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Abstract

Most proteins fold into a unique three-dimensional structure called the native state.

Recently some examples have been found of so-called metamorphic proteins that un-

dergo reversible large-scale structural transformations between different native states.

In this thesis, we develop simulation methods and models to study the thermodynam-

ics of these transformations, both at the coarse-grained and all-atom levels. Because

our understanding of the physics fold switching is incomplete, our models utilize in

part so-called structure-based or Gō-like potentials, which provide energetic bias to-

wards one, or more, native states. We employ these computational methods to two

different fold switch systems: the bacterial protein RfaH and the engineered fold

switch system GA/GB. Our models are developed and tested on experimental data

for these systems. We study both equilibrium properties, such as stability properties

and the characteristics of their energy landscapes, and kinetic properties, such as

the mechanism that trigger fold switching and molecular details of the fold switch

process. We also study, for the GA/GB system, what role macromolecular crowding

effects play for controlling which of the native states is most stable.
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General Summary

Proteins are complex molecules that are made up of chains of amino acids and fold

to a specific three-dimensional shape called the native state. It is the structure of the

protein that determines its function. If not folded properly, proteins may aggregate

and cause disease. However, certain proteins can adopt multiple native conforma-

tions, and these are known as metamorphic proteins. Metamorphic proteins can

switch between different folds in response to particular changes in the environmental

conditions. They may be useful as biosensors because of their structural flexibil-

ity. Biosensors use biological molecules to identify and measure specific chemicals

or biological processes. The first metamorphic protein called Lymphotactin (Ltn)

was discovered in 2008, so this field of study is relatively new, but rapidly growing.

Biophysical techniques such as nuclear magnetic resonance (NMR), X-ray crystal-

lography, and computational simulations are used to investigate the structural and

kinetic properties of these proteins. A thorough understanding of these techniques

is necessary to comprehend the molecular mechanisms that govern the behavior of

metamorphic proteins. As technology and techniques continue to advance, we can

expect further progress in this fascinating field.
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Chapter 1

Introduction

Gerrit J. Mulder was a Dutch chemist interested in analyzing the chemical composi-

tion of cellular material. In the 1830s, he identified a substance composed mainly of

carbon, nitrogen, oxygen, and hydrogen. He called this new substance “protein” [1,2].

As we now know, proteins are synthesized in the cell as linear polymer chain molecules

composed of amino acids or residues. The amino acids in a protein are attached to-

gether by peptide bonds, a strong covalent interaction. For this reason, protein chains

are also called polypeptide chains. In a single protein, there are typically more than

about 50 amino acids that are covalently bonded to each other, but they can reach

thousands of amino acids.

The three-dimensional structure of a protein is determined by the interactions be-

tween its amino acids and the solvent environment. In the process of folding, the

protein chain folds into its so-called native structure through a series of intermediate

conformations. The energy landscape theory of protein folding describes how this
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process can be completed in a biologically relevant timescale despite the astronomi-

cally large number of possible conformations [3, 4]. This process is driven by various

interactions between amino acid residues, as well as hydrophobic and hydrophilic

interactions between amino acids and the solvent environment. Hydrophobic inter-

actions refer to the tendency of non-polar amino acids to aggregate together, away

from water molecules. In contrast, hydrophilic interactions describe the interaction

between polar or charged amino acids and water molecules. Together, these two types

of interactions play important roles in protein folding, stability, and function. The

native structure of a protein is critical for its function, as it determines the location

and orientation of functional groups, and determines the protein’s ability to bind to

other molecules, such as ligands or substrates.

Several exceptions to the above classic picture of proteins have been found over the

past decades. One such exception is intrinsically disordered proteins, which are a type

of protein that lack a native structure, yet play important roles in biological processes

due to their flexibility and ability to interact with a variety of binding partners [5–7].

Another more recent exception is metamorphic proteins. Metamorphic proteins are a

unique class of proteins that exhibit the ability to switch between different folds and

functions in response to specific stimuli. This dynamic behavior would make them

ideal biosensors, as they can modulate their activity in response to changes in the

cellular environment [8]. By using computational simulations to study the energy

landscape of metamorphic proteins, researchers can gain a deeper understanding of

the molecular mechanisms that drive fold switching and how it regulates protein

function. This information can help us understand the role of metamorphic proteins

2



in controlling specific activities within cells and how they contribute to biological

processes and diseases. Additionally, this study can also advance our understanding

of the basic principles of protein folding and function and may lead to the development

of new therapies for a range of medical conditions.

Computational simulations are helpful and necessary in this work for several rea-

sons. Firstly, they enable high-throughput atomistically detailed analysis that would

be impractical or impossible using experimental methods alone. Secondly, they pro-

vide deep insights into the molecular mechanisms of fold switching and how it reg-

ulates protein function. Thirdly, they can make predictions about the behavior of

metamorphic proteins under different conditions, allowing researchers to test these

predictions experimentally. Fourthly, they are generally cost-effective and time-saving

compared to experimental methods. Lastly, they complement and extend the insights

gained from experimental studies, leading to a more complete understanding of the

systems under study.

While AlphaFold2 has significantly improved protein structure prediction [9, 10],

it struggles with fold-switching proteins [11], which have multiple stable conforma-

tions. The methodology of AlphaFold2 relies heavily on pattern recognition rather

than biophysics. As a result, when applied to metamorphic sequences, the predicted

structures are biased towards one conformation and fail to capture the other native

states. Even in the case that AlphaFold2 could predict both structures, it does not

provide insights into the molecular mechanism of fold switching. Understanding how

sequence encodes structure is tackled through computer modelling, which highlights

the complexity of protein structure and stability, dependent on various interdependent

3



factors. A combination of structure analyses, molecular dynamics simulations, and a

novel method for calculating free energy differences is used to explore the reasons for

different structural preferences [12].

The work in this thesis addresses the challenge of understanding how the amino

acid sequence encodes structure through computer modeling, allowing for the char-

acterization of the native structure of each sequence and how they are modeled onto

the fold of the alternate sequence. We use a combination of structure-based model

(SBM) with an all-atom model to explore the reasons for the different structural pref-

erences of metamorphic sequences. The results highlight that protein structure and

stability are complex and depend on various interdependent factors, with different

levels of analysis providing different predictions about the favored sequence-structure

combination [13].

1.1 Examples of fold switching proteins

Because the initial and the final state in the fold switching process are folded states,

the protein has a major shift in secondary structure and biological functionality.

There are only a few metamorphic proteins that have been studied experimen-

tally in detail so far, and it is still unclear how the fold-switching process happens

at the molecular level [14–17]. Fig. (1.1) shows four examples of metamorphic pro-

teins and their structural transformations. The work in this thesis is focused on the

metamorphic protein RfaH, and GA/GB fold switch system.

The structures of protein sequences at the interface between different folds are

4



A B
KaiBgs KaiBfs

A BLtn10 Ltn40A

D

B

C

RfaH-NTD

GA GB
RfaH-CTD

alpha-helix

RfaH-CTD

beta-barrel

Figure 1.1: Examples of metamorphic proteins; (A) Lymphotactin (Ltn) is a signalling protein

important for the immune system. It fold switches upon dimerization; Ltn10 in its α/β fold PDB

ID 1J8I and Ltn40 in its all-β dimeric fold PDB ID 2JP1 [18]. (B) The KaiB protein is one of

the three proteins in the circadian clock in cyanobacteria. A 24-hour cycle emerges from their

interactions. KaiB has two different native states: KaiBgs (a tetramer of asymmetric dimers) and

KaiBfs (a monomer). During the day, KaiB is in the KaiBgs fold and switches to the KaiBfs fold

at night [16]. KaiBgs PDB ID 2QKE and Kaibfs PDB ID 5JYT. (C) The RfaH protein with two

native states and 162 amino acids. RfaH consists of one NTD in a mixed α/β conformation, which

remains structurally constant in the two native states, and a CTD with two completely different

folds. When the CTD is spatially close to the NTD it is folded into a α-helical hairpin (PDB ID:

5ond). When the CTD is isolated, i.e., spatially far from NTD, it folds into a 5-stranded β-barrel

CTD PDB ID: 2lcl). (D)Protein G contains two binding domains, each consisting of 56 amino acids.

These domains are engineered fold-switching proteins and differ from each other in only three amino

acids. GA95 (PDB ID: 2kdl) and GB95 (PDB ID: 2ldm) [19].
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challenging to predict using current computational methods, revealing an incom-

plete knowledge about protein folding physics. Studies on metamorphic proteins have

shown that a limited number of key residues and interactions can result in a change

from one fold to another. Mutations can sometimes weaken the original fold and pro-

mote new folds and functions, which may account for why alternative folds sometimes

have lower predicted energy values in structure prediction algorithms. This adds to

the complexity of protein folding [20]. Improved prediction algorithms could result

from closer collaboration between computational biophysicists and experimentalists

in the field of fold switching, as data on the mutational paths between different folds

could be used to refine these algorithms.

1.1.1 RfaH protein

RfaH is a metamorphic protein found in some bacteria, specifically in several Pro-

teobacteria, including several pathogenic Gram-negative bacteria in Escherichia coli

[21]. The protein has two structural domains, an N-terminal domain (NTD) and

a C-terminal domain (CTD) [22]. The conformational changes of this protein have

been extensively examined experimentally [23–26] and computationally [27–34]. The

NTD is stable, but the CTD undergoes a dramatic fold switch when RfaH binds to

the RNA polymerase (RNAP) that is paused at an operon. During this switch, the

two domains separate and the CTD transforms from a helical hairpin fold to a 5-

stranded beta-barrel structure, which is similar to the CTDs of other proteins known

as NusG proteins [23, 24, 35–37]. The flexible linker connecting the domains enables

the transformed CTD to recruit ribosomal protein S10, forming a physical bridge
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between RNAP and ribosome. This combination of fold switching and domain sepa-

ration allows RfaH to regulate transcription, the production of RNA from DNA, and

enhance translation, the process by which RNA is used to make protein [25,36]. The

transformation of RfaH’s CTD into a beta-barrel structure through fold switching is

considered a clear example of a fold-switching protein (see Fig. (1.1.C)).

1.1.2 GA/GB fold switch system

The GA/GB system is a designed fold-switching protein system where a small number

of mutations in the protein sequence can lead to the protein adopting a completely

different fold (see Fig (1.1.D)). This fold switching can occur due to the thermody-

namic linkage between folding and binding, where the interaction energy of binding

can stabilize conformations that would otherwise be overwhelmed by the standard

conformation [19]. Understanding this system is important for understanding the

evolution of new protein structures and functions and may lead to new approaches

for interpreting genetic polymorphisms and other disease-related events [38]. Ad-

ditionally, the design of globular protein switches that can flip between folds and

functions may have applications in the development of more specific targeted drug-

delivery systems and the design of tunable nano-scale devices [19].

1.2 Macromolecular crowding

Proteins carry out their functions within cells, which are highly crowded spaces.

Macromolecules such as small proteins, carbohydrates, ribosomes, and nucleic acids

occupy between 10 to 40 percent of the total volume inside cells, and are often referred

7



to as crowders [39]. In typical experiments and computer simulations, proteins are

studied under dilute conditions despite their environment being highly crowded.

Crowding effects within the cell can have significant impacts on various protein

processes. For instance, the conformational preferences of intrinsically disordered

proteins (IDPs) can be influenced by crowders [40]. Additionally, crowders can affect

the stability of proteins. One type of crowding effect is the excluded-volume effect,

which is always present and can impact protein folding [41]. In fact, the excluded

volume effect due to crowders is expected to stabilize the folded state of proteins

because crowder particles have more entropy when the protein is in the folded state

than in the unfolded state [42]. However, there have been no published studies on

how crowding affects fold switching. Work that is part of this thesis closes this gap

in the literature [43].

1.3 Computational methods

Biochemistry experiments carried out on proteins often do not provide direct infor-

mation on microscopic details. Rather, experimental signals are values averaged over

many molecules in bulk solutions. Computer simulations, which in principle provide

complete insight into the molecular details of a system, are therefore highly comple-

mentary to experiments. However, it is essential that simulations can also provide

thermodynamics averages under different conditions in order to verify the underlying

model in comparison with the experimental data.

Monte Carlo (MC) and molecular dynamics (MD) are the two most common sim-
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ulation techniques for simulating molecules on the computer.

Under conditions of constant temperature T , volume, and number of molecules,

the probability pB(i) of finding the system in a microscopic state i is given by the

canonical or Boltzmann distribution;

pB(i) =
e−βEi

Z
, (1.1)

where Ei is the energy of the system in microstate i, β = 1/kBT , and Z =
∑︁

i e
−βEi

is the partition function that describes the statistical properties of the system in

thermodynamic equilibrium. The thermodynamic average of a physical quantity Q

is given by

⟨Q⟩ =
∑︁

iQie
−βEi∑︁

i e
−βEi

=
∑︂
i

pB(i)Qi. (1.2)

For complex systems, identifying all the states is not easily accessible, and it is

limited just to small systems. For large systems, we have to use only a countable set

of conformations representing the whole conformation space. If the states are selected

with a probability given by Eq.(1.1) the estimate for the thermal average becomes:

⟨Q⟩estimate =

∑︁M
i Qi

M
, (1.3)

where M is the number of states and Qi is the value of Q at the ith generated

state [44, 45].

1.3.1 Molecular dynamics

The basic idea of molecular dynamics simulations is to numerically integrate the

equations of motion of the particles of a system, and thereby determine the time
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evolution of the system in microscopic detail. If the system is followed for a sufficiently

long time, an MD simulation can be used to find thermodynamic averages of any

observable.

Consider a system with N particles with positions r⃗1, r⃗2, ..., r⃗N , and a potential

energy function described by E(r⃗1, r⃗2, ..., r⃗N). For example, the N particles could

be the atoms of a protein molecule. In the absence of chemical reactions, protein

motions can be obtained by the numerically solving the classical equations of motion

for this many-body system, i.e.,

dr⃗i
dt

=
p⃗i
mi

,

dp⃗i
dt

= F⃗ i, (1.4)

where p⃗i and mi are the momentum and mass of atom i, respectively, and F⃗ i =

−∇r⃗iE(r⃗1, r⃗2, ..., r⃗N) is the conformational force on atom i. According to Newton’s

equation of motion (1.4), it is possible to simulate the evolution of the particles of a

system given its initial configuration and an accurate description of the interaction

forces. Because of the fast vibrational motion of particles, the time step δt of integra-

tion must be small (1-2 fs) and thermal equilibrium is hard to achieve. In the next

section, we describe the Monte Carlo simulation method, which can overcome this

problem under some circumstances.

1.3.2 Markov chain Monte Carlo

The Monte Carlo (MC) method is a collection of computational techniques that use

random numbers to obtain approximate solutions of mathematical problems such

10



as integration and optimization. Markov chain MC simulation is a technique that

generates states from a general probability distribution. Hence, it can be employed

to find an ensemble of states consistent with a specific thermodynamic condition.

States are generated by applying random perturbations to the system called updates

or moves, which are either accepted or rejected based on a specific criterion. For an

accurate estimate of thermodynamic averages, a proper sampling of phase space is

required. An advantage of MC is that it allows large moves, which helps sampling.

But this means time evolution is not provided, as MD.

1.3.3 Metropolis algorithm

The basic idea of the Metropolis algorithm is to generate a sequence of states that

are biased according to the Boltzmann distribution pB(i).

The fundamental element in the MC method is the concept of statistical equilib-

rium, which is expressed as a detailed balance condition. According to the detailed

balance condition, for a statistical system in equilibrium, the transition rate between

any two physical micro states should be equal. It can be shown that if detailed bal-

ance is fulfilled, statistical equilibrium is obtained. If W (i → j) is the transition

probability from state i to j, the detailed balance condition can be written as:

p(i)W (i→ j) = p(j)W (j → i). (1.5)

For the Boltzmann distribution, p(i) = pB(i) (see Eq 1.1) and the detail balance

condition implies;

W (i→ j)

W (j → i)
=
p(j)

p(i)
= e−β∆Eij , (1.6)
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where ∆Eij = Ej − Ei. Eq. (1.6) suggests an algorithm for generating states i that

are biased according to the Boltzmann distribution. It works as follows:

1. Consider the system in an initial state i with energy Ei.

2. Attempt a trial move (i→ j); the new state j has energy Ej.

3. Accept or reject the trial state j with the probability

Pacc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−β∆Eij if ∆Eij is positive

1 otherwise

. (1.7)

4. Repeat from 2.

It can be proven that this algorithm satisfies detailed balance and hence it leads to

p(i) → pB(i) in the limit of many generated states. Due to detailed balance condition,

the transition from one conformation to another in phase space is possible only if the

inverse transition is also possible. The order of moves in simulation does not influence

the canonical equilibrium as long as the condition of detailed balance is satisfied [46].

1.4 Interactions in biomolecular systems

There are various forces and effects that drive the dynamics of biomolecular processes,

such as protein folding, including hydrogen bonds, van der Waals interactions, elec-

trostatics, e.g. ionic bonds (or salt bridges), and effective hydrophobic interactions.

Although much of the physics of these various interactions are well understood, re-

search into how they can be best described within (classical) explicit-water molecular

dynamics force-fields is ongoing [47].
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Hydrogen bonding is an interaction between a donor group DH, which is a hy-

drogen H attached to an electronegative atom D, and an electronegative acceptor

atom A. The interaction is well described by the electrostatics between the posi-

tively partially charged H and the negatively partially charged D and A. However, a

complete description requires quantum mechanics [48]. An example in proteins is α-

helical structures, which are stabilized by hydrogen bonds between a carbonyl group

C O in residue i (acceptor) and an amide group N H (donor) in residue i+4

on the protein backbone. Arranging D, H, and A along a straight line is energeti-

cally favorable. Consequently, the α-helical axis is relatively straight, and all donors

and acceptors participate in a hydrogen bond (except at the ends of a helix). Also,

β-sheets are stabilized by backbone-backbone hydrogen bonds [49].

The hydrophobic effect refers to the tendency of non-polar groups to cluster to-

gether in an aqueous environment [50, 51]. While non-polar groups can interact fa-

vorably via van der Waals forces [52], this force is quite weak and is generally not the

reason for their clustering. Rather, hydrophobic attractions are driven by entropic

effects involving the water. Because the water molecules are more ordered near the

hydrophobic surface than in the bulk, decreasing the hydrophobic surface exposed to

water increases the multiplicity of water molecules. This consequently increases the

entropy and decreases the free energy of the mixture. [51].

Proteins typically have both hydrophobic (non-polar) and polar amino acids. For a

soluble protein in an aqueous environment such as the inside of a cell, the side chains

of non-polar amino acids are usually found inside the protein structure to form a

hydrophobic core and polar amino acids are mostly found on the surface [47, 53,54].
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1.5 Outline

In this thesis, we develop a Monte Carlo based simulation method for proteins and

apply it to fold switching. In chapter 2, we review the various computational methods

that are used in this thesis. In chapter 3, we apply the original PROFASI (Protein

Folding and Aggregation Simulator) model, an MC simulation package to characterize

the size of structural fluctuations of the two different states of RfaH [34]. In chapter

4, we then describe a new model based on the PROFASI package and augment it

with a dual-basin structure-based potential energy term to study the fold switching

of CTD of RfaH [55]. In chapter 5, we employ the method developed in chapter 3

to study the mechanism of domain separation RfaH protein [56]. In chapter 6, we

developed a coarse-grained Cα model with a dual-basin SBM to study the excluded

volume effect arising from macromolecular crowder particles. We apply this model to

study the fold switching in the GA95-GB95 proteins [43].

The methods that are developed in this thesis are applied to the RfaH (in sections

3,4 and 5) and GA95-GB95 (in section 6) proteins, but the approach we take is general

in that the model can, in principle, be applied to any fold switching protein.
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Chapter 2

Methods

In this chapter, we introduce and provide details on some of the methods and models

used in the later chapters in the thesis.

2.1 All-atom physics based protein model

Two computational methods, Markov chain Monte Carlo (MCMC) and molecular

dynamics (MD), dominate the field of classic molecular simulation. The significant

distinction between these methods lies in how the system is updated in each iteration

of the system. MCMC is a statistical mechanics technique aiming to generate samples

of states associated with some target probability distribution, e.g. the Boltzmann

distribution. In contrast, the MD method involves iterating between calculating the

forces applied on each particle in the system and using Newton’s equations of motion

to update their positions and momenta. MD has typically been considered as best-

suited for studying dense molecular systems such as the native ensemble of protein
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system, while MCMC methods are more suitable for highly simplified lattice model

calculations. However, MCMCmethods are also valid for atomistic models. Moreover,

MCMC methods can be efficient for models with an implicit solvent representation

for which large-scale chain updates can be performed, Such updates work especially

well for systems involving large structural rearrangements such as protein folding and

fold switching, which require enormous computer resources to simulate using MD.

For all-atom physics based protein model, we use PROFASI package [1], which

is a C ++ program package [1] for Monte Carlo simulations of protein folding and

aggregation. The model implemented in this package contains all atoms of the protein

chains but no explicit water molecules. The bonded interaction potential in this model

is given by four sequence-dependent terms,

E = Eloc + Eev + Ehb + Esc, (2.1)

where Eloc represents electrostatic interactions between neighbouring amino acids

along the protein chain. The Eev is an excluded volume therm with 1/r12ij repulsion

between pairs of atoms i and j that are in distance rij. Ehb and Esc are effective hydro-

gen bonding and sidechain-sidechain interactions, respectively, including electrostatic

and effectively hydrophobic attractions [1].

2.2 Structure-based models or Gō models

The Gō-like potential was originally pioneered by Gō and coworkers as an approach

to protein folding modeling [2]. By construction, the Gō-like potential ESBM is lower

for the native structure than for all other conformations [3]. Specifically, any two
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residues that are in spatial contact in the native state will be attractive. For this

reason, Gō-like potentials are also called structure-based models (SBMs). The SBM or

Gō-models have been used in both coarse-grained and all-atom simulations. Despite

the rather crude approach, SBMs have been successfully applied to the folding of

many proteins [3,4]. For example, a coarse-grained Cα model with a structure-based

potential reproduced experimentally measured folding rates for a set of small proteins

[5].

This thesis uses SBM potentials in two different ways; First, we develop and use

an SBM in hybrid with PROFASI package to study the stability, folding, and fold

switching of the RfaH protein. Second, we develop a structure-based coarse grain Cα

model with single- and dual-basin SBM to study the effect of excluded volume arising

from macromolecular crowders in stability, folding, and fold switching of proteins.

2.2.1 Cα model

To study the impact of excluded volume coming from macromolecular crowders on

the protein folding and fold switching, we use a structure based coarse-grained Cα

model. Each amino acid is represented by a single bead located at the Cα atom. The

structure based energy function is given by [5]

E =
bonds∑︂

Kb(bi − b0i )
2 +

angles∑︂
Kθ(θi − θ0i )

2

+
dihedrals∑︂

K
(1)
ϕ [1− cos(ϕi − ϕ0

i )] +K
(3)
ϕ [1− cos 3(ϕi − ϕ0

i )])

+
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i<j−3

ϵ
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rij

n

rij
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where bi, θi, and ϕi are bond lengths, bond angles and torsion angles, respectively,

and b0i , θ
0
i , and ϕ

0
i are their values in the native conformation. Also, the strength of

interactions are respectively given by Kb, Kθ, K
(1)
ϕ , K

(3)
ϕ and ϵ. The fourth term is

the Lennard-Jones attraction between native contacts, and the last term represents

repulsions between bead pairs ij that do not form contact in the native structure.

The distance rij is taken between Cα atoms, and the repulsion range is set to σ = 4 Å

[5, 6].

2.2.2 Single- and dual-basin structure-based model

A single basin structure-based model is a mathematical model that represents the en-

ergy landscape of a biological system as a single energy basin. This model is typically

used to study the thermodynamics and kinetics of biomolecular interactions, such as

protein folding. The energy landscape of a biological system is typically represented

as a free energy surface, which is a function of the coordinates of the system (such

as the positions of atoms or residues in a protein). The free energy surface has many

local minima and maxima, which correspond to different conformations or states of

the system. Due to these minima, it is hard to find the actual minima in simulation.

In this study, an energy term derived from the contact map of folded proteins is

used to build a single basin structure-based model, which biases the protein towards

the actual energy minimum by creating a deep funnel in the free energy surface [7].

The key advantage of single basin structure-based models is that they are compu-

tationally simple and easy to analyze. They can be used to study the thermodynamics

and kinetics of biomolecular interactions using techniques such as Monte Carlo sim-
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ulations or molecular dynamics simulations.

To study metamorphic proteins like RfaH, which have two native states, a single

basin SBM would need to be generalized to incorporate two basins or conformational

states. This can be achieved by incorporating two energy terms that bias the protein

towards different configurations, and thus towards different native states [7–9]. En-

ergy terms are derived from reference structures. These structures can be obtained

from experiments or simulation/modeling.

2.3 Langevin Dynamics

In Langevin dynamics, the solvent molecules are not represented explicitly in the sim-

ulation. Instead, their effects are incorporated into the equations of motion through

a friction term. This method, known as Langevin dynamics, has been widely used to

study the kinetics of protein folding [10–12]. The equation of motion for this method

is the Langevin equation, which is a stochastic differential equation that describes

the time evolution of a system with a subset of the degrees of freedom. The equation

for a given particle coordinate i in the system is as follows:

mvi̇(t) = −mγvi(t) + F c
i (t) + Γi(t), (2.3)

where m is the mass of the particle, F c
i (t) is the conformational force, γi is the friction

coefficient, and Γi(t) is the random force term. The conformational force F c
i (t) is equal

to the negative gradient of the total potential energy of the system, and drives the

system towards the minimum energy state. The friction coefficient γ is related to the

solvent viscosity.
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The random force term Γi(t) is a stochastic force that models the effect of the

thermal motion of solvent on molecules. The magnitude of Γi(t) control the temper-

ature T in the system. It is assumed the Γi(t)’s at different times are uncorrelated.

Therefore, the autocorrelation function for the random force is given by [13]:

⟨Γi(t)Γi(t
′)⟩ = 2mγkBTδ(t− t′), (2.4)

where kB δ(t− t′) is the Dirac delta function. This equation states that the random

force Γi(t) is generated from a Gaussian white noise process with zero mean and a

variance that is proportional to the temperature and the friction coefficient.

2.4 Simulated Tempering Method

Simulated tempering method is based on the idea that at high temperatures, the

system has a higher entropy and can explore a larger portion of the phase space,

while at low temperatures, the system has a lower entropy and is more likely to be

trapped in local energy minima. By running the simulation at different tempera-

tures yet remaining at equilibrium, the method allows the system to explore a wider

range of energies, and can result in a more thorough sampling of the phase space.

Specifically, simulated tempering uses Metropolis Monte Carlo sampling to explore a

non-conventional distribution [14];

P (i,m) ∝ exp (−βmE(i) + gm), (2.5)

where m is a temperature index which ranges from 1 to K, and βm = 1/kBTm. By

introducing the variable m, the simulation can explore various temperatures. If high

enough temperatures are visited the simulation can escape low-energy states and
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increase sampling efficiency at lower temperatures. The parameters g1 to gK are

important in this technique. If they are set to gm = βFm where Fm is the system

free energy at temperature Tm, all temperatures become equally likely to visit. In

simulated tempering, there are two types of Markov Chain Monte Carlo updates:

conformational updates i → i′, and temperature updates m → m′. The acceptance

probability for the conformational update is the same as that of a regular Metropolis

simulation at a constant temperature (see Eq. (1.7)). The acceptance probability for

the temperature update is

Pacc(m
′ → m) = exp (−E(i)(∆β +∆g)), (2.6)

where ∆β = βm′−βm and ∆g = gm′−gm. At the given temperature Tm the probability

distribution function will be given by

P (i|m) ∝ exp (−βmE(i)). (2.7)

Hence, the state i generated at index m will be biased according to a canonical

distribution at temperature Tm. The simulated tempering method is useful for study-

ing complex systems such as biomolecules and materials, and has been applied to a

variety of fields, including computational chemistry, materials science, and protein

folding [15,16].

Replica-exchange simulated tempering [14, 17] (also known as parallel tempering)

is a Monte Carlo simulation technique used to sample the configuration space of com-

plex systems. It involves running multiple simulations at different temperatures i.e.

different energy scales simultaneously and periodically exchanging the configurations

between them.
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2.5 Scaled particle theory

The scaled particle theory (SPT) is a theoretical framework for hard sphere fluids

developed in the 1960s [18]. It has been used to analyze the effect of crowders on the

folding free energy of biomolecules. We have used Eq. (2.8) to estimate the impact

of crowding on the free energy of fold switching in metamorphic proteins. According

to SPT, the free energy of inserting a hard sphere of radius R in a hard sphere fluid

of particle with radius Rc is given by [18]

βF = (3x+ 3x2 + x3)ψ + (
9x2

2
+ 3x3)ψ2 + 3x3ψ3 − ln(1− ϕc), (2.8)

where β = 1/kBT , x = R
Rc
, ψ = ϕc

1−ϕc
, and ϕc is total volume fraction occupied by the

hard spheres of the fluid. To derive Eq.(2.8) note that we can write βF = − lnA [20],

where A is the accessible volume fraction when inserting a sphere with radius R into

the fluid. The reversible work βF , can be calculated by considering two limits for the

sphere with radius R (small sphere and large sphere limits) [21]. For calculation, the

radius of the sphere is scaled with parameter q (R → qR). For q ≪ 1, the inserted

particle reduces to a point and the accessible volume for this particle is given by

Vacc = VT − 4

3
πNc(Rc + qR)3, (2.9)

where VT is total volume of box and the second term is the volume of N crowders

plus the depletion layer. Then the free volume fraction for a point particle is

A(q ≪ 1) = 1− 4

3
πρc(Rc + qR)3, (2.10)

where ρc = Ncr/VT is the hard spheres volume fraction. Therefore,

βF (q ≪ 1) = − ln[1− 4

3
πρc(Rc + qR)3]. (2.11)
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On the other limit, for q ≫ 1, the required work to insert a sphere with radius R

in a sea of crowders is approximately the work to create a hole with radius R inside

the crowders, which is given by

F (q ≫ 1) =
4

3
π(qR)3Πc, (2.12)

where Πc is the osmotic pressure of the dispersion of hard sphere fluid. In SPT,

F (q ≪ 1) is expanded up to order q2 and F (q ≫ 1) is added as the q3 term. At the

end, we can put q = 1 to find the βF which is

βF = − ln[1− ϕc] + 3xψ +
1

2
(6x2ψ + 9x2ψ2) +

4

3
πR3βΠc, (2.13)

where x = R
Rc
, ψ = ϕc

1−ϕc
, and ϕc = (4/3)πρcR

3
c is fluid volume fraction. For pure hard

spheres, the osmotic pressure Πc using the Percus–Yevick equation is given by [21];

βΠc

ρc
=

1 + ϕc + ϕc
2

(1− ϕc)3
=

1

1− ϕc

+
2ϕc

(1− ϕc)2
+

3ϕc
2

(1− ϕc)3
. (2.14)

Finally, inserting the Πc from Eq. (2.14) to Eq. (2.13) leads to Eq.(2.8). If the

radius of the unfolded state of a protein is approximated using a Gaussian chain, SPT

predicts that excluded volume crowders strongly increase the stability of the folded

state. This effect is monotonic in ϕc and can be described by a two-parameter model,

which can be extracted from the Eq. (2.8).

2.6 Two-state model

Conformational change in biomolecules are often cooperative transition between two

well-defined states. One example is the folding of small proteins, which often can be
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described as a transition between an unfolded (U) and folded (F) states. The two

states are separated by an energy barrier, and the protein can transition between

the two states through thermal fluctuations or other external perturbations. The

partition function can then be written as

Z = ZU + ZF = e−βFU + e−βFF , (2.15)

where exp(−βFU) =
∑︁

i∈U exp(−βEi) and exp(−βFF) =
∑︁

i∈F exp(−βEi). Then the

thermal average of observable Q will be

⟨Q⟩ = QU +QFe
−β∆F

1 + e−β∆F
, (2.16)

where QU and QF are the values of the Q in the unfolded and folded states, respec-

tively, and ∆F = FF − FU is the free energy of folding,

In protein folding, the midpoint temperature (Tm) is the temperature at which the

protein equally populates its folded and unfolded states. Because ∆F = ∆E−T∆S,

where ∆E and ∆S are energy and entropy of folding, and ∆F (Tm) = 0, we have

β∆F = ∆E(
1

kBT
− 1

kBTm
), (2.17)

and the thermal average of observable Q in terms of QU, QF,∆E, and Tm is given by

⟨Q⟩ = QU +QFe
−∆E( 1

kBT
− 1

kBTm
)

1 + e
−∆E( 1

kBT
− 1

kBTm
)

, (2.18)

which is known as a two-state equation. If QU and QF are known, a folding curve ⟨Q⟩

versus T can be fit using ∆E and Tm as free parameters. Alternatively, QU, and QF

can also be left as free parameters. Tm is often used in folding studies as a measure

of native state stability.
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Chapter 3

Structural fluctuations and

mechanical stabilities of the

metamorphic protein RfaH
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Abstract

RfaH is a compact two-domain bacterial transcription factor that functions both

as a regulator of transcription and an enhancer of translation. Underpinning the

dual functional roles of RfaH is a partial but dramatic fold switch, which completely

transforms the approximately 50-amino acid C-terminal domain (CTD) from an all-

α state to an all-β state. The fold switch of the CTD occurs when RfaH binds to

RNA polymerase (RNAP), however, the details of how this structural transformation

is triggered is not well understood. Here we use all-atom Monte Carlo simulations

to characterize structural fluctuations and mechanical stability properties of the full-

length RfaH and the CTD as an isolated fragment. In agreement with experiments,

we find that interdomain contacts are crucial for maintaining a stable, all-α CTD in

free RfaH. To probe mechanical properties, we use pulling simulations to measure

the work required to inflict local deformations at different positions along the chain.

The resulting mechanical stability profile reveals that free RfaH can be divided into

a “rigid” part and a “soft” part, with a boundary that nearly coincides with the

boundary between the two domains. We discuss the potential role of this feature for

how fold switching may be triggered by interaction with RNAP.
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3.1 Introduction

Proteins are classically seen to fold spontaneously into an essentially unique three-

dimensional structure as determined by their amino acid sequence [1]. Conformational

fluctuations occur in the neighborhood of the native structure and are necessary

for function [2, 3]. Various exceptions to this rule have emerged over the past two

decades, inviting a more dynamic view of proteins. For example, some proteins are

triggered to unfold – partly or wholly – upon receiving a signal, such as the binding

of a ligand [4], while others are intrinsically disordered, i.e., lack a single stable

conformation under native conditions [5]. Still other proteins have been found to

transform from one folded structure to another, whereby they undergo major changes

to their secondary structure contents, packing of core hydrophobic sidechains and

overall shape [6]. Because these proteins essentially switch folds, they have been

termed metamorphic [7] or transformer [8] proteins. Only a handful of metamorphic

proteins have been studied in detail [6] but many more were recently identified [9].

One of the most dramatic examples of a metamorphic protein is the two-domain

bacterial antiterminator RfaH, a member of the NusG family of transcription fac-

tors [10]. In its free state, RfaH exists in a domain-closed form with a tight interface

between its N-terminal domain (NTD) and its C-terminal domain (CTD) [11], as

shown in Fig. (3.1). While the mixed α/β fold of the NTD is shared with other

NusG proteins, the α-helical hairpin of the CTD is drastically different. However,

upon binding to RNA polymerase (RNAP) paused at an operon that contains a so-

called ops site (a 12 nucleotide regulatory segment), the two domains separate and

the CTD undergoes a complete transformation into a 5-stranded β-barrel structure
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that is essentially identical to the CTDs of other NusG proteins [10]. A flexible linker

connecting the two domains makes it possible for the structurally transformed CTD

to recruit ribosomal protein S10, forming a physical bridge between RNAP and ribo-

some. Hence, the combination of fold switching and domain separation allows RfaH

to both regulate transcription and enhance translation. The development of the fold

switching capability of RfaH [12] also represents one of the most clear examples of

fold switching as a mechanism of protein structure evolution [13–16].

Figure 3.1: Fold switching of the bacterial transcription factor RfaH. (A) In its free state, RfaH

adopts a compact three-dimensional structure (PDB id 2oug) consisting of an NTD (beige) in a

mixed-α/β fold and a CTD (blue) in an α-helical hairpin fold. The two domains form a tight

interface and are connected by a linker (green). (B) The binding of RfaH to RNAP triggers the two

domains to separate [53], which causes the CTD to spontaneously re-fold into a 5-stranded β-barrel

(PDB id 2lcl) while the NTD retains its fold. Missing segments in the X-ray crystal structure of

domain-closed RfaH (2oug), including the linker region, were added using Modeller [41]. Molecular

structures were rendered using UCSF Chimera [59].

Several computational studies have focused on elucidating the molecular details

of the all-α to all-β transition of the RfaH-CTD [17–25]. Because of the large-scale
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nature of the structural transition non-traditional conformational sampling methods

have been applied, such as targeted molecular dynamics [19], replica-exchange with

tunnelling [24] and discrete path sampling [25]. Simulations of the isolated CTD

have suggested that the transition proceeds via an unstructured intermediate state

with little secondary structure [17, 18, 24, 25]. The transition has also been studied

in the context of the full RfaH protein with all-atom and coarse-grained simulations,

indicating that contacts between NTD and CTD may persist through at least part of

the structural transition [19, 22]. Xun et al. [23] studied the overall stability to the

free state of full length RfaH and found that the disordered linker region (see Fig.

(3.1)) may contribute to stability by making energetically favorable interactions with

ordered regions in both CTD and NTD.

Like most other known metamorphic proteins [26–31] (but not all [32]), RfaH un-

dergoes a partial fold switch, i.e., a transformation that takes part of the protein to a

different fold while the remaining part is left unchanged. We reasoned therefore that

it is pertinent to understand how various structural and dynamical properties of meta-

morphic proteins vary along the sequence. Of particular interest are the differences

between the structurally variable and unchanged parts. Here we set out to probe local

structural fluctuations and mechanical stabilities of RfaH. To this end, we use Monte

Carlo simulations in combination with a computationally efficient all-atom protein

model [33]. This model has previously been applied to a range of protein processes,

including folding [34], conformational fluctuations of disordered proteins [35,36], and

protein-peptide binding [37]. To probe local mechanical stability properties we apply

the technique of Das et al. [38], which was developed to mechanically characterize
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proteins that are prone to misfolding [39]. The basic idea [38] is to simulate single-

molecule pulling experiments that inflict local structural deformations at various sites

on the protein surface. The work required to inflict such a deformation as a function

of sequence index constitutes a type of local rigidity profile of the structure. Applied

to RfaH, we find that structural rigidities are distinctly lower in the CTD than in

the NTD, which may help regulate fold switching by RNAP. In probing both ther-

mal fluctuations and mechanical properties we exploit the computational efficiency

of our model, which allows us to carry out multiple independent trajectories for each

condition such that heterogeneity between individual runs can be averaged out.

3.2 Materials and Methods

3.2.1 Representative structures

We obtained the X-ray crystal structure of Belogurov et al. [11] (PDB id 2oug) of the

domain-closed form of RfaH from the Protein Data Bank [40]. The missing N-terminal

residue (methionine), NTD-CTD linker 101–114 (single letter code: PKDIVDPAT-

PYPGD) and the C-terminal tail 157–162 (TEFRKL) were added using the homology

modelling tool MODELLER [41]. We also obtained the NMR structure of Burmann

et al. [10] (PDB id 2lcl) of the isolated CTD in the all-β form. We retained the

ordered part of the structure, i.e., residues Gly113–Leu162.
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3.2.2 Computational protein model

Simulations were carried out using the computational protein model described in

Ref. [33] and implemented in the software package PROFASI [42]. This model com-

bines an all-atom protein representation with an effective potential energy function

(no explicit solvent molecules) with 4 terms: E = Eloc+Eev+Ehb+Esc. The local term

Eloc includes interactions between mainchain partial charges and provides a good local

description of the protein chain, and the term Eev implements excluded-volume effects

between all atom pairs. Structure formation is driven mainly by the remaining two

terms, Ehb and Esc, which represent hydrogen bonding and sidechain-sidechain inter-

actions, respectively. Hydrogen bonding is implemented with directionally-dependent

explicit attractions between donor and acceptor groups. The term Esc includes both

pairwise attractions between sidechain charges and effective hydrophobic interactions.

Parametrization of the effective energy function was carried out on the folding of 17

different proteins with diverse secondary structure contents, such that the global free

energy minimum of each sequence represented the experimentally determined native

structure.

3.2.3 Initial model conformations

All simulations were started from two initial model conformations derived from the ex-

perimental structures of the domain-closed (2oug) and domain-separated (2lcl) forms

of RfaH through a “regularization” process. This process is necessary because, in our

model, bond lengths and bond angles are held fixed at standard values [33]. As a

consequence, there are geometric constraints imposed on model conformations that

42



are in general not satisfied by experimental protein structures. A model conforma-

tion is instead specified by a set of dihedral backbone angles, ϕ and ψ, and a set

of dihedral sidechain angles, χ. Finding a model conformations that regularizes an

experimental structure is a two-step procedure: First, a model conformation is found

that minimizes the root-mean-square deviation (RMSD) taken with respect to the

experimental structure, regardless of the value of the potential energy E; thereafter,

the minimum-RMSD conformation is taken as a starting point to minimize E while

not increasing the RMSD too much. Overall, the process identifies a good structural

approximation of the experimental structure, such that the potential energy function

E is at a local minimum and all geometric constraints are satisfied. The two initial

model conformations obtained this way for the experimental structures 2oug and 2lcl

have RMSD values of 1.8 Å and 1.6 Å, respectively.

3.2.4 Monte Carlo updates

All simulations are carried out with two different types of small-step MC updates.

Sidechains are updated by selecting and turning a single sidechain torsional angle,

χ. Rotamers, i.e., statistically frequent sidechain configurations, are not imposed

but allowed to arise from local interactions in the model. The backbone is updated

by applying so-called Biased Gaussian Steps (BGS) [43]. The BGS move works by

turning up to 8 consecutive backbone dihedral angles, i.e. the ϕ and ψ of 4 consecutive

amino acids, in a coordinated manner such that a quasi-local deformation of the

protein backbone is achieved. The BGS move has two free parameters a and b that

control the acceptance rate and degree of bias, respectively [43]. Our simulations
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were carried out with a = 300 and b = 10. The fractions of sidechain and backbone

MC updates were set to 70% and 30%, respectively. Hence, we assume here that the

sidechains dynamics are fast compared to the backbone dynamics.

3.2.5 Fixed-temperature simulations

Thermal fluctuations are assessed through fixed-temperature Metropolis-Hastings [44,

45] MC simulations started from one of the initial model conformations (see above).

For each starting conformation and temperature T , we carried out 30 independent

simulations of 105 MC cycles each. An MC cycle corresponds to n elementary MC

updates, where n is the number of degrees of freedom in the protein chain, i.e., the

number of turnable ϕ, ψ and χ angles. For full-length RfaH, n = 740, and for the

isolated CTD, n = 239.

3.2.6 Pulling simulations

To probe local structural rigidity of domain-closed RfaH with respect to mechanical

forces, we use pulling simulations carried out in the following way. Forces were applied

to two tethering points. We take one of the tethering points to be the residue closest to

the center of mass of the protein (generally Phe56). The other point is the residue for

which we want to quantify local structural rigidity. Mechanical forces are implemented

using the energy term Epull =
1
2
k(∆d − vt)2, which is added to the PROFASI base

energy function E. In Epull, k is the spring constant, v the pulling speed, t the

time since the pulling motion started, and ∆d = d − d0, where d is the distance

between the tethering points at time t and d0 the distance at t = 0. Our pulling
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simulations are carried out at 273 K with k = 1.0 e.u./Å
2
and v = 10−3 Å/MC cycle,

and are terminated when the extension vt = 5 Å. For each pair of tethering points,

10 independent pulling runs are carried out.

The energy (and temperature) scale of the PROFASI model has been set previously

by mapping the experimentally determined melting temperature of the protein Trp

cage (315 K) [46] to the folding temperature determined in internal model units from

equilibrium simulations [33]. The energy scale found this way is 1eu= 5.615 kJ/mol

[33], where eu is the internal energy unit in PROFASI. With this energy scale, the

spring constant used in the present work becomes k = 5.6 kJ/mol/Å
2
.

In order to assign physical units to the speed v in our pulling simulations, we must

estimate the timescale of the small-step MC kinetics used in present work. We do

that here in a 3-step procedure by again using Trp cage as a reference protein: (1) 100

independent folding simulations are carried out at 279 K. All simulations are started

from the same extended conformation but supplied with different random seeds. The

MCmove set is the same as described above. (2) The mean-first-passage time (MFPT)

to reach the native state in these simulations is determined, where the native state is

considered reached when RMSD < 3 Å and RMSD is determined with respect to the

experimental structure of Trp cage [46]. (3) Finally, the observed MFPT = 159,000

MC cycles is mapped to the experimentally determined Trp cage folding time, i.e.,

4µs [47]. This procedure gives a timescale of 1 MC cycle = 2.5×10−11s, meaning that

our pulling speed v is approximately 4.0 mm/s. This pulling speed is comparable to

the 2.5 mm/s used in Ref. [39] and at the lower end of typical speeds used in atomistic

computational pulling simulations (1 mm/s to 1 m/s) [48].
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An alternative way to set the timescale in our simulations would have been to

follow Habibi et al. [49], who relied on autocorrelation times in the relaxation to

the native state following mechanical perturbations of the structure of interest. The

approach taken here allow us to maintain a single reference protein (Trp cage) for

determining both the energy and time scales of our model.

3.3 Results

3.3.1 Structural fluctuations in domain-closed RfaH

To probe structural fluctuations in the full-length domain-closed form of RfaH, we

carry out small-step Monte Carlo simulations initiated from the structure in Fig.

(3.1) (left) at the 6 different temperatures 273, 300, 310, 320, 330, and 340 K, as

described in Methods. In quantifying the structural divergence from the starting

point of these simulations, we focus on two types of quantities: (1) root-mean-square

deviations (RMSD), taken with respect to the experimental structure of free RfaH,

and (2) secondary structure contents (α and β), taken over different positions along

the RfaH chain. We find substantial variations in the MC time evolution of these

quantities even among simulation runs carried out at the same T (see Fig. S1).

This is not unexpected given the heterogeneity between trajectories typically seen in

molecular dynamics unfolding simulations of small proteins [50]. In order to focus on

robust trends, we therefore construct an “average trajectory” using 30 independent

runs at each T . For example, Fig. 3.2A shows ⟨RMSD⟩ as a function of MC time at

T = 273 K, where ⟨⟩ indicates an average over the 30 runs. We find that ⟨RMSD⟩
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gradually increases to around 6 Å over the first half of the simulation time and then

remains flat throughout the rest of the simulations, indicating that the domain-closed

form of RfaH is reasonably stable in our model at T = 273 K.

At T ≥ 310 K, we find instead a gradual unfolding of RfaH, as illustrated in

Fig. 3.2B for T = 310 K. Importantly, the loss of structure is more pronounced for

the CTD than for the NTD; ⟨RMSD⟩ determined over the NTD region remains be-

low 5 Å while ⟨RMSD⟩ determined over the CTD region reaches 8 Å at the end of

the simulation time. Another way to quantify this difference is to consider the Pear-

son correlation coefficients, ρ, formed between full-length RMSD and NTD RMSD

(ρNTD) or between full-length RMSD and CTD RMSD (ρCTD). We determined ρNTD

and ρCTD for each trajectory using conformations taken from the second half. At

T = 310 K, we find ⟨ρNTD⟩ = 0.30 and ⟨ρCTD⟩ = 0.64, indicating that structural

fluctuations in the CTD indeed dominate over those in the NTD. The trend is even

clearer at higher temperatures, e.g., ⟨ρNTD⟩ = 0.17 and ⟨ρCTD⟩ = 0.73 at T = 340 K,

and only slightly weaker at the lowest studied temperature, i.e., ⟨ρNTD⟩ = 0.39 and

⟨ρCTD⟩ = 0.60 at T = 273 K. Taken together, from the perspective of RMSD, we

conclude that domain-closed RfaH is overall stable over the length of our simulations

at T = 273 K while, at higher T s, the protein unfolds gradually (on average) driven

primarily by loss of structure in the CTD.

This view is re-enforced by the results from our secondary structure analysis. In

this analysis, we consider all conformations taken from the second half of the trajec-

tories and use them to calculate average α- and β-structure contents, ⟨α⟩ and ⟨β⟩.

We find that, overall, the loss of secondary structure with increasing temperature
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Figure 3.2: Thermal stability properties of domain-closed RfaH. Shown is the average root-mean-

square deviation, ⟨RMSD⟩, as a function of MC time, for simulations carried out at temperatures

(A) T = 273 K and (B) T = 310 K. The RMSD is determined with respect to the experimental

structure of domain-closed RfaH (PDB id 2oug; see Fig. 3.1), taken over residues 1-162 (RfaH),

1-100 (NTD) or 115-156 (CTD). Brackets ⟨⟩ indicate an average over 30 independent simulations

carried out at each T . All runs were initialized from a regularized version of 2oug (see Methods).

Note that full-length RMSD is calculated over all residues in RfaH, including the domain linker

(101-114) and C-terminal tail (157-162), while the NTD and CTD RMSDs are calculated only over

structurally ordered regions in 2oug. This tend to make the full-length RMSD larger than either

of the two “domain” RMSDs, despite the normalization by chain length in the RMSD measure.

The representative structures at (A) 273 K and (B) 310 K are shown in ribbon representation with

colors as in Fig. (3.1) and taken at MC step 50× 103. The structures have RMSD = 5.7 and 9.3 Å,

respectively, where RMSD is determined over residues 1-162. Shown is also the average (C) α-helix

and (D) β-sheet contents, as determined over the second half of the simulations, as functions of the

sequence index. Indicated above the graphs in (C) and (D) are the locations of the CTD, NTD and

linker between the domains (L), as well as the α-helices (red solid boxes) and β-strands (black solid

arrows) in 2oug. Assignment of secondary structures were carried using STRIDE [60].
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is more pronounced for the CTD than for the NTD. For NTD (residues 1-100), we

find ⟨α⟩ = 0.25 and ⟨β⟩ = 0.31 at T = 273 K, which decrease to ⟨α⟩ = 0.19 and

⟨β⟩ = 0.26 at T = 340 K. For CTD (residues 115-162), the α-helix content decreases

from ⟨α⟩ = 0.75 at T = 273 K to ⟨α⟩ = 0.39 at T = 340 K. To examine individual

secondary structure elements, we determine also ⟨α⟩ and ⟨β⟩ as functions of sequence

position, as shown in Figs. 3.2C and 3.2D. We see that loss of secondary structure in

the NTD is due mainly to the short β-strand at positions 75-78 and helix α3. In the

CTD, the largest loss of secondary structure occurs for α4, especially the N-terminal

half of α4. Helix α5 also loses structure but mainly at the highest studied temperature

(T = 340 K). A poor stability of the N-terminal part of α4, especially the segment

Val116–Gly121, has been noted before [10,23] and a dynamic network analysis found

relatively large structural fluctuations of the α3 helix [19].

3.3.2 Isolated CTD: all-α and all-β forms

The CTD segment can adopt two different folds, as shown in Fig. 3.1. We investigate

structural fluctuations in the basins of both structural forms in a similar way as

for full-length RfaH, i.e., we carry out small-step MC simulations of the isolated

CTD started from either the all-α state or the all-β state. From the experiments of

Burmann et al., we know that the all-β state is the most thermally stable given the

complete absence of NMR signals from the all-α form for the isolated CTD [10].

The all-β form of the CTD is indeed quite stable in our simulations, as shown

in Figs. 3.3A and 3.3B. At T = 310 K, ⟨RMSD⟩ remains below 4 Å for most of

the simulation time. By contrast, at the same T , the all-α state simulations lead
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to ⟨RMSD⟩ > 6 Å after only a few MC cycles. The origin of this stark difference

is apparent from the secondary structure profiles in Fig. 3.4. In the absence of a

nearby NTD, both α4 and α5 lose much of their structures (see Fig. 3.4A). The

tendency is, however, stronger for α4 than for α5. A substantial loss of helicity of

α4 occurs at all temperatures, meaning that α4 is inherently unstable in our model.

These results suggest that the NTD-CTD inter-domain interactions are necessary to

stabilize the all-α CTD in RfaH, especially α4, in line with experiments [10] and

previous computational work [22]. The simulations started from the all-β state retain

much more of the secondary structure (see Figs. 3.4C and 3.4D). At the highest

studied T (340 K), we find an overall β-sheet content ⟨β⟩ = 0.43 compared to 0.52 for

the starting structure, 2lcl, a reduction by 17%. The corresponding reduction in the

overall α-helix content for the simulations started in the all-α form is 63% (⟨α⟩ = 0.27

at T = 340 K and 0.73 for the starting structure, 2oug). A closer look at Fig. 3.4D

reveals that the smallest loss of structure in the all-β CTD simulations is generally

found around the β-hairpin formed by β3 and β4 (Arg138 - Lys155), while the largest

loss occurs in β5 (Phe159–Lys161).

Given the experimentally observed higher stability of the all-β state of the isolated

CTD chain one should, in principle, expect simulations started in the all-α state to

eventually re-fold into the all-β form, unless the temperature is too high. In our

simulations, however, we do not observe a spontaneous fold switch into the β-barrel

structure at any T . A possible explanation is that the trajectories carried out are

too short to observe the transition. It is also possible that our computational model

does not fully capture the free energy landscape of the isolated CTD, which should
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Figure 3.3: Stability of the all-α and all-β forms of isolated RfaH-CTD. Shown is ⟨RMSD⟩ as a

function of MC time for simulations carried out at (A) T = 273 K or (B) T = 310 K. Simulations

of the all-α state (blue) were initialized from a regularized version of the structure 2oug (residues

114-162) and RMSD is calculated with respect to 2oug. Simulations of the all-β state (green) were

initialized from a regularized version of the structure 2lcl (residues 112-162) and RMSD is calculated

with respect to 2lcl. Brackets ⟨⟩ indicate an average over 30 independent simulations.
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Figure 3.4: Stabilities of secondary structure elements in the two different forms of the isolated

CTD. Shown are the average α-helix (⟨α⟩) and β-sheet (⟨β⟩) contents as a function of sequence

position for simulations started in the all-α (A, B) and the all-β (C, D) forms of the CTD, as deter-

mined over the second half of the simulations. Brackets ⟨⟩ indicate an average over 30 independent

simulations. Results are given for simulations carried out at 6 different temperatures, 273 (orange),

300 (red), 310 (brown), 320 (green), 330 (purple) and 340 (blue) K. Color labels are the same in

A-D but only shown in B and C. Sequence indices corresponds to those of the full-length RfaH.

Shown are also two representative structures from simulations at 310 K of (B) the all-α and (C)

the all-β forms. Both structures are taken from the middle of a simulation run and colored as in

Fig. 3.1, except in (B) where the α-helical hairpin loop (residues 132-134) that is present in the

starting structure (2oug) is shown in beige. N- and C-termini are indicated.
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include a (dominant) funnel directed towards the β-barrel fold and thereby guarantee

folding from any starting point for long enough simulations. Capturing the effects

that control the subtle free energy balances in metamorphic proteins have, however,

been recognized as a particularly challenging task in molecular simulations [51]. In

this regard, it is encouraging that some tendencies for β-sheet formation, e.g., in the

β1-β2 hairpin region, are seen at intermediate temperatures (see Fig. 3.4B).

3.3.3 Mechanical stabilities of domain-closed RfaH

We turn now to an analysis of mechanical stabilities of the domain-closed, free RfaH

structure. The basic idea of this analysis [38] is to quantify the resistance to force-

induced local deformations at different positions along the protein chain. The resis-

tance to deformation at a given site provides a measure of the local structural rigidity.

The local deformations can be obtained by simulating the effect of an atomic force

microscopy (AFM) cantilever pulling on various Cα atom sites on an immobilized

protein. To this end, we carry out MC simulations at T = 273 K with stretching

forces applied to two tethering points. One of the tethering points is a centrally lo-

cated position in the protein, playing the role of immobilizing the protein, and the

other tethering point determines the sequence position that is being probed for its

local mechanical stability.

A few typical pulling trajectories carried out on RfaH are given in Fig. 3.5A. They

show that the pulling force exhibits large fluctuations and it is therefore not suitable

as measure of mechanical stability. However, as was pointed out in Ref. [38], the

cumulative work W performed by the external force versus the pulling extension is a
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relatively smooth function. The work W required to reach a given pulling extension

threshold is therefore a more robust measure of local structural rigidity. Here we note

additionally that even though the cumulative work curves from individual pulling runs

are smooth, they can still differ significantly due to the underlying force fluctuations,

as illustrated in Fig. 3.5B. Therefore, as a measure of local mechanical stability, we

take here the work W required to reach a pulling extension of 5 Å, averaged over 10

independent pulling trajectories.

The work W required to inflict these local deformations as a function of sequence

index constitutes a type of mechanical stability profile [39]. For domain-closed RfaH,

we find a stability profile with some interesting properties, as shown in Fig. 3.6A. A

clear division of the structure into two parts can be made: a structurally rigid part

(residues ≈1-80) and a structurally soft part (residues ≈80-162). The division thus

nearly coincides with the NTD-CTD division. The divisions do not coincide exactly,

however. Helix α3, which belongs to NTD but is located close to the domain interface,

exhibits mechanical stabilities that are as low as for the two CTD helices, α4 and α5.

The mechanical stability of the long, extended β-hairpin loop of the NTD (residues

31-52) may seem surprisingly high (see Fig 3.6B), given that previous simulations

have found this segment to be highly dynamic [19]. The high mechanical stability of

this hairpin loop in our analysis is likely an artifact of the pulling direction used. For

residues in this loop, the line connecting the two tethering points run almost parallel

to the two strands in this β-hairpin, giving a high resistance to elongation. However,

structural rigidities in regions with secondary structure, with the exception of α3, are

generally higher in the NTD than in the CTD.
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Figure 3.5: Probing local mechanical rigidities for the free, domain-closed RfaH structure through

pulling simulations. Simulations are carried out with a constant pulling speed, v, and two tethering

points: one centrally located residue (generally Phe56) and one for which local structural rigidity is

probed. The pulling force is given by F = −k(∆d−vt), where ∆d is the change in distance between

the tethering points since the start of pulling at time t = 0, and vt is the pulling extension. Ten

independent simulations are carried out for each amino acid position that is probed for stability.

Shown are examples of pulling runs obtained for the two tethering points Phe56 and Met1. (A) The

pulling force F as a function of the extension for 5 of the 10 independent runs. (B) The cumulative

work W as a function of pulling extension averaged over all 10 runs (thick dark blue line) and the

standard deviation of W determined over the 10 runs (shaded light blue areas).
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Within the CTD, the highest local mechanical stabilities are found in the 128-

146 region, which includes parts of helices α4 and α5, and the loop between them.

As a result, this “tip” of the α-helical hairpin may be important for triggering fold

switching because it requires separation of CTD from the rest of RfaH. Indeed, several

interactions close to this region have been found to impact the population balance

between the two RfaH structural states. These include hydrophobic inter-domain

interactions involving, e.g., Ile129, Phe130 and Leu141, and the buried inter-domain

Glu48-Arg138 salt bridge [12, 19, 22]. Disrupting some of these interactions by point

mutations, e.g., F130V, have been found to destabilize the domain interface and lead

to an increased population of the domain-separated state [12].

As a final probe of the mechanical properties of domain-closed RfaH, we carry out

10 independent pulling simulations in which the tethering points are the N- and C-

terminal amino acids of RfaH. These simulations are terminated when the extension

reaches 200 Å, as illustrated for one of the runs in Fig. 3.7A. We find that mechanically

extending RfaH via its termini leads to an initial unraveling of the CTD while, in

contrast, the NTD remains much more unchanged. The work required to reach the

full extension 200 Å is, on average, 542 ± 8 kJ/mol, as shown in Fig. 3.7B. As a

point of comparison, we find that the work required to reach the same extension in

pulling simulations of the NTD as an isolated domain (i.e., residues 1-100 excised

from 2oug) is slightly higher, 605±6 kJ/mol (data not shown). A closer inspection of

the 10 pulling simulations of domain-closed RfaH reveals that 6 of the 10 runs exhibit

a single dominant peak in the force followed by a rapid decrease. In each of the 6

cases, the rapid decrease in the force coincides with the detachment of helix α4, as
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illustrated in Figs. 3.7C and 3.7D. Moreover, inter-domain contacts in the maximum-

force conformations involve several hydrophobic amino acids in α4, including Phe126,

Ile129 and Phe130. Interestingly, in each of the 6 maximum-force conformations,

Arg138 has previously detached from the NTD (see Fig. 3.7C), suggesting that force

resistance in our pulling simulations is not dominated by the Glu48-Arg138 salt bridge

but rather by hydrophobic interactions.

3.4 Discussion

We have investigated chain fluctuations and mechanical properties of the two struc-

tural forms of the bacterial transcription factor RfaH. A computationally efficient

all-atom model [33] and MC sampling [43] allowed us to average over many inde-

pendent runs, alleviating the statistical uncertainty deriving from the heterogeneity

between trajectories. We have found that although the free (domain-closed) RfaH

form is stable in our simulations at the lowest studied T , the all-α CTD, i.e., the part

of RfaH undergoing fold switching, exhibits the largest structural fluctuations. These

fluctuations in the CTD drive the loss of structure at higher T s. A reduced thermal

stability has been found for other metamorphic proteins [29], and may indeed be a

hallmark of this class of proteins [6]. We also found that the all-α CTD as an isolated

fragment does not retain its overall structure in our simulations, even at the lowest

studied T . Hence, maintaining the all-α fold of the CTD in free RfaH depends criti-

cally on energetically favorable interdomain contacts. This observation is consistent

with experiments [10,12] and previous computational work [19,22,23], validating our

computational approach.
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Figure 3.6: Mechanical stability profile of domain-closed RfaH. (A) Average work required to

induce a small local deformation in the RfaH domain-closed structure in pulling simulations (see

Fig. 3.5) as a function of sequence index. One of the tethering points in the pulling simulations is

a centrally located residue (generally Phe56), chosen because it is the residue closest to the center-

of-mass. The other tethering point is the residue for which the mechanical rigidity is probed. Upon

probing residue positions 45–65, Leu7 is used as a central tethering point instead of Phe56 in order

to avoid excessive work deriving from chain connectivity. (B) Heat map of the average pulling work

in (A) projected onto a ribbon representation of the domain-closed RfaH structure (PDB id 2oug).
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Comparing in more detail the two α-helices of the CTD we find that α4, in particu-

lar, gains structure from its interactions with NTD. In our simulations of the isolated

CTD, we find that α4 loses almost all of its α-helix structure within the simulation

time, while α5 is much more resistant to structure loss. The coarse-grained simu-

lations of Xiong et al. [21] showed comparable melting temperatures for α4 and α5,

implying similar stabilities. However, other atomistic simulations [17,18,20,23] have

reached conclusions similar to ours, namely that α4 is inherently less stable than α5.

The low stability of α4 may impact its behavior within the full-length RfaH protein.

Indeed, chemical shifts for Cα and CO groups in the segment Val116-Gly121, i.e.,

the N-terminal part of α4, are close to those expected for a random coil state [10],

indicating that α4 may be shorter in solution than in the crystal state. Hydrogen-

deuterium exchange experiments showed that α4 is also more flexible than the rest of

the CTD, including the loop between α4 and α5 [52]. Together with previous work,

our study suggests that the all-α CTD is characterized by relatively large structural

fluctuations, which may derive from a low inherent stability of the α4 helix.

Our mechanical analysis shows that domain-closed RfaH can be divided into a

structurally rigid part and a structurally soft part with a boundary that nearly, but

not exactly, coincides with the division between NTD and CTD (see Fig. 3.6). This

feature of domain-closed RfaH suggests a potential role for local mechanical properties

for how fold switching is triggered by RNAP paused at an ops site. In the domain-

closed form of RfaH, the RNAP binding site on the RfaH-NTD is masked by tight in-

teractions with the all-α CTD [11]. It has therefore been suggested that an encounter

complex consisting of RNAP, ops and RfaH is transiently formed, leading to domain
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Figure 3.7: Mechanical stretching of domain-closed RfaH (2oug) via its N- and C-termini. (A)

The force as function of pulling extension for 1 out of 10 trajectories obtained. (B) The cumulative

work W as a function of pulling extension averaged over the 10 runs (thick dark blue line) and the

standard deviation of W determined over the 10 runs (shaded light blue areas). (C) Conformation

exhibiting the maximum pulling force in the trajectory shown in (A) and marked by “∗”. (D)

Conformation marked by “#” in the trajectory in (A). Colors and molecular representation in (C)

and (D) are the same as in Fig. (3.1), except for the residues Phe126, Ile129, Phe130 (blue) and

Arg138 (red), which are highlighted in stick representation.
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separation and unmasking of the RNAP binding site [10]. The structure of this en-

counter complex and how it triggers domain separation remain unclear, however [53].

A recent cryo-EM structure of the RNAP-ops with RfaH in its domain-separated

form shows some important features [54]. For example, the RNAP binding surface on

RfaH-NTD binds the RNAP clamp helices β′CH and the gate loop helix βGL, and

the NTD helices α1 and α2 bind two flipped out ops-bases in the non-template DNA

strand, as shown in Fig. 3.8A. Some of the favorable interactions between RfaH-NTD

and RNAP-ops appear sterically feasible also in an encounter complex with RfaH in a

domain-closed form. For example, the base-specific interactions with the NTD helices

α1 and α2 may be feasible because the site on the DNA strand with the flipped out

bases is relatively exposed. By contrast, interactions involving the RNAP binding

surface are clearly infeasible in such an encounter complex, both because the CTD

(all-α state) masks the binding surface and because the CTD would sterically clash

with RNAP [22].

To see which part of CTD might be subject to repulsion from clashes with RNAP-

ops in the encounter complex, we optimally superimposed the domain-closed form

of RfaH onto the domain-separated form of RfaH found in the RNAP-ops elonga-

tion complex using the structurally conserved NTD, as shown in Fig. 3.8B. We make

two observations: (1) the extended β-hairpin formed by residues 31-52 on the NTD

shows different orientations in the RNAP-ops bound state and the free RfaH state;

(2) the structural overlap resulting from the superposition of the domain-closed RfaH

structure involves mainly α5 on the RfaH-CTD and the clamp helices β′CH and the

gate loop helix βGL, on RNAP-ops, as shown Fig. 3.8C. Interestingly, the overlap-
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Figure 3.8: Binding to RNAP triggers RfaH domain separation and fold switching. (A) Cryo-EM

structure of RfaH bound to RNAP in a paused state (PDB id 6c6s) [54]. Shown are the NTD (green;

the CTD is not shown), the nontemplate DNA strand (blue), and the β’CH clamp helices and the

βGL helices (red). Two flipped out bases on the nontemplate DNA strand interact with the helices

α1 and α2 of the RfaH-NTD and are shown in stick representation. (B) The free domain-closed

form of RfaH (beige) is optimally superimposed onto the domain-separated form of RfaH bound to

RNAP-ops (green; the CTD is not shown). (C) The free domain-closed RfaH, in the same orientation

as in (B), together with β’CH and βGL, which clashes severely with parts of the α5 helix of the

CTD (blue and stick representation).
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ping residues on α5 is roughly the region that exhibits the highest local mechanical

stabilities within the CTD (cf. Figs. 3.6A and 3.8C). A possibility is therefore that

interactions in the encounter complex between domain-closed RfaH and RNAP-ops

are characterized by net attractive interactions with the NTD and net repulsive inter-

actions with the CTD. The resulting opposing forces on NTD and CTD, in combina-

tion with the peculiar mechanical rigidity profile of domain-closed RfaH (see Fig. 3.6),

might help trigger domain separation. A potential way to test this idea experimen-

tally would be to structurally probe the encounter complex between domain-closed

RfaH and RNAP-ops. In this regard, it would be extremely interesting to see if con-

tacts could be detected between α5 and β′CH using NMR spectroscopy, possibly by

artificially stabilizing the all-α CTD fold through cross-linking techniques. Probing

the structure of encounter complexes have been achieved, e.g., using paramagnetic

resonance (PRE) and NMR spectroscopy techniques [55, 56].

Finally, we note more generally that the presence of structural subdomains is an

apparent common property of metamorphic proteins [9]. Typically, one subdomain

is structurally variable, i.e. it switches fold, while the rest of the protein remains

unchanged. This property is exemplified by RfaH, although RfaH might be unique

in that fold switching and domain separation occur together. A protein engineering

study demonstrated that two radically different conformations of a 3-α-helix bundle

protein could be stabilized by different subdomain interactions [16]. Finding novel

metamorphic proteins could therefore be aided by features that identifies subdomains

that are prone to fold switching. For example, Porter and Looger searched for novel

metamorphic proteins based in part on the idea of subdomains are thermodynami-
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cally independent folding units [9]. Such identifying features can be combined with

sequence-based features, such as the inaccuracy [57] and diversity [58] of predicted

secondary structure. Our work here suggests that some subdomains prone to fold

switching might be identified by probing the local mechanical stabilities of protein

structures, as demonstrated for the free form of RfaH in Fig. 3.6. Local mechani-

cal stabilities are relatively inexpensive to obtain computationally. With potentially

as many as 4% of nonredundant proteins in the Protein Data Bank capable of fold

switching [9], most still unidentified, future efforts to discover new metamorphic pro-

teins are likely to be fruitful.

3.5 Conclusion

We have used all-atom Monte Carlo simulations to characterize thermal fluctuations

and structural rigidities in the basins of the two structural forms of the transcription

factor RfaH, in which the CTD is either in an all-α state closely interacting with

the NTD or in an all-β state separated from the NTD. In line with previous experi-

ments, we have found that energetically favorable NTD-CTD interactions are critical

for stabilizing the domain-closed form, validating our computational approach. By

measuring the resistance to local structural deformations by mechanical forces along

the sequence, we have found that domain-closed RfaH can be divided into a struc-

turally rigid part and a structurally soft part. Specifically, the CTD, i.e., the segment

of RfaH undergoing fold switching, is characterized by particularly low structural

rigidities. Mechanical profiling using pulling simulations as carried out here might,

therefore, along with other identifying features, help identify metamorphic proteins.
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Further, we speculate that the special mechanical features of domain-closed RfaH

play a role in triggering domain separation in RfaH upon binding to the ops-paused

RNAP complex. Further experimentation, focusing on the structural features of the

transient encounter complex of RfaH and RNAP, will be necessary to determine to

the precise mechanism underpinning domain separation and fold switching of RfaH.
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[43] G. Favrin, A. Irbäck, and F. Sjunnesson. Monte Carlo update for chain molecules:

biased Gaussian steps in torsional space. J Chem Phys, 114:8154–8158, 2001.

[44] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equation

of state calculations by fast computing machines. J Chem Phys, 21:1087–1092,

1953.

71



[45] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57:97–109, 1970.

[46] J. W. Neidigh, R. M. Fesinmeyer, and N. H. Andersen. Designing a 20-residue

protein. Nat Struct Biol, 9:425–430, 2002.

[47] L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen. Smaller and faster: the

20-residue Trp-cage protein folds in 4 µs. J Am Chem Soc, 124:12952–12953,

2002.
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Abstract

We simulate the folding and fold switching of the C-terminal domain (CTD) of the

transcription factor RfaH using an all-atom physics-based model augmented with a

dual-basin structure-based potential energy term. We show that this hybrid model

captures the essential thermodynamic behavior of this metamorphic domain, i.e., a

change in the global free energy minimum from an α-helical hairpin to a 5-stranded

β-barrel upon the dissociation of the CTD from the rest of the protein. Using Monte

Carlo sampling techniques, we then analyze the energy landscape of the CTD in

terms of progress variables for folding towards the two folds. We find that, below

the folding transition, the energy landscape is characterized by a single, dominant

funnel to the native β-barrel structure. The absence of a deep funnel to the α-helical

hairpin state reflects a negligible population of this fold for the isolated CTD. We

observe, however, a higher α-helix structure content in the unfolded state compared to

results from a similar but fold switch-incompetent version of our model. Moreover, in

folding simulations started from an extended chain conformation we find transiently

formed α-helical structure, occurring early in the process and disappearing as the

chain progresses towards the thermally stable β-barrel state.

4.1 Introduction

Proteins are increasingly being discovered with a remarkable ability to switch between

folds with widely different structures [1–3]. While it is not uncommon for proteins

to undergo large-scale motions after their initial folding, such as domain-swapping [4]

or other hinge-like motions [5], fold switching is a distinct phenomenon. It involves a
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reorganization of the protein at the most basic structural level at play in folding, i.e.,

secondary structure (α-helices and β-sheets). Despite the remarkable complexity of

these molecular transformations, fold switching is reversible and thereby controlled

by the system’s free energy. In this sense, it can be said that metamorphic proteins

adhere to Anfinsen’s thermodynamic principle (or hypothesis) of protein folding [6].

Clearly, however, fold switching fundamentally challenges the idea of a unique native

conformation, which was a central aspect of the classic view of folding since emerging

from the pioneering refolding experiments on ribonuclease A [7]. It is important to

note that fold switching typically occurs only when triggered by specific changes to

the local environment (or milieu) of the protein, such as salt concentration [8], redox

condition [9] or oligomerization state [10]. In the absence of such a trigger, metamor-

phic proteins typically fold to an apparently unique structure, which masks their fold

switching capabilities. As a result, metamorphic proteins often go unrecognized [11].

Metamorphic proteins thus encode two different folds within a single amino acid

sequence even though, as mentioned, they typically adopt a single fold for a given

(constant) local milieu. It is natural, then, to ask: what impact does this dual

encoding have on their folding? This question is in fact related to a classic line of

inquiry in protein folding, namely whether the mechanism of folding is conserved

among homologous proteins or, more generally, among sequences adopting the same

fold [12,13]. It was observed, remarkably, that sequences with low sequence similarity

(but still adopting the same native fold) often fold in a very similar manner [14–16]

however, this conservation breaks down at very low sequence similarity [17] and does

not extend to all fold classes [17–19]. The sequences of metamorphic proteins have
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diverged from their homologs to the point of nearly adopting a new unique fold.

Characterizing the folding of metamorphic proteins may therefore shed light on the

extent to which the amino acid sequence can re-shape the energy landscape within a

single fold. It may also be practically important in the field of protein metamorphism

because any identifying feature, including folding behavior, can be used to discover

as of yet unknown fold switching events [10,11,20].

Here we study the C-terminal domain (CTD) of the transcriptional antiterminator

protein RfaH, a prototypical metamorphic protein [21]. The fold switching exhibited

by this protein has been studied extensively both experimentally [22–25] and com-

putationally [26–33]. The RfaH CTD, on its own, i.e., dissociated or excised from

the rest of the protein, folds spontaneously into a β-barrel-like fold with 5 strands,

as shown in Fig. (4.1). This structure is virtually identical to the CTD structure of

some other members of the NusG/Spt5 family of transcription factors to which RfaH

belongs [34]. However, as part of the full-length RfaH, the CTD adopts instead an

α-helical hairpin [22]. This entirely different folded state is stabilized by favorable

interactions with the RfaH N-terminal domain (NTD) [23]. The switch in structure

from all-α to all-β is triggered when RfaH binds to RNA polymerase in a paused state,

which underpins RfaH’s regulatory function in transcription and translation [24, 35].

From an evolutionary perspective, recent phylogenetics analyses revealed that RfaH

likely evolved from NusG in Proteobacteria through gene duplication and functional

divergence [36].

Simulating the structural transitions of metamorphic proteins on the computer has

the potential for detailed insight but is technically challenging. Some studies have
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Figure 4.1: The two different folds of the C-terminal domain (CTD) of RfaH. Native contacts

in the two folds, determined using the shadow map method [56], are shown as thin lines in the

Cα-traces (left and right) and as solid squares in the contact maps (center). The two contact sets,

denoted Cβ (β-barrel) and Cα (α-helical hairpin), have 13 common contacts (green).

focused on alleviating the formidable problem of achieving sufficient conformational

sampling for these large-scale transitions by various enhanced sampling techniques [26,

28,32,37,38]. This approach assumes, however, an underlying model that accurately

captures the delicate free energy balance between folds. This is not guaranteed even

for modern explicit-water molecular dynamics force fields [39], although it has been

achieved within the framework of a coarse-grained 3-letter protein model [40–42].

Other studies have relied on so-called structure-based models (SBM). The basic idea

of SBMs is to make the contacts present in a given target (typically native) structure

artificially attractive, while non-native interactions are left neutral or even made

repulsive [43]. SBMs can be constructed with several basin of attractions, each one

representing a different target structure. Single-basin SBMs have a long tradition in

protein folding studies [44] and have had notable successes in reproducing detailed

experimental data on specific proteins, such as folding rates [45, 46] and transition-
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state structures [47], despite the ad hoc nature of the approach. Dual- or multi-basin

SBMs are the logical extension to metamorphic proteins, and such models have been

applied to both the CTD of RfaH [27, 30] and the mutation-induced fold switch

between the GA and GB proteins [48,49].

To study the folding and fold switching of the RfaH CTD, we take a hybrid ap-

proach that combines a physics-based model for protein folding with a dual-basin

SBM. We develop this hybrid sequence-structure based model based on its basic

thermodynamic behavior, which we determine using extensive Monte Carlo (MC)

simulations. Hence, we require that this model captures the switch in global free

energy minimum between the two folds of RfaH CTD, depending on whether the

CTD is part of the full-length RfaH chain or an isolated fragment. We also consider a

version of our model with a single-basin SBM that folds the RfaH CTD but does not

exhibit proper fold switching. By comparing closely with this model, we are able to

probe the impact of encoding for two different folds on various features of the energy

landscape of RfaH CTD.

4.2 Materials and Methods

4.2.1 Physics-based computational protein model

All simulations were carried out using the software package PROFASI [50]. The

physics-based model implemented in this package is described in Ref. [51]. Briefly,

the model combines an all-atom protein representation with an effective potential

energy function with 4 terms: E(0) = Eloc+Eev+Ehb+Esc. Geometrically, there are
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some constraints on allowed protein conformations, e.g., fixed bond lengths and bond

angles, such that E(0) is a function only of the Ramachandran (torsional) angles, ϕ

and ψ, determining the backbone conformation, and various sidechain torsional an-

gles, χ, determining the sidechain conformations. Solvent effects are implicitly taken

into account by the energy function. The term Eev implements excluded-volume

between all atom pairs using 1/r12-repulsions. The term Eloc includes interactions

between atoms close along the chain, e.g., between partial charges on neighboring pep-

tide planes, which help provide a good local chain description. The remaining two

terms, Ehb and Esc, represent hydrogen bonding and sidechain-sidechain interactions,

respectively. Hydrogen bonding is implemented through orientationally dependent

attractions between donor and acceptor groups. The term Esc includes both pairwise

interactions between partial charges on sidechains and effective hydrophobic attrac-

tions.

4.2.2 Equilibrium Monte Carlo simulations

To determine the equilibrium (thermodynamic) behavior of the CTD of RfaH, either

as an isolated fragment or as part of full-length RfaH, we used simulated tempering

MC. Simulated tempering is a generalized ensemble MC method that works by allow-

ing a random walk both in conformational space and in temperature space, such that

equilibrium sampling at a set of selected temperatures is obtained in a single run. We

performed sampling in conformational space using three different types of moves: (1)

a pivot move that updates a single Ramachandran ϕ- or ψ-angle; (2) Biased Gaus-

sian Steps (BGS) that work by updating up to 8 consecutive ϕ, ψ-angles such that

80



an approximately local chain deformation is obtained [52]; and (3) a sidechain move

that updates a single sidechain torsional angle, χ. While (1) gives global changes in

conformation, (2) and (3) give local (or small-step) changes. In all our simulations,

the fraction of sidechain moves was held fixed at 59%. In our equilibrium simulations,

the remaining 41 % of moves were divided between pivot and BGS. The BGS move

was not used at the highest simulated temperatures, where the pivot move is highly

effective at enhancing conformational sampling [53].

For the isolated CTD, the thermodynamic behavior (for each strength λ of the

structure-based potential) was determined using 5 or 10 independent simulated tem-

pering runs of each 3×107 MC cycles, where a cycle is 239 elementary MC steps (the

number of turnable ϕ, ψ or χ angles in the protein chain). An exception is λ = 0.30,

for which 20 independent runs were carried out. For the full-length RfaH, the ther-

modynamic behavior was determined using 20 independent runs of at least 1 × 107

MC cycles, where a cycle is 740 elementary steps. In the full-length simulations, the

backbone chain corresponding to positions 1-100 (i.e., the ordered region of the NTD)

was held fixed in its initial (native) conformation by disallowing BGS and pivots in

this region. All sidechains were allowed to move.

4.2.3 Small-step “kinetic” Monte Carlo simulations

Our “kinetic” MC runs of the isolated CTD differed from the simulated tempering

runs in two respects: (1) global (i.e. pivot) moves were turned off; and (2) the

temperature was held fixed. Two different starting conformations were used. Our

folding simulations were started from a rigid extended conformation, obtained by
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setting all backbone dihedral angles to ϕ = 180◦ and ψ = 180◦, followed by a few

MC cycles of relaxation at high temperature to remove any atom-atom clashes. This

starting structure was basically a highly extended, rod-like conformation. Our fold

switching simulations were started from the regularized (see section 2.4) α-helical

hairpin structure (PDB id 2oug).

4.2.4 Representative structures

As representative structures of the two RfaH folds, we used the X-ray structure of

the full-length RfaH with PDB id 2oug [22] and the NMR derived structure of the

isolated CTD with PDB id 2lcl [21]. The missing residues in 2oug, including the

linker region (101-114) and flexible C-terminal tail (157-162), were added back using

a homology modeling tool [54], as described previously [33]. The 2lcl structure of the

isolated CTD was truncated to retain the ordered part (residues 113-162).

Following our previous work [33], we subjected our representative structures to

PROFASI “regularization”, which is a procedure to find an energetically relaxed

model conformation that closely approximates a given experimental structure. Reg-

ularization is necessary because model conformations in our physics-based model [51]

are subject to some geometrical constraints, e.g., fixed bond lengths and bond angles,

(see Section 2.1) that in general are not satisfied by experimental structures. The

regularized model conformations we obtained for 2oug and 2lcl have RMSD values of

1.8 Å and 1.6 Å, respectively, taken over all non-hydrogen atoms in the protein chain.
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4.2.5 Native contact maps

We obtained native contact sets, C = {ij| if residues i and j are in contact}, for the

two regularized model structures (derived from 2oug and 2lcl) by submitting them

to the SMOG webserver [55] with the coarse-graining option “All-atom Calpha” and

otherwise default parameters. At this level of coarse-graining, two residues i and j

are considered to form a contact ij if any atom-atom contact is present between i and

j according to the shadow map algorithm [56]. For the β-barrel structure (2lcl), we

obtained this way a set of 129 native contacts, Cβ. For the α-helical hairpin structure

(2oug), retaining only contacts for which both i and j belong to the segment 115-

156, we obtained a set of 69 native contacts, Cα. The Cα and Cβ contact maps are

shown in Fig. (4.1). In the simulations of the full-length RfaH using the dual-basin

SBM, Cα was replaced with the contact map Cα
RfaH, shown in Fig. (4.4.B), with 157

native contacts. Cα
RfaH includes all contacts in Cα and, in addition, all the NTD-CTD

inter-domain native contacts, i.e., with residue i belonging to the segment 1-100 and

residue j belonging to the segment 113-156.

4.2.6 Observables

The progress variables, Qα and Qβ, are the fraction of the native contacts formed in

Cα and Cβ, respectively (see Fig. (4.1)). In determining Qα and Qβ, a contact be-

tween residues i and j is considered formed if rij < 1.2r0ij, where the distances rij and

r0ij are defined in the text following Eq. (4.2) in section 3.1. The root-mean-square

deviations, RMSDα and RMSDβ, are taken with respect to two representatives (ex-

perimental) structures of the all-α and all-β CTD folds, respectively, and determined
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over Cα atoms. Secondary structure assignments, used for the calculation of α-helix

content, were performed using STRIDE [57].

4.2.7 Correction term for the dual-basin SBM

In our dual-basin SBM, attractions are included between any pair of residues that

form a contact either in the all-α fold (Cα) or in the all-β fold (Cβ). However, there are

13 common contacts in Cα and Cβ, as shown in Fig. (4.1). To avoid the unreasonable

situation that these 13 contacts have strengths up to twice that of all other contacts,

we use the convention that, for each of these 13 contacts, only the most favorable

of the two possible contact energies contributes towards the total energy. This is

achieved by a correction term, included in the potential energy function E(2) of the

dual-basin SBM (see section 3.3), given by

Ecorr(λ
α, Cα;λβ, Cβ) = −ϵ

∑︂
ij

min[λαg(rij, r
α,0
ij ), λβg(rij, r

β,0
ij )] , (4.1)

where the sum goes over the 13 contacts ij that are present in both Cα and Cβ. In

this equation, the distance rij and the function g are defined in the text following

Eq. (4.2) in section 3.1, and the strengths, λα and λβ, are defined in the text following

Eq. (4.5) in section 3.3. The reference distances rα,0ij and rβ,0ij are the values of rij

determined for the all-α and all-β (regularized) experimental structures of the CTD,

respectively.
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4.3 Results and Discussion

4.3.1 Hybrid sequence-structure-based simulation approach

An ideal computational model for simulating metamorphic proteins would be able to

capture the large-scale structural transitions of these proteins and, at the same time,

be computationally tractable. However, as mentioned in Introduction, construct-

ing such a model that relies entirely on sequence information (i.e., a physics-based

model) is challenging at present. We therefore pursue here a hybrid approach in

which an implicit solvent physics-based model is augmented with an SBM. Similar

approaches have been tested before [58–60], although not for the system under study

here. Specifically, we construct the potential energy function of the hybrid model as

a linear combination of the physics-based and the structure-based potentials. Our

aim is to pick the relative strength of the SBM as small as possible, while requiring

that the hybrid model as a whole exhibits a thermodynamic behavior in agreement

with available experimental data.

As our starting point, we use the protein model developed in Ref. [51]. This model

is based on an effective all-atom (solvent free) potential energy function, which in-

cludes terms for the major driving forces of protein structure formation, including

hydrophobic and electrostatic attractions and hydrogen bonding. Parametrization

of this model was done by requiring that a set of 17 different amino acid sequences

exhibit global free energy minima corresponding to their respective experimentally

determined native structures. Interestingly, this “top-down” approach to parameteri-

zation also leads to thermodynamic behaviors, such as melting temperatures, that for
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many of the sequences were in quantitative agreement with experimental data [51].

With this model in mind as a baseline, we formulate a structure-based, or Gō-

like [44], potential, which provides an energetic bias towards a single native structure

encoded as the set of residue-residue contacts present in the structure, C (i.e., the

contact map of the structure). We pick this energy term to have the form

ESB(C) = −ϵ
∑︂
ij∈C

g(rij, r
0
ij) , (4.2)

where the sum goes over all contacts ij in C, ϵ is the energy unit of our baseline

model [51], and rij is the Cβ-Cβ distance between the residues at positions i and j.

In the case of a glycine residue at position i or position j, rij is instead taken to be

the Cα-Cβ distance (if glycine at i only), Cβ-Cα distance (if glycine at j only) or

Cα-Cα distance (if glycines at both i and j). The reference distance r0ij is found by

determining rij for the (native) structure used to obtain the contact map, C. The

quantity g(rij, r
0
ij), where

g(r, r0) = e−(r−r0)2/2ξ2 , (4.3)

measures the extent to which the native contact ij is correctly formed. The width of

the Gaussian function g is controlled by the parameter ξ, which we set to ξ = 1 Å.

Previous work [58–60] that have similarly combined physics-based and SBMs, have

exclusively formulated their SBMs using Cα-Cα distances. Here we primarily use

Cβ-atoms for quantifying native contact formation because we expect that Cβ-Cβ

distances, through the function g(rij, r
0
ij), to provide a higher specificity towards the

native structure.

In the following, we apply Eq. 4.2 to the two different folds of the RfaH CTD. This

gives two structure-based potentials, ESB(C
α) and ESB(C

β), where Cα and Cβ are
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the contact maps of the two experimentally determined structures displayed in Fig.

(4.1). In section 4.3.2, we combine our physics-based model with each term separately

to create two hybrid models in which the SBM has a single basin of attraction. In

section 4.3.3, we combine these potentials into a hybrid model with a dual-basin SBM.

4.3.2 Single-basin SBM

Combining the SBM defined by Eq. 4.2 with our physics-based model results in a

potential energy function of the form,

E(1) = E(0) + λESB(C) , (4.4)

where E(0) is the energy function defined in Ref [51] and λ is the strength of the

structure-based term, which should be seen as a free parameter in this approach.

We apply Eq. (4.4) to the CTD of RfaH, with either C = Cα or C = Cβ (see

Fig. (4.1)). Quite generally, we expect that increasing the relative strength of the

SBM should increase the “nativeness” of the generated conformational ensemble. In

other words, increasing λ should increase Qα in the case C = Cα and increase Qβ

in the case C = Cβ, where Qα and Qβ are the fraction of native contacts formed

with regards to the α-helical hairpin and β-barrel, respectively (see Methods). We

indeed observe such a trend, as shown in Fig. (4.2). However, beyond this general

trend, we find stark qualitative differences. The term ESB(C
β) has a large effect on

the stability of the β-barrel fold. For large enough λ, the melting curves become

characterized by a sharp decrease in Qβ with increasing temperature, indicating a

cooperative transition. Indeed, the height of the heat capacity peak (Cmax
v ) increases

with λ (see Fig. (4.2.C)). Moreover, increasing λ also leads to a shift in the folding
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transition to higher temperatures. As seen from Fig. (4.3.A), this shift is similar, but

not identical, whether the transition is characterized by the midpoint temperature,

Tm, found from fitting the Qβ melting curves to a two-state model (see Fig. (4.2)),

or by the temperature T ∗, defined by Cmax
v . The single-basin SBM applied to the

α-helical hairpin fold (C = Cα) has a much weaker effect on the thermodynamic

behavior. The fraction of native contacts, Qα, does not reach 0.5, even at much lower

temperatures. Strikingly, Cmax
v decreases with increasing λ in this case, highlighting

the lack of a folding transition in the C = Cα case.

The degree of cooperativity in the folding of the β-barrel can be roughly quanti-

fied by the difference ∆T = Tm−T ∗. For a strongly cooperative (all-or-none) folding

transition, the transition midpoint should be basically independent of which precise

structural aspect is used to characterize the transition, i.e., ∆T should be small. In-

deed, we find that ∆T is small for large λ, as shown in Fig. (4.3.B). Substantial

deviations appear only at λ ≲ 0.25. Based on these results, we pick λ = 0.30 as

a reasonable strength of the structure-based term, making the assumption that the

folding of the CTD is cooperative. Practically, we designate the simulated temper-

ature closest to the heat capacity peak as the folding temperature, Tf. Because, for

λ = 0.30, ∆T is very small we have Tf ≈ Tm ≈ T ∗ (see Fig. (4.2.C)).

It must be noted that the potential energy function of the hybrid model, E(1),

does not preserve the energy scale of the underlying physics-based model [51]. As

seen from Eq. 4.4, the scale of E(1) is controlled by the strength λ and the number

of contacts in the contact map, C. Therefore, the physical units for temperature and

energy established in Ref. [51] no longer holds (for λ > 0). A link between real and
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Figure 4.2: Equilibrium behavior of the hybrid model with a single-basin SBM. Shown are results

obtained with the energy function in Eq. 4.4 with (A, C) a β-barrel SBM (C = Cβ), (B, D) an

α-helical hairpin SBM (C = Cα) and a range of strengths λ = 0.20–0.40. As functions of the

temperature: (A) Qβ , (B) Qα and (C, D) heat capacity Cv/kB, where Cv =
(︂⟨︁

E2
⟩︁
− ⟨E⟩2

)︂
/kBT

2,

E is the energy from Eq. 4.4, and kB is Boltzmann’s constant. Solid curves in (A) are fits to the two-

state equation ⟨Q⟩ = (QU +QNK)/(1+K), where K = exp (−∆E(1/kBT − 1/kBTm) and QU, QN,

∆E and Tm (midpoint temperature) are fit parameters. Solid lines between points in (B) are drawn

to guide the eye. Solid curves in (C) and (D) are obtained using multiple-histogram reweighting [61].
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model units can, in principle, be re-established separately for each specific protein to

which E(1) is applied and the particular value of λ used (e.g., by matching the folding

temperatures found in simulations and experiments). In this work, however, we use

the temperature scale arising in our hybrid model, i.e., without re-scaling, while at the

same time making sure that all comparisons with experiments are performed under

at least roughly equivalent conditions (e.g. folding or unfolding conditions).

4.3.3 Dual-basin SBM

We now combine the two structure-based terms, ESB(C
α) and ESB(C

β), into a dual-

basin SBM. Following our general approach, the energy function of the resulting

hybrid model becomes

E(2) = E(0) + λαESB(C
α) + λβESB(C

β)− Ecorr(λ
α, Cα;λβ, Cβ) , (4.5)

where the strengths of the two structure-based terms, λα and λβ, are selected to be

λα = λβ = λ = 0.30 based on the results of the previous section. The last term, Ecorr,

is a correction necessary to avoid double counting common contacts in Cα and Cβ

(see Fig. (4.1)), which receive contributions from both ESB(C
α) and ESB(C

β). The

role of Ecorr is, for each contact present in both Cα and Cβ, to eliminate the weaker

of the two interactions (see Methods).

We apply Eq. 4.5 to the CTD as an isolated fragment and to the full-length RfaH.

For the isolated CTD, we find that Qβ increases with decreasing temperature, as

shown in Fig. (4.4). In other words, despite the dual-basin nature of the SBM

in our hybrid model, the isolated CTD folds into a stable β-barrel at low T . As

a comparison, we show also in Fig. (4.4.A) the results for the single-basin SBM,
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which, interestingly, gives a higher stability compared to the dual-basin SBM. The

simulations of full-length RfaH are carried out in the following way. First, the contact

map Cα in Eq. 4.5 is replaced with Cα
RfaH, which in addition to all contacts in Cα

also includes NTD-CTD interdomain contacts, as shown in Fig. (4.4.B). Second, for

computational reasons, we keep the NTD backbone fixed in its native conformation

while the linker and CTD regions are free to move. All sidechains are also left free.

From these simulations we find that, within the context of the full-length RfaH,

the CTD switches into an α-helix rich state, as shown by the increasing Qα with

decreasing temperature in Fig. (4.4.A).

The temperature dependence of Qα for the full-length RfaH, like the temperature

dependence of Qβ for the isolated CTD, is basically sigmoidal in shape. However, at

low T , Qα for full-length RfaH converges to a lower fraction of native contacts than

Qβ for isolated CTD (cf. Fig. (4.4.A) (left) and Fig. (4.4.A) (right)), suggesting

an incompletely formed α-helical hairpin. To determine if this is the case, we plot

the α-helix content as a function of sequence position at a relatively low T (see Fig.

(4.4.C)). We find that helix α4 (residues 116—130) is significantly less structured

than helix α5 (residues 134—156) in our model. According to the NMR experiments

of Burmann et al. [21] on free RfaH, the segment Val116-Gly121 displays chemical

shifts that are more in line with a random coil state than an α-helix, suggesting that

the 6 N-terminal residues of α4 might be mainly disordered in the solution state.

This segment is indeed particularly poorly structured in our model (see Fig. (4.4.C)).

To correct for this partial lack of structure, we construct an alternative nativeness

measure, Q
(49)
α , which is the same as Qα except that all contacts involving 116-121
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are ignored. Indeed, Q
(49)
α is consistently higher than Qα across all temperatures (at

most 23% higher, seen at the lowest studied T ) indicating that the α-helical hairpin

is formed at low T , with the exception of the N-terminal part of α4, which, in line

with experiments, remain largely unstructured. We note also that poorly formed α-

structure found in the 116-121 region as well as in the C-terminal end of α5 (residues

150-156), is consistent with the hydrogen/deuterium exchange mass spectrometry

(HDXMS) experiments of Galaz-Davison et al. [25].

In our simulations of full-length RfaH, we used the 2oug structure of free RfaH to

represent the NTD. Subsequent structural analysis of the RfaH-DNA complex (PDB

id 5ond; PMID: 29741479) [35] has revealed a one-residue misplacement of the last 17

NTD residues, i.e., the region 84-100 (Irina Artsimovitch, personal communication).

The 84-100 region wholly includes helix α3, which is located at the NTD-CTD inter-

face and interacts with both α4 and α5. The potential misplacement in 2oug could

be corrected for by switching to 5ond as the representative structure of the NTD.

The impact on our results, if any, would presumably be to increase the propensity

for α-helix structure in α4 and α5, due to more favorable energetic interactions with

α3 captured by our physics-based model. Additional simulations would be needed to

confirm this, however. We emphasize that the choice of structural representation of

the NTD has no effect on our simulations of the isolated CTD.

4.3.4 Energy landscape with a single dominant funnel

Having showed that our hybrid model with a dual-basin SBM captures the basic

thermodynamic behavior of the RfaH CTD, i.e., its all-α-to-all-β switch in global
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Figure 4.4: Equilibrium behavior of the hybrid model with a dual-basin SBM. (A) Temperature

dependence of the fraction of native contacts (Qβ or Qα) obtained from simulations of the isolated

CTD (left) or full-length RfaH (right). For comparison, data for the single-basin β-barrel SBM is

re-drawn from Fig. (4.2.A). (B) Native contact map (left) and structure in cartoon representation

(right) of full-length RfaH (PDB id 2oug). Intra-CTD, inter-domain and other native contacts are

shown in blue, yellow and gray, respectively. Blue and yellow contacts make up the contact set,

Cα
RfaH. (C) The average α-helix content as function of sequence position for full-length RfaH, taken

at 420 K (the NTD region, fixed in simulations, is not shown). Q
(49)
α is determined as Qα but taken

over a reduced set of 49 contacts that excludes contacts in the segment Val116–Gly121 (orange

shaded region). All results are obtained with λα = λβ = 0.30.
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free energy minimum upon excision from the rest of the protein, we turn to the

folding of this domain. We first determine the free energy surface F (Qα, Qβ) at

the folding temperature, Tf, as shown in Fig. (4.5.A). At this temperature, one

might expect three distinct free energy minima corresponding to the unfolded state,

which must be populated at Tf, and two ordered states, the all-α fold and all-β folds.

However, there are only two major minima in the Qα-Qβ plane: (1) a low-Qα, low-Qβ

minimum, i.e., the unfolded state; and (2) a low-Qα, high-Qβ, minimum, i.e., the

β-barrel state. Although centered around Qα ≈ 0.2-0.4, the basin of attraction (1)

includes some states with free energies within ≈ 4-5kBT of the basin minimum and

relatively high native contact fractions, Qα ≈ 0.6, and higher still in terms of Q
(49)
α

(see Fig. (4.5.A), inset). These states do not represent a separate funnel towards

the all-α state, however, but are rather characteristics of the unfolded state ensemble

(see section 3.5). The absence of low-energy states competing with the β-barrel fold

is clear from the free energy surface F (E,RMSDβ) in Fig. (4.5.B). Competing states

also do not appear under folding conditions (see Fig. S2). At T < Tf, the population

of the unfolded state decreases as ordered states with lower energies are increasingly

favored. As a result, the energy landscape becomes dominated by a single funnel

toward the β-barrel, as can be seen from the free energy profiles F (Qα) and F (Qβ)

in Fig. (4.6).

Recent computational studies of the RfaH CTD have found energy landscapes

with clear two-funnel character [32, 38], in apparent contradiction with our results.

These studies relied on molecular dynamics simulations with either implicit or explicit

water in combination with advanced sampling and analysis techniques. For example,
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Figure 4.5: Free energy surfaces at the folding transition: single-basin SBM vs dual-basin SBM.

Free energy surfaces F (X1, X2) = −kBT lnP (X1, X2), with (A, B) X1 = Qα and X2 = Qβ or (B,

D) X1 equal to the total energy and X2 = RMSDβ . The probability distributions P (X1, X2) are

obtained at the respective Tfs of the models, i.e., (nominally) 377 K for the dual-basin SBM and

384 K for the single-basin (β-barrel) SBM.
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(B) Qβ for our hybrid models with dual-basin (solid curves) or single-basin (dashed curves) SBMs,

taken at T ≈ 0.96Tf.

Bernhardt et al. [38] achieved enhanced sampling using a Hamilton replica-exchange

method that couples their physical model to a Gō potential, which seeds the sampling

of conformational space. It is possible that these types of techniques are able to

detect fine features of the energy landscape that are not apparent in our calculations.

However, the lack of a major competing minimum in the energy landscape of the

isolated CTD is consistent with [1H,15N]-HSQC NMR data [21]. Upon protease-

induced cleavage of the NTD-CTD linker, thus releasing the CTD into the solution,

Burmann et al. [21] observed the emergence of the spectra from the β-barrel fold

and a complete disappearance of the spectra from the α-helical hairpin. Although

the α-helical hairpin is clearly encoded in the amino acid sequence of the CTD, these

experimental results limit the possible “depth” of this funnel and hence its significance

in comparison with the large number of other local minima that are present in any

protein energy landscape.
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4.3.5 Impact of encoding for two folds on the unfolded state

To delineate the impact of the fold switching capability of the CTD on its folding, we

compare the results we obtained using the dual-basin SBM with those using the single-

basin SBM (applied to the β-barrel contact map, i.e., C = Cβ). Both hybrid models

fold the CTD into a stable β-barrel (see Fig. (4.4.A)), but only the dual-basin SBM

exhibits proper fold switching. We therefore reason that differences between the two

folding energy landscapes can be attributed to the unique fold switching capability

of the CTD.

While the differences between the two free energy surfaces F (Qα, Qβ) at Tf (see

Fig. (4.5.A) and (4.5.C), obtained for the single- and dual-basin SBMs, are not large,

it is interesting to examine them in detail. We find that, for the single-basin SBM,

the unfolded state is characterized by a rather narrow minimum, especially in the Qα

direction. For the dual-basin SBM, the unfolded state is much broader in the this

direction, indicating relatively large fluctuations in Qα. Because many of the native

contacts in Cα are local, including i, i+4-contacts (see Fig. (4.1)), these fluctuations

suggest the presence of α-helix structure in the unfolded state. Indeed, we find that

the α-helix content in the unfolded state, as defined byQβ < 0.5, is significantly higher

for the dual-basin SBM (12.3± 0.7 %) than for the single-basin SBM (1.4± 0.1 %),

as quantified by STRIDE [57]. Hence, the main effect of encoding for the α-helical

hairpin within the hybrid model with a dual-basin SBM, is the appearance of residual

α-helical structure in the unfolded state, U.

In states other than U, the difference between the two hybrid models is much

smaller, which is most easily seen from the free energy profiles in Fig. (4.6). At
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large Qβ, the shapes of the two F (Qβ) curves are remarkably similar. This similarity

is likely a consequence of the high structural dissimilarity of the two folds; contacts

unique to the α-helical fold are either highly unstable or otherwise impossible to

form due to topological constraints, once folding has progressed towards the β-barrel

beyond a certain point (roughly Qβ ≈ 0.5).

4.3.6 Is there an activation barrier to the all-α-to-all-β fold

switch?

Although we find in our hybrid approach, with a dual-basin SBM, a dominant funnel

to the β-barrel fold, conformations sufficiently close to the α-helical hairpin will, by

construction, be energetically biased towards this attractor. Therefore, a conforma-

tion prepared in this all-α state might still need to overcome an activation barrier

before it can proceed downhill the energy landscape towards the β-barrel native state.

Such a situation might occur in vivo when RfaH binds to RNA polymerase, which

triggers the CTD to dissociate from the NTD [24].

In order to explore the potential barrier of fold switching in the all-α-to-all-β direc-

tion, we carry out small-step “kinetic” MC simulations (see Methods). We consider

two different starting points: (1) the α-helical hairpin and (2) an extended, open con-

formation. The temperature is held fixed at T = 365 K, at which the β-barrel is the

thermodynamically dominant state (see Fig. (4.4.A)). Hence, both starting points

should eventually transform into the β-barrel fold, although the timescales of the two

transformations could differ. These two sets of simulations started from points (1)

and (2) probe the fold switching and folding of the RfaH CTD, respectively.
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In Fig. (4.7.A) and B, we show the relaxation of the α-helix content, ⟨α⟩, and

the fraction of native contacts, ⟨Qβ⟩, where ⟨⟩ indicates an average taken over 100

independent runs, towards their respective equilibrium values at this T , i.e., ⟨α⟩equil =

0.02±0.01 and ⟨Qβ⟩equil = 0.71±0.01. In terms of Qβ, the folding simulations, which

start at Qβ = 0, rapidly “overtake” the fold switching simulations. This behaviour

indicates some degree of kinetic trapping early in the fold switching process. However,

the associated barrier cannot be large because the two sets of simulations become

statistically indistinguishable at around 1-2 million MC cycles, when ⟨Qβ⟩ is still far

from its equilibrium value. A convergence of the two sets of simulations occurs also

in terms of ⟨α⟩ at roughly the same point.

Interestingly, and perhaps surprisingly, the folding simulations exhibit an initial

increase in α-helix structure content to a maximum of ⟨α⟩ ≈ 0.20, and thereafter a

much slower decrease following closely the trend of the fold switching simulations.

This gradual decrease comes from the conversion of more and more of the trajectories

into the β-barrel fold. Taken together, these simulations suggest a fold-switching

process from the α-helical hairpin state (Nα) to the β-barrel state (Nβ) proceeding

as Nα → U → Nβ, where U is the unfolded state.

This basic scheme is confirmed when examining in more structural detail individual

fold switching events. Figure (4.8) shows RMSDα and RMSDβ as functions of MC

time for a typical fold switching trajectory, where RMSDα and RMSDβ are the root-

mean-square deviations taken with respect to the representative all-α and all-β CTD

structures, respectively. After only a few MC cycles, RMSDα increases rapidly, and

the chain settles into an intermediate state with large conformational fluctuations.
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Figure 4.7: Folding and fold switching of the RfaH CTD. Evolution of the α-helix content, ⟨α⟩,

and the fraction of native contacts, ⟨Qβ⟩, in small-step MC simulations started in either the α-

helical hairpin fold (purple circles) or in an open (rod-like) chain conformation (green triangles).

The average ⟨⟩ is taken over 100 independent trajectories. Results are shown for our hybrid model

(A and B) with the dual-basin SBM at T = 365 K and (C and D) with the single-basin SBM at

T = 375 K. Equilibrium values for the respective models and temperatures are indicated with dashed

horizontal lines. Error bars show standard errors calculated over the 100 trajectories.
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Residual α-helical structure are found upon inspection of conformations in this state,

as shown in Fig. (4.8). Eventually, the chain switches abruptly to an all-β state,

characterized by low RMSDβ values and much smaller fluctuations. Overall, we find

that, of all the trajectories that switch folds within the simulation time (47 out of

100), none proceeds directly from the all-α state to the all-β state but instead proceed

via an intermediate state. Because of the presence of residual α-helix structure and

large structural fluctuations, we identify this intermediate state with the unfolded

state, U.
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Figure 4.8: Example of a fold switching trajectory. Evolution of the root-mean-square deviation

determined with respect to the α-helical hairpin structure (RMSDα, PDB id 2oug) or the β-barrel

structure (RMSDβ ; PDB id 2lcl), for one of the 100 dual-basin SBM fold switching runs in Fig.

(4.7).

We also examine the question of what underpins the formation of transient α-

helix structure during the folding of the CTD. Although our hybrid model is based
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in part on structure, ultimately it is (in Nature) the sequence of the CTD that de-

termines its conformational behavior. In this regard, it is interesting that the CTD

of RfaH and the CTD of RfaH’s fold-switch incapable paralog NusG have a low se-

quence identity (16%, based on the sequence alignment given Shi et al. [23]). To

explore the extent to which our physics-based model, on its own, is able to capture

the sequence-encoded conformational preferences of the RfaH CTD, we apply this

model (i.e., our hybrid model with λ = 0) to the chain segments corresponding to

helix α4 (residues 116–130; VIITEGAFEGFQAIF) and helix α5 (residues 135–155;

GEARSMLLLNLINKEIKHSVK) of the CTD all-α structure. We find α-helical struc-

ture formation for the α5 segment but not for the α4 segment (see Fig. S3). At

25◦C, the average α-helical contents are 0.03 ± 0.01 for α4 and 0.43 ± 0.03 for α5.

Parts of the α5 segment must therefore be converted to β-structure through coop-

erative effects during folding. These results for these segments could be tested by

biophysical characterization using, e.g., circular dichroism. However, in our hybrid

model, at the chosen strength λ = 0.30, the SBM part of the energy function likely

plays a major role in determining conformational preferences. This can be seen from

Fig. (4.7.C), which shows that folding simulations of the CTD obtained with the

single-basin SBM (i.e., no structure-based bias towards the all-α fold) exhibit very

low amounts of α-helical structure.

Finally, we note an interesting difference in the relaxation behavior between the

single- and dual-basin SBMs (cf. Fig. (4.7.B) and Fig. (4.7.D)), namely the slower

relaxation exhibited by the dual-basin SBM. This difference indicates a higher degree

of “roughness” in the energy landscape of the dual-basin SBM, presumably as a
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consequence of the conflicting conformational preferences built into this model.

4.4 Conclusions

Metamorphic proteins are often discussed in terms of an energy landscape with two

separate and “coexisting” funnels in order to rationalize their ability to adopt two dif-

ferent folds. However, most naturally occurring metamorphic proteins adopt a unique

fold under a given constant local environment and switch to a different fold only upon

a change in the environment. To examine the energy landscape of the CTD of RfaH,

we developed and tested a hybrid all-atom model that combines a physics-based model

with a dual-basin structure-based potential (dual-basin SBM). We showed that this

model captures the required change in global free energy minimum upon the excision

of the CTD from RfaH. Applying this model to the isolated CTD, we found an energy

landscape that is characterized by a single dominant funnel towards the β-barrel fold,

with no sign of a second funnel towards the α-helical hairpin fold. Our model thus

suggests that a multifunneled energy landscape cannot be assumed for metamorphic

proteins. Further, we found a relatively high α-helix content in the unfolded state

of the CTD. Such α-helical structure was largely absent in our hybrid model with a

single-basin SBM. Biophysical characterizations, e.g., using circular dichroism, of the

CTDs of RfaH and other members of the general NusG family of transcription factors

under weakly unfolding conditions, would provide an interesting experimental test of

the computational results of this work.
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N-terminal domain of RfaH on

domain dissociation and fold

switching
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Abstract

RfaH is a two-domain metamorphic protein involved in both gene regulation and

enhancement of translation. Its dual functions rely on two key characteristics: domain

separation and fold switching of its C-terminal domain (CTD). In the free state, the

CTD is in an all-α state; when RfaH binds to RNA polymerase (RNAP), the CTD

completely transforms into an all-β state separated from the NTD. However, the

mechanism of domain separation in the RfaH protein is unknown. Here we hypoth-

esize that a change in the relative orientation of the extended hairpin in the NTD

(β3-β4), which occurs upon binding to RNAP, can trigger the CTD to dissociate

from NTD. To test this hypothesis, we build a RfaH structure with remodeled ex-

tended hairpin using a homology modelling tool (structure H1). We use an all-atom

physics-based model enhanced with a dual-basin structure-based potential to simu-

late domain separation driven by unfolding of the CTD under condition with NTD

fixed in its folded state. We apply the model to both free RfaH and H1. In line with

our hypothesis, we find that the CTD has a reduced stability for model H1 compared

to free RfaH. We also studied the reverse fold switching; we use fixed NTD with

all-β CTD and analyze the secondary structure of the CTD during the reverse fold

switching from the all-β state to the all-α state.
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5.1 Introduction

As increasing number of proteins are being discovered with an ability to switch from

one native state to another [1–4]. One of the best-studied examples is RfaH, which

is a protein involved in the regulation of transcription and translation in Escherichia

coli [4–6]. In isolation, this protein adopts a fold in which the C-terminal domain

(CTD) adopts a helical hairpin that is tightly packed against the N-terminal domain

(NTD). It has been shown that when the NTD and CTD dissociate, the CTD spon-

taneously transforms into a β-barrel fold [6]. This can be achieved in vitro, e.g, by

cutting the flexible linker that connects the NTD and CTD with an enzyme. It is

known that in the E. coli cell, the two domains dissociate when the RfaH molecule

interacts with RNA polymerase (RNAP). However, the mechanism that triggers do-

main separation is unknown [6,7].

Three dimensional structures of RfaH have been determined experimentally in the

protein’s free state (PDB id 5ond) using X-ray crystallography [5] and in its fold-

switched state bound to RNAP (PDB id 6c6s) using cryo-electron microscopy [8]. No

structural information exists so far for the bound state of RfaH before fold switching

has occurred. It has been suggested that RfaH forms an encounter complex upon

initial binding to RNAP, which finalizes domain dissociation. [9]. Interestingly, a

structural comparison of these two structures (5ondA and 6c6s) reveals changes to

the NTD as we and others have noted previously [6, 7, 10]. One of these differences

is the orientation of the extended β3-β4 hairpin (approx residues 31–52) of the RfaH

NTD, as shown in Fig. (5.1.A). Fold switching of the CTD has been heavily studied

experimentally [6,11–13] and through simulations [14–21]. However, most simulation
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studies have focused on the isolated CTD.
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Figure 5.1: RfaH states and contact maps. (A) Two different structures of the α-state of RfaH:

the experimentally determined structure of free RfaH (pdb id 5ond in vermilion) and a hypothetical

structure of RfaH in the RfaH/RNAP encounter complex (H1 in blue). (B) Model structure H2 of the

β-state of RfaH, in which the β-barrel structure of the isolated CTD (pdb id 2lcl) is combined with

the free RfaH structure (5ond) from the free form of RfaH. H1 and H2 are created using homology

modeling as described in Methods. (C) Native residue-residue contacts within the CTD (residues

113-162) for the structures 5ond, H1 (above the diagonal) and H2 (below the diagonal), and between

the NTD and CTD for 5ond and H1. Contacts within the NTD are identical for all three structures

and not shown. In this work we apply our all-atom hybrid model for fold switching [10] to the 5ond

and H1 structures, creating computational models for the free RfaH state and for RfaH in the state

H1 (“model H1”).

Here we focus on two potential effects of the NTD for RfaH fold switching; (1)

the dissociation of the two RfaH domains, and (2) the reverse fold switch, i.e., the

transformation of the CTD from the all-β to the all-α state. In particular, we focus

on the mechanism that triggers fold switching. One recent study by Galaz-Davison et

al, explains the key role of the NTD in stabilizing the transformation of RfaH from an

α-hairpin to a β-barrel structure upon binding with RNAP using memory potential

terms [22].
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Based on the structural changes of the NTD, our working hypothesis is that the

change in the orientation of the extended hairpin upon binding to RNAP plays a role

in controlling the “affinity” between the CTD and NTD. To test this hypothesis, we

construct the structural model H1, a chimera between 5ond and 6c6s (see Fig. 5.1,A).

This structure is almost identical to the free form of RfaH (5ond) in all regions of

the chain except the β3-β4 extended hairpin, which has an orientation taken from

the final bound form (6c6s). The idea is that structure H1 might represent some

structural aspects of the RfaH encounter complex. We compared simulations of the

free RfaH and the H1 in terms of the stability of the CTD.

To study the reverse fold switching, we construct another homology modeling

structure H2, with NTD taken from the 5ond structure [5] and CTD from the 2lcl

structure [7]. The structure H2 represents the state of RfaH just after the dissociation

from RNAP. During the subsequent β-to-α fold switch, CTD must eventually contact

the NTD in order to form the close interface present in the α-state of RfaH. We

examine, in particular, the role of the NTD for this process.

5.2 Materials and Methods

5.2.1 Homology modeling

The H1 structure is created from the two experimental structures 6c6s and 5ond in

the following way. First, 6c6s and 5ond are optimally superimposed, i.e. the root

mean square deviation (RMSD) is minimized over all rigid-body translations and

rotations of one of the chains. In this superposition, RMSD is determined only over
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the segments 2-29 and 54-99, which are selected because they are the most conserved

regions between the structures. A PDB file is then created by combining fragments

from the two structures: segments 1-29, 54-99, and 115-162 are taken from 5ond, while

31-52 extended hairpin region is taken from 6c6s. Finally, these structural fragments

are used to create a complete full-length structure H1 using the homology modelling

tool MODELLER [24] (see Fig. (5.1.A)). The structure H2 is created similarly by

combining residues 1-99 from 5ond and 113-162 from 2lcl.

5.2.2 Computational protein model

All simulations were carried out using the hybrid model developed in Ref [10]. This

model is a hybrid model in the sense that it combines the physics based model in

the software package PROFASI [25] and a dual-basin structure-based model (SBM)

or Gō-like model [26]. The dual-basin nature of the model means it includes bias

towards two different reference structures.

In our model for the free RfaH state, the two reference structures are 5ond and

H2. The model for the RfaH state with an altered extended hairpin orientation is

constructed using the two reference structures H1 and H2. We refer to these as our

model for the free RfaH state and model H1.

The PROFASI package is a simulation model for all-atom protein system with

four energy terms: E(0) = Eloc + Eev + Ehb + Esc. Conformationally, there are some

restrictions on protein structures e.g. fixed bond lengths and bond angles, and E(0)

is a function only of the backbone torsional angles, ϕ and ψ, and various sidechain

torsional angles, χ. The local term Eloc includes interactions between atoms close
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along the mainchain with partial charges and provides a proper local description of

the protein chain. The Eev is the excluded-volume energy term arising from repul-

sion energy (1/r12) between all atom pairs. The remaining two terms, Ehb and Esc,

which, respectively, represent hydrogen bonding and sidechain-sidechain interactions,

underpin the main structure formation. Hydrogen bonding is implemented through

directionally dependent explicit attractions between donor and acceptor groups. The

term Esc includes both effective hydrophobic attractions and pairwise interactions

between sidechain charges. In this way, solvent effects are implicitly considered by

the energy function.

The dual basin SBM provides two energetic biases towards to the two native struc-

tures with all-α CTD and all-β CTD encoded as sets of residue-residue contacts

present in each structure as shown in Fig. (5.1.A and B). The structure-based poten-

tial can be written

ESB = λαESB(C
α) + λβESB(C

β)− Ecorr(λ
α, Cα;λβ, Cβ) , (5.1)

where the Cα and Cβ are contact map sets for native states all-α CTD and all-β CTD,

respectively (see Fig. 5.1.C). λα and λβ are the strengths of the two structure-based

terms (λα = λβ = 0.3). The last term, Ecorr, is a correction term to avoid double

counting the energy of common contacts in Cα and Cβ. The hybrid model combines

the physics-based model and the dual basin SBM such that simulations are carried

out with the energy E = E(0) + ESB [10].
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5.2.3 Equilibrium Monte Carlo simulations

To characterize the equilibrium behavior of the CTD of RfaH as part of full-length

RfaH, we used ordinary fixed temperature Metropolis MC. We performed sampling by

allowing a random walk in conformational space using three different types of moves:

(1) a pivot move that updates a single Ramachandran ϕ- or ψ-angle; (2) Biased

Gaussian Steps (BGS) that work by updating up to 8 consecutive ϕ, ψ-angles such

that an approximately local chain deformation is obtained [27]; and (3) a sidechain

move that updates a single sidechain torsional angle, χ. While (1) gives global changes

in conformation, (2) and (3) give local (or small-step) changes. In all our simulations,

the fraction of sidechain moves was held fixed at 58%. In our equilibrium simulations,

the remaining 42 % of moves were divided between pivot and BGS [28].

For both free RfaH and the H1 structures, the thermodynamic behavior was de-

termined using at least 10 independent runs of each 1× 107 MC cycles, where a cycle

is 560 elementary MC steps (the number of turnable ϕ, ψ or χ angles in the protein

chain). For both structures, the backbone chain corresponding to positions 1-100 (i.e.,

the ordered region of the NTD) was held fixed in its initial (native) conformation by

disallowing BGS and pivots in this region. All sidechains were allowed to move.

5.2.4 Small-step “kinetic” Monte Carlo simulations

Our “kinetic” MC runs of the chimeric structure H2 differed from the equilibrium

simulations runs, in that the global (i.e. pivot) moves were turned off. The small-

step “kinetic” simulation is suitable for fold switching simulations. Our fold switching

simulations started from the regularized H2 structure, Fig. (5.1.B)
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5.2.5 Native contact maps

The native contact sets C = {ij| if residues i and j are in contact }, are obtained by

submitting three regularised model structures (derived from free RfaH, H1, and H2)

to the SMOG webserver [31] with the coarse-graining option “Calpha” and otherwise

default parameters. In these contact sets, if there is atom-atom contact between two

residues i and j according to the shadow contact map algorithm [32], two residues i

and j are considered to form a contact ij.

For the 5ond structure, we obtain a set of 137 native contacts with 58 contact

in α-helical hairpin in CTD (Cα) and 79 NTD-CTD inter-domain contacts (contacts

with residue i in segment 1-100 and residue j in the segment 113-156). For the

H1 structure, there are 120 native contacts, and the difference between 5ond and

H1 contacts is in inter domain contacts that are between extended hairpin in NTD

(residues 30 to 53) and CTD. Thus, there are 58 contacts in α-helical hairpin in

CTD (Cα) and 62 NTD-CTD inter-domain contacts. NTD-CTD inter-domain native

contacts, i.e., with residue i belonging to the segment 1-100 and residue j belonging

to the segment 113-156. For the β-barrel structure (2lcl), we obtained this way a set

of 130 native contacts, Cβ. The contact maps are shown in Fig (5.1.C).

5.2.6 Observables

The variable Qα is the fraction of 46 contacts within residues 122-162 of Cα (native

contacts α-helical CTD for both 5ond and H1 structures), and Qβ is the fraction of

Cβ (native contacts of β-barrel CTD for 2lcl structure). The Qα and Qβ measure

how much the structure folds toward the all-α and all-β native states, respectively
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(see Fig. (5.1.C)). Qα excludes some native contacts in the NTD part of α4, which

is known to be disordered in solution [10]. To calculate Qα and Qβ we consider a

contact between residues i and j in CTD as a formed contact if rij < 1.2r0ij, where r
0
ij

and rij are distances in the native state and extracted configuration in a given MC

cycle, respectively.

The root-mean-square deviations, RMSDα and RMSDβ, are measured over Cα

atoms and are taken with respect to two representative structures of the all-α (5ond-

CTD) and all-β CTD (2lcl) folds, respectively. Secondary structure assignments, used

for the calculation of α-helix and β-barrel content, were generated using STRIDE [33].

Domain-domain distance measures the distance between the C-alpha atom of

residues Phe56 and Gly135 that, respectively, are close to the center of mass of 5ond-

NTD and 2lcl-CTD in their folded states.

5.3 Results and discussion

5.3.1 Role of the NTD extended hairpin for CTD stability

We start by comparing the thermodynamic stability of the CTD in the context of

two different NTD conformations represented by the free form structure (5ond) and

our H1 structure. To do this, we carry out equilibrium simulations using our hybrid

all-atom model in which the NTD backbone is held fixed. The NTD conformation is

taken to be either in the 5ond or H1 conformation. Hence, in these simulations, CTD

is able to fold and unfold while the NTD remains folded. We can determine a midpoint

temperature for this folding-unfolding transition. From a physical perspective, these
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folding simulations correspond to thermal unfolding experiments of free RfaH in which

the NTD is kept stable with covalent cross-links.
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Figure 5.2: Impact of the NTD structure on the stability of the all-α CTD state. Shown is

the temperature dependence of the fraction of CTD native contacts, obtained from equilibrium

simulations of our model for the free RfaH state (squares; vermilion) and our model for the H1

state (circles; blue). Solid curves in are fits to the two-state equation ⟨Q⟩ = (QU +QNK)/(1 +K),

where K = exp (−∆E(1/kBT − 1/kBTm) and QU, QN, ∆E and Tm (midpoint temperature) are fit

parameters. According to the two state model, midpoint temperature for free RfaH and H1 are

410K, and 380K, respectively.

Burmann et al. [7] utilized NMR experiments on unbound RfaH and discovered

that the Val116-Gly121 section had chemical shifts indicating it was more similar to

a random coil than an α-helix. This suggested that the first six residues of helix α4

were mostly disordered in the solution phase. Similarly, the same segment was also

poorly structured in the model presented in this study (see Fig. S3). To address
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this, we used Cα contacts except that all contacts involving residues 116-121 were ex-

cluded in Qα to measure the nativeness of α-helical state. This measure consistently

demonstrated higher values than the fraction of all native α contacts at all temper-

atures, indicating that the α-helical hairpin is formed at low temperatures, with the

exception of the N-terminal portion of α4, which, in agreement with the experiments,

remains largely unstructured. The formation of a weak α-structure in the 116-121

region, as well as in the C-terminal end of α5 (residues 150-156), is consistent with the

hydrogen/deuterium exchange mass spectrometry (HDXMS) experiments conducted

by Galaz-Davison et al. [13].

According to the temperature dependence of the fraction of native contacts, the

midpoint temperatures for 5ond and H1, respectively, are 410K and 380K, as shown in

Fig.(5.2,A). These results show that when the extended hairpin in the RfaH protein

adopt a new bent conformation, the CTD domain becomes unstable in comparison

with the 5ond structure. It should be mentioned that the midpoint temperature that

we obtain for H1 is close to the isolated β-strand CTD, which is 375K [21].

In Fig.(5.2,B), we measure the temperature dependence of domain-domain distance

between the NTD and CTD, which shows that NTD-CTD detachment occurs at a

lower temperature for H1 than free RfaH. Overall, the above research is in line with

our hypothesis that the orientation of the extended hairpin plays a significant role in

triggering domain dissociation.
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5.3.2 Energy landscape for free RfaH and H1

Having shown, in line with our hypothesis, that the structural change from 5ond to

model H1 leads to reduced stability of the CTD, we turn to study the free energy

landscape in the two different states.

We first determine the free energy profile F (Qα) at the midpoint temperature Tm

as shown in Fig. (5.3). For free RfaH, at Tm, there are two minima corresponding to

the unfolded state (low-Qα) and the all-α fold (high-Qα), with a free energy barrier

separating the states. However, for the H1 model, there is one minimum stretching

over a range of Qα. Significantly, the small free energy barrier between unfolded state

and all-α fold in free RfaH disappears in the H1 model.
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Figure 5.3: Free energy profiles in midpoint temperature. Free energy as function of Qα for our

hybrid models of free RfaH (vermilion) and H1 (blue) with dual basin SBM, taken at their respective

midpoint temperatures, T = 410K and T = 380K.
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Additional insight can be gained from the free energy surface F (Qα, Qβ) at Tm. As

shown in Fig. (5.4.A), for free RfaH, there are two free energy minima at Tm, which

respectively correspond to the unfolded state (low-Qα, low-Qβ ), and all-α fold (high-

Qα, low-Qβ ). For the H1 model, there is one minimum in free energy, which stretches

from low-Qα to high-Qα (see Fig. (5.4.B)). There is no minima at Qβ ≈ 0.7 − 0.9,

which are the values of Qβ that correspond to a fully formed β-barrel state [10].

Hence, no complete fold switching in the α-to-β direction occurs in these simulations.

However, a shallow free energy minimum at Qβ ≈ 0.3 − 0.5 appears for model H1

indicating some tendency towards fold switching for this model. Interestingly, the

midpoint temperature Tm = 380 K for model H1 is close to the folding temperature for

the isolated CTD (375 K) [10]. Some refolding into the β-barrel state would therefore

be expected in our model, if the CTD chain were fully detached from NTD at low

enough temperature. A transition of the CTD into the β-barrel state may therefore

be hindered by interactions with the hydrophobic binding surface on NTD, which is

also the binding site for RNAP. Indeed, the domain-domain distance is only slightly

larger at 380 K than at lower T where the folded helical hairpin state dominates,

indicating an incomplete separation between the domains even at T ≈ Tm.

Taken together, these results indicate that the change in orientation of the extended

hairpin alone is not sufficient to trigger a transformation into the β-barrel fold. It

may also be required that the NTD binding surface be engaged with another partner

molecule, such that this large hydrophobic surface can be hidden. Such an engagement

could be achieved in vivo by the binding of the NTD binding surface to the tip of the

two coiled-coil helices in the β clamp domain of RNAP, as in the final bound state of
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RfaH [15]. In some simulations starting from the H1 we observed fold switching from

all-α state to partially folded β state (see Fig. (5.5)).
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Figure 5.5: Example of a fold switching trajectory in the model H1 with a partial transition to

the all-β CTD state. The red and blue lines are fractions of α and β contacts, respectively.

5.3.3 Reverse fold switching

For studying the reverse fold switching, we initialize the system in the β state and

carry out simulations using the free RfaH model at a temperature T < Tm, i.e.,

under conditions where the α state is thermodynamically stable. We use small-step

“kinetic” Monte Carlo simulations in order to mimic the time dependence of this

process. The idea is to study how the CTD switches its fold from the all-β state to

the all-α state in the presence of folded NTD.

Fig (5.6.A) shows RMSDα and RMSDβ as functions of MC time for a typical

reverse fold switching trajectory where RMSDα and RMSDβ are, respectively, the
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root-mean-square deviations taken with respect to the representative all-α and all-β

CTD structures. After 3.5 × 106 MC cycles, there is a jump in RMSDβ from ≈2 Å

to a state with RMSDβ ≈10-12 Å and at 4.2× 106 MC cycles there is another jump

to RMSDβ ≈15-30 Å. The last transition is a transition from a partially folded state

to an intermediate state, I. Because of the large fluctuations in both RMSDα and

RMSDβ, it is clear that this intermediate state is highly disordered. Finally, after

7.5× 106 MC cycles, the CTD transitions from I into the all-α state.

For more detail, we can see the time evolution of secondary structures in the

reverse fold switching. As shown in Fig.(5.6.C), the first jump in RMSDβ belongs

to the unfolding of β1 and β5, which happen at the same time. Structurally, this

means an opening of the β-barrel structure, which aligns with the results from Galaz-

Davison et al. [?,22]. As seen in Fig.(5.6.B), after this transition, the domain-domain

distance exhibits a sudden decrease in the size of fluctuations at 3.6× 106 MC cycle,

suggesting the CTD enters a bound state with NTD, although with brief visits to

larger domain-domain distances. Without having a significant change in RMSD and

secondary structure between 3.6×106 to 3.9×106 MC cycles, the CTD becomes closer

to the NTD and sticks to the NTD at 3.9× 106 MC cycle. In this intermediate state,

the CTD is close to the NTD, and there are brief formation of various local secondary

structure elements, including in the α4 and α5 regions. Finally, the CTD folds to the

all-α states with low RMSDα, a well ordered α5, and even smaller domain-domain

distances.
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Figure 5.6: Example of a reverse fold switching trajectory. Time evolution of (A) the root-mean-

square deviation determined for the CTD and taken with respect to the α-helical hairpin structure

(RMSDα, PDB id 5ond) or the β-barrel structure (RMSDβ ; PDB id 2lcl), (B) the domain-domain

distance (see Methods), and (C) secondary structure elements at different positions along the chain,

including the linker region (residues 100-112) and the CTD (residues 113-162).
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5.4 Conclusion

We have used Monte Carlo simulations and an all-atom hybrid model [10] to study

domain dissociation and β to α fold switching in the transcription factor RfaH. The

RfaH protein adopts a unique fold under a given constant local environment, and its

CTD switches its fold upon a change in the environment from an all-α state closely

interacting with the NTD to an all-β state separated from the NTD. We have a

hypothesis that changing the relative orientation of the extended β3-β4 hairpin upon

binding to RNAP could sufficiently change the environment for CTD to switch its

fold. To test this hypothesis, we built a chimera structure H1 and compared its

characteristics with free RfaH. Applying our computational model to both the H1

structure and free RfaH, we found the midpoint temperature for H1 is much smaller

in our model than free RfaH, and it is close to the midpoint temperature of isolated

CTD. At the midpoint temperature, the H1 simulations exhibit a higher β content

than the free RfaH simulations. Further, we studied the reverse fold switching of the

CTD in a condition that the NTD is fixed in the free RfaH state. These simulations

suggest a specific order of unfolding of the secondary structure elements in CTD,

before refolding into the α state takes place.
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Chapter 6

Simulations of a protein fold switch

reveal crowding-induced

population shifts driven by

disordered regions
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Abstract

Macromolecular crowding effects on globular proteins, which typically adopt a sin-

gle stable fold, and intrinsically disordered proteins, which lack a stable fold, have been

widely studied. However, much less is known about crowding effects on fold-switching

proteins, a class of proteins characterized by their ability to reversibly switch between

distinct folds. Here we study the mutationally driven switch between the folds of GA

and GB, the two 56-amino acid binding domains of Streptococcal Protein G, using a

structure-based dual-basin model and Langevin dynamics sampling. We show first

that, in the absence of crowders, the fold populations PA and PB are controlled by

the strengths of native contacts in the two folds, κA and κB. A population balance,

PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein, which we

denote G∗
AB, is then subject to crowded conditions with different packing fractions,

ϕc. We find that the presence of crowders promotes the GB population and reduces

the GA population, reaching PB/PA ≈ 4 at ϕc = 0.39. We analyze the ϕc-dependence

of the crowding-induced GA-to-GB fold switch using scaled particle theory (SPT).

SPT provides a qualitative, but not quantitative, fit of our data, suggesting effects

beyond a spherical description of the folds. We prove that the terminal regions of the

chain, which are intrinsically disordered only in the GA fold, play a dominant role in

determining the response of the fold switch to crowding effects.
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6.1 Introduction

Most globular proteins rely on a single fold to carry out their function. However,

recently proteins have been discovered with an ability to switch between different

folds [1–4], a phenomenon called fold switching. By adopting an alternative structure,

these fold-switching proteins (also termed metamorphic [5] or transformer [6] proteins)

gain the ability to carry out an additional unrelated function. For example, a switch

from a helical hairpin to a β-barrel transforms the Escherichia coli protein RfaH from

a transcription factor to a translational activator [7]. Consistent with this view, fold

switching is often regulated [8]. A range of cellular signals has been associated with

fold switching, such as changes in salt concentration [9], redox conditions [10], and

oligomerization [11]. Fold switching also underpins evolutionary changes in protein

structure [12–14], in which case fold switching is driven by mutations.

In this work, we investigate the effects of macromolecular crowding on fold switch-

ing. To this end, we focus on the binding domains of Protein G, GA and GB, which

form one of the most well-characterized fold switch systems [15] (see Fig. 6.1a). It

was demonstrated that a set of substitution mutations can be found which drastically

increases the sequence identity of GA and GB, while still retaining their respective

native structures and binding partners [15]. For example, the variants GA95 and

GB95 differ in only 3 amino acid positions. Hence, three additional substitutions

(L20A, I30F and L45Y) applied to GA95 cause an abrupt switch from the 3α fold

of GA to the 4β + α fold of GB. Later it was shown that there are multiple ways

in which a single substitution can tip the balance from one fold to the other, e.g.,

L20A applied to the variant GB98-T25I [16]. These experiments on GA and GB were,
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Figure 6.1: The GA/GB fold-switch system. (a) Representative experimental structures of the

GA and GB folds shown in ribbon: GA95 (PDB id 2KDL; blue) and GB95 (PDB id 2KDM;

orange). In GA95, residue positions 1-7 and 53-56 are intrinsically disordered (purple). (b) Contact

maps of the GA95 (above diagonal) and GB95 (below diagonal) structures. (c) Populations of the

GA (triangles) and GB (circles) folds as functions of the GB contacts strengths, κB. (d-e) Free

energy surface F (QA, QB) = −kBT lnP (QA, QB), where QA and QB are the fractions of GA and

GB contacts, respectively, T is the temperature, kB Boltzmann’s constant, and P (QA, QB) is a

probability distribution, obtained at three different values of κB. Error bars in (c) and all other

figures represent 1σ errors estimated from results of independent simulations.
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however, carried out in dilute protein solutions and therefore in the absence of any

crowding effects.

We carry out our simulations with a coarse-grained structure-based model, which

we develop and test on the GA/GB fold switch in the absence of crowders (see Meth-

ods). In its original form, the structure-based approach involves a potential energy

landscape with a single basin of attraction constructed by making native contacts

attractive and non-native contacts repulsive. This type of modeling has provided im-

portant insights into several aspects of protein folding [17–20]. The natural extension

to fold switching is a potential with dual basins of attraction corresponding to the two

alternative folds [21–26]. Our dual-basin model for GA/GB fold switching permits

us to mimic the progression of mutations along a pathway from one fold to the other

by tuning the relative interaction strengths of residue-residue contacts in the GA and

GB folds (see Fig. 6.1b). To understand the effect of crowding, we focus on the point

along the mutational pathway where the GA and GB folds exhibit roughly equal fold

propensities, which we reasoned should be especially susceptible to crowding effects.

6.2 Results

6.2.1 Mimicking the mutational pathway between the GA

and GB folds

We first simulate the GA/GB system in the absence of crowders at a fixed temperature

T sufficiently low for low-energy folded conformations to dominate over those in the

unfolded state (U). By varying the strength κB of GB contacts, keeping the strength
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of GA contacts fixed (κA = 1), we can control the relative population of the two folds

in our model, as shown in Fig. 6.1c. While GB is the dominant state at high κB

(≳ 0.97) GA dominates at low κB (≲ 0.85), where there is also a non-zero population

of U. At an intermediate value, κB = κ* = 0.92, the populations of GA (PA) and GB

(PB) are almost equal, PA ≈ PB ≈ 0.39− 0.42. The drastic population shifts between

states GA, GB, and U, can be seen from the free energy surfaces F (QA, QB), where

QA and QB are the fractions of formed GA and GB contacts, respectively, taken at

different κB values (see Fig. 6.1d-f).

The sharp structural transition around κB ≈ κ* is reminiscent of experiments

showing that very few mutational steps (or a single step) is sufficient to tip the

balance from GA to GB, or vice versa, for carefully selected mutational pathways [15].

Moreover, the minimum in the total folded population Ptot = PA+PB at κB ≈ κ* (see

Fig. 6.2a) is in line with the partial loss of stability seen for GA and GB sequences close

to the transition point, e.g., GA98 and GB98, [15] as well as for other fold switching

proteins [1, 27]. These results allow us to interpret κB as a continuous parameter

mimicking the number of steps taken along a mutational pathway connecting the GA

and GB folds. The point κB = κ* thus represents a sequence located on the border

between GA and GB. Although a sequence with a perfect GA and GB population

balance was not reported, it has been found for other fold switching systems, e.g., the

E48S variant of RfaH [7] and the N11L mutant of the Switch Arc protein [28]. We

denote our κB = κ* model protein with GAB⋆.
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Figure 6.2: Crowding effects on absolute and relative fold populations in the GA/GB fold switch.

(a) The total native population Ptot = PA+PB as function of the contact strength κB in the absence

(open squares) and presence of crowders at packing fraction ϕc = 0.19 (filled squares). (b) GA (PA;

triangles) and GB (PB; circles) fold populations as functions of ϕc. (c) Free energy of fold switching

∆Ffs = −kBT lnPB/PA (squares) as function of ϕc, fitted to Eq. 6.4 with δ as a single free parameter

(solid curve). Dashed lines between points are drawn to guide the eye.
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6.2.2 Macromolecular crowding effects on the GA/GB fold

switch

Next we introduce spherical crowder particles of radius Rcr = 12 Å into our simula-

tions and study their effects on the GA/GB fold switch. Because of hard-core steric

repulsions, the protein chain must at all times avoid the space occupied by these

particles. For single-fold proteins, such loss of free volume typically stabilizes the

native state because any extended conformation in U becomes entropically disfavored

relative to compact, folded conformations [29]. The same argument can be applied

to each fold of a metamorphic protein. Hence, the overall stability of all folded states

should increase. Indeed, as shown in Fig. 6.2a, the addition of crowders increases

the total population Ptot = PA + PB across all values of κB. Interestingly, a reduced

native state stability is a common feature of fold-switching proteins [1]. One exam-

ple is the poor stability of sequences on either side of the GA/GB switch point [15].

Hence, crowding effects, if indeed providing an overall stabilization, might alleviate

the partial loss of stability suffered by bridge sequences in evolutionary fold-switch

transitions [30].

To investigate how the relative population of the GA and GB folds is affected by

crowders we focus on GAB⋆. Fig. 6.2b shows that, as ϕc increases, the population

balance exhibited by GAB⋆ at ϕc = 0 swings towards GB at the expense of GA, i.e.,

PB increases while PA decreases. The effect on GAB⋆ is not small. For example,

PA/PB ≈ 4 at ϕc = 0.39 as compared to ≈ 1 at ϕc = 0. Hence, the effect of steric

repulsions between crowders and protein is to favor to GB over GA.

145



To quantitatively analyze this population shift we apply scaled particle theory

(SPT) [31]. In this theory, the free energy cost of inserting a hard sphere of radius R

into a fluid of hard spheres of radii Rcr with packing fraction ϕc can be analytically

expressed (see Methods). SPT has been used to model crowding-induced changes to

the unfolding free energy ∆Funf = FU −FN, where FU and FN are the free energies of

U and N, respectively [29, 32, 33]. Here we adapt SPT to fold switching by treating

the GA and GB folds as spheres of radii RA and RB. With the parametrization

RA = R0 + δ and RB = R0 − δ, where R0 and δ are two parameters, the free energy

difference can be written

β∆FSPT = 6

[︃
(a+ 6ab+ ab2 +

a3

3
)ρ+ (3ab+ 3ab2 + a3)ρ2 + (3ab2 + a3)ρ3

]︃
, (6.1)

where a = δ/Rcr, b = R0/Rcr, ρ = ϕc/(1− ϕc) and β = 1/kBT . We fit the measured

crowding induced changes in free energy of fold switching, ∆Fswitch = FB − FA =

−kBT ln[PB/PA] to Eq. 6.1 with δ as a single free parameter, fixing R0 = 10.9 Å to

the average radius of gyration of the GA95 and GB95 native structures (see Fig. 6.1a).

As shown in Fig. 6.2c, the fits gives δ = −0.75± 0.04 Å, which is reasonable because

the radius of gyration of the GA95 and GB95 native structures are RA
g = 11.4 Å

and RB
g = 10.5 Å, respectively. The quality of the fit (χ2/(n − 1) = 13.5, sample

size n = 7) indicates, however, that SPT does not completely describe the observed

crowding effects on ∆Fswitch.
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6.2.3 Disordered tails control the crowding effect on the fold

switch

The two terminal segments of the GA95 structure, residues 1-7 and 53-56, are in-

trinsically disordered (see Fig. 6.1a). Hence, the GA-to-GB fold switch involves a

disorder-order transition of these tail regions. Given their flexible nature, it is likely

that the tails contribute substantially to the volume excluded by the protein when

occupying the GA fold. Indeed, if the terminal segments are ignored, the radius of

gyration of GA95 is reduced by almost 30 %, RA,7-50
g = 8.2 Å. Together with the poor

fit with SPT (see Fig. 6.2c), these results suggest a major role for the tail segments

in how the GA/GB fold switch is impacted by crowding.

To show that this is indeed the case, we carry out crowding simulations with a mod-

ified potential energy function E
(db)
mod, in which all crowder-protein interactions have

been turned off for residues in the 1-7 and 53-56 regions. Hence, in these simulations,

these N- and C-terminal segments become invisible to the crowders, which thus freely

overlap with these residues. Although unphysical, this computational experiment log-

ically tests the role of the tail regions in our model under crowded conditions. Note

that crowders can overlap with the tails regardless of which state is populated by the

protein. Moreover, at ϕc = 0, there is no change because intra-chain interactions are

unaffected. The results are shown in Fig. 6.3. Strikingly, with the modified potential

E
(db)
mod, the impact of crowding reverses such that the GA fold becomes increasingly

favored over GB with increasing ϕc. Hence, our computational experiment shows that

the volume excluded by the disordered tails in the GA fold is the dominant factor

affecting the balance between the folds in the presence of crowders.

148



6.2.4 Comparing with crowding effects on single-fold pro-

teins

Above we have shown that the crowders induce a population shift in GAB⋆, which is

due to the presence of disordered tails. For single-fold (monomorphic) proteins, purely

repulsive crowders typically enhance the stability of the native state [34]. Naively,

one may therefore expect that the native state of monomorphic GB (κB > κ*) would

be more strongly stabilized by the crowders than monomorphic GA (κB < κ*). To

test this idea, we determine the folding midpoint temperature, Tm, for the model

proteins with κB = 0.85, which adopts the single fold GA, and κB = 1.00, which

adopts the single fold GB (see Fig 6.1), over a range of ϕc. As seen in Fig. 6.4a-

c, both proteins exhibit a monotonic increase in Tm with increasing ϕc, indicating

stabilization. The relative increase in Tm for monomorphic GB is indeed somewhat

larger than for monomorphic GA. The difference is relatively small, however. We also

perform similar simulations using the single-basin energy functions E(A) and E(B), (see

Methods) which lack entirely a bias towards the alternative fold. For these models, the

crowding-induced increases in Tm are almost identical (see Fig. 6.4d). Taken together,

these results suggest that determining the crowding response of a fold switching with

two “co-existing” folds may not be easily obtained from experiments on two different

single-fold proteins representing the folds.
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6.2.5 The unfolded state changes character across the fold

switch

The results in Fig. 6.4 are at first surprising because ∆Fswitch for a fold switching

protein can be obtained from the relation

∆Fswitch = ∆FA
unf −∆FB

unf , (6.2)

where ∆FA
unf = FU − FA and ∆FB

unf = FU − FB are defined in direct analogy with the

unfolding free energy of single fold proteins. Equation 6.2 expresses that a decrease

in ∆Fswitch results when the crowding-induced stabilization of fold GB relative to U

is stronger than the stabilization of fold GA. However, Eq. 6.2 is only guaranteed to

hold when ∆Fswitch, ∆F
A
unf and ∆FB

unf are determined for the same protein for which

U provides a common reference. We therefore examine if the drastic structural shift

for low energy (folded) conformations in the GA/GB fold switch is accompanied by

changes in U.

We first characterize U across the fold switch in the absence of crowders, i.e., upon

changing the contact strength κB, as shown in Fig. 6.5a and b. With increasing

κB, and therefore increasing GB population, the unfolded state radius of gyration

R
(U)
g decreases. Additionally, U becomes more “GB-like” as shown by the increase

in Q
(U)
B , i.e., the fraction of formed GB contacts in U. These results are in line with

simulations of single-fold proteins showing that native contacts in β-proteins tend to

promote chain collapse during folding more efficiently than α-proteins [35].

In the GA to GB fold switch driven by crowding we similarly find a compaction

of U (see Fig. 6.5c and d). For ϕc > 0.20, R
(U)
g becomes smaller than for any value
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of κB in the case of no crowders. Moreover, Q
(U)
A and Q

(U)
B both increase with ϕc.

Hence, fold switching driven either by mutation or crowding substantially impacts

the structural characteristics of U. Both compaction and the formation of residual

structure due to crowding have been observed for various single-fold proteins [36,37].

6.3 Discussion

Fold switching in proteins involves major structural changes, including in shape and

amino acid composition of surface regions. As a result, fold switching should be

inherently susceptible to macromolecular crowding effects. Here we tested this idea

by applying a dual-basin structure-based protein model and purely repulsive crowders

to the GA/GB fold switch. We found that the addition of crowders indeed alters the

free energy balance between the two folds. The effect increases monotonically with ϕc.

At ϕc = 0.39, the change in ∆Fswitch is ≈2 kBT in magnitude. While no experiment

probing crowding effects on fold switching is available for comparison, a recent study

demonstrated a key role for molecular shape in crowding by exploiting alternative

dimer forms of two almost identical sequences [38].

Our results show that the response to crowding is determined by chain segments

at the N- and C-terminal ends, which are intrinsically disordered only in the GA fold.

The volume excluded by these disordered segments leads to an entropic stabilization

of the GB fold relative GA. Interestingly, order-disorder transitions occur frequently

in protein fold switching [1]. An example besides GA/GB is the human chemokine

XCL1, which switches fold upon dimerization. In its monomeric (chemokine) fold,

XCL1 adopts an α-helix in its C-terminal region, which becomes disordered when
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the protein transforms to its dimeric fold-switched state [12]. It should be pointed

out that crowder interactions other than hard-core steric repulsions may modify the

effect of the crowders, as is the case for single-fold proteins. Non-specific attractive

(soft) interactions between protein and crowders generally counteract the stabilizing

effect of volume exclusion [39], sometimes even leading to a net destabilization [40].

Most studies on fold switching have quite naturally focused on the structure and

dynamics of the different folded states and their interconversions. However, our sim-

ulations of the GA/GB switch reveal that fold switching may be accompanied by

substantial changes in U (see Fig. 6.5) even in the absence of crowders. Under condi-

tions favoring GA, we find that U is rather expanded and dominated by local contacts

while becoming more compact and forming more non-local contacts as the conditions

shift to favor GB. In previous simulations of the metamorphic RfaH [25], we showed

that the isolated C-terminal domain (CTD), which adopts a stable β-barrel in isola-

tion, exhibits a propensity for α-helical structure in U. This helical propensity was

demonstrated experimentally by Zuber et. al. [27], who suggested further that the

presence of residual helical structure may help initiate the reverse fold switching of

RfaH, i.e., the transformation from the β-barrel to its alternative all-α fold. Taken

together, the above considerations suggest that an improved understanding of U may

give further insights into fold switching mechanisms as well as effects from crowding.

In addition to changes to the relative population of the two folds, we have found

that the presence of crowders increase the total population of the GA and GB folds

relative to U. An overall stabilization of ordered states might be especially beneficial to

fold-switching proteins, which often exhibit reduced stabilities [1]. Poor stabilities of
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bridge sequences at the border between folds may hamper evolutionary transitions [16,

41, 42]. A recent study suggests fold switching within the context of multidomain

proteins, in which non-switching domains can act as stabilizing templates, may help

stabilize such bridge sequences and facilitate fold transitions [13]. Our results suggest

that additional stabilization may be provided by crowding effects.

Our study opens up for additional experimental and theoretical investigations into

the effects of crowding on fold switching. Advances in the field are improving our

understanding of fold switching within functional [27, 43] and evolutionary [3, 12, 13]

contexts. These efforts will include also a characterization of the impact of macro-

molecular crowding on equilibrium as well as kinetic properties of fold switching

proteins.

6.4 Model and Methods

6.4.1 Native structures and contact maps

The experimentally determined structures of GA95 (PDB id 2KDL) and GB95 (2KDM)

[15] were downloaded from the Protein Data Bank (PDB). Both structures were sub-

mitted to the SMOG webserver (https://smog-server.org/) to obtained contact maps

as prescribed by the shadow map method [44]. The two contact maps contain 106

and 145 contacts, respectively.
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6.4.2 Observables

The fractions of native contacts formed, QA or QB, are determined using the following

contact criterion: Two amino acids i and j is considered in contact if rij < 1.2r0ij,

where rij is the distance between the Cα atoms and r0ij is the distance in the na-

tive structure. The root-mean-square deviations, RMSD, is calculated over all Cα

positions of the chain.

6.4.3 Coarse-grained model for protein fold switching

Simulations are carried out using a dual-basin structure-based model in which each

amino acid is represented by a single bead located on the Cα position. The starting

point for developing this model is a modified version of the single-basin structure-

based model in Ref. [18] with a potential energy function with 5 terms, E = Ebond +

Ebend + Etorsion + Erep + Econt, representing bond stretching, bond flexing, torsional

rotations, repulsions between bead pairs, and attractive native contact interactions.

We apply this model separately to the native structures of GA95 and GB95 resulting

in two structure-based energy functions, E(A) and E(B), with single basins of attrac-

tion (either the GA fold or the GB folds). Using the exponentially-weighted mixing

approach of Best et al. [45], we then merge E(A) and E(B) into a single (dual basin)

energy function, E(db). The strength of GA and GB contacts, κA and κB, are left

as free parameters in E(db), allowing the relative depth of the GA and GB basins of

attraction to be controlled. Further details of the model are given in Appendix A.4.
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6.4.4 Excluded volume crowders

Crowder-crowder and crowder-bead interactions are modeled using the potential func-

tion [29]

V (r) = ϵ

(︃
σ

r − ρ+ σ

)︃12

(6.3)

for distances r > ρ − σ, and V (r) = ∞ otherwise. Hence, our crowders have a soft

repulsive shell over a hard core. The parameters ρ and σ control the range of the

interaction and the width of the soft repulsive shell, respectively. For crowder-crowder

interactions, we set ρ = 2Rcr and σ = 2σcr, where σcr = 3 Å controls the width of the

soft shell of the crowders. For crowder-bead interactions, we set ρ = Rcr + σb and

σ = σcr+σb, where σb = 4 Å is the bead radius. Crowder concentration is quantified

as the fraction ϕc of the total simulation volume V occupied by the crowders, i.e.,

ϕc = 4πRcr
3Ncr/3V . The number of crowding particles Ncr in our simulations range

from 9 for ϕc = 0.06 to 54 for ϕc = 0.39.

6.4.5 Langevin dynamics

Conformational sampling is carried out using Langevin dynamics, following the ap-

proach of Ref. [18]. The time evolution of the system is governed by the equation,

mv̇(t) = Fconf−mγv(t)+ η(t), where m, v, v̇, γ, Fconf and η(t) are the mass, velocity,

acceleration, friction coefficient, conformational force and random force, respectively.

For computational reasons, simulations are carried out in the low-friction (under-

damped) limit, where −mγv(t) is small relative to the inertial term mv̇(t). In this

limit, a natural unit of time for the dynamics is τ =
√︁
ml2/ϵ [46], where ϵ is the

magnitude of typical interactions and l is a length scale, which we set to 4 Å. The
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friction coefficient for beads is taken to be γb = 0.05τ−1. Units are set so that the

mass of a bead is mb = 1.0. The random force η(t) is drawn from a Gaussian distribu-

tion, the variance of which sets the temperature of the system. Numerical integration

of the equation of motion is carried out using the velocity form of the Verlet algo-

rithm [47] with an integration time step δt = 0.005τ . For crowders, the mass and

friction coefficient are set to mc = 9.0 and γc = 0.017τ−1.

6.4.6 Simulation and analysis details

Simulations were carried out by placing the protein and crowders in a cubic box

with side 100 Å. Periodic boundary conditions were applied. Langevin dynamics

simulations were used to determine the equilibrium behavior of various systems char-

acterized by different GB contact strengths κB and crowder concentrations ϕc. Simu-

lations were performed at either fixed temperature or using simulated tempering [48],

in which temperature changes dynamically between a predetermined set of tempera-

tures. In the simulated tempering runs, temperatures were updated every 100 time

steps. For each system, 5-10 independent runs of (4− 5)× 109 time steps each were

carried out and used to estimate averages and statistical uncertainties. All simula-

tions were initiated from a random protein conformation (random torsional angles

ϕi) and random crowder positions, followed by a Monte Carlo-based relaxation step

in which all hard core steric clashes were removed.
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6.4.7 Scaled particle theory

Some theories have been used to predict the effect of excluded volume crowders on

folding free energy. One of these theories is the scaled particle theory (SPT). Accord-

ing to the SPT, the free energy cost of inserting a hard sphere of radius R in a hard

sphere fluid of particles with radius Rcr is [31]

βF = (3x+ 3x2 + x3)ψ + (
9x2

2
+ 3x3)ψ2 + 3x3ψ3 − ln(1− ϕc) , (6.4)

where β = 1/kBT , T is the temperature, kB is the Boltzmann constant, x = R
Rcr

,

ψ = ϕc

1−ϕc
, and ϕc is fluid volume fraction. Minton showed that SPT predicts a strong

stabilizing effect on the stability of native state of proteins if the unfolded state is

modeled as a random Gaussian chain [33]. Here we apply SPT to model the free

energy cost of switching between two folds of different radii.
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Chapter 7

Summary and outlook

In this study, our aim has been to characterize the biophysical properties of meta-

morphic proteins and the large-scale structural transitions they undergo. We focused

on the metamorphic protein RfaH and the GA/GB fold switch system.

The energy landscape of metamorphic proteins has been the subject of many com-

putational studies. Most studies depict energy landscapes with dual funnels, which

must be the case when both folds have significant populations. To study the energy

landscape of the CTD of RfaH protein, we developed a hybrid all-atom model that

combines a physics-based model with a dual-basin structure-based potential. Apply-

ing this model to the isolated CTD, we found that the β-barrel fold is more favorable

than the α-helical hairpin, and the energy landscape has a single funnel toward the

β-barrel fold. Hence, we have found that the RfaH CTD on its own does not exhibit a

dual-funnel energy landscape, contrary to the expectation for metamorphic proteins.

Using the same model, we observed a relatively high α-helix structure content
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in the unfolded state of isolated CTD. Moreover, this domain exhibited transient

formation of α-helical structure during folding to its stable β-barrel state.

In addition, we have investigated the effect of the N-terminal domain of RfaH on

domain dissociation and fold switching of RfaH. We tested a hypothesis that a change

in the orientation of the β3-β4 extended hairpin plays a key role in the dissociation

of CTD from NTD which is the trigger for fold switching in this protein.

The effect of macromolecular crowders on protein stability has been studied by

many groups [1–5]. Under crowded conditions, the folded state of proteins is usually

entropically favored. We developed a coarse-grained Cα model with a dual basin SBM

and applied the model to GA/GB fold switch system to study the effect of macro-

molecular crowders on fold switching. We found that increasing the concentration of

crowders increases the total stability of the folded states and shifts the folded popula-

tion towards the GB state. Our analysis showed that it is the presence of intrinsically

disordered tails, which only appear in the GA structure, that drives the population

shift. It would be interesting to compare our results with an experimental study of

GA/GB sequences in the presence of various types of crowders.

To further our research, we continue to explore how RNAP triggers the fold switch-

ing in RfaH. Given the complexity of the RfaH-RNAP interaction, to make further

progress into this question will likely require experimental collaboration. We also

plan to further investigate macromolecular effects, for example, the impact on fold

switching rates and the effect of including attractive interactions between protein

and crowders. Additionally, we are intrigued by the potential impact of inter-domain

attractive contacts on domain dissociation in RfaH, which we can explore using our
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hybrid model.

Our simulation methods, which we have developed at both coarse-grained and all-

atom levels, are capable of being applied to other metamorphic proteins with multiple

native states. Furthermore, we can conduct fold switching tests in a more realistic

crowded environment using different crowder particles, such as crowders made up of

other proteins, which would be particularly interesting.
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Appendix A

Appendix

A.1 Supporting Information for chapter 3

Structural fluctuations and mechanical stabilities of

the metamorphic transcription factor RfaH
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Figure S1: Shown is the root-mean-square deviation, RMSD, as a function of MC time, for 4 out

of the 30 simulations carried out of domain-closed RfaH at T = 310K. The RMSD is determined

with respect to the experimental structure of free RfaH (PDB id 2oug; see Fig. 1(left)), taken over

residues 1-162 (RfaH), 1-100 (NTD) or 115-156 (CTD). All runs were initialized from a regularized

version of 2oug (see Methods).
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A.2 Supporting Information for chapter 4

The C-terminal domain of transcription factor RfaH:

Folding, fold switching and energy landscape
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Figure S2: Free energy surfaces at low T : single-basin SBM vs dual-basin SBM. Shown are free

energy surfaces F (X1, X2) = −kBT lnP (X1, X2), with (A, B) X1 = Qα and X2 = Qβ or (B, D) X1

equal to the total energy and X2 = RMSDβ . The probability distributions P (X1, X2) are taken at

the lowest simulated temperature, i.e., T = 365 K for the dual-basin SBM case and T = 370 K for the

single-basin SBM case. Insert shows the same surface F (X1, X2) as in (A) except that X1 = Q
(49)
α

(see main text).
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Figure S3: Temperature dependence of the average α-helix content of (A) the 15-amino acid

sequence VIITEGAFEGFQAIF and the 21-amino acid sequence GEARSMLLLNLINKEIKHSVK, as

obtained by our physics-based model (no SBM term included). The two sequences correspond to the

α4 and α5 regions of the all-α fold of RfaH, respectively. The α-helix contents are determined using

STRIDE. Averages and statistical errors are estimated using 10 independent simulated tempering

runs of each 109 Monte Carlo step cycles.
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A.3 Supporting Information for chapter 5

Examining the effect of the N-terminal domain of

RfaH on domain dissociation and fold switching
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Figure S4: Stabilities of secondary structure elements in α-CTD and β-CTD for free RfaH and

H1 structures. The graph illustrates the average content of α-helix and β-sheet as a function of

sequence position for 10 independent simulations started in free RfaH structure (A and B), and H1

structure (C and D). Brackets ⟨⟩ represent an average over the 10 simulations, and data correspond

to MC cycles more 2 × 106 of the simulations. Results are given for simulations carried out at 13

different temperatures from 320 to 440K. The residue numbers correspond to those of the full-length

RfaH.
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A.4 Supporting Information for chapter 6

Effect of crowding on a fold-switching protein is

controlled by its disordered tails
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A.4.1 Single-basin structure-based model for protein folding

As a starting point for the development our dual-basin structure-based model (see

next section), which we apply in this work to the GA/GB switch, we take a previous

single-basin model for protein folding developed in Ref. [1]. We start by describing

the model in [1], along with a modification introduced to enhance the conformational

specificity of native contact interactions. We find that the enhanced contact specificity

is necessary to make the two folds structurally well defined in the dual-basin model.

Geometrically, the protein is represented by single beads located at the Cα atom

positions. The conformation of an N -amino-acid chain can therefore be described by

the bead positions ri, where i = 1, ..., N . Alternatively, a conformation can also be

described by the bond lengths, bi, bond angles θi, and dihedral angles, ϕi, defined by

the N −1 (pseudo) Cα-Cα bonds of the chain. We denote by b0i , θ
0
i , and ϕ

0
i the values

of bi, θi and ϕi in the native conformation. The potential energy E can be written as

a sum of five terms:

E =
bonds∑︂

i

Kb(bi − b0i )
2 +

angles∑︂
i

Kθ(θi − θ0i )
2

+
dihedrals∑︂

i

K
(1)
ϕ [1− cos(ϕi − ϕ0

i )] +K
(3)
ϕ [1− cos 3(ϕi − ϕ0

i )])

+
nonnative∑︂
i<j−3

ϵ

(︃
σ

rij

)︃12

+
native∑︂
i<j−3

ϵ(hij − fij) , (A.1)

where ϵ sets the energy scale of the model and rij = |rj − ri|. The first three terms

represent bonded interactions with strengths set to Kb = 100ϵ, Kθ = 20ϵ, K
(1)
ϕ = ϵ

and K
(3)
ϕ = 0.5ϵ. The fourth term represents steric repulsions between bead pairs that

do not form a contact in the native structure. The repulsion range is set to σ = 4 Å.

These first four terms in Eq. A.1 are identical to Ref. [1].
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The final term in Eq. A.1 represents native contact interactions, which in the pre-

vious model [1] were described by the Lennard-Jones potential fLJ(rij) = (r0ij/rij)
12−

2(r0ij/rij)
6. Here we separate the interaction into a repulsive part (hij) and an attrac-

tive part (fij), such that they can be independently controlled. The repulsive part is

described by a Weeks-Chandler-Anderson type function,

hij =

⎧⎪⎨⎪⎩
(︂

r0ij
rij

)︂12

− 2
(︂

r0ij
rij

)︂6

+ 1, if rij < r0ij ,

0, if rij ≥ r0ij ,

(A.2)

where r0ij is the distance between beads i and j in the native structure. The attractive

part takes the form

fij = gξ1(rij)gξ2(r
′
ij)gξ2(r

′′
ij) , (A.3)

where gξ(r) = exp[−(r − r0)2/2ξ2]. With the construct in Eq. A.3, the distance

rij as well as the two nearest neighbor distances, r′ij and r′′ij, (see Figure S6) must

assume their respective native values r0ij, r
′0
ij and r′′0ij for ij to become a fully formed

native contact, which then contributes −ϵ towards the total potential energy E. The

parameter ξ1 sets the width of the attractive well −ϵgξ1(rij). The combination of this

attractive well and the repulsive part of the interaction results in a function, hij−gξ1 ,

with gross features similar to a Lennard-Jones potential (see Fig. S5).

The factor gξ2(r
′
ij)gξ2(r

′′
ij) is included in fij in order to increase the conformational

specificity of native interactions. It promotes the local chain segments (i− 1, i, i+1)

and (j − 1, j, j + 1) to adopt a relative orientation close to that found in the native

structure. The strength of this effect is controlled by the parameter ξ2. It is weak

when ξ2 ≫ ξ1 and becomes strong when ξ2 ≈ ξ1. Test simulations on a few small single

domain proteins show that decreasing ξ2 leads to increased folding cooperativity. We
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Figure S5: The potentials hij − gξ1 and fLJ (see text) as functions of rij using r0ij = 6 Å.

picked ξ1 = 1.0 Å and ξ2 = 5.0 Å. We note also that there are terms in Eq. A.3 for

which r′ij or r
′′
ij is undefined because i or j is a terminal bead. In those cases, we set

the corresponding factor g = 1.

The effect from the factor gξ2(r
′
ij)gξ2(r

′′
ij) in Eq. A.3 is similar to so-called local-

nonlocal coupling, which also leads to increased folding cooperativity [2]. Our effect

is not exactly the same, however, because it does not provide a direct constraint on

the local internal conformation around beads i and j, which exists in local-nonlocal

coupling.

A.4.2 Dual-basin structure-based model for fold switching

Next we extend the model of the previous section to a dual-basin (db) model, which

provides bias towards two different reference structures “(a)” and “(b)”. Such a bias

can be achieved by first obtaining the two single-basin energy potentials E(a) and

E(b) using Eq. A.1, and thereafter merging them into a single energy surface, E(db).
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Figure S6: A contact between two non-terminal positions, i and j, (thick dashed line) has four

different nearest neighbor-nearest neighbor distances (thin dashed lines): (A) ri−1,j−1 and ri+1,j+1

and (B) ri−1,j+1 and ri+1,j−1. In evaluating the factor gξ2(r
′
ij)gξ2(r

′′
ij) in Equation A.1, r′ij and r′′ij

are the distances shown in (A), if ΣA < ΣB, or in (B), if ΣB < ΣA, where ΣA = r0i−1,j−1 + r0i+1,j+1

and ΣB = r0i−1,j+1 + r0i−1,j+1.

Naively, one may attempt to put E(db) = E(a) +E(b). However, this strategy is prob-

lematic for some types of interactions, as pointed out by Ramirez-Sarmiento et al. [22].

For example, the sum of two quadratic bond terms Kb[(bi − b
(a)
i )2 + (bi − b

(b)
i )2] is

another quadratic function with minimum at (b
(a)
i + b

(b)
i )/2. Hence, this would abol-

ish both minima. We combine the two single-basin potentials E(a) and E(b) using

the procedure described below, which avoids these problems. This procedure is then

applied to the GA and GB folds to produce the dual-basin potential used in this work.

Bonded terms. The bonded interactions are represented by the first three terms

in Eq. A.1. Consider two individual energy terms, e(a)(x) and e(b)(x), with global

minimum at x = xa and x = xb, respectively. The functions e(a)(x) and e(b)(x) could

be, e.g., the bond angle terms corresponding to a particular bond, in which case
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x = θi. To “mix” e(a)(x) and e(b)(x) into a single function e(x), we use [3]

e(x) = β−1
mix ln

[︂
e−βmixe

(a)(x) + e−βmixe
(b)(x)

]︂
, (A.4)

where βmix is a parameter controlling the smoothness of the mixing. We pick βmix = 10

for the bond term, and βmix = 5 for the angle and torsion terms. Examples of three

different terms for the GA and GB folds are given in Fig. S7.

Non-bonded terms. For the native contact term, we include all contact interactions

present in either E(a) or E(b). Although this is straightforward in principle, care must

be taken to avoid double counting interactions for common contacts, i.e., contacts

that occur in both structure (a) and structure (b). Moreover, we want to insert

parameters κA and κB such that depths of the attractive wells −ϵf (a)
ij and −ϵf (a)

ij can

be controlled. Hence, our dual-basin contact term becomes

(a)∑︂
ij

ϵ(h
(a)
ij − κAf

(a)
ij ) +

(b)∑︂
ij

ϵ(h
(b)
ij − κBf

(b)
ij ) +

common∑︂
ij

ϵ
{︂
h̃ij −max

[︂
κAf

(a)
ij , κBf

(b)
ij

]︂}︂
.

In the above equation, the first two sums are taken over native contacts in (a) and

native contacts in (b), respectively, but exclude all common contacts. The final

sum, which is taken over these common contacts, retains only the energetically most

favorable attraction for each contact. The repulsive part, h̃ij, is evaluated as hij

using the reference (native) distance r0ij = min
[︂
r
(a)
ij , r

(b)
ij

]︂
. This smaller range of

the repulsion is necessary to guarantee that these contacts are able to be formed in

both conformations (a) and (b), without being sterically excluded by the repulsive

part of the interaction. Note that the reference distance r0ij for common contacts

can be calculated before a simulation and that h̃ij does not change form during the
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simulation. The nonnative repulsive energy term, i.e., the fourth term in Eq. A.1, is

evaluated over all pairs ij that are not present in either (a) or (b).
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Figure S7: Examples of the merging of different bonded potentials for GA and GB (thin black

solid/dashed curves) into a single potential (thick solid green curves) using the “mixing” equa-

tion A.4.
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