

mapped at 4m x ~m pi:xel size. Using the GROUP module in the IDRISI 32 software

package. we determined contiguous groupings of eelgrass habitat cells in an image. Cells

belooging to the same contiguous grouping were given a unique 'patch' identifier. We
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included diagonals in deftning groups. or patches. Cells were considered to belong to the

same group if they had the same value and the:-' louched in any of the eight possible

directions. N. E. S. W. NW. NE. SW. SE. Holes within eelgrass patches were removed

from the analysis by o\'erlaying this image with a Boolean (i.e. binary) image that

classified all non-e.:lg:rass pixels as ·zero'. As a resuiL all non-eelgrass pixels were

multiplied by zero. thereby cancelling them out of the patch size analysis.

The subsequent map was produced by aggregating: the pi.xels by 2 on a side (i.e. 10

8m x 8m I. We then classified all the boxes that contained at least 50% eelgrass as

-eelgrass- boxes. and repeated the GROUP module process. The pi.xels were then

aggregated by 3 on a side Ito 12m x 12m). 4 on a side. 5 on a side and so on until the

frequency distribution I:onsisted of onl:-' 3 patch sizes (i.iC. the number ofdata point

n<X:iCssary for a regression analysis). Thus. the number of palch size categories limited the

mnge of scales used in our analyses.

Data Analysis

We used ordinary least squares regression to estimate the slope and intercepts of

!.he patch size frequency distributions. Logarithms were taken lor both !.he frequency of

eelgrass patches (.\) and the corresponding patch size [P Im~l1. Thus. the relation between

the two \\'3S:

log~.\"'"'a -fllog"P

which is equivalent to the power function:

\i=.:"plJ

(3.1)

(32)

where p is the slope of the regression. and a is the Y-intercept for the log-log regression.
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The exponent of the power function is also called the Kortak exponent when used to

chamcterize frequency distributions (Korvin 1992). We examined the residuals from the

regression to verify that there were no systematic deviations of the data from the model.

and that the residuals were homogeneous. independent and normal.

The parameters of the patch size frequency distributions (i.e. /3 and a) were then

regressed against resolution. lltis "'-<IS done to detect if the effect of spatial scale on these

parameters could be modeled linearly. The logarithm was taken for resolution (R). but not

for slope I/II since the slopes were negative. To keep the analysis consistent. the logarithm

was taken for R. but not the parameter G.

The relation betwe.;:n resolution and Kortak exponent was:

/3"- ,., - :': log.. R

which is equivalent to the function:

t!tJ = e'·'R!:

where ;.': is the slope of the regression.

The relation between resolution and parameter a "'-<IS:

a -;.'1 -;·~/og.. R

which is .equivalent 10 the function:

(3.-')

(3.5)

(3.6)

(3.7)

where ,.~ is the slope of tile regression.

Again. the residuals from the regression were examined. to verify that there Wet'e no

systematic deviations of the data from the model. and that the residuals wert:

homogeneous. independent and normal.
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We chose to divide the imagery ofNe....man Sound into three subsections of equal

area: image l) North Subsection. image 2) Mddle Subsection. and image 3) South

Subsection (Figure 3.1). We divided the imagery to determine if the same power law

function was common across su~tions.as well as holding for the frequency

distribution of eelgrass patches in the full CASt imagery. Only the middle subsection

maintained a $utTicient sample of patches over more than three resolutions. which was the

minimum number of data points needed to make an estimate. Therefore. only this middle

subsection ...."35 compared to the overall imagery of eelgrass in Newman Sound.

Size classes thai had a frequency of one caused a ·tail" at the end oflhe patch size

frequency distribution. These tails represented a few very large patches. resembling

meadows rather than patches typical ....ithin dUs area. Because these large patches were

rare. their trUe frequency was poorly estimated. Due to their undue influence on the

regression. these poorly estimated size classes were removed from the analysis.

RESULTS

Po~·er law functions for eclgnss patch size frequency distributions

Eelgrass patch size distributions for all resolutions fit power law functions for the

~tiddle Subsection (Figure 32 A). The power law functions for each resolution. and the

corresponding power law exponents (i.e. the KorCak exponent) are shov.n in Table 3.1.

The analysis of residuals could not be done on coarser resolutions (>400 m!). as the

sample size declined to three or fewer patches. It was evident that the frequency
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Table 3.1. The parameler estimales lor the model. :-.s=e" pD. of the frequency
distributions 0115 resolutions lor the Middle Subsectionof~CAS! imagery. F ratios
relale to 1-1.,; JPO.

Resolution Parameter a Korbk Exponent (IS) P·\·alues SS_ F·,,·alues

16m= 3.69 -0.~9 <0.001 4.4626 18.49

64m: 5.31 -0.634 0.003 6.53 15.12

l-+4m= 8.15 - 1.01 <0.001 6.93 27.15

~56 m= 8.98 -1.11 0.002 5.83 25.2.2

400 m= 11.4 -IAI 0.023 3.71 [8.35
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Table 3.2. The parameter estimates for the modeL N = e a P fl,. afthe frequency
distributions at 6 resolutions for the Full Image of the CASt imagery. F ratios relate to H.,;
1Kl.

ResolutiOD Parameler u Kornk Expoueuc (II) P-\'alues SS'_J F·\·alues

16m: 5.66 -0.758 <0.001 12.15 40.25

().4m: S.25 ·1.08 <0.001 10.16 102.75

144m: 8.69 - 1.09 0.006 6.74 27.67

256m: Q.16 -1.18 0.013 3.30 28.22

-WO m: '.44 - 1.07 0.004 4.95 59.97

576 m: 10.6 -1.15 0.005 4.78 31.49
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distribution changed ""ith resolution. AppendL-:: ::! contains the complete regression

analysis of all resolutions tor the Middle Subsection.

Power law functions emerged again for the eelgrass patch size distributions ofall

resolutions of the Full Image (Figure 3.3 A). Table 3.:! lists the power law functions for

each resolution and the corresponding power law exponents. Appendix 3 contains the

complete regression analysis for the Full Image.

The relationship between [he Korlak eIponenl and resolution

For the Middle Subsection. the slopes of the frequency distributions [i,e. the

Kortak e:'l.l'Onent- f!) became increasingly negative as resolution decreased (Figure 3.2A).

We regressed fJ against resolution to produce a loglinear function relating patch size

frequencies to resolution (Figure 3.:! BI. V.'e found the exponent of the function. Y:. to be·

0.291. Through substituting tor this exponent- :.':. as well as :'/ into Equation 3.4. the

formal model was:

This equation is equal [Q the function:

ltd. 1:"././1 R .'I:VI

(3.8)

(3.91

The exponent :':differed significantly from zero (F I.}= 40.33 . S5 l<II3I = 0.588. p = 0.008).

The power law distributions tor each resolution and the corresponding Korcak

exponent for the Full [mage are sho1,l,"D in Table 3..2. It was dear that changing resolutions

modified the frequency distributions of eelgrass patch sizes. We were not able to perform

the residual analysis on resolutions coarser than 576 m~. as the sample size declined to

three or fewer patches. The slopes orIbe frequency distributions. p. became increasingly
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negative as resolution decreased IFigure 3.3 A\. We regressed fJ against resolution. which

resulted in a loglinear p..lltction relating the Kortak exponent to resolution (Figure 3.3 B).

The exponent of the function. '1:. was found to be ..Q.67 I. Through substituting for

Y.' and }', into Equation 3.4. the fonnal model "-as:

(3.10)

This eqlJiltion can also be expressed as the function;

(3.11)

The exponent y:differed significantly from zero (Fu" 10.57. SS _ = 0.115. P "" 0.031).

The relatioasbip between par:ameter a aDd resolution

To l;all;ulate a frequency distribution at one resolution. from the frequenl;y

distribution at anodler. ......e need [0 have linear relationsl'lips bet......een resolution and: I) the

slope of me distributions (the Koreak exponenL /1l. and ~) the parameter a of me

frequency distribution. We know from me anal~'sis above that the Kortak exponents over

a range of resolutions tit a loglinear function. To determine the relationship between

parameter a and resolution.......e regressed a against me resolution of the imagery. Similar

to the analysis ofdle Koreak exponenL a loglinear relationship emerged between the

parameter a and resolution.

For the Middle Subsection. the values for the a parameters of the frequency

distributions increased as resolution decreased tFigure 3.2 AI. W'ben we regressed a

against resolUtiOiL a linear function emerged (Figure L! C) with an exponent)lJ of2.32.

Through substituting for 7•. as .....ell as:'J into Equation 3.6. the formal model was:

a. = ·1.r - 2.12 LQg~ R
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This equation can also be expressed as the function:

<!"""e -J1" R~J (3.13)

The exponent ?.. differed significantly from zero (F u " 44.33. SS l<>I<tJ '"' 37.135. p '"'

0.007).

Again. the a par.unelers oCthe frequency distributions for the Full Image

increased as resolution decre:tSe<! (Figure 3.3 A). The regression ofa against. resolution

confirmed that the relationship between the parameter a of the distributions and

resolution fit a loglinear function (Figure 3.3 C). The exponent 7. of this function was

found 10 be 1.27. Arter substituting for ,.". as well as:'J into Equation 3.6. the formal

model lor this analysis was:

a "'- :.4fJ - 1.:- Lug. R

This equation can also be expressed as the function:

13.14)

(3.15)

The exponent ;.·.. differed significantly from zero (F1.3 = 113.03. 5S l<!QI = 14.681. P <

0.001).

Scaling Relationships for- fnqucncy DistributioDs

Having: the scaling coefficient 1:,1 lorPand a over ....arious resolutions. we can now

compUle the slope and parameler a for a frequency distribution at one resolution from the

~quency distribution at another. using the folIo.....ing relationships:

(3.16)
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(3.17)

where P= slope or the Kortak c:xponent. (l '"' parameter a. R - resolution of the imagery.

and 7 = the rescaling coefficient. Therefore. the frequency distribution at any given

resolution can be calculated from the frequency distribution at a resolution that may be

logistically more convenient to obtain. From the full frequency distribution we can

calcwate commonly used swnmary statistics. such as the mean or variance.

DISCUSSION

Habitat patches diiTer in origin and dynamics. P::uchiness emerges from the

interaction beMeen physical and biotic processes ILevin 1976. Levin 1978) and is

apparent at any scale of resolution (Marquee et aI. 1993). Descriptions of patchiness in

marine. treshwater and terrestrial systems present different problems. particularly

regarding ma::hanisms of patch formation (Garcia·Moliner et aI. \993). [n pelagic

environments. ecological processes that are dependent on spatio·temporal scales of water

movement result in 'patch.iness· (i.e. continuous habitat interspersed with corridors) rother

man discrete patches. However. inlenidal and benthic marine ecosystems are similar to

terrestrial systems in that open spaces or palches of organisms. substrate or habitat have

boundaries that are often discrete (Garcia-Motiner et al. 1993). Intertidal and benthic

zones are high energy environments where wave activity dislodges groups of organisms

and leaves beh.ind barren patches......h.ich are then open for colonization (Paine and Levin
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1981). These barren patches are similar to gaps in forest Stands (Garcia-Maimer et al.

19(3). Similarl~·. eelgrass habitats on the northeastern coast of Newfoundland are subject

to patch fonnation by high-energy \l.inter storms and ice scouring common [0 this

coastline.

A power law distribution is generated by two competing exponential rates that are

temporally or spatially lagged (Stanley et al. 1<1%)..-\ model system with a power law

distribution is a sand pile created b~' slowly adding grains. where an additional grain

stimulates avalancbo:$ of all sizes \ Bak and Chen 1995\. Examples of physical systems

with power law distributions are. accumulation offue! in a forest until fire results (Loreto

et al. \995). earthquakes (Bak and Chen \995). avalanches (Bak et aI. 1<187. Bak et aI.

\988. Tang and Bak 1988. Bali. and Chen \ 98<1j and rainforest gap suucture (Sale et ai.

199~). We hypothesized that the frequency distribution of patch sizes for eelgrass would

tit .:l power law. because mechanisms for this system exist as competin[! rates that are

temporally and spatially lagged. Pack ice and icebergs are present in coves ail along the

northeast coast of ~e....foundland during. the wimer (Dinsmore 1(72). As the ice moves.

~Igrass shoots encased by ice v.in be tom or dislodged b~' the roots (Robenson and

Mann \(84). The removal of eelgrass in this way will likely result in the fonnation of

patches of different shapes and sizes. Subsequent annual gro~1:h begins in late spring and

continues throughout the summer. \\tbile the spread of Zosrera marina is rapid due to the

presence of underground runners (Sculthorpe 1%7). it can be assumed that the rate of

spatial expansion of eelgrass babital Io\ill occur at more limited spatial and temporal scales

than the destruction of entire patches by ice scowing.
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Our findings sho..... that tlie frequency disuibutions of patch sizes fit a power law at

each observation scale. These findings are consistent with the hypothesis that

disuibutions were generated by competing exponential rales. We also hypothesized that

the slope of the patch size distribution (i.e. the Kortak exponentl would change with

resolution. Our results support this hypothesis. The Korcak exponent did indeed change

with resolution of the imagery. This finding implies that the assumption (Mandelbrot

1975. Rodriguez-Itwi>e and Rinaldo 1997) ofa constant Kortak exponent is incorrect.

Small babitat patches became less detectable at coarse resolutions. A reduction in the

frequenc~' of small patches ....ith decreasing resolution caused the slope of the frequency

distribution 10 become increasingly negative. resulting in a decrease in Kortak exponents.

Sot only did the Kortak exponents change \\.ith resolution. but the relationship

bet\\.'een them emerged as a loglinear function. To detennine tlie frequency distribution at

a panicular scale. both slope IKortak exponent) and parameter a need to be computable

from a loglinear function. The relationship between the parameter 0. and resolution also fit

a loglinear function. Thus. the frequency distribution ofeelgrass patch sizes can be

calculated across resolutions (i.e.. spatial scale I..-\5 a resulL we can calculale the

frequency distribution of patch sizes at one scale. from the frequency distribution at a

scale that may be logistically more convenient to obtain. Thus. less expensive coarse

resolution maps may be used to calculate the patch size frequency distribution at the

smaller scales of population field studies.

Species dynamics depend on the size of landscape patches (Fonnan and Godron

I9g II. Ho.....ever. the size distribution of landscape patches. and the resulting KorCak

e."tponent change depending upon the scale at which they are observed. VeL almOst all
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studies ofpateb dynamics are performed at a single scale. For example. Forman and

Godron t 1981) justified limiting their study of landscape patches to one scale on the

assumption that most of the resulting panems appear to apply to all levels of scale.

Ho.....ever. our results sho..... that the slope of the patch size frequency distribution (the

Kortak. exponentl is scale-dependent. Thus. the degree of landscape patclUness. as

measured b~' the Kortak exponent depends on the scale of observation t Weins 1997).

Because the frequency distribution depends on map resolution. any measure of patchiness

will \'aI!' with scale for eelgrass habitat. The scaling law for this frequency distribution

follows from the dynamics in the system. It is also oh...ider utility than the scaling law for

any single measure. such as a mean or variance. If we can predict the frequency

distribution across spatial scales. then we can investigate the dynamics of populations or

mechanisms occurring. within this habitat at any spatial scale.
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CHAPTER 4: SUMMARY

Ecology is a scale-dependent science. One orthe main goals in ecology is to

explain the panern of distribution and abundance of spedes or populations (Krebs 1978).

However. all ecological pa~ms and processes arc affected by scale to some degree. and

our anempts to inteJllrct C'Cologicai data or to usc:: our findings in management arc

constrained by scale (Peterson et aI 1~8). The distribution and abundance ofpanicular

species \\oill reveal one pattern at a fine scale. and another when viewed at a coarse scale

(Peterson et aI 1998). Finding ""ays to relale observmions across space and time. and

revealing what is maintained or lost in the process is the fundamental problem ofscale. In

this study I examined [wo methods that quantify changes in eelgrass structure over

different spatial scales. First.. I examined scaling habitat \\oith measures of perimeter and

area. Second. I looked at the change in frCl:juency distributions of patch size with spatial

scale.

The structural complexity of eelgrass habitat likely affccts the population

dynamics occurring \\oithin this habitat. In Ne\\oman Sound. eelgrass habitat is a complex

mosaic of vanous-sized patches. surrounded b~' unvegetated sand or mud. High

macrofaunal biomass combined \\oith spatial distributions that range from meadows that

extend over scvernJ hundred metres. [0 fragmented patcbes «025 m1). make eelgrass a

good habitat for assessing the effects of habitat structure on animal abundance (Robbins

and Bell 1~4. Bell et aI. 1~5. Fcrtsei:a 1996. Egglestonet ai. 1998).



PERIMETER·TO·AREA RATIOS

Emphasis must be placed on how we perceive habilat structure at different spatial

scales. if we are to funher our und~rstanding of the link between population dynamics

and habitat complexity, Habitat boundaries represent locations where the rates of

population dynamics change abruptly in relation to those be:-'ond the habitat (Forman and

Godron 1981. Turner et a1. 1999). Thus. comparing population dynamics with the

perimeter-to-area ratio of habitat proves useful in evaluating these dynamics in an area of

habitaL One way to measure habitat structure across spatial scales is to develop scaling

laws that model the effect of scale on patterns in nature (Lud\\-ig et aI. .:?OOO). Scaling

laws are power-law relationships that relate measurements on one scale to another. They

can describe complexity as a function of temporal or spatial scale. These relations

indicate that the system is controlled by rules that are applicable across a wide range of

scales (Meakin 1993 as cited by Miln~ 1998).

[n this study. a scaling law ....-as found to quantify the dTect of spatial scale (i.e.

resolution) on a measurement of habitat strncture (i.e. perimeter-t<>-area ratios). This

scaling law was simply a power law \.O,ith an exponent called the 'scaling exponent"

(Stanley et al. 1996). I found a constant scaling exponent over a range of resolutions.

which indicates that \\-ithin this range large-scale features are simply magnified versions

of smaller ones. Therefore. perimeter-to-area ratio can be computed within a wide range

of spatial scales from other measurements ....ithin the same range. However. outside of

this range the relationship berv.'een perimeteNo-area ratio and resolution suddenly

changes. This sudden change in scaling exponents reflects a scale-dependent threshold

possibly caused by dissimilar landscape processes operating outside compared to within
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me scaling region (Ludv.ig.::t al. 2000). It is within such scaling regions which onc may

interpolate (Sugihara and May 1990).

Scaling laws have been suggested (Krummel et ul. 1987. Garcia-MoHner et oJ.

1993) as a means by which difficult problems in hierarchy theor)' can be answered. such

as how to determine boundaries between hierarchical Iotvels and how to detennine me

scaling rules for calculating across scales \\ithin each scaling domain. These boundaries

are indic:ued by changes in the scaling exponent of me habitat. Supporters ofhierurchy

meory tAllen and Smr 198:2. O''Ndl et aI 1988. Allenet aI. 1995. AhI and Allen 1996.

King 19Q7) propose that scaling domains may be represented as hierarchical levels

t Ludwig et aI. 2000). Sugihara and May (1990) suggested that fractals. and mus scaling

exponents. represent a good method lor characterizing hierarchical levels in nature.

However. many now question this idea (.::.g.. Alkn and Hoekstra [992. O'Neill and King

t9QSt and have stat.::d that scaling domains are not the same as hierarchicaJlevels. While

scaling laws can identil~; domains where scaling is possible. these domains are specific to

a parameter and cannot be applied for all parameters conlained \Ooithin that domain or

·hi.::rarchical k"er (Alkn and Hoekstra 1992. O"Neill and King 1998).

PATCH SIZE DISTRIBUTIONS

Another feature used in characterizing habitat complexity is me measurement of

habitat ·patchiness·. This measurement of complexity differs from that of perimeter-to­

area.. because 'patchiness' is quantified as the number ofdiscontinuous patches of

eelgrass habitat (Garcia-Molineret aI. \993). The effect of habitat patchiness on me

distribution and abundance of species is a critical issue in applied ecology (Marquet et aI.

1993). Yel. there is no characteristic scale at which an organism's response to habitat
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patcrnness should be measured (Hart and Horwitz 1991. Levin 1992). Therefore. it is

imponant to examine the elfcet of spatial scale on the perception of patch sizes in habitat.

Edgrnss patcrnness atfects populations through a variety of mechanisms.

including alteration of predmor distribution. abundance and foraging behaviour (Leber

1985. Main 1987. Bell and Hicks 1991. Irlandi 1994. Irlandi et a/. 1995). modifications of

water now (Eckman 1983. Bell er af. 1995). and changes in animal behaviour (Heck and

Crowder 19911. Patchiness is usually quantified from simple data summaries such as

mc:ans....-ariances. O)r any of a ...-ariety of indices {e.g.. Taylor' s Index of patchiness.

Relative Richness Index. Diversity Index. Fragmentation Index; Turner 1989. Monmonier

19741. Frequency distributions. more than any single summary statistic or index used to

describe habitaL pro....ide more intannation (Schneider 1994) about any gjo.·en habitat

characteristic. The frequency distribution of patch sizes-at the scale of population

~tudies--canbe used to calculate the impact of a mech:lIlism on a population at that

specific scale (e.g.. the impact of predator diStributionl. From this frequency distribution,

summary st:ltistics such as means.....ariances. or any ofa variety of indices can be

calculated.

The slope ofa lrequency distribution that follows a power la..... distribution is

called the 'Kortak exponent' IKortak 1Q40. Korvin 1~9:::!1. [n geography it is well kno....n

that the size of islands tallows a power law distribution. which is called Kortak's (1940)

101.....:

P[A>al=ka-jl.

where P [A > a) is the trequency of islands of size A > a. and ~ is the Kortak exponenL

Kortak ( 1(40) analyzed the size diStribution of geographical objects (areas of islands and
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lakes. length of rivers. etc.) and fOWld that the areas of islands follow a power law

diStribution (Korvin 1992). Size diStributions of natural. and computer-generated lakes.

and lengths of caves were found to til Kortak's Law {Curl 1960. 1966. 1986. Kent and

Wong 198~. Goodchild 1988). Bak and Chen (I (95) discuss the occunence of power law

distributions (i.~. Kortak's Lawl in earthquakes and found that various features of

earthquakes have a power law distribution. including energy released during earthquakes

(Bak and Chen 1995), distribution of epicentres (Kagan and Knopoff 1980). and the

nwnber of aftershocks as a function of time (Bak and Chen 1995). SWlley et a1. (I 9%)

discuss the power law as a (001 tor scaling in many tields. including biophysics.

~onophysics.and city growth. DNA sequences IPeng et aI. 1992). heartbeat inlervals

(Peng et a.l. I'J95)' urban gro....th (Makse et a1. 1995). company growth (Manlegna and

Sunky 1995. Sunley..::t al. 1995. Stanley et al 1996a. Stanley et al 1996b). and lung

inflation (Suki et aJ. 199.l. Bllr.lblisi et al 199.l) all display power law correlations used for

scaling.

In ecology. only a f..::w studies have examined full frequenc~; distributions. The

distributions of gaps in the rainforest ISole and Manrubia 1995). tOresl-tire behaviour

(Loreto 0:1 ai. 1(95) and !he diStribution of patch areas of evergreen vegetation (Milne

1998) have been found to fit power laws. I could tind only one ~ological study (Nikora

o:t a1. 1999) that mentioned KorcaK.'s law or !he Kortak exponent for frequency

distributions thaI follow a power law distribution. ~ikora et aJ. (t999) calculated the

Koreak exponent using the cumulalive size frequency distribution for \-'ariollS sets of

patches (Nikor.:J. et aI. 1999). Their study. and a few others diat have mentioned the

Kortak exponent (Mandelbrot 1975. Rodriguez-ltucbe and Rinaldo 1997), failed 10
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recognize that frequency distributions change ""ith spatial scale. A measure of how

frequency distributions change across spatial scales is provided by comparing the Kortak

exponents across resolutions (or scales). For eelgrass palch sizes. the frequency of small

patches decreased ""ith coarser resolutions of the CASI imagery. The reduction of small

patches caused the slope of the frequency distribution (Le. the Kortak exponentl to

become increasingly negati....e. My thesis has demonstrated that the frequency

distributions of patch sizes fit a power law regardless of observation scale. and that the

Korcak exponent itself changes in a regular ...."3.y with spatial scale.

If a frequency distribution !allows Kortak's (IQ40) law. then the Kortak exponent

1.\ is related to the fractal dimension of the coasts of the islands through:

Ii = 0.5 D"","".

where D ""'"" is the fu1ctal dimension of the coastline (Mandelbrot IQ75. Rodriguez-Iturbe

and Rinaldo 1Q(7). In this thesis. I in....estigated the perimeter to area ratio rather than

coastline length: thus. the Kortak exponent Ii is interpreted as half of the perimeter-to­

area !mctal dimension li.e.I.\" 0.5 D p',-\){Nikora et aI. 19Q91. Because the fractal

dimension is deri"ed from the scaling exponenL we should be able (0 calculate the scaling

exponent fOf eelgrass perimeter-lo-area ratios ftom the slope oftbe patch size frequency

distribution ILe. the Kortak exponent). Nikora et aI. (I9QQ) compared the observed to the

eXpe1:ted {see Mandelbrot 1(83) Kortak exponent fOf ..:arious sets of patches with power

law distributions. and found that the exponents differed b~' onI~' 7-10%. However. in the

lake size studies. the fractal dimensions calculated from the Kortak exponent ...."ere found

to differ from those calculated by shoreline-length resolution analysis (Kent and Wong

IQ82. Goodchild I(88). The underlying assumption is that the Kortak exponent is
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constant over different spatial scales. However. the results of our study suggest that the

Kortak exponent changes with resolution. which would explain the discrepancy of this

equation.

Not only did the Kortak exponents change v.;th resolution. but the relationship

between them also emerged as a loglinear function. If the slo~ ofa distribution can be

calculated using a loglinear function. then only the parameter a from Kortak's law is

needed to detennine the frequency distribution at a particular spatial scale. The

relationship between the parameter a and resolution tit aloglinear function as well. This

suggests that the frequency distribution of eelgrass patch sizes is predictable across

resolutions of image~· li.e. spatial scale). As a result. we can calculate the fuji frequency

distribution ofpalCh sizes at one scale. from the frequency distribution at a scale that may

be logistically more convenient to obtain. Thus. less expensive coarse resolution maps

may be used to calculate the patch size frequency distribution at the smaller scales of

population tie1d studies.

WHY DO WE GET POWER LAWS IN EELGRASS SYSTEMS?

With the single exception of the pol.ver law distribution. all other size distributions

depend on some characteristic parameter such as length or area (Korvin 1992. Stanley et

al. 1996). Power laws lor size distributions are expected when a system is operating away

from equilibrium at or near a threshold ofinstabilit~; (Sale and Manrubia 1995). Recently

it has been recognized that many interacting dynamic systems l13rura1ly el.·olve into a

'self-organized critical stale'. resulting in events of all sizcs-many small and few large

(Bak et al. 1987. Bak et a1. 1988. Tang and Bak 1988. Bak and Chen 1989). Power laws

can describe the frequency distributions of these events. This diSC(lvery suggests a
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dynamic mechanism generating scaling bebaviour (including fractal structure) in nalwe

(Bak and Chen 1995). This se!f-organized critical state occurs in systems (Buk et aL

1988) that are regulated by the feedback between me state of me system and its contrOl

parameter (Loreto et a1. 1995). Examples of self-organized systems include. accumulation

offue] in a forest until flre results (Loreto et a1. 1995). and sand piles created by slowly

adding grains. where an additional grain stimulates an avalanche (Bak and Chen 19(5). (n

me avalanche example. a self-organized critical state arises when the chain reaction for

avalanches becomes unstable. and avalanches ofall sizes occur (Buk and Chen 1995).

Competing exponential rates that are lemporally or spatially lagged are known 10

generate power law distributions (Stanley et 31. 19%). The conlest between mese rates

must be unequal. as seen in the accumulation and release of energy during earthquakes

along faultlines (Bak and Chen 1995. Stanley et 31. 19%). and during forest-lires (Loreto

et a1. 1995). Sale and Manrubia (1995) found that the size distribution of gaps in a

rainforest tit a power law. They :mributed mis Ii.nding 10 processes of gap formation (i.e.

treefalll and regeneration. which are major influences on the structure of trOpical

ecosystems (\Vh.iunore 1991). A gap in me rain.l:arest is tarmed. not only by a single tree.

but also by vines attached 10 neighbouring trees. This causes a domino-like collapse.

resulting in a much larger gap than would be formed by a single tree. Successional phases

then slowly begin to regenerate the tares! within this opening (Sale and Manrubia 1995).

The occurrence of power laws is of great importance in physics. since it indicates the

existence of an underlying scale-invariant mechanism (Bak and Chen 1995). For

example. me power law generated by the size distribution ofearthquakes indicales that

the mechanism of small eanhquakes is essentially the same as the mechanism for large
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earthquakes. otherv.i.se their frequency could not be expected to obey the same power law

(Bak and Chen 1995).."'-lthougb power-law distributions and scaling laws prm.ide

potentially powerful tools for prediction. both pbysics and ecology are just beginning to

develop sealing equations for complex S:-'stems. If the processes generating a habitat are

conflicting and lagged. it is expected that its structuml. properties 'Nill be e.xpressed as

power law distributions and scaling laws. Finding such power laws and scaling regions is

the lirst stage to predicting population characteristics from habitat.

For eelgrass habitats on the northeast coast ofNe""foundland.. ice scouring events

and annual gro....th act as competing exponential r1ues that are lagged in space and time.

During the ....i.nter l December to May l. pack ice and icebergs are present in coves all

along the northeast coast of~e\\o1oundlandand coves in the \-icinit:-, of Newman Sound

lJiten freeze over due to freshwater input from streams and ri·..ers. Over this icebound

period. ice-scouring events occur rapidly and episodically..-\.5 the ice moves. eelgrass

shoots are encased by ice are either tom or dislodged by the roots in large quantities

(Robenson and Mann I9S41. This removal of eelgrass may resuJt in the fonnation of

habitat patcttes of different sizes. Subsequent growth begins in late spring and continues

throughOut the swruner at a steady rate. \\obile the spread of Zostera marina is rapid due

to the presence of underground runners ISculthorpe 1961). it can be assumed that the rate

of spatial expansion of eelgrass habitat ....i.1I occur at more limited spatial and temporal

scales than the desauction of entire patches by ice scouring. Due to these temporally and

spatially lagged mechanisms. I hypothesized that the frequency distribution of patcb sizes

for eelgrass .....ouJd tit a power law. In this thesis. I demonstrate that the frequency
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distributions of patch size fit a power law regardless of obsen:ation scale. This is

consistent ",,;th distributions that are generated by competing exponential rates.

."\. \<triety of disciplines have accurately described highly irregular patterns.

distributions. and scaling exponents (e.g.. ~eakin 1993. Sole et a1. \ 99:!). These srudies

have captured the statistical beha,,;our of these panerns over a wide range of scales

(Mandelbrot [982. Stanley et al. 1996). and have indicated that pattern is a function of

process (Sole and Manrubia 1995). These and ftnute studies that search for consistent

scaling relations (Bak et al. 1988) and the processes that generate them (Loreto et al.

1995. Vespignani et aI. [<,l~5. Grassberger and Zhang 1996) are necessary to gaining a

strong understanding of complex systems in general. and ecological systems in particular

(Milne \998\.

Population dynamics (e.g. recruitment. competition. predation! change depending

on the scale of observation or measurement. Thus. it is essential that eelgrass habitat

sttucture be examined lor properties that can be computed across spatial scales. such as

perimeter-to-area ratios or the frequency distribution of patch sizes. The ability to

calculate these habitat measures across spatial scales allows for computations of estimates

of population dynamics at !he scale of field studies. Funher exploration of scaling laws

and patch size distributions should be examined using additional eelgrass habitats in order

to determine the applicabili~· of these scaling relations to local. regional or global scales.

[n order to test the findings presented in this thesis. additional researcb is needed on

population dynamics of organisms dependent on the st:rUCtUrC of eelgrass habitats in this

area A...nother necessary Sl:cp is to obtain the value afthe Kortak exponent from theory

(e.g... competing rates}. By quantifying the exponential rateS (e.g.. grov."th) and the rates of
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destruction le.g.. ice scouring). it may be possible to compute the resulting power law of

the KorCak distribution for testing against data.

Understanding how eelgrass characteristics relate to et:ological processes (e.g..

population dynamics) that generate patterns in benthic systems. and how these processes

change \\ith spatial s...-ale. is fundamental to discovering relationships between eelgrass

habitats and population dynamics at large scales. The challenge lies in estimating

population dynamics based upon perimeteNo-area ratios or patch size. In terrestrial

systems. the task of estimating population dynamics at small scales seems manageable.

However. the logistics of acquiring quantitative data on population dynamics in aquatic

cn\'ironments (e.g.. predation rates or abundances \ has proven to be much more

problematic due 10 the difficulty in directly observing submerged habitats. Thus. it is

essential that future research also includd development of new tet:hnologies for

under"',ater me:lSurement of these dynamics.
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APPL"mlX 1: DERIVAnON OF nn: COASTLINE LENGm EQUAnON

To calculate the number of 16-metre beach seines that fit along the coastline. we

Cl lin< I Cl"oars< "'N r"", l ,..... :N.-rx l"""","

lltrough substituting N lirE.' N _'" Il r"",i l "".....)0 inlo Equation L the equation

bttame:

Cl,;..., Cl",,,,,,,,"'llr,,,,,, l~)o'l(I"" L"o...cl '

"'Ill;"" l"""",,) 1·0

Cl l;n< ttCl .:oanc(l I.... L """,.el ' •O
•

where CL ti..., is the coastline length at the scale of 16m. Cl co:lnC: is the coastline length at

180 m using a lopographic map Iscale I: 50.000). L line is the length of the ruler at 16m. L

-=t>c is the length of the ruler :u a 180 m. and D is the tTactal dimension of the coastline.
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APPENDlX 2 : COMPLETE ANALYSIS FOR PATCH SIZE FREQUENCY,
MIDDLE SUBSECTION

Resolution or 16 m!

response variable; frequency to resolution (F)
explanalory \'ariable; patch size (Pl
model: The slope of the patch size frequency distribution is dependent on

the resolution of the image!')' li.e. scale).

- •• - ••••••••••••••• _•••••••• Ln P

6.00 6.60 7.20

The regression equation is Ln F :0 3.69·0.449 • In P
«I"" 3.69 and «2 = .().449

Therelore_ the model is F=e jt>9 • P 4J.-Uq

Ana.l\'sis of Variance
SOURCE DF S5
Regression 1 .:!.3151
Error 17 .:!.1375
Tolal 18 ..t46:!6

Resolution or 64 m!

>-IS
.:!.3151
0.1257

F P
18.49 0.000

response \'ariable: frequency to resolution {F)
~Ianato!')' \'ariable; patch size (Pl
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model: The slope of the patch size frequency distribution is dependent on
the resolution of the imager)' (i.e. scaJe).

-------------·-····----·--------- .. ..Ln P

-1.':::0 -1.30 5.60 '7.00 7.'70

The regression equation is In F = 5.31 - 0.634 • In P
al = 5.31 and a:: = - 0.634

Therefore_the model is F=e· 31 ·P ....'b.).l

Ana.lvsis of Variance
SOuRCE DF
Regression 1
Error 10
Total 11

55
3.9::!85
~.5qqO

6.5~75

F P
15.I::! 0.003

ResolutiOD of 1'« m"
response variable: frequency to resolution I F)
c:xplanator)' \<triable: patch size IP)
model: The slope of the patch size frequency distribution is dependent on

the resolution of the imagery li.e. scale).

Theregressionequatioo is Ln F =8.15 -1.01· Ln P
al = 8.15 and a::= - 1.01

Therefofe_ the model is F = e I.I~ • P -I 01

A.nalysis of Variance
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SOURCE DF SS
Regression I 5.5126
Error 7 I.·en
Total 8 6.9339
Resolution of2S6 m1

MS
5.5116
0.2030

F P
27.15 0.000

response variable: frequency to resolution (F)
explanatory variable: patch size (P)

model: The slope of the patch size frequency distribution is dependent on
the resolution of the imagery !i.e. scale).

-----------.- - - - -- .. --.--------.--Ln P
5.60 6.00 6.~0 6.80 7.20 7.60

The regression equation is In F .... 8.98 - 1.11 .. In P
(11=8.98 and a1= -1.11

Therefore. the :nodel is F = e 8,98 • P

Analysis of Variance
SOURCE DF SS 'IS P
Regression I ·,u104 4.7104 25 ..22 0.002
Eno' 6 1.1207 0.1868
To,,", 7 5.8310

Resolution or 400 m1
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response variable: frequency 10 resolution (F)
explanalory variable: jXltch size (P)
model: The slope of the patch size frequency distribution is dependent on

Ihe resolution of the imagery (i.e. scale).

-~-~- -----~- ---- -- ---- --- --- -.-- --- ----.--Ln P

6.00 6.)0 6.60 6.90 7.20 7.50

The regression equation is Ln F = IIA- IAI • Ln P
al = 1104 and a~" -IAI

Therelore. the model is F =e 1H • P -I.~l

.-\naI~·sis of Variance
SOURCE DF SS
Regression 1 3.1901
Error O.5:!17
Total 3.1118

'IS
3.1901
0.1739

F P
18.35 0.0:!3
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APPENDlX 3: COMPLETE .-\!'i.-U.YSIS FOR PATCH SIZE FREQUENCY.
FULL lM."-GE

Resolution of 16 m l

response variable: frequency to resolution (F)
~xplanalory variable: patch size (P)
model: The slope oCthe patch size frequency distribution is dependent on

the resolution oCthe imagery (i.e. scale).

10 F

~_ ------------------~ ... • 1n P

-1.::0 -1.90 5.40 6.00 6.60 7.20

The regression equation is In F = 5.66 - 0.758 In P
aj" 5.66 and a! = -0.758

Therelore. the modeL is F = e ~ ..... p -oj ~~!

Analysis of Variance
SOURCE DF SS
Regression I 7A919
Error !5 ·U535
Total !6 12.1-1.5-1.

ResoluriOD of 6-' m l

MS
7A919
0.1861

F P
-1.025 0.000

response variable: frequency to resolution (Fl
e.xplanatory variable: palch size (P)
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model: The slope of the patcb size frequency distribution is dependent on
the resolution of the imagery (Le. scale).

--.--------- .. ---- ---- .. --······-·------·· ..lnP
&.00 &.60

The regression o:quation is In F = 8.~5 - l.08 In P
al "" 8.~5 and a: = - 1.08

Therefore. the model is F = e s_;~ • P -IllS

AnalvsisofVariance
SOURCE DF SS
RO:£ression I 92581
E~r 10 0.9011
Tou! II 10.1592

Resolution of loU m:

\-1S
q.~581

0.0901

F
102.75

P
0.000

response variable: frequenc~' 10 resolution (F)
explanatory var1:l.ble: patch size (p)
model: The slope of the patch size frequency distribution is dependent on

the resolution of the imager~y (i.e. SC:l.1e).
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-- ... -------- .... --------- .. --------- .. ------ ..... -- •• -- .....-··lnP
..l.BO SAO 6.00 6.60

The regression ~ualion is In F ". 8.69 • 1.09 to p
at :0 8.69 and a2'" • 1.09

Therefore. th~ model is F=es&'I. p-l(P'/

Analysis or Variance
SOURCE DF SS
Regression I 5.8844
Error ~ 0.8507
Total 6.7351

Rnolution of 256 m~

MS
5.8844
0.::!t:!7

F
17.67

P
0.006

response variable: frequency to resolution l F)
explanatory variable: palch size (P)

model: The slope of the patch size frequency diStribution is dependent on
the resolution oflhe imagery (i.e. scale).

. - -.-.----- .. --------- .. ------------------ ---- ---lnP
5.50 5.95 5.30 6.55 7.00

The regression equation is In F = 9.. 16 - 1.18ln P
al=9.16 and a~= -1.18

o.



Therefore_ the model is F:e"lb. p-1.I1

Analysis of Variance
SOURCE DF SS
Regression I .2.9786
Error 3 0.3167
Total ~ 3.2953
Rnolution or 400 m~

~IS

.2.9786
0.[056

F P
.28..22 0.013

response \·ariab[e: frequency to resolution (F)
explanatory \·ariab[e: patch size (Pl
model: The slope of the patch size frequency distribution is dependent on

the resolution of the imagery (i.e. scale).

--++ •••• ------ -.-------.- .... --.- •••••---.- ••• - •• - ••••• -!.n"
5.50 7.00 7.50 3.00 8.50

The regression equation is In F = 9.89 - 1.13 Ln P
al=9.89and a~= -1.13

Therefore. the model is F= e <l1W • P _I 13

Ana.l.ysis of Variance
SOURCE DF 5S
Regression 1 -UH9
Error 0.2359
Total ~ 4.9508

).1S
4.71~9

0.0786

F P
59.97 0.004

99



Resolution or 576 m1

response variable: frequency to resolution (F)
explanatory variable: patch size (P)
model: The slope of the patch size frequency disuibution is dependent on

the resolution of the imagery (i.e. scale).

The regression equation is In F .. 10.6 - 1.15 In P
0.1= 10.6 and 0.2= -1.l5

Therefore. the model is F-e 106 .. p-II~

,.),nalysis of Variance
SOURCE
Regression
Error
Toml

DF 55
1 ·402497

..I- 0.5399
..1-.7896

M5
..1-.2497
0.1350

F P
31049 0.005
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